Waste to Energy Facility at El Guacal Landfill

OUTSIDE FRONT COVER
Waste to Energy Facility at El Guacal Landfill
Feasibility Study
Task 15 Report: Final Report
Public Version (No Confidential Version Issued)
Presented to Study Grantee IDEA:
and to funding agency:
United States Trade and Development Agency (USTDA) by:
CAMBRIDGE
Project Development Inc.
November 24, 2011
USTDA Delivery and Mailing Address:
United States Trade and Development Agency
1000 Wilson Blvd., Suite 1600
Arlington, VA 22209
Phone: (703) 875-4357
Fax: (703) 875-4009
Disclaimer: This report was funded by the U.S. Trade and Development Agency (USTDA), an agency of the U. S. Government. The
opinions, findings, conclusions or recommendations expressed in this document are those of the author(s) and do not necessarily
represent the official position or policies of USTDA. USTDA makes no representation about, nor does it accept responsibility for, the
accuracy or completeness of the information contained in this report.
Page 1 of 15
CAMBRIDGE Project Development Inc.
INSIDE FRONT COVER
Waste to Energy Facility at El Guacal Landfill
Feasibility Study
Task 15 Report: Final Report
Public Version (No Confidential Version Issued)
Presented to Study Grantee IDEA:
and to funding agency:
United States Trade and Development Agency (USTDA) by:
CAMBRIDGE Project Development Inc.
November 24, 2011
USTDA Delivery and Mailing Address:
United States Trade and Development Agency
1000 Wilson Blvd., Suite 1600
Arlington, VA 22209
Phone: (703) 875-4357
Fax: (703) 875-4009
USTDA Mission Statement: The U.S. Trade and Development Agency helps companies create U.S. jobs through the
export of U.S. goods and services for priority development projects in emerging economies. USTDA links U.S.
businesses to export opportunities by funding project planning activities, pilot projects, and reverse trade missions
while creating sustainable infrastructure and economic growth in partner countries.
Page 2 of 15
CAMBRIDGE Project Development Inc.
Prospective US Sources of Supply:
Contact Information
Company
Name
Title
Senior
Product
Consultant
Email
Caterpillar, Inc.
Tom Lee
Cummins Inc.
Curt Chesler
Account
Manager
Curt.Chesler@cummins.com
Curtis Engine &
Equipment Inc.
Tony Janotta
Sales
Engineer
Jannotta.tony@curtisengine.com
GE Waukesha Gas
Engines
Aaron P.
Trexler
Product Line
Leader
aaron.trexler@ge.com
leej@cat.com
Phone
Phone:
765-4485552
Phone:
702-3992339
Phone:
410-5361203
Phone:
262-5492995
Feasibility Study Contractor and Subcontractors Contact Information:
Project Team
Role
Contractor
Subconsultant
Subconsultant
Contact Information
Cambridge Project Development Inc.
4851 SW 71 Place
Miami FL 33155, U.S.A.
Tel 305-926-3309
Fax 305-356-3680
Email: LNE@cambridgeprojectdev.com
EnerconAmerica Inc.
1250 N. LaSalle Blvd. Suite 1112 Chicago IL 60610 USA
Chicago IL 60610 U.S.A
Tel 312-337-1518
Email: wserbetci@enerconamerica.com
Quality & Evolution S.A.
Cra 11 No. 94 - 02 Of. 202
Centro de Negocios Manhattan
Bogotá, Colombia
Tel + 57-1-257-6023
Email: mmikan@quality-evolution.org
Page 3 of 15
CAMBRIDGE Project Development Inc.
Fax
Fax: 765448-5985
Fax: 702399-2614
Fax: 240209-0776
Fax: 262650-5650
The contents of this Task 15 Report are listed below. Please note that the feasibility study terms
of reference (TOR) stipulate that this Task 15 report contain all Task 1 through 14 reports, in
addition to an Executive Summary. Therefore, the complete interim reports from Tasks 1
through 14 are included in this final report.
Contents of Task 15 Report
Section
(Task
No.)
1
2
3
4
5
6
7
8
9
Section Title (Task Title)
Executive Summary
Infrastructure Assessment at Site
Power Demand & Electrical Market
Fuel Supply and Ash Disposal
Technical Configuration & Preliminary Design
Preliminary Cost Estimates
Preliminary Environmental Analysis
U.S. Sources of Supply
Financial Evaluation
Project Risk Assessment
10
Regulatory Framework
11
12
13
14
Development Impact
Off-Take Agreements
Implementation Plan
Investment Memorandum
Page 4 of 15
CAMBRIDGE Project Development Inc.
Executive Summary
1. A waste-derived energy recovery project at the CIS El Guacal site is considered both
technically and financial feasible. The recommended technical configuration is a widely
proven landfill gas to energy (LFGE) system that utilizes combustible methane generated
from the decomposition of municipal solid wastes placed in the CIS El Guacal landfill cells.
Use of any other available technical configuration involves unacceptably high technical risk,
or requires a significant increase in the scalehouse tipping fee at CIS El Guacal, which is
currently on the order of USD$ 11. EVAS, the landfill owner, has emphasized that any
increase in the scalehouse tipping fee would be unacceptable to CIS El Guacal users and to
the served communities.
The following technical configurations have been carefully evaluated during this feasibility
study, and have been eliminated as a result of technical risk (typically poor or non-existent
commercial track record) or requirement for a much higher tipping fee at the CIS El Guacal:

Combustion (good commercial track record but requires much higher tipping fee)
o Mass Burn
o Refuse-Derived Fuel

Gasification and Pyrolysis (lack of commercial track record and require much higher
tipping fee)
o In-Vessel Gasification
o Plasma Arc Gasification

Biological and Chemical (lack of commercial track record and require much higher
tipping fee)
o Anaerobic Digestion
o Chemical Decomposition.
2. The CIS El Guacal site is appropriate for such an LFGE project, as a result of the following
favorable factors:
a. The site has a reliable waste intake of 900 tons per day at current levels. Projected
tonnage is for 900 tons per day intake beginning in 2011, with a 1.5% annual growth
rate for at least 20 years.
b. Approximately 90% of the waste intake to the site is committed under long term
contractual arrangements or delivered by EVAS, the owner and operator of the site.
Even the remaining 10% of the site waste intake is unlikely to be diverted, since use
Page 5 of 15
CAMBRIDGE Project Development Inc.
of the nearest alternative landfill at La Pradera requires an approximately 70
kilometer transport from the southern Aburrá Valley (the area from which most of
the delivered tonnage to the CIS El Guacal originates) that includes transiting the
dense road traffic of the central Medellín metropolitan area.
c. The site offers adequate landfill airspace capacity of approximately 25 years for the
existing North Cell (currently active) together with the planned Central Cell (next cell
to commence operations), with an additional 25 years of airspace capacity provided
by the planned South Cell. Therefore, the site offers approximately 50 years of
airspace capacity.
d. The site can be connected to the national grid for power export through
construction of a new 44 kV line from the CIS El Guacal to one of three candidate
existing substations (San Antonio de Prado, Ebéjico, or San Cristóbal). The specific
substation will be selected during project implementation through a connection
study. EPM is the only distribution company in the area, and EPM will build and
operate the new 44 kV line and the transformers at both ends of the new line.
e. The site operates under an existing environmental license issued by the regional
environmental authority Corantioquia. The existing environmental license includes
permission to collect landfill gas and combust it through an existing flare. It is
concluded, therefore, that permitting for the new LFGE facility would be
straightforward and would require only a modification of the existing environmental
license through Corantioquia (not through the national government's Ministry of
Environment, Housing, and Territorial Development). The LFGE facility will only
modify the means of combustion, while collecting gas in the same manner as is
currently accomplished.
3. The recommended technical configuration calls for the use of internal combustion engines
designed to combust landfill gas. These engines are integrated with generators, and each
combination of engine-generator is termed a "module". Each module would have a capacity
of 1.6 MW each, and modules are available in prefabricated permanent housings. The
number of modules installed would be:
a. Two modules (Modules A and B) would be installed in Year 1 (total installed capacity
of 3.2 MW).
b. A third module (Module C) would be installed in Year 4 (total installed capacity of
4.8 MW) and a fourth module (Module D) would be installed in Year 12 (maximum
installed capacity of 6.4 MW).
c. In order to realize the projected power generation levels, EVAS and its contractors,
as landfill operators, must continue to consistently pursue the recently begun
landfill operational improvements, including minimization of the exposed waste
Page 6 of 15
CAMBRIDGE Project Development Inc.
working face, use of frequent soil cover, and prompt removal of any leachate
accumulations within the landfill cells.
d. Figure A-1 below presents projections of the key performance parameters of the
recommended facility.
Figure A-1: Landfill Gas Generation and Projected Plant Capacity
Annual Power
Sold (kWh)
Base
Base
Base
Base
Base
1
2.0
2.0
3.2
17,520,000
2.8
2.0
3.2
24,528,000
3.2
2.0
3.2
28,032,000
4
3.4
3.0
4.8
29,784,000
5
3.6
3.0
4.8
31,536,000
6
3.7
3.0
4.8
32,412,000
7
3.8
3.0
4.8
33,288,000
8
4.0
3.0
4.8
35,040,000
9
4.2
3.0
4.8
36,792,000
10
4.3
3.0
4.8
37,668,000
11
4.5
3.0
4.8
39,420,000
4.7
4.0
6.4
41,172,000
4.9
4.0
6.4
42,924,000
5.0
4.0
6.4
43,800,000
15
5.2
4.0
6.4
45,552,000
16
5.4
4.0
6.4
47,304,000
17
5.6
4.0
6.4
49,056,000
18
5.1
4.0
6.4
44,676,000
19
4.0
4.0
6.4
35,040,000
20
3.2
4.0
6.4
28,032,000
12
13
14
North Cell
3
Central Cell
2
Active Cell
Total Installed
Plant
Capacity
(MW)
Year: Sequential
Power Plant
Generation
(MW)
Total
Installed
Engines @ 1.6
MW Capacity
Each (units
installed)
Page 7 of 15
CAMBRIDGE Project Development Inc.
Figure A-18 (from Task 4) below shows a typical LFGE internal combustion engine-generator set
and typical pre-fabricated enclosures for the generator sets. Figure D-1 (from Task 4) below
presents the overall process flow for an LFGE installation.
Figure A-18: Typical Landfill Gas Engine-Generator Set and
Pre-Fabricated Enclosures
Figure D-1: Landfill Gas to Energy Process Flow
Page 8 of 15
CAMBRIDGE Project Development Inc.
4. As an independent generating facility with capacity of less than 20 MW, the new LFGE
facility is guaranteed, under the innovative Sistema Interconectado Nacional (SIN), to be
able to sell 100% of the power generated into the national grid. The new LFGE facility will
have the option of selling to the Spot Market or to a specific power customer under contract
(generally with a 1 to 2 year contract term). Based on historical review of pricing, it is
recommended that the new LFGE facility sell power to the Spot Market, at least initially.
Power sales pricing under contracts have been historically slightly lower than Spot Market
prices; a new facility may also want to take advantage of the added flexibility offered by the
Spot Market (no minimum export level required), especially during the first year of
operations, during which it may be difficult to guarantee a minimum generation level under
a client contract.
5. It is anticipated that a new special-purpose company (a new company or "NEWCO") will be
formed to implement the project and operate the new LFGE facility. As an independent
generating facility owned by public entities (it is assumed that the NEWCO will be owned by
a combination of IDEA, EVAS, and EMGEA), the facility will be exempt from sales tax.
6. Key financial indicators for the recommended LFGE facility are:
a. In this study, the power sales price for the LFGE facility is projected at USD$ 0.0705
per kilowatt-hour (kWh) average in 2011 dollars for sales to the Spot Market.
b. Total capital investment is projected at USD$ 15.2 Million and is composed of:
i. Tranche 1 (2011 through 2020 or Year 1 through Year 9): USD$ 11.0 Million
ii. Tranche 2 (2021 through 2031 or Year 10 through Year 20): USD$ 4.2 Million
c. Net Income as a percent of revenue varies as follows:
i. Average of 19.5% from Year 1 through Year 9
ii. Average of 28.4% from Year 10 through Year 20
d. Internal Rate of Return (IRR) on equity averages as follows:
i. 12.3% from Year 1 through Year 20
e. Figure F-2 (originally presented in Task 8 and updated here) below presents
projected cash flows for the project.
Page 9 of 15
CAMBRIDGE Project Development Inc.
Figure F-2: Cash Flow Projection / Cuadro F-2: Proyecciones de Flujo de Caja
2012
1
Operating Activities/ Actividades Operacionales
Cash Received / Flujo de Caja Recibido
Power Sales Revenue / Ventas de Energía
Total Cash Received/Recibido
Cash Used / Consumo de Caja
Operations Expense / Costos Operacionales
Total Cash Used / Consumo
Net / Neto
Investing Activities / Actividades de Inversión
Cash Received / Flujo de Caja Recibido
Proceeds from Sales of Equipment / Venta de Equipos
2014
3
2015
4
2016
5
2017
6
2018
7
2019
8
2020
9
$
$
1,235,160
1,235,160
$
$
1,729,224
1,729,224
$
$
1,976,256
1,976,256
$
$
2,099,772
2,099,772
$
$
2,223,288
2,223,288
$
$
2,285,046
2,285,046
$
$
2,346,804
2,346,804
$
$
2,470,320
2,470,320
$
$
2,593,836
2,593,836
$
$
$
491,663
491,663
743,497
$
$
$
656,687
656,687
1,072,537
$
$
$
739,199
739,199
1,237,057
$
$
$
780,455
780,455
1,319,317
$
$
$
998,168
998,168
1,225,120
$
$
$
1,018,796
1,018,796
1,266,250
$
$
$
1,039,424
1,039,424
1,307,380
$
$
$
1,080,680
1,080,680
1,389,640
$
$
$
1,121,936
1,121,936
1,471,900
$
Total Cash Received/Recibido
Cash Used / Consumo de Caja
Capital Equipment & Civil Works / Equipo Capital & Obra Civil
$
Total Cash Used / Consumo
Net / Neto
$
$
Financing Activities/Actividades de Financiamiento
Cash Received / Flujo de Caja Recibido
Contributed Equity / Equity Contribuido
Bank Loan / Préstamo Bancario
Total Cash Received/Recibido
Cash Used / Consumo de Caja
Interest Paid / Intereses
Principal Payment / Reembolso de Capital
Return of Contributed Equity/Reembolso de Equity
Dividends Paid / Dividendos Pagados
Total Cash Used / Consumo
Net / Neto
2013
2
$
-
$
-
$
-
$
-
$
$
55,599
$
7,190,289
7,190,289 $
(7,190,289) $
55,599 $
(55,599) $
-
$
-
$
-
$
-
$
-
$
-
$
-
$
-
$
-
$
-
$
-
$
-
$
-
$
55,599
$
70,908
$
70,908
$
70,908
$
70,908
$
70,908
2,775,599
2,775,599 $
(2,775,599) $
55,599 $
(55,599) $
70,908 $
(70,908) $
70,908 $
(70,908) $
70,908 $
(70,908) $
70,908 $
(70,908) $
4,419,683
2,770,606
$
$
55,599
$
$
2,775,599
$
$
55,599
$
$
70,908
$
$
70,908
$
$
70,908
$
$
70,908
$
$
70,908
$
7,190,289
$
55,599
$
2,775,599
$
55,599
$
70,908
$
70,908
$
70,908
$
70,908
$
70,908
$
$
$
$
193,942
277,061
-
$
$
$
$
178,440
282,620
-
$
$
$
$
352,949
560,180
-
$
$
$
$
317,628
565,740
-
$
$
$
$
282,990
572,831
-
$
$
$
$
247,855
579,922
-
$
$
$
$
212,224
587,013
-
$
$
$
$
176,097
594,104
-
$
$
$
$
139,473
601,194
-
$
$
471,003
6,719,286
$
$
461,061 $
(405,462) $
913,129
1,862,470
$
$
883,368 $
(827,769) $
855,821 $
(784,912) $
827,777 $
(756,869) $
799,237 $
(728,328) $
770,200 $
(699,292) $
740,668
(669,759)
415,014
415,014
$
$
197,626
197,626
$
$
276,676
276,676
$
$
316,201
316,201
$
$
335,964
335,964
$
$
355,726
355,726
$
$
365,607
365,607
$
$
375,489
375,489
$
$
395,251
395,251
$
$
$
$
656
197,626
$
$
656
276,676
$
$
656
316,201
$
$
984
335,964
$
$
984
355,726
$
$
984
365,607
$
$
984
375,489
$
$
984
395,251
$
$
Total Cash Used / Consumo
Net / Neto
$
$
198,282 $
(656) $
Free Cash Flow / Flujo de Caja Libre
277,332 $
(656) $
316,857 $
(656) $
336,948 $
(984) $
356,710 $
(984) $
366,592 $
(984) $
376,473 $
(984) $
396,235 $
(984) $
984
415,014
415,998
(984)
$
271,838
$
610,820
$
323,272
$
434,964
$
368,315
$
437,489
$
507,159
$
618,456
$
730,249
$
271,838
$
882,658
$
1,205,929
$
1,640,894
$
2,009,209
$
2,446,698
$
2,953,857
$
3,572,313
$
4,302,562
(6,447,448) $
1,016,282
$ (1,539,198) $
1,262,734
$
1,153,228
$
1,194,358
$
1,235,488
$
1,317,748
$
1,400,008
2021
10
2022
11
$
Operating Activities/ Actividades Operacionales
Cash Received / Flujo de Caja Recibido
Power Sales Revenue / Ventas de Energía
Total Cash Received/Recibido
Cash Used / Consumo de Caja
Operations Expense / Costos Operacionales
Total Cash Used / Consumo
Net / Neto
70,908
(70,908)
$
$
Taxes and Fees Activities/Actividades Tributarias
Cash Received / Flujo de Caja Recibido
Sales Tax Exemption / Impuesto Sobre la Renta Exención
Total Cash Received/Recibido
Cash Used / Consumo de Caja
ICA Municipal Tax / Impuesto ICA Municipal
Sales Tax / Impuesto Sobre la Renta
Net Increase/(Decrease) in Cash held
(Aumento o Decremento en Balance de Caja)
Cash Balance
(Balance de Caja)
-
2023
12
2024
13
2025
14
2026
15
2027
16
2028
17
2029
18
2030
19
2031
20
$
$
2,655,594
2,655,594
$
$
2,779,110
2,779,110
$
$
2,902,626
2,902,626
$
$
3,026,142
3,026,142
$
$
3,087,900
3,087,900
$
$
3,211,416
3,211,416
$
$
3,334,932
3,334,932
$
$
3,458,448
3,458,448
$
$
3,149,658
3,149,658
$
$
2,470,320
2,470,320
$
$
1,976,256
1,976,256
$
$
$
1,142,564
1,142,564
1,513,030
$
$
$
1,183,820
1,183,820
1,595,290
$
$
$
1,225,076
1,225,076
1,677,550
$
$
$
1,266,332
1,266,332
1,759,810
$
$
$
1,286,960
1,286,960
1,800,940
$
$
$
1,328,216
1,328,216
1,883,200
$
$
$
1,369,472
1,369,472
1,965,460
$
$
$
1,410,728
1,410,728
2,047,720
$
$
$
1,307,588
1,307,588
1,842,070
$
$
$
1,080,680
1,080,680
1,389,640
$
$
$
915,656
915,656
1,060,600
Investing Activities / Actividades de Inversión
Cash Received / Flujo de Caja Recibido
Proceeds from Sales of Equipment / Venta de Equipos
Total Cash Received/Recibido
Cash Used / Consumo de Caja
Capital Equipment & Civil Works / Equipo Capital & Obra Civil
$
$
Total Cash Used / Consumo
Net / Neto
$
$
795,561 $
(795,561) $
Financing Activities/Actividades de Financiamiento
Cash Received / Flujo de Caja Recibido
Contributed Equity / Equity Contribuido
Bank Loan / Préstamo Bancario
$
$
1,689,858 $
(894,297) $
70,908
$
$
2,790,908
$
$
70,908
$
$
70,908
$
$
70,908
$
$
70,908
$
$
70,908
$
$
70,908
$
$
70,908
$
$
70,908
Total Cash Received/Recibido
$
795,561
$
70,908
$
2,790,908
$
70,908
$
70,908
$
70,908
$
70,908
$
70,908
$
70,908
$
70,908
$
70,908
Interest Paid / Intereses
Principal Payment / Reembolso de Capital
Return of Contributed Equity/Reembolso de Equity
Dividends Paid / Dividendos Pagados
Total Cash Used / Consumo
Net / Neto
$
$
$
$
$
$
(62,601)
511,765
449,164
346,397
$
$
$
$
$
$
4,964
241,795
246,758
(175,850)
$
$
$
$
$
$
(1,035)
515,326
514,291
2,276,617
$
$
$
$
$
$
146,294
244,857
391,151
(320,242)
$
$
$
$
$
$
134,118
246,388
380,505
(309,597)
$
$
$
$
$
$
121,834
246,388
368,222
(297,313)
$
$
$
$
$
$
109,550
246,388
355,938
(285,030)
$
$
$
$
$
$
97,267
246,388
343,655
(272,746)
$
$
$
$
$
$
84,983
246,388
331,371
(260,463)
$
$
$
$
$
$
72,700
246,388
319,088
(248,179)
$
$
$
$
$
$
60,416
342,908
403,325
(332,416)
$
$
424,895
424,895
$
$
444,658
444,658
$
$
464,420
464,420
$
$
484,183
484,183
$
$
494,064
494,064
$
$
513,827
513,827
$
$
533,589
533,589
$
$
553,352
553,352
$
$
503,945
503,945
$
$
395,251
395,251
$
$
316,201
316,201
$
$
$
$
984
424,895
$
$
984
444,658
$
$
984
464,420
$
$
1,312
484,183
$
$
1,312
494,064
$
$
1,312
513,827
$
$
1,312
533,589
$
$
1,312
553,352
$
$
1,312
503,945
$
$
1,312
395,251
$
$
425,879 $
(984) $
$
795,561
$
$
-
$
$
$
70,908
$
70,908 $
(70,908) $
2,790,908
$
$
-
$
$
-
$
$
-
$
$
-
$
$
-
$
$
-
$
$
-
$
$
-
$
70,908
$
70,908
$
70,908
$
70,908
$
70,908
$
70,908
$
70,908
$
70,908
2,790,908 $
(2,790,908) $
70,908 $
(70,908) $
70,908 $
(70,908) $
70,908 $
(70,908) $
70,908 $
(70,908) $
70,908 $
(70,908) $
70,908 $
(70,908) $
70,908 $
(70,908) $
70,908
(70,908)
Cash Used / Consumo de Caja
Taxes and Fees Activities/Actividades Tributarias
Cash Received / Flujo de Caja Recibido
Sales Tax Exemption / Impuesto Sobre la Renta Exención
Total Cash Received/Recibido
Cash Used / Consumo de Caja
ICA Municipal Tax / Impuesto ICA Municipal
Sales Tax / Impuesto Sobre la Renta
Total Cash Used / Consumo
Net / Neto
Net Increase/(Decrease) in Cash held
(Aumento o Decremento en Balance de Caja)
Cash Balance
(Balance de Caja)
Free Cash Flow / Flujo de Caja Libre
445,642 $
(984) $
465,404 $
(984) $
485,495 $
(1,312) $
495,376 $
(1,312) $
515,139 $
(1,312) $
534,901 $
(1,312) $
554,664 $
(1,312) $
505,258 $
(1,312) $
396,563 $
(1,312) $
1,312
316,201
317,513
(1,312)
$
1,062,882
$
1,347,548
$
1,162,275
$
1,367,347
$
1,419,123
$
1,513,666
$
1,608,210
$
1,702,753
$
1,509,387
$
1,069,240
$
655,963
$
5,365,444
$
6,712,991
$
7,875,266
$
9,242,614
$
10,661,736
$
12,175,402
$
13,783,612
$
15,486,365
$
16,995,752
$
18,064,993
$
18,720,956
$
716,485
$
1,523,398
$ (1,114,342) $
1,687,590
$
1,728,720
$
1,810,980
$
1,893,240
$
1,975,500
$
1,769,850
$
1,317,420
$
988,380
7. Based on meetings held during September 2011 with IDEA and EVAS, it has been anticipated
that the project will be implemented on a "Turnkey" basis (one direct contractor to the
NEWCO). Therefore, proposals would be requested from suppliers for Tranche 1 (which
operates Year 1 through Year 20) for the selected single contractor to accomplish the
following Turnkey services, also called an EPC (Engineering-Procurement-Construction)
scope of work:
a. Engineering (including detailed design)
b. Procurement (including logistics for importation and in-country transport of the
equipment)
c. Construction (includes civil works and equipment installation)
d. Subcontracting local contractors for civil, electrical, etc. scopes of work
e. Guarantee performance of the entire system.
8. The following Figure A-2 (from Task 9) presents a Project Implementation Plan target
schedule:
Page 11 of 15
CAMBRIDGE Project Development Inc.
Figure A-2: Project Implementation Plan Target Schedule
Sequential and Calendar Months
1
2
3
4
5
6
7
2011
NOV
8
9
10
11
12
13
JUL
AUG
SEP
OCT
NOV
2012
DEC
JAN
FEB
MAR
APR
MAY
JUN
Feasibility
Study
Completed
Business Aspects
Negotiate
Contracts
Negotiate
Financing
Permitting and Licenses
Complete
Applications
Regulatory
Review
EPM Scope of Work
Interconnection
Study
Negotiations
with EPM
EPM Installs 44
kV Line +
Transformers
Turnkey EPC Contract
Prepare
Request for
Proposals
Proponents
Prepare
Responses
Evaluate
Responses and
Award
Destailed
Design
Purchase Order
and Deliver
Equipment
Install Modules
and Auxiliary
Equipment
Testing and
Startup
Begin Power
Sales
Page 12 of 15
CAMBRIDGE Project Development Inc.
9. It is recommended that Turnkey proposals be requested from engine-generator
manufacturers directly. The alternative of requesting proposals from consulting firms could
result in higher capital costs, and the guarantee of engine-generator set performance stems
from the manufacturer in any case. The following suppliers with applicable manufacturing
facilities in the United States should be in a position to submit proposals for an EPC Turnkey
scope of work for the project:
a. Caterpillar, Inc. (Indiana)
b. Cummins Inc. (Indiana)
c. Curtis Engine & Equipment Inc. (Maryland)
d. GE Waukesha (Wisconsin) (subsidiary of General Electric).
10. It is estimated that approximately 85% of the capital investment will be sourced from U.S.
companies, as detailed in Figure A-2 (updated from Task 7) below:
a. USD$ 13.0 Million or 85% of USD$ 15.2 Million total capital investment.
Page 13 of 15
CAMBRIDGE Project Development Inc.
Figure A-2: Estimated US Sourcing
Estimated Sourcing
Tranche 1
LFG Collection System
Local
$
576,936
$
115,387
$
461,549
80%
LFG Power Generation System
$
8,160,000
$
408,000
$
7,752,000
95%
Civil Works
$
100,000
$
100,000
$
Project Soft Costs
$
678,592
$
271,437
$
407,155
60%
Contingency
$
916,099
$
274,830
$
641,269
70%
Working Capital
$
617,580
$
555,822
$
61,758
10%
$
11,049,207
$
1,725,475
$
9,323,731
84%
Total Tranche 1
US
Percent US
-
0%
Estimated Sourcing
Tranche 2
LFG Collection System
$
779,992
Local
$
155,998
$
623,994
80%
LFG Power Generation System
$
2,720,000
$
136,000
$
2,584,000
95%
Civil Works
$
Project Soft Costs
$
308,363
$
123,345
$
185,018
60%
Contingency
$
416,290
$
124,887
$
291,403
70%
Working Capital
$
-
-
$
US
-
$
-
$
Percent US
-
$
-
0%
10%
Total Tranche 2
$
4,224,645
$
540,230
$
3,684,414
87%
Total Capital Investment
$
15,273,851
$
2,265,706
$
13,008,145
85%
Page 14 of 15
CAMBRIDGE Project Development Inc.
11. The new LFGE facility will generate significant carbon emissions reductions by replacing
fossil fuels that would otherwise be used to generate the same amount of electricity. The
existing landfill gas collection and flaring system (installed and operated by GreenGas under
contract to EVAS) already claims carbon credits by avoiding landfill gas methane emissions
that would otherwise be produced. Since it appears that the Kyoto Protocol is unlikely to be
replaced in 2012, it is not clear how readily it will be possible to sell carbon credits for
monetary amounts in the future. Therefore, all financial projections exclude any revenue
from sales of carbon credits.
12. A complete financial model in Excel format has been provided to IDEA, and key financial
projection sheets from this model in final form are presented in Section F of the report for
Task 14-Investment Memorandum.
END OF EXECUTIVE SUMMARY
Page 15 of 15
CAMBRIDGE Project Development Inc.
Waste to Energy Facility at El Guacal Landfill
Feasibility Study
Task 1 Report
Presented to Study Grantee IDEA:
and to funding agency:
United States Trade and Development Agency (USTDA)
by:
CAMBRIDGE
Project Development Inc.
and its subcontractors:
EnerconAmerica Inc.
Quality & Evolution S. A.
July 07, 2011
Page 1 of 39
A. Overview of Task 1
Task 1 Requirements from TOR
The Terms of Reference (TOR) under which this present Feasibility Study is being conducted begins with
the following description of the content of the Task 1 Report:
“Contractor shall assess the existing infrastructure at the designated Project site at the El Guacal landfill,
and collect and analyze data related to the national electricity transmission grid, water supply, sewage,
and waste-water treatment and other infrastructure for the purpose of confirming the selected site as a
suitable location for the new WTE plant from economical, ecological, and technical standpoints.”
As a result, and in order to ensure that all stipulated areas are covered, this Task 1 Report is organized
into the following Sections, as shown below in Figure A-1:
Figure A-1: Contents of Task 1 Report
Section Section Title
Overview of Task 1
A
Stakeholder Expectations
B
Waste Supply Tonnages
C
Landfill Airspace Available
D
Geotechnical Aspects
E
Transportation Infrastructure / Traffic and Access Roads
F
Utility Grid Conditions
G
Water and Wastewater Aspects
H
Ecological and Regulatory Aspects
I
Task 1 Conclusions
J
While Sections C through I are stipulated in the TOR as required for Task 1, Cambridge has added
Sections A, B, and J to provide additional basis and framework for downstream Tasks 2 through 15.
Pre-Visit and Kickoff Visit Meetings
Figures A-2 and A-3 below present the meetings and interviews accomplished during the Pre-Visit and
Kickoff Initial Visit, respectively. These visits were essential and preparatory not only to commencing
Task 1, but also all subsequent tasks.
Page 2 of 39
Figure A-2: Agenda Completed: Pre-Visit 11 May -12 May 2011
TIME
7:30
8:00
8:30
9:00
9:30
10:00
10:30
11:00
11:30
12:00 - 14:00
WEDNESDAY 11
Preliminary Meeting
with Mr. Santiago
Piedrahita
Location: IDEA
THURSDAY 12
Visit to
CIS El Guacal LF
and Waste Mgt. Center
Location: CIS El Guacal
14:30
Meeting with IDEA
Meeting with EVAS
15:00
General Manager
General Manager
15:30
Location: IDEA
Location: EVAS
16:00
Pre-Visit
16:30
Conclusions
17:00
Location: IDEA
Notes:
IDEA General Manager:
Sr. Francisco Beltrán Montoya
Deputy Manager for International Business and Cooperation:
Sr. Santiago Piedrahita Tabares
IDEA Primary Contacts:
Sr. Pablo Jaramillo Vasco, Sra. Mónica López Correa
EVAS Primary Contacts:
Sr. Jhon Henry Laverde B., Gerente Mercadeo y Proyectos
Sr. S. Saldarriaga, Gerente General
Cambridge Project Team for Pre-Visit:
Leonard N. Enriquez and Mauricio Mikan
Page 3 of 39
Figure A-3: Agenda Completed: Initial (Kickoff) Visit 24 May - 26 May 2011
7:30
8:00
8:30
TUESDAY 24
WEDNESDAY 25
Visit to El Guacal
LF / Location: El
Guacal (Tour &
Work Session) /
Meeting with Mr.
Rodolfo Atehortua of
EMGEA / Location:
EMGEA
-IDEA Team
-Cambridge Project
Team
9:00
9:30
10:00
10:30
11:00
Participants:
-Mr. Carlos Mejía,
EVAS; - IDEA
Team; Cambridge
Project Team (L.
Enriquez, A.
Enriquez, M.
Mikan, S. Gutner,
W. Uchdorf, J.
Blanco, G.
Sanclemente, W.
Serbetci)
Meeting with
Corantioquia /
Location: Corantioquia
Offices /
Participants:
-Cambridge Project
Team (M. Mikan; G.
Sanclemente; J. Blanco
in document
collection)
- Corantioquia
Participants: Jorge
Emilio Angel Robledo /
Subdirector de Calidad
Ambiental
Alvaro González / Area
Jurídica
Gustavo Parra /
Dirección Territorial
Aburrá Sur
Andrés Perilla /
Dirección Territorial
Aburrá Sur
11:30
Page 4 of 39
THURSDAY 26
EPM Meeting /
Location: EPM
Meeting with
Heliconia
Municipality
Participants: EPM: Diego
Humberto
Montoya; Rene
Alberto
Castrillón; IDEA Team; Cambridge
Project Team
(L. Enriquez, W.
Uchdorf, W.
Serbetci)
Participants:
-Cambridge
Project Team (M.
Mikan; G.
Sanclemente)
- Heliconia
Municipality
Participants:
Walter David
Rodríguez /
Secretario de
Planeación
Ana Arenas /
Directora UMATA
( Unidad
Municipal de
Asistencia
Técnica
Agropecuaria)
EVAS Meeting /
Location: IDEA
Participants: EVAS: Mr. Jhon
Henry Laverde;
Ms. Girglesa
Mesa - IDEA
Team; Cambridge
Project Team
(L. Enriquez, W.
Uchdorf, W.
Serbetci)
(Continuation of Figure A-3 from previous page)
14:00
14:30
15:00
Working Session
/ Location: Hotel
Holiday Inn
Express /
15:30
16:00
16:30
Participants:
-Cambridge
Project Team
17:00
17:30
Meeting with Mr.
Ramón León of XM /
Location: Holiday Inn
Express Hotel /
Participants: - IDEA
Team; - Cambridge
Project Team
Meeting with Mr.
Juan Felipe González
of ARGOS Cement
Mfg. / Location:
ARGOS Offices /
Participants: - IDEA
Project Team; Cambridge Project
Team
Meeting with Mr. Jorge Luis
Rodríguez, Consultant (Ex Isagen) /
Location: IDEA / Participants: -IDEA
Project Team; - Cambridge Project
Team (L. Enriquez, W. Uchdorf, W.
Serbetci, M. Mikan)
IDEA Wrap-Up Working Session/
Location: IDEA / Participants: - IDEA
Project Team; Cambridge Project
Team (L. Enriquez, W. Uchdorf, W.
Serbetci, M. Mikan)
Subsequent Tasks
The Tasks following Task 1 shown below in Figure A-3 are anticipated to be eligible for commencement
of drafting immediately following Task 1:
Figure A-3: Subsequent Tasks
Task
1
2
3
4
10
Task Description
Infrastructure Assessment at Site
Power Demand and Electricity Market
Fuel Supply and Ash Disposal Strategies
Technical Configuration & Preliminary Design
Regulatory Framework
Page 5 of 39
B. Stakeholder Expectations
Stakeholders
The key Stakeholders preliminarily identified during Task 1 are listed below. This list of key Stakeholders
will be finalized during Task 2-Power Demand and Electricity Market:

IDEA (Instituto para el Desarrollo de Antioquia): a public sector corporation with the mission of
promoting, facilitating, and financing projects with high impact on the economic, social,
financial, administrative, and institutional development of the Department of Antioquia in the
strategic areas of Banking, Infrastructure, Energy, Mining, and Reforestation. IDEA also provides
consulting services and other support to entities developing such projects. IDEA is the grantee
under this present Feasibility Study funded by USTDA (United States Trade Development
Agency.)

EVAS S.A. ESP (EVAS): A public sector corporation owned and controlled by the Municipality of
Envigado. EVAS is the owner and operator of the CIS El Guacal facility, although Subcontracts
have been let for various significant operations at CIS El Guacal for activities such as North Cell
operations, Material Recovery Facility (MRF) labor, and gas extraction and flaring. Gas
extraction and flaring are accomplished under a contract between EVAS and private firm
GreenGas.

New Company (NEWCO): This newly established entity would have as its scope to Finance /
Design / Build / Own / Operate (FDBOO) the new energy recovery facility. It is anticipated that
the NEWCO would be owned by IDEA and by EVAS as shareholders in percentages to be
determined by IDEA and EVAS.

EMGEA (Empresa de Generación y Promoción de Energía de Antioquia): Within the Colombian
national electric power system (Sistema de Interconexión Nacional or ”SIN”), registered
Generating Companies only are permitted to sell power into the SIN. EMGEA is a sister public
sector corporation to IDEA, with 37.5% of the shares of EMGEA held by IDEA.

XM: XM is an entity that, among other activities, administers the SIN in terms of matching
demand and load. A detailed discussion of the SIN, XM’s role, and other aspects of the SIN are
presented under Task 2. It is noted here that our entire discussion is applicable to power
generating projects of capacity 20 MW or less. Above 20 MW capacity, significantly different
requirements and business arrangements are required under the SIN.

Empresas Públicas de Medellín (EPM): EPM is the entity responsible for distribution of electric
power within the Medellín region, including the area surrounding the CIS El Guacal facility. Any
power export from the CIS El Guacal facility will flow through a line installed and operated by
EPM.
Page 6 of 39

United States Trade and Development Agency (USTDA) is funding this present Feasibility Study
through a grant to IDEA. USTDA is not anticipated to remain long term as a direct commercial
participant in the Project. However, we understand that the expectation of USTDA is for the
project to maximize the use of United States-sourced equipment and services during the
implementation of the Project.
IDEA and EMGEA Expectations
IDEA and EMGEA have had significant success in promoting independent power generation projects,
especially with regard to hydroelectric projects in the region. Based on interviews with IDEA and
EMGEA’s top management, Cambridge believes the key expectations for the CIS El Guacal energy
recovery project are:

Profitability: The energy recovery facility must be profitable, economically self-sustaining, and
readily financeable. Since IDEA is likely to provide part of the required equity and debt financing
and other parties may provide remaining financing requirements, IDEA has the expectation that
the project will be readily financeable.

Energy Generation: The energy recovery facility must export energy in some form. Ideally, the
project will generate power long term for sales into the national grid (SIN). This expectation fits
with the “Energy” strategic category being pursued by IDEA.

Social Development Impact: In line with its mission, IDEA intends for the Project to increase the
supply of economical energy into the SIN as well as providing high-skilled and other jobs to the
local community. Both of these features will support regional and national social development.
It is noted here that installation of a new 44 kV line from one of three EPM candidate
substations to CIS El Guacal will be a significant improvement, in itself, to the power supply
infrastructure in the area.

Technical Risk: IDEA expects the energy recovery facility to incorporate in its design only
commercially proven technologies.
EVAS Expectations
As owner and operator of the CIS El Guacal site and a likely shareholder in the NEWCO, EVAS is expected
to share all of the expectations of IDEA described above. In addition, some specific expectations of EVAS
management are:

Tipping Fee Continuity: The new energy recovery project economics should not require an
increase in the current tipping fee of approximately US$ 11 per ton. EVAS management has
been emphatic in indicating that it will be politically difficult to increase the current tipping fee.
Page 7 of 39

Compatibility with Existing Subcontracts in force at the site, including:
o
Interaseo North Cell operations and waste delivery agreement;
o
GreenGas gas extraction and flaring agreement;
o
MRF Labor contract with RECIMED.
Municipality of Heliconia Expectations
The Municipality of Heliconia basically supports the Project as an environmental enhancement to the CIS
El Guacal facility, and requested that its staff be kept abreast of project development. During the
interview, the municipality indicated that it hopes the additional attention brought to the CIS El Guacal
facility by the Project will lead to resolution of the following pre-existing issues unrelated to the energy
recovery Project:

It is noted here, as reported by EVAS, that the Municipality of Heliconia currently receives a Host
Fee of approximately US$ 1.00 per ton of waste delivered. Heliconia expressed a desire to
realize an additional Host Fee with regard to Hazardous Wastes planned to be received at the
CIS El Guacal facility for disposal in a small, specialized, cell separated from the main landfill
cells.

Intermittent discharges of leachate into the nearby Los Morros water course (“Quebrada Los
Morros”).

Intermittent donations of compost material to the municipality are reported to be less frequent
than originally agreed.
Since electric power generated at the new facility will be exported to the national grid, and power
supplies to Heliconia itself are reported to be adequate, it can be said that the Project will not
necessarily have an impact on energy supplies in the immediate area
Corantioquia Expectations
Corantioquia is the environmental regulatory agency with direct responsibility for compliance of the CIS
El Guacal facility with environmental standards.
With regard to solid waste management at the regional level, Corantioquia officials reported that the
agency’s policy is to support regional solid waste disposal projects versus smaller local landfills. Some
five waste disposal projects are in discussion stages for the entire Department of Antioquia, but only one
of these is considered viable. As a result, Corantioquia considers that CIS El Guacal will continue as the
primary landfill for the southwestern area of Antioquia for the foreseeable future.
Corantioquia expectations are that the Project will, directly or indirectly:
Page 8 of 39
 Lead to increased compliance with requirements by the facility, particularly with regard to waste
separation, optimization of leachate treatment, and extension of landfill cell life;
 Support better tracking by Corantioquia of the overall operations of the CIS.
Some of these issues would not be directly related to an energy recovery project.
Stakeholders Expectations Conclusions
Key expectations identified from Stakeholders during Task 1 are:

Profitability: The energy recovery facility must be profitable, economically self-sustaining and
readily financeable.

Energy Generation: The energy recovery facility must export energy in some form. Ideally, the
Project will generate power long term for sales into the national grid (SIN).

Social Development Impact: In line with its mission, IDEA intends for the Project to increase the
supply of locally-generated, economical energy into the SIN as well as providing high-skilled and
other jobs to the local community.

Low Technical Risk: IDEA stipulates that the energy recovery facility should incorporate in its
design only commercially proven technologies.

Tipping Fee Continuity: The new energy recovery project economics should not require an
increase in the current tipping fee at the scalehouse of approximately US$ 11 per ton.

Compatibility with Existing Subcontracts in force at the site, including:
o
Interaseo North Cell operations and waste delivery agreement;
o
GreenGas gas extraction and flaring agreement;
o
MRF Labor contract with RECIMED.

Keeping Municipality of Heliconia Abreast of Project Development: The municipality basically
supports the Project as an environmental enhancement of the Site, and wishes to be kept
abreast of Project development.

Corantioquia: The environmental agency generally supports the Project, and hopes that it will
lead to increased compliance by the CIS El Guacal facility with regard to leachate treatment, and
extension of landfill cell life. Some of these issues would not be directly related to an energy
recovery project.
Page 9 of 39

USTDA / United States-Sourced Equipment and Services: The Project implementation should
maximize the use of U.S.-sourced equipment and services during its implementation.
Page 10 of 39
C. Waste Supply
Current Waste Supply
As shown in Figure C-1 below, CIS El Guacal currently receives, on a full annual basis in calendar year
2010, approximately 640 to 650 tons per day (TPD) of mixed municipal solid waste (MSW). These 650
TPD are delivered by the following collection entities:

Interaseo (private hauler)

Enviaseo (Municipality of Envigado waste collection agency)

EVM (Empresas Varias de Medellín, the Municipality of Medellín collection agency)

Up to 12 other nearby smaller municipalities and communities.
In addition, approximately 100 TPD of Source-Separated Organics (SSO) are delivered to CIS El Guacal by
specific organic waste generators. This is a select, source-separated waste stream (which includes those
agricultural waste accessible to the CIS) that is, according to CIS management, already fully utilized for
production of a compost soil amendment product. Therefore, the remainder of this discussion involves
only the 650 TPD of MSW, which is the only unutilized waste stream that is available for energy
recovery.
Figure C-1: Received MSW Tonnages
Year
Tons per Annum
Calendar Tons per
Days in Calendar
Time
Day
Period
2006
32,655
273.8
119
2007
110,063
365.0
302
2008
168,762
365.0
462
2009
224,603
365.0
615
2010
233,897
365.0
641
2011 Year
74,647
121.7
614
to Date
Source: EVAS records from CD provided 26 May 2011
Figure C-2 below shows the current 2011 rate of waste supply split out by source.
Page 11 of 39
Interaseo is a large local private hauling company that has a waste delivery contract with EVAS and is
required to dispose of a minimum of 400 tons per day at CIS El Guacal. The waste delivered by Interaseo
represents 62% of the total waste received at the CIS El Guacal. The Interaseo contract is in its second
year of a 15-year term, so that this waste stream is contractually assured for 13 more years. It is noted
here that Interaseo also, under the same contract with EVAS, operates the currently active North Cell of
the landfill.
Figure C-2: Current MSW Supply
Source
TPD [a] TPA [b]
Percentage
Enviaseo
180
65,700
28%
Interaseo
400
146,000
62%
EVM & Others
70
25,550
10%
Total
650
237,250
100%
[a]Tons per Day
[b] Tons per Annum (Rounded from 2010 Full Year Data)
Source: EVAS Management Interviews
Enviaseo is the municipal waste hauling agency for the municipality of Envigado and is therefore the
sister agency of EVAS for waste collections. The waste delivered by Enviaseo represents 28% of all the
waste received at CIS El Guacal. Since EVAS itself is owned by the Municipality of Envigado and the CIS
El Guacal is owned and operated by EVAS, this is considered internal, and therefore long term
committed waste supply
These two sources of waste, Interaseo and Enviaseo, together deliver 90% of all the waste received at
CIS El Guacal. Therefore, 90% of the waste stream being delivered to CIS El Guacal is considered a
committed, long term source of waste. Stability of waste supply is always a fundamental factor in
establishing feasibility and in obtaining financing of solid waste infrastructure projects.
EVM (Empresas Varias de Medellín) is the waste collection agency for the municipality of Medellín.
Although Medellín encourages EVM to dispose at the La Pradera Landfill located some 40 km by road
from the center of Medellín (please see Figure C-3 below), EVM utilizes CIS El Guacal for some its routes
in the southern areas of Medellín. The EVM tonnage is not considered committed long term tonnage
supply to CIS El Guacal.
EVM and haulers from a number of nearby smaller municipalities deliver approximately 10% of the total
waste delivered to CIS El Guacal.
Page 12 of 39
Potentially Competing Landfills
In order to provide a general orientation of the region and metropolitan area, including municipal
boundaries, Figure C-3 is provided below.
Figure C-3: Metropolitan Area and Municipal Boundaries
In addition to having 90% of its MSW supply delivered under long term contractual commitments, it is
considered that the logistics of the geographical situation provide additional assurance that the 10% of
tonnages not currently under long term delivery commitment are unlikely to flow elsewhere.
Page 13 of 39
As shown in Figure C-4, the La Pradera landfill, as a theoretically potentially competing landfill, is located
in the far Northeast of the region, while CIS El Guacal is located on the western side of the Aburrá valley,
in the Southwest-Central part of the region. The orange perimeter shown in Figure C-4 is the
approximate “Wasteshed” for CIS El Guacal, with its straight border within the main Aburrá valley
representing the approximate division of collection routes between the municipalities of Envigado and
Medellín. (As noted above, even some Municipality of Medellín (EVM) waste is delivered to CIS El
Guacal to save transport time for EVM collection vehicles.)
For MSW to “leak” from the CIS El Guacal Wasteshed to the La Pradera Landfill would require transport
of waste from the northern edge of the CIS El Guacal Wasteshed a considerable road distance
approximately 70 km. Transport along approximately half, or about 35 km, of this total road distance is
impeded, at least during much of the day, by the dense urban traffic of central areas of Medellín itself.
It is not clear that the La Pradera landfill site can be readily expanded beyond the currently active cell,
and there are significant impact issues with surrounding communities (article from de "El Colombiano"
newspaper: 02 July 2011) and a new site is being discussed. A new candidate site is being discussed, but
may be located even further from the urban area.
Other logistical and cost considerations are:

The current tipping fee at the gate at La Pradera is approximately $15 per ton, while the current
tipping fee at CIS El Guacal is approximately US$ 11 per ton.

Interaseo waste is delivered to CIS El Guacal:
o
Directly from waste collected within the CIS El Guacal Wasteshed;
o
Transferred by tractor-trailer from the Caldas Transfer Station (Southeast of Aburrá
valley);
o
Transferred by tractor-trailer from the Bello Transfer Station (Northwest of Aburrá
valley); it is noted here that the Bello Transfer Station is closer by road to the La Pradera
Landfill, but Interaseo delivers waste from the Bello Transfer Station to CIS El Guacal in
order to meet its contractual commitment of delivering 400 TPD.
Page 14 of 39
Figure C-4: Alternative Landfill (La Pradera), Bello Transfer Station, Caldas Transfer Station,
Caribe Metro Station, and Approximate CIS El Guacal Wasteshed ("Cuenca RSU")
Potential Effect of Waste by Rail Project
Rehabilitation and reconstruction of the old, disused rail line from Medellín to areas northeast of the
metropolitan area is a project that is in advanced planning stages. This line would be designated as "El
Sistema Férreo Multipropósito del Valle de Aburrá" (The Multi-Purpose Rail System for the Aburrá
Valley.) This new rail system would be built and operated by the Medellín Metro organization, which
operates the large existing Metro, or urban rapid transit system. In addition to providing passenger
transportation from the Aburrá valley to the northeastern portions of Antioquia, the new system is
planned so as to allow the transportation of waste from central Medellín to the La Pradera Landfill. The
Page 15 of 39
waste to rail transfer station is planned to be built near the existing "Caribe" Metro station (please see
Figure C-4 above.)
The new rail system would transport the 1800 to 1900 TPD of MSW that originate primarily in the
north and central Aburrá valley toward the La Pradera landfill. The new system is not designed to
attract MSW tonnages from the south of the valley (from the CIS El Guacal Wasteshed):

The Caribe waste by rail transfer station would be located some 10 km by road north of the
approximate border of the CIS El Guacal Wasteshed, a heavily transited route that would cause
serious delays to a collection vehicle originating in the southern Wasteshed;

Cambridge has direct, detailed experience with two waste by rail projects in the United States
(one in Florida and one in New Jersey.) A collection vehicle from the CIS El Guacal Wasteshed
would encounter a tipping cost at the Caribe waste by rail transfer station on the order of US$
34 per ton = US$ 8 per ton for Caribe transfer + US$ 5 for actual rail transport + US$ 6 for
unloading transfer on arrival at La Pradera + US$ 15 gate tipping fee at La Pradera landfill. This
cost of US$ 34 per ton compares to the US$ 11 per ton tipping fee at the gate of the CIS El
Guacal. It is unlikely that this cost will be intensively subsidized with the sole purpose of
attracting southern valley tonnages to La Pradera, given that this landfill is already well
utilized with 1800 to 1900 TPD intake, and that La Pradera may have important limitations to
its expansion.
As a result, it is concluded that:

The new waste by rail system has the potential to address the significant existing challenges in
transporting waste from the center and north of the Aburrá Valley to the La Pradera Landfill;

The costs involved in waste by rail make it unlikely that the 10% of the MSW supply to CIS El
Guacal that is not committed long term will be attracted to the new waste by rail system; and

Even if the contract with Interaseo is not renewed in 2024, costs involved make it unlikely that
Ineraseo waste tonnages will be attracted by the new waste by rail system.
Page 16 of 39
Historical and Projected Waste Supply
Figure C-5 below shows MSW tonnages delivered to the facility to date. It is noted that 2006 was a
partial year of operations, with only 274 calendar days. Highlighted year 2010 is the Base historical
(actual) year. All years 2011 through 2020 are projected at a 1.5% annual growth rate.
Figure C-5: Historical and Projected MSW Supply
Year
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
Tons per Annum
32,655
110,063
168,762
224,603
233,897
237,405
240,967
244,581
248,250
251,973
255,753
259,589
263,483
267,435
271,447
Tons per Day
119
302
462
615
641
650
660
670
680
690
701
711
722
733
744
EVAS management estimates the 1.5% annual growth rate of MSW deliveries, and Cambridge considers
that this is a reasonably conservative growth rate, considering that MSW deliveries grew versus previous
year by 4.1% in 2010 and 3.3% in 2009.
Another point of reference for waste supply growth is population trending in the Wasteshed. It is
known from Cambridge experience worldwide that waste tonnage growth is a direct function of
population growth and per capita income growth. Figure C-6 below shows that the EVAS projected
growth rate of 1.5% is reasonable, since a 1.5% annual growth is between the projected growth rate
2011-2020 of the major municipalities in the Wasteshed (1.7%) and the overall projected growth rate
2011-2020 of the Antioquia Department overall (1.3%). Any change in per capita income (if positive)
would be additional to the growth in waste tonnage caused by population growth.
Page 17 of 39
Figure C-6: Projected Population for Major Wasteshed Municipalities
and for Department of Antioquia 2011-2020
Municipality
Envigado
Caldas
Heliconia
Itagüí
La Estrella
Sabaneta
Sub-Total
Antioquia [b]
Population
2011
202,354
74,069
6,209
255,345
58,422
48,998
645,397
6,143,809
Population
2020
249,046
82,227
5,837
282,792
67,259
55,220
742,381
6,845,093
Population
Change
46,692
8,158
-372
27,447
8,837
6,222
96,984
701,284
Percentage
Change
23.1%
11.0%
-6.0%
10.7%
15.1%
12.7%
15.0%
11.4%
Years in
Projection
Period
9
9
9
9
9
9
9
9
Percentage
Annual Average
Change
2.6%
1.2%
-0.7%
1.2%
1.7%
1.4%
1.7%
1.3%
[a]Source:DANE:
"Estimate and projection of national, departmental, and municipal populations
by gender, age quintiles, and ages from zero to 26 for 1985-2020"
"DANE" is the Departamento Administrativo Nacional de Estadística (National
Administrative Department for Statistics.)
[b] Entire Department of Antioquia
EVAS management emphasizes that increasing tipping fees at either landfill would be greatly impeded
by political considerations. The lower tip fee of approximately US$ 11 per ton at CIS El Guacal compares
favorably to the US$ 15 per ton at La Pradera.
Waste Supply Conclusions
Task 1 Section C Conclusions:

Of the 650 TPD current delivery rate for MSW, 90% is assured under long term commitments,
with Interaseo’s contractually committed delivery tonnage of 400 TPD assured for 13 more
years (through 2024);

Even after 2024, Interaseo’s current 400 TPD tonnage is likely to continue to be delivered to CIS
El Guacal, given the distance to the La Pradera Landfill or its even more distant successor, as a
result of the long transport time or transfer cost involved;

Even the 10% of CIS El Guacal tonnage currently delivered by primarily smaller municipalities in
the CIS El Guacal Wasteshed are unlikely to “leak” to distant La Pradera Landfill or its even more
distant successor as a result of the required long transport time or transfer cost involved;

The siting and permitting of a competing landfill closer to the CIS El Guacal Wasteshed is
considered difficult, given the demographic, environmental, and agricultural sensitivities of any
site selected; the extreme distance of the La Pradera landfill;
Page 18 of 39
As a general conclusion, the MSW waste supply to CIS El Guacal is highly unlikely to drop below
approximately 650 TPD (the current delivery rate) for the foreseeable future.
Page 19 of 39
D. Landfill Airspace Available
Capacity Calculations
The entire property covers 384 hectares, of which 52 hectares are set aside for the major waste disposal
cells. The large surrounding buffer area of approximately 300 hectares provides a large buffer area that
many landfills would like to have.
The main landfill disposal areas are divided into North, Central, and South cells. Estimated total
capacities and capacity consumed through December 2010 are presented in Figure D-1:
Figure D-1: Landfill Capacity and Capacity Consumed
Cell
North
Central
Sub-Total [a]
South [c]
Total
Area
(ha)
5
22
27
25
52
Estimated Capacity
(Tons) [a], [b]
2,000,000
5,600,000
7,600,000
6,400,000
14,000,000
Capacity Consumed
To December 2010 (Tons) [b]
769,980
769,980
769,980
Notes:
[a] Total Currently Permitted: Source: EVAS from: Assessment Report / CIS El Guacal Landfill / SCS Eng. for USEPA / July 2010
[b] Source: EVAS from "Antecedentes" document received May 2011.
[c] EVAS indicates has not to date calculated a capacity for the South Cell.
The figure calculated here is conceptual and intended only to provide a sense of magnitude.
[d] All capacities are based on a density of 1.1 tons per cubic meter, as assumed by EVAS. Cambridge considers this to be a
reasonable density assumption. To obtain cubic meters (volume), the above tonnage numbers (mass) should be divided by 1.1.
According to EVAS, actual operational density over 1.1 tons/m³ has been achieved in the North Cell.
EVAS records indicate that North Cell has received an additional 76,647 tons from January through May
2011. Figure D-2 below shows that significant capacity remains, which would provide sufficient
airspace, without any additional diversion, for a total of approximately 50 years, divided as follows:
1. 5 more years for currently active North Cell;
2. 21 more years for undeveloped Center Cell;
3. A total of 5 + 21 = 26 years of Permitted Capacity for North and Central cells;
4. A total of approximately 51 years including undeveloped and as yet not permitted South Cell.
Page 20 of 39
Figure D-2: Landfill Capacity Remaining
Cell
North
Central
Sub-Total [a]
South [c]
Total
Estimated
Remaining Capacity
(Tons)
1,230,020
5,600,000
6,830,020
6,400,000
13,230,020
Projected
Est. Remaining
Disposal Rate
Disposal Period
(TPA) [d], [e]
(Years)
244,635
5
263,541
21
26
263,541
24
51
Notes:
[a] Source: EVAS from: Assessment Report / CIS El Guacal Landfill / SCS Eng. for USEPA / July 2010
[b] Total Currently Permitted: Source: EVAS from "Antecedentes" document received May 2011.
[c] From our data research, EVAS has not to date calculated a capacity for the South Cell.
The figure calculated here is conceptual and intended only to provide a sense of magnitude.
[d] Average projected tonnage intake 2011-2015 (please see Section C of this Task 1 Report.)
[e] Average projected tonnage intake 2016-2020 (please see Section C of this Task 1 Report.)
It is noted here that some technical configurations of energy recovery facilities, such as incineration,
could divert significant volumes from disposal in the landfill cells. This diversion would extend the useful
life of the cells significantly.
Site Landfill Airspace Available Conclusions
Even with no additional diversion (beyond that provided by the existing recycling plant), the currently
permitted North and Central cells provide approximately 26 years of available disposal airspace. This is
considered more than adequate to accommodate any residues that might be generated by an energy
recovery facility (such as ash.)
There is no landfill airspace limitation that would preclude implementation of an energy recovery
facility at the CIS El Guacal site.
Page 21 of 39
E. Geotechnical Aspects
General Location
There are a number of potential sites for an energy recovery plant available within the perimeter of the
overall CIS El Guacal facility, but the discussion below focuses on candidate locations adjacent to existing
landfill cells, recycling plant, gas extraction plant and access roads.
Larger Footprint Plant Candidate Locations
Two candidate locations for positioning a larger footprint waste processing and energy recovery facility
would be located either on one or both of the following adjacent plots of land within the CIS. Please see
Figure E-1 below. These two candidate plots of land are directly accessible from the internal access road
that runs from the Scalehouse along the East edge of the North Cell to the existing Material Recovery
Facility (MRF) and further on to the Composting Area:
a) The “Flat Cut Lot” of approximately 1.5 hectares in area cut out of the mountainside just
adjacent to the existing Composing Area. The Flat Cut Lot floor is undisturbed virgin ground
exposed after the excavation cut of the mountainside; and
b) The “Stockpile Lot” of approximately 4.0 hectares located adjacent to the Flat Cut Lot. The soil
excavated to create the currently active North Cell has been stockpiled and compacted by
bulldozers to the West of the North Cell, creating a flat, artificial hill with a level area spanning
approximately 4.0 hectares. This stockpile pile stands at about 9.0 meters higher elevation than
the adjacent 1.5 hectare “Flat Cut Lot”.
A larger footprint plant configuration would likely include elements such as a Fuel Preparation “Front
End” plus an Energy Recovery “Back End.” Such plants with intake capacities in the range of 650 TPD of
MSW will typically require footprints on the order of 3.2 to 6.5 hectares, including dedicated roads. The
two candidate lots identified total approximately 5.5 hectares, which is enough surface area for even the
largest likely larger footprint plant configuration.
Page 22 of 39
Stockpile Lot / Area
Plana Apilamiento
Flat Cut Lot / Area
Plana Cortada
Figure E-1: Potential Larger Footprint Plant Locations at CIS El Guacal
Smaller Footprint Plant Candidate Locations
For a smaller footprint energy recovery plant, such as a Gas Engine-Generator configuration, an area
near the existing GreenGas contractor’s gas extraction/gas flare installation would be adequate. Soil
loading for such a facility would be significantly lower than for a larger footprint facility. Please see
Figure E-2: Existing Landfill Gas Extraction/Gas Flare Installation (GreenGas)
It is estimated that the following approximate footprint areas would be required for smaller-footprint
configuration such as a typical Landfill Gas Engine-Generator configuration:
a) Two (2) Gas Engine-Generator modules (Module A + Module B) of approximately 1.6 MW, each
(total 3.2 MW) capacity to utilize Landfill Gas from the currently active North Cell. Accounting
for compressor and LFG treatment system space requirements and the service corridors:
2 Modules x 4 m x 15 m = 120 m2;
and
Page 23 of 39
b) Two (2) Gas Engine-Generator modules (Modules C + Module D) of approximately 1.6MW, each
(total 3.2 MW) to utilize Landfill Gas from the planned Central Cell. Accounting for compressor
and LFG treatment system space requirements and the service corridors:
2 Modules x 4 m x 15 m = 120 m2;
c) Expansion area to accommodate two (2) additional potential future Gas-Engine Modules
(Module E + Module F):
2 Modules x 4 m x 15 m = 120 m2;
The total footprint area calculated above for 6 Modules would be:
3 x 120 m2 x 1.2 factor for cover building and access = 432 m2
This estimate will be further defined during Task 4.
The weight of the concrete slab for the Landfill Gas Engine-Generator configuration needs to be
approximately three times the weight of the Engine-Generator sets to absorb the dynamic loads.
Typical slab thickness would be 16 to 32 centimeters (6 inches -12 inches) above grade and 45 to 60 cm
(18 to 24 inches) below grade at 4000psi (28 day) concrete strength. This design will be further defined
during Task 4.
Figure E-2: Existing Landfill Gas Extraction/Gas Flare Installation (GreenGas)
Page 24 of 39
Site Geological Profile and Seismic Activity
The lithological formations commonly found across the country date back from Paleozoic to preCretaceous periods, the metamorphic rock formation being the most prominent one. The country is
divided into three seismic zones along a northeast to southwest region parallel to the Bucaramanga fault
zone into Ecuador. These zones are designated as High Seismic Hazard, Intermediate Seismic Hazard and
Low Seismic Hazard. Please see Figure E-3 below.
Figure E-4: Seismic Map of Colombia
Figure E-3: Seismic Map of Colombia
(Source: “Normas Colombianas de Diseño y Construcción Sismo Resistentes”, 1998 or “Colombian
Standards for Earthquake Resistant Design and Construction”, 1998)
Based on this source, “Normas Colombianas de Diseño y Construcción Sismo Resistentes” 1998, the CIS
El Guacal Landfill site is located in the Intermediate Seismic Hazard Zone and almost at the delineation
line with the High Seismic Hazard Zone. Thus the site is subject to Effective (vertical and horizontal)
Peak Acceleration factors (Aa) of 0.20-0.25. Please see Figure E-4 below.
Page 25 of 39
Figure E-4: Effective Peak Acceleration Factors (Aa)
(Source: “Normas Colombianas de Diseño y Construcción Sismo Resistentes”, 1998 or “Colombian
Standards for Earthquake Resistant Design and Construction”, 1998)
Once the IBC (International Building Code) Site coefficients are confirmed by the geotechnical field
studies, to be accomplished during the implementation phase of the Project, all critical plant
foundations will need to be designed to withstand these peak acceleration factors.
Page 26 of 39
Site Geotechnical Conclusions
It is concluded that the CIS El Guacal site offers adequate available:
1. Footprint area for a larger footprint plant configuration (up to 5.5 hectares);
2. Footprint area for a smaller footprint plant configuration (up to 432 m²); and
3. Soil and seismic conditions for various candidate plant foundation designs, subject to the
results of the geotechnical field studies to be described in Task 4.
There is no evident geotechnical aspect that would preclude an energy recovery facility from being
built at the CIS El Guacal site.
Page 27 of 39
F. Transportation Aspects / Traffic and Access Roads
The CIS El Guacal facility has private internal access roads within the site, which are unpaved but in fair
condition. The internal roads are fairly normal for a landfill and waste recycling facility context. These
internal roads are not considered an obstacle to construction of an energy recovery facility.
The road to CIS El Guacal connects the town of San Antonio de Prado with the Municipality of Heliconia.
Please see Figure F-1. The exit to CIS El Guacal is approximately 17 kilometers before Heliconia itself,
and some 16 kilometers from San Antonio de Prado. The waste collection trucks currently pass
through the Municipality of San Antonio, a congested urban area. The truck traffic affects this
population negatively.
Figure F-1: Routes to CIS El Guacal
Note: Yellow lines indicate existing roads.
Page 28 of 39
On an average day, there are approximately 65 trucks that travel this route to the landfill, which is not a
high traffic level. However, the road is narrow (2 lanes in most locations and 1 lane in a number of
locations) and is in poor condition. The road has many unpaved sections and requires continuous
corrective and preventive maintenance. Despite frequent landslides and other events, no waste
delivery interruptions of any significance were reported by the EVAS landfill management team.
The Municipality of MedellÍn, in whose jurisdiction is located the town of San Antonio de Prado, has
been considering two options to bypass San Antonio and thereby minimize or avoid the passage of
waste collection trucks through the town. The two options shown in Figure F-2 are:
1. The construction of a bypass through San José. The bypass would add 6.1 kilometers to the
overall route.
2. The construction of an alternative named the Doña Maria. This alternative route runs parallel to
the Doña Maria water course. The Doña Maria alternative would have a length of 9.9 kilometers
as a route from Itagüi connecting, to the existing road to El Guacal after San Antonio. The
disadvantage with the Doña Maria route is that the ground is unstable in many sections.
Figure F-2: Alternative Routes: San José Bypass and Doña María Bypass
Note: Yellow lines indicate existing roads and red lines indicate routes under evaluation.
Page 29 of 39
The municipality of Medellín does not consider that it should be solely responsible for the financing of
either alternative because the municipalities of Envigado and Itagüí would also benefit from the
construction of the roads. Therefore, the projects have not been budgeted as yet by the Medellín city
administration.
Site Transportation Aspects Conclusions
Although two alternate routes are under discussion which would reduce traffic impacts to San Antonio
de Prado, it is not clear that construction of these routes will occur within the medium or even long
term. Therefore, the CIS El Guacal facility is likely to remain dependent on the current road from San
Antonio de Prado for the foreseeable future.
Although the current road from San Antonio de Prado requires continuous repairs, impedes traffic flow,
and has significant negative impacts to San Antonio de Prado itself, the EVAS landfill management team
and the annual waste delivery tonnages clearly indicate that no significant interruptions in waste
deliveries have occurred. An energy recovery facility would not increase traffic to the CIS El Guacal
facility, since the current waste supply is adequate (please see Section C of this Task 1 Report.) The
internal roads are in fair condition, and fairly typical of waste management facility contexts in various
parts of the world.
There is no evident transportation obstacle that would preclude construction of an energy recovery
facility at the CIS El Guacal facility.
Page 30 of 39
G. Utility Grid Conditions
Within the Sistema de Interconexión Nacional (SIN), the national electricity grid system, operating
companies are classified as either "Generation", "Transmission", or "Distribution" companies. The 220
kV (kilo volt) to 500 kV range of line voltage is considered as “Transmission” voltage and all line voltages
less than 220 kV are considered as “Distribution” voltage. The Distribution Company in the CIS El Guacal
area is Empresas Públicas de Medellín (EPM).
Cambridge meetings with EPM engineers at EPM head office in Medellín 26 May 2011 confirmed that
the existing 13.2 kV distribution line at site already has a high loading factor and cannot, under any
circumstances, support additional loads such as that which might be exported by any type of energy
recovery facility located at CIS El Guacal. EPM engineers have confirmed that the optimum means of
exporting any power generated at the CIS El Guacal would be via a new 44 KV distribution line from the
landfill to one of three alternative substations. This line will be designed to handle up to 20 MW of
export capacity from the CIS El Guacal site. Alternative connections as proposed in EPM's 29 June 2011
email to Cambridge are:

San Antonio de Prado Substation at 10.3 km connection length;

San Cristobal Substation at 6.8 km connection length; and

Ebéjico Substation at 10.4 km connection length.
EPM will propose the following scope of work and associated pricing during the accomplishment of this
Study:
1. Step-Up Transformers at CIS El Guacal (new local Sub-Station);
2. 44 kV line from CIS El Guacal to one of the three alternative substations;
3. Step-Up Transformer 110 kV: 44kV at the existing Substation at one of the alternative
substations.
The substation alternative will be selected during project implementation, which includes detailed
design.
Depending on the Technical Configuration to be selected in Task 4, electric power is likely to be
generated at one of two different voltage levels (13.8 kV from a typical energy recovery steam turbine
generator and 4.16 kV at a typical energy recovery gas engine generator.) Therefore, either a 44 kV:
13.8 kV step-up transformers or 44 kV: 4.16 kV step-up transformers would be located at CIS El Guacal
would boost the voltage up, respectively, for export to the grid.
EPM is willing to provide these step-up transformers (both at CIS El Guacal and at one of the alternative
substations) and the 44 kV distribution line from CIS El Guacal to one of the alternative substations and
Page 31 of 39
factor the levelized cost into a power distribution agreement as part of a distribution charge per kWh
exported from CIS El Guacal. This charge will be incorporated into the Task 5 Preliminary Cost Estimates
effort.
Site Utility Grid Conclusions
It is concluded that utility grid conditions at the CIS El Guacal site require installation of a 44 kV line to
San Antonio de Prado. This line will be designed and built by EPM to accommodate up to 20 MW of
export capacity. In addition, step-up transformers (step up to 44 kV) will be required at CIS El Guacal, as
well as to one of three alternative existing substations. The cost of this new line and the various step-up
transformers will be spread out over time and over kWh exported.
There is no evident site utility grid condition that would preclude an energy recovery facility from
being built at El Guacal.
Page 32 of 39
H. Water and Wastewater Aspects
Wastewater
The only significant volume of wastewater present at the site is leachate (water that has come into
contact with MSW or other wastes.) Corantioquia has indicated that the facility has suffered from
overflows of leachate from its treatment system into the nearby Los Morros creek. Corantioquia reports
that the leachate treatment system, including a large pond, is designed for a maximum volume of 1 l/s
(liters per second), while leachate volumes during the rainy season have reached the range of 10.0 to
25.0 l/s.
The El Guacal landfill began operating in April 2006. EVAS took over operations of the Site in 2008. The
previous operator began filling the currently active North Cell from the upper section downward, which
is an unusual sequence. This has caused a number of operational problems, including the creation of a
very large exposed working face, which in turn generates excessive amounts of leachate (rain water that
has come into contact with waste.) The steep slope so created makes it difficult to keep temporary
cover materials such as tarps in place. Finally, the large exposed work face promotes loss of landfill gas
to the atmosphere, limiting the amount extracted.
EVAS has begun to address this issue by beginning to cover the upper sections of the in-place waste, and
reducing the slope of the waste by beginning to deposit increasing amounts of waste in the lower areas
of the North Cell.
These measures, if fully implemented, should significantly limit the amount of leachate generated during
the remaining approximately 5 years of North Cell life. This is the optimum way to address the existing
overload on the leachate treatment system, since a very large expanded treatment pond surface area or
a very large leachate evaporation system would be required to treat the current (abnormal) volumes of
leachate.
Water Availability
Depending on the technical configuration for the energy recovery facility to be selected during Task 4,
the water demand from such a plant could range from zero to 75 m³ / day (intermediate demand case)
to 400 m³ per day (high demand case.)
Significant amounts of groundwater are not accessible at any practical depth. The nearby Los Morros
creek has a total available volume of 7.0 l/s (approximately 600 m³ per day.) Of this, only a negligible
amount is used by the existing CIS El Guacal facility. This means that even under a high demand case of
400 m³per day, the Los Morros creek would satisfy the plant’s demand.
If there was a desire to limit the amount of water drawn from the Los Morros creek, leachate could be
treated on-site to supplement the water available. We estimate leachate flow for a typical working
face of 1.0 hectare (a much smaller working face area than the current one) to be on the order of 100
m³per day (1.2 l/s).
Page 33 of 39
Conclusions
There is no obstacle related to water supply or wastewater that would preclude implementation of an
energy recovery facility.
Page 34 of 39
I. Ecological and Regulatory Aspects
Current Status
The CIS El Guacal facility holds Environmental License No. 7529 issued January 12, 2005, which covers
both the construction phase and operation of the landfill in an initial volume of 200 tons per day.
Subsequently, by Resolution 3968 of March 2007, the authorized volume of disposal to the facility was
expanded to 400 tons per day, imposing additional obligations related to the solid waste recycling plant.
In December 2007, by Resolution 4389, the authorized volume of waste was further expanded to 740
tons per day, covering the facility’s current disposal level of approximately 650 TPD. The current license
does not include treatment of hazardous materials, meaning that hazardous waste that goes into the
landfill is sent directly to the special waste cell now under construction. The environmental permit has a
term of 24 years until 2029.
According to Corantioquia, the facility has a leachate treatment system with capacity to treat a
maximum flow of 1.0 l/s but there have been levels of 10.0 to 25.0 l/s during rainy season, causing
overflows and consequent pollution to the "Quebrada de Los Morros" stream.
In addition, Corantioquia reports that a number of routine periodic reports have not been submitted in a
timely manner. This has resulted in the initiation by the environmental authority (Corantioquia) of a
sanction process and in the imposition of preventive measures (Resolution 5742 of November 2010).
This process is currently undergoing a phase of final imposition of sanctions. Of the various reports that
the CIS El Guacal should present periodically to Corantioquia, the only one that is reportedly being
presented regularly but incompletely is the surface water report.
According to Corantioquia officials, one of the possible sanctions to be imposed is to not authorize the
development of new projects in the landfill until it meets all the obligations imposed by Corantioquia in
various administrative acts. However, it is reasonable to assume that CIS El Guacal would be able to
enter into satisfactory compliance prior to the implementation phase of the Project, since neither
routine reporting compliance nor leachate volume reduction compliance should require any
significant capital investment or fundamental adjustment to operations. Most importantly,
Corantioquia emphasized its general position of support for an energy recovery project at the CIS El
Guacal site.
Regarding leachate volume reduction, Cambridge agrees that current efforts by EVAS to correct the
unusual top-to-bottom fill pattern initiated by the previous operator in the North Cell will lead to a much
smaller uncovered working face, which will lead to a drastically reduced leachate volume.
Page 35 of 39
Environmental and Regulatory Aspects Relevant to an Energy Recovery Project
In Task 10 the specific types of licenses, permits or approvals required, permissible limits and applicable
standards, competent authority and its relationship with the licenses and permits that currently cover
the operation of the landfill will be confirmed.
Nevertheless, at this point the following general requirements that could frame a permitting effort can
be listed:
1. Requirement for environmental licensing: The Regulatory Decree 2820 of 2010 Title VIII of
Law 99 of 1993 on environmental permits establishes the types of projects subject to
environmental licensing and the competent authority for the processing of that license. In Task
10, there will be discussed in detail the various options and categories established by the Decree
and its applicability to the energy recovery project in order to determine if the project would
require an environmental license and the applicable regulatory agency. It is important to clarify
that if the project requires an environmental license, the process would also include all permits
and authorizations for the use of natural resources.
2. Air Emission Permit: The regulations relating to air quality and air emissions permits are as
follows: Decree 610 of 2010, which regulates air quality and intake standards; Decree 909 of
2008, which regulates air emissions permits and permitted contaminant limits; and Resolution
058 of 2002 which establishes the standards and maximum permitted emission limits for
incinerators and solid waste crematoria. No specific regulation exists that cover emissions
standards from flaring landfill gas; typically these activities are generally controlled within the
environmental license. However a landfill gas to energy project will have to comply with the
emissions
standards
applicable
to
burners
of
Decree
909
of
2008.
3. Discharge Permits: Decree 3930 of 2010 partially amended by Decree 4728, 2010, regulates
direct discharges to water and contains the standards on dumping permits and permissible
limits for contaminants. This aspect should be covered by the CIS El Guacal’s existing permit.
4. Water Concession: Decree 1541 of 1978 regulates water concessions in all the activities that
derive from water sources. If the energy recovery project requires higher volumes of water than
the currently available ones at the CIS El Guacal, the regulations related to additional water
capture will have to be analyzed. Currently, the landfill captures water from the "Los Morros"
stream.
5. Special waste disposal: Decree 2309 of 1986 regulates handling, collection and disposal of
special waste including sludge and ash.
6. POT (Plan de Ordenamiento Territorial/Land Use Plan): The current POT expires in 2012 and,
with the support of the National University of Colombia, is currently undergoing an informationgathering phase for updating. The CIS meets the requirements of the POT, regarding land use. In
Page 36 of 39
the case that some form of construction of an energy recovery plant or civil work is necessary,
the POT permits will have to be consulted and the compatibility of land use with this type of
projects will have to be verified. In addition, it will be necessary to take into account the
requirements and licenses stipulated by the municipality for construction phase.
In accordance with Decree 2820 of 2010, the energy recovery project could, under some circumstances,
be classified as a "use of virtually polluting alternative energy sources" project, in which case, the
processing of license would be done through the Ministry of Environment, Housing and Territorial
Development. However, Corantioquia´s officials raised the possibility that the energy recovery project
can be presented as one to improve the operation of the landfill in order to maintain Corantioquia´s
jurisdiction. To do so, Corantioquia would make the consultations directly with the Ministry of
Environment, once the project is presented to this entity.
Ecological and Regulatory Aspects Conclusions
The key environmental regulatory agency, Corantioquia is supportive of an energy recovery Project to
be built at the site. There is in place an adequate regulatory framework that would guide permitting
efforts.
It is concluded that no unmanageable regulatory or ecological obstacle exists that would preclude
implementation of an energy recovery facility at the CIS El Guacal site.
Page 37 of 39
J. Task 1 Conclusions
General Conclusion
Based on a detailed review of extensive documentation, together with detailed interviews with project
stakeholders, the Cambridge Project Team has determined that there are no obstacles related to the
infrastructure of the site (or other aspects of the site addressed in this Task 1) that would preclude the
implementation of an energy recovery facility at the CIS El Guacal.
Key Conclusions by Task 1 Section
B. Stakeholder Expectations









Profitability: The energy recovery facility must be profitable, economically self-sustaining and
readily financeable.
Energy Generation: The energy recovery facility must export energy in some form. Ideally, the
Project will generate power long term for sales into the national grid (SIN).
Social Development Impact: In line with its mission, IDEA intends for the Project to increase the
supply of locally-generated, economical energy into the SIN as well as providing jobs to the local
community.
Low Technical Risk: IDEA expects the energy recovery facility to incorporate in its design only
commercially proven technologies.
Tipping Fee Continuity: The new energy recovery project economics should not require an
increase in the current tipping fee of approximately US$ 11 per ton.
Compatibility with Existing Subcontracts in force at the site.
Keeping Municipality of Heliconia Abreast of Project Development: The municipality supports
the project and wishes to remain up to date on its development.
Corantioquia: The environmental agency supports the Project and hopes it will lead to
additional compliance with existing requirements.
USTDA: United States-Sourced Equipment and Services: The Project implementation should
maximize the use of U.S.-sourced equipment and services during its implementation.
C. Site Waste Supply
The MSW waste supply to CIS El Guacal is highly unlikely to drop below approximately 650 TPD (the
current delivery rate) for the foreseeable future.
D. Landfill Airspace Available
There is no landfill airspace limitation that would preclude implementation of an energy recovery facility
at the CIS El Guacal site.
Page 38 of 39
E. Geotechnical Aspects
There is no evident geotechnical aspect that would preclude an energy recovery facility from being built
at the CIS El Guacal site.
F. Transportation Aspects / Traffic and Access Roads
There is no transportation or road access obstacle that would preclude construction of an energy
recovery facility at the CIS El Guacal facility.
G. Utility Grid Conditions
There is no evident site utility grid condition that would preclude the construction of an energy recovery
facility at the CIS El Guacal facility.
H. Water and Wastewater Aspects
There is no obstacle related to water supply or wastewater management that would preclude
implementation of an energy recovery facility.
I. Ecological and Regulatory Aspects
No unmanageable regulatory or ecological obstacle exists that would preclude implementation of an
energy recovery facility at the CIS El Guacal site.
END OF TASK 1 REPORT
Page 39 of 39
Waste to Energy Facility at El Guacal Landfill
Feasibility Study
Task 2 Report:
Power Demand and Electricity Market
Presented to Study Grantee IDEA:
and to funding agency:
United States Trade and Development Agency (USTDA)
by:
CAMBRIDGE
Project Development Inc.
in association with:
EnerconAmerica Inc.
18 August 2011
Page 1 of 16
The contents of this Task 2 Report are listed below:
Task 2 Report Contents
Section
A
B
C
D
E
F
G
H
Title
The Colombian Electricity Market and Key Players
Tax Exemptions
Spot Market vs. Power Purchase Agreements
Likely Power Sales Pricing to be Achieved
Power Sales Model
Plant Internal Power Consumption
Generation Cost Including Capital Recovery
Conclusions
Page 2 of 16
A. The Colombian Electricity Market and Significant Participants
Policy and Regulation
Colombia has had a liberalized energy market since 1995. The sector is characterized by an unbundled
Generation, Transmission, Distribution, and Commercialization framework. The liberalized energy
market has resulted in much better matching of power production and demand than that which
prevailed previously. The liberalized market has also proven successful in encouraging the
establishment and long term operations of numerous independent producers.
The legal and regulatory structure of the Colombian energy market is based primarily on Laws 142
(Public Services Law) and 143 (Electricity Law) of 1994. See Figure A-1 below.
Page 3 of 16
Figure A-1: Regulatory Framework
The Ministry of Mines and Energy is the leading policy and regulatory institution in Colombia’s energy
sector. Within the Ministry, the Unit for Mining and Energy Planning (or "Unidad de Planeación
Minero Energética" or UPME) is responsible for the study of future energy requirements and supply
situations, as well as for drawing up the National Energy Plan and Expansion Plan.
The Regulatory Commission for Gas and Energy (CREG) is in charge of regulating the market for the
efficient and reliable supply of energy. It defines tariff structures for consumers and guarantees free
network access, transmission charges, and standards for the wholesale market. Among others, CREG is
responsible for providing regulations that ensure the rights of consumers, the inclusion of
environmental and socially sustainable principles, improved coverage, and financial sustainability for
participating entities.
Administration and Operation of the Market
Please see Figure A-2 below, for an illustration of the market structure and flow of transactions.
XM (Compañía de Expertos en Mercados S.A. ESP) is a subsidiary of ISA (Interconexión Eléctrica S.A.),
and is in charge of:
Page 4 of 16
 Operating and coordinating the overall National Interconnection System (SIN)
 Administering the electric power commercial settlement mechanism in the Wholesale Market
 Settling and clearing of charges for use of the SIN’s grids
 Handling all Spot Market transactions (invoicing and payments) between Generators and the
Spot Market.
The centralized administration and operation provided by XM has been a key element in the successful
matching of power production with demand within this complex and geographically distributed market.
Currently, there are 28 pure Trading (commercializing) companies; 22 Distribution and Trading
companies, 9 companies that operate Transmission lines, and 11 Integrated (Generation + Distribution +
Trading + Transmission) companies in the Colombian market.
Transmission
In Colombia, all voltages above 220 kV are considered as "Transmission" voltages and those below 220
kV are considered "Distribution" voltages. The Transmission voltage levels in the SIN are either 500 kV
or 220 kV.
ISA is the largest of the nine Transmission companies. The other sizeable Transmission companies are
EEB, TRANSELCA and DISTASA (Source: World Bank, www.worldbank.org).
Generators do not generally have any direct commercial relationship with Transmission companies,
since the generators do not follow the power sold physically once it leaves the generator's facility.
Distribution and Trading
The three largest participants in Distribution are Unión Fenosa (with Electrocosta and Electrocaribe),
Endesa (in Bogotá) and Empresas Públicas de Medellín* (EPM) (Source: Ministerio de Minas y Energia,
www.minminas.gov.co ). EPM is the sole Distribution company for the CIS El Guacal area.
The Distribution network consists of 115 kV, 13.8 kV and 44 kV lines. Consumers who have contracts
with Generators are billed by their local Trader ("Comercializador"), which buys the power wholesale
from the local Distributor. Large customers who purchase more than 55 MWh of power qualify for the
Unregulated User consumer status and have the option of signing one year (or more), fixed price
contracts.
Traders are involved only when Generators have contracts with specific clients, in which case the Trader
handles all transactions between the Generator and the contract client.
Page 5 of 16
Please see Section E below, in which appears a more detailed discussion of the flow of sales
transactions.
Figure A-2: Market Structure
Page 6 of 16
B. Tax Exemptions
Sales Tax
Current regulations do not provide incentives for use of renewable energy sources such as biomass (an
important constituent of MSW on a percentage basis) or landfill gas.
However, tax breaks offered to “Public Entities” would be applicable. The ownership of the proposed
power generation facilities is anticipated to be a combination of the following public entities:

IDEA

Municipality of Envigado, probably through EVAS

EMGEA
As a result, the public sector nature of the new generating company would qualify it for a sales tax
exemption. Reference is made to Articles 19, 22, and 598 of the Tax Statute ("Estatuto Tributario").
Value Added Tax
The project should qualify for an exemption on Value Added Tax or ("IVA" or "Impuesto al Valor
Agegado") on certain specialized equipment purchased or imported for the project. Reference is made
to Articles 428 and 424-5 of the Tax Statute ("Estatuto Tributario"). It is necessary to apply for a
certification from the Ministerio de Ambiente, Vivienda y Desarrollo Territorial de Colombia (MAVDT) in
order to qualify for this exemption.
Page 7 of 16
C. Spot Market vs. Power Purchase Agreements
Spot Market prices over the 1997-2009 timeframe show on average a 20% fluctuation around the mean
price, as shown in Figure C-1 below.
Figure C-1: Electricity Price Variations between 1997 and 2009
(USD / Colombian Peso as of December 2009)
1000
300
900
800
250
$/kWh - (Dic de 2009)
Water (GWh)
700
Pspot
200
Pcontracts
600
500
150
400
100
300
200
50
100
Jul-2009
Ene-2009
Jul-2008
Ene-2008
Jul-2007
Ene-2007
Jul-2006
Ene-2006
Jul-2005
Jul-2004
Ene-2005
Ene-2004
Jul-2003
Jul-2002
Ene-2003
Ene-2002
Jul-2001
Ene-2001
Jul-2000
Jul-1999
Ene-2000
Ene-1999
Jul-1998
Jul-1997
Ene-1998
0
Ene-1997
0
Figure C-1 indicates that over the long term, the Spot Market prices lead the contract prices. Also,
please see Figure C-2 below. (Please note that USD$ 100.00 / MWh is equivalent to USD$ 0.10000 / kWh
or ten cents per kWh). This price comparison reveals that in 2009, as calculated by XM:

The Spot Market price which averaged at USD$ 0.06643 /kWh; and

The contract (Power Purchase Agreement) price averaged USD$ 0.04862 /kWh.
At one point, in October 2010, the Spot Market prices exceeded even the scarcity price level average of
USD$ 0.1289 / kWh, reaching approximately USD$0.1500 / kWh. There do not appear to be any
Page 8 of 16
"downside events" that offset such peaks by dropping the Spot Market price below the annual
average.
Figure C-2: Comparison of Spot Market and Contract Prices in 2009
Pcontracts
Scarcity Price
2009-12
2009-11
2009-10
2009-09
2009-08
2009-07
2009-06
2009-05
2009-04
2009-03
2009-02
180
160
140
120
100
80
60
40
20
0
2009-01
US$/MWh
Pspot
Averages:
Pspot = 66.43 U$/Mwh
PContracts =48.62 U$/Mwh
Scarcity Price = 128.89 U$/Mwh
(The Scarcity Price is paid to larger producers for use of reserve capacity during periods of low hydroelectric production.)
Based on the following factors:

The average historical price advantage provided by the Spot Market;

A contract will probably contain delivery guarantees with associated penalties, which could be
problematic in early operational stages; and

The fact that the SIN system, as currently structured, guarantees that all power from a small
producer can be sold into the Spot Market (there is no risk that available power from the project
will not find a buyer in the Spot Market at any given time),
In conclusion, we recommend that the project initiate operations under the Spot Market option.
Once the project is in operation, if markedly different price tendencies (for example, a sustained
increase in contracted pricing) are detected, the project can always enter into a Power Purchase
Contract, even for a limited period of time (for example, a contract with duration of one year.)
Page 9 of 16
D. Likely Power Sales Pricing to be Achieved
During the rainy season, the share of hydropower is typically around 80% and the share of the thermal
power is 20% of the total production. The dry season is normally between July and January. In the last
dry season (2009-2010), these trended toward a level of approximately 50% / 50% each. See Figure D-1
below.
During El Niño events such as that as experienced in 2001 (an overall drying event), the share of
hydropower tends to further diminish.
Figure D-1: Fluctuating Share of Hydro and Thermal Power Production
GWh
180
170
160
150
140
130
120
110
100
90
80
70
60
50
40
30
20
10
0
TotCosta
Gasf oint
GasIndep
CarbonInt
Hidro
HidroMenores
The abundance of hydropower, despite its capacity fluctuations between the wet to dry seasons,
contributes to stability for electricity in Colombia. Thermal power, which is seen primarily as a reserve
resource, tends to provide some cushioning effect for electricity prices when hydropower is strained
during the dry season of the year. In addition, the tax incentive offered to small generators less than 10
MW is likely to encourage new IPPs (Independent Power Producers) to come online. Colombia, as a net
exporter of electricity, is in a position to divert the Spot Market electricity exports to the domestic
market in case of unexpected power shortages. All these drivers support the concept that, despite
seasonal fluctuations, the supply side of the electricity market will be able to count on stable pricing
in the long term.
Page 10 of 16
In the light of the market drivers discussed above, we project the annual price (in constant dollars) of
electricity for the next 10 years as shown in Figure D-1 below:
Figure D-1: Power Pricing and Seasonality
(in constant US Dollars)
USD$ /kWh
2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
C-Wet Season
.050
.050
.050
.050
.055
.055
.055
.055
.055
.055
C-Dry Season
.060
.060
.060
.060
.065
.065
.065
.065
.065
.065
SP-Wet Season
.060
.060
.060
.060
.065
.065
.065
.065
.065
.065
SP-Dry Season
.075
.075
.075
.075
.080
.080
.080
.080
.080
.080
C-Contract Prices
SP-Spot Market Prices
Since a recommendation is made in Section C for the project to begin operations under a Spot Market
concept, the economic calculations in Task 4 will assume an overall representative annual average
power sales price of USD$ 0.070 /kWh (in constant dollars and before any effect of tax exemptions.)
Page 11 of 16
E. Power Sales Model
Figure E-1 below illustrates the anticipated power sales model, as well as commercial relationships
between the key entities involved in the project.
As discussed above in Section B, it is anticipated that the company that will operate the project will
qualify as a “Generator” on behalf of an IDEA, EVAS and EMGEA partnership. The Generator will export
power into the grid as measured at the CIS El Guacal substation.
EPM’s “Distribution” unit will provide and maintain ownership of the on-site step-up transformers, the
new 44 kV Distribution line and the 110kV:44kV step-up transformer at the one of the three nearby
candidate substations (San Antonio de Prado, Ebéjico, or San Cristóbal). From this point on, the
Generator does not follow the physical movement of power through the Distribution or Transmission
lines.
The three main commercial options for power sales are:

Sales to the Spot Market

Sales by contract to a specific client

A combination of partial sales to the spot market and partial sales by contract to a specific client. (A
specific amount of power is committed to the contract, and amounts above that are sold to the Spot
Market).
If the mechanism of contract sales is chosen, it will be necessary to select a Trader to handle the
transactions for power sales to the final client. In this case, payments flow from the client through the
Trader and on to the Generator. Under this mechanism, XM does not handle transactions, but the
Generator is required to send information on kWh exported and prices obtained to XM under the power
sales contract. This information is used by XM in its function as administrator of the wholesale market.
It is possible for a Generator to register as a Trader, but various requirements are stipulated, including
various guarantees and permissions, which imply a significant effort. If the Generator were to export
from only one relatively small plant (as in the case of the project), it is probable that it would be more
economical to utilize an external Trader.
If it is decided to sell to the Spot Market, it is not necessary to involve a Trader, and XM directly handles
such transactions, including making payments to the Generator according to the Spot Market prices
(which are updated hourly).
Page 12 of 16
Page 13 of 16
F. Plant Internal Power Consumption
The potential energy recovery facilities that could be built at the landfill site will require low voltage
electricity to power numerous pieces of internal equipment. Such power used internally is termed here
as "Plant Internal Power Consumption."
Typically, a potential Waste to Energy (WTE) plant would consume around 12 % of the gross power
generated. The major power consumers in this case are the boiler fans and various pumps, including
feed water, condensate and the circulating water pumps. Since it is likely that a "Front End" fuel
preparation MRF will be required prior to combustion, the power consumption of such a Front End
process could be on the order of 3% of the gross power generation. Therefore, a WTE plant would
internally consume on the order of 15% of the gross power generated, and likely have available for
export on the order of 85% of the gross power generated. An example for a 9.0 MW gross power
generation, net power export capacity would be:
9.0 MW x 85% = 7.6 MW
A 3.2 MW gross generation Landfill Gas (LFG) plant consisting of two (for example, Caterpillar 3520
model) motor-generator sets would require about 160 kW of auxiliary power consumption at the
blowers and the compressors, resulting in net export capacity of:
3.2 MW - 0.16 MW = 3.04 MW.
It is noted here that SIN Total Daily Demand = 160 Giga Watt Hours or 160 Billion Watt Hours, while, for
example an energy recovery facility at 10 MW export capacity would export 240,000,000 Watt Hours per
day (or 0.15% of total SIN demand).
Therefore, an energy recovery facility at the CIS El Guacal with power export below 20 MW would not
be of sufficient size to have a market-wide effect on the SIN system, whether with regard to pricing or
to interconnection operations.
Page 14 of 16
G. Generation Cost Including Capital Recovery
Similar to the Payback Period and Internal Rate of Return analyses, the Levelized Energy Cost (LEC)
Analysis is an effective method of determining the economic viability of a proposed power plant. LEC is
the cost electricity must be generated at to break even. It is an economic assessment of the cost of the
energy-generating system including all the costs over its lifetime: initial investment, operations and
maintenance, cost of fuel, cost of capital and incentive factors such tipping fees and subsidies. LEC is
later compared to the sales price to determine viability or profitability, and is formulated as:
Where:







LEC = Average lifetime levelized electricity generation cost (in dollars per kWh or MWh
generated)
It = Investment expenditures (net of subsidies) in the year t
Mt = Operations and maintenance expenditures in the year t
Ft = Fuel expenditures (negative if a tipping fee) in the year t
Et = Electricity Generation in the year t in kWh or MWh
r = Discount rate
n = Life of the system, typically 20-25 years.
The LEC and other financial indices will be utilized in subsequent financial evaluations during this
feasibility study.
Page 15 of 16
H. Conclusions
It is concluded that the proposed energy recovery facility that could be built at the CIS El Guacal site:

Would not encounter any legal or commercial obstacles in selling the generated power to the
national grid either at Spot Market prices or via Power Purchase Contracts;

Can utilize the SIN system, which provides a well proven sales model used by numerous other
independent power producers; this model would involve, primarily: the project (as Generator), an
EPM unit as the only Distributor in the project area, a Trader (if a decision is made to enter into a
power contract), and access to the vigorous Spot Market at all times.

Can count on the ability to sell 100% of available power at all times, under the SIN. This is an
enormous advantage and incentive for independent power projects under the SIN system that is not
generally available in most countries.

Should initiate operations under the Spot Market, as higher long term average prices have
historically been achieved (it is noted here that the SIN system guarantees that all power from
small producers will find a buyer at all times); if any difficulties are encountered in selling to the
Spot Market (which are not expected), the project can always enter into a Power Purchase Contract
subsequently;

Would, as a facility exporting 20 MW or less, not have sufficient size to have a market-wide effect
on the SIN system, whether with regard to pricing or interconnection operations;

Would be able to take advantage of tax exemptions:
o
o

On power sales revenue tax as a Generator facility owned and operated by public
sector entities; and
Potentially on Value Added Tax or ("IVA" in Spanish) on certain specialized
equipment purchased for the project.
Can anticipate a basic power sales price (as sold to the Spot Market) averaging approximately US$
0.070/kWh (in constant dollars excluding inflation and tax incentive effects), based on market
history; this annual average is not anticipated to vary signficantly over the project life because
supply is likely to remain well balanced with demand under the SIN system (given the various
incentives for new generators to enter the market);
Page 16 of 16
Waste to Energy Facility at El Guacal Landfill
Feasibility Study
Task 3 Report:
Waste Supply and Ash Management
Presented to Study Grantee IDEA:
and to funding agency:
United States Trade and Development Agency (USTDA)
by:
CAMBRIDGE
Project Development Inc.
22 August, 2011
Page 1 of 21
The contents of this Task 3 Report are listed below:
Task 3 Report Contents
Section Title
A
Waste Supply and Logistics
B
Previous Waste Characterization Studies
C
Characterization Study Procedure
D
E
Ash Management
Conclusions
Page 2 of 21
A. Waste Supply and Logistics
A1. Committed Waste Fuel Supply
As described in detail in the Task 1 report (Section C-Waste Supply), two sources of waste,
Interaseo and Enviaseo, together deliver 90% of all the waste received at CIS El Guacal.
Therefore, as discussed below, 90% of the waste stream being delivered to CIS El Guacal is
considered a committed, long term source of waste:

Enviaseo is the municipal waste collection agency for the municipality of Envigado. The
waste delivered by Enviaseo represents 28% of all the MSW (Municipal Solid Waste)
received at CIS El Guacal. Since EVAS itself is owned by the Municipality of Envigado and
the CIS El Guacal is owned and operated by EVAS, this flow is considered internal, and
therefore considered as a waste supply committed for the long term.

Interaseo is a large local private waste collection company that has a current waste
delivery contract with EVAS and is required to dispose of a minimum of 400 tons per day
at CIS El Guacal. The waste delivered by Interaseo represents 62% of the total waste
received at the CIS El Guacal. The Interaseo contract is in its second year of a 15-year
term, so that this waste stream is contractually assured for 13 more years from 2011.
The remaining 10% of the MSW flow that is not delivered by Enviaseo or by Interaseo is
delivered primarily by the following municipalities:






Medellín (Southern areas)
Itagüí
Caldas
La Estrella
Sabaneta
Heliconia.
This 10% flow out of the total flow is delivered under short term agreements with these
municipalities, but as described in the Task 1 Report (Section C-Waste Supply), there are
excessive distances involved for these municipalities to feasibly access the alternative landfill of
La Pradera in the Northeast region of Antioquia.
Note: The following Sub-Sections A2 through A5 respond to specific topics stipulated to be
covered in the Terms of Reference under this present Task 3.
Page 3 of 21
A2. New Potential MSW Supply
The potential for attracting new MSW fuel supplies is currently very limited. The waste that is
not disposed of at the CIS El Guacal originates primarily from the northern Aburrá Valley and is
disposed of at La Pradera. No market factors are seen that would change this (Please see Task 1
Report). El Guacal’s tip fee, $11 per ton, is less than that of La Pradera, $15 per ton, and the
difference in tip fee (advantage for CIS El Guacal) does not currently attract larger quantities of
waste.
A3. New Potential Agricultural Waste Supply
In addition to the 650 TPD of MSW discussed above, CIS El Guacal currently receives an
estimated 100 tons per day of Source Separated Organic (SSO) waste, which includes all the
agricultural waste that can be economically delivered to the facility. The agricultural waste is
processed at the composting facility together with the overall SSO. Compost, once matured, is
currently sold as a soil amendment. It is not possible to attract additional agricultural waste (as
postulated in the Terms of Reference) without adding an economic incentive (a negative tip fee,
or payment to haulers or generators, at the CIS scalehouse.) This is contrary to the EVAS
position described in Task 1 that the current tip fee structure should not be changed.
A4. Special Handling Waste as a Potential Fuel
Special Handling and Hazardous Wastes are to be disposed in the specially designed special
waste cell currently under construction at CIS El Guacal. While some of this waste may be
combustible, it is not anticipated that an energy recovery facility would utilize any of it because:

Such waste may require special air emissions control equipment;

Residues, such as ash or other residues from such wastes should not be mixed with ash
or other residues from normal MSW, as it may render such residues unfit for disposal in
a landfill designed for MSW;

There is sufficient MSW to supply an energy recovery facility without incurring
environmental risk from air emissions from special handling wastes or mixing of ash or
residues from special handling wastes.
A5. Logistics and Transportation Infrastructure
The volume of waste that will be delivered to an energy recovery facility at the CIS El Guacal will
continue to be the same quantity currently delivered to the landfill within the projected growth
Page 4 of 21
rate discussed in the Task 1 Report. As concluded in Task 1, the transportation infrastructure
should not pose as an obstacle that would restrict the construction of an energy recovery facility
at the CIS El Guacal facility.
Page 5 of 21
B. Previous Waste Characterization Studies
B1. RECIMED Study
A study was conducted in February 2011 by Precooperativa Multiactiva de Recicladores de
Medellin (RECIMED) to evaluate the potential for upgrading the quantity and quality of
materials recovered at the CIS El Guacal MRF.
Sampling of garbage collection routes was conducted by RECIMED during January 17, 18, 19 and
21, 2011. Please Figure B-1 below. Although the sampling and characterization effort was fairly
rigorous, the effort was narrowly focused on those routes that are normally sent to the MRF
because they are believed to contain a maximum concentration of recyclable materials.
Consequently, the great majority of the material that enters through the CIS El Guacal
scalehouse was not characterized. Therefore, the RECIMED study is not directly useful as a
characterization of the totality of all the waste entering the CIS El Guacal site. However, the
RECIMED study does provide a potentially useful sub-categorization of plastics within the
recyclables. This sub-categorization of plastics may be of use in subsequent Feasibility Study
tasks.
Page 6 of 21
Figure B-1: RECIMED Study: Average of Routes Sampled
Weight
Plastic
Percent of
Material Type
(Kg)
Only (Kg)
Plastic
Office Paper
6.9
Kraft
0.7
Cardboard
3.9
Other Paper
1.1
Plastic Bags (HDPE and LDPE)
33.3
33.3
69.3%
Sacks
6.7
Glass, clear
14.5
Glass, brown
0.3
Glass, plane
0.3
Aluminum
0.6
Newsprint
2.7
Plastic Bottles (PET)
13.5
13.5
28.0%
Plastic Bottles Green (PET)
0.2
0.2
0.5%
Plastic Bottles Brown (PET)
0.6
0.6
1.2%
PET as Percent of All Plastic
29.6%
Plastics Bottles Oil (HDPE)
0.5
0.5
1.1%
Cellulose Material
15.3
Debris
0.4
Ferrous
5.9
Tetrapak
0.2
Total 104.6
48.14
100.0%
Notes:
[a] Recycling Numbers for each type of plastic (resin) are: PET = #1; HDPE = #2; LDPE = # 4.
[b] While Figure B-1 does not provide a breakout of the category of "Plastic Bags", which are
normally made of LDPE (Low Density Polyethylene) or HDPE (High Density Polyethylene), we
believe that a 50% LDPE / 50% HDPE breakout would be representative.
Page 7 of 21
B2. Previous Waste Characterization Studies: Total MSW Stream
At least three previous studies have characterized the totality of waste entering the CIS El
Guacal site. This excludes the RECIMED study discussed in Section B above, which was not
designed to sample the totality of MSW entering the site, but rather the concentration
recyclables within a pre-selected set of truck routes. The three study results are summarized
below in Figure B-2:
Figure B-2: Results of Previous Waste Composition Studies
Source:
Food / Organics
Plastics
Paper / Cardboard
Yard Waste
Rubble
Glass / Ceramics
Rubber, Hoses, Bones
Textiles
Metals
Wood
Unusable
Others
Total
EVAS Antecedentes
Document
EVAS / SCS Engineers for
USEPA
[a]
[b]
EVAS / ARES
Ltda.
54.30%
10.40%
9.30%
7.10%
5.40%
4.70%
3.20%
2.10%
1.70%
1.60%
0.02%
0.00%
55.00%
12.20%
10.00%
2.00%
6.30%
5.50%
0.00%
0.60%
2.00%
0.40%
0.00%
6.00%
[c]
55.00%
14.00%
10.00%
0.00%
0.00%
0.00%
0.00%
0.00%
2.00%
0.00%
15.00%
4.00%
100%
100%
100%
Sources:
[a] EVAS from University of Antioquia/CORANTIOQUIA/Enviaseo Study; CIS El Guacal 2008
[b] SCS Engineers for EVAS; Methane to Market (Landfill Gas) Assessment Report, page 8;
[c] Definitional Mission; from ARES Ltda. to EVAS Table 2, Page 54: 2005.
These three studies show very little variability in waste composition. The waste stream
entering the CIS El Guacal facility appears reasonable and consistent across the three studies, as
it presents a much higher organic fraction than seen in North America, where kitchen sink food
disposal is common, and pre-processed, highly packaged foods are widely used.
Page 8 of 21
Fractions shown for plastics, paper and card board, and other components appear reasonable,
based on our experience. In the "Table 2" study, the "Unusable" category of 15.0% appears to
have been a composite of inert and other unusable components separated in the other two
studies, including Rubble and Glass and Ceramics.
B3. Selected Waste Fuel Characterization
As discussed in Section B2 above, the waste entering the CIS El Guacal has been analyzed in at
least three previous waste characterization studies. The composition of the waste is very similar
in each of the three studies. Because of its detailed breakout, we have selected the EVAS
Antecedentes 2008 (Enviaseo / CORANTIOQUIA / University of Antioquia) results, as shown
below in Figure B-3. This selected study is used as the point of reference for the remainder of
this feasibility study:
Figure B-3: Selected Waste Composition
EVAS from
Enviaseo
/CORANTIOQUIA
/ Univ. of
Antioquia Study
2008
54.30%
10.40%
9.30%
7.10%
5.40%
4.70%
3.20%
2.10%
1.70%
1.60%
0.20%
100.0%
Food / Organics
Plastics
Paper / Cardboard
Yard Waste
Rubble
Glass / Ceramics
Rubber / Bones
Textiles
Metals
Wood
Other
Total
However, while Figure B-3 represents the totality of waste entering the CIS El Guacal, it is
unlikely that any energy recovery process involving combustion, gasification, pyrolysis, or similar
technologies would be able to efficiently absorb this high-organics raw MSW stream without
preprocessing (or "Front End" processing). Therefore, we develop here an estimated
Page 9 of 21
composition for the waste after typical Front End processing has taken place. Typical Front
End operations, in downstream order, are:
1. Removal of oversize items, such as large metal items for recycling or large rubble items
that could damage machinery;
2. Bag Opening (mechanical and manual);
3. Screening, typically over a 10.0 cm screen opening, including removal of most of the
Organic and inert fractions as "Unders" falling down through the screen openings,
followed by the following steps on the Unders stream only:
a. Magnetic removal of smaller metal items;
b. Potentially manual removal of plastic bottle caps from the Unders stream;
c. Disposal of Unders in a landfill cell or use for anaerobic digestion.
4. The fraction that does not fall through the screen openings is often termed "Overs";
Overs usually contain a high concentration of paper, cardboard, and plastics (including
plastic bags and plastic containers), and therefore have much more potential for energy
recovery than the raw waste prior to Front End processing.
In order to characterize the Unders and the Overs fractions that result from such processing, we
have performed the calculations presented in Figure B-4 and Figure B-5 below.
Page 10 of 21
Figure B-4: Intake MSW and Unders Composition
Intake
MSW
A
Category
Food Waste
Plastics
Paper /
Cardboard
Garden Waste
Rubble
Glass / Ceramics
Rubber/Hoses/Bones
Textiles
Metals
Wood
Other
Total
Percent by
Weight
Est. %
54.3%
10.4%
9.3%
7.1%
5.4%
4.7%
3.2%
2.1%
1.7%
1.6%
0.2%
100.0%
Unders
B2 = B1/ΣB2
B
B1 = B * A
Front End
Removal
Unweighted
Rate
Composition Composition
Est. %
Est. %
Est. %
90.0%
48.9%
76.0%
2.5%
0.3%
0.4%
2.5%
35.0%
70.0%
90.0%
90.0%
1.0%
80.0%
2.5%
90.0%
0.2%
2.5%
3.8%
4.2%
2.9%
0.0%
1.4%
0.0%
0.2%
64.3%
0.4%
3.9%
5.9%
6.6%
4.5%
0.0%
2.1%
0.1%
0.3%
100.0%
Figure B-5: Overs Composition and Heating Value
C=A*(1-B)
Unweighted
Composition
Category
Est. %
Food Waste
5.4%
Plastics
10.1%
Paper / Cardboard
9.1%
Garden Waste
4.6%
Rubble
1.6%
Glass / Ceramics
0.5%
0.3%
Rubber/Hoses/Bones
Textiles
2.1%
Metals
0.3%
Wood
1.6%
Other
0.0%
Total
35.7%
Overs
D = C / ΣC
Weighted
Composition
Est. %
15.2%
28.4%
25.4%
12.9%
4.5%
1.3%
0.9%
5.8%
1.0%
4.4%
0.1%
100.0%
Page 11 of 21
E
LHV
kJ/kg
6,000
25,622
11,977
6,280
10,880
11,680
-
Overs
F=D*E
Average
LHV
kJ/kg
914
7,285
3,045
813
634
511
13,202
In Figure B-4, the calculation develops the composition of the Unders fraction after screening
and other Front End processing. Figure B-4 shows, as highlighted at the bottom of the figure,
that the Unders fraction will represent approximately 64.3% of the weight of all the intake
waste that enters the process, leaving only 35.7% of the waste as Overs, which is characterized
in Figure B-5. This relatively large Unders fraction is expected, since the primary goal of
screening is to remove the high moisture organics and the inert fractions (glass, ceramic, rubble,
metals). The Unders fraction is calculated by multiplying the typical process removal rate times
the intake waste composition for each category, as shown by the formulas inserted at the top of
each column, also highlighted.
In Figure B-5, the Overs fraction of 35.7% (as highlighted at the bottom of the figure) of the
intake waste is characterized with regard to composition and with regard to Lower Heating
Value or LHV. It is this Overs fraction of 35.7% that is normally utilized for energy recovery.
LHV represents the heat released when the waste is combusted, net of the waste needed to
evaporate the moisture in the waste. Therefore, LHV represents the net amount of energy that
is available in the process for energy generation. It is noted here that the Higher Heating Value,
or HHV, includes the heat lost in evaporating the original moisture in the material. At
Cambridge, we prefer the use of LHV, as it better represents the net amount of energy available
for utilization.
Key characteristics of the Overs fraction are:

Very high combustible fraction of over 60.5%, made up primarily of 28.4% Plastic, 25.4%
Paper and Cardboard, 4.6% Garden Waste, and 2.1% Textiles;

Based on the Cambridge data base of LHV values for individual waste components (column E
in Figure B-5), the overall LHV heating value of the Overs fraction is calculated (please see
column F = D * E) as being approximately 13,202 kilo Joules per kilogram (kJ / kg), as
highlighted in the lower right hand corner of the figure; this is a sufficient value to support
normal combustion without addition of supplemental fuels;

In tonnage, the Overs fraction of 37.5% available for energy recovery represents, for the
current intake tonnage of 650 tons per day:
650 tons per day x 35.7% = 232 tons per day
The waste characterizations developed in this Section B will be used in the technology
evaluations and economic calculations of Task 4.
Page 12 of 21
C. Characterization Study Procedure
Below is a Characterization Study Procedure prepared by Cambridge. This procedure should be
read and followed sequentially, starting with Sub-Section C1 and ending with Sub-Section C6:
C1. Purpose
The waste composition studies accomplished previously are extremely consistent in terms of
results, and a field waste composition study is not required.
However, the Terms of Reference requires that Cambridge "…provide the Grantee (in this case
IDEA) with a clear set of parameters for a defined trial period of sorting and classifying of the
wastes..."
Therefore, we are providing the following Characterization Study Procedure, which could be
used to guide a future potential waste study, if such were desired.
C2. Sampling of Incoming Loads a the Scale
An average number of 65 trucks total per day at 10 tons payload each discharge at the CIS El
Guacal. A number of 4 to 5 trucks must be weighed and randomly sampled daily (26 trucks in
total for a week-long study, where each week consists of 6 days from Monday through
Saturday). This represents a total sample during one week of 26 / 390 = 6.6%. In practice, in
order to obtain this sample, approximately every 4th truck should be sampled.
In addition to the net weight, the delivering company, origin of the material (geographical area)
and date/time shall be recorded.
C3. Quartering of Each Truck Load
Each selected truck shall discharge at the designated area onto a covered concrete floor. This
area must be sheltered, as no rain shall be allowed to increase the moisture content of the
samples. This area shall be clean and shall be kept clean continuously from all previously
obtained samples.
Page 13 of 21
A wheel loader shall mix and quarter each truck load, discarding three quarters. The remaining
quarter shall be piled up into a cone shaped form and quartered again.
Assuming a truckload of 10 tons, the steps for each load will be:
1. Input 10 tons per truck; quartering to 2.5 tons. The remaining 7.5 tons shall be put onto a
dump body truck using a wheel loader and be dumped at the landfill, or fed into the
existing MRF.
2. The 2.5 tons are then quartered to 625 kg;
3. The 625 kg are then quartered to 150 kg which shall be subject to remaining steps; the
remaining 475 kg not used shall be removed to the landfill;
4. Spread out the 150 kg and open all closed garbage bags at this point;
5. The sample of about 150 kg shall then be divided into two equal parts of 75 kg each. One
75 kg sample will be used for Material Type Characterization (please see section C4
below), and the other 75 kg sample shall be used for the Particle Size Characterization
(please see section C5 below).
C4. Material Type Characterization
For this step, sufficient containers should be obtained, so that each Material Type category will
have dedicated to it one or more containers, clearly labeled with the name of each Material
Type. Containers may be clean (new) oil drums with closeable covers, or large, closeable
recyclable material bags.
One 75 kg sample shall be analyzed immediately after being available and shall be separated
manually into these 14 Material Types for each Material Type:
1. Plastic
2. Paper
3. Cardboard
4. Textiles
5. Glass and Ceramics
6. Rock / Concrete (including Rubble)
7. Shoes/Leather
8. Electric/Electronics
Page 14 of 21
9. Metals Fe
10. Metals non-Fe
11. Food
12. Rubber (including Tires)
13. Yard Waste
14. Other and Unidentifiable.
At the end of the week, the total material classified into Material Types (and stored in
containers) will be:

75 kg x 26 Truck Loads = 1,950 kg.
All 14 categories shall be weighed and recorded, subtracting the weight of the container. The
average weight of each of the Material Type Categories will be approximately:

1,950 kg / 14 Material Type Categories = 139 kg per Material Type Category
The Material Type Category samples may be discarded at the end of the week. The total
number of data points from the Material Type Category characterization will be:

1 Data Point (weight in kg) per Material Type Category x 14 Material Type
Categories Types = 14 Data Points.
C5. Particle Size Characterization
For this step, sufficient containers should also be obtained, so that each Particle Size category
will have dedicated to it one or more containers, clearly labeled with the name of each Particle
Size category. Containers may be clean (new) oil drums with closeable covers, or large, closeable
recyclable material bags.
It is noted here that a trommel (a rotating perforated drum screen) fitted with the various
interchangeable size screens can be used for particle size differentiation if mechanical sorting is
desired. Alternatively, wire mesh of different opening sizes can be attached to wooden frames
to make an economical but effective manual sorting tool.
The 75 kg sample shall be thoroughly vibrated (manually or mechanically) over screens of
different perforation sizes as shown in the bullet points below:
1. >100mm
2. 50 mm to 100 mm
Page 15 of 21
3. 25 mm to 50 mm
4. < 25 mm.
Each fraction shall be deposited into one or more containers for each Particle Size fraction and
retained until the end of the week. Each Particle Size Category is weighed at the end of the
week, ensuring that the container weight is subtracted from the total weight.
The total amount of material that will be sampled for Particle Size is:

75 kg per Truck Load x 26 Truck Loads = 1,950 kg.
The average weight of each Particle Size fraction shall be:

1,950 kg / 4 Particle Size Categories = 488 kg per Particle Size Category.
The 4 Particle Size Category samples should be weighed at the end of the week and the
following data points recorded:

4 Particle Size Categories x 1 Data Point (weight in kg) per Category = 4 Data Points.
The material in the Particle Size containers shall be retained after weighing until the end of the
week in covered containers to allow for preparation for the Laboratory Analysis step, and for the
Laboratory Analysis step itself to take place as follows:
C6. Laboratory Analysis
The material in each Particle Size category, after weighing, should be dumped to the floor,
mixed, and quartered twice (divided into an eighth). This will result in an average sample weight
of:

488 kg per Particle Size Category / 8 = 61 kg.
It may be advisable, or requested by the laboratory, to shred some of the larger-size Particle Size
Category samples before sending them to the laboratory.
The laboratory will quarter each sample into fractions, each averaging:

61 kg / 4 = 15.3 kg.
For each sample, the resulting quarters will be used as follows:

Quarter 1: Laboratory keeps for future reference.

Quarter 2: Undergoes Tests A through E

Quarter 3: Undergoes Tests A through E
Page 16 of 21

Quarter 4: Undergoes Tests A through E.
Laboratory Tests A through E are:
A. Weight on Arrival
B. Moisture content
C. Higher Heating value (calorimeter)
D. Lower Heating Value (calorimeter)
E. Ash Content.
Therefore, the laboratory will be reporting:

4 Particle Size Categories x 3 Quarters Tested per Sample x 5 Lab Tests = 60 Data
Points.
END OF PROCEDURE
Page 17 of 21
D. Ash Management
D1. WTE Ash and Energy Conversion Char
Ash residues are generated by waste-to-energy (WTE) facilities, which combust Municipal Solid
Waste (MSW) within a carefully monitored and controlled process. The following are the two
main types of Ash that are generated:

Bottom Ash, composed of relatively heavy ash, is discharged after the waste has
progressed down the stoker. Bottom Ash (residues, carbon, metallic objects) usually
represents on the order of 30% of the weight of the original MSW (and on the order of
10% of the volume of the original MSW.)

Fly Ash is lighter Ash that is carried by combustion gases through the furnace, boiler and
Air Quality Control System (AQCS). It is primarily collected within the AQCS. Fly Ash
usually represents on the order of 1% to 3% of the weight of the original MSW.
In the United States (with over 90 WTE facilities currently in operation), Bottom Ash and Fly Ash
are combined within the WTE facility, resulting in an Ash that can be safely disposed in a
conventional lined landfill cell. In Europe (with over 400 WTE facilities in operation), Bottom
Ash and Fly Ash are usually collected separately, resulting in a Bottom Ash that can be disposed
in a conventional lined landfill cell, but at the same time generating a Fly Ash that, primarily
because of high metals concentrations, must be disposed in a special waste or hazardous waste
cell.
It is anticipated that any WTE facility to be built at the CIS El Guacal facility will be designed to
comply with United States standards and practices, and will therefore collect Bottom Ash and
Fly Ash as one material stream. Therefore, it should be acceptable to landfill the Ash from a
WTE facility in the conventional lined landfill cell already built at the CIS El Guacal site.
Normal metals and other components that will be present in MSW Ash are listed below:








Chromium
Copper
Arsenic
Lead
Cadmium
Zinc
Manganese
Mercury
Page 18 of 21
Leaching into soil of lead, cadmium, and mercury from WTE Ash are of particular concerns
around the world. These metals and other components are derived from various materials
present in MSW, including the following:

Household batteries

Inks and dyes

Metal-based paints (including mercury-based paints)

Weather-resistant and insect-resistant wood.
Non-combustion technologies such as gasification or pyrolysis (in which MSW is chemically
degraded by external heat within an atmosphere without sufficient oxygen to support
combustion) produce a "Char" material. This Char material will have contained within it metals
concentrations similar to those in combustion Ash.
The remainder of this discussion is focused on Ash, but the same statements can be made about
Char residues.
D2. Ash Storage and Handling
Ash typically falls off the combustion grate or stoker and falls into a conveyor submerged in
water. The water extinguishes any remaining combustion and cools off the ash to facilitate
further handling. Such a conveyor normally moves the Ash to a small storage bunker within the
facility. A small fixed crane normally loads the Ash onto a dump-type truck, which moves the
Ash to the landfill working face. Outdoor or uncovered storage of Ash outside a lined landfill
cell is never recommended because of contaminant leaching concerns.
D3. Utilization of Ash Demand for Ash for Agricultural and Other Purposes
The Terms of Reference require this Feasibility Study to determine if there is a potential for use
of ash as an agricultural soil amendment.
Waste to Energy facilities worldwide virtually always dispose of Ash in lined cells, primarily to
prevent leaching of metals and other components from the Ash into ground water.
Ash (or Char) derived from MSW has never been utilized on any significant scale as a soil
amendment because of concerns with metals and other components leaching into the soil. Old
unlined landfills from the 1940's through the 1970's that contain incinerator Ash require multimillion dollar cleanup projects to protect surrounding communities. Metals build up over time
in soils after multiple applications, and eventually, a public health hazard is created. Therefore,
Page 19 of 21
farmers and landowners worldwide reject disposal of MSW Ash on their lands. There is no
reason to believe that farmers or landowners in Colombia would take a differing position.
There has been limited experience in Europe with the use of Ash as road base material (in which
the deposited Ash is protected from exposure to rainwater by asphalt above it.) Nevertheless,
use of Ash as a road base material has also been greatly limited worldwide by concerns about
metals and other components leaching into the soil. Groundwater that flows horizontally would
not be prevented from contacting and leaching the Ash by the asphalt roadway above the Ash.
Cambridge concludes that Ash or Char from an energy recovery facility at the CIS El Guacal
could not be safely or reliably used as a soil amendment or as road base material.
Ash is typically an economical cover material, because it is inert and odorless and has already
been moved from the WTE facility to the working face of the landfill and only requires spreading
as cover material. The Ash generated at a CIS El Guacal facility could be used as cover material
at the landfill or simply disposed of in the lined landfill cells. Virgin soil cover material must
often be excavated with heavy equipment, where such excavation work would be additional to
the work of moving the Ash to the working face.
Page 20 of 21
E. Conclusions
Task 3 conclusions are listed below:

As discussed in Task 1, at least 90% of the waste supply to the CIS El Guacal is committed
long term, and the remaining 10% is unlikely to be diverted because of geographic and
logistical factors.

At least three characterization studies of the totality of the waste arriving at the CIS El
Guacal have been accomplished, with extremely good consistency observed in the results;
therefore, these characterizations can be used as a reference point for subsequent
evaluations during this feasibility study.

The RECIMED study was not a random study of the totality of the incoming waste, but was
rather a characterization of a sub-set of waste loads pre-selected for having high
recyclables; however, the RECIMED study does provide insight into the distribution of types
of plastics (among the seven commonly used plastic resins) present within the overall
plastics fraction of the waste.

The waste characterizations developed in Section B above for incoming raw MSW and for
MSW that has been submitted to a "Front End" fuel preparation process will be used in
evaluations that follow during this feasibility study.

The calorific value calculated in Section B above for the MSW fraction remaining after
passing through a fuel preparation "Front End" process is 13,202 kJ / kg (kilo Joules per
kilogram), a value that can sustain combustion without supplemental fuels. A number of
plants in the world incinerate and generate power with MSW in the range of 10,000 to
13,000 kJ / kg.

The MSW remaining after the fuel preparation Front End process is calculated in Section B
to be approximately 37.5% of intake MSW. For the current intake rate of 650 tons per day,
these 37.5% fraction would be the equivalent of 232 tons per day. This fraction of 37.5%
represents the MSW that would be available for an energy recovery process at the "Back
End" of a plant.

In compliance with the Terms of Reference for this feasibility study, a waste characterization
study procedure is provided here in the event that a desire arises in the future to conduct an
additional study.

Ash or Char from an energy recovery facility at the CIS El Guacal cannot be safely or reliably
used as a soil amendment or as road base material because of their very high potential to
leach contaminants, especially heavy metals. These residues must be landfilled in the CIS El
Guacal lined landfill cell. Such material can be utilized in the landfill cell as cover material.
Page 21 of 21
Waste to Energy Facility at El Guacal Landfill
Feasibility Study
Task 4 Report:
Technical Configuration and
Preliminary Design
Presented to Study Grantee IDEA:
and to funding agency:
United States Trade and Development Agency (USTDA)
by:
CAMBRIDGE
Project Development Inc.
04 October, 2011
Page 1 of 51
The contents of this Task 4 Report are listed below:
Task 4 Report Contents
Section
A
B
C
D
E
Title
Candidate Technical Configurations
Economic Performance of Technical Configurations
Selection of Primary Energy Equipment
Selected Technical Configuration
Conclusions
Page 2 of 51
A. Candidate Technical Configurations
A1. Candidate Technical Configurations
Processes designed to recover energy derived from municipal solid wastes (MSW) can be
classified into the following categories, which correspond to Sub-Sections in this Section A:

A2. Combustion
o Mass Burn
o Refuse-Derived Fuel

A3. Gasification and Pyrolysis
o In-Vessel Gasification
o Plasma Arc Gasification

A4. Biological and Chemical
o Anaerobic Digestion
o Chemical

A5. Landfill Gas to Energy
Section A6. Evaluation of Technical Configurations consists of a comparative evaluation of the
technical configurations discussed in Sections A2 through A5.
We have endeavored to establish a common basis for comparison of technologies, in which a
number of elements are held constant:

Projection for total MSW intake to the CIS El Guacal Facility (developed in Task 1);

Waste split of total MSW intake between MSW Overs and MSW Overs fraction and
Unders fraction after a Front End fuel preparation process (developed in Task 3). As
defined in Task 3, the Unders fraction is that portion of the MSW that passes by gravity
through openings in a processing screen, while the Overs fraction is that portion of the
MSW that is too large to pass through the screen openings.
These fundamental assumptions are described again briefly below:
As established in Task 1, it is unlikely that the MSW tonnage intake to the CIS El Guacal facility
will ever drop below 650 tons per day. In addition, it was established in Task 1 that the EVAS
projection for growth rate of 1.5% annually is reasonable, considering the waste shed's
population growth rate. The overall tonnage intake is projected below in Figure A-1. Figure A-1
also shows a calculation for the required capacity of the planned energy recovery facility:
Page 3 of 51

In base year 2010, an average of 641 tons per day MSW intake;

Plants are usually designed with sufficient capacity to avoid the need for an expansion
before 10 years; MSW intake in 10 years (in 2020) is projected at 750 tons per day.
Therefore:

The Front End capacity must be on the order of 750 tons per day (total MSW intake);

The Back End (energy recovery process) capacity must be 270 tons per day
(approximately 35.7% of the total MSW intake as Overs); and

The resulting Unders (containing the majority of organics and moisture) will be on the
order of 480 tons per day (approximately 64.3% of the total MSW intake as Unders).
For each candidate technical configuration, this Section A assesses the technical risk involved
with implementation of the subject technology at the CIS El Guacal site.
"Technical Risk" is defined here as the probability that a plant utilizing any one of the subject
technologies will operate with an availability well below 80% as a result of (a) equipment
failures; or (b) inability to produce power or by-products in quantity or quality required by
markets. For example, Anaerobic Digestion (AD) plants may operate at a reasonable reliability,
but post-AD organics residuals have often been found to contain significant heavy metals
concentrations and have therefore required landfilling or use as landfill cover material.
Page 4 of 51
Figure A-1: Projected MSW Supply
and Energy Recovery Plant Required Intake Capacity
Overs Fraction
Calendar
Year
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
Sequential
Year
Base
1
2
3
4
5
6
7
8
9
10
Plant Design Capacity
Intake
MSW
TPY
Intake
MSW
TPD
32,655
110,063
168,762
224,603
233,897
237,405
240,967
244,581
248,250
251,973
255,753
259,589
263,483
267,435
271,447
119
302
462
615
641
650
660
670
680
690
701
711
722
733
744
Unders Fraction
Percent
of
MSW
Intake
TPD to
Energy
Recovery
Percent
of
MSW
Intake
Unders
Fraction
TPD
35.7%
35.7%
35.7%
35.7%
35.7%
35.7%
35.7%
35.7%
35.7%
35.7%
35.7%
229
232
236
239
243
246
250
254
258
262
266
64.3%
64.3%
64.3%
64.3%
64.3%
64.3%
64.3%
64.3%
64.3%
64.3%
64.3%
412
418
424
431
437
444
451
457
464
471
478
Front
End
TPD
Energy
Recovery
in TPD
Unders
in TPD
750
270
480
Page 5 of 51
A2. Combustion
Combustion has as its foremost objective the reduction of the original volume of MSW. At the
same time, the waste is stabilized and sterilized. This is especially important where development
of new landfill capacity is not practical. Energy recovery is a secondary feature that allows
reduction of the net tip fee required by combustion facilities. Generally, "incineration" is taken
to mean combustion without energy recovery (as was practiced until the 1970's in North
America), while "Waste to Energy" or "WTE" is accepted to mean combustion with energy
recovery. Combustion without energy recovery is not common today, since the cost of the
energy recovery equipment (such as steam turbine-generators) is small compared to the power
sales revenue achieved.
Combustion technologies are divided into the following subcategories:

Mass Burn: Direct combustion of virtually unprocessed MSW); and

Refuse Derived Fuel (RDF): Combustion of a processed fuel (usually shredded and
screened) prepared from incoming raw MSW.
WTE has an extensive track record worldwide, as discussed further below in this Section A. Over
500 facilities are in commercial operations in North America and Europe, while Asia has dozens
of facilities in commercial operations. Information on WTE and other waste treatment plants in
Asia has not been compiled, to our knowledge, in a comprehensive way, and data from Asia has
often been inconsistent or contradictory. In Latin America, there are no WTE facilities in
operation to our knowledge. Therefore, in this evaluation, we focus on the extensive experience
in North America (United States and Canada) and Europe.
A2.1 Mass Burn
Modern Mass Burn technology evolved in the late 1970's and is worldwide the most favored
Waste to Energy (WTE) technology. Approximately 90% of the WTE plants in North America
utilize a Mass Burn design, while most of the rest utilize Refuse-Derived Fuel, or RDF, as
discussed below in subsection A2.2. Mass Burn waterwall systems are typically large, fielderected systems consisting of integrated furnace and boiler arrangements. The boiler section is
positioned above the grate furnace area in order to maximize the capture of hot gases from the
combustion taking place on the grate. Waste is charged from a feed chute into the furnace
onto a combustion grate system by a hydraulic piston located near the bottom of the chute.
The grate consists of thick metal transverse sections, some of which oscillate to move the MSW
down slope across the grate surface. Figure A-2 illustrates an advanced design Mass Burn grate
system.
Page 6 of 51
Figure A-2: WTE Mass Burn Grate System
Hot gases from combustion rise up from the grate and then pass over various heat exchange
tubing sections in the boiler, from which steam is generated. This steam is ducted to the
turbine-generator unit, where the steam turns the turbine. The turbine in turn rotates the
generator, producing electric power.
The flue gases leaving the boiler have enough remaining energy to pre-heat the water for the
boiler and the combustion air prior to combustion. This water is circulated back from the
turbine toward the boiler. Combustion air is ducted into the furnace from below and above the
grate.
Figure A-3 shows a side view of a modern Mass Burn grate and furnace (yellow) and boiler
system.
Page 7 of 51
Figure A-3: WTE Mass Burn Grate Furnace (yellow) and Boiler Arrangement
Ash from the combustion grate falls off the grate and into a conveyor submerged in water. This
quenching both cools the material and prevents dusting from the ash falling off the grate. Ash
removed from the grate in this manner is called bottom ash. Ferrous metals and sometimes
aluminum are recovered from the ash.
The air quality control system (AQCS) is design to clean the flue gases, is very large and can often
represent 25% to 30% of the capital investment for a WTE plant. A number of flue gas cleaning
systems are available. Modern WTE plants in North America and Europe routinely meet the
following strict emissions standards:

USEPA Standards (each state's standards may be more, but not less, stringent than
USEPA standards); or

European Union Standards.
There are many companies involved with the development of a Mass Burn facility. A large
percentage of the equipment and systems are similar to conventional power plant equipment
(such as a coal-fired power plant), and many suppliers are available. However, usually a single
"turn-key" contractor is hired to engineer, procure, and construct ("EPC") build the plant.
Page 8 of 51
A2.2 Refuse-Derived Fuel
Refuse-Derived Fuel (RDF) plants are similar to Mass Burn plants, but the combustion process is
preceded by a fuel preparation process, in which the waste is homogenized and its heating value
is increased. This is accomplished typically by shredding and screening the waste material. In
this manner, a much more uniform particle size is obtained, and the organic fraction is removed.
The organic fraction usually retains most of the moisture content and most of the inert
components such as glass.
In the case of CIS El Guacal waste, as documented in Task 3, virtually any type of energy
recovery process would require an RDF-type Front End preparation system to improve the
quality of the MSW. Figure A-4 below shows photographs of unprocessed MSW and RDF.
Figure A-4: Unprocessed MSW (left) and RDF (right) Ready for Combustion
Key characteristics of the Overs fraction (RDF) for the CIS El Guacal MSW, as shown in Figure A-5
and Figure A-6 below (and as developed in Task 3) are:

High combustible fraction of over 60.5%, made up primarily of 28.4% Plastic, 25.4% Paper
and Cardboard, 4.6% Garden Waste, and 2.1% Textiles;

The overall LHV heating value of the Overs fraction as calculated in Task 3 as approximately
13,202 kilo Joules per kilogram (kJ / kg); this is a sufficient value to support normal
combustion without addition of supplemental fuels.
Based on the good combustion characteristics of the Overs fraction and the extensive
commercial operating experience worldwide, the technical risk involved with a combustion
technical configuration for CIS El Guacal is considered "Low".
Page 9 of 51
Figure A-5: Intake MSW and Unders Composition
Intake
MSW
A
Category
Food Waste
Plastics
Paper /
Cardboard
Garden Waste
Rubble
Glass / Ceramics
Rubber/Hoses/Bones
Textiles
Metals
Wood
Other
Total
Percent by
Weight
Est. %
54.3%
10.4%
9.3%
7.1%
5.4%
4.7%
3.2%
2.1%
1.7%
1.6%
0.2%
100.0%
Unders
B2 = B1/ΣB2
B
B1 = B * A
Front End
Removal
Unweighted
Rate
Composition Composition
Est. %
Est. %
Est. %
90.0%
48.9%
76.0%
2.5%
0.3%
0.4%
2.5%
35.0%
70.0%
90.0%
90.0%
1.0%
80.0%
2.5%
90.0%
0.2%
2.5%
3.8%
4.2%
2.9%
0.0%
1.4%
0.0%
0.2%
64.3%
0.4%
3.9%
5.9%
6.6%
4.5%
0.0%
2.1%
0.1%
0.3%
100.0%
Figure A-6: Overs Composition and Heating Value
C=A*(1-B)
Unweighted
Composition
Category
Est. %
Food Waste
5.4%
Plastics
10.1%
Paper / Cardboard
9.1%
Garden Waste
4.6%
Rubble
1.6%
Glass / Ceramics
0.5%
0.3%
Rubber/Hoses/Bones
Textiles
2.1%
Metals
0.3%
Wood
1.6%
Other
0.0%
Total
35.7%
Overs
D = C / ΣC
Weighted
Composition
Est. %
15.2%
28.4%
25.4%
12.9%
4.5%
1.3%
0.9%
5.8%
1.0%
4.4%
0.1%
100.0%
Page 10 of 51
E
LHV
kJ/kg
6,000
25,622
11,977
6,280
10,880
11,680
-
Overs
F=D*E
Average
LHV
kJ/kg
914
7,285
3,045
813
634
511
13,202
A3. Gasification and Pyrolysis
This Subsection A3 deals with the following major forms of gasification:

In-Vessel Gasification; and

Plasma Arc Gasification.
A3.1 In-Vessel Gasification
Gasification generates a synthesis gas (sometimes called "syngas") by placing a carbon-base
feedstock into a chamber with minimal amounts of oxygen while the chamber is heated from
the outside. The lack of oxygen prevents the material from combusting, but the heat causes a
number of components in the feedstock to be released as gasses. Syngas is usually a mixture
of:

Hydrogen

Methane

Carbon monoxide

Carbon dioxide

Water as steam

Volatile components derived from the feedstock.
Once the syngas is released, it can be utilized, usually after a gas cleaning process, by one or a
combination of the following steps:

Combustion of the syngas (such as in a heat recovery boiler or in an internal combustion
engine); or

Converted to a liquid fuel that can be combusted separately.
The gasification process has been used for industrial purposes for over 100 years, but the only
large scale commercially successful applications have used homogeneous feedstocks such as:

Coal or peat (a partially decomposed plant material with some remaining calorific value)

Wood chips or other biomass.
Pyrolysis is one of the steps in an overall gasification process, although it is often designated as
a separate technology. The overall process of in vessel gasification, which includes pyrolysis, is
described below:
1. Dehydration around 100 degrees Centigrade, in which the water (H2O) in the feedstock
is emitted as a steam (and becomes available for Steps 4 and 5 described below);
2. Pyrolysis at around 200 to 300 degrees Centigrade, in which volatile components
Page 11 of 51
(hydrogen, tars, and other hydrocarbons) are released from the feedstock as gaseous
products. For a homogeneous feedstock, this results in a large weight reduction in the
feedstock material. The residual of the feedstock remaining after pyrolysis is called a
"char".
3. Oxidation of carbon compounds in the char combines carbon with oxygen to make
carbon dioxide: C + O2 -> CO2. Oxidation is often minimized, since CO2 is not available for
subsequent steps and is an inert component of the syngas. Temperature and pressure
continue to be increased through steps 4 and 5.
4. Hydrogen (H2) is generated when most of the remaining carbon in the char reacts with
water as steam (from Step 1 or introduced externally) to produce carbon monoxide and
hydrogen: C + H2O -> H2 + CO. Hydrogen is one of the combustible components in the
syngas.
5. Methane (CH4) gas is generated if the hydrogen and carbon monoxide from Step 4 are
further reacted as: CO + 3H2 -> CH4 + H2O or if carbon in the char reacts as: C + 2H2 ->
CH4. Methane, of course, is another potentially combustible component in the syngas.
As a result of these chemical reactions, syngas may contain widely varying amounts of carbon
monoxide, carbon dioxide, hydrogen, water, methane, and volatiles in various proportions.
With a very heterogeneous feedstock such as MSW, many components of which react at
different temperatures and pressures, obtaining a uniform desired syngas composition is
extremely challenging.
Cambridge industry monitoring indicates that there is no commercial operational record for
gasification systems processing truly mixed MSW.
A specific process apparently representative of the worldwide experience with gasification
systems is the process developed by European company Thermoselect. In the late 1990's,
Thermoselect developed a medium-large scale (approximately 685 tons per day design capacity)
facility in Karlsruhe, Germany.
An important economic concern with gasification processes such as the Thermoselect process
continues to be the energy balance (energy in compared to energy out in usable form). A
significant amount of energy is required to heat the gasification chamber from the outside.
Gasification promoters claim that the syngas produced is enough to both:

Generate electricity (for example, in an internal combustion engine); and

Be burned to heat the gasification chamber from the outside in.
Page 12 of 51
At Karlsruhe, the Thermoselect process reportedly consumed significant quantities of natural
gas (which was purchased at significant cost) in order to achieve targeted gasification and other
process requirements [a].
The Karlsruhe facility opened for operations in 2002. However, none of the three processing
lines ever reached full commercial operational status. The facility was shut down in 2004 due to
technical and commercial difficulties and is no longer in operation [b]. The approximately $500
Million capital investment is reported to have been lost as a write-off.
Figure A-7: Thermoselect Karlsruhe Gasification Plant after Shutdown in 2004
The original Thermoselect pilot plant in Fondotoce, Italy, has been shut down since the mid
1990's. Thermoselect often cites its Chiba, Japan plant as being a gasification plant in
commercial operations with mixed MSW. However, a long time Cambridge industry contact
who visited the Chiba plant observed that its infeed pit was, on the day of the visit, stocked with
source-separated plastics, rather than truly mixed MSW.
[a] Source: Fränkische Landeszeitung, “Natural Gas Use Should Be Halved This Year [Erdgas-Verbrauch soll
dieses Jahr halbiert werden],” 29 January 2003.
[b] Süddeutsche Zeitung [Munich, Germany], “The End for Thermoselect [Aus für Thermoselect)”, 05
March 2004; and: Frankfurter Allgemeine Zeitung [Frankfurt, Germany], "No Future for Thermoselect"
[Keine Zukunft für Thermoselect]", 03 March 2004.
Page 13 of 51
A type of gasification process that has been advanced in recent years is Plastic to Oil pyrolysis.
In this type of process, the syngas is converted to a liquid product reportedly equivalent in many
characteristics to crude petroleum. This product may be sold to a refinery, or refined further
on-site. An optional "mini-refinery" at the back end of the plant is designed to refine the
petroleum equivalent product into the various normal products obtained from crude petroleum,
including diesel, kerosene, gasoline, and lubricants. The AGILYX pilot plant in Oregon, United
States has reportedly sold such oil-like products successfully for some time. However, while the
AGILYX process is promising, a number of projects are planned, and the technology has recently
attracted large amounts of development capital, we cannot classify it as a commercially proven
technology. The Oregon pilot plant is the only one we are aware of that has so far actually
operated. A technical issue is how well the product will work with various combinations of the
seven plastic resin types. A commercial issue is cost and availability of source-separated
plastics, whose value as recyclable increases with oil prices.
It is concluded that gasification or pyrolysis of mixed MSW has not been proven commercially,
as manifested by:

The lack in North America or Europe of any commercially operating gasification or
pyrolysis plants using mixed MSW as a feedstock, and;

At least two major plant shutdown failures in Europe recorded in recent years:
o
Thermoselect Karlsruhe: approximately 685 tons per day design capacity (shut
down 2004); approximately $500 Million capital investment lost [a]; and
o
Thermolyse in Arras, France: approximately 125 tons per day design capacity
(shut down 2009) approximately $36 Million capital investment lost [b].
The technical risk involved with an in-vessel gasification project for CIS El Guacal is considered
"High".
[a] Source: Süddeutsche Zeitung, “The End for Thermoselect [Aus für Thermoselect)”, 05 Marzo 2004; and:
Frankfurter Allgemeine Zeitung, "No Future for Thermoselect" [Keine Zukunft für Thermoselect]", 03 March 2004.
[b] Source: La Voix du Nord (La Voice of Northern France), "Le traitement des déchets par thermolyse à Arras n'aura
duré que quatre ans" ("Waste Treatment by Thermolyse in Arras Lasted only Four Years"), 04 February 2009.
Page 14 of 51
A3.2 Plasma Arc Gasification
Plasma, referred to as the "fourth state of matter" (after solid, liquid, and gas states), is a very
high temperature, highly ionized (electrically charged) gas capable of conducting electrical
current. Examples of plasma in nature include lightning and gas at the surface of the sun. Plasma
technology has a long history (outside the solid waste industry) of development and has evolved
into a valuable tool for engineers and scientists who need to use very high temperatures for
new process applications.
Man-made plasma is formed by passing an electrical discharge through a gas such as air or
oxygen (O2). The interaction of the gas with the electric arc dissociates the gas into electrons
and ions, and causes its temperature to increase significantly, often exceeding 6,000 °C, nearly
as hot as the sun’s surface.
Figure A-8 shows a plasma torch schematic, and Figure A-9 shows a photograph of a plasma
torch being used to generate plasma.
Figure A-8: Plasma Torch Schematic
Page 15 of 51
Figure A-9: Plasma Torch in Operation
The heated and ionized plasma gas is then used to treat the feedstock. Figure A-10 shows a
waste treatment reactor with plasma torches at the bottom of the reactor. Plasma arc converts
select waste streams to slag.
Figure A-10: Plasma Reactor with Torch at Bottom of Reactor
As illustrated in Figure A-10, the feedstock emits a syngas after being exposed to the plasma
arcs emitted by the torches. The syngas can be used as a fuel for energy recovery in a separate
process.
Page 16 of 51
The molten residue from the gasification process is typically discharged to a water bath and
quenched to form a glassy, slag material slag that may be reusable, depending on market
availability.
Experimentation with MSW gasification using plasma arc has been ongoing since the 1980s, with
a number of pilot-scale projects, but no commercial scale operations in continuous use.
Plasma MSW gasification developers include Geoplasma of Georgia, USA and Plasco Energy
Group of Canada.
Geoplasma has obtained from Florida environmental regulators a permit to build a plasma arc
waste treatment facility in St. Lucie County, Florida, but construction has not begun as of mid
2011. The sizing of this facility was reduced during development from 3,000 tons per day to 200
tons per day. Solid waste industry observers are monitoring this project closely, as it is the one
project that may be closest to entering a commercial production stage.
Plasco of Canada indicates that it has two pilot plants, one in Ottawa and one in Spain. Plasco
also has other projects in various stages of development, but none in commercial operations.
Plasma arcs are powerful enough to have been used to break down metals (and therefore
certainly have enough power to destroy MSW), but the remaining primary issues are:
 How much of the large amount of energy input can be recovered; and
 How consistent can the quality of the syngas be long term.
The technical risk involved with a plasma arc gasification project for CIS El Guacal is
considered "High".
Page 17 of 51
A4. Biological and Chemical
Biological-chemical waste treatment technologies are generally low temperature operations
that require a biodegradable feedstock. Many can accept high moisture content materials. For
the purposes of this study, biological-chemical processes described are:
 Anaerobic Digestion (AD), a biological process; and
 Acid Hydrolysis (AH), a chemical process.
A4.1
Anaerobic Digestion
After MSW undergoes a Front End RDF-type preparation process, the Overs fraction is usually
utilized as RDF in a conventional WTE combustion plant. This means that anaerobic (without
oxygen) digestion is not a full waste disposal technology, but a technology that relies on
working together with other waste treatment technologies.
Figure A-11 illustrates a typical process flow for an anaerobic digestion system, and Figure A-12
shows the large anaerobic digestion containers (reactors) required for the relatively long
anaerobic process resident times.
Figure A-11: Anaerobic Digestion Typical Process Flow
Page 18 of 51
Figure A-12: Anaerobic Digestion Containers (Reactors)
The biogas produced during anaerobic digestion requires cleanup and can be used in a separate
energy recovery process. The generation and use of biogas in anaerobic digestion is analogous
to similar processes in the generation and utilization of landfill gas, as described in Subsection
A5 below.
As of 2008, there were 26 plants in Europe (and 1 plant in Canada) processing mixed MSW
(please see www.iaea-biogas.net.)
While there are a significant number of AD plants operating commercially primarily in Europe,
the technology is highly dependent on separate operations that:

Are subject to market acceptance of the large Unders (organics) fraction as a soil
amendment compost, even though such material has often been landfilled after being
rejected by markets in various parts of the world for having contaminants including
heavy metals; and

Burn the large Overs (combustible) fraction in a separate RDF combustion plant that
may be subject to increases or decreases in supply from other sources.
Therefore, the technical risk of an anaerobic digestion project at CIS El Guacal is considered
"Medium-High".
A4.2
Acid Hydrolysis
Chemical approaches to waste treatment have focused on chemical conversion of cellulose
materials present in MSW to ethanol and simultaneously achieving a landfilled volume
reduction. Chemical treatments typically require an RDF-type process to prepare wastes fro
chemical processing. Again, as in the case of plastic to oil and anaerobic digestion, chemical
conversion cannot be used alone and must be used in conjunction with other technologies in
Page 19 of 51
order to deal with the entire MSW stream.
Acid hydrolysis appears to be the only chemical waste treatment process that has undergone
pilot plant experience for any prolonged period of time.
Masada Resource Group LLC, with offices in Alabama, offers a proprietary process called the CES
OxyNol Hydrolysis Process. This process uses a sequence of material preparation, acid
hydrolysis, fermentation and distillation to convert the cellulose fraction to sugars. The sugars
are further processed in a fluidized-bed gasifier for acid separation. A key issue remains the
actual amount of residue (components other than cellulose) from the process that must be
combusted or landfilled.
We are not aware of any chemical conversion facilities using mixed MSW as a feedstock on a
commercial basis. Therefore, the technical risk of a chemical waste treatment project at CIS El
Guacal is considered "High".
Page 20 of 51
A5. Landfill Gas to Energy
Landfill Gas to Energy (LFGE) is a full-cycle waste treatment and energy recovery technology, in
that it includes:

Final disposal and decomposition of waste in a lined landfill cell, with significant
volume reduction from biological degradation; and

Significant energy recovery (primarily as electricity generation available for export.
A modern landfill will have the following features, which are already available at CIS El Guacal:

Lined landfill cell;

Leachate collection system;

Landfill gas collection and flaring system.
LFGE takes advantage of the landfill gas already being flared and converts it to electricity.
LFGE has a very large commercial operations record comparable to combustion. Commercial
plants in North America and Europe are estimated to number at least:

Combustion: 522 commercial plants; and

Landfill Gas to Energy: 480 commercial plants.
Landfill gas is typically on the order of 50% methane (which is burned to recover energy) and
50% carbon dioxide and other gases.
Landfilled MSW decomposition begins soon after
placement of waste in a landfill cell, but the speed of decomposition through various phases
(which are the same phases as those illustrated for anaerobic digestion in Figure A-11 above and
reproduced as Figure A-13 below) is accelerated to the extent that the waste is:

High in organics (as is the case at CIS El Guacal); and

High moisture content and exposure to rainfall (as is the case at CIS El Guacal).
Page 21 of 51
Figure A-13: Phases in Landfill Gas Generation
Figure A-14 shows a profile of landfill gas generation for a given amount of MSW as a function of
the number of years after placement of the MSW in a cell. Figure A-14 also shows that a large
amount of landfill gas is available as soon as 2 years after placement of waste in the cell, reaches
a peak at approximately 5 to 6 years after placement, and continues to generate gas in
significant quantities for an additional 15 or more years.
120%
100%
80%
60%
Percent of Max
40%
20%
0%
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Figure A-14: Landfill Gas Generation as Percent of Maximum vs.
Years after MSW Placement
Source: Handbook of Solid Waste Management; Table 14.7; Tchobanoglous and Kreith; 2002
Page 22 of 51
Figure A-15 shows the design of a typical gas extraction well.
Figure A-15: Typical Landfill Gas Extraction Well Design
Figure A-16 shows a typical landfill gas collection system layout on a landfill.
Figure A-16: Typical Landfill Gas Extraction Layout on a Landfill
Landfill gas extracted from the landfill waste mass is suctioned through piping to a station
located away from the landfill waste mass. At this point, the landfill gas may be simply flared
Page 23 of 51
without energy recovery (as is currently accomplished at the CIS El Guacal site). However, if
LFGE energy recovery is implemented, the gas continues to one of two types of devices that
utilize the gas as a fuel and then turn generators to produce electricity:

Internal combustion engine + generator; or

Turbine + generator.
While internal combustion engines have higher maintenance costs than turbines, by far the
most common system used worldwide is the internal combustion engine + generator. For
example, of the 368 United States landfill gas projects registered in the USEPA Landfill Methane
Outreach Program (LMOP), 279, or 76%, utilize internal combustion engines. Primary reasons for
this are:

Internal combustion engines are much less sensitive to fluctuations in gas flow, which
can drastically reduce the efficiency of turbines;

Lower capital cost per installed MW capacity than turbines; and

More "modular" or flexible, so that engines can be added or removed to the facility as
gas flow varies over the years.
Figure A-17 shows a typical landfill gas flaring station. It is recommended that the existing flare
at the CIS El Guacal be retained for use during maintenance downtime for the enginegenerator sets.
Figure A-17: Typical Landfill Gas Flare Station
Page 24 of 51
Figure A-18 shows a typical LFGE internal combustion engine-generator set and typical prefabricated enclosures for the generator sets.
Figure A-18: Typical Landfill Gas Engine-Generator Set and
Pre-Fabricated Enclosures
Figure A-19 shows a typical LFGE internal combustion engine-generator set installed inside a
building, without the use of pre-fabricated enclosures.
Page 25 of 51
Figure A-19: Typical Landfill Gas Engine-Generator Sets Installed inside a Building
As a result of the extensive commercial experience with at least 480 landfill gas to energy
projects operating commercially in North America and Europe, in numerous climactic zones and
with various compositions of waste, a landfill gas to energy project is deemed to represent a
"Low" technical risk for the CIS El Guacal.
Page 26 of 51
A6. Evaluation of Technical Configurations
Certain overall guiding principles were used to narrow the field of technologies to be evaluated
further. Therefore technology must:
•
Have a substantial commercial track record of processing mixed municipal solid waste
(MSW); and
•
Do not require an increase in the gate tip fee at El Guacal (currently approximately
$11.00 per ton).
These fundamental criteria are driven by the following Shareholders' expectations established in
Task 1:

Profitability: The energy recovery facility must be profitable, economically selfsustaining and readily financeable (IDEA and EVAS).

Energy Generation: The energy recovery facility must export energy in some form.
Ideally, the Project will generate power long term for sales into the national grid (IDEA).

Low Technical Risk / Commercially Proven: IDEA expects the energy recovery facility to
incorporate in its design only commercially proven technologies.

Tipping Fee Continuity: The new energy recovery project economics should not require
an increase in the current tipping fee of approximately US$ 11 per ton (EVAS).

Net environmental benefit: The plant should have a very light additional environmental
impact, combined with significant environmental benefits (IDEA).
Figure A-20 shows the technical risk comparison of the technical configuration options discussed
in Subsection A1 through A5 above. For each option, we have also shown sample plants from
each technology that we believe illustrate the developmental status of each option.
Page 27 of 51
Commercial Plants
Overall
Technology
and
Examples of
Specific
Plants
Pilot Plants
Closed
Plants
North
America
Europe
Total
N. America
+ Europe
N. America
+ Europe
Technical
Risk
LOW
Combustion
Mass Burn and RDF
Gasification and
Pyrolysis
OVERALL
91
431
522
0
2
In-Vessel Gasification
OVERALL
0
0
0
Unknown
Unknown
Closed:
Thermoselect/
Karlsruhe/Ger.
0
0
0
0
2
Closed:
Thermolyse/
Arras, France
0
0
0
0
0
0
0
Unknown
1
Unknown
0
0
0
0
0
OVERALL
0
0
0
0
0
0
1
Unknown
1
Unknown
AGILYX /
Oregon USA
0
0
0
1
0
OVERALL
1
27
28
Unknown
Unknown
0
380
1
100
1
480
Unknown
0
Unknown
0
Plasma Arc Gasification
Planned, not built:
Pilot Plant Only:
Plastic to Oil
Pilot Plant Only:
OVERALL
Geoplasma /
USA
Plasco /
Ottawa /
Canada
HIGH
HIGH
HIGH
Biological and Chemical
Anaerobic Digestion
Landfill Gas to Energy
Cröburn /
Leipzig /Ger.
OVERALL
Figure A-20: Technical Options: Commercial Record and Technical Risk
Page 28 of 51
MEDIUMHIGH
LOW
As defined at the beginning of this Section A:
"Technical Risk" is defined as the probability that a plant utilizing the subject technology will
operate with an availability well below 80% as a result of (a) equipment failures; or (b) inability
to produce power or by-products in quantity or quality required by markets. For example,
Anaerobic Digestion (AD) plants may operate at a reasonable reliability, but post-AD organics
residuals have often been found to contain significant heavy metals concentrations and have
therefore required landfilling or use as landfill cover material.
Based on the evaluation criteria and shareholders' expectations listed above in this Subsection
A6, and the technology descriptions in Subsection A2 through A5 above, we have excluded the
following candidate technological configurations:


A3. Gasification and Pyrolysis: No Commercial Track Record / "High" Level of Technical
Risk
o
In-Vessel Gasification
o
Plasma Arc Gasification
A4. Biological and Chemical
o
Anaerobic Digestion: Limited Commercial Record in Europe / Obstacles in
Finding Outlets for Compost Product / "Medium-High" Level of Technical Risk
o
Acid Hydrolysis: No Commercial Track Record / "High" Level of Technical Risk
We have retained for further consideration the following technical configurations:


A2. Combustion: Extensive Commercial Record / "Low" Level of Technical Risk
o
Mass Burn
o
Refuse-Derived Fuel
A5. Landfill Gas to Energy: Extensive Commercial Record / "Low" Level of Technical
Risk
We believe that some point in the future, a technology currently in developmental (noncommercial) status may mature to the point where it is commercially proven. However, we do
not recommend in this feasibility study that CIS El Guacal become the first or second
Page 29 of 51
commercial scale plant built with one of these developmental technologies, considering the
technical risk and uncertainty with regard to operational success that is involved.
Page 30 of 51
B. Economic Performance of Technical Configurations
Even though a number of the technical configuration options have been eliminated in Section A
above based on the level of technical risk, we have included all the options (except Chemical
treatment, which has virtually no economic or operational information available) in Figure B-1.
Figure B-1 also shows an estimated capital investment for each technical configuration, and an
estimated debt service per ton is also calculated.
Figure B-2 presents a calculation of the scale house "break even" tipping fee based on the
following standard formula, which is shown on a per ton of MSW intake basis:
Power Sales Revenue
-
Debt Service (Principal + Interest) Expense
-
Operations and Maintenance ("O&M") Expense
=
Tipping Fee Required
Figure B-2 also shows tipping fees estimated for specific plants that are examples of each
technology option.
Even though all technical options potentially could generate carbon credits for sale, we do not
include such revenues in determining each option's feasibility because of the uncertainty
surrounding the Kyoto protocol, which expires in 2012. The Kyoto protocol has served to date
as the primary driver of carbon credits markets. If the Kyoto protocol is not replaced after 2012,
this market for carbon credits will become voluntarily driven and demand for credits will likely
diminish significantly.
On this basis, the following minimum break-even tipping fees per ton would be required for
each technology option, given sizing of the plant for CIS El Guacal design basis (750 tons per day
MSW intake and 270 tons per day available as Back End energy recovery):

Combustion (Retained until now on a "Low" technical risk basis)
o Mass Burn: $43
o Refuse-Derived Fuel: $40

Gasification and Pyrolysis (Excluded previously on a "High" technical risk basis)
o In-Vessel Gasification: $232
o Plasma Arc Gasification: $232

Biological and Chemical
Page 31 of 51
o
o

Anaerobic Digestion (Retained until now on a "Medium-High" technical risk
basis): $47
Acid Hydrolysis (Excluded previously on a "High" technical risk basis /
economics not calculable as a result of lack of information)
Landfill Gas to Energy (Retained previously on a technical risk basis): negative tip fee
of $2.60; this positive value indicates that the LFGE project at CIS El Guacal is profitable
in itself and does not require any support from the existing CIS El Guacal tipping fee of
approximately $11 per ton.
As shown above and in Figure B-2, all technology options except Landfill Gas to Energy would
be excluded from further consideration on the basis of the scale house tipping fee required.
We refer here to key shareholders' expectations established in Task 1:

Profitability: The energy recovery facility must be profitable, economically selfsustaining and readily financeable (IDEA and EVAS).

Tipping Fee Continuity: The new energy recovery project economics should not require
an increase in the current tipping fee of approximately US$ 11 per ton (EVAS).
Therefore, the selected option is landfill gas to energy, based on extensive commercial
operating record and economic feasibility.
For the landfill gas to energy technical configuration, as the selected technical configuration,
greater budget detail is provided in Task 5, and financial modeling is provided in Task 8.
Page 32 of 51
Page 33 of 51
Page 34 of 51
C. Selection of Primary Energy Equipment
As discussed in Section A, internal combustion engines are by the most widely used energy
recovery systems for landfill gas to energy projects and are recommended for the CIS El Guacal
application.
Landfill gas to energy internal combustion engines are sold with an integrated generator, as well
as all required instrumentation and control, and are available in a number sizes, typically from
0.54 MW to 3.0 MW and higher. Such engines are sized according to the landfill gas flow
anticipated for the facility.
We believe that the 2010 USEPA-LMOP assessment report of landfill gas to energy potential at
the CIS El Guacal site is a well-founded basis for identifying the potential gas flows that could be
generated from the North Cell and the Central Cell. This 2010 study included field
measurements of gas quantity and quality from two existing gas extraction wells already
installed on the North Cell.
The model equation used in the USEPA-LMOP 2010 study, and in other models, to calculate
landfill gas generation is a linear function of waste tonnage in place in the landfill cell:

Landfill Gas Cubic Meters Produced per Year =

2 k * Lo* M * (e^(- kt))

Where:
o
o
o
o
Lo= methane generation potential (cubic meters/ton)
k = refuse decay rate (1 / the number of years required to biodegrade
completely)
M = mass of waste in place (tons) in any given year
t = age of waste in years in any given year.
However, we have noted that the projection of tonnage in place in each cell may be too high as
a result of estimating that annual tonnage would increase to over 900 tons per day between
2010 and 2011 in the USEPA-LMOP 2010 study, whereas we have determined, as established in
Task 1 and Task 3 from CIS El Guacal scale house tonnage records, that a large sudden increase
did not occur in that time period. Rather, tonnage has remained in the range of 650 tons per
day during the early months of 2011, as of the development of Task 3. Therefore, we have
adjusted the anticipated landfill gas flow projections linearly (since the model equation is a
linear function of the variable M if all other variables remaining unchanged). This adjustment
and projection of several variables are shown in Figure C-1. The adjusted projection represents
an average of 79% of the original tonnage in place (as well as landfill gas production) projection
in the 2010 USEPA-LMOP study.
Page 35 of 51
If, in fact, the intake tonnage does increase to the level projected in the 2010 USEPA-LMOP
study (as appears to be beginning to occur during June and July 2011), then this will represent a
major economic benefit to the project. In this way, the projections and models of this present
feasibility study may be considered as conservative ones.
As shown in Figure C-1, columns G, G1, and G2, two engines of 1.6 MW capacity each would be
sufficient from 2011 through 2020 (year highlighted) for an installed capacity of:

2 Engines x 1.6 MW per Engine = 3.2 MW.
The sizing of 1.6 MW per engine allows for reliability redundancy of two engines during the first
10 years of operations.
In 2020, a third engine would be added, for an installed capacity of:

3 Engines x 1.6 MW per Engine = 4.8 MW.
After 2020, three engines provide sufficient capacity to reach the 4.3 MW peak generation level
projected in Figure C-1 for the year 2029, without having oversized the equipment.
In the event that tonnage flows reach the levels projected in the USEPA-LMOP 2010 study (as
shown in columns D, D1, and D2 in Figure C-1) and continue as projected through 2020, a fourth
engine, for a total capacity as follows of can be added modularly quite readily:

4 engines x 1.6 MW per Engine = 6.4 MW.
We do wish to emphasize here that the successful capture of landfill gas at the projected
levels is entirely dependent on the completeness with which the following operational
practices are followed over the years:

Daily and intermediate cover application (to prevent methane emissions to the
atmosphere); the CIS El Guacal has initiated an aggressive soil daily and intermediate
cover program as of the time of this writing);

Active working face with exposed waste should be minimized (this will also greatly
reduce leachate generation);

Effective leachate removal system to prevent leachate buildup in the cell, which can
suppress gas production in the part of the waste mass that is water saturated.
Page 36 of 51
Page 37 of 51
D. Selected Technical Configuration
This Section D presents a preliminary conceptual design as described through the following
Subsections, which correspond to components of the Terms of Reference (TOR):

D1. Process Flow

D2. Time Schedule and Procurement Plans

D3. Environmental Benefits

D4. Energy Efficiency and Electrical Capacity

D5. General Plot Plan
Financial modeling of the landfill gas to energy option is presented in Task 8, and capital as well
as operations and maintenance budgets are provided in Task 5.
Page 38 of 51
D1. Process Flow
Figure D-1 illustrates the flow of the Landfill Gas to Energy (LFGE) process in sequence:
1. LFG collection within the landfill cell and piping to gas extraction and cleaning
equipment.
2. Gas extraction (by means of a blower) of gas and cleaning equipment (removal of
moisture and undesirable gas components). Gas is then conducted to enginegenerator.
3. Engine combusts cleaned gas and turns its integral generator. Power output flows to
step-up transformer (step up from 13.8 kV to 44 kV in the case of CIS El Guacal).
4. Transformer exports stepped up power to the local transmission line.
Figure D-1: Landfill Gas to Energy Process Flow
Page 39 of 51
D2. Time Schedule and Procurement Plans
Figure D-2 shows a preliminary schedule for implementation of the project, beginning with
completion of this present feasibility study. Sequential months are shown in the event that
implementation activities do not begin immediately after completion of this present feasibility
study. Implementation activities are classified into three categories:

Business Aspects: Negotiation of contractual arrangements between stakeholders,
including IDEA, EVAS, EMGEA, power traders (for spot market sales), and potentially
Green Gas. In parallel, financing arrangements are finalized with financing institutions;

Permitting and Licenses: Preparation of applications for any permits or licenses,
including modifications of existing permits or licenses. Applications are followed by
processing of the applications by environmental authorities.

EPM Scope: after the connection study is completed, negotiations for EPM's scope are
finalized, and EPM procures and installs the 44 kV line, the step-up transformer at CIS El
Guacal, and the step-up transformer at the existing San Antonio de Prado substation;

Turnkey EPC Contract: The request for proposals (RFP) is prepared based on the findings
of this feasibility study. After a competitive bid process, a turnkey EngineeringProcurement-Construction (EPC) contractor is selected and the EPC contract is finalized
before detailed design, construction of the concrete slab(s) is (are) completed, purchase
order and delivery of equipment (including the engine-generators), equipment is
installed, and the entire system of two engine-generator sets is tested and started up.
The EPC contractor must guarantee performance of the overall system.
Total duration of implementation activities is projected as approximately 12 months, based on
a high level of sponsorship by the stakeholders.
Installation of the landfill gas collection wells in the North Cell is filled is not shown, since this
activity is already underway by GreenGas under contract to EVAS, and the number of wells in
place by the time the power generation system starts up will be enough to initiate commercial
power export.
Page 40 of 51
Figure D-2: Preliminary Project Implementation Schedule
Sequential and Calendar Months
1
2
3
4
5
6
7
2011
NOV
DEC
8
9
10
11
12
13
JUL
AUG
SEP
OCT
NOV
2012
JAN
FEB
MAR
APR
MAY
Feasibility
Study
Completed
Business Aspects
Negotiate
Contracts
Negotiate
Financing
Permitting and Licenses
Complete
Applications
Regulatory
Review
EPM Scope of Work
Interconnection
Study
Negotiations
with EPM
EPM Installs 44
kV Line +
Transformers
Turnkey EPC Contract
Prepare
Request for
Proposals
Proponents
Prepare
Responses
Evaluate
Responses and
Award
Destailed
Design
Purchase Order
and Deliver
Equipment
Install Modules
and Auxiliary
Equipment
Testing and
Startup
Begin Power
Sales
Page 41 of 51
JUN
D3. Environmental Benefits
Landfill gas to energy is considered an important part of the effort to reduce greenhouse gas
emissions globally. It is estimated that 25% of all man-made methane emissions originate in
landfills without adequate landfill gas collection systems.
Landfill gas to energy projects reduce greenhouse gas emissions under two independent
mechanisms:

Landfill methane emissions avoided; and

Fossil fuels combustion avoided by the electric power generated.
Each carbon credit is the equivalent of one ton of CO2 emissions avoided. Each ton of methane
emissions avoided is has the global warming potential of 21 tons of CO2 emissions avoided.
Figure D-3 shows the potential carbon credits for the CIS El Guacal project. However, it should
be noted that the landfill gas methane emissions avoided during North Cell operations are
already being claimed by the existing gas flaring operation. In Figure D-3, "CO2e" means CO2
equivalent of the tons of methane emissions avoided.
Subsequently, when Central Cell enters operations, it may be possible for the landfill gas to
energy project to claim carbon credits from landfill methane emissions avoidance obtained
through installation of the gas collection system.
Page 42 of 51
1
2
3
4
5
Year: Calendar
Cell Status
North Cell Active
Year: Sequential
Figure D-3: Total Potential Carbon Credit Generation
Methane Emissions Reductions
Estimates
(tons CH4/yr)
(tons CO2e/yr)
2011
1,138
23,881
2012
3,004
2013
4,116
2014
2015
Avoided Fossil
Fuel
Total Carbon
Credits
(tons CO2e/yr)
(tons CO2e/yr)
7,372
31,253
63,082
9,337
72,419
86,436
12,286
98,722
4,679
98,245
13,760
112,005
4,952
103,991
14,252
118,243
2016
5,144
108,023
14,473
122,496
7
2017
5,276
110,795
14,473
125,268
8
2018
5,443
114,313
15,235
129,548
9
2019
5,634
118,319
15,726
134,045
10
2020
5,841
122,657
16,217
138,874
11
2021
6,059
127,224
16,709
143,933
12
2022
6,284
131,961
17,200
149,161
2023
6,516
136,833
17,692
154,525
2024
6,754
141,821
18,675
160,496
2025
6,996
146,911
18,675
165,586
2026
7,243
152,100
19,657
171,757
2027
7,494
157,382
20,149
177,531
18
2028
8,104
170,181
21,623
191,804
19
2029
7,832
164,474
21,132
185,606
20
2030
6,428
134,983
17,200
152,183
21
2031
5,377
112,917
14,252
127,169
22
2032
4,607
96,743
12,286
109,029
23
2033
4,036
84,761
10,182
94,943
24
2034
3,607
75,754
9,337
85,091
13
14
15
16
17
25
Central Cell Active
6
South Cell
Active
2035
5,523
115,991
15,329
127,775
Notes:
[a] USEPA LMOP Emissions Reductions and Environmental and Energy Benefits for Landfill Gas to Energy Projects;
Excel Model ifge_benefitscalc.
Page 43 of 51
D4. Energy Efficiency and Electrical Capacity
The proposed engine-generator sets utilize landfill gas as fuel and do not require any
supplemental fuel to function. The "fuel handling system" (as mentioned in the Terms of
Reference) for the selected technical configuration is the piping from the landfill cell to the gas
cleaning equipment and then continues on to the engine-generator modules.
Energy efficiency (the percentage of the total energy in the fuel that is actually converted to
electrical energy) for the landfill gas to energy process can be calculated directly from the
published "heat rate" for any given model of engine-generator set. The heat rate for landfill
gas engine-generator sets is usually expressed as the fuel heat energy needed to produce one
kilowatt-hour (kWh). The USEPA-LMOP 2010 study uses a heat rate of 10,800 BTU (British
Thermal Units) per kWh produced. One kWh represents 3,412 BTU. Therefore, we can express
the energy efficiency of a typical landfill gas to energy engine-generator set as:

Energy OUT / Energy IN = 3,412 BTU / 10,800 BTU = 31.6%
This is a normal level of efficiency for an internal combustion engine, and such efficiency values
will vary only slightly with the specific model of engine-generator set acquired. The
approximately 70% of the fuel energy lost is made up of heat emitted to the surrounding
environment and energy losses resulting from thermodynamic effects.
Electrical generation capacity of the plant is projected for 2011 through 2034 in Figure C-1
above and varies from 1.2 MW in projection year 2011 to 4.3 MW in 2028 back down to 1.9 MW
in 2034.
Page 44 of 51
D5. General Plot Plan
D5.1 General Plot Plan
As discussed above in Section C, it is recommended that the project be implemented as follows:

Initially, and for the first 9 years as projected, in Figure C-1 above, with two enginegenerator sets of 1.6 MW each. Each engine-generator set with its gas cleaning
equipment and generator are termed a "module." Hence, during the first 9 years, only
Module A and Module B are in operation.

In year 10 (calendar year 2020) as projected in Figure C-1, a third module of 1.6 MW
capacity, Module C, is installed. These three modules are projected to be sufficient to
landfill gas flow through year 24 (calendar year 2034), unless waste intake tonnage
increases to the level projected in the USEPA-LMOP 2010 study (reaching 900 TPD
during 2011).

In the event that tonnage levels increase to the levels projected in the USEPA-LMOP
2010 study, a fourth Module D of 1.6 MW capacity can be added.
Therefore, it is recommend that:

Acquisition of modules supplied complete with pre-fabricated enclosures for each set
based on the modular flexibility achieved. Constructing a conventional building for
housing the modules will be higher in capital cost and may require modifications in the
building as modules are added or removed over time.

Construction of a single concrete slab or three individual concrete slabs on which
Modules A, B, and C can be installed. During detailed design (during the project
implementation phase), the desirability of separate slabs for each module should be
considered, depending on the design of the engine-generators acquired.

Reservation of a footprint space (but no slab construction as yet) for a Module D if
needed in the future.
Figure D-5 provides a general plot plan for installation of the project equipment.
The concrete slab(s) for Modules A, B, and C should be, with final design to be finalized during
detailed design and dependent on dimensions and loading from the specific generator sets
acquired:

Approximately 7.5 meters x 20 meters = 150 square meters total footprint area for three
modules including end and side access ways.

The weight of the concrete slab(s) for the Landfill Gas Engine-Generator configuration
needs to be approximately three times the weight of the Engine-Generator sets to
absorb the dynamic loads. Typical slab thickness would be 16 to 32 centimeters (6
Page 45 of 51
inches -12 inches)) above grade and 45 to 60 cm (18 to 24 inches) below grade at 4000
psi (28 day) concrete strength.
The following auxiliary systems are delivered with the engine-generator sets and the prefabricated housings:

Instrumentation and Control

Fire Detection and Suppression.
Page 46 of 51
Figure D-5: General Plot Plan
10 m
5m
2.5 m
2.5 m
Generator
Generator
Engine
Engine
Gas Cleaning
Equipment
Gas Cleaning
Equipment
20m
Generator
Engine
Gas Cleaning
Equipment
Power Outlets to Substation Step-Up Transformers
Gas Inlet from LFG Flaring Station and Landfill
Module A
Module B
Module C
Page 47 of 51
Reserved Space for
Module D
D5.2 Recommended Location On-Site
Figure D-6 shows the location selected during discussions with EVAS representatives, including
the general location on the site and the location relative to the existing gas flare platform. The
location of the slab that will accommodate Modules A, B, and C is slanted at approximately 45
degrees to the long axis of the existing landfill gas flare platform. This slanting is required in
order to avoid footprint conflict with the cut hillside to the Northeast of the existing landfill gas
flare platform. The edge of the slab accommodating Modules A, B, and C is positioned at least 6
meters from the edge of the existing landfill gas flare platform for fire safety reasons. The 6
meter separation is shown as a double-headed arrow in Figure D-6.
Figure D-6: Recommended Location On-Site
D5.3 Interface Points for Connection to the Power Grid
The power outlets from the engine-generator sets should be connected to the new CIS El Guacal
substation (a fenced concrete slab accommodating the transformer to step up from 13.8 kV
coming from the engine-generators to 44 kV as the transmission line voltage), whose location
will be selected during he "interconnection study" detailed design during implementation phase
by consultants for use by EPM. However, the new substation should be located as closely as
possible to the engine-generator sets in order to minimize the need for cabling.
Page 48 of 51
E. Conclusions
We refer here to the following Shareholders' expectations established in Task 1:

Profitability: The energy recovery facility must be profitable, economically selfsustaining and readily financeable (IDEA and EVAS).

Energy Generation: The energy recovery facility must export energy in some form.
Ideally, the Project will generate power long term for sales into the national grid (IDEA).

Low Technical Risk / Commercially Proven: IDEA expects the energy recovery facility to
incorporate in its design only commercially proven technologies.

Tipping Fee Continuity: The new energy recovery project economics should not require
an increase in the current tipping fee of approximately US$ 11 per ton (EVAS).

Net environmental benefit: The plant should have a very light additional environmental
impact, combined with significant environmental benefits (IDEA).
These key shareholders' expectations have been used in identifying Landfill Gas to Energy as the
selected technical configuration. Key elements of this selection process are:

We believe that at some point in the future, a technology that is today in developmental
(non-commercial) status may mature to the point where they are commercially proven.
However, we do not recommend that CIS El Guacal be among the first commercial
scale plants built with one of these developmental technologies.

As a result of the extensive commercial experience with at least 480 landfill gas to
energy projects operating commercially in North America and Europe, in numerous
climactic zones and with various compositions of waste, landfill gas to energy projects,
especially landfill gas to electricity projects utilizing engine-generator sets, are deemed
to represent a "Low" technical risk for the CIS El Guacal.

If the Kyoto protocol is not replaced after 2012, the carbon credits market is expected to
be substantially diminished. The Kyoto protocol has created specific financial incentives
for industrial emitters of greenhouse gas emissions to purchase carbon credits to offset
their physical emissions. Therefore, carbon credit revenues are not relied upon in
evaluating the economics of each option.

Landfill Gas to Energy requires a capital investment of less than $15 Million over 10
years, compared to investments of over $100 Million for most other technical
configurations.
Page 49 of 51

The Landfill Gas to Energy project is profitable and makes a cash flow contribution to
the overall CIS El Guacal facility without requiring any subsidy from the existing tipping
fee of approximately $11 per ton.
Other conclusions reached during this Task 4 effort that should be considered are:

It is recommended that the existing flare at the CIS El Guacal be retained for use during
maintenance downtime for the engine-generator sets.

Two engines of 1.6 MW capacity each would be sufficient from 2011 through 2020 (first
10 years of operations) for an installed capacity during this period of:
o
2 Engines x 1.6 MW per Engine Each = 3.2 MW.

The sizing of 1.6 MW per engine allows for reliability redundancy of two engines during
the first 10 years of operations. Larger engines (for example with 1.8 MW capacity
each) would have a higher cost and the extra capacity would not be utilized during most
of the first 10 years of operations.

In 2020, a third engine would be added, for an installed capacity of:
o
3 Engines x 1.6 MW per Engine Each = 4.8 MW.

After 2020, three engines provide sufficient capacity to reach the 4.3 MW peak
generation level projected in Figure C-1 for the year 2029, without having oversized the
equipment.

In the event that tonnage flows reach the levels projected in the USEPA-LMOP 2010
study (as shown in columns D, D1, and D2 in Figure C-1), a fourth engine, for a total
capacity as follows of can be modularly added at a later point quite readily:
o

4 engines x 1.6 MW per Engine Each = 6.4 MW.
We do wish to emphasize here that the successful capture of landfill gas (and the
associated power generation) at the projected levels is entirely dependent on the
completeness with which the following operational practices are followed over the
years:
o
Daily and intermediate soil cover application (to prevent methane loss to the
atmosphere); the CIS El Guacal had initiated an aggressive daily and
intermediate soil cover program as of the time of this writing);
o
Active working face with exposed waste should be minimized (this will also
greatly reduce leachate generation);
Page 50 of 51
o

Effective leachate removal system to prevent leachate buildup in the cell, which
can suppress gas production in the part of the waste mass that is water
saturated; and
Total duration of project implementation activities is projected as approximately 12
months, based on a high level of sponsorship by the stakeholders.
Page 51 of 51
Waste to Energy Facility at El Guacal Landfill
Feasibility Study
Task 5 Report: Preliminary Cost Estimates
Presented to Study Grantee IDEA:
and to funding agency:
United States Trade and Development Agency (USTDA)
by:
CAMBRIDGE
Project Development Inc.
20 September 2011
Page 1 of 9
The contents of this Task 5 Report are listed below:
Task 5 Report Contents
A
B
C
Capital Cost Estimates
Operating Cost Estimates
Summary
Page 2 of 9
A. Capital Cost Estimates
The total capital cost estimate for the landfill gas facility at El Guacal landfill is approximately USD $13.9
Million USD or $25 Billion Colombian Pesos, at an exchange rate of COP$ 1800 per U.S. Dollar. The
Terms of Reference (TOR) for this feasibility study requires that this Task 5 express preliminary cost
estimates in dollars as well as in Colombian pesos. Figure A-1 calculates capital cost ("capex") estimates
for the project and is divided into the North Cell and Central Cell portions of the landfill gas to energy
project. The major line items in Figure A-1 are:

Landfill Gas (LFG) Collection System

LFG Power Generation System

Civil Works

Soft Costs (Design, Permitting, Legal, Financing Costs)

Contingency
A1. Landfill Gas Collection System
The LFG Collection System is the network of wells and piping that are installed in the landfill throughout
the operating life of the landfill. This system remains in place permanently and operates for a prolonged
period of years after the landfill is deactivated. The collection system normally includes a blower that is
used to withdraw the landfill gas from the landfill and feed it into the gas cleaning equipment upstream
of the engine-generator. Figure A-1 uses a standard industry cost per acre or hectare calculation to
determine the cost of installing the gas collection system throughout the life of the landfill cells. The
industry cost factor used to calculate the capital cost of a LFG collection system is compatible with the
factor published by the United States Environmental Protection Agency (USEPA) Landfill Methane
Outreach Program (LMOP). The cost per acre or hectare amount includes:

Installation Expense

Equipment and Materials Expense
At CIS El Guacal in the North Cell, a system of gas collection is currently being installed. EVAS confirms
that approximately 30% of the collection system in the North Cell is already installed. Therefore, Figure
A-1 reflects a deduction toward the future capital investment of the system under the new project. The
Central Cell has not been constructed and is not in operation, so that the cost estimate for the collection
system is for the entire collection system in the Central Cell.
Page 3 of 9
A2. LFG Power Generation System
The LFG Power Generation System in Figure A-1 is the largest capital expense, because it consists of
plant equipment (engine, generator, gas cleaning equipment, control equipment, etc.). The industry
cost factor of USD $1,700 USD per kW installed capacity is used to estimate the total capital cost for the
power generation system.
A3. Civil Works
Civil works is made up primarily construction costs associated with the concrete slabs and site
preparation for the LFG facility and transmission equipment, especially a resistant concrete slab. A cost
factor of USD$ 1000 per square meter is used, based on our recent experience.
A4. Soft Costs
The soft costs for the project include:

Legal Fees

Permitting Costs

Financing Fees

Consulting Fees
The estimate of indirect costs (soft costs) as a percent of direct costs as shown in Figure A1 is based on
our experience with a number of projects of similar magnitude. In general, we find that soft costs
represent on the order of 10% 5o 15% of the direct (or "hard") costs.
A5. TOR Itemization of the Capital Cost Estimate
The Terms of Reference (TOR) require that the capital cost estimate be itemized into a list of line items
specified in the TOR. This break down is presented in Figure A-2.
Page 4 of 9
Figure A-1: Calculation bases for Capital Investment (Capex)
North Cell
Acres
Hectares
12.4
5.0
LFG Collection System
Acres
Hectares
12.4
5.0
Engines
MW [a]
LFG Power Generation
2.0
3.2
System
Square Meters
Capex/m2
Civl Works
75.0
$
1,000.00
Less LFG Collection System Already Installed in North Cell
$
Capex/Acre
30,000
Wells/Acre
1.0
kW [a]
3200.0
Capex/Hectare
$
74,131
Wells/Hectare
2.5
Capex/kW [c]
$
1,700
$
Total Capex Pesos
667,183,446
Total Capex
5,440,000
$
Total Capex
9,792,000,000
Total Wells
12.4
$
30.0%
Hard Costs Sub-Total
15.0%
North Cell Total
Project Soft Costs [b]
Total Capex USD
$
370,657
$
$
$
$
$
75,000
(111,197)
5,774,460
866,169
6,640,629
$
$
$
$
$
135,000,000
(200,155,034)
10,394,028,412
1,559,104,262
11,953,132,674
Central Cell
LFG Collection System
LFG Power Generation
System
Acres
54.4
Acres
54.4
Engines [c]
1.0
Hectares
22.0
22
22.0
MW [a]
1.6
Engines
3.0
MW
4.8
Months
Avg. Power Sales /
Month [d]
Project Soft Costs [b]
Project Total Capital
Working Capital
6.0
$
174,000
Project Grand Total
[a] Installed generating capacity .
[b] Design, financing, legal, permitting, shipping and related costs.
[c] Additional engines for Central Cell.
[d] Average over 24 years of operations.
$
Cost/Acre
30,000
Wells/Acre
1.0
kW [a]
1600.0
Cost/Hectare
$
74,131
Wells/Hectare Total Wells
2.5
54.4
Capex/kW [c]
$
1,700
Hard Costs Sub-Total
15.0%
South Cell Total
Contingency on Capital
Total Capex USD
$
1,630,893
$
Total Capex
2,935,607,160
$
$
$
$
Total Capex
2,720,000 $
4,350,893 $
652,634 $
5,003,527 $
Total Capex
4,896,000,000
7,831,607,160
1,174,741,074
9,006,348,234
10% $
$
1,164,416 $
12,808,572 $
2,095,948,091
23,055,428,999
$
1,043,999 $
1,879,198,345
$
13,852,571 $
24,934,627,344
Figure A-2: Total Basic Capital Cost Estimate
$
CAPEX Breakdown:
USD
13,852,571
$
%
692,629
5.0%
5,541,028
40.0%
[b]
0.0%
415,577
3.0%
4,155,771
30.0%
[b]
0.0%
[a]
0.0%
[b]
0.0%
[b]
0.0%
138,526
1.0%
[a]
0.0%
[a]
0.0%
[d]
0.0%
415,577
3.0%
207,789
1.5%
[c]
0.0%
[a]
0.0%
138,526
1.0%
[e]
0.0%
[e]
0.0%
69,263
0.5%
[b]
0.0%
138,526
1.0%
277,051
2.0%
138,526
1.0%
69,263
0.5%
69,263
0.5%
1,385,257
10.0%
13,852,571
100.0%
> Architectural and engineering design
$
> Primary energy equipment (boilers, turbines, and gas piston engines with generator sets)
$
> Auxiliary energy equipment
> Transformers, switchgear and other electro-technical equipment
$
> Fuel-handling system and ash disposal system (Gas collection System)
$
> Automated control and communications system
> Water-treatment, water-supply and sewage systems
> Fire-protection system
> Buildings and structures
> Plot preparation
$
> Connection to the local district heating (DH) network and pipeline
> Upgrading the local DH network
> Connection to the national eletricity grid (SIN)
> Permitting and licensing fees
$
> Financing costs
$
> Certified Emissions Reductions (CERS) under the Clean Development mechanism (CDM) Registration
> Real estate, concession and easement costs
$
> Legal Fees
> Taxes
> Cost for Colombian National Government special tax zone certification
$
> Inspection and special consultants
> Commissioning, startup, and spare parts
$
> Environmental protection measures
$
> Freight
$
> Construction
$
> Verification Costs
$
> Personnel training
$
> Contingency
$
TOTAL CAPITAL EXPENSE
[a] Not applicable to selected technology configuration
[b] Price included in primary energy equipment
[c] Kyoto Protocol Expires in 2012 and may not be replaced
[d] Amortized over time by EPM
[e] The project is exempt from numerous taxes and duties. Any applicable taxes or duties would be paid from the contingency amount.
[f] Colombian Pesos per USD = $1800
Pesos [h]
$ 24,934,627,344
$
$ 1,246,731,367
$ 9,973,850,938
$
$
748,038,820
$ 7,480,388,203
$
$
$
$
$
249,346,273
$
$
$
$
748,038,820
$
374,019,410
$
$
$
249,346,273
$
$
$
124,673,137
$
$
249,346,273
$
498,692,547
$
249,346,273
$
124,673,137
$
124,673,137
$ 2,493,462,734
$ 24,934,627,344
B. Operating Cost Estimates
The operating costs for a LFG generation facility are well documented in industry literature, and are
calculated for the case of the CIS El Guacal facility below in Figure B-1. The USEPA Landfill Methane
Outreach Program (LMOP) includes industry standards for operations and maintenance (O&M) costs for
an LFG to electricity facility, on which we based the following factors:

LFG Collection System O&M: Total number of gas wells per cell x USD $2,318 per well per year;
and

LFG Power Generation System O&M: Power generation kW capacity x USD $180 per kW per
year.
Page 7 of 9
Figure B-1: Bases for Calculation of Operations and Maintenance Cost (O&M)
North Cell
LFG Collection System
LFG Power Generation
System
Total Wells
12.4
Engines
2.0
O&M/Well/Yr
$
2,318
MW [a]
3.2
Total Wells
54.4
Engines [b]
1.0
O&M/Well/Yr
$
2,318
MW [a]
1.6
Wells O&M/Yr
$
28,633
kW [a]
3200.0
Blower O&M
Flare O&M
LFG Collection System
LFG Power Generation
System
Project Total (North Cell + Central Cell)
[a] Installed generating capacity .
[b] Additional engines for Central Cell.
[c] USEPA LMOP LFG Project Development Handbook; Chapter 3.
$
125,986
kW [a]
1600.0
Pesos
Total O&M / Yr
$
45,835 $
4,635 $
79,103 $
Total O&M / Yr
O&M/kW [c]
$
180
$
576,000 $
655,103 $
North Cell Total $
Central Cell
Wells O&M/Yr
USD
Total O&M / Yr
Blower O&M
Flare O&M
Total O&M / Yr
1,036,800,000
1,179,185,921
USD
Pesos
Total O&M / Yr
Total O&M / Yr
$
45,835 $
4,635 $
176,456 $
Total O&M / Yr
O&M/kW [c]
$
180
$
288,000 $
464,456 $
Central Cell Total $
$
142,385,921
1,119,560 $
317,621,653
Total O&M / Yr
518,400,000
836,021,653
2,015,207,574
C. Summary
The capital cost estimate for the LFGE Facility is:

Total
$13.8 Million
This amount is planned to be invested in two segments, or "tranches":

Tranche 1 (in Year 1):
$ 9.4 Million

Tranche 2 (in Year 10):
$ 4.4 Million.
Tranche 1 includes 2 generation modules and 70% of the collection system for North Cell.
Tranche 2 includes 1 additional generation module and 100% of the collection system for Central Cell.
A detailed use of capital over time is provided in the financial modeling in Task 8.
The estimate of operations and maintenance (O&M) costs for the LFG Facility are:

Total Annual Maximum:
$1.1 Million
This annual amount is budgeted over time as a function of kWh produced as follows:

From Year 1 to Year 9:
from $300 Thousand increasing to $800 Thousand

From Year 10 to Year 18:
from $900 Thousand to $1.1 Million.

From Year 18 to Year 20:
from $1.0 Million to $950 Thousand.
The period during which the capital investment takes place is from year 1 to year 20, when the Central
Cell gas collection system is completed. However, the gas collection systems in the North Cell and the
Central Cell will require operations and maintenance for a period after installation of their gas systems is
completed. The projection of operational costs over the years is detailed in Task 8.
Page 9 of 9
Waste to Energy Facility at El Guacal Landfill
Feasibility Study
Task 6 Report:
Preliminary Environmental Analysis
Presented to Study Grantee IDEA:
and to funding agency:
United States Trade and Development Agency (USTDA)
by:
CAMBRIDGE
Project Development Inc.
in association with:
Quality & Evolution S.A.
October 20, 2011
Page 1 of 15
The contents of this Task 6 Report are listed below:
Task 6 Report Contents
Section
A
B
C
D
Title
Environmental Impacts
Applicable Regulations
Carbon Credits
Conclusions
Page 2 of 15
A. Environmental Impacts
The technical configuration selected in Task 4 for the energy recovery project consists of the
generation of electric power through utilization of thermal energy from combustion of biogas
captured in the site landfill. This gas is the product of biological decomposition of organic
materials in the waste deposited in the landfill. The existing gas flare will be retained as a
backup mechanism during repairs or shutdowns of the landfill gas to energy (LFGE) system.
The project equipment will be housed in up to four equal sized modules of 1.6 MW generating
capacity each. Modules will be brought online gradually, as landfill gas flow increases over time,
and greater generating capacity is required.
Below are described the types of impacts that the project could potentially originate.
A1. Net Water Use and Water Balance
The landfill gas cleaning equipment includes controls for metering the flow of landfill gas
entering the treatment system. Landfill gas is composed of methane (CH4), carbon dioxide
(CO2), and traces of other gases such as water vapor, hydrogen sulfide (H2S), nitrogen, hydrogen,
and oxygen. In addition, siloxanes, chemical commonly used in household detergents and
shampoos, are normally present.
Gas cleaning consists of various methods for removing these non-methane compounds. None
of the gas cleaning methods calls for a net consumption of water. Gas cleaning equipment
generally requires only power consumption as an input. Removed components often form a gel
type non-hazardous residue in small quantities, which can be disposed in the landfill. Gas
cleaning equipment does not generate any liquid discharges that must be managed separately.
A2. Atmospheric Emissions
The project's atmospheric emissions would not increase the greenhouse gas (GHG) emissions
generated currently by the gas flaring operation. On the contrary, with gas cleaning equipment
installed, a reduction in emissions is foreseen. Sulfur (as present in hydrogen sulfide) should be
reduced through gas cleaning, and optimization of gas combustion (higher destruction efficiency
of methane) through greater removal of carbon dioxide and water vapor) will reduce methane
emissions below present levels.
Page 3 of 15
A3. Noise
The noise from the power generating modules originates primarily with the engine, the exhaust
flow, and to a lesser extent, from the gas blower that feeds the power generating equipment.
Higher gas flow, power generation, and greater load on the engines generally increase noise
levels.
From our research and experience, the noise level from internal combustion engines of this type
varies between 95 and 115 dB (decibels), and it has been observed that noise levels from gasfired internal combustion engines are lower than for internal combustion engines utilizing liquid
diesel fuels. The noise levels from engines are generally similar among engine manufacturers,
since allowable noise level standards must be met by all manufacturers.
The noise level should increase, as would be expected, as the number of modules is increased.
However, the increase is not linear with the number of engines (not additive of each engine's
noise level), as shown in Figure A-1.
Figure A-1: Increase in Noise Level as a Function of Number of Modules
Number of Modules
Increase in Noise Level
1
Base Noise Level for One Module
2
+ 3 dB
4
+ 6 dB
10
+ 10 dB
Source: http://www.generatornoise.com
Human Perception of
Increase
Barely Noticeable
Clearly Noticeable
Double the Noise Level
Based on the foregoing, the noise levels within the prefabricated structures are anticipated to
be between 90 and 109 dB with one module in operation, and in the range between 96 and 115
dB with four modules in operation. These values should be validated during detailed design and
final equipment selection.
The national standard for noise emissions and environmental noise is Resolution 0627 of 2006
from the Ministry of Environment, Housing, and Territorial Development. In Article 9 are
defined the maximum permissible noise emissions, expressed in perceived decibels (dB(A)), as
presented in Figure A-2 below.
Page 4 of 15
Figure A-2: Maximum Permissible Levels of Noise Emission Standards Expressed in Decibels
Db(A)
Sector
Sector A. Tranquility and
Silence
Maximum Permissible Levels of Noise Emission Standards
(dB(A))
Subsector
Day
Night
55
50
65
55
Permitted industrial areas: industry in general,
port areas, industrial parks, free zones.
75
75
Permitted commercial areas: shopping
centers, shops, stores or commercial facilities,
mechanic workshops, sports and recreation
centers, gyms, restaurants, bars, taverns,
night clubs, bingo, casinos.
70
60
65
55
80
75
55
50
Hospitals, libraries, day-care centers,
sanatoriums, geriatric centers.
Residential areas or areas exclusively
designed for housing development, hotels and
lodging.
Sector B. Tranquility and
Moderate Noise
Universities, colleges, schools, study and
research centers.
Parks in urban areas different than outdoor
mechanical parks.
Sector C. Restricted
Intermediate Noise
Permitted office use areas.
Permitted institutional use areas.
Areas for other related use: outdoor
mechanical parks, areas for outdoor public
entertainment.
Suburban residential area.
Sector D. Suburban or
Rural inhabited area intended for farming.
Rural Area. Tranquility and
Recreation and rest areas: natural parks and
Moderate Noise
reserves.
Page 5 of 15
Nevertheless, the CIS El Guacal is located in a rural or suburban zone, so that the applicable
norms would be those applicable to this type of zone. In this case, the noise emissions at the
boundaries of the site should not exceed 55 dB(A) during daylight hours, and should not exceed
50 dB(A) during nighttime hours.
Given that the above noise levels are those inside the prefabricated module structures, the
noise levels outside the prefabricated structures, will not exceed the allowable noise levels for
either workers or neighbors of the site. Workers temporarily entering the prefabricated
structures while the generating equipment is operating should wear ear protection.
Landfill gas powered internal combustion engines are used in hundreds of landfill projects
worldwide, without impact on workers or neighbors.
A4. Solid Waste
Residues from the gas cleaning equipment will be disposed in the main landfill, since neither the
filters or activated carbon (which could be used for removal of sulfur compounds, carbon
dioxide, water, or siloxanes) constitute a hazardous waste or special handling waste. These
chemical components do not fit within the definition of such wastes, as defined in Lay 1252 of
2008 of the Congress of the Republic of Colombia, Decree 4741 of 2005 from the Ministry of
Environment, Housing, and Territorial Development, and Resolution 2309 of 1986 from the
Ministry of Social Protection of Colombia.
Page 6 of 15
B. Applicable Regulation
According to Decree 2820 of 2010 from the Ministry of Environment, Housing, and Territorial
Development, through which environmental licenses are regulated in Colombia, only those
projects require an environmental license through the Ministry of the Environment, Housing,
and Territorial Development that could be classified in any of the following categories:
(a) Construction and operation of generating power plants with installed capacity above
100 MW;
(b) Projects over 3 MW installed capacity that explore or utilize sources of alternative
energy that are virtually contaminating;
(c) Projects that require installation of transmission lines in the national interconnected
system with substation voltages equal to or greater than 220 kV.
Considering that the project does not fall within any of the categories stipulated under Decree
2820 of 2010 from the Ministry of Environment, Housing, and Territorial Development, it is
concluded that the project does require an environmental license. This means that the
permitting of the project may be processed through Corantioquia, and not through the
Ministry of Environment, Housing, and Territorial Development.
In the remainder of this section, we analyze the permits for utilization of natural resources that
should be process through Corantioquia, and the relation with the existing environmental
license that authorizes operation of the landfill and other activities being accomplished within
the site.
B1. Environmental License for the Centro Industrial Sur (CIS) El Guacal
Through Resolution 7529 of 12 January 2005, Corantioquia issued to EVAS an environmental
license for construction and operation of the CIS El Guacal, which must comply with all
provisions of the environmental management plan, to mitigate, prevent, correct, and
compensate environmental effects of the existing project.
Considering that the landfill gas energy recovery project does not require modification of the
landfill conditions recognized within the current environmental license, it is concluded that
the new project does not require a modification of the environmental license.
Decree 2820 of 2010 from the Ministry of Environment, Housing, and Territorial Development
mentions reasons for which environmental licenses must be modified:
Page 7 of 15
1. When the holder of the environmental license proposes to modify the project, works, or
activity in a manner in which environmental impacts additional to those identified in the
existing license will be generated.
2. When the issuance of the existing license did not contemplate the use, utilization, or
impact on renewable natural resources necessary or sufficient for the proper
development and operation of the project.
3. When it is proposed to change the conditions of use, utilization, or impact on a
renewable natural resource in a manner that generates a greater impact on these
resources than that impact that is recognized in the existing license.
4. When the owner of the project, works, or activity proposes to increase or reduce the
licensed land area or to expand the licensed area into adjacent zones.
5. When the proposed project, works, or activity changes the applicable environmental
authority as a result of a change in operational volume, depth, production, voltage level,
or other characteristics of the project.
6. When, as a result of monitoring, the authority identifies environmental impacts
additional to those identified in the environmental studies used to issue the existing
license.
7. When the subject land areas covered by the existing license are not applicable and these
subject areas are returned to the environmental authority by the license holder.
8.
When it is proposed that the existing license be merged with another environmental
license.
Considering these regulatory provisions and that the activity, rather than generate greater
environmental impacts, will improve landfill operational conditions and diminish
environmental impacts, it is considered that the existing license will not require modification.
As a result, it is recommended that:

Advise Corantioquia regarding the implementation of the landfill gas energy recovery
project, ensuring, beforehand, that EVAS has been able to reach compliance with the
obligations imposed by Corantioquia recent administrative actions; according to
Corantioquia personnel, no new activities will be authorized until each and every activity
in the environmental management plan has been implemented. It is important to note
that Corantioquia, through Resolution 5742 of 04 November 2010, imposed preventive
measures on EVAS, based on non-compliance with measures and obligations stipulated
in the existing environmental license.
Page 8 of 15

Present the project as an improvement and optimization of the existing landfill, in order
to avoid potential incompatibilities with the land use defined in the Territorial Land Use
Plan of the municipality of Heliconia (Esquema de Ordenamiento Territorial del
municipio de Heliconia). This plan establishes that the Monteadentro sector (including
the Chorrera trail) is ratified as a site or place in which solid waste handling and disposal
may be accomplished as part of the CIS El Guacal project. As a result, if the new project
is presented as an independent energy recovery project, there could arise an
incompatibility with the land use already defined by the municipality.
B2. Atmospheric Emissions Permitting
Currently the landfill has a generic atmospheric emissions permit, which addresses the various
activities conducted there. Decree 948 of 1995 from the Presidency of the Republic of
Colombia, which regulates the issuance of emissions permits, establishes in its Article 73 those
cases in which an atmospheric emissions permit is required, among them item k) "Operation of
Thermoelectric Plants". However, there are exceptions, as defined in the fourth and fifth
paragraphs:

Fourth Paragraph: Expansions or modifications of facilities that have an atmospheric
emissions permit; when the proposed technical specifications or technical
characteristics, architectural characteristics, or urban characteristics introduce
substantial changes to the emissions conditions or the dispersion of emitted
contaminating substances, or when the proposed changes have the effect of adding
new contaminants to existing emissions, or increase the amount of these, will require a
modification of the existing permit.

Fifth Paragraph: (Paragraph added by Article 3 of Decree 1697 of 1997; text follows):
Boilers or furnaces that utilize natural gas or liquified petroleum gas, in an industrial or
commercial establishment, for the operation of thermal power plants with boilers,
turbines or motors, do not require an atmospheric emissions permit.
As a result of the above, there would be two possibilities under which it would not be necessary
to obtain an emissions permit:

That the energy recovery project does not invoke changes that are significant or
substantial to the emissions or dispersion conditions for contaminants currently emitted
by the existing landfill gas capture and flaring system; or

That the landfill gas produced by the landfill is considered similar to natural gas, and as a
result, its utilization would coincide with the definition in the fifth transcribed
paragraph, thereby being exempted from the need to obtain an emissions permit.
Page 9 of 15
Nevertheless, it is important the EVAS present the project to Corantioquia and make a detailed
description of the project and the technology that will be used, with the intent of avoiding the
stipulation by the environmental agency that no environmental permit be needed additional to
the existing ones.
Page 10 of 15
C. Carbon Credits
In this section, we present an estimate of the reduction in Green House Gas emissions and the
generation of carbon credits resulting from the landfill gas energy recovery project at CIS El
Guacal. It is important to note that a clean development mechanism (CDM) registered and
operating at the landfill, which is the flaring of the landfill gas. This existing project is claiming
carbon credits for avoidance of methane emissions, which, without the flaring project, would be
emitted to the atmosphere. As a result, the new energy recovery project cannot claim these
methane emission credits, but the new project can claim those credits arising from the power
generation fossil fuel emissions avoided, which are proportionate to the power exported to the
national grid.
C1. Calculation of Carbon Credits
In order to estimate the value of the carbon credits generated, the plant generation in MWh for
a period of 20 years (2012-2031) is projected in Figure C-1.
The implemented emission factor for the entire Sistema Interconectado Nacional (SIN) or
National Interconnected System, as generated by the Energy and Mining Planning Unit for
greenhouse gas emissions from power generation (please see Resolution 180947 of 2010 from
the Ministry of Mines and Energy) is 0.2849 tons CO2e/MWh. It is assumed that this factor
remains stable over the analysis period (2011-2035). The notation "CO2e" represents the
equivalent (hence the use of the letter "e" in the notation) tons of carbon dioxide avoided.
Page 11 of 15
Figure C-1: Fossil Fuel Avoidance Carbon Credits
Plant Generation
Capacity
Annual Energy
Production
Avoided
Emissions
(MW)
(MWh/año)
Año
A
B=A*8760
hours/year
(ton CO2e/yr)
C=B*0.2849
tons
CO2e/MWh
2011
1.5
Base
Base
2012
1.88
16,469
4,692
2013
2.51
21,988
6,264
2014
2.78
24,353
6,938
2015
2.88
25,229
7,188
2016
2.99
26,192
7,462
2017
3.03
26,543
7,562
2018
3.07
26,893
7,662
2019
3.2
28,032
7,986
2020
3.33
29,171
8,311
2021
3.38
29,609
8,436
2022
3.51
30,748
8,760
2023
3.64
31,886
9,084
2024
3.78
33,113
9,434
2025
3.84
33,638
9,583
2026
3.97
34,777
9,908
2027
4.11
36,004
10,258
2028
4.44
38,894
11,081
2029
4.26
37,318
10,632
2030
3.51
30,748
8,760
2031
2.94
25,754
7,337
167,339
Page 12 of 15
The results presented in Figure C-1 show that the carbon credits generated at the end of 20
years would total 167 thousand tons of CO2e. This represents an annual average of 8,350
carbon credits annually. The price of carbon credits is variable and is determined by supply
and demand. It is important to note that in December 2012 the first period of the Kyoto
Protocol will expire. As a result, at the time of preparation of this study, the carbon credit
market conditions that will prevail after 2012 are unknown.
C2. Potential for Generating Carbon Credits under the Kyoto Protocol Clean
Development Mechanism
To determine if the energy recovery project can generate carbon credits under the Clean
Development Mechanism (CDM) of the Kyoto Protocol, it is necessary to consider that a
registered and validated CDM project for EVAS contractor GreenGas already exists for the flaring
of landfill gas. In this sense, the energy recovery project would modify the existing registered
project, and, as such, it is necessary to determine if it is possible to modify the existing gas
flaring project in order to install the energy recovery modules.
According to the methodologies and procedures established for CDM projects by the UNFCC
(United Nations Framework Convention on Climate Change), it is not possible to have two
independent CDM projects in this case, since the GreenGas flaring operation would be replaced
by the internal combustion engines. By definition, the limits of the project are established
considering the equipment and activities under the control of the participants. In this case,
GreenGas would lose "control" of the equipment in which the destruction of the methane from
landfill gas takes place. In conclusion, the only alternative would be to "modify" the existing
project registered previously by GreenGas by adding to the project the energy recovery
equipment and activities.
The CDM rules contemplate a procedure for evaluating the changes that the verifying entity
observes in the process of verification, with respect to the Project Design Document (PDD)
previously registered. The procedure for notification and approval of the changes to the
activities of the project are established in Annex 66 of session 48 of the CDM Executive Council.
This procedure establishes that the appropriate agency for notification of changes to the
Executive Council is the Designated Operating Entity (DOE) contracted by the existing project
participants (GreenGas and EVAS) for the CDM verification of the project. Said DOE, before
sending the report on the issuance of credits, should evaluate in the first place if the change (in
this case the replacement of the gas flare with energy recovery equipment) impacts any of the
following aspects:

To what extent the new equipment is additional to the existing equipment
("Additionality")

Scale of the Project
Page 13 of 15

Applicability of the methodology of the baseline and monitoring of the project under
which the project was registered.
Accordingly, there are two alternatives:

Alternative 1: If, in the judgment of the DOE, the change does not impact any of the
above listed aspects, the DOE will notify the Executive Council. Within 10 business day
after receipt of such notice, the Secretariat prepares an evaluation of the notification,
informing the Chairperson of the Executive Council whether the changes are acceptable
and whether the issuance of credits is authorized. In this case, the PDD should be
modified to include the changes and published to serve as a basis for subsequent
verifications.
In the event that the Secretariat does not consider the changes
acceptable, the case will be considered by the Executive Council during its next session.

Alternative 2: If, in the judgment of the DOE, the change impacts any of the above listed
aspects, the DOE sends a request for approval of changes to the Executive Council. Said
request is evaluated by a member of the Registration and Issuance Team, who evaluates
the request and sends a report to the Executive Council. The Executive Council will
decide whether to approve the request for issuance of credits, limit the amount of
credits to issue, or not approve the issuance of credits for the project.
The modifications that the energy recovery project would bring about to the project previously
registered by GreenGas could affect the additionality of the project, and as a result Alternative 2
as described above would follow, since the power generation equipment would replace the gas
flare as the primary means of methane destruction.
For this reason, it is necessary to take into account the participation and approval of GreenGas
for the modification of the existing CMD project.
Page 14 of 15
D. Conclusions

The landfill gas energy recovery project at the CIS El Guacal does not have major
environmental impacts that negatively affect the community, the workforce, or the
environment in general.

Because of the characteristics of the energy recovery project, it should not be necessary
to obtain an Environmental License from the Ministry of Environment, Housing, and
Territorial Development, nor a modification of the existing Environmental License
through Corantioquia. Nevertheless, it is important that EVAS present the project to
Corantioquia and submit a detailed description of the project, with the intent that
Corantioquia arrives at a clear understanding of the project and does not determine that
additional environmental permitting is required for the project.

It is necessary for EVAS to enter into compliance with conditions recently stipulated by
Corantioquia and notified by means of Resolution 5742 issued by Corantioquia on
November 4, 2010, in order to correct certain unfavorable conditions identified in the
landfill.

It is suggested that the energy recovery project be presented as an improvement
activity and an optimization of the existing landfill, in order to avoid potential
incompatibilities with the municipality of Heliconia Land Use Plan.

The energy recovery project constitutes a modification of the CDM gas flaring project
already registered jointly by GreenGas and through a Designated Operating Entity
(DOE); therefore, it is necessary to follow the procedures for such a modification, if the
energy recovery project is to claim carbon credits for fossil fuel avoidance.
Page 15 of 15
Waste to Energy Facility at El Guacal Landfill
Feasibility Study
Task 7 Report: U.S. Sources of Supply
Presented to Study Grantee IDEA:
and to funding agency:
United States Trade and Development Agency (USTDA)
by:
CAMBRIDGE
Project Development Inc.
October 12, 2011
Page 1 of 10
The contents of this Task 7 Report are listed below:
Task 7 Report Contents
Section Title
A
U.S. Sources of Supply
B
Conclusions
Page 2 of 10
A. U.S. Sources of Supply
A1. Supply Scope
The selected technical configuration is to divert landfill gas from the existing flare to utilize this gas as a
fuel in internal combustion engines with integral generators in modules of 1.6 MW each. The existing
landfill gas flare will be left in place as a backup during engine-generator maintenance down time.
The project would be implemented in two phases, labeled here and in Task 8 as "tranches" of capital
investment:
1. Tranche 1 beginning in 2011 (sequential Year 1): Electrical generation system consisting of 2
modules of 1.6 MW each.
2. Tranche 2 beginning in 2020 (sequential Year 10): One additional module of 1.6 MW.
Please note that Task 8 contains a detailed projection of capital use over time.
Figure A-1 presents estimates of the percentage of the capital investment that would come from US
sources. Approximately USD$ 10.5 Million of the total capital investment ("capex") estimate of USD$
13.0 Million would be sourced from the United States. This estimate may be slightly modified during
the remaining tasks of this feasibility study. The amounts in Figure A-1 exclude working capital, since
the eventual use or sourcing of working capital is not known beforehand.
As was observed in Task 4, the implementation of Tranche 2 could be accelerated if the CIS El Guacal
MSW intake tonnage increases beyond the minimum tonnages projected in Task 3. An increase from
650 TPD to approximately 900 TPD has been observed during the months of June and July 2011, during
the preparation of the Task 3 report. To date, this feasibility study has been based on the conservative
position that intake MSW tonnage will not decrease below 650 TPD as a minimum. EVAS believes that
tonnage intake henceforth will remain at least at 900 TPD. A sustained increase to the level of 900 TPD
would be an important economic boost to the project, since the production of landfill gas (and the
generation of electricity) would increase by approximately 25%. This "Base Case" and this "High Case"
are dealt with in Task 8.
For Tranche 1, the scope of work (but not the capital investment estimate) excludes the landfill gas
collection system, which is currently being installed by a contractor to EVAS (in this case, GreenGas).
Therefore, Tranche 1 should include the following major systems:
 Piping from the area of the existing flare to the landfill gas cleaning equipment
 Landfill gas cleaning equipment
 Engine-generator sets or modules
Page 3 of 10
 Electrical connection from the modules to the step-up transformer at the new CIS El Guacal
substation.
Page 4 of 10
Figure A-1: Estimated US Sourcing
Tranche 1
LFG Collection System
LFG Power Generation System
Civil Works
Project Soft Costs
Contingency
Working Capital
Total Tranche 1
Tranche 2
LFG Collection System
LFG Power Generation System
Civil Works
Project Soft Costs
Contingency
Working Capital
Total Tranche 2
$
$
$
$
$
$
$
$
$
$
$
$
$
$
Total CAPEX $
688,643
5,440,000
75,000
1,012,535
556,894
1,043,999
8,817,071
944,201
2,720,000
556,894
4,221,096
$
$
$
$
$
$
$
$
$
$
$
$
$
$
13,038,167 $
Local
137,729
272,000
75,000
405,014
167,068
939,599
1,996,410
Estimated Sourcing
US
$
550,914
$
5,168,000
$
$
607,521
$
389,826
$
104,400
$
6,820,661
Percent US
80%
95%
0%
60%
70%
10%
77%
Local
188,840
136,000
167,068
491,909
Estimated Sourcing
US
$
755,361
$
2,584,000
$
$
$
389,826
$
$
3,729,187
Percent US
80%
95%
0%
60%
70%
10%
88%
2,488,319 $
10,549,848
81%
In meetings with IDEA and EVAS, it has been anticipated that the project will be implemented on a
"Turnkey" basis (one direct contractor). Therefore, proposals would be requested from suppliers for
Tranche 1 for the selected single contractor to accomplish the following Turnkey services, also called an
EPC (Engineering-Procurement-Construction) scope of work:

Engineering (including detailed design)

Procurement (including logistics for importation and in-country transport of the equipment)

Construction (includes civil works and equipment installation).
Other project features are:

Consistent with the goals of USTDA to maximize the participation by United States suppliers,
proposals will be requested only from U.S. suppliers.

The EPC Turnkey contractor will probably utilize local subcontractors for the civil works of the
project.

It should be required that the EPC Turnkey contractor guarantee the performance of the system
once it is installed. The performance of the system is confirmed during several weeks of testing
near the end of the EPC scope.
For the Turnkey project mode, there are two types of providers that could provide the required scope:

Consulting / engineering firms; or

Primary equipment (engine-generator sets or modules) suppliers (manufacturers).
We recommend that proposals for a single EPC contractor be requested from primary equipment
suppliers rather than from consulting / engineering firms. The reasons for this recommendation are:

The primary equipment will account for a high percentage of the capital investment in Tranche 1
(and Tranche 2). Consulting/engineering firms are very likely to add a margin to the cost of the
primary equipment additional to the margin normally added by the primary equipment
manufacturer (since the consulting/engineering firm becomes a middle man provider). This
could significantly increase the cost of the project.

Primary equipment suppliers have direct control over equipment performance, and as such
would have a tendency to provide more rigorous performance guarantees.
Page 6 of 10
A2. U.S. Suppliers
Figure A-2 presents the four U.S. suppliers of primary equipment (engine-generator sets or modules), as
well as contact information for each company. These suppliers should be in a position to submit
proposals for an EPC Turnkey scope of work for the project:

Caterpillar, Inc. (Indiana)

Cummins Inc. (Indiana)

Curtis Engine & Equipment Inc. (Maryland)

GE Waukesha (Wisconsin) (subsidiary of General Electric)
Other suppliers with offices in the United States exist, but their manufacturing facilities are outside the
U.S. It is recommended that during implementation, proposals be requested from those suppliers
listed in Figure A-2.
Page 7 of 10
Figure A-2: United States-Based Primary Equipment Manufacturers
Title
Senior Product
Consultant
Contact Information
Email
Company
Name
Caterpillar, Inc.
Tom Lee
Cummins Inc.
Curt Chesler
Account Manager
Curt.Chesler@cummins.com
Curtis Engine &
Equipment Inc.
Tony Janotta
Sales Engineer
Jannotta.tony@curtisengine.com
GE Waukesha Gas
Engines
Aaron P.
Trexler
Product Line
Leader
aaron.trexler@ge.com
leej@cat.com
Page 8 of 10
Phone
Phone: 765-4485552
Phone: 702-3992339
Phone: 410-5361203
Fax
Fax: 765-4485985
Fax: 702-3992614
Fax: 240-2090776
Phone: 262-5492995
Fax: 262-6505650
B. Conclusions


In meetings with IDEA and EVAS, it has been anticipated that the project will be implemented on a
"Turnkey" basis (one direct contractor). Therefore, proposals would be requested from suppliers for
Tranche 1 to accomplish the following Turnkey services, also called an EPC (EngineeringProcurement-Construction) scope of work:
o
Engineering (including detailed design)
o
Procurement (including logistics for importation and transport of the equipment)
o
Construction (includes civil works and equipment installation).
Other project features are:
o
Consistent with the goals of USTDA to maximize the participation by United States
suppliers, proposals will be requested only from U.S. suppliers.
o
The EPC Turnkey contractor will probably utilize local subcontractors for the civil works
of the project.
o
It should be required that the EPC Turnkey contractor guarantee the performance of the
system once it is installed. The performance of the system is confirmed during several
weeks of testing near the end of the EPC scope.

Approximately USD$ 10.5 Million, of the overall Tranche 1 and Tranche 2 total capital investment
("capex") of USD$ 13.0 Million would be sourced from the United States. This estimate may be
slightly modified during the remaining tasks of this feasibility study, with the final estimate
appearing in the final report.

We recommend that proposals be requested from primary equipment suppliers. The reasons for
this recommendation are:

o
The primary equipment will account for approximately 90% of the capital investment in
Tranche 1, since Tranche 1 will exclude the landfill gas collection system.
o
Consulting firms may have a tendency to add a margin to the cost of the primary
equipment higher than the margin that would be added by the primary equipment
manufacturer.
o
Primary equipment suppliers have direct control over equipment performance, and as
such would have a tendency to provide more rigorous performance guarantees.
The following suppliers with applicable manufacturing facilities in the United States should be in a
position to submit proposals for an EPC Turnkey scope of work for the project:
Page 9 of 10
o
Caterpillar, Inc. (Indiana)
o
Cummins Inc. (Indiana)
o
Curtis Engine & Equipment Inc. (Maryland)
o
GE Waukesha (Wisconsin) (subsidiary of General Electric).
Page 10 of 10
Waste to Energy Facility at El Guacal Landfill
Feasibility Study
Task 8 Report:
Financial Evaluation
Presented to Study Grantee IDEA:
and to funding agency:
United States Trade and Development Agency (USTDA)
by:
CAMBRIDGE
Project Development Inc.
20 October, 2011
Page 1 of 29
The contents of this Task 8 Report are listed below:
Task 8 Report Contents
Section
A
B
C
D
E
F
G
H
Title
Projection Basis: Base Case and High Case
Investment Cost
Financing Assumptions
Operating Cost
Revenue
Cash Flow
Profitability Analysis
Conclusions
Please note that all monetary amounts presented in this Task 8 Report are presented in United States
dollars, unless designated as Colombian pesos in specific instances.
Page 2 of 29
A. Projection Basis: Base Case and High Case
As discussed in Tasks 1, 3, and 4, tonnage supply to the CIS El Guacal landfill is reliable over the long
term and unlikely to drop below 650 tons per day and likely to increase over time at a rate of
approximately 1.5 percent per year.
During the initial months of 2011 through May 2011, tonnage intake was on the order of 650 tons per
day. However, during June, July, and August 2011, during the preparation of this study, EVAS reports
that tonnage intake has increased to the level of approximately 900 tons per day.
EVAS reported in September that this recent increase has been achieved as a result of discussions with
CIS El Guacal landfill users, in which one or more users have been persuaded to maximize their deliveries
under their existing contractual agreements. This recent sudden increase in tonnage is a positive
economic development for the Landfill Gas to Energy (LFGE) project at the CIS El Guacal, as explained in
this Task 8.
In summary, we believe that:

The recent increase to the 900 TPD level is likely, but not assured, to continue over the long
term.

Since we do not have complete certainty that the increase to the 900 TPD level will in fact
continue over the long term, we believe there is some probability that deliveries could return to
the 650 TPD level observed during 2010 and the first five months of 2011.
Therefore, we believe that this Task 8 financial evaluation should consider the following two cases:

Base Case (this can be considered a "low" case): 650 TPD in 2011 and increasing by 1.5%
annually thereafter; and

High Case: 900 TPD in 2011 and increasing by 1.5% annually thereafter.
The USEPA-LMOP 2010 study, based on EVAS projections, in effect projects the High Case for deliveries
of MSW to the CIS El Guacal.
In the High Case, significantly more landfill gas is generated, on the order of 25% more per year, since
tonnage in place is approximately 25% more than in the Base Case. This requires, as explained below:
 Earlier investments for some project components;
 The addition of a fourth module during the 20 year financial projection horizon; and
 Generation of significantly more power (and therefore power sales revenue) each year.
Page 3 of 29
Figure A-1 (based on Figure C-1 from Task 4) shows the two cases and their effect on power generation
requirements. The main points of comparison between the two cases, which are incorporated into the
financial models in this Task 8, are:

Module D (fourth Module): Installed in Year 13 (High Case) instead of never (Base Case); the
year in which Module D (fourth module is installed in Year 13 for High Case only) is highlighted
in aqua in Figure A-1;

Module C (third module): Module C is installed in both cases in Year 10 and is highlighted in
yellow on Figure A-1;

North Cell depleted in Year 4 (High Case) instead of Year 5 (Base Case): This means that the
investment for the LFG collection system for Central Cell begins in Year 4 (High Case) instead of
Year 5 (Base Case).
Page 4 of 29
Page 5 of 29
B. Investment Cost
The investment cost estimate for the LFG Facility at CIS El Guacal was developed in Task 5-Preliminary
Cost Estimates on the basis of per kW, per hectare, and other proven industry cost factors.
Please note that the Terms of Reference for Task 8 require financial projections to a time horizon of 10
years. For this Task 8, we have provided financial projections through 20 years. It is also noted that
Central Cell would likely be depleted at some point around Year 23, so that the projections provided in
this Task 8 are well within the useful life of Central Cell.
B1. Base Case
Figure B-1 presents the use of that capital investment estimate over time for the Base Case and over the
two Tranches described in Task 5.
 Tranche 1: Installation of the remaining landfill gas collection system in North Cell and
installation of the first two power generation modules (Modules A and B).
 Tranche 2: Installation of the landfill gas collection system in Central Cell and installation of the
third power generation module (Module C), as well as potentially the installation of the fourth
power generation module (Module D).
The Base Case total capital investment is estimated at USD$ 13,295,676 and is composed of:
 Tranche 1: USD$ 8.8 Million
 Tranche 2: USD$ 4.5 Million
The Tranche 1 capital investment estimate includes the following major components:

The first two LFGE modules (Modules A and B) are acquired at an investment of: USD$ 2.7
Million x 2 = USD$ 5.4 Million in Year 1.

The completion of the (approximately 70%) remaining installation of the LFGE Collection
System in the currently active North Cell (beginning in Year 1 and continuing through Year 4 at
an investment of approximately USD$ 65 thousand per year). We have included the installation
of the remaining part of the LFG Collection System in the North Cell in the capital investment
estimate, even though this work is already contracted to GreenGas by EVAS and is underway.
We feel that we are assuming a conservative perspective in this Task 8 financial evaluation by
including the installation of the remaining LFG Collection System in the North Cell, even though
this cost element would have occurred even if no energy recovery were implemented and gas
flaring alone were to continue.
Page 6 of 29

USD$ 577 Thousand of the Soft Costs (design, permitting, legal, financing costs, etc.) occurs in
Year 1 to support implementation of Tranche 1.

USD$ 435 Thousand of the Soft Costs occurs in Year 5 to support implementation of Tranche 2.
The Tranche 2 capital investment estimate includes the following major components:

A third (Module C) is acquired at an investment of: USD$ 2.7 Million in Year 10.

The installation of the LFG Collection System in Central Cell beginning in Year 5 and continuing
through Year 20 at an investment of approximately USD$ 85 Thousand per year. Again, by
including the LFG Collection System in the Tranche 2 capital investment estimate, we believe we
are creating a conservative cost basis for this Task 8 financial evaluation, since it is virtually
assured that the LFG Collection System would be installed in Central Cell even if no energy
recovery project were implemented and flaring alone were to continue.
Page 7 of 29
Figure B-1: Capital Investment and Use Over Time
Base Case
Sequential Year
Calendar Year
1
2012
2
2013
3
2014
4
2015
5
2016
6
2017
7
2018
8
2019
9
2020
Tranche 1
LFG Collection System
$
LFG Power Generation System
$
Civil Works
$
Project Soft Costs
$
Contingency
$
Working Capital
$
TOTAL TRANCHE 1 $
688,643 $
64,865 $
5,440,000 $ 5,440,000
75,000 $
75,000
1,012,535 $
577,446
64,865 $
64,865 $
64,865 $
$
85,836 $
85,836 $
85,836 $
85,836 $
85,836
85,836 $
85,836 $
85,836 $
85,836
435,089
556,894 $
556,894
1,043,999 $ 1,043,999
8,817,071
Annual Total
$ 7,758,205 $
Sequential Year
Calendar Year
10
2021
64,865 $
11
2022
64,865 $
12
2023
64,865 $
13
2024
520,926 $
14
2025
15
2026
16
2027
17
2028
18
2029
19
2030
20
2031
Tranche 2
LFG Collection System
$
LFG Power Generation System
$
Civil Works
$
1,201,711 $
85,836 $
2,720,000 $ 2,720,000
-
Project Soft Costs
$
-
Contingency
$
Working Capital
$
556,894 $
-
TOTAL TRANCHE 2 $
85,836 $
85,836 $
85,836 $
85,836 $
85,836 $
85,836 $
85,836 $
85,836 $
85,836
85,836 $
85,836 $
85,836 $
85,836 $
85,836 $
85,836 $
85,836 $
85,836 $
85,836 $
85,836
556,894
4,478,605
Annual Total
Total Capital Investment $
85,836 $
$ 3,362,731 $
13,295,676
B2. High Case
Figure B-2 presents the use of that capital investment estimate over time for the High Case and over the
two Tranches described in Task 5.
The High Case total capital investment is estimated at USD$ 16.0 Million and is composed of:
 Tranche 1: USD$ 8.8 Million
 Tranche 2: USD$ 7.2 Million
The Tranche 1 capital investment estimate use over time of USD$ 7.2 Million for the High Case is similar
to the Tranche 1 capital investment for the Base Case, but with the following difference:

The completion of the (approximately 70%) remaining installation of the LFGE Collection System
in the currently active North Cell begins in Year 1 and continues only through Year 3 (instead of
through Year 4 for the Base Case).

USD$ 577 Thousand of the Soft Costs (design, permitting, legal, financing costs, etc.) occurs in
Year 1 to support implementation of Tranche 1.

USD$ 435 Thousand of the Soft Costs occurs in Year 4 (instead of Year 5 for the Base Case0 to
support implementation of Tranche 2.

A fourth module (Module D) is acquired in Year 13 at an investment of USD$ 2.7 Million.
The capital investment amounts in Figures B-1 and B-2 are inputs to the financial projections shown in
the remaining sections of this Task 8.
Page 9 of 29
Figure B-2: Capital Investment and Use Over Time
High Case
Sequential Year
Calendar Year
1
2012
2
2013
3
2014
4
2015
5
2016
6
2017
7
2018
8
2019
9
2020
Tranche 1
LFG Collection System
$
LFG Power Generation System
$
Civil Works
$
75,000 $
75,000
Project Soft Costs
$
1,012,535 $
577,446
Contingency
$
556,894 $
556,894
Working Capital
$
TOTAL TRANCHE 1 $
709,614 $
64,865 $
64,865 $
64,865 $
85,836 $
85,836 $
85,836 $
85,836 $
85,836 $
85,836
85,836 $
85,836 $
85,836 $
85,836 $
85,836
5,440,000 $ 5,440,000
$
435,089
1,043,999 $ 1,043,999
8,838,043
Annual Total
$ 7,758,205 $
Sequential Year
Calendar Year
64,865 $
64,865 $
520,926 $
10
11
12
13
14
15
16
17
18
19
20
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
Tranche 2
LFG Collection System
$
1,201,711 $
LFG Power Generation System
$
5,440,000 $ 2,720,000
Civil Works
$
-
$
Project Soft Costs
$
-
$
Contingency
$
556,894 $
Working Capital
$
-
TOTAL TRANCHE 2 $
85,836 $
85,836 $
85,836 $
85,836 $
85,836 $
85,836 $
85,836 $
85,836 $
85,836 $
85,836
85,836 $
85,836 $
85,836 $
85,836 $
85,836 $
85,836 $
85,836
$ 2,720,000
556,894
-
7,198,605
Annual Total
Total Capital Investment $
$
85,836 $
$ 3,362,731 $
16,036,648
85,836 $
85,836 $ 2,805,836 $
C. Financing Assumptions
The capital repayment and interest payment projections are shown in Figure C-1 for the Base Case and
in Figure C-2 for the High Case. The basic assumptions used for the financing and investment costs for
the project, as discussed in mid September with IDEA and EVAS representatives, are:
•
Annual Interest Rate: 7.0%
•
Equity Percentage: 40% / Debt Percentage: 60%
•
Principal Repayment Period: 10 years / Loan Period: 10 Years
•
Base Case Total Capital Investment: USD $13,295,676 made up of:
•
o
Tranche 1: USD$ 8,817,071
o
Tranche 2: USD$ 4,478,605.
High Case Total Capital Investment: USD $16,036,648 made up of:
o
Tranche 1: USD $8,838,043
o
Tranche 2: USD $7,198,605.
Based on meetings conducted with IDEA and EVAS during September 2011, we conclude that there exist
various mechanisms and financing sources within Colombia that may be utilized to fund the project in a
manner analogous to the manner in which previous energy projects sponsored by IDEA have been
financed. However, in the event that it is determined that sources outside Colombia would be
attractive, we present the following institutions, which have recently expressed their conceptual
interest to Cambridge toward financing of renewable energy projects such as landfill gas to energy
projects:

International Finance Corporation (IFC) (part of the World Bank Group)

Inter-American Development Bank (IADB)

Overseas Private Investment Corporation (OPIC)

United States Export Import Bank (EXIMBANK)

European Investment Bank (EIB)
Page 11 of 29
Figure C-1: Interest and Principal Payments
Base Case
Tranche 1
Capital Use
Less Equity Use (40% Equity)
Loan Facility Use in Specific Year
Principal Payment
Interest Payment
Loan Balance
$
$
$
$
$
$
Total $
1
2012
7,758,205
3,526,829
4,231,376
423,138
296,196
3,808,238
719,334
2
2013
$
$
$
$
$
$
$
64,865
64,865
429,624
271,117
3,443,479
700,741
$
$
$
$
$
$
$
3
2014
64,865
64,865
436,111
245,584
3,072,234
688,181
$
$
$
$
$
$
$
12
2023
85,836
85,836
273,696
131,924
1,511,002
405,620
$
$
$
$
$
$
$
4
2015
64,865
64,865
442,597
219,597
2,694,502
655,708
$
$
$
$
$
$
$
13
2024
85,836
85,836
275,793
105,770
1,321,044
381,564
$
$
$
$
$
$
$
5
2016
520,926
520,926
494,690
225,080
2,720,738
719,770
$
$
$
$
$
$
$
14
2025
85,836
85,836
277,891
92,473
1,128,990
370,364
$
$
$
$
$
$
$
6
2017
85,836
85,836
503,273
196,460
2,303,301
699,734
$
$
$
$
$
$
$
15
2026
85,836
85,836
234,382
79,029
980,445
313,411
$
$
$
$
$
$
$
7
2018
85,836
85,836
511,857
167,240
1,877,280
679,097
$
$
$
$
$
$
$
16
2027
85,836
85,836
234,382
68,631
831,900
303,013
$
$
$
$
$
$
$
8
2019
85,836
85,836
520,441
137,418
1,442,676
657,859
$
$
$
$
$
$
$
17
2028
85,836
85,836
234,382
58,233
683,355
292,615
$
$
$
$
$
$
$
9
2020
85,836
85,836
529,024
106,996
999,488
636,020
$
$
$
$
$
$
$
18
2029
85,836
85,836
234,382
47,835
534,809
282,217
Tranche 2
Capital Use
Less Equity Use (40% Equity)
Loan Facility Use in Specific Year
Principal Payment
Interest Payment
Loan Balance
$
$
$
$
$
$
Total $
10
2021
3,362,731
1,791,442
1,571,289
686,153
109,990
1,884,624
796,143
11
2022
$
$
$
$
$
$
$
85,836
85,836
271,599
6,009
1,698,861
277,608
19
2030
$
$
$
$
$
$
$
85,836
85,836
234,382
37,437
386,264
271,818
$
$
$
$
$
$
$
20
2031
85,836
85,836
85,836
27,038
386,264
112,875
$
$
$
$
$
$
$
Total
8,817,071
3,526,829
5,290,243
4,290,754
1,865,688
22,361,937
6,156,443
Figure C-2: Interest and Principal Payments
High Case
Tranche 1
Capital Use
Less Equity Use (40% Equity)
Loan Facility Use in Specific Year
Principal Payment
Interest Payment
Loan Balance
$
$
$
$
$
$
Total $
1
2012
7,758,205
3,535,217
4,222,987
422,299
295,609
3,800,689
717,908
2
2013
$
$
$
$
$
$
$
64,865
64,865
428,785
270,589
3,436,769
699,374
$
$
$
$
$
$
$
3
2014
64,865
64,865
435,272
245,114
3,066,362
732,479
$
$
$
$
$
$
$
12
2023
85,836
85,836
166,993
60,774
707,990
227,768
$
$
$
$
$
$
$
4
2015
520,926
520,926
487,364
251,110
3,099,923
686,382
$
$
$
$
$
$
$
13
2024
2,805,836
2,805,836
441,091
49,559
3,072,736
490,650
$
$
$
$
$
$
$
5
2016
85,836
85,836
495,948
223,003
2,689,812
718,951
$
$
$
$
$
$
$
14
2025
85,836
85,836
397,582
215,091
2,760,990
612,673
$
$
$
$
$
$
$
6
2017
85,836
85,836
504,532
194,295
2,271,117
698,827
$
$
$
$
$
$
$
15
2026
85,836
85,836
397,582
193,269
2,449,245
590,851
$
$
$
$
$
$
$
7
2018
85,836
85,836
513,115
164,987
1,843,838
678,102
$
$
$
$
$
$
$
16
2027
85,836
85,836
397,582
171,447
2,137,500
569,029
$
$
$
$
$
$
$
8
2019
85,836
85,836
521,699
135,077
1,407,975
656,776
$
$
$
$
$
$
$
17
2028
85,836
85,836
397,582
149,625
1,825,755
547,207
$
$
$
$
$
$
$
9
2020
85,836
85,836
530,283
104,567
963,529
634,849
$
$
$
$
$
$
$
18
2029
85,836
85,836
397,582
127,803
1,514,009
525,385
Tranche 2
Capital Use
Less Equity Use (40% Equity)
Loan Facility Use in Specific Year
Principal Payment
Interest Payment
Loan Balance
$
$
$
$
$
$
Total $
10
2021
3,362,731
2,879,442
483,289
578,611
33,830
868,207
612,442
11
2022
$
$
$
$
$
$
$
85,836
85,836
164,896
6,009
789,147
170,905
19
2030
$
$
$
$
$
$
$
85,836
85,836
397,582
105,981
1,202,264
503,562
$
$
$
$
$
$
$
20
2031
85,836
85,836
357,836
84,158
930,264
441,995
$
$
$
$
$
$
$
Total
8,838,043
3,535,217
5,302,826
4,339,296
1,884,352
22,580,013
6,223,648
D. Operating Cost
The Operations and Maintenance (O&M) Costs presented in Figure D-1 (Base Case) and in Figure D-2
(High Case) below lists 4 line items:
•
LFG Collection System Tranche 1: this O&M cost is associated with the gas collection wells,
piping, and extraction blower for the North Cell. The period for operating North Cell collection
system is 20 years. The LFG Collection System O&M costs are calculated on a per well basis as
described in Task 5.
•
LFG Collection System Tranche 2: this O&M cost begins in Year 5 in the Base Case (Year 4 for the
High Case) when the new Central Cell begins to receive waste and collect gas. The LFG
Collection System O&M costs are calculated on a per well basis as described in Task 5.
•
LFG Power Generation System: this O&M cost is a variable cost that increases with power
production and decrease as production is reduced. Power generation is higher in the High Case,
so that this O&M cost is correspondingly higher than in the Base Case.
•
EPM Transmission Line Charge: this cost item pays EPM for use of the new 44 kV transmission
line and the new step-up transformers at the CIS El Guacal and at an existing EPM substation to
be selected during the Connection Study required by EPM. This EPM charge is estimated as
$0.003 per kWh based on our experience with previous projects; our understanding is that this
cannot be confirmed until the Connection Study is accomplished during project
implementation.
Page 14 of 29
Figure D-1: Operations and Maintenance Expense
Base Case
Sequential Year
Calendar Year
LFG Collection System Tranche 1
LFG Collection System Tranche 2
LFG Power Generation System
EPM Transmission Line Charge
$
$
$
$
TOTAL $
1,582,066
2,823,304
11,287,854
1,648,027
17,341,250
Annual Total
1
2012
2
2013
4
2015
$
79,103 $
79,103 $
79,103 $
$
$
285,070 $
41,620 $
391,899 $
57,217 $
$
405,793 $
528,220 $
10
2021
LFG Collection System Tranche 1
LFG Collection System Tranche 2
LFG Power Generation System
EPM Transmission Line Charge
3
2014
$
$
$
$
Annual Total $
79,103
176,456
571,108
83,382
11
2022
$
$
$
$
910,049 $
79,103
176,456
596,101
87,031
938,691 $
6
2017
442,073 $
64,543 $
79,103 $
$
465,119 $
67,907 $
79,103
176,456
488,732
71,355
585,719 $
612,130 $
815,647 $
12
2023
$
$
$
$
5
2016
79,103
176,456
621,162
90,690
13
2024
$
$
$
$
967,411 $
79,103
176,456
646,278
94,357
$
$
$
$
14
2025
$
$
$
$
996,194 $
79,103
176,456
658,273
96,108
79,103
176,456
499,244
72,890
7
2018
$
$
$
$
827,693 $
15
2026
$
$
$
$
79,103
176,456
683,490
99,790
79,103
176,456
510,169
74,485
8
2019
$
$
$
$
840,214 $
16
2027
$
$
$
$
79,103
176,456
708,735
103,475
79,103
176,456
534,771
78,077
9
2020
$
$
$
$
79,103
176,456
559,522
81,690
868,407 $
896,772
17
2028
$
$
$
$
79,103
176,456
767,478
112,052
18
2029
$
$
$
$
79,103
176,456
737,456
107,669
19
2030
$
$
$
$
1,009,940 $
1,038,839 $
1,067,771 $
1,135,089 $
1,100,684 $
5
2016
6
2017
7
2018
8
2019
9
2020
79,103
176,456
609,048
88,921
20
2031
$
$
$
$
79,103
176,456
512,127
74,771
953,528 $
842,457
Figure D-2: Operations and Maintenance Expense
High Case
Sequential Year
Calendar Year
LFG Collection System Tranche 1
LFG Collection System Tranche 2
LFG Power Generation System
EPM Transmission Line Charge
$
$
$
$
TOTAL $
1,582,066
2,823,304
14,868,000
2,170,728
21,444,097
Annual Total
1
2012
2
2013
4
2015
$
79,103 $
79,103 $
79,103 $
$
$
360,000 $
52,560 $
504,000 $
73,584 $
$
491,663 $
656,687 $
10
2021
LFG Collection System Tranche 1
LFG Collection System Tranche 2
LFG Power Generation System
EPM Transmission Line Charge
3
2014
$
$
$
$
Annual Total $
79,103
176,456
774,000
113,004
11
2022
$
$
$
$
1,142,564 $
79,103
176,456
810,000
118,260
576,000 $
84,096 $
79,103 $
$
612,000 $
89,352 $
79,103
176,456
648,000
94,608
739,199 $
780,455 $
998,168 $
12
2023
$
$
$
$
1,183,820 $
79,103
176,456
846,000
123,516
13
2024
$
$
$
$
1,225,076 $
79,103
176,456
882,000
128,772
$
$
$
$
14
2025
$
$
$
$
1,266,332 $
79,103
176,456
900,000
131,400
$
$
$
$
1,286,960 $
79,103
176,456
666,000
97,236
$
$
$
$
79,103
176,456
684,000
99,864
$
$
$
$
79,103
176,456
720,000
105,120
$
$
$
$
79,103
176,456
756,000
110,376
1,018,796 $
1,039,424 $
1,080,680 $
1,121,936
15
2026
16
2027
17
2028
18
2029
79,103
176,456
936,000
136,656
$
$
$
$
1,328,216 $
79,103
176,456
972,000
141,912
$
$
$
$
1,369,472 $
79,103
176,456
1,008,000
147,168
$
$
$
$
1,410,728 $
79,103
176,456
918,000
134,028
19
2030
$
$
$
$
1,307,588 $
79,103
176,456
720,000
105,120
20
2031
$
$
$
$
79,103
176,456
576,000
84,096
1,080,680 $
915,656
E. Revenue
The revenue for the LFG Facility at El Guacal will be derived solely from power sales. As observed in
previous tasks, it is not clear that any carbon credits sales will be realized, since the Kyoto Protocol
expires in 2012 and may not be replaced.
The power sales price used to calculate power sales revenue is USD $0.0700 per kWh sold. This average
annual pricing was calculated in Task 2 based on spot market information provided by XM S.A. E.S.P.
Revenue for the LFGE project is shown reflected in the following figures in the remainder of the report:

F-1: Cash Flow Projection (Base Case)

F-2: Cash Flow Projection (High Case)

G-1: Income Statement (Base Case)

G-2: Income Statement (High Case)
Page 17 of 29
F. Cash Flow
The Cash Flow section is divided into the following subsections:
F.1 Cash Flow Statement
F.2 Balance Sheet
F.1 Cash Flow Statement
The Cash Flow Statement presented in Figure F-1 is for the Base Case scenario and in Figure F-2 is for a
High Case scenario, based on 4 business activities:
•
Operating Activities: includes revenue and operating and maintenance costs.
•
Investing Activities: includes proceeds from loans or equity sold, selling of capital assets or
acquisition of capital and civil improvements.
•
Financing Activities: includes equity and debt financing, interest payments, principal payments,
return on contributed equity, and dividends.
•
Taxes and Fees Activities: includes any tax credits that maybe available to the project and any
tax payments the project will have to pay.
The Cash Balance at the end of each year is an important amount in determining whether or not the
project is feasible. The average cash balances at the end of the first 5 years under each scenario are:
•
Base Case: USD$ 1,264,561
•
High Case: USD$ 1,997,435
The project under both cases maintains a positive cash balance at the end of each operating year, which
reflects the basic feasibility of the project throughout the projection horizon of 20 years.
Internal Rate of Return (IRR) on equity averages as follows:
•
Base Case
o
Tranche 1: 9 % from Year 1 through Year 9.
o
Tranche 1 and 2: 16 % from Year 10 through Year 20.
Page 18 of 29
•
High Case
o
Tranche 1: 18 % from Year 1 through Year 9
o
Tranche 1 and 2: 22 % from Year 10 through Year 20.
F.2 Balance Sheet
Figure F-3 (Base Case) and Figure F-4 (High Case) show a Balance Sheet position of the project at the end
of Year 1, as required by the Terms of Reference.
Page 19 of 29
Figure F-1: Cash Flow Projection / Cuadro F-1: Flujo de Caja Proyectado
Base Case / Caso Básico
2012
1
2013
2
2014
3
2015
4
2016
5
2017
6
2018
7
2019
8
2020
9
Operating Activities/ Actividades Operacionales
Cash Received / Flujo de Caja Recibido
Power Sales Revenue / Ventas de Energía
$
971,138
$
1,335,069
$
1,505,994
$
1,584,505
$
1,664,949
$
1,700,757
$
1,737,977
$
1,821,786
$
1,906,106
Total Cash Received/Recibido
$
971,138
$
1,335,069
$
1,505,994
$
1,584,505
$
1,664,949
$
1,700,757
$
1,737,977
$
1,821,786
$
1,906,106
Operations Expense / Costos Operacionales
$
405,793
$
528,220
$
585,719
$
612,130
$
815,647
$
827,693
$
840,214
$
868,407
$
896,772
Total Cash Used / Consumo
Net / Neto
$
$
405,793
565,344
$
$
528,220
806,850
$
$
585,719
920,276
$
$
612,130
972,375
$
$
815,647
849,301
$
$
827,693
873,064
$
$
840,214
897,763
$
$
868,407
953,379
$
$
896,772
1,009,333
Investing Activities / Actividades de Inversión
Cash Received / Flujo de Caja Recibido
Proceeds from Sales of Equipment / Venta de Equipos
$
-
$
-
$
-
$
-
$
-
$
-
$
-
$
-
$
$
-
$
-
$
-
$
-
$
-
$
-
$
-
$
-
$
-
$
64,865
$
64,865
$
64,865
$
$
85,836
$
85,836
$
85,836
$
85,836
Cash Used / Consumo de Caja
-
Total Cash Received/Recibido
Cash Used / Consumo de Caja
Capital Equipment & Civil Works / Equipo Capital & Obra Civil
$
Total Cash Used / Consumo
Net / Neto
$
$
Financing Activities/Actividades de Financiamiento
Cash Received / Flujo de Caja Recibido
Contributed Equity / Equity Contribuido
Bank Loan / Préstamo Bancario
$
$
3,526,829
4,231,376
$
$
64,865
$
$
64,865
$
$
64,865
$
$
520,926
$
$
85,836
$
$
85,836
$
$
85,836
$
$
Total Cash Received/Recibido
$
7,758,205
$
64,865
$
64,865
$
64,865
$
520,926
$
85,836
$
85,836
$
85,836
$
85,836
Interest Paid / Intereses
Principal Payment / Reembolso de Capital
Return of Contributed Equity/Reembolso de Equity
Dividends Paid / Dividendos Pagados
$
$
$
$
296,196
423,138
-
$
$
$
$
271,117
429,624
-
$
$
$
$
245,584
442,597
-
$
$
$
$
219,597
436,111
-
$
$
$
$
225,080
494,690
-
$
$
$
$
196,460
503,273
-
$
$
$
$
167,240
511,857
-
$
$
$
$
137,418
520,441
-
$
$
$
$
106,996
529,024
-
Total Cash Used / Consumo
Net / Neto
$
$
719,334
7,038,871
$
$
Taxes and Fees Activities/Actividades Tributarias
Cash Received / Flujo de Caja Recibido
Sales Tax Exemption / Impuesto Sobre la Renta Exención
$
155,382
$
213,611
$
240,959
$
253,521
$
266,392
$
272,121
$
278,076
$
291,486
$
304,977
Total Cash Received/Recibido
$
155,382
$
213,611
$
240,959
$
253,521
$
266,392
$
272,121
$
278,076
$
291,486
$
304,977
ICA Municipal Tax / Impuesto ICA Municipal
Sales Tax / Impuesto Sobre la Renta
$
$
656
155,382
$
$
656
213,611
$
$
656
240,959
$
$
984
253,521
$
$
984
266,392
$
$
984
272,121
$
$
984
278,076
$
$
984
291,486
$
$
984
304,977
Total Cash Used / Consumo
Net / Neto
$
$
156,038 $
(656) $
6,714,206
6,714,206 $
(6,714,206) $
64,865 $
(64,865) $
64,865 $
(64,865) $
64,865 $
(64,865) $
520,926
520,926 $
(520,926) $
85,836 $
(85,836) $
85,836 $
(85,836) $
85,836 $
(85,836) $
85,836
(85,836)
85,836
Cash Used / Consumo de Caja
700,741 $
(635,876) $
688,181 $
(623,316) $
655,708 $
(590,842) $
719,770 $
(198,844) $
699,734 $
(613,897) $
679,097 $
(593,260) $
657,859 $
(572,022) $
636,020
(550,184)
Cash Used / Consumo de Caja
Net Increase/(Decrease) in Cash held
(Aumento o Decremento en Balance de Caja)
Cash Balance
(Balance de Caja)
241,615 $
(656) $
254,505 $
(984) $
267,376 $
(984) $
273,105 $
(984) $
279,061 $
(984) $
292,470 $
(984) $
305,961
(984)
$
889,353
$
105,452
$
231,438
$
315,684
$
128,548
$
172,346
$
217,682
$
294,536
$
372,329
$
889,353
$
994,806
$
1,226,244
$
1,541,928
$
1,670,475
$
1,842,821
$
2,060,504
$
2,355,040
$
2,727,369
Avg.
Prom.
9%
16%
IRR / Tasa de Retorno Interno
IRR Tranche 1 / Tasa de Retorno Interno Fase 1
IRR Tranche 1 + 2 / Taska de Retorno Interno Fase 1 + 2
214,267 $
(656) $
25%
3%
2021
10
7%
2022
11
9%
2023
12
4%
2024
13
5%
2025
14
6%
2026
15
8%
2027
16
11%
2028
17
2029
18
2030
19
2031
20
Operating Activities/ Actividades Operacionales
Cash Received / Flujo de Caja Recibido
Power Sales Revenue / Ventas de Energía
$
1,906,106
$
1,945,574
$
2,030,717
$
2,116,092
$
2,201,653
$
2,242,515
$
2,328,423
$
2,414,425
$
2,614,541
$
2,512,265
$
2,074,822
Total Cash Received/Recibido
$
1,906,106
$
1,945,574
$
2,030,717
$
2,116,092
$
2,201,653
$
2,242,515
$
2,328,423
$
2,414,425
$
2,614,541
$
2,512,265
$
2,074,822
Operations Expense / Costos Operacionales
$
910,049
$
938,691
$
967,411
$
996,194
$
1,009,940
$
1,038,839
$
1,067,771
$
1,135,089
$
1,100,684
$
953,528
$
842,457
Total Cash Used / Consumo
Net / Neto
$
$
910,049
996,056
$
$
938,691
1,006,882
$
$
967,411
1,063,306
$
$
996,194
1,119,898
$
$
1,009,940
1,191,713
$
$
1,038,839
1,203,676
$
$
1,067,771
1,260,653
$
$
1,135,089
1,279,336
$
$
1,100,684
1,513,857
$
$
953,528
1,558,737
$
$
842,457
1,232,365
Investing Activities / Actividades de Inversión
Cash Received / Flujo de Caja Recibido
Proceeds from Sales of Equipment / Venta de Equipos
$
-
$
-
$
-
$
-
$
-
$
-
$
-
$
-
$
-
$
-
$
$
-
$
-
$
-
$
-
$
-
$
-
$
-
$
-
$
-
$
-
$
-
$
85,836
$
85,836
$
85,836
$
85,836
$
85,836
$
85,836
$
85,836
$
85,836
$
85,836
$
85,836
Cash Used / Consumo de Caja
-
Total Cash Received/Recibido
Cash Used / Consumo de Caja
Capital Equipment & Civil Works / Equipo Capital & Obra Civil
$
Total Cash Used / Consumo
Net / Neto
$
$
Financing Activities/Actividades de Financiamiento
Cash Received / Flujo de Caja Recibido
Contributed Equity / Equity Contribuido
Bank Loan / Préstamo Bancario
$
$
1,791,442
1,571,289
$
$
85,836
$
$
85,836
$
$
85,836
$
$
85,836
$
$
85,836
$
$
85,836
$
$
85,836
$
$
85,836
$
$
85,836
$
$
85,836
Total Cash Received/Recibido
$
3,362,731
$
85,836
$
85,836
$
85,836
$
85,836
$
85,836
$
85,836
$
85,836
$
85,836
$
85,836
$
85,836
Interest Paid / Intereses
Principal Payment / Reembolso de Capital
Return of Contributed Equity/Reembolso de Equity
Dividends Paid / Dividendos Pagados
$
$
$
$
6,009
271,599
-
$
$
$
$
109,990
686,153
-
$
$
$
$
131,924
273,696
-
$
$
$
$
105,770
275,793
-
$
$
$
$
92,473
277,891
-
$
$
$
$
79,029
234,382
-
$
$
$
$
68,631
234,382
-
$
$
$
$
58,233
234,382
-
$
$
$
$
47,835
234,382
-
$
$
$
$
37,437
234,382
-
$
$
$
$
27,038
85,836
-
Total Cash Used / Consumo
Net / Neto
$
$
277,608
3,085,123
$
$
Taxes and Fees Activities/Actividades Tributarias
Cash Received / Flujo de Caja Recibido
Sales Tax Exemption / Impuesto Sobre la Renta Exención
$
304,977
$
311,292
$
324,915
$
338,575
$
352,265
$
358,802
$
372,548
$
386,308
$
418,327
$
401,962
$
331,972
Total Cash Received/Recibido
$
304,977
$
311,292
$
324,915
$
338,575
$
352,265
$
358,802
$
372,548
$
386,308
$
418,327
$
401,962
$
331,972
ICA Municipal Tax / Impuesto ICA Municipal
Sales Tax / Impuesto Sobre la Renta
$
$
984
304,977
$
$
984
311,292
$
$
984
324,915
$
$
1,312
338,575
$
$
1,312
352,265
$
$
1,312
358,802
$
$
1,312
372,548
$
$
1,312
386,308
$
$
1,312
418,327
$
$
1,312
401,962
$
$
1,312
331,972
Total Cash Used / Consumo
Net / Neto
$
$
305,961 $
(984) $
3,362,731
3,362,731 $
(3,362,731) $
85,836 $
(85,836) $
85,836 $
(85,836) $
85,836 $
(85,836) $
85,836 $
(85,836) $
85,836 $
(85,836) $
85,836 $
(85,836) $
85,836 $
(85,836) $
85,836 $
(85,836) $
85,836 $
(85,836) $
85,836
(85,836)
Cash Used / Consumo de Caja
796,143 $
(710,307) $
405,620 $
(319,784) $
381,564 $
(295,727) $
370,364 $
(284,527) $
313,411 $
(227,575) $
303,013 $
(217,176) $
292,615 $
(206,778) $
282,217 $
(196,380) $
271,818 $
(185,982) $
112,875
(27,038)
Cash Used / Consumo de Caja
Net Increase/(Decrease) in Cash held
(Aumento o Decremento en Balance de Caja)
Cash Balance
(Balance de Caja)
IRR / Tasa de Retorno Interno
IRR Tranche 1 / Tasa de Retorno Interno Fase 1
IRR Tranche 1 + 2 / Taska de Retorno Interno Fase 1 + 2
Avg.
Prom.
0%
0%
312,276 $
(984) $
325,899 $
(984) $
339,887 $
(1,312) $
353,577 $
(1,312) $
360,115 $
(1,312) $
373,860 $
(1,312) $
387,620 $
(1,312) $
419,639 $
(1,312) $
403,275 $
(1,312) $
333,284
(1,312)
$
717,464
$
209,755
$
656,701
$
737,022
$
820,037
$
888,952
$
956,328
$
985,409
$
1,230,329
$
1,285,607
$
1,118,178
$
3,444,833
$
3,654,588
$
4,311,290
$
5,048,312
$
5,868,349
$
6,757,301
$
7,713,629
$
8,699,038
$
9,929,366
$
11,214,973
$
12,333,151
13%
4%
12%
14%
15%
17%
18%
19%
23%
24%
21%
Figure F-2: Cash Flow Projection / Cuadro F-1: Flujo de Caja Proyectado
High Case / Caso Alto
2012
1
2013
2
2014
3
2015
4
2016
5
2017
6
2018
7
2019
8
2020
9
Operating Activities/ Actividades Operacionales
Cash Received / Flujo de Caja Recibido
Power Sales Revenue / Ventas de Energía
$
1,226,400
$
1,716,960
$
1,962,240
$
2,084,880
$
2,207,520
$
2,268,840
$
2,330,160
$
2,452,800
$
2,575,440
Total Cash Received/Recibido
$
1,226,400
$
1,716,960
$
1,962,240
$
2,084,880
$
2,207,520
$
2,268,840
$
2,330,160
$
2,452,800
$
2,575,440
Operations Expense / Costos Operacionales
$
491,663
$
656,687
$
739,199
$
780,455
$
998,168
$
1,018,796
$
1,039,424
$
1,080,680
$
1,121,936
Total Cash Used / Consumo
Net / Neto
$
$
491,663
734,737
$
$
656,687
1,060,273
$
$
739,199
1,223,041
$
$
780,455
1,304,425
$
$
998,168
1,209,352
$
$
1,018,796
1,250,044
$
$
1,039,424
1,290,736
$
$
1,080,680
1,372,120
$
$
1,121,936
1,453,504
Investing Activities / Actividades de Inversión
Cash Received / Flujo de Caja Recibido
Proceeds from Sales of Equipment / Venta de Equipos
$
-
$
-
$
-
$
-
$
-
$
-
$
-
$
-
$
$
-
$
-
$
-
$
-
$
-
$
-
$
-
$
-
$
-
$
64,865
$
64,865
$
$
85,836
$
85,836
$
85,836
$
85,836
$
85,836
Cash Used / Consumo de Caja
-
Total Cash Received/Recibido
Cash Used / Consumo de Caja
Capital Equipment & Civil Works / Equipo Capital & Obra Civil
$
Total Cash Used / Consumo
Net / Neto
$
$
Financing Activities/Actividades de Financiamiento
Cash Received / Flujo de Caja Recibido
Contributed Equity / Equity Contribuido
Bank Loan / Préstamo Bancario
$
$
3,535,217
4,222,987
$
$
64,865
$
$
64,865
$
$
520,926
$
$
85,836
$
$
85,836
$
$
85,836
$
$
85,836
$
$
85,836
Total Cash Received/Recibido
$
7,758,205
$
64,865
$
64,865
$
520,926
$
85,836
$
85,836
$
85,836
$
85,836
$
85,836
Interest Paid / Intereses
Principal Payment / Reembolso de Capital
Return of Contributed Equity/Reembolso de Equity
Dividends Paid / Dividendos Pagados
$
$
$
$
295,609
422,299
-
$
$
$
$
270,589
428,785
-
$
$
$
$
245,114
435,272
-
$
$
$
$
251,110
487,364
-
$
$
$
$
223,003
495,948
-
$
$
$
$
194,295
504,532
-
$
$
$
$
164,987
513,115
-
$
$
$
$
135,077
521,699
-
$
$
$
$
104,567
530,283
-
Total Cash Used / Consumo
Net / Neto
$
$
717,908
7,040,297
$
$
Taxes and Fees Activities/Actividades Tributarias
Cash Received / Flujo de Caja Recibido
Sales Tax Exemption / Impuesto Sobre la Renta Exención
$
196,224
$
274,714
$
313,958
$
333,581
$
353,203
$
363,014
$
372,826
$
392,448
$
412,070
Total Cash Received/Recibido
$
196,224
$
274,714
$
313,958
$
333,581
$
353,203
$
363,014
$
372,826
$
392,448
$
412,070
ICA Municipal Tax / Impuesto ICA Municipal
Sales Tax / Impuesto Sobre la Renta
$
$
656
196,224
$
$
656
274,714
$
$
656
313,958
$
$
984
333,581
$
$
984
353,203
$
$
984
363,014
$
$
984
372,826
$
$
984
392,448
$
$
984
412,070
Total Cash Used / Consumo
Net / Neto
$
$
196,880 $
(656) $
6,714,206
6,714,206 $
(6,714,206) $
64,865 $
(64,865) $
64,865 $
(64,865) $
520,926
520,926 $
(520,926) $
85,836 $
(85,836) $
85,836 $
(85,836) $
85,836 $
(85,836) $
85,836 $
(85,836) $
85,836
(85,836)
Cash Used / Consumo de Caja
699,374 $
(634,509) $
680,386 $
(615,521) $
738,474 $
(217,549) $
718,951 $
(633,115) $
698,827 $
(612,991) $
678,102 $
(592,266) $
656,776 $
(570,940) $
634,849
(549,013)
Cash Used / Consumo de Caja
Net Increase/(Decrease) in Cash held
(Aumento o Decremento en Balance de Caja)
Cash Balance
(Balance de Caja)
314,615 $
(656) $
334,565 $
(984) $
354,187 $
(984) $
363,999 $
(984) $
373,810 $
(984) $
393,432 $
(984) $
413,055
(984)
$
1,060,172
$
360,243
$
541,998
$
564,966
$
489,417
$
550,233
$
611,650
$
714,360
$
817,671
$
1,060,172
$
1,420,414
$
1,962,413
$
2,527,379
$
3,016,796
$
3,567,029
$
4,178,679
$
4,893,039
$
5,710,709
Avg.
Prom.
18%
22%
IRR / Tasa de Retorno Interno
IRR Tranche 1 / Tasa de Retorno Interno Fase 1
IRR Tranche 1 + 2 / Taska de Retorno Interno Fase 1 + 2
275,370 $
(656) $
30%
10%
2021
10
15%
2022
11
16%
2023
12
14%
2024
13
16%
2025
14
17%
2026
15
20%
2027
16
23%
2028
17
2029
18
2030
19
2031
20
Operating Activities/ Actividades Operacionales
Cash Received / Flujo de Caja Recibido
Power Sales Revenue / Ventas de Energía
$
2,636,760
$
2,759,400
$
2,882,040
$
3,004,680
$
3,066,000
$
3,188,640
$
3,311,280
$
3,433,920
$
3,127,320
$
2,452,800
$
1,962,240
Total Cash Received/Recibido
$
2,636,760
$
2,759,400
$
2,882,040
$
3,004,680
$
3,066,000
$
3,188,640
$
3,311,280
$
3,433,920
$
3,127,320
$
2,452,800
$
1,962,240
Cash Used / Consumo de Caja
Operations Expense / Costos Operacionales
$
1,142,564
$
1,183,820
$
1,225,076
$
1,266,332
$
1,286,960
$
1,328,216
$
1,369,472
$
1,410,728
$
1,307,588
$
1,080,680
$
915,656
Total Cash Used / Consumo
Net / Neto
$
$
1,142,564
1,494,196
$
$
1,183,820
1,575,580
$
$
1,225,076
1,656,964
$
$
1,266,332
1,738,348
$
$
1,286,960
1,779,040
$
$
1,328,216
1,860,424
$
$
1,369,472
1,941,808
$
$
1,410,728
2,023,192
$
$
1,307,588
1,819,732
$
$
1,080,680
1,372,120
$
$
915,656
1,046,584
Investing Activities / Actividades de Inversión
Cash Received / Flujo de Caja Recibido
Proceeds from Sales of Equipment / Venta de Equipos
$
-
$
-
$
-
$
-
$
-
$
-
$
-
$
-
$
-
$
-
$
$
-
$
-
$
-
$
-
$
-
$
-
$
-
$
-
$
-
$
-
$
-
$
85,836
$
85,836
$
$
85,836
$
85,836
$
85,836
$
85,836
$
85,836
$
85,836
$
85,836
-
Total Cash Received/Recibido
Cash Used / Consumo de Caja
Capital Equipment & Civil Works / Equipo Capital & Obra Civil
$
Total Cash Used / Consumo
Net / Neto
$
$
Financing Activities/Actividades de Financiamiento
Cash Received / Flujo de Caja Recibido
Contributed Equity / Equity Contribuido
Bank Loan / Préstamo Bancario
$
$
2,879,442
483,289
$
$
85,836
$
$
85,836
$
$
2,805,836
$
$
85,836
$
$
85,836
$
$
85,836
$
$
85,836
$
$
85,836
$
$
85,836
$
$
85,836
Total Cash Received/Recibido
$
3,362,731
$
85,836
$
85,836
$
2,805,836
$
85,836
$
85,836
$
85,836
$
85,836
$
85,836
$
85,836
$
85,836
Interest Paid / Intereses
Principal Payment / Reembolso de Capital
Return of Contributed Equity/Reembolso de Equity
Dividends Paid / Dividendos Pagados
$
$
$
$
33,830
578,611
-
$
$
$
$
6,009
164,896
-
$
$
$
$
60,774
166,993
-
$
$
$
$
49,559
441,091
-
$
$
$
$
215,091
397,582
-
$
$
$
$
193,269
397,582
-
$
$
$
$
171,447
397,582
-
$
$
$
$
149,625
397,582
-
$
$
$
$
127,803
397,582
-
$
$
$
$
105,981
397,582
-
$
$
$
$
84,158
357,836
-
Total Cash Used / Consumo
Net / Neto
$
$
612,442
2,750,289
$
$
170,905 $
(85,068) $
227,768 $
(141,931) $
490,650
2,315,187
$
$
Taxes and Fees Activities/Actividades Tributarias
Cash Received / Flujo de Caja Recibido
Sales Tax Exemption / Impuesto Sobre la Renta Exención
$
421,882
$
441,504
$
461,126
$
480,749
$
490,560
$
510,182
$
529,805
$
549,427
$
500,371
$
392,448
$
313,958
Total Cash Received/Recibido
$
421,882
$
441,504
$
461,126
$
480,749
$
490,560
$
510,182
$
529,805
$
549,427
$
500,371
$
392,448
$
313,958
ICA Municipal Tax / Impuesto ICA Municipal
Sales Tax / Impuesto Sobre la Renta
$
$
984
421,882
$
$
984
441,504
$
$
984
461,126
$
$
1,312
480,749
$
$
1,312
490,560
$
$
1,312
510,182
$
$
1,312
529,805
$
$
1,312
549,427
$
$
1,312
500,371
$
$
1,312
392,448
$
$
1,312
313,958
Total Cash Used / Consumo
Net / Neto
$
$
422,866 $
(984) $
3,362,731
3,362,731 $
(3,362,731) $
85,836 $
(85,836) $
85,836 $
(85,836) $
2,805,836
2,805,836 $
(2,805,836) $
85,836 $
(85,836) $
85,836 $
(85,836) $
85,836 $
(85,836) $
85,836 $
(85,836) $
85,836 $
(85,836) $
85,836 $
(85,836) $
85,836
(85,836)
Cash Used / Consumo de Caja
612,673 $
(526,837) $
590,851 $
(505,015) $
569,029 $
(483,192) $
547,207 $
(461,370) $
525,385 $
(439,548) $
503,562 $
(417,726) $
441,995
(356,158)
Cash Used / Consumo de Caja
Net Increase/(Decrease) in Cash held
(Aumento o Decremento en Balance de Caja)
Cash Balance
(Balance de Caja)
IRR / Tasa de Retorno Interno
IRR Tranche 1 / Tasa de Retorno Interno Fase 1
IRR Tranche 1 + 2 / Taska de Retorno Interno Fase 1 + 2
Avg.
Prom.
0%
21%
442,488 $
(984) $
462,111 $
(984) $
482,061 $
(1,312) $
491,872 $
(1,312) $
511,495 $
(1,312) $
531,117 $
(1,312) $
550,739 $
(1,312) $
501,683 $
(1,312) $
393,760 $
(1,312) $
315,271
(1,312)
$
880,770
$
1,403,691
$
1,428,212
$
1,246,386
$
1,165,055
$
1,268,261
$
1,371,467
$
1,474,673
$
1,293,035
$
867,246
$
603,277
$
6,591,480
$
7,995,171
$
9,423,383
$
10,669,769
$
11,834,824
$
13,103,085
$
14,474,552
$
15,949,225
$
17,242,261
$
18,109,506
$
18,712,783
17%
26%
27%
23%
22%
24%
26%
28%
24%
16%
11%
Page 22 of 29
Page 23 of 29
G. Profitability Analysis
The Income Statements in Figure G-1 (Base Case) and Figure G-2 (High Case) present net income
projections fro the LFGE Plant. As discussed previously:

Power production is a function of gas flow and gas flow is a function of tons in place.

The Base Case takes a conservative estimate of the total tons in place in both the North Cell and
Central Cell.

The High Case calculates waste at the rates that are arriving at the landfill in mid 2011
(approximately 900 TPD with further annual growth long term of 1.5%).
While profitability can be considered satisfactory for the Base Case scenario, it is even more favorable,
as can be anticipated, for the High Case scenario.
The Income Statements for both scenarios show a favorable EBITDA (Earnings before interest, tax,
depreciation, and amortization), as well as other ratios reflecting favorable performance of the LFGE
project.
EBITDA varies as follows:
•
•
Base Case
o
USD$ 563,344 to USD $ 1,009,333 from Year 1 through Year 9.
o
USD$ 1.0 Million to USD$ 1.2 Million from Year 10 through Year 20.
High Case
o
USD$ 734,737 to USD$ 1.5 Million from Year 1 through Year 9
o
USD$ 1.0 Million to USD $ 1.4 Million from Year 10 through Year 20
Net Income as a percent of revenue varies as follows:
•
•
Base Case
o
-18% to 24% from Year 1 through Year 9
o
12% to 26% from Year 10 through Year 20
High Case
o
-0.3% to 35% from Year 1 through Year 9
o
25% to 8% from Year 10 through Year 20
Page 24 of 29
Figure G-1: Pro-Forma Income Statement / Cuadro G-1 Cálculo de Ingresos Netos
Base Case / Caso Básico
2012
1
2013
2
2014
3
2015
4
2016
5
2017
6
2018
7
2019
8
2020
9
Revenue / Ventas
Power Sales (Ventas de Electricidad)
$
$
971,138
971,138
$
$
1,335,069
1,335,069
$
$
1,505,994
1,505,994
$
$
1,584,505
1,584,505
$
$
1,664,949
1,664,949
$
$
1,700,757
1,700,757
$
$
1,737,977
1,737,977
$
$
1,821,786
1,821,786
$
$
1,906,106
1,906,106
$
$
$
$
79,103
285,070
41,620
405,793
$
$
$
$
79,103
391,899
57,217
528,220
$
$
$
$
79,103
442,073
64,543
585,719
$
$
$
$
79,103
465,119
67,907
612,130
$
$
$
$
255,560
488,732
71,355
815,647
$
$
$
$
255,560
499,244
72,890
827,693
$
$
$
$
255,560
510,169
74,485
840,214
$
$
$
$
255,560
534,771
78,077
868,407
$
$
$
$
255,560
559,522
81,690
896,772
296,196
296,196
$
$
271,117
271,117
$
$
245,584
245,584
$
$
219,597
219,597
$
$
225,080
225,080
$
$
196,460
196,460
$
$
167,240
167,240
$
$
137,418
137,418
$
$
106,996
106,996
Total
$
$
Years
(Años)
20.0 $
20.0 $
$
440,854
440,854
$
$
$
440,854
440,854
$
$
$
440,854
440,854
$
$
$
440,854
440,854
$
$
$
440,854
440,854
$
$
$
440,854
440,854
$
$
$
440,854
440,854
$
$
$
440,854
440,854
$
$
$
440,854
440,854
Total Expense
$
1,142,843
$
1,240,190
$
1,272,156
$
1,272,580
$
1,481,581
$
1,465,007
$
1,448,307
$
1,446,679
$
1,444,622
$
$
$
$
656
(155,382)
155,382
656
$
$
$
$
656
(213,611)
213,611
656
$
$
$
$
656
(240,959)
240,959
656
$
$
$
$
984
(253,521)
253,521
984
$
$
$
$
984
(266,392)
266,392
984
$
$
$
$
984
(272,121)
272,121
984
$
$
$
$
984
(278,076)
278,076
984
$
$
$
$
984
(291,486)
291,486
984
$
$
$
$
984
(304,977)
304,977
984
$
(172,362) $
-17.7%
460,500
24.2%
$
565,344
Total Revenue
Expenses / Costos
Operations Expense (Costos Operacionales)
LFG Collection System (Sistema de Recolección)
LFG Power Generation System (Sistema de Generación)
EPM Charges (Pagos a EPM por Interconexión)
Sub-Total
Interest Expense (Pago de Intereses)
Interest Expense (Pago de Intereses)
Sub-Total
Depreciation / Depreciación
Tranche 1 / Fase 1
Tranche 2 / Fase 2
Taxes / Impuestos
ICA Municipal Tax (Impuesto Municipal ICA)
Sales Tax (Impuesto Sobre Renta)
Sales Tax (Exención)
[a]
16.0%
16.0%
Sub-Total
Net Income (Ingresos Netos)
Percent of Revenue (Porcentaje de Ventas)
EBITDA [b]
$
2021
10
94,223 $
7.1%
806,850
$
2022
11
233,182 $
15.5%
310,941 $
19.6%
182,384 $
11.0%
234,766 $
13.8%
288,686 $
16.6%
374,123 $
20.5%
920,276
972,375
849,301
873,064
897,763
953,379
$
2023
12
$
2024
13
$
2025
14
$
2026
15
$
2027
16
$
2028
17
1,009,333
2029
18
2030
19
2031
20
Revenue / Ventas
Power Sales (Ventas de Electricidad)
$
$
1,906,106
1,906,106
$
$
1,945,574
1,945,574
$
$
2,030,717
2,030,717
$
$
2,116,092
2,116,092
$
$
2,201,653
2,201,653
$
$
2,242,515
2,242,515
$
$
2,328,423
2,328,423
$
$
2,414,425
2,414,425
$
$
2,614,541
2,614,541
$
$
2,512,265
2,512,265
$
$
2,074,822
2,074,822
$
$
$
$
255,560
571,108
83,382
910,049
$
$
$
$
255,560
596,101
87,031
938,691
$
$
$
$
255,560
621,162
90,690
967,411
$
$
$
$
255,560
646,278
94,357
996,194
$
$
$
$
255,560
658,273
96,108
1,009,940
$
$
$
$
255,560
683,490
99,790
1,038,839
$
$
$
$
255,560
708,735
103,475
1,067,771
$
$
$
$
255,560
767,478
112,052
1,135,089
$
$
$
$
255,560
737,456
107,669
1,100,684
$
$
$
$
255,560
609,048
88,921
953,528
$
$
$
$
255,560
512,127
74,771
842,457
109,990
109,990
$
$
6,009
6,009
$
$
131,924
131,924
$
$
105,770
105,770
$
$
92,473
92,473
$
$
79,029
79,029
$
$
68,631
68,631
$
$
58,233
58,233
$
$
47,835
47,835
$
$
37,437
37,437
$
$
27,038
27,038
Total
$
$
Years
(Años)
20.0 $
20.0 $
$
440,854
223,930
664,784
$
$
$
440,854
223,930
664,784
$
$
$
440,854
223,930
664,784
$
$
$
440,854
223,930
664,784
$
$
$
440,854
223,930
664,784
$
$
$
440,854
223,930
664,784
$
$
$
440,854
223,930
664,784
$
$
$
440,854
223,930
664,784
$
$
$
440,854
223,930
664,784
$
$
$
440,854
223,930
664,784
$
$
$
440,854
223,930
664,784
Total Expense
$
1,684,823
$
6,009
$
1,764,119
$
1,766,748
$
1,767,197
$
1,782,653
$
1,801,185
$
1,858,106
$
1,813,303
$
1,655,749
$
1,534,279
$
$
$
$
984
(304,977)
304,977
984
$
$
$
$
984
(311,292)
311,292
984
$
$
$
$
984
(324,915)
324,915
984
$
$
$
$
1,312
(338,575)
338,575
1,312
$
$
$
$
1,312
(352,265)
352,265
1,312
$
$
$
$
1,312
(358,802)
358,802
1,312
$
$
$
$
1,312
(372,548)
372,548
1,312
$
$
$
$
1,312
(386,308)
386,308
1,312
$
$
$
$
1,312
(418,327)
418,327
1,312
$
$
$
$
1,312
(401,962)
401,962
1,312
$
$
$
$
1,312
(331,972)
331,972
1,312
$
220,298 $
11.6%
855,204 $
34.0%
539,231
26.0%
$
996,056
Total Revenue
Expenses / Costos
Operations Expense (Costos Operacionales)
LFG Collection System (Sistema de Recolección)
LFG Power Generation System (Sistema de Generación)
EPM Charges (Pagos a EPM por Interconexión)
Sub-Total
Interest Expense (Pago de Intereses)
Interest Expense (Pago de Intereses)
Sub-Total
Depreciation / Depreciación
Tranche 1 / Fase 1
Tranche 2 / Fase 2
Taxes / Impuestos
ICA Municipal Tax (Impuesto Municipal ICA)
Sales Tax (Impuesto Sobre Renta)
Sales Tax (Exención)
[a]
16.0%
16.0%
Sub-Total
Net Income (Ingresos Netos)
Percent of Revenue (Porcentaje de Ventas)
EBITDA [b]
$
335,106 $
17.2%
1,006,882
$
265,614 $
13.1%
1,063,306
$
348,032 $
16.4%
1,119,898
$
433,144 $
19.7%
1,191,713
$
458,550 $
20.4%
1,203,676
$
525,925 $
22.6%
1,260,653
$
555,007 $
23.0%
1,279,336
$
799,926 $
30.6%
1,513,857
Notes / Notas
[a] Please see Task 11. / Favor ver Tarea 11.
[b] EBITDA = Earnings before interest, taxes, depreciation & amortization. / EBITDA = Ingresos antes de pagarse intereses, impuestos, depreciación & amortización.
$
1,558,737
$
1,232,365
Figure G-2: Pro-Forma Income Statement / Cálculo de Ingresos Netos
High Case / Caso Alto
2012
1
2013
2
2014
3
2015
4
2016
5
2017
6
2018
7
2019
8
2020
9
Revenue
Power Sales (Ventas de Electricidad)
$
$
1,226,400
1,226,400
$
$
1,716,960
1,716,960
$
$
1,962,240
1,962,240
$
$
2,084,880
2,084,880
$
$
2,207,520
2,207,520
$
$
2,268,840
2,268,840
$
$
2,330,160
2,330,160
$
$
2,452,800
2,452,800
$
$
2,575,440
2,575,440
$
$
$
$
79,103
360,000
52,560
491,663
$
$
$
$
79,103
504,000
73,584
656,687
$
$
$
$
79,103
576,000
84,096
739,199
$
$
$
$
79,103
612,000
89,352
780,455
$
$
$
$
255,560
648,000
94,608
998,168
$
$
$
$
255,560
666,000
97,236
1,018,796
$
$
$
$
255,560
684,000
99,864
1,039,424
$
$
$
$
255,560
720,000
105,120
1,080,680
$
$
$
$
255,560
756,000
110,376
1,121,936
295,609
295,609
$
$
270,589
270,589
$
$
245,114
245,114
$
$
251,110
251,110
$
$
223,003
223,003
$
$
194,295
194,295
$
$
164,987
164,987
$
$
135,077
135,077
$
$
104,567
104,567
Total
$
$
Years
(Años)
20.0 $
20.0 $
$
441,902
441,902
$
$
$
441,902
441,902
$
$
$
441,902
441,902
$
$
$
441,902
441,902
$
$
$
441,902
441,902
$
$
$
441,902
441,902
$
$
$
441,902
441,902
$
$
$
441,902
441,902
$
$
$
441,902
441,902
Total Expense
$
1,229,175
$
1,369,178
$
1,426,216
$
1,473,468
$
1,663,073
$
1,654,993
$
1,646,313
$
1,657,659
$
1,668,405
$
$
$
$
656
(196,224)
196,224
656
$
$
$
$
656
(274,714)
274,714
656
$
$
$
$
656
(313,958)
313,958
656
$
$
$
$
984
(333,581)
333,581
984
$
$
$
$
984
(353,203)
353,203
984
$
$
$
$
984
(363,014)
363,014
984
$
$
$
$
984
(372,826)
372,826
984
$
$
$
$
984
(392,448)
392,448
984
$
$
$
$
984
(412,070)
412,070
984
794,157 $
32.4%
906,051
35.2%
Total Revenue
Expenses
Operations Expense (Costos Operacionales)
LFG Collection System (Sistema de Recolección)
LFG Power Generation System (Sistema de Generación)
EPM Charges (Pagos a EPM por Interconexión)
Sub-Total
Interest Expense (Pago de Intereses)
Interest Expense (Pago de Intereses)
Sub-Total
Depreciation / Depreciación
Tranche 1 / Fase 1
Tranche 2 / Fase 2
Taxes
ICA Municipal Tax (Impuesto Municipal ICA)
Sales Tax (Impuesto Sobre Renta)
Sales Tax (Exención)
[a]
16.0%
16.0%
Sub-Total
Net Income (Ingresos Netos)
Percent of Revenue (Porcentaje de Ventas)
$
EBITDA [b]
$
(3,431) $
-0.3%
734,737
$
2021
10
347,126 $
20.2%
1,060,273
$
2022
11
535,368 $
27.3%
1,223,041
$
2023
12
610,428 $
29.3%
1,304,425
$
2024
13
543,463 $
24.6%
1,209,352
$
2025
14
612,863 $
27.0%
1,250,044
$
2026
15
682,863 $
29.3%
1,290,736
$
2027
16
1,372,120
$
2028
17
1,453,504
2029
18
2030
19
2031
20
Revenue
Power Sales (Ventas de Electricidad)
$
$
2,636,760
2,636,760
$
$
2,759,400
2,759,400
$
$
2,882,040
2,882,040
$
$
3,004,680
3,004,680
$
$
3,066,000
3,066,000
$
$
3,188,640
3,188,640
$
$
3,311,280
3,311,280
$
$
3,433,920
3,433,920
$
$
3,127,320
3,127,320
$
$
2,452,800
2,452,800
$
$
1,962,240
1,962,240
$
$
$
$
255,560
774,000
113,004
1,142,564
$
$
$
$
255,560
810,000
118,260
1,183,820
$
$
$
$
255,560
846,000
123,516
1,225,076
$
$
$
$
255,560
882,000
128,772
1,266,332
$
$
$
$
255,560
900,000
131,400
1,286,960
$
$
$
$
255,560
936,000
136,656
1,328,216
$
$
$
$
255,560
972,000
141,912
1,369,472
$
$
$
$
255,560
1,008,000
147,168
1,410,728
$
$
$
$
255,560
918,000
134,028
1,307,588
$
$
$
$
255,560
720,000
105,120
1,080,680
$
$
$
$
255,560
576,000
84,096
915,656
33,830
33,830
$
$
6,009
6,009
$
$
60,774
60,774
$
$
49,559
49,559
$
$
215,091
215,091
$
$
193,269
193,269
$
$
171,447
171,447
$
$
149,625
149,625
$
$
127,803
127,803
$
$
105,981
105,981
$
$
84,158
84,158
Total
$
$
Years
(Años)
20.0 $
20.0 $
$
441,902
359,930
801,832
$
$
$
441,902
359,930
801,832
$
$
$
441,902
359,930
801,832
$
$
$
441,902
359,930
801,832
$
$
$
441,902
359,930
801,832
$
$
$
441,902
359,930
801,832
$
$
$
441,902
359,930
801,832
$
$
$
441,902
359,930
801,832
$
$
$
441,902
359,930
801,832
$
$
$
441,902
359,930
801,832
$
$
$
441,902
359,930
801,832
Total Expense
$
1,978,226
$
$
2,087,683
$
2,117,723
$
2,303,884
$
2,323,317
$
2,342,751
$
2,362,185
$
2,237,223
$
1,988,493
$
1,801,647
$
$
$
$
984
(421,882)
421,882
984
$
$
$
$
$
$
$
$
984
(461,126)
461,126
984
$
$
$
$
1,312
(480,749)
480,749
1,312
$
$
$
$
1,312
(490,560)
490,560
1,312
$
$
$
$
1,312
(510,182)
510,182
1,312
$
$
$
$
1,312
(529,805)
529,805
1,312
$
$
$
$
1,312
(549,427)
549,427
1,312
$
$
$
$
1,312
(500,371)
500,371
1,312
$
$
$
$
1,312
(392,448)
392,448
1,312
$
$
$
$
1,312
(313,958)
313,958
1,312
$
657,549 $
24.9%
462,995 $
18.9%
159,281
8.1%
Total Revenue
Expenses
Operations Expense (Costos Operacionales)
LFG Collection System (Sistema de Recolección)
LFG Power Generation System (Sistema de Generación)
EPM Charges (Pagos a EPM por Interconexión)
Sub-Total
Interest Expense (Pago de Intereses)
Interest Expense (Pago de Intereses)
Sub-Total
Depreciation / Depreciación
Tranche 1 / Fase 1
Tranche 2 / Fase 2
Taxes
ICA Municipal Tax (Impuesto Municipal ICA)
Sales Tax (Impuesto Sobre Renta)
Sales Tax (Exención)
[a]
16.0%
16.0%
Sub-Total
Net Income (Ingresos Netos)
Percent of Revenue (Porcentaje de Ventas)
EBITDA [b]
$
1,494,196
$
-
984
(441,504)
441,504
984
766,755 $
27.8%
1,575,580
$
793,373 $
27.5%
1,656,964
$
885,644 $
29.5%
1,738,348
$
760,804 $
24.8%
1,779,040
$
864,010 $
27.1%
1,860,424
$
967,216 $
29.2%
1,941,808
$
1,070,423 $
31.2%
2,023,192
$
888,785 $
28.4%
1,819,732
Notes / Notas
[a] Please see Task 11. / Favor ver Tarea 11.
[b] EBITDA = Earnings before interest, taxes, depreciation & amortization. / EBITDA = Ingresos antes de pagarse intereses, impuestos, depreciación & amortización.
$
1,372,120
$
1,046,584
H. Conclusions
H1. Capital Investment
The Base Case total capital investment is projected at USD$ 13.3 Million is composed of:
 Tranche 1: USD$ 8.8 Million
 Tranche 2: USD$ 4.5 Million
The High Case total capital investment is projected at USD$ 16.0 Million and is composed of:
 Tranche 1: USD$ 8.8 Million
 Tranche 2: USD$ 7.2 Million
H2. Financing Assumptions
The basic assumptions used for the financing and investment costs for the project, as discussed in mid
September with IDEA and EVAS representatives, are:
•
Annual Interest Rate: 7.0%
•
Equity Percentage: 40% / Debt Percentage: 60%
•
Principal Repayment Period: 10 years / Loan Period: 10 Years
•
Base Case Total Capital Investment: USD $13,295,676 made up of:
•
o
Tranche 1: USD$ 8,817,071
o
Tranche 2: USD$ 4,478,605.
High Case Total Capital Investment: USD $16,036,648 made up of:
o
Tranche 1: USD $8,838,043
o
Tranche 2: USD $7,198,605.
Based on meetings conducted with IDEA and EVAS during September 2011, we conclude that there exist
various mechanisms and financing sources within Colombia that may be utilized to fund the project in a
manner analogous to the manner in which previous energy projects sponsored by IDEA have been
financed. However, in the event that it is determined that sources outside Colombia would be
attractive, we present the following institutions, which have recently expressed their conceptual
Page 27 of 29
interest to Cambridge toward financing of renewable energy projects such as landfill gas to energy
projects:

International Finance Corporation (IFC) (part of the World Bank Group)

Inter-American Development Bank (IADB)

Overseas Private Investment Corporation (OPIC)

United States Export Import Bank (EXIMBANK)

European Investment Bank (EIB)
H3. Cash Flow
The Cash Balance at the end of each year is an important amount in determining whether or not the
project is feasible. The average cash balances at the end of the first 5 years under each scenario are:
•
Base Case: $1,246,561
•
High Case: $1,997,435
The project under both cases maintains a positive cash balance at the end of each operating year, which
reflects the basic feasibility of the project throughout the projection horizon of 20 years.
Internal Rate of Return (IRR) on equity averages as follows:
•
•
Base Case
o
Tranche 1: 9% from Year 1 through Year 9
o
Tranche 1 and 2: 16 % from Year 10 through Year 20
High Case
o
Tranche 1: 18% from Year 1 through Year 9
o
Tranche 1 and 2: 22 % from Year 10 through Year 20.
H4. Profitability Analysis
While profitability can be considered satisfactory for the Base Case scenario, it is significantly more
favorable, as can be anticipated, for the High Case scenario.
Page 28 of 29
The Income Statements for both scenarios show a favorable EBITDA (Earnings before interest, tax,
depreciation, and amortization), as well as other ratios reflecting favorable performance of the LFGE
project.
Net Income as a percent of revenue varies as follows:
•
•
Base Case
o
-18% to 24% from Year 1 through Year 9
o
12% to 26% from Year 10 through Year 20
High Case
o
-0.3% to 35% from Year 1 through Year 9
o
25% to 8 % from Year 10 through Year 20
H5. Summary Conclusions
The landfill gas to energy (LFGE) project is feasible, both technically and financially for the CIS El Guacal
facility. The levels of technical and financial risk are considered manageable and more than acceptable.
We believe that, in light of recent tonnage trends observed during mid 2011, the most likely scenario
will be closer to the High Case than to the Base Case.
Page 29 of 29
Waste to Energy Facility at El Guacal Landfill
Feasibility Study
Task 9 Report: Project Risk Assessment
Presented to Study Grantee IDEA:
and to funding agency:
United States Trade and Development Agency (USTDA)
by:
CAMBRIDGE
Project Development Inc.
September 22, 2011
Page 1 of 7
The contents of this Task 9 Report are listed below:
Task 9 Report Contents
Section
Title
A
Risk Matrix
B
Conclusions
Page 2 of 7
A. Risk Matrix
The project risks derive directly from the project implementation activities, which are illustrated in
Figure A-1 below (this schedule is based on the preliminary project schedule illustrated in Task 4,
Section D):
Page 3 of 7
Figure A-1: Preliminary Project Implementation Schedule
Sequential and Calendar Months
1
2
3
4
5
6
7
2011
NOV
DEC
8
9
10
11
12
13
JUL
AUG
SEP
OCT
NOV
2012
JAN
FEB
MAR
APR
MAY
Feasibility
Study
Completed
Business Aspects
Negotiate
Contracts
Negotiate
Financing
Permitting and Licenses
Complete
Applications
Regulatory
Review
EPM Scope of Work
Interconnection
Study
Negotiations
with EPM
EPM Installs 44
kV Line +
Transformers
Turnkey EPC Contract
Prepare
Request for
Proposals
Proponents
Prepare
Responses
Evaluate
Responses and
Award
Destailed
Design
Purchase Order
and Deliver
Equipment
Install Modules
and Auxiliary
Equipment
Testing and
Startup
Begin Power
Sales
Page 4 of 7
JUN
Figure A-2 presents an evaluation of the risks implicit in each implementation activity. No "High" risks
are identified in any of the activities, with the majority of the activities deemed to have a "Low" risk.
The risks identified are generally manageable, primarily through sufficient executive sponsorship from
the stakeholders' organizations, especially from IDEA as probable project leader.
Page 5 of 7
Figure A-2: Project Risk Matrix
Risks
Activity
Primary Risk
Probability
Secondary Risk
Primary Risk
Risk Mitigation
Secondary Risk
Primary Risk
Secondary Risk
Comments
Business Aspects
Negotiate Contracts
among stakeholders
Failure to come to
an agreement.
Non-obvious
obstacles
contained in
agreement.
Low
Low
Executive level
sponsorship by
stakeholder
organizations.
Negotiate Financing
Failure to find
acceptable
financing.
None
Low
None
Access to a range
of financing
options.
Risk is considered "Low" for all risks, considering high level of interest and
Effective expert
and legal review of executive sponsorship demonstrated by stakeholders during Feasibility Study.
Stakeholders have extensive experience with power sales projects.
draft contracts
None
Risk is considered "Low", considering large number of similar LFGE projects
financed in medium-income countries in recent years. IDEA has significant
experience in financing projects of this size and larger.
Permitting and Licenses
Complete Applications
Takes longer than
planned.
None
Low
None
Effective
consultant
support.
None
Risk is considered "Low", considering generally supportive position of
regulatory agencies observed during Feasilibity Study.
Regulatory Review
Regulatory review
denies a needed
permit or license.
None
Medium-Low
None
Close interaction
with regulatory
agencies.
None
Generally, the pace and progress of a regulatory review is not readily
predictable. However, the project schedule has a time margin of 4 months
after the scheduled completio of the regulatory review.
EPM Scope
Complete
Interconnection Study
Takes longer than
planned.
None
Low
Low
Close interaction
with EPM staff.
None
EPM staff appears to be very familiar with the existing and planned
interconnection network.
EPM Negotiations
Failure to come to
an agreement.
None
Low
None
Executive level
sponsorship by
EPM and IDEA.
None
Risk is considered "Low", since this is a standard type of agreement for EPM.
EPM Install 44 kV Line +
Substations
Takes longer than
planned.
None
Medium-Low
None
Close interaction
with EPM staff.
None
Risk is "Medium-Low" since line may cross several properties.
Prepare RFP
Takes longer than
planned.
None
Low
None
Executive level
sponsorship by
IDEA.
None
Self-explanatory.
Proponents Prepare
Responses
Low response to
RFP.
None
Low
None
Clear and effective
RFP content.
None
Self-explanatory.
Evaluate Responses and
Award
Takes longer than
planned.
None
Low
None
None
Self-explanatory.
Complete Detailed
Design
Takes longer than
planned.
None
Low
None
None
Self-explanatory.
Order and Deliver
Equipment
Takes longer than
planned.
None
Low
None
Selection of
experienced EPC
Contractor.
None
Special attention to shipping and logistics with regard to importation as well as
to in-country transport is required.
Install Engine
Generators
Takes longer than
planned.
None
Low
None
Selection of
experienced EPC
Contractor.
None
Self-explanatory.
Startup and Testing
Takes longer than
planned.
None
Low
None
Selection of
experienced EPC
Contractor.
None
Self-explanatory.
Begin Power Export
Operational Costs
higher than
planned.
Landfill produces
less gas than
planned.
Low
Low
Effective
Feasibility Study.
Consistent landfill
operations
practices.
Self-explanatory.
Turnkey EPC Contract
Executive level
sponsorship by
IDEA
Selection of
experienced EPC
Contractor.
B. Conclusions
No unusual risks are identified in the project Risk Matrix (Figure A-2). During this feasibility study, a widely
proven technical configuration has been selected. This creates a fundamental basis that mitigates most of
the normal risks encountered during the implementation phase.
All the detected risks are manageable with sufficient application of the following mitigating factors listed
in Figure A-2:

Executive sponsorship from all stakeholders, especially from IDEA as probable project leader.

Access to a wide selection of financing options.

Review of draft agreements by experts with experience in management and contracting for these
types of projects, and by legal advisors.

Effective support from environmental and permitting consultants.

Close interaction with regulatory agencies granting permits.

Close interaction with EPM staff regarding the 44 kV line and the transformers.

Clear and complete request for proposals (RFP) document.

Selection of an experienced EPC (Engineering-Procurement-Construction) Turnkey contractor.

Quality detailed design.

Consistent operational practices in the landfill.
Page 7 of 7
Waste to Energy Facility at El Guacal Landfill
Feasibility Study
Task 10 Report:
Regulatory Framework
Presented to Study Grantee IDEA:
and to funding agency:
United States Trade and Development Agency (USTDA)
by:
CAMBRIDGE
Project Development Inc.
in association with:
Quality & Evolution S. A.
06 August 2011
Page 1 of 105
The content of this Task 10 report is presented in the table below:
Task 10 Report Contents
Section
A
B
C
D
E
F
G
H
I
J
Title
Regulatory Context
Environmental License
Atmospheric Emissions
Discharges
Water Use
Disposal of Residues
Mechanisms for Public Participation
Energy Generation Regulations
Municipal Regulation and Land Use Planning
Conclusions
Attached to this Task 10 report is Annex 1, which contains copies of laws and regulations key to
the regulatory framework.
Page 2 of 105
A. Regulatory Context
In order to define the regulatory framework for the project, two options are considered
preliminarily for the recovery of energy derived from municipal solid waste (MSW):

Combustion of landfill gas (LFG); and

Combustion of the MSW.
These options constitute a representative range of technical configurations that are used here
to define the regulatory framework for the project. For example, gasification has aspects in
common with both of these representative options, since gasification includes combustion of a
gas derived from MSW in the gasification chamber, and at the same time produces a char that
shares many characteristics with ash produced from direct combustion.
It is important to note that independently of the option or technical configuration selected,
taking into account the consultations accomplished during interviews with personnel from the
Directorate of Licenses, Permits, and Environmental Processing of the MAVDT ("Ministerio de
Ambiente, Vivienda y Desarrollo Territorial de Colombia" or Ministry of Environment, Housing,
and Territorial Development of Colombia) and in conformance with article 8 numeral 4 of
decree 2820 of 2010, the project should be classified as a "Proyecto de Exploración y Uso de
Fuentes de Energía Alternativa Virtualmente Contaminantes (or Project of Exploration and
Use of Virtually Contaminating Alternative Energy Sources) with an installed capacity greater
than 3 MW. This important classification of the project has been made by regulators
interviewed during this study, and is further examined in Section B below.
This classification applies to combustion of MSW or combustion of LFG, given that the legal
definition of Alternative Energy or Non-Conventional Sources of Energy is in Law 697 of 2001, in
which LFG is classified as a gaseous fuel derived from biomass. In this context, we present this
analysis of the applicable regulatory framework from environmental, energy, and territorial
development (land use).
This initial classification of the project has been given by the MAVDT personnel interviewed.
Considering that in the country there are no similar projects utilizing Waste to Energy, this initial
classification is, according to the MAVDT, the closest applicable categorization. This initial
classification dictates that the applicable authority is MAVDT.
However, during the implementation phase of the project, at the initiation of the permitting
process, the project can present a Right of Petition ("Derecho de Petición") containing a
detailed description of the project. MAVDT will then officially validate or change the
classification of the project. Based on this review by MAVDT, it is possible that MAVDT will
delegate to CORANTIOQUIA the regulation of the project.
Page 3 of 105
B. Environmental License
Environmental Licensing Regulations
In conformance with article 49 from Title VIII of Law 99 of 1993, the execution of works, the
establishment of industries, or the development of any activity which, according to the law and
its regulations could produce: a serious degradation of renewable natural resources or of the
environment; or cause significant or negative changes in the landscape will require an
Environmental License or "Licencia Ambiental". The currently applicable decree is decree 2820
of August 5, 2010, which regulates by means of which Title VIII of Law 99 of 1993, which
provides that only those projects, works, or activities included in the 8th and 9th articles of the
decree, and that are processed before the MAVDT or that are processed before the
Autonomous Regional Corporations (such as CORANTIOQUIA) will require an environmental
license.
Addtionally, the decree establishes that the Environmental License is unique; that is to say that
the Environmental License implicitly authorizes the various permits, authorizations, and
concessions for the use and utilization of renewable natural resources that are necessary during
the useful life of the project. In other terms, the Environmental License is a condition
precedent for the exercise of rights that stem from separate permits, authorizations,
concessions, contracts, and licenses issued by authorities other than environmental
authorities.
Environmental License Processing
In order to obtain an Environmental License, the process to be followed is defined in decree
2820 of 2010 and consists of the following steps:






Submittal of application;
Determination of the authority on the need for an Environmental Diagnostic of
Alternatives;
Beginning of processing;
Submittal of the Environmental Impact Assessment;
Technical and legal evaluation of the project for which a license is sought;
Final decision on the application (a resolution that awards or denies the
Environmental License.)
Modification of Environmental Licenses
Modification of an Environmental License is possible when the requested changes continue to
be within the scope of the authority that initially issued the current license, in this case
CORANTIOQUIA.
Page 4 of 105
For this project, however, the modification of the Environmental License would not apply,
independent of the technical configuration selected, since the project is:

Considered by MAVDT, in discussions to date, a "Proyecto de Exploración y Uso de
Fuentes de Energía Alternativa Virtualmente Contaminantes (or Project of Exploration
and Use of Virtually Contaminating Alternative Energy Sources); and

Will probably have an installed capacity greater than 3 MW.
Therefore, the process would involve obtaining a new Environmental License processed
through MAVDT, and not a modification of the current Environmental License.
It is clarified here that even though the current Environmental License, issued by
CORANTIOQUIA through Resolution 7529 of January 2005 allows combustion of LFG, the fact
that a LFG combustion plant would generate energy over 3 MW would put the project into this
category that requires a new Environmental License (according to determinations made by
regulators during interviews for this study.)
Charge for Evaluation and Monitoring Services
Article 96 of Law 633 of 2000 authorizes environmental authorities to charge for evaluation and
monitoring services for Environmental Licenses, permits, concessions, authorizations, and other
environmental control and management documents. This article 96 establishes limites for
charges for projects, works, and other activities whose capital value is equal to or greather than
2115 minimum monthly salaries ("Salarios Mínimos Mensuales" or SMMV.) For 2011, the
minimum monthly salary averaged US$ 310 equivalent, so that 2,115 SMMV's would be an
amount in pesos equivalent to:
2115 x US$ 310 = US$ 655,650.
That is, if the project capital value is over US$ 655,650, then it will be subject to a processing
charge that will be determined by the MAVDT at the time, according to criteria provided for in
Law 633 of 2000. If the project were to have a value below that amount, the processing charge
would be defined according to the rate scale provided for in Resolution 1280 of 2010 from the
MAVDT. On the MAVDT web page (www.minambiente.gov.co) the form for payment to the
MAVDT is provided.
Environmental License Requirements and Applicable Regulations
The Directorate of Licenses, Permits, and Environmental Licenses of the MAVDT recommends
that once the technical configuration for the project is selected, a request for information be
submitted so that the MAVDT can pronounce officially regarding the process to be followed,
and the competent authority for the process, taking into account that the raw materials for the
project is solid waste, for which the current license has been issued by CORANTIOQUIA.
Nevertheless, the Directorate will conduct internal consultations with the Directorate of
Sustainable Sectoral Development, in order to provide clarity on the subject.
Page 5 of 105
Permits, Authorizations, and Concessions for the Use and Utilization of Renewable Natural
Resources
For the processing of permits (which are different and subsidiary to the Environmental License
itself), the renewable natural resources that will be utilized in development of the project
should be identified. Regulations require that a copy of the Environmental Impact Statement be
filed wtih CORANTIOQUIA.
In the following sectios are analyzed in detail the permits required and the applicable
regulations. These permits are those related to:




Atmospheric emissions;
Discharges;
Water Use; and
Waste Disposal.
Page 6 of 105
C. Atmospheric Emissions
Regulations for Fixed Point Source Atmospheric Emissions
Applicable regulations establish the norms and standards for acceptable pollutant emissions for
fixed point sources under Resolution 909 of 2008, as modified by Resolution 1309 of 2010.
Currently, the existing landfill holds a permit for generic atmospheric emissions, which covers
various activities (including the combustion of landfill gas currently accomplished). This permit
would need to be modified or amplified if activities are implemented that would produce new
emissions from energy recovery. It is possible that combustion of landfill gas for energy would
not create emissions additional to those currently existing.
Applicable Emissions Standards
Resolution 909 of 2008 from MAVDT sets forth the acceptable emissions levels for air pollutants
for fixed point sources.
In the event that the selected technical option includes heat recovery from MSW, it is necessary
to identify the specific technology to determine if the activity will be considered as one of the
following:

External combustion regulated by the provisions of Chapters III or VII of Resolution 909
of 2008, for combustion of MSW (it is unlikely that an option involving external
combustion of MSW would be selected);

Thermal powerplant operated with a solid fuel regulated by the provisions of Chapter V
of Resolution 909 of 2008. For the current project, if a combustion option is selected, it
is probable that it would involve internal combustion, in which case the provisions of
Chapter V would apply.
If landfill gas combustion is selected, the provisions of Chapter V of Resolution 909 of 2008
for combustion of gaseous fuel would apply.
Page 7 of 105
D. Discharges
It is not anticipated that the project will generate liquid discharges additional to volumes of
leachate currently generated, since the project does not imply use of MSW additional to those
tonnages received today.
However, discharge regulations are discussed here in the event that some type of new discharge
were to be generated.
Regulations Applicable to Discharges
Decree 3930 of 2010 establishes the provisions related to the uses, regulation, and discharges of
water resources to the soil and to storm sewers. In relation to the norm for discharges, decree
4828 of 2010 establishes the parameters and the maximum allowable limits for discharges to
surface waters, marine waters, public sewer systems, and to soils. In October 2011 the term will
expire for MAVDT to establish the standards for point discharges. These new norms will have to
be taken into account at the time that any discharge permit is applied for.
Discharge Permit Included in the Current Environmental License
The Environmental License issued by CORANTIOQUIA in 2005, through Resolution 7529, awards
to the CIS El Guacal a permit for liquid discharges for waste water, both domestic and industrial
(this latter referring to leachates). It is important to note that currently, the applicable decree is
3930 of 2010, based on which any modification of this permit should be applied for, in the event
that the project were to generate additional liquid discharges.
Page 8 of 105
E. Water Use
It is noted here that any energy recovery plant employing a steam boiler will likely require
water flows additional to those currently authorized. A landfill gas combustion energy
recovery facility is not likely to require flows additional to those currently authorized.
Applicable Water Use Regulations
The applicable regulations for the use of surface waters is Law Decree 2811 of 1974 and its
regualtory Decree 1541 of 1978. These require that prior to use of water resources, a water
concession must be obtained. At the same time, these decrees provide for the obligation to
construct necessary capture works which guarantee that only the watershed actually conceded
by the environmental authority will be used. Additionally, in Colombia there is established the
obligation to pay for the use of water. This obligation is set forth in Decree 0155 of 2004, which
established the procedure for water charges.
Current Watershed Concession
CORANTIOQUIA issued a concession through Resolution 7529 of 2005 to the CIS El Guacal of 2.8
l/s, distributed as follows: 0.23 l/s for domestic use and 1.95 l/s for industrial use. The source of
these flows is not named, but is shown to have a minimum flow of 5.5 l/s. It is this source on
which catchment works should be included in the Environmental Impact Statement. This
concession was issued for a period of 10 years, and requires payment for utilization of water
while stipulating that no more than the stated water flow can be used without prior approval of
CORANTIOQUIA.
Page 9 of 105
F. Disposal of Residues
In Colombia, there is no specific regulation for the disposal of residues forthcoming from an
energy generation process (such as ash or gasification char). These residues are considered to
be included as solid waste in general, and a characterization of such ashes should be
accomplished in order to determine the applicable final disposal regulation.
In case such residues are utilized as inputs to soil amendment products, the fertilizer and soil
conditioning regulations adopted through Resolution 150 of 2003 of the Colombian Agricultural
Institute (or "Instituto Colombiano Agropecuario” or ICA). These regulations apply to fertilizers
and soil conditioners, as well as to raw materials used to prepare them. In addition,
amendments are considered inorganic soil conditioners, and as a result they are regulated under
Colombian Technical Standard 5167. It is not anticipated combustion residues (such as ash) or
from gasification or plasma arc (such as char) will be usable as soil amendments (please see Task
3 Report's section on ash handling.)
Authorization of the Landfill for Disposal of Ashes
After a review of Resolution 7529 of 2005, through which the current Environmental License
was issued to the CIS El Guacal, no reference was found to disposal of ash in the landfill. As a
result, authorization must be sought to allow for such.
The current Environmental License does not authorize disposal of ash, as a result of which it will
be necessary to:

Apply for modification of the existing license through CORANTIOQUIA, or

Include such a request for authorization in the application for the new Environmental
License to be processed through MAVDT. This is likely to occur if the project is
considered a new project independent of the landfill.
Page 10 of 105
G. Mechanisms for Public Participation
Citizen participation is the process through which citizens take on the commitment to work for a
solution of public issues using existing participation mechanisms, thereby exercising those rights
provided for by these same mechanisms.
Said participation mechanisms can be divided into three types:

Obtaining of information;

Participation in the environmental permitting process;

Participation in the administration of justice in the case of environmental impacts.
It is important to take into account these public participation mechanisms during the
permitting process in order to avoid administrative or legal proceses that could affect
implementation of the project. Specific pubic participation can take various forms, including:
Petitioning; Environmental Journal entries; Public Audience; Complaints Filing; Stewardship
Action; Community Actions; Group Actions; Compliance Actions.
Page 11 of 105
H. Energy Generation Regulations
In a meeting with Mr. Omar Orlando Serrano Sánchez, Advisor to the CREG (Energy and Gas
Regulatory Commission) during which the discussion considered that initial estimates that the
energy recovery project will be able to generate power in the range of 3 MW to 20 MW, the
following considerations were put forward with regard to classification of the project:

According to CREG Resolution 086 of 1996, generation from a Small Plant ("Planta
Menor") is generation from a plant with less than 20 MW capacity, operated by a
generating company, marginal producer, or independent power producer that markets
such energy to third parties. In the case of vertically integrated companies, to supply
totally or partially their respective markets. The Planta Menor category excludes the
self-generator ("Autogenerador") category.

The project cannot be considered as an Self-Generator ("Autogenerador"), since CREG
Resolution 084 of 1996 stipulates that in this category are classified those individual or
corporate entities that produce electricity exclusively for their own needs and cannot
sell partially or totally their energy to third parties, except when an energy rationing
situation has been declared.

The project cannot also be considered as a Cogenerator ("Cogenerador"), since the
issuance of Resolution 005 of 2010, this classification applies to an individual or to a
corporate entity that has a combined electrical energy and thermal energy production
as an integral part of its productive activity. The project would not generate power for
an internal process, and 100% of the available energy would be sold to the grid.

According to CREG Resolution 086 of 1996, a Marginal Producer ("Productor Marginal")
or an Independent Producer ("Productor Independiente") is an individual or corporate
entity that wishes to use its own resources to produce goods and services inherent to
to the mission of the public service entities for itself, or for other entitites in exchange
for any type of remuneration, or for free to those that have an economic link to the
entity. Article 16 of Law 142 of 1994 is clear in stipulating that the fact that an entity is a
marginal producer, independent producer, or generates power for private use does not
imply that the acts and contracts of that producer will be subject to legal requirements
different from those applicable to acts and contracts of a public service enterprise that
provide similar services. Therefore, an entity that sells electricity, whether a public
service enterprise or a marginal producer or an independent producer, with regard to
power supply acts or contracts, will be subject to the same requirements.
According to the above, the project cannot be considered an Autogenerator or a
Cogenerator, and the project meets the regulatory stipulations as a Smaller Plant. If the
Page 12 of 105
project were considered a Marginal Producer or an Independent Producer, the same
requirements as would be applied to any other power producer.
Requirements for Supply and Sale of Energy to the Grid
It is noted here that under Resolution CREG-131 of 1998, Regulated Users are those users
whose consumption is less than 55 MWh per month, on average, or one that has an installed
capacity of less than 0.1 MW. Most homes and smaller businesses are Regulated Users.
Unregulated Users are those with energy consumption above 55 MWh on average and who
choose to be classified as Unregulated Users.
Small Plants ("Plantas Menores") with Net Capacity Under 10 MW
These plants shall not have access to the Central Dispatch, and as a result, do not participate in
the wholesale electricity market. Power sold from such facilities can be commercialized, taking
into account the following guidelines:

Energy generated by a Small Plant may be sold to a Trader that supplies the Regulated
Market (made up of Regulated Users) directly and without public bids, as long as there
is no economic link between the buyer and the seller. In this case, the sales price shall
be stricly and exclusively the Spot Market Price ("Precio en la Bolsa Energía") at any
given hours, less one peso legal currency ($1.00) per kWh indexed per CREG Resolution
CREG-005 of 2001.

Energy generated by a Smaller Plant may be offered to a trader that deals with the
Regulated Market by participating in public bids published by the users. In this case, as
provided in Resolution CREG-020 of 1996, the award must be made on the basis of
price.

The energy generated by a Smaller Plant may be sold at prices freely agreed to between
seller and buyer to the following entities: Generators, or Traders who deal exclusively to
Unregulated Users.
Smaller Plants with Capacity Between 10 MW and 20 MW
These plants may opt for accessing Central Dispatch, in which case they participate in the
Wholesale Market. If this option is chosen, such plants wil need to comply with applicable
regulations.
If such plants do not participate in Central Dispatch, then the energy generated may be
commercialized as follows:

Energy generated by a Small Plant may be sold to a Trader that supplies the Regulated
Market directly and without public bids, as long as there is no economic link between
the buyer and the seller. In this case, the sales price shall be stricly and exclusively the
Page 13 of 105
Spot Market Price ("Precio en la Bolsa Energía") at any given hours, less one peso legal
currency ($1.00) per kWh indexed per CREG Resolution CREG-005 of 2001.

Energy generated by a Smaller Plant may be offered to a trader that deals with the
Regulated Market by participating in public bids published by the users. In this case, as
provided in Resolution CREG-020 of 1996, the award must be made on the basis of
price.

The energy generated by a Smaller Plant may be sold at prices freely agreed to between
seller and buyer to the following entities: Generators, or Traders who deal exclusively
with Unregulated Users.
Page 14 of 105
I. Municipal Regulation and Land Use Planning
Compatibility with Land Use in Compliance with the Heliconia Land Use Plan
Considering that the location where the project would be built is an area that is already
developed and is dedicated, according to the Land Use Plan ('Esquema de Ordenamiento
Territorial" or "EOT"), to disposal of solid waste, there is not, preliminarily, any incompatibility
between the project and the land use defined in this local document. Nevertheless, during
project implementation, the project team should conduct a detailed review of the EOT (in its
current version at that time) to identify those requriements, licenses, or permits stipulated by
the municipality for execution of the project.
Page 15 of 105
J. Conclusions Task 1
It is estimated that the total duration of the following permitting processes would be
approximately 8 months, keeping in mind that other activities (such as detailed design) may be
conducted in parallel or partially in parallel during the project implementation period:

Environmental License (process is illustrated in Figure J-1 below);

Specific Permits:


Atmospheric Emissions

Discharges

Water Use

Residues Disposal

Verification of Compatibility with Heliconia Land Use Plan (EOT)
Registration of the project into the electricity market. The project is anticipated to be
classified as a Small Plant ("Planta Menor").
It is concluded that no major regulatory obstacle is in place that would hamper project
implementation or subsequent power sales.
Page 16 of 105
Figure J-1: Environmental License Schedule
Month 1
Month 2
Month 3
Environmental License*
Application filing
Determination by the Authority of the need for an
Environmental Diagnostic of Alternatives
Filing of the Environmental Diagnostic of Alternatives
(EDA)
Notice of Initiation of the EDA Process
Evaluation of the EDA and selection of the alternative
on which the Environmental Impact Statement (EIS)
should be based
Filing of the EIS
Issuance of Notice of Initiation of the Environmental
License process
Environmental authority's request to other authorities
or entities with regard to technical concepts or
relevant information
Response to the environmental authority's request
Additional information request to applicant
Applicant submittal of additional information
Issuance of notice of completeness of file to support
decision
Issuance of Environmental License approval or denial
Page 17 of 105
Month 4
Month 5
Month 6
Month 7
Month 8
(Figure J-1 Continued from previous page)
* Environmental License is unique; that is to say that the Environmental License implicitly authorizes the various permits, authorizations, and concessions for the
use and utilization of renewable natural resources that are necessary during the useful life of the project
Project Registration within Electricity Market
Submittal of forms and registration format to the
General Directorate of the UPME, identifying the
phase in which the project should be registered (PreFeasibility, Feasibility, or Definitive Project)
Project registration with the UPME
Key
Applicant responsibility
Authority responsibility
Responsiblity of other authority or entity
Applicant responsibility in the event of request for additional information
Authority responsiblity in the event of request for additional information
Responsibilty of other authority or entity in the event of request for additional information
Page 18 of 105
Annex 1: Key Laws and Regulation
Index
DECRETO 2820 DE 2010 (AGOSTO 5 DE 2010) – PRESIDENCIA DE LA REPÚBLICA DE COLOMBIA ............. 20
LEY 697 DE 2001 (OCTUBRE 3 DE 2001) – CONGRESO DE LA REPÚBLICA DE COLOMBIA .......................... 31
LEY 99 DE 1993 (DICIEMBRE 22 DE 1993) – CONGRESO DE LA REPÚBLICA DE COLOMBIA ....................... 32
LEY 633 DE 2000 (DICIEMBRE 29 DE 2000) – CONGRESO DE LA REPÚBLICA DE COLOMBIA ..................... 32
RESOLUCIÓN 1280 DE 2010 (JULIO 7 DE 2010) – MINISTERIO DE AMBIENTE, VIVIENDA Y DESARROLLO
TERRITORIAL DE COLOMBIA ....................................................................................................................... 34
RESOLUCIÓN 0909 DE 2008 (JUNIO 5 DE 2008) – MINISTERIO DE AMBIENTE VIVIENDA Y DESARROLLO
TERRITORIAL DE COLOMBIA ....................................................................................................................... 35
DECRETO 3930 DE 2010 (OCTUBRE 25 DE 2010) – PRESIDENCIA DE LA REPÚBLICA DE COLOMBIA ......... 44
DECRETO 1541 DE 1978 (JULIO 28 DE 1978) – PRESIDENCIA DE LA REPÚBLICA DE COLOMBIA ................ 65
DECRETO 0155 DE 2004 (ENERO 22 DE 2004) – PRESIDENCIA DE LA REPÚBLICA DE COLOMBIA .............. 66
RESOLUCIÓN 086 DE 1996 (OCTUBRE 15 DE 1996) – COMISIÓN DE REGULACIÓN DE ENERGÍA Y GAS
(CREG) ......................................................................................................................................................... 67
RESOLUCIÓN 084 DE 1996 (OCTUBRE 15 DE 1996) – COMISIÓN DE REGULACIÓN DE ENERGÍA Y GAS
(CREG) ......................................................................................................................................................... 69
RESOLUCIÓN 005 DE 2010 (FEBRERO 1 DE 2010) – COMISIÓN DE REGULACIÓN DE ENERGÍA Y GAS
(CREG) ......................................................................................................................................................... 69
LEY 142 DE 1994 (JULIO 11 DE 1994) – CONGRESO DE LA REPÚBLICA DE COLOMBIA .............................. 70
RESOLUCIÓN 131 DE 1998 (DICIEMBRE 23 DE 1998) – COMISIÓN DE REGULACIÓN DE ENERGÍA Y GAS
(CREG) ......................................................................................................................................................... 70
RESOLUCIÓN 020 DE 1996 (FEBRERO 27 DE 1996) – COMISIÓN DE REGULACIÓN DE ENERGÍA Y GAS
(CREG) ......................................................................................................................................................... 71
RESOLUCIÓN 7529 DE 2005 (ENERO 12 DE 2005) – CORANTIOQUIA ........................................................ 72
Page 19 of 105
DECRETO 2820 DE 2010 (AGOSTO 5 DE 2010) – PRESIDENCIA DE LA REPÚBLICA DE COLOMBIA
Por el cual se reglamenta el Título VIII de la Ley 99 de 1993 sobre licencias ambientales.
Título II
Competencia y exigibilidad de la licencia ambiental
Artículo 8º. Competencia del Ministerio de Ambiente, Vivienda y Desarrollo Territorial. El Ministerio
de Ambiente, Vivienda y Desarrollo Territorial, otorgará o negará de manera privativa la licencia
ambiental para los siguientes proyectos, obras o actividades:
1. En el sector hidrocarburos:
a) Las actividades de exploración sísmica que requieran la construcción de vías para el tránsito vehicular
y las actividades de exploración sísmica en las áreas marinas del territorio nacional cuando se realicen
en profundidades inferiores a 200 metros;
b) Los proyectos de perforación exploratoria por fuera de campos de producción de hidrocarburos
existentes, de acuerdo con el área de interés que declare el peticionario;
c) La explotación de hidrocarburos que incluye, la perforación de los pozos de cualquier tipo, la
construcción de instalaciones propias de la actividad, las obras complementarias incluidas el transporte
interno de fluidos del campo por ductos, el almacenamiento interno, vías internas y demás
infraestructuras asociada y conexa;
d) El transporte y conducción de hidrocarburos líquidos y gaseosos que se desarrollen por fuera de los
campos de explotación que impliquen la construcción y montaje de infraestructura de líneas de
conducción con diámetros iguales o superiores a 6 pulgadas (15.24 cm), incluyendo estaciones de
bombeo y/o reducción de presión y la correspondiente infraestructura de almacenamiento y control de
flujo; salvo aquellas actividades relacionadas con la distribución de gas natural de uso domiciliario,
comercial o industrial;
e) Los terminales de entrega y estaciones de transferencia de hidrocarburos líquidos, entendidos como
la infraestructura de almacenamiento asociada al transporte de hidrocarburos y sus productos y
derivados por ductos;
f) La construcción y operación de refinerías y los desarrollos petroquímicos que formen parte de un
complejo de refinación;
2. En el sector minero:
La explotación minera de:
a) Carbón: Cuando la explotación proyectada sea mayor o igual a 800.000 ton/año;
b) Materiales de construcción y arcillas o minerales industriales no metálicos: Cuando la producción
proyectada sea mayor o igual a 600.000 ton/año para las arcillas o mayor o igual a 250.000 m3/año para
otros materiales de construcción o para minerales industriales no metálicos;
c) Minerales metálicos y piedras preciosas y semipreciosas: Cuando la remoción total de material útil y
estéril proyectada sea mayor o igual a 2.000.000 de ton/año;
d) Otros minerales y materiales: Cuando la explotación de mineral proyectada sea mayor o igual a
1.000.000 ton/año.
Page 20 of 105
3. La construcción de presas, represas o embalses, cualquiera sea su destinación con capacidad mayor
de 200 millones de metros cúbicos de agua.
4. En el sector eléctrico:
a) La construcción y operación de centrales generadoras de energía eléctrica con capacidad instalada
igual o superior a 100 MW;
b) Los proyectos de exploración y uso de fuentes de energía alternativa virtualmente contaminantes con
capacidad instalada superior a 3MW;
c) El tendido de las líneas de transmisión del Sistema Nacional de Interconexión Eléctrica, compuesto
por el conjunto de líneas con sus correspondientes módulos de conexión (subestaciones) que se
proyecte operen a tensiones iguales o superiores a 220 KV. 5. Los proyectos para la generación de
energía nuclear.
6. En el sector marítimo y portuario:
a) La construcción o ampliación y operación de puertos marítimos de gran calado;
b) Los dragados de profundización de los canales de acceso a puertos marítimos de gran calado y los de
mantenimiento cuyo volumen sea superior a 1000.000 de m3/año;
c) La estabilización de playas y de entradas costeras.
7. La construcción y operación de aeropuertos internacionales y de nuevas pistas en los mismos.
8. Ejecución de obras públicas:
8.1. Proyectos de la red vial nacional referidos a:
a) La construcción de carreteras, incluyendo puentes y demás infraestructura asociada a la misma;
b) La construcción de segundas calzadas;
c) La construcción de túneles con sus accesos;
8.2 Ejecución de proyectos en la red fluvial nacional referidos a:
a) La construcción y operación de puertos públicos;
b) Rectificación de cauces, cierre de brazos, meandros y madreviejas;
c) La construcción de espolones;
d) Desviación de cauces en la red fluvial;
e) Los dragados de profundización en canales navegables y en áreas de deltas;
Page 21 of 105
8.3. La construcción de vías férreas y/o variantes de la red férrea nacional tanto pública como privada;
8.4. La construcción de obras marítimas duras (rompeolas, espolones, construcción de diques) y de
regeneración de dunas y playas;
9. La construcción y operación de distritos de riego y/o de drenaje con coberturas superiores a 20.000
hectáreas;
10. La producción de pesticidas y la importación de los mismos en los siguientes casos:
a) Pesticidas o plaguicidas para uso agrícola, con excepción de los plaguicidas de origen biológico
elaborados con base en extractos naturales. La importación de plaguicidas químicos de uso agrícolas se
ajustará al procedimiento establecido en la Decisión Andina 436 de 1998, o la norma que la modifique o
sustituya;
b) Pesticidas o plaguicidas veterinarios, con excepción de aquellos de uso tópico para mascotas y los
accesorios de uso externo tales como orejeras, collares, narigueras, etc.;
c) Pesticidas o Plaguicidas para uso en salud pública;
d) Pesticidas o plaguicidas para uso industrial;
e) Pesticidas o plaguicidas de uso doméstico, con excepción de aquellos plaguicidas para uso doméstico
en presentación o empaque individual.
11. La importación y/o producción de aquellas sustancias, materiales o productos sujetos a controles
por virtud de tratados, convenios y protocolos internacionales de carácter ambiental, salvo en aquellos
casos en que dichas normas indiquen una autorización especial para el efecto. Tratándose de
Organismos Vivos Modificados - OVM, para lo cual se aplicará en su evaluación y pronunciamiento
únicamente el procedimiento establecido en la Ley 740 de 2002, y en sus decretos reglamentarios o las
normas que lo modifiquen sustituyan o deroguen.
12. Los proyectos que afecten las Áreas del Sistema de Parques Nacionales Naturales:
a) Los proyectos, obras o actividades que afecten las áreas del Sistema de Parques Nacionales Naturales
por realizarse al interior de estas, en el marco de las actividades allí permitidas;
b) Los proyectos, obras o actividades señalados en los artículos 8° y 9° del presente decreto, localizados
en las zonas amortiguadoras del Sistema de Parques Nacionales Naturales previamente determinadas,
siempre y cuando sean compatibles con el Plan de Manejo Ambiental de dichas zonas.
13. Los proyectos, obras o actividades a realizarse al interior de las áreas protegidas públicas nacionales
de que trata el Decreto 2372 del 1° de julio de 2010, distintos a los enunciados en el numeral anterior,
siempre que el uso sea permitido de acuerdo a la categoría de manejo respectiva e impliquen la
construcción de infraestructura en las zonas de uso sostenible y general de uso público, o se trate de
proyectos de agroindustria, a excepción de las unidades habitacionales, siempre que su desarrollo sea
compatible con los usos definidos.
Page 22 of 105
14. Los proyectos que adelanten las Corporaciones Autónomas Regionales a que hace referencia el
inciso segundo del numeral 19 del artículo 31 de la Ley 99 de 1993.
15. Los proyectos que requieran trasvase de una cuenca a otra con corrientes de agua que excedan de 2
m3/seg durante los períodos de mínimo caudal.
16. La introducción al país de parentales, especies, subespecies, razas, híbridos o variedades foráneas
con fines de cultivo, levante, control biológico, reproducción y/o comercialización, para establecerse o
implantarse en medios naturales o artificiales, que puedan afectar la estabilidad de los ecosistemas o de
la vida silvestre.
La Licencia Ambiental contemplará la fase de investigación o experimental y la fase comercial. La fase de
investigación involucra las etapas de importación del pie parental y de material vegetal para la
propagación, la instalación o construcción del zoocriadero o vivero y las actividades de investigación o
experimentación del proyecto. Para autorizar la fase comercial se requerirá modificación de la Licencia
Ambiental.
Parágrafo 1º. Para los proyectos de hidrocarburos en donde el área de interés de explotación
corresponda al área de interés de exploración previamente licenciada, el interesado podrá solicitar la
modificación de la licencia de exploración para realizar las actividades de explotación. En este caso se
aplicará lo dispuesto en el artículo 4° del presente decreto.
Parágrafo 2º. En lo que respecta al numeral 12 del presente decreto, previamente a la decisión sobre la
licencia ambiental, el Ministerio de Ambiente, Vivienda y Desarrollo Territorial contará con el concepto
de la Unidad Administrativa Especial del Sistema de Parques Nacionales Naturales.
Los senderos de interpretación, los utilizados para investigación y para ejercer acciones de control y
vigilancia, así como los proyectos, obras o actividades adelantadas para cumplir las funciones de
administración de las áreas protegidas que estén previstas en el plan de manejo correspondiente, no
requerirán Licencia Ambiental.
Parágrafo 3º. Los zoocriaderos de especies foráneas a los que se refiere el numeral 16 del presente
artículo, no podrán adelantar actividades comerciales con individuos introducidos, ni con su producción,
en ninguno de sus estadios biológicos, a menos que el Ministerio de Ambiente, Vivienda y Desarrollo
Territorial los haya autorizado como predio proveedores y solamente cuando dichos especímenes se
destinen a establecimientos legalmente autorizados para su manejo en ciclo cerrado.
Parágrafo 4º. No se podrá autorizar la introducción al país de parentales de especies, subespecies, razas
o variedades foráneas que hayan sido declaradas como invasoras o potencialmente invasoras por el
Ministerio de Ambiente, Vivienda y Desarrollo Territorial con el soporte técnico y científico de los
Institutos de Investigación Científica Territorial con el soporte técnico y científico de los Institutos de
Investigación Científica vinculados al Ministerio.
Parágrafo 5º. El Ministerio de Ambiente, Vivienda y Desarrollo Territorial, podrá señalar mediante
resolución motivada las especies foráneas, que hayan sido introducidas irregularmente al país y puedan
ser objeto de actividades de cría en ciclo cerrado. Lo anterior sin perjuicio de la imposición de las
medidas preventivas y sancionatorias a que haya lugar.
Page 23 of 105
Artículo 9º. Competencia de las Corporaciones Autónomas Regionales. Las Corporaciones Autónomas
Regionales, las de Desarrollo Sostenible, los Grandes Centros Urbanos y las autoridades ambientales
creadas mediante la Ley 768 de 2002, otorgarán o negarán la licencia ambiental para los siguientes
proyectos, obras o actividades, que se ejecuten en el área de su jurisdicción.
1. En el sector minero
La explotación minera de:
a) Carbón: Cuando la explotación proyectada sea menor a 800.000 ton/año;
b) Materiales de construcción y arcillas o minerales industriales no metálicos: Cuando la producción
proyectada de mineral sea menor a 600.000 ton/año para arcillas o menor a 250.000 m3/año para otros
materiales de construcción o para minerales industriales no metálicos;
c) Minerales metálicos, piedras preciosas y semipreciosas: Cuando la remoción total de material útil y
estéril proyectada sea menor a 2.000.000 de ton/año;
d) Otros minerales y materiales: Cuando la explotación de mineral proyectada sea menor a 1.000.000
ton/año.
2. Siderúrgicas, cementeras y plantas concreteras fijas cuya producción de concreto sea superior a
10.000m3/mes.
3. La construcción de presas, represas o embalses con capacidad igual o inferior a 200 millones de
metros cúbicos de agua.
4. En el sector eléctrico:
a) La construcción y operación de centrales generadoras con una capacidad mayor o igual a 10 y menor
de 100 MW, diferentes a las centrales generadoras de energía a partir del recurso hídrico;
b) El tendido de líneas del sistema de transmisión conformado por el conjunto de líneas con sus equipos
asociados, que operan a tensiones menores de 220 KV y que no pertenecen a un sistema de distribución
local;
c) La construcción y operación de centrales generadoras de energía a partir del recurso hídrico con una
capacidad menor a 100 MW; exceptuando las pequeñas hidroeléctricas destinadas a operar en Zonas No
Interconectadas (ZNI) y cuya capacidad sea igual o menor a 10 MW;
5. En el sector marítimo y portuario:
a) La construcción, ampliación y operación de puertos marítimos que no sean de gran calado;
b) Los dragados de profundización de los canales de acceso a los puertos que no sean considerados
como de gran calado;
c) La ejecución de obras privadas relacionadas con la construcción de obras duras (rompeolas,
espolones, construcción de diques) y de regeneración de dunas y playas.
6. La construcción y operación de aeropuertos del nivel nacional y de nuevas pistas en los mismos.
Page 24 of 105
7. Proyectos en la red vial secundaria y terciaria:
a) La construcción de carreteras; incluyendo puentes y demás infraestructura asociada a la misma;
b) La construcción de nuevas calzadas;
c) La construcción de túneles con sus accesos.
8. Ejecución de obras de carácter privado en la red fluvial nacional:
a) La construcción y operación de puertos;
b) Rectificación de cauces, cierre de brazos, meandros y madreviejas;
c) La construcción de espolones;
d) Desviación de cauces en la red fluvial;
e) Los dragados de profundización en canales y en áreas de deltas.
9. La construcción de vías férreas de carácter regional y/o variantes de estas tanto públicas como
privadas.
10. La construcción y operación de instalaciones cuyo objeto sea el almacenamiento, aprovechamiento,
recuperación y/o disposición final de residuos o desechos peligrosos, y la construcción y operación de
rellenos de seguridad para residuos hospitalarios en los casos en que la normatividad sobre la materia lo
permita.
11. La construcción y operación de instalaciones cuyo objeto sea el almacenamiento, tratamiento,
aprovechamiento (recuperación/reciclado) y/o disposición final de Residuos de Aparatos Eléctricos y
Electrónicos (RAEE) y de residuos de pilas y/o acumuladores.
Las actividades de reparación y reacondicionamiento de aparatos eléctricos y electrónicos usados no
requieren de licencia ambiental.
12. La construcción y operación de plantas cuyo objeto sea el aprovechamiento y valorización de
residuos sólidos orgánicos biodegradables mayores o iguales a 20.000 toneladas/año.
13. La construcción y operación de rellenos sanitarios; no obstante la operación únicamente podrá ser
adelantada por las personas señaladas en el artículo 15 de la Ley 142 de 1994.
14. La construcción y operación de sistemas de tratamiento de aguas residuales que sirvan a
poblaciones iguales o superiores a 200.000 habitantes.
15. La industria manufacturera para la fabricación de:
a) Sustancias químicas básicas de origen mineral;
Page 25 of 105
b) Alcoholes;
c) Ácidos inorgánicos y sus compuestos oxigenados;
16. Los proyectos cuyo objeto sea el almacenamiento de sustancias peligrosas, con excepción de los
hidrocarburos.
17. La construcción y operación de distritos de riego y/o drenaje para áreas mayores o iguales a 5.000
hectáreas e inferiores o iguales a 20.000 hectáreas.
18. Los proyectos que requieran trasvase de una cuenca a otra de corrientes de agua igual o inferior a
2 m3/seg. Durante los períodos de mínimo caudal.
19. La caza comercial y el establecimiento de zoocriaderos con fines comerciales.
20. Los proyectos, obras o actividades a realizarse al interior de las áreas protegidas públicas regionales,
de que trata el Decreto 2372 del 1° de julio de 2010, siempre que el uso sea permitido de acuerdo a la
categoría de manejo respectiva e impliquen la construcción de infraestructura en las zonas de uso
sostenible y general de uso público, o se trate de proyectos de agroindustria, a excepción de las
unidades habitacionales, siempre que su desarrollo sea compatible con los usos definidos.
Parágrafo 1º. Las Corporaciones Autónomas Regionales ejercerán la competencia a que se refiere el
numeral 5 del presente artículo, sin perjuicio de las competencias que corresponden a otras autoridades
ambientales sobre las aguas marítimas, terrenos de bajamar y playas.
Así mismo, dichas autoridades deberán en los casos contemplados en los literales b) y c) del citado
numeral, solicitar concepto al Invemar sobre los posibles impactos ambientales en los ecosistemas
marinos y costeros que pueda generar el proyecto, obra o actividad objeto de licenciamiento ambiental.
Parágrafo 2º. Para los efectos del numeral 19 del presente artículo, la licencia ambiental contemplará
las fases experimental y comercial. La fase experimental incluye las actividades de caza de fomento,
construcción o instalación del zoocriadero y las actividades de investigación del proyecto. Para autorizar
la fase comercial se requerirá modificación de la licencia ambiental previamente otorgada para la fase
experimental.
Cuando las actividades de caza de fomento se lleven a cabo fuera del área de jurisdicción de la entidad
competente para otorgar la licencia ambiental, la autoridad ambiental con jurisdicción en el área de
distribución del recurso deberá expedir un permiso de caza de fomento de conformidad con lo
establecido en la normatividad vigente. De igual forma, no se podrá autorizar la caza comercial de
individuos de especies sobre las cuales exista veda o prohibición.
Parágrafo 3º. Las Corporaciones Autónomas Regionales solamente podrán otorgar licencias ambientales
para el establecimiento de zoocriaderos con fines comerciales de especies exóticas en ciclo cerrado,
para tal efecto, el pie parental deberá provenir de un zoocriadero con fines comerciales que cuente con
licencia ambiental y se encuentre debidamente autorizado como predio proveedor.
Page 26 of 105
Parágrafo 4º. Cuando de acuerdo con las funciones señaladas en la ley, la licencia ambiental para la
construcción y operación para los proyectos, obras o actividades de que trata este artículo, sea
solicitada por las Corporaciones Autónomas Regionales, las de Desarrollo sostenible y las autoridades
ambientales a que se refiere el artículo 66 de la Ley 99 de 1993 y el artículo 13 de la Ley 768 de 2002,
esta será de competencia del Ministerio de Ambiente, Vivienda y Desarrollo Territorial.
Así mismo, cuando las mencionadas autoridades, manifiesten conflicto para el otorgamiento de una
licencia ambiental, el Ministerio de Ambiente, Vivienda y Desarrollo Territorial podrá asumir la
competencia del licenciamiento ambiental del proyecto, en virtud de lo dispuesto en el numeral 31 del
artículo 5° de la citada ley.
Parágrafo 5º. Las Corporaciones Autónomas Regionales y demás autoridades ambientales no tendrán
las competencias señaladas en el presente artículo, cuando los proyectos, obras o actividades formen
parte de un proyecto cuya licencia ambiental sea de competencia privativa del Ministerio de Ambiente,
Vivienda y Desarrollo Territorial.
Título IV
Procedimiento para la obtención de la licencia ambiental
Artículo 23º. De la evaluación del Diagnóstico Ambiental de Alternativas - DAA. En los casos
contemplados en el artículo 18 del presente decreto, se surtirá el siguiente procedimiento:
1. El interesado en obtener licencia ambiental deberá formular petición por escrito dirigida a la
autoridad ambiental competente, en la cual solicitará que se determine si el proyecto, obra o actividad
requiere o no de la elaboración y presentación de Diagnóstico Ambiental de Alternativas - DAA,
adjuntando para el efecto, la descripción, el objetivo y alcance del proyecto y su localización mediante
coordenadas y planos.
Dentro de los quince (15) días hábiles siguientes a la radicación de la solicitud, la autoridad ambiental se
pronunciará, mediante oficio acerca de la necesidad de presentar o no DAA, adjuntando los términos de
referencia para elaboración del DAA o del EIA según el caso.
2. En caso de requerir DAA, el interesado deberá radicar el estudio de que trata el artículo 19 del
presente decreto, junto con una copia del documento de identificación y el certificado de existencia y
representación legal, en caso de ser persona jurídica. Recibida la anterior información, la autoridad
ambiental competente dentro de los cinco (5) días siguientes a su presentación dictará un acto
administrativo de inicio de trámite de evaluación de Diagnóstico Ambiental de Alternativas, DAA, auto
que será publicado en los términos del artículo 70 de la Ley 99 de 1993.
Para proyectos hidroeléctricos, se deberá presentar copia del registro correspondiente expedido por la
Unidad de Planeación Minero Energética (UPME); así mismo la autoridad ambiental competente
solicitará a esta entidad concepto técnico relativo al potencial energético de las diferentes alternativas.
En este caso se suspenderán los términos que tiene la autoridad ambiental para decidir, mientras dicha
entidad realiza el respectivo pronunciamiento.
3. Ejecutoriado el auto de inicio de trámite, la autoridad ambiental competente en un plazo de treinta
(30) días hábiles, evaluará el DAA y elegirá la alternativa sobre la cual deberá elaborarse el
Page 27 of 105
correspondiente Estudio de Impacto Ambiental y fijará los términos de referencia respectivos, mediante
acto administrativo que se publicará en los términos del artículo 71 de la Ley 99 de 1993.
Artículo 24º. De la solicitud de licencia ambiental y sus requisitos. En los casos en que no se requiera
pronunciamiento sobre la exigibilidad del Diagnóstico Ambiental de Alternativas (DAA) o una vez surtido
dicho procedimiento, el interesado en obtener Licencia Ambiental deberá radicar ante la autoridad
ambiental competente, el Estudio de Impacto Ambiental de que trata el artículo 21 del presente decreto
y anexar la siguiente documentación:
1. Formulario Único de Licencia Ambiental.
2. Plano de localización del proyecto, obra o actividad, con base en la cartografía del Instituto Geográfico
Agustín Codazzi (IGAC)
3. Costo estimado de inversión y operación del proyecto.
4. Poder debidamente otorgado cuando se actúe por medio de apoderado.
5. Constancia de pago para la prestación del servicio de evaluación de la licencia ambiental. Para las
solicitudes radicadas ante el Ministerio de Ambiente, Vivienda y Desarrollo Territorial, se deberá realizar
la autoliquidación previo a la presentación de la solicitud de licencia ambiental.
6. Documento de identificación o certificado de existencia y representación legal, en caso de personas
jurídicas.
7. Certificado del Ministerio del Interior y de Justicia sobre presencia o no de comunidades étnicas en el
área de influencia del proyecto.
8. Certificado del Incoder sobre la existencia o no de territorios legalmente titulados a resguardos
indígenas o títulos colectivos pertenecientes a comunidades afrocolombianas en el área de influencia
del proyecto.
9. Copia de la radicación ante el Instituto Colombiano de Arqueología e Historia, ICANH, del Programa de
Arqueología Preventiva, en los casos en que sea exigible dicho programa de conformidad con la Ley
1185 de 2008;
Parágrafo 1º. Los interesados en a ejecución de proyectos mineros deberán allegar copia del título
minero y/o el contrato de concesión minera debidamente otorgado e inscrito en el Registro Minero
Nacional. Así mismo los interesados en la ejecución de proyectos de hidrocarburos deberán allegar copia
del contrato respectivo.
Parágrafo 2º. El Ministerio de Ambiente, Vivienda y Desarrollo Territorial dentro de los tres (3) meses
siguientes a la publicación del presente decreto, actualizará el Formato Único Nacional de Solicitud de
Licencia Ambiental.
Page 28 of 105
Parágrafo 3º. Una vez, entre en operación la Ventanilla Integral de Trámites Ambientales en Línea
(VITAL) de que trata el artículo 46, se indicará la documentación que deberá ser adjuntada o diligenciada
a través de dicho aplicativo.
Parágrafo 4º. Cuando se trate de proyectos, obras o actividades de competencia del Ministerio de
Ambiente, Vivienda y Desarrollo Territorial, el peticionario deberá igualmente radicar una copia del
Estudio de Impacto Ambiental ante las respectivas autoridades ambientales regionales. De la anterior
radicación se deberá allegar constancia al Ministerio en el momento de la solicitud de Licencia
Ambiental.
Parágrafo 5º. Las solicitudes de Licencia Ambiental para proyectos de explotación minera de carbón,
deberán incluir los estudios sobre las condiciones del modo de transporte desde el sitio de explotación
de carbón hasta el puerto de embarque del mismo, de acuerdo con lo establecido en el Decreto 3083 de
2007 o la norma que lo modifique o sustituya.
Artículo 25º. De la evaluación del estudio de impacto ambiental. Una vez realizada la solicitud de
Licencia Ambiental se surtirá el siguiente procedimiento:
1. A partir de la fecha de radicación del Estudio de Impacto Ambiental con el lleno de los requisitos
establecidos para el efecto en los artículos 21 y 24 del presente decreto, la autoridad ambiental
competente, contará con cinco (5) días hábiles para expedir el auto de inicio de trámite de Licencia
Ambiental el cual deberá publicarse en los términos del artículo 70 de la Ley 99 de 1993.
2. Ejecutoriado el auto de inicio de trámite, dentro de los quince (15) días hábiles siguientes la autoridad
ambiental, solicitará a otras autoridades o entidades los conceptos técnicos o informaciones
pertinentes, que deben ser remitidos en un plazo no superior a veinte (20) días hábiles, contados desde
la fecha de radicación de la comunicación correspondiente.
3. Recibida la información o vencido el término de requerimiento de informaciones a otras autoridades
o entidades, la autoridad ambiental podrá solicitar al interesado dentro de los veinte (20) días hábiles
siguientes mediante el correspondiente acto administrativo, la información adicional que se considere
pertinente. En este caso se suspenderán los términos que tiene la autoridad para decidir de
conformidad con lo establecido en el artículo 12 y 13 del C.C.A. (Código Contencioso Administrativo –
Decreto 1 de 1984).
4. Allegada la información por parte del interesado, la autoridad ambiental en un término de cinco (5)
días hábiles expedirá el auto de trámite que declare reunida toda la información requerida para decidir.
Así mismo, el interesado podrá hasta antes de la expedición del citado auto, aportar nuevos
documentos o informaciones relacionados con el proyecto, obra o actividad, caso en el cual los plazos y
términos que tiene la autoridad para decidir comenzarán a contarse desde la ejecutoria del auto que da
inicio al trámite siempre y cuando dicha información implique una nueva visita de evaluación o un nuevo
requerimiento por parte de la autoridad ambiental a cargo.
5. La autoridad ambiental competente decidirá la viabilidad del proyecto, obra o actividad, en un
término no mayor a veinticinco (25) días hábiles, contados a partir de la expedición del auto que declare
reunida la información, la cual será publicada en los términos del artículo 71 de la Ley 99 de 1993.
Page 29 of 105
6. Contra la resolución por la cual se otorga o se niega la Licencia Ambiental procede el recurso de
reposición ante la misma autoridad ambiental que profirió el acto.
Parágrafo 1º. Al efectuar el cobro del servicio de evaluación, las autoridades ambientales tendrán en
cuenta el sistema y método de cálculo establecido en el artículo 96 de la Ley 633 de 2000 y sus normas
reglamentarias.
Parágrafo 2º. Cuando se trate de proyectos, obras o actividades de competencia del Ministerio de
Ambiente, Vivienda y Desarrollo Territorial, la autoridad o autoridades ambientales con jurisdicción en el
área del proyecto en donde se pretenda hacer uso y/o aprovechamiento de los recursos naturales
renovables tendrán un término máximo de treinta (30) días hábiles, contados a partir de la radicación
del Estudio de Impacto Ambiental por parte del usuario, para emitir el respectivo concepto sobre los
mismos y enviarlo al Ministerio.
Así mismo, y en el evento en que se haya hecho requerimiento de información adicional sobre el uso y/o
aprovechamiento de los recursos naturales renovables, las autoridades ambientales de que trata el
presente parágrafo deberán en un término máximo de quince (15) días hábiles, contados a partir de la
radicación de la información adicional por parte del interesado, emitir el correspondiente concepto
técnico sobre los mismos.
Una vez vencido el término antes indicado sin que las autoridades se hayan pronunciado el Ministerio
procederá a pronunciarse en la licencia ambiental.
Parágrafo 3º. En el evento en que durante el trámite de licenciamiento ambiental se solicite o sea
necesaria la celebración de una audiencia pública ambiental de conformidad con lo establecido en el
artículo 72 de la Ley 99 de 1993 y el Decreto 330 de 2007 o la norma que lo modifique o sustituya, se
suspenderán los términos que tiene la autoridad del edicto a través del cual se convoca la audiencia
pública hasta el día de su celebración.
Artículo 26º. Superposición de proyectos. La autoridad ambiental competente podrá otorgar licencia
ambiental a proyectos cuyas áreas se superpongan con proyectos licenciados, siempre y cuando el
interesado en el proyecto a licenciar demuestre que estos pueden coexistir e identifique además, el
manejo y la responsabilidad individual de los impactos ambientales generados en el área superpuesta.
Para el efecto el interesado en el proyecto a licenciar deberá informar a la autoridad ambiental sobre la
superposición, quien a su vez, deberá comunicar tal situación al titular de la licencia ambiental objeto de
superposición con el fin de que conozca dicha situación y pueda pronunciarse al respecto en los
términos de ley.
Artículo 27º. De las Corporaciones Autónomas de Desarrollo Sostenible. En desarrollo de lo dispuesto
en los artículos 34, 35 y 36 de la Ley 99 de 1993, para el otorgamiento de las licencias ambientales
relativas a explotaciones mineras y de construcción de infraestructura vial, las Corporaciones
Autónomas de Desarrollo Sostenible, a que hacen referencia los citados artículos, deberán de manera
previa al otorgamiento enviar al Ministerio de Ambiente, Vivienda y Desarrollo Territorial, el proyecto de
acto administrativo que decida sobre la viabilidad del proyecto, junto con el concepto técnico y el acta
en donde se pone en conocimiento del Consejo Directivo el proyecto.
Page 30 of 105
El Ministerio en un término máximo de veinte (20) días hábiles contados a partir de su radicación,
deberá emitir el correspondiente concepto de aprobación del proyecto para que sea tenido en cuenta
por parte de la autoridad ambiental.
Una vez emitido el mencionado concepto, la autoridad ambiental competente deberá decidir sobre la
viabilidad del proyecto en los términos de lo dispuesto en los numerales 5 y 6 del artículo 25 del
presente decreto.
Artículo 28º. Contenido de la licencia ambiental. El acto administrativo en virtud del cual se otorga una
licencia ambiental contendrá:
1. La identificación de la persona natural o jurídica, pública o privada a quién se autoriza la ejecución o
desarrollo de un proyecto, obra o actividad, indicando el nombre o razón la ejecución o desarrollo de un
proyecto, obra o actividad, indicando el nombre o razón social, documento de identidad y domicilio.
2. El objeto general y localización del proyecto, obra o actividad.
3. Un resumen de las consideraciones y motivaciones de orden ambiental que han sido tenidas en
cuenta para el otorgamiento de la licencia ambiental.
4. Lista de las diferentes actividades y obras que se autorizan con la licencia ambiental.
5. Los recursos naturales renovables que se autoriza utilizar, aprovechar y/o afectar, así mismo las
condiciones, prohibiciones y requisitos de su uso.
6. Los requisitos, condiciones y obligaciones adicionales al Plan de Manejo Ambiental presentado que
debe cumplir el beneficiario de la licencia ambiental durante la construcción, operación, mantenimiento,
desmantelamiento y abandono y/o terminación del proyecto, obra o actividad.
7. La obligatoriedad de publicar el acto administrativo, conforme al artículo 71 de la Ley 99 de 1993.
8. Las demás que estime la autoridad ambiental competente.
LEY 697 DE 2001 (OCTUBRE 3 DE 2001) – CONGRESO DE LA REPÚBLICA DE COLOMBIA
Mediante la cual se fomenta el uso racional y eficiente de la energía, se promueve la utilización de
energías alternativas y se dictan otras disposiciones.
Artículo 3º. Definiciones. Para efectos de interpretar y aplicar la presente ley se entiende por
9. Fuentes no convencionales de energía: Para efectos de la presente ley son fuentes no convencionales
de energía, aquellas fuentes de energía disponibles a nivel mundial que son ambientalmente
sostenibles, pero que en el país no son empleadas o son utilizadas de manera marginal y no se
comercializan ampliamente.
Page 31 of 105
13. Biomasa: Es cualquier tipo de materia orgánica que ha tenido su origen inmediato como
consecuencia de un proceso biológico y toda materia vegetal originada por el proceso de fotosíntesis,
así como de los procesos metabólicos de los organismos heterótrofos.
Artículo 10º. El Gobierno Nacional a través de los programas que se diseñen, incentivará y promoverá a
las empresas que importen o produzcan piezas, calentadores, paneles solares, generadores de biogás,
motores eólicos, y/o cualquier otra tecnología o producto que use como fuente total o parcial las
energías no convencionales, ya sea con destino a la venta directa al público o a la producción de otros
implementos, orientados en forma específica a proyectos en el campo URE, de acuerdo a las normas
legales vigentes.
LEY 99 DE 1993 (DICIEMBRE 22 DE 1993) – CONGRESO DE LA REPÚBLICA DE COLOMBIA
Por la cual se crea el Ministerio del Medio Ambiente, se reordena el Sector Público encargado de la
gestión y conservación del medio ambiente y los recursos naturales renovables, se organiza el Sistema
Nacional Ambiental, SINA, y se dictan otras disposiciones.
Título VIII
De las licencias ambientales
Artículo 49º. De la Obligatoriedad de la Licencia Ambiental. La ejecución de obras, el establecimiento de
industrias o el desarrollo de cualquier actividad, que de acuerdo con la ley y los reglamentos, pueda
producir deterioro grave a los recursos naturales renovables o al medio ambiente o introducir
modificaciones considerables o notorias al paisaje requerirán de una Licencia Ambiental.
LEY 633 DE 2000 (DICIEMBRE 29 DE 2000) – CONGRESO DE LA REPÚBLICA DE COLOMBIA
Por la cual se expiden normas en materia tributaria, se dictan disposiciones sobre el tratamiento a los
fondos obligatorios para la vivienda de interés social y se introducen normas para fortalecer las finanzas
de la Rama Judicial.
Capítulo V
Otras disposiciones
Artículo 96º. Tarifa de las licencias ambientales y otros instrumentos de control y manejo
ambiental. Modifícase el artículo 28 de la Ley 344 de 1996, el cual quedará así:
Page 32 of 105
“Artículo 28º. Las autoridades ambientales cobrarán los servicios de evaluación y los servicios de
seguimiento de la licencia ambiental, permisos, concesiones, autorizaciones y demás instrumentos de
control y manejo ambiental establecidos en la ley y los reglamentos.
Los costos por concepto de cobro de los citados servicios que sean cobrados por el Ministerio del Medio
Ambiente entrarán a una subcuenta especial del Fonam y serán utilizados para sufragar los costos de
evaluación y seguimiento en que deba incurrir el Ministerio para la prestación de estos servicios.
De conformidad con el artículo 338 de la Constitución Nacional para la fijación de las tarifas que se
autorizan en este artículo, el Ministerio del Medio Ambiente y las autoridades ambientales aplicarán el
sistema que se describe a continuación. La tarifa incluirá:
a) El valor total de los honorarios de los profesionales requeridos para la realización de la tarea
propuesta;
b) El valor total de los viáticos y gastos de viaje de los profesionales que se ocasionen para el estudio, la
expedición, el seguimiento y/o el monitoreo de la licencia ambiental, permisos, concesiones o
autorizaciones y demás instrumentos de control y manejo ambiental establecidos en la ley y los
reglamentos;
c) El valor total de los análisis de laboratorio u otros estudios y diseños técnicos que sean requeridos
tanto para la evaluación como para el seguimiento.
Las autoridades ambientales aplicarán el siguiente método de cálculo: Para el literal a) se estimará el
número de profesionales/mes o contratistas/mes y se aplicarán las categorías y tarifas de sueldos de
contratos del Ministerio del Transporte y para el caso de contratistas Internacionales, las escalas
tarifarias para contratos de consultoría del Banco Mundial o del PNUD; para el literal b) sobre un
estimativo de visitas a la zona del proyecto se calculará el monto de los gastos de viaje necesarios,
valorados de acuerdo con las tarifas del transporte público y la escala de viáticos del Ministerio del
Medio Ambiente; para el literal c) el costo de los análisis de laboratorio u otros trabajos técnicos será
incorporado en cada caso, de acuerdo con las cotizaciones específicas. A la sumatoria de estos tres
costos a), b), y c) se le aplicará un porcentaje que anualmente fijará el Ministerio del Medio Ambiente
por gastos de administración.
Las tarifas que se cobran por concepto de la prestación de los servicios de evaluación y de los servicios
de seguimiento ambiental, según sea el caso, no podrán exceder los siguientes topes:
1. Aquellos que tengan un valor de dos mil ciento quince (2.115) salarios mínimos mensuales vigentes
tendrán una tarifa máxima del cero punto seis por ciento (0.6%).
2. Aquellos que tengan un valor superior a los dos mil ciento quince (2.115) salarios mínimos mensuales
vigentes e inferior a los ocho mil cuatrocientos cincuenta y ocho (8.458) salarios mínimos mensuales
vigentes tendrán una tarifa máxima del cero punto cinco por ciento (0.5%).
Page 33 of 105
3. Aquellos que tengan un valor superior a los ocho mil cuatrocientos cincuenta y ocho (8.458) salarios
mínimos mensuales vigentes, tendrán una tarifa máxima del cero punto cuatro por ciento (0.4%).
Las autoridades ambientales prestarán los servicios ambientales de evaluación y seguimiento a que hace
referencia el presente artículo a través de sus funcionarios o contratistas.
Los ingresos por concepto de los permisos de importación y exportación de especies de fauna y flora
silvestres no Cites, los establecidos en la Convención Internacional sobre Comercio de Especies
Amenazadas de Fauna y Flora Silvestres Cites, los de fabricación y distribución de sistemas de marcaje
de especies de la biodiversidad y los ingresos percibidos por concepto de ecoturismo ingresarán al
Fondo Nacional Ambiental, Fonam".
RESOLUCIÓN 1280 DE 2010 (JULIO 7 DE 2010) – MINISTERIO DE AMBIENTE, VIVIENDA Y
DESARROLLO TERRITORIAL DE COLOMBIA
Por la cual se establece la escala tarifaria para el cobro de los servicios de evaluación y seguimiento de
las licencias ambientales, permisos, concesiones, autorizaciones y demás instrumentos de manejo y
control ambiental para proyectos cuyo valor sea inferior a 2.115 smmv (salarios mínimos mensuales) y
se adopta la tabla única para la aplicación de los criterios definidos en el sistema y método definido en el
artículo 96 de la Ley 633 para la liquidación de la tarifa.
Artículo 1º. Establecer la siguiente escala tarifaria para el cobro de los servicios de evaluación y
seguimiento de las licencias ambientales, permisos, concesiones, autorizaciones y demás instrumentos
de manejo y control ambiental que deban tramitar las Corporaciones Autónomas Regionales, las de
Desarrollo Sostenible, los Grandes Centros Urbanos y las autoridades ambientales creadas mediante la
Ley 768 de 2002, para proyectos, obras o actividades cuyo valor sea inferior a 2.115 salarios mínimos
mensuales (smmv):
Valor proyecto Tarifa máxima
Menores a 25 SMMV
Igual o superior a 25 SMMV e inferior a 35 SMMV
Igual o superior a 35 SMMV e inferior a 50 SMMV
Igual o superior a 50 SMMV e inferior a 70 SMMV
Igual o superior a 70 SMMV e inferior a 100 SMMV
Igual o superior a 100 SMMV e inferior a 200 SMMV
Igual o superior a 200 SMMV e inferior a 300 SMMV
Igual o superior a 300 SMMV e inferior a 400 SMMV
Igual o superior a 400 SMMV e inferior a 500 SMMV
Igual o superior a 500 SMMV e inferior a 700 SMMV
Igual o superior a 700 SMMV e inferior a 900 SMMV
Igual o superior a 900 SMMV e inferior a 1500 SMMV
Igual o superior a 1500 SMMV e inferior a 2115
SMMV
Valor proyecto Tarifa máxima
$ 76,941.00
$ 1 07,841.00
$ 1 54,191.00
$ 2 15,991.00
$ 3 08,691.00
$ 6 17,691.00
$ 9 26,691.00
$ 1,235,691.00
$ 1,544,691.00
$ 2,162,691.00
$ 2,780,691.00
$ 4,634,691.00
$ 6,535,041.00
Page 34 of 105
Parágrafo. Las tarifas máximas establecidas en la escala tarifaria definida en el presente artículo,
deberán ser actualizadas anualmente por las Corporaciones Autónomas Regionales, las de Desarrollo
Sostenible, los Grandes Centros Urbanos y las autoridades ambientales creadas por la Ley 768 de 2002,
de conformidad con el Índice de Precios al Consumidor (IPC), Total nacional del año inmediatamente
anterior, fijado por el Departamento Administrativo Nacional de Estadística (DANE).
RESOLUCIÓN 0909 DE 2008 (JUNIO 5 DE 2008) – MINISTERIO DE AMBIENTE VIVIENDA Y
DESARROLLO TERRITORIAL DE COLOMBIA
Por la cual se establecen las normas y estándares de emisión admisibles de contaminantes a la
atmósfera por fuentes fijas y se dictan otras disposiciones.
Capítulo III
Estándares de emisión admisibles de contaminantes al aire para equipos de combustión externa
Artículo 7º. Estándares de emisión admisibles para equipos de combustión externa existentes. En la
Tabla 4 se establecen los estándares de emisión admisibles para equipos de combustión externa
existentes a condiciones de referencia, de acuerdo al tipo de combustible y con oxígeno de referencia
del 11%.
Tabla 4
Estándares de emisión admisibles para equipos de combustión externa existentes a condiciones de
referencia (25ºC, 760 mm Hg) con oxígeno de referencia del 11%
Combustible
Estándares de emisión admisibles
(mg/m3)
MP
SO2
Nox
Sólido
200
500
350
Líquido
200
500
350
Gaseoso
NO APLICA
NO APLICA
350
Parágrafo. Las calderas existentes que tengan una producción de vapor superior a 25 toneladas por hora
deben cumplir con los estándares de emisión admisibles establecidos en el artículo 13.
Page 35 of 105
Artículo 8º. Estándares de emisión admisibles para equipos de combustión externa nuevos. En la Tabla 5
se establecen los estándares de emisión admisibles para equipos de combustión externa nuevos a
condiciones de referencia, de acuerdo al tipo de combustible y con oxígeno de referencia del 11%.
Tabla 5
Estándares de emisión admisibles para equipos de combustión externa nuevos, a condiciones de
referencia (25ºC, 760 mm Hg) con oxígeno de referencia del 11%
Combustible
Estándares de emisión admisibles
(mg/m3)
MP
SO2
NOx
Sólido
50
500
350
Líquido
50
500
350
Gaseoso
NO APLICA
NO APLICA
350
Parágrafo. Las calderas nuevas que tengan una producción de vapor superior a 25 toneladas por hora
deben cumplir con los estándares de emisión admisibles establecidos en el artículo 14.
Capítulo IV
Estándares de emisión admisibles de contaminantes al aire para centrales térmicas con capacidad
instalada igual o superior a 20 MW
Artículo 9º. Estándares de emisión admisibles de contaminantes al aire para centrales térmicas
existentes con capacidad instalada igual o superior a 20 MW. En la Tabla 6 se establecen los estándares
de emisión admisibles para cada uno de los puntos de descarga de las centrales térmicas existentes con
capacidad igual o superior a 20 MW por tipo de combustible y condiciones de referencia. Los datos
medidos serán corregidos al oxígeno de referencia correspondiente.
Page 36 of 105
Tabla 6
Estándares de emisión admisibles de contaminantes al aire para centrales térmicas existentes con
capacidad instalada igual o superior a 20 MW por tipo de combustible, a condiciones de referencia
(25ºC, 760 mm Hg)
Combustible
Estándares de emisión admisibles (mg/m3)
Oxígeno
referencia
MP
SO2
NOx
Sólido
100
2800
760
6%
Líquido
100
2000
650
3%
Gaseoso
NO APLICA
NO APLICA
300
3%
de
Artículo 10º. Estándares de emisión admisibles de contaminantes al aire para centrales térmicas nuevas
con capacidad instalada igual o superior a 20 MW. En la Tabla 7 se establecen los estándares de emisión
admisibles para cada uno de los puntos de descarga de las centrales térmicas nuevas con capacidad
igual o superior a 20 MW, por tipo de combustible y condiciones de referencia. Los datos medidos serán
corregidos al oxígeno de referencia correspondiente.
Tabla 7
Estándares de emisión admisibles de contaminantes al aire para centrales térmicas nuevas con
capacidad igual o superior a 20 MW por tipo de combustible, a condiciones de referencia (25ºC, 760
mm Hg)
Combustible
Estándares de emisión admisibles (mg/m3)
Oxígeno
referencia
MP
SO2
NOx
Sólido
50
2000
600
6%
Líquido
50
2000
450
3%
Gaseoso
NO APLICA
NO APLICA
300
3%
de
Artículo 11º. Centrales térmicas que utilicen turbinas a gas con capacidad igual o superior a 20 MW. En
la Tabla 8 se establecen los estándares de emisión admisibles para centrales térmicas nuevas y
existentes que utilicen turbinas a gas con capacidad igual o superior a 20 MW, por tipo de combustible a
condiciones de referencia y oxígeno de referencia del 15%. Dichos estándares deben cumplirse en cada
uno de los puntos de descarga de las centrales térmicas que utilicen turbinas a gas.
Page 37 of 105
Tabla 8
Estándares de emisión admisibles de contaminantes al aire para centrales térmicas nuevas y
existentes que utilicen turbinas a gas con capacidad instalada igual o superior a 20 MW por tipo de
combustible, a condiciones de referencia (25ºC, 760 mm Hg) con oxígeno de referencia del 15%
Combustible
Estándares de emisión admisibles
(mg/m3)
MP
SO2
NOx
Gaseoso
NO APLICA
NO APLICA
120
Líquido
NO APLICA
850
300
Artículo 12º. Características de las mediciones directas para las centrales térmicas. La frecuencia de las
mediciones directas en las centrales térmicas debe determinarse de acuerdo con las recomendaciones
de los fabricantes, en función del número de horas equivalentes de operación, al finalizar el
mantenimiento de la zona caliente recomendado por el mismo. El término horas equivalentes de
operación hace referencia a un concepto técnico que define cada fabricante, en donde se establecen los
límites seguros para los mantenimientos de las plantas en función de las horas de operación de la planta
y del número de arranques y paradas de la misma.
Parágrafo. La unidad de la central térmica que haya sido objeto de mantenimiento en la zona caliente,
debe realizar una medición directa a plena carga para evaluar la emisión de los gases contaminantes
reglamentados en esta resolución, antes de iniciar nuevamente su operación.
Capítulo V
Estándares de emisión admisibles de contaminantes al aire para centrales térmicas con capacidad
instalada inferior a 20 MW y plantas de cogeneración
Artículo 13º. Estándares de emisión admisibles de contaminantes al aire para centrales térmicas con
capacidad instalada inferior a 20 MW y plantas de cogeneración existentes. En la Tabla 9 se establecen
los estándares de emisión admisibles para cada uno de los puntos de descarga de las centrales térmicas
existentes con capacidad instalada inferior a 20 MW y plantas de cogeneración existentes, por tipo de
combustible y condiciones de referencia. Los datos medidos serán corregidos al oxígeno de referencia
correspondiente.
Page 38 of 105
Tabla 9
Estándares de emisión admisibles de contaminantes al aire para centrales térmicas con capacidad
instalada inferior a 20 MW y plantas de cogeneración existentes, por tipo de combustible, a
condiciones de referencia (25ºC, 760 mm Hg)
Combustible
Estándares de emisión admisibles (mg/m3)
Oxígeno
referencia
MP
SO2
NOx
Sólido
100
2800
760
6%
Líquido
100
2000
650
3%
Gaseoso
NO APLICA
NO APLICA
300
3%
de
Artículo 14º. Estándares de emisión admisibles de contaminantes al aire para centrales térmicas con
capacidad instalada inferior a 20 MW y plantas de cogeneración nuevas. En la Tabla 10 se establecen los
estándares de emisión admisibles para cada uno de los puntos de descarga de las centrales térmicas
nuevas con capacidad instalada inferior a 20 MW y plantas de cogeneración nuevas, por tipo de
combustible y condiciones de referencia. Los datos medidos serán corregidos al oxígeno de referencia
correspondiente.
Tabla 10
Estándares de emisión admisibles de contaminantes al aire para centrales térmicas nuevas con
capacidad instalada inferior a 20 MW y plantas de cogeneración nuevas, por tipo de combustible, a
condiciones de referencia (25ºC, 760 mm Hg)
Combustible
Estándares de emisión admisibles (mg/m3)
Oxígeno
referencia
MP
SO2
NOx
Sólido
50
2000
600
6%
Líquido
50
2000
450
3%
Gaseoso
NO APLICA
NO APLICA
300
3%
de
Artículo 15º. Centrales térmicas que utilicen turbinas a gas con capacidad inferior a 20 MW. En la Tabla
11 se establecen los estándares de emisión admisibles para centrales térmicas nuevas y existentes que
utilicen turbinas a gas con capacidad inferior a 20 MW, por tipo de combustible a condiciones de
referencia y oxígeno de referencia del 15%. Dichos estándares deben cumplirse en cada uno de los
puntos de descarga de las centrales térmicas.
Page 39 of 105
Tabla 11
Estándares de emisión admisibles de contaminantes al aire para centrales térmicas nuevas y
existentes que utilicen turbinas a gas con capacidad instalada inferior a 20 MW por tipo de
combustible, a condiciones de referencia (25ºC, 760 mm Hg) con oxígeno de referencia del 15%
Combustible
Estándares de emisión admisibles
(mg/m3)
MP
SO2
NOx
Gaseoso
NO APLICA
NO APLICA
120
Líquido
NO APLICA
850
300
Capítulo VII
Estándares de emisión admisibles de contaminantes al aire para equipos de combustión externa que
utilicen biomasa como combustible
Artículo 18º. Estándares de emisión admisibles para equipos de combustión externa existentes que
utilicen biomasa como combustible. En la Tabla 14 se establecen los estándares de emisión admisibles
para equipos de combustión externa existentes que utilicen biomasa como combustible a condiciones
de referencia, con oxígeno de referencia del 13%.
Tabla 14
Estándares de emisión admisibles para equipos de combustión externa existentes que utilicen
biomasa como combustible a condiciones de referencia (25ºC, 760 mm Hg) con oxígeno de referencia
del 13%
Combustible
Biomasa
Producción de vapor (t/h)
TODOS
Estándares de emisión admisibles (mg/m3 )
MP
NOx
300
350
Artículo 19º. Estándares de emisión admisibles para equipos de combustión externa nuevos que utilicen
biomasa como combustible. En la Tabla 15 se establecen los estándares de emisión admisibles para
equipos de combustión externa nuevos que utilicen biomasa como combustible a condiciones de
referencia, con oxígeno de referencia del 13%.
Page 40 of 105
Tabla 15
Estándares de emisión admisibles para equipos de combustión externa nuevos que utilicen biomasa
como combustible a condiciones de referencia (25ºC, 760 mm Hg) con oxígeno de referencia del 13%
Combustible
Biomasa
Producción de vapor (t/h)
TODOS
Estándares de emisión admisibles (mg/m3 )
MP
NOx
50
350
Artículo 20º. Control de Variables. Aquellos procesos e instalaciones que utilicen biomasa como
combustible en sus procesos de combustión deberán controlar las siguientes variables: porcentaje en
peso de humedad de la biomasa, temperatura de los gases de chimenea y poder calorífico de la biomasa
(en base seca).
Artículo 21º. Mezcla de combustibles. Cuando un equipo de combustión externa que utilice biomasa
como combustible, use adicionalmente otro combustible en proporción superior al 5%, deberá cumplir
con lo establecido en el CAPITULO III de la presente resolución.
Capítulo VIII
Estándares de emisión admisibles de contaminantes al aire para la fabricación de productos de la
refinación del petróleo
Artículo 22º. Estándares de emisión admisibles de contaminantes al aire para las actividades existentes
de fabricación de productos de la refinación del petróleo. En la Tabla 16 se establecen los estándares de
emisión admisibles para las actividades existentes de fabricación de productos de la refinación del
petróleo, por tipo de combustible a condiciones de referencia y el oxígeno de referencia con base en el
cual se debe realizar la corrección de oxígeno posterior a la medición. Dichos estándares deben
cumplirse en cada uno de los puntos de descarga de las actividades de refinación.
Page 41 of 105
Tabla 16
Estándares de emisión admisibles de contaminantes al aire para las actividades existentes de
fabricación de productos de la refinación del petróleo por tipo de combustible, a condiciones de
referencia (25ºC, 760 mm Hg)
Combustible
Estándares de emisión admisibles (mg/m3)
Oxígeno
referencia
MP
SO2
NOx
Sólido
170
2800
760
6%
Líquido
170
2000
650
3%
Gaseoso
NO APLICA
NO APLICA
300
3%
de
Artículo 23º. Estándares de emisión admisibles de contaminantes al aire para las actividades nuevas de
fabricación de productos de la refinación del petróleo. En la Tabla 17 se establecen los estándares de
emisión admisibles para las actividades nuevas de fabricación de productos de la refinación del petróleo,
por tipo de combustible a condiciones de referencia y el oxígeno de referencia con base en el cual se
debe realizar la corrección de oxígeno posterior a la medición. Dichos estándares deben cumplirse en
cada uno de los puntos de descarga de las actividades de refinación.
Tabla 17
Estándares de emisión admisibles de contaminantes al aire para las actividades nuevas de fabricación
de productos de la refinación del petróleo por tipo de combustible, a condiciones de referencia (25ºC,
760 mm Hg)
Combustible
Estándares de emisión admisibles (mg/m3)
Oxígeno
referencia
MP
SO2
NOx
Sólido
50
1700
600
6%
Líquido
50
1700
450
3%
Gaseoso
NO APLICA
NO APLICA
300
3%
Page 42 of 105
de
Capítulo XIII
Estándares de emisión admisibles de contaminantes al aire para instalaciones donde se realice
tratamiento térmico a residuos no peligrosos
Artículo 54º. Temperaturas de operación. La temperatura de la cámara de combustión en las
instalaciones de incineración de residuos no peligrosos debe ser superior a 800 °C y la temperatura de la
cámara de poscombustión debe ser superior a 1200 °C.
Artículo 55º. Tiempo de retención en la cámara de poscombustión. El tiempo de retención en la cámara
de poscombustión para las instalaciones de incineración de residuos no peligrosos debe ser igual o
superior a dos (2) segundos.
Artículo 56º. Estándares de emisión admisibles de contaminantes para instalaciones de incineración de
residuos no peligrosos. En la Tabla 33 se establecen los estándares de emisión admisibles de
contaminantes para instalaciones de incineración de residuos no peligrosos a condiciones de referencia
con oxígeno de referencia del 11%.
Tabla 33
Estándares de emisión admisibles de contaminantes al aire para instalaciones de incineración de
residuos no peligrosos a condiciones de referencia (25ºC, 760 mm Hg) con oxígeno de referencia del
11%
Instalaciones de
incineración de residuos no
peligrosos
Instalaciones de
incineración con capacidad
igual o mayor a 500 kg/hora
Instalaciones de
incineración con capacidad
menor a 500 kg/hora
Promedio
Estándares de emisión admisibles (mg/m3)
MP
SO2
NOx
CO
HCl
HF
Hg
HCT
Promedio
diario
10
50
200
50
10
1
0,03
10
Promedio
horario
20
200
400
100
40
4
0,05
20
Promedio
diario
15
50
200
50
15
1
0,05
10
Promedio
horario
30
200
400
100
60
4
0,1
20
Parágrafo. El estándar de emisión admisible para dioxinas y furanos es de 0,5 (ng-TEQ/m3 ) a
condiciones de referencia (25ºC, 760 mm Hg) con oxígeno de referencia del 11% y su cumplimiento se
debe verificar de acuerdo con lo establecido en el artículo 5° de la presente resolución.
Artículo 57º. Estándares de emisión admisibles de metales pesados en instalaciones de incineración de
residuos no peligrosos. Las instalaciones de incineración de residuos no peligrosos deben cumplir un
Page 43 of 105
estándar de emisión admisible para la sumatoria de Cadmio (Cd), Talio (Tl) y sus compuestos de 0,05
mg/m3 y para la sumatoria de metales de 0,5 mg/m3, a condiciones de referencia (25ºC, 760 mm Hg).
Parágrafo. Para la determinación de metales, se debe contemplar la sumatoria de los siguientes metales
y sus compuestos: Arsénico (As), Plomo (Pb), Cromo (Cr), Cobalto (Co), Níquel (Ni), Vanadio (V), Cobre
(Cu), Manganeso (Mn), Antimonio (Sb), Estaño (Sn).
Artículo 58º. Temperatura de los gases de salida en la cámara de poscombustión. Todas las instalaciones
de incineración de residuos no peligrosos deben contar con un sistema que registre de forma
automática la temperatura de los gases de salida en la cámara de poscombustión; esta temperatura
debe ser inferior a 250 °C. Si el registro de dicha temperatura está por encima de este valor se debe
instalar un sistema de enfriamiento que reduzca la temperatura como máximo hasta 250 ºC.
Artículo 59º. Estándares de emisión admisibles para instalaciones que incineren residuos no peligrosos
con deficiencia de oxígeno (pirólisis o termólisis). Las instalaciones que incineren residuos no peligrosos
con deficiencia de oxígeno (pirólisis o termólisis) deben realizar la corrección de oxígeno posterior a la
medición al 3% de oxígeno y deben cumplir con los estándares de emisión admisibles establecidos en la
Tabla 33.
Artículo 60º. Tratamiento térmico de residuos no peligrosos en hornos cementeros. Se permitirá el
tratamiento térmico de residuos no peligrosos en hornos cementeros que realicen coprocesamiento,
siempre y cuando cumplan con los estándares de emisión establecidos en el presente capítulo.
DECRETO 3930 DE 2010 (OCTUBRE 25 DE 2010) – PRESIDENCIA DE LA REPÚBLICA DE
COLOMBIA
Por el cual se reglamenta parcialmente el Título I de la Ley 9ª de 1979, así como el Capítulo II del Título
VI -Parte III-Libro II del Decreto-ley 2811 de 1974 en cuanto a usos del agua y residuos líquidos y se
dictan otras disposiciones.
Capítulo III
Del Ordenamiento del Recurso Hídrico
Artículo 4º. Ordenamiento del Recurso Hídrico. La Autoridad Ambiental Competente deberá realizar el
Ordenamiento del Recurso Hídrico con el fin de realizar la clasificación de las aguas superficiales,
subterráneas y marinas, fijar en forma genérica su destinación a los diferentes usos de que trata el
artículo 9° del presente decreto y sus posibilidades de aprovechamiento.
Entiéndase como Ordenamiento del Recurso Hídrico, el proceso de planificación del mismo, mediante el
cual la autoridad ambiental competente:
1. Establece la clasificación de las aguas.
Page 44 of 105
2. Fija su destinación y sus posibilidades de uso, con fundamento en la priorización definida para tales
efectos en el artículo 41 del Decreto 1541 de 1978.
3. Define los objetivos de calidad a alcanzar en el corto, mediano y largo plazo.
4. Establece las normas de preservación de la calidad del recurso para asegurar la conservación de los
ciclos biológicos y el normal desarrollo de las especies.
5. Determina los casos en que deba prohibirse el desarrollo de actividades como la pesca, el deporte y
otras similares, en toda la fuente o en sectores de ella, de manera temporal o definitiva.
6. Fija las zonas en las que se prohibirá o condicionará, la descarga de aguas residuales o residuos
líquidos o gaseosos, provenientes de fuentes industriales o domésticas, urbanas o rurales, en las aguas
superficiales, subterráneas, o marinas.
7. Establece el programa de seguimiento al recurso hídrico con el fin de verificar la eficiencia y
efectividad del ordenamiento del recurso.
Parágrafo 1º. Para efectos del ordenamiento de que trata el presente capítulo, el cuerpo de agua y/o
acuífero es un ecosistema. Cuando dos (2) o más autoridades ambientales tengan jurisdicción sobre un
mismo cuerpo de agua y/o acuífero, establecerán la comisión conjunta de que trata el parágrafo 3° del
artículo 33 de la Ley 99 de 1993, la cual ejercerá las mismas funciones para el ecosistema común
previstas en el Decreto 1604 de 2002, o aquella que la adicione, modifique o sustituya, para las cuencas
hidrográficas comunes.
Parágrafo 2º. Para el ordenamiento de las aguas marinas se tendrán en cuenta los objetivos derivados
de los compromisos internacionales provenientes de tratados o convenios internacionales ratificados
por Colombia, incluidos aquellos cuya finalidad es prevenir, controlar y mitigar la contaminación del
medio marino.
Artículo 5º. Criterios de Priorización para el Ordenamiento del Recurso Hídrico. La autoridad ambiental
competente, priorizará el Ordenamiento del Recurso Hídrico de su jurisdicción, teniendo en cuenta
como mínimo lo siguiente:
1. Cuerpos de agua y/o acuíferos objeto de ordenamiento definidos en la formulación de Planes de
Ordenación y Manejo de Cuencas Hidrográficas.
2. Cuerpos de agua donde la autoridad ambiental esté adelantando el proceso para el establecimiento
de las metas de reducción de que trata el Decreto 3100 de 2003 o la norma que lo modifique o
sustituya.
3. Cuerpos de agua y/o acuíferos en donde se estén adelantando procesos de reglamentación de uso de
las aguas o en donde estos se encuentren establecidos.
4. Cuerpos de agua en donde se estén adelantando procesos de reglamentación de vertimientos o en
donde estos se encuentren establecidos.
Page 45 of 105
5. Cuerpos de agua y/o acuíferos que sean declarados como de reserva o agotados, según lo dispuesto
por el Capítulo II del Título V del Decreto 1541 de 1978 o la norma que lo modifique, adicione, o
sustituya.
6. Cuerpos de agua y/o acuíferos en los que exista conflicto por el uso del recurso.
7. Cuerpos de agua y/o acuíferos que abastezcan poblaciones mayores a 2.500 habitantes.
8. Cuerpos de agua y/o acuíferos que presenten índices de escasez de medio a alto y/o que presenten
evidencias de deterioro de la calidad del recurso que impidan su utilización.
9. Cuerpos de agua cuya calidad permita la presencia y el desarrollo de especies hidrobiológicas
importantes para la conservación y/o el desarrollo socioeconómico.
Una vez priorizados los cuerpos de agua objeto de ordenamiento, se deberá proceder a establecer la
gradualidad para adelantar este proceso.
Parágrafo. Esta priorización y la gradualidad con que se desarrollará, deberán ser incluidas en el Plan de
Gestión Ambiental Regional (PGAR) de la respectiva Corporación Autónoma Regional o de Desarrollo
Sostenible regulado por el Decreto 1200 de 2004 o en el instrumento de planificación de largo plazo de
la Autoridad Ambiental Urbana respectiva, de acuerdo con la reglamentación vigente en la materia.
Igualmente en los planes de acción de estas autoridades deberá incluirse como proyecto el
ordenamiento de los cuerpos de agua y/o acuíferos.
Artículo 6º. Aspectos mínimos del Ordenamiento del Recurso Hídrico. Para adelantar el proceso de
Ordenamiento del Recurso Hídrico, la autoridad ambiental competente deberá tener en cuenta como
mínimo:
1. Identificación del cuerpo de agua de acuerdo con la codificación establecida en el mapa de
zonificación hidrográfica del país.
2. Identificación del acuífero.
3. Identificación de los usos existentes y potenciales del recurso.
4. Los objetivos de calidad donde se hayan establecido.
5. La oferta hídrica total y disponible, considerando el caudal ambiental.
6. Riesgos asociados a la reducción de la oferta y disponibilidad del recurso hídrico.
7. La demanda hídrica por usuarios existentes y las proyecciones por usuarios nuevos.
8. La aplicación y calibración de modelos de simulación de la calidad del agua, que permitan determinar
la capacidad asimilativa de sustancias biodegradables o acumulativas y la capacidad de dilución de
sustancias no biodegradables y/o utilización de índices de calidad del agua, de acuerdo con la
información disponible.
9. Aplicación de modelos de flujo para aguas subterráneas.
Page 46 of 105
10. Los criterios de calidad y las normas de vertimiento vigentes en el momento del ordenamiento.
11. Lo dispuesto en el Decreto 1541 de 1978 con relación a las concesiones y/o la reglamentación del
uso de las aguas existentes.
12. Las características naturales del cuerpo de agua y/o acuífero para garantizar su preservación y/o
conservación.
13. Los permisos de vertimiento y/o la reglamentación de los vertimientos, planes de cumplimiento y/o
planes de saneamiento y manejo de vertimientos al cuerpo de agua.
14. La declaración de reservas y/o agotamiento.
15. La clasificación de las aguas, de conformidad con lo dispuesto en el artículo 205 del Decreto 1541 de
1978 o de la norma que lo modifique, adicione o sustituya.
16. La zonificación ambiental resultante del Plan de Ordenación y Manejo de la Cuenca Hidrográfica.
17. Los demás factores pertinentes señalados en los Decretos 2811 de 1974, 1729 de 2002, 1875 de
1979 y 1541 de 1978 o las normas que los modifiquen, adicionen o sustituyan.
Parágrafo 1º. La identificación de los usos existentes o potenciales, debe hacerse teniendo en cuenta las
características físicas, químicas, biológicas, su entorno geográfico, cualidades escénicas y paisajísticas,
las actividades económicas y las normas de calidad necesarias para la protección de flora y fauna
acuática.
Parágrafo 2º. El ordenamiento de los cuerpos de agua y/o acuífero deberá incluir los afluentes o zonas
de recarga de los mismos.
Artículo 7º. De los modelos simulación de la calidad del recurso hídrico. Para efectos del Ordenamiento
del Recurso Hídrico, previsto en el artículo anterior y para la aplicación de modelos de simulación de la
calidad del recurso, el Ministerio de Ambiente, Vivienda y Desarrollo Territorial expedirá dentro de los
ocho (8) meses, contados a partir de la fecha de publicación de este decreto, la Guía Nacional de
Modelación del Recurso Hídrico, con base en los insumos que aporte el Instituto de Hidrología,
Meteorología y Estudios Ambientales (IDEAM).
Parágrafo. Mientras el Ministerio de Ambiente, Vivienda y Desarrollo Territorial, expide la Guía Nacional
de Modelación del Recurso Hídrico, las autoridades ambientales competentes podrán seguir aplicando
los modelos de simulación existentes que permitan determinar la capacidad asimilativa de sustancias
biodegradables o acumulativas y la capacidad de dilución de sustancias no biodegradables, utilizando,
por lo menos los siguientes parámetros:
1. DBO5: Demanda bioquímica de oxígeno a cinco (5) días.
2. DQO: Demanda química de oxígeno.
3. SS: Sólidos suspendidos.
4. pH: Potencial del Ion hidronio, H+
Page 47 of 105
5. T: Temperatura.
6. OD: Oxígeno disuelto.
7. Q: Caudal.
8. Datos Hidrobiológicos.
9. Coliformes Totales y Coliformes Fecales.
Artículo 8º. Proceso de Ordenamiento del Recurso Hídrico. El Ordenamiento del Recurso Hídrico por
parte de la autoridad ambiental competente se realizará mediante el desarrollo de las siguientes fases:
1. Declaratoria de ordenamiento. Una vez establecida la prioridad y gradualidad de ordenamiento del
cuerpo de agua de que se trate, la autoridad ambiental competente mediante resolución, declarará en
ordenamiento el cuerpo de agua y/o acuífero y definirá el cronograma de trabajo, de acuerdo con las
demás fases previstas en el presente artículo.
2. Diagnóstico. Fase en la cual se caracteriza la situación ambiental actual del cuerpo de agua y/o
acuífero, involucrando variables físicas, químicas y bióticas y aspectos antrópicos que influyen en la
calidad y la cantidad del recurso.
Implica por lo menos la revisión, organización, clasificación y utilización de la información existente, los
resultados de los programas de monitoreo de calidad y cantidad del agua en caso de que existan, los
censos de usuarios, el inventario de obras hidráulicas, la oferta y demanda del agua, el establecimiento
del perfil de calidad actual del cuerpo de agua y/o acuífero, la determinación de los problemas sociales
derivados del uso del recurso y otros aspectos que la autoridad ambiental competente considere
pertinentes.
3. Identificación de los usos potenciales del recurso. A partir de los resultados del diagnóstico, se deben
identificar los usos potenciales del recurso en función de sus condiciones naturales y los conflictos
existentes o potenciales.
Para tal efecto se deben aplicar los modelos de simulación de la calidad del agua para varios escenarios
probables, los cuales deben tener como propósito la mejor condición natural factible para el recurso.
Los escenarios empleados en la simulación, deben incluir los aspectos ambientales, sociales, culturales y
económicos, así como la gradualidad de las actividades a realizar, para garantizar la sostenibilidad del
Plan de Ordenamiento del Recurso Hídrico.
4. Elaboración del Plan de Ordenamiento del Recurso Hídrico. La autoridad ambiental competente, con
fundamento en la información obtenida del diagnóstico y de la identificación de los usos potenciales del
cuerpo de agua y/o acuífero, elaborará un documento que contenga como mínimo:
a) La clasificación del cuerpo de agua en ordenamiento.
b) El inventario de usuarios.
c) El uso o usos a asignar.
Page 48 of 105
d) Los criterios de calidad para cada uso.
e) Los objetivos de calidad a alcanzar en el corto, mediano y largo plazo.
f) Las metas quinquenales de reducción de cargas contaminantes de que trata el Decreto 3100 de 2003,
o la norma que lo modifique, adicione o sustituya.
g) La articulación con el Plan de Ordenación de Cuencas Hidrográficas en caso de existir y,
h) El programa de seguimiento y monitoreo del Plan de Ordenamiento del Recurso Hídrico.
El Plan de Ordenamiento del Recurso Hídrico será adoptado mediante resolución.
Parágrafo 1º. En todo caso, el Plan de Ordenamiento del Recurso Hídrico deberá definir la conveniencia
de adelantar la reglamentación del uso de las aguas, de conformidad con lo establecido en el artículo
108 del Decreto 1541 de 1978 y la reglamentación de vertimientos según lo dispuesto en el presente
decreto o de administrar el cuerpo de agua a través de concesiones de agua y permisos de vertimiento.
Así mismo, dará lugar al ajuste de la reglamentación del uso de las aguas, de la reglamentación de
vertimientos, de las concesiones, de los permisos de vertimiento, de los planes de cumplimiento y de los
planes de saneamiento y manejo de vertimientos y de las metas de reducción, según el caso.
Parágrafo 2º. El Ministerio de Ambiente, Vivienda y Desarrollo Territorial expedirá la Guía para el
Ordenamiento del Recurso Hídrico, dentro de los ocho (8) meses contados a partir de la publicación del
presente decreto.
Parágrafo 3º. El Plan de Ordenamiento del Recurso Hídrico, tendrá un horizonte mínimo de diez (10)
años y su ejecución se llevará a cabo para las etapas de corto, mediano y largo plazo. La revisión y/o
ajuste del plan deberá realizarse al vencimiento del período previsto para el cumplimiento de los
objetivos de calidad y con base en los resultados del programa de seguimiento y monitoreo del Plan de
Ordenamiento del Recurso Hídrico.
Capítulo IV
De la destinación genérica de las aguas superficiales, subterráneas y marinas
Artículo 9º. Usos del agua. Para los efectos del presente decreto se tendrán en cuenta los siguientes
usos del agua:
1. Consumo humano y doméstico.
2. Preservación de flora y fauna.
3. Agrícola.
4. Pecuario.
5. Recreativo.
6. Industrial.
7. Estético.
8. Pesca, Maricultura y Acuicultura.
9. Navegación y Transporte Acuático.
Page 49 of 105
Parágrafo. El Ministerio de Ambiente, Vivienda y Desarrollo Territorial dentro de los dieciocho (18)
meses, contados a partir de la publicación del presente decreto, podrá definir nuevos usos, establecer la
denominación y definir el contenido y alcance de los mismos.
Artículo 10º. Uso para consumo humano y doméstico. Se entiende por uso del agua para consumo
humano y doméstico su utilización en actividades tales como:
1. Bebida directa y preparación de alimentos para consumo inmediato.
2. Satisfacción de necesidades domésticas, individuales o colectivas, tales como higiene personal y
limpieza de elementos, materiales o utensilios.
3. Preparación de alimentos en general y en especial los destinados a su comercialización o distribución,
que no requieran elaboración.
Artículo 11º. Uso para la preservación de flora y fauna. Se entiende por uso del agua para preservación
de flora y fauna, su utilización en actividades destinadas a mantener la vida natural de los ecosistemas
acuáticos y terrestres y de sus ecosistemas asociados, sin causar alteraciones sensibles en ellos.
Artículo 12º. Uso para pesca, maricultura y acuicultura. Se entiende por uso para pesca, maricultura y
acuicultura su utilización en actividades de reproducción, supervivencia, crecimiento, extracción y
aprovechamiento de especies hidrobiológicas en cualquiera de sus formas, sin causar alteraciones en los
ecosistemas en los que se desarrollan estas actividades.
Artículo 13º. Uso agrícola. Se entiende por uso agrícola del agua, su utilización para irrigación de
cultivos y otras actividades conexas o complementarias.
Artículo 14º. Uso pecuario. Se entiende por uso pecuario del agua, su utilización para el consumo del
ganado en sus diferentes especies y demás animales, así como para otras actividades conexas y
complementarias.
Artículo 15º. Uso recreativo. Se entiende por uso del agua para fines recreativos, su utilización, cuando
se produce:
1. Contacto primario, como en la natación, buceo y baños medicinales.
2. Contacto secundario, como en los deportes náuticos y la pesca.
Artículo 16º. Uso industrial. Se entiende por uso industrial del agua, su utilización en actividades tales
como:
1. Procesos manufactureros de transformación o explotación, así como aquellos conexos y
complementarios.
2. Generación de energía.
3. Minería.
Page 50 of 105
4. Hidrocarburos.
5. Fabricación o procesamiento de drogas, medicamentos, cosméticos, aditivos y productos similares.
6. Elaboración de alimentos en general y en especial los destinados a su comercialización o distribución.
Artículo 17º. Navegación y transporte acuático. Se entiende por uso del agua para transporte su
utilización para la navegación de cualquier tipo de embarcación o para la movilización de materiales por
contacto directo.
Artículo 18º. Uso estético. Se entenderá por uso estético el uso del agua para la armonización y
embellecimiento del paisaje.
Capítulo V
De los criterios de calidad para destinación del recurso
Artículo 19º. Criterios de calidad. Conjunto de parámetros y sus valores utilizados para la asignación de
usos al recurso y como base de decisión para el Ordenamiento del Recurso Hídrico.
Artículo 20º. Competencia para definir los criterios de calidad del recurso hídrico. El Ministerio de
Ambiente, Vivienda y Desarrollo Territorial dentro de los dieciocho (18) meses contados a partir de la
publicación del presente decreto, definirá los criterios de calidad para el uso de las aguas superficiales,
subterráneas y marinas.
Artículo 21º. Rigor subsidiario para definir los criterios de calidad del recurso hídrico. La autoridad
ambiental competente, con fundamento en el artículo 63 de la Ley 99 de 1993, podrá hacer más
estrictos los criterios de calidad de agua para los distintos usos previa la realización del estudio técnico
que lo justifique.
El criterio de calidad adoptado en virtud del principio del rigor subsidiario por la autoridad ambiental
competente, podrá ser temporal o permanente.
Artículo 22º. Criterios de Calidad para usos múltiples. En aquellos tramos del cuerpo de agua o acuífero
en donde se asignen usos múltiples, los criterios de calidad para la destinación del recurso
corresponderán a los valores más restrictivos de cada referencia.
Artículo 23º. Control de los criterios de calidad del recurso hídrico. La autoridad ambiental competente
realizará el control de los criterios de calidad por fuera de la zona de mezcla, la cual será determinada
para cada situación específica por dicha autoridad, para lo cual deberá tener en cuenta lo dispuesto en
la Guía Nacional de Modelación del Recurso Hídrico.
Page 51 of 105
Capítulo VI
De los vertimientos
Artículo 24º. Prohibiciones. No se admite vertimientos:
1. En las cabeceras de las fuentes de agua.
2. En acuíferos.
3. En los cuerpos de aguas o aguas costeras, destinadas para recreación y usos afines que impliquen
contacto primario, que no permita el cumplimiento del criterio de calidad para este uso.
4. En un sector aguas arriba de las bocatomas para agua potable, en extensión que determinará, en cada
caso, la autoridad ambiental competente.
5. En cuerpos de agua que la autoridad ambiental competente declare total o parcialmente protegidos,
de acuerdo con los artículos 70 y 137 del Decreto-ley 2811 de 1974.
6. En calles, calzadas y canales o sistemas de alcantarillados para aguas lluvias, cuando quiera que
existan en forma separada o tengan esta única destinación.
7. No tratados provenientes de embarcaciones, buques, naves u otros medios de transporte marítimo,
fluvial o lacustre, en aguas superficiales dulces, y marinas.
8. Sin tratar, provenientes del lavado de vehículos aéreos y terrestres, del lavado de aplicadores
manuales y aéreos, de recipientes, empaques y envases que contengan o hayan contenido agroquímicos
u otras sustancias tóxicas.
9. Que alteren las características existentes en un cuerpo de agua que lo hacen apto para todos los usos
determinados en el artículo 9° del presente decreto.
10. Que ocasionen altos riesgos para la salud o para los recursos hidrobiológicos.
Artículo 25º. Actividades no permitidas. No se permite el desarrollo de las siguientes actividades.
1. El lavado de vehículos de transporte aéreo y terrestre en las orillas y en los cuerpos de agua, así como
el de aplicadores manuales y aéreos de agroquímicos y otras sustancias tóxicas y sus envases,
recipientes o empaques.
2. La utilización del recurso hídrico, de las aguas lluvias, de las provenientes de acueductos públicos o
privados, de enfriamiento, del sistema de aire acondicionado, de condensación y/o de síntesis química,
con el propósito de diluir los vertimientos, con anterioridad al punto de control del vertimiento.
3. Disponer en cuerpos de aguas superficiales, subterráneas, marinas, y sistemas de alcantarillado, los
sedimentos, lodos, y sustancias sólidas provenientes de sistemas de tratamiento de agua o equipos de
control ambiental y otras tales como cenizas, cachaza y bagazo. Para su disposición deberá cumplirse
con las normas legales en materia de residuos sólidos.
Page 52 of 105
Artículo 26º. Requerimientos a puertos o terminales marítimos, fluviales o lacustres. Los puertos
deberán contar con un sistema de recolección y manejo para los residuos líquidos provenientes de
embarcaciones, buques, naves y otros medios de transporte, así como el lavado de los mismos. Dichos
sistemas deberán cumplir con las normas de vertimiento.
Artículo 27º. De la reinyección de residuos líquidos. Solo se permite la reinyección de las aguas
provenientes de la exploración y explotación petrolífera, de gas natural y recursos geotérmicos, siempre
y cuando no se impida el uso actual o potencial del acuífero.
El Estudio de Impacto Ambiental requerido para el otorgamiento de la licencia ambiental para las
actividades de exploración y explotación petrolífera, de gas y de recursos geotérmicos, cuando a ello
hubiere lugar, deberá evaluar la reinyección de las aguas provenientes de estas actividades, previendo la
posible afectación al uso actual y potencial del acuífero.
Artículo 28º. <Artículo modificado por el artículo 1º del Decreto 4728 de Diciembre 23 de 2010. El nuevo
texto es el siguiente:> Fijación de la norma de vertimiento. El Ministerio de Ambiente, Vivienda y
Desarrollo Territorial fijará los parámetros y los límites máximos permisibles de los vertimientos a las
aguas superficiales, marinas, a los sistemas de alcantarillado público y al suelo.
El Ministerio de Ambiente Vivienda y Desarrollo Territorial dentro de los diez (10) meses, contados a
partir de la fecha de publicación de este decreto, expedirá las normas de vertimientos puntuales a aguas
superficiales y a los sistemas de alcantarillado público.
Igualmente, el Ministerio de Ambiente Vivienda y Desarrollo Territorial deberá establecer las normas de
vertimientos al suelo y aguas marinas, dentro de los treinta y seis (36) meses, contados a partir de la
fecha de publicación de este decreto.
Artículo 29º. Rigor subsidiario de la norma de vertimiento. La autoridad ambiental competente con
fundamento en el Plan de Ordenamiento del Recurso Hídrico, podrá fijar valores más restrictivos a la
norma de vertimiento que deben cumplir los vertimientos al cuerpo de agua o al suelo.
Así mismo, la autoridad ambiental competente podrá exigir valores más restrictivos en el vertimiento, a
aquellos generadores que aún cumpliendo con la norma de vertimiento, ocasionen concentraciones en
el cuerpo receptor, que excedan los criterios de calidad para el uso o usos asignados al recurso. Para tal
efecto, deberá realizar el estudio técnico que lo justifique.
Parágrafo. En el cuerpo de agua y/o tramo del mismo o en acuíferos en donde se asignen usos
múltiples, los límites a que hace referencia el presente artículo, se establecerán teniendo en cuenta los
valores más restrictivos de cada uno de los parámetros fijados para cada uso.
Artículo 30º. Infiltración de residuos líquidos. Previo permiso de vertimiento se permite la infiltración
de residuos líquidos al suelo asociado a un acuífero. Para el otorgamiento de este permiso se deberá
tener en cuenta:
Page 53 of 105
1. Lo dispuesto en el Plan de Manejo Ambiental del Acuífero o en el Plan de Ordenación y Manejo de la
Cuenca respectiva, o
2. Las condiciones de vulnerabilidad del acuífero asociado a la zona de infiltración, definidas por la
autoridad ambiental competente.
Estos vertimientos deberán cumplir la norma de vertimiento al suelo que establezca el Ministerio de
Ambiente, Vivienda y Desarrollo Territorial.
Artículo 31º. Soluciones individuales de saneamiento. Toda edificación, concentración de edificaciones
o desarrollo urbanístico, turístico o industrial, localizado fuera del área de cobertura del sistema de
alcantarillado público, deberá dotarse de sistemas de recolección y tratamiento de residuos líquidos y
deberá contar con el respectivo permiso de vertimiento.
Artículo 32º. Control de vertimientos para ampliaciones y modificaciones. Los usuarios que amplíen su
producción, serán considerados como usuarios nuevos con respecto al control de los vertimientos que
correspondan al grado de ampliación.
Toda ampliación o modificación del proceso o de la infraestructura física, deberá disponer de sitios
adecuados que permitan la toma de muestras para la caracterización y aforo de sus efluentes. El control
de los vertimientos deberá efectuarse simultáneamente con la iniciación de las operaciones de
ampliación o modificación.
Artículo 33º. Reubicación de instalaciones. Los usuarios que no dispongan de área apropiada para la
construcción de sistemas de control de contaminación y/o que no cumplan con las normas de
vertimiento, deberán reubicar sus instalaciones, cuando quiera que no puedan por otro medio
garantizar la adecuada disposición de sus vertimientos.
Artículo 34º. <Artículo modificado por el artículo 2º del Decreto 4728 de Diciembre 23 de 2010. El nuevo
texto es el siguiente:> Protocolo para el Monitoreo de los Vertimientos en Aguas Superficiales y
Subterráneas. El Ministerio de Ambiente, Vivienda y Desarrollo Territorial expedirá dentro de los
dieciséis (16) meses siguientes, contados a partir de la publicación del presente decreto, el Protocolo
para el Monitoreo de los Vertimientos en Aguas Superficiales y Subterráneas, en el cual se establecerán,
entre otros aspectos: el punto de control, la infraestructura técnica mínima requerida, la metodología
para la toma de muestras y los métodos de análisis para los parámetros a determinar en vertimientos y
en los cuerpos de agua o sistemas receptores.
Parágrafo. Mientras el Ministerio de Ambiente, Vivienda y Desarrollo Territorial adopta el Protocolo
para el Monitoreo de los Vertimientos en Aguas Superficiales y Subterráneas, se seguirán los
procedimientos establecidos en la Guía para el Monitoreo de Vertimientos, Aguas Superficiales y
Subterráneas del Instituto de Hidrología, Meteorología y Estudios Ambientales - Ideam".
Page 54 of 105
Artículo 35º. <Artículo modificado por el artículo 3º del Decreto 4728 de Diciembre 23 de 2010. El nuevo
texto es el siguiente:> Plan de Contingencia para el Manejo de Derrames de Hidrocarburos o Sustancias
Nocivas. Los usuarios que exploren, exploten, manufacturen, refinen, transformen, procesen,
transporten o almacenen hidrocarburos o sustancias nocivas para la salud y para los recursos
hidrobiológicos, deberán estar provistos de un plan de contingencia y control de derrames, el cual
deberá contar con la aprobación de la autoridad ambiental competente.
Cuando el transporte comprenda la jurisdicción de más de una autoridad ambiental, le compete el
Ministerio de Ambiente, Vivienda y Desarrollo Territorial definir la autoridad que debe aprobar el Plan
de Contingencia.
Artículo 36º. Suspensión de actividades. En caso de presentarse fallas en los sistemas de tratamiento,
labores de mantenimiento preventivo o correctivo o emergencias o accidentes que limiten o impidan el
cumplimiento de la norma de vertimiento, de inmediato el responsable de la actividad industrial,
comercial o de servicios que genere vertimientos a un cuerpo de agua o al suelo, deberá suspender las
actividades que generan el vertimiento, exceptuando aquellas directamente asociadas con la generación
de aguas residuales domésticas.
Si su reparación y reinicio requiere de un lapso de tiempo superior a tres (3) horas diarias se debe
informar a la autoridad ambiental competente sobre la suspensión de actividades y/o la puesta en
marcha del Plan de Gestión del Riesgo para el Manejo de Vertimientos previsto en el artículo 44 del
presente decreto.
Artículo 37º.Registro de actividades de mantenimiento. Las actividades de mantenimiento preventivo o
correctivo quedarán registradas en la minuta u hoja de vida del sistema de pretratamiento o
tratamiento de aguas residuales del generador que desarrolle actividades industriales, comerciales o de
servicios que generen vertimientos a un cuerpo de agua o al suelo, documento que podrá ser objeto de
seguimiento, vigilancia y control por parte de la autoridad ambiental competente.
Artículo 38º. Obligación de los suscriptores y/o usuarios del prestador del servicio público domiciliario
de alcantarillado. Los suscriptores y/o usuarios en cuyos predios o inmuebles se requiera de la
prestación del servicio comercial, industrial, oficial y especial, por parte del prestador del servicio
público domiciliario de alcantarillado, de que trata el artículo 3° del Decreto 302 de 2000 o la norma que
lo modifique, adicione o sustituya, están obligados a cumplir la norma de vertimiento vigente.
Los suscriptores y/o usuarios previstos en el inciso anterior, deberán presentar al prestador del servicio,
la caracterización de sus vertimientos, de acuerdo con la frecuencia que se determine en el Protocolo
para el Monitoreo de los Vertimientos en Aguas Superficiales, Subterráneas, el cual expedirá el
Ministerio de Ambiente, Vivienda y Desarrollo Territorial.
Los usuarios y/o suscriptores del prestador del servicio público domiciliario de alcantarillado, deberán
dar aviso a la entidad encargada de la operación de la planta tratamiento de residuos líquidos, cuando
con un vertimiento ocasional o accidental puedan perjudicar su operación.
Artículo 39º. Responsabilidad del prestador del servicio público domiciliario de alcantarillado. El
prestador del servicio de alcantarillado como usuario del recurso hídrico, deberá dar cumplimiento a la
Page 55 of 105
norma de vertimiento vigente y contar con el respectivo permiso de vertimiento o con el Plan de
Saneamiento y Manejo de Vertimientos –PSMV reglamentado por la Resolución 1433 de 2004 del
Ministerio de Ambiente, Vivienda y Desarrollo Territorial, o la norma que lo modifique, adicione o
sustituya.
Igualmente, el prestador será responsable de exigir respecto de los vertimientos que se hagan a la red
de alcantarillado, el cumplimiento de la norma de vertimiento al alcantarillado público.
Cuando el prestador del servicio determine que el usuario y/o suscriptor no está cumpliendo con la
norma de vertimiento al alcantarillado público deberá informar a la autoridad ambiental competente,
allegando la información pertinente, para que esta inicie el proceso sancionatorio por incumplimiento
de la norma de vertimiento al alcantarillado público.
Parágrafo. El prestador del servicio público domiciliario del alcantarillado presentará anualmente a la
autoridad ambiental competente, un reporte discriminado, con indicación del estado de cumplimiento
de la norma de vertimiento al alcantarillado, de sus suscriptores y/o usuarios en cuyos predios o
inmuebles se preste el servicio comercial, industrial, oficial y especial de conformidad con lo dispuesto
por el artículo 3° del Decreto 302 de 2000 o la norma que lo modifique, adicione o sustituya. Este
informe se presentará anualmente con corte a 31 de diciembre de cada año, dentro de los dos (2) meses
siguientes a esta fecha.
El Ministerio de Ambiente, Vivienda y Desarrollo Territorial dentro de los tres (3) meses siguientes,
contados a partir de la publicación del presente decreto, expedirá el formato para la presentación de la
información requerida en el presente parágrafo.
Artículo 40º. Control de contaminación por agroquímicos. Además de las medidas exigidas por la
autoridad ambiental competente, para efectos del control de la contaminación del agua por la
aplicación de agroquímicos, se prohíbe:
1. La aplicación manual de agroquímicos dentro de una franja de tres (3) metros, medida desde las
orillas de todo cuerpo de agua.
2. La aplicación aérea de agroquímicos dentro de una franja de treinta (30) metros, medida desde las
orillas de todo cuerpo de agua.
Para la aplicación de plaguicidas se tendrá en cuenta lo establecido en el Decreto 1843 de 1991 o la
norma que lo modifique, adicione o sustituya.
Capítulo VII
De la obtención de los permisos de vertimiento y planes de cumplimiento
Artículo 41º. Requerimiento de permiso de vertimiento. Toda persona natural o jurídica cuya actividad
o servicio genere vertimientos a las aguas superficiales, marinas, o al suelo, deberá solicitar y tramitar
ante la autoridad ambiental competente, el respectivo permiso de vertimientos.
Page 56 of 105
Parágrafo 1º. Se exceptúan del permiso de vertimiento a los usuarios y/o suscriptores que estén
conectados a un sistema de alcantarillado público.
Parágrafo 2º. Salvo en el caso de la Corporación para el Desarrollo Sostenible del Archipiélago de San
Andrés, Providencia y Santa Catalina–Coralina, los permisos de vertimiento al medio marino, que hayan
sido otorgados por autoridades ambientales distintas al Ministerio de Ambiente, Vivienda y Desarrollo
Territorial, con anterioridad a la publicación del presente decreto, deberán ser entregados con su
respectivo expediente al Ministerio para lo de su competencia. Se exceptúan los permisos que hayan
sido otorgados dentro de una licencia ambiental o por delegación del Ministerio de Ambiente, Vivienda
y Desarrollo Territorial.
Artículo 42º. Requisitos del permiso de vertimientos. El interesado en obtener un permiso de
vertimiento, deberá presentar ante la autoridad ambiental competente, una solicitud por escrito que
contenga la siguiente información:
1. Nombre, dirección e identificación del solicitante y razón social si se trata de una persona jurídica.
2. Poder debidamente otorgado, cuando se actúe mediante apoderado.
3. Certificado de existencia y representación legal para el caso de persona jurídica.
4. Autorización del propietario o poseedor cuando el solicitante sea mero tenedor.
5. Certificado actualizado del Registrador de Instrumentos Públicos y Privados sobre la propiedad del
inmueble, o la prueba idónea de la posesión o tenencia.
6. Nombre y localización del predio, proyecto, obra o actividad.
7. Costo del proyecto, obra o actividad.
8. Fuente de abastecimiento de agua indicando la cuenca hidrográfica a la cual pertenece.
9. Características de las actividades que generan el vertimiento.
10. Plano donde se identifique origen, cantidad y localización georreferenciada de las descargas al
cuerpo de agua o al suelo.
11. Nombre de la fuente receptora del vertimiento indicando la cuenca hidrográfica a la que pertenece.
12. Caudal de la descarga expresada en litros por segundo.
13. Frecuencia de la descarga expresada en días por mes.
14. Tiempo de la descarga expresada en horas por día.
15. Tipo de flujo de la descarga indicando si es continuo o intermitente.
16. Caracterización actual del vertimiento existente o estado final previsto para el vertimiento
proyectado de conformidad con la norma de vertimientos vigente.
Page 57 of 105
17. Ubicación, descripción de la operación del sistema, memorias técnicas y diseños de ingeniería
conceptual y básica, planos de detalle del sistema de tratamiento y condiciones de eficiencia del sistema
de tratamiento que se adoptará.
18. Concepto sobre el uso del suelo expedido por la autoridad municipal competente.
19. Evaluación ambiental del vertimiento.
20. Plan de gestión del riesgo para el manejo del vertimiento.
21. Plan de contingencia para la prevención y control de derrames, cuando a ello hubiere lugar.
22. Constancia de pago para la prestación del servicio de evaluación del permiso de vertimiento.
23. Los demás aspectos que la autoridad ambiental competente consideré necesarios para el
otorgamiento del permiso.
Parágrafo 1º. En todo caso cuando no exista compatibilidad entre los usos del suelo y las determinantes
ambientales establecidas por la autoridad ambiental competente para el Ordenamiento Territorial, estas
últimas de acuerdo con el artículo 10 de la Ley 388 de 1997 o la norma que lo modifique, adicione o
sustituya, prevalecerán sobre los primeros.
Parágrafo 2º. Los análisis de las muestras deberán ser realizados por laboratorios acreditados por el
IDEAM, de conformidad con lo dispuesto en el Decreto 1600 de 1994 o la norma que lo modifique,
adicione o sustituya. El muestreo representativo se deberá realizar de acuerdo con el Protocolo para el
Monitoreo de los Vertimientos en Aguas Superficiales, Subterráneas.
Parágrafo 3º. Los estudios, diseños, memorias, planos y demás especificaciones de los sistemas de
recolección y tratamiento de las aguas residuales deberán ser elaborados por firmas especializadas o
por profesionales calificados para ello y que cuenten con su respectiva matrícula profesional de acuerdo
con las normas vigentes en la materia.
Parágrafo 4º. Los planos a que se refiere el presente artículo deberán presentarse en formato análogo
tamaño 100 cm x 70 cm y copia digital de los mismos.
Artículo 43º. Evaluación ambiental del vertimiento. Para efectos de lo dispuesto en el numeral 19 del
artículo 42 del presente decreto, la evaluación ambiental del vertimiento solo deberá ser presentada por
los generadores de vertimientos a cuerpos de agua o al suelo que desarrollen actividades industriales,
comerciales y de servicio, así como los provenientes de conjuntos residenciales y deberá contener como
mínimo:
1. Localización georreferenciada de proyecto, obra o actividad.
2. Memoria detallada del proyecto, obra o actividad que se pretenda realizar, con especificaciones de
procesos y tecnologías que serán empleados en la gestión del vertimiento.
Page 58 of 105
3. Información detallada sobre la naturaleza de los insumos, productos químicos, formas de energía
empleados y los procesos químicos y físicos utilizados en el desarrollo del proyecto, obra o actividad que
genera vertimientos.
4. Predicción y valoración de los impactos que puedan derivarse de los vertimientos generados por el
proyecto, obra o actividad sobre el cuerpo de agua y sus usos o al suelo. Para tal efecto se debe tener en
cuenta los Planes de Ordenamiento del Recurso Hídrico y/o el plan de manejo ambiental del acuífero
asociado. Cuando estos no existan, la autoridad ambiental competente definirá los términos y
condiciones bajo los cuales se debe realizar la predicción y valoración de los impactos.
5. Predicción a través de modelos de simulación de los impactos que cause el vertimiento en el cuerpo
de agua y/o al suelo, en función de la capacidad de asimilación y dilución del cuerpo de agua receptor y
de los usos y criterios de calidad establecidos en el Plan de Ordenamiento del Recurso Hídrico.
6. Manejo de residuos asociados a la gestión del vertimiento.
7. Descripción y valoración de los proyectos, obras y actividades para prevenir, mitigar, corregir o
compensar los impactos sobre el cuerpo de agua y sus usos o al suelo.
8. Posible incidencia del proyecto, abra o actividad en la calidad de la vida o en las condiciones
económicas, sociales y culturales de los habitantes del sector o de la región en donde pretende
desarrollarse, y medidas que se adoptarán para evitar o minimizar efectos negativos de orden
sociocultural que puedan derivarse de la misma.
Parágrafo 1º. La modelación de que trata el presente artículo, deberá realizarse conforme a la Guía
Nacional de Modelación del Recurso Hídrico. Mientras se expide la guía, los usuarios continuarán
aplicando los modelos de simulación existentes.
Parágrafo 2º. Para efectos de la aplicación de lo dispuesto en este artículo en relación con los conjuntos
residenciales, la autoridad ambiental definirá los casos en los cuales no estarán obligados a presentar la
evaluación ambiental del vertimiento en función de la capacidad de carga del cuerpo receptor, densidad
de ocupación del suelo y densidad poblacional.
Parágrafo 3º. En los estudios ambientales de los proyectos, obras o actividades sujetos a licencia
ambiental, se incluirá la evaluación ambiental del vertimiento prevista en el presente artículo.
Artículo 44º. Plan de gestión del riesgo para el manejo de vertimientos. Las personas naturales o
jurídicas de derecho público o privado que desarrollen actividades industriales, comerciales y de
servicios que generen vertimientos a un cuerpo de agua o al suelo deberán elaborar un Plan de Gestión
del Riesgo para el Manejo de Vertimientos en situaciones que limiten o impidan el tratamiento del
vertimiento. Dicho plan debe incluir el análisis del riesgo, medidas de prevención y mitigación,
protocolos de emergencia y contingencia y programa de rehabilitación y recuperación.
Parágrafo. El Ministerio de Ambiente, Vivienda y Desarrollo Territorial mediante acto administrativo,
adoptará los términos de referencia para la elaboración de este plan dentro de los seis (6) meses,
contados a partir de la publicación del presente decreto.
Artículo 45º. Procedimiento para la obtención del permiso de vertimientos. El procedimiento es el
siguiente:
Page 59 of 105
1. Una vez radicada la solicitud de permiso de vertimiento, la autoridad ambiental competente contará
con diez (10) días hábiles para verificar que la documentación esté completa, la cual incluye el pago por
concepto del servicio de evaluación. En caso que la documentación esté incompleta, se requerirá al
interesado para que la allegue en el término de diez (10) días hábiles, contados a partir del envío de la
comunicación.
2. Cuando la información esté completa, se expedirá el auto de iniciación de trámite.
3. Dentro de los treinta (30) días hábiles siguientes a la publicación del auto de iniciación de trámite,
realizará el estudio de la solicitud de vertimiento y practicará las visitas técnicas necesarias.
4. Dentro de los ocho (8) días hábiles siguientes a la realización de las visitas técnicas, se deberá emitir el
correspondiente informe técnico.
5. Una vez proferido dicho informe, se expedirá el auto de trámite que declare reunida toda la
información para decidir.
6. La autoridad ambiental competente decidirá mediante resolución si otorga o niega el permiso de
vertimiento, en un término no mayor a veinte (20) días hábiles, contados a partir de la expedición del
auto de trámite.
7. Contra la resolución mediante la cual se otorga o se niega el permiso de vertimientos, procederá el
recurso de reposición dentro de los cinco (5) días hábiles siguientes a la fecha de notificación de la
misma.
Parágrafo 1º. Para los efectos de la publicidad de las actuaciones que den inicio o pongan fin a la
actuación, se observará lo dispuesto en los artículos 70 y 71 de la Ley 99 de 1993.
Parágrafo 2º. Al efectuar el cobro del servicio de evaluación, la autoridad ambiental competente
aplicará el sistema y método de cálculo establecido en el artículo 96 de la Ley 633 de 2000 y su norma
que la adicione, modifique o sustituya.
Parágrafo 3º. Las audiencias públicas que se soliciten en el trámite de un permiso de vertimiento se
realizaran conforme a lo previsto en el Decreto 330 de 2007 o la norma que lo adicione, modifique o
sustituya.
Artículo 46º. De la visita técnica. En el estudio de la solicitud del permiso de vertimiento, la autoridad
ambiental competente practicará las visitas técnicas necesarias sobre el área y por intermedio de
profesionales con experiencia en la material verificará, analizará y evaluará cuando menos, los
siguientes aspectos:
1. La información suministrada en la solicitud del permiso de vertimiento,
2. Clasificación de las aguas de conformidad con lo dispuesto en el artículo 205 del Decreto 1541 de
1978.
3. Lo dispuesto en los artículos 24 y 25 del presente decreto.
Page 60 of 105
4. Si el cuerpo de agua está sujeto a un Plan de Ordenamiento del Recurso Hídrico o si se han fijado
objetivos de calidad.
5. Si se trata de un cuerpo de agua reglamentado en cuanto a sus usos o los vertimientos.
6. Plan de Manejo o condiciones de vulnerabilidad del acuífero asociado a la zona en donde se realizará
la infiltración.
7. Los impactos del vertimiento al cuerpo de agua o al suelo,
8. El plan de gestión del riesgo para el manejo del vertimiento y plan de contingencia para el manejo de
derrames hidrocarburos o sustancias nocivas.
Del estudio de la solicitud y de la práctica de las visitas técnicas se deberá elaborar un informe técnico.
Artículo 47º. Otorgamiento del permiso de vertimiento. La autoridad ambiental competente, con
fundamento en la clasificación de aguas, en la evaluación de la información aportada por el solicitante,
en los hechos y circunstancias deducidos de las visitas técnicas practicadas y en el informe técnico,
otorgará o negará el permiso de vertimiento mediante resolución.
El permiso de vertimiento se otorgará por un término no mayor a diez (10) años.
Artículo 48º. Contenido del permiso de vertimiento. La resolución por medio de la cual se otorga el
permiso de vertimiento deberá contener por lo menos los siguientes aspectos:
1. Nombre e identificación de la persona natural o jurídica a quien se le otorga.
2. Nombre y localización del predio, proyecto, obra o actividad, que se beneficiará con el permiso de
vertimientos.
3. Descripción, nombre y ubicación georreferenciada de los lugares en donde se hará el vertimiento.
4. Fuente de abastecimiento de agua indicando la cuenca hidrográfica a la cual pertenece.
5. Características de las actividades que generan el vertimiento.
6. Un resumen de las consideraciones de orden ambiental que han sido tenidas en cuenta para el
otorgamiento del permiso ambiental.
7. Norma de vertimiento que se debe cumplir y condiciones técnicas de la descarga.
8. Término por el cual se otorga el permiso de vertimiento y condiciones para su renovación.
9. Relación de las obras que deben construirse por el permisionario para el tratamiento del vertimiento,
aprobación del sistema de tratamiento y el plazo para la construcción y entrada en operación del
sistema de tratamiento.
Page 61 of 105
10. Obligaciones del permisionario relativas al uso de las aguas y a la preservación ambiental, para
prevenir el deterioro del recurso hídrico y de los demás recursos relacionados.
11. Aprobación del Plan de Gestión del Riesgo para el Manejo del Vertimiento.
12. Aprobación del Plan de Contingencia para la Prevención y Control de Derrames, cuando a ello
hubiere lugar.
13. Obligación del pago de los servicios de seguimiento ambiental y de la tasa retributiva,
14. Autorización para la ocupación de cauce para la construcción de la infraestructura de entrega del
vertimiento al cuerpo de agua.
Parágrafo 1º. Previa a la entrada en operación del sistema de tratamiento, el permisionario deberá
informar de este hecho a la autoridad ambiental competente con el fin de obtener la aprobación de las
obras de acuerdo con la información presentada.
Parágrafo 2º. En caso de requerirse ajustes, modificaciones o cambios a los diseños del sistema de
tratamientos presentados, la autoridad ambiental competente deberá indicar el término para su
presentación.
Parágrafo 3º. Cuando el permiso de vertimiento se haya otorgado con base en una caracterización
presuntiva, se deberá indicar el término dentro del cual se deberá validar dicha caracterización.
Artículo 49º. Modificación del permiso de vertimiento. Cuando quiera que se presenten modificaciones
o cambios en las condiciones bajo las cuales se otorgó el permiso, el usuario deberá dar aviso de
inmediato y por escrito a la autoridad ambiental competente y solicitar la modificación del permiso,
indicando en qué consiste la modificación o cambio y anexando la información pertinente.
La autoridad ambiental competente evaluará la información entregada por el interesado y decidirá
sobre la necesidad de modificar el respectivo permiso de vertimiento en el término de quince (15) días
hábiles, contados a partir de la solicitud de modificación. Para ello deberá indicar qué información
adicional a la prevista en el artículo 42 del presente decreto, deberá ser actualizada y presentada.
El trámite de la modificación del permiso de vertimiento se regirá por el procedimiento previsto para el
otorgamiento del permiso de vertimiento, reduciendo a la mitad los términos señalados en el artículo
45.
Artículo 50º. Renovación del permiso de vertimiento. Las solicitudes para renovación del permiso de
vertimiento deberán ser presentadas ante la autoridad ambiental competente, dentro del primer
trimestre del último año de vigencia del permiso. El trámite correspondiente se adelantará antes de que
se produzca el vencimiento del permiso respectivo.
Para la renovación del permiso de vertimiento se deberá observar el trámite previsto para el
otorgamiento de dicho permiso en el presente decreto. Si no existen cambios en la actividad generadora
del vertimiento, la renovación queda supeditada solo a la verificación del cumplimiento de la norma de
vertimiento mediante la caracterización del vertimiento.
Page 62 of 105
Artículo 51º. Revisión. Los permisos de vertimiento deberán revisarse, y de ser el caso ajustarse, de
conformidad con lo dispuesto en el Plan de Ordenamiento del Recurso Hídrico y/o en la reglamentación
de vertimientos.
Artículo 52º. <Artículo modificado por el artículo 4º del Decreto 4728 de Diciembre 23 de 2010. El nuevo
texto es el siguiente:> Requerimiento del Plan de Cumplimiento. Si de la evaluación de la información
proveniente de la caracterización del vertimiento, así como de la documentación aportada por el
solicitante, de los hechos y circunstancias deducidos de las visitas técnicas practicadas por la autoridad
ambiental competente y del informe técnico, se concluye que no es viable otorgar el permiso de
vertimiento al cuerpo de agua o al suelo, la autoridad ambiental competente exigirá al usuario la
presentación de un Plan de Cumplimiento, siempre y cuando el vertimiento no se realice en cuerpos de
agua Clase I de que trata el artículo 205 del Decreto 1541 de 1978.
El Plan de Cumplimiento deberá incluir los proyectos, obras, actividades y buenas prácticas, que
garanticen el cumplimiento de la norma de vertimientos. Así mismo, deberá incluir sus metas, sus
periodos de evaluación y sus indicadores de seguimiento, gestión y resultados con los cuales se
determinará el avance correspondiente.
En la resolución mediante la cual se exija el Plan de Cumplimiento, se deberán entregar los términos de
referencia para la elaboración de la primera etapa, establecer las normas de vertimiento que deben
cumplirse y el plazo para la presentación de la primera etapa del plan.
Parágrafo 1º. El Plan de Cumplimiento se presentará por una (1) sola vez y no podrá ser prorrogado por
la autoridad ambiental competente, sin embargo, en los caso de fuerza mayor o caso fortuito definidos
en los términos de la Ley 95 de 1890 y en concordancia con el artículo 8° de la Ley 1333 de 2009, su
cumplimiento podrá ser suspendido hasta tanto se restablezcan las condiciones normales. Para tal
efecto, el interesado deberá presentar la justificación ante la autoridad ambiental competente.
Parágrafo 2º. Los prestadores del servicio público domiciliario de alcantarillado, se regirán por lo
dispuesto en los Planes de Saneamiento y Manejo de Vertimientos aprobados por la autoridad
ambiental competente, teniendo en cuenta lo establecido en la Resolución 1433 de 2004 del Ministerio
de Ambiente, Vivienda y Desarrollo Territorial, o la norma que lo modifique, adicione o sustituya".
Artículo 53º. Etapas de los Planes de Cumplimiento. En los planes de cumplimiento se exigirá el
desarrollo de las siguientes etapas:
1. Primera etapa: Elaboración del programa de ingeniería, cronograma e inversiones y el Plan de Gestión
del Riesgo para el Manejo del Vertimiento y el Plan de Contingencia para la Prevención y Control de
Derrames cuando a ello hubiere lugar.
2. Segunda etapa: Ejecución de los proyectos, obras, actividades y buenas prácticas propuestas, de
acuerdo con el cronograma presentado y aprobado.
3. Tercera etapa: Verificación del cumplimiento de las normas de vertimiento.
Page 63 of 105
Artículo 54º. <Artículo modificado por el artículo 5º del Decreto 4728 de Diciembre 23 de 2010. El
nuevo texto es el siguiente:>
Plazos para la presentación de los Planes de Cumplimiento. Los generadores de vertimientos que no
tengan permiso de vertimiento y que estén cumpliendo con el Decreto 1594 de 1984, tendrán un plazo
de hasta ocho (8) meses, contados a partir de la fecha de publicación del presente decreto, para
efectuar la legalización del mismo, sin perjuicio de las sanciones a las que haya lugar.
Los generadores de vertimientos que no tengan permiso de vertimiento y que no estén cumpliendo con
el Decreto 1594 de 1984, tendrán un plazo de hasta ocho (8) meses, contados a partir de la fecha de
publicación del presente decreto, para presentar ante la autoridad ambiental competente, el Plan de
Cumplimiento, sin perjuicio de las sanciones a las que haya lugar".
Artículo 55º. Plazos para el desarrollo de los Planes de Cumplimiento. Los plazos que podrán
concederse para el desarrollo de planes de cumplimiento, para cada una de las etapas, son los
siguientes:
1. Primera etapa: Hasta tres (3) meses.
2. Segunda etapa: Hasta doce (12) meses
3. Tercera etapa: Hasta tres (3) meses
Artículo 56º. Aprobación del Plan de Cumplimiento. La autoridad ambiental competente tendrá un
plazo de tres (3) meses, contados a partir de la radicación del Plan de Cumplimiento para pronunciarse
sobre su aprobación.
La resolución mediante la cual se aprueba el Plan de Cumplimiento deberá relacionar el programa de
ingeniería, cronograma e inversiones, Plan de Gestión del Riesgo para el Manejo del Vertimiento, Plan
de Contingencia para la Prevención y Control de Derrames, los proyectos, obras, actividades y buenas
prácticas aprobados.
Cuando la autoridad ambiental competente no apruebe el Plan de Cumplimiento, se indicarán las
razones para ello y se fijará al interesado un plazo de un (1) mes para que presente los ajustes
requeridos. En caso de no presentarse dentro del término señalado para ello, el interesado deberá dar
cumplimiento inmediato a la norma de vertimiento vigente.
Artículo 57º. Revisión. Los planes de cumplimiento deberán revisarse, y de ser el caso ajustarse, de
conformidad con lo dispuesto en el Plan de Ordenamiento del Recurso Hídrico y/o en la reglamentación
de vertimientos.
Artículo 58º. Seguimiento de los permisos de vertimiento, los Planes de Cumplimiento y Planes de
Saneamiento y Manejo de Vertimientos–PSMV. Con el objeto de realizar el seguimiento, control y
Page 64 of 105
verificación del cumplimiento de lo dispuesto en los permisos de vertimiento, los Planes de
Cumplimiento y Planes de Saneamiento y Manejo de Vertimientos, la autoridad ambiental competente
efectuará inspecciones periódicas a todos los usuarios.
Sin perjuicio de lo establecido en los permisos de vertimiento, en los Planes de Cumplimiento y en los
Planes de Saneamiento y Manejo de Vertimientos, la autoridad ambiental competente, podrá exigir en
cualquier tiempo y a cualquier usuario la caracterización de sus residuos líquidos, indicando las
referencias a medir, la frecuencia y demás aspectos que considere necesarios.
La oposición por parte de los usuarios a tales inspecciones y a la presentación de las caracterizaciones
requeridas, dará lugar a las sanciones correspondientes.
Parágrafo. Al efectuar el cobro de seguimiento, la autoridad ambiental competente aplicará el sistema y
método de cálculo establecido en el artículo 96 de la Ley 633 de 2000 o la norma que la adicione,
modifique o sustituya.
Artículo 59º. Sanciones. El incumplimiento de los términos, condiciones y obligaciones previstos en el
permiso de vertimiento, Plan de Cumplimiento o Plan de Saneamiento y Manejo de Vertimientos, dará
lugar a la imposición de las medidas preventivas y sancionatorias, siguiendo el procedimiento previsto
en la Ley 1333 de 2009 o la norma que la adicione, modifique o sustituya.
Artículo 60º. Disposición de residuos líquidos provenientes de terceros. El generador de vertimientos
que disponga sus aguas residuales a través de personas naturales o jurídicas que recolecten, transporten
y/o dispongan vertimientos provenientes de terceros, deberán verificar que estos últimos cuenten con
los permisos ambientales correspondientes.
DECRETO 1541 DE 1978 (JULIO 28 DE 1978) – PRESIDENCIA DE LA REPÚBLICA DE COLOMBIA
Por el cual se reglamenta la Parte III del Libro II del Decreto-Ley 2811 de 1974: "De las aguas no
marítimas" y parcialmente la Ley 23 de 1973.
Título II – Capítulo III
Extinción del dominio privado de las aguas
Artículo 20º. Para declarar la extinción del dominio privado de aguas previstas por el artículo 82 del
Decreto-Ley 2811 de 1974, el Instituto Nacional de Recursos Naturales Renovables y del ambiente,
Inderena, podrá actuar de oficio o petición del Ministerio Público o de parte interesada en obtener
concesión de uso de las aguas de que se trata.
El Instituto de los Recursos Naturales Renovables y del Ambiente, Inderena, fijará audiencia inclusive
cuando actúe de oficio, la que será pública para oír al peticionario, si lo hubiere, y quien se repute dueño
de las aguas, y a terceros que tengan derecho o interés. La convocatoria será notificada al presunto
Page 65 of 105
dueño de las aguas en la forma establecida por el Código de Procedimiento Civil, y al peticionario, y se
publicará por una vez en el periódico de la localidad, con antelación mínima de cinco (5) días hábiles a la
fecha de la audiencia.
Artículo 23º. La declaratoria de extinción se hará previo el procedimiento establecido en los artículos
procedentes, y contra ella proceden recursos previstos por el Decreto 2733 de 1959. Al quedar firme la
providencia que declare la extinción, se podrá iniciar el trámite de solicitudes de concesión para el
aprovechamiento de tales aguas.
Artículo 27º. Los particulares que soliciten conforme al artículo 20, la declaración de extinción del
dominio de aguas privadas, si simultáneamente piden concesión para usar esas mismas aguas, tendrán
prioridad para obtener ésta, si cumplen los demás requisitos y calidades que exige este reglamento. Sus
solicitudes de concesión sólo serán tramitadas una vez en firme la providencia que declara la extinción
del dominio privado de las aguas de que se trate.
Título VIII
De las obras hidráulicas
Artículo 184º. Los beneficios de una concesión o permiso para el usos de aguas o el aprovechamiento de
cauces, están obligados a presentar al Inderena, para su estudio aprobación y registro, los planos de las
obras necesarias para la captación, control, conducción, almacenamiento o distribución del caudal o el
aprovechamiento del cauce.
En la resolución que autorice la ejecución de las obras se impondrá la titular del permiso o concesión la
obligación de aceptar y facilitar la supervisión que llevará a cabo el Inderena para verificar el
cumplimiento de las obligaciones a su cargo.
Los interesados en adelantar obra de rectificación de cauces o de defensa de los taludes marginales para
evitar inundaciones o daños en los predios ribereños, deberán presentar los planos y memorias a que se
refiere este Título al Instituto colombiano de Hidrología, Meteorología y Adecuación de Tierras, el cual
coordinará con el Ministerio de Obras Públicas y Transporte sistemas para su estudio, aprobación y
control.
DECRETO 0155 DE 2004 (ENERO 22 DE 2004) – PRESIDENCIA DE LA REPÚBLICA DE COLOMBIA
Por el cual se reglamenta el artículo 43 de la Ley 99 de 1993 sobre tasas por utilización de aguas y se
adoptan otras disposiciones
Artículo 3º. Sujeto activo. Las Corporaciones Autónomas Regionales, las Corporaciones para el
Desarrollo Sostenible, las Autoridades Ambientales de los Grandes Centros Urbanos y las que se refiere
el artículo 13 de la Ley 768 del 2002 y la Unidad Administrativa Especial del Sistema de Parques
Page 66 of 105
Nacionales Naturales del Ministerio de Ambiente, Vivienda y Desarrollo Territorial, son competentes
para recaudar la tasa por utilización de agua reglamentada en este decreto.
Artículo 4º. Sujeto pasivo. Están obligadas al pago de la tasa por utilización del agua todas las personas
naturales o jurídicas, públicas o privadas, que utilicen el recurso hídrico en virtud de una concesión de
aguas.
Artículo 5º. Hecho Generador. Dará lugar al cobro de esta tasa, la utilización del agua en virtud de
concesión, por personas naturales o jurídicas, públicas o privadas.
Artículo 6º. Base Gravable. La tasa por utilización del agua se cobrará por el volumen de agua
efectivamente captada, dentro de los límites y condiciones establecidos en la concesión de aguas.
Parágrafo. El sujeto pasivo de la tasa por utilización de aguas que tenga implementado un sistema de
medición podrá presentar a la autoridad ambiental competente, en los términos y periodicidad que esta
determine conveniente, reportes sobre los volúmenes de agua captada. En caso de que el sujeto pasivo
no cuente con un sistema de medición de agua captada, la autoridad ambiental competente procederá a
realizar la liquidación y el cobro de la tasa con base en lo establecido en la concesión de aguas.
Artículo 7º. Fijación de la tarifa. La tarifa de la tasa por utilización de agua (TUA) expresada en
pesos/m3, será establecida por cada autoridad ambiental competente para cada cuenca hidrográfica,
acuífero o unidad hidrológica de análisis y está compuesta por el producto de dos componentes: la tarifa
mínima (TM) y el factor regional (FR):
TUA=TM * FR
Donde:
TUA: Es la tarifa de la tasa por utilización del agua, expresada en pesos por metro cúbico ($/m3).
TM: Es la tarifa mínima nacional, expresada en pesos por metro cúbico ($/m3).
FR: Corresponde al factor regional, adimensional.
Artículo 8º. Tarifa mínima (TM). El Ministerio de Ambiente, Vivienda y Desarrollo Territorial, mediante
resolución, fijará anualmente el monto tarifario mínimo de las tasas por utilización de aguas.
RESOLUCIÓN 086 DE 1996 (OCTUBRE 15 DE 1996) – COMISIÓN DE REGULACIÓN DE ENERGÍA Y
GAS (CREG)
Por la cual se reglamenta la actividad de generación con plantas menores de 20 MW que se encuentra
conectado al Sistema Interconectado Nacional (SIN).
Page 67 of 105
Artículo 1º. Definiciones. Para efectos de la presente Resolución y en general para interpretar las
disposiciones aplicables a la actividad de generación con plantas menores, se adoptan las siguientes
definiciones:
Generación con Plantas Menores: Es la generación producida con plantas con capacidad efectiva menor
a 20 MW, operadas por empresas generadoras, productores marginales o productores independientes
de electricidad y que comercializan esta energía con terceros, o en el caso de las empresas integradas
verticalmente, para abastecer total o parcialmente su mercado. La categoría de Generación con Plantas
Menores y la de Autogenerador son excluyentes.
Productor Marginal o Productor Independiente: Es la persona natural o jurídica que desee utilizar sus
propios recursos para producir los bienes o servicios propios del objeto de las empresas de servicios
públicos para si misma; o a otras personas a cambio de cualquier tipo de remuneración; o gratuitamente
a quienes tengan vinculación económica con ella.
Artículo 3º. <Artículo modificado por el artículo 1º de la Resolución 039 de Marzo 29 de 2001. El nuevo
texto es el siguiente:>
Opciones de las Plantas Menores. Las personas naturales o jurídicas propietarias u operadores de
plantas menores tienen las siguientes opciones para comercializar la energía que generan dichas
plantas:
Plantas Menores con Capacidad Efectiva menor de 10 MW
Estas plantas no tendrán acceso al Despacho Central y por lo tanto no participarán en el Mercado
Mayorista de electricidad. La energía generada por dichas plantas puede ser comercializada, teniendo
en cuenta los siguientes lineamientos:
1. La energía generada por una Planta Menor puede ser vendida a una comercializadora que
atiende mercado regulado, directamente sin convocatoria pública, siempre y cuando no exista
vinculación económica entre el comprador y el vendedor. En este caso, el precio de venta será
única y exclusivamente el Precio en la Bolsa Energía en cada una de las horas correspondientes,
menos un peso moneda legal ($ 1.oo) por kWh indexado conforme a lo establecido en la
Resolución CREG-005 de 2001.
2. La energía generada por una Planta Menor puede ser ofrecida a una comercializadora que
atiende mercado regulado, participando en las convocatorias públicas que abran estas
empresas. En este caso y como está previsto en la Resolución CREG-020 de 1996, la adjudicación
se
efectúa
por
mérito
de
precio.
3. La energía generada por una Planta Menor puede ser vendida, a precios pactados libremente,
a los siguientes agentes: Generadores, o Comercializadores que destinen dicha energía a la
atención exclusiva de Usuarios No Regulados.
Plantas Menores con Capacidad Efectiva mayor o igual a 10 MW y menor de 20 MW.
Estas plantas podrán optar por acceder al Despacho Central, en cuyo caso participarán en el Mercado
Mayorista de electricidad. De tomar esta opción, deberán cumplir con la reglamentación vigente.
Page 68 of 105
En caso de que estas plantas menores no se sometan al Despacho Central, la energía generada por
dichas plantas puede ser comercializada, así:
1. La energía generada por una Planta Menor puede ser vendida a una comercializadora que
atiende mercado regulado, directamente sin convocatoria pública, siempre y cuando no exista
vinculación económica entre el comprador y el vendedor. En este caso, el precio de venta será
única y exclusivamente el Precio en la Bolsa de Energía en cada una de las horas
correspondientes, menos un peso moneda legal ($ 1.oo) por kWh indexado conforme a lo
establecido en la Resolución CREG-005 de 2001.
2. La energía generada por una Planta Menor puede ser ofrecida a una comercializadora que
atiende mercado regulado, participando en las convocatorias públicas que abran estas
empresas. En este caso y como está previsto en la Resolución CREG-020 de 1996, la adjudicación
se efectúa por mérito de precio.
3. La energía generada por una Planta Menor puede ser vendida, a precios pactados libremente,
a los siguientes agentes: Generadores, o Comercializadores que destinen dicha energía a la
atención exclusiva de Usuarios No Regulados.”
RESOLUCIÓN 084 DE 1996 (OCTUBRE 15 DE 1996) – COMISIÓN DE REGULACIÓN DE ENERGÍA Y
GAS (CREG)
Por la cual se reglamentan las actividades del Autogenerador conectado al Sistema Interconectado
Nacional (SIN).
Artículo 1º. Definiciones. Para efectos de la presente Resolución y en general para interpretar las
disposiciones aplicables a la actividad de Autogeneración, se adoptan las siguientes definiciones:
Autogenerador: Es aquella persona natural o jurídica que produce energía eléctrica exclusivamente para
atender sus propias necesidades. Por lo tanto, no usa la red pública para fines distintos al de obtener
respaldo del SIN, y puede o no, ser el propietario del sistema de generación.
RESOLUCIÓN 005 DE 2010 (FEBRERO 1 DE 2010) – COMISIÓN DE REGULACIÓN DE ENERGÍA Y
GAS (CREG)
Por la cual se determinan los requisitos y condiciones técnicas que deben cumplir los procesos de
cogeneración y se regula esta actividad.
Artículo 1º. Definiciones. Para efectos de la presente Resolución se aplicarán las siguientes definiciones:
Cogenerador: Persona natural o jurídica que tiene un proceso de producción combinada de energía
eléctrica y energía térmica como parte integrante de su actividad productiva, que reúne las condiciones
y requisitos técnicos para ser considerado como cogeneración. El Cogenerador puede o no, ser el
Page 69 of 105
propietario de los activos que conforman el sistema de Cogeneración; en todo caso el proceso de
cogeneración deberá ser de quien realice la actividad productiva de la cual hace parte.
LEY 142 DE 1994 (JULIO 11 DE 1994) – CONGRESO DE LA REPÚBLICA DE COLOMBIA
Por la cual se establece el régimen de los servicios públicos domiciliarios y se dictan otras disposiciones.
Título I
De las personas prestadoras de servicios públicos
Artículo 16º. Aplicación de la ley a los productores de servicios marginales, independiente o para uso
particular. Los productores de servicios marginales o para uso particular se someterán a los artículos 25
y 26 de esta Ley. Y estarán sujetos también a las demás normas pertinentes de esta Ley, todos los actos
o contratos que celebren para suministrar los bienes o servicios cuya prestación sea parte del objeto de
las empresas de servicios públicos, a otras personas en forma masiva, o a cambio de cualquier clase de
remuneración, o gratuitamente a quienes tengan vinculación económica con ellas según la Ley, o en
cualquier manera que pueda reducir las condiciones de competencia. Las personas jurídicas a las que se
refiere este artículo, no estarán obligadas a organizarse como empresas de servicios públicos, salvo por
orden de una comisión de regulación. En todo caso se sobrentiende que los productores de servicios
marginales independientes o para uso particular de energía eléctrica están sujetos a lo dispuesto en
el artículo 45 de la ley 99 de 1993.
Parágrafo. Cuando haya servicios públicos disponibles de acueducto y saneamiento básico será
obligatorio vincularse como usuario y cumplir con los deberes respectivos, o acreditar que se dispone de
alternativas que no perjudiquen a la comunidad. La Superintendencia de Servicios Públicos será la
entidad competente para determinar si la alternativa propuesta no causa perjuicios a la comunidad.
Las autoridades de policía, de oficio o por solicitud de cualquier persona procederán a sellar los
inmuebles residenciales o abiertos al público, que estando ubicados en zonas en las que se pueden
recibir los servicios de acueducto y saneamiento básicos no se hayan hecho usuarios de ellos y
conserven tal carácter.
RESOLUCIÓN 131 DE 1998 (DICIEMBRE 23 DE 1998) – COMISIÓN DE REGULACIÓN DE ENERGÍA
Y GAS (CREG)
Por la cual se modifica la Resolución CREG-199 de 1997 y se dictan disposiciones adicionales sobre el
mercado competitivo de energía eléctrica.
Artículo 1º. Definiciones. Para efectos de la presente resolución se adoptan las siguientes definiciones:
Mercado competitivo: Es el conjunto de generadores y comercializadores en cuanto compran y venden
Page 70 of 105
energía eléctrica entre ellos. Forman parte de él, igualmente, los usuarios no regulados y quienes les
proveen de energía eléctrica.
Usuario No Regulado: Para todos los efectos regulatorios, es una persona natural o jurídica con una
demanda máxima superior a un valor en MW o a un consumo mensual mínimo de energía en MWh,
definidos por la Comisión, por instalación legalizada, a partir de la cual no utiliza redes públicas de
transporte de energía eléctrica y la utiliza en un mismo predio o en predios contiguos. Sus compras de
electricidad se realizan a precios acordados libremente entre el comprador y el vendedor.
Artículo 2º. Límites para contratación en el mercado competitivo. A partir de la vigencia de la presente
resolución, se establecen los siguientes límites de potencia o energía mensuales para que un usuario
pueda
contratar
el
suministro
de
energía
en
el
mercado
competitivo:
· Hasta el 31 de diciembre de 1999 0.5 MW o 270 MWh
·A partir del 1º de enero del 2000 0.1 MW o 55 MWh
Parágrafo. Para verificar las condiciones que deben cumplir los usuarios para comercializar en el
mercado competitivo, se aplicará lo establecido en el Anexo No. 1 de la presente resolución.
RESOLUCIÓN 020 DE 1996 (FEBRERO 27 DE 1996) – COMISIÓN DE REGULACIÓN DE ENERGÍA Y
GAS (CREG)
Por la cual se dictan normas con el fin de promover la libre competencia en las compras de energía
eléctrica en el mercado mayorista.
Artículo 4º. Condiciones para la compra de energía con destino al mercado regulado. <Artículo
modificado por el artículo 1º de la Resolución 167 de 2008. El nuevo texto es el siguiente:> Las empresas
comercializadoras y distribuidoras comercializadoras, realicen o no una de tales actividades en forma
combinada con la de generación, cualquiera de ellas sea la actividad principal, deberán realizar todas las
compras de electricidad destinadas a cubrir la demanda de su mercado regulado, mediante
procedimientos que aseguren la libre competencia de oferentes.
Con el propósito de hacer efectiva la competencia deberán solicitar y dar oportunidad, en igualdad de
condiciones, a las empresas comercializadoras y generadoras actuales y a otros agentes interesados en
desarrollar nuevos proyectos de generación, para que presenten ofertas. Las ofertas deberán ser
evaluadas con base en el precio ofertado para la energía y este será el único criterio para la selección del
oferente.
Page 71 of 105
Page 72 of 105
Page 73 of 105
Page 74 of 105
Page 75 of 105
Page 76 of 105
Page 77 of 105
Page 78 of 105
Page 79 of 105
Page 80 of 105
Page 81 of 105
Page 82 of 105
Page 83 of 105
Page 84 of 105
Page 85 of 105
Page 86 of 105
Page 87 of 105
Page 88 of 105
Page 89 of 105
Page 90 of 105
Page 91 of 105
Page 92 of 105
Page 93 of 105
Page 94 of 105
Page 95 of 105
Page 96 of 105
Page 97 of 105
Page 98 of 105
Page 99 of 105
Page 100 of 105
Page 101 of 105
Page 102 of 105
Page 103 of 105
Page 104 of 105
Page 105 of 105
Waste to Energy Facility at El Guacal Landfill
Feasibility Study
Task 11 Report: Development Impacts
Presented to Study Grantee IDEA:
and to funding agency:
United States Trade and Development Agency (USTDA)
by:
CAMBRIDGE
Project Development Inc.
in association with:
Quality & Evolution S.A.
September 20, 2011
Page 1 of 9
The contents of this Task 11 Report are listed below:
Task 11 Report Contents
Section Title
A
Impacts
B
Conclusions
Page 2 of 9
A. Impacts
A1. Infrastructure
For the development of this Task 11 report, we base our assessment of development impacts on the
technical and economic selection in Task 4 of Landfill Gas to Energy as the recommended technical
configuration, based on the technical and financial feasibility it represents.
The selected configuration is to divert landfill gas from the existing flare to utilize this gas as a fuel in
internal combustion engines with integral generators in modules of 1.6 MW capacity each. The existing
landfill gas flare will be left in place as a backup during engine-generator maintenance down time.
In order to provide a platform on which the generation modules can be installed, one single concrete
slab or three individual concrete slabs will be built with a total surface area of approximately 7.5 m x 20
m (or an area of approximately 150 square meters) and a thickness (to be confirmed during detailed
design in the project implementation phase) of 34 cm to 56 cm thickness (between 16 cm to 18 cm of
which will be installed below surrounding grade.) It is anticipated that the generation equipment will be
acquired with a prefabricated housing for each module. This provides flexibility over the years as
modules are added or removed.
The selected technical configuration of Landfill Gas to Energy (LFGE) would not increase the amount of
waste delivered to the landfill and will not require additional modifications the internal operations of
the landfill itself. As a result, no effect on the existing incoming traffic or the internal roads of the
landfill is foreseen.
At the same time, there is sufficient footprint space near the existing gas flaring equipment, where the
generation equipment can be installed without disrupting current operations. Please see Task 4, Section
D General Plot Plan. Depending on the equipment selected, the prefabricated structures around the
modules should have a height on the order of 5 meters, including the usually top-mounted mufflers.
The interface with existing systems is primarily the gas connection piping from the existing flare system
to the gas cleaning equipment supporting the generation modules. Installation of this piping connection
should be straightforward and should not cause any prolonged interruption in the operation of the
existing flare.
A2. Market-Oriented Reforms
As observed in Task 2, the Colombian electricity market is in an advanced state of liberalization, which
provides significant incentives for independent power producers to enter and remain in the market. For
example, it is guaranteed that all power produced will be sold. Although the project will have the
Page 3 of 9
advantage of operating within this market, the project will not, given its relatively small size, change the
dynamics of the market or reform its structure.
A3. Human Capacity Building
During the plant construction phase, direct construction positions created are estimated at a maximum
of 10 positions. Of these maximum 10 construction positions created, it is anticipated that 1 would be
supervisory, 1 would be a foreman position, 2 would be skilled concrete workers, and 6 would be
laborers. These positions are temporary during construction only.
It is foreseen that the employment impact of the ongoing energy generation operation will be minor,
with some positions being created for technical operator (2 positions). The personnel needed to install
the landfill gas system throughout each landfill cell are already part of the existing operations.
The equipment provider will train the 2 technical operators in operations and maintenance of the
generation and gas cleaning systems. Several copies of operational manuals will be provided. The
equipment provider will usually send its technical representative to the site for training during
construction and startup, and then periodically afterward.
A4. Technology Transfer
The technology for Landfill Gas to Energy will include three types of equipment for each module: gas
cleaning equipment, internal combustion engine, and an electricity generator. This same technology is
being considered in another similar project in Colombia (Bogotá Doña Juana landfill) as described in
Figure A-1, but to date the project is still in gas collection and flaring mode, without energy generation:
Figure A-1: Experience with this Type of Project in Colombia:
Landfill Gas to Energy Project at Doña Juana
City / Location
Bogotá – Doña Juana Landfill
Project Type
Clean Development Mechanism project
registered for landfill gas capture and, during
a second phase, for electricity generation and
supply of energy to nearby industries. The
electricity generation project is in
developmental stage and has not entered
operations.
Source: www.unfccc.int
Page 4 of 9
As a result, the recommended technical configuration is proposed or in development for another landfill
in Colombia that receives significantly higher intake tonnage than the intake tonnage at the CIS El
Guacal. The CIS El Guacal project would be an example that could be replicated in other landfills with
characteristics similar to those of the landfill in the CIS El Guacal, both in other parts of Antioquia as well
as in other parts of the country.
Normally, Landfill Gas to Energy equipment is supplied on a "turn-key" basis, so that the primary
contractor is responsible for transporting, installing, and transferring the equipment to the project
owner. Even so, operations and maintenance training will serve as a technology transfer and transfer of
know-how at the regional level.
A5. Social Benefits and Other Impacts
A5.1 Jobs Creation
During the plant construction phase, direct construction positions created are estimated at a maximum
of 10 positions. Of these maximum 10 construction positions created, it is anticipated that 1 would be
supervisory, 1 would be a foreman position, 2 would be skilled concrete workers, and 6 would be
laborers. These positions are temporary during construction only.
It is foreseen that the employment impact of the ongoing energy generation operation will be minor,
with some positions being created for technical operator (2 positions). The personnel needed to install
the landfill gas system throughout each landfill cell are already part of the existing operations.
A5.2 Impacts on the Labor Force
There should be no significant noise impact for neighbors or workers at the CIS El Guacal landfill. Access
to the prefabricated module housing structures will require personal protective equipment (PPP)
according to any measures suggested by the ARP (Administradora de Riesgos Profesionales) agency for
the new project systems (in addition to the general requirements that apply to the landfill in general).
Noises external to the prefabricated housings should be normal for diesel engines equipped with
mufflers. Numerous units of heavy equipment with muffled diesel engines are already in operation at
the landfill.
A5.3 Impacts on Existing Emissions at CIS El Guacal
Atmospheric emissions should not change noticeably from current levels associated with current gas
flaring. As a result, emissions should not affect the workforce or neighboring communities.
A5.4 Impacts on Municipal Revenues
According to Law 14 of 1983, the Industria y Comercio, Avisos y Tableros Tax ("Industry and Commerce,
Advertisement and Billboards Tax" commonly abbreviated as "ICA"):
Page 5 of 9
"applies to all commercial, industrial, and service activities that are performed in each municipal
jurisdiction, directly or indirectly, by persons or corporate entities (legal or de facto), whether such
activities are performed permanently or occasionally, in certain structures, in connection with a
commercial establishment or not."
Additionally, Law 56 of 1981, article 7, provides for special tax treatment for industrial power generation
under the ICA tax, payable by the owner of the power generation facilities. The basis for payment of this
tax is the installed capacity in kilowatts (kW). The applicable rate stipulated in Law 56 of 1981 is five
pesos (COP$ 5.00 originally and adjusted for inflation to COP$ 410.08 currently) annually per kW
installed capacity.
This is a municipal tax and its proceeds would be paid to the Municipality of Heliconia.
Based on the above, In Figure A-2, the maximum ICA tax receipts that would be received by the
Municipality of Heliconia are estimated.
Page 6 of 9
Figure A-2: Maximum projected ICA Tax Receipts to Heliconia from Power Sales at CIS El Guacal
Year
Maximum Installed Capacity
(MW)
ICA
Tax Amount
(2011 Pesos)
ICA Tax Amount
(2011 USD)
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
3.2
3.2
3.2
4.8
4.8
4.8
4.8
4.8
4.8
4.8
4.8
4.8
6.4
6.4
6.4
6.4
6.4
6.4
6.4
6.4
6.4
6.4
6.4
6.4
6.4
1,312,256
1,312,256
1,312,256
1,968,384
1,968,384
1,968,384
1,968,384
1,968,384
1,968,384
1,968,384
1,968,384
1,968,384
2,624,512
2,624,512
2,624,512
2,624,512
2,624,512
2,624,512
2,624,512
2,624,512
2,624,512
2,624,512
2,624,512
2,624,512
2,624,512
656
656
656
984
984
984
984
984
984
984
984
984
1,312
1,312
1,312
1,312
1,312
1,312
1,312
1,312
1,312
1,312
1,312
1,312
1,312
55,770,880
27,885
Total
Currency Rate source: Tasa Representativa del Mercado (TRM): COL$ 2,000 x USD$ 1.00
Page 7 of 9
The amounts presented in Figure A-2 show that the ICA maximum tax receipts to the Municipality of
Heliconia from the project would be an average over 24 years of approximately 2.3 million pesos
annually, equivalent to approximately USD$ 1162 annually.
Page 8 of 9
B. Conclusions

The implementation of the landfill gas to energy project at the CIS El Guacal does not require
significant investments in surrounding infrastructure and does not cause major changes to the
landfill's basic operations. Therefore, no infrastructure investment is required other than the
capital investment in the project itself (which includes the transmission line for export of energy
from the CIS El Guacal to the national grid).

The project includes a technology transfer to local personal with regard to the maintenance and
operations of the engine-generator sets that utilize landfill gas as a fuel.

The project will not cause negative impacts on the quality of life of the nearby community or on
the workforce of the CIS El Guacal.

It is foreseen that the project will generate approximately USD$ 1200 annually in additional tax
revenues from the ICA (Impuesto de Industria y Comercio, Avisos y Tableros) tax for the
Municipality of Heliconia.
Page 9 of 9
Waste to Energy Facility at El Guacal Landfill
Feasibility Study
Task 12 Report:
Off-Take Agreements
Presented to Study Grantee IDEA:
and to funding agency:
United States Trade and Development Agency (USTDA)
by:
CAMBRIDGE
Project Development Inc.
23 November 2011
Page 1 of 10
The contents of this Task 12 Report are listed below:
Task 12 Report Contents
A
B
C
Procedure
Agreement Key Provisions
Conclusions
Page 2 of 10
A. Procedure
Even though the feasibility study terms of reference utilize the general term "Off-Take Agreements" as
the main subject of this Task 12, the only type of "Off-Take" agreement that will be required is a Power
Purchase Agreement (PPA). For example, the Landfill Gas to Energy project will not produce recyclable
materials for sale. Therefore, this Task 12 discusses only PPA's.
Figure E-1 from Task 2 below illustrates the anticipated power sales model, which includes commercial
relationships between the key entities involved in the project.
As shown near the bottom of the power sales model in Figure E-1, power may be sold in one of two
fundamentally different modes:

Power sales to the Spot Market Sales; or

Power sales under a fixed term PPA to a specific Contracted Client.
PPA's applicable to the Landfill Gas to Energy (LFGE) project as a generator and seller of electrical power
under either of these modes is discussed in this Task 12.
In Task 2, it was recommended that the LFGE project begin operations under the Spot Market mode so
that the new project could take advantage of:

The flexibility offered by the Spot Market, which does not have minimum power production
requirements and penalties for power production shortfalls in any given month. This is
especially important during the first year of operation, when monthly gas production rates may
take some time to stabilize.

Moderately higher Spot Market pricing in recent years compared to Contracted Client pricing
(which is normally fixed throughout the year), especially during dry periods when hydroelectric
power capacity declines.

The ability to sell some of the power to the Spot Market and some to a Contracted Client (if
selling to a Contracted Client is determined to be advantageous in the future).
It is anticipated that the project will become the basis for the formation of a new entity, a Special
Purpose Company (SPC) or New Company (NEWCO). The NEWCO that will own and operate the project
will qualify, under Colombian regulations, as a public sector-owned “Generator”, probably as a
partnership of:

IDEA

EVAS
Page 3 of 10

EMGEA
The various shares and financing mechanisms are to be negotiated among IDEA, EVAS, and EMGEA and
will be incorporated in a NEWCO shareholders agreement.
We restate here that XM (Compañía de Expertos en Mercados S.A. ESP) is a subsidiary of ISA
(Interconexión Eléctrica S.A.), and is in charge of:
 Operating and coordinating the overall National Interconnection System (SIN)
 Administering the electric power commercial settlement mechanism in the wholesale power
market
 Settling and clearing of charges for use of the SIN grids
 Handling all Spot Market transactions (invoicing and payments) between Generators and the
Spot Market.
The centralized administration and operation of the SIN as provided by XM has been a key element in
the successful matching of power production with demand within this complex market.
Page 4 of 10
Page 5 of 10
B. Agreement Key Provisions
B1. Spot Market Mode
Agreement Key Provisions
Despite several attempts by the project team, it has not been possible to obtain an example of an
agreement between XM and a Generator selling into the Spot Market, which would have assisted in
creating a context for this section. XM has indicated that such agreements are proprietary or
confidential and not available for distribution, even if specific names of entities are deleted, as proposed
by the project team.
However, from the Business Model presented in Figure E-1 from Task 2, the following key provisions in a
PPA agreement between the Generator and XM are known to be required:

Point of measurement and export voltage level (44 kV) at the new CIS El Guacal power export
substation.

Control and audit arrangements for measurement for power export.

Sales pricing per kWh updating on an hourly basis according to Spot Market pricing

XM methodology in calculating Spot Market sales pricing

Invoicing terms

Reconciliation procedure in case of discrepancies

Payment terms and funds wiring instructions.
It should be noted that there is no minimum power production level (for example, kWh per month)
under the Spot Market mode. Therefore, there are no penalties for shortfalls in power production
under the mode of sales to the Spot Market.
Approvals
A PPA must be entered into with XM in order to establish the new LFGE facility as a Generator within the
Spot Market.
The project must also be registered as a Generator with the Unidad de Planeación Minero Energética
(UPME), or "Mining and Energy Planning Unit" of the central government.
Page 6 of 10
Potential Obstacles
There are no foreseeable obstacles to entering into a PPA with XM, or for obtaining UPME registration
for the new LFGE generating facility, since many such independent power producers (primarily
hydroelectric power producers) have been registered and entered the market over the years. In fact,
one of the key successes of the SIN system as administered by XM has been the large number of
independent power producers that have been given incentive to enter the SIN system as generators
(with less than 20 MW installed capacity) through the SIN guarantee that 100% of their power will be
sold. This has greatly increased the availability of power in the country as a whole.
B2. Contracted Client Mode
Agreement Key Provisions
The key provisions of a PPA between the Generator and a Contracted Client would be:

Point of measurement and export voltage level (44 kV) at the new CIS El Guacal power export
substation.

Control and audit arrangements for measurement for power export.

Sales pricing per kWh fixed for the term of the contract (usually one to two years), with
adjustments for inflation.

Minimum power supply level and penalties to Generator for shortfalls (not caused by
uncontrollable events such as natural disasters).

Invoicing terms and timing.

Reconciliation procedure in case of accounting discrepancies.

Payment terms and funds wiring instructions.
Approvals
The Generator and the Contracted Client must sign the PPA to indicate their mutual agreement to the
PPA terms.
As indicated in Task 10-Regulatory Framework, the project must be registered as a Generator with the
Unidad de Planeación Minero Energética (UPME) or "Mining and Energy Planning Unit" of the central
government.
Page 7 of 10
Potential Obstacles
There are no foreseeable obstacles to obtaining UPME registration as a Generator for the new LFGE
generating facility, since dozens of such independent power producers have been established over the
years. It is not foreseen that a Contracted Client would be difficult to secure, since during our interviews
with stakeholders including XM, no shortage of Contracted Clients has been reported.
Page 8 of 10
C. Conclusions
Even though the feasibility study terms of reference utilize the general term "Off-Take Agreements"
as the main subject of this Task 12, the only type of "Off-Take" agreement that will be required is a
Power Purchase Agreement (PPA). For example, the Landfill Gas to Energy project will not produce
recyclable materials for sale. Therefore, this Task 12 discusses only PPA's.
Power may be sold in one of two different modes:

Sales to the Spot Market; or

Sales under a fixed term contract to a specific Contracted Client.
The following key provisions would be included in a PPA agreement between the Generator and XM
under the Spot Market mode:

Control and audit arrangements for measurement for power export.

Sales pricing per kWh updating on an hourly basis according to Spot Market pricing.

XM methodology in calculating Spot Market sales pricing.

Invoicing terms and timing.
It should be noted that there is no minimum power production level (for example, kWh per month)
under the Spot Market mode. Therefore, there are no penalties for shortfalls in power production.
The key provisions of a PPA between the Generator and a Contracted Client would include:

Control and audit arrangements for measurement for power export.

Sales pricing per kWh fixed for the term of the contract (usually one to two years), with
adjustments for inflation.

Minimum power supply level and penalties to Generator for shortfalls (not caused by
uncontrollable events such as natural disasters).

Invoicing terms and timing.
It is recommended in Task 2 that the project initiate operations under the Spot Market power sales
mode (rather than the Contracted Client power sales mode), in order to take advantage of the
flexibility afforded by this mode (lack of minimum power generation levels), especially during the
first year of operations when some fluctuations in gas production may be anticipated. In addition,
the Spot Market has offered moderately higher prices to Generators in recent years.
Page 9 of 10
For the Spot Market power sales mode:

It will be necessary to enter into a PPA with XM in order to establish the new LFGE plant
as a participant in the Spot Market.

The project should be registered as a Generator with the Unidad de Planeación Minero
Energética (UPME) or Mining and Energy Planning Unit of the central government.

No obstacles are foreseen to entering into a PPA with XM.

No obstacles are foreseen for registering the project as a Generator with the UPME.
For the Contracted Client power sales mode:

The Generator and the Contracted Client will have to enter into a PPA in order to
indicate their agreement to the contractual conditions.

The project will need to be registered as a Generator with the UPME.

No obstacles are foreseen in obtaining registration of the project before the UPME.

No shortage of Contracted Clients is foreseen.
Page 10 of 10
Waste to Energy Facility at El Guacal Landfill
Feasibility Study
Task 13 Report:
Implementation Plan
Presented to Study Grantee IDEA:
and to funding agency:
United States Trade and Development Agency (USTDA)
by:
CAMBRIDGE
Project Development Inc.
in association with:
Quality & Evolution S.A.
23 November 2011
Page 1 of 8
The contents of this Task 13 Report are listed below:
Task 13 Report Contents
Section Title
A
Schedule
B
Responsibilities and
Implementation Budget
C
Conclusions
Page 2 of 8
A. Schedule
Figure A-1 shows a target schedule for implementation of the project, beginning with
completion of this present feasibility study. Sequential months are shown in the event that
implementation activities do not begin immediately after completion of this present feasibility
study. Assumed Critical Path Activities are designated with a "C" in each applicable cell of the
schedule. Implementation activities are classified into the following categories:

Business Aspects: Negotiation of contractual arrangements between stakeholders,
including IDEA, EVAS, EMGEA, power traders (for spot market sales), and potentially
GreenGas. GreenGas is the company currently operating the landfill gas flaring system
under contract to EVAS. It may be necessary to amend the contract with GreenGas, but
this contract has not been made available to the project team to date. In parallel,
financing arrangements are finalized with financing institutions, including negotiation of
debt to equity structure, loan conditions (loan period for capital repayment, interest
rate, etc.), and other conditions applicable to the financing of the project;

Permitting and Licenses: Preparation of applications for any permits or licenses,
including modifications of existing permits or licenses. Applications are followed by
processing of the applications by environmental and other regulatory authorities. The
primary environmental authority is anticipated to be Corantioquia, who must process an
expected modification of the existing environmental license (issued by Corantioquia).
We include in this activities grouping the registration of the project as a Generator
under the Unidad de Planeación Minero Energética (UPME) or "Mining and Energy
Planning Unit" of the central government and under XM as operator of the "Sistema
Interconectado Nacional" (SIN) or National Interconnected System.

EPM-Related Scope: after the connection study is completed, negotiations for EPM's
scope are finalized, and EPM procures and installs the 44 kV line, the step-up
transformer at CIS El Guacal, and the step-up transformer at one of the existing
substations in the area.

Turnkey EPC Contract: The request for proposals (RFP) is prepared based on the findings
of this feasibility study. After a competitive bid process, a turnkey EngineeringProcurement-Construction (EPC) contractor is selected and the EPC contract is finalized
before detailed design, construction of the concrete slab(s) is (are) completed, purchase
order and delivery of equipment (including the engine-generators), equipment is
installed, and the entire system of two engine-generator sets is tested and started up.
The EPC contractor must guarantee performance of the overall system.
Total duration of implementation activities is projected as approximately 12 months, based on
a high level of sponsorship by the stakeholders.
Page 3 of 8
Critical Path Activities are those activities whose total duration is likely to equal the total
duration of the overall implementation program. The Program Manager (please see Section BResponsibilities below) must carefully monitor the actual duration of these critical path
activities to ensure that the overall implementation program is not delayed.
Installation of the landfill gas collection wells in the North Cell is filled is not shown, since this
activity is already underway under contract to EVAS.
Please see Task 10-Regulatory Framework for additional detail on permitting activities.
Page 4 of 8
Figure A-1: Project Implementation Target Schedule
Sequential and Calendar Months
1
2
3
4
5
6
7
2011
NOV
Feasibility Study
Completed
8
9
10
11
12
13
JUN
JUL
AUG
SEP
OCT
NOV
C
C
C
2012
DEC
JAN
FEB
MAR
APR
MAY
C
Business Aspects
Negotiate Contracts
Negotiate Financing
C
C
C
Permitting and Licenses
Complete Applications
Regulatory Review
(Corantioquia, UPME, XM)
EPM Scope of Work
Interconnection Study
Negotiations with EPM
EPM Installs 44 kV Line +
Transformers
Turnkey EPC Contract
Prepare Request for
Proposals
Proponents Prepare
Responses
Evaluate Responses and
Award
C
C
Detailed Design
Purchase Order and
Deliver Equipment
Install Modules and
Auxiliary Equipment
C
C
C
Testing and Startup
C
Begin Power Sales
Page 5 of 8
B. Responsibilities and Implementation Budget
We assume that IDEA would assume the role of Program Manager to lead and coordinate the
implementation activities. Within each activity category, key participants are listed:

Business Aspects:
o
Contractual Negotiations: IDEA, EVAS, EMGEA, power traders (for spot market
sales), XM, and potentially Green Gas.
o
Financing: IDEA, EVAS, EMGEA, financial institutions

Permitting and Licenses: Program Manager (IDEA), Environmental Consultant, and .

EPM-Related Scope: Program Manager, Connection Study Consultant, and EPM.

Turnkey EPC Contract: Program Manager and Turnkey EPC Contractor.
Even though IDEA is expected to serve as Program Manager, it is assumed that the NEWCO will
be the entity entering into contracts (including the important Turnkey EPC Contract) with the
various consultants and contractors during the implementation phase. The NEWCO is
anticipated to be the operator of the LFGE system once startup testing is completed.
Figure B-1 below presents a budget for the implementation phase of the project. This budgeted
total amount corresponds to the estimated dollar amount for soft costs related to Tranche 1
(please see Task 14-Investment Memorandum for final financial projections). These soft costs
include, specifically, consulting (environmental, legal, EPM connection study, etc.), design, and
financing costs.
Page 6 of 8
Figure B-1: Implementation Budget
by Implementation Activity
Business Aspects
Negotiate
Contracts
Negotiate
Financing
$
67,859
10.0%
$
67,859
10.0%
Permitting and Licenses
Complete
Applications
Regulatory
Review
$
33,930
5.0%
$
33,930
5.0%
EPM Scope of Work
Interconnection
Study
Negotiations
with EPM
EPM Installs 44
kV Line +
Transformers
$
40,715
6.0%
$
16,965
2.5%
$
16,965
2.5%
Turnkey EPC Contract
Prepare
Request for
Proposals
Proponents
Prepare
Responses
Evaluate
Responses and
Award
Detailed Design
Purchase Order
and Deliver
Equipment
Install Modules
and Auxiliary
Equipment
Testing and
Startup
Begin Power
Sales
Total
$
33,930
5.0%
$
16,965
2.5%
$
16,965
2.5%
$
169,648
25.0%
$
54,287
8.0%
$
54,287
8.0%
$
54,287
8.0%
$
$
678,592
0.0%
100.0%
Page 7 of 8
C. Conclusions
Total duration of implementation activities is projected as approximately 12 months, based on a
high level of sponsorship by the stakeholders.
Critical Path Activities are those activities whose total duration is likely to equal the total
duration of the overall implementation program. The Program Manager must carefully monitor
the actual duration of these critical path activities to ensure that the overall implementation
program is not delayed.
We assume that IDEA will assume the role of Program Manager to lead and coordinate the
implementation activities. Within each activity category, key participants are listed:

Business Aspects:
o
Contractual Negotiations: IDEA, EVAS, EMGEA, power traders (for spot market
sales), XM and potentially Green Gas.
o
Financing: IDEA, EVAS, EMGEA, financial institutions

Permitting and Licenses: Program Manager and Environmental Consultant.

EPM Scope: Program Manager, Connection Study Consultant, and EPM.

Turnkey EPC Contract: Program Manager and Turnkey EPC Contractor.
Even though IDEA is expected to serve as Program Manager, it is assumed that the NEWCO will
be the entity entering into contracts (including the important Turnkey EPC Contract) with the
various consultants and contractors during the implementation phase. The NEWCO is
anticipated to be the operator of the LFGE system once startup testing is completed.
The total budget for the implementation phase of the project is USD$ 679 thousand. This
amount corresponds to the soft costs projected for Tranche 1 of the financing. The total capital
budget for Tranche 1 is USD$ 11.0 Million. Please see Task 14-Investment Memorandum for the
updated project financial projections.
Page 8 of 8
Waste to Energy Facility at El Guacal Landfill
Feasibility Study
Task 14 Report:
Investment Memorandum
Presented to Study Grantee IDEA:
and to funding agency:
United States Trade and Development Agency (USTDA)
by:
CAMBRIDGE
Project Development Inc.
23 November 2011
The contents of this Task 14 Report are listed below:
Task 14 Report Contents
A
B
C
D
E
F
Executive Summary
Financial Information
Implementation Plan
U.S. Sources of Supply
Power Sales and Off-Take Agreements
Financial Projection Sheets
A. Executive Summary
Background
In fourth quarter of 2010, the Instituto para el Desarrollo de Antioquia (IDEA), a decentralized agency of
the state government of Antioquia, Colombia, awarded a contract to Cambridge Project Development
Inc. to conduct a Feasibility Study for developing a waste to energy facility at the Centro Industrial Sur
(CIS) El Guacal landfill and recycling center located southwest of central Medellín, within the
municipality of Heliconia. The Feasibility Study, funded by the United States Trade and Development
Agency (USTDA) as a grant to IDEA, began in May of 2011 and was completed in November 2011.
The primary contact for Project information is:
Mr. Santiago Piedrahita Tabares
Director for International Cooperation and Business
Instituto para el Desarrollo de Antioquia (IDEA)
Calle 42 N˚ 52-259
Medellín, Colombia
Tel. +57 4 381 9129
Email: SantiagoPT@idea.gov.co
The Feasibility Study has determined that a facility to recovery energy from gas produced by landfilled
solid waste at the CIS El Guacal is feasible and within the normal criteria of IDEA for sponsoring such
power production projects. IDEA has a long history of successfully implementing regional independent
power projects, especially with regard to hydroelectric generation.
It is noted here that over 380 such facilities are in routine operations in North America, utilizing the
same technology as proposed for the subject facility.
With completion of the Feasibility Study in November 2011, the Project is ready for the
Implementation Phase to begin. The Implementation Phase includes arranging financing for the
Project, and this Investment Memorandum is intended to present information to parties that could be
potentially interested in participating financially in the Project.
Please note that all monetary amounts presented in this Investment Memorandum are in United States
Dollars, unless otherwise noted. All tonnage amounts presented are in metric tons.
The primary goals of the Feasibility Study, as defined in the USTDA-funded Definitional Mission (prefeasibility) study completed in 2009 and further defined through interviews with IDEA and other
Stakeholders in Colombia, are:

Determine if it is technically and economically feasible to produce, export, and sell electrical
power derived from the approximately 900 tons per day of solid waste being delivered to the
CIS El Guacal facility;

Select a commercially proven technical configuration that does not require an increase in the CIS
El Guacal tipping fee charged to users at the facility scalehouse; and

Define the technical conceptual design, economic and financial profile, and implementation plan
for the energy recovery facility.
It is considered that the project provides the following significant environmental, regional, and national
benefits:

The combustion of landfill gas in the internal combustion engines selected for the project
supports the elimination of methane generated by decomposition of organic matter within the
landfill waste mass. Methane has a global warming effect on the order of 21 times greater than
carbon dioxide itself.

The project provides a maximum generating capacity of 6.4 MW to the national grid.

With the installation of a new 44 kV power export line between the CIS El Guacal and one of the
three existing substations in the region, the project supports future efforts to increase the
power supply to neighboring municipalities, such as the municipality of Heliconia.

At a national level, this would be the first landfill gas energy recovery project in the country. As
a result, the project would support the implementation of similar projects at other Colombian
landfills.
The Medellín metropolitan area currently has a population of approximately 6.1 million residents. The
CIS El Guacal facility receives solid wastes generated in the southwestern portion of this metropolitan
area. Figure A-1 below illustrates the Project location, primary waste generation area served ("waste
shed"), and several other waste related facilities in the region.
Figure A-1: Alternative Landfill in the far Northeast (La Pradera), Bello Transfer Station
(Northwest), Caldas Transfer Station (extreme South), and Approximate CIS El Guacal
Wasteshed ("Cuenca RSU") in Orange Outline
Figure A-2 below illustrates typical landfill gas generation equipment and the prefabricated housings
recommended for this Project.
Figure A-2: Typical Landfill Gas Engine-Generator Set and Pre-Fabricated Enclosures
The key Stakeholders in the Project are:

IDEA (Instituto para el Desarrollo de Antioquia): IDEA is an agency of the state government of
Antioquia with the mission of promoting, facilitating, and financing projects with high impact on
the economic, social, financial, administrative, and institutional development of the Department
of Antioquia in the strategic areas of Banking, Infrastructure, Energy, Mining, and Reforestation.
IDEA also provides consulting services and other support to entities developing such Projects.
IDEA has a long track record of successfully sponsoring and facilitating Projects within Antioquia,
including numerous hydroelectric independent power production Projects. IDEA is the grantee
under the Feasibility Study grant funded by USTDA (United States Trade Development Agency.)

United States Trade Development Agency (USTDA) has funded the Feasibility Study through a
grant to IDEA. It is not intended that USTDA remain, after the Feasibility Study, as a direct
commercial participant in the Project. However, we understand that the expectation of USTDA
is to for the Project to maximize the use of United States-sourced equipment and services
during the implementation of the Project.

EVAS S.A. ESP (EVAS) is a public sector corporation owned and controlled by the Municipality of
Envigado. EVAS is the owner and operator of the CIS El Guacal facility, although sub-contracts
have been let for various significant operations at CIS El Guacal for activities such as North Cell
operations, Material Recovery Facility (MRF) labor, and gas extraction and flaring. Gas
extraction and flaring (without energy recovery) are currently accomplished under a contract
between EVAS and private firm GreenGas.

EMGEA (Empresa de Generación y Promoción de Energia de Antioquia): Within the Colombian
national electric power system (Sistema de Interconexión Nacional, or ”SIN”), registered
Generating Companies only are permitted to sell power into the SIN. IDEA holds 37.5% of the
shares of EMGEA. EMGEA is already registered as a Generating Company within the SIN, and
operates as developer and operator of multiple power generation projects in Antioquia.

XM S.A. E.S.P.: XM is an entity that administers the SIN in terms of matching demand and load,
and also serves as a payment clearing house for payments to electricity generating companies. It
is noted here that our entire discussion is applicable to power generating Projects of capacity
less than 20 MW. Above 20 MW capacity, significantly different requirements and business
arrangements are required under the SIN. The SIN is an extremely innovative structure that
has been highly successful in supporting the establishment of numerous small independent
power producers (IPP's). One of the primary features of the SIN is that small IPP's (below 20
MW installed capacity) are guaranteed that 100% of their power will be sold through a
vigorous Spot Market administered as part of the SIN.

Empresas Públicas de Medellín (EPM): EPM is the entity responsible for distribution of electric
power within the Medellín region, including the area surrounding the CIS El Guacal facility. Any
power export from the CIS El Guacal facility will flow through a new 44 kV line installed and
operated by EPM.

New Company (NEWCO): This newly established entity would have as its scope to Finance /
Design / Build / Own / Operate (FDBOO) the new energy recovery facility. It is anticipated that
the NEWCO would be owned by IDEA, EVAS, and EMGEA as shareholders in percentages to be
determined by these three Stakeholders.
It is anticipated that the initial shareholders of the NEWCO will be IDEA, EVAS, and EMGEA. The
number of shares and their pricing to be offered to investors will be defined shortly by these initial
shareholders.
Technical and Operational Features
The CIS El Guacal facility presents excellent stability in the following key factors:

Approximately 90% of its 900 tons per day waste delivery tonnage is assured under long term
arrangements, and the remaining 10% is unlikely to be diverted to the nearest alternative
landfill at La Pradera, some 70 km distant through urban and rural roadways.

Sufficient landfill airspace for approximately 50 years is available from three landfill cells (North
Cell, Central Cell, and South Cell); only North Cell is currently active, and is projected to have
sufficient airspace for approximately 5 more years.

The Feasibility Study concluded that combustion (direct combustion of solid waste or
combustion of landfill gas derived from solid waste) is the only means of extracting energy from
waste that has a proven commercial track record worldwide. However, direct combustion of
solid waste would be prohibitively expensive in light of the relatively low Tipping Fee and Power
Sales Price available (please see immediately below). "Conversion" technologies employing
gasification, biological, or chemical conversion do not have acceptable commercial track records
and are considered "emerging" technologies. Therefore, generating electrical power feasibly
using the solid waste at CIS El Guacal requires that a landfill gas to energy facility be developed.
A significant amount of power can be generated at the facility using landfill gas derived from the solid
waste deposited in the facility's landfill cells. Landfill gas to energy (LFGE) is widely proven, full-cycle
waste treatment and energy recovery technology, in that it includes:

Final disposal and decomposition of waste in a lined landfill cell, with significant volume
reduction from biological degradation; and

Significant energy recovery through as electricity generation available for export.
A modern landfill will have the following features, which are already available at CIS El Guacal:

Lined landfill cell;

Leachate collection system;

Landfill gas collection and flaring system.
LFGE takes advantage of the landfill gas (which contains from 40% to over 50% methane) already being
collected and flared and converts it to electricity. Landfill gas from the landfill is collected from a series
of vertical wells in the waste mass (as is already being done at the CIS El Guacal) and is piped to an
internal combustion engine linked to a generator. The engine-generator sets are acquired as an integral
unit and are called "modules". Landfill gas cleaning equipment, to remove many of the non-methane
components (such as water and carbon dioxide) present in the landfill gas is usually installed just
upstream of the modules. The modules are to be delivered within prefabricated housings and mounted
on simple concrete slabs built near the existing landfill gas flare.
Figure A-3 below presents the overall process flow for a typical landfill gas to energy installation.
Figure A-3: Landfill Gas to Energy Process Flow
Figure A-4 below presents the Feasibility Study projection of power generation over 20 years in
megawatts (MW) number of 1.6 MW modules installed, and projected life span of the North Cell and the
Central Cell. It is anticipated that the remaining third cell, the South Cell would not enter operations for
at least 20 years from present. The projection shows potential power generation, which varies as a
function of the tonnage in place in the landfill and the age of the waste in place in the landfill. Landfill
gas generation continues for several years after each cell stops receiving waste but declines gradually.
Summarizing the information presented in Figure A-4:

Power generation begins in sequential Year 1 with two modules (Module A and Module B) of
capacity 1.6 MW each to reach a total installed capacity of 3.2 MW. Even though this capacity is
not fully utilized until Year 3, two modules are acquired from the beginning to provide
redundancy and thereby ensure reliable operations from the start.

A third module (Module C) is installed in Year 4 to reach a total installed capacity of 4.8 MW.

In Year 12, a fourth module (Module D) is installed to reach a total installed capacity of 6.4 MW.

Power exported begins in Year 1 at 2.0 MW and peaks in Year 17 at 5.6 MW.

It is anticipated that all four modules will continue in operation and be fully utilized after Year
20, when the new South Cell is projected to begin receiving waste.
Figure A-4: Landfill Gas Generation and Projected Plant Capacity
Total
Installed
Plant
Capacity
(MW)
Annual Power
Sold (kWh)
Base
Base
Base
Base
Base
1
2.0
2.0
3.2
17,520,000
2.8
2.0
3.2
24,528,000
3.2
2.0
3.2
28,032,000
4
3.4
3.0
4.8
29,784,000
5
3.6
3.0
4.8
31,536,000
6
3.7
3.0
4.8
32,412,000
7
3.8
3.0
4.8
33,288,000
8
4.0
3.0
4.8
35,040,000
9
4.2
3.0
4.8
36,792,000
10
4.3
3.0
4.8
37,668,000
11
4.5
3.0
4.8
39,420,000
4.7
4.0
6.4
41,172,000
4.9
4.0
6.4
42,924,000
5.0
4.0
6.4
43,800,000
15
5.2
4.0
6.4
45,552,000
16
5.4
4.0
6.4
47,304,000
17
5.6
4.0
6.4
49,056,000
18
5.1
4.0
6.4
44,676,000
19
4.0
4.0
6.4
35,040,000
20
3.2
4.0
6.4
28,032,000
12
13
14
North Cell
3
Central Cell
2
Active Cell
Total
Installed
Engines @
1.6 MW
Capacity
Each
Year: Sequential
Power
Plant
Generation
(MW)
The resulting projected kWh (kilowatt-hours) sold are represented by the following selected sequential
years:

Year 1: 17.5 Million kWh

Year 5: 31.5 Million kWh

Year 10: 37.7 Million kWh

Year 15: 45.6 Million kWh

Year 20: 28.0 Million kWh
As presented in the Financial Information section (Section B) below, LFGE power sales will allow the
facility to generate a return on investment that is considered attractive to investors.
Project Risks
Risks are considered minimal. During the feasibility study, the following risk factors, among others,
were carefully evaluated:

Waste Supply: 90% of the tonnage delivered to the CIS El Guacal is assured under long term
arrangements, and the remaining 10% would have to be transported to a remote landfill under
difficult logistical conditions.

Landfill Airspace: The CIS El Guacal landfill has an estimated remaining airspace adequate for
approximately 50 years.

Technology: More than 380 facilities routinely operate in North America using the same
technology as that proposed. The landfill gas collection system is already 30% installed in the
active North Cell, and is feeding significant landfill gas flows to the existing flare.

Economics: With an installed generating capacity of less than 20 MW, the project is guaranteed
the ability to sell 100% of generated power to the national grid ("Sistema Interconectado
Nacional" or "SIN"). The anticipated average power sales price is $0.0705 per kWh in 2011
dollars.
B. Financial Information
We highlight here that all monetary amounts presented in this Investment Memorandum are in United
States Dollars, unless otherwise noted. Key financial indicators for the recommended LFGE facility are:



Total capital investment is projected at $ 15.2 Million and is composed of:
o
Investment Tranche 1 (Year 1 through Year 9): $ 11.0 Million
o
Investment Tranche 2 (Year 10 through Year 20): $ 4.2 Million
Net Income as a percent of revenue varies as follows:
o
Average of 19.5% from Year 1 through Year 9
o
Average of 28.5% from Year 10 through Year 20
Internal Rate of Return (IRR) on equity averages as follows:
o

12.3% from Year 1 through Year 9
The Net Present Value (NPV) of the project cash flows over 20 years is projected to be:
o
$3.8 Million
It should be noted that capital investment estimates include the following major components:


Tranche 1
o
Three generation modules (Module A, Module B, and Module C)
o
North Cell (currently active) completion of 60% of the landfill gas collection system (40%
of the gas collection system will already be in place at the estimated time of project
startup).
Tranche 2
o
One generation module (Module D)
o
Central Cell (planned) installation of entire landfill gas collection system.
The financing calculations for the Project are based on the assumption that Project (and therefore the
NEWCO) funding will be structured as follows:

Equity 40%

Debt 60%
As indicated in Section A above, it is anticipated that the initial shareholders of the NEWCO will be IDEA,
EVAS, and EMGEA. The number of shares and their pricing to be offered to investors will be defined
shortly by these initial shareholders.
Project financial projections are presented for reference below in Section F at the end of this Investment
Memorandum.
C. Implementation Plan
Figure D-1 below presents a Project Implementation Plan target schedule. Target duration of the
Project implementation is estimated at 12 months from completion of the Feasibility Study through
construction completion.
Based on meetings held during September 2011 with IDEA and EVAS, it has been anticipated that the
Project will be implemented on a "Turnkey" basis (one direct contractor). Therefore, proposals would
be requested from suppliers for Tranche 1 (which operates Year 1 through Year 20 while Tranche 2
operates from Year 10 through at least Year 20) for the selected single contractor to accomplish the
following Turnkey services, also called an EPC (Engineering-Procurement-Construction) scope of work:

Engineering (including detailed design)

Procurement (including logistics for importation and in-country transport of the equipment)

Construction (includes civil works and equipment installation)

Subcontracting local contractors for civil, electrical, etc. scopes of work

Guarantee performance of the entire system.
Figure C-1: Project Implementation Plan Target Schedule
Sequential and Calendar Months
1
2
3
4
5
6
7
2011
NOV
DEC
9
10
11
12
13
JUL
AUG
SEP
OCT
NOV
2012
JAN
FEB
MAR
APR
MAY
Feasibility
Study
Completed
Business Aspects
Negotiate
Contracts
Negotiate
Financing
Permitting and Licenses
Complete
Applications
Regulatory
Review
EPM Scope of Work
Interconnection
Study
Negotiations
with EPM
EPM Installs 44
kV Line +
Transformers
Turnkey EPC Contract
Prepare
Request for
Proposals
Proponents
Prepare
Responses
Evaluate
Responses and
Award
Destailed
Design
Purchase Order
and Deliver
Equipment
Install Modules
and Auxiliary
Equipment
Testing and
Startup
Begin Power
Sales
8
JUN
D. U.S. Sources of Supply
The following suppliers with applicable manufacturing facilities in the United States should be in a
position to submit proposals for an EPC Turnkey scope of work for the Project:

Caterpillar, Inc. (Indiana)

Cummins Inc. (Indiana)

Curtis Engine & Equipment Inc. (Maryland)

GE Waukesha (Wisconsin) (subsidiary of General Electric).
It is estimated that approximately 85% of the capital investment will be sourced from U.S. companies:

$ 13.0 Million or 85% of the $ 15.2 Million total capital investment.
E. Power Sales and Off-Take Agreements
As an independent generating facility with capacity of less than 20 MW, the new LFGE facility is
guaranteed, under the innovative Sistema Interconectado Nacional (SIN), to be able to sell 100% of the
power generated.
The new LFGE facility will have the option of selling to the Spot Market or to a specific power customer
under contract. Based on historical review of pricing, it is recommended that the new LFGE facility sell
power to the Spot Market, at least initially.
Power sales pricing under contracts have been historically slightly lower than Spot Market prices; a new
facility may also want to take advantage of the added flexibility offered by the Spot Market (no
minimum export level required), especially during early years of operations.
A standard agreement between the generating company and XM allows the generating company to sell
to the Spot Market.
If it is determined later that it is advantageous for the Project to sell some or all of the available power
to a contracted client, no obstacles are foreseen in finding a contracted client or implementing one of
many standard form Power Purchase Agreement contracts (usually of one to two year terms).
As a generating facility owned by public entities (assumed to be a combination of IDEA, EVAS, and
EMGEA), the facility will be exempt from value added sales tax (IVA tax).
F. Financial Projection Sheets
The following financial projection sheets prepared during the Feasibility Study Task 8 are attached for
reference:

Figure F-1: Capital Investment and Use Over Time

Figure F-2: Cash Flow Projection

Figure F-3: Pro-Forma Income Statement

Figure F-4: Internal Rate of Return

Figure F-5: Net Present Value (NPV) of Cash Flows

Figure F-6: Operations and Maintenance Expense
Figure F-1: Capital Investment and Use Over Time
Sequential Year
Calendar Year
1
2012
2
2013
3
2014
4
2015
5
2016
6
2017
7
2018
8
2019
9
2020
Tranche 1
LFG Collection System: North Cell
$
222,394
LFG Collection System: Central Cell
$
354,542
LFG Power Generation System
$
8,160,000
$
55,599
$
5,440,000
Civil Works
$
100,000
$
100,000
Project Soft Costs
$
678,592
$
678,592
$
916,099
$
7,190,289
Contingency
$
916,099
Working Capital
$
617,580
TOTAL TRANCHE 1 $
11,049,207
Annual Total
Sequential Year
Calendar Year
$
$
55,599
55,599
$
55,599
$
2,720,000
$
2,775,599
$
$
55,599
55,599
$
70,908
$
70,908
$
70,908
$
70,908
$
70,908
$
70,908
$
70,908
$
70,908
$
70,908
$
70,908
10
11
12
13
14
15
16
17
18
19
20
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
Tranche 2
LFG Collection System (Central Cell Cont'd)
$
779,992
LFG Power Generation System
$
2,720,000
$
70,908
Civil Works
$
Project Soft Costs
$
308,363
$
308,363
Contingency
$
416,290
$
416,290
$
795,561
Working Capital
$
TOTAL TRANCHE 2 $
70,908
$
70,908
$
2,720,000
$
2,790,908
$
70,908
$
70,908
$
70,908
$
70,908
$
70,908
$
70,908
$
70,908
$
70,908
$
70,908
$
70,908
$
70,908
$
70,908
$
70,908
$
70,908
$
70,908
$
70,908
-
4,224,645
Annual Total
Total Capital Investment $
$
15,273,851
$
70,908
Figure F-2: Cash Flow Projection / Cuadro F-2: Proyecciones de Flujo de Caja
2012
1
Operating Activities/ Actividades Operacionales
Cash Received / Flujo de Caja Recibido
Power Sales Revenue / Ventas de Energía
Total Cash Received/Recibido
Cash Used / Consumo de Caja
Operations Expense / Costos Operacionales
Total Cash Used / Consumo
Net / Neto
Investing Activities / Actividades de Inversión
Cash Received / Flujo de Caja Recibido
Proceeds from Sales of Equipment / Venta de Equipos
2014
3
2015
4
2016
5
2017
6
2018
7
2019
8
2020
9
$
$
1,235,160
1,235,160
$
$
1,729,224
1,729,224
$
$
1,976,256
1,976,256
$
$
2,099,772
2,099,772
$
$
2,223,288
2,223,288
$
$
2,285,046
2,285,046
$
$
2,346,804
2,346,804
$
$
2,470,320
2,470,320
$
$
2,593,836
2,593,836
$
$
$
491,663
491,663
743,497
$
$
$
656,687
656,687
1,072,537
$
$
$
739,199
739,199
1,237,057
$
$
$
780,455
780,455
1,319,317
$
$
$
998,168
998,168
1,225,120
$
$
$
1,018,796
1,018,796
1,266,250
$
$
$
1,039,424
1,039,424
1,307,380
$
$
$
1,080,680
1,080,680
1,389,640
$
$
$
1,121,936
1,121,936
1,471,900
$
Total Cash Received/Recibido
Cash Used / Consumo de Caja
Capital Equipment & Civil Works / Equipo Capital & Obra Civil
$
Total Cash Used / Consumo
Net / Neto
$
$
Financing Activities/Actividades de Financiamiento
Cash Received / Flujo de Caja Recibido
Contributed Equity / Equity Contribuido
Bank Loan / Préstamo Bancario
Total Cash Received/Recibido
Cash Used / Consumo de Caja
Interest Paid / Intereses
Principal Payment / Reembolso de Capital
Return of Contributed Equity/Reembolso de Equity
Dividends Paid / Dividendos Pagados
Total Cash Used / Consumo
Net / Neto
2013
2
$
-
$
-
$
-
$
-
$
$
55,599
$
7,190,289
7,190,289 $
(7,190,289) $
55,599 $
(55,599) $
-
$
-
$
-
$
-
$
-
$
-
$
-
$
-
$
-
$
-
$
-
$
-
$
-
$
55,599
$
70,908
$
70,908
$
70,908
$
70,908
$
70,908
2,775,599
2,775,599 $
(2,775,599) $
55,599 $
(55,599) $
70,908 $
(70,908) $
70,908 $
(70,908) $
70,908 $
(70,908) $
70,908 $
(70,908) $
4,419,683
2,770,606
$
$
55,599
$
$
2,775,599
$
$
55,599
$
$
70,908
$
$
70,908
$
$
70,908
$
$
70,908
$
$
70,908
$
7,190,289
$
55,599
$
2,775,599
$
55,599
$
70,908
$
70,908
$
70,908
$
70,908
$
70,908
$
$
$
$
193,942
277,061
-
$
$
$
$
178,440
282,620
-
$
$
$
$
352,949
560,180
-
$
$
$
$
317,628
565,740
-
$
$
$
$
282,990
572,831
-
$
$
$
$
247,855
579,922
-
$
$
$
$
212,224
587,013
-
$
$
$
$
176,097
594,104
-
$
$
$
$
139,473
601,194
-
$
$
471,003
6,719,286
$
$
461,061 $
(405,462) $
913,129
1,862,470
$
$
883,368 $
(827,769) $
855,821 $
(784,912) $
827,777 $
(756,869) $
799,237 $
(728,328) $
770,200 $
(699,292) $
740,668
(669,759)
415,014
415,014
$
$
197,626
197,626
$
$
276,676
276,676
$
$
316,201
316,201
$
$
335,964
335,964
$
$
355,726
355,726
$
$
365,607
365,607
$
$
375,489
375,489
$
$
395,251
395,251
$
$
$
$
656
197,626
$
$
656
276,676
$
$
656
316,201
$
$
984
335,964
$
$
984
355,726
$
$
984
365,607
$
$
984
375,489
$
$
984
395,251
$
$
Total Cash Used / Consumo
Net / Neto
$
$
198,282 $
(656) $
Free Cash Flow / Flujo de Caja Libre
277,332 $
(656) $
316,857 $
(656) $
336,948 $
(984) $
356,710 $
(984) $
366,592 $
(984) $
376,473 $
(984) $
396,235 $
(984) $
984
415,014
415,998
(984)
$
271,838
$
610,820
$
323,272
$
434,964
$
368,315
$
437,489
$
507,159
$
618,456
$
730,249
$
271,838
$
882,658
$
1,205,929
$
1,640,894
$
2,009,209
$
2,446,698
$
2,953,857
$
3,572,313
$
4,302,562
(6,447,448) $
1,016,282
$ (1,539,198) $
1,262,734
$
1,153,228
$
1,194,358
$
1,235,488
$
1,317,748
$
1,400,008
2021
10
2022
11
$
Operating Activities/ Actividades Operacionales
Cash Received / Flujo de Caja Recibido
Power Sales Revenue / Ventas de Energía
Total Cash Received/Recibido
Cash Used / Consumo de Caja
Operations Expense / Costos Operacionales
Total Cash Used / Consumo
Net / Neto
70,908
(70,908)
$
$
Taxes and Fees Activities/Actividades Tributarias
Cash Received / Flujo de Caja Recibido
Sales Tax Exemption / Impuesto Sobre la Renta Exención
Total Cash Received/Recibido
Cash Used / Consumo de Caja
ICA Municipal Tax / Impuesto ICA Municipal
Sales Tax / Impuesto Sobre la Renta
Net Increase/(Decrease) in Cash held
(Aumento o Decremento en Balance de Caja)
Cash Balance
(Balance de Caja)
-
2023
12
2024
13
2025
14
2026
15
2027
16
2028
17
2029
18
2030
19
2031
20
$
$
2,655,594
2,655,594
$
$
2,779,110
2,779,110
$
$
2,902,626
2,902,626
$
$
3,026,142
3,026,142
$
$
3,087,900
3,087,900
$
$
3,211,416
3,211,416
$
$
3,334,932
3,334,932
$
$
3,458,448
3,458,448
$
$
3,149,658
3,149,658
$
$
2,470,320
2,470,320
$
$
1,976,256
1,976,256
$
$
$
1,142,564
1,142,564
1,513,030
$
$
$
1,183,820
1,183,820
1,595,290
$
$
$
1,225,076
1,225,076
1,677,550
$
$
$
1,266,332
1,266,332
1,759,810
$
$
$
1,286,960
1,286,960
1,800,940
$
$
$
1,328,216
1,328,216
1,883,200
$
$
$
1,369,472
1,369,472
1,965,460
$
$
$
1,410,728
1,410,728
2,047,720
$
$
$
1,307,588
1,307,588
1,842,070
$
$
$
1,080,680
1,080,680
1,389,640
$
$
$
915,656
915,656
1,060,600
Investing Activities / Actividades de Inversión
Cash Received / Flujo de Caja Recibido
Proceeds from Sales of Equipment / Venta de Equipos
Total Cash Received/Recibido
Cash Used / Consumo de Caja
Capital Equipment & Civil Works / Equipo Capital & Obra Civil
$
$
Total Cash Used / Consumo
Net / Neto
$
$
795,561 $
(795,561) $
Financing Activities/Actividades de Financiamiento
Cash Received / Flujo de Caja Recibido
Contributed Equity / Equity Contribuido
Bank Loan / Préstamo Bancario
$
$
1,689,858 $
(894,297) $
70,908
$
$
2,790,908
$
$
70,908
$
$
70,908
$
$
70,908
$
$
70,908
$
$
70,908
$
$
70,908
$
$
70,908
$
$
70,908
Total Cash Received/Recibido
$
795,561
$
70,908
$
2,790,908
$
70,908
$
70,908
$
70,908
$
70,908
$
70,908
$
70,908
$
70,908
$
70,908
Interest Paid / Intereses
Principal Payment / Reembolso de Capital
Return of Contributed Equity/Reembolso de Equity
Dividends Paid / Dividendos Pagados
Total Cash Used / Consumo
Net / Neto
$
$
$
$
$
$
(62,601)
511,765
449,164
346,397
$
$
$
$
$
$
4,964
241,795
246,758
(175,850)
$
$
$
$
$
$
(1,035)
515,326
514,291
2,276,617
$
$
$
$
$
$
146,294
244,857
391,151
(320,242)
$
$
$
$
$
$
134,118
246,388
380,505
(309,597)
$
$
$
$
$
$
121,834
246,388
368,222
(297,313)
$
$
$
$
$
$
109,550
246,388
355,938
(285,030)
$
$
$
$
$
$
97,267
246,388
343,655
(272,746)
$
$
$
$
$
$
84,983
246,388
331,371
(260,463)
$
$
$
$
$
$
72,700
246,388
319,088
(248,179)
$
$
$
$
$
$
60,416
342,908
403,325
(332,416)
$
$
424,895
424,895
$
$
444,658
444,658
$
$
464,420
464,420
$
$
484,183
484,183
$
$
494,064
494,064
$
$
513,827
513,827
$
$
533,589
533,589
$
$
553,352
553,352
$
$
503,945
503,945
$
$
395,251
395,251
$
$
316,201
316,201
$
$
$
$
984
424,895
$
$
984
444,658
$
$
984
464,420
$
$
1,312
484,183
$
$
1,312
494,064
$
$
1,312
513,827
$
$
1,312
533,589
$
$
1,312
553,352
$
$
1,312
503,945
$
$
1,312
395,251
$
$
425,879 $
(984) $
$
795,561
$
$
-
$
$
$
70,908
$
70,908 $
(70,908) $
2,790,908
$
$
-
$
$
-
$
$
-
$
$
-
$
$
-
$
$
-
$
$
-
$
$
-
$
70,908
$
70,908
$
70,908
$
70,908
$
70,908
$
70,908
$
70,908
$
70,908
2,790,908 $
(2,790,908) $
70,908 $
(70,908) $
70,908 $
(70,908) $
70,908 $
(70,908) $
70,908 $
(70,908) $
70,908 $
(70,908) $
70,908 $
(70,908) $
70,908 $
(70,908) $
70,908
(70,908)
Cash Used / Consumo de Caja
Taxes and Fees Activities/Actividades Tributarias
Cash Received / Flujo de Caja Recibido
Sales Tax Exemption / Impuesto Sobre la Renta Exención
Total Cash Received/Recibido
Cash Used / Consumo de Caja
ICA Municipal Tax / Impuesto ICA Municipal
Sales Tax / Impuesto Sobre la Renta
Total Cash Used / Consumo
Net / Neto
Net Increase/(Decrease) in Cash held
(Aumento o Decremento en Balance de Caja)
Cash Balance
(Balance de Caja)
Free Cash Flow / Flujo de Caja Libre
445,642 $
(984) $
465,404 $
(984) $
485,495 $
(1,312) $
495,376 $
(1,312) $
515,139 $
(1,312) $
534,901 $
(1,312) $
554,664 $
(1,312) $
505,258 $
(1,312) $
396,563 $
(1,312) $
1,312
316,201
317,513
(1,312)
$
1,062,882
$
1,347,548
$
1,162,275
$
1,367,347
$
1,419,123
$
1,513,666
$
1,608,210
$
1,702,753
$
1,509,387
$
1,069,240
$
655,963
$
5,365,444
$
6,712,991
$
7,875,266
$
9,242,614
$
10,661,736
$
12,175,402
$
13,783,612
$
15,486,365
$
16,995,752
$
18,064,993
$
18,720,956
$
716,485
$
1,523,398
$ (1,114,342) $
1,687,590
$
1,728,720
$
1,810,980
$
1,893,240
$
1,975,500
$
1,769,850
$
1,317,420
$
988,380
Figure F-3: Pro-Forma Income Statement / Cálculo de Ingresos Netos
2012
1
2013
2
2014
3
2015
4
2016
5
2017
6
2018
7
2019
8
2020
9
Revenue
Power Sales (Ventas de Electricidad)
$
$
1,235,160
1,235,160
$
$
1,729,224
1,729,224
$
$
1,976,256
1,976,256
$
$
2,099,772
2,099,772
$
$
2,223,288
2,223,288
$
$
2,285,046
2,285,046
$
$
2,346,804
2,346,804
$
$
2,470,320
2,470,320
$
$
2,593,836
2,593,836
$
$
$
$
79,103
360,000
52,560
491,663
$
$
$
$
79,103
504,000
73,584
656,687
$
$
$
$
79,103
576,000
84,096
739,199
$
$
$
$
79,103
612,000
89,352
780,455
$
$
$
$
255,560
648,000
94,608
998,168
$
$
$
$
255,560
666,000
97,236
1,018,796
$
$
$
$
255,560
684,000
99,864
1,039,424
$
$
$
$
255,560
720,000
105,120
1,080,680
$
$
$
$
255,560
756,000
110,376
1,121,936
$
$
193,942
193,942
$
$
178,440
178,440
$
$
352,949
352,949
$
$
317,628
317,628
$
$
282,990
282,990
$
$
247,855
247,855
$
$
212,224
212,224
$
$
176,097
176,097
$
$
139,473
139,473
Total
$
$
$
552,460
552,460
$
$
$
552,460
552,460
$
$
$
552,460
552,460
$
$
$
552,460
552,460
$
$
$
552,460
552,460
$
$
$
552,460
552,460
$
$
$
552,460
552,460
$
$
$
552,460
552,460
$
$
$
552,460
552,460
Total Expense
$
1,238,066
$
1,387,588
$
1,644,608
$
1,650,543
$
1,833,618
$
1,819,111
$
1,804,108
$
1,809,237
$
1,813,869
Total Revenue
Expenses
Operations Expense (Costos Operacionales)
LFG Collection System (Sistema de Recolección)
LFG Power Generation System (Sistema de Generación)
EPM Charges (Pagos a EPM por Interconexión)
Sub-Total
Interest Expense (Pago de Intereses)
Interest Expense (Pago de Intereses)
Sub-Total
Years
(Años)
20.0
20.0
Depreciation / Depreciación
Tranche 1 / Fase 1
Tranche 2 / Fase 2
Taxes
ICA Municipal Tax (Impuesto Municipal ICA)
Sales Tax (Impuesto Sobre Renta)
Sales Tax (Exención)
[a]
16.0%
16.0%
Sub-Total
Net Income (Ingresos Netos)
Percent of Revenue (Porcentaje de Ventas)
$
$
$
$
$
EBITDA [b]
$
656
(197,626)
197,626
656
$
$
$
$
(3,562) $
-0.3%
743,497
$
2021
10
656
(276,676)
276,676
656
$
$
$
$
340,980 $
19.7%
1,072,537
$
2022
11
656
(316,201)
316,201
656
$
$
$
$
330,992 $
16.7%
1,237,057
$
2023
12
984
(335,964)
335,964
984
$
$
$
$
448,244 $
21.3%
1,319,317
$
2024
13
984
(355,726)
355,726
984
$
$
$
$
388,686 $
17.5%
1,225,120
$
2025
14
984
(365,607)
365,607
984
$
$
$
$
464,951 $
20.3%
1,266,250
$
2026
15
984
(375,489)
375,489
984
$
$
$
$
541,712 $
23.1%
1,307,380
$
2027
16
984
(395,251)
395,251
984
$
$
$
$
984
(415,014)
415,014
984
660,099 $
26.7%
778,983
30.0%
1,389,640
$
2028
17
1,471,900
2029
18
2030
19
2031
20
Revenue
Power Sales (Ventas de Electricidad)
$
$
2,655,594
2,655,594
$
$
2,779,110
2,779,110
$
$
2,902,626
2,902,626
$
$
3,026,142
3,026,142
$
$
3,087,900
3,087,900
$
$
3,211,416
3,211,416
$
$
3,334,932
3,334,932
$
$
3,458,448
3,458,448
$
$
3,149,658
3,149,658
$
$
2,470,320
2,470,320
$
$
1,976,256
1,976,256
$
$
$
$
255,560
774,000
113,004
1,142,564
$
$
$
$
255,560
810,000
118,260
1,183,820
$
$
$
$
255,560
846,000
123,516
1,225,076
$
$
$
$
255,560
882,000
128,772
1,266,332
$
$
$
$
255,560
900,000
131,400
1,286,960
$
$
$
$
255,560
936,000
136,656
1,328,216
$
$
$
$
255,560
972,000
141,912
1,369,472
$
$
$
$
255,560
1,008,000
147,168
1,410,728
$
$
$
$
255,560
918,000
134,028
1,307,588
$
$
$
$
255,560
720,000
105,120
1,080,680
$
$
$
$
255,560
576,000
84,096
915,656
$
$
(62,601) $
(62,601) $
4,964
4,964
$
$
(1,035) $
(1,035) $
146,294
146,294
$
$
134,118
134,118
$
$
121,834
121,834
$
$
109,550
109,550
$
$
97,267
97,267
$
$
84,983
84,983
$
$
72,700
72,700
$
$
60,416
60,416
Total
$
$
$
552,460
211,232
763,693
$
$
$
552,460
211,232
763,693
$
$
$
552,460
211,232
763,693
$
$
$
552,460
211,232
763,693
$
$
$
552,460
211,232
763,693
$
$
$
552,460
211,232
763,693
$
$
$
552,460
211,232
763,693
$
$
$
552,460
211,232
763,693
$
$
$
552,460
211,232
763,693
$
$
$
552,460
211,232
763,693
$
$
$
552,460
211,232
763,693
Total Expense
$
1,843,656
$
$
1,987,734
$
2,176,318
$
2,184,770
$
2,213,742
$
2,242,715
$
2,271,687
$
2,156,264
$
1,917,072
$
1,739,764
Total Revenue
Expenses
Operations Expense (Costos Operacionales)
LFG Collection System (Sistema de Recolección)
LFG Power Generation System (Sistema de Generación)
EPM Charges (Pagos a EPM por Interconexión)
Sub-Total
Interest Expense (Pago de Intereses)
Interest Expense (Pago de Intereses)
Sub-Total
Years
(Años)
20.0
20.0
Depreciation / Depreciación
Tranche 1 / Fase 1
Tranche 2 / Fase 2
Taxes
ICA Municipal Tax (Impuesto Municipal ICA)
Sales Tax (Impuesto Sobre Renta)
Sales Tax (Exención)
[a]
16.0%
16.0%
Sub-Total
Net Income (Ingresos Netos)
Percent of Revenue (Porcentaje de Ventas)
EBITDA [b]
$
$
$
$
984
(424,895)
424,895
984
$
810,954 $
30.5%
$
1,513,030
$
$
$
$
$
-
984
(444,658)
444,658
984
$
$
$
$
825,650 $
29.7%
1,595,290
$
984
(464,420)
464,420
984
$
$
$
$
913,908 $
31.5%
1,677,550
$
1,312
(484,183)
484,183
1,312
$
$
$
$
848,512 $
28.0%
1,759,810
$
1,312
(494,064)
494,064
1,312
$
$
$
$
901,818 $
29.2%
1,800,940
$
1,312
(513,827)
513,827
1,312
$
$
$
$
996,361 $
31.0%
1,883,200
$
1,312
(533,589)
533,589
1,312
$
$
$
$
1,312
(553,352)
553,352
1,312
$
$
$
$
1,090,905 $
32.7%
1,185,449 $
34.3%
1,965,460
2,047,720
$
$
1,312
(503,945)
503,945
1,312
$
$
$
$
992,082 $
31.5%
1,842,070
Notes / Notas
[a] Please see Task 11. / Favor ver Tarea 11.
[b] EBITDA = Earnings before interest, taxes, depreciation & amortization. / EBITDA = Ingresos antes de pagarse intereses, impuestos, depreciación & amortización.
$
1,312
(395,251)
395,251
1,312
$
$
$
$
1,312
(316,201)
316,201
1,312
551,936 $
22.3%
235,179
11.9%
1,389,640
$
1,060,600
Figure F-4: IRR Analysis
Sequential Year
Free Cash Flow
1
2
3
4
5
6
7
8
9
$ (6,447,448) $ 1,016,282 $ (1,539,198) $ 1,262,734 $ 1,153,228 $ 1,194,358 $ 1,235,488 $ 1,317,748 $ 1,400,008
Sequential Year
Free Cash Flow
$
Internal Rate of Return (IRR)
10
11
12
13
14
15
16
17
18
19
716,485 $ 1,523,398 $ (1,114,342) $ 1,687,590 $ 1,728,720 $ 1,810,980 $ 1,893,240 $ 1,975,500 $ 1,769,850 $ 1,317,420 $
12.3%
20
988,380
Figure F-5: Net Present Value of Cash Flows
Sequential Year
Free Cash Flow
$
1
(6,447,448) $
2
3
4
1,016,282 $ (1,539,198) $ 1,262,734 $
5
1,153,228 $
6
1,194,358 $
7
1,235,488 $
8
1,317,748 $
9
1,400,008
Sequential Year
Free Cash Flow
$
10
716,485 $
11
12
13
1,523,398 $ (1,114,342) $ 1,687,590 $
14
1,728,720 $
15
1,810,980 $
16
1,893,240 $
17
1,975,500 $
18
1,769,850 $
NPV of Cash Flows Over 20 Year Period
$
Discount Rate
3,771,940
6.73%
19
1,317,420 $
20
988,380 $
Total
14,890,415
Figure F-6: Operations and Maintenance Expense
Sequential Year
Calendar Year
LFG Collection System Tranche 1
LFG Collection System Tranche 2
LFG Power Generation System
EPM Transmission Line Charge
LFG Collection System Tranche 1
LFG Collection System Tranche 2
LFG Power Generation System
EPM Transmission Line Charge
$
1
2012
79,103 $
2
2013
79,103 $
3
2014
79,103 $
$
$
Annual Total $
360,000 $
52,560 $
491,663 $
504,000 $
73,584 $
656,687 $
576,000 $
84,096 $
739,199 $
$
$
$
$
Annual Total $
10
2021
79,103
176,456
774,000
113,004
1,142,564
$
$
$
$
$
11
2022
79,103
176,456
810,000
118,260
1,183,820
$
$
$
$
$
12
2023
79,103
176,456
846,000
123,516
1,225,076
$
$
$
$
$
4
2015
79,103 $
$
612,000 $
89,352 $
780,455 $
5
2016
79,103
176,456
648,000
94,608
998,168
13
2024
79,103
176,456
882,000
128,772
1,266,332
14
2025
79,103
176,456
900,000
131,400
1,286,960
$
$
$
$
$
$
$
$
$
$
6
2017
79,103
176,456
666,000
97,236
1,018,796
$
$
$
$
$
15
2026
79,103
176,456
936,000
136,656
1,328,216
$
$
$
$
$
7
2018
79,103
176,456
684,000
99,864
1,039,424
$
$
$
$
$
16
2027
79,103
176,456
972,000
141,912
1,369,472
$
$
$
$
$
8
2019
79,103
176,456
720,000
105,120
1,080,680
$
$
$
$
$
17
2028
79,103
176,456
1,008,000
147,168
1,410,728
$
$
$
$
$
9
2020
79,103
176,456
756,000
110,376
1,121,936
$
$
$
$
$
18
2029
79,103
176,456
918,000
134,028
1,307,588
$
$
$
$
$
19
2030
79,103
176,456
720,000
105,120
1,080,680
$
$
$
$
$
20
2031
79,103
176,456
576,000
84,096
915,656