TPS62743 300mA 高效降压转换器

Order
Now
Product
Folder
Support &
Community
Tools &
Software
Technical
Documents
TPS62743, TPS627431
ZHCSDS4A – JUNE 2015 – REVISED MAY 2016
TPS62743 TPS627431 300/400mA 高效降压转换器,具有超低静态电流
1 特性
•
•
•
1
•
•
•
•
•
•
•
•
•
•
3 说明
2.15V 至 5.5V 的输入电压 (VIN) 范围
启动后的输入电压范围低至 2.0V
输出电流
– TPS62743 300mA
– TPS627431 400mA
360nA 工作静态电流
10µA 输出电流时的效率高达 90%
节能模式操作
可选输出电压
– 8 个电压选项(1.2V 至 3.3V)
输出电压放电
低输出电压纹波
自动转换至无纹波 100% 模式
射频 (RF) 友好型 DCS-Control™
总体解决方案尺寸 < 10mm2
小型 1.6mm × 0.9mm、8 焊球 WCSP 封装
TPS62743 是一款高效降压转换器,具有典型值为
360nA 的超低静态电流。该器件经优化可搭配 2.2µH
电感和 10µF 输出电容正常工作。该器件采用 DCSControl™ 技术,开关频率典型值为 1.2MHz。在节能
模式下,该器件可将轻负载效率向下扩展至 10μA 负载
电流及以下。TPS62743 提供 300mA 的输出电流。启
动后,该器件可在低至 2.0V 的输入电压下工作。因
此,可直接由单节 Li-MnO2 纽扣电池为器件供电。
TPS62743 提供了 8 个可编程的输出电压,可通过三
个选择引脚在 1.2V 至 3.3V 范围内进行选择。 The
TPS62743 经过优化,只需使用一个小型输出电容即
可获得低输出电压纹波和低噪声。一旦输入电压接近输
出电压,器件便会进入无纹波 100% 模式,以防止输
出纹波电压增大。在此工作模式下,器件会停止开关操
作并导通高侧金属氧化物半导体场效应晶体管
(MOSFET) 开关。
2 应用
•
•
•
•
•
•
•
器件信息(1)
器件型号
可佩带产品
健身追踪器
智能手表
健康监测
蓝牙®低耗能、RF4CE、Zigbee
高效率、超低功耗 应用
能量采集
封装
封装尺寸(标称值)
TPS62743
DSBGA (8)
1.57mm x 0.88mm
TPS627431
DSBGA (8)
1.57mm x 0.88mm
(1) 要了解所有可用封装,请参阅数据表末尾的可订购产品附录。
典型应用
100%
95%
CIN
4.7 PF
TPS62743
VIN
SW
EN
VOS
VSEL1
L 2.2 PH
90%
VOUT
Low Power
MCU & RF
COUT
10 PF
VSEL2
85%
Efficiency
VIN
2.0 V to 5.5 V
80%
75%
70%
65%
VSEL3
GND
60%
Copyright © 2016, Texas Instruments Incorporated
VIN = 3.6 V
VIN = 4.2 V
VIN = 5.0 V
55%
50%
0.001
0.01
0.1
1
IOUT (mA)
10
100
1000
D006
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,
intellectual property matters and other important disclaimers. PRODUCTION DATA.
English Data Sheet: SLVSCQ0
TPS62743, TPS627431
ZHCSDS4A – JUNE 2015 – REVISED MAY 2016
www.ti.com.cn
目录
1
2
3
4
5
6
7
8
特性 ..........................................................................
应用 ..........................................................................
说明 ..........................................................................
修订历史记录 ...........................................................
Device Comparison Table.....................................
Pin Configuration and Functions .........................
Specifications.........................................................
1
1
1
2
3
3
4
7.1
7.2
7.3
7.4
7.5
7.6
7.7
4
4
4
5
5
6
7
Absolute Maximum Ratings ......................................
ESD Ratings ............................................................
Recommended Operating Conditions.......................
Thermal Information .................................................
Electrical Characteristics...........................................
Timing Requirements ................................................
Typical Characteristics ..............................................
Detailed Description .............................................. 8
8.1 Overview ................................................................... 8
8.2 Functional Block Diagram ......................................... 8
8.3 Feature Description................................................... 8
8.4 Device Functional Modes........................................ 10
9
Application and Implementation ........................ 11
9.1 Application Information............................................ 11
9.2 Typical Application ................................................. 11
9.3 System Example ..................................................... 17
10 Power Supply Recommendations ..................... 18
11 Layout................................................................... 18
11.1 Layout Guidelines ................................................. 18
11.2 Layout Example .................................................... 18
12 器件和文档支持 ..................................................... 19
12.1
12.2
12.3
12.4
12.5
12.6
器件支持................................................................
相关链接................................................................
社区资源................................................................
商标 .......................................................................
静电放电警告.........................................................
Glossary ................................................................
19
19
19
19
19
19
13 机械、封装和可订购信息 ....................................... 19
4 修订历史记录
注:之前版本的页码可能与当前版本有所不同。
Changes from Original (June 2015) to Revision A
Page
•
已添加 数据表中添加了 TPS627431 器件 .............................................................................................................................. 1
•
Added TPS627431 to ............................................................................................................................................................ 3
•
已添加 图 7 .......................................................................................................................................................................... 11
2
版权 © 2015–2016, Texas Instruments Incorporated
TPS62743, TPS627431
www.ti.com.cn
ZHCSDS4A – JUNE 2015 – REVISED MAY 2016
5 Device Comparison Table
Table 1. Device Options
TA
PART NUMBER
OUTPUT VOLTAGE SETTINGS (VSEL 1 - 3)
OUTPUT
CURRENT
PACKAGE
MARKING
–40°C to 85°C
TPS62743
1.2 V, 1.5 V, 1.8 V, 2.1 V, 2.5 V, 2.8 V, 3.0 V, 3.3 V
300 mA
TPS743
–40°C to 85°C
TPS627431
1.3 V, 1.4 V, 1.6 V, 1.7 V, 1.9 V, 2.0 V, 2.9 V, 3.1 V
400 mA
627431
6 Pin Configuration and Functions
YFP Package
8-Pin DSBGA
Top View
1
2
A
SW
VIN
B
EN
GND
C
VSEL1
VOS
D
VSEL2
VSEL3
Pin Functions
PIN
NAME
NO
VIN
A2
SW
GND
I/O
DESCRIPTION
PWR
VIN power supply pin. Connect the input capacitor close to this pin for best noise and voltage spike
suppression. A ceramic capacitor of 4.7 µF is required.
A1
OUT
The switch pin is connected to the internal MOSFET switches. Connect the inductor to this terminal.
B2
PWR
GND supply pin. Connect this pin close to the GND terminal of the input and output capacitor.
VOS
C2
IN
Feedback pin for the internal feedback divider network and regulation loop. Discharges VOUT when the
converter is disabled. Connect this pin directly to the output capacitor with a short trace.
VSEL3
D2
IN
VSEL2
D1
IN
Output voltage selection pins. See Table 2 for VOUT selection. These pin must be terminated. The pins can
be dynamically changed during operation.
VSEL1
C1
IN
EN
B1
IN
High level enables the devices, low level turns the device off. The pin must be terminated.
Copyright © 2015–2016, Texas Instruments Incorporated
3
TPS62743, TPS627431
ZHCSDS4A – JUNE 2015 – REVISED MAY 2016
www.ti.com.cn
Table 2. Output Voltage Setting
Output voltage setting VOUT [V]
VSEL setting
TPS62743
TPS627431
VSEL3
VSEL2
VSEL1
1.2
1.3
0
0
0
1.5
1.4
0
0
1
1.8
1.6
0
1
0
2.1
1.7
0
1
1
2.5
1.9
1
0
0
2.8
2.0
1
0
1
3.0
2.9
1
1
0
3.3
3.1
1
1
1
7 Specifications
7.1 Absolute Maximum Ratings
over operating free-air temperature range (unless otherwise noted)
(1)
MIN
MAX
UNIT
VIN
–0.3
6
V
SW,
–0.3
VIN +0.3V
V
EN, VSEL1-3
–0.3
VIN +0.3V
V
VOS
–0.3
3.7
V
Operating junction temperature, TJ
–40
125
°C
Storage temperature, Tstg
–65
150
°C
Pin voltage (2)
(1)
(2)
Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings
only and functional operation of the device at these or any other conditions beyond those indicated under recommended operating
conditions is not implied. Exposure to absolute–maximum–rated conditions for extended periods may affect device reliability.
All voltage values are with respect to network ground terminal GND.
7.2 ESD Ratings
VALUE
V(ESD)
(1)
(2)
Electrostatic discharge
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all
pins (1)
±2000
Charged device model (CDM), per JEDEC specification
JESD22-C101, all pins (2)
±500
UNIT
V
JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. The human body
model is a 100-pF capacitor discharged through a 1.5-kΩ resistor into each pin.
JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.
7.3 Recommended Operating Conditions
MIN NOM MAX
VIN
Supply voltage VIN
VIN
Supply voltage VIN , once started
IOUT
Device output current
TJ
Operating junction temperature range
4
UNIT
2.15
5.5
V
2.0
5.5
V
TPS62743 / TPS627431 5.5V ≥ VIN ≥ (VOUTnom + 0.7V) ≥ 2.15V
300
5.5V ≥ VIN ≥ (VOUTnom + 0.7V) ≥ 3V
400
-40
125
mA
°C
Copyright © 2015–2016, Texas Instruments Incorporated
TPS62743, TPS627431
www.ti.com.cn
ZHCSDS4A – JUNE 2015 – REVISED MAY 2016
7.4 Thermal Information
TPS62743
THERMAL METRIC (1)
YFP
UNIT
8 PINS
RθJA
Junction-to-ambient thermal resistance
103
°C/W
RθJCtop
Junction-to-case (top) thermal resistance
1.0
°C/W
RθJB
Junction-to-board thermal resistance
20
°C/W
ψJT
Junction-to-top characterization parameter
0.3
°C/W
ψJB
Junction-to-board characterization parameter
20
°C/W
RθJCbot
Junction-to-case (bottom) thermal resistance
N/A
°C/W
(1)
For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application
report, SPRA953.
7.5 Electrical Characteristics
VIN = 3.6V, TA = –40°C to 85°C typical values are at TA = 25°C (unless otherwise noted)
PARAMETER
TEST CONDITIONS
MIN
TYP
MAX
1800
UNIT
SUPPLY
IQ
Operating
quiescent current
EN = VIN, IOUT = 0µA, VOUT = 1.8V, device not switching
360
EN = VIN, IOUT = 0mA, VOUT = 1.8V , device switching
460
ISD
Shutdown current
EN = GND, shutdown current into VIN
70
1000
Undervoltage
lockout threshold
Rising VIN
2.075
2.15
Falling VIN
1.925
2
VTH_ UVLO+
VTH_UVLO-
nA
nA
V
INPUTS (EN, VSEL1-3 )
High level input
threshold
2.2V ≤ VIN ≤ 5.5V
VIL TH
Low level input
threshold
2.2V ≤ VIN ≤ 5.5V
IIN
Input bias Current
VIH
TH
1.1
0.4
V
V
10
25
0.45
1.12
0.22
0.65
nA
POWER SWITCHES
RDS(ON)
ILIMF
High side
MOSFET onresistance
Low Side
MOSFET onresistance
Ω
IOUT = 50mA
High side
MOSFET switch
current limit
TPS62743 3.0V ≤ VIN ≤ 5.5V
480
600
720
TPS627431 3.0V ≤ VIN ≤ 5.5V
590
650
800
Low side MOSFET
switch current limit
TPS62743
600
TPS627431
650
mA
OUTPUT VOLTAGE DISCHARGE
RDSCH_VOS
MOSFET onresistance
EN = GND, IVOS = -10mA into VOS pin
30
65
Ω
IIN_VOS
Bias current into
VOS pin
EN = VIN, VOUT = 2V
40
1010
nA
Copyright © 2015–2016, Texas Instruments Incorporated
5
TPS62743, TPS627431
ZHCSDS4A – JUNE 2015 – REVISED MAY 2016
www.ti.com.cn
Electrical Characteristics (continued)
VIN = 3.6V, TA = –40°C to 85°C typical values are at TA = 25°C (unless otherwise noted)
PARAMETER
TEST CONDITIONS
MIN
TYP
MAX
150
250
350
85
200
290
80
150
200
UNIT
AUTO 100% MODE TRANSITION
VTH_100+
Auto 100% Mode
leave detection
threshold (1)
Rising VIN,100% Mode is left with VIN = VOUT + VTH_100+
VTH_100-
Auto 100% Mode
enter detection
threshold (1)
Falling VIN, 100% Mode is entered with VIN = VOUT + VTH_100-
mV
OUTPUT
ILIM_softstart
High side softstart
switch current limit
Low side softstart
switch current limit
Output voltage
range
VOUT
(1)
Output voltage
accuracy
EN=low to high
mA
150
Output voltages are selected with pins VSEL 1 - 3
1.2
IOUT = 10mA, VOUT = 1.8V
IOUT = 100mA, VOUT = 1.8V
DC output voltage
load regulation
VOUT = 1.8V
DC output voltage
line regulation
VOUT = 1.8V, IOUT = 100mA, 2.2V ≤ VIN ≤ 5.0V
3.3
-2.5
0%
2.5
–2
0%
2
0.001
V
%/mA
0
%/V
VIN is compared to the programmed output voltage (VOUT). When VIN–VOUT falls below VTH_100- the device enters 100% Mode by turning
the high side MOSFET on. The 100% Mode is exited when VIN–VOUT exceeds VTH_100+ and the device starts switching. The hysteresis
for the 100% Mode detection threshold VTH_100+ - VTH_100- will always be positive and will be approximately 50 mV(typ)
7.6 Timing Requirements
VIN = 3.6V, TJ = –40°C to 85°C typical values are at TA = 25°C (unless otherwise noted)
PARAMETER
TEST CONDITIONS
MIN
TYP
MAX
UNIT
OUTPUT
tONmin
Minimum ON time
225
ns
tOFFmin
Minimum OFF time VIN = 2.3V
50
ns
tStartup_delay
Regulator start up
delay time
From transition EN = low to high until device starts switching
10
25
ms
tSoftstart
Softstart time
2.2V ≤ VIN ≤ 5.5V, EN = VIN
700
1200
µs
6
VOUT = 2.0V, IOUT = 0 mA
版权 © 2015–2016, Texas Instruments Incorporated
TPS62743, TPS627431
www.ti.com.cn
ZHCSDS4A – JUNE 2015 – REVISED MAY 2016
7.7 Typical Characteristics
250
700
VIN = 2.2 V
VIN = 2.5 V
VIN = 3.6 V
VIN = 5.5 V
VIN = 6.0 V
225
200
Shutdown Current (nA)
Quiescent Current (nA)
600
VIN = 2.2 V
VIN = 2.5 V
VIN = 3.6 V
VIN = 5.5 V
VIN = 6.0 V
500
400
175
150
125
100
75
50
300
25
200
-60
-40
-20
0
20
40
Temperature (qC)
EN = VIN, VOUT = 1.8V
60
80
0
-60
100
Device Not Switching
图 1. Quiescent Current vs Temperature
0
20
40
Temperature (qC)
60
80
100
D002
图 2. Shutdown Current ISD vs Temperature
0.5
0.9
0.45
0.4
Low Side RDSON (:)
0.8
High Side RDSON (:)
-20
EN = GND
1
0.7
0.6
0.5
0.4
0.3
0.2
-40
-20
0
20
40
Temperature (qC)
60
80
图 3. High Side RDSON vs Temperature
版权 © 2015–2016, Texas Instruments Incorporated
0.35
0.3
0.25
0.2
0.15
0.1
VIN = 2.2 V
VIN = 2.5 V
VIN = 3.6 V
0.1
0
-60
-40
D001
VIN = 2.2 V
VIN = 2.5 V
VIN = 3.6 V
0.05
100
D003
0
-60
-40
-20
0
20
40
Temperature (qC)
60
80
100
D004
图 4. Low-side RDSON vs Temperature
7
TPS62743, TPS627431
ZHCSDS4A – JUNE 2015 – REVISED MAY 2016
www.ti.com.cn
8 Detailed Description
8.1 Overview
The TPS62743 is a high frequency step down converter with ultra low quiescent current. The device operates
with a quasi fixed switching frequency typically at 1.2 MHz. Using TI's DCS-Control™ topology the device
extends the high efficiency operation area down to a few microamperes of load current during Power Save Mode
Operation.
8.2 Functional Block Diagram
Ultra Low Power
Reference
EN
Softstart
VOS
UVLO
EN
VOS
VSEL1
Internal
VFB feedback
divider
network*
VSEL2
VSEL3
UVLO
Comp
VIN
UVLO
Auto 100% Mode
Comp
100%
VIN
Mode
VTH_100
VTH_UVLO
Current
Limit Comparator
Timer
DCS
Control
VIN
VOS
VOUT
Discharge
Min. On
UVLO
Limit
High Side
Power Stage
VIN
PMOS
Min. OFF
VOS
Direct Control
& Compensation
EN
Control
Logic
Gate Driver
Anti
Shoot-Through
SW
VFB
VREF
Error
amplifier
Main
Comparator
Limit
Low Side
Current
Limit Comparator
NMOS
GND
* typical 50MW
Copyright © 2016, Texas Instruments Incorporated
8.3 Feature Description
8.3.1 DCS-Control™
TI's DCS-Control™ (Direct Control with Seamless Transition into Power Save Mode) is an advanced regulation
topology, which combines the advantages of hysteretic and voltage mode control. Characteristics of DCSControl™ are excellent AC load regulation and transient response, low output ripple voltage and a seamless
transition between PFM and PWM mode operation. DCS-Control™ includes an AC loop which senses the output
voltage (VOS pin) and directly feeds the information to a fast comparator stage. This comparator sets the
switching frequency, which is constant for steady state operating conditions, and provides immediate response to
dynamic load changes. In order to achieve accurate DC load regulation, a voltage feedback loop is used. The
internally compensated regulation network achieves fast and stable operation with small external components
and low ESR capacitors.
8
版权 © 2015–2016, Texas Instruments Incorporated
TPS62743, TPS627431
www.ti.com.cn
ZHCSDS4A – JUNE 2015 – REVISED MAY 2016
Feature Description (接
接下页)
The DCS-Control™ topology supports PWM (Pulse Width Modulation) mode for medium and high load
conditions and a Power Save Mode at light loads. During PWM mode, it operates in continuous conduction
mode. The switching frequency is typically 1.2 MHz with a controlled frequency variation depending on the input
voltage and load current. If the load current decreases, the converter seamlessly enters Power Save Mode to
maintain high efficiency down to very light loads. In Power Save Mode, the switching frequency varies linearly
with the load current. Since DCS-Control™ supports both operation modes within one single building block, the
transition from PWM to Power Save Mode is seamless with minimum output voltage ripple. The TPS62743 offers
both excellent DC voltage and superior load transient regulation, combined with low output voltage ripple,
minimizing interference with RF circuits.
8.3.2 Power Save Mode Operation
In Power Save Mode the device operates in PFM (Pulse Frequency Modulation) that generates a single
switching pulse to ramp up the inductor current and recharges the output capacitor, followed by a sleep period
where most of the internal circuits are shutdown to achieve lowest operating quiescent current. During this time,
the load current is supported by the output capacitor. The duration of the sleep period depends on the load
current and the inductor peak current. During the sleep periods, the current consumption of TPS62743 is
reduced to 360 nA. This low quiescent current consumption is achieved by an ultra low power voltage reference,
an integrated high impedance feedback divider network and an optimized Power Save Mode operation.
8.3.3 Output Voltage Selection
The TPS62743 doesn't require an external resistor divider network to program the output voltage. The device
integrates a high impedance feedback resistor divider network that is programmed by the pins VSEL1-3.
TPS62743 supports an output voltage range from 1.2 V to 3.3 V. The output voltage is programmed according to
Table 2. The output voltage can be changed during operation. This can be used for simple dynamic output
voltage scaling.
8.3.4 Output Voltage Discharge of the Buck Converter
The device provides automatic output voltage discharge when EN is pulled low or the UVLO is triggered. The
output of the buck converter is discharged over VOS. Because of this the output voltage will ramp up from zero
once the device is enabled again. This is very helpful for accurate start-up sequencing.
8.3.5 Undervoltage Lockout UVLO
To avoid misoperation of the device at low input voltages, an undervoltage lockout is used. The UVLO shuts
down the device at a maximum voltage level of 2.0 V. The device will start at a UVLO level of 2.15 V.
8.3.6 Short circuit protection
The TPS6274x integrates a current limit on the high side, as well on the low side MOSFETs to protect the device
against overload or short circuit conditions. The peak current in the switches is monitored cycle by cycle. If the
high side MOSFET current limit is reached, the high side MOSFET is turned off and the low side MOSFET is
turned on until the switch current decreases below the low side MOSFET current limit. Once the low side
MOSFET current limit trips, the low side MOSFET is turned off and the high side MOSFET turns on again.
版权 © 2015–2016, Texas Instruments Incorporated
9
TPS62743, TPS627431
ZHCSDS4A – JUNE 2015 – REVISED MAY 2016
www.ti.com.cn
8.4 Device Functional Modes
8.4.1 Enable and Shutdown
The device is turned on with EN=high. With EN=low the device enters shutdown. This pin must be terminated.
8.4.2 Device Start-up and Softstart
The device has an internal softstart to minimize input voltage drop during start-up. This allows the operation from
high impedance battery cells. Once the device is enabled the device starts switching after a typical delay time of
10ms. Then the softstart time of typical 700 µs begins with a reduced current limit of typical 150 mA. When this
time passed by the device enters full current limit operation. This allows a smooth start-up and the device can
start into full load current. Furthermore, larger output capacitors impact the start-up behaviour of the DC/DC
converter. Especially when the output voltage does not reach its nominal value after the typical soft-start time of
700 µs, has passed.
8.4.3 Automatic Transition Into No Ripple 100% Mode
Once the input voltage comes close to the output voltage, the DC/DC converter stops switching and enters 100%
duty cycle operation. It connects the output VOUT via the inductor and the internal high side MOSFET switch to
the input VIN, once the input voltage VIN falls below the 100% mode enter threshold, VTH_100-. The DC/DC
regulator is turned off, switching stops and therefore no output voltage ripple is generated. Since the output is
connected to the input, the output voltage follows the input voltage minus the voltage drop across the internal
high side switch and the inductor. Once the input voltage increases and trips the 100% mode exit threshold,
VTH_100+ , the DC/DC regulator turns on and starts switching again. See 图 5 and 图 26.
VIN
VIN,
VOUT
100%
Mode
100%
Mode
VTH_100+
VTH_100VOUT
tracks VIN
Step Down Operation
VOUT
tracks VIN
VUVLO+
VUVLOVOUT
discharge
tsoftstart
图 5. Automatic Transition into 100% Mode
10
版权 © 2015–2016, Texas Instruments Incorporated
TPS62743, TPS627431
www.ti.com.cn
ZHCSDS4A – JUNE 2015 – REVISED MAY 2016
9 Application and Implementation
注
Information in the following applications sections is not part of the TI component
specification, and TI does not warrant its accuracy or completeness. TI’s customers are
responsible for determining suitability of components for their purposes. Customers should
validate and test their design implementation to confirm system functionality.
9.1 Application Information
The TPS62743 is a high efficiency step down converter with ultra low quiescent current of typically 360 nA. The
device operates with a tiny 2.2-µH inductor and 10-µF output capacitor over the entire recommended operation
range. A dedicated measurement set-up is required for the light load efficiency measurement and device
quiescent current due to the operation in the sub microampere range. In this range any leakage current in the
measurement set-up will impact the measurement results.
9.2 Typical Application
VIN
2.0 V to 5.5 V
CIN
4.7 PF
L 2.2 PH
TPS62743
VIN
SW
EN
VOS
VOUT
Low Power
MCU & RF
COUT
10 PF
VSEL1
VSEL2
VSEL3
GND
Copyright © 2016, Texas Instruments Incorporated
图 6. TPS62743 Typical Application Circuit
VIN
2.0 V to 5.5 V
TPS627431
CIN
4.7 mF
VIN
SW
EN
VOS
L 2.2 mH
VOUT = 1.4 V
up to 400 mA
COUT
10 mF
VSEL1
VSEL2
VSEL3
GND
Copyright © 2016, Texas Instruments Incorporated
图 7. TPS627431 Typical Application Circuit
9.2.1 Design Requirements
The TPS62743 is a highly integrated DC/DC converter. The output voltage is set via a VSEL pin interface. The
design guideline provides a component selection to operate the device within the recommended operating
conditions.
表 3 shows the list of components for the Application Characteristic Curves.
版权 © 2015–2016, Texas Instruments Incorporated
11
TPS62743, TPS627431
ZHCSDS4A – JUNE 2015 – REVISED MAY 2016
www.ti.com.cn
Typical Application (接
接下页)
表 3. Components for Application Characteristic Curves
Reference
Description
TPS62743
360nA Iq step down converter
Value
CIN
Ceramic capacitor, GRM155R61C475ME15
COUT
L
Manufacturer
Texas Instruments
4.7 µF
Murata
Ceramic capacitor, GRM155R60J106ME11
10 µF
Murata
Inductor DFE201610C
2.2 µH
Toko
9.2.2 Detailed Design Procedure
The first step in the design procedure is the selection of the output filter components. To simplify this process, 表
4 outlines possible inductor and capacitor value combinations.
表 4. Recommended LC Output Filter Combinations
Output Capacitor Value [µF] (2)
Inductor Value
[µH] (1)
4.7µF
10µF
22µF
47µF
2.2
√
√ (3)
√
√
(1)
(2)
(3)
100µF
Inductor tolerance and current de-rating is anticipated. The effective inductance can vary by 20% and -30%.
Capacitance tolerance and bias voltage de-rating is anticipated. The effective capacitance varies by +20% and –50%.
Typical application configuration. Other check marks indicate alternative filter combinations.
9.2.2.1 Inductor Selection
The inductor value affects the peak-to-peak ripple current, the PWM-to-PFM transition point, the output voltage
ripple and the efficiency. The selected inductor has to be rated for its DC resistance and saturation current. The
inductor ripple current (ΔIL) decreases with higher inductance and increases with higher VIN or VOUT and can be
estimated according to 公式 1.
公式 2 calculates the maximum inductor current under static load conditions. The saturation current of the
inductor should be rated higher than the maximum inductor current, as calculated with 公式 2. This is
recommended because during a heavy load transient the inductor current rises above the calculated value. A
more conservative way is to select the inductor saturation current according to the high-side MOSFET switch
current limit, ILIMF.
Vout
1Vin
D IL = Vout ´
L ´ ¦
(1)
ILmax = Ioutmax +
DIL
2
where
•
•
•
•
f = Switching Frequency
L = Inductor Value
ΔIL= Peak to Peak inductor ripple current
ILmax = Maximum Inductor current
(2)
表 5 shows a list of possible inductors.
12
版权 © 2015–2016, Texas Instruments Incorporated
TPS62743, TPS627431
www.ti.com.cn
ZHCSDS4A – JUNE 2015 – REVISED MAY 2016
表 5. List of Possible Inductors (1)
(1)
INDUCTANCE [µH]
DIMENSIONS
[mm3]
INDUCTOR TYPE
Isat/DCR
SUPPLIER
Comment
2.2
2.0 x 1.6 x 1.0
DFE201610C
1.4 A/170 mΩ
TOKO
2.2
2.0 × 1.25 × 1.0
MIPSZ2012D 2R2
0.7 A/230 mΩ
FDK
Efficiency plot 图
14
2.2
2.0 x 1.2 x 1.0
744 797 752 22
0.7 A/200 mΩ
Würth Elektronik
2.2
1.6 x 0.8 x 0.8
MDT1608CH2R2M
0.7 A/300 mΩ
TOKO
See Third-party Products Disclaimer
9.2.2.2 Output Capacitor Selection
The DCS-Control™ scheme of the TPS62743 allows the use of tiny ceramic capacitors. Ceramic capacitors with
low ESR values have the lowest output voltage ripple and are recommended. The output capacitor requires
either an X7R or X5R dielectric. At light load currents, the converter operates in Power Save Mode and the
output voltage ripple is dependent on the output capacitor value. A larger output capacitors can be used reducing
the output voltage ripple. The leakage current of the output capacitor adds to the overall quiescent current.
9.2.2.3 Input Capacitor Selection
Because the buck converter has a pulsating input current, a low ESR input capacitor is required for best input
voltage filtering to minimize input voltage spikes. For most applications a 4.7-µF input capacitor is sufficient.
When operating from a high impedance source, like a coin cell a larger input buffer capacitor ≥10uF is
recommended avoiding voltage drops during start-up and load transients. The input capacitor can be increased
without any limit for better input voltage filtering. The leakage current of the input capacitor adds to the overall
quiescent current. 表 6 shows a selection of input and output capacitors.
表 6. List of Possible Capacitors (1)
(1)
CAPACITANCE [μF]
SIZE
CAPACITOR TYPE
SUPPLIER
4.7
0402
GRM155R61C475ME15
Murata
10
0402
GRM155R60J106ME11
Murata
See Third-party Products Disclaimer
版权 © 2015–2016, Texas Instruments Incorporated
13
TPS62743, TPS627431
ZHCSDS4A – JUNE 2015 – REVISED MAY 2016
www.ti.com.cn
9.2.3 Application Curves
100%
100%
95%
95%
90%
90%
85%
80%
80%
Efficiency
Efficiency
85%
75%
70%
75%
70%
65%
60%
65%
VIN = 2.5 V
VIN = 3.0 V
VIN = 3.6 V
VIN = 4.2 V
VIN = 5.0 V
55%
60%
VIN = 3.6 V
VIN = 4.2 V
VIN = 5.0 V
55%
50%
0.001
0.01
0.1
1
IOUT (mA)
10
100
50%
45%
40%
0.001
1000
0.01
0.1
D006
TPS62743
1
IOUT (mA)
10
100
1000
D007
TPS62743
图 8. Efficiency vs Load Current, VOUT = 3.3 V
图 9. Efficiency vs Load Current; VOUT = 2.1 V
100
100%
95%
90
90%
85%
VIN = 5.0V
70
80%
Efficiency
Efficiency [%]
80
VIN = 4.2V
60
VIN = 3.6V
50
VIN = 3.0V
40
VIN = 2.6V
30
0.001
75%
70%
65%
60%
VIN = 2.5 V
VIN = 3.0 V
VIN = 3.6 V
VIN = 4.2 V
VIN = 5.0 V
55%
50%
0.01
0.1
1
10
100
45%
1000
IOUT [mA]
40%
0.001
C001
TPS627431
0.01
0.1
1
IOUT (mA)
10
100
1000
D008
TPS62743
图 10. Efficiency vs Load Current; VOUT = 1.9 V
图 11. Efficiency vs Load Current; VOUT = 1.8 V
90%
90
85%
80
75%
VIN = 5.0V
60
Efficiency
Efficiency [%]
80%
70
VIN = 4.2V
VIN = 3.6V
50
VIN = 3.0V
40
0.01
0.1
1
10
100
65%
60%
55%
VIN = 2.6V
30
0.001
70%
VIN = 2.5 V
VIN = 3.0 V
VIN = 3.6 V
VIN = 4.2 V
VIN = 5.0 V
50%
1000
IOUT [mA]
TPS627431
图 12. Efficiency vs Load Current; VOUT = 1.4 V
45%
40%
0.001
0.01
0.1
1
IOUT (mA)
10
100
1000
D009
TPS62743
图 13. Efficiency vs Load Current; VOUT = 1.2 V
14
版权 © 2015–2016, Texas Instruments Incorporated
TPS62743, TPS627431
www.ti.com.cn
ZHCSDS4A – JUNE 2015 – REVISED MAY 2016
95%
1800
90%
1600
Switching Frequency (kHz)
85%
Efficiency
80%
75%
70%
65%
DEF201610
MIPSZ2012
WE 744 797 752 22
MDT1608
60%
55%
50%
0.001
VIN = 5.0 V
VIN = 3.6 V
1400
1200
1000
800
600
400
200
0
0.01
0.1
1
IOUT (mA)
10
100
1000
0
TPS62743
100
150
200
IOUT (mA)
300
350
D011
图 15. Switching Frequency vs Load Current
VOUT = 3.3 V
1400
1400
1200
Switching Frequency [kHz]
1600
1200
1000
800
VIN = 5.0 V
VIN = 3.6 V
VIN = 3.0 V
VIN = 2.2 V
600
400
1000
200
800
VIN = 5.0V
600
VIN = 4.2V
VIN = 3.6V
400
VIN = 3.0V
200
VIN = 2.6V
0
0
50
100
150
200
250
IOUT [mA]
0
0
50
100
150
200
IOUT (mA)
250
300
350
300
350
400
450
C002
TPS627431
D012
TPS62743
图 17. Switching Frequency vs Load Current
VOUT = 1.4 V
图 16. Switching Frequency vs Load Current
VOUT = 1.8 V
50
1400
45
1200
VIN = 4.2V
40
VIN = 3.6V
35
1000
VOUTpp [mVpp]
Switching Frequency (kHz)
250
TPS62743
图 14. Efficiency vs Load Current; VOUT = 1.8 V
Switching Frequency (kHz)
50
D010
800
600
VIN = 3.0V
30
C001
25
20
15
10
400
VIN = 5.0 V
VIN = 3.6 V
VIN = 3.0 V
VIN = 2.0 V
200
5
0
0.01
0
0
50
100
150
200
IOUT (mA)
250
300
TPS62743
图 18. Switching Frequency vs Load Current
VOUT = 1.2 V
版权 © 2015–2016, Texas Instruments Incorporated
350
D013
0.1
1
10
IOUT [mA]
TPS627431
L = 2.2µH
100
1000
C001
VOUT = 1.4V
COUT = 10µF
(0402)
图 19. Typical Output Ripple Voltage VOUT = 1.4V
15
TPS62743, TPS627431
ZHCSDS4A – JUNE 2015 – REVISED MAY 2016
www.ti.com.cn
图 20. PFM (Power Save Mode) Mode Operation
图 21. PWM Mode Operation
IL
IL
图 23. Startup Into 300 mA Electronic Load
Soft-Start Delay
图 22. Startup Into 100 mA Electronic Load
EN Delay + Soft-Start Delay
IL
IL
图 24. Load Transient Response; 100 mA to 290 mA
16
图 25. Load Transient Response; 5 mA to 290 mA
版权 © 2015–2016, Texas Instruments Incorporated
TPS62743, TPS627431
www.ti.com.cn
ZHCSDS4A – JUNE 2015 – REVISED MAY 2016
图 26. 100% Mode Entry and Leave Operation
IOUT = 30 mA
9.3 System Example
Temperature
Sensor
Electronic
Compass
3-Axis Sensor
Radio
VIN
2.0 V to 5.5 V
CIN
4.7 PF
TPS62743
VIN
SW
EN
VOS
VSEL1
L 2.2 PH
VOUT = 1.8 V
Main Rail
COUT
10 PF
MCU
VSEL2
VSEL3
GND
Copyright © 2016, Texas Instruments Incorporated
图 27. Example Of Implementation In A Master MCU Based System
版权 © 2015–2016, Texas Instruments Incorporated
17
TPS62743, TPS627431
ZHCSDS4A – JUNE 2015 – REVISED MAY 2016
www.ti.com.cn
10 Power Supply Recommendations
The power supply must provide a current rating according to the supply voltage, output voltage and output
current of the TPS62743.
11 Layout
11.1 Layout Guidelines
•
•
•
•
As for all switching power supplies, the layout is an important step in the design. Care must be taken in board
layout to get the specified performance.
It is critical to provide a low inductance, impedance ground path. Therefore, use wide and short traces for the
main current paths.
The input capacitor should be placed as close as possible to the IC pins VIN and GND. This is the most
critical component placement.
The VOS line is a sensitive high impedance line and should be connected to the output capacitor and routed
away from noisy components and traces (e.g. SW line) or other noise sources.
11.2 Layout Example
VOUT
GND
COUT
L
CIN
VIN
图 28. Recommended PCB Layout
18
版权 © 2015–2016, Texas Instruments Incorporated
TPS62743, TPS627431
www.ti.com.cn
ZHCSDS4A – JUNE 2015 – REVISED MAY 2016
12 器件和文档支持
12.1 器件支持
12.1.1 Third-Party Products Disclaimer
TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT
CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES
OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER
ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE.
12.2 相关链接
以下表格列出了快速访问链接。范围包括技术文档、支持与社区资源、工具和软件,并且可以快速访问样片或购买
链接。
表 7. 相关链接
器件
产品文件夹
样片与购买
技术文档
工具与软件
支持与社区
TPS62743
请单击此处
请单击此处
请单击此处
请单击此处
请单击此处
TPS627431
请单击此处
请单击此处
请单击此处
请单击此处
请单击此处
12.3 社区资源
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of
Use.
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help
solve problems with fellow engineers.
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and
contact information for technical support.
12.4 商标
DCS-Control, E2E are trademarks of Texas Instruments.
蓝牙 is a registered trademark of Bluetooth SIG, Inc.
All other trademarks are the property of their respective owners.
12.5 静电放电警告
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损
伤。
12.6 Glossary
SLYZ022 — TI Glossary.
This glossary lists and explains terms, acronyms, and definitions.
13 机械、封装和可订购信息
以下页中包括机械、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据会在无通知且不对
本文档进行修订的情况下发生改变。欲获得该数据表的浏览器版本,请查阅左侧的导航栏。
版权 © 2015–2016, Texas Instruments Incorporated
19
PACKAGE OPTION ADDENDUM
www.ti.com
17-Apr-2017
PACKAGING INFORMATION
Orderable Device
Status
(1)
Package Type Package Pins Package
Drawing
Qty
Eco Plan
Lead/Ball Finish
MSL Peak Temp
(2)
(6)
(3)
Op Temp (°C)
Device Marking
(4/5)
TPS627431YFPR
ACTIVE
DSBGA
YFP
8
3000
Green (RoHS
& no Sb/Br)
SNAGCU
Level-1-260C-UNLIM
-40 to 85
627431
TPS627431YFPT
ACTIVE
DSBGA
YFP
8
250
Green (RoHS
& no Sb/Br)
SNAGCU
Level-1-260C-UNLIM
-40 to 85
627431
TPS62743YFPR
ACTIVE
DSBGA
YFP
8
3000
Green (RoHS
& no Sb/Br)
SNAGCU
Level-1-260C-UNLIM
-40 to 85
TPS743
TPS62743YFPT
ACTIVE
DSBGA
YFP
8
250
Green (RoHS
& no Sb/Br)
SNAGCU
Level-1-260C-UNLIM
-40 to 85
TPS743
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability
information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight
in homogeneous material)
(3)
MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
(4)
There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
(5)
Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation
of the previous line and the two combined represent the entire Device Marking for that device.
(6)
Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish
value exceeds the maximum column width.
Addendum-Page 1
Samples
PACKAGE OPTION ADDENDUM
www.ti.com
17-Apr-2017
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
Addendum-Page 2
PACKAGE MATERIALS INFORMATION
www.ti.com
17-Apr-2017
TAPE AND REEL INFORMATION
*All dimensions are nominal
Device
Package Package Pins
Type Drawing
SPQ
Reel
Reel
A0
Diameter Width (mm)
(mm) W1 (mm)
B0
(mm)
K0
(mm)
P1
(mm)
TPS627431YFPR
DSBGA
YFP
8
3000
180.0
8.4
TPS627431YFPT
DSBGA
YFP
8
250
180.0
TPS62743YFPR
DSBGA
YFP
8
3000
180.0
TPS62743YFPT
DSBGA
YFP
8
250
180.0
0.98
1.68
0.59
4.0
8.0
Q1
8.4
0.98
1.68
0.59
4.0
8.0
Q1
8.4
0.98
1.68
0.59
4.0
8.0
Q1
8.4
0.98
1.68
0.59
4.0
8.0
Q1
Pack Materials-Page 1
W
Pin1
(mm) Quadrant
PACKAGE MATERIALS INFORMATION
www.ti.com
17-Apr-2017
*All dimensions are nominal
Device
Package Type
Package Drawing
Pins
SPQ
Length (mm)
Width (mm)
Height (mm)
TPS627431YFPR
DSBGA
YFP
8
3000
182.0
182.0
20.0
TPS627431YFPT
DSBGA
YFP
8
250
182.0
182.0
20.0
TPS62743YFPR
DSBGA
YFP
8
3000
182.0
182.0
20.0
TPS62743YFPT
DSBGA
YFP
8
250
182.0
182.0
20.0
Pack Materials-Page 2
D: Max = 1.592 mm, Min =1.531 mm
E: Max = 0.896 mm, Min =0.836 mm
IMPORTANT NOTICE
重要声明
德州仪器 (TI) 公司有权按照最新发布的 JESD46 对其半导体产品和服务进行纠正、增强、改进和其他修改,并不再按最新发布的 JESD48 提
供任何产品和服务。买方在下订单前应获取最新的相关信息,并验证这些信息是否完整且是最新的。
TI 公布的半导体产品销售条款 (http://www.ti.com/sc/docs/stdterms.htm) 适用于 TI 已认证和批准上市的已封装集成电路产品的销售。另有其
他条款可能适用于其他类型 TI 产品及服务的使用或销售。
复制 TI 数据表上 TI 信息的重要部分时,不得变更该等信息,且必须随附所有相关保证、条件、限制和通知,否则不得复制。TI 对该等复制文
件不承担任何责任。第三方信息可能受到其它限制条件的制约。在转售 TI 产品或服务时,如果存在对产品或服务参数的虚假陈述,则会失去
相关 TI 产品或服务的明示或暗示保证,且构成不公平的、欺诈性商业行为。TI 对此类虚假陈述不承担任何责任。
买方和在系统中整合 TI 产品的其他开发人员(总称“设计人员”)理解并同意,设计人员在设计应用时应自行实施独立的分析、评价和判断,且
应全权 负责并确保 应用的安全性, 及设计人员的 应用 (包括应用中使用的所有 TI 产品)应符合所有适用的法律法规及其他相关要求。设计
人员就自己设计的 应用声明,其具备制订和实施下列保障措施所需的一切必要专业知识,能够 (1) 预见故障的危险后果,(2) 监视故障及其后
果,以及 (3) 降低可能导致危险的故障几率并采取适当措施。设计人员同意,在使用或分发包含 TI 产品的任何 应用前, 将彻底测试该等 应用
和 该等应用中所用 TI 产品的 功能。
TI 提供技术、应用或其他设计建议、质量特点、可靠性数据或其他服务或信息,包括但不限于与评估模块有关的参考设计和材料(总称“TI 资
源”),旨在帮助设计人员开发整合了 TI 产品的 应用, 如果设计人员(个人,或如果是代表公司,则为设计人员的公司)以任何方式下载、
访问或使用任何特定的 TI 资源,即表示其同意仅为该等目标,按照本通知的条款使用任何特定 TI 资源。
TI 所提供的 TI 资源,并未扩大或以其他方式修改 TI 对 TI 产品的公开适用的质保及质保免责声明;也未导致 TI 承担任何额外的义务或责任。
TI 有权对其 TI 资源进行纠正、增强、改进和其他修改。除特定 TI 资源的公开文档中明确列出的测试外,TI 未进行任何其他测试。
设计人员只有在开发包含该等 TI 资源所列 TI 产品的 应用时, 才被授权使用、复制和修改任何相关单项 TI 资源。但并未依据禁止反言原则或
其他法理授予您任何TI知识产权的任何其他明示或默示的许可,也未授予您 TI 或第三方的任何技术或知识产权的许可,该等产权包括但不限
于任何专利权、版权、屏蔽作品权或与使用TI产品或服务的任何整合、机器制作、流程相关的其他知识产权。涉及或参考了第三方产品或服务
的信息不构成使用此类产品或服务的许可或与其相关的保证或认可。使用 TI 资源可能需要您向第三方获得对该等第三方专利或其他知识产权
的许可。
TI 资源系“按原样”提供。TI 兹免除对资源及其使用作出所有其他明确或默认的保证或陈述,包括但不限于对准确性或完整性、产权保证、无屡
发故障保证,以及适销性、适合特定用途和不侵犯任何第三方知识产权的任何默认保证。TI 不负责任何申索,包括但不限于因组合产品所致或
与之有关的申索,也不为或对设计人员进行辩护或赔偿,即使该等产品组合已列于 TI 资源或其他地方。对因 TI 资源或其使用引起或与之有关
的任何实际的、直接的、特殊的、附带的、间接的、惩罚性的、偶发的、从属或惩戒性损害赔偿,不管 TI 是否获悉可能会产生上述损害赔
偿,TI 概不负责。
除 TI 已明确指出特定产品已达到特定行业标准(例如 ISO/TS 16949 和 ISO 26262)的要求外,TI 不对未达到任何该等行业标准要求而承担
任何责任。
如果 TI 明确宣称产品有助于功能安全或符合行业功能安全标准,则该等产品旨在帮助客户设计和创作自己的 符合 相关功能安全标准和要求的
应用。在应用内使用产品的行为本身不会 配有 任何安全特性。设计人员必须确保遵守适用于其应用的相关安全要求和 标准。设计人员不可将
任何 TI 产品用于关乎性命的医疗设备,除非已由各方获得授权的管理人员签署专门的合同对此类应用专门作出规定。关乎性命的医疗设备是
指出现故障会导致严重身体伤害或死亡的医疗设备(例如生命保障设备、心脏起搏器、心脏除颤器、人工心脏泵、神经刺激器以及植入设
备)。此类设备包括但不限于,美国食品药品监督管理局认定为 III 类设备的设备,以及在美国以外的其他国家或地区认定为同等类别设备的
所有医疗设备。
TI 可能明确指定某些产品具备某些特定资格(例如 Q100、军用级或增强型产品)。设计人员同意,其具备一切必要专业知识,可以为自己的
应用选择适合的 产品, 并且正确选择产品的风险由设计人员承担。设计人员单方面负责遵守与该等选择有关的所有法律或监管要求。
设计人员同意向 TI 及其代表全额赔偿因其不遵守本通知条款和条件而引起的任何损害、费用、损失和/或责任。
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122
Copyright © 2017 德州仪器半导体技术(上海)有限公司