Precedent Cooling and Gas/Electric 3-10 Tons

Installation, Operation,
and Maintenance
Packaged Rooftop Air Conditioners
Precedent™ — Cooling and Gas/Electric
3 to 10Tons – 60 Hz
Model Numbers
YSC033G - YSC063G
YSC036 - YSC060G
YSC072F - YSC120F
YHC048F - YHC060F
YHC037E - YHC067E
YHC036E - YHC072E
YHC120F
YHC072F - YHC102F
SAFETY WARNING
Only qualified personnel should install and service the equipment. The installation, starting up, and servicing
of heating, ventilating, and air-conditioning equipment can be hazardous and requires specific knowledge and
training. Improperly installed, adjusted or altered equipment by an unqualified person could result in death or
serious injury. When working on the equipment, observe all precautions in the literature and on the tags,
stickers, and labels that are attached to the equipment.
May 2016
RT-SVX21U-EN
Introduction
Read this manual thoroughly before operating or servicing
this unit.
Warnings, Cautions, and Notices
Safety advisories appear throughout this manual as
required.Your personal safety and the proper operation of
this machine depend upon the strict observance of these
precautions.
The three types of advisories are defined as follows:
Indicates a potentially hazardous
situation which, if not avoided, could
result in death or serious injury.
Indicates a potentially hazardous
CAUTIONs situation which, if not avoided, could
result in minor or moderate injury. It
could also be used to alert against
unsafe practices.
WARNING
Proper Field Wiring and Grounding
Required!
Failure to follow code could result in death or serious
injury. All field wiring MUST be performed by qualified
personnel. Improperly installed and grounded field
wiring poses FIRE and ELECTROCUTION hazards. To
avoid these hazards, you MUST follow requirements for
field wiring installation and grounding as described in
NEC and your local/state electrical codes.
WARNING
NOTICE
Indicates a situation that could result in
equipment or property-damage only
accidents.
Important Environmental Concerns
Scientific research has shown that certain man-made
chemicals can affect the earth’s naturally occurring
stratospheric ozone layer when released to the
atmosphere. In particular, several of the identified
chemicals that may affect the ozone layer are refrigerants
that contain Chlorine, Fluorine and Carbon (CFCs) and
those containing Hydrogen, Chlorine, Fluorine and
Carbon (HCFCs). Not all refrigerants containing these
compounds have the same potential impact to the
environment.Trane advocates the responsible handling of
all refrigerants-including industry replacements for CFCs
such as HCFCs and HFCs.
Important Responsible Refrigerant
Practices
Trane believes that responsible refrigerant practices are
important to the environment, our customers, and the air
conditioning industry. All technicians who handle
refrigerants must be certified.The Federal Clean Air Act
(Section 608) sets forth the requirements for handling,
reclaiming, recovering and recycling of certain
refrigerants and the equipment that is used in these
service procedures. In addition, some states or
municipalities may have additional requirements that
must also be adhered to for responsible management of
refrigerants. Know the applicable laws and follow them.
WARNING
Personal Protective Equipment (PPE)
Required!
Failure to wear proper PPE for the job being undertaken
could result in death or serious injury. Technicians, in
order to protect themselves from potential electrical,
mechanical, and chemical hazards, MUST follow
precautions in this manual and on the tags, stickers,
and labels, as well as the instructions below:
•
Before installing/servicing this unit, technicians
MUST put on all PPE required for the work being
undertaken (Examples; cut resistant gloves/sleeves,
butyl gloves, safety glasses, hard hat/bump cap, fall
protection, electrical PPE and arc flash clothing).
ALWAYS refer to appropriate Material Safety Data
Sheets (MSDS)/Safety Data Sheets (SDS) and OSHA
guidelines for proper PPE.
•
When working with or around hazardous chemicals,
ALWAYS refer to the appropriate MSDS/SDS and
OSHA/GHS (Global Harmonized System of
Classification and Labelling of Chemicals) guidelines
for information on allowable personal exposure
levels, proper respiratory protection and handling
instructions.
•
If there is a risk of energized electrical contact, arc, or
flash, technicians MUST put on all PPE in accordance
with OSHA, NFPA 70E, or other country-specific
requirements for arc flash protection, PRIOR to
servicing the unit. NEVER PERFORM ANY
SWITCHING, DISCONNECTING, OR VOLTAGE
TESTING WITHOUT PROPER ELECTRICAL PPE AND
ARC FLASH CLOTHING. ENSURE ELECTRICAL
METERS AND EQUIPMENT ARE PROPERLY RATED
FOR INTENDED VOLTAGE.
Copyright
This document and the information in it are the property of
Trane, and may not be used or reproduced in whole or in
part without written permission.Trane reserves the right
to revise this publication at any time, and to make changes
© 2016 Ingersoll Rand All rights reserved
RT-SVX21U-EN
Introduction
to its content without obligation to notify any person of
such revision or change.
Trademarks
All trademarks referenced in this document are the
trademarks of their respective owners.
Revision History
•
Added Air-Fi™ Wireless Communication Interface
•
Unit start-up, removal of MMC
•
Limited warranty updates
RT-SVX21U-EN
3
Table of Contents
Model Number Descriptions - 3 to 10 Tons (T/Y)
Factory Installed Economizer . . . . . . . . . .30
6
Model Number Notes . . . . . . . . . . . . . . . . . 7
Temperature Limit Switch Usage for Gas
Heat Units . . . . . . . . . . . . . . . . . . . . . . . . . .30
Model Number Descriptions - 3 to 5 Tons (T/Y 17 Plus) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Horizontal Discharge Conversion (3 to 5 Ton
Units) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31
Model Number Notes . . . . . . . . . . . . . . . . 10
TCO1 Instructions . . . . . . . . . . . . . . . . . . . . .31
General Information . . . . . . . . . . . . . . . . . . . . 11
Horizontal Discharge Conversion (6 to 10 Ton
Units) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32
Unit Inspection . . . . . . . . . . . . . . . . . . . . . 11
Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Unit Nameplate . . . . . . . . . . . . . . . . . . . . 11
Compressor Nameplate . . . . . . . . . . . . . . 11
Microchannel Coil Barcode ID . . . . . . . . . 11
Unit Description . . . . . . . . . . . . . . . . . . . . 11
Economizer Control Actuator (Optional) 11
System Input Devices & Functions . . . . . 12
Low Pressure Control . . . . . . . . . . . . . . . . 13
High Pressure Control . . . . . . . . . . . . . . . 13
Power Exhaust Control (Optional) . . . . . 13
Lead/Lag Control (Dual Circuit Only) . . . 13
Return Air Smoke Detector . . . . . . . . . . . . .33
Air-Fi™ Wireless Communication Interface 34
Main Electrical Power Requirements . . . . .34
Through-the-Base Gas Installation . . . . . . .35
Requirements for Gas Heat . . . . . . . . . . . . .35
Condensate Drain Configuration . . . . . . . . .36
Filter Installation . . . . . . . . . . . . . . . . . . . . . .36
Field Installed Power Wiring . . . . . . . . . . . .37
Main Unit Power . . . . . . . . . . . . . . . . . . . . . .37
Standard Wiring . . . . . . . . . . . . . . . . . . . . .37
Evaporator Frost Control . . . . . . . . . . . . . 14
Optional TBUE Wiring (Through-the-Base
Electrical Option) . . . . . . . . . . . . . . . . . . . .37
Discharge Line Temp Switch (DLTS) . . . 15
Field-Installed Control Wiring . . . . . . . . . .38
Smoke Detector Sensor (Optional) . . . . . 15
Control Power Transformer . . . . . . . . . . .38
Phase Monitor . . . . . . . . . . . . . . . . . . . . . 15
Controls Using 24 VAC . . . . . . . . . . . . . . .38
Single Zone Variable Air Volume / Displacement Ventilation (Optional) . . . . . . . . . . . 15
Controls using DC Analog Input/Outputs
(Standard Low Voltage Multi
conductor Wire) . . . . . . . . . . . . . . . . . . . . .39
Human Interface - 5 Inch Color Touchscreen
(Optional) . . . . . . . . . . . . . . . . . . . . . . . . . 15
Unit Dimensions . . . . . . . . . . . . . . . . . . . . . . . . 16
Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Pre-Installation . . . . . . . . . . . . . . . . . . . . . . .
Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . .
Foundation . . . . . . . . . . . . . . . . . . . . . . . . . .
24
24
24
26
Horizontal Units . . . . . . . . . . . . . . . . . . . . 26
DC Conductors . . . . . . . . . . . . . . . . . . . . . .39
Space Temperature Averaging (ReliaTel™ Only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44
Pre-Start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47
Voltage Imbalance . . . . . . . . . . . . . . . . . . . . .47
Electrical Phasing (Three Phase Motors) . .47
Compressor Crankcase Heaters (Optional) 48
Ductwork . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
ReliaTel™ Controls . . . . . . . . . . . . . . . . . .48
Roof Curb . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Test Modes . . . . . . . . . . . . . . . . . . . . . . . . . . .49
Downflow . . . . . . . . . . . . . . . . . . . . . . . . . 28
ReliaTel™ Controls . . . . . . . . . . . . . . . . . .49
Rigging . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Electromechanical Controls Test
Procedure . . . . . . . . . . . . . . . . . . . . . . . . . .50
General Unit Requirements . . . . . . . . . . . . 29
4
TCO1 Instructions . . . . . . . . . . . . . . . . . . . . .33
RT-SVX21U-EN
Table of Contents
Unit Start-Up . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Verifying Proper Air Flow . . . . . . . . . . . . . . 51
Clogged Filter Switch . . . . . . . . . . . . . . . . .65
Units with 5-Tap Direct Drive Indoor Fan 51
Condensate Overflow Switch . . . . . . . . . .65
Units with Belt Drive Indoor Fan . . . . . . . 51
Zone Temperature Sensor (ZTS) Tests . . .65
Units with Direct Drive Indoor Fan - Electromechanical Control . . . . . . . . . . . . . . . . . 52
Test 1 - Zone Temperature Thermistor
(ZTEMP) . . . . . . . . . . . . . . . . . . . . . . . . . . .65
ReliaTel™ Units with Direct Drive Indoor Fan
(10 Tons Standard Efficiency, 6(074) to 10
Tons High Efficiency) . . . . . . . . . . . . . . . . 52
Test 2 - Cooling Set Point (CSP) and Heating
Set Point (HSP) . . . . . . . . . . . . . . . . . . . . . .65
Units with Constant CFM Direct Drive Indoor
Fan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Test 4 - LED Indicator Test, (SYS ON, HEAT,
COOL & SERVICE) . . . . . . . . . . . . . . . . . . .66
17 Plus units with the constant CFM direct
drive indoor fan . . . . . . . . . . . . . . . . . . . . 53
Relative Humidity Sensor Test . . . . . . . . .66
Variable Air Volume Applications (Traditional
VAV) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Fan Failure Switch . . . . . . . . . . . . . . . . . . .65
Test 3 - System Mode and Fan Selection .65
Programmable & Digital Zone Sensor
Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66
Supply Duct Static Pressure Control . . . . 55
ReliaTel™ Refrigeration Module (RTRM) Default Chart . . . . . . . . . . . . . . . . . . . . . . . . . .66
Traditional VAV Standalone Operation . 55
Unit Operation without a Zone Sensor . .66
Supply Air Temperature Reset . . . . . . . . 55
Return Air Smoke Detector . . . . . . . . . . . 55
Unit Economizer Control (ECA) Troubleshooting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67
Economizer Start-Up . . . . . . . . . . . . . . . . 56
ReliaTel™ Control . . . . . . . . . . . . . . . . . . .67
Compressor Start-Up . . . . . . . . . . . . . . . . 57
Electromechanical Control . . . . . . . . . . . .67
Dehumidification Option . . . . . . . . . . . . . 57
Gas Heat Units . . . . . . . . . . . . . . . . . . . . . 57
Unit Economizer Control (ECA) Test Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69
Final System Setup . . . . . . . . . . . . . . . . . 57
Electromechanical Control . . . . . . . . . . . .69
Maintenance . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Fan Belt Adjustment - Belt Drive Units . . . 59
Monthly Maintenance . . . . . . . . . . . . . . . . . 60
Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Return Air Smoke Detector Maintenance 60
Condensate Overflow Switch . . . . . . . . . 60
Cooling Season . . . . . . . . . . . . . . . . . . . . 60
Troubleshooting procedures for Direct Drive
Plenum Fan . . . . . . . . . . . . . . . . . . . . . . . . . . .69
Unit Wiring Diagrams Numbers . . . . . . . . . . .70
Limited Warranty . . . . . . . . . . . . . . . . . . . . . . . .73
Combination Gas Electric Air Conditioner .73
YCD, YCH, YSC and YHC (Parts Only) . . .73
Models Less Than 20 Tons for Commercial
Use* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73
Heating Season . . . . . . . . . . . . . . . . . . . . 60
Coil Cleaning . . . . . . . . . . . . . . . . . . . . . . . 61
Annual Maintenance . . . . . . . . . . . . . . . . . . 62
Troubleshooting . . . . . . . . . . . . . . . . . . . . . . . . 63
ReliaTel™ Control . . . . . . . . . . . . . . . . . . . . 63
System Status Checkout Procedure . . . . . 63
Method 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Resetting Cooling and Ignition Lockouts 65
Zone Temperature Sensor (ZTS) Service Indicator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
RT-SVX21U-EN
5
Model Number Descriptions - 3 to 10 Tons (T/Y)
Digit 1 - Unit Type
T
Y
DX Cooling
DX Cooling, Gas Heat
Digit 2 - Efficiency
S
H
Standard Efficiency
High Efficiency
Digit 11 - Minor Design
Sequence
A
B
First Sequence21
Second Sequence20
Digit 12,13 - Service Sequence
** Factory Assigned
Digit 3 - Airflow
Digit 14 - Fresh Air Selection
C
0
A
B
Convertible
Digit 4,5,6 - Nominal Gross
Cooling Capacity (MBh)
033
036
043
048
060
063
072
074
090
092
102
120
3Ton (13 SEER)
3Ton
4Ton (13 SEER)
4Ton
5Ton
5Ton (13 SEER)
6Ton
6Ton, Dual Compressor
7½Ton, Single Compressor
7½Ton, Dual Compressor
8½Ton
10Ton
Digit 7 - Major Design Sequence
E
F
G
R-410A Refrigerant
MicrochannelType Condenser
Coils24
MicrochannelType Evaporator and
Condenser Coils
Digit 8 - Voltage Selection
1
3
4
W
208/230/60/1
208-230/60/3
460/60/3
575/60/3
Digit 9 - Unit Controls
E
R
Electromechanical
ReliaTel™ Microprocessor
Digit 10 - Heating Capacity
Note: Applicable to Digit 1,T models
only
0 No Electric Heat
A 5 kW (1 phase)1
B 6 kW (3 phase)
C 9 kW (3 phase)
D 10 kW (1 phase)1
E 12 kW (3 phase)
F 14 kW (1 phase)1
G 18 kW (1&3 phase)
J 23 kW (3 phase)
K 27 kW (3 phase)
N 36 kW (3 phase)
P 54 kW (3 phase)
Note: Applicable to Digit 1,Y models
only
L Low Heat
M Medium Heat
H High Heat
X Low Heat, Stainless Steel Heat
Exchanger
Y Medium Heat, Stainless Steel Heat
Exchanger
Z High Heat, Stainless Steel Heat
Exchanger
6
No Fresh Air
Manual Outside Air Damper 0-50%4
Motorized Outside Air Damper
0-50%29
C Economizer, Dry Bulb 0-100%
without Barometric Relief7
D Economizer, Dry Bulb 0-100% with
Barometric Relief7
E Economizer, Reference Enthalpy
0-100% without Barometric Relief3,7
F Economizer, Reference Enthalpy
0-100% with Barometric Relief3,7
G Economizer, Comparative Enthalpy
0-100% without Barometric Relief3,7
H Economizer, Comparative Enthalpy
0-100% with Barometric Relief3,7
K Low Leak Economizer with
Barometric Relief
M Low Leak Economizer with Reference
Enthalpy with Barometric Relief
P Low Leak Economizer with
Comparative Enthalpy with
Barometric Relief
Digit 15 - Supply Fan/Drive Type/
Motor
0
1
2
6
7
E
Standard Drive6
Oversized Motor
Optional Belt Drive Motor18
Single Zone VAV27,34
Multi-Speed Indoor Fan28
VAV Supply AirTemperature Control
Standard Motor34
Digit 16 - Hinged Service
Access/Filters
0
A
B
C
D
E
Standard Panels/Standard Filters
Hinged Access Panels/Standard
Filters
Standard Panels/2” MERV 8 Filters
Hinged Access Panels/2” MERV 8
Filters
Standard Panels/2” MERV 13 Filters
Hinged Access Panels/2” MERV 13
Filters
Digit 17 - Condenser Coil
Protection
0
1
2
3
4
5
Standard Coil
Standard Coil with Hail Guard
Black Epoxy Pre-Coated Condenser
Coil26
Black Epoxy Pre-Coated
Condenser Coil with Hail Guard26
CompleteCoat™ Condenser Coil
CompleteCoat™ Condenser Coil
with Hail Guard
Digit 18 - Through-the-Base
Provisions
Note: Applicable to Digit 1,T orY
models
0 NoThrough-the-Base Provisions
A Through-the-Base Electric8
Note: Applicable to Digit 1,Y models
only
B Through-the-Base Gas Piping16
C Through-the-Base Electric and Gas
Piping16
Digit 19 - Disconnect/Circuit
Breaker (three-phase only)
0
1
2
No Disconnect/No Circuit Breaker
Unit Mounted Non-Fused
Disconnect8
Unit Mounted Circuit Breaker8
Digit 20 - Convenience Outlet
0
A
B
No Convenience Outlet
Unpowered Convenience Outlet
Powered Convenience Outlet
(three-phase only)9
Digit 21 - Communications
Options3
0
1
2
3
4
5
6
7
No Communications Interface
Trane® Communications Interface
LonTalk® Communications
Interface
Novar 2024 Controls31
Novar 3051 Controls without Zone
Sensor31
Novar 3051Controls Interface with
DCV31
BACnet® Communications Interface
Air-Fi™ Wireless Communications35
Digit 22 - Refrigeration System
Option
0
B
Standard Refrigeration System10
Dehumidification Option22,23
Digit 23 - Refrigeration Controls
Note: Applicable to Digit 7 = E, F, G
0 No Refrigeration Control5
1 Frostat™11,30
2 Crankcase Heater2
3 Frostat™11,30 and Crankcase Heater2
Digit 24 - Smoke Detector17
0
A
B
C
D
No Smoke Detector
Return Air Smoke Detector12,13
Supply Air Smoke Detector
Supply and Return Air Smoke
Detectors12,13
Plenum Smoke Detector
RT-SVX21U-EN
Model Number Descriptions - 3 to 10 Tons (T/Y)
(T,Y)HC (036, 048, 060, 072, 074,
092, 102, 120).
Digit 25 - System Monitoring
Controls
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
G
H
No Monitoring Control14
Clogged Filter Switch14
Fan Failure Switch14
Discharge Air SensingTube14
Clogged Filter Switch and Fan
Failure Switch14
Clogged Filter Switch and Discharge
Air SensingTube14
Fan Failure Switch and Discharge Air
SensingTube14
Clogged Filter Switch, Fan Failure
Switch and Discharge Air
SensingTube14
Novar Return Air Sensor
(NOVAR 2024)15,31
Novar ZoneTemp Sensor
(NOVAR 3051)19,31
Condensate Drain Pan Overflow
Switch
Clogged Filter Switch14 and
Condensate Drain Pan Overflow
Switch
Fan Failure Switch14 and Condensate
Drain Pan Overflow Switch
Discharge Air Sensing14 and
Condensate Drain Pan Overflow
Switch
Clogged Filter Switch14, Fan Failure
Switch14 and Condensate Drain Pan
Overflow Switch
Clogged Filter Switch14, Discharge
Air SensingTube14 and Condensate
Drain Pan Overflow Switch
Fan Failure Switch, Discharge Air
SensingTube14 and Condensate
Drain Pan Overflow Switch
Clogged Filter Switch14, Fan Failure
Switch14, Discharge Air Sensing14
and Condensate Drain Pan Overflow
Switch
Digit 26 - System Monitoring
Controls
0
A
B
C
No Monitoring Controls
Demand Control Ventilation
(CO2)32,33
Low Leak Economizer with FDD
(Fault Detection & Diagnostics)
FDD (Fault Detection & Diagnostics)
with DCV (Demand Control
Ventilation)
Digit 27 - Unit Hardware
Enhancements
0
1
No Enhancements
Stainless Steel Drain Pan
Digit 31 - Advanced Unit
Controls
0
1
Standard Unit Controls
Human Interface
Model Number Notes
1. Available on 3 to 5 ton models.
2. Crankcase heaters are optional
on (T,Y)SC (036, 048, 060, 072,
090, 102, 120); standard on
RT-SVX21U-EN
3. Not available with
electromechanical controls.
4. Manual outside air damper will
ship factory supplied within the
unit, but must be field installed.
5. High pressure control is standard
on all units.
6. Multi-speed, direct drive motor
with no belt drive option is
standard on 3 to 5 ton, standard
efficiency, 13/14 SEER units.
Multi-speed, direct drive motor
with a belt drive option is
available for 3 to 5 ton, 15 SEER
units. On 6 to 10 tons, multispeed
direct drive is standard on all 10
ton and 6 (074) to 8½ ton high
efficiency. Belt drive is standard
on all other units.
Digit 15 = 0
Standard Efficiency
3 Phase (3 to 5 Ton) = Multispeed Direct Drive
Motor
3 Phase (6 to 8½ Ton) = Belt Drive
3 Phase (10 Ton) = Ultra High Efficiency Direct
Drive Plenum Fan
High Efficiency
1 Phase = High Efficiency Multispeed Direct
Drive Motor
3 Phase (3 to 5 ton) = High Efficiency
Multispeed Direct Drive Motor
3 Phase (3 to 5 ton w/Dehumidification) = Belt
Drive Motor
3 Phase [6 (074) to 10 ton] = Ultra High
Efficiency Direct Drive Plenum Fan
7.
Economizer with barometric
relief is for downflow configured
units only. Order economizer
without barometric relief for
horizontal configuration.
Barometric relief for horizontal
configured units must be ordered
as field installed accessory.
Not Available
Standard Efficiency
3 to 5 Tons and 10 Ton w/575V
High Efficiency
3 to 5 Tons w/Standard Indoor Motor w/460V
High Efficiency 575V
10. Standard metering devices are
TXVs.
11. Frostat™ cannot be field installed
in electro-mechanical units.
12. The return air smoke detector
may not fit up or work properly on
the Precedent™ units when used
in conjunction with 3rd party
accessories such as bolt on heat
wheels, economizers and power
exhaust. Do not order the return
air smoke detectors when using
this type of accessory.
13. Return air smoke detector cannot
be ordered with Novar controls.
14. These options are standard when
ordering Novar controls.
15. This option is used when
ordering Novar controls.
16. Includes gas piping and shutoff
(field assembly required).
17. Not available with high
temperature duct sensor
accessory.
18. Digit 15 = 2
Standard Efficiency
3 Phase = Not Available
High Efficiency
1 Phase = Not Available
3 Phase (3 to 5 tons) = May be Ordered
3 Phase (3 to 5 tons w/dehumidification) =
Not Available
3 Phase (6 to 10 tons) = Not Available
19. Novar sensor utilized with
Digit 21 = (4) Novar 3051 controls
without zone sensor.
8. Through-the-base electric
required when ordering
disconnect/circuit breaker
options.
20. Available for gas/electric, 3 to 5
tons, high efficiency, single phase
models.
9. Requires use of disconnect or
circuit breaker.
21. Available for all models except
gas/electric, 3 to 5 tons high
efficiency, single phase.
22. Requires selection of 2” pleated
filters (option B or C) for Digit 16.
23. Not available on all single phase
or standard efficiency.
24. Standard onT/YSC 6, 7½ (single
and dual systems), 8½, 10 ton
standard efficiency models and
7
Model Number Descriptions - 3 to 10 Tons (T/Y)
T/YHC 4, 5, 6, 7½, 8½, 10 ton
MCHE high efficiency models
(except for 4, 5, 6 ton
dehumidification models).
25. Not available on high efficiency
575V.
26. Epoxy coil and epoxy with hail
guard options are not available
for units with microchannel
condenser coil.
27. Single zone VAV is only available
on 6 to 10 tons high efficiency and
10 ton standard efficiency
products with ReliaTel™ controls.
28. Multi-speed indoor fan available
only on 6, 7½ & 8½ tons high
efficiency, and 10 ton products
with ReliaTel™ controls.
29. Motorized outside air damper is
not available on multi-speed or
SZVAV (single zone variable air
volume) products.
30. Frostat™ standard onY/TSC033
to 063G electromechanical, multispeed and SZVAV (single zone
variable air volume) products.
31. Novar is not available with SZVAV
products.
32. Demand control ventilation not
available with electromechanical
controls.
33. Demand control ventilation
option includes wiring only.The
C02 sensor is a field-installed only
option.
34. Discharge air sensing is also
standard equipment on units
with single zone and supply air
temperature control VAV.
35. Must be used with BACnet® open
protocol.
8
RT-SVX21U-EN
Model Number Descriptions - 3 to 5 Tons (T/Y - 17 Plus)
Model Number Descriptions - 3 to 5 Tons (T/Y - 17 Plus)
Digit 1 - Unit Type
Digit 14 - Fresh Air Selection
T
Y
0
A
B
DX Cooling
DX Cooling, Gas Heat
Digit 2 - Efficiency
S
H
Standard Efficiency
High Efficiency
Digit 3 - Airflow
C
Convertible
Digit 4,5,6 - Nominal Gross
Cooling Capacity (MBh)
037
047
067
3Ton
4Ton
5Ton
Digit 7 - Major Design Sequence
E
R-410A Refrigerant
Digit 8 - Voltage Selection
3 208-230/60/3
4 460/60/3
W 575/60/3
Digit 9 - Unit Controls
R
ReliaTel™ Microprocessor
Digit 10 - Heating Capacity
Note: Applicable to Digit 1,T models
only
0 No Electric Heat
B 6 kW (3 phase)
E 12 kW (3 phase)
G 18 kW (1&3 phase)
J 23 kW (3 phase)
Note: Applicable to Digit 1,Y models
only
L Low Heat
M Medium Heat
H High Heat
X Low Heat, Stainless Steel Heat
Exchanger
Y Medium Heat, Stainless Steel Heat
Exchanger
Z High Heat, Stainless Steel Heat
Exchanger
Digit 11 - Minor Design
Sequence
A
First Sequence16
No Fresh Air
Manual Outside Air Damper 0-50%2
Motorized Outside Air Damper
0-50%
C Economizer, Dry Bulb 0-100%
without Barometric Relief5
D Economizer, Dry Bulb 0-100%
with Barometric Relief5
E Economizer, Reference Enthalpy
0-100% without Barometric Relief5
F Economizer, Reference Enthalpy
0-100% with Barometric Relief5
G Economizer, Comparative
Enthalpy 0-100% without
Barometric Relief5
H Economizer, Comparative
Enthalpy 0-100% with Barometric
Relief5
K Low Leak Economizer with
Barometric Relief
M Low Leak Economizer with Reference
Enthalpy with Barometric Relief
P Low Leak Economizer with
Comparative Enthalpy with
Barometric Relief
Digit 15 - Supply Fan/Drive Type/
Motor
0
6
E
0
A
B
C
Digit 19 - Disconnect/Circuit
Breaker (three-phase only)
0
1
2
No Disconnect/No Circuit Breaker
Unit Mounted Non-Fused
Disconnect6
Unit Mounted Circuit Breaker6
Digit 20 - Convenience Outlet
0
A
B
No Convenience Outlet
Unpowered Convenience Outlet
Powered Convenience Outlet
(three-phase only)7
Digit 21 - Communications
Options
0
2
3
4
5
6
7
No Communications Interface
LonTalk® Communications
Interface
Novar 2024 Controls
Novar 3051 Controls without Zone
Sensor
Novar 3051Controls Interface with
DCV
BACnet® Communications Interface
Air-Fi™ Wireless Communications22
Digit 22 - Refrigeration System
Option
0
A
0
B
B
C
D
E
Standard Panels/Standard Filters
Hinged Access Panels/Standard
Filters
Standard Panels/2” MERV 8 Filters
Hinged Access Panels/2” MERV 8
Filters
Standard Panels/2” MERV 13 Filters
Hinged Access Panels/2” MERV 13
Filters
Digit 17 - Condenser Coil
Protection
0
1
2
3
4
5
Standard Coil
Standard Coil with Hail Guard
Black Epoxy Pre-Coated Condenser
Coil
Black Epoxy Pre-Coated
Condenser Coil with Hail Guard
CompleteCoat™ Condenser Coil
CompleteCoat™ Condenser Coil
with Hail Guard
Standard Refrigeration System8
Dehumidification Option17
Digit 23 - Refrigeration Controls
Note: Applicable to Digit 7 = E
0 No Refrigeration Control3
1 Frostat™
2 Crankcase Heater1
3 Frostat and Crankcase Heater1
Digit 24 - Smoke Detector14
0
A
B
C
D
No Smoke Detector
Return Air Smoke Detector9,10
Supply Air Smoke Detector
Supply and Return Air Smoke
Detectors9,10
Plenum Smoke Detector
Digit 25 - System Monitoring
Controls
0
1
2
3
4
5
6
7
RT-SVX21U-EN
NoThrough-the-Base Provisions
Through-the-Base Electric6
Through-the-Base Gas Piping13
Through-the-Base Electric and Gas
Piping13
Digit 16 - Hinged Service
Access/Filters
Digit 12,13 - Service Sequence
** Factory Assigned
Standard Drive4
Single Zone VAV34
VAV Supply AirTemperature Control
Standard Motor34
Digit 18 - Through the Base
Provisions
No Monitoring Control11
Clogged Filter Switch11
Fan Failure Switch11
Discharge Air SensingTube11
Clogged Filter Switch and Fan
Failure Switch11
Clogged Filter Switch and Discharge
Air SensingTube11
Fan Failure Switch and Discharge Air
SensingTube11
Clogged Filter Switch, Fan Failure
Switch and Discharge Air
SensingTube11
9
Model Number Descriptions - 3 to 5 Tons (T/Y - 17 Plus)
8
9
A
B
C
D
E
F
G
H
Novar Return Air Sensor
(NOVAR 2024)12,20
Novar ZoneTemp Sensor
(NOVAR 3051)15,20
Condensate Drain Pan Overflow
Switch
Clogged Filter Switch11 and
Condensate Drain Pan Overflow
Switch
Fan Failure Switch11 and Condensate
Drain Pan Overflow Switch
Discharge Air Sensing11 and
Condensate Drain Pan Overflow
Switch
Clogged Filter Switch11, Fan Failure
Switch11 and Condensate Drain Pan
Overflow Switch
Clogged Filter Switch11, Discharge
Air SensingTube11 and Condensate
Drain Pan Overflow Switch
Fan Failure Switch11, Discharge Air
SensingTube11 and Condensate
Drain Pan Overflow Switch
Clogged Filter Switch11, Fan Failure
Switch11, Discharge Air Sensing11
and Condensate Drain Pan Overflow
Switch
Digit 26 - System Monitoring
Controls
0
A
B
C
No Monitoring Controls
Demand Control Ventilation
(CO2)18,19
Low Leak Economizer with FDD
(Fault Detection & Diagnostics)
FDD (Fault Detection & Diagnostics)
with DCV (Demand Control
Ventilation)
Digit 27 - Unit Hardware
Enhancements
0
1
No Enhancements
Stainless Steel Drain Pan
horizontal configuration.
Barometric Relief for horizontal
configured units must be ordered
as field installed accessory.
6. Through the base electric
required when ordering
disconnect/circuit breaker
options.
7.
Not Available
High Efficiency
3-5 ton w/Standard Indoor Motor w/460V or
575V
8. Standard metering devices are
TXVs.
9. The return air smoke detector
may not fit up or work properly on
the Precedent units when used in
conjunction with 3rd party
accessories such as bolt on heat
wheels, economizers and power
exhaust. Do not order the return
air smoke detectors when using
this type of accessory.
10. Return Air Smoke Detector
cannot be ordered with Novar
Controls.
11. These options are standard when
ordering Novar Controls.
12. This option is used when
ordering Novar Controls.
13. Includes gas piping and shutoff
(field assembly required).
0
1
14. Not available with high
temperature duct sensor
accessory.
Model Number Notes
1. Standard on all variable stage
units.
15. Novar Sensor utilized with
Digit 21 = (4) Novar 3051 Controls
without Zone Sensor.
2. Manual outside air damper will
ship factory supplied within the
unit, but must be field installed.
16. Available forT/Y 3,4,5 ton high
efficiency models.
3. High pressure control is standard
on all units.
4. Direct drive is standard for 3 to 5
ton variable stage units.
Digit 15 = 0, 6
3 Phase (3-5 ton) - High Efficiency Constant
CFM
5. Economizer with Barometric
Relief is for downflow configured
units only. Order Economizer
without Barometric Relief for
10
22. Must be used with BACnet® open
protocol.
Requires use of Disconnect or
Circuit Breaker.
Digit 31 - Advanced Unit
Controls
Standard Unit Controls
Human Interface
21. Discharge Air Sensing is also
standard equipment on units
with Single Zone and Supply Air
Temperature Control VAV.
17. Requires selection of 2” Pleated
Filters (option B or C) for Digit 16.
18. Demand Control Ventilation not
available with electromechanical
controls.
19. Demand Control Ventilation
Option includes wiring only.The
CO2 sensor is a field-installed
only option.
20. Novar is not available with SZVAV
products.
RT-SVX21U-EN
General Information
Unit Inspection
Compressor Nameplate
As soon as the unit arrives at the job site
The nameplate for the compressors are located on the side
of the compressor.
•
Verify that the nameplate data matches the data on the
sales order and bill of lading (including electrical data).
•
Verify that the power supply complies with the unit
nameplate specifications.
•
Visually inspect the exterior of the unit, including the
roof, for signs of shipping damage.
If the job site inspection of the unit reveals damage or
material shortages, file a claim with the carrier
immediately. Specify the type and extent of the damage on
the “bill of lading” before signing.
•
Visually inspect the internal components for shipping
damage as soon as possible after delivery and before
it is stored. Do not walk on the sheet metal base pans.
•
If concealed damage is discovered, notify the carrier’s
terminal of damage immediately by phone and by
mail. Concealed damage must be reported within 15
days.
•
Request an immediate joint inspection of the damage
by the carrier and the consignee. Do not remove
damaged material from the receiving location.Take
photos of the damage, if possible.The owner must
provide reasonable evidence that the damage did not
occur after delivery.
•
Notify the appropriate sales representative before
installing or repairing a damaged unit.
Storage
Take precautions to prevent condensate from forming
inside the unit’s electrical compartments and motors if:
1. the unit is stored before it is installed; or,
2. the unit is set on the roof curb, and temporary heat is
provided in the building. Isolate all side panel service
entrances and base pan openings (e.g., conduit holes,
Supply Air and Return Air openings, and flue
openings) from the ambient air until the unit is ready
for start-up.
Note: Do not use the unit’s heater for temporary heat
without first completing the start-up procedure
detailed under “Unit Start-Up,” p. 51”.
The manufacturer will not assume any responsibility for
equipment damage resulting from condensate
accumulation on the unit’s electrical and/or mechanical
components.
Unit Nameplate
A Mylar unit nameplate is located on the unit’s corner
support next to the filter access panel. It includes the unit
model number, serial number, electrical characteristics,
refrigerant charge, as well as other pertinent unit data.
RT-SVX21U-EN
Microchannel Coil Barcode ID
Barcode decal used for coil part identification can be
located on the header and top of coil's inlet/outlet side.
Unit Description
Before shipment, each unit is leak tested, dehydrated,
charged with refrigerant and compressor oil, and run
tested for proper control operation.
The condenser coils are either aluminum fin, mechanically
bonded to copper tubing or all aluminum microchannel.
Direct-drive, vertical discharge condenser fans are
provided with built-in thermal overload protection.
There are two control systems offered for these units.The
electromechanical control option uses a thermostat to
perform unit functions.The ReliaTel™ Control Module is a
microelectronic control system that is referred to as
“Refrigeration Module” (RTRM).The acronym RTRM is
used extensively throughout this document when
referring to the control system network.
These modules through Proportional/Integral control
algorithms perform specific unit functions that governs
unit operation in response to; zone temperature, supply air
temperature, and/or humidity conditions depending on
the application.The stages of capacity control for these
units are achieved by starting and stopping the
compressors.
The RTRM is mounted in the control panel and is factory
wired to the respective internal components.The RTRM
receives and interprets information from other unit
modules, sensors, remote panels, and customer binary
contacts to satisfy the applicable request for cooling.
Economizer Control Actuator (Optional)
Electromechanical Control
The ECA monitors the mixed air temperature, ambient dry
bulb temperature and local minimum position setpoint
sensors, if selected, to control dampers to an accuracy of
+/- 5% of stroke.The actuator is spring returned to the
closed position any time that power is lost to the unit. It is
capable of delivering up to 25 inch pounds of torque and
is powered by 24 VAC.
ReliaTel™ Control
The ECA monitors the mixed air temperature, return air
temperature, minimum position setpoint (local or
remote), power exhaust setpoint, CO2 setpoint, CO2, and
ambient dry bulb/enthalpy sensor or comparative
humidity (return air humidity against ambient humidity)
sensors, if selected, to control dampers to an accuracy of
11
General Information
+/- 5% of stroke.The actuator is spring returned to the
closed position any time that power is lost to the unit. It is
capable of delivering up to 25 inch pounds of torque and
is powered by 24 VAC.
RTCI - ReliaTel™ Trane Communication
Interface (Optional)
This module is used when the application calls for an
ICSTM building management type control system. It
allows the control and monitoring of the system through
an ICS panel.The module can be ordered from the factory
or ordered as a kit to be field installed. Follow the
installation instruction that ships with each kit when field
installation is necessary.
RLCI - ReliaTel™ LonTalk® Communication
Interface (Optional)
This module is used when the application calls for an
ICSTM building management type control system that is
LonTalk. It allows the control and monitoring of the system
through an ICS panel.The module can be ordered from the
factory or ordered as a kit to be field installed. Follow the
installation instruction that ships with each kit when field
installation is necessary.
RBCI - ReliaTel™ BACnet Communications
Interface (Optional)
This module is used when the application calls for an open
BACnet protocol. It allows the control and monitoring of
the system through an ICS panel.The module can be
ordered from the factory or as a kit to be field installed.
Follow the installation instructions that ships with each kit
when field installation is necessary.
RTOM - ReliaTel™ Options Module (Standard
on 17 Plus, 6Ton (074), 7.5 Ton & 8.5 Ton High
Efficiency with ReliaTel, 10 Ton with ReliaTel)
The RTOM monitors the supply fan proving, clogged filter,
supply air temperature, exhaust fan setpoint, supply air
tempering, Frostat™, smoke detector, and Variable Speed
Fan Control (17 Plus units only). Refer to system input
devices and functions for operation.
System Input Devices & Functions
The RTRM must have a zone sensor or thermostat input in
order to operate the unit.The flexibility of having several
mode capabilities depends upon the type of zone sensor or
thermostat selected to interface with the RTRM.
The descriptions of the following basic Input Devices used
within the RTRM network are to acquaint the operator with
their function as they interface with the various modules.
Refer to the unit’s electrical schematic for the specific
module connections.
The following controls are available from the factory for
field installation.
12
Supply Fan Failure Input (Optional)
The Fan Failure Switch can be connected to sense indoor
fan operation:
FFS (Fan Failure Switch) If air flow through the unit is not
proven by the differential pressure switch connected to the
RTOM (factory set point 0.07 “w.c.) within 40 seconds
nominally, the RTRM will shut off all mechanical
operations, lock the system out, send a diagnostic to ICS,
and the SERVICE output will flash.The system will remain
locked out until a reset is initiated either manually or
through ICS.
Clogged Filter Switch (Optional)
The unit mounted clogged filter switch monitors the
pressure differential across the return air filters. It is
mounted in the filter section and is connected to the
RTOM. A diagnostic SERVICE signal is sent to the remote
panel if the pressure differential across the filters is at least
0.5" w.c.The contacts will automatically open when the
pressure differential across the filters decreases to
approximately 0.4" w.c.The clogged filter output is
energized when the supply fan is operating and the
clogged filter switch has been closed for at least 2 minutes.
The system will continue to operate regardless of the
status of the filter switch.
Note: On units equipped with factory installed MERV 13
filters, a clogged filter switch with different
pressure settings will be installed.This switch will
close when the differential pressure is
approximately 0.8' w.c. and open when the
differential falls to 0.7" w.c.
Condensate Drain Pan Overflow Switch
(Optional)
ReliaTel™ Option
This input incorporates the Condensate Overflow Switch
(COF) mounted on the drain pan and the ReliaTel Options
Module (RTOM). When the condensate level reaches the
trip point for 6 continuous seconds, the RTOM will shut
down all unit functions until the overflow condition has
cleared.The unit will return to normal operation after 6
continuous seconds with the COF in a non-tripped
condition. If the condensate level causes unit shutdown
more than 2 times in a 3 days period, the unit will be
locked-out of operation requiring manual reset of
diagnostic system through Zone Sensor or Building
Automation System (BAS). Cycling unit power will also
clear the fault.
Electromechanical Option
This input incorporates the condensate overflow switch
(COF), COF Relay, COFTime Delay. When the condensate
level reaches the trip point, the COF relay energizes and
opens the 24VAC control circuit which disables the unit.
Once the 24VAC control circuit is opened, a delay timer will
prevent unit start-up for three minutes.
RT-SVX21U-EN
General Information
Compressor Disable (CPR1/2)
Power Exhaust Control (Optional)
This input incorporates the low pressure control (LPC) of
each refrigeration circuit and can be activated by opening
a field supplied contact installed on the LTB.
ReliaTel™ Control
If this circuit is open before the compressor is started, the
compressor will not be allowed to operate. Anytime this
circuit is opened for 1 continuous second during
compressor operation, the compressor for that circuit is
immediately turned “Off”.The compressor will not be
allowed to restart for a minimum of 3 minutes should the
contacts close.
If four consecutive open conditions occur during the first
three minutes of operation, the compressor for that circuit
will be locked out, a diagnostic communicated to the
remote panel (if installed), and a manual reset will be
required to restart the compressor.
Low Pressure Control
ReliaTel™ Control
When the LPC is opened for 1 continuous second, the
compressor for that circuit is turned off immediately.The
compressor will not be allowed to restart for a minimum
of 3 minutes.
If four consecutive open conditions occur during an active
call for cooling, the compressor will be locked out, a
diagnostic communicated to ICS™, if applicable, and a
manual reset required to restart the compressor. On dual
compressor units only the affected compressor circuit is
locked out.
Electromechanical Control
When the LPC is opened, the compressor for that circuit is
turned off immediately.The compressor will restart when
the LPC closes.
High Pressure Control
ReliaTel™ Control
The high pressure controls are wired in series between the
compressor outputs on the RTRM and the compressor
contactor coils. If the high pressure control switch opens,
the RTRM senses a lack of current while calling for cooling
and locks the compressor out.
The power exhaust fan is started whenever the position of
the economizer dampers meets or exceed the power
exhaust setpoint when the indoor fan is on.
With the optional ventilation override accessory, the
power exhaust fan is independent of the indoor fan.
The setpoint panel is located in the return air section and
is factory set at 25%.
Electromechanical Control
The power exhaust fan is started whenever the indoor fan
is on and the adjustable damper limit switch DLS is closed.
Lead/Lag Control (Dual Circuit Only)
ReliaTel™ Control Only
Lead/Lag is a selectable input located on the RTRM.The
RTRM is configured from the factory with the Lead/Lag
control disabled.To activate the Lead/Lag function, simply
cut the wire connected to J3-8 at the RTRM. When it is
activated, each time the designated lead compressor is
shut off due to the load being satisfied, the lead
compressor or refrigeration circuit switches. When the
RTRM is powered up, i.e. after a power failure, the control
will default to the number one circuit compressor. Lead/
Lag is not available on Multi-Speed Indoor Fan, or Single
Zone Variable Air Volume (SZVAV) products.
Zone Sensor Module (ZSM) (BAYSENS106*)
This electronic sensor features three system switch
settings (Heat, Cool, and Off) and two fan settings (On
and Auto). It is a manual changeover control with single
setpoint. (Cooling Setpoint Only)
Zone Sensor Module (ZSM) (BAYSENS108*)
This electronic sensor features four system switch settings
(Heat, Cool, Auto, and Off) and two fan settings (On and
Auto). It is a manual or auto changeover control with dual
setpoint capability. It can be used with a remote zone
temperature sensor BAYSENS077*.
Zone Sensor (BAYSENS110*)
If four consecutive open conditions occur during an active
call for cooling, the compressor will be locked out, a
diagnostic communicated to ICS™, if applicable, and a
manual reset required to restart the compressor. On dual
compressor units only the affected compressor circuit is
locked out.
This electronic sensor features four system switch settings
(Heat, Cool, Auto, and Off) and two fan settings (On and
Auto) with four system status LED’s. It is a manual or auto
changeover control with dual setpoint capability. It can be
used with a remote zone temperature sensor
BAYSENS077*.
Electromechanical Control
Wall Mounted Relative Humidity Sensor
(BAYSENS036*)
When the HPC is opened, the compressor for that circuit is
turned off immediately.The compressor will restart when
the HPC closes.
RT-SVX21U-EN
Field installed, wall mounted humidity sensor is used to
control activation of Enhanced Dehumidification and the
Hot Gas Reheat Dehumidification options. Humidity set
points can be selected for relative humidity levels between
13
General Information
40% and 60% by adjusting the DEHUMID setting on the
ReliaTel Options Module. See Figure 45, p. 40.
Duct Mounted Relative Humidity Sensor
(BAYSENS037*)
Field installed, duct mounted humidity sensor is used to
control activation of Enhanced Dehumidification and the
hot gas reheat dehumidification options. Humidity set
points can be selected for relative humidity levels between
40% and 60% by adjusting the DEHUMID setting on the
ReliaTel Options Module. See Figure 45, p. 40.
Programmable Zone Sensor - (BAYSENS119*)
This 7 day programmable sensor features 2, 3 or 4 periods
for Occupied or Unoccupied programming per day. If the
power is interrupted, the program is retained in
permanent memory. If power is off for an extended period
of time, only the clock and day may have to be reset.
The Zone Sensor allows selection of 2, 3 or 4 system
modes (Heat, Cool, Auto, and Off), two fan modes (On and
Auto). It has dual temperature selection with
programmable start time capability.
The occupied cooling set point ranges between 45 and 98
º F.The heating set point ranges between 43 and 96ºF.
A liquid crystal display (LCD) displays zone temperature,
temperature set points, day of the week, time, and
operational mode symbols.
The Option Menu is used to enable or disable applicable
functions, i.e.; Morning Warm-up, Economizer minimum
position override during unoccupied status, Fahrenheit or
Centigrade, Supply air tempering, Remote zone
temperature sensor, 12/24 hour time display, Smart fan,
and Computed recovery.
During an occupied period, an auxiliary relay rated for 1.25
amps @ 30 volts AC with one set of single pole double
throw contacts is activated.
Status Inputs (4 Wires Optional)
The ZSM can be wired to receive four (4) operating status
signals from the RTRM (HEAT, COOL, SYSTEM “ON”,
SERVICE).
Four (4) wires from the RTRM should be connected to the
appropriate terminals (7, 8, 9 & 10) on the ZSM.
Remote Zone Sensor (BAYSENS073*)
This electronic sensor features remote zone sensing and
timed override with override cancellation. It is used with a
Trane Integrated Comfort™ building management
system.
Remote Zone Sensor (BAYSENS074*)
This electronic sensor features single setpoint capability
and timed override with override cancellation. It is used
with aTrane Integrated Comfort™ building management
system.
14
Remote Zone Sensor (BAYSENS016*)
This bullet type temperature sensor can be used for
outside air (ambient) sensing, return air temperature
sensing, supply air temperature sensing, remote
temperature sensing (uncovered).Wiring procedures vary
according to the particular application and equipment
involved. Refer to the unit’s wiring diagrams for proper
connections.
Remote Zone Sensor (BAYSENS077*)
This electronic sensor can be used with BAYSENS106*,
108*, 110*, 119* Remote Panels. When this sensor is wired
to a BAYSENS119* Remote Panel, wiring must be 18 AWG
ShieldedTwisted Pair (Belden 8760 or equivalent). Refer to
the specific Remote Panel for wiring details.
Wireless Zone Sensor (BAYSENS050*)
This electronic sensor features five system settings (Auto,
Off, Cool, Heat, and Emergency Heat) and with On and
Auto fan settings. It is a manual or auto changeover control
with dual setpoint capability. Other features include a
timed override function, lockable system settings, and
Fahrenheit or Celsius temperature display. Included with
the wireless zone sensor will be a receiver that is to be
mounted inside the unit, a mounting bracket, and a wire
harness.
Electromechanical Control
The unit must have a thermostat to operate.
•
BAYSTAT151
• Single Stage - 1 Heat/1 Cool
•
BAYSTAT155
• Multi Stage - 3 Heat/2 Cool - Can be Used for
Economizer Operation
•
BAYSENS150
• Multi stage - 3 Heat/2 Cool Programmable
Thermostat
High Temperature Sensor (BAYFRST001*)
This sensor connects to the RTRM Emergency Stop Input
on the LTB and provides high limit “shutdown” of the unit.
The sensor is used to detect high temperatures due to a
high thermal event in the air conditioning or ventilation
ducts.The sensor is designed to mount directly to the
sheet metal duct. Each kit contains two sensors.The return
air duct sensor (X1310004001) is set to open at 135ºF.The
supply air duct sensor (X1310004002) is set to open at
240ºF.The control can be reset after the temperature has
been lowered approximately 25ºF below the cutout
setpoint.
Evaporator Frost Control
ReliaTel™ Option
This input incorporates the Frostat™ control (FOS)
mounted in the indoor coil circuit and can be activated by
RT-SVX21U-EN
General Information
these checks and procedures, refer to the appropriate
section(s) of the smoke detector Installation and
Maintenance Instructions provided with the literature
package for this unit.
closing a field supplied contact installed in parallel with
the FOS.
If this circuit is closed before the compressor is started, the
compressor will not be allowed to operate. Anytime this
circuit is closed for 1 continuous second during
compressor operation, the compressor for that circuit is
immediately turned “Off”.The compressor will not be
allowed to restart for a minimum of 3 minutes should the
FOS open.
Frostat is standard on multi-speed indoor motors and
single zone VAV products (SZVAV).
Electromechanical Option
This input incorporates the Frostat™ control (FOS)
mounted in the indoor coil circuit or on suction line before
equalizer port ofTXV and can be activated by opening a
field supplied contact installed in series with the FOS.
If this circuit is open before the compressor is started, the
compressor will not be allowed to operate. Anytime this
circuit is opened during compressor operation, the
compressor for that circuit is immediately turned “Off”.The
compressor will restart when the FOS closes. Frostat™ is
standard onYSC033G-063G electromechanical control
products.
In order for the supply air smoke detector or return air
smoke detector to properly sense smoke in the supply air
stream or return air stream, the air velocity entering the
smoke detector unit must be between 500 and 4000 feet
per minute. Equipment covered in this manual will
develop an airflow velocity that falls within these limits
over the entire airflow range specified in the evaporator
fan performance tables.
Phase Monitor
This sensor monitors voltage between the 3 conductors of
the 3 phase power supply.Two LED lights are provided:
•
The green light indicates that a balanced 3 phase
supply circuit is properly connected.
•
The red light indicates that unit operation has been
prevented.There are two conditions that will prevent
unit operation:
• The power supply circuit is not balanced with the
proper phase sequence of L1, L2, L3 for the 3
conductors of a 3 phase circuit.
Discharge Line Temp Switch (DLTS)
The DLTS is looped in series with HPC and LPC. It prevents
compressor from overheating (over 300 Fº dome temp) in
case of indoor fan failure (cooling) or outdoor fan failure
(heating).
Smoke Detector Sensor (Optional)
This sensor provides high limit “shutdown” of the unit and
requires a manual reset.The sensor is used to detect
smoke in the air conditioning or ventilation ducts.
Notes:
• The supply air smoke detector samples supply air.The
return and plenum air smoke detectors sample return
air.The smoke detectors are designed to shut off the
unit if smoke is sensed.This function is performed by
sampling the airflow entering the unit at the return air
opening. Follow the instructions provided below to
assure that the airflow through the unit is sufficient for
adequate sampling. Failure to follow these instructions
will prevent the smoke detectors from performing its
design function.
•
•
Airflow through the unit is affected by the amount of
dirt and debris accumulated on the indoor coil and
filters.To insure that airflow through the unit is
adequate for proper sampling by the return air smoke
detector, complete adherence to the maintenance
procedures, including recommended intervals
between filter changes, and coil cleaning is required.
Periodic checks and maintenance procedures must be
performed on the smoke detector to insure that it will
function properly. For detailed instructions concerning
RT-SVX21U-EN
• The line to line voltage is not between 180 volts and
633 volts.
Single Zone Variable Air Volume /
Displacement Ventilation (Optional)
This sensor offers full supply fan modulation across the
available airflow range. In addition to full supply fan
modulation, the unit controls the discharge air
temperature to a varying discharge air temperature
setpoint in order to maintain SpaceTemperature.
Human Interface - 5 Inch Color
Touchscreen (Optional)
The 5 inch ColorTouchscreen Human Interface provides an
intuitive user interface to the rooftop unit that speeds up
unit commissioning, shortens unit troubleshooting times,
and enhances preventative maintenance measures.The
human interface includes several features including:
•
Data trending capabilities by means of time series
graphs
•
Historical alarm messages
•
Real-time sensor measurements
•
On board system setpoints
•
USB port that enables the downloading of component
runtime information as well as trended historical
sensor data
•
Customized reports
15
Unit Dimensions
Figure 1, p. 16 illustrates the minimum operating and
service clearances for either a single or multiple unit
installation.These clearances are the minimum distances
necessary to assure adequate serviceability, cataloged
unit capacity, and peak operating efficiency.
Figure 1.
Providing less than the recommended clearances may
result in condenser coil starvation, “short-circuiting” of
exhaust and economizer airflows, or recirculation of hot
condenser air.
Typical installation clearances for single & multiple unit applications
Side by Side
Note 2
End to End
Note 2, 3
6’0”
1829 MM
7’0”
2134 MM
Notes:
1. For horizontal discharge unit,
this measurement is reduced to
1’6” (457 MM) to minimize duct
extensions.
3’0”
914 MM
2. When equipped with economizer
or barometric relief damper, clearance
distance is to be measured from
protruding hood instead of base.
3. Clearance is the same if any unit
is rotated 180°.
4’0”
1219 MM
Note 1
3’0”
914 MM
Single Unit
4. Addition clearance required when
barometric damper or economizer
is installed.
3’0”
914 MM
Note 4
9 1/8”
232 MM
12 1/2”
318 MM
YSC033-063G & YHC036, YHC037E Units
16
12”
305 MM
16 3/4”
426 MM
YSC072-120F, YHC048-120F, YHC047-067E Units
RT-SVX21U-EN
Unit Dimensions
Figure 2.
3 to 5 tons standard efficiency
Notes:
1. All dimensions are in inches/millimeters.
2. ½ NPT Gas Connection
TOP PANEL
EVAPORATOR SECTION
ACCESS PANEL
CONDENSER FAN
40 7/8”
1038 MM
4 1/4”
108 MM
ALTERNATE
CONDENSATE DRAIN
3/4 - 14 NPT DIA. HOLE
CONDENSER COIL
20 1/4”
514 MM
23 9/16”
598 MM
69 7/8”
1749 MM
SERVICE GAUGE PORT ACCESS
1 3/8” (35 MM) DIA. HOLE
4 1/4”
108 MM
42 1/4”
1073 MM
5 9/16”
141 MM
5 5/8”
143 MM
1/2 NPT GAS CONNECTION
UNIT CONTROL WIRE
7/8” (22 MM) DIA. HOLE
9 5/8”
244 MM
UNIT CONTROL WIRE
2” (51 MM) DIA. HOLE
7 5/8”
194 MM
44 1/4”
1124 MM
CONTROL AND COMPRESSOR
ACCESS PANEL
Figure 3.
3 ton high efficiency
Notes:
1. All dimensions are in inches/millimeters.
2. ½ NPT Gas Connection
RT-SVX21U-EN
17
Unit Dimensions
Figure 4.
3-5 ton standard efficiency, 3 ton high efficiency - roof curb
Note: All dimensions are in inches/millimeters.
44 MM
8 3/8”
213 MM
44 MM
7
1038 MM
1053 MM
Figure 5.
3-5 ton standard efficiency, 3 ton high efficiency - unit clearance and roof opening
Note: All dimensions are in inches/millimeters.
CLEARANCE 36” (914 MM)
18
RT-SVX21U-EN
Unit Dimensions
Figure 6.
6, 7½ (single) ton standard efficiency, 4-5 ton high efficiency
Note: All dimensions are in inches/millimeters.
Figure 7.
6, 7½ (single) ton standard efficiency, 4-5 ton high efficiency - roof curb
Note: All dimensions are in inches/millimeters.
(356 MM)
(2130 MM)
RT-SVX21U-EN
19
Unit Dimensions
Figure 8.
6, 7½ (single) ton standard efficiency, 4-5 ton high efficiency - unit clearance and roof opening
Note: All dimensions are in inches/millimeters.
Figure 9.
7½ ton (dual) - 10 ton standard efficiency, 6 - 8½ (MCHE) ton high efficiency, 6 ton dehumidification
Note: All dimensions are in inches/millimeters.
(TC MODELS)
2” ELECTRICAL CONNECTION
(SINGLE POINT POWER
WHEN HEAT INSTALLED)
1/2 NPT GAS CONNECTION
(80 mbh, 120 mbh)
3/4 NPT GAS CONNECTION
(150 mbh, 200 mbh, 250 mbh)
(YC MODELS)
20
RT-SVX21U-EN
Unit Dimensions
Figure 10.
7½ ton (dual) - 10 ton standard efficiency, 6 - 8½ (MCHE) ton high efficiency, 6 ton dehumidification
roof curb
Note: All dimensions are in inches/millimeters.
(356 MM)
(2130 MM)
Figure 11.
7½ ton (dual) - 10 tons standard efficiency, 6 - 8½ (MCHE) ton high efficiency, 6 ton dehumidification
unit clearance and roof opening
Note: All dimensions are in inches/millimeters.
RT-SVX21U-EN
21
Unit Dimensions
Figure 12. 10 ton high efficiency
Notes:
1. All dimensions are in inches/millimeters.
2. ½ or ¾ NPT Gas Connection
INDOOR TOP PANEL
OUTDOOR TOP PANEL
UNIT CONTROL WIRE
7/8” (22MM) DIA HOLE
CONTROL BOX SECTION
ACCESS PANEL
50 7/8”
1292 MM
EVAPORATOR SECTION
ACCESS PANEL
ALTERNATE CONDENSATE DRAIN
CONNECTION 3/4-14 NPT DIA.HOLE
27 5/8”
701 MM
CONDENSER COIL
47 7/8”
1216 MM
99 11/16”
2532 MM
63 3/16”
1605 MM
1/2 NPT GAS CONNECTION
˄80 mbh, 120mbh˅;
3/4 NPT GAS CONNECTION
(150mbh, 200mbh, 250mbh)
or
2” ELECTRICAL CONNECTION
(SINGLE POINT POWER WHEN
UNIT POWER WIRE
HEAT INSTALLED)
1 3/8” (35MM) DIA. HOLE
COMPRESSOR ACCESS PANEL
SERVICE GAUGE PORT
ACCESS 1 3/8” (35MM) DIA.
HOLE
Figure 13. 10 ton high efficiency - roof curb
Notes:
1. All dimensions are in inches/millimeters.
CLE
AR
AN
CLE
A
18 1/2”
(470 MM)
56 3/8”
(1432 MM)
34 3/8”
(873 MM)
1”
(25 MM)
RA
NC
6 5/8”
(168 MM)
CE
36”
(91
4M
E1
M)
8” (
FO
457
RD
MM
OW
) FO
NF
LO
RH
W
OR
IZO
NTA
L
83 7/8”
(2130 MM)
18 1/2”
(470 MM)
1”
(25 MM)
80 1/2”
(2045 MM)
1”
(25 MM)
14”
(356 MM)
1 3/4”
(44 MM)
34 3/8”
(873 MM)
59 7/8”
(1521 MM)
84 1/2”
(2146 MM)
60 3/8”
(1534 MM)
2”
(51 MM)
2”
(51 MM)
22
RT-SVX21U-EN
Unit Dimensions
Figure 14. 10 ton high efficiency- unit clearance and roof opening
Notes:
1. All dimensions are in inches/millimeters.
99 11/16”
(2532 MM)
63 3/16”
(1605 MM)
RT-SVX21U-EN
23
Installation
Pre-Installation
WARNING
Improper Unit Lift!
WARNING
Failure to properly lift unit could result in unit dropping
and possibly crushing operator/technician which could
result in death or serious injury, and equipment or
property-only damage. Test lift unit approximately 24
inches to verify proper center of gravity lift point. To
avoid dropping of unit, reposition lifting point if unit is
not level.
Fiberglass Wool!
Exposition to glass wool fibers without all necessary
PPE equipment could result in cancer, respiratory, skin
or eye irritation, which could result in death or serious
injury. Disturbing the insulation in this product during
installation, maintenance or repair will expose you to
airborne particles of glass wool fibers and ceramic
fibers known to the state of California to cause cancer
through inhalation. You MUST wear all necessary
Personal Protective Equipment (PPE) including gloves,
eye protection, a NIOSH approved dust/mist respirator,
long sleeves and pants when working with products
containing fiberglass wool.
.
Figure 15. Corner weights
Precautionary Measures
•
Avoid breathing fiberglass dust.
•
Use a NIOSH approved dust/mist respirator.
•
Avoid contact with the skin or eyes.Wear long-sleeved,
loose-fitting clothing, gloves, and eye protection.
•
Wash clothes separately from other clothing: rinse
washer thoroughly.
•
Operations such as sawing, blowing, tear-out, and
spraying may generate fiber concentrations requiring
additional respiratory protection. Use the appropriate
NIOSH approved respiration in these situations.
First Aid Measures
Eye Contact - Flush eyes with water to remove dust. If
symptoms persist, seek medical attention.
Skin Contact -Wash affected areas gently with soap and
warm water after handling.
Procedure
WARNING
Heavy Objects!
Failure to follow instructions below or properly lift unit
could result in unit dropping and possibly crushing
operator/technician which could result in death or
serious injury, and equipment or property-only damage.
Ensure that all the lifting equipment used is properly
rated for the weight of the unit being lifted. Each of the
cables (chains or slings), hooks, and shackles used to
lift the unit must be capable of supporting the entire
weight of the unit. Lifting cables (chains or slings) may
not be of the same length. Adjust as necessary for even
unit lift.
24
RT-SVX21U-EN
Installation
Table 1.
Maximum unit & corner weights (lbs) and center of gravity dimensions (in.) - gas/electric models
Unit
Maximum Model
Weights(a)
Corner Weights(b)
Center of Gravity (in.)
Tons
Model No.
Shipping
Net
A
B
C
D
Length
Width
3
YSC033G
577
472
193
178
45
55
33
9
3
YSC036G
577
472
193
178
45
55
33
9
4
YSC043G
598
492
205
183
46
58
33
9
4
YSC048G
598
492
205
183
46
58
33
9
5
YSC060G
627
522
214
193
52
63
33
10
5
YSC063G
602
497
208
184
47
59
32
9
6
YSC072F
805
710
222
217
121
150
41
22
7½
YSC090F
862
767
243
221
155
149
45
21
7½
YSC092F
990
847
265
249
173
160
46
21
8½
YSC102F
1047
904
279
252
187
186
44
22
10
YSC120F
1156
1058
345
242
258
213
41
23
19
3
YHC036E
607
532
165
137
95
134
31
3
YHC037E
676
606
178
162
126
139
33
19
4
YHC048E/YHC047E
858
763
238
200
148
176
40
23
4
YHC048F
806
711
226
199
144
143
44
22
5
YHC060E/YHC067E
917
822
261
218
156
187
40
22
5
YHC060F
850
755
239
214
152
151
44
21
6
YHC072E
1025
927
296
198
205
228
41
24
6
YHC072F
965
822
250
245
174
153
47
21
6
YHC074F
1114
1016
334
231
248
202
41
23
7½
YHC092F
1124
1026
340
233
249
204
41
23
8½
YHC102F
1133
1035
341
236
253
205
49
23
10
YHC120F
1453
1259
356
371
289
242
54
27
(a) Weights are approximate.
(b) Corner weights are given for information only.
Figure 16. Rigging and center of gravity
RT-SVX21U-EN
25
Installation
Table 2.
Factory installed options (fiops)/accessory net weights (lbs)(a),(b)
Accessory
Barometric Relief
YSC033G-063G
YSC036G-060G
YHC036E, YHC037E
YHC047E-067E
YHC048E-060E
YHC048F-060F
Net Weight
Net Weight
Net Weight
Net Weight
Net Weight
3 to 5 Tons
4 to 5 Tons
6 to 8½ Tons
6, 7½, 8½, 10
10
10
YSC072F-102F
YSC120F
YHC072E/F YHC074F-102F
YHC120F
7
10
10
10
Belt Drive Option (3 phase only)
31
31
—
—
—
Coil Guards
12
20
20
20
30
Economizer
26
36
36
36
36
Hinged Doors
10
12
12
12
12
Low Leak Economizer
68
93
93
93
93
Manual Outside Air Damper
16
26
26
26
26
Motorized Outside Air Damper
20
30
30
30
30
Novar Control
8
8
8
8
8
Oversized Motor
5
8
8
—
—
Powered Convenience Outlet
38
38
38
38
50
Powered Exhaust
40
40
80
80
80
12(c)
14
15
20(d)
30
61
78
78
78
89
Smoke Detector, Supply
5
5
5
5
5
Smoke Detector, Return
7
7
7
7
7
Reheat Coil
Roof Curb
Stainless Steel Heat
Exchanger(e)
4
6
6
6
6
Through-the-Base Electrical
8
13
13
13
13
Through-the-Base Gas
5
5
5
5
5
Unit Mounted Circuit Breaker
5
5
5
5
5
Unit Mounted Disconnect
460V/575V(f)
5
5
5
5
5
29
29
—
—
—
(a) Weights for options not listed are <5 lbs.
(b) Net weight should be added to unit weight when ordering factory-installed accessories.
(c) Reheat weight here is only applicable to YHC036E models.
(d) Reheat weight for this value only applicable to 7.5 and 8.5 Ton High Efficiency “F” models.
(e) Applicable to Gas/Electric units only.
(f) Apply weight with all 460V and 575V 17 Plus Two-Stage Cooling units.
Foundation
Horizontal Units
If the unit is installed at ground level, elevate it above the
snow line. Provide concrete footings at each support
location with a “full perimeter” support structure or a slab
foundation for support. Refer to Table 1, p. 25 for the unit’s
operating and point loading weights when constructing a
footing foundation.
If anchoring is required, anchor the unit to the slab using
hold down bolts or isolators. Isolators should be installed
to minimize the transmission of vibrations into the
building.
WARNING
Risk of Roof Collapsing!
Failure to ensure proper structural roof support could
cause the roof to collapse, which could result in death
or serious injury and property damage. Confirm with a
structural engineer that the roof structure is strong
enough to support the combined weight of the
roofcurb and the unit. Refer to 'Weights' page, Table 1,
p. 25 for typical unit and curb weights.
For rooftop applications, ensure the roof is strong enough
to support the combined unit and support structural
weight. Refer to Table 1, p. 25 for the unit operating
weights. If anchoring is required, anchor the unit to the
roof with hold-down bolts or isolators.
Check with a roofing contractor for proper waterproofing
procedures.
26
RT-SVX21U-EN
Installation
Ductwork
Figure 20, p. 27 to Figure 22, p. 28 illustrate the supply and
return air openings in a downflow configuration.
Figure 17, p. 27 to Figure 19, p. 27 illustrate the supply and
return air openings as viewed from the rear of the unit.
Elbows with turning vanes or splitters are recommended
to minimize air noise due to turbulence and to reduce static
pressure.
Figure 17.
3-5 ton standard efficiency units & 3 ton high
efficiency units - Horizontal supply & return
air openings
When attaching the ductwork to the unit, provide a water
tight flexible connector at the unit to prevent operating
sounds from transmitting through the ductwork.
All outdoor ductwork between the unit and the structure
should be weather proofed after installation is completed.
Figure 20. 3-5 ton standard efficiency units & 3 ton high
efficiency units - Down flow supply & return air
openings w/ through-the-base utilities
3 5/8”
92 MM
9 1/4”
235 MM
14”
356 MM
15 1/2”
394 MM
4”
102 MM
SUPPLY
18”
457 MM
24”
610 MM
Figure 18. 4-6 ton high efficiency units, 6(074)-8½
(Microchannel) high efficiency unit and 6-10
ton standard efficiency units - horizontal
supply & return air openings
RETURN
27 9/16”
701 MM
TBU CONDENSATE
2 13/16”
71 MM
6 1/2”
3 11/16” 165 MM
94 MM
4 9/16”
116 MM
4 3/16”
106 MM
4 7/8”
124 MM
23 1/2”
597 MM
THROUGH
THE BASE GAS
THROUGH
THE BASE
ELECTRICAL
5 1/16”
128 MM
9 15/16”
253 MM
Figure 21.
Return
Supply
4-6 ton high efficiency units, 6(074)-8½
(Microchannel) high efficiency units and 6-10
ton standard efficiency units - down flow
supply & return air openings w/ through-thebase utilities
Figure 19. 10 ton high efficiency unit - horizontal supply
& return air openings
3 7/8”
98 MM
9 3/8”
238 MM
Supply
Return
16 3/4”
425 MM
32 1/4”
832 MM
19 1/4”
489 MM
32 1/4”
832 MM
4 3/4”
120 MM
27 5/8”
701 MM
4 1/4”
108 MM
RT-SVX21U-EN
3/4-14 NPT DIA. HOLE
CONDENSATE DRAIN
27
Installation
Figure 22. 10 ton high efficiency unit - downflow supply
& return air openings w/ through-the-base
utilities
3 5/8”
92 MM
17 1/2”
444 MM
9 7/8”
251 MM
17 1/2”
444 MM
4”
102 MM
Return
32 1/8”
816 MM
Note: To assure proper condensate flow during
operation, as well as proper operation of the
condensate overflow switch (if equipped), the unit
and curb must be level.
If the unit is elevated, a field constructed catwalk around
the unit is strongly recommended to provide easy access
for unit maintenance and service.
Supply
33”
838 MM
THROUGH THE
BASE ELECTRICAL
THROUGH THE
BASE CONDENSATE
2 3/4”
71 MM
6 3/8”
163 MM
4 5/8”
119 MM
4 1/8”
104 MM
instructions carefully to assure proper fit-up when the unit
is set into place.
5 7/8”
149 MM
27 5/8”
701 MM
42 3/16”
1072 MM
Recommendations for installing the Supply Air and Return
Air ductwork joining the roof curb are included in the curb
instruction booklet. Curb ductwork must be fabricated and
installed by the installing contractor before the unit is set
into place.
Note: For sound consideration, cut only the holes in the
roof deck for the ductwork penetrations. Do not cut
out the entire roof deck within the curb perimeter.
51 13/16”
1316 MM
Roof Curb
Figure 23. View for base to roof curb alignment
YHC120F on 50" x 84" roof curb
Downflow
The roof curbs for these units consists of a “full perimeter”
enclosure to support the unit just inside of the unit base
rail.The 10 ton high efficiency units contain a support base
alignment rail and will extend past the end of the roof curb
as shown in figures below.
Before installing any roof curb, verify;
•
It is the correct curb for the unit,
•
It includes the necessary gaskets and hardware,
•
The installation location provides the required
clearance for proper operation,
•
The curb is level and square.The top surface of the
curb must be true to assure an adequate curb-to-unit
seal.
Base Alignment Bracket
Figure 24. View for base to roof curb alignment
YHC120F on 60" x 84" roof curb
WARNING
Combustible Materials!
Failure to maintain proper clearance between the unit
heat exchanger, vent surfaces and combustible
materials could cause a fire which could result in death
or serious injury or property damage. Refer to unit
nameplate and installation instructions for proper
clearances.
Verify that appropriate materials were used in the
construction of roof and ductwork. Combustible materials
should not be used in the construction of ductwork or roof
curb that is in close proximity to heater elements or any
hot surface. Any combustible material on the inside of the
unit base should be removed and replaced with
appropriate material.
Step-by-step curb assembly and installation instructions
ship with each accessory roof curb kit. Follow the
28
If a Curb Accessory Kit is not used:
•
The ductwork can be attached directly to the factoryprovided flanges around the unit’s supply and return
air openings. Be sure to use flexible duct connections
at the unit.
•
For “built-up” curbs supplied by others, gaskets must
be installed around the curb perimeter flange and the
supply and return air opening flanges.
RT-SVX21U-EN
Installation
Rigging
Figure 25. Fork pockets - all units except 10 ton high
efficiency units
WARNING
Heavy Objects!
Failure to follow instructions below or properly lift unit
could result in unit dropping and possibly crushing
operator/technician which could result in death or
serious injury, and equipment or property-only damage.
Ensure that all the lifting equipment used is properly
rated for the weight of the unit being lifted. Each of the
cables (chains or slings), hooks, and shackles used to lift
the unit must be capable of supporting the entire
weight of the unit. Lifting cables (chains or slings) may
not be of the same length. Adjust as necessary for even
unit lift.
A Rigging illustration and Center-of-Gravity dimensional
data table is shown in Figure 16, p. 25. Refer to the typical
unit operating weights table before proceeding.
Figure 26. Fork pockets - 10 ton high efficiency unit
1. Remove all drill screws fastening wood protection to
metal base rail. Remove all screws securing wooden
protection to wooden top crate.
2. Remove WoodenTop Crate.
WARNING
Improper Unit Lift!
Failure to properly lift unit could result in unit dropping
and possibly crushing operator/technician which could
result in death or serious injury, and equipment or
property-only damage. Test lift unit approximately 24
inches to verify proper center of gravity lift point. To
avoid dropping of unit, reposition lifting point if unit is
not level.
3. Rig the unit as shown in Figure 16, p. 25. Attach
adequate strength lifting slings to all four lifting
brackets in the unit base rail. Do not use cables, chains,
or slings except as shown.
4. Install a lifting bar, as shown in Figure 16, p. 25, to
protect the unit and to facilitate a uniform lift.The
minimum distance between the lifting hook and the
top of the unit should be 7 feet.
5. Test-lift the unit to ensure it is properly rigged and
balanced, make any necessary rigging adjustments.
NOTICE
6. Lift the unit enough to allow the removal of base fork
pocket protection components as shown in the
following figures.
7. When 10 ton high efficiency units are installed on
smaller existing roof curb (50"x 84") for replacement
applications, do not remove alignment bracket.This
bracket helps assure proper alignment of duct
openings.
8. Downflow units; align the base rail of the unit with the
curb rail while lowering the unit onto the curb. Make
sure that the gasket on the curb is not damaged while
positioning the unit.
General Unit Requirements
The checklist listed below is a summary of the steps
required to successfully install a commercial unit.This
checklist is intended to acquaint the installing personnel
with what is required in the installation process. It does not
replace the detailed instructions called out in the
applicable sections of this manual.
•
RT-SVX21U-EN
Check the unit for shipping damage and material
shortage; file a freight claim and notify appropriate
sales representative.
29
Installation
•
Verify correct model, options and voltage from unit
nameplate.
•
Verify that the installation location of the unit will
provide the required clearance for proper operation.
•
Assemble and install the roof curb (if applicable). Refer
to the latest edition of the curb installers guide that
ships with each curb kit.
•
Install pitch pocket for power supply through building
roof. (If applicable)
•
Rigging the unit.
•
Set the unit onto the curb; check for levelness.
•
Ensure unit-to-curb seal is tight and without buckles or
cracks.
Note: Condensate Overflow Switch (if equipped) will not
work if unit is not leveled properly.
Factory Installed Economizer
•
•
YSC092F**(H,Z)
220F/260F
YSC102F**(L,X)
225F
YSC102F**(M,Y)
230F
YSC102F**(H,Z)
200F/260F
YSC120F**(L,X)
180F/200F
YSC120F**(M,Y)
200F
YSC120F**(H,Z)
190F/260F
TC01 tripping values(a),(b)
Unit Model - High Efficiency
15 SEER
TCO1 Tripping Values Downflow/ Horizontal
YHC036E**(L,X)-DD
180F
YHC036E**(L,X)-BD
170F
YHC036E1*(M,Y)-DD
YHC036E(3,4,W)*(M,Y)-DD
190F
170F/190F
YHC036E**(M,Y)-BD
180F/190F
YHC036E1*(H,Z)-DD
YHC036E(3,4,W)*(H,Z)-DD
190F/220F
170F/190F
YHC036E**(H,Z)-BD
155F/190F
Ensure the economizer has been pulled out into the
operating position. Refer to the economizer
installation guide for proper position and setup.
YHC048F1*(L,X)-DD
YHC048E/F(3,4,W)*(L,X)-DD
170F/155F
145F/155F
YHC048E/F**(L,X)-BD
155F
Install all access panels.
YHC048F1*(M,Y)-DD
YHC048E/F(3,4,W)*(M,Y)-DD
140F
150F/170F
Temperature Limit Switch Usage for Gas
Heat Units
Units are factory shipped in the down flow discharge
configuration but can be field converted to a horizontal
discharge configuration. Some, but not all units require a
differentTCO1 limit switch, which is attached to the
combustion blower motor if horizontal discharge
configuration is used.
Note: See Table 5, p. 31 for horizontal discharge
requirements.
If any of the units in Table 5, p. 31 are installed in the down
flow discharge configuration and have the alternateTCO1
limit switch provided, remove the additionalTCO1 limit
switch from the combustion blower motor and discard.
Table 3.
TC01 tripping values
Unit Model - 6 to 10 Ton
Standard Efficiency
YSC072F**(M,Y)
TCO1 Tripping Values Downflow/ Horizontal
YHC048E/F**(M,Y)-BD
170F/180F
YHC048F1*(H,Z)-DD
YHC048E/F(3,4,W)*(H,Z)-DD
180F/200F
220F
YHC048E/F**(H,Z)-BD
220F/260F
YHC060F1*(L,X)-DD
YHC060E/F(3,4,W)*(L,X)-DD
155F
140F
YHC060E/F**(L,X)-BD
155F/145F
YHC060F1*(M,Y)-DD
YHC060E/F(3,4,W)*(M,Y)-DD
140F/150F
145F/170F
YHC060E/F**(M,Y)-BD
170F
YHC060F1*(H,Z)-DD
YHC060E/F(3,4,W)*(H,Z)-DD
180F
190F/220F
YHC060E/F**(H,Z)-BD
220F/230F
YHC072E/F**(L,X)
200F
YHC072E/F**(M,Y)
220F
YHC072E/F**(H,Z)
210F
YHC074F**(L,X)
155F
YHC074F**(M,Y)
180F/190F
YHC074F**(H,Z)
200F/220F
155F/170F
YHC092F**(L,X)
190F
180F/200F
200F
YSC072F**(L,X)
170F
YHC092F**(M,Y)
YSC072F**(H,Z)
145F/155F
YHC092F**(H,Z)
YSC090F**(L,X)
180F/200F
YHC102F**(L,X)
190F
YSC090F**(M,Y)
155F
YHC102F**(M,Y)
180F/200F
YSC090F**(H,Z)
155F
YHC102F**(H,Z)
200F
225F
YHC120F**(L,X)
135F
230F
YHC120F**(M,Y)
170F
YSC092F**(L,X)
YSC092F**(M,Y)
30
TCO1 Tripping Values Downflow/ Horizontal
Table 4.
Install and connect a condensate drain line to the
evaporator drain connection.
TC01 tripping values (continued)
Unit Model - 6 to 10 Ton
Standard Efficiency
Fabricate and install ductwork; secure ductwork to
curb.
•
•
Table 3.
RT-SVX21U-EN
Installation
Table 4.
TC01 tripping values(a),(b) (continued)
Unit Model - High Efficiency
15 SEER
TCO1 Tripping Values Downflow/ Horizontal
YHC120F**(H,Z)
145F/190F
Figure 27.
(a) BD= Belt drive ID motor
(b) DD= Direct drive ID motor
Table 5.
RTV Sealant
TC01 tripping values
Unit Model - High Efficiency
17 Plus
TCO1 Tripping Values Downflow/ Horizontal
YHC037**(L,X)
190F
YHC037**(M,Y)
170F/220F
YHC037**(H,Z)
220F
YHC047**(L,X)
145F/155F
Table 6.
Duct cover
YHC047**(M,Y)
170F
YHC047**(H,Z)
220F
YHC067**(L,X)
140F
YHC067**(M,Y)
170F
YHC067**(H,Z)
170F
TC01 tripping values
Unit Model - 3 to 5 Ton
Standard Efficiency - MCHE
TCO1 Tripping Values Downflow/ Horizontal
YSC033-036G**(L,X)
155F
YSC033-036G**(M,Y)
190F
YSC033-036G**(H,Z)
190F / 210F
YSC043-048G**(L,X)
155F
YSC043-048G**(M,Y)
180F / 200F
YSC043-048G**(H,Z)
190F / 230F
YSC060-063G**(L,X)
155F
YSC060-063G**(M,Y)
170F
YSC060-063G**(H,Z)
170F / 225F
3. Position duct cover as shown, rotate 90 degrees to
allow entrance into supply opening.
4. Slide duct covers into duct openings until inward edge
of duct cover engages with the 2 retaining clips on the
duct flanges. Secure the outward edge of each duct
cover with 2 screws.
5. Slide RETURN DUCT COVER (insulation side up) into
supply opening until inward edge of duct cover
engages with the 2 retaining clips on the duct flange.
Secure outward edge of the duct cover with two
screws.
6. After completing installation of the duct covers for
horizontal discharge, proceed toTCO1 instructions.
TCO1 Instructions
If the unit being installed is listed in Table 5, p. 31 with a
differentTCO1 value, the limit controlTCO1 must be
replaced with the extra limit control shipped in the heater
compartment. ReplaceTCO1 following the instructions in
steps 1 through 3 below. If the unit being installed does not
correspond to any in the following list, skip steps 1 through
3 and go on to next step in the installation process.
Figure 28. TCO1 location (YHC036E, YHC037E, and
YSC033-063G)
Horizontal Discharge Conversion
(3 to 5 Ton Units)
Note: 3 to 5 ton units supply cover to supply opening and
return cover to return opening.
Location of TC01 limit for YSC048G,
YSC060G, YHC036E and YHC037E units
Flame
Rollout
Limit
Supplies needed by installer for conversion: 3 oz. tube of
high temperature RTV sealant. (500°F / 260°C: similar to
Dow Corning 736)
Important:
Failure to use recommended sealant could
result in unit performance loss.
If a unit is to be converted to a horizontal discharge, the
following conversion must be performed:
1. Remove RETURN and SUPPLY duct covers.
2. Locate supply cover. Apply ¼ in. (6mm.) continuous
bead of 500°F RTV sealant to the flange as shown.
RT-SVX21U-EN
Location of TC01 limit
YSC033-063G
31
Installation
WARNING
Hazardous Voltage!
Figure 30. Duct cover
Failure to disconnect power before servicing could
result in death or serious injury. Disconnect all electric
power, including remote disconnects before servicing.
Follow proper lockout/tagout procedures to ensure the
power can not be inadvertently energized.
RTV Sealant
1. Remove the heat section access panel.
2. RemoveTCO1 from shipping location, attached to the
combustion blower.
3. Replace and discard the existingTCO1 originally
installed at the factory for down flow operation with
theTCO1 shipped attached to the combustion blower
for horizontal operation.
4. Replace heat section access panel.
Horizontal Discharge Conversion
(6 to 10 Ton Units)
Note: 6 to 10 ton units the supply cover to return opening
& return cover to supply opening.
Supplies Needed by Installer for Conversion: 3 oz. tube of
highTemperature RTV sealant (500°F / 260°C: Similar to
Dow Corning 736).
Important:
5. Slide RETURN DUCT COVER (insulation side up) into
supply opening until inward edge of duct cover
engages with the 2 retaining clips on the duct flange.
Secure outward edge of the duct cover with two
screws.
Note: If unit is equipped with Return Air Smoke Detector,
refer to field conversion instructions for horizontal
discharge before installing return air duct.
Note: If unit is equipped with Discharge Air Sensing
option refer to the following figure for proper tube
positioning based on unit tonnage.
Figure 31.
For YSC120F*R and YHC074F, 092F, 102F
models
Downflow application
Failure to use recommended sealant could
result in unit performance loss.
If a unit is to be converted to a Horizontal discharge, the
following conversion must be performed:
1. Remove RETURN and SUPPLY duct covers.
Horizontal application
2. Place SUPPLY DUCT COVER over down-flow return
opening. (insulation side down)
3. Using self-drilling screws, (or screws removed from
duct cover), screw through dimples to attach DUCT
COVER to base.
Figure 29. Duct cover
Supply Duct Cover
6. After completing installation of the duct covers for
horizontal discharge, proceed toTCO1 instructions.
Figure 32. Supply and return covers
Screw into 4
dimples on top
edge
4. On original RETURN DUCT COVER, apply ¼”(6mm.)
continuous bead of 500°F RTV sealant around flange
(opposite insulation side), as shown.
32
Supply duct cover
Insulation side
down
Insulation side up
Return duct
cover
RT-SVX21U-EN
Installation
TCO1 Instructions
If a unit is to be converted to horizontal discharge, the
following conversion must be performed:
If the unit being installed is listed in the following list, the
limit controlTCO1 must be replaced with the extra limit
control shipped in the heater compartment. ReplaceTCO1
following the instructions in steps 1 through 3 below. If the
unit being installed does not correspond to any in the
following list, skip steps1 through 3 and go on to next step
in the installation process.
1. If the unit has an economizer, it must be pulled out in
the operating position.
2. Remove the 3 screws from the mounting brackets.
Refer to downflow view for screws locations.
Figure 34. Downflow view
Unit Model Number
YSC072F**(H,Z),YSC092F**(M,Y),YSC092F**(H,Z),
YSC102F**(M,Y),YSC102F**(H,Z),YSC120F**(L,X),
YSC120F**(H,Z),YSC090F**(L,X),YHC074F**(M,Y),
YHC074F**(H,Z),YHC092F**(M,Y),YHC102F**(M,Y),
YHC120F**(L,X),YHC120F**(H,Z).
WARNING
Hazardous Voltage!
Failure to disconnect power before servicing could
result in death or serious injury. Disconnect all electric
power, including remote disconnects before servicing.
Follow proper lockout/tagout procedures to ensure the
power can not be inadvertently energized.
1. Remove the heat section access panel.
2. RemoveTCO1 from shipping location, attached to the
combustion blower.
3. Replace and discard the existingTCO1 originally
installed at the factory for down flow operation with
theTCO1 shipped attached to the combustion blower
for horizontal operation.
3. Lift the tube and bracket from the downflow duct
opening. Rotate the tube and bracket assembly 180
degrees ensuring that the holes on the copper sensing
tube face away from the unit and face the return air
ductwork. Refer Figure 35, p. 33 and Figure 36, p. 34
for screws location.
Figure 35. Horizontal view 1
4. Replace heat section access panel.
Figure 33. TCO1 location (YHC120F)
TCO1 limit is located above
the burner on the YHC120F models
Replace original factory installed TCO1
with optional TCO1 attached to blower
housing for field convertion to horizontal discharge
Return Air Smoke Detector
The factory installed Return Air Smoke Detector is
installed in the downflow discharge position. No
additional field setup is required.
RT-SVX21U-EN
33
Installation
Figure 36. Horizontal view 2
2. Remove the screw from the mounting bracket. Refer to
downflow view for screw and bracket location.
Figure 37.
4
Wireless communication interface downflow
3. Mount the bracket in the horizontal discharge location.
Refer to horizontal view for screw and bracket location.
Figure 38. Wireless communication interface horizontal
2
Note: Check to insure that the flexible tubing lies flat on
the base pan surface.
4. Slide the top bracket down the copper sensing tube.
ForYSC036G-060, andYHC036-037E units insert the
tab on the left side into the slot on the indoor coil block
off and secure the right side of the bracket with one of
the 3 screws removed in step 2. Refer to Figure 35,
p. 33. ForYHC047E-067E,YHC048E/F-060E/F,YSC072F120F andYHC(072E/F, 074F-120F) units secure the tab
on left side to the indoor coil block off with one of the
screws removed in step 2 and secure the right side of
the bracket with one of the screws removed from the
access panel. Refer to Figure 36, p. 34.
5. Using the remaining 2 screws removed in step 2,
secure the bottom bracket. Refer to Figure 35, p. 33.
Note: Larger diameter holes on bottom bracket line up
with the dimples on the rear panel.The smaller
diameter holes line up with the screw holes in the
rear panel.
Air-Fi™ Wireless Communication
Interface
The factory installed wireless communications interface is
installed in the downflow discharge position.
If a unit is to be converted to horizontal discharge, the
following conversion must be performed:
Note: Cable ties must be removed to allow the cable to
extend to the horizontal mounting location.
Main Electrical Power
Requirements
WARNING
Hazardous Voltage w/Capacitors!
Failure to disconnect power and discharge capacitors
before servicing could result in death or serious injury.
Disconnect all electric power, including remote
disconnects and discharge all motor start/run
capacitors before servicing. Follow proper lockout/
tagout procedures to ensure the power cannot be
inadvertently energized. Verify with an appropriate
voltmeter that all capacitors have discharged.
For additional information regarding the safe discharge
of capacitors, see PROD-SVB06A-EN
1. If the unit has an economizer, it must be pulled out in
the operating position.
34
RT-SVX21U-EN
Installation
WARNING
Proper Field Wiring and Grounding
Required!
Figure 39. Typical through-the-base gas installation
Failure to follow code could result in death or serious
injury. All field wiring MUST be performed by qualified
personnel. Improperly installed and grounded field
wiring poses FIRE and ELECTROCUTION hazards. To
avoid these hazards, you MUST follow requirements for
field wiring installation and grounding as described in
NEC and your local/state electrical codes.
Verify that the power supply complies with the unit
nameplate specifications.
•
Inspect all control panel components; tighten any
loose connections.
•
Connect properly sized and protected power supply
wiring to a field-supplied/installed disconnect switch
and to the main power terminal block (HTB1) in the unit
control panel.
•
Install proper grounding wires to an earth ground.
Through-the-Base Gas
Installation
The gas supply line must extend 4⅝” above the base pan.
The “Through-the-Base Gas” kit is located in the heat
vestibule compartment.To gain access to the kit, remove
the Heat Compartment access panel.
Requirements for Gas Heat
Note: The unit gas train and optional through-the-base
gas shut-off valve are rated at 1/2 PSIG maximum.
A pressure reducing regulator is recommended to
prevent this maximum from being exceeded.
These components must be isolated during field
gas piping test that exceed 1/2 PSIG. It is
recommended that the field piping be capped prior
to the unit gas train or optional through-the-base
gas shut-off valve if present.
•
Gas supply line properly sized and connected to the
unit gas train.
•
All gas piping joints properly sealed.
•
Gas piping leak checked with a soap solution. If piping
connections to the unit are complete, do not pressurize
piping in excess of 0.50 psig or 14" W.C. to prevent
component failure.
•
Drip leg Installed in the gas piping near the unit.
•
Minimum gas supply pressure should be 4.5" W.C.
•
4. Disconnect the 5" pipe nipple and union from the
“Through-the-Base Gas” kit assembly.
Maximum gas supply pressure must not exceed 14.0"
W.C.
•
5. Using pipe sealant, attach the 6½” nipple and gas
shutoff assembly to the 90° elbow on the gas supply
line.
Manifold pressure for single stage heaters should be
set to 3.3" W.C.
•
Manifold pressure for two stage heaters should be set
to 3.5" W.C. on HIGH FIRE and 1.8" W.C. on LOW FIRE.
•
Flue Exhaust clear of any obstruction.
1. Remove the pipe assembly strapped to the manifold.
Unscrew 90° elbow from 6½” nipple and slide rubber
grommet off of nipple.
2. Remove the plastic plug from the hole in the center
post and insert the grommet removed from
6½” pipe nipple.
3. Using pipe sealant, attach the 90° elbow to the gas
supply line.
6. Using pipe sealant, attach the 5" pipe nipple and union
to the street el attached to the gas valve.
7.
Connect 5" pipe nipple and union to 6½” nipple and
gas shutoff assembly.
RT-SVX21U-EN
35
Installation
Condensate Drain Configuration
WARNING
Hazardous Voltage!
Failure to disconnect power before servicing could
result in death or serious injury. Disconnect all electric
power, including remote disconnects before servicing.
Follow proper lockout/tagout procedures to ensure the
power can not be inadvertently energized.
An evaporator condensate drain connection is provided
on each unit. Refer to Figure 17, p. 27 and Figure 18, p. 27
for the appropriate drain location.
The condensate drain pan is factory installed to drain
condensate to the back side of the unit. See Figure 17, p. 27
and Figure 18, p. 27. It can be converted to drain
condensate out the front side of the unit or through-thebase.
To convert drain condensate out the front of
unit:
7.
Slide the condensate drain pan back into the unit, align
the drain support with the grommeted opening in the
rear support panel and push until the support is seated
in the grommet.
8. Replace the front support panel by aligning the panel
with tabs in the raceway.Align the plugged condensate
drain pan coupling in the grommeted hole as the panel
is put in place.
9. Replace evaporator access panel and supply air access
panels.
A condensate trap must be installed at the unit due to the
drain connection being on the “negative pressure” side of
the fan. Install the P-Trap using the guidelines in Figure 40,
p. 36.
A condensate drain line must be connected to the p-trap.
Pitch the drain lines at least 1/2 inch for every 10 feet of
horizontal run to assure proper condensate flow. Do not
allow the horizontal run to sag causing a possible doubletrap condition which could result in condensate backup
due to “air lock”.
Figure 40. Condensate trap installation
1. Remove evaporator access panel and supply air access
panels.
2. Remove the support panel that the condensate drain
pan exits through.
3. Slide the condensate drain pan out of the unit and
rotate 180°.
38.1
4. Slide the condensate drain pan back into the unit, align
the drain with the grommeted opening in the rear
support panel and push until the coupling is seated in
the grommet.
5. Replace the front support panel by aligning the panel
with tabs in the raceway. Align the condensate drain
pan support in the grommeted hole as the panel is put
in place.
6. Replace evaporator access panel and supply air access
panels.
Drain Pan Removal (Units with Condensate
Overflow Switch Option)
To convert drain condensate through-the base
of unit:
Before drain pan removal, the switch wire must be
disconnected from wire tie on panel and/or any tape
before drain pan can be removed.
1. Remove evaporator access panel and supply air access
panels.
2. Remove the support panel that the condensate drain
pan exits through.
3. Slide the condensate drain pan out of the unit.
4. Place on a level surface in the position it was removed
from the unit.
5. Remove the plug knockout in the bottom of the drain
pan to convert it to through-the-base drainage.
6. Plug the original condensate drain opening with a field
supplied 3/4” NPT plug.
36
Care must be taken so the wire does not catch on the
bottom of indoor coil or any protrusion.
Note: When reversing the drain pan, on some units, the
condensate overflow switch will need to be moved
to the second hole in its bracket to avoid contact
with headers or indoor coil.
Filter Installation
The quantity of filters is determined by unit size. Access to
the filters is obtained by removing the filter access panel.
Refer to the unit Service Facts (shipped with each unit) for
filter requirements.
RT-SVX21U-EN
Installation
Note: Do not operate the unit without filters.
Field Installed Power Wiring
WARNING
Proper Field Wiring and Grounding
Required!
Failure to follow code could result in death or serious
injury. All field wiring MUST be performed by qualified
personnel. Improperly installed and grounded field
wiring poses FIRE and ELECTROCUTION hazards. To
avoid these hazards, you MUST follow requirements for
field wiring installation and grounding as described in
NEC and your local/state electrical codes.
An overall dimensional layout for the field installed wiring
entrance into the unit is illustrated in “Unit Dimensions,”
p. 16.To insure that the unit’s supply power wiring is
properly sized and installed, follow the following
guidelines.
Verify that the power supply available is compatible with
the unit’s nameplate ratings.The available supply power
must be within 10% of the rated voltage stamped on the
nameplate. Use only copper conductors to connect the
power supply to the unit.
NOTICE:
Use Copper Conductors Only!
Failure to use copper conductors could result in
equipment damage as unit terminals are not designed
to accept other types of conductors.
Important:
If the unit is not equipped with an optional
factory installed non-fused disconnect
switch or circuit breaker, a field supplied
disconnect switch must be installed at or
near the unit in accordance with the
National Electrical Code (NEC latest
edition).
Main Unit Power
WARNING
Proper Field Wiring and Grounding
Required!
WARNING
Hazardous Voltage!
Failure to disconnect power before servicing could
result in death or serious injury. Disconnect all electric
power, including remote disconnects before servicing.
Follow proper lockout/tagout procedures to ensure the
power can not be inadvertently energized.
Standard Wiring
1. Location of the applicable electrical service entrance is
illustrated in “Unit Dimensions,” p. 16. Complete the
unit’s power wiring connections at Compressor
Contactor # 1 (CC1) inside the unit control panel. Refer
to the customer connection diagram that is shipped
with the unit for specific termination points
2. Provide proper grounding for the unit in accordance
with local and national codes.
Optional TBUE Wiring (Through-the-Base
Electrical Option)
1. Location of the applicable electrical service is
illustrated below. Refer to the customer connection
diagram that is shipped with the unit for specific
termination points.The termination points, depending
on the customer option selected would be a factory
mounted non-fused disconnect switch (UDC) or circuit
breaker (UCB). If neither a factory mounted non-fused
disconnect switch (UDC) or circuit breaker (UCB) was
factory mounted, field wiring connections should be
terminated in the control box at Compressor Contactor
# 1 (CC1).
2. Provide proper grounding for the unit in accordance
with local and national codes.
Note: Black Gasket is shipped from the factory and is
located in the literature ship-with bag in the control
box. Apply Black Gasket around conduit plate on all
4 sides after installation to prevent air leakage from
the building entering the electrical enclosures.
Note: Seal between wiring and conduit with Black Gasket
or weather proof sealer to prevent air leakage from
the building entering the electrical enclosures.Also
seal around conduit and wiring at all roof and curb
penetrations.
Failure to follow code could result in death or serious
injury. All field wiring MUST be performed by qualified
personnel. Improperly installed and grounded field
wiring poses FIRE and ELECTROCUTION hazards. To
avoid these hazards, you MUST follow requirements for
field wiring installation and grounding as described in
NEC and your local/state electrical codes.
RT-SVX21U-EN
37
Installation
Figure 41. All units except 10 ton high efficiency units
WARNING
Proper Field Wiring and Grounding
Required!
Failure to follow code could result in death or serious
injury. All field wiring MUST be performed by qualified
personnel. Improperly installed and grounded field
wiring poses FIRE and ELECTROCUTION hazards. To
avoid these hazards, you MUST follow requirements for
field wiring installation and grounding as described in
NEC and your local/state electrical codes.
An overall layout of the various control options available
with the required number of conductors for each control
device is illustrated in Figure 39, p. 35.
Note: All field wiring must conform to NEC guidelines as
well as state and local codes.
Control Power Transformer
Figure 42. 10 ton high efficiency units
The 24 volt control power transformers are to be used only
with the accessories called out in this manual.
Transformers rated greater than 50 VA are equipped with
internal circuit breakers. If a circuit breaker trips, turn “Off”
all power to the unit before attempting to reset it.
WARNING
Hazardous Voltage!
Failure to disconnect power before servicing could
result in death or serious injury. Disconnect all electric
power, including remote disconnects before servicing.
Follow proper lockout/tagout procedures to ensure the
power can not be inadvertently energized.
SEAL BETWEEN
WIRING AND
CONDUIT WITH
WEATHER PROOF
SEALER TO PREVENT
AIR LEAKAGE
CONTROL WIRING
CONDUIT
BLACK GASKET
The transformer is located in the control panel.The circuit
breaker is located on the left side of the transformer and
can be reset by pressing in on the black reset button.
Controls Using 24 VAC
FIELD POWERED
CONVENIENCE OUTLET
CONDUIT
CONTROL WIRING
CONDUIT
Field-Installed Control Wiring
Before installing any connecting wiring, refer to “Unit
Dimensions,” p. 16 for the electrical access locations
provided on the unit and Table 7, p. 39 or Table 8, p. 39 for
AC conductor sizing guidelines, and;
1. Use copper conductors unless otherwise specified.
2. Ensure that the AC control wiring between the controls
and the unit’s termination point does not exceed three
(3) ohms/conductor for the length of the run.
WARNING
Hazardous Voltage!
NOTICE:
Controls Using 24 VAC!
Failure to disconnect power before servicing could
result in death or serious injury. Disconnect all electric
power, including remote disconnects before servicing.
Follow proper lockout/tagout procedures to ensure the
power can not be inadvertently energized.
Resistance in excess of 3 ohms per conductor could
cause component failure due to insufficient AC voltage
supply.
38
Note: Be sure to check all loads and conductors for
grounds, shorts, and mis-wiring.
RT-SVX21U-EN
Installation
3. Do not run the AC low voltage wiring in the same
conduit with the high voltage power wiring.
DC Conductors
4. Route low voltage wiring per illustrations on page 41.
Table 9.
Table 7.
Electromechanical thermostat 24V AC
conductors with ReliaTel™
Zone sensor module wiring
Distance from Unit to Control
Recommended Wire Size
0 - 150 feet
22 gauge
Distance from Unit to Control Recommended Wire Size
0 - 45.7 m
.33 mm2
000 - 460 feet
18 gauge
151 - 240 feet
20 gauge
000 - 140 m
.75 mm2
46 - 73.1 m
.50 mm2
461 - 732 feet
16 gauge
241 -385 feet
18 gauge
1.3 mm2
73.5 - 117.3 m
.75 mm2
733 - 1000 feet
14 gauge
386 - 610 feet
16 gauge
224 - 305 m
2.0 mm2
117.7 - 185.9 m
1.3 mm2
611 - 970 feet
14 gauge
186.2 - 295.7 m
2.0 mm2
141 - 223 m
Table 8.
Electromechanical thermostat 24V AC
conductors with electromechanical unit
Distance from Unit to Control
Recommended Wire Size
0 - 30 feet
22 gauge
0 - 9.1 m
.33 m2
31 - 50 feet
20 gauge
9.5 - 15.2 m
.50m2
51 - 75 feet
18 gauge
15.5 - 22.9 m
.75 m2
76 - 125 feet
16 gauge
23.1 - 38.1 m
1.3 m2
126 - 200 feet
14 gauge
38.4 - 60.9 m
2.0 m2
Figure 43. Typical field wiring diagrams for
electromechanical
Controls using DC Analog Input/Outputs
(Standard Low Voltage Multi
conductor Wire)
Before installing any connecting wiring between the unit
and components utilizing a DC analog input\output signal,
refer to “Unit Dimensions,” p. 16 for the electrical access
locations provided on the unit.
•
Table 9, p. 39 lists the conductor sizing guidelines that
must be followed when interconnecting the DC binary
output devices and the system components utilizing a
DC analog input/output signal to the unit.
Note: Resistance in excess of 2.5 ohms per conductor can
cause deviations in the accuracy of the controls.
Note: Ensure that the wiring between controls and the
unit’s termination point does not exceed two and a
half (2.5) ohms/conductor for the length of the run.
•
Do not run the electrical wires transporting DC signals
in or around conduit housing high voltage wires.
•
Route low voltage wiring per illustrations on page 41.
RT-SVX21U-EN
39
Installation
Figure 44. ReliaTel™ conventional thermostat field
wiring diagrams(a)
RTRM
Figure 47.
ReliaTel™ humidistat (dehumidification
option)
(a) Not compatible with VAV units.
Figure 45. ReliaTel™ options module (RTOM board)
Figure 46. ReliaTel™ relative humidity sensor
(dehumidification option)
40
RT-SVX21U-EN
Installation
Figure 48. Electromechanical control customer low voltage routing (all units except 10 ton high efficiency)
Figure 49. ReliaTel™ control customer low voltage routing (all units except 10 ton high efficiency)
RT-SVX21U-EN
41
Installation
Figure 50. ReliaTel™ (without TBUE) control customer wire routing (10 ton high efficiency)
COMMUNICATION
INTERFACE (COMM)
ReliaTel OPTIONS
MODULE (RTOM)
ENTER CONTROL BOX THROUGH HOLE IN
OUTDOOR DIVIDER PANEL. SECURE FIELD
WIRING WITH POP-IN WIRE TIE NEAR
HOLE IN OUTDOOR DIVIDER PANEL.
REFRIGERATION
MODULE (RTRM)
LOW-VOLTAGE
TERMINAL BOARD
(LTB)
Figure 51.
ENTER UNIT THROUGH HOLE IN POST.
ReliaTel™ (with TBUE) control customer wire routing (10 ton high efficiency)
COMMUNICATION
INTERFACE (COMM)
ReliaTel OPTIONS
MODULE (RTOM)
ENTER CONTROL BOX THROUGH HOLE IN
OUTDOOR DIVIDER PANEL. SECURE FIELD
WIRING WITH POP-IN WIRE TIE NEAR
HOLE IN OUTDOOR DIVIDER PANEL.
REFRIGERATION
MODULE (RTRM)
ROUTE FIELD WIRING ALONG SIDE
OF TBUE WRAPPER. SECURE WITH
SCREW-IN WIRE TIES.
LOW-VOLTAGE
TERMINAL BOARD
(LTB)
UNPOWERED
CONVENIENCE
OUTLET
EXIT TBUE ENCLOSURE THROUGH
HOLE IN WRAPPER.
ENTER UNIT THROUGH
THE BASE.
42
RT-SVX21U-EN
Installation
Figure 52.
Electromechanical (without TBUE) control customer wire routing (10 ton high efficiency)
Figure 53.
Electromechanical (with TBUE) control customer wire routing (10 ton high efficiency)
RT-SVX21U-EN
43
Installation
Space Temperature Averaging
(ReliaTel™ Only)
Space temperature averaging is accomplished by wiring a
number of remote sensors in a series/parallel circuit.
Using the BAYSENS016* or BAYSENS077*, at least four
sensors are required to accomplish space temperature
averaging. See diagram below.
•
Example #1 illustrates two series circuits with two
sensors in each circuit wired in parallel.The square of
any number of remote sensors is required.
•
Example #2 illustrates three sensors squared in a
series/parallel circuit. Using BAYSENS077*, two
sensors are required to accomplish space temperature
averaging.
•
Example #3 illustrates the circuit required for this
sensor. Table 10, p. 46 lists the temperature versus
resistance coefficient for all sensors.
Figure 54. Examples
Note: Wiring pin numbers are for reference only.There
are multiple smoke detector systems that could
have differently numbered pins. For correct wiring
44
details, please refer to the specific smoke detector
literature that accompanied this unit.
RT-SVX21U-EN
Installation
Figure 55. Typical field wiring diagrams for optional controls (ReliaTel™ only)
BAYSENS075*
BAYSENS106*
BAYSENS075*
BAYSENS108*
BAYSENS110*
BAYSENS119*
BAYSENS073*
BAYSENS074*
BAYSENS075*
ASYSTAT669A
OPTIONAL REMOTE SENSOR
RT-SVX21U-EN
45
Installation
Table 10.
Temperature vs. resistance
Table 12.
Temperature
Iron pipe size (SI) millimeters
Iron Pipe Size (SI) Millimeters
Degrees F°
Degrees C°
Nominal Resistance
-20°
-28.9°
170.1 K - Ohms
-15°
-26.1°
143.5 K - Ohms
4.6
2.15
4.98
9.76
21.23
34.54
-10°
-23.3°
121.4 K - Ohms
9.1
1.47
3.39
6.82
15.14
24.06
-5°
-20.6°
103.0 K - Ohms
13.7
1.21
2.80
5.63
12.31
19.82
0°
-17.8°
87.56 K - Ohms
18.3
1.07
2.43
4.89
10.76
17.27
5°
-15.0°
74.65 K - Ohms
22.9
—
2.18
4.38
9.76
15.40
10°
-12.2°
63.80 K - Ohms
15°
-9.4°
54.66 K - Ohms
20°
-6.7°
46.94 K - Ohms
25°
-3.8°
40.40 K - Ohms
30°
-1.1°
34.85 K - Ohms
35°
1.7°
30.18 K - Ohms
40°
4.4°
26.22 K - Ohms
45°
7.2°
22.85 K - Ohms
50°
10.0°
19.96 K - Ohms
55°
12.8°
17.47 K - Ohms
60°
15.6°
15.33 K - Ohms
65°
18.3°
13.49 K - Ohms
70°
21.1°
11.89 K - Ohms
75°
23.9°
10.50 K - Ohms
80°
26.7°
9.297 K - Ohms
85°
29.4°
8.247 K - Ohms
90°
32.2°
7.330 K - Ohms
95°
35.0°
6.528 K - Ohms
Table 11.
Length of Pipe 15 mm 20 mm 25 mm 32 mm 40 mm
(Meters)
Pipe
Pipe
Pipe
Pipe
Pipe
Note: Capacity of Pipe of Different Diameters and Lengths in Cu. Meter Per
Hr. with Pressure Drop of 74.6 Pa and Specific Gravity of 0.60.
Figure 56. Schematic diagram for field gas piping to
unit
Sizing natural gas pipe mains and branches
Iron Pipe Size (IPS) Inches
½"
Length of Pipe (Ft.) Pipe
¾"
Pipe
1"
Pipe
1¼"
Pipe
1½"
Pipe
15
76
176
345
750
1220
30
52
120
241
535
850
45
43
99
199
435
700
60
38
86
173
380
610
77
155
345
545
75
Note: Capacity of Pipe of Different Diameters and Lengths in Cu. Ft. Per Hr.
with Pressure Drop of 0.3" and Specific Gravity of 0.60
46
RT-SVX21U-EN
Pre-Start
Use the checklist provided below in conjunction with the
“General Unit Requirements” checklist to ensure that the
unit is properly installed and ready for operation.
WARNING
Hazardous Voltage w/Capacitors!
Failure to disconnect power and discharge capacitors
before servicing could result in death or serious injury.
Disconnect all electric power, including remote
disconnects and discharge all motor start/run
capacitors before servicing. Follow proper lockout/
tagout procedures to ensure the power cannot be
inadvertently energized. Verify with an appropriate
voltmeter that all capacitors have discharged.
For additional information regarding the safe discharge
of capacitors, see PROD-SVB06A-EN
within the proper tolerances, notify the power company to
correct this situation before operating the unit.
Excessive three phase voltage imbalance between phases
will cause motors to overheat and eventually fail.The
maximum allowable voltage imbalance is 2%. Measure
and record the voltage between phases 1, 2, and 3 and
calculate the amount of imbalance as follows:
% Voltage Imbalance=
100 x AV - VD
AV
AV (Average Voltage)=
Volt 1 + Volt 2 + Volt 3
3
where;
V1, V2, V3 = Line Voltage Readings
VD = Line Voltage reading that deviates the farthest from
the average voltage.
Example: If the voltage readings of the supply power
measured 221, 230, and 227, the average volts would be:
Verify that the condenser airflow will be unobstructed.
WARNING
Rotating Components!
Failure to follow all safety precautions below could
result in rotating components cutting and slashing
technician which could result in death or serious injury.
During installation, testing, servicing and
troubleshooting of this product it may be necessary to
work with live and exposed rotating components. Have
a qualified or licensed service individual who has been
properly trained in handling exposed rotating
components, perform these tasks.
•
Verify that the condenser fan and indoor blower turn
freely without rubbing and are properly tightened on
the shafts.
•
Check the supply fan belts for proper tension and the
fan bearings for sufficient lubrication. If the belts
require adjustment, or if the bearings need lubricating,
refer to the maintenance section of this manual for
instructions.
•
Verify that a condensate trap is installed and the piping
is properly sized and pitched.
•
Verify that the correct size and number of filters are in
place.
•
Inspect the interior of the unit for tools and debris and
install all panels in preparation for starting the unit.
221 + 230 + 227
= 226 Avg.
3
VD (reading farthest from average) = 221
The percentage of imbalance equals:
100 x 226 - 221
= 2.2%
226
The 2.2% imbalance in this example exceeds the
maximum allowable imbalance of 2.0%.This much
imbalance between phases can equal as much as a 20%
current imbalance with a resulting increase in motor
winding temperatures that will decrease motor life. If the
voltage imbalance is over 2%, notify the proper agencies
to correct the voltage problem before operating this
equipment.
Electrical Phasing (Three Phase
Motors)
The compressor motor(s) and the supply fan motor are
internally connected for the proper rotation when the
incoming power supply is phased as A, B, C.
Proper electrical supply phasing can be quickly
determined and corrected before starting the unit by using
an instrument such as an Associated Research Model 45
Phase Sequence Indicator and following the steps below:
•
Turn the field supplied disconnect switch that provides
power to the main power terminal block or to the
“Line” side of the optional factory mounted disconnect
switch to the “Off” position.
•
Connect the phase sequence indicator leads to the
terminal block or to the “Line” side of the optional
factory mounted disconnect switch as follows;
Voltage Imbalance
Three phase electrical power to the unit must meet
stringent requirements for the unit to operate properly.
Measure each leg (phase-to-phase) of the power supply.
Each reading must fall within the utilization range stamped
on the unit nameplate. If any of the readings do not fall
Black (phase A) to L1
Red (phase B) to L2
Yellow (phase C) to L3
RT-SVX21U-EN
47
Pre-Start
•
Close the field supplied main power disconnect switch
or circuit protector switch that provides the supply
power to the unit.
Note: Upon closing main power disconnect and the unit
mounted disconnect switch or circuit breaker, the
phase monitor will verify proper phasing. If LED on
face of the monitor is red, correct supply power
fault.
WARNING
Live Electrical Components!
Failure to follow all electrical safety precautions when
exposed to live electrical components could result in
death or serious injury. When necessary to work with
live electrical components, have a qualified licensed
electrician or other individual who has been properly
trained in handling live electrical components perform
these tasks.
To prevent injury or death from electrocution, it is the
responsibility of the technician to recognize this hazard
and use extreme care when performing service
procedures with the electrical power energized.
•
•
Observe the ABC and CBA phase indicator lights on the
face of the sequencer.The ABC indicator light will glow
if the phase is ABC. If the CBA indicator light glows,
open the disconnect switch or circuit protection switch
and reverse any two power wires.
Restore the main electrical power and recheck the
phasing. If the phasing is correct, open the disconnect
switch or circuit protection switch and remove the
phase sequence indicator.
Compressor Crankcase Heaters (Optional)
Each compressor can be equipped with a crankcase heater
(on some units the crankcase heater comes standard).The
proper operation of the crankcase heater is important to
maintain an elevated compressor oil temperature during
the “Off” cycle to reduce oil foaming during compressor
starts. Oil foaming occurs when refrigerant condenses in
the compressor and mixes with the oil. In lower ambient
conditions, refrigerant migration to the compressor could
increase.
Close the main power disconnect switch and the unit
mounted disconnect switch, if applicable.
Note: Upon closing main power disconnect and the unit
mounted disconnect switch or circuit breaker, the
phase monitor will verify proper phasing. If LED on
face of the monitor is red, correct supply power
fault.
WARNING
Live Electrical Components!
Failure to follow all electrical safety precautions when
exposed to live electrical components could result in
death or serious injury. When necessary to work with
live electrical components, have a qualified licensed
electrician or other individual who has been properly
trained in handling live electrical components perform
these tasks.
To prevent injury or death from electrocution, it is the
responsibility of the technician to recognize this hazard
and use extreme care when performing service
procedures with the electrical power energized.
ReliaTel™ Controls
Upon power initialization, the RTRM performs selfdiagnostic checks to insure that all internal controls are
functional. It also checks the configuration parameters
against the components connected to the system.The
Liteport LED located on the RTRM module is turned “On”
within one second of power-up if internal operation is
okay.
Use one of the following “Test” procedure to bypass some
time delays and to start the unit at the control panel. Each
step of unit operation can be activated individually by
temporarily shorting across the “Test” terminals for two to
three seconds.The Liteport LED located on the RTRM
module will blink when the test mode has been initiated.
The unit can be left in any “Test” step for up to one hour
before it will automatically terminate, or it can be
terminated by opening the main power disconnect switch.
Once the test mode has been terminated, the Liteport LED
will glow continuously and the unit will revert to the
“System” control.
When the compressor starts, the sudden reduction in
crankcase pressure causes the liquid refrigerant to boil
rapidly causing the oil to foam.This condition could
damage compressor bearings due to reduced lubrication
and could cause compressor mechanical failures.
Before starting the unit in the “Cooling” mode, set the
system switch to the “Off” position and turn the main
power disconnect to the “On” position and allow the
crankcase heater to operate a minimum of 8 hours.
Before closing the main power disconnect switch, insure
that the “System” selection switch is in the “Off” position
and the “Fan” selection switch is in the “Auto” position.
48
RT-SVX21U-EN
Pre-Start
Table 13.
Test
Step
Service test guide for component operation
Mode
Fan
Fan
On
1
(a)
Comp 1
Comp 2
Heat 1
Heat 2
Minimum
Position
Setpoint 0%
Off
Off
Off
Off
Econ
Resistance
PWM
Multi-Speed Fan
Output(b)
Output
2.2KΩ
50%
low
Off
3.3KΩ
50%(c)
low
Off
Off
4.7KΩ
82%
low
(d)
Off
Off
6.8KΩ
100%
High (2-step cooling)
Low (3-step cooling)
(d)
Off
Off
8.2KΩ
100%
High
On
Off
Off
33KΩ
100%(f)
High
Off
Off
On
Off
10KΩ
100%
High
Off
Off
On
On
15KΩ
100%
High
Minimum
Ventilation
On
Selectable
Off
Off
Off
Off
2
Economizer
Test Open
On
Open
Off
Off
Off
3
Cool
Stage 1
On
Minimum
Position
On
(d)
Off
4
(e)
Cool
Stage 2
On
Minimum
Position
On
(d)
On
5
(e)
Cool
Stage 3
On
Minimum
Position
On
(d)
On
6
(e)
Reheat
On
Minimum
On
7
(e)
Heat
Stage 1
On
Minimum
8
(e)
Heat
Stage 2
On
Minimum
(a) The exhaust fan will turn on anytime the economizer damper position is equal to or greater than the exhaust fan setpoint.
(b) The PWM Output is in reference to the user selected maximum unit fan speed.
(c) Regardless of the Economizer Mode configuration, the unit will run the Supply Fan at the minimum speed during the Economizer step of the Service
Test.
(d) The condenser fans will operate any time a compressor is ‘On’ providing the outdoor air temperatures are within the operating values.
(e) Steps for optional accessories and non-applicable modes in unit will be skipped.
(f) Units with Enhanced Dehumidification only will not perform this step during Service Test.
Test Modes
For unit test steps, test modes, and step resistance values
to cycle the various components, refer to Table 13, p. 49.
There are three methods in which the “Test” mode can be
cycled at LTB-Test 1 and LTB-Test 2.
ReliaTel™ Controls
1. StepTest Mode -This method initiates the different
components of the unit, one at a time, by temporarily
shorting across the two test terminals for two to three
seconds. For the initial start-up of the unit, this method
allows the technician to cycle a component “On” and
have up to one hour to complete the check.
Upon power initialization, the Gas Ignition Module (IGN)
performs self-diagnostic checks to insure that all internal
controls are functional. It also checks the configuration
parameters against the components connected to the
system.The System LED located on the IGN module is
turned “On” within one second of power-up if internal
operation is okay.
2. ResistanceTest Mode -This method can be used for
start-up providing a decade box for variable resistance
outputs is available.This method initiates the different
components of the unit, one at a time, when a specific
resistance value is placed across the two test
terminals.The unit will remain in the specific test mode
for approximately one hour even though the
resistance is left on the test terminals.
3. AutoTest Mode -This method is not recommended for
start-up due to the short timing between individual
component steps.This method initiates the different
components of the unit, one at a time, when a jumper
is installed across the test terminals.The unit will start
the first test step and change to the next step every 30
seconds.
At the end of the test mode, control of the unit will
automatically revert to the applied “System” control
method.
RT-SVX21U-EN
49
Pre-Start
Electromechanical Controls Test
Procedure
See unit schematic for correct wire numbers.
Fan Test and Minimum Ventilation
Connect red thermostat wire (R) to black thermostat wire
(G).
Economizer Cooling
Connect a jumper wire across OTS on Economizer Control
(ECA).
Connect red thermostat (R) wire to yellow thermostat wire
(Y1).
Cool 1
Connect red thermostat wire (R) to yellow thermostat wire
(Y1).
Cool 2
Connect red thermostat wire (R) to yellow thermostat wire
(Y2).
Heat 1
Connect red thermostat wire (R) to brown thermostat wire
(W1).
Heat 2
Connect red thermostat wire (R) to brown thermostat wire
(W2).
50
RT-SVX21U-EN
Unit Start-Up
Verifying Proper Air Flow
WARNING
Live Electrical Components!
Failure to follow all electrical safety precautions when
exposed to live electrical components could result in
death or serious injury. When necessary to work with
live electrical components, have a qualified licensed
electrician or other individual who has been properly
trained in handling live electrical components perform
these tasks.
Units with 5-Tap Direct Drive Indoor Fan
Much of the systems performance and reliability is closely
associated with, and dependent upon having the proper
airflow supplied both to the space that is being
conditioned and across the evaporator coil.
The indoor fan motor is factory wired to operate on speed
tap 1 in the cooling and heating mode for electric/electric
units. For Gas/Electric units, the motor is factory wired to
operate on speed tap 1 during cooling. For 3 & 4 ton Gas/
Electric units operating in heat mode, the minimum setting
isTap 4.
For these units, a separate tap terminal is provided to
change speeds automatically between heating and
cooling.The motor can be rewired for different speed
settings should the application require it. Refer to the
wiring diagram that shipped in the unit and the unit fan
performance tables in the Service Facts.
The indoor fan motors are specifically designed to operate
within the BHP parameters listed in the fan performance
tables of the unit Service Facts.
When verifying direct drive fan performance, the tables
must be used somewhat differently than those of belt
driven fans. Fan performance diagnostics can be easily
recognized when these tables are used correctly.
Before starting the SERVICETEST, set the minimum
position setpoint for the economizer to 0 percent using the
setpoint potentiometer located on the Economizer Control
(ECA), if applicable.
ReliaTel™ Control: Using the ServiceTest Guide in
Table 13, p. 49, momentarily jump across theTest 1 &Test
2 terminals on LTB1 one time to start the Minimum
VentilationTest.
Electromechanical Control: Using the ServiceTest
Guide perform the proper test mode connections.
With the fan operating properly, determine the total
system external static pressure (inches w.c.) by the
following method (ReliaTel™/Electromechanical):
1. Measure the supply and return duct static pressure and
sum the resulting absolute values,
RT-SVX21U-EN
2. Use the accessory pressure drop table in the Service
Facts, to calculate the total static pressure drop for all
of the accessories installed on the unit; i.e., curb,
economizer, etc.
Note: Accessory static pressure drop is based on desired
CFM and may not be actual static pressure drop.
3. Add the total accessory static pressure drop (step 2) to
the duct external static pressure (step 1).The sum of
these two values represents the total system external
static pressure.
Using the Fan PerformanceTables in the Service Facts,
look up the selected speed tap setting and match the
measured ESP to determine the approximate CFM.
If the required CFM is too low, (external static pressure is
high) do one or both of the following and repeat
procedure:
a. Relieve supply and/or return duct static.
b. Change indoor fan speed tap to a higher value
If the required CFM is too high, (external static pressure is
low), do one or both of the following and repeat
procedure:
a. Increase supply and/or return duct static.
b. Change indoor fan speed tap to a lower value.
Note: Minimum setting for units with Gas or Electric Heat
is 320 CFM perTon. For 3 & 4Ton Gas Heat units
operating in heating mode the heat speed set
cannot be lower than Speed Set 4.
4. To stop the SERVICETEST, turn the main power
disconnect switch to the “Off” position or proceed to
the next component start-up procedure.
Units with Belt Drive Indoor Fan
Much of the systems performance and reliability is closely
associated with, and dependent upon having the proper
airflow supplied both to the space that is being
conditioned and across the evaporator coil.
The indoor fan speed is changed by opening or closing the
adjustable motor sheave.
Before starting the SERVICETEST, set the minimum
position setpoint for the economizer to 0 percent using the
setpoint potentiometer located on the Economizer Control
(ECA), if applicable.
ReliaTel™ Control: Using the ServiceTest Guide in
Table 13, p. 49, momentarily jump across theTest 1 &Test
2 terminals on LTB1 one time to start the Minimum
VentilationTest.
Electromechanical Control: Using the ServiceTest
Guide perform the proper test mode connections.Once the
supply fan has started, check for proper rotation.The
direction of rotation is indicated by an arrow on the fan
housing.
51
Unit Start-Up
With the fan operating properly, determine the total
system airflow (CFM) by (ReliaTel™/Electromechanical):
1. Measuring the actual RPM,
2. Measure the amperage at the supply fan contactor and
compare it with the full load amp (FLA) rating stamped
on the motor nameplate.
a. Calculate the theoretical BHP using (Actual Motor
Amps/ Motor Nameplate Amps) X Motor HP.
b. Using the fan performance tables in the unit Service
Facts, plot the actual RPM (step 1) and the BHP (step
2a) to obtain the operating CFM.
Using the ServiceTest Guide in Table 13, p. 49,
momentarily jump across theTest 1 &Test 2 terminals on
LTB1. Repeat process until ServiceTest Mode is at Cool 2
(2-Steps of Cooling Applications Only) or Cool 3 (3-Steps
of Cooling applications).The indoor motor shall be
operating @ 100%, to verify turn DA COOL_FAN SPD
potentiometer full clockwise, voltage should read ~7.5Vdc
across harness test terminals.The Unit schematic
illustrates location for measuring the indoor motor speed
voltage.
Table 14. RPM table
Potentiometer
Voltage
Motor RPM
Potentiometer
Voltage
Motor RPM
1.25
217
4.50
1061
1.50
312
4.75
1126
1.75
362
5.00
1191
2.00
427
5.25
1253
To Increase Fan RPM; Loosen the pulley adjustment set
screw and turn sheave clockwise.
2.25
479
5.50
1315
2.50
543
5.75
1374
To Decrease Fan RPM; Loosen the pulley adjustment
set screw and turn sheave counterclockwise.
2.75
605
6.00
1432
3.00
668
6.25
1487
3.25
732
6.50
1539
3.50
797
6.75
1588
3.75
863
7.00
1633
4.00
929
7.25
1675
4.25
995
7.50
1700
3. If the required CFM is too low, (external static pressure
is high causing motor HP output to be below table
value),
a. Relieve supply and/or return duct static.
b. Change indoor fan speed and repeat steps 1 and 2.
•
•
•
•
If the required CFM is too high, (external static
pressure is low causing motor HP output to be above
table value), change indoor fan speed and repeat steps
1 and 2.
To stop the SERVICETEST, turn the main power
disconnect switch to the “Off” position or proceed to
the next component start-up procedure.
Units with Direct Drive Indoor Fan Electromechanical Control
Much of the systems performance and reliability is closely
associated with, and dependent upon having the proper
airflow supplied both to the space that is being
conditioned and across the evaporator coil.The indoor fan
speed is changed by adjusting the output voltage from the
MMC/ECM board to the direct drive fan. Before starting the
SERVICETEST, set the minimum position setpoint for the
economizer to 0 percent using the setpoint potentiometer
located on the Economizer Control (ECA), if applicable.
ReliaTel™ Units with Direct Drive Indoor
Fan (10 Tons Standard Efficiency, 6(074) to
10 Tons High Efficiency)
Much of the systems performance and reliability is closely
associated with, and dependent upon having the proper
airflow supplied both to the space that is being
conditioned and across the evaporator coil.The indoor fan
speed is changed by adjusting the voltage from the RTOM
Indoor Fan Speed output to the direct drive plenum fan. If
installed, before starting the SERVICETEST disable the
Economizer by disconnecting the 4 pin power connector
located at the base of the Economizer Control (ECA).
52
Note: Factory setting is 7.5V
Once the supply fan has started, determine the total
system airflow (CFM)
1. Measure the DC voltage across harness test terminals.
Using the fan rpm table shown above, determine RPM
correlated to measured voltage.
2. If the required CFM is too low, (external static pressure
is high causing motor HP output to be below table value),
a. Relieve supply and/or return duct static.
b. Change indoor fan speed and repeat steps 1 and 2.
•
To Increase/Decrease Fan RPM turn DA COOL_FAN
SPD on the RTOM clockwise/counter-clockwise.
3. If the required CFM is too high, (external static pressure
is low causing motor HP output to be above table value),
change indoor fan speed and repeat steps 1 and 2.
•
Stop the SERVICETEST, turn the main power
disconnect switch to the “Off” position and reconnect
Economizer 4-pin power connector if disconnected for
this procedure.
Proceed to the next component start-up procedure.
Electromechanical Control: Using the ServiceTest
Guide perform the proper test mode connections.
Once the supply fan has started, determine the total
system airflow (CFM) by (ReliaTel™/Electromechanical):
RT-SVX21U-EN
Unit Start-Up
1. Measure the amperage at the supply fan contactor and
compare it with the full load amp (FLA) rating for the
evaporator motor stamped on the unit nameplate.
a. Calculate the theoretical BHP using (Actual Motor
Amps/Motor Nameplate Amps) X Motor HP.
b. Using the fan performance tables in the unit Service
Facts, plot the actual RPM (step 1) and the BHP (step
2a) to obtain the operating CFM.
2. If the required CFM is too low, (external static pressure
is high causing motor HP output to be below table
value),
a. Relieve supply and/or return duct static.
b. Change indoor fan speed and repeat steps 1 and 2.
•
For ECM board:To Increase/Decrease Fan RPM:
a. Push and hold the SET button for 3 sec. Board will
display Motor 1 parameter name: Hi 1.
b. Slow push SET again to display the parameter’s
current value =7.50 volts.
c. Push on + or – button to adjust parameter to desired
value = XXX volts.
d. Push and hold SET button for 3 sec to “save” the
value. After save is complete, Hi 1 will show again.
e. After the voltage Hi 1 is successfully changed, the
display sequence will be:
MTR 1---> XXX -----> MTR2 -----> 0.00----->FST1---->ON/
OFF----->FST2------>ON/OFF------->EhEn-- --->ON/OFF
The motor will ramp up or down to adjust to the input
signal. Using the fan rpm table above, determine RPM
correlated to displayed voltage.
•
If the required CFM is too high, (external static
pressure is low causing motor HP output to be above
table value), change indoor fan speed and repeat steps
1 and 2.
•
To stop the SERVICETEST, turn the main power
disconnect switch to the “Off” position or proceed to
the next component start-up procedure.
Units with Constant CFM Direct Drive
Indoor Fan
Once the supply fan has started, determine the total
system airflow (CFM) by:
1. Measure the DC voltage across pinsTP1 and ground
(screw on corner of RTOM board). Lookup desired CFM
using the voltage CFM table shown on the access panel
label or in the unit Service Facts; record corresponding
voltage. Adjust potentiometer until output voltage
acrossTP1 and ground achieves desired CFM setpoint.
2. To increase voltage/CFM, turn potentiometer
clockwise.
3. To decrease voltage/CFM, turn potentiometer counterclockwise.
Note: With ID fan access panel removed, fan will operate
at lower RPM due to the decrease in pressure. Once
panel is installed, RPM will increase.
17 Plus units with the constant CFM direct
drive indoor fan
Proper airflow is critical to unit operation. All 17 Plus
Precedent units (037, 047, and 067 units) use an indoor fan
that provides a constant CFM.There are two different
types of 17 Plus Precedent units: Single Zone VAV units
and Multi Speed units. Both types of units use the same
type of indoor motor and the same airflow adjustment
procedure.
To adjust airflow on a 17 Plus unit the ServiceTest mode
must be used for accurate results. Additionally, airflow
adjustments should be made in either “Cool Stage 2" or
any stage of heat because the fan is driven to its maximum
setting during these stages. Only the maximum fan setting
requires adjustment, all other fan speeds follow the
maximum adjustment and do not require any adjustment.
Using the ServiceTest Guide in Table 13, p. 49, enter the
unit into either “Cool Stage 2" or any stage of heat by using
either the “StepTest Mode” or “ResistanceTest Mode”.
Once the unit is in either “Cool Stage 2" or any stage of
heat, system airflow (CFM) is determined by:
1. In the indoor fan compartment, locate the R136
potentiometer on the RTOM circuit board (also
designated “DA COOL - FAN SPD”). Also, locate the
TP1 test pin loop next to the R136 potentiometer.
Much of the systems performance and reliability is closely
associated with, and dependent upon having the proper
airflow supplied both to the space that is being
conditioned and across the evaporator coil.The indoor fan
provides a constant CFM base on voltage output for the
potentiometer on the RTOM board. Before starting the
SERVICETEST, set the minimum position setpoint for the
economizer to 0% using the setpoint potentiometer
located on the Economizer Control (ECA), if applicable.
2. Measure the DC Voltage across the test pinTP1 and
unit chassis ground. Compare DC voltage to the CFM
chart shown in Table 15, p. 54. Table 15, p. 54 shows
what DC voltage corresponds to CFM per ton of unit
cooling.
ReliaTel™ Control. Using the ServiceTest Guide in
Table 13, p. 49, momentarily jump across theTest 1 &Test
2 terminals on LTB1 one time to start the Minimum
VentilationTest.
3. To increase theTP1 voltage, turn the R136
potentiometer clockwise.
RT-SVX21U-EN
Note: If 1200 cfm is required from a 3 ton unit
(037) the R136 potentiometer should be
adjusted so that the DC voltage measured
atTP1 to ground reads 1.65 volts DC.
4. To decrease theTP1 voltage, turn the R136
potentiometer counter-clockwise.
53
Unit Start-Up
Note: With the indoor fan access panel removed, the fan
will operate at a lower RPM because static pressure
is reduced with the door open. Once the panel is
returned the RPM of the indoor fan will increase.
Table 15.
Cfm vs. vdc
PWM% value
Potentiometer
Voltage (vdc)
CFM/Ton
70
<0.1
320
75
0.7
347
80
1.25
373
85
1.65
400
90
1.95
427
95
2.17
453
100
>2.4
480
Variable Air Volume Applications
(Traditional VAV)
Supply Air Temperature Control - Occupied
Cooling and Heating
The RTRM is designed to maintain a selectable supply air
temperature of 40°F to 90°F with a +/- 3.5°F deadband. In
cooling, if supply air temperature is more than 3.5 degrees
warmer than the selected temperature, a stage of cooling
will be turned “On” (if available).Then if the supply air
temperature is more than 3.5° cooler than the selected
temperature, a stage of cooling will be turned “Off”.At very
low airflows the unit may cycle stages “On” and “Off” to
maintain an average discharge air temperature outside the
7° deadband. During low load or low airflow conditions the
actual temperature swing of the discharge air will likely be
greater.The RTRM utilizes a proportional and integral
control scheme with the integration occurring when the
supply air temperature is outside the deadband. As long as
the supply air temperature is within the setpoint
deadband, the system is considered to be satisfied and no
staging up or down will occur.
Note: The RTRM is designed to maintain a selectable
supply air temperature of 40°F to 90°F with a +/3.5°F deadband. However, to reduce the risk of
evaporator coil freeze-up in Precedent andVoyager
Light Commercial applications, supply air
temperature should not be set below 50° F.
Supply Air Temperature Control with an
Economizer
The economizer is utilized to control the supply air cooling
at +1.5°F around the supply air temperature setpoint range
of 40°F and 90°F providing the outside air conditions are
suitable.To reduce the risk of evaporator coil freeze-up
supply air temperature should not be set below 50° F.
While economizing, the mechanical cooling is disabled
until the economizer dampers have been fully open for
three minutes. If the economizer is disabled due to
54
unsuitable conditions, the mechanical cooling will cycle as
though the unit had no economizer.
Note: The RTRM is designed to maintain a selectable
supply air temperature of 40°F to 90°F with a +/3.5°F deadband. However, to reduce the risk of
evaporator coil freeze-up in Precedent andVoyager
Light Commercial applications, supply air
temperature should not be set below 50°F.
VHR Relay Output
During unoccupied mode, daytime warm-up (DWU),
morning warm-up (MWU) and heating mode the Supply
Fan will operate at 100% of user set maximum airflow. All
VAV boxes must be opened through an ICS program or by
the VHR wired to the VAV boxes.The RTRM will delay
100% fan operation approximately 6.5 minutes when
switching from occupied cooling mode to a heating mode.
Zone Temperature Control without a Night
Setback Panel or ICS - Unoccupied Cooling
When a field supplied occupied/unoccupied switching
device is connected between RTRM J6-11 and RTRM J6-12,
both the economizer and the mechanical cooling will be
disabled.
Zone Temperature Control without a Night
Setback Panel or ICS - Unoccupied Heating
When a field supplied occupied/unoccupied switching
device is connected between RTRM J6-11 and J6-12 and
DWU is enabled, the zone temperature will be controlled at
10°F below the Morning Warm-up setpoint, but not less
than 50°F, by cycling one or two stages of either gas or
electric heat, whichever is applicable.
Morning Warm-up (MWU) Control
MorningWarm-up is activated if the zone temperature is at
least 1.5°F below the MWU setpoint whenever the system
switches from Unoccupied to Occupied status.The MWU
setpoint may be set from the unit mounted potentiometer
or a remotely mounted potentiometer.The setpoint
ranges are from 50°F to 90°F. When the zone temperature
meets or exceeds the MWU setpoint, the unit will switch to
the “Cooling” mode.The economizer will be held closed
during the morning warm-up cycle.
Daytime Warm-up (DWU) Control
Daytime Warm-up is applicable during occupied status
and when the zone temperature is below the initiation
temperature. It can be activated or deactivated through
ICS or a night setback zone sensor. If ICS or a night setback
zone sensor is not utilized, DWU can be activated by
setting the DWU enable DIP switch (RTAM) to ON and
supplying a valid morning warm-up setpoint.
The unit is shipped with a Morning Warm-up setpoint
configured and the DaytimeWarm-up function is activated
(switch on). Opening the DWU enable switch will disable
this function.
RT-SVX21U-EN
Unit Start-Up
If the system control is local, the DWU initiation setpoint is
3°F below the MorningWarm-up setpoint.The termination
setpoint is equal to the Morning Warm-up setpoint.
If the system control is remote (Tracer®), the DWU
setpoint is equal to theTracer® Occupied heating setpoint.
The initiation and termination setpoints are selectable
setpoints designated byTracer®.
When the zone temperature meets or exceeds the
termination setpoint while the unit is in an Occupied,
“Auto” Mode or switched to the “Cooling” Mode, the unit
will revert to the cooling operation.
If an Occupied “Heating” Mode is selected, the unit will
only function within the DWU perimeters until the system
is switched from the “Heat” Mode or enters an
Unoccupied status.
Note: When a LCI is installed on a VAV unit, the MWU
setpoint located on the RTAM board is ignored.The
MWU and DWU setpoints come from the higher
priority LCI-R DAC.
Supply Duct Static Pressure Control
The supply duct static pressure is measured by a
transducer with a 0.25 to 2.125 Vdc proportional output
which corresponds to an adjustable supply duct static
pressure of 0.3" w.c. to 2.5" w.c. respectively with a
deadband adjustment range from 0.2" w.c. to 1.0" w.c.The
setpoint is adjustable on the RTAM Static Pressure
Setpoint potentiometer or through ICS.
Traditional VAV Standalone Operation
If a traditional VAV unit is required to operate without ICS,
BAS or other “front end” controller, a jumper must be
placed between J6-2 and J6-4 of the RTRM to allow local
standalone control.
Example:
Supply Duct Static setpoint = 2.0" w.c. (RTAM)
Deadband = 0.2" w.c. (RTAM)
Duct Static Control Range = 1.9" w.c. to 2.1" w.c.
Figure 57. Transducer voltage output vs. pressure input
Supply Air Temperature Reset
The supply air temperature can be reset by using one of
four DIP switch configurations on the RTAM or through ICS
when a valid supply air reset setpoint with a supply air
reset amount is given. A selectable reset amount of 0° F to
20°F via RTAM potentiometer or ICS is permissible for each
type of reset.
The amount of change applied to the supply air
temperature setpoint depends on how far the return air,
zone, or outdoor air temperature falls below the reset
temperature setpoint. If the return air, zone, or outdoor air
temperature is equal to or greater than the reset
temperature setpoint, the amount of change is zero.
If the return air, or zone temperature falls 3°F below the
reset temperature setpoint, the amount of reset applied to
the supply air temperature will equal the maximum
amount of reset selected.
If the outdoor air temperature falls 20°F below the reset
temperature setpoint, the amount of reset applied to the
supply air temperature will equal the maximum amount of
reset selected.The four DIP switch configurations are as
follows:
1. None - When RTAM DIP Switch #3 and #4 are in the
“Off” position, no reset will be allowed.
2. Reset based on Return AirTemperature - When RTAM
DIP Switch #3 is “Off” and Switch #4 is “On”, a
selectable supply air reset setpoint of 50°F to 90°F via
a unit mounted potentiometer orTracer® is
permissible.
3. Reset based on ZoneTemperature - When RTAM DIP
Switch #3 is “On” and Switch #4 is “Off”, a selectable
supply air reset setpoint of 50°F to 90°F via RTAM
potentiometer orTracer® is permissible.
4. Reset based on Outdoor AirTemperature - When DIP
Switch #3 and #4 are “On”, a selectable supply air reset
setpoint of 0°F to 100°F via RTAM potentiometer or
Tracer® is permissible.
Return Air Smoke Detector
The return air smoke detector is designed to shut off the
unit if smoke is sensed in the return air stream. Sampling
the airflow entering the unit at the return air opening
performs this function.
In order for the smoke detector to properly sense smoke in
the return air stream, the air velocity entering the unit must
be between 500 and 4000 feet per minute. Equipment
covered in this manual will develop an airflow velocity that
falls within these limits over the entire airflow range
specified in the evaporator fan performance tables.
There are certain models however, if operated at low
airflow, will not develop an airflow velocity that falls within
the required 500 to 4000 feet per minute range. For these
models, the design airflow shall be greater than or equal
to the minimum CFM specified in the table provided
RT-SVX21U-EN
55
Unit Start-Up
below. Failure to follow these instructions will prevent the
smoke detector from performing its design function.
Economizer Start-Up
WARNING
Live Electrical Components!
Failure to follow all electrical safety precautions when
exposed to live electrical components could result in
death or serious injury. When necessary to work with
live electrical components, have a qualified licensed
electrician or other individual who has been properly
trained in handling live electrical components perform
these tasks.
WARNING
Live Electrical Components!
Failure to follow all electrical safety precautions when
exposed to live electrical components could result in
death or serious injury. When necessary to work with
live electrical components, have a qualified licensed
electrician or other individual who has been properly
trained in handling live electrical components perform
these tasks.
ReliaTel™ Control: Using the ServiceTest Guide in
Table 13, p. 49, momentarily jump across theTest 1 &Test
2 terminals on LTB1 one time to start the Minimum
VentilationTest.
Minimum Position Setting for 17 Plus, 6 to 10
Ton with Multi-Speed, or Single Zone VAV
Electromechanical Control: Using the ServiceTest
Guide perform the proper test mode connections.
1. Apply power to the unit
1. Set the minimum position setpoint for the economizer
to the required percentage of minimum ventilation
using the setpoint potentiometer located on the
Economizer Control (ECA).
2. Using the ServiceTest Guide on unit access panel,
momentarily jump across theTest 1 &Test 2 terminals
on LTB1 one time to start indoor fan.
3. Turn the MIN POS - DCV potentiometer on the RTEM
clockwise to open or counter-clockwise to close.The
damper will open to this setting for low speed fan
operation. When adjusting minimum position, the
damper may move to the new setting in several small
steps. Wait at least 15 seconds for the damper to settle
at the new position. Range of damper for this setting is
0-100%.
4. Momentarily jump across theTest 1 &Test 2 terminals
on LTB1, to cycle through test modes to Cool 1.
5. Turn the DCV SETPOINT - LL potentiometer on the
RTEM clockwise to open or counter-clockwise to close.
This will set the minimum damper position at an
intermediate point of fan operation range of damper
for this setting is 0-75%.
6. Momentarily jump across theTest 1 &Test 2 terminals
on LTB1, to cycle through test modes to Cool 2.
7. Turn the MIN POS - DESIGN potentiometer on the
RTEM clockwise to open or counter-clockwise to close.
This will set the minimum damper position at
maximum fan speed. Range of damper for this setting
is 0-50%.
8. The economizer minimum damper position for all fan
speeds is complete.The RTEM will control minimum
damper position along an imaginary line between the
3 damper minimum positions based on fan speed.
Note:The RTEM will limit intermediate minimum
damper position to ensure proper ventilation based
upon the low fan speed minimum damper position set
in Step 3.
9. Replace the filter access panel.The damper will close
when the blower circuit is de-energized.
56
The economizer will drive to its minimum position
setpoint, exhaust fans (if applicable) may start at
random, and the supply fan will start when the
SERVICETEST is initiated.
WARNING
Rotating Components!
Failure to follow all safety precautions below could
result in rotating components cutting and slashing
technician which could result in death or serious injury.
During installation, testing, servicing and
troubleshooting of this product it may be necessary to
work with live and exposed rotating components. Have
a qualified or licensed service individual who has been
properly trained in handling exposed rotating
components, perform these tasks.
The Exhaust Fan will start anytime the economizer
damper position is equal to or greater than the exhaust
fan setpoint.
2. Verify that the dampers stroked to the minimum
position.
ReliaTel™ Control:
Momentarily jump across theTest 1 &Test 2 terminals
on LTB1 one additional time if continuing from
previous component start-up or until the desired startup component test is started.
Electromechanical Control:
Using the ServiceTest Guide perform the proper test
mode connections.
3. Verify that the dampers stroked to the full open
position.
RT-SVX21U-EN
Unit Start-Up
4. To stop the SERVICETEST, turn the main power
disconnect switch to the “Off” position or proceed to
the next component start-up procedure. Remove
electromechanical test mode connections (if
applicable).
Compressor Start-Up
1. Attach a set of service gauges onto the suction and
discharge gauge ports for each circuit. Refer to the
refrigerant circuit illustration in the Service Facts.
ReliaTel™ Control:
Momentarily jump across theTest 1 &Test 2 terminals
on LTB1 one additional time if continuing from
previous component start-up or until the desired startup componentTest is started.
Electromechanical Control:
Using the ServiceTest Guide perform the proper test
mode connections.
Scroll Compressors
a. Once each compressor has started, verify that the
rotation is correct. If a scroll compressor is rotating
backwards, it will not pump and a loud rattling
sound can be observed.
b. If the electrical phasing is correct, before
condemning a compressor, interchange any two
leads (at the compressorTerminal block) to check
the internal phasing. If the compressor runs
backward for an extended period (15 to 30 minutes),
the motor winding can overheat and cause the
motor winding thermostat to open.
2. After the compressor and condenser fan have started
and operated for approximately 30 minutes, observe
the operating pressures. Compare the operating
pressures to the operating pressure curve in the
Service Facts.
3. Check system superheat. Follow the instruction listed
on the superheat charging curve in the Service Facts.
Superheat should be within ±5 F of the superheat chart
value.
Dehumidification Option
WARNING
Live Electrical Components!
Failure to follow all electrical safety precautions when
exposed to live electrical components could result in
death or serious injury. When necessary to work with
live electrical components, have a qualified licensed
electrician or other individual who has been properly
trained in handling live electrical components perform
these tasks.
Momentarily jump across theTest 1 andTest 2 terminals of
the LTB1 until the unit enters test mode 7 (See Table 13,
p. 49). Once the unit is in the reheat test mode, verify that
the 3 way valve has shifted to the reheat position and that
the supply temperature rises 10°F more than when in
cooling mode stage 2.
Monitor the suction pressure for 15 minutes.The suction
pressure should remain within 5 psi of normal cooling
operation.
Gas Heat Units
Open the main disconnect switch to shut the unit off and
to reset the RTRM.
ReliaTel™ Control: Follow theTest Guide in Table 13,
p. 49 to start the unit in the heating mode. Momentarily
jump across theTest 1 &Test 2 terminals on LTB1 one
additional time if continuing from previous component
start-up or until the desired start-up componentTest is
started.
Electromechanical Control. Using the ServiceTest
Guide perform the proper test mode connections.
When starting the unit for the first time or servicing the
heaters, it is a good practice to start the heater with the
main gas supply turned “Off”.
Once the ignition system and components have been
checked, open the main power disconnect switch to reset
the unit.
4. Repeat steps 1 through 4 for each refrigerant circuit.
Final System Setup
5. To stop the SERVICETEST, turn the main power
disconnect switch to the “Off” position or proceed to
the next component start-up procedure. Remove
electromechanical test mode connections (if
applicable).
After completing all of the pre-start and start-up
procedures outlined in the previous sections (i.e.,
operating the unit in each of its Modes through all
available stages of cooling & heating), perform these final
checks before leaving the unit:
RT-SVX21U-EN
•
Program the Night Setback (NSB) panel (if applicable)
for proper unoccupied operation. Refer to the
programming instructions for the specific panel.
•
Verify that the Remote panel “System” selection
switch, “Fan” selection switch, and “Zone
Temperature” settings for automatic operation are
correct.
57
Unit Start-Up
•
Inspect the unit for misplaced tools, hardware, and
debris.
•
Verify that all exterior panels including the control
panel doors and condenser grilles are secured in place.
•
Close the main disconnect switch or circuit protector
switch that provides the supply power to the unit’s
terminal block or the unit mounted disconnect switch.
58
RT-SVX21U-EN
Maintenance
WARNING
Hazardous Service Procedures!
Failure to follow all precautions in this manual and on
the tags, stickers, and labels could result in death or
serious injury.
Technicians, in order to protect themselves from
potential electrical, mechanical, and chemical hazards,
MUST follow precautions in this manual and on the
tags, stickers, and labels, as well as the following
instructions: Unless specified otherwise, disconnect all
electrical power including remote disconnect and
discharge all energy storing devices such as capacitors
before servicing. Follow proper lockout/tagout
procedures to ensure the power can not be
inadvertently energized. When necessary to work with
live electrical components, have a qualified licensed
electrician or other individual who has been trained in
handling live electrical components perform these
tasks.
Fan Belt Adjustment - Belt Drive
Units
WARNING
Live Electrical Components!
Failure to follow all electrical safety precautions when
exposed to live electrical components could result in
death or serious injury. When necessary to work with
live electrical components, have a qualified licensed
electrician or other individual who has been properly
trained in handling live electrical components perform
these tasks.
Once the new belts are installed, using a Browning or
Gates tension gauge (or equivalent) illustrated in
Figure 58, p. 59, adjust the belt tension as follows;
1. To determine the appropriate belt deflection;
a. Measure the center-to-center shaft distance (in
inches) between the fan and motor sheaves.
b. Divide the distance measured in Step 1a by 64; the
resulting value represents the amount of belt
deflection that corresponds to the proper belt
tension.
2. Set the large O-ring on the belt tension gauge at the
deflection value determined in Step 1b.
3. Set the small O-ring at zero on the force scale of the
gauge plunger.
4. Place the large end of the gauge at the center of the belt
span, then depress the gauge plunger until the large Oring is even with the top of the next belt or even with
a straightedge placed across the fan and motor
sheaves. Refer to Figure 58, p. 59.
5. Remove the belt tension gauge.The small O-ring now
indicates a number other than zero on the plunger’s
force scale.This number represents the force (in
pounds) required to give the needed deflection.
6. Compare the “force” scale reading (Step 5) with the
appropriate “force” value listed in Table 16, p. 60. If the
“force” reading is outside the range, readjust the belt
tension.
Note: Actual belt deflection “force” must not exceed the
maximum “force” value shown in Figure 58, p. 59.
7.
Recheck the belt tension at least twice during the first
2 to 3 days of operation. Belt tension may decrease
until the new belts are “run in”.
Figure 58. Belt tension gauge
WARNING
Rotating Components!
Failure to follow all safety precautions below could
result in rotating components cutting and slashing
technician which could result in death or serious injury.
During installation, testing, servicing and
troubleshooting of this product it may be necessary to
work with live and exposed rotating components. Have
a qualified or licensed service individual who has been
properly trained in handling exposed rotating
components, perform these tasks.
The fan belts must be inspected periodically to assure
proper unit operation.
Replacement is necessary if the belts appear frayed or
worn. Units with dual belts require a matched set of belts
to ensure equal belt length.
When removing or installing the new belts, do not stretch
them over the sheaves. Loosen the belts using the belt
tension adjustment bolts on the motor mounting base.
RT-SVX21U-EN
59
Maintenance
Table 16.
Belt tension measurement and deflection
Deflection Force (Lbs.)
Belts Small
Cross P.D
Section Range
A
B
Super
Gripbelts
Gripnotch
Steel Cable
Gripbelts
Min.
Max. Min.
Max.
Min.
Max
3.0 - 3.6
3
4 1/2 3 7/8
5 1/2
3 1/4
4
3.8 - 4.8
3 1/2
5
6 1/4
3 3/4
4 3/4
5.0 - 7.0
4
5 1/2 5
6 7/8
4 1/4
5 1/4
3.4 - 4.2
4
5 1/2 5 3/4
8
4 1/2
5 1/2
4.4 - 5.6
5 1/8
7 1/8 6 1/2
9 1/8
5 3/4
7 1/4
5.8 - 8.8
6 3/8
8 3/4 7 3/8
10 1/8 7
4 1/2
Cooling Season
•
Check the unit’s drain pans and condensate piping to
ensure that there are no blockages.
•
Inspect the evaporator and condenser coils for dirt,
bent fins, etc. If the coils appear dirty, clean them
according to the instructions described in “Coil
Cleaning” later in this section.
•
Manually rotate the condenser fan(s) to ensure free
movement and check motor bearings for wear. Verify
that all of the fan mounting hardware is tight.
•
Inspect the F/A-R/A damper hinges and pins to ensure
that all moving parts are securely mounted. Keep the
blades clean as necessary.
•
Verify that all damper linkages move freely; lubricate
with white grease, if necessary.
•
Check supply fan motor bearings; repair or replace the
motor as necessary.
•
Check the fan shaft bearings for wear. Replace the
bearings as necessary.
•
Check the supply fan belt. If the belt is frayed or worn,
replace it. Refer to the “Fan Belt Adjustment” section
for belt replacement and adjustments.
8 3/4
Monthly Maintenance
WARNING
Hazardous Voltage!
Failure to disconnect power before servicing could
result in death or serious injury. Disconnect all electric
power, including remote disconnects before servicing.
Follow proper lockout/tagout procedures to ensure the
power can not be inadvertently energized.
•
Verify that all wire terminal connections are tight.
Before completing the following checks, turn the unit OFF
and lock the main power disconnect switch open.
•
Remove any corrosion present on the exterior surfaces
of the unit and repaint these areas.
Filters
•
Generally inspect the unit for unusual conditions (e.g.,
loose access panels, leaking piping connections, etc.)
Inspect the return air filters. Clean or replace them if
necessary. If included, leave filter removal tool in unit.
Refer to the unit Service Facts for filter information.
•
Make sure that all retaining screws are reinstalled in
the unit access panels once these checks are complete.
•
With the unit running, check and record the: ambient
temperature; compressor suction and discharge
pressures (each circuit); superheat (each circuit);
•
Record this data on an “operator’s maintenance log”
like the one shown in Table 17, p. 62. If the operating
pressures indicate a refrigerant shortage, measure the
system superheat. For guidelines, refer to the
“Compressor Start-Up” section.
Return Air Smoke Detector Maintenance
Airflow through the unit is affected by the amount of dirt
and debris accumulated on the indoor coil and filters.To
insure that airflow through the unit is adequate for proper
sampling by the return air smoke detector, complete
adherence to the maintenance procedures, including
recommended intervals between filter changes, and coil
cleaning is required.
Periodic checks and maintenance procedures must be
performed on the smoke detector to insure that it will
function properly. For detailed instructions concerning
these checks and procedures, refer to the appropriate
section(s) of the smoke detector Installation and
Maintenance Instructions provided with the literature
package for this unit.
Important:
Heating Season
•
Inspect the unit’s air filters. If necessary, clean or
replace them.
•
Check supply fan motor bearings; repair or replace the
motor as necessary.
•
Inspect both the main unit control panel and heat
section control box for loose electrical components
and terminal connections, as well as damaged wire
insulation. Make any necessary repairs.
Condensate Overflow Switch
During maintenance, the switch float (black ring) must be
checked to ensure free movement up and down.
60
Do not release refrigerant to the
atmosphere! If adding or removing
refrigerant is required, the service
technician must comply with all federal,
state and local laws.
RT-SVX21U-EN
Maintenance
•
Clean burner area, verify gas heat system operates
properly.
Coil Cleaning
Regular coil maintenance, including annual cleaning,
enhances the unit’s operating efficiency by minimizing:
compressor head pressure and amperage draw,
evaporator water carryover, fan brake horsepower due to
increase static pressure losses, airflow reduction.
At least once each year, or more often if the unit is located
in a “dirty” environment, clean the evaporator and
condenser coils using the instructions outlined below. Be
sure to follow these instructions as closely as possible to
avoid damaging the coils.
Note: For units equipped with hail guards follow removal
procedure listed below.
Hail Guard Removal
•
Unlatch hail guard.
•
Pull the top of the hail guard outward until the fastener
studs are free of the retaining nuts.
•
Lift the hail guard from the lower retaining bracket and
set aside.
Microchannel (MCHE) Coils
NOTICE:
Coil Damage!
Failure to follow instructions below could result in coil
damage.
DO NOT use any detergents with microchannel
condenser coils. Use pressurized water or air ONLY,
with pressure no greater than 600psi.
For additional information regarding the proper
microchannel coil cleaning procedure, refer to service
bulletin RT-SVB83*-EN.
Due to the soft material and thin walls of the MCHE coils,
the traditional field maintenance method recommended
for RoundTube Plate Fin (RTPF) coils does not apply to
microchannel coils.
Moreover, chemical cleaners are a risk factor to MCHE due
to the material of the coil.The manufacturer does not
recommend the use of chemical cleaners to clean
microchannel coils. Using chemical cleaners could lead to
warranty claims being further evaluated for validity and
failure analysis.
The recommended cleaning method for microchannel
condenser coils is pressurized water or air with a nonpinpoint nozzle and an ECU of at least 180 with pressure no
greater than 600 psi.To minimize the risk of coil damage,
approach the cleaning of the coil with the pressure washer
aimed perpendicular to the face of the coil during cleaning.
Note: For more details on Microchannel coil cleaning,
please refer to bulletin RT-SVB83*-EN.
RT-SVX21U-EN
Round Tube Plate Fin (RTPF) Coils
To clean refrigerant coils, use a soft brush and a sprayer
(either a garden pump-up type or a high-pressure sprayer).
A high-quality detergent is also required; suggested
brands include “SPREX A.C.”, “OAKITE 161”, “OAKITE 166”
and “COILOX”. If the detergent selected is strongly alkaline
(ph value exceeds 8.5), add an inhibitor.
WARNING
Hazardous Chemicals!
Failure to follow all safety instructions below could
result in death or serious injury. Coil cleaning agents
can be either acidic or highly alkaline and can burn
severely if contact with skin occurs. Handle chemical
carefully and avoid contact with skin. ALWAYS wear
Personal Protective Equipment (PPE) including goggles
or face shield, chemical resistant gloves, boots, apron
or suit as required. For personal safety refer to the
cleaning agent manufacturer’s Materials Safety Data
Sheet and follow all recommended safe handling
practices.
1. Remove enough panels from the unit to gain access to
the coil.
2. Protect all electrical devices such as motors and
controllers from any over spray.
3. Straighten any bent coil fins with a fin comb.
WARNING
Hazardous Pressures!
Failure to follow safety precautions below could result
in coil bursting, which could result in death or serious
injury. Coils contain refrigerant under pressure. When
cleaning coils, maintain coil cleaning solution
temperature under 150°F to avoid excessive pressure in
the coil.
4. Mix the detergent with water according to the
manufacturer’s instructions. If desired, heat the
solution BUT DO NOT EXCEED 150ºF maximum to
improve its cleansing capability.
5. Pour the cleaning solution into the sprayer. If a highpressure sprayer is used:
a. do not allow sprayer pressure to exceed 600 psi.
b. the minimum nozzle spray angle is 15 degrees.
c. maintain a minimum clearance of 6" between the
sprayer nozzle and the coil.
d. spray the solution perpendicular (at 90 degrees) to
the coil face.
6. Spray the leaving-airflow side of the coil first; then
spray the opposite side of the coil. Allow the cleaning
solution to stand on the coil for five minutes.
7.
Rinse both sides of the coil with cool, clean water.
61
Maintenance
8. Inspect both sides of the coil; if it still appears to be
dirty, repeat Step 6 and Step 7.
Annual Maintenance
9. Reinstall all of the components and panels removed in
Step 1 and any protective covers installed in Step 2.
•
Note: For units equipped with hail guards follow
reinstallation procedure listed below.
Hail Guard Reinstallation
10. To reinstall the hail guard, locate the bottom of the hail
guard in the lower bracket and secure it to the upper
unit bracket with the attached fasteners.
Clean and repaint any corroded surface.
Final Process
For future reference, you may find it helpful to record the
unit data requested in the blanks provided.
Complete Model Number:
Unit Serial Number:
Wiring Diagram Numbers
(from unit control panel):
Note: Secure hail guard latches.
Figure 59. Hail guard
Connections:
Schematics:
11. Restore the unit to its operational status and check
system operation.
Table 17.
Sample maintenance log
Refrigerant Circuit #1
Date
Current
Ambient
Compr.
Temp. F/C Oil Level
Suct.
Press.
Psig/
kPa
Disch. Liquid
Press. Press. Super
Psig/ Psig/ -heat
kPa
kPa
F/C
Refrigerant Circuit #2
Subcool.
F/C
Compr.
Suct.
Oil
Press.
Level Psig/kPa
- ok
- low
- ok
- low
- ok
- low
- ok
- low
- ok
- low
- ok
- low
- ok\
- low
-- ok
- low
- ok
- low
- ok
- low
Disch.
Press.
Psig/
kPa
Liquid
Press. Super- SubPsig/
heat cool.
kPa
F/C
F/C
Note: Check and record the data requested above each
month during the cooling season with the unit
running.
62
RT-SVX21U-EN
Troubleshooting
WARNING
Hazardous Service Procedures!
Failure to follow all precautions in this manual and on
the tags, stickers, and labels could result in death or
serious injury.
Technicians, in order to protect themselves from
potential electrical, mechanical, and chemical hazards,
MUST follow precautions in this manual and on the
tags, stickers, and labels, as well as the following
instructions: Unless specified otherwise, disconnect all
electrical power including remote disconnect and
discharge all energy storing devices such as capacitors
before servicing. Follow proper lockout/tagout
procedures to ensure the power can not be
inadvertently energized. When necessary to work with
live electrical components, have a qualified licensed
electrician or other individual who has been trained in
handling live electrical components perform these
tasks.
ReliaTel™ Control
The RTRM has the ability to provide the service personnel
with some unit diagnostics and system status information.
Before turning the main power disconnect switch “Off”,
follow the steps below to check the ReliaTel Refrigeration
Module (RTRM). All diagnostics & system status
information stored in the RTRM will be lost when the main
power is turned “Off”.
WARNING
Live Electrical Components!
Failure to follow all electrical safety precautions when
exposed to live electrical components could result in
death or serious injury. When necessary to work with
live electrical components, have a qualified licensed
electrician or other individual who has been properly
trained in handling live electrical components perform
these tasks.
To prevent injury or death from electrocution, it is the
responsibility of the technician to recognize this hazard
and use extreme care when performing service
procedures with the electrical power energized.
1. Verify LED on face of the phase monitor is green. If LED
is red, correct supply power fault.
2. Verify that the Liteport LED on the RTRM is burning
continuously. If the LED is lit, go to Step 3.
3. If the LED is not lit, verify that 24 VAC is presence
between J1-1 and J1-2. If 24 VAC is present, proceed to
Step 4. If 24 VAC is not present, check the unit main
power supply, check transformer (TNS1). Proceed to
Step 4 if necessary.
4. Utilizing “Method 1” or “Method 2” in the “System
Status Diagnostic” section, check the following:
• System status
• Heating status
• Cooling status
If a system failure is indicated, proceed to Step 5. If no
failures are indicated, proceed to Step 6.
5. If a System failure is indicated, recheck Step 2 and Step
3. If the LED is not lit in Step 2, and 24 VAC is present
in Step 3, the RTRM has failed. Replace the RTRM.
6. If no failures are indicated, use one of theTEST mode
procedures described in the “Unit Start-Up” section to
start the unit.This procedure will allow you to check all
of the RTRM outputs, and all of the external controls
(relays, contactors, etc.) that the RTRM outputs
energize, for each respective mode. Proceed to Step 7.
7.
Step the system through all of the available modes,
and verify operation of all outputs, controls, and
modes. If a problem in operation is noted in any mode,
you may leave the system in that mode for up to one
hour while troubleshooting. Refer to the sequence of
operations for each mode, to assist in verifying proper
operation. Make the necessary repairs and proceed to
Step 8 and Step 9.
8. If no abnormal operating conditions appear in the test
mode, exit the test mode by turning the power “Off” at
the main power disconnect switch.
9. Refer to the individual component test procedures if
other microelectronic components are suspect.
System Status Checkout
Procedure
“System Status” is checked by using one of the following
two methods:
Method 1
If the Zone Sensor Module (ZSM) is equipped with a
remote panel with LED status indication, you can check the
unit within the space. If the ZSM does not have LED’s, use
Method 2. BAYSENS110*, BAYSENS109*, BAYSENS119*,
BAYSENS023A all have the remote panel indication
feature.The LED descriptions are listed below.
Zone Sensor LED 1 (System)
“On” during normal operation.
“Off” if a system failure occurs or the LED fails.
“Flashing” indicates test mode.
Zone Sensor LED 2 (Heat)
“On” when the heat cycle is operating.
RT-SVX21U-EN
63
Troubleshooting
“Off” when the heat cycle terminates or the LED fails.
Service Failure
“Flashing” indicates a heating failure.
•
If the supply fan proving switch has closed, the unit will
not operate (when connected to RTOM), check the fan
motor, belts, and proving switch.
•
Clogged filter switch has closed, check the filters.
•
If the condensate overflow switch is closed, the unit
will not operate. Make sure the float switch is not in a
tripped condition, and check for an “open” between
wires connecting to RTOM J6-1, J6-2 (ReliaTel™
controls).
Zone Sensor LED 3 (Cool)
“On” when the cooling cycle is operating.
“Off” when the cooling cycle terminates or the LED fails.
“Flashing” indicates a cooling failure.
Zone Sensor LED 4 (Service)
“On” indicates a clogged filter.
“Off” during normal operation.
Simultaneous Heat and Cool Failure
“Flashing” indicates an evaporator fan or condensate
overflow switch failure.
•
Below is the complete listing of failure indication causes.
Method 2
System failure
Check the voltage between terminals 6 and 9 on J6, it
should read approximately 32 VDC. If no voltage is
present, a system failure has occurred. Refer to Step 4 in
the previous section for the recommended
troubleshooting procedure.
Emergency Stop is activated
The second method for determining system status is done
by checking voltage readings at the RTRM (J6).The system
indication descriptions and the approximate voltages are
listed below.
System Failure
•
Measure the voltage between terminals J6-9 & J6-6.
Heating Failure
•
Normal Operation = approximately 32 VDC
Verify Heat Failure by Ignition Module (IGN) LED indicator:
•
System Failure = less than 1 VDC, approximately 0.75
VDC
•
Test Mode = voltage alternates between 32 VDC & 0.75
VDC
OFF: No Power or Failure
ON: Normal
Slow Flash: Normal, Heat Call
Fast Flash: Error Code:
1 Flash: Communication Failure
2 Flashes: System Lockout
3 Flashes: Pressure Switch Fail
4 Flashes:TC01 orTC02 Open
5 Flashes: Flame w/o Gas Valve
6 Flashes: Flame Rollout Open
Heat Failure
•
Measure the voltage between terminals J6-7 & J6-6.
•
Heat Operating = approximately 32 VDC
•
Heat Off = less than 1 VDC, approximately 0.75 VDC
•
Heating Failure = voltage alternates between 32VDC &
0.75 VDC
Cool Failure
•
Measure the voltage between terminals J6-8 & J6-6.
Cooling Failure
•
Cool Operating = approximately 32 VDC
•
•
Cool Off = less than 1 VDC, approximately 0.75 VDC
•
Cooling Failure = voltage alternates between 32VDC &
0.75 VDC
•
•
•
64
Cooling and heating set point (slide pot) on the zone
sensor has failed. Refer to the “Zone SensorTest
Procedure” section.
Zone temperature thermistor ZTEMP on ZTS failed.
Refer to the “Zone SensorTest Procedure” section.
CC1 or CC2 24 VAC control circuit has opened, check
CC1 & CC2 coils, and any of the controls below that
apply to the unit (HPC1, HPC2).
LPC1 has opened during the 3 minute minimum “on
time” during 4 consecutive compressor starts, check
LPC1 or LPC2 by testing voltage between the J1-1 & J32 terminals on the RTRM and ground. If 24 VAC is
present, the LPC’s has not tripped. If no voltage is
present, LPC’s has tripped.
Service Failure
•
Measure the voltage between terminals J6-10 & J6-6.
•
Clogged Filter = Approximately 32 VDC.
•
Normal = Less than 1 VDC, approximately 0.75 VDC
Fan Failure = voltage alternates between 32VDC & 0.75
VDC.
To use LED’s for quick status information at the unit,
purchase a BAYSENS110* ZSM and connect wires with
alligator clamps to terminals 6 through 10. Connected each
RT-SVX21U-EN
Troubleshooting
respective terminal wire (6 through 10) from the Zone
Sensor to the unit J6 terminals 6 through 10.
Fan Failure Switch
Note: If the system is equipped with a programmable
zone sensor, BAYSENS119* the LED indicators will
not function while the BAYSENS110* is connected.
When the “Fan Failure” switch is wired to the RTOM, the
LED will remain flashing the entire time the fan proving
switch is closed, indicating a fan failure, and it will shut the
unit operations down.
Resetting Cooling and Ignition Lockouts
Condensate Overflow Switch
Cooling Failures and Ignition Lockouts are reset in an
identical manner. Method 1 explains resetting the system
from the space; Method 2 explains resetting the system at
the unit.
When the “Condensate Overflow Switch” is closed, a
drain pan overflow condition is indicated and it will shut
unit operations down.
Note: Before resetting Cooling Failures and Ignition
Lockouts check the Failure Status Diagnostics by
the methods previously explained. Diagnostics will
be lost when the power to the unit is disconnected.
Zone Temperature Sensor (ZTS)
Tests
Method 1
To reset the system from the space, turn the “Mode”
selection switch at the zone sensor to the “Off” position.
After approximately 30 seconds, turn the “Mode”
selection switch to the desired mode, i.e. Heat, Cool or
Auto.
Note: These procedures are not for programmable or
digital models and are conducted with the Zone
Sensor Module electrically removed from the
system.
Test 1 - Zone Temperature Thermistor
(ZTEMP)
To reset the system at the unit, cycle the unit power by
turning the disconnect switch “Off” and then “On”.
This component is tested by measuring the resistance
between terminals 1 and 2 on the ZoneTemperature
Sensor. Below are some typical indoor temperatures, and
corresponding resistive values.
Lockouts can be cleared through the building
management system. Refer to the building management
system instructions for more information.
Test 2 - Cooling Set Point (CSP) and
Heating Set Point (HSP)
Zone Temperature Sensor (ZTS)
Service Indicator
Table 18.
Method 2
The ZSM SERVICE LED is a generic indicator, that will
signal the closing of a Normally Open switch at any time,
providing the Indoor Motor (IDM) is operating.This
indicator is usually used to indicate a clogged filter, or an
air side fan failure.
The RTRM will ignore the closing of this Normally Open
switch for 2 (±1) minutes.This helps prevent nuisance
SERVICE LED indications.The exception is the LED will
flash 40 seconds after the fan is turned “On” if the Fan
Proving Switch is not made.
Clogged Filter Switch
This LED will remain lit the entire time that the Normally
Open switch is closed.The LED will be turned off
immediately after resetting the switch (to the Normally
Open position), or any time that the IDM is turned “Off”.
If the switch remains closed, and the IDM is turned “On”,
the SERVICE LED will be turned “On” again after the 2 (±1)
minute ignore delay.
This LED being turned “On”, will have no other affect on
unit operation. It is an indicator only.
RT-SVX21U-EN
Cooling setpoint and heating setpoint
Zone
Temperature
Nominal ZTEMP
Resistance
50 F°
10.0 C°
19.9 K-Ohms
55 F°
12.8 C°
17.47 K-Ohms
60 F°
15.6 C°
15.3 K-Ohms
65 F°
18.3 C°
13.49 K-Ohms
70 F°
21.1 C°
11.9 K-Ohms
75 F°
23.9 C°
10.50 K-Ohms
80 F°
26.7 C°
9.3 K-Ohms
85 F°
29.4 C°
8.25 K-Ohms
90 F°
32.2 C°
7.3 K-Ohms
The resistance of these potentiometers are measured
between the following ZSM terminals. Refer to the chart
above for approximate resistances at the given setpoints.
Cool SP =Terminals 2 and 3
Range = 100 to 900 Ohms approximate
Heat SP =Terminals 2 and 5
Range = 100 to 900 Ohms approximate
Test 3 - System Mode and Fan Selection
The combined resistance of the Mode selection switch and
the Fan selection switch can be measured between
65
Troubleshooting
terminals 2 and 4 on the Zone Sensor.The possible switch
combinations are listed below with their corresponding
resistance values.
Test 4 - LED Indicator Test, (SYS ON, HEAT,
COOL & SERVICE)
Method 1
Testing the LED using a meter with diode test function.Test
both forward and reverse bias. Forward bias should
measure a voltage drop of 1.5 to 2.5 volts, depending on
your meter. Reverse bias will show an Over Load, or open
circuit indication if LED is functional.
Method 2
Testing the LED with an analog Ohmmeter. Connect
Ohmmeter across LED in one direction, then reverse the
leads for the opposite direction.The LED should have at
least 100 times more resistance in reverse direction, as
compared with the forward direction. If high resistance in
both directions, LED is open. If low in both directions, LED
is shorted.
Method 3
To test LED’s with ZSM connected to unit, test voltages at
LED terminals on ZSM. A measurement of 32 VDC, across
an unlit LED, means the LED has failed.
Relative Humidity Sensor Test
This component is measured by measuring the DC mA
output signal on the Relative Humidity Sensor. Verify
accuracy of the sensor annually. If the output reading is
DC mA 0, first verify that power is applied to the sensor. A
reading of 4 corresponds to 0% RH and 20 DC mA
corresponds to 100% RH.
% RH
DC mA
30
8.8
40
10.4
50
12.0
60
13.6
70
15.2
80
16.8
Note: Measurements should be made from LED common
(ZSM terminal 6 to respective LED terminal).
Programmable & Digital Zone Sensor
Test
Testing serial communication voltage
3. Reconnect wires to terminals J6-11 and J6-12. Measure
voltage again between J6-11 and J6-12, voltage should
flash high and low every 0.5 seconds.The voltage on
the low end will measure about 19 VDC, while the
voltage on the high end will measure from
approximately 24 to 38 VDC.
4. Verify all modes of operation, by running the unit
through all of the steps in the “Test Modes” section
discussed in “Unit Start-Up”.
5. After verifying proper unit operation, exit the test
mode.Turn the fan on continuously at the ZSM, by
pressing the button with the fan symbol. If the fan
comes on and runs continuously, the ZSM is good. If
you are not able to turn the fan on, the ZSM is
defective.
ReliaTel™ Refrigeration Module (RTRM)
Default Chart
If the RTCI loses input from the building management
system, the RTRM will control in the default mode after
approximately 15 minutes. If the RTRM loses the Heating
and Cooling setpoint input, the RTRM will control in the
default mode instantaneously.The temperature sensing
thermistor in the Zone Sensor Module is the only
component required for the “Default Mode” to operate.
Unit Operation without a Zone Sensor
This procedure is for temporary operation only.The
economizer and condenser fan cycling functions are
disabled.
WARNING
Hazardous Voltage!
Failure to disconnect power before servicing could
result in death or serious injury. Disconnect all electric
power, including remote disconnects before servicing.
Follow proper lockout/tagout procedures to ensure the
power can not be inadvertently energized.
1. Open and Lock the unit disconnect switch.
2. Remove the Outside Air Sensor (OAS) from the
condenser section of unit.
3. Use two (2) wire nuts, to individually cap the wires.
4. Locate the RTRM (J6). Connect two (2) wires to
terminals J6-1 and 2.
5. Connect the sensor (OAS) using two wire nuts to the
two (2) field supplied wires that were connected to
terminals 1 and 2 on J6.
1. Verify 24 VAC is present between terminals J6-14 & J611.
2. Disconnect wires from J6-11 and J6-12. Measure the
voltage between J6-11 and J6-12, should be about 32
VDC.
66
RT-SVX21U-EN
Troubleshooting
Unit Economizer Control (ECA)
Troubleshooting
ReliaTel™ Control
Verify Economizer Status by Economizer Actuator (ECA)
LED indicator:
•
OFF: No power or failure
•
ON: Normal, OK to economize
•
Slow Flash: Normal, not OK to economize
•
Fast Flash - 1/2 second on / 2 seconds off:
•
Pulse Flash:2 seconds on / 1/2 second off:
• Error Code: Communications failure
• Error Code:
• 1 Flash: Actuator Fault
• 2 Flashes: CO2 Sensor
3. If the LED is not lit, verify that 24 VAC is present
between R and B. If the LED is not lit and 24 VAC is
present replace the IGN. If 24 VAC is not present, check
transformer (TNS1). Proceed to Step 4 if necessary.
4. If no failures are indicated, use theTEST mode
procedures described in the “Unit Start-Up” section or
thermostat to start the unit.This procedure will allow
you to check all of the external controls (relays,
contactors, etc) and the IGN.
5. Test the system through all of the available modes, and
verify operation of all outputs, controls, and modes.
Refer to the sequence of operations for each mode, to
assist in verifying proper operation. Make the
necessary repairs and proceed to Step 6 and Step 7.
6. If no abnormal operating conditions appear in the test
mode, exit the test mode by turning the power “Off” at
the main power disconnect switch and removing the
test mode connections.
7.
• 3 Flashes: RA Humidity Sensor
• 4 Flashes: RATemp Sensor
• 5 Flashes: OA Quality Sensor
• 6 Flashes: OA Humidity Sensor
• 7 Flashes: OATemp Sensor
• 8 Flashes: MATemp Sensor
• 9 Flashes: RAM Fault
Refer to the individual component test procedures if
other components are suspect.
Heating Failure
Verify Heat Failure by Ignition Module (IGN) LED indicator:
•
OFF: No Power or Failure
•
ON: Normal
•
Slow Flash: Normal, Heat Call
•
Fast Flash: Error Code:
• 10 Flashes: ROM Fault
1 Flash: No Communication
• 11 Flashes: EEPROM Fault
2 Flashes: System Lockout
Electromechanical Control
3 Flashes: Pressure Switch Fail
The IGN has the ability to provide the service personnel
with some unit diagnostics and system status information.
4 Flashes:TC01 orTC02 Open
Before turning the main power disconnect switch “Off”,
follow the steps below to check the Ignition Module (IGN).
6 Flashes: Flame Rollout Open
5 Flashes: Flame w/o Gas Valve
Cooling Failure
WARNING
Live Electrical Components!
•
Cooling and heating set point (slide pot) on the
thermostat has failed.
Failure to follow all electrical safety precautions when
exposed to live electrical components could result in
death or serious injury. When necessary to work with
live electrical components, have a qualified licensed
electrician or other individual who has been properly
trained in handling live electrical components perform
these tasks.
•
CC1 or CC2 24 VAC control circuit has opened, check
CC1 & CC2 coils, and any of the controls below that
apply to the unit (HPC1, HPC2, LPC1, LPC2, Frostat™).
To prevent injury or death from electrocution, it is the
responsibility of the technician to recognize this hazard
and use extreme care when performing service
procedures with the electrical power energized.
1. Verify LED on face of the phase monitor is green. If LED
is red, correct supply power fault.
2. Verify that the LED on the IGN is burning continuously.
If the LED is lit, go to Step 4.
RT-SVX21U-EN
Resetting Cooling and Ignition Lockouts
Cooling Failures and Ignition Lockouts are reset in an
identical manner. Method 1 explains resetting the system
from the space; Method 2 explains resetting the system at
the unit.
Method 1
To reset the system from the space, turn the “Mode”
selection switch at the thermostat to the “Off” position.
After approximately 30 seconds, turn the “Mode”
selection switch to the desired mode, i.e. Heat, Cool or
Auto.
67
Troubleshooting
Method 2
To reset the system at the unit, cycle the unit power by
turning the disconnect switch “Off” and then “On”.
Table 19. Fault detection and diagnostic codes
Primary Fault Codes
Failures
Information Code
Temp
Mixed Air Outdoor
Pressure
Space
Unit
Economizer RTEM
Sensor
Airflow
Unit Fails
Damper
Temp
Temp
Dead band
Press Dead
Economizing
Actuator
Comm
Fail
Sensor Fail
to
Position %
Sensor Sensor
Fail
bandFail
When It
Fault
Fail
(If Used) (If Used)
Economize
Indicated
Fail
Fail
(If Used)
(If Used)
Should Not
Damper stuck
at Minimum
X
X(a)
X(a)*
X(a)
Damper Stuck
Open
X
X(a)
X(a)
X(a)
Mixed Sensor
Failure
X
X
X
X
X
X
Supply Air
Sensor Failure
Outdoor Air
Temperature
Fail
X
X
X
X
Power loss to
RTEM
X
Failed or Power
Loss to
Actuator
X
X
Mechanical
Failure of
Actuator
X
(a) If goes out of range.
Table 20. Low leak economizer sensor values
Sensor Values Data
68
Temp °F
Resistance
(K ohms)
Temp °F
Resistance
(K ohms)
Temp °F
Resistance
(K ohms)
40
26.097
54
17.847
68
12.435
41
25.383
55
17.382
69
12.126
42
24.690
56
16.930
70
11.827
43
24.018
57
16.491
71
11.535
44
23.367
58
16.066
72
11.252
45
22.736
59
15.654
73
10.977
46
22.132
60
15.253
74
10.709
47
21.530
61
14.864
75
10.448
48
20.953
62
14.486
76
10.194
49
20.396
63
14.119
77
9.949
50
19.854
64
13.762
78
9.710
51
19.330
65
13.416
79
9.477
52
18.821
66
13.078
80
9.250
53
18.327
67
12.752
81
9.030
RT-SVX21U-EN
Troubleshooting
Unit Economizer Control (ECA)
Test Procedures
Electromechanical Control
This series of tests will allow you to diagnose, and
determine where, and if a problem exists in the system
economizer operation.Test 1 determines if the problem is
in the Unit, or if it is in the ECA.Test 2 tests sensor inputs.
Test 3 tests the resistors and sensors. Conduct the tests in
numerical order until problem is found.
Test 1
Verifying that the economizer actuator (ECA) is functional:
1. Using the “Test Mode” described in the “System StartUp” section, put the unit into the economizer mode
and verify that the economizer actuator (ECA) drives
fully open (approximately 90 seconds).
The resistance should be approximately 130 Ohms.
Replace the ECA if it is out of range.
Troubleshooting procedures for
Direct Drive Plenum Fan
Prior to troubleshooting, verify all wiring and wiring
connections.The motor has internal protections that will
shut down the motor before damage occurs. A power
cycle is required to reset some of the internal protections.
Before proceeding, power down unit for 1 minute and then
power on.
Please follow steps sequentially unless directed differently
in solution.
Refer to RT-SVB90*-EN for a Comprehensive
Troubleshooting Guide.
2. If the ECA is not driving the dampers, verify that 24VAC
is between the ECA terminalsTR andTR1 is present. If
24 volts is not present, a wiring or terminal problem
exists from the control transformer. Make any
necessary repairs, see wiring diagrams to
troubleshoot.
3. If 24 VAC is present, adjust the minimum position
potentiometer fully clockwise. If the actuator does not
drive, the economizer actuator is bad. Replace the ECA.
Test 2
Testing the ECA resistors and sensors
1. Testing the Mixed Air Sensor (MAS). Disconnect the
wires connected toT andT1 on the ECA, and;
a. Measure the resistance of the sensor between the
wires 180B and 181B.
b. Measure the temperature at the MAS location.
Using theTemperature versus Resistance chart,
verify the accuracy of the MAS.
Replace the sensor if it is out of range.
2. Testing the Outdoor Air Switch. If the temperature is
above 60 degrees, it will need to be chilled. Measure
the resistance of the sensor on the ECA SO and +.
The resistance should be approximately 390 Ohms.
Replace the Switch if it is open.
Replace the ECA if it is out of range.
3. Testing the R1 Resistance.
Measure the resistance of the sensor on the ECA SR
and +.
The resistance should be approximately 420 Ohms.
Replace the ECA if it is out of range.
4. Testing the R2 Resistance.
Measure the resistance of the sensor on the ECA P and
P1.
RT-SVX21U-EN
69
Unit Wiring Diagrams Numbers
Note: Wiring diagrams can be accessed using e-Library
by entering the diagram number in the literature
order number search field or by contacting
technical support.
Table 21.
Unit wiring diagram numbers
Schematic Type
ReliaTel™
Control
230,460,575V
Electromechanical
Schematic Type
230V
ReliaTel™
460V and/or 575V
Power
230V
Electromechanical
460V and/or 575V
70
Drawing Number
Description
1213-1641
YSC(033-063)G ReliaTel Controls
4366-7217
YHC(037-067)
4366-4571
Y(S,H)C(036,048)E/F (1,3 Phase) and YHC060F (1Phase), ReliaTel Controls, X13 IDM
4366-1015
Y(S,H)C(036-090)E/F, ReliaTel Controls, Belt-Drive IDM
4366-4703
YSC060E (1,3 Phase) and YHC060E/F (3-Phase),
ReliaTel Controls, X13 IDM
4366-1042
YSC(092,102)F, ReliaTel Controls
4366-7436
(YHC074-102,YSC120)F, ReliaTel Controls
4366-7430
YHC120F, ReliaTel Controls
1213-1644
YSC(033-063)G Electromechanical Controls
4366-8386
Y(S,H)C(036,048)E/F (1,3 Phase) and YHC060F (1Phase), Electromechanical Controls, X13 IDM
4366-8383
Y(S,H)C(036-060)E/F, Electromechanical Controls,
Belt-Drive IDM
4366-8387
YSC060E (1,3 Phase) and YHC060E/F (3-Phase),
Electromechanical Controls, X13 IDM
4366-8385
Y(S,H)C(072,090)F, Electromechanical Controls
4366-8384
YSC(092,102)F, Electromechanical Controls
4366-8388
(YHC074-102,YSC120)F, Electromechanical Controls
4366-8395
YHC120F, Electromechanical Controls
Drawing Number
Description
1213-1637
YSC(033-063)G3 ReliaTel Controls
4366-7179
YHC(037-067) (230V)
4366-4576
Y(S,H)C(036-060)E/F (1-Phase)
4366-5163
YHC(036-060)E/F (230V 3-Phase), X13 IDM
4366-1016
Y(S,H)C(036-090)E/F (230V 3-Phase), Belt-Drive IDM
4366-1033
YSC(092,102)F (230V)
4366-7437
(YHC074-102, YSC120)F (230V), ReliaTel Controls
4366-7430
YHC120F, ReliaTel Controls
1213-1638
YSC(033-063)G4 ReliaTel Controls
1213-1662
YSC(033-063)GW ReliaTel Controls
4366-7180
YHC(037-067) (460V)
4366-5164
YHC(036-060)E/F (460V), X13 IDM
4366-1005
Y(S,H)C(036-090)E/F (460V,575V), Belt-Drive IDM
4366-1034
YSC(092,102)F (460V,575V)
4366-7438
(YHC074-102, YSC120)F (460V), ReliaTel Controls
4366-7439
YSC120F (575V), ReliaTel Controls
4366-7430
YHC120F, ReliaTel Controls
1213-1637
YSC(033-063)G3 Electromechanical Controls
4366-6406
YHC120F, Electromechanical Controls
4366-6449
YHC(074-102)F, YSC120F, Electromechanical Controls
1213-1638
YSC(033-063)G4 Electromechanical Controls
1213-1662
YSC(033-063)GW Electromechanical Controls
4366-1005
Y(S,H)C(036-090)E/F (460V,575V), Belt-Drive IDM
4366-1005
Y(S,H)C(036-090)E/F (460V,575V), Belt-Drive IDM
4366-6406
YHC120F, Electromechanical Controls
4366-6436
YHC(074-102)F4, Electromechanical Controls
4366-6782
YSC(120)FW, Electromechanical Controls
RT-SVX21U-EN
Unit Wiring Diagrams Numbers
Table 21.
Unit wiring diagram numbers (continued)
Schematic Type
230V
ReliaTel™
460V and/or 575V
Connection
230V
Electromechanical
460V and/or 575V
RT-SVX21U-EN
Drawing Number
Description
1213-1672
YSC(033-063)G3 ReliaTel Controls
4366-7340
YHC(037) (230V)
4366-8247
YHC037E (230V), 17 Plus with Multi-Zone VAV
4366-7342
YHC(047-067) (230V)
4366-8249
YHC(047, 067)E (230V), 17 Plus with Multi-Zone VAV
4366-4564
Y(S,H)C(036,048)E/F, YHC060F (1-Phase), ReliaTel
Controls
4366-5185
YHC(036,048)E/F (230V 3-Phase), ReliaTel Controls,
X13 IDM
4366-1522
Y(S,H)C(036-060)E/F (230V 3-Phase), ReliaTel
Controls, Belt-Drive IDM
4366-4705
YSC060E (1-Phase), ReliaTel Controls
4366-5186
YHC060E/F (230V 3-Phase), ReliaTel Controls, X13 IDM
4366-1539
Y(S,H)C(072,090)F (230V), ReliaTel Controls
4366-7449
YHC120F (3-Phase), ReliaTel Controls
4366-8254
YHC(074-120)F ReliaTel Controls, with Multi-Zone VAV
4366-1530
YSC(092,102)F (230V), ReliaTel Controls
4366-7451
(YSC120,YHC074-102)F (230V), ReliaTel Controls
4366-8255
YHC(074-102)F, YSC120F (230V), ReliaTel Controls with
Multi-Zone VAV
1213-1674
YSC(033-064)G4 ReliaTel Controls
12313-1676
YSC(033-063)GW ReliaTel Controls
4366-8254
YHC120F ReliaTel Controls, with Multi-Zone VAV
4366-7341
YHC(037) (460V)
4366-8248
YHC037E (460V), 17 Plus with Multi-Zone VAV
4366-7343
YHC(047-067) (460V)
4366-8250
YHC(047,067)E (460V), 17 Plus with Multi-Zone VAV
4366-5202
YHC(036,048)E/F (460V), ReliaTel Controls, X13 IDM
4366-1516
Y(S,H)C(036-060)F (460V,575V), ReliaTel Controls,
Belt-Drive IDM
4366-5203
YHC060E/F (460V), ReliaTel Controls, X13 IDM
4366-1540
Y(S,H)C(072,090)F (460V,575V), ReliaTel Controls
4366-1532
YSC(092,102)F (460V,575V), ReliaTel Controls
4366-7454
(YSC120,YHC074-102)F (460V), ReliaTel Controls
4366-8256
YHC(074-102)F, YSC120F (460V), ReliaTel Controls with
Multi-Zone VAV
4366-7456
YSC120F (575V), ReliaTel Controls
4366-8257
YSC120F (575V), ReliaTel Controls with Multi-Zone VAV
1213-1673
YSC(033-036)G3 Electromechanical Controls
4366-8390
Y(S,H)C(036,048)E/F, YHC060F (1-Phase),
Electromechanical Controls
4366-8392
YHC(036,048)E/F (230V 3-Phase), Electromechanical
Controls, X13 IDM
4366-8404
Y(S,H)C(036-060)E/F (230V 3-Phase),
Electromechanical Controls, Belt-Drive IDM
4366-8391
YSC060E (1-Phase), Electromechanical Controls
4366-8393
YHC060E/F (230V 3-Phase), Electromechanical
Controls, X13 IDM
4366-8408
Y(S,H)C(072,090)F (230V), Electromechanical Controls
4366-8403
YHC120F (3-Phase), Electromechanical Controls
4366-8406
YSC(092,102)F (230V), Electromechanical Controls
4366-8400
(YSC120,YHC074-102)F (230V), Electromechanical
Controls
1213-1675
YSC(033-063)G4 Electromechanical Controls
1213-1677
YSC(033-063)GW Electromechanical Controls
4366-8394
YHC(036,048)E/F (460V), Electromechanical Controls,
X13 IDM
4366-8405
Y(S,H)C(036-060)E/F (460V,575V), Electromechanical
Controls, Belt-Drive IDM
71
Unit Wiring Diagrams Numbers
Table 21.
Unit wiring diagram numbers (continued)
Schematic Type
Connection
72
Electromechanical 460V and/or 575V
Drawing Number
Description
4366-8399
YHC060E/F (460V), Electromechanical Controls, X13
IDM
4366-8389
Y(S,H)C(072,090)F (460V,575V), Electromechanical
Controls
4366-8407
YSC(092,102)F (460V,575V), Electromechanical
Controls
4366-8401
(YSC120,YHC074-120)F (460V), Electromechanical
Controls
4366-8402
YSC120F (575V), Electromechanical Controls
RT-SVX21U-EN
Limited Warranty
Combination Gas Electric Air
Conditioner
YCD, YCH, YSC and YHC (Parts Only)
Models Less Than 20 Tons for Commercial
Use*
This warranty is extended byTrane to the original
purchaser and to any succeeding owner of the real
property to which the Combination Gas Electric Air
Conditioner is originally affixed, and applies to products
purchased and retained for use within the U.S.A. and
Canada.There is no warranty against corrosion, erosion or
deterioration.
If any part of your Combination Gas Electric Air
Conditioner fails because of a manufacturing defect within
one year from the date of the original purchase,Warrantor
will furnish without charge the required replacement part.
In addition, if the sealed motor-compressor fails because
of a manufacturing defect within the second through fifth
year from the date of original purchase, Warrantor will
furnish without charge the required replacement
compressor.
Some states do not allow limitations on how long an
implied warranty lasts or do not allow the exclusion or
limitation of incidental or consequential damages, so the
above limitation or exclusion may not apply to you.This
warranty gives you specific legal rights, and you may also
have other rights which vary from state to state.
Trane
2701 Wilma Rudolph Blvd.
Clarksville,TN 37040-1008
Attention: Manager, Product Service
GW-606-4800
*This warranty is for commercial usage of said equipment
and not applicable when the equipment is used for a
residential application. Commercial use is any application
where the end purchaser uses the product for other than
personal, family or household purposes.
**A 5 year limited warranty is provided for the optional
"Low Leak" economizer when combined with the
additional FDD (Fault Detection & Diagnostics) option.
In addition, if the standard aluminized steel heat
exchanger fails because of a manufacturing defect within
five years from the date of start-up, Warrantor will furnish
without charge a replacement heat exchanger. Any local
transportation, related service labor and diagnosis calls
are not included.
In addition, if the optional, factory installed, stainless steel
heat exchanger fails because of a manufacturing defect
within ten years from the date of start-up, Warrantor will
furnish without charge a replacement heat exchanger. Any
local transportation, related service labor and diagnosis
calls are not included.
Warrantor’s obligations and liabilities under this warranty
are limited to furnishing F.O.B. Warrantor factory or
warehouse at Warrantor designated shipping point,
freight allowed to Buyer’s city, replacement parts for
Warrantor’s products covered under this warranty.
Warrantor shall not be obligated to pay for the cost of lost
refrigerant. No liability shall attach to Warrantor until
products have been paid for and then liability shall be
limited solely to the purchase price of the equipment
under warranty shown to be defective.
THE WARRANTY AND LIABILITY SET FORTH HEREIN ARE
IN LIEU OF ALL OTHER WARRANTIES AND LIABILITIES,
WHETHER IN CONTRACT OR IN NEGLIGENCE, EXPRESS
OR IMPLIED, IN LAW OR IN FACT, INCLUDING IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
PARTICULAR USE, AND IN NO EVENT SHALL
WARRANTOR BE LIABLE FOR ANY INCIDENTAL OR
CONSEQUENTIAL DAMAGES.
RT-SVX21U-EN
73
Ingersoll Rand (NYSE:IR) advances the quality of life by creating comfortable, sustainable and efficient environments.
Our people and our family of brands—including Club Car®, Ingersoll Rand®,Thermo King® andTrane®—work together
to enhance the quality and comfort of air in homes and buildings; transport and protect food and perishables; and
increase industrial productivity and efficiency. We are a global business committed to a world of sustainable progress
and enduring results. For more information, visit www.ingersollrand.com.
Ingersoll Rand has a policy of continuous product and product data improvement and reserves the right to change design and specifications without notice.
© 2016 Ingersoll Rand All rights reserved
RT-SVX21U-EN 06 May 2016
We are committed to using environmentally
Supersedes RT-SVX21T-EN (06 Nov 2015)
conscious print practices that reduce waste.
Download PDF