Casio | fx-3650P II | คู่มือผู้ใช้ | Casio fx-3650P II คู่มือผู้ใช้

Th
fx-3650P II
CASIO http://edu.casio.com
! " CASIO
http://edu.casio.com/forum/
RJA527885-001V01
!*,#-.),/!# " CASIO
k ...
+$%".0! 1+".0!"
20
11+$+0"!"".0!10"
$&3.
!...
201+40"!"".0! 1$+!&0
k "#$%$
!#!"+"+"&#"+!"".0!&&5+. 0.$
!#4# '!#"0+$+4 (+4.', +41&, +4
, !+","2.. 1'!&1)
!9(CLR)3(All)w
k "&!%"
• 10"-1')
&' (+"%+ ") 10"$+-$%9#3.+#
:"44'1+"4.4."
• #!"++#4&1&"0+14"+"
• ++$,$0; ".< CASIO Computer Co., Ltd. 4'+-.0%+-$0
.(< "
0*.* &5-" .04#$%.#1'.". 4# .<
CASIO Computer Co., Ltd. 4'+-.0%+!"$0; .04$%.#1'.".#
4*$0
%$$"
• 1$+"40
• $%1".0!%.0'*$+#+#
Th-1
• !'()$ $(!"&%$$"&&(*+ , (LR44 (GPA76))
1)
4 &5*$".0!%*0 1'"-.0
0 +.#"1
)
$".0! 1'+
$%".0! +1# +2$%"01
• %$$"("%"&'*01&
'!&&'%2 $*"
($"&%$$"!!&*
$
• %$$"#03* %$$"+ ("" 3'%%" %$$"
(""*8%$%)9' ()
&*
%$$"'()
$
• %$$"(")01$) $*
!&!)!$:"&00 !
%(;(""!):%0!!&
• !""&
'%2 %!8(""*8<$)! !=;"!'
>*?')!
• &&
%'( %0
• &9&&&!
• *'()!'$!
• )(%$$" @%$$B&'%%(=
• C%(
("("'!)%$0
* %.<1'-.),/$%$+#&5""40'!"4!"
"+#
Th-2
$
...........................................................................................................................1
!'!9!<& ...............................................................................................1
!'!
........................................................................................................2
$)!8... .........................................................................................................4
C)!8'$ ..............................................................................................5
H93'$+.....................................................................................................7
)!89I ................................................................................................................11
'!$)!8&'"9&3 .................................................................................13
!&!) ..................................................................................14
)!81K3(!(&M$3 .....................................................................................17
&(!M! 103 (ENG) .......................................................................25
)!8)!# (CMPLX) .................................................................................25
)!8(=$ (SD/REG) ...........................................................................................29
)!8I (BASE) ................................................................................................40
CC (PRGM) ......................................................................................................43
<! ..............................................................................................................................53
)011H("$ .............................................................................................................57
)9'.........................................................................................................................58
Th-3
!"...
k \
0 O ".0!!+0, ( 5) $%"+*0++4'&@0"
%!
+2+!40+"%04 $"&!!"4
1. 0 !N(SETUP) db(Contrast)
L I GHT
• 4&!&D!:#
DARK
CASIO
2. $% d 1' e &!!"4
3. "4#"++"1 $0 A !p(EXIT)
&$*
+2$% + 1' - &! $!,'0,&D!:#+0 , "
10"+4
):!
&!!"41"+2+40 4+
""!"1
+&1
\
0 !A(OFF)
!+&4# '2 1+4'&@0".0!
• 01'#"+, ( 5)
• !+4 ( 14), +4.' ( 15) 1'+41&
( 16)
k &%"&3
M–
A
M
x!
LOGIC
8
DT CL
5
1K3
M+
M–
M
DT
CL
6
∠
1
2
3
4
"
<: "
<: 10"
<: #".
<: "
: #".
<: "
: +"
!^"
1K3"
0
0 ! 10
0 a 10
0 +$0 SD REG
0 ! 10 +$0 SD REG
0 ! 10 +$0 CMPLX
Th-4
7
1K3
A
8
LOGIC
"
<: 10"
: !
<: !
!^"
1K3"
0 a 10 (1& A)
0 +$0 BASE
0 +$0 BASE
k 93("H')!8
".0!210"#".
4+&Z1'-,$40
2× ( 5+ 4 ) – 2× - 3
.
4&Z
24
-,
:283%
[<,+"; 3.!"+"# &D!:#4!"".0!
10"0,&\44* #"+".0! !", 1'; $++# + “&@0” $%
+ [<,&D!:#4 1' “&@0” + [<,0"+&44
4+"0!"#10"[<, 7
#$!"%&
k C)!8
".0!!"+&'&0 “0,” 40
1. 0 ,
• 4# 0,4'&D!:#
• 0,&'0"4 0 , 4 4# +"2
40 d 1' e
COMP CMPLX BASE
SD
REG
1
4
5
2
3
PRGM
6
2. $%"+"$0+":" +&# 0,+"
b(COMP): COMP(,)
c(CMPLX): CMPLX (!%.")
d(BASE): BASE (!])
e(SD): SD (,"2..11&0)
f(REG): REG (,"2..11&+)
g(PRGM): PRGM (&1)
• 0!'+" b 2:" g 0" 0+":"+"10"4$0+
$!,'#
Th-5
k $
#"+".0!2$%
#"+.
*1'
* ., 1'; +2
#"+04#"+ 00 !,(SETUP) 4#"+&'04 0+2$%
d 1' e &'+"4+";
'%*!&*
90` = S2 0 = 100 10
!&*
"(
0
10
"&3()":
!,b(Deg)
!,c(Rad)
!,d(Gra)
'%*)!("
%%&)
41+"(.
![
%+"10"&1!"
"&3()":
!,eb(Fix)a(0) 2:" j(9)
!,ec(Sci)b(1) 2:" j(9), a(10)
!,ed(Norm)b(Norm1) c(Norm2)
+&&53.+ -,4'10"+"#"++'*
• 1+"(.(2:"10"41+"(. (Fix) +'* -,0&\0(<
4'*
+": 100 ÷ 7 = 14.286 (Fix = 3)
• "4+'*4![0 Sci -,4'10"0$%4!['* 1'10"
! 10 !"' -,0&\0(<4'*
+": 1 ÷ 7 = 1.4286 × 10–1 (Sci = 5)
• Norm1 Norm2 10"-&5&1!" -,+$%+"'*
!"+"
Norm1: 10–2 > |x|, |x| > 1010
Norm2: 10–9 > |x|, |x| > 1010
+": 1 ÷ 200 = 5. × 10–3 (Norm1)
0.005 (Norm2)
'%*%%M2!
%%M2!
4'
(<.
"&3()":
!,eeb(ab/c)
!,eec(d/c)
Th-6
'%*%%)!#
%%)!#
.09
.0%."!#
"&3()":
!,eeeb(a+bi)
!,eeec(r∠)
'%*$!="(=$
$!="
$%2
+$%2
"&3()":
!,ddb(FreqOn)
!,ddc(FreqOff)
k %$C)!8'$$+
!#'*!"+"#
#"+0,&\44*1'#"++"; 1'#"+"
.0!&&50"#
0, ...........................................................COMP (0,)
+*...........................................................................Deg ("()
10"&1!".....................................Norm1
&1(<+..............................................................ab/c (4')
&14%."................................................. a+bi (
.09)
#"+2 .............................................................FreqOn ($%2)
"+&# #"+0,1'#"++";
!9(CLR)2(Setup)w
++"#"+!"".0! 0 A 10 w $!#!"
'()%*
k H93
".0!$+2&Z.
4,$&10! 1'&'-00 w
".0!4'&'.0' , \"%+"; 1'""
0.
$!&: 2 × (5 + 4) – 2 × (–3) =
2*(5+4)2*-3w
Th-7
2× ( 5+ 4 ) – 2× - 3
24
H1K3(!(&M$3(""!% (sin, cos, ', aa)
".0!*&Z\"%".(""10"+&# "4+&Z+
.1 "0 ) &@0"0
sin(, cos(, tan(, sin–1(, cos–1(, tan–1(, sinh(, cosh(, tanh(, sinh–1(, cosh–1(, tanh–1(, log(, ln(, e^(, 10^(, '(,
3
'(, Abs(, Pol(, Rec(, arg(, Conjg(, Not(, Neg(, Rnd(, ∫(, d/dx(
$!&: sin 30 =
s30)w
s i n ( 30 )
05
'!&8
+2'",0$,+&#
• &D+"&@0: 2 × (5 + 4)
• &D+\"%".(": 2 × sin(30), 2 × '(3)
• &D+[<,*& (prefix) (+"): 2 × h123
• &D+%1&, +" !*+: 20 × A, 2 × π
):!
+,#"1',0'", ""4'2.
!&0.10"$+"!"+"
• '",+""&@0"""&@0
6 ÷ 2 (1 + 2) p 6 ÷ (2 (1 + 2))
6 ÷ A (1 + 2) p 6 ÷ (A (1 + 2))
1 ÷ (2 + 3) sin(30) p 1 ÷ ((2 + 3) sin(30))
• '",+1&, +" }}
2 ÷ 2'(2) p 2 ÷ (2'(2))
4π ÷ 2π p 4π ÷ (2π)
6 ÷ 2π p 6 ÷ (2π)
• &Z\"%$%"4*) (+"%+ Pol, Rec) 4$1+$4+0&Z""
&@0.
4"1 ++$+""&@0 $+""&@00.
3.!"4+.0!:#
!%\)%*(&
+2'""&@0:" "+ &D$4!",+0
w 0
$!&: (2 + 3) × (4 – 1) = 15
(2+3)*
(4-1w
( 2+ 3 ) × ( 4– 1
15
0(#&!
.
4&Z
12345 + 12345 + 12345
345 + 12345 + 12345I
.
410"
Th-8
• [<, &D4 +2$% d &"1'40
• 4&"$"+!".
4&4"!!"4 :"204
[<, "0! [<, &D4 +2$% e &
"!1'40
• 4# +20 f !&"0*0!".
4 c !&"0"*00
)!'("H (0%$3)
$!,'+&Z.
4",.( .
44'2:"$+4+ “
#&Z!” :"4*
99 ++2&Z.
4",.(:" %*00+. 99 0&. $%10"1+"&Z+4$!,'# 4'+$&11+"'
.$1#" (|) 1 ( ) #&Z!4*+++ 10 4'&&5&
'
. (k)
.0,!# :# $*0&Z.
4$1+"'1,-
3
k 0)!8
C('C"&(%
".0!&'00&Z!"0 $01 !4'2
.!&1+" 0
!"!!"&
$.0%+"+" $0! !&Z!&4'1
"1+"
93
+
C(
1+2+|34
1+2|34
1+2 + 4
1+2 3 4
C"&(%
$.0&Z!2#"+&501
$&&50! 0: 1D(INS)
0"&3()("9H0
$!&: "1! 369 × 13 $&5 369 × 12
369*13
369 × 13I
D2
369 × 12I
Th-9
%"&3()
$!&: "1! 369 × × 12 $&5 369 × 12
01
369**12
ddD
0!
369**12
dddD
369 ×× 12I
369 ×I12
369 ×× 12
369 × 12
0"&3()
93
+$01 $% d 1' e &"!!"""1! 0 D "# 1$+"2" $0! &"""
1! 4# $+"2"
9"&3()
93
4$1+$4+0011 +"
.""$.
4 $% d 1' e &"1+"+"
." 4# 4:"$+"
k $)9
.
4,+2" !10"!-.0
04'&D!:#4+0 w , "4!10"!-.0
0&D!:#1 0 d e 14'!&"1+"$
,$.0!-.0
0
$+21!0
$!&: +&Z 14 ÷ 0 × 2 = 14'&Z 14 ÷ 10 × 2 =
($+"+&#$%01)
14/0*2w
e d
Mat h ERROR
14 ÷ 0I×2
1+"!"!-.0
0
d1w
Th-10
14 ÷ 10 × 2
28
!"&+
,10"$!#20$*0,!"".0! 0 BASE 1+4'
'*&5+"
k )!88$
,!,.$% (+), (-), , (*) 1' (/)
$!&: 7 × 8  4 × 5 = 36
7*8-4*5w
36
k M2!
&Z(<+$%"109
' ({)
$!&)!8M2!
$!&(" 1: 3 14 + 1 23 = 4 11
12
3$1$4+
1$2$3w
$!&(" 2: 23 + 12 = 76 (&110"(<+: d/c)
2$3+1$2w
4{11{12
7{6
&$*
• 4#"0 (4 + (< + + + "1) !"-,(<++
10 -,4'10"&5&1(.
• ,&Z!&&'0+&5(<+1'(.& -,4'10"&5&1
(.
• +2&Z40&5+&'!"(<++# &Z!+&54-04'
0&5&1(.
%'!%%)!'%%%M2
$1&"4'$&5(<. (4(<.&54') 0 ! $(d/c)
%'!%%(M&'%%M2!
0 $ &'+"10"&1(.1'&1(<+
&$*
".0!+24&1(.&5&1(<+0 4"# 0$ %$(<+
(4 + (< + + + "1) + 10 Th-11
k )!83#$3
&Z+
[<,& (%) $+0&5+&
$!&)!83#$3
$!&(" 1: 2 % = 0.02
2 )
( 100
$!&(" 2: 150 × 20% = 30
2!((%)w
002
150*20
30
20 )
(150 × 100
!((%)w
$!&(" 3: 660 .0&5&!" 880?
660/880
!((%)w
75
$!&(" 4: . 2,500 !:# 15%
2500+2500*
15!((%)w
2875
$!&(" 5: 0 3,500 " 25%
3500-3500*
25!((%)w
2625
$!&(" 6: 0-!" 168, 98 1' 734 " 20%
168+98+734w
1000
-G*20!((%)w
800
$!&(" 7: .+"0 300 "$+"0. 500 $0+"0*0 800
800 .0&5&!" 500 ?
(500+300)
/500!((%)w
160
$!&(" 8: +
.!:#4 40 &5 46 .0&5&&1&"+?
(46-40)/40
!((%)w
Th-12
15
k )!8M,
, 1\ (I%)
HI%
&1
#]&Z+!].&50"#
{"(} $ {.&0} $ {
..&0} $
$!&: "&Z+ 2°30´30˝
2$30$30$w
2 ˚ 30 ˚ 30 ˚
2 ˚ 30 ˚ 30
• +"$++"(1'.&0 +++0"+4'&5(
$!&)!8I%
,!].&1+&4# '$-
3&5!].
• !]."4
• ,!].!].
$!&: 2°20´30˝ + 39´30˝ = 3°00´00˝
2$20$30$+
0$39$30$w
3 ˚ 0˚ 0
'!I%%I%
0 $ $'+"-,"10" +&'+"!].!].
$!&: "1&" 2.255 &5!].
2 ˚ 15˚ 18
2.255w$
!"$%,)
&'.,":!,1+'#"!"+ :"&'0.
4+&Z+1'-
, +2$%&'.,"0$0 COMP, CMPLX 1' BASE
k '!$)!8&
[<, ` *!!"410"+ !:+$&'.," "
0!$&'.," 0 f 0 f 1+'#"4'&5& (")
0,1+'#" 010"#".
4,1'-
3
$!&: 1+1w2+2w3+3w
3+ 3
6
f
2+2
4
Th-13
f
1+1
2
'+"0-+!&'.,"1+'#" [<, $ 4'&D+4 10"+
""!+0+" ($++) !"!0+$!,'# [<,#&D!:# 0 c "
(+&) -+!&'.,"
):!
• !&'.,"4'2*#"+0 p, &0, 1'$0
+
• #&'.,"40 +,
.$!,'&'.,"
1 !%*0+*0$&'.,"4'20. $
#+":
,#"$+
k "9&3
'+"!&'.,"&D4 0 d e 10"1'!+0
1! 0 e 10"0*0!".
4, 1'0 d 10"0"*0!"
.
4 "4&1&""1 0 w ,
$!&: 4 × 3 + 2.5 = 14.5
4 × 3 – 7.1 = 4.9
4×3+ 2 . 5
4*3+2.5w
d
DDDD-7.1w
145
4 × 3 + 2 . 5I
4×3 –7 . 1
49
$(!
k !&!))$%
(Ans)
-
3!",$+*#"".0!4'0:"+4 (Ans) 0.
9$'% Ans
$$% Ans , +4&5"!$4+ !4# '&1&"+"1'$0
&0!$4&'0+&#
• !!" Ans 4'21*#"+0.$0; +&#: ,-
3, .++4
+4.', 0+$1&0+!"1& &Z!2..$0 SD 0
REG
• $,,$-
3+:" -
3 (+"%+ ,
.0) +&D&5+14
4'0:$ Ans
• !$ Ans +&1&" .0!-.0
0,$!,'#
• +,4%."$0 CMPLX #"+4."1'+4.)
!"-
34'0
:$ Ans +" +4.)
!"-
34'2+&0,
Th-14
9 Ans )!8$C&$C$
$!&: "-
3!" 3 × 4 0 30
12
3*4w
(+) /30w
Ans ÷ 30
04
0 / &Z Ans 0.
&$*
$,\"%.$" ( 8) Ans 4'2$%&5.0. 9
'$,+&Z
\"%+"010 w
9 Ans )!8!&$!
$!&: "$%-
3!" 123 + 456 $,%*0:" 0"10"!"+"
123 + 456 = 579
789 – 579 = 210
123+456w
579
789-Kw
210
k !&!)'
+4.' (M) 0&.$%,-'
+[<, M 4 10"+++&5(+$+4.' +4.'
2$%0$*0, 0 SD 1'0 REG
[<, M
10M+
9
!&!)'
'+"++&Z-,10"+4 0 m .+# "$+4.' (M)
$!&: "
.-
3!" 105 ÷ 3 "$+4.' (M)
105/3m
Th-15
35
%!&!)'
'+"++&Z-,10"+4 0 1m(M–) +# 4+4
.' (M)
$!&: "-
3!" 3 × 2 4+4.' (M)
3*21m(M–)
6
&$*
0 m 1m(M–) !,'-,10"+4 .+# 4+4.'
):!
+&D+4+0 m 1m(M–) "4,4.#10 w -
, (:"2
.4+4.') +$%+!!"+4.'$!,'#
!&!)'
0 tm(M)
%!&!)' (
0)
01t(STO)m(M)
!!"+4.'1 [<, M 4'&44
k $!
".0!*$%1&4 %+ A, B, C, D, X 1' Y :"+2$%
:+
" +2$%"1&0$*0,
))!8
%$!
$%!#10"+&#
0+.
4,$1&
3+51t(STO)-(A)
$!&: "0 3 + 5 $1& A
"&(")
%$!
$&@00+0$1& 0 t 1'*%1&
t-(A)
$!&: &@00+0$1& A
$!
)!8
+2$%1&$,0$<,'0$%+
,
5+a-(A)w
$!&: ", 5 + A
%(")
%$! (
0)
$!&: "+1& A
01t(STO)-(A)
Th-16
k %!&!)(
"+&# +"!$+4.', +41& 1'+4
19(CLR)1(Mem)w
• ++"#"+!"".0! 0 A 10 w $!#!"
!"-/)001)
\"%10"$!#2$%0$*0,!"".0! 0 BASE 1+4'
'*&5+"
!'!)%)!81K3(!(&M$3
• ,&'&0\"%".(+)$" 4$%++-
,4'&D!:# &0+0$0; ".0!4+-,4'&D!:#
• "!04"',0.+ 0 A
()!
0!&831K3(!(&M$3
• <10"2:".!"\"% 4'!+)$"&‡ ({ }) 0&.1.4'
&5 {+} {.
4}
• "&‡ ({ }) &D+)$" ++"&Z+&D+)$"$
2
k 9& (π)
'(;^$I e
".0!*&Z+
(π) 1'.:3%.] e "$, 0 π 1' e 2
$%0$*0 0 BASE +&#&5+".0!$%+"1+'+)$"
π = 3.14159265358980 (1e(π))
e = 2.71828182845904 (Si(e))
k 1K3$"C8$'1K3$"C8$
0!&83'H
sin({n}), cos({n}), tan({n}), sin–1({n}), cos–1({n}), tan–1({n})
$!&: sin 30 = 0.5, sin–10.5 = 30 (+*: Deg)
s30)w
1s(sin–1)0.5)w
Th-17
05
30
&$*
• \"%+#2$%0$0 CMPLX 0.4'"+&54%." +"%+ 2
, i × sin(30) 0 1++2, sin(1 + i )
• +*+"$%$, +*2$&5+.$!,'#
k !&*
+21&"+&Z!&0+*:" $&5+*:" 0
"4$++1 0 1G(DRG') 10"410"0+"
D
R
G
1 2 3
1(D): "(
2(R): 0
3(G): 10
$!&: "1&" π2 0&5"( (+*: Deg)
(1e(π)/2)
1G(DRG')2(R)E
( π ÷2 ) r
90
k 1K30b93C%'1K30b93C%
0!&83'H
sinh({n}), cosh({n}), tanh({n}), sinh–1({n}), cosh–1({n}), tanh–1({n})
$!&: sinh 1 = 1.175201194
ws(sinh)1)E
1175201194
&$*
• "40 w '*\"%ˆ
. 1w '*\"%ˆ
.--1 0 s,
c, t
• \"%+#2$%0$0 CMPLX 1++2$%.&54%."
k 1K3#3C9"&'1K3(;
0!&83'H
10^({n}) ............................................10{n}
e^({n})...............................................e{n}
log({n}) .............................................log10{n}
log({m},{n}) .....................................log{m}{n}
ln({n}) ................................................loge{n}
(.:[)
(.:] {m})
(.:3%.)
Th-18
$!&(" 1: log216 = 4, log16 = 1.204119983
4
l2,16)E
l16)E
l o g ( 16 )
1204119983
0$&5] 10 (.:[) +'*]
$!&(" 2: ln 90 (loge 90) = 4.49980967
I90)E
449980967
k 1K3&)'1K3&)
0!&83'H
{n} x2.................................................{n}2
{n} x3.................................................{n}3
{n} x–1 ...............................................{n}–1
{(m)}^({n}) .......................................{m}{n}
'({n}) ........................................... {n}
3'({n}) .........................................3 {n}
({m})x'({n}) ................................{m} {n}
("")
(")
(+)
(!")
(")
()
(!"!")
$!&(" 1: ('
2 + 1) ('
2 – 1) = 1
(92)+1)
(92)-1)E
('( 2 ) + 1 ) ('( 2 ) – 1 )
1
2
$!&(" 2: –2 3 = –1.587401052
-2M2$3)E
– 2 ˆ ( 2{3 )
-1587401052
&$*
• \"% x2, x3, 1' x–1 2$%$,4%."$0 CMPLX 1'2$%.
&54%."\"%+#00
• ^(, '(, 3'(, x'( 2$%0$0 CMPLX %+ 1++2$%.&54%."
\"%+#
Th-19
k 9
(9d ↔ 9!)
".0!!"+21&"&'+"
.091'
.0%."!#0
o
o
.09 (Rec)
.0%."!# (Pol)
0!&83'H
1&"
.09&5
.0%."!# (Pol)
Pol(x, y)
x: + x !"
.09
y: + y !"
.09
1&"
.0%."!#&5
.09 (Rec)
Rec(r, )
r: + r !"
.0%."!#
: + !"
.0%."!#
$!&(" 1: "1&"
.09 ('
2, '
2) &5
.0%."!#
1+(Pol)92)
(+*: Deg)
,92))E
(0+!" θ)
t,(Y)
$!&(" 2: "1&"
.0%."!# (2, 30°) &5
.09
(+*: Deg)
1-(Rec)2,
30)E
(0+!" y)
t,(Y)
2
45
1732050808
1
&$*
• \"%+#2$%0$0 COMP, SD 1' REG
• -,10"9
'+ r + x 1+#
• + r (+ x) 04,4'20$1& X 1'+ (+ y) 4'20$
1& Y ( 16) $0+ (+ y) $10"+0$1& Y 10"$+"
• +!" 041&"
.09&5
.0%."!#+$%+" –180°< < 180°
• $%\"%1&"
.0$.
4, ,4'$%+1041&"
.0 (+ r + x)
+": Pol ('
2, '
2) + 5 = 2 + 5 = 7
Th-20
k )!89^3')!8*9^3
)!89^3
".0!!"+2,&.
300$%.3 Gauss-Kronrod
0!&83'H
∫ ( f (x), a, b, tol)
f (x):
a:
b:
tol:
\"%!" X (&Z\"%$%01& X)
!040+"!".,&.
3
!040!".,&.
3
.00
• .#2'0 $,# 4'$%+0&5 1 × 10–5
e
$!&: ∫1 In( x ) = 1
fIa0(X)),1,aI(e))E
∫ ( I n ( X ) , 1, e )
1
)!8*9^3
".0!!"+&',+*
30.3-+"(" (central difference)
0!&83'H
d/dx( f (x), a, tol)
f (x): \"%!" X (&Z\"%$%01& X)
a: +&Z!4*0 (4*0*
3) !"&'.3.Œ*
3
tol: .00
• .#2'0 $,# 4'$%+0&5 1 × 10–10
$!&: "*
34*0 x =
π
2
\"% y = sin(x) (+*: Rad)
1f(d/dx)sa0(X)),
1e(π)/2)E
d/ dx ( s i n ( X ) , π ÷2 )
0
!'!)%)!89^3')!8*9^3
• ,&.
31'*
320$0 COMP 1'0 PRGM (0": COMP)
+#
• ++&#+2$%$ f(x): Pol, Rec ++&#+2$%$ f(x), a, b, tol: ∫, d/dx
• $%\"%,..$ f(x) $'*+*&50
• 0+ tol $+%+
.2" 1+$,$%!:# 0+ tol $$%
+ 1 × 10–14 +
Th-21
!'!d9')%)!89^3
• 0&.,&.
3"$%$, 1
• f(x) 0 a x b (%+0$, ∫0 3x2 – 2 = –1) ,4'0-
3&5
• 0$,4+.++0 $!10"!-.0
0&D!:#
".0! #"!# :#+'0!" f(x) 1'.,!"&.
3
!'!d9')%)!8*9^3
• '&Z+ tol 1$+2+! (convergence) 0 +!" tol 4'0&
0.
• 4*0++", --*1", 4*0$[+;, 4*0&%, 4*0+2
*
3 4*0*
3-,*
3+!$( 4&5*$""0"
.0!-.0
00
)'))%)!89^3
=$
1K3%!9^3()
1K3 f(x) "%!'%
&.
311+' 1+&5+1'+ 4# 4:"-
3
∫
c
a
f(x)dx + (–
∫
b
c
f(x)dx)
(บวก S)
สวนที่เปนคาบวก สวนที่เปนคาลบ
(บวก S)
(าลบ S)
(าลบ S)
9^3"!!!%
!!+
!9^3
1+"%+"&.
3&5++; + (
1+"
#--"&5+;) 4# &.
31+'+ 14:"-
3
f (x)
0
∫
a
x1
x2
x3
x4
b
x
b
a
+
∫
f(x)dx =
b
x4
∫
x1
a
f(x)dx
Th-22
f(x)dx +
∫
x2
x1
f(x)dx + .....
k 1K3+
x!,
Abs(, Ran#, nPr, nCr, Rnd(
\"% x!, nPr 1' nCr 2$%0$0 CMPLX 1++2$%.&54%."
1("& (!)
,: {n}! ({n} "&543%. 0)
$!&: (5 + 3)!
(5+3)
1X(x!)E
40320
%83 (Abs)
,44." Abs( %+$2+,0+""+0 \"%#2$%0$0
CMPLX +, (!0) !"4%." 0'04 “,4%."” 25
,: Abs({n})
$!&: Abs (2 – 7) = 5
1)(Abs)2-7)E
5
$!* (Ran#)
\"%#$%"!*+(.1+" (0.000 2:" 0.999) \"%#+". 1'
2$%0$<,'01&
,: Ran#
$!&: $% 1000Ran# !*+4
10001.(Ran#)E
E
E
287
613
118
• +10"!"$%
10"&5+"+# +4."04\"%#".0!!"+4'1+"
&
Th-23
"&%"& (nPr)/ (nCr)
,: {n}P{m}, {n}C{m}
$!&: 2"&1'40+01$*+ 4 10 ?
101*(nPr)4E
5040
101/(nCr)4E
210
1K3KM2 (Rnd)
+2$%\"%&\0(< (Rnd) &\0(<!"+, .
4 -,'*0. &\0(<4''4![0"#"+410"
KM2)% Norm1 Norm2
1.0&\0(< 10 KM2)% Fix Sci
+0&\0(<410"'*
$!&: 200 ÷ 7 × 14 = 400
((. 3 1+")
(,)$$% 15 )
1Ne1(Fix)3
200/7E
*14E
28571
400000
+&",%*000$%\"%&\0(< (Rnd)
(,0$%+&\0(<1)
200/7E
10(Rnd)E
*14E
(-
3&\0(<1)
Th-24
28571
399994
$01 103 (ENG)
"".( (ENG) &510"4$&1!"-,'+"4+'+" 1 2:"
10 !"!" 10 :"0&.4'&5!,!" "".(&'0"&1
ENG 1' ENG
0 CMPLX +*$%"".(
k $!&)!8
ENG
$!&(" 1: "1&" 1234 &5&1"".(0 ENG
1234
1234 03
1234 00
1234E
W
W
$!&(" 2: "1&" 123 &5&1"".(0 ENG
123
0123 03
0000123 06
123E
1W(
)
1W(
)
!"(!7 (CMPLX)
$,+"$!# "0,&5 CMPLX
k H)!#
H)!$<9 (i)
$!&: "&Z 2 + 3i
2+3W(i)
Th-25
2 + 3 iI
H)!#
%%9!
$!&: "&Z 5 ∠ 30
51-(∠)30
5 30I
):!
&Z. $'*+*0"#"++*$!,'# !"".0!
k )!8)!#
".0!,-
3&54%."1 [<, R⇔I 4'&D!:#*0!!"4
1'4'10"9
'+4."+# $1 $'+"10"-+4."1'+4.)
0
1E(Re⇔Im)
$!&: "&Z 2 + 1i 1'10"-,
1,(SETUP)eee1(a+bi)
2+W(i)E
2+ i
2
10"+4."
1
1E(Re⇔Im)
10"+4.)
([<, i &D!:#10"+4.)
)
%%$)%)!8)!#
+2+"$0+":" '+"&1
.09&1
.0%."!# -,
4%."
14.)
14.)
o
r ⬔␪
a + bi
b
a
14."
o
14."
.09
.0%."!#
$%4#"+
'*&110"-.+" 0'04 “'*&110"
4%."” ( 7)
Th-26
k $!&)!8
%%9d (a+bi)
1,(SETUP)eee1(a+bi)
3 + i) = 2'
3 + 2i = 3.464101615 + 2i
$!&(" 1: 2 × ('
2*(93)+W(i))E
3464101615
1E(Re⇔Im)
2
92)1-(∠)
45E
1
1
$!&(" 2: '
2 ∠ 45 = 1 + 1i (+*: Deg)
1E(Re⇔Im)
%%9! (r∠)
1,(SETUP)eee2(r∠)
3 + i) = 2'
3 + 2i = 4 ∠ 30
$!&(" 1: 2 × ('
2*(93)+W(i))E
1E(Re⇔Im)
4
30
[<, ∠ &D!:#10"+ $!&(" 2: 1 + 1i = 1.414213562 ∠ 45 (+*: Deg)
1+1W(i)E
1414213562
1E(Re⇔Im)
45
1,(Conjg)2+3W(i))E
2
-3
k &*)!#
(Conjg)
$!&: "*!"4%." 2 + 3i
1E(Re⇔Im)
Th-27
k %83'3!$3
(Abs, arg)
$!&:
14.)
+,1'.!" 2 + 2i
(+*: Deg)
แกนจินตภาพ
b=2
o
+,:
1)(Abs)2+2W(i))E
.:
1((arg)2+2W(i))E
a=2
แกนจริง
2828427125
45
k %)%%)!#
'%*%%9d
%)!8
&Z 1-('a+bi) !",
2 ∠ 45 = 2 + 2i (+*: Deg)
$!&: 2'
292)1-(∠)45
1-('a+bi)E
1E(Re⇔Im)
2
2
'%*%%9!
%)!8
&Z 1+('r∠) !",
2 ∠ 45 = 2.828427125 ∠ 45 (+*: Deg)
$!&: 2 + 2i = 2'
2+2W(i)
1+('r∠)E
2828427125
1E(Re⇔Im)
45
Th-28
!"08 (SD/REG)
k *$!&)!8(=$
H*$!&
+2&Z!*++"0#"$%2"2.. (FreqOn) +$%2 (FreqOff) #"+
.!"".0! FreqOn +2.3&Z+"$%#"+2"2..$
4#"+ ( 7)
)!*&("H
4"*0!"!+&Z0!:#++0$%2 (FreqOn) +$%2 (FreqOff)
0 SD .............40 (FreqOn), 80 (FreqOff)
0 REG..........26 (FreqOn), 40 (FreqOff)
%*$!&
!*++"#"0+$+4$!,'# 4'2 +&0,1'+
&#"+2"2..
k )!8(=$%%$!"&!
$,+"$!# !#1$0,&5 SD
H*$!&
!=" (FreqOn)
+&#&5""$%&Z+%# x1, x2, ...xn, 1'2 Freq1, Freq2, ... Freqn
{x1}1,(;) {Freq1}m(DT)
{x2}1,(;) {Freq2}m(DT)
{xn}1,(;) {Freqn}m(DT)
&$*
2!"%#+&5:" +2&Z00
" {xn}m(DT) (+"'*2)
$!&: "&Z!+&#: (x, Freq) = (24.5, 4), (25.5, 6), (26.5, 2)
24.51,(;)4
m(DT)
m(DT)
Th-29
24 .5 ; 4I
0
L i ne =
1
".0!+ 4*0.#*0!"!1
25.51,(;)6m(DT)
26.51,(;)2m(DT)
L i ne =
3
0
!=" (FreqOff)
$,#$&Z!1+'10"0+"
{x1}m(DT) {x2}m(DT) ... {xn}m(DT)
*$!&K*%
"4&Z!*++" +20 c 0!0+&Z!& [<, $
10"+ "!+4*++"10"+4$!,'# [<, ` "!+#
$!&: "0!+&Z$+"!" “&Z!*++"” 29
(#"+2: FreqOn)
Ac
c
x 1=
245
F r e q 1=
4
#"+2"2.. FreqOn !4'10"0: x1, Freq1, x2, Freq2 &5 $,#"+ FreqOff
!4'10"0: x1, x2, x3 &5 +2$% f 0.(""!00
0*$!&
$1!!*++" $0+0"+, &Z+$+ 4# 0 E
$!&: "1!!*++" “Freq3” $ “&Z!*++"” 29
Af
3E
F r eq3=
2
F r eq3=
3
%*$!&
$!*++" $0+0"+ 10 1m(CL)
$!&: "!*++" “x2” $ “&Z!*++"” 29
Accc
Th-30
x 2=
255
L i ne =
1m(CL)
2
&$*
• +&#&5)
10"<,'!"!#"+1'"!
x1: 24.5
Freq1: 4
x2: 25.5
Freq2: 6
x3: 26.5
Freq3: 2
!:#
x1:
24.5
x2: 26.5
Freq1: 4
Freq2: 2
• #"+2"2..2&@0$%" (FreqOn) ! x 1'! Freq &5+4'2
%*$!&(
"+&#
!*++"#"0
19(CLR)1(Stat)E
++"!*++"#"0 0 A 10 E $!#!"
)!8(=$C&
*$!&("H
$,"2.. $&Z""10 E
)%)(=$
C SD
Ȉx2
Ȉx
11(S-SUM)1
-!"!*++"""
2
Σx2 = Σxi
n
-!"!*++"
Σx = Σxi
x̄
11(S-SUM)3
4!"*++"
11(S-SUM)2
12(S-VAR)1
+9
Σx
o= ni
σx
+"]!"&'%
σx =
minX
sx
12(S-VAR)2
+"]!"*++"
Σ(xi – o)2
n
sx =
12(S-VAR)e1
+*0!"*++"
12(S-VAR)3
maxX
Σ(xi – o)2
n–1
12(S-VAR)e2
+*0!"*++"
Th-31
k )!8(=$%%$!
$,+"$!# !#1$0,&5 REG
)!8==&
1+'#"+!+0 REG +"%.0!",202+"$%
)!8==&
1. !+0 REG
• 4# .,2024'&D!:# &'0"4 0+
2$% d 1' e &'+"4+";
2. $%"+"$0+":" +&# ,202+"
==&":
"&3":
1%." (y = a + bx)
1(Lin)
1.: (y = a + b Inx)
2(Log)
3(Exp)
1!%#" e (y = aebx)
b
1!" (y = ax )
4(Pwr)
1-- (y = a + b/x)
e1(Inv)
1"" (y = a + bx + cx2)
e2(Quad)
e3(AB-Exp)
1!%#" ab (y = abx)
&$*
+2&5,202%.0:" 04)$0 REG +" 0
12(S-VAR)3(TYPE) 10"4<,'010"$!# 1 !" .3
0!#!" %.0!",202+"
H*$!&
!=" (FreqOn)
+&#&5""$%&Z+%# (x1, y1), (x2, y2), ...(xn, yn) 1'2 Freq1, Freq2, ... Freqn
{x1},{y1}1,(;) {Freq1} m(DT)
{x2},{y2}1,(;) {Freq2} m(DT)
{xn},{yn}1,(;) {Freqn} m(DT)
&$*
2!"%#+&5:" +2&Z00
" {xn},{yn}m(DT) (+"'*2)
Th-32
0
!=" (FreqOff)
$,#$&Z!1+'10"0+"
{x1},{y1} m(DT)
{x2},{y2} m(DT)
{xn},{yn} m(DT)
*$!&K*%
"4&Z!*++" +20 c 0!0+&Z!& [<, $
10"+ "!+4*++"10"+4$!,'# [<, ` 10"+"!
+#
#"+2"2.. FreqOn !4'10"0: x1, y1, Freq1, x2, y2, Freq2 &5 $,#"+
FreqOff !4'10"0: x1, y1, x2, y2, x3, y3 &5 +2$% f 0.("
"!00
0*$!&
$1!!*++" $0+0"+, &Z+$+ 4# 0 E
%*$!&
$!*++" $0+0"+ 10 1m(CL)
%*$!&(
0 “!*++"#"0” ( 31)
)!8(=$C&
*$!&("H
$,"2.. $&Z""10 E
)%)(=$
C REG
)!')!*$!& ( S-SUM)
Ȉx2
-!"! x !"*++"""
Σx2 = Σxi2
n
Ȉy2
11(S-SUM)e1
-!"! y !"*++"""
Σy2 = Σyi2
Ȉxy
11(S-SUM)e2
-!"! y !"*++"
Σy = Σyi
11(S-SUM)2
-!"! x !"*++"
Σx = Σxi
11(S-SUM)3
4!"*++"
Ȉy
Ȉx
11(S-SUM)1
11(S-SUM)e3
-!"-,'+"! x ! y !"
*++"
Σxy = Σxiyi
Th-33
Ȉx2y
Ȉx3
11(S-SUM)d1
-!"-,'+"! x !"*++"
""! y !"*++"
Σx2y = Σxi2yi
Ȉx4
11(S-SUM)d2
-!"! x !"*++""
Σx3 = Σxi3
11(S-SUM)d3
-!"! x !"*++""
Σx4 = Σxi4
)d"&'%"&%$I ( VAR)
x̄
σx
12(S-VAR)1(VAR)1
+9!"! x !"*++"
+"]!"&'%!"! x
!"*++"
σx = Σ(xi – o)
Σx
o= ni
sx
2
n
ȳ
12(S-VAR)1(VAR)3
+"]*++"!"! x !"
*++"
sx =
σy
Σ(xi – o)
n–1
Σy
p = ni
2
+"]!"&'%!"! y
!"*++"
12(S-VAR)1(VAR)e1
+9!"! y !"*++"
12(S-VAR)1(VAR)e2
σy =
12(S-VAR)1(VAR)2
sy
12(S-VAR)1(VAR)e3
+"]*++"!"! y !"
*++"
Σ (yi – y)2
n
sy =
Σ (yi – y )2
n–1
)'(^{==&'C&'8)%==&("0
%%)
( VAR)
a
12(S-VAR)1(VAR)ee1
+" a !"202
12(S-VAR)1(VAR)ee2
b
+&'.3.Πb !"202
Th-34
12(S-VAR)1(VAR)ee3
r
+&'.3.Œ
3 r
xˆ
12(S-VAR)1(VAR)d1
$%+&Z+"#&5+ y +0&',!" x 0"."4202,
202$!,'#
yˆ
12(S-VAR)1(VAR)d2
$%+&Z+"#&5+ x +0&',!" y 0"."4202,
202$!,'#
)'(^{==&'C&'8)%==&%%)
( VAR)
a
12(S-VAR)1(VAR)ee1
+" a !"202
12(S-VAR)1(VAR)ee2
b
+&'.3.Πb !"202
12(S-VAR)1(VAR)ee3
c
+&'.3.Πc !"202
xˆ 1
12(S-VAR)1(VAR)d1
$%+&Z+"#&5+ y $%&D$ 37 +0&',+:" x
xˆ 2
12(S-VAR)1(VAR)d2
$%+&Z+"#&5+ y $%&D$ 37 +0&',
.+:" x
yˆ
12(S-VAR)1(VAR)d3
$%+&Z+"#&5+ x $%&D$ 37 +0&',+:" y
)$)*'* ( MINMAX)
minX
+*0!"! x !"*++"
Th-35
12(S-VAR)2(MINMAX)1
12(S-VAR)2(MINMAX)2
maxX
+"*0!"! x !"*++"
12(S-VAR)2(MINMAX)e1
minY
+*0!"! y !"*++"
12(S-VAR)2(MINMAX)e2
maxY
+"*0!"! y !"*++"
$$)!8'(^{==&'C&'8
==&
)
$)!8
Σyi – b.Σxi
a=
n
n.Σx y – Σxi.Σyi
b = . i 2i
n Σxi – (Σxi)2
+"!"202 a
&'.3.Œ202 b
n.Σxiyi – Σxi.Σyi
{n.Σxi2 – (Σxi)2}{n.Σyi2 – (Σyi)2}
y–a
m=
b
n = a + bx
r=
&'.3.Œ
3 r
+0&', m
+0&', n
==&%%)
)
$)!8
Σyi
Σxi
Σxi2
a=
–b
–c
n
n
n
( ) ( )
+"!"202 a
b=
&'.3.Œ202 b
c=
&'.3.Œ202 c
+"
Sxx = Σxi –
2
(Σxi )2
n
(Σx .Σy )
Sxy = Σxi yi – i i
n
Sxy.Sx 2x 2 – Sx 2y.Sxx 2
Sxx.Sx2x2 – (Sxx2)2
Sx 2y.Sxx – Sxy.Sxx2
Sxx.Sx2x2 – (Sxx2)2
. 2
Sxx2 = Σxi 3 – (Σxi Σxi )
n
2 2
Sx2x2 = Σxi 4 – (Σxi )
n
2.
Sx2y = Σxi 2yi – (Σxi Σyi )
n
Th-36
)
$)!8
+0&', m1
– b + b2 – 4c(a – y)
m1 =
2c
+0&', m2
– b – b2 – 4c(a – y)
m2 =
2c
+0&', n
n = a + bx + cx 2
==&%%(;
)
+"!"202 a
&'.3.Œ202 b
&'.3.Œ
3 r
$)!8
Σyi – b.Σlnxi
a=
n
n.Σ(lnxi)yi – Σlnxi .Σyi
b=
n.Σ(lnxi)2 – (Σlnxi)2
r=
n.Σ(lnxi)yi – Σlnxi.Σyi
{n.Σ(lnxi)2 – (Σlnxi)2}{n.Σyi2 – (Σyi)2}
y–a
b
+0&', m
m=e
+0&', n
n = a + blnx
==&%%") e
)
+"!"202 a
&'.3.Œ202 b
&'.3.Œ
3 r
$)!8
.
a = exp Σlnyi – b Σxi
(
n
)
n.Σxilnyi – Σxi.Σlnyi
b=
n.Σxi2 – (Σxi)2
n.Σxilnyi – Σxi.Σlnyi
r=
{n.Σxi2 – (Σxi)2}{n.Σ(lnyi)2 – (Σlnyi)2}
lny – lna
+0&', m
m=
+0&', n
n = aebx
b
Th-37
==&%%") ab
)
+"!"202 a
&'.3.Œ202 b
$)!8
Σlnyi – lnb.Σxi
n
(
)
n.Σx lny – Σx .Σlny
b = exp(
)
n.Σx – (Σx )
a = exp
i
i
i
2
i
i
i
2
n.Σxilnyi – Σxi.Σlnyi
{n.Σxi2 – (Σxi)2}{n.Σ(lnyi)2 – (Σlnyi)2}
&'.3.Œ
3 r
r=
+0&', m
m=
+0&', n
n = abx
lny – lna
lnb
==&%%&)
)
+"!"202 a
&'.3.Œ202 b
&'.3.Œ
3 r
$)!8
.
a = exp Σlnyi – b Σlnxi
(
n
)
n.Σlnxilnyi – Σlnxi.Σlnyi
b=
n.Σ(ln xi)2 – (Σln xi)2
n.Σlnxilnyi – Σlnxi.Σlnyi
r=
{n.Σ(lnxi)2 – (Σlnxi)2}{n.Σ(lnyi)2 – (Σlnyi)2}
ln y – ln a
b
+0&', m
m=e
+0&', n
n = a xb
==&
)
+"!"202 a
&'.3.Œ202 b
$)!8
Σyi – b.Σxi–1
a=
n
Sxy
b=
Sxx
Th-38
)
$)!8
r=
&'.3.Œ
3 r
+"
Sxx = Σ(xi–1)2 –
(Σxi–1)2
n
Sxy
Sxx.Syy
Syy = Σyi2– (Σyi)
n
)
2
Sxy = Σ(xi–1)yi –
Σxi–1.Σyi
n
$)!8
b
+0&', m
m=
+0&', n
n=a+
y–a
b
x
k $!&)!8(=$
!+&#10"#!"1.04+"; "0
1 2021'&'.3.Œ
3.04202%."
!"!
2 2021'&'.3.Œ
3.042021
.:!"!
3 &',+# 350 "0 0"."202"
1!"!
3-
3!"202*0
$()
)!!
20
50
80
110
140
170
200
230
260
290
320
!+0 REG 1'202%.":
N5(REG)1(Lin)
#"+2"2..&5 FreqOff:
1N(SETUP)dd2(FreqOff)
$+!*++":
20,3150m(DT)50,4800m(DT)
80,6420m(DT)110,7310m(DT)
140,7940m(DT)170,8690m(DT)
200,8800m(DT)230,9130m(DT)
260,9270m(DT)290,9310m(DT)
320,9390m(DT)
1
) ()
3150
4800
6420
7310
7940
8690
8800
9130
9270
9310
9390
==&
+"!"202 a:
12(S-VAR)1(VAR)ee1(a)E
Th-39
4446575758
&'.3.Œ202 b:
12(S-VAR)1(VAR)ee2(b)E
1887575758
12(S-VAR)1(VAR)ee3(r)E
0904793561
&'.3.Œ
3:
2
==&%%(;
2021.::
12(S-VAR)3(TYPE)2(Log)
x1=
20
+"!"202 a:
A12(S-VAR)1(VAR)ee1(a)E
–4209356544
12(S-VAR)1(VAR)ee2(b)E
2425756228
12(S-VAR)1(VAR)ee3(r)E
0991493123
&'.3.Œ202 b:
&'.3.Œ
3:
3
'8)
+,!"&'.3.Œ
32021.:+!$ 1 0"# 4',
&',+#0$%2021.:
+ x = 350:
350
12(S-VAR)1(VAR)d2(n)E
350 y
1000056129
!"+ (BASE)
$,+"$!# !#1$0,&5 BASE
k )!8I
'%*$&I
$%+&#
!]. x(DEC) !]., M(HEX) !].,
l(BIN) !]" i(OCT) !]1&0
Th-40
$!&)!8I
$!&: "!]&5]"1', 12 + 12
Al(BIN)1+1E
1+ 1
10
b
10"!]
(d: ]., H: ]., b: ]", o: ]1&0)
• &Z++2"4$.0 Syntax ERROR
• $0 BASE +*&Z+(<+ (].) 1'+!" !+"0!!"
4*0(.!"-,4'20.#"
$!&H')!8I%
$%+&#
$+!'4&5+!"!].: -(A), $(B), w(C), s(D), c(E), t(F)
$!&: "!]&5].1', 1F16 + 116
20
AM(HEX)1t(F)+1E
H
9&)!8("00
$!I
]"
]1&0
].
].
9&("00
+: 0 < x < 111111111
+: 1000000000 < x < 1111111111
+: 0 < x < 3777777777
+: 4000000000 < x < 7777777777
–2147483648 < x < 2147483647
+: 0 < x < 7FFFFFFF
+: 80000000 < x < FFFFFFFF
Math ERROR 4'.0!:# -,+%+"2$%0!"!].$!,'#
k 9^3("
I
0 x(DEC), M(HEX), l(BIN) i(OCT) !,'-,&D+4 1&"-
3
$&5!]"
$!&: "1&"+!]. 3010 $&5&1!]", ]1&0 1'].
Ax(DEC)30E
l(BIN)
i(OCT)
Th-41
30
11110
36
d
b
o
1E
M(HEX)
k H
LOGIC
$0 BASE X &"&510" LOGIC LOGIC &'04 0+
2$% d 1' e &'+"4+";
k '%*&I)%C&d9'
+2'*!]1+"&4!].$!,'# 0!,'&Z+
$!&)!8C&
'%*I
$!&: ", 510 + 516 1'10"-
3&5!]"
Al(BIN)X(LOGIC)d1(d)
5+X(LOGIC)d2(h)5E
d5 + h5
1010
b
k )!8!&I)!8($''%
".0!!"+2,"'0!]" 10 (10 .) 1'2,+&5
+"#"010"+&# &5,0#"+ BIN (]") &5!].
8$' (and)
$-
3!",'0.
$!&: 10102 and 11002 = 10002
1010X(LOGIC)1(and)1100E
1000
b
11011
b
110
b
!$' (or)
$-
3!"'0.
$!&: 10112 or 110102 = 110112
1011X(LOGIC)2(or)11010E
!$'%%#3#"1 (xor)
$-
3!"%."'1'0.
$!&: 10102 xor 11002 = 1102
1010X(LOGIC)e1(xor)1100E
Th-42
^!$'%%#3#"1 (xnor)
$-
3&5+.3!"%."'1'0.
$!&: 11112 xnor 1012 = 11111101012
1111X(LOGIC)3(xnor)101E
1111110101
b
1111110101
b
1111010011
b
9"$3/ (Not)
$+
(--'0.)
$!&: Not(10102) = 11111101012
X(LOGIC)e2(Not)1010)E
^ (Neg)
$+
"
$!&: Neg(1011012) = 11110100112
X(LOGIC)e3(Neg)101101)E
#$#% (PRGM)
+2$%0 PRGM "1':&1,+$%"&5&'4 +2
,$0; 2$%0$0 COMP, CMPLX, BASE, SD REG $&1
k <9!CC
'%*C()C
1++4'"1'$%"&1$0 PRGM 1+'&14' “0"” &1$%"
+2'*0"!"&1&50 COMP, CMPLX, BASE, SD REG :"+
+""1-+"$&1!"+' 14:"0"$'
!&!)C
+4&1!0#".# 390 :"2$%+'+"&10+.&1 :&1
..+20+4&1
k C
C
$!&: ""&11&"+.#&5. (1 .# = 2.54 .)
? → A : A × 2.54
Th-43
1. 0 ,g(PRGM) !+0 PRGM
ED I T RUN DEL
1
2
3
2. 0 b(EDIT)
#&1!&11 (P1 2:" P4)
EDI T Pr o g r am
P-1234 380
!0+4&1
3. 0!"!
#&1"+0$%"
• 4# 0"4'&D!:# $% e 1' d &'+"4 1 1'
4 2
MODE : COMP CMPLX
1
MODE : BASE SD REG
2
3 45
4 1
4 2
4. 0!"0+"0$&50"!"&1
• $# b(COMP) 4 1 0 COMP &5
I
0" 4# 10"41!&1
):!
000
++2&0"!"&10+&"401 00"4'
+"&1$++#
5. &Z&1
? →A : A × 2. 54
• $#4'&Z&10"#
&1
"
010
? → A : A × 2.54
!d(P-CMD)b(?)
!~(→)-(A)w
a-(A)*c.fe
• !d(P-CMD) 10"4&Z"
.(<!"&1 0'04 “&Z"” 46
6. "4&Z&141 0 A !5(EXIT)
• $$%"&1+
.""!:# 0 w 10"4 RUN Program 0'04
“$%"&1” 0+"
• "&4,&. 0 ,b !+0 COMP
Th-44
0C(""&
1. 0 ,g(PRGM)b(EDIT) 10"4 EDIT Program
2. $% ! b 2:" e #&1:&1+"1!
3. $% e 1' d &)$&1 1'0."
1!!!"
&1
..!$+
• 0 f !&"!"&1 c !&"
4. "41!&141 0 A !5(EXIT)
k C
+2$%"&10$0 PRGM 40
CC PRGM
1. 0 5
2. $% ! b 2:" e #&11'$%"&1$
##
C
C PRGM
1. 0 ,g(PRGM) 10"4.!"0 PRGM
2. 0 c(RUN)
• 4 RUN Program &D!:#
#&1!&11 (P1 2:" P4)
RUN Pr o g r am
P-1234 380
!0+4&1
3. $%! b 2:" e #&1:&1+"$%"
• .$%"&1$
#&1+
!()&0"!9@;
0 d e 4# 41!&14'&D!:# 0+1+"$.0
!-.0
0 $+1!&\[0"+0
k %C
+2&1+0 0'*!!"
#&1
%C
9("Cd9'
1. 0 ,g(PRGM) 10"4.!"0 PRGM
2. 0 d(DEL)
#&1!&11 (P1 2:" P4)
DELETE Pr o g r am
P-1234 380
!0+4&1
Th-45
3. $%! b 2:" e #&1!"&1+"
• [<,+204!!"
#&1:&1+
."&4'& 1'!10"#+"+4&1
DELETE Pr o g r am
4'
.!:#
P-1234 390
k H)
H)9M2C
1. '+"41!&1&D+4 0 !d (P-CMD)
• 4# 1 !""4'&D!:#
2. $% e 1' d -++"; 1'10"&'0"+"
3. $%! b 2:" e 1'&Z"+"
&$*
$&Z[<,"1 (:) 0 w
1K3("=H)C0
+2&Z#"+1'$%"; +$%'+",&.&5"&10
0'04 “!".""” 0+"
k )%)
!#$'01+'"+2$%$&10 " g &5+&'$%
"2&Z"$4&D!:#+0 !d(P-CMD) 5
)
9I
g
? ($)H)
,
? → {1&}
\"%
10"1+"&Z+ “{1&}?” 1'0+&Z$1&
+"
?→A
→
()$!)
,
{.
4 ; ?} → {1&}
\"%
0+04+&'"0 $1&"0!
+"
A+5 → A
: (:283$!%)
,
{%*0"} : {%*0"} : ... : {%*0"}
\"%
1%*0"4 0+*0"!"&1
+"
? → A : A2 : Ans2
Th-46
^
()(39*()
,
{%*0"} ^ {%*0"}
\"%
*0"!"&1%!,' 110"-!""$!,'# [<, Q
&D!:#'+"&1*0"%!,'0"#
+"
? → A : A2 ^ Ans2
)C&0"0
g
Goto ~ Lbl
,
Goto n : .... : Lbl n Lbl n : .... : Goto n (n = 4#"1+ 0 2:" 9)
\"%
"!" Goto n !&" Lbl n 0"
+"
? → A : Lbl 1 : ? → B : A × B ÷ 2 ^ Goto 1
):!
.0 Syntax ERROR + Lbl n $&10 Goto n &D+
)&"0'930
g
S
,
\"%
+"
1
2
{.
4} {0.&} {.
4} S {%*0"1} : {%*0"2} : ....
{.
4} S {%*0"1} : {%*0"2} : ....
""+""! $%+0.& (=, ≠, >, >, <, <)
, 1: " {%*0"1} "!"0!"" S &54." 4#
" {%*0"2} 1'; "4# 0 ! {%*0"1} &"!"0
!"" S &54 4# " {%*0"2} 1'; "4# 0
, 2: -&'.+!""!"0!"" S ++&5( 0+&5 “4."” 0"# " {%*0"1} 0 {%*0"2} 1'; "4# 0 -&'.+!""!"0!"" S +&5( 0+&5
“4” 0"# ! {%*0"1} 1" {%*0"2} 1'; "4# 0
Lbl 1 : ? → A : A > 0 S '(A) ^ Goto 1
=, ≠, >, >, <, < ($!)"&%("&%)
,
{.
4} {0.&} {.
4}
\"%
"+#$%&'.+.
4$1+'0 $+&54." (1) 4 (0) "
+#$%+"" S 1'40"" {.
4"!} !"" If
1'" While
+"
0+" S (), " If ( 48) 1'" While ( 49)
&$*
"+#$%&'.+.
4$1+'0 1'$+ 1 &54." 1' 0 &54 1:
-
3$ Ans
Th-47
)C!%*/) If
g
" If $%*"!"&1 0$0".
4" If (:"&5"!$
) +&54."&54
!'!)%) If
• If "$%+ Then $% If 0+ Then 34'$.0 Syntax ERROR
• .
4, " Goto " Break 2$%$ {.
4*} " Then 1' Else
If~Then (~Else) ~IfEnd
,
If {.
4"!} : Then {.
4*} : Else {.
4*} : IfEnd : {%*0"} : ...
\"%
• .
4"!" If +&54." "%*0"" Then &42:" Else
4# "%*0"" IfEnd %*0"" Else 0%*0"
" IfEnd 4'".
4"!" If +&54
• Else {.
4} 42'0
• "$+ IfEnd:{%*0"} 0 '4'+$.0!-.0
0 1+#"+
!"&14$.0-"+0"0 09
'4++"; "
" If
+" 1
? → A : If A < 10 : Then 10A ^ Else 9A ^ IfEnd : Ans×1.05
+" 2
? → A : If A > 0 : Then A × 10 → A : IfEnd : Ans×1.05
)C!%*/) For
g
" For *$%*0"+'+" For 1' Next "#4++0$1&
*4'+)$%+"0
!'!)%) For
" For "$%+" Next $% For 0+ Next 34'$.0 Syntax ERROR
For~To~Next
,
For {.
4 (+.)} → {1& (1&*)} To {.
4 (+.#*0)} : {%*0"} : ...
{%*0"} : Next : ....
\"%
"%*0"#"1+ For 2:" Next 1# 01&*4'
.+#"' 1 $
1+'" 1'.4+.0 +!"1&*2:"+.#*0
"4'!&"%*0"+4 Next "!"&1*0"+%*0"
+4 Next
+"
For 1 → A To 10 : A2 → B : B ^ Next
Th-48
For~To~Step~Next
,
For {.
4 (+.)} → {1& (1&*)} To {.
4 (+.#*0)} Step {.
4
(!#)} : {%*0"} : ... {%*0"} : Next : ....
\"%
"%*0"#"1+ For 2:" Next 1# 01&*4'
.+#"'+
4!# $1+'" 1'.4+.0 4'*!"
1 "# "10 For~To~Next
+"
For 1 → A To 10 Step 0.5 : A2 → B : B ^ Next
)C!%*/) While
g
While~WhileEnd
,
While {.
4"!} : {%*0"} : ... {%*0"} : WhileEnd : ....
\"%
"%*0"#"1+ While 2:" WhileEnd 1# .
4"!" While
+&54." (+&5() .
4"!" While +&54 (0) "%*0
"" WhileEnd
+"
? → A : While A < 10 : A2 ^ A+1 → A : WhileEnd : A÷2
&$*
"!!"" While &54#"1+"# "$1 "4'!&"%*0""
WhileEnd 0+"%*0"#"1+ While 2:" WhileEnd 11+#"0
)!%*C
Break
,
\"%
+"
g
.. : {Then ; Else ; S } Break : ..
"#"$#!" For While *0" 1'!&""20& 0&.
"4# '$%+)$" Then $%"! Break
? → A : While A > 0 : If A > 2 : Then Break : IfEnd : WhileEnd : A ^
)$
"+# "$<,'0#"++"; !"".0! 0'04 “#"+".0!”
6
):!
"#"+"" #"++04-$%"+&1&14'"44.#1
Th-49
)!&*
Deg, Rad, Gra
,
.. : Deg : ..
.. : Rad : ..
.. : Gra : ..
"
!,(SETUP)b(Deg)
!,(SETUP)c(Rad)
!,(SETUP)d(Gra)
\"%
"#$%'*#"++*
(COMP, CMPLX, SD, REG)
)%%
Fix
(COMP, CMPLX, SD, REG)
,
.. : Fix {n} : .. (n = 4#"1+ 0 2:" 9)
"
!,(SETUP)eb(Fix)a 2:" j
\"%
"#$%044*0(. (#"1+ 0 2:" 9) 10"-,
Sci
,
"
\"%
Norm
,
"
\"%
(COMP, CMPLX, SD, REG)
.. : Sci {n} : .. (n = 4#"1+ 0 2:" 9)
!,(SETUP)ec(Sci)a 2:" j
"#$%04![ (#"1+ 1 2:" 10) 10"-,
0 !,(SETUP)ec(Sci) 0 a 0![ 10 (COMP, CMPLX, SD, REG)
.. : Norm {1 ; 2} : ..
!,(SETUP)ed(Norm)b c
"# 0 Norm1 Norm2 +"$0+":" 10"-,
)"&!%!="(=$
FreqOn, FreqOff
(SD, REG)
,
.. : FreqOn : ..
.. : FreqOff : ..
"
!,(SETUP)db(FreqOn)
!,(SETUP)dc(FreqOff)
\"%
"#$%$%" (FreqOn) +$%" (FreqOff) 2"2..
Th-50
)%
ClrMemory
,
.. : ClrMemory : ..
"
!j(CLR)b(Mem)
\"%
"#+1&#"0$&5(
(COMP, CMPLX, BASE)
&$*
+1&" $$% 0 → {1&}
ClrStat
,
"
\"%
(SD, REG)
.. : ClrStat : ..
!j(CLR)b(Stat)
"#$%!*++""2..#"0:+$+4$!,'#
)"&!%!&!)'
M+, M–
,
"
\"%
(COMP, CMPLX, BASE)
.. : {.
4} M+ : .. / .. : {.
4} M– : ..
l/!l(M–)
M+ .+!".
4"$+4.' 1' M– +
)KM2 (Rnd)
Rnd(
,
"
\"%
(COMP, CMPLX, SD, REG)
.. : {.
4} : Rnd(Ans : ..
!a(Rnd)
"#$%&\0(<-, 0$0"410"00
&110"-
)$!I
Dec, Hex, Bin, Oct
,
.. : Dec : .. / .. : Hex : .. / .. : Bin : .. / .. : Oct : ..
"
x(DEC)/M(HEX)/l(BIN)/I(OCT)
\"%
"+# 0!],!]
Th-51
(BASE)
)H(=$
DT
,
(SD, REG)
.. : {.
4 (+ x)} ; {.
4 (+ Freq)} DT : ..
.............................0 SD, FreqOn
.. : {.
4 (+ x)} DT : ..
.............................0 SD, FreqOff
.. : {.
4 (+ x)} , {.
4 (+ y)} ; {.
4 (+ Freq)} DT : ..
......................... 0 REG, FreqOn
.. : {.
4 (+ x)} , {.
4 (+ y)} DT : ..
.........................0 REG, FreqOff
):!
$&Z"²) (;) $&1,!" 0 !,(;) $&Z4*) (,) 0 ,
"
l(&Z+ DT)
\"%
$%"#
&Z!*++":" %*0 " DT "$<,'0 l
( DT) $0 SD 1'0 REG
1K3("0%*
C
\"%+&#+*$%")$\"%
• \"%1&"-, (ENG , ENG , 1&"]. ↔ ]., 1&"(<+ ↔ !(.)
• 10"- (!w(Re⇔Im)) 10"-,4%."
• (!j(CLR)d(All)w)
• !#"+ (!j(CLR)c(Setup) w)
Th-52
:
k
)%!):)!8
".0!,$0"400[10"+&#
• $#",4''4&!
• ,+)$"4'0[+
)%
)!8
)^%&
Pol(, Rec(, ∫(, d/dx(, sin(, cos(, tan(, sin–1(, cos–1(,
tan–1(, sinh(, cosh(, tanh(, sinh–1(, cosh–1(, tanh–1(, log(,
ln(, e^(, 10^(, '(, 3'(, arg(, Abs(, Conjg(, Not(,
Neg(, Rnd(
x2, x3, x–1, x!, ° ´ ˝, °, r, g
^(, x'(
%
1
\"%"
2
3
\"%+
!", !"!"
&
(<+
4
[<,*&
5
,+0&',"2..
6
",'
7
8
"&, 40+
[<,4%."
,, 9
, +, 
10
0.&
=, ≠, >, <, >, <
11
,%."'
and
12
%."', %."'
1, .3!"%."
'1
or, xor, xnor
a b/c
(–) (")
d, h, b, o ([<,!])
m, n, m1, m2
",2'+"&Z0 + π,
e, 1& (2π , 5A, πA, 2i }}), \"%"
(2' (3), Asin(30) }}) 1'[<,*& (
")
nPr, nCr
∠
×, ÷
&$*
• ,&'0" +4"$++&5$" +"%+ +",
""!"+ –2 +"&Z: (–2)2 &5
'+ x2 &5\"%+ (['0 2, 0)
1'[+" :"&5[<,*& (['0 4)
-cxw
–22 = –4
(-c)xw
(–2)2 = 4
Th-53
• 0"10"$+"0+" ,",2'+$0["+,1'
&D"
1 ÷ 2π = 21π = 0.159154943
1 ÷ 2 × π = 12 π = 1.570796327
k !)!8,
)!$! '!("&$
"+&#10"%+"!", (%+"!"+&Z1'-
3), 4!$%,
)$", 1'""$,
%+"!",
,)$"
""
–99
±1×10
2:" ±9.999999999×1099 0
15 0& &5, ±1 10 !",0 0$,-
,$&1!"&5 ±1 ![*0!"1.
04''$,&5,+"
!H'!("&$)!81K3
1K3
sinx
cosx
tanx
sin–1x
cos–1x
tan–1x
sinhx
coshx
sinh–1x
cosh–1x
tanhx
tanh–1x
logx/lnx
10x
ex
!H
DEG
RAD
GRA
DEG
RAD
GRA
0 < | x | < 9×109
0 < | x | < 157079632.7
0 < | x | < 1×1010
sinx | x | = (2n–1)×90
sinx | x | = (2n–1)×π/2
sinx | x | = (2n–1)×100
0<|x|<1
0 < | x | < 9.999999999×1099
0 < | x | < 230.2585092
0 < | x | < 4.999999999×1099
1 < x < 4.999999999×1099
0 < | x | < 9.999999999×1099
0 < | x | < 9.999999999×10–1
0 < x < 9.999999999×1099
–9.999999999×1099 < x < 99.99999999
–9.999999999×1099 < x < 230.2585092
Th-54
1K3
'
x
x2
1/x
3
'
x
x!
nPr
nCr
Pol(x, y)
Rec(r, θ)
°’ ”
^(xy)
x'
y
a b/c
!H
0 < x < 1×10100
| x | < 1×1050
| x | < 1×10100 ; x G 0
| x | < 1×10100
0 < x < 69 (x &54)
0 < n < 1×1010, 0 < r < n (n, r &54)
1 < {n!/(n–r)!} < 1×10100
0 < n < 1×1010, 0 < r < n (n, r &54)
1 < n!/r! < 1×10100 1 < n!/(n–r)! < 1×10100
| x |, | y | < 9.999999999×1099
x2+y2 < 9.999999999×1099
0 < r < 9.999999999×1099
θ: sinx
| a |, b, c < 1×10100
0 < b, c
| x | < 1×10100
1&"!]. ↔ !].
0°0´0˝ < | x | < 9999999°59´59˝
x > 0: –1×10100 < ylog x < 100
x = 0: y > 0
m
x < 0: y = n,
2n+1 (m, n &54)
+": –1×10100 < ylog | x | < 100
y > 0: x G 0, –1×10100 < 1/x logy < 100
y = 0: x > 0
2n+1
y < 0: x = 2n+1, m (m G 0; m, n &54)
+": –1×10100 < 1/xlog | y | < 100
4, (<, +#"0"+. 10 ([<,"1)
• \"%&') ^(xy), x'
y, 3', x!, nPr, nCr "$%,)$+"+" :"$.0
0'4,$1+'#"0
• 04',1'4!0$[+$+!"4*001'4*0&!"\"%:" ;
k
!9
!10"!-.0
04'&D!:#4!"".0! +
,0-:".!040!"".0! ,++0*[
$$%
Mat h ERROR
+"!10"!-.0
0
Th-55
!9
+24!10"!-.0
00003.!"+"# ++4'&5!-.0
01
$0
• 0 d e 10"41!!".
4,+&Z!&+4'.0!-.0
0 0
+1+".0!-.0
0 0'04 “1+"!"!-.0
0” 10
• 0 A .
4,+&Z!&+4'.0!-.0
0 &0+ .
4,&5
*$.0!-.0
04'+$&'.,"0
)%!9
!#10"!"!10"!-.0
0#"0".0!210" #"*1'.3
"+$.0!-.0
0
Math ERROR
$*
• -,!#"!#*0+%+" !",0
• +&Z+%+"&Z0
• +
,",.(-.0' (+"%+ 0()
0
• 4+&Z1'044&5
• $%+4.'1&&5.!"\"% 4$1+$4+
+4+1&# +$%+"!"\"%0
0'0%+"&Z0 0 “%+"!",, 4! 1'""” 54
Stack ERROR
$*
0
,.2$"1!"! 1!""
• $.
4,"+!:# +$.2$"!"1
• "1,&5"++
Syntax ERROR
$*
0
,&\[4&1
4,1'1!4&5
Argument ERROR
$*
0
,.0&\[.3$%.
4.3$%.11!4&5
Th-56
9 Time Out
$*
0
,&.
3*
3*0"0"+4.#"!.#*0
,&.
3*
3: "
.+ tol &0+ .34# '02"!"
-
30%+
Data Full
$*
0
+
:!*++"$0 SD 0 REG !*++"
4$0 0:"+41
40$4!*++"+$!040$0 0'04 “4
"*0!"!&Z” 29
Go ERROR
$*
0
&1 (+"!:#$0 PRGM) &'0" “Goto n” 0+0
“Lbl n” 0"
0#"
. “Lbl n” " “Goto n” " “Goto n” $.0&\[
k $!%'%*()$...
!#+&#$0!-.0
0.0!:#'+", -,+&5&+
0.0 !#1+21&\[0 $!#+& &0+ +![
+"+!#+&#
1 4.
4!",
$1+$4++!-.0
0$0;
2 4$1+$4+ +$%02"&'),+"+
3 !#!"+2$$%"+)
0. $0 p ".0!4'42'!""
."#" ".0!
."-.0&. ".0!4'&+0,1'#"+&&5+
. 1'!#"0+$+4
4 !# 3 +2$$%"+)
0. $&01'#"++"; &5+. 0
0 !j(CLR)c(Setup)w
!;--'0,
"&%$$"
<4""4!"".0!10"$+1+ $%"".0!+&$!,'
1+ 4$0-"+2" &1<404"" 1+
".0!4'"&. 1++&1+"*; &‡
):!
2014'$!$+4#"0!"".0!2
Th-57
1. 0 1A(OFF) &@0".0!
• $1+$4++4'+&@0".0!0".[!,'&1 $1+".0!&
"0!"".0!
2. 20³)
&' 1'&10
!# (+) 1'!# (–)
Screw
$2"
3. &³
4. ."".0!: O19(CLR)3(All)w(Yes)
• +!!#0!
\$C$
".0!!"+4'&@0"0. +$%"$0; .+ 10 .0,0"+
0 p &@0".0!!:#$+
<(!
)011H("$:
: .0#"$0!"".0! (20+0)
1'0*: LR44 (GPA76) × 1
&*%$$"C&'8:
3 &‡ (.04$%" 1 %"+)
*8<
: 0`C 2:" 40`C
:
11.1 (") × 80 (") × 162 (:) .
)C&'8: 95 1
*83("
!&: 1+".0!
Th-58
Manufacturer:
CASIO COMPUTER CO., LTD.
6-2, Hon-machi 1-chome
Shibuya-ku, Tokyo 151-8543, Japan
Responsible within the European Union:
CASIO EUROPE GmbH
Casio-Platz 1
22848 Norderstedt, Germany
This
mark applies
in EU countries
only.
"
$# % &'($)
*
&+
#
CASIO COMPUTER CO., LTD.
6-2, Hon-machi 1-chome
Shibuya-ku, Tokyo 151-8543, Japan
SA1304-A
Printed in China
© 2013 CASIO COMPUTER CO., LTD.
Download PDF

advertising