Texas Instruments | TAS5782M Process Flows (Rev. B) | Application notes | Texas Instruments TAS5782M Process Flows (Rev. B) Application notes

Texas Instruments TAS5782M Process Flows (Rev. B) Application notes
Application Report
SLAA737B – March 2017 – Revised October 2017
TAS5782M Process Flows
Andy Liu (AIP)
ABSTRACT
The TAS5782M device has a powerful µCDSP audio processing core, which supports several selectable
process flows. This application report explains details of each process flow.
The TAS5782M process flows with standard processing, feature a few advanced audio processing blocks:
Dynamic Ranger Control (DRC), Automatic Gain Limiter (AGL), Dynamic Parametric Equalizer (DPEQ)
and Spatializer. A 3-band DRC + AGL structure limits the output power of the amplifier for three regions
while controlling the peaking that can occur in the crossover region during compression. DPEQ
dynamically adjusts the equalization curve that is applied to low-level signal and the curve that is applied
to high level signals. Spatializer increases the field of sound for a broader and more encompassing audio
experience.
TAS5782M process flows with SmartAmp Processing replaces traditional continuous power design
principles and hardware-based speaker protection methods with algorithms that allow significant increases
in peak power output, loudness, and sound quality relative to conventional amplifiers. Smart Amp tools
allow developers to understand how speakers are performing in the system and then make informed
decisions to improve performance. The algorithms, characterization, and tuning tools allow developers to
overcome a wide variety of audio challenges.
Contents
1
General Overview ............................................................................................................ 3
2
Process Flows Cross Reference........................................................................................... 5
3
Process Flow 1 (96 kHz, 2.0 Standard Processing) .................................................................... 6
4
Process Flow 2 (96 kHz, 2.0 SmartAmp Processing) ................................................................... 8
5
Process Flow 3 (48 kHz, 2.0 Standard Processing) ................................................................... 10
6
Process Flow 4 (48 kHz, 2.0 SmartAmp Processing) ................................................................. 12
7
Process Flow 5 (48 kHz, 2.1 Standard Processing) ................................................................... 14
8
Process Flow 6 (48 kHz, 2.1 SmartAmp Processing) ................................................................. 16
9
Audio Processing Blocks .................................................................................................. 18
10
Smart Amp .................................................................................................................. 32
11
Loudspeaker Characterization ............................................................................................ 36
12
Smart Amp Tuning ......................................................................................................... 39
Appendix A
DSP Memory Map ................................................................................................. 46
Appendix B
Power-Up and Power-Down Sequence ........................................................................ 87
List of Figures
1
TAS5782M Functional Block Diagram .................................................................................... 3
2
Process Flow 1 ............................................................................................................... 6
3
Process Flow 2 ............................................................................................................... 8
4
Process Flow 3 ............................................................................................................. 10
5
Process Flow 4 ............................................................................................................. 12
6
Process Flow 5 ............................................................................................................. 14
7
Process Flow 5 ............................................................................................................. 16
8
Input Mixer .................................................................................................................. 18
9
Input Mixer (Basic Tab) .................................................................................................... 18
SLAA737B – March 2017 – Revised October 2017
Submit Documentation Feedback
Copyright © 2017, Texas Instruments Incorporated
TAS5782M Process Flows
1
www.ti.com
10
Input Mixer (Advanced Tab) .............................................................................................. 19
11
Cascaded BQ Structure ................................................................................................... 19
12
Equalizer Tuning Window ................................................................................................. 20
13
Volume ....................................................................................................................... 21
14
................................................................................................
................................................................................................
Spatializer Tuning Window ................................................................................................
DPEQ ........................................................................................................................
DPEQ Tuning Window.....................................................................................................
Bass Mono Mixer ...........................................................................................................
3-Band DRC ................................................................................................................
DRC Attack and Decay ....................................................................................................
DRC Tuning Window ......................................................................................................
AGL Tuning Window .......................................................................................................
AGL Attack and Release ..................................................................................................
Crossover Tuning Window ................................................................................................
Phase Delay Tuning Window .............................................................................................
Clipper .......................................................................................................................
Output Crossbar (Basic Tab) .............................................................................................
Output Crossbar (Advanced Tab) ........................................................................................
Audio Clip A, 22-dB Peak-to-Average Ratio Source ..................................................................
Audio Clip B, 9-dB Peak-to-Average Ratio Source ....................................................................
PurePath™ Smart Amp Block Diagram .................................................................................
Smart Amp Development Overview .....................................................................................
Smart Amp Tuning Process...............................................................................................
Smart Amp Tuning Page ..................................................................................................
Power-Up Timing ...........................................................................................................
Power-Down Timing .......................................................................................................
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
Volume Attack and Decay
21
Spatializer Block Diagram
22
22
23
24
25
25
26
26
27
28
29
30
30
31
31
32
32
33
34
39
42
87
88
List of Tables
1
Supported Use Cases ....................................................................................................... 4
2
Process Flows 1–4 .......................................................................................................... 5
3
Process Flows 5–6 .......................................................................................................... 5
4
BQ Coefficients Normalization............................................................................................ 19
5
Recommended Presets Available in the GUI ........................................................................... 23
6
Bass Enhancement Parameters
7
DSP Memory Map for Process Flow 1 — Book 0x8C ................................................................. 46
8
DSP Memory Map for Process Flow 2 — Book 0x8C ................................................................. 51
9
DSP Memory Map for Process Flow 3 — Book 0x8C ................................................................. 56
10
DSP Memory Map for Process Flow 4 — Book 0x8C ................................................................. 63
11
DSP Memory Map for Process Flow 5 — Book 0x8C ................................................................. 70
12
DSP Memory Map for Process Flow 6 — Book 0x8C ................................................................. 79
.........................................................................................
43
Trademarks
PurePath is a trademark of Texas Instruments.
All other trademarks are the property of their respective owners.
2
TAS5782M Process Flows
SLAA737B – March 2017 – Revised October 2017
Submit Documentation Feedback
Copyright © 2017, Texas Instruments Incorporated
General Overview
www.ti.com
1
General Overview
1.8-V
Regulator
GVDD_REG
PVDD
AVDD
SPK_INA±
SPK_INB±
DAC_OUTB
DAC_OUTA
CPVSS
CN
CP
CPVDD
DVDD
DVDD_REG
In the signal processing path, a µCDSP audio processing core is placed after the Serial Audio Port and
before the Digital-to-Analog Converter (DAC), which precedes the Class D amplifier. This is illustrated in
Figure 1.
Internal
Voltage
Supplies
Charge
Pump
Internal Voltage
Supplies
Internal Gate
Drive Regulator
Closed Loop Class D Amplifier
µCDSP
Analog
to
PWM
Modulator
MCLK
SCLK
LRCK/FS
Serial
Audio
Port
Selectable
Process
Flows
DAC
Gate
Drives
Full Bridge
Power
Stage A
Gate
Drives
Full Bridge
Power
Stage B
SPK_OUTA+
Output
Current
Monitoring
and
Protection
SPK_OUTASPK_OUTB+
SPK_OUTB-
SDIN
Clock Monitoring
and Error Protection
SDOUT
Die Temperature
Monitoring and Protection
Error Reporting
Internal Control Registers and State Machines
GPIO0
RESET
GPIO2
SPK_MUTE
SPK_GAIN/FREQ
SPK_SD
SPK_FAULT
SCL
SDA
ADR0
ADR1
Copyright © 2016, Texas Instruments Incorporated
Figure 1. TAS5782M Functional Block Diagram
The µCDSP processor is thought of as a 2-input and 2-output digital signal processor. The two input
channels can come from a TDM stream, or a traditional I2S, left-justified or right-justified serial audio input
stream and are presented to the µCDSP through the serial audio port. The controls that configure the
serial audio port to accept various input formats are detailed in the TAS5782M device data sheet
(SLASEG8).
SLAA737B – March 2017 – Revised October 2017
Submit Documentation Feedback
Copyright © 2017, Texas Instruments Incorporated
TAS5782M Process Flows
3
General Overview
1.1
www.ti.com
Supported Use Cases
The TAS5782M process flows have been generated based upon several popular configurations, primarily
around the number and type of amplified outputs. Table 1 shows the use cases supported by available
process flows and PPC3 GUI.
Table 1. Supported Use Cases
Mode Also Known As Amplifier Output Configuration
4
Symbol in PPC3 GUI
2.0
Stereo
2.2
Dual stereo
Two devices drive two-way speakers in stereo. One device
drives two tweeters and one device drives two woofers.
2.2
Dual stereo
Two devices drive two-way speakers in stereo. One device
drives the left speaker and one device drives the right speaker.
1.1
Bi-amped, dual
mono
A single input signal is separated into high- and low-frequency
content. One BTL output drives a high-frequency transducer
and the other drives a low-frequency transducer.
2.1
N/A
One device uses 2.0 mode and a separate device uses mono
mode.
Mono
0.1
A single signal, created from one or both of the two input
signals sent via a single output created by placing the two
output channels in parallel into a single channel, usually to
drive more power
TAS5782M Process Flows
One device drives two full-range speakers in stereo.
SLAA737B – March 2017 – Revised October 2017
Submit Documentation Feedback
Copyright © 2017, Texas Instruments Incorporated
Process Flows Cross Reference
www.ti.com
2
Process Flows Cross Reference
Table 2 and Table 3show the processing features of each process flow available in the current PPC3 GUI.
Table 2. Process Flows 1–4
Process Flow 1
(96 kHz, 2.0 Standard
Processing)
Process Flow 2
(96 kHz, 2.0
SmartAMP
Processing)
Process Flow 3
(48 kHz, 2.0
Standard
Processing)
Process Flow 4
(48 kHz, 2.0
SmartAMP
Processing)
Maximum Internal Sample Rate
96 kHz
96 kHz
48 kHz
48 kHz
SRC (2× Decimator) and Autodetect (96 kHz -> 48 kHz or 88.2
kHz to 44.1 kHz)
×
×
√
√
Supported Input Sample Rates
(16 kHz, 32 kHz, 44.1 kHz, 48 kHz,
88.2 kHz and 96 kHz)
√
√
√
√
Biquads for EQ Filtering (Individual
Left and Right)
12
12
15
15
Input Mixer
√
√
√
√
Click and Pop Free Volume
√
√
√
√
Spatializer (Stereo Widening)
×
×
√
√
Dynamic Biquad
×
×
√
√
Bass Mono Mixer
×
×
√
√
3-Band DRC (2nd order)
√
×
√
×
AGL
√
×
√
×
Smart Excursion, Smart Thermal,
and Smart Bass
×
√
×
√
Output Clipper
√
√
√
√
Feature
Table 3. Process Flows 5–6
Process Flow 5
(48 kHz, 2.1 Standard
Processing)
Process Flow 6
(48kHz, 2.1 SmartAMP
Processing)
48 kHz
48 kHz
Supported Input Sample Rates (16 kHz, 32
kHz, 44.1 kHz, and 48 kHz)
√
√
Biquads for EQ Filtering (Individual Left
and Right)
15
15
Input Mixer
√
√
Click and Pop Free Volume
√
√
Spatializer (Stereo Widening)
√
√
Feature
Maximum Internal Sample Rate
Dynamic Biquad
√
√
Bass Mono Mixer
×
×
3-Band DRC (2nd order)
√
×
Automatic Gain Limiter
√
×
Smart Excursion, Smart Thermal and
Smart Bass
×
√
Output Clipper
√
√
SLAA737B – March 2017 – Revised October 2017
Submit Documentation Feedback
Copyright © 2017, Texas Instruments Incorporated
TAS5782M Process Flows
5
Process Flow 1 (96 kHz, 2.0 Standard Processing)
3
www.ti.com
Process Flow 1 (96 kHz, 2.0 Standard Processing)
This process flow supports an internal sample rate of 96 kHz and is therefore considered “true” 96 kHz. It
is intended for stereo speakers where the 3-band Dynamic Range Control (DRC) and AGL will have the
same coefficients for left and right. It is possible to tune the left and right Biquads (BQs) in the 12-BQ bank
individually between left and right.
Figure 2 depicts the signal path of this flow. The blocks in Figure 2 correspond to the functions found in
the PPC3 GUI.
AMP
L
Audio In
Input
Mixer
12 BQs
With
SmartEQ
Volume
3-Band DRC
(2nd Order)
AGL
Clipper
Crossbar
2:4
(With
Invert)
AMP
R
I2S Out
L
I2S Out
R
Figure 2. Process Flow 1
3.1
Input Mixer
The input mixer is used to mix the left and right channel input signals. Refer to Section 9.1 for more
details.
3.2
Equalizer
The equalizer contains 12 independent filters for both left and right channels. Refer to Section 9.2 for more
details.
3.3
Volume
This volume block is click and pop free. Refer to Section 9.3 for more details.
3.4
3-Band DRC
The 3-Band DRC can be used to automatically control the audio signal amplitude or the dynamic range
within specified limits. Refer to Section 9.4 for more details.
3.5
AGL
The AGL can also be used to automatically control the audio signal amplitude or dynamic range within
specified limits. Refer to Section 9.5 for more details.
3.6
Clipper
A THD boost and fine volume together can be used for clipping. The THD boost block allows the user to
programmatically increase the THD by clipping at an operating point earlier than that defined by the supply
rails. Refer to Section 9.11 for more details.
6
TAS5782M Process Flows
SLAA737B – March 2017 – Revised October 2017
Submit Documentation Feedback
Copyright © 2017, Texas Instruments Incorporated
Process Flow 1 (96 kHz, 2.0 Standard Processing)
www.ti.com
3.7
Output Crossbar
The crossbar provides the end user with a very flexible way to control what finally appears on amplifier
outputs and I2S SDOUT. Refer to Section 9.12 for more details.
3.8
DSP Memory Map
Refer to Section A.1 for the details.
SLAA737B – March 2017 – Revised October 2017
Submit Documentation Feedback
Copyright © 2017, Texas Instruments Incorporated
TAS5782M Process Flows
7
Process Flow 2 (96 kHz, 2.0 SmartAmp Processing)
4
www.ti.com
Process Flow 2 (96 kHz, 2.0 SmartAmp Processing)
This process flow supports an internal sample rate of 96 kHz and is therefore considered “true” 96 kHz.
This process flow is similar to process flow 1. The difference is the 3-Band DRC and AGL is removed to
free up processing resources for these three components: SmartBass with morphing, Excursion Limiter,
and Thermal Limiter.
Figure 3 depicts the signal path of this process flow. The blocks in Figure 3 correspond to the functions
found in the PPC3 GUI.
AMP
L
Audio In
Input
Mixer
12 BQs
With
SmartEQ
Volume
SmartBass
With Morphing
Excursion
Limiter
Thermal
Limiter
SmartAmp
SmartAmp
Clipper
Crossbar
2:4
(With
Invert)
AMP
R
I2S Out
L
I2S Out
R
Figure 3. Process Flow 2
4.1
Input Mixer
The input mixer is used to mix the left and right channel input signals. Refer to Section 9.1 for more
details.
4.2
Equalizer
The equalizer contains 12 independent filters for both left and right channels. Refer to Section 9.2 for more
details.
4.3
Volume
This volume block is click and pop free. Refer to Section 9.3 for more details.
4.4
Smart Bass, Excursion Limiter and Thermal Limiter
Smart Bass is an intelligent True Bass Alignment algorithm. Smart Bass uses the combination of the
speaker model and a desired target response selected by the user to equalize the speaker in the bass
region. This target response is critical for the sound character and the user can apply the same target
response to very different speakers and get the same sound. Refer to Section 10 to Section 12 for more
details.
Based on mechanical, electrical, and acoustical properties of speakers, Excursion Limiter and Thermal
Limiter can predict potentially damaging situations, take timely precautions and therefore protect speakers
from over-excursion and overheating.
4.5
Clipper
A THD boost and fine volume together can be used for clipping. The THD boost block allows the user to
programmatically increase the THD by clipping at an operating point earlier than that defined by the supply
rails. Refer to Section 9.11 for more details.
8
TAS5782M Process Flows
SLAA737B – March 2017 – Revised October 2017
Submit Documentation Feedback
Copyright © 2017, Texas Instruments Incorporated
Process Flow 2 (96 kHz, 2.0 SmartAmp Processing)
www.ti.com
4.6
Output Crossbar
The crossbar provides the end user with a very flexible way to control what finally appears on amplifier
outputs and I2S SDOUT. Refer to Section 9.12 for more details.
4.7
DSP Memory Map
Refer to Section A.2 for the details.
SLAA737B – March 2017 – Revised October 2017
Submit Documentation Feedback
Copyright © 2017, Texas Instruments Incorporated
TAS5782M Process Flows
9
Process Flow 3 (48 kHz, 2.0 Standard Processing)
5
www.ti.com
Process Flow 3 (48 kHz, 2.0 Standard Processing)
This process flow supports an internal sample rate of 48 kHz. It can accept both 48- and 96-kHz input
sample rate but will down sample the 96 kHz to 48 kHz with a 2× decimator. Compared to the true 96-kHz
process flow, this flow will have the same features but will on top of that also support: 2× decimator, 4th
order DPEQ, and bass mono mixer.
Figure 4 depicts the signal path of this process flow. The blocks in Figure 4 correspond to the functions
found in the PPC3 GUI.
AMP
AMP
LL
AMP
AMP
RR
Audio In
Input
Mixer
2x
Decimator
15 BQs
SmartEQ
Volume
Spatializer
DPEQ
Bass Mono
Mixer
3-Band DRC
AGL
(2nd Order)
Clipper
Crossbar
2:4
I2S
I2S out
out
LL
I2S
I2S out
out
RR
Figure 4. Process Flow 3
5.1
Input Mixer
The input mixer is used to mix the left and right channel input signals. Refer to Section 9.1 for more
details.
5.2
Decimator
A decimator is added in order to support the “pseudo 96 kHz” mode. The device will accept 96-kHz
sample rate and internally decimate it to 48 kHz for further processing.
5.3
Equalizer
The equalizer contains 15 independent filters for both left and right channels. Refer to Section 9.2 for more
details.
5.4
Volume
This volume block is click and pop free. Refer to Section 9.3 for more details.
5.5
Spatializer
Spatializer is a method to increase the field of sound for a broader and more encompassing audio
experience. Refer to Section 9.4 for more details.
5.6
DPEQ
The dynamic parametric equalizer is used to mix the audio signals through two signal paths (low level and
high level). These two paths are used with separate equalization properties. A third path monitors the
incoming audio and determines the thresholds and mixing characteristics between these two paths. Thus,
the mix between the two high- and low-level DBE channels is dynamic in nature and depends on the
incoming audio. Refer to Section 9.5 for more details.
5.7
Bass Mono Mixer
The bass mono mixer is used to mix left and right channels, effectively creating a mono signal below a
configurable frequency on both channels. Refer to Section 9.6 for more details.
10
TAS5782M Process Flows
SLAA737B – March 2017 – Revised October 2017
Submit Documentation Feedback
Copyright © 2017, Texas Instruments Incorporated
Process Flow 3 (48 kHz, 2.0 Standard Processing)
www.ti.com
5.8
3-Band DRC
The 3-Band DRC can be used to automatically control the audio signal amplitude or the dynamic range
within specified limits. Refer to Section 9.7 for more details.
5.9
AGL
The AGL can also be used to automatically control the audio signal amplitude or dynamic range within
specified limits. Refer to Section 9.8 for more details.
5.10 Clipper
A THD boost and fine volume together can be used for clipping. The THD boost block allows the user to
programmatically increase the THD by clipping at an operating point earlier than that defined by the supply
rails. Refer to Section 9.11 for more details.
5.11 Output Crossbar
The crossbar provides the end user with a very flexible way to control what finally appears on amplifier
outputs and I2S SDOUT. Refer to Section 9.12 for more details.
5.12 DSP Memory Map
Refer to Section A.3 for the details.
SLAA737B – March 2017 – Revised October 2017
Submit Documentation Feedback
Copyright © 2017, Texas Instruments Incorporated
TAS5782M Process Flows
11
Process Flow 4 (48 kHz, 2.0 SmartAmp Processing)
6
www.ti.com
Process Flow 4 (48 kHz, 2.0 SmartAmp Processing)
This process flow supports an internal sample rate of 48 kHz. It can accept both 48- and 96-kHz input
sample rate but will down sample the 96 kHz to 48 kHz with a 2× decimator.
The process flow is similar to Process Flow 3. The difference is the 3-Band DRC and AGL is removed to
free up processing resources for these three components: SmartBass with morphing, Excursion Limiter,
and Thermal Limiter.
Figure 5 depicts the signal path of this flow. The blocks in Figure 5 correspond to the functions found in
the PPC3 GUI.
AMP
L
AMP
R
Audio In
Input
Mixer
2x
Decimator
15 BQs
wIth
SmartEQ
Volume
Spatializer
DPEQ
Bass Mono
Mixer
SmartBass
wIth Morphing
Excursion
Limiter
Thermal
Limiter
SmartAmp
SmartAmp
Clipper
Crossbar
2:4
I2S Out
L
I2S Out
R
Figure 5. Process Flow 4
6.1
Input Mixer
The input mixer is used to mix the left and right channel input signals. Refer to Section 9.1 for more
details.
6.2
Decimator
A decimator is added in order to support the “pseudo 96 kHz” mode. The device will accept 96-kHz
sample rate and internally decimate it to 48 kHz for further processing.
6.3
Equalizer
The equalizer contains 15 independent filters for both left and right channels. Refer to Section 9.2 for more
details.
6.4
Volume
This volume block is click and pop free. Refer to Section 9.3 for more details.
6.5
Spatializer
Spatializer is a method to increase the field of sound for a broader and more encompassing audio
experience. Refer to Section 9.4 for more details.
6.6
DPEQ
The dynamic parametric equalizer is used to mix the audio signals through two signal paths (low level and
high level). These two paths are used with separate equalization properties. A third path monitors the
incoming audio and determines the thresholds and mixing characteristics between these two paths. Thus,
the mix between the two high- and low-level DBE channels is dynamic in nature and depends on the
incoming audio. Refer to Section 9.5 for more details.
6.7
Bass Mono Mixer
The bass mono mixer is used to mix left and right channels, effectively creating a mono signal below a
configurable frequency on both channels. Refer to Section 9.6 for more details.
12
TAS5782M Process Flows
SLAA737B – March 2017 – Revised October 2017
Submit Documentation Feedback
Copyright © 2017, Texas Instruments Incorporated
Process Flow 4 (48 kHz, 2.0 SmartAmp Processing)
www.ti.com
6.8
Smart Bass, Excursion Limiter and Thermal Limiter
Smart Bass is an intelligent True Bass Alignment algorithm. Smart Bass uses the combination of the
speaker model and a desired target response selected by the user to equalize the speaker in the bass
region. This target response is critical for the sound character and the user can apply the same target
response to very different speakers and get the same sound. Refer to Section 10 to Section 12 for more
details.
Based on mechanical, electrical, and acoustical properties of speakers, Excursion Limiter and Thermal
Limiter can predict potentially damaging situations, take timely precautions and therefore protect speakers
from over-excursion and overheating.
6.9
Clipper
A THD boost and fine volume together can be used for clipping. The THD boost block allows the user to
programmatically increase the THD by clipping at an operating point earlier than that defined by the supply
rails. Refer to Section 9.11 for more details.
6.10 Output Crossbar
The crossbar provides the end user with a very flexible way to control what finally appears on amplifier
outputs and I2S SDOUT. Refer to Section 9.12 for more details.
6.11 DSP Memory Map
Refer to Section A.4 for the details.
SLAA737B – March 2017 – Revised October 2017
Submit Documentation Feedback
Copyright © 2017, Texas Instruments Incorporated
TAS5782M Process Flows
13
Process Flow 5 (48 kHz, 2.1 Standard Processing)
7
www.ti.com
Process Flow 5 (48 kHz, 2.1 Standard Processing)
This process flow supports an internal sample rate of 48 kHz. This supports 2.1 and 1.1 speaker
configurations and therefore supports components for a digital crossover. The 15 BQs can be tuned
individually between left and right, but all other components in the stereo path will have the same tuning
coefficients for left and right.
Figure 6 depicts the signal path of this flow. The blocks in Figure 6 correspond to the functions found in
the PPC3 GUI.
Crossover
(5 BQs)
Audio In
Input
Mixer
15 BQs
w/ SmartEQ
Volume
Spatializer
DPEQ
(4th Order)
Phase
Optimizer
(Delay)
AMP
L
3-Band DRC
nd
(2
AGL
Order)
Clipper
AMP
R
2.0 (Tweeter)
Crossbar
3:4
0.1 (Woofer)
Crossover
(5 BQs)
I2S Out
L
Phase
Optimizer
(Delay)
3-Band DRC
AGL
(2nd Order)
Clipper
I2S Out
R
Figure 6. Process Flow 5
7.1
Input Mixer
The input mixer is used to mix the left and right channel input signals. Refer to Section 9.1 for more
details.
7.2
Equalizer
The equalizer contains 15 independent filters for both left and right channels. Refer to Section 9.2 for more
details.
7.3
Volume
This volume block is click and pop free. Refer to Section 9.3 for more details.
7.4
Spatializer
Spatializer is a method to increase the field of sound for a broader and more encompassing audio
experience. Refer to Section 9.4 for more details.
7.5
DPEQ
The dynamic parametric equalizer is used to mix the audio signals through two signal paths (low level and
high level). These two paths are used with separate equalization properties. A third path monitors the
incoming audio and determines the thresholds and mixing characteristics between these two paths. Thus,
the mix between the two high- and low-level channels is dynamic in nature and depends on the incoming
audio. Refer to Section 9.5 for more details.
7.6
Crossover
The crossover block is used to set low pass filters on the woofer and high pass filters on the tweeter.
Refer to Section 9.9 for more details.
7.7
Phase Optimizer
The phase optimizer allows time aligning the 2.0 (tweeter) path with the 0.1 (woofer) path. Refer to
Section 9.10 for more details.
14
TAS5782M Process Flows
SLAA737B – March 2017 – Revised October 2017
Submit Documentation Feedback
Copyright © 2017, Texas Instruments Incorporated
Process Flow 5 (48 kHz, 2.1 Standard Processing)
www.ti.com
7.8
3-Band DRC
The 3-Band DRC can be used to automatically control the audio signal amplitude or the dynamic range
within specified limits. Refer to Section 9.7 for more details.
7.9
AGL
The AGL can also be used to automatically control the audio signal amplitude or dynamic range within
specified limits. Refer to Section 9.8 for more details.
7.10 Clipper
The clipper allows the user to programmatically increase the THD by clipping at an operating point earlier
than that defined by the supply rails. Refer to Section 9.11 for more details.
7.11 Output Crossbar
The crossbar provides the end user with a very flexible way to control what finally appears on amplifier
outputs and I2S SDOUT. Refer to Section 9.12 for more details.
7.12 DSP Memory Map
Refer to Section A.5 for details.
SLAA737B – March 2017 – Revised October 2017
Submit Documentation Feedback
Copyright © 2017, Texas Instruments Incorporated
TAS5782M Process Flows
15
Process Flow 6 (48 kHz, 2.1 SmartAmp Processing)
8
www.ti.com
Process Flow 6 (48 kHz, 2.1 SmartAmp Processing)
The process flow is similar to Process Flow 5. The difference is the 3-Band DRC and AGL is removed to
free up processing resources for these three components: SmartBass with morphing, Excursion Limiter
and Thermal Limiter.
Figure 7 depicts the signal path of this flow. The blocks in Figure 6 correspond to the functions found in
the PPC3 GUI.
Crossover
(5 BQs)
Audio In
Input
Mixer
15 BQs
w/ SmartEQ
Volume
Spatializer
DPEQ
(4th Order)
Phase
Optimizer
(Delay)
Thermal
Limiter
AMP
L
Clipper
SmartAmp
AMP
R
2.0(Tweeter)
Crossbar
3:4
0.1(Woofer)
Crossover
(5 BQs)
I2S Out
L
Phase
Optimizer
(Delay)
SmartBass
w/Morphing
Excursion
Limiter
Thermal
Limiter
SmartAmp
SmartAmp
Clipper
I2S Out
R
Figure 7. Process Flow 5
8.1
Input Mixer
The input mixer is used to mix the left and right channel input signals. Refer to Section 9.1 for more
details.
8.2
Equalizer
The equalizer contains 15 independent filters for both left and right channels. Refer to Section 9.2for more
details.
8.3
Volume
This volume block is click and pop free. Refer to Section 9.3 for more details.
8.4
Spatializer
Spatializer is a method to increase the field of sound for a broader and more encompassing audio
experience. Refer to Section 9.4 for more details.
8.5
DPEQ
The dynamic parametric equalizer is used to mix the audio signals through two signal paths (low level and
high level). These two paths are used with separate equalization properties. A third path monitors the
incoming audio and determines the thresholds and mixing characteristics between these two paths. Thus,
the mix between the two high- and low-level channels is dynamic in nature and depends on the incoming
audio. Refer to Section 9.5 for more details.
8.6
Crossover
The crossover block is used to set low pass filters on the woofer and high pass filters on the tweeter.
Refer to Section 9.9 for more details.
8.7
Phase Optimizer
The phase optimizer allows time aligning the 2.0 (tweeter) path with the 0.1 (woofer) path. Refer to
Section 9.9 for more details.
16
TAS5782M Process Flows
SLAA737B – March 2017 – Revised October 2017
Submit Documentation Feedback
Copyright © 2017, Texas Instruments Incorporated
Process Flow 6 (48 kHz, 2.1 SmartAmp Processing)
www.ti.com
8.8
Smart Bass, Excursion Limiter and Thermal Limiter
Smart Bass is an intelligent True Bass Alignment algorithm. Smart Bass uses the combination of the
speaker model and a desired target response selected by the user to equalize the speaker in the bass
region. This target response is critical for the sound character and the user can apply the same target
response to very different speakers and get the same sound. Refer to Section 10 to 12 for more details.
8.9
Clipper
The clipper allows the user to programmatically increase the THD by clipping at an operating point earlier
than that defined by the supply rails. Refer to Section 9.11 for more details.
8.10 Output Crossbar
The crossbar provides the end user with a very flexible way to control what finally appears on amplifier
outputs and I2S SDOUT. Refer to Section 9.12 for more details.
8.11 DSP Memory Map
Refer to Section A.6 for details.
SLAA737B – March 2017 – Revised October 2017
Submit Documentation Feedback
Copyright © 2017, Texas Instruments Incorporated
TAS5782M Process Flows
17
Audio Processing Blocks
9
Audio Processing Blocks
9.1
Input Mixer
www.ti.com
The input mixer can be used to mix the left and right channel input signals as shown in Figure 8. The input
mixer has four coefficients, which control the mixing and gains of the input signals.
Figure 8. Input Mixer
The Basic tab (see Figure 9) provides the easiest way for configuration in PPC3 GUI.
Figure 9. Input Mixer (Basic Tab)
18
TAS5782M Process Flows
SLAA737B – March 2017 – Revised October 2017
Submit Documentation Feedback
Copyright © 2017, Texas Instruments Incorporated
Audio Processing Blocks
www.ti.com
Switch to the Advanced tab (see Figure 10) if all the four coefficients need to be adjusted. Note that the
four parameters need to be specified in decibels (dB). The Invert options will reverse the sign of the gain
values.
Figure 10. Input Mixer (Advanced Tab)
9.2
Equalizer
The equalizers are implemented using cascaded “direct form 1” BQs structures as shown in Figure 11.
Figure 11. Cascaded BQ Structure
H(z) =
b0 + b1Z -1 + b2 Z -2
a0 + a1Z -1 + a2 Z -2
(1)
All BQ coefficients are normalized with a0 to ensure that a0 is equal to 1. The structure requires 5 BQ
coefficients as shown in Table 4. Any BQ with coefficients greater than 1 undergoes gain scaling.
Table 4. BQ Coefficients Normalization
BQ Coefficient
Coefficient Calculation
A0_DSP
b0 / a0
A1_DSP
b1 / (a0 × 2)
A2_DSP
b2 / a0
B1_DSP
–a1 / (a0 × 2)
B2_DSP
–a2 / a0
SLAA737B – March 2017 – Revised October 2017
Submit Documentation Feedback
Copyright © 2017, Texas Instruments Incorporated
TAS5782M Process Flows
19
Audio Processing Blocks
www.ti.com
Depending on the process flow selected, the Equalizer Tuning window may contain 12 or 15 independent
filters for both left and right channels. They are designed for tuning the frequency response of the overall
system. This is where the bulk of the frequency compensation occurs. Complex tuning shapes can be
made to compensate for deficiencies in speaker response.
As Figure 12 shows, each filter has quite a few different filter types and can be turned on or off
independently. All the changes to these filters are reflected in Figure 12. The composite plot (red) shows
the overall frequency response alteration applied to the incoming digital audio data. Phase, Group Delay,
Impulse Response and Pole zero charts are also available on the right side.
Figure 12. Equalizer Tuning Window
The equalizers for left and right channels are ganged by default, but they can be configured independently
by deselecting the Gang option. For the first two 96-kHz process flows, the Gang option is handled
by the GUI but for the two other flows, this is done with a multiplexer, which saves half of the
writes in gang mode.
20
TAS5782M Process Flows
SLAA737B – March 2017 – Revised October 2017
Submit Documentation Feedback
Copyright © 2017, Texas Instruments Incorporated
Audio Processing Blocks
www.ti.com
9.3
Volume
Figure 13 shows the default volume in PPC3 GUI. Note that volume needs to be specified in decibels
(dB). Independent volume change for the left and right channels is achieved by deselecting the Gang
option.
Figure 13. Volume
The volume block is implemented using an alpha filter structure. As Figure 14 shows, when a volume level
change is initiated, the volume block will assure a smooth transition to the newly commanded volume level
without producing artifacts such as pops and clicks.
Volume
td
Volume
ta
Figure 14. Volume Attack and Decay
SLAA737B – March 2017 – Revised October 2017
Submit Documentation Feedback
Copyright © 2017, Texas Instruments Incorporated
TAS5782M Process Flows
21
Audio Processing Blocks
9.4
www.ti.com
Spatializer
Spatializer is a method to increase the field of sound for a broader and more encompassing audio
experience. Here, copies of the left and right channels are subtracted from each other. This creates a
signal that removes any audio or instrumentation that is shared by both channels. Next a bandpass filter
sets the frequency range for which the effect is active. After which, a level control adjusts the strength of
this channel before being reintroduced back into the original left and right channels.
Figure 15. Spatializer Block Diagram
It is generally not recommend extending the bandpass filter below 300 Hz, since low-frequency content
often presents itself in both channels. Extending the bandpass too low results in a loss of bass response.
Similarly, extending the bandpass too high can create effects similar to reverb which can blur the spatial
cues of music.
In the Spatializer Tuning window (see Figure 16), the pass band can be set as well as the Level which
controls the level of the effect.
Figure 16. Spatializer Tuning Window
22
TAS5782M Process Flows
SLAA737B – March 2017 – Revised October 2017
Submit Documentation Feedback
Copyright © 2017, Texas Instruments Incorporated
Audio Processing Blocks
www.ti.com
For a given piece of end equipment, it may be helpful to create three presets from which to choose. This
provides the option of choosing the preferred type of spatializing effect. The three settings can vary both
the HPF, LPF, and effect intensity and their settings stored in the system processor to be updated upon a
button press from the end user.
Three recommended presets are available in the GUI:
Table 5. Recommended Presets Available in the GUI
9.5
Preset
Frequency Range
Level
Full
300 Hz to 20 kHz
0.75
Medium
800 Hz to 6 kHz
0.5
Low
4 kHz to 20 kHz
0.25
Comment
Reverberant sounding
Works well in systems with a flat frequency response up to 16-18
kHz.
DPEQ
The dynamic parametric equalizer mixes the audio signals routed through two paths containing two
Biquads each based upon the signal level detected by the sense path, as shown in Figure 17.
Figure 17. DPEQ
SLAA737B – March 2017 – Revised October 2017
Submit Documentation Feedback
Copyright © 2017, Texas Instruments Incorporated
TAS5782M Process Flows
23
Audio Processing Blocks
www.ti.com
Figure 18. DPEQ Tuning Window
Dynamic Mix Thresholds
The Energy(ms) simply tells the algorithm for how long to average the samples of audio before it
determines how it compares to the mixing thresholds. The shorter the time, the faster the mixer reacts to
changes in the input signal level. The longer the time, the slower the mixer reacts to changes in level.
The mixing of the two paths (low level and high level) is controlled by setting the Threshold Low (dB) and
Threshold High (dB). When the averaged signal (as set by the Energy) is below the Threshold Low, the
dynamic mixer sends all of the audio through the low-level path. When the signal is above the Threshold
High, it is sent through the upper-level path. When the signal is between the two, it is mixed together by
the dynamic mixer level.
Energy Sense
The sense path contains 2 configurable Biquads, which can be used to focus the DEQ sensing on a
specific frequency bandwidth.
Low Level EQ
The low-level path also has 2 configurable Biquads to establish the EQ curve which the audio is sent
through when the time average signal is at a low-level. This fully-functional Biquad can be assigned to
several filter types. This determines frequency response when low-level is active based on the Energy
configuration and the mixing thresholds.
High Level EQ
The high-level path, similar to the low-level path, has 2 Biquads that can set the EQ curve used when the
time averaged input signal is above the upper mixing threshold.
24
TAS5782M Process Flows
SLAA737B – March 2017 – Revised October 2017
Submit Documentation Feedback
Copyright © 2017, Texas Instruments Incorporated
Audio Processing Blocks
www.ti.com
9.6
Bass Mono Mixer
Mono Bass Frequency is the cross over point below which the left and right channels are mixed,
effectively creating a mono signal below that frequency on both channels. In systems with a common
cabinet for left and right drivers this control ensures against the possibility of a drop in the bass level due
to phase mismatch between the left and right channel signals. For passive radiator systems with 2 active
speakers and 1 passive, the bass mono mixer must be used if a SmartAmp processing is selected.
Figure 19. Bass Mono Mixer
9.7
3-Band DRC
The Dynamic Range Control (DRC) is a feed-forward mechanism that can be used to automatically control
the audio signal amplitude or the dynamic range within specified limits. The dynamic range control is done
by sensing the audio signal level using an estimate of the alpha filter energy then adjusting the gain based
on the region and slope parameters that are defined. The 3-Band DRC is shown in Figure 20.
Figure 20. 3-Band DRC
The 3-band DRC is comprised of three DRCs that can be spilt into three bands using the BQ at the input
of each band. The DRC in each band is equipped with individual energy, attack, and decay time
constants. The DRC time constants control the transition time of changes and decisions in the DRC gain
during compression or expansion. The energy, attack, and decay time constants affect the sensitivity level
of the DRC. The shorter the time constant, the more aggressive the DRC response, and vice versa.
SLAA737B – March 2017 – Revised October 2017
Submit Documentation Feedback
Copyright © 2017, Texas Instruments Incorporated
TAS5782M Process Flows
25
Audio Processing Blocks
www.ti.com
Figure 21. DRC Attack and Decay
This DRC can be used for power limiting and signal compression; therefore, it must be tested with
maximum signal levels for the desired application. Use a resistive load for initial testing. However, the
speaker used in the end application must be used for final testing and tweaking.
Figure 22. DRC Tuning Window
The DRC Tuning window consists of three identical windows for low, mid, and high bands. Each has a
DRC curve that offers 3 regions of compression. The points on the DRC curve can be dragged and
dropped.
Below each DRC plot, parameters such as threshold, offset, and ratio can be manually typed in for each
of the 3 regions. By typing a value and pressing Enter on the keyboard, the DRC curve automatically
adjusts to the entered parameter.
26
TAS5782M Process Flows
SLAA737B – March 2017 – Revised October 2017
Submit Documentation Feedback
Copyright © 2017, Texas Instruments Incorporated
Audio Processing Blocks
www.ti.com
DRC Time Constant
Change time constants by entering new values for each band.
Attack(ms) determines the attack time of the DRC and Decay(ms) determines the release time once the
windowed energy band passes. Energy(ms) controls the time averaging windowing uses to determine the
average signal energy; therefore, where the incoming signal compares to the set DRC curve. It is
beneficial to have control over the DRC time constant for a given frequency band to avoid beating tones
caused by the DRC attack and the incoming signal frequency.
The mixer gain controls the relative gain of each of the 3 frequency bands after the DRCs when they are
mixed together. This is used to attenuate one of the frequency bands relative to the others, if needed.
Make note of the sign of the gain coefficients. Since filters affect phase, a phase reversal or a 180
degree phase shift may be necessary. Use a negative sign on the coefficient to reverse the phase for the
second-order LR filter.
Crossover
Configure the frequency range associated with each of the 3 bands used, where the tuning can take
place. After tuning, the response is automatically displayed on the right side of the DRC plot. The
Crossover configuration has two tabs. In the Basic tab, only the filter type and cut-off frequencies need to
be determined. Go to the Advanced tab if more parameters need to be adjusted.
9.8
AGL
The Automatic Gain Limiter (AGL) is a feedback mechanism that can be used to automatically control the
audio signal amplitude or dynamic range within specified limits. The automatic gain limiting is done by
sensing the audio signal level using an alpha filter energy structure at the output of the AGL then adjusting
the gain based on whether the signal level is above or below the defined threshold. Three decisions made
by the AGL are engage, disengage, or do nothing. The rate at which the AGL engages or disengages
depends on the attack and release settings respectively.
Figure 23 shows the AGL Tuning window. By default, the AGL is disabled and it can be enabled by
clicking the ON/OFF switch on the top right corner.
Figure 23. AGL Tuning Window
SLAA737B – March 2017 – Revised October 2017
Submit Documentation Feedback
Copyright © 2017, Texas Instruments Incorporated
TAS5782M Process Flows
27
Audio Processing Blocks
www.ti.com
Threshold (dB)
This parameter sets the threshold at which the compressor will be activated. Lowering the threshold will
cause the compression to be activated at lower volume levels. Once the signal exceeds this threshold,
compression will be applied.
Alpha(ms)
This parameter configures the sharpness of the compression knee of the AGL.
Attack Rate (0–1)
This parameter controls how quickly compression will be applied to the signal. Higher values will cause
the compressor to respond to signals quickly, while lower values will decrease the response time.
Release Rate (0 – 1)
This parameter controls how quickly compression will be removed from the signal as the signal gets
quieter. Higher values will cause the compressor to release from signals quickly, while lower values will
decrease the release time.
Figure 24. AGL Attack and Release
28
TAS5782M Process Flows
SLAA737B – March 2017 – Revised October 2017
Submit Documentation Feedback
Copyright © 2017, Texas Instruments Incorporated
Audio Processing Blocks
www.ti.com
9.9
Crossover
The major purpose of a digital crossover is to split the frequencies and then send them off to each
individual speaker. The crossover is actually a series of filters, which filter out the frequencies that should
not go to each speaker. Usually, low pass filters are set on the woofer and high pass filters are set on the
tweeter in the crossover.
The plot in Figure 25 in the Crossover Window shows the response of the woofer and tweeter with
crossover filters in place, and the combined response after crossover tuning. Five BQs are available for
woofer and tweeter channel. Fine-tune the filters to get the smoothest response around the crossover
frequency. Optimally, the crossover sum curve (dark green) is flat and crossover difference curve (light
green) has a large dip. If the opposite is seen, it is necessary to invert the phase of BQ1 for the woofer or
tweeter.
Figure 25. Crossover Tuning Window
SLAA737B – March 2017 – Revised October 2017
Submit Documentation Feedback
Copyright © 2017, Texas Instruments Incorporated
TAS5782M Process Flows
29
Audio Processing Blocks
www.ti.com
9.10 Phase Optimizer
The phase optimizer allows time aligning the 2.0 (tweeter) path with the 0.1 (woofer) path. A
programmable phase delay of up to 16 samples can be achieved for both the tweeter and woofer. The
Phase Delay Tuning Window pops up if the
clicked.
icon on the top right of the Crossover Tuning Window is
Figure 26. Phase Delay Tuning Window
9.11 Clipper
A clipper can be used to digitally achieve the specified THD levels without voltage clipping. It allows users
to achieve the same THD (for example, 10% THD) for different power levels (15 W, 10 W, 5 W) with same
PVCC level.
Figure 27. Clipper
Clipper Level
The clipper level controls the signal level at which clipping occurs.
30
TAS5782M Process Flows
SLAA737B – March 2017 – Revised October 2017
Submit Documentation Feedback
Copyright © 2017, Texas Instruments Incorporated
Audio Processing Blocks
www.ti.com
9.12 Output Crossbar
The crossbar provides the end user with a very flexible way to control what finally appears on amplifier
outputs and I2S SDOUT. The Basic tab provides the easiest way for configuration. Go to the Advanced
tab if more parameters need to be adjusted. Note that all the parameters need to be specified in decibels
(dB).
Figure 28. Output Crossbar (Basic Tab)
Figure 29. Output Crossbar (Advanced Tab)
SLAA737B – March 2017 – Revised October 2017
Submit Documentation Feedback
Copyright © 2017, Texas Instruments Incorporated
TAS5782M Process Flows
31
Smart Amp
10
www.ti.com
Smart Amp
Conventional hardware-based speaker protection matches the continuous power output of the audio
amplifier with the speaker output rating and sometimes incorporates high-pass filtering to prevent overexcursion.
If the maximum output voltage limit of a traditional system is based on the average power of a full-scale
sinusoid, there is risk of voice coil overheating if a square wave is provided as an input. This is due to the
fact that a square wave has 6 dB higher average power than a sinusoid of the same peak amplitude as
well as having the presence of higher-frequency components. Conservative designs may then have to
trade off sound pressure level (SPL) with reliability.
More advanced methods to control load power include the use of limiters and dynamic range
compressors. These methods can protect the speaker; however, peaks may be clipped or greatly reduced,
especially on source material with high peak-to-average ratios (PAR).
PurePath™ Smart Amp replaces hardware-based speaker protection methods with predictive algorithms,
speaker characterization tools, and real-time signal monitoring to increase the peak output of the speaker
without damage.
Figure 30 and Figure 31 are actual song clips comparing the traditional method (left) against Smart Amp
(right) to control output power. The dashed lines correspond to the output limit of a traditional system.
Note that the average power (Pave) is increased while allowing peaks to cross the output limit.
Figure 30. Audio Clip A, 22-dB Peak-to-Average Ratio Source
Figure 31. Audio Clip B, 9-dB Peak-to-Average Ratio Source
32
TAS5782M Process Flows
SLAA737B – March 2017 – Revised October 2017
Submit Documentation Feedback
Copyright © 2017, Texas Instruments Incorporated
Smart Amp
www.ti.com
The first implementation step of Smart Amp-based audio solutions is characterizing the speaker with TI’s
PurePath Console 3 and the PurePath Learning Board. These are powerful, easy- to-use tools designed
specifically to simplify system-level characterization, tuning, and implementation. The characterization
process creates a digital model of the speaker based on thermal, electro-mechanical and acoustic
parameters.
The output of the characterization process is an initial set of coefficients that define the Safe Operating
Area (SOA) which establishes the boundaries of maximum speaker diaphragm excursion and voice-coil
temperature during operation. If the SOA is set correctly, the audio engineer need not worry about
speaker damage during the audio tuning process – depending on how hard the system is pushed – audio
might sound more or less desirable, but speaker safety is ensured if configured properly.
Automatically
tunes high
frequencies
Thermal,
Excursion
Smart EQ
3XUH3DWKŒ
I/V, Supply,
Temperature
Smart SOA
Smart Sense*
Smart Amp
Smart Amp Control Algorithm
Audio
Input
EQ / Volume
Smart Bass
*Feedback systems
Closed-loop
Class-D Amp
Protection
Automatic
bass response
alignment
Amp
Helps keep
loudspeaker
within SOA
Figure 32. PurePath™ Smart Amp Block Diagram
PurePath Smart Amp technology enables significant sound quality and system reliability improvements
while reducing component size and cost. The PurePath Console 3 GUI and Learning Board speaker
characterization hardware provide simple configuration of advanced properties fully describing the
acoustical, electrical, thermal and reliability capabilities of an audio system and simplifying system-level
characterization, tuning, and integration.
10.1 Smart Amp Features
Smart Bass
Bass can easily be extended into any alignment
automatically. As signal amplitude is increased in
the bass region, Smart Bass automatically morphs
the response to accommodate for larger excursion.
SLAA737B – March 2017 – Revised October 2017
Submit Documentation Feedback
Copyright © 2017, Texas Instruments Incorporated
TAS5782M Process Flows
33
Smart Amp
www.ti.com
Smart SPL
High-frequency behavior of the loudspeaker diaphragm cannot
be obtained electrically. Similarly, it is difficult to obtain accurate
low-frequency acoustical measurements without an expensive
anechoic chamber. Smart SPL automatically merges electrical
and acoustical measurements to create a full picture of the SPL
response.
Smart EQ
Automatically and efficiently tunes high frequencies
to deliver a flat response or match a target curve in
seconds.
Thermal and Excursion Protection
The Smart Amp algorithm understands the thermal and
excursion limitations of the speaker. This allows to drive it at
peak levels much louder than conventional amplifiers while
keeping the voice coil temperature and excursion within the
specified limits. This results in louder audio playback.
10.2 Smart Amp Development Overview
The following steps summarize Smart Amp evaluation, planning, characterization, tuning, and integration:
Obtain Hardware and
Software
Plan for Development
Obtain Speaker
Parameters
Tune Speaker
End-System
Integration
Complete!
Figure 33. Smart Amp Development Overview
34
TAS5782M Process Flows
SLAA737B – March 2017 – Revised October 2017
Submit Documentation Feedback
Copyright © 2017, Texas Instruments Incorporated
Smart Amp
www.ti.com
Step 1.
Step 2.
Step 3.
Step 4.
Step 5.
Obtain Hardware and Software – Speaker characterization and tuning are performed using
the PurePath Console 3 software. The TI Learning Board and the Smart Amp Target EVM
are needed in order to fully evaluate and develop with Smart Amp.
Plan for Development – Developing Smart Amp-based systems for the first time can be
different than working with conventional amplifiers. Information obtained during the speaker
characterization process often leads to changes to the speaker or enclosure to maximize
output and quality.
Obtain Speaker Parameters – The next step is to understand the characteristics of the
speaker to be tested. Once a speaker is characterized, the ppc3 file obtained from this step
will be used on the next step.
Tune Speaker – Once the speaker data is obtained, a speaker can be tuned using the
Target EVM by importing a ppc3 file.
End-System Integration – Smart Amp fundamentally shifts how audio systems are
designed. Using the Smart Amp tool set, a designer gathers an in-depth understanding of
speaker electro-mechanical, thermal and acoustic parameters. Based on these parameters,
Smart Amp algorithms deliver high peak voltage and current to the speaker while protecting
the speaker from excessive heat or movement. Increased voltage and current levels lead to
changes in the system power design. For these reasons, it is important to understand the
power supply requirements early in the design.
SLAA737B – March 2017 – Revised October 2017
Submit Documentation Feedback
Copyright © 2017, Texas Instruments Incorporated
TAS5782M Process Flows
35
Loudspeaker Characterization
11
www.ti.com
Loudspeaker Characterization
The main objective of the loudspeaker characterization is to obtain the electro-mechanical and thermal
parameters and establish the SOA of the loudspeaker system. The electro-mechanical and thermal
parameters are obtained using the Learning Board.
The Learning Board App has a step-by-step wizard that guides the user through the entire loudspeaker
characterization process.
11.1 Characterization Process
To perform a loudspeaker characterization:
1. Connect the Learning Board to your PC using the USB cable.
a. Provide a power supply
b. Do not connect the speakers, yet
2. In PurePath Console 3, open the Learning Board App and select New
3. If the Learning Board is shown as offline, click Connect
4. Click Characterization
36
TAS5782M Process Flows
SLAA737B – March 2017 – Revised October 2017
Submit Documentation Feedback
Copyright © 2017, Texas Instruments Incorporated
Loudspeaker Characterization
www.ti.com
5. Follow the step-by-step wizard until the characterization is complete
6. Once complete, the Characterization Summary page is shown
11.2 Characterization Summary Page
The Characterization Summary page shows the results of the loudspeaker characterization. To verify the
loudspeaker plots, use the controls on the top of the graph to select between Modeled SPL and Excursion
or Measured Impedance, Temperature, and SPL plots.
Driver and enclosure parameters are also shown as well as the established Safe Operating Area (SOA).
If desired, click the
button to redo the characterization. The
Characterization Summary page.
SLAA737B – March 2017 – Revised October 2017
Submit Documentation Feedback
Copyright © 2017, Texas Instruments Incorporated
button will bring back the
TAS5782M Process Flows
37
Loudspeaker Characterization
www.ti.com
11.3 Saving a Characterization
The characterization data can be saved by clicking the
button at the Title Bar and selecting Save.
This will output a .ppc3 file. This .ppc3 file can later be imported into the Target EVM App for tuning.
38
TAS5782M Process Flows
SLAA737B – March 2017 – Revised October 2017
Submit Documentation Feedback
Copyright © 2017, Texas Instruments Incorporated
Smart Amp Tuning
www.ti.com
12
Smart Amp Tuning
Tuning is a process involving both subjective and methodical approaches. This section provides guidelines
to help establish a baseline to achieve the best possible tuning. The main objectives of the (iterative)
audio tuning process, also referred to as ‘voicing’, are:
• Improve bass performance using Smart Bass controls by adjusting:
– Bass Enhancement (Section 12.2.1)
– Morphing Control (Section 12.2.2)
– Harmonic Bass Alignment (Section 12.2.3)
• Improve high frequency response using Equalizer
The Smart Amp Tuning Process is summarized in Figure 34.
Tune Bass
Enhancement
Tune Morphing
Control
Tune Harmonic Bass
Tune More
Tune Smart EQ
Play Music
Good?
no
yes
Done!
Figure 34. Smart Amp Tuning Process
12.1 Tuning Preparation
Tuning is performed using the TAS5782MEVM:
1. Connect the TAS5782MEVM to your PC using the USB cable.
• Provide a power supply (matching the one to be used in the final system)
• Connect the loudspeaker
SLAA737B – March 2017 – Revised October 2017
Submit Documentation Feedback
Copyright © 2017, Texas Instruments Incorporated
TAS5782M Process Flows
39
Smart Amp Tuning
www.ti.com
2. In PurePath Console 3, open the TAS5782 App.
3. If the board is shown as offline, click Connect.
4. Click Tuning and Audio Processing.
5. Select a SmartAmp Processing (48k or 96k).
6. Import the characterization data that was obtained during the Characterization process by clicking the
Import button.
40
TAS5782M Process Flows
SLAA737B – March 2017 – Revised October 2017
Submit Documentation Feedback
Copyright © 2017, Texas Instruments Incorporated
Smart Amp Tuning
www.ti.com
7. Click and perform a System Calibration. This process ensures that the Smart Amp algorithm is
properly scaled based on the amplifier output gain.
12.2 Smart Bass Tuning
During the characterization process, the low-frequency SPL model of the loudspeaker was obtained.
Based on this model, the response is automatically optimized to match popular loudspeaker alignment
types (that is Butterworth, Linkwitz-Riley, and so forth). This allows the audio engineer to focus on
choosing the desired sound with just a few clicks.
When tuning Smart Bass for the first time, it is best to first disable the Equalizer.
To start tuning Smart Bass, enable Smart Bass and click the Expand symbol, as shown in the following
image.
The Smart Bass Tuning page has all the controls needed for Smart Bass tuning. Several plots (such as
Excursion) are provided as an aid to the tuning process.
SLAA737B – March 2017 – Revised October 2017
Submit Documentation Feedback
Copyright © 2017, Texas Instruments Incorporated
TAS5782M Process Flows
41
Smart Amp Tuning
www.ti.com
Figure 35. Smart Amp Tuning Page
12.2.1
Bass Enhancement (Low Volume Tuning)
The main objective is to maximize the bass response as much as possible and tune the bass, as desired.
During this phase, it is important to listen at low volume levels only – this is to ensure that thermal and
mechanical protection systems do not kick-in. Ensure that the Morphing Control (Section 12.2.2) is set at
maximum during this phase.
Set Corner Frequency
Set Alignment Order
(Slope)
Set Alignment Type
Listening Test
at Low Volume Levels
(for Example, í30 dB)
Good?
no
yes
spacerspacerspacerspacerspacerspacererContinue to Section 12.2.2.
42
TAS5782M Process Flows
SLAA737B – March 2017 – Revised October 2017
Submit Documentation Feedback
Copyright © 2017, Texas Instruments Incorporated
Smart Amp Tuning
www.ti.com
Table 6. Bass Enhancement Parameters
Field
Description
Corner Frequency
–3-dB point of the target response. Smaller speaker drivers should use higher corner frequency.
Order (Slope)
Determines the sharpness of the roll-off towards lower frequencies. For lower corner frequency, choose
higher order.
Type
Selects the alignment type
Corner Frequency
The Corner Frequency indicates the –3-dB point of a flat response target (indicated by the green curve in
the following image). Selecting a proper Corner Frequency is important for the overall performance of the
speaker system. If the cutoff is set too high, the speaker will have limited bass response. If set too low,
energy will be wasted trying to drive frequencies that the speaker will not be able to reproduce and the
excursion protection system will be overly active.
TI
•
•
•
recommends doing a series of listening tests while adjusting settings.
Adjust Corner Frequency while watching the compensation (red curve) in the response plot window.
Targeting between a 10- to 20-dB compensation (red curve) often provides the best results.
Do not exceed the 20-dB line (at least initially).
Alignment Order and Type
The Order and Type determine the bass roll-off. In other words, it determines what occurs below the
corner frequency.
A high-order roll-off cuts bass faster, saving power and limiting speaker excursion that will not produce
much SPL. Likewise, Type has significant influence on the SPL and energy below the corner frequency.
• Select a higher order if the speaker handles excursion poorly.
• Select a lower order to leave small amounts of low-frequency content in the signal.
• Butterworth is suitable for most applications. For ported or passive radiator systems that can reproduce
60–80 Hz, a Chebyshev alignment works well.
SLAA737B – March 2017 – Revised October 2017
Submit Documentation Feedback
Copyright © 2017, Texas Instruments Incorporated
TAS5782M Process Flows
43
Smart Amp Tuning
12.2.2
www.ti.com
Morphing Control (Mid- to High-Volume Tuning)
Morphing determines the headroom dependent
balance between Bass Enhancement and
Harmonic Bass Alignment. As excursion and
thermal headroom drops with increase in music
loudness, the Morphing feature gradually and
dynamically reduces bass.
From Section 12.2.1
Set Morphing to í15 dB
Listening Test
(Adjust Input
Volume Up/Down)
Artifacts?
yes
Set Morphing
Higher
yes
Set Morphing
Lower
no
Re-Tune Bass
Enhancement
no
Depending on Speed and Harmonic Alignment
settings, some residue of bass harmonics might
remain in the frequency spectrum creating a
psychoacoustic bass enhancement effect.
• Audible artifacts indicate too high Morphing
setting
• Little but clean bass could indicate that the
Morphing setting is too low
No Bass?
no
Good?
yes
Continue to Section 12.2.3
NOTE: This is an iterative process! It is important to listen to different types of music and at several
volume settings (listening levels).
Morphing Speed (Optional)
The Morphing Speed control determines the aggressiveness on which the Smart Amp algorithm adapts to
a change of headroom.
Speakers react very differently to morphing speed and unfortunately there is no universal guideline for
how to tune this for the best setting. TI recommends experimenting with several settings. This setting may
also be left at the default value (0).
• Listen to different music types at moderate to high volume levels
• Listen for audible artifacts such as:
– Bass region: distortion, especially with high transients (such as a kick drum)
– Mid/high range: distortion, modulation artifacts
44
TAS5782M Process Flows
SLAA737B – March 2017 – Revised October 2017
Submit Documentation Feedback
Copyright © 2017, Texas Instruments Incorporated
Smart Amp Tuning
www.ti.com
12.2.3
Harmonic Bass Alignment (Mid- to High-Volume Tuning)
The Harmonic Bass Alignment control determines
the aggressiveness of the excursion protection
algorithm as speaker headroom is reduced. Some
speakers sound great with an aggressive setting
(high value) where other speakers, typically of
lower quality, will sound harsh and distorted and
will require less aggressive setting (lower value).
From Section 12.2.2spacerspacerTo Section 12.2.1
Set Morphing 5 to 15 dB
Higher Than in
Section 10.2.2
Listening Test
At High Volume (for
Example, í10 dB)
• Listen to different music types at moderate to
high volume levels
• Listen for audible artifacts such as:
– Bass region: distortion, especially with high
transients (such as a kick drum)
– Mid/High range: distortion
Artifacts?
yes
Adjust
Harmonic Bass
Alignment
no
Reset Morphing Back to
the Original Value From
Section 10.2.2
Good?
no
yes
Continue to Section 12.2.4
12.2.4
Excursion Tuning (Optional)
Depending on the type and quality of the speaker
From Section 12.2.3
(as characterized in the measurement phase), the
Peak Excursion SOA setting sometimes needs a
post-audio-tuning adjustment for best sound quality.
Listening Test
As a typical speaker approaches its Xmax the THD
at High Volume (for
tends to rise quickly. This behavior can have an
Example, 0 dB)
amplifying effect on artifacts.
Artifacts?
• In the Max Level Tuning window, change the
peak excursion limit value while you listen to
audio.
• Reduce it if there are Artifacts at high volume
settings.
yes
Decrease Peak
Excursion Limit
in SOA
yes
Increase Peak
Excursion Limit
in SOA
no
Excursion
Headroom
no
Caution!
Complete!
SLAA737B – March 2017 – Revised October 2017
Submit Documentation Feedback
Copyright © 2017, Texas Instruments Incorporated
TAS5782M Process Flows
45
Appendix A
SLAA737B – March 2017 – Revised October 2017
DSP Memory Map
A.1
DSP Memory Map for Process Flow 1
Table 7 lists the DSP memory map for process flow 1.
Table 7. DSP Memory Map for Process Flow 1 — Book 0x8C
Sub
Address
Page
Register Name
Number of
Bytes/Format
Default Value
Description
0x30
0x13
BQ B0
4 / 1.31
0x34
0x13
0x7FFFFFFF
DRC 1 BQ coefficient
BQ B1
4 / 2.30
0x00000000
0x38
DRC 1 BQ coefficient
0x13
BQ B2
4 / 1.31
0x00000000
DRC 1 BQ coefficient
0x3C
0x13
BQ A1
4 / 2.30
0x00000000
DRC 1 BQ coefficient
0x40
0x13
BQ A2
4 / 1.31
0x00000000
DRC 1 BQ coefficient
DRC 1 BQ
DRC 3 BQ
0x58
0x13
BQ B0
4 / 1.31
0x7FFFFFFF
DRC 3 BQ coefficient
0x5C
0x13
BQ B1
4 / 2.30
0x00000000
DRC 3 BQ coefficient
0x60
0x13
BQ B2
4 / 1.31
0x00000000
DRC 3 BQ coefficient
0x64
0x13
BQ A1
4 / 2.30
0x00000000
DRC 3 BQ coefficient
0x68
0x13
BQ A2
4 / 1.31
0x00000000
DRC 3 BQ coefficient
DRC 2 BQ
0x08
0x14
BQ 1 B0
4 / 1.31
0x7FFFFFFF
DRC 2 BQ coefficient
0x0C
0x14
BQ 1 B1
4 / 2.30
0x00000000
DRC 2 BQ coefficient
0x10
0x14
BQ 1 B2
4 / 1.31
0x00000000
DRC 2 BQ coefficient
0x14
0x14
BQ 1 A1
4 / 2.30
0x00000000
DRC 2 BQ coefficient
0x18
0x14
BQ 1 A2
4 / 1.31
0x00000000
DRC 2 BQ coefficient
0x1C
0x14
BQ 2 B0
4 / 1.31
0x7FFFFFFF
DRC 2 BQ coefficient
0x20
0x14
BQ 2 B1
4 / 2.30
0x00000000
DRC 2 BQ coefficient
0x24
0x14
BQ 2 B2
4 / 1.31
0x00000000
DRC 2 BQ coefficient
0x28
0x14
BQ 2 A1
4 / 2.30
0x00000000
DRC 2 BQ coefficient
0x2C
0x14
BQ 2 A2
4 / 1.31
0x00000000
DRC 2 BQ coefficient
EQ LEFT 11 BQs
46
0x1C
0x16
CH -L BQ 1 B0
4 / 1.31
0x7FFFFFFF
Left BQ coefficient
0x20
0x16
CH -L BQ 1 B1
4 / 2.30
0x00000000
Left BQ coefficient
0x24
0x16
CH -L BQ 1 B2
4 / 1.31
0x00000000
Left BQ coefficient
0x28
0x16
CH -L BQ 1 A1
4 / 2.30
0x00000000
Left BQ coefficient
0x2C
0x16
CH -L BQ 1 A2
4 / 1.31
0x00000000
Left BQ coefficient
0x30
0x16
CH -L BQ 2 B0
4 / 1.31
0x7FFFFFFF
Left BQ coefficient
0x34
0x16
CH -L BQ 2 B1
4 / 2.30
0x00000000
Left BQ coefficient
0x38
0x16
CH -L BQ 2 B2
4 / 1.31
0x00000000
Left BQ coefficient
0x3C
0x16
CH -L BQ 2 A1
4 / 2.30
0x00000000
Left BQ coefficient
0x40
0x16
CH -L BQ 2 A2
4 / 1.31
0x00000000
Left BQ coefficient
0x44
0x16
CH -L BQ 3 B0
4 / 1.31
0x7FFFFFFF
Left BQ coefficient
0x48
0x16
CH -L BQ 3 B1
4 / 2.30
0x00000000
Left BQ coefficient
0x4C
0x16
CH -L BQ 3 B2
4 / 1.31
0x00000000
Left BQ coefficient
0x50
0x16
CH -L BQ 3 A1
4 / 2.30
0x00000000
Left BQ coefficient
TAS5782M Process Flows
SLAA737B – March 2017 – Revised October 2017
Submit Documentation Feedback
Copyright © 2017, Texas Instruments Incorporated
DSP Memory Map for Process Flow 1
www.ti.com
Table 7. DSP Memory Map for Process Flow 1 — Book 0x8C (continued)
Sub
Address
Page
Register Name
Number of
Bytes/Format
Default Value
Description
0x54
0x16
CH -L BQ 3 A2
0x58
0x16
CH -L BQ 4 B0
4 / 1.31
0x00000000
Left BQ coefficient
4 / 1.31
0x7FFFFFFF
0x5C
0x16
Left BQ coefficient
CH -L BQ 4 B1
4 / 2.30
0x00000000
0x60
Left BQ coefficient
0x16
CH -L BQ 4 B2
4 / 1.31
0x00000000
Left BQ coefficient
0x64
0x16
CH -L BQ 4 A1
4 / 2.30
0x00000000
Left BQ coefficient
0x68
0x16
CH -L BQ 4 A2
4 / 1.31
0x00000000
Left BQ coefficient
0x6C
0x16
CH -L BQ 5 B0
4 / 1.31
0x7FFFFFFF
Left BQ coefficient
0x70
0x16
CH -L BQ 5 B1
4 / 2.30
0x00000000
Left BQ coefficient
0x74
0x16
CH -L BQ 5 B2
4 / 1.31
0x00000000
Left BQ coefficient
0x78
0x16
CH -L BQ 5 A1
4 / 2.30
0x00000000
Left BQ coefficient
0x7C
0x16
CH -L BQ 5 A2
4 / 1.31
0x00000000
Left BQ coefficient
0x08
0x17
CH -L BQ 6 B0
4 / 1.31
0x7FFFFFFF
Left BQ coefficient
0x0C
0x17
CH -L BQ 6 B1
4 / 2.30
0x00000000
Left BQ coefficient
0x10
0x17
CH -L BQ 6 B2
4 / 1.31
0x00000000
Left BQ coefficient
0x14
0x17
CH -L BQ 6 A1
4 / 2.30
0x00000000
Left BQ coefficient
0x18
0x17
CH -LBQ 6 A2
4 / 1.31
0x00000000
Left BQ coefficient
0x1C
0x17
CH -L BQ 7 B0
4 / 1.31
0x7FFFFFFF
Left BQ coefficient
0x20
0x17
CH -L BQ 7 B1
4 / 2.30
0x00000000
Left BQ coefficient
0x24
0x17
CH -L BQ 7 B2
4 / 1.31
0x00000000
Left BQ coefficient
0x28
0x17
CH -L BQ 7 A1
4 / 2.30
0x00000000
Left BQ coefficient
0x2C
0x17
CH -L BQ 7 A2
4 / 1.31
0x00000000
Left BQ coefficient
0x30
0x17
CH -L BQ 8 B0
4 / 1.31
0x7FFFFFFF
Left BQ coefficient
0x34
0x17
CH -L BQ 8 B1
4 / 2.30
0x00000000
Left BQ coefficient
0x38
0x17
CH -L BQ 8 B2
4 / 1.31
0x00000000
Left BQ coefficient
0x3C
0x17
CH -L BQ 8 A1
4 / 2.30
0x00000000
Left BQ coefficient
0x40
0x17
CH -L BQ 8 A2
4 / 1.31
0x00000000
Left BQ coefficient
0x44
0x17
CH -L BQ 9 B0
4 / 1.31
0x7FFFFFFF
Left BQ coefficient
0x48
0x17
CH -L BQ 9 B1
4 / 2.30
0x00000000
Left BQ coefficient
0x4C
0x17
CH -L BQ 9 B2
4 / 1.31
0x00000000
Left BQ coefficient
0x50
0x17
CH -L BQ 9 A1
4 / 2.30
0x00000000
Left BQ coefficient
0x54
0x17
CH -L BQ 9 A2
4 / 1.31
0x00000000
Left BQ coefficient
0x58
0x17
CH -L BQ 10 B0
4 / 1.31
0x7FFFFFFF
Left BQ coefficient
0x5C
0x17
CH -L BQ 10 B1
4 / 2.30
0x00000000
Left BQ coefficient
0x60
0x17
CH -L BQ 10 B2
4 / 1.31
0x00000000
Left BQ coefficient
0x64
0x17
CH -L BQ 10 A1
4 / 2.30
0x00000000
Left BQ coefficient
0x68
0x17
CH -L BQ 10 A2
4 / 1.31
0x00000000
Left BQ coefficient
0x6C
0x17
CH -L BQ 11 B0
4 / 1.31
0x7FFFFFFF
Left BQ coefficient
0x70
0x17
CH -L BQ 11 B1
4 / 2.30
0x00000000
Left BQ coefficient
0x74
0x17
CH -L BQ 11 B2
4 / 1.31
0x00000000
Left BQ coefficient
0x78
0x17
CH -L BQ 11 A1
4 / 2.30
0x00000000
Left BQ coefficient
0x7C
0x17
CH -L BQ 11 A2
4 / 1.31
0x00000000
Left BQ coefficient
LEFT INTGAIN BQ
0x08
0x18
CH -L BQ 12 B0
4 / 5.27
0x08000000
Left gain scale BQ coefficient
0x0C
0x18
CH -L BQ 12 B1
4 / 6.26
0x00000000
Left gain scale BQ coefficient
0x10
0x18
CH -L BQ 12 B2
4 / 5.27
0x00000000
Left gain scale BQ coefficient
0x14
0x18
CH -L BQ 12 A1
4 / 2.30
0x00000000
Left gain scale BQ coefficient
0x18
0x18
CH -L BQ 12 A2
4 / 1.31
0x00000000
Left gain scale BQ coefficient
EQ RIGHT 11 BQs
0x58
0x18
CH -R BQ 1 B0
4 / 1.31
0x7FFFFFFF
Right BQ coefficient
0x5C
0x18
CH -R BQ 1 B1
4 / 2.30
0x00000000
Right BQ coefficient
0x60
0x18
CH -R BQ 1 B2
4 / 1.31
0x00000000
Right BQ coefficient
SLAA737B – March 2017 – Revised October 2017
Submit Documentation Feedback
Copyright © 2017, Texas Instruments Incorporated
TAS5782M Process Flows
47
DSP Memory Map for Process Flow 1
www.ti.com
Table 7. DSP Memory Map for Process Flow 1 — Book 0x8C (continued)
48
Sub
Address
Page
Register Name
Number of
Bytes/Format
Default Value
Description
0x64
0x18
CH -R BQ 1 A1
4 / 2.30
0x00000000
Right BQ coefficient
0x68
0x18
CH -R BQ 1 A2
4 / 1.31
0x00000000
Right BQ coefficient
0x6C
0x18
CH -R BQ 2 B0
4 / 1.31
0x7FFFFFFF
Right BQ coefficient
0x70
0x18
CH -R BQ 2 B1
4 / 2.30
0x00000000
Right BQ coefficient
0x74
0x18
CH -R BQ 2 B2
4 / 1.31
0x00000000
Right BQ coefficient
0x78
0x18
CH -R BQ 2 A1
4 / 2.30
0x00000000
Right BQ coefficient
0x7C
0x18
CH -R BQ 2 A2
4 / 1.31
0x00000000
Right BQ coefficient
0x08
0x19
CH -R BQ 3 B0
4 / 1.31
0x7FFFFFFF
Right BQ coefficient
0x0C
0x19
CH -R BQ 3 B1
4 / 2.30
0x00000000
Right BQ coefficient
0x10
0x19
CH -R BQ 3 B2
4 / 1.31
0x00000000
Right BQ coefficient
0x14
0x19
CH -R BQ 3 A1
4 / 2.30
0x00000000
Right BQ coefficient
0x18
0x19
CH -R BQ 3 A2
4 / 1.31
0x00000000
Right BQ coefficient
0x1C
0x19
CH -R BQ 4 B0
4 / 1.31
0x7FFFFFFF
Right BQ coefficient
0x20
0x19
CH -R BQ 4 B1
4 / 2.30
0x00000000
Right BQ coefficient
0x24
0x19
CH -R BQ 4 B2
4 / 1.31
0x00000000
Right BQ coefficient
0x28
0x19
CH -R BQ 4 A1
4 / 2.30
0x00000000
Right BQ coefficient
0x2C
0x19
CH -R BQ 4 A2
4 / 1.31
0x00000000
Right BQ coefficient
0x30
0x19
CH -R BQ 5 B0
4 / 1.31
0x7FFFFFFF
Right BQ coefficient
0x34
0x19
CH -R BQ 5 B1
4 / 2.30
0x00000000
Right BQ coefficient
0x38
0x19
CH -R BQ 5 B2
4 / 1.31
0x00000000
Right BQ coefficient
0x3C
0x19
CH -R BQ 5 A1
4 / 2.30
0x00000000
Right BQ coefficient
0x40
0x19
CH -R BQ 5 A2
4 / 1.31
0x00000000
Right BQ coefficient
0x44
0x19
CH -R BQ 6 B0
4 / 1.31
0x7FFFFFFF
Right BQ coefficient
0x48
0x19
CH -R BQ 6 B1
4 / 2.30
0x00000000
Right BQ coefficient
0x4C
0x19
CH -R BQ 6 B2
4 / 1.31
0x00000000
Right BQ coefficient
0x50
0x19
CH -R BQ 6 A1
4 / 2.30
0x00000000
Right BQ coefficient
0x54
0x19
CH -R BQ 6 A2
4 / 1.31
0x00000000
Right BQ coefficient
0x58
0x19
CH -R BQ 7 B0
4 / 1.31
0x7FFFFFFF
Right BQ coefficient
0x5C
0x19
CH -R BQ 7 B1
4 / 2.30
0x00000000
Right BQ coefficient
0x60
0x19
CH -R BQ 7 B2
4 / 1.31
0x00000000
Right BQ coefficient
0x64
0x19
CH -R BQ 7 A1
4 / 2.30
0x00000000
Right BQ coefficient
0x68
0x19
CH -R BQ 7 A2
4 / 1.31
0x00000000
Right BQ coefficient
0x6C
0x19
CH -R BQ 8 B0
4 / 1.31
0x7FFFFFFF
Right BQ coefficient
0x70
0x19
CH -R BQ 8 B1
4 / 2.30
0x00000000
Right BQ coefficient
0x74
0x19
CH -R BQ 8 B2
4 / 1.31
0x00000000
Right BQ coefficient
0x78
0x19
CH -R BQ 8 A1
4 / 2.30
0x00000000
Right BQ coefficient
0x7C
0x19
CH -R BQ 8 A2
4 / 1.31
0x00000000
Right BQ coefficient
0x08
0x1A
CH -R BQ 9 B0
4 / 1.31
0x7FFFFFFF
Right BQ coefficient
0x0C
0x1A
CH -R BQ 9 B1
4 / 2.30
0x00000000
Right BQ coefficient
0x10
0x1A
CH -R BQ 9 B2
4 / 1.31
0x00000000
Right BQ coefficient
0x14
0x1A
CH -R BQ 9 A1
4 / 2.30
0x00000000
Right BQ coefficient
0x18
0x1A
CH -R BQ 9 A2
4 / 1.31
0x00000000
Right BQ coefficient
0x1C
0x1A
CH -R BQ 10 B0
4 / 1.31
0x7FFFFFFF
Right BQ coefficient
0x20
0x1A
CH -R BQ 10 B1
4 / 2.30
0x00000000
Right BQ coefficient
0x24
0x1A
CH -R BQ 10 B2
4 / 1.31
0x00000000
Right BQ coefficient
0x28
0x1A
CH -R BQ 10 A1
4 / 2.30
0x00000000
Right BQ coefficient
0x2C
0x1A
CH -R BQ 10 A2
4 / 1.31
0x00000000
Right BQ coefficient
0x30
0x1A
CH -R BQ 11 B0
4 / 1.31
0x7FFFFFFF
Right BQ coefficient
0x34
0x1A
CH -R BQ 11 B1
4 / 2.30
0x00000000
Right BQ coefficient
0x38
0x1A
CH -R BQ 11 B2
4 / 1.31
0x00000000
Right BQ coefficient
0x3C
0x1A
CH -R BQ 11 A1
4 / 2.30
0x00000000
Right BQ coefficient
TAS5782M Process Flows
SLAA737B – March 2017 – Revised October 2017
Submit Documentation Feedback
Copyright © 2017, Texas Instruments Incorporated
DSP Memory Map for Process Flow 1
www.ti.com
Table 7. DSP Memory Map for Process Flow 1 — Book 0x8C (continued)
Sub
Address
Page
Register Name
0x40
0x1A
CH -R BQ 11 A2
Number of
Bytes/Format
Default Value
Description
4 / 1.31
0x00000000
Right BQ coefficient
Right INTGAIN BQ
0x44
0x1A
CH -R BQ 12 B0
4 / 5.27
0x08000000
Right gain scale BQ coefficient
0x48
0x1A
CH -R BQ 12 B1
4 / 6.26
0x00000000
Right gain scale BQ coefficient
0x4C
0x1A
CH -R BQ 12 B2
4 / 5.27
0x00000000
Right gain scale BQ coefficient
0x50
0x1A
CH -R BQ 12 A1
4 / 2.30
0x00000000
Right gain scale BQ coefficient
0x54
0x1A
CH -R BQ 12 A2
4 / 1.31
0x00000000
Right gain scale BQ coefficient
0x00A7264A
Volume time constant
DRC1 Energy Time constant
Volume Alpha Filter
0x58
0x1A
Softening Filter Alpha
4 / 1.31
DRC 1
0x6C
0x1A
DRC1 Energy
4 / 1.31
0x7FFFFFFF
0x70
0x1A
DRC1 Attack
4 / 1.31
0x7FFFFFFF
DRC1 Attack Time constant
0x74
0x1A
DRC1 Decay
4 / 1.31
0x7FFFFFFF
DRC1 Decay Time constant
0x78
0x1A
K0_1
4 / 9.23
0x00000000
DRC1 Region 1 Slope (comp/Exp)
0x7C
0x1A
K1_1
4 / 9.23
0x00000000
DRC1 Region 2 Slope (comp/Exp)
0x08
0x1B
K2_1
4 / 9.23
0x00000000
DRC1 Region 3 Slope (comp/Exp)
0x0C
0x1B
T1_1
4 / 9.23
0xE7000000
DRC1 Threshold 1
0x10
0x1B
T2_1
4 / 9.23
0xFE800000
DRC1 Threshold 2
0x14
0x1B
off1_1
4 / 9.23
0x00000000
DRC1 Offset 1
0x18
0x1B
off2_1
4 / 9.23
0x00000000
DRC1 Offset 2
DRC2 Energy Time constant
DRC 2
0x1C
0x1B
DRC2 Energy
4 / 1.31
0x7FFFFFFF
0x20
0x1B
DRC2 Attack
4 / 1.31
0x7FFFFFFF
DRC2 Attack Time constant
0x24
0x1B
DRC2 Decay
4 / 1.31
0x7FFFFFFF
DRC2 Decay Time constant
0x28
0x1B
k0_2
4 / 9.23
0x00000000
DRC2 Region 1 Slope (comp/Exp)
0x2C
0x1B
k1_2
4 / 9.23
0x00000000
DRC2 Region 2 Slope (comp/Exp)
0x30
0x1B
k2_2
4 / 9.23
0x00000000
DRC2 Region 3 Slope (comp/Exp)
0x34
0x1B
t1_2
4 / 9.23
0xE7000000
DRC2 Threshold 1
0x38
0x1B
t2_2
4 / 9.23
0xFE800000
DRC2 Threshold 2
0x3C
0x1B
off1_2
4 / 9.23
0x00000000
DRC2 Offset 1
0x40
0x1B
off2_2
4 / 9.23
0x00000000
DRC2 Offset 2
DRC 3
0x44
0x1B
DRC3 Energy
4 / 1.31
0x7FFFFFFF
DRC3 Energy Time constant
0x48
0x1B
DRC3 Attack
4 / 1.31
0x7FFFFFFF
DRC3 Attack Time constant
0x4C
0x1B
DRC3 Decay
4 / 1.31
0x7FFFFFFF
DRC3 Decay Time constant
0x50
0x1B
k0_3
4 / 9.23
0x00000000
DRC3 Region 1 Slope (comp/Exp)
0x54
0x1B
k1_3
4 / 9.23
0x00000000
DRC3 Region 2 Slope (comp/Exp)
0x58
0x1B
k1_3
4 / 9.23
0x00000000
DRC3 Region 3 Slope (comp/Exp)
0x5C
0x1B
t1_3
4 / 9.23
0xE7000000
DRC3 Threshold 1
0x60
0x1B
t2_3
4 / 9.23
0xFE800000
DRC3 Threshold 2
0x64
0x1B
off1_3
4 / 9.23
0x00000000
DRC3 Offset 1
0x68
0x1B
off2_3
4 / 9.23
0x00000000
DRC3 Offset 2
THD LR Channel pre-scale coefficient
THD Clipper
0x2C
0x1D
CH-LR THD Boost
4 / 9.23
0x00800000
0x34
0x1D
CH-L Fine Volume
4 / 2.30
0x3FFFFFFF
THD L Channel post-scale coefficient
0x38
0x1D
CH-R Fine Volume
4 / 2.30
0x3FFFFFFF
THD R Channel post-scale coefficient
0x40
0x1D
DRC 1 Mixer Gain
4 / 9.23
0x00800000
DRC 1 Mixer Gain coefficient
0x44
0x1D
DRC 2 Mixer Gain
4 / 9.23
0x00000000
DRC 2 Mixer Gain coefficient
0x48
0x1D
DRC 3 Mixer Gain
4 / 9.23
0x00000000
DRC 3 Mixer Gain coefficient
DRC Mixer Gain
SLAA737B – March 2017 – Revised October 2017
Submit Documentation Feedback
Copyright © 2017, Texas Instruments Incorporated
TAS5782M Process Flows
49
DSP Memory Map for Process Flow 1
www.ti.com
Table 7. DSP Memory Map for Process Flow 1 — Book 0x8C (continued)
Sub
Address
Page
Register Name
Number of
Bytes/Format
Default Value
Description
0x5C
0x1D
Left to Left
4 / 9.23
0x00800000
Left Channel Mixer Left Input Gain
0x60
0x1D
Right to Left
4 / 9.23
0x00000000
Left Channel Mixer Right Input Gain
0x64
0x1D
Left to Right
4 / 9.23
0x00000000
Right Channel Mixer Left Input Gain
0x68
0x1D
Right to Right
4 / 9.23
0x00800000
Right Channel Mixer Right Input Gain
0x14
0x1E
Digital Left from Left
4 / 9.23
0x00800000
I2S Left output gain from left
0x18
0x1E
Digital Left from Right
4 / 9.23
0x00000000
I2S Left output gain from Right
0x20
0x1E
Digital Right from Left
4 / 9.23
0x00000000
I2S Right output gain from left
0x24
0x1E
Digital Right from Right
4 / 9.23
0x00800000
I2S Right output gain from Right
0x2C
0x1E
Analog Left from Left
4 / 9.23
0x00800000
Analog Left output gain from left
0x30
0x1E
Analog Left from Right
4 / 9.23
0x00000000
Analog Left output gain from Right
Input Mixer
Output Cross Bar
0x38
0x1E
Analog Right from Left
4 / 9.23
0x00000000
Analog Right output gain from left
0x3C
0x1E
Analog Right from Right
4 / 9.23
0x00800000
Analog Right output gain from Right
0x44
0x1E
CH-L Volume
4 / 9.23
0x00800000
Left Channel volume coefficient
0x48
0x1E
CH-R Volume
4 / 9.23
0x00800000
Right Channel volume coefficient
0x14
0x1F
Attack Threshold
4 / 1.31
0x40000000
Threshold linear
0x18
0x1F
Softening Filter Alpha
4 / 1.31
0x06153BD1
AGL Alpha Time constant
0x1C
0x1F
Attack Rate
4 / 1.31
0x0001B4E8
AGL Attack Time constant
0x20
0x1F
AGL Enable
4 / 1.31
0x40000000
AGL Enable flag
0x28
0x1F
Softening Filter Omega
4 / 1.31
0x79EAC42F
AGL Omega Time constant
0x2C
0x1F
Release Rate
4 / 1.31
0x00002BB1
AGL Release Time constant
Volume Control
AGL
50
TAS5782M Process Flows
SLAA737B – March 2017 – Revised October 2017
Submit Documentation Feedback
Copyright © 2017, Texas Instruments Incorporated
DSP Memory Map for Process Flow 2
www.ti.com
A.2
DSP Memory Map for Process Flow 2
Table 8 lists the DSP memory map for process flow 2.
Table 8. DSP Memory Map for Process Flow 2 — Book 0x8C
Sub
Address
Page
Register Name
0x1C
0x16
CH -L BQ 1 B0
0x20
0x16
CH -L BQ 1 B1
0x24
0x16
0x28
Number of
Bytes/Format
Default Value
Description
4 / 1.31
0x7FFFFFFF
Left BQ coefficient
4 / 2.30
0x00000000
Left BQ coefficient
CH -L BQ 1 B2
4 / 1.31
0x00000000
Left BQ coefficient
0x16
CH -L BQ 1 A1
4 / 2.30
0x00000000
Left BQ coefficient
0x2C
0x16
CH -L BQ 1 A2
4 / 1.31
0x00000000
Left BQ coefficient
0x30
0x16
CH -L BQ 2 B0
4 / 1.31
0x7FFFFFFF
Left BQ coefficient
0x34
0x16
CH -L BQ 2 B1
4 / 2.30
0x00000000
Left BQ coefficient
0x38
0x16
CH -L BQ 2 B2
4 / 1.31
0x00000000
Left BQ coefficient
0x3C
0x16
CH -L BQ 2 A1
4 / 2.30
0x00000000
Left BQ coefficient
0x40
0x16
CH -L BQ 2 A2
4 / 1.31
0x00000000
Left BQ coefficient
0x44
0x16
CH -L BQ 3 B0
4 / 1.31
0x7FFFFFFF
Left BQ coefficient
0x48
0x16
CH -L BQ 3 B1
4 / 2.30
0x00000000
Left BQ coefficient
0x4C
0x16
CH -L BQ 3 B2
4 / 1.31
0x00000000
Left BQ coefficient
0x50
0x16
CH -L BQ 3 A1
4 / 2.30
0x00000000
Left BQ coefficient
0x54
0x16
CH -L BQ 3 A2
4 / 1.31
0x00000000
Left BQ coefficient
0x58
0x16
CH -L BQ 4 B0
4 / 1.31
0x7FFFFFFF
Left BQ coefficient
0x5C
0x16
CH -L BQ 4 B1
4 / 2.30
0x00000000
Left BQ coefficient
0x60
0x16
CH -L BQ 4 B2
4 / 1.31
0x00000000
Left BQ coefficient
0x64
0x16
CH -L BQ 4 A1
4 / 2.30
0x00000000
Left BQ coefficient
0x68
0x16
CH -L BQ 4 A2
4 / 1.31
0x00000000
Left BQ coefficient
0x6C
0x16
CH -L BQ 5 B0
4 / 1.31
0x7FFFFFFF
Left BQ coefficient
0x70
0x16
CH -L BQ 5 B1
4 / 2.30
0x00000000
Left BQ coefficient
0x74
0x16
CH -L BQ 5 B2
4 / 1.31
0x00000000
Left BQ coefficient
0x78
0x16
CH -L BQ 5 A1
4 / 2.30
0x00000000
Left BQ coefficient
0x7C
0x16
CH -L BQ 5 A2
4 / 1.31
0x00000000
Left BQ coefficient
0x08
0x17
CH -L BQ 6 B0
4 / 1.31
0x7FFFFFFF
Left BQ coefficient
0x0C
0x17
CH -L BQ 6 B1
4 / 2.30
0x00000000
Left BQ coefficient
0x10
0x17
CH -L BQ 6 B2
4 / 1.31
0x00000000
Left BQ coefficient
0x14
0x17
CH -L BQ 6 A1
4 / 2.30
0x00000000
Left BQ coefficient
0x18
0x17
CH -LBQ 6 A2
4 / 1.31
0x00000000
Left BQ coefficient
0x1C
0x17
CH -L BQ 7 B0
4 / 1.31
0x7FFFFFFF
Left BQ coefficient
0x20
0x17
CH -L BQ 7 B1
4 / 2.30
0x00000000
Left BQ coefficient
0x24
0x17
CH -L BQ 7 B2
4 / 1.31
0x00000000
Left BQ coefficient
0x28
0x17
CH -L BQ 7 A1
4 / 2.30
0x00000000
Left BQ coefficient
0x2C
0x17
CH -L BQ 7 A2
4 / 1.31
0x00000000
Left BQ coefficient
0x30
0x17
CH -L BQ 8 B0
4 / 1.31
0x7FFFFFFF
Left BQ coefficient
0x34
0x17
CH -L BQ 8 B1
4 / 2.30
0x00000000
Left BQ coefficient
0x38
0x17
CH -L BQ 8 B2
4 / 1.31
0x00000000
Left BQ coefficient
0x3C
0x17
CH -L BQ 8 A1
4 / 2.30
0x00000000
Left BQ coefficient
0x40
0x17
CH -L BQ 8 A2
4 / 1.31
0x00000000
Left BQ coefficient
0x44
0x17
CH -L BQ 9 B0
4 / 1.31
0x7FFFFFFF
Left BQ coefficient
0x48
0x17
CH -L BQ 9 B1
4 / 2.30
0x00000000
Left BQ coefficient
0x4C
0x17
CH -L BQ 9 B2
4 / 1.31
0x00000000
Left BQ coefficient
0x50
0x17
CH -L BQ 9 A1
4 / 2.30
0x00000000
Left BQ coefficient
0x54
0x17
CH -L BQ 9 A2
4 / 1.31
0x00000000
Left BQ coefficient
0x58
0x17
CH -L BQ 10 B0
4 / 1.31
0x7FFFFFFF
Left BQ coefficient
0x5C
0x17
CH -L BQ 10 B1
4 / 2.30
0x00000000
Left BQ coefficient
EQ LEFT 11 BQs
SLAA737B – March 2017 – Revised October 2017
Submit Documentation Feedback
Copyright © 2017, Texas Instruments Incorporated
TAS5782M Process Flows
51
DSP Memory Map for Process Flow 2
www.ti.com
Table 8. DSP Memory Map for Process Flow 2 — Book 0x8C (continued)
Sub
Address
Page
Register Name
Number of
Bytes/Format
Default Value
Description
0x60
0x17
CH -L BQ 10 B2
4 / 1.31
0x00000000
Left BQ coefficient
0x64
0x17
CH -L BQ 10 A1
4 / 2.30
0x00000000
Left BQ coefficient
0x68
0x17
CH -L BQ 10 A2
4 / 1.31
0x00000000
Left BQ coefficient
0x6C
0x17
CH -L BQ 11 B0
4 / 1.31
0x7FFFFFFF
Left BQ coefficient
0x70
0x17
CH -L BQ 11 B1
4 / 2.30
0x00000000
Left BQ coefficient
0x74
0x17
CH -L BQ 11 B2
4 / 1.31
0x00000000
Left BQ coefficient
0x78
0x17
CH -L BQ 11 A1
4 / 2.30
0x00000000
Left BQ coefficient
0x7C
0x17
CH -L BQ 11 A2
4 / 1.31
0x00000000
Left BQ coefficient
LEFT INTGAIN BQ
0x08
0x18
CH -L BQ 12 B0
4 / 5.27
0x08000000
Left gain scale BQ coefficient
0x0C
0x18
CH -L BQ 12 B1
4 / 6.26
0x00000000
Left gain scale BQ coefficient
0x10
0x18
CH -L BQ 12 B2
4 / 5.27
0x00000000
Left gain scale BQ coefficient
0x14
0x18
CH -L BQ 12 A1
4 / 2.30
0x00000000
Left gain scale BQ coefficient
0x18
0x18
CH -L BQ 12 A2
4 / 1.31
0x00000000
Left gain scale BQ coefficient
0x58
0x18
CH -R BQ 1 B0
4 / 1.31
0x7FFFFFFF
Right BQ coefficient
0x5C
0x18
CH -R BQ 1 B1
4 / 2.30
0x00000000
Right BQ coefficient
0x60
0x18
CH -R BQ 1 B2
4 / 1.31
0x00000000
Right BQ coefficient
0x64
0x18
CH -R BQ 1 A1
4 / 2.30
0x00000000
Right BQ coefficient
0x68
0x18
CH -R BQ 1 A2
4 / 1.31
0x00000000
Right BQ coefficient
0x6C
0x18
CH -R BQ 2 B0
4 / 1.31
0x7FFFFFFF
Right BQ coefficient
0x70
0x18
CH -R BQ 2 B1
4 / 2.30
0x00000000
Right BQ coefficient
0x74
0x18
CH -R BQ 2 B2
4 / 1.31
0x00000000
Right BQ coefficient
0x78
0x18
CH -R BQ 2 A1
4 / 2.30
0x00000000
Right BQ coefficient
0x7C
0x18
CH -R BQ 2 A2
4 / 1.31
0x00000000
Right BQ coefficient
0x08
0x19
CH -R BQ 3 B0
4 / 1.31
0x7FFFFFFF
Right BQ coefficient
0x0C
0x19
CH -R BQ 3 B1
4 / 2.30
0x00000000
Right BQ coefficient
0x10
0x19
CH -R BQ 3 B2
4 / 1.31
0x00000000
Right BQ coefficient
0x14
0x19
CH -R BQ 3 A1
4 / 2.30
0x00000000
Right BQ coefficient
0x18
0x19
CH -R BQ 3 A2
4 / 1.31
0x00000000
Right BQ coefficient
0x1C
0x19
CH -R BQ 4 B0
4 / 1.31
0x7FFFFFFF
Right BQ coefficient
0x20
0x19
CH -R BQ 4 B1
4 / 2.30
0x00000000
Right BQ coefficient
0x24
0x19
CH -R BQ 4 B2
4 / 1.31
0x00000000
Right BQ coefficient
0x28
0x19
CH -R BQ 4 A1
4 / 2.30
0x00000000
Right BQ coefficient
0x2C
0x19
CH -R BQ 4 A2
4 / 1.31
0x00000000
Right BQ coefficient
0x30
0x19
CH -R BQ 5 B0
4 / 1.31
0x7FFFFFFF
Right BQ coefficient
0x34
0x19
CH -R BQ 5 B1
4 / 2.30
0x00000000
Right BQ coefficient
0x38
0x19
CH -R BQ 5 B2
4 / 1.31
0x00000000
Right BQ coefficient
0x3C
0x19
CH -R BQ 5 A1
4 / 2.30
0x00000000
Right BQ coefficient
0x40
0x19
CH -R BQ 5 A2
4 / 1.31
0x00000000
Right BQ coefficient
0x44
0x19
CH -R BQ 6 B0
4 / 1.31
0x7FFFFFFF
Right BQ coefficient
0x48
0x19
CH -R BQ 6 B1
4 / 2.30
0x00000000
Right BQ coefficient
0x4C
0x19
CH -R BQ 6 B2
4 / 1.31
0x00000000
Right BQ coefficient
0x50
0x19
CH -R BQ 6 A1
4 / 2.30
0x00000000
Right BQ coefficient
0x54
0x19
CH -R BQ 6 A2
4 / 1.31
0x00000000
Right BQ coefficient
0x58
0x19
CH -R BQ 7 B0
4 / 1.31
0x7FFFFFFF
Right BQ coefficient
0x5C
0x19
CH -R BQ 7 B1
4 / 2.30
0x00000000
Right BQ coefficient
0x60
0x19
CH -R BQ 7 B2
4 / 1.31
0x00000000
Right BQ coefficient
0x64
0x19
CH -R BQ 7 A1
4 / 2.30
0x00000000
Right BQ coefficient
0x68
0x19
CH -R BQ 7 A2
4 / 1.31
0x00000000
Right BQ coefficient
0x6C
0x19
CH -R BQ 8 B0
4 / 1.31
0x7FFFFFFF
Right BQ coefficient
EQ RIGHT 11 BQs
52
TAS5782M Process Flows
SLAA737B – March 2017 – Revised October 2017
Submit Documentation Feedback
Copyright © 2017, Texas Instruments Incorporated
DSP Memory Map for Process Flow 2
www.ti.com
Table 8. DSP Memory Map for Process Flow 2 — Book 0x8C (continued)
Sub
Address
Page
Register Name
Number of
Bytes/Format
Default Value
Description
0x70
0x19
CH -R BQ 8 B1
4 / 2.30
0x00000000
Right BQ coefficient
0x74
0x19
CH -R BQ 8 B2
4 / 1.31
0x00000000
Right BQ coefficient
0x78
0x19
CH -R BQ 8 A1
4 / 2.30
0x00000000
Right BQ coefficient
0x7C
0x19
CH -R BQ 8 A2
4 / 1.31
0x00000000
Right BQ coefficient
0x08
0x1A
CH -R BQ 9 B0
4 / 1.31
0x7FFFFFFF
Right BQ coefficient
0x0C
0x1A
CH -R BQ 9 B1
4 / 2.30
0x00000000
Right BQ coefficient
0x10
0x1A
CH -R BQ 9 B2
4 / 1.31
0x00000000
Right BQ coefficient
0x14
0x1A
CH -R BQ 9 A1
4 / 2.30
0x00000000
Right BQ coefficient
0x18
0x1A
CH -R BQ 9 A2
4 / 1.31
0x00000000
Right BQ coefficient
0x1C
0x1A
CH -R BQ 10 B0
4 / 1.31
0x7FFFFFFF
Right BQ coefficient
0x20
0x1A
CH -R BQ 10 B1
4 / 2.30
0x00000000
Right BQ coefficient
0x24
0x1A
CH -R BQ 10 B2
4 / 1.31
0x00000000
Right BQ coefficient
0x28
0x1A
CH -R BQ 10 A1
4 / 2.30
0x00000000
Right BQ coefficient
0x2C
0x1A
CH -R BQ 10 A2
4 / 1.31
0x00000000
Right BQ coefficient
0x30
0x1A
CH -R BQ 11 B0
4 / 1.31
0x7FFFFFFF
Right BQ coefficient
0x34
0x1A
CH -R BQ 11 B1
4 / 2.30
0x00000000
Right BQ coefficient
0x38
0x1A
CH -R BQ 11 B2
4 / 1.31
0x00000000
Right BQ coefficient
0x3C
0x1A
CH -R BQ 11 A1
4 / 2.30
0x00000000
Right BQ coefficient
0x40
0x1A
CH -R BQ 11 A2
4 / 1.31
0x00000000
Right BQ coefficient
RIGHT INTGAIN BQ
0x44
0x1A
CH -R BQ 12 B0
4 / 5.27
0x08000000
Right gain scale BQ coefficient
0x48
0x1A
CH -R BQ 12 B1
4 / 6.26
0x00000000
Right gain scale BQ coefficient
0x4C
0x1A
CH -R BQ 12 B2
4 / 5.27
0x00000000
Right gain scale BQ coefficient
0x50
0x1A
CH -R BQ 12 A1
4 / 2.30
0x00000000
Right gain scale BQ coefficient
0x54
0x1A
CH -R BQ 12 A2
4 / 1.31
0x00000000
Right gain scale BQ coefficient
VOLUME ALPHA FILTER
0x58
0x1A
Softening Filter Alpha
4 / 1.31
0x00A7264A
Volume time constant
THD LR Channel pre-scale coefficient
THD CLIPPER
0x2C
0x1D
CH-LR THD Boost
4 / 9.23
0x00800000
0x34
0x1D
CH-L Fine Volume
4 / 2.30
0x3FFFFFFF
THD L Channel post-scale coefficient
0x38
0x1D
CH-R Fine Volume
4 / 2.30
0x3FFFFFFF
THD R Channel post-scale coefficient
0x5C
0x1D
Left to Left
4 / 9.23
0x00800000
Left Channel Mixer Left Input Gain
0x60
0x1D
Right to Left
4 / 9.23
0x00000000
Left Channel Mixer Right Input Gain
0x64
0x1D
Left to Right
4 / 9.23
0x00000000
Right Channel Mixer Left Input Gain
0x68
0x1D
Right to Right
4 / 9.23
0x00800000
Right Channel Mixer Right Input Gain
0x14
0x1E
Digital Left from Left
4 / 9.23
0x00800000
I2S Left output gain from left
0x18
0x1E
Digital Left from Right
4 / 9.23
0x00000000
I2S Left output gain from Right
0x20
0x1E
Digital Right from Left
4 / 9.23
0x00000000
I2S Right output gain from left
0x24
0x1E
Digital Right from Right
4 / 9.23
0x00800000
I2S Right output gain from Right
0x2C
0x1E
Analog Left from Left
4 / 9.23
0x00800000
Analog Left output gain from left
0x30
0x1E
Analog Left from Right
4 / 9.23
0x00000000
Analog Left output gain from Right
INPUT MIXER
OUTPUT CROSS BAR
0x38
0x1E
Analog Right from Left
4 / 9.23
0x00000000
Analog Right output gain from left
0x3C
0x1E
Analog Right from Right
4 / 9.23
0x00800000
Analog Right output gain from Right
0x44
0x1E
CH-L Volume
4 / 9.23
0x00800000
Left Channel volume coefficient
0x48
0x1E
CH-R Volume
4 / 9.23
0x00800000
Right Channel volume coefficient
VOLUME CONTROL
SLAA737B – March 2017 – Revised October 2017
Submit Documentation Feedback
Copyright © 2017, Texas Instruments Incorporated
TAS5782M Process Flows
53
DSP Memory Map for Process Flow 2
www.ti.com
Table 8. DSP Memory Map for Process Flow 2 — Book 0x8C (continued)
Sub
Address
Page
Register Name
0x34
0x1F
Thermal
Number of
Bytes/Format
Default Value
Description
THERMAL PROTECT ENERGY
4/-
0x00A7264A
Generated by GUI
MORPHING CONTROL
0x38
0x1F
CH-L Gain scale
4 / 9.23
0x00800000
Morphing Left Channel Gain
0x3C
0x1F
CH-R Gain scale
4 / 9.23
0x00800000
Morphing Right Channel Gain
0x40
0x1F
Morphing Energy
4 / 1.31
0x001C7019
Morphing Energy Time constant
0x44
0x1F
Morphing Attack
4 / 1.31
0x0012F61A
Morphing Attack Time constant
0x48
0x1F
Morphing Decay
4 / 1.31
0x00065258
Morphing Decay Time constant
0x4C
0x1F
Morphing K0_1
4 / 9.23
0x00000000
Morphing Region 1 Slope (comp/Exp)
0x50
0x1F
Morphing K1_1
4 / 9.23
0x00000000
Morphing Region 2 Slope (comp/Exp)
0x54
0x1F
Morphing K2_1
4 / 9.23
0x00000000
Morphing Region 3 Slope (comp/Exp)
0x58
0x1F
Morphing T1_1
4 / 9.23
0xF75C28F6
Morphing Threshold 1
0x5C
0x1F
Morphing T2_1
4 / 9.23
0xFCC2D8C5
Morphing Threshold 2
0x60
0x1F
Morphing off1_1
4 / 9.23
0x00000000
Morphing Offset 1
0x64
0x1F
Morphing off2_1
4 / 9.23
0x00000000
Morphing Offset 2
EXCURSION
54
0x68
0x1F
Excursion
4/-
0x00000000
Generated by GUI
0x6C
0x1F
Excursion
4/-
0x00000000
Generated by GUI
0x70
0x1F
Excursion
4/-
0x00000000
Generated by GUI
0x74
0x1F
Excursion
4/-
0x00000000
Generated by GUI
0x78
0x1F
Excursion
4/-
0x00000000
Generated by GUI
0x7C
0x1F
Excursion
4/-
0x00000000
Generated by GUI
0x08
0x20
Excursion
4/-
0x00000000
Generated by GUI
0x0C
0x20
Excursion
4/-
0x00000000
Generated by GUI
0x10
0x20
Excursion
4/-
0x00000000
Generated by GUI
0x14
0x20
Excursion
4/-
0x00000000
Generated by GUI
0x18
0x20
Excursion
4/-
0x00000000
Generated by GUI
0x1C
0x20
Excursion
4/-
0x00000000
Generated by GUI
0x20
0x20
Excursion
4/-
0x00000000
Generated by GUI
0x24
0x20
Excursion
4/-
0x00000000
Generated by GUI
0x28
0x20
Excursion
4/-
0x00000000
Generated by GUI
0x2C
0x20
Excursion
4/-
0x00000000
Generated by GUI
0x30
0x20
Excursion
4/-
0x00000000
Generated by GUI
0x34
0x20
Excursion
4/-
0x00000000
Generated by GUI
0x38
0x20
Excursion
4/-
0x00000000
Generated by GUI
0x3C
0x20
Excursion
4/-
0x00000000
Generated by GUI
0x40
0x20
Excursion
4/-
0x00000000
Generated by GUI
0x44
0x20
Excursion
4/-
0x00000000
Generated by GUI
0x48
0x20
Excursion
4/-
0x00000000
Generated by GUI
0x4C
0x20
Excursion
4/-
0x00000000
Generated by GUI
0x50
0x20
Excursion
4/-
0x00000000
Generated by GUI
0x54
0x20
Excursion
4/-
0x00000000
Generated by GUI
0x58
0x20
Excursion
4/-
0x00000000
Generated by GUI
0x5C
0x20
Excursion
4/-
0x00000000
Generated by GUI
0x60
0x20
Excursion
4/-
0x00000000
Generated by GUI
0x64
0x20
Excursion
4/-
0x00000000
Generated by GUI
0x68
0x20
Excursion
4/-
0x7FFFFFFF
Generated by GUI
0x6C
0x20
Excursion
4/-
0x00000000
Generated by GUI
0x70
0x20
Excursion
4/-
0x00000000
Generated by GUI
0x74
0x20
Excursion
4/-
0x00000000
Generated by GUI
0x78
0x20
Excursion
4/-
0x00000000
Generated by GUI
TAS5782M Process Flows
SLAA737B – March 2017 – Revised October 2017
Submit Documentation Feedback
Copyright © 2017, Texas Instruments Incorporated
DSP Memory Map for Process Flow 2
www.ti.com
Table 8. DSP Memory Map for Process Flow 2 — Book 0x8C (continued)
Sub
Address
Page
Register Name
Number of
Bytes/Format
Default Value
Description
0x7C
0x20
Excursion
4/-
0x7FFFFFFF
Generated by GUI
0x08
0x21
Excursion
4/-
0x00000000
Generated by GUI
0x0C
0x21
Excursion
4/-
0x00000000
Generated by GUI
0x10
0x21
Excursion
4/-
0x00000000
Generated by GUI
0x14
0x21
Excursion
4/-
0x00000000
Generated by GUI
0x18
0x21
Excursion
4/-
0x7FFFFFFF
Generated by GUI
0x1C
0x21
Excursion
4/-
0xFF18B74D
Generated by GUI
0x20
0x21
Excursion
4/-
0x00800000
Generated by GUI
MORPHING BQs
0x24
0x21
CH-L BQ 1 B0
4 / 1.31
0x7FFFFFFF
Left Channel Morphing BQ coefficient
0x28
0x21
CH-L BQ 1 B1
4 / 2.30
0x00000000
Left Channel Morphing BQ coefficient
0x2C
0x21
CH-L BQ 1 B2
4 / 1.31
0x00000000
Left Channel Morphing BQ coefficient
0x30
0x21
CH-L BQ 1 A1
4 / 2.30
0x00000000
Left Channel Morphing BQ coefficient
0x34
0x21
CH-L BQ 1 A2
4 / 1.31
0x00000000
Left Channel Morphing BQ coefficient
0x38
0x21
CH-L BQ 2 B0
4 / 1.31
0x7FFFFFFF
Left Channel Morphing BQ coefficient
0x3C
0x21
CH-L BQ 2 B1
4 / 2.30
0x00000000
Left Channel Morphing BQ coefficient
0x40
0x21
CH-L BQ 2 B2
4 / 1.31
0x00000000
Left Channel Morphing BQ coefficient
0x44
0x21
CH-L BQ 2 A1
4 / 2.30
0x00000000
Left Channel Morphing BQ coefficient
0x48
0x21
CH-L BQ 2 A2
4 / 1.31
0x00000000
Left Channel Morphing BQ coefficient
0x4C
0x21
CH-R BQ 1 B0
4 / 1.31
0x7FFFFFFF
Right Channel Morphing BQ coefficient
0x50
0x21
CH-R BQ 1 B1
4 / 2.30
0x00000000
Right Channel Morphing BQ coefficient
0x54
0x21
CH-R BQ 1 B2
4 / 1.31
0x00000000
Right Channel Morphing BQ coefficient
0x58
0x21
CH-R BQ 1 A1
4 / 2.30
0x00000000
Right Channel Morphing BQ coefficient
0x5C
0x21
CH-R BQ 1 A2
4 / 1.31
0x00000000
Right Channel Morphing BQ coefficient
0x60
0x21
CH-R BQ 2 B0
4 / 1.31
0x7FFFFFFF
Right Channel Morphing BQ coefficient
0x64
0x21
CH-R BQ 2 B1
4 / 2.30
0x00000000
Right Channel Morphing BQ coefficient
0x68
0x21
CH-R BQ 2 B2
4 / 1.31
0x00000000
Right Channel Morphing BQ coefficient
0x6C
0x21
CH-R BQ 2 A1
4 / 2.30
0x00000000
Right Channel Morphing BQ coefficient
0x70
0x21
CH-R BQ 2 A2
4 / 1.31
0x00000000
Right Channel Morphing BQ coefficient
THERMAL PROTECT THRESHOLD
0x74
0x21
Thermal
4/-
0x7FFFFFFF
SLAA737B – March 2017 – Revised October 2017
Submit Documentation Feedback
Copyright © 2017, Texas Instruments Incorporated
Generated by GUI
TAS5782M Process Flows
55
DSP Memory Map for Process Flow 3
A.3
www.ti.com
DSP Memory Map for Process Flow 3
Table 9 lists the DSP memory map for process flow 3.
Table 9. DSP Memory Map for Process Flow 3 — Book 0x8C
Sub
Address
Page
Register Name
Number of
Bytes/Format
Default Value
Description
0x58
0x11
BQ 1 B0
4 / 1.31
0x7FFFFFFF
Main Channel BQ coefficient
0x5C
0x11
BQ 1 B1
4 / 2.30
0x00000000
Main Channel BQ coefficient
0x60
0x11
BQ 1 B2
4 / 1.31
0x00000000
Main Channel BQ coefficient
0x64
0x11
BQ 1 A1
4 / 2.30
0x00000000
Main Channel BQ coefficient
0x68
0x11
BQ 1 A2
4 / 1.31
0x00000000
Main Channel BQ coefficient
0x44
0x12
CH-Sub BQ 1 B0
4 / 1.31
0x7FFFFFFF
Sub Channel BQ coefficient
BASS MONO MIXER
0x48
0x12
CH-Sub BQ 1 B1
4 / 2.30
0x00000000
Sub Channel BQ coefficient
0x4C
0x12
CH-Sub BQ 1 B2
4 / 1.31
0x00000000
Sub Channel BQ coefficient
0x50
0x12
CH-Sub BQ 1 A1
4 / 2.30
0x00000000
Sub Channel BQ coefficient
0x54
0x12
CH-Sub BQ 1 A2
4 / 1.31
0x00000000
Sub Channel BQ coefficient
DRC 1 BQ
0x30
0x13
BQ B0
4 / 1.31
0x7FFFFFFF
DRC 1 BQ coefficient
0x34
0x13
BQ B1
4 / 2.30
0x00000000
DRC 1 BQ coefficient
0x38
0x13
BQ B2
4 / 1.31
0x00000000
DRC 1 BQ coefficient
0x3C
0x13
BQ A1
4 / 2.30
0x00000000
DRC 1 BQ coefficient
0x40
0x13
BQ A2
4 / 1.31
0x00000000
DRC 1 BQ coefficient
DRC 3 BQ
0x58
0x13
BQ B0
4 / 1.31
0x7FFFFFFF
DRC 3 BQ coefficient
0x5C
0x13
BQ B1
4 / 2.30
0x00000000
DRC 3 BQ coefficient
0x60
0x13
BQ B2
4 / 1.31
0x00000000
DRC 3 BQ coefficient
0x64
0x13
BQ A1
4 / 2.30
0x00000000
DRC 3 BQ coefficient
0x68
0x13
BQ A2
4 / 1.31
0x00000000
DRC 3 BQ coefficient
DRC 2 BQ
0x08
0x14
BQ 1 B0
4 / 1.31
0x7FFFFFFF
DRC 2 BQ coefficient
0x0C
0x14
BQ 1 B1
4 / 2.30
0x00000000
DRC 2 BQ coefficient
0x10
0x14
BQ 1 B2
4 / 1.31
0x00000000
DRC 2 BQ coefficient
0x14
0x14
BQ 1 A1
4 / 2.30
0x00000000
DRC 2 BQ coefficient
0x18
0x14
BQ 1 A2
4 / 1.31
0x00000000
DRC 2 BQ coefficient
0x1C
0x14
BQ 2 B0
4 / 1.31
0x7FFFFFFF
DRC 2 BQ coefficient
0x20
0x14
BQ 2 B1
4 / 2.30
0x00000000
DRC 2 BQ coefficient
0x24
0x14
BQ 2 B2
4 / 1.31
0x00000000
DRC 2 BQ coefficient
0x28
0x14
BQ 2 A1
4 / 2.30
0x00000000
DRC 2 BQ coefficient
0x2C
0x14
BQ 2 A2
4 / 1.31
0x00000000
DRC 2 BQ coefficient
DPEQ SENSE BQ
0x58
0x14
BQ 1 B0
4 / 1.31
0x7FFFFFFF
DPEQ sense BQ coefficient
0x5C
0x14
BQ 1 B1
4 / 2.30
0x00000000
DPEQ sense BQ coefficient
0x60
0x14
BQ 1 B2
4 / 1.31
0x00000000
DPEQ sense BQ coefficient
0x64
0x14
BQ 1 A1
4 / 2.30
0x00000000
DPEQ sense BQ coefficient
0x68
0x14
BQ 1 A2
4 / 1.31
0x00000000
DPEQ sense BQ coefficient
0x6C
0x14
BQ 2 B0
4 / 1.31
0x7FFFFFFF
DPEQ sense BQ coefficient
0x70
0x14
BQ 2 B1
4 / 2.30
0x00000000
DPEQ sense BQ coefficient
0x74
0x14
BQ 2 B2
4 / 1.31
0x00000000
DPEQ sense BQ coefficient
0x78
0x14
BQ 2 A1
4 / 2.30
0x00000000
DPEQ sense BQ coefficient
0x7C
0x14
BQ 2 A2
4 / 1.31
0x00000000
DPEQ sense BQ coefficient
DPEQ LOW LEVEL PATH BQ
56
0x08
0x15
BQ 1 B0
4 / 1.31
0x7FFFFFFF
DPEQ low BQ coefficient
0x0C
0x15
BQ 1 B1
4 / 2.30
0x00000000
DPEQ low BQ coefficient
TAS5782M Process Flows
SLAA737B – March 2017 – Revised October 2017
Submit Documentation Feedback
Copyright © 2017, Texas Instruments Incorporated
DSP Memory Map for Process Flow 3
www.ti.com
Table 9. DSP Memory Map for Process Flow 3 — Book 0x8C (continued)
Sub
Address
Page
Register Name
Number of
Bytes/Format
Default Value
Description
0x10
0x15
BQ 1 B2
4 / 1.31
0x00000000
DPEQ low BQ coefficient
0x14
0x15
BQ 1 A1
4 / 2.30
0x00000000
DPEQ low BQ coefficient
0x18
0x15
BQ 1 A2
4 / 1.31
0x00000000
DPEQ low BQ coefficient
0x1C
0x15
BQ 2 B0
4 / 1.31
0x7FFFFFFF
DPEQ low BQ coefficient
0x20
0x15
BQ 2 B1
4 / 2.30
0x00000000
DPEQ low BQ coefficient
0x24
0x15
BQ 2 B2
4 / 1.31
0x00000000
DPEQ low BQ coefficient
0x28
0x15
BQ 2 A1
4 / 2.30
0x00000000
DPEQ low BQ coefficient
0x2C
0x15
BQ 2 A2
4 / 1.31
0x00000000
DPEQ low BQ coefficient
DPEQ HIGH LEVEL PATH BQ
0x30
0x15
BQ 1 B0
4 / 1.31
0x7FFFFFFF
DPEQ high BQ coefficient
0x34
0x15
BQ 1 B1
4 / 2.30
0x00000000
DPEQ high BQ coefficient
0x38
0x15
BQ 1 B2
4 / 1.31
0x00000000
DPEQ high BQ coefficient
0x3C
0x15
BQ 1 A1
4 / 2.30
0x00000000
DPEQ high BQ coefficient
0x40
0x15
BQ 1 A2
4 / 1.31
0x00000000
DPEQ high BQ coefficient
0x44
0x15
BQ 2 B0
4 / 1.31
0x7FFFFFFF
DPEQ high BQ coefficient
0x48
0x15
BQ 2 B1
4 / 2.30
0x00000000
DPEQ high BQ coefficient
0x4C
0x15
BQ 2 B2
4 / 1.31
0x00000000
DPEQ high BQ coefficient
0x50
0x15
BQ 2 A1
4 / 2.30
0x00000000
DPEQ high BQ coefficient
0x54
0x15
BQ 2 A2
4 / 1.31
0x00000000
DPEQ high BQ coefficient
EQ LEFT 14 BQs
0x58
0x15
CH -L BQ 1 B0
4 / 1.31
0x7FFFFFFF
Left BQ coefficient
0x5C
0x15
CH -L BQ 1 B1
4 / 2.30
0x00000000
Left BQ coefficient
0x60
0x15
CH -L BQ 1 B2
4 / 1.31
0x00000000
Left BQ coefficient
0x64
0x15
CH -L BQ 1 A1
4 / 2.30
0x00000000
Left BQ coefficient
0x68
0x15
CH -L BQ 1 A2
4 / 1.31
0x00000000
Left BQ coefficient
0x6C
0x15
CH -L BQ 2 B0
4 / 1.31
0x7FFFFFFF
Left BQ coefficient
0x70
0x15
CH -L BQ 2 B1
4 / 2.30
0x00000000
Left BQ coefficient
0x74
0x15
CH -L BQ 2 B2
4 / 1.31
0x00000000
Left BQ coefficient
0x78
0x15
CH -L BQ 2 A1
4 / 2.30
0x00000000
Left BQ coefficient
0x7C
0x15
CH -L BQ 2 A2
4 / 1.31
0x00000000
Left BQ coefficient
0x08
0x16
CH -L BQ 3 B0
4 / 1.31
0x7FFFFFFF
Left BQ coefficient
0x0C
0x16
CH -L BQ 3 B1
4 / 2.30
0x00000000
Left BQ coefficient
0x10
0x16
CH -L BQ 3 B2
4 / 1.31
0x00000000
Left BQ coefficient
0x14
0x16
CH -L BQ 3 A1
4 / 2.30
0x00000000
Left BQ coefficient
0x18
0x16
CH -L BQ 3 A2
4 / 1.31
0x00000000
Left BQ coefficient
0x1C
0x16
CH -L BQ 4 B0
4 / 1.31
0x7FFFFFFF
Left BQ coefficient
0x20
0x16
CH -L BQ 4 B1
4 / 2.30
0x00000000
Left BQ coefficient
0x24
0x16
CH -L BQ 4 B2
4 / 1.31
0x00000000
Left BQ coefficient
0x28
0x16
CH -L BQ 4 A1
4 / 2.30
0x00000000
Left BQ coefficient
0x2C
0x16
CH -L BQ 4 A2
4 / 1.31
0x00000000
Left BQ coefficient
0x30
0x16
CH -L BQ 5 B0
4 / 1.31
0x7FFFFFFF
Left BQ coefficient
0x34
0x16
CH -L BQ 5 B1
4 / 2.30
0x00000000
Left BQ coefficient
0x38
0x16
CH -L BQ 5 B2
4 / 1.31
0x00000000
Left BQ coefficient
0x3C
0x16
CH -L BQ 5 A1
4 / 2.30
0x00000000
Left BQ coefficient
0x40
0x16
CH -L BQ 5 A2
4 / 1.31
0x00000000
Left BQ coefficient
0x44
0x16
CH -L BQ 6 B0
4 / 1.31
0x7FFFFFFF
Left BQ coefficient
0x48
0x16
CH -L BQ 6 B1
4 / 2.30
0x00000000
Left BQ coefficient
0x4C
0x16
CH -L BQ 6 B2
4 / 1.31
0x00000000
Left BQ coefficient
0x50
0x16
CH -L BQ 6 A1
4 / 2.30
0x00000000
Left BQ coefficient
0x54
0x16
CH -LBQ 6 A2
4 / 1.31
0x00000000
Left BQ coefficient
0x58
0x16
CH -L BQ 7 B0
4 / 1.31
0x7FFFFFFF
Left BQ coefficient
SLAA737B – March 2017 – Revised October 2017
Submit Documentation Feedback
Copyright © 2017, Texas Instruments Incorporated
TAS5782M Process Flows
57
DSP Memory Map for Process Flow 3
www.ti.com
Table 9. DSP Memory Map for Process Flow 3 — Book 0x8C (continued)
Sub
Address
Page
Register Name
Number of
Bytes/Format
Default Value
Description
0x5C
0x16
CH -L BQ 7 B1
4 / 2.30
0x00000000
Left BQ coefficient
0x60
0x16
CH -L BQ 7 B2
4 / 1.31
0x00000000
Left BQ coefficient
0x64
0x16
CH -L BQ 7 A1
4 / 2.30
0x00000000
Left BQ coefficient
0x68
0x16
CH -L BQ 7 A2
4 / 1.31
0x00000000
Left BQ coefficient
0x6C
0x16
CH -L BQ 8 B0
4 / 1.31
0x7FFFFFFF
Left BQ coefficient
0x70
0x16
CH -L BQ 8 B1
4 / 2.30
0x00000000
Left BQ coefficient
0x74
0x16
CH -L BQ 8 B2
4 / 1.31
0x00000000
Left BQ coefficient
0x78
0x16
CH -L BQ 8 A1
4 / 2.30
0x00000000
Left BQ coefficient
0x7C
0x16
CH -L BQ 8 A2
4 / 1.31
0x00000000
Left BQ coefficient
0x08
0x17
CH -L BQ 9 B0
4 / 1.31
0x7FFFFFFF
Left BQ coefficient
0x0C
0x17
CH -L BQ 9 B1
4 / 2.30
0x00000000
Left BQ coefficient
0x10
0x17
CH -L BQ 9 B2
4 / 1.31
0x00000000
Left BQ coefficient
0x14
0x17
CH -L BQ 9 A1
4 / 2.30
0x00000000
Left BQ coefficient
0x18
0x17
CH -L BQ 9 A2
4 / 1.31
0x00000000
Left BQ coefficient
0x1C
0x17
CH -L BQ 10 B0
4 / 1.31
0x7FFFFFFF
Left BQ coefficient
0x20
0x17
CH -L BQ 10 B1
4 / 2.30
0x00000000
Left BQ coefficient
0x24
0x17
CH -L BQ 10 B2
4 / 1.31
0x00000000
Left BQ coefficient
0x28
0x17
CH -L BQ 10 A1
4 / 2.30
0x00000000
Left BQ coefficient
0x2C
0x17
CH -L BQ 10 A2
4 / 1.31
0x00000000
Left BQ coefficient
0x30
0x17
CH -L BQ 11 B0
4 / 1.31
0x7FFFFFFF
Left BQ coefficient
0x34
0x17
CH -L BQ 11 B1
4 / 2.30
0x00000000
Left BQ coefficient
0x38
0x17
CH -L BQ 11 B2
4 / 1.31
0x00000000
Left BQ coefficient
0x3C
0x17
CH -L BQ 11 A1
4 / 2.30
0x00000000
Left BQ coefficient
0x40
0x17
CH -L BQ 11 A2
4 / 1.31
0x00000000
Left BQ coefficient
0x44
0x17
CH -L BQ 12 B0
4 / 1.31
0x7FFFFFFF
Left BQ coefficient
0x48
0x17
CH -L BQ 12 B1
4 / 2.30
0x00000000
Left BQ coefficient
0x4C
0x17
CH -L BQ 12 B2
4 / 1.31
0x00000000
Left BQ coefficient
0x50
0x17
CH -L BQ 12 A1
4 / 2.30
0x00000000
Left BQ coefficient
0x54
0x17
CH -L BQ 12 A2
4 / 1.31
0x00000000
Left BQ coefficient
0x58
0x17
CH -L BQ 13 B0
4 / 1.31
0x7FFFFFFF
Left BQ coefficient
0x5C
0x17
CH -L BQ 13 B1
4 / 2.30
0x00000000
Left BQ coefficient
0x60
0x17
CH -L BQ 13 B2
4 / 1.31
0x00000000
Left BQ coefficient
0x64
0x17
CH -L BQ 13 A1
4 / 2.30
0x00000000
Left BQ coefficient
0x68
0x17
CH -L BQ 13 A2
4 / 1.31
0x00000000
Left BQ coefficient
0x6C
0x17
CH -L BQ 14 B0
4 / 1.31
0x7FFFFFFF
Left BQ coefficient
0x70
0x17
CH -L BQ 14 B1
4 / 2.30
0x00000000
Left BQ coefficient
0x74
0x17
CH -L BQ 14 B2
4 / 1.31
0x00000000
Left BQ coefficient
0x78
0x17
CH -L BQ 14 A1
4 / 2.30
0x00000000
Left BQ coefficient
0x7C
0x17
CH -L BQ 14 A2
4 / 1.31
0x00000000
Left BQ coefficient
LEFT INTGAIN BQ
0x08
0x18
CH -L BQ 15 B0
4 / 5.27
0x08000000
Left gain scale BQ coefficient
0x0C
0x18
CH -L BQ 15 B1
4 / 6.26
0x00000000
Left gain scale BQ coefficient
0x10
0x18
CH -L BQ 15 B2
4 / 5.27
0x00000000
Left gain scale BQ coefficient
0x14
0x18
CH -L BQ 15 A1
4 / 2.30
0x00000000
Left gain scale BQ coefficient
0x18
0x18
CH -L BQ 15 A2
4 / 1.31
0x00000000
Left gain scale BQ coefficient
EQ RIGHT 14 BQs
58
0x1C
0x18
CH -R BQ 1 B0
4 / 1.31
0x7FFFFFFF
Right BQ coefficient
0x20
0x18
CH -R BQ 1 B1
4 / 2.30
0x00000000
Right BQ coefficient
0x24
0x18
CH -R BQ 1 B2
4 / 1.31
0x00000000
Right BQ coefficient
0x28
0x18
CH -R BQ 1 A1
4 / 2.30
0x00000000
Right BQ coefficient
0x2C
0x18
CH -R BQ 1 A2
4 / 1.31
0x00000000
Right BQ coefficient
TAS5782M Process Flows
SLAA737B – March 2017 – Revised October 2017
Submit Documentation Feedback
Copyright © 2017, Texas Instruments Incorporated
DSP Memory Map for Process Flow 3
www.ti.com
Table 9. DSP Memory Map for Process Flow 3 — Book 0x8C (continued)
Sub
Address
Page
Register Name
Number of
Bytes/Format
Default Value
Description
0x30
0x18
CH -R BQ 2 B0
4 / 1.31
0x7FFFFFFF
Right BQ coefficient
0x34
0x18
CH -R BQ 2 B1
4 / 2.30
0x00000000
Right BQ coefficient
0x38
0x18
CH -R BQ 2 B2
4 / 1.31
0x00000000
Right BQ coefficient
0x3C
0x18
CH -R BQ 2 A1
4 / 2.30
0x00000000
Right BQ coefficient
0x40
0x18
CH -R BQ 2 A2
4 / 1.31
0x00000000
Right BQ coefficient
0x44
0x18
CH -R BQ 3 B0
4 / 1.31
0x7FFFFFFF
Right BQ coefficient
0x48
0x18
CH -R BQ 3 B1
4 / 2.30
0x00000000
Right BQ coefficient
0x4C
0x18
CH -R BQ 3 B2
4 / 1.31
0x00000000
Right BQ coefficient
0x50
0x18
CH -R BQ 3 A1
4 / 2.30
0x00000000
Right BQ coefficient
0x54
0x18
CH -R BQ 3 A2
4 / 1.31
0x00000000
Right BQ coefficient
0x58
0x18
CH -R BQ 4 B0
4 / 1.31
0x7FFFFFFF
Right BQ coefficient
0x5C
0x18
CH -R BQ 4 B1
4 / 2.30
0x00000000
Right BQ coefficient
0x60
0x18
CH -R BQ 4 B2
4 / 1.31
0x00000000
Right BQ coefficient
0x64
0x18
CH -R BQ 4 A1
4 / 2.30
0x00000000
Right BQ coefficient
0x68
0x18
CH -R BQ 4 A2
4 / 1.31
0x00000000
Right BQ coefficient
0x6C
0x18
CH -R BQ 5 B0
4 / 1.31
0x7FFFFFFF
Right BQ coefficient
0x70
0x18
CH -R BQ 5 B1
4 / 2.30
0x00000000
Right BQ coefficient
0x74
0x18
CH -R BQ 5 B2
4 / 1.31
0x00000000
Right BQ coefficient
0x78
0x18
CH -R BQ 5 A1
4 / 2.30
0x00000000
Right BQ coefficient
0x7C
0x18
CH -R BQ 5 A2
4 / 1.31
0x00000000
Right BQ coefficient
0x08
0x19
CH -R BQ 6 B0
4 / 1.31
0x7FFFFFFF
Right BQ coefficient
0x0C
0x19
CH -R BQ 6 B1
4 / 2.30
0x00000000
Right BQ coefficient
0x10
0x19
CH -R BQ 6 B2
4 / 1.31
0x00000000
Right BQ coefficient
0x14
0x19
CH -R BQ 6 A1
4 / 2.30
0x00000000
Right BQ coefficient
0x18
0x19
CH -R BQ 6 A2
4 / 1.31
0x00000000
Right BQ coefficient
0x1C
0x19
CH -R BQ 7 B0
4 / 1.31
0x7FFFFFFF
Right BQ coefficient
0x20
0x19
CH -R BQ 7 B1
4 / 2.30
0x00000000
Right BQ coefficient
0x24
0x19
CH -R BQ 7 B2
4 / 1.31
0x00000000
Right BQ coefficient
0x28
0x19
CH -R BQ 7 A1
4 / 2.30
0x00000000
Right BQ coefficient
0x2C
0x19
CH -R BQ 7 A2
4 / 1.31
0x00000000
Right BQ coefficient
0x30
0x19
CH -R BQ 8 B0
4 / 1.31
0x7FFFFFFF
Right BQ coefficient
0x34
0x19
CH -R BQ 8 B1
4 / 2.30
0x00000000
Right BQ coefficient
0x38
0x19
CH -R BQ 8 B2
4 / 1.31
0x00000000
Right BQ coefficient
0x3C
0x19
CH -R BQ 8 A1
4 / 2.30
0x00000000
Right BQ coefficient
0x40
0x19
CH -R BQ 8 A2
4 / 1.31
0x00000000
Right BQ coefficient
0x44
0x19
CH -R BQ 9 B0
4 / 1.31
0x7FFFFFFF
Right BQ coefficient
0x48
0x19
CH -R BQ 9 B1
4 / 2.30
0x00000000
Right BQ coefficient
0x4C
0x19
CH -R BQ 9 B2
4 / 1.31
0x00000000
Right BQ coefficient
0x50
0x19
CH -R BQ 9 A1
4 / 2.30
0x00000000
Right BQ coefficient
0x54
0x19
CH -R BQ 9 A2
4 / 1.31
0x00000000
Right BQ coefficient
0x58
0x19
CH -R BQ 10 B0
4 / 1.31
0x7FFFFFFF
Right BQ coefficient
0x5C
0x19
CH -R BQ 10 B1
4 / 2.30
0x00000000
Right BQ coefficient
0x60
0x19
CH -R BQ 10 B2
4 / 1.31
0x00000000
Right BQ coefficient
0x64
0x19
CH -R BQ 10 A1
4 / 2.30
0x00000000
Right BQ coefficient
0x68
0x19
CH -R BQ 10 A2
4 / 1.31
0x00000000
Right BQ coefficient
0x6C
0x19
CH -R BQ 11 B0
4 / 1.31
0x7FFFFFFF
Right BQ coefficient
0x70
0x19
CH -R BQ 11 B1
4 / 2.30
0x00000000
Right BQ coefficient
0x74
0x19
CH -R BQ 11 B2
4 / 1.31
0x00000000
Right BQ coefficient
0x78
0x19
CH -R BQ 11 A1
4 / 2.30
0x00000000
Right BQ coefficient
0x7C
0x19
CH -R BQ 11 A2
4 / 1.31
0x00000000
Right BQ coefficient
0x08
0x1A
CH -R BQ 12 B0
4 / 1.31
0x7FFFFFFF
Right BQ coefficient
SLAA737B – March 2017 – Revised October 2017
Submit Documentation Feedback
Copyright © 2017, Texas Instruments Incorporated
TAS5782M Process Flows
59
DSP Memory Map for Process Flow 3
www.ti.com
Table 9. DSP Memory Map for Process Flow 3 — Book 0x8C (continued)
Sub
Address
Page
Register Name
Number of
Bytes/Format
Default Value
Description
0x0C
0x1A
CH -R BQ 12 B1
4 / 2.30
0x00000000
Right BQ coefficient
0x10
0x1A
CH -R BQ 12 B2
4 / 1.31
0x00000000
Right BQ coefficient
0x14
0x1A
CH -R BQ 12 A1
4 / 2.30
0x00000000
Right BQ coefficient
0x18
0x1A
CH -R BQ 12 A2
4 / 1.31
0x00000000
Right BQ coefficient
0x1C
0x1A
CH -R BQ 13 B0
4 / 1.31
0x7FFFFFFF
Right BQ coefficient
0x20
0x1A
CH -R BQ 13 B1
4 / 2.30
0x00000000
Right BQ coefficient
0x24
0x1A
CH -R BQ 13 B2
4 / 1.31
0x00000000
Right BQ coefficient
0x28
0x1A
CH -R BQ 13 A1
4 / 2.30
0x00000000
Right BQ coefficient
0x2C
0x1A
CH -R BQ 13 A2
4 / 1.31
0x00000000
Right BQ coefficient
0x30
0x1A
CH -R BQ 14 B0
4 / 1.31
0x7FFFFFFF
Right BQ coefficient
0x34
0x1A
CH -R BQ 14 B1
4 / 2.30
0x00000000
Right BQ coefficient
0x38
0x1A
CH -R BQ 14 B2
4 / 1.31
0x00000000
Right BQ coefficient
0x3C
0x1A
CH -R BQ 14 A1
4 / 2.30
0x00000000
Right BQ coefficient
0x40
0x1A
CH -R BQ 14 A2
4 / 1.31
0x00000000
Right BQ coefficient
0x44
0x1A
CH -R BQ 15 B0
4 / 5.27
0x08000000
Right gain scale BQ coefficient
0x48
0x1A
CH -R BQ 15 B1
4 / 6.26
0x00000000
Right gain scale BQ coefficient
0x4C
0x1A
CH -R BQ 15 B2
4 / 5.27
0x00000000
Right gain scale BQ coefficient
0x50
0x1A
CH -R BQ 15 A1
4 / 2.30
0x00000000
Right gain scale BQ coefficient
0x54
0x1A
CH -R BQ 15 A2
4 / 1.31
0x00000000
Right gain scale BQ coefficient
RIGHT INTGAIN BQ
VOLUME ALPHA FILTER
0x58
0x1A
Softening Filter Alpha
4 / 1.31
0x00A7264A
Volume time constant
0x00000000
Pseudo 96k flag
DRC1 Energy Time constant
PSEUDO 96K
0x5C
0x1A
pseudo96k
4 /32.0
DRC 1
0x6C
0x1A
DRC1 Energy
4 / 1.31
0x7FFFFFFF
0x70
0x1A
DRC1 Attack
4 / 1.31
0x7FFFFFFF
DRC1 Attack Time constant
0x74
0x1A
DRC1 Decay
4 / 1.31
0x7FFFFFFF
DRC1 Decay Time constant
0x78
0x1A
K0_1
4 / 9.23
0x00000000
DRC1 Region 1 Slope (comp/Exp)
0x7C
0x1A
K1_1
4 / 9.23
0x00000000
DRC1 Region 2 Slope (comp/Exp)
0x08
0x1B
K2_1
4 / 9.23
0x00000000
DRC1 Region 3 Slope (comp/Exp)
0x0C
0x1B
T1_1
4 / 9.23
0xE7000000
DRC1 Threshold 1
0x10
0x1B
T2_1
4 / 9.23
0xFE800000
DRC1 Threshold 2
0x14
0x1B
off1_1
4 / 9.23
0x00000000
DRC1 Offset 1
0x18
0x1B
off2_1
4 / 9.23
0x00000000
DRC1 Offset 2
DRC2 Energy Time constant
DRC 2
0x1C
0x1B
DRC2 Energy
4 / 1.31
0x7FFFFFFF
0x20
0x1B
DRC2 Attack
4 / 1.31
0x7FFFFFFF
DRC2 Attack Time constant
0x24
0x1B
DRC2 Decay
4 / 1.31
0x7FFFFFFF
DRC2 Decay Time constant
0x28
0x1B
k0_2
4 / 9.23
0x00000000
DRC2 Region 1 Slope (comp/Exp)
0x2C
0x1B
k1_2
4 / 9.23
0x00000000
DRC2 Region 2 Slope (comp/Exp)
0x30
0x1B
k2_2
4 / 9.23
0x00000000
DRC2 Region 3 Slope (comp/Exp)
0x34
0x1B
t1_2
4 / 9.23
0xE7000000
DRC2 Threshold 1
0x38
0x1B
t2_2
4 / 9.23
0xFE800000
DRC2 Threshold 2
0x3C
0x1B
off1_2
4 / 9.23
0x00000000
DRC2 Offset 1
0x40
0x1B
off2_2
4 / 9.23
0x00000000
DRC2 Offset 2
DRC3 Energy Time constant
DRC 3
60
0x44
0x1B
DRC3 Energy
4 / 1.31
0x7FFFFFFF
0x48
0x1B
DRC3 Attack
4 / 1.31
0x7FFFFFFF
DRC3 Attack Time constant
0x4C
0x1B
DRC3 Decay
4 / 1.31
0x7FFFFFFF
DRC3 Decay Time constant
0x50
0x1B
k0_3
4 / 9.23
0x00000000
DRC3 Region 1 Slope (comp/Exp)
TAS5782M Process Flows
SLAA737B – March 2017 – Revised October 2017
Submit Documentation Feedback
Copyright © 2017, Texas Instruments Incorporated
DSP Memory Map for Process Flow 3
www.ti.com
Table 9. DSP Memory Map for Process Flow 3 — Book 0x8C (continued)
Sub
Address
Page
Register Name
Number of
Bytes/Format
Default Value
Description
0x54
0x1B
k1_3
4 / 9.23
0x00000000
DRC3 Region 2 Slope (comp/Exp)
0x58
0x1B
k1_3
4 / 9.23
0x00000000
DRC3 Region 3 Slope (comp/Exp)
0x5C
0x1B
t1_3
4 / 9.23
0xE7000000
DRC3 Threshold 1
0x60
0x1B
t2_3
4 / 9.23
0xFE800000
DRC3 Threshold 2
0x64
0x1B
off1_3
4 / 9.23
0x00000000
DRC3 Offset 1
0x68
0x1B
off2_3
4 / 9.23
0x00000000
DRC3 Offset 2
SPATIALIZER BQs
0x6C
0x1C
BQ 1 B0
4 / 1.31
0x7FFFFFFF
Spatializer BQ coefficient
0x70
0x1C
BQ 1 B1
4 / 2.30
0x00000000
Spatializer BQ coefficient
0x74
0x1C
BQ 1 B2
4 / 1.31
0x00000000
Spatializer BQ coefficient
0x78
0x1C
BQ 1 A1
4 / 2.30
0x00000000
Spatializer BQ coefficient
0x7C
0x1C
BQ 1 A2
4 / 1.31
0x00000000
Spatializer BQ coefficient
0x08
0x1D
BQ 2 B0
4 / 1.31
0x7FFFFFFF
Spatializer BQ coefficient
0x0C
0x1D
BQ 2 B1
4 / 2.30
0x00000000
Spatializer BQ coefficient
0x10
0x1D
BQ 2 B2
4 / 1.31
0x00000000
Spatializer BQ coefficient
0x14
0x1D
BQ 2 A1
4 / 2.30
0x00000000
Spatializer BQ coefficient
0x18
0x1D
BQ 2 A2
4 / 1.31
0x00000000
Spatializer BQ coefficient
DPEQ Sense Energy Time constant
DPEQ CONTROL
0x1C
0x1D
Alpha
4 / 1.31
0x02DEAD00
0x20
0x1D
Gain
4 / 1.31
0x74013901
DPEQ Threshold Gain
0x24
0x1D
Offset
4 / 1.31
0x0020C49B
DPEQ Threshold Offset
0x28
0x1D
No Sub
SUB CHANNEL CONTROL
4 / 32.0
0x00000001
Sub Channel Flag
THD LR Channel pre-scale coefficient
THD CLIPPER
0x2C
0x1D
CH-LR THD Boost
4 / 9.23
0x00800000
0x34
0x1D
CH-L Fine Volume
4 / 2.30
0x3FFFFFFF
THD L Channel post-scale coefficient
0x38
0x1D
CH-R Fine Volume
4 / 2.30
0x3FFFFFFF
THD R Channel post-scale coefficient
0x40
0x1D
DRC 1 Mixer Gain
4 / 9.23
0x00800000
DRC 1 Mixer Gain coefficient
0x44
0x1D
DRC 2 Mixer Gain
4 / 9.23
0x00000000
DRC 2 Mixer Gain coefficient
0x48
0x1D
DRC 3 Mixer Gain
4 / 9.23
0x00000000
DRC 3 Mixer Gain coefficient
0x00000000
Gang Left and Right EQ flag
DRC MIXER GAIN
GANG EQ
0x58
0x1D
Gang LR EQ
4 / 32.0
INPUT MIXER
0x5C
0x1D
Left to Left
4 / 9.23
0x00800000
Left Channel Mixer Left Input Gain
0x60
0x1D
Right to Left
4 / 9.23
0x00000000
Left Channel Mixer Right Input Gain
0x64
0x1D
Left to Right
4 / 9.23
0x00000000
Right Channel Mixer Left Input Gain
0x68
0x1D
Right to Right
4 / 9.23
0x00800000
Right Channel Mixer Right Input Gain
0x10
0x1E
Spatializer Level
SPATIALIZER LEVEL
4 / 9.23
0x00000000
Spatializer Level coefficient
OUTPUT CROSS BAR
0x14
0x1E
Digital Left from Left
4 / 9.23
0x00800000
I2S Left output gain from left
0x18
0x1E
Digital Left from Right
4 / 9.23
0x00000000
I2S Left output gain from Right
0x20
0x1E
Digital Right from Left
4 / 9.23
0x00000000
I2S Right output gain from left
0x24
0x1E
Digital Right from Right
4 / 9.23
0x00800000
I2S Right output gain from Right
0x2C
0x1E
Analog Left from Left
4 / 9.23
0x00800000
Analog Left output gain from left
0x30
0x1E
Analog Left from Right
4 / 9.23
0x00000000
Analog Left output gain from Right
0x38
0x1E
Analog Right from Left
4 / 9.23
0x00000000
Analog Right output gain from left
0x3C
0x1E
Analog Right from Right
4 / 9.23
0x00800000
Analog Right output gain from Right
SLAA737B – March 2017 – Revised October 2017
Submit Documentation Feedback
Copyright © 2017, Texas Instruments Incorporated
TAS5782M Process Flows
61
DSP Memory Map for Process Flow 3
www.ti.com
Table 9. DSP Memory Map for Process Flow 3 — Book 0x8C (continued)
Sub
Address
Page
Register Name
Number of
Bytes/Format
Default Value
Description
0x44
0x1E
CH-L Volume
4 / 9.23
0x00800000
Left Channel volume coefficient
0x48
0x1E
CH-R Volume
4 / 9.23
0x00800000
Right Channel volume coefficient
0x50
0x1E
DPEQ Sense Scale
4 / 2.30
0x40000000
DPEQ Sense Input Gain
0x54
0x1E
DPEQ Low Scale
4 / 6.26
0x04000000
DPEQ Low Input Gain
0x58
0x1E
DPEQ High Scale
4 / 6.26
0x04000000
DPEQ High Input Gain
0x14
0x1F
Attack Threshold
4 / 1.31
0x40000000
Threshold linear
0x18
0x1F
Softening Filter Alpha
4 / 1.31
0x06153BD1
AGL Alpha Time constant
0x1C
0x1F
Attack Rate
4 / 1.31
0x0001B4E8
AGL Attack Time constant
0x20
0x1F
AGL Enable
4 / 1.31
0x40000000
AGL Enable flag
0x28
0x1F
Softening Filter Omega
4 / 1.31
0x79EAC42F
AGL Omega Time constant
0x2C
0x1F
Release Rate
4 / 1.31
0x00002BB1
AGL Release Time constant
VOLUME CONTROL
DPEQ GAIN SCALE
AGL
62
TAS5782M Process Flows
SLAA737B – March 2017 – Revised October 2017
Submit Documentation Feedback
Copyright © 2017, Texas Instruments Incorporated
DSP Memory Map for Process Flow 4
www.ti.com
A.4
DSP Memory Map for Process Flow 4
Table 10 lists the DSP memory map for process flow 4.
Table 10. DSP Memory Map for Process Flow 4 — Book 0x8C
Sub
Address
Page
Register Name
Number of
Bytes/Format
Default Value
Description
0x58
0x11
BQ 1 B0
4 / 1.31
0x7FFFFFFF
Main Channel BQ coefficient
0x5C
0x11
BQ 1 B1
4 / 2.30
0x00000000
Main Channel BQ coefficient
0x60
0x11
BQ 1 B2
4 / 1.31
0x00000000
Main Channel BQ coefficient
0x64
0x11
BQ 1 A1
4 / 2.30
0x00000000
Main Channel BQ coefficient
0x68
0x11
BQ 1 A2
4 / 1.31
0x00000000
Main Channel BQ coefficient
0x44
0x12
CH-Sub BQ 1 B0
4 / 1.31
0x7FFFFFFF
Sub Channel BQ coefficient
BASS MONO MIXER
0x48
0x12
CH-Sub BQ 1 B1
4 / 2.30
0x00000000
Sub Channel BQ coefficient
0x4C
0x12
CH-Sub BQ 1 B2
4 / 1.31
0x00000000
Sub Channel BQ coefficient
0x50
0x12
CH-Sub BQ 1 A1
4 / 2.30
0x00000000
Sub Channel BQ coefficient
0x54
0x12
CH-Sub BQ 1 A2
4 / 1.31
0x00000000
Sub Channel BQ coefficient
DPEQ SENSE BQ
0x58
0x14
BQ 1 B0
4 / 1.31
0x7FFFFFFF
DPEQ sense BQ coefficient
0x5C
0x14
BQ 1 B1
4 / 2.30
0x00000000
DPEQ sense BQ coefficient
0x60
0x14
BQ 1 B2
4 / 1.31
0x00000000
DPEQ sense BQ coefficient
0x64
0x14
BQ 1 A1
4 / 2.30
0x00000000
DPEQ sense BQ coefficient
0x68
0x14
BQ 1 A2
4 / 1.31
0x00000000
DPEQ sense BQ coefficient
0x6C
0x14
BQ 2 B0
4 / 1.31
0x7FFFFFFF
DPEQ sense BQ coefficient
0x70
0x14
BQ 2 B1
4 / 2.30
0x00000000
DPEQ sense BQ coefficient
0x74
0x14
BQ 2 B2
4 / 1.31
0x00000000
DPEQ sense BQ coefficient
0x78
0x14
BQ 2 A1
4 / 2.30
0x00000000
DPEQ sense BQ coefficient
0x7C
0x14
BQ 2 A2
4 / 1.31
0x00000000
DPEQ sense BQ coefficient
DPEQ LOW LEVEL PATH BQ
0x08
0x15
BQ 1 B0
4 / 1.31
0x7FFFFFFF
DPEQ low BQ coefficient
0x0C
0x15
BQ 1 B1
4 / 2.30
0x00000000
DPEQ low BQ coefficient
0x10
0x15
BQ 1 B2
4 / 1.31
0x00000000
DPEQ low BQ coefficient
0x14
0x15
BQ 1 A1
4 / 2.30
0x00000000
DPEQ low BQ coefficient
0x18
0x15
BQ 1 A2
4 / 1.31
0x00000000
DPEQ low BQ coefficient
0x1C
0x15
BQ 2 B0
4 / 1.31
0x7FFFFFFF
DPEQ low BQ coefficient
0x20
0x15
BQ 2 B1
4 / 2.30
0x00000000
DPEQ low BQ coefficient
0x24
0x15
BQ 2 B2
4 / 1.31
0x00000000
DPEQ low BQ coefficient
0x28
0x15
BQ 2 A1
4 / 2.30
0x00000000
DPEQ low BQ coefficient
0x2C
0x15
BQ 2 A2
4 / 1.31
0x00000000
DPEQ low BQ coefficient
DPEQ HIGH LEVEL PATH BQ
0x30
0x15
BQ 1 B0
4 / 1.31
0x7FFFFFFF
DPEQ high BQ coefficient
0x34
0x15
BQ 1 B1
4 / 2.30
0x00000000
DPEQ high BQ coefficient
0x38
0x15
BQ 1 B2
4 / 1.31
0x00000000
DPEQ high BQ coefficient
0x3C
0x15
BQ 1 A1
4 / 2.30
0x00000000
DPEQ high BQ coefficient
0x40
0x15
BQ 1 A2
4 / 1.31
0x00000000
DPEQ high BQ coefficient
0x44
0x15
BQ 2 B0
4 / 1.31
0x7FFFFFFF
DPEQ high BQ coefficient
0x48
0x15
BQ 2 B1
4 / 2.30
0x00000000
DPEQ high BQ coefficient
0x4C
0x15
BQ 2 B2
4 / 1.31
0x00000000
DPEQ high BQ coefficient
0x50
0x15
BQ 2 A1
4 / 2.30
0x00000000
DPEQ high BQ coefficient
0x54
0x15
BQ 2 A2
4 / 1.31
0x00000000
DPEQ high BQ coefficient
EQ LEFT 14 BQs
0x58
0x15
CH -L BQ 1 B0
4 / 1.31
0x7FFFFFFF
Left BQ coefficient
0x5C
0x15
CH -L BQ 1 B1
4 / 2.30
0x00000000
Left BQ coefficient
0x60
0x15
CH -L BQ 1 B2
4 / 1.31
0x00000000
Left BQ coefficient
SLAA737B – March 2017 – Revised October 2017
Submit Documentation Feedback
Copyright © 2017, Texas Instruments Incorporated
TAS5782M Process Flows
63
DSP Memory Map for Process Flow 4
www.ti.com
Table 10. DSP Memory Map for Process Flow 4 — Book 0x8C (continued)
64
Sub
Address
Page
Register Name
Number of
Bytes/Format
Default Value
Description
0x64
0x15
CH -L BQ 1 A1
4 / 2.30
0x00000000
Left BQ coefficient
0x68
0x15
CH -L BQ 1 A2
4 / 1.31
0x00000000
Left BQ coefficient
0x6C
0x15
CH -L BQ 2 B0
4 / 1.31
0x7FFFFFFF
Left BQ coefficient
0x70
0x15
CH -L BQ 2 B1
4 / 2.30
0x00000000
Left BQ coefficient
0x74
0x15
CH -L BQ 2 B2
4 / 1.31
0x00000000
Left BQ coefficient
0x78
0x15
CH -L BQ 2 A1
4 / 2.30
0x00000000
Left BQ coefficient
0x7C
0x15
CH -L BQ 2 A2
4 / 1.31
0x00000000
Left BQ coefficient
0x08
0x16
CH -L BQ 3 B0
4 / 1.31
0x7FFFFFFF
Left BQ coefficient
0x0C
0x16
CH -L BQ 3 B1
4 / 2.30
0x00000000
Left BQ coefficient
0x10
0x16
CH -L BQ 3 B2
4 / 1.31
0x00000000
Left BQ coefficient
0x14
0x16
CH -L BQ 3 A1
4 / 2.30
0x00000000
Left BQ coefficient
0x18
0x16
CH -L BQ 3 A2
4 / 1.31
0x00000000
Left BQ coefficient
0x1C
0x16
CH -L BQ 4 B0
4 / 1.31
0x7FFFFFFF
Left BQ coefficient
0x20
0x16
CH -L BQ 4 B1
4 / 2.30
0x00000000
Left BQ coefficient
0x24
0x16
CH -L BQ 4 B2
4 / 1.31
0x00000000
Left BQ coefficient
0x28
0x16
CH -L BQ 4 A1
4 / 2.30
0x00000000
Left BQ coefficient
0x2C
0x16
CH -L BQ 4 A2
4 / 1.31
0x00000000
Left BQ coefficient
0x30
0x16
CH -L BQ 5 B0
4 / 1.31
0x7FFFFFFF
Left BQ coefficient
0x34
0x16
CH -L BQ 5 B1
4 / 2.30
0x00000000
Left BQ coefficient
0x38
0x16
CH -L BQ 5 B2
4 / 1.31
0x00000000
Left BQ coefficient
0x3C
0x16
CH -L BQ 5 A1
4 / 2.30
0x00000000
Left BQ coefficient
0x40
0x16
CH -L BQ 5 A2
4 / 1.31
0x00000000
Left BQ coefficient
0x44
0x16
CH -L BQ 6 B0
4 / 1.31
0x7FFFFFFF
Left BQ coefficient
0x48
0x16
CH -L BQ 6 B1
4 / 2.30
0x00000000
Left BQ coefficient
0x4C
0x16
CH -L BQ 6 B2
4 / 1.31
0x00000000
Left BQ coefficient
0x50
0x16
CH -L BQ 6 A1
4 / 2.30
0x00000000
Left BQ coefficient
0x54
0x16
CH -LBQ 6 A2
4 / 1.31
0x00000000
Left BQ coefficient
0x58
0x16
CH -L BQ 7 B0
4 / 1.31
0x7FFFFFFF
Left BQ coefficient
0x5C
0x16
CH -L BQ 7 B1
4 / 2.30
0x00000000
Left BQ coefficient
0x60
0x16
CH -L BQ 7 B2
4 / 1.31
0x00000000
Left BQ coefficient
0x64
0x16
CH -L BQ 7 A1
4 / 2.30
0x00000000
Left BQ coefficient
0x68
0x16
CH -L BQ 7 A2
4 / 1.31
0x00000000
Left BQ coefficient
0x6C
0x16
CH -L BQ 8 B0
4 / 1.31
0x7FFFFFFF
Left BQ coefficient
0x70
0x16
CH -L BQ 8 B1
4 / 2.30
0x00000000
Left BQ coefficient
0x74
0x16
CH -L BQ 8 B2
4 / 1.31
0x00000000
Left BQ coefficient
0x78
0x16
CH -L BQ 8 A1
4 / 2.30
0x00000000
Left BQ coefficient
0x7C
0x16
CH -L BQ 8 A2
4 / 1.31
0x00000000
Left BQ coefficient
0x08
0x17
CH -L BQ 9 B0
4 / 1.31
0x7FFFFFFF
Left BQ coefficient
0x0C
0x17
CH -L BQ 9 B1
4 / 2.30
0x00000000
Left BQ coefficient
0x10
0x17
CH -L BQ 9 B2
4 / 1.31
0x00000000
Left BQ coefficient
0x14
0x17
CH -L BQ 9 A1
4 / 2.30
0x00000000
Left BQ coefficient
0x18
0x17
CH -L BQ 9 A2
4 / 1.31
0x00000000
Left BQ coefficient
0x1C
0x17
CH -L BQ 10 B0
4 / 1.31
0x7FFFFFFF
Left BQ coefficient
0x20
0x17
CH -L BQ 10 B1
4 / 2.30
0x00000000
Left BQ coefficient
0x24
0x17
CH -L BQ 10 B2
4 / 1.31
0x00000000
Left BQ coefficient
0x28
0x17
CH -L BQ 10 A1
4 / 2.30
0x00000000
Left BQ coefficient
0x2C
0x17
CH -L BQ 10 A2
4 / 1.31
0x00000000
Left BQ coefficient
0x30
0x17
CH -L BQ 11 B0
4 / 1.31
0x7FFFFFFF
Left BQ coefficient
0x34
0x17
CH -L BQ 11 B1
4 / 2.30
0x00000000
Left BQ coefficient
0x38
0x17
CH -L BQ 11 B2
4 / 1.31
0x00000000
Left BQ coefficient
0x3C
0x17
CH -L BQ 11 A1
4 / 2.30
0x00000000
Left BQ coefficient
TAS5782M Process Flows
SLAA737B – March 2017 – Revised October 2017
Submit Documentation Feedback
Copyright © 2017, Texas Instruments Incorporated
DSP Memory Map for Process Flow 4
www.ti.com
Table 10. DSP Memory Map for Process Flow 4 — Book 0x8C (continued)
Sub
Address
Page
Register Name
Number of
Bytes/Format
Default Value
Description
0x40
0x17
CH -L BQ 11 A2
0x44
0x17
CH -L BQ 12 B0
4 / 1.31
0x00000000
Left BQ coefficient
4 / 1.31
0x7FFFFFFF
0x48
0x17
Left BQ coefficient
CH -L BQ 12 B1
4 / 2.30
0x00000000
0x4C
Left BQ coefficient
0x17
CH -L BQ 12 B2
4 / 1.31
0x00000000
Left BQ coefficient
0x50
0x17
CH -L BQ 12 A1
4 / 2.30
0x00000000
Left BQ coefficient
0x54
0x17
CH -L BQ 12 A2
4 / 1.31
0x00000000
Left BQ coefficient
0x58
0x17
CH -L BQ 13 B0
4 / 1.31
0x7FFFFFFF
Left BQ coefficient
0x5C
0x17
CH -L BQ 13 B1
4 / 2.30
0x00000000
Left BQ coefficient
0x60
0x17
CH -L BQ 13 B2
4 / 1.31
0x00000000
Left BQ coefficient
0x64
0x17
CH -L BQ 13 A1
4 / 2.30
0x00000000
Left BQ coefficient
0x68
0x17
CH -L BQ 13 A2
4 / 1.31
0x00000000
Left BQ coefficient
0x6C
0x17
CH -L BQ 14 B0
4 / 1.31
0x7FFFFFFF
Left BQ coefficient
0x70
0x17
CH -L BQ 14 B1
4 / 2.30
0x00000000
Left BQ coefficient
0x74
0x17
CH -L BQ 14 B2
4 / 1.31
0x00000000
Left BQ coefficient
0x78
0x17
CH -L BQ 14 A1
4 / 2.30
0x00000000
Left BQ coefficient
0x7C
0x17
CH -L BQ 14 A2
4 / 1.31
0x00000000
Left BQ coefficient
LEFT INTGAIN BQ
0x08
0x18
CH -L BQ 15 B0
4 / 5.27
0x08000000
Left gain scale BQ coefficient
0x0C
0x18
CH -L BQ 15 B1
4 / 6.26
0x00000000
Left gain scale BQ coefficient
0x10
0x18
CH -L BQ 15 B2
4 / 5.27
0x00000000
Left gain scale BQ coefficient
0x14
0x18
CH -L BQ 15 A1
4 / 2.30
0x00000000
Left gain scale BQ coefficient
0x18
0x18
CH -L BQ 15 A2
4 / 1.31
0x00000000
Left gain scale BQ coefficient
EQ RIGHT 14 BQs
0x1C
0x18
CH -R BQ 1 B0
4 / 1.31
0x7FFFFFFF
Right BQ coefficient
0x20
0x18
CH -R BQ 1 B1
4 / 2.30
0x00000000
Right BQ coefficient
0x24
0x18
CH -R BQ 1 B2
4 / 1.31
0x00000000
Right BQ coefficient
0x28
0x18
CH -R BQ 1 A1
4 / 2.30
0x00000000
Right BQ coefficient
0x2C
0x18
CH -R BQ 1 A2
4 / 1.31
0x00000000
Right BQ coefficient
0x30
0x18
CH -R BQ 2 B0
4 / 1.31
0x7FFFFFFF
Right BQ coefficient
0x34
0x18
CH -R BQ 2 B1
4 / 2.30
0x00000000
Right BQ coefficient
0x38
0x18
CH -R BQ 2 B2
4 / 1.31
0x00000000
Right BQ coefficient
0x3C
0x18
CH -R BQ 2 A1
4 / 2.30
0x00000000
Right BQ coefficient
0x40
0x18
CH -R BQ 2 A2
4 / 1.31
0x00000000
Right BQ coefficient
0x44
0x18
CH -R BQ 3 B0
4 / 1.31
0x7FFFFFFF
Right BQ coefficient
0x48
0x18
CH -R BQ 3 B1
4 / 2.30
0x00000000
Right BQ coefficient
0x4C
0x18
CH -R BQ 3 B2
4 / 1.31
0x00000000
Right BQ coefficient
0x50
0x18
CH -R BQ 3 A1
4 / 2.30
0x00000000
Right BQ coefficient
0x54
0x18
CH -R BQ 3 A2
4 / 1.31
0x00000000
Right BQ coefficient
0x58
0x18
CH -R BQ 4 B0
4 / 1.31
0x7FFFFFFF
Right BQ coefficient
0x5C
0x18
CH -R BQ 4 B1
4 / 2.30
0x00000000
Right BQ coefficient
0x60
0x18
CH -R BQ 4 B2
4 / 1.31
0x00000000
Right BQ coefficient
0x64
0x18
CH -R BQ 4 A1
4 / 2.30
0x00000000
Right BQ coefficient
0x68
0x18
CH -R BQ 4 A2
4 / 1.31
0x00000000
Right BQ coefficient
0x6C
0x18
CH -R BQ 5 B0
4 / 1.31
0x7FFFFFFF
Right BQ coefficient
0x70
0x18
CH -R BQ 5 B1
4 / 2.30
0x00000000
Right BQ coefficient
0x74
0x18
CH -R BQ 5 B2
4 / 1.31
0x00000000
Right BQ coefficient
0x78
0x18
CH -R BQ 5 A1
4 / 2.30
0x00000000
Right BQ coefficient
0x7C
0x18
CH -R BQ 5 A2
4 / 1.31
0x00000000
Right BQ coefficient
0x08
0x19
CH -R BQ 6 B0
4 / 1.31
0x7FFFFFFF
Right BQ coefficient
0x0C
0x19
CH -R BQ 6 B1
4 / 2.30
0x00000000
Right BQ coefficient
0x10
0x19
CH -R BQ 6 B2
4 / 1.31
0x00000000
Right BQ coefficient
SLAA737B – March 2017 – Revised October 2017
Submit Documentation Feedback
Copyright © 2017, Texas Instruments Incorporated
TAS5782M Process Flows
65
DSP Memory Map for Process Flow 4
www.ti.com
Table 10. DSP Memory Map for Process Flow 4 — Book 0x8C (continued)
Sub
Address
Page
Register Name
Number of
Bytes/Format
Default Value
Description
0x14
0x19
CH -R BQ 6 A1
4 / 2.30
0x00000000
Right BQ coefficient
0x18
0x19
CH -R BQ 6 A2
4 / 1.31
0x00000000
Right BQ coefficient
0x1C
0x19
CH -R BQ 7 B0
4 / 1.31
0x7FFFFFFF
Right BQ coefficient
0x20
0x19
CH -R BQ 7 B1
4 / 2.30
0x00000000
Right BQ coefficient
0x24
0x19
CH -R BQ 7 B2
4 / 1.31
0x00000000
Right BQ coefficient
0x28
0x19
CH -R BQ 7 A1
4 / 2.30
0x00000000
Right BQ coefficient
0x2C
0x19
CH -R BQ 7 A2
4 / 1.31
0x00000000
Right BQ coefficient
0x30
0x19
CH -R BQ 8 B0
4 / 1.31
0x7FFFFFFF
Right BQ coefficient
0x34
0x19
CH -R BQ 8 B1
4 / 2.30
0x00000000
Right BQ coefficient
0x38
0x19
CH -R BQ 8 B2
4 / 1.31
0x00000000
Right BQ coefficient
0x3C
0x19
CH -R BQ 8 A1
4 / 2.30
0x00000000
Right BQ coefficient
0x40
0x19
CH -R BQ 8 A2
4 / 1.31
0x00000000
Right BQ coefficient
0x44
0x19
CH -R BQ 9 B0
4 / 1.31
0x7FFFFFFF
Right BQ coefficient
0x48
0x19
CH -R BQ 9 B1
4 / 2.30
0x00000000
Right BQ coefficient
0x4C
0x19
CH -R BQ 9 B2
4 / 1.31
0x00000000
Right BQ coefficient
0x50
0x19
CH -R BQ 9 A1
4 / 2.30
0x00000000
Right BQ coefficient
0x54
0x19
CH -R BQ 9 A2
4 / 1.31
0x00000000
Right BQ coefficient
0x58
0x19
CH -R BQ 10 B0
4 / 1.31
0x7FFFFFFF
Right BQ coefficient
0x5C
0x19
CH -R BQ 10 B1
4 / 2.30
0x00000000
Right BQ coefficient
0x60
0x19
CH -R BQ 10 B2
4 / 1.31
0x00000000
Right BQ coefficient
0x64
0x19
CH -R BQ 10 A1
4 / 2.30
0x00000000
Right BQ coefficient
0x68
0x19
CH -R BQ 10 A2
4 / 1.31
0x00000000
Right BQ coefficient
0x6C
0x19
CH -R BQ 11 B0
4 / 1.31
0x7FFFFFFF
Right BQ coefficient
0x70
0x19
CH -R BQ 11 B1
4 / 2.30
0x00000000
Right BQ coefficient
0x74
0x19
CH -R BQ 11 B2
4 / 1.31
0x00000000
Right BQ coefficient
0x78
0x19
CH -R BQ 11 A1
4 / 2.30
0x00000000
Right BQ coefficient
0x7C
0x19
CH -R BQ 11 A2
4 / 1.31
0x00000000
Right BQ coefficient
0x08
0x1A
CH -R BQ 12 B0
4 / 1.31
0x7FFFFFFF
Right BQ coefficient
0x0C
0x1A
CH -R BQ 12 B1
4 / 2.30
0x00000000
Right BQ coefficient
0x10
0x1A
CH -R BQ 12 B2
4 / 1.31
0x00000000
Right BQ coefficient
0x14
0x1A
CH -R BQ 12 A1
4 / 2.30
0x00000000
Right BQ coefficient
0x18
0x1A
CH -R BQ 12 A2
4 / 1.31
0x00000000
Right BQ coefficient
0x1C
0x1A
CH -R BQ 13 B0
4 / 1.31
0x7FFFFFFF
Right BQ coefficient
0x20
0x1A
CH -R BQ 13 B1
4 / 2.30
0x00000000
Right BQ coefficient
0x24
0x1A
CH -R BQ 13 B2
4 / 1.31
0x00000000
Right BQ coefficient
0x28
0x1A
CH -R BQ 13 A1
4 / 2.30
0x00000000
Right BQ coefficient
0x2C
0x1A
CH -R BQ 13 A2
4 / 1.31
0x00000000
Right BQ coefficient
0x30
0x1A
CH -R BQ 14 B0
4 / 1.31
0x7FFFFFFF
Right BQ coefficient
0x34
0x1A
CH -R BQ 14 B1
4 / 2.30
0x00000000
Right BQ coefficient
0x38
0x1A
CH -R BQ 14 B2
4 / 1.31
0x00000000
Right BQ coefficient
0x3C
0x1A
CH -R BQ 14 A1
4 / 2.30
0x00000000
Right BQ coefficient
0x40
0x1A
CH -R BQ 14 A2
4 / 1.31
0x00000000
Right BQ coefficient
RIGHT INTGAIN BQ
0x44
0x1A
CH -R BQ 15 B0
4 / 5.27
0x08000000
Right gain scale BQ coefficient
0x48
0x1A
CH -R BQ 15 B1
4 / 6.26
0x00000000
Right gain scale BQ coefficient
0x4C
0x1A
CH -R BQ 15 B2
4 / 5.27
0x00000000
Right gain scale BQ coefficient
0x50
0x1A
CH -R BQ 15 A1
4 / 2.30
0x00000000
Right gain scale BQ coefficient
0x54
0x1A
CH -R BQ 15 A2
4 / 1.31
0x00000000
Right gain scale BQ coefficient
VOLUME ALPHA FILTER
0x58
66
0x1A
TAS5782M Process Flows
Softening Filter Alpha
4 / 1.31
0x00A7264A
Volume time constant
SLAA737B – March 2017 – Revised October 2017
Submit Documentation Feedback
Copyright © 2017, Texas Instruments Incorporated
DSP Memory Map for Process Flow 4
www.ti.com
Table 10. DSP Memory Map for Process Flow 4 — Book 0x8C (continued)
Sub
Address
Page
Register Name
Number of
Bytes/Format
0x5C
0x1A
pseudo96k
4 /32.0
Default Value
Description
0x00000000
Pseudo 96k flag
PSEUDO 96K
SPATIALIZER BQs
0x6C
0x1C
BQ 1 B0
4 / 1.31
0x7FFFFFFF
Spatializer BQ coefficient
0x70
0x1C
BQ 1 B1
4 / 2.30
0x00000000
Spatializer BQ coefficient
0x74
0x1C
BQ 1 B2
4 / 1.31
0x00000000
Spatializer BQ coefficient
0x78
0x1C
BQ 1 A1
4 / 2.30
0x00000000
Spatializer BQ coefficient
0x7C
0x1C
BQ 1 A2
4 / 1.31
0x00000000
Spatializer BQ coefficient
0x08
0x1D
BQ 2 B0
4 / 1.31
0x7FFFFFFF
Spatializer BQ coefficient
0x0C
0x1D
BQ 2 B1
4 / 2.30
0x00000000
Spatializer BQ coefficient
0x10
0x1D
BQ 2 B2
4 / 1.31
0x00000000
Spatializer BQ coefficient
0x14
0x1D
BQ 2 A1
4 / 2.30
0x00000000
Spatializer BQ coefficient
0x18
0x1D
BQ 2 A2
4 / 1.31
0x00000000
Spatializer BQ coefficient
DPEQ Sense Energy Time constant
DPEQ CONTROL
0x1C
0x1D
Alpha
4 / 1.31
0x02DEAD00
0x20
0x1D
Gain
4 / 1.31
0x74013901
DPEQ Threshold Gain
0x24
0x1D
Offset
4 / 1.31
0x0020C49B
DPEQ Threshold Offset
0x28
0x1D
No Sub
SUB CHANNEL CONTROL
4 / 32.0
0x00000001
Sub Channel Flag
THD LR Channel pre-scale coefficient
THD CLIPPER
0x2C
0x1D
CH-LR THD Boost
4 / 9.23
0x00800000
0x34
0x1D
CH-L Fine Volume
4 / 2.30
0x3FFFFFFF
THD L Channel post-scale coefficient
0x38
0x1D
CH-R Fine Volume
4 / 2.30
0x3FFFFFFF
THD R Channel post-scale coefficient
0x58
0x1D
Gang LR EQ
4 / 32.0
0x00000000
Gang Left and Right EQ flag
GANG EQ
INPUT MIXER
0x5C
0x1D
Left to Left
4 / 9.23
0x00800000
Left Channel Mixer Left Input Gain
0x60
0x1D
Right to Left
4 / 9.23
0x00000000
Left Channel Mixer Right Input Gain
0x64
0x1D
Left to Right
4 / 9.23
0x00000000
Right Channel Mixer Left Input Gain
0x68
0x1D
Right to Right
4 / 9.23
0x00800000
Right Channel Mixer Right Input Gain
0x10
0x1E
Spatializer Level
SPATIALIZER LEVEL
4 / 9.23
0x00000000
Spatializer Level coefficient
OUTPUT CROSS BAR
0x14
0x1E
Digital Left from Left
4 / 9.23
0x00800000
I2S Left output gain from left
0x18
0x1E
Digital Left from Right
4 / 9.23
0x00000000
I2S Left output gain from Right
0x20
0x1E
Digital Right from Left
4 / 9.23
0x00000000
I2S Right output gain from left
0x24
0x1E
Digital Right from Right
4 / 9.23
0x00800000
I2S Right output gain from Right
0x2C
0x1E
Analog Left from Left
4 / 9.23
0x00800000
Analog Left output gain from left
0x30
0x1E
Analog Left from Right
4 / 9.23
0x00000000
Analog Left output gain from Right
0x38
0x1E
Analog Right from Left
4 / 9.23
0x00000000
Analog Right output gain from left
0x3C
0x1E
Analog Right from Right
4 / 9.23
0x00800000
Analog Right output gain from Right
0x44
0x1E
CH-L Volume
4 / 9.23
0x00800000
Left Channel volume coefficient
0x48
0x1E
CH-R Volume
4 / 9.23
0x00800000
Right Channel volume coefficient
0x50
0x1E
DPEQ Sense Scale
4 / 2.30
0x40000000
DPEQ Sense Input Gain
0x54
0x1E
DPEQ Low Scale
4 / 6.26
0x04000000
DPEQ Low Input Gain
0x58
0x1E
DPEQ High Scale
4 / 6.26
0x04000000
DPEQ High Input Gain
0x5C
0x1E
Thermal
4/-
0x0020C49C
Generated by GUI
0x60
0x1E
Thermal
4/-
0x0020C49C
Generated by GUI
VOLUME CONTROL
DPEQ GAIN SCALE
THERMAL PROTECT
SLAA737B – March 2017 – Revised October 2017
Submit Documentation Feedback
Copyright © 2017, Texas Instruments Incorporated
TAS5782M Process Flows
67
DSP Memory Map for Process Flow 4
www.ti.com
Table 10. DSP Memory Map for Process Flow 4 — Book 0x8C (continued)
Sub
Address
Page
Register Name
Number of
Bytes/Format
Default Value
Description
0x64
0x1E
Thermal
4/-
0x0020C49C
Generated by GUI
0x68
0x1E
Thermal
4/-
0x0020C49C
Generated by GUI
THERMAL PROTECT ENERGY
0x34
0x1F
Thermal
4/-
0x00A7264A
Generated by GUI
MORPHING CONTROL
0x38
0x1F
Morphing Energy
4 / 1.31
0x7FFFFFFF
0x3C
0x1F
Morphing Attack
4 / 1.31
0x7FFFFFFF
Morphing Energy Time constant
Morphing Attack Time constant
0x40
0x1F
Morphing Decay
4 / 1.31
0x7FFFFFFF
Morphing Decay Time constant
0x44
0x1F
Morphing K0_1
4 / 9.23
0x00000000
Morphing Region 1 Slope (comp/Exp)
0x48
0x1F
Morphing K1_1
4 / 9.23
0x00000000
Morphing Region 2 Slope (comp/Exp)
0x4C
0x1F
Morphing K2_1
4 / 9.23
0x00000000
Morphing Region 3 Slope (comp/Exp)
0x50
0x1F
Morphing T1_1
4 / 9.23
0xE7000000
Morphing Threshold 1
0x54
0x1F
Morphing T2_1
4 / 9.23
0xFE800000
Morphing Threshold 2
0x58
0x1F
Morphing off1_1
4 / 9.23
0x00000000
Morphing Offset 1
0x5C
0x1F
Morphing off2_1
4 / 9.23
0x00000000
Morphing Offset 2
EXCURSION
68
0x60
0x1F
Excursion
4/-
0x024D9999
Generated by GUI
0x64
0x1F
Excursion
4/-
0xFDB26667
Generated by GUI
0x68
0x1F
Excursion
4/-
0x00800000
Generated by GUI
0x6C
0x1F
Excursion
4/-
0x00000000
Generated by GUI
0x70
0x1F
Excursion
4/-
0x00000000
Generated by GUI
0x74
0x1F
Excursion
4/-
0x00000000
Generated by GUI
0x78
0x1F
Excursion
4/-
0x00000000
Generated by GUI
0x7C
0x1F
Excursion
4/-
0x00000000
Generated by GUI
0x08
0x20
Excursion
4/-
0x00000000
Generated by GUI
0x0C
0x20
Excursion
4/-
0x00000000
Generated by GUI
0x10
0x20
Excursion
4/-
0x00000000
Generated by GUI
0x14
0x20
Excursion
4/-
0x00000000
Generated by GUI
0x18
0x20
Excursion
4/-
0x00000000
Generated by GUI
0x1C
0x20
Excursion
4/-
0x00000000
Generated by GUI
0x20
0x20
Excursion
4/-
0x00000000
Generated by GUI
0x24
0x20
Excursion
4/-
0x00000000
Generated by GUI
0x28
0x20
Excursion
4/-
0x00000000
Generated by GUI
0x2C
0x20
Excursion
4/-
0x00000000
Generated by GUI
0x30
0x20
Excursion
4/-
0x00000000
Generated by GUI
0x34
0x20
Excursion
4/-
0x00000000
Generated by GUI
0x38
0x20
Excursion
4/-
0x00000000
Generated by GUI
0x3C
0x20
Excursion
4/-
0x00000000
Generated by GUI
0x40
0x20
Excursion
4/-
0x00000000
Generated by GUI
0x44
0x20
Excursion
4/-
0x00000000
Generated by GUI
0x48
0x20
Excursion
4/-
0x00000000
Generated by GUI
0x4C
0x20
Excursion
4/-
0x00000000
Generated by GUI
0x50
0x20
Excursion
4/-
0x00000000
Generated by GUI
0x54
0x20
Excursion
4/-
0x00000000
Generated by GUI
0x58
0x20
Excursion
4/-
0x00000000
Generated by GUI
0x5C
0x20
Excursion
4/-
0x00000000
Generated by GUI
0x60
0x20
Excursion
4/-
0x00000000
Generated by GUI
0x64
0x20
Excursion
4/-
0x00000000
Generated by GUI
0x68
0x20
Excursion
4/-
0x00000000
Generated by GUI
0x6C
0x20
Excursion
4/-
0x7FFFFFFF
Generated by GUI
0x70
0x20
Excursion
4/-
0x00000000
Generated by GUI
TAS5782M Process Flows
SLAA737B – March 2017 – Revised October 2017
Submit Documentation Feedback
Copyright © 2017, Texas Instruments Incorporated
DSP Memory Map for Process Flow 4
www.ti.com
Table 10. DSP Memory Map for Process Flow 4 — Book 0x8C (continued)
Sub
Address
Page
Register Name
Number of
Bytes/Format
Default Value
Description
0x74
0x20
Excursion
4/-
0x00000000
Generated by GUI
0x78
0x20
Excursion
4/-
0x00000000
Generated by GUI
0x7C
0x20
Excursion
4/-
0x00000000
Generated by GUI
0x08
0x21
Excursion
4/-
0x7FFFFFFF
Generated by GUI
0x0C
0x21
Excursion
4/-
0x00000000
Generated by GUI
0x10
0x21
Excursion
4/-
0x00000000
Generated by GUI
0x14
0x21
Excursion
4/-
0x00000000
Generated by GUI
0x18
0x21
Excursion
4/-
0x00000000
Generated by GUI
MORPHING BQs
0x1C
0x21
CH-L BQ 1 B0
4 / 1.31
0x7FFFFFFF
Left Channel Morphing BQ coefficient
0x20
0x21
CH-L BQ 1 B1
4 / 2.30
0x00000000
Left Channel Morphing BQ coefficient
0x24
0x21
CH-L BQ 1 B2
4 / 1.31
0x00000000
Left Channel Morphing BQ coefficient
0x28
0x21
CH-L BQ 1 A1
4 / 2.30
0x00000000
Left Channel Morphing BQ coefficient
0x2C
0x21
CH-L BQ 1 A2
4 / 1.31
0x00000000
Left Channel Morphing BQ coefficient
0x30
0x21
CH-L BQ 2 B0
4 / 1.31
0x7FFFFFFF
Left Channel Morphing BQ coefficient
0x34
0x21
CH-L BQ 2 B1
4 / 2.30
0x00000000
Left Channel Morphing BQ coefficient
0x38
0x21
CH-L BQ 2 B2
4 / 1.31
0x00000000
Left Channel Morphing BQ coefficient
0x3C
0x21
CH-L BQ 2 A1
4 / 2.30
0x00000000
Left Channel Morphing BQ coefficient
0x40
0x21
CH-L BQ 2 A2
4 / 1.31
0x00000000
Left Channel Morphing BQ coefficient
0x44
0x21
CH-R BQ 1 B0
4 / 1.31
0x7FFFFFFF
Right Channel Morphing BQ coefficient
0x48
0x21
CH-R BQ 1 B1
4 / 2.30
0x00000000
Right Channel Morphing BQ coefficient
0x4C
0x21
CH-R BQ 1 B2
4 / 1.31
0x00000000
Right Channel Morphing BQ coefficient
0x50
0x21
CH-R BQ 1 A1
4 / 2.30
0x00000000
Right Channel Morphing BQ coefficient
0x54
0x21
CH-R BQ 1 A2
4 / 1.31
0x00000000
Right Channel Morphing BQ coefficient
0x58
0x21
CH-R BQ 2 B0
4 / 1.31
0x7FFFFFFF
Right Channel Morphing BQ coefficient
0x5C
0x21
CH-R BQ 2 B1
4 / 2.30
0x00000000
Right Channel Morphing BQ coefficient
0x60
0x21
CH-R BQ 2 B2
4 / 1.31
0x00000000
Right Channel Morphing BQ coefficient
0x64
0x21
CH-R BQ 2 A1
4 / 2.30
0x00000000
Right Channel Morphing BQ coefficient
0x68
0x21
CH-R BQ 2 A2
4 / 1.31
0x00000000
Right Channel Morphing BQ coefficient
0x6C
0x21
CH-L Gain scale
4 / 9.23
0x00800000
Morphing Left Channel Gain
0x70
0x21
CH-R Gain scale
4 / 9.23
0x00800000
Morphing Right Channel Gain
0x74
0x21
Thermal
THERMAL PROTECT THRESHOLD
4/-
0x7FFFFFFF
SLAA737B – March 2017 – Revised October 2017
Submit Documentation Feedback
Copyright © 2017, Texas Instruments Incorporated
Generated by GUI
TAS5782M Process Flows
69
DSP Memory Map for Process Flow 5
A.5
www.ti.com
DSP Memory Map for Process Flow 5
Table 11 lists the DSP memory map for process flow 5.
Table 11. DSP Memory Map for Process Flow 5 — Book 0x8C
Sub
Address
Page
Register Name
Number of
Bytes/Format
Default Value
Description
0x58
0x11
BQ 1 B0
4 / 1.31
0x7FFFFFFF
Cross Over BQ coefficient
0x5C
0x11
BQ 1 B1
4 / 2.30
0x00000000
Cross Over BQ coefficient
0x60
0x11
BQ 1 B2
4 / 1.31
0x00000000
Cross Over BQ coefficient
0x64
0x11
BQ 1 A1
4 / 2.30
0x00000000
Cross Over BQ coefficient
0x68
0x11
BQ 1 A2
4 / 1.31
0x00000000
Cross Over BQ coefficient
0x6C
0x11
BQ 2 B0
4 / 1.31
0x7FFFFFFF
Cross Over BQ coefficient
0x70
0x11
BQ 2 B1
4 / 2.30
0x00000000
Cross Over BQ coefficient
0x74
0x11
BQ 2 B2
4 / 1.31
0x00000000
Cross Over BQ coefficient
0x78
0x11
BQ 2 A1
4 / 2.30
0x00000000
Cross Over BQ coefficient
0x7C
0x11
BQ 2 A2
4 / 1.31
0x00000000
Cross Over BQ coefficient
0x08
0x12
BQ 3 B0
4 / 1.31
0x7FFFFFFF
Cross Over BQ coefficient
0x0C
0x12
BQ 3 B1
4 / 2.30
0x00000000
Cross Over BQ coefficient
0x10
0x12
BQ 3 B2
4 / 1.31
0x00000000
Cross Over BQ coefficient
0x14
0x12
BQ 3 A1
4 / 2.30
0x00000000
Cross Over BQ coefficient
0x18
0x12
BQ 3 A2
4 / 1.31
0x00000000
Cross Over BQ coefficient
0x1C
0x12
BQ 4 B0
4 / 1.31
0x7FFFFFFF
Cross Over BQ coefficient
0x20
0x12
BQ 4 B1
4 / 2.30
0x00000000
Cross Over BQ coefficient
0x24
0x12
BQ 4 B2
4 / 1.31
0x00000000
Cross Over BQ coefficient
0x28
0x12
BQ 4 A1
4 / 2.30
0x00000000
Cross Over BQ coefficient
0x2C
0x12
BQ 4 A2
4 / 1.31
0x00000000
Cross Over BQ coefficient
0x30
0x12
BQ 5 B0
4 / 1.31
0x7FFFFFFF
Cross Over BQ coefficient
0x34
0x12
BQ 5 B1
4 / 2.30
0x00000000
Cross Over BQ coefficient
0x38
0x12
BQ 5 B2
4 / 1.31
0x00000000
Cross Over BQ coefficient
0x3C
0x12
BQ 5 A1
4 / 2.30
0x00000000
Cross Over BQ coefficient
0x40
0x12
BQ 5 A2
4 / 1.31
0x00000000
Cross Over BQ coefficient
CROSS OVER BQs
SUB CROSS OVER BQs
70
0x44
0x12
CH-Sub BQ 1 B0
4 / 1.31
0x7FFFFFFF
Sub Cross Over BQ coefficient
0x48
0x12
CH-Sub BQ 1 B1
4 / 2.30
0x00000000
Sub Cross Over BQ coefficient
0x4C
0x12
CH-Sub BQ 1 B2
4 / 1.31
0x00000000
Sub Cross Over BQ coefficient
0x50
0x12
CH-Sub BQ 1 A1
4 / 2.30
0x00000000
Sub Cross Over BQ coefficient
0x54
0x12
CH-Sub BQ 1 A2
4 / 1.31
0x00000000
Sub Cross Over BQ coefficient
0x58
0x12
CH-Sub BQ 2 B0
4 / 1.31
0x7FFFFFFF
Sub Cross Over BQ coefficient
0x5C
0x12
CH-Sub BQ 2 B1
4 / 2.30
0x00000000
Sub Cross Over BQ coefficient
0x60
0x12
CH-Sub BQ 2 B2
4 / 1.31
0x00000000
Sub Cross Over BQ coefficient
0x64
0x12
CH-Sub BQ 2 A1
4 / 2.30
0x00000000
Sub Cross Over BQ coefficient
0x68
0x12
CH-Sub BQ 2 A2
4 / 1.31
0x00000000
Sub Cross Over BQ coefficient
0x6C
0x12
CH-Sub BQ 3 B0
4 / 1.31
0x7FFFFFFF
Sub Cross Over BQ coefficient
0x70
0x12
CH-Sub BQ 3 B1
4 / 2.30
0x00000000
Sub Cross Over BQ coefficient
0x74
0x12
CH-Sub BQ 3 B2
4 / 1.31
0x00000000
Sub Cross Over BQ coefficient
0x78
0x12
CH-Sub BQ 3 A1
4 / 2.30
0x00000000
Sub Cross Over BQ coefficient
0x7C
0x12
CH-Sub BQ 3 A2
4 / 1.31
0x00000000
Sub Cross Over BQ coefficient
0x08
0x13
CH-Sub BQ 4 B0
4 / 1.31
0x7FFFFFFF
Sub Cross Over BQ coefficient
0x0C
0x13
CH-Sub BQ 4 B1
4 / 2.30
0x00000000
Sub Cross Over BQ coefficient
0x10
0x13
CH-Sub BQ 4 B2
4 / 1.31
0x00000000
Sub Cross Over BQ coefficient
0x14
0x13
CH-Sub BQ 4 A1
4 / 2.30
0x00000000
Sub Cross Over BQ coefficient
0x18
0x13
CH-Sub BQ 4 A2
4 / 1.31
0x00000000
Sub Cross Over BQ coefficient
0x1C
0x13
CH-Sub BQ 5 B0
4 / 1.31
0x7FFFFFFF
Sub Cross Over BQ coefficient
TAS5782M Process Flows
SLAA737B – March 2017 – Revised October 2017
Submit Documentation Feedback
Copyright © 2017, Texas Instruments Incorporated
DSP Memory Map for Process Flow 5
www.ti.com
Table 11. DSP Memory Map for Process Flow 5 — Book 0x8C (continued)
Sub
Address
Page
Register Name
Number of
Bytes/Format
Default Value
Description
0x20
0x13
CH-Sub BQ 5 B1
4 / 2.30
0x00000000
Sub Cross Over BQ coefficient
0x24
0x13
CH-Sub BQ 5 B2
4 / 1.31
0x00000000
Sub Cross Over BQ coefficient
0x28
0x13
CH-Sub BQ 5 A1
4 / 2.30
0x00000000
Sub Cross Over BQ coefficient
0x2C
0x13
CH-Sub BQ 5 A2
4 / 1.31
0x00000000
Sub Cross Over BQ coefficient
DRC 1 BQ
0x30
0x13
BQ B0
4 / 1.31
0x7FFFFFFF
DRC 1 BQ coefficient
0x34
0x13
BQ B1
4 / 2.30
0x00000000
DRC 1 BQ coefficient
0x38
0x13
BQ B2
4 / 1.31
0x00000000
DRC 1 BQ coefficient
0x3C
0x13
BQ A1
4 / 2.30
0x00000000
DRC 1 BQ coefficient
0x40
0x13
BQ A2
4 / 1.31
0x00000000
DRC 1 BQ coefficient
0x44
0x13
CH-Sub BQ B0
4 / 1.31
0x7FFFFFFF
Sub DRC 1 BQ coefficient
0x48
0x13
CH-Sub BQ B1
4 / 2.30
0x00000000
Sub DRC 1 BQ coefficient
0x4C
0x13
CH-Sub BQ B2
4 / 1.31
0x00000000
Sub DRC 1 BQ coefficient
0x50
0x13
CH-Sub BQ A1
4 / 2.30
0x00000000
Sub DRC 1 BQ coefficient
0x54
0x13
CH-Sub BQ A2
4 / 1.31
0x00000000
Sub DRC 1 BQ coefficient
DRC 3 BQ
0x58
0x13
BQ B0
4 / 1.31
0x7FFFFFFF
DRC 3 BQ coefficient
0x5C
0x13
BQ B1
4 / 2.30
0x00000000
DRC 3 BQ coefficient
0x60
0x13
BQ B2
4 / 1.31
0x00000000
DRC 3 BQ coefficient
0x64
0x13
BQ A1
4 / 2.30
0x00000000
DRC 3 BQ coefficient
0x68
0x13
BQ A2
4 / 1.31
0x00000000
DRC 3 BQ coefficient
0x6C
0x13
CH-Sub BQ B0
4 / 1.31
0x7FFFFFFF
Sub DRC 3 BQ coefficient
0x70
0x13
CH-Sub BQ B1
4 / 2.30
0x00000000
Sub DRC 3 BQ coefficient
0x74
0x13
CH-Sub BQ B2
4 / 1.31
0x00000000
Sub DRC 3 BQ coefficient
0x78
0x13
CH-Sub BQ A1
4 / 2.30
0x00000000
Sub DRC 3 BQ coefficient
0x7C
0x13
CH-Sub BQ A2
4 / 1.31
0x00000000
Sub DRC 3 BQ coefficient
DRC 2 BQ
0x08
0x14
BQ 1 B0
4 / 1.31
0x7FFFFFFF
DRC 2 BQ coefficient
0x0C
0x14
BQ 1 B1
4 / 2.30
0x00000000
DRC 2 BQ coefficient
0x10
0x14
BQ 1 B2
4 / 1.31
0x00000000
DRC 2 BQ coefficient
0x14
0x14
BQ 1 A1
4 / 2.30
0x00000000
DRC 2 BQ coefficient
0x18
0x14
BQ 1 A2
4 / 1.31
0x00000000
DRC 2 BQ coefficient
0x1C
0x14
BQ 2 B0
4 / 1.31
0x7FFFFFFF
DRC 2 BQ coefficient
0x20
0x14
BQ 2 B1
4 / 2.30
0x00000000
DRC 2 BQ coefficient
0x24
0x14
BQ 2 B2
4 / 1.31
0x00000000
DRC 2 BQ coefficient
0x28
0x14
BQ 2 A1
4 / 2.30
0x00000000
DRC 2 BQ coefficient
0x2C
0x14
BQ 2 A2
4 / 1.31
0x00000000
DRC 2 BQ coefficient
0x30
0x14
CH-Sub BQ 1 B0
4 / 1.31
0x7FFFFFFF
Sub DRC 2 BQ coefficient
0x34
0x14
CH-Sub BQ 1 B1
4 / 2.30
0x00000000
Sub DRC 2 BQ coefficient
0x38
0x14
CH-Sub BQ 1 B2
4 / 1.31
0x00000000
Sub DRC 2 BQ coefficient
0x3C
0x14
CH-Sub BQ 1 A1
4 / 2.30
0x00000000
Sub DRC 2 BQ coefficient
0x40
0x14
CH-Sub BQ 1 A2
4 / 1.31
0x00000000
Sub DRC 2 BQ coefficient
0x44
0x14
CH-Sub BQ 2 B0
4 / 1.31
0x7FFFFFFF
Sub DRC 2 BQ coefficient
0x48
0x14
CH-Sub BQ 2 B1
4 / 2.30
0x00000000
Sub DRC 2 BQ coefficient
0x4C
0x14
CH-Sub BQ 2 B2
4 / 1.31
0x00000000
Sub DRC 2 BQ coefficient
0x50
0x14
CH-Sub BQ 2 A1
4 / 2.30
0x00000000
Sub DRC 2 BQ coefficient
0x54
0x14
CH-Sub BQ 2 A2
4 / 1.31
0x00000000
Sub DRC 2 BQ coefficient
DPEQ SENSE BQ
0x58
0x14
BQ 1 B0
4 / 1.31
0x7FFFFFFF
DPEQ sense BQ coefficient
0x5C
0x14
BQ 1 B1
4 / 2.30
0x00000000
DPEQ sense BQ coefficient
0x60
0x14
BQ 1 B2
4 / 1.31
0x00000000
DPEQ sense BQ coefficient
SLAA737B – March 2017 – Revised October 2017
Submit Documentation Feedback
Copyright © 2017, Texas Instruments Incorporated
TAS5782M Process Flows
71
DSP Memory Map for Process Flow 5
www.ti.com
Table 11. DSP Memory Map for Process Flow 5 — Book 0x8C (continued)
Sub
Address
Page
Register Name
Number of
Bytes/Format
Default Value
Description
0x64
0x14
BQ 1 A1
4 / 2.30
0x00000000
DPEQ sense BQ coefficient
0x68
0x14
BQ 1 A2
4 / 1.31
0x00000000
DPEQ sense BQ coefficient
0x6C
0x14
BQ 2 B0
4 / 1.31
0x7FFFFFFF
DPEQ sense BQ coefficient
0x70
0x14
BQ 2 B1
4 / 2.30
0x00000000
DPEQ sense BQ coefficient
0x74
0x14
BQ 2 B2
4 / 1.31
0x00000000
DPEQ sense BQ coefficient
0x78
0x14
BQ 2 A1
4 / 2.30
0x00000000
DPEQ sense BQ coefficient
0x7C
0x14
BQ 2 A2
4 / 1.31
0x00000000
DPEQ sense BQ coefficient
DPEQ LOW LEVEL PATH BQ
0x08
0x15
BQ 1 B0
4 / 1.31
0x7FFFFFFF
DPEQ low BQ coefficient
0x0C
0x15
BQ 1 B1
4 / 2.30
0x00000000
DPEQ low BQ coefficient
0x10
0x15
BQ 1 B2
4 / 1.31
0x00000000
DPEQ low BQ coefficient
0x14
0x15
BQ 1 A1
4 / 2.30
0x00000000
DPEQ low BQ coefficient
0x18
0x15
BQ 1 A2
4 / 1.31
0x00000000
DPEQ low BQ coefficient
0x1C
0x15
BQ 2 B0
4 / 1.31
0x7FFFFFFF
DPEQ low BQ coefficient
0x20
0x15
BQ 2 B1
4 / 2.30
0x00000000
DPEQ low BQ coefficient
0x24
0x15
BQ 2 B2
4 / 1.31
0x00000000
DPEQ low BQ coefficient
0x28
0x15
BQ 2 A1
4 / 2.30
0x00000000
DPEQ low BQ coefficient
0x2C
0x15
BQ 2 A2
4 / 1.31
0x00000000
DPEQ low BQ coefficient
DPEQ HIGH LEVEL PATH BQ
0x30
0x15
BQ 1 B0
4 / 1.31
0x7FFFFFFF
DPEQ high BQ coefficient
0x34
0x15
BQ 1 B1
4 / 2.30
0x00000000
DPEQ high BQ coefficient
0x38
0x15
BQ 1 B2
4 / 1.31
0x00000000
DPEQ high BQ coefficient
0x3C
0x15
BQ 1 A1
4 / 2.30
0x00000000
DPEQ high BQ coefficient
0x40
0x15
BQ 1 A2
4 / 1.31
0x00000000
DPEQ high BQ coefficient
0x44
0x15
BQ 2 B0
4 / 1.31
0x7FFFFFFF
DPEQ high BQ coefficient
0x48
0x15
BQ 2 B1
4 / 2.30
0x00000000
DPEQ high BQ coefficient
0x4C
0x15
BQ 2 B2
4 / 1.31
0x00000000
DPEQ high BQ coefficient
0x50
0x15
BQ 2 A1
4 / 2.30
0x00000000
DPEQ high BQ coefficient
0x54
0x15
BQ 2 A2
4 / 1.31
0x00000000
DPEQ high BQ coefficient
EQ LEFT 14 BQs
72
0x58
0x15
CH -L BQ 1 B0
4 / 1.31
0x7FFFFFFF
Left BQ coefficient
0x5C
0x15
CH -L BQ 1 B1
4 / 2.30
0x00000000
Left BQ coefficient
0x60
0x15
CH -L BQ 1 B2
4 / 1.31
0x00000000
Left BQ coefficient
0x64
0x15
CH -L BQ 1 A1
4 / 2.30
0x00000000
Left BQ coefficient
0x68
0x15
CH -L BQ 1 A2
4 / 1.31
0x00000000
Left BQ coefficient
0x6C
0x15
CH -L BQ 2 B0
4 / 1.31
0x7FFFFFFF
Left BQ coefficient
0x70
0x15
CH -L BQ 2 B1
4 / 2.30
0x00000000
Left BQ coefficient
0x74
0x15
CH -L BQ 2 B2
4 / 1.31
0x00000000
Left BQ coefficient
0x78
0x15
CH -L BQ 2 A1
4 / 2.30
0x00000000
Left BQ coefficient
0x7C
0x15
CH -L BQ 2 A2
4 / 1.31
0x00000000
Left BQ coefficient
0x08
0x16
CH -L BQ 3 B0
4 / 1.31
0x7FFFFFFF
Left BQ coefficient
0x0C
0x16
CH -L BQ 3 B1
4 / 2.30
0x00000000
Left BQ coefficient
0x10
0x16
CH -L BQ 3 B2
4 / 1.31
0x00000000
Left BQ coefficient
0x14
0x16
CH -L BQ 3 A1
4 / 2.30
0x00000000
Left BQ coefficient
0x18
0x16
CH -L BQ 3 A2
4 / 1.31
0x00000000
Left BQ coefficient
0x1C
0x16
CH -L BQ 4 B0
4 / 1.31
0x7FFFFFFF
Left BQ coefficient
0x20
0x16
CH -L BQ 4 B1
4 / 2.30
0x00000000
Left BQ coefficient
0x24
0x16
CH -L BQ 4 B2
4 / 1.31
0x00000000
Left BQ coefficient
0x28
0x16
CH -L BQ 4 A1
4 / 2.30
0x00000000
Left BQ coefficient
0x2C
0x16
CH -L BQ 4 A2
4 / 1.31
0x00000000
Left BQ coefficient
0x30
0x16
CH -L BQ 5 B0
4 / 1.31
0x7FFFFFFF
Left BQ coefficient
TAS5782M Process Flows
SLAA737B – March 2017 – Revised October 2017
Submit Documentation Feedback
Copyright © 2017, Texas Instruments Incorporated
DSP Memory Map for Process Flow 5
www.ti.com
Table 11. DSP Memory Map for Process Flow 5 — Book 0x8C (continued)
Sub
Address
Page
Register Name
Number of
Bytes/Format
Default Value
Description
0x34
0x16
CH -L BQ 5 B1
4 / 2.30
0x00000000
Left BQ coefficient
0x38
0x16
CH -L BQ 5 B2
4 / 1.31
0x00000000
Left BQ coefficient
0x3C
0x16
CH -L BQ 5 A1
4 / 2.30
0x00000000
Left BQ coefficient
0x40
0x16
CH -L BQ 5 A2
4 / 1.31
0x00000000
Left BQ coefficient
0x44
0x16
CH -L BQ 6 B0
4 / 1.31
0x7FFFFFFF
Left BQ coefficient
0x48
0x16
CH -L BQ 6 B1
4 / 2.30
0x00000000
Left BQ coefficient
0x4C
0x16
CH -L BQ 6 B2
4 / 1.31
0x00000000
Left BQ coefficient
0x50
0x16
CH -L BQ 6 A1
4 / 2.30
0x00000000
Left BQ coefficient
0x54
0x16
CH -LBQ 6 A2
4 / 1.31
0x00000000
Left BQ coefficient
0x58
0x16
CH -L BQ 7 B0
4 / 1.31
0x7FFFFFFF
Left BQ coefficient
0x5C
0x16
CH -L BQ 7 B1
4 / 2.30
0x00000000
Left BQ coefficient
0x60
0x16
CH -L BQ 7 B2
4 / 1.31
0x00000000
Left BQ coefficient
0x64
0x16
CH -L BQ 7 A1
4 / 2.30
0x00000000
Left BQ coefficient
0x68
0x16
CH -L BQ 7 A2
4 / 1.31
0x00000000
Left BQ coefficient
0x6C
0x16
CH -L BQ 8 B0
4 / 1.31
0x7FFFFFFF
Left BQ coefficient
0x70
0x16
CH -L BQ 8 B1
4 / 2.30
0x00000000
Left BQ coefficient
0x74
0x16
CH -L BQ 8 B2
4 / 1.31
0x00000000
Left BQ coefficient
0x78
0x16
CH -L BQ 8 A1
4 / 2.30
0x00000000
Left BQ coefficient
0x7C
0x16
CH -L BQ 8 A2
4 / 1.31
0x00000000
Left BQ coefficient
0x08
0x17
CH -L BQ 9 B0
4 / 1.31
0x7FFFFFFF
Left BQ coefficient
0x0C
0x17
CH -L BQ 9 B1
4 / 2.30
0x00000000
Left BQ coefficient
0x10
0x17
CH -L BQ 9 B2
4 / 1.31
0x00000000
Left BQ coefficient
0x14
0x17
CH -L BQ 9 A1
4 / 2.30
0x00000000
Left BQ coefficient
0x18
0x17
CH -L BQ 9 A2
4 / 1.31
0x00000000
Left BQ coefficient
0x1C
0x17
CH -L BQ 10 B0
4 / 1.31
0x7FFFFFFF
Left BQ coefficient
0x20
0x17
CH -L BQ 10 B1
4 / 2.30
0x00000000
Left BQ coefficient
0x24
0x17
CH -L BQ 10 B2
4 / 1.31
0x00000000
Left BQ coefficient
0x28
0x17
CH -L BQ 10 A1
4 / 2.30
0x00000000
Left BQ coefficient
0x2C
0x17
CH -L BQ 10 A2
4 / 1.31
0x00000000
Left BQ coefficient
0x30
0x17
CH -L BQ 11 B0
4 / 1.31
0x7FFFFFFF
Left BQ coefficient
0x34
0x17
CH -L BQ 11 B1
4 / 2.30
0x00000000
Left BQ coefficient
0x38
0x17
CH -L BQ 11 B2
4 / 1.31
0x00000000
Left BQ coefficient
0x3C
0x17
CH -L BQ 11 A1
4 / 2.30
0x00000000
Left BQ coefficient
0x40
0x17
CH -L BQ 11 A2
4 / 1.31
0x00000000
Left BQ coefficient
0x44
0x17
CH -L BQ 12 B0
4 / 1.31
0x7FFFFFFF
Left BQ coefficient
0x48
0x17
CH -L BQ 12 B1
4 / 2.30
0x00000000
Left BQ coefficient
0x4C
0x17
CH -L BQ 12 B2
4 / 1.31
0x00000000
Left BQ coefficient
0x50
0x17
CH -L BQ 12 A1
4 / 2.30
0x00000000
Left BQ coefficient
0x54
0x17
CH -L BQ 12 A2
4 / 1.31
0x00000000
Left BQ coefficient
0x58
0x17
CH -L BQ 13 B0
4 / 1.31
0x7FFFFFFF
Left BQ coefficient
0x5C
0x17
CH -L BQ 13 B1
4 / 2.30
0x00000000
Left BQ coefficient
0x60
0x17
CH -L BQ 13 B2
4 / 1.31
0x00000000
Left BQ coefficient
0x64
0x17
CH -L BQ 13 A1
4 / 2.30
0x00000000
Left BQ coefficient
0x68
0x17
CH -L BQ 13 A2
4 / 1.31
0x00000000
Left BQ coefficient
0x6C
0x17
CH -L BQ 14 B0
4 / 1.31
0x7FFFFFFF
Left BQ coefficient
0x70
0x17
CH -L BQ 14 B1
4 / 2.30
0x00000000
Left BQ coefficient
0x74
0x17
CH -L BQ 14 B2
4 / 1.31
0x00000000
Left BQ coefficient
0x78
0x17
CH -L BQ 14 A1
4 / 2.30
0x00000000
Left BQ coefficient
0x7C
0x17
CH -L BQ 14 A2
4 / 1.31
0x00000000
Left BQ coefficient
0x08000000
Left gain scale BQ coefficient
LEFT INTGAIN BQ
0x08
0x18
CH -L BQ 15 B0
4 / 5.27
SLAA737B – March 2017 – Revised October 2017
Submit Documentation Feedback
Copyright © 2017, Texas Instruments Incorporated
TAS5782M Process Flows
73
DSP Memory Map for Process Flow 5
www.ti.com
Table 11. DSP Memory Map for Process Flow 5 — Book 0x8C (continued)
Sub
Address
Page
Register Name
Number of
Bytes/Format
Default Value
Description
0x0C
0x18
CH -L BQ 15 B1
4 / 6.26
0x00000000
Left gain scale BQ coefficient
0x10
0x18
CH -L BQ 15 B2
4 / 5.27
0x00000000
Left gain scale BQ coefficient
0x14
0x18
CH -L BQ 15 A1
4 / 2.30
0x00000000
Left gain scale BQ coefficient
0x18
0x18
CH -L BQ 15 A2
4 / 1.31
0x00000000
Left gain scale BQ coefficient
EQ RIGHT 14 BQs
74
0x1C
0x18
CH -R BQ 1 B0
4 / 1.31
0x7FFFFFFF
Right BQ coefficient
0x20
0x18
CH -R BQ 1 B1
4 / 2.30
0x00000000
Right BQ coefficient
0x24
0x18
CH -R BQ 1 B2
4 / 1.31
0x00000000
Right BQ coefficient
0x28
0x18
CH -R BQ 1 A1
4 / 2.30
0x00000000
Right BQ coefficient
0x2C
0x18
CH -R BQ 1 A2
4 / 1.31
0x00000000
Right BQ coefficient
0x30
0x18
CH -R BQ 2 B0
4 / 1.31
0x7FFFFFFF
Right BQ coefficient
0x34
0x18
CH -R BQ 2 B1
4 / 2.30
0x00000000
Right BQ coefficient
0x38
0x18
CH -R BQ 2 B2
4 / 1.31
0x00000000
Right BQ coefficient
0x3C
0x18
CH -R BQ 2 A1
4 / 2.30
0x00000000
Right BQ coefficient
0x40
0x18
CH -R BQ 2 A2
4 / 1.31
0x00000000
Right BQ coefficient
0x44
0x18
CH -R BQ 3 B0
4 / 1.31
0x7FFFFFFF
Right BQ coefficient
0x48
0x18
CH -R BQ 3 B1
4 / 2.30
0x00000000
Right BQ coefficient
0x4C
0x18
CH -R BQ 3 B2
4 / 1.31
0x00000000
Right BQ coefficient
0x50
0x18
CH -R BQ 3 A1
4 / 2.30
0x00000000
Right BQ coefficient
0x54
0x18
CH -R BQ 3 A2
4 / 1.31
0x00000000
Right BQ coefficient
0x58
0x18
CH -R BQ 4 B0
4 / 1.31
0x7FFFFFFF
Right BQ coefficient
0x5C
0x18
CH -R BQ 4 B1
4 / 2.30
0x00000000
Right BQ coefficient
0x60
0x18
CH -R BQ 4 B2
4 / 1.31
0x00000000
Right BQ coefficient
0x64
0x18
CH -R BQ 4 A1
4 / 2.30
0x00000000
Right BQ coefficient
0x68
0x18
CH -R BQ 4 A2
4 / 1.31
0x00000000
Right BQ coefficient
0x6C
0x18
CH -R BQ 5 B0
4 / 1.31
0x7FFFFFFF
Right BQ coefficient
0x70
0x18
CH -R BQ 5 B1
4 / 2.30
0x00000000
Right BQ coefficient
0x74
0x18
CH -R BQ 5 B2
4 / 1.31
0x00000000
Right BQ coefficient
0x78
0x18
CH -R BQ 5 A1
4 / 2.30
0x00000000
Right BQ coefficient
0x7C
0x18
CH -R BQ 5 A2
4 / 1.31
0x00000000
Right BQ coefficient
0x08
0x19
CH -R BQ 6 B0
4 / 1.31
0x7FFFFFFF
Right BQ coefficient
0x0C
0x19
CH -R BQ 6 B1
4 / 2.30
0x00000000
Right BQ coefficient
0x10
0x19
CH -R BQ 6 B2
4 / 1.31
0x00000000
Right BQ coefficient
0x14
0x19
CH -R BQ 6 A1
4 / 2.30
0x00000000
Right BQ coefficient
0x18
0x19
CH -R BQ 6 A2
4 / 1.31
0x00000000
Right BQ coefficient
0x1C
0x19
CH -R BQ 7 B0
4 / 1.31
0x7FFFFFFF
Right BQ coefficient
0x20
0x19
CH -R BQ 7 B1
4 / 2.30
0x00000000
Right BQ coefficient
0x24
0x19
CH -R BQ 7 B2
4 / 1.31
0x00000000
Right BQ coefficient
0x28
0x19
CH -R BQ 7 A1
4 / 2.30
0x00000000
Right BQ coefficient
0x2C
0x19
CH -R BQ 7 A2
4 / 1.31
0x00000000
Right BQ coefficient
0x30
0x19
CH -R BQ 8 B0
4 / 1.31
0x7FFFFFFF
Right BQ coefficient
0x34
0x19
CH -R BQ 8 B1
4 / 2.30
0x00000000
Right BQ coefficient
0x38
0x19
CH -R BQ 8 B2
4 / 1.31
0x00000000
Right BQ coefficient
0x3C
0x19
CH -R BQ 8 A1
4 / 2.30
0x00000000
Right BQ coefficient
0x40
0x19
CH -R BQ 8 A2
4 / 1.31
0x00000000
Right BQ coefficient
0x44
0x19
CH -R BQ 9 B0
4 / 1.31
0x7FFFFFFF
Right BQ coefficient
0x48
0x19
CH -R BQ 9 B1
4 / 2.30
0x00000000
Right BQ coefficient
0x4C
0x19
CH -R BQ 9 B2
4 / 1.31
0x00000000
Right BQ coefficient
0x50
0x19
CH -R BQ 9 A1
4 / 2.30
0x00000000
Right BQ coefficient
0x54
0x19
CH -R BQ 9 A2
4 / 1.31
0x00000000
Right BQ coefficient
0x58
0x19
CH -R BQ 10 B0
4 / 1.31
0x7FFFFFFF
Right BQ coefficient
TAS5782M Process Flows
SLAA737B – March 2017 – Revised October 2017
Submit Documentation Feedback
Copyright © 2017, Texas Instruments Incorporated
DSP Memory Map for Process Flow 5
www.ti.com
Table 11. DSP Memory Map for Process Flow 5 — Book 0x8C (continued)
Sub
Address
Page
Register Name
Number of
Bytes/Format
Default Value
Description
0x5C
0x19
CH -R BQ 10 B1
4 / 2.30
0x00000000
Right BQ coefficient
0x60
0x19
CH -R BQ 10 B2
4 / 1.31
0x00000000
Right BQ coefficient
0x64
0x19
CH -R BQ 10 A1
4 / 2.30
0x00000000
Right BQ coefficient
0x68
0x19
CH -R BQ 10 A2
4 / 1.31
0x00000000
Right BQ coefficient
0x6C
0x19
CH -R BQ 11 B0
4 / 1.31
0x7FFFFFFF
Right BQ coefficient
0x70
0x19
CH -R BQ 11 B1
4 / 2.30
0x00000000
Right BQ coefficient
0x74
0x19
CH -R BQ 11 B2
4 / 1.31
0x00000000
Right BQ coefficient
0x78
0x19
CH -R BQ 11 A1
4 / 2.30
0x00000000
Right BQ coefficient
0x7C
0x19
CH -R BQ 11 A2
4 / 1.31
0x00000000
Right BQ coefficient
0x08
0x1A
CH -R BQ 12 B0
4 / 1.31
0x7FFFFFFF
Right BQ coefficient
0x0C
0x1A
CH -R BQ 12 B1
4 / 2.30
0x00000000
Right BQ coefficient
0x10
0x1A
CH -R BQ 12 B2
4 / 1.31
0x00000000
Right BQ coefficient
0x14
0x1A
CH -R BQ 12 A1
4 / 2.30
0x00000000
Right BQ coefficient
0x18
0x1A
CH -R BQ 12 A2
4 / 1.31
0x00000000
Right BQ coefficient
0x1C
0x1A
CH -R BQ 13 B0
4 / 1.31
0x7FFFFFFF
Right BQ coefficient
0x20
0x1A
CH -R BQ 13 B1
4 / 2.30
0x00000000
Right BQ coefficient
0x24
0x1A
CH -R BQ 13 B2
4 / 1.31
0x00000000
Right BQ coefficient
0x28
0x1A
CH -R BQ 13 A1
4 / 2.30
0x00000000
Right BQ coefficient
0x2C
0x1A
CH -R BQ 13 A2
4 / 1.31
0x00000000
Right BQ coefficient
0x30
0x1A
CH -R BQ 14 B0
4 / 1.31
0x7FFFFFFF
Right BQ coefficient
0x34
0x1A
CH -R BQ 14 B1
4 / 2.30
0x00000000
Right BQ coefficient
0x38
0x1A
CH -R BQ 14 B2
4 / 1.31
0x00000000
Right BQ coefficient
0x3C
0x1A
CH -R BQ 14 A1
4 / 2.30
0x00000000
Right BQ coefficient
0x40
0x1A
CH -R BQ 14 A2
4 / 1.31
0x00000000
Right BQ coefficient
RIGHT INTGAIN BQ
0x44
0x1A
CH -R BQ 15 B0
4 / 5.27
0x08000000
Right gain scale BQ coefficient
0x48
0x1A
CH -R BQ 15 B1
4 / 6.26
0x00000000
Right gain scale BQ coefficient
0x4C
0x1A
CH -R BQ 15 B2
4 / 5.27
0x00000000
Right gain scale BQ coefficient
0x50
0x1A
CH -R BQ 15 A1
4 / 2.30
0x00000000
Right gain scale BQ coefficient
0x54
0x1A
CH -R BQ 15 A2
4 / 1.31
0x00000000
Right gain scale BQ coefficient
VOLUME ALPHA FILTER
0x58
0x1A
Softening Filter Alpha
4 / 1.31
0x00A7264A
Volume time constant
PHASE OPTIMIZER
0x60 0x1A Delay Left 4 / 32.0 0x00000000 Left Channel Phase Optimizer
0x64
0x1A
Delay Right
4 / 32.0
0x00000000
Right Channel Phase Optimizer
0x68
0x1A
Delay Sub
4 / 32.0
0x00000000
Sub Channel Phase Optimizer
DRC1 Energy Time constant
MAIN DRC 1
0x6C
0x1A
DRC1 Energy
4 / 1.31
0x7FFFFFFF
0x70
0x1A
DRC1 Attack
4 / 1.31
0x7FFFFFFF
DRC1 Attack Time constant
0x74
0x1A
DRC1 Decay
4 / 1.31
0x7FFFFFFF
DRC1 Decay Time constant
0x78
0x1A
K0_1
4 / 9.23
0x00000000
DRC1 Region 1 Slope (comp/Exp)
0x7C
0x1A
K1_1
4 / 9.23
0x00000000
DRC1 Region 2 Slope (comp/Exp)
0x08
0x1B
K2_1
4 / 9.23
0x00000000
DRC1 Region 3 Slope (comp/Exp)
0x0C
0x1B
T1_1
4 / 9.23
0xE7000000
DRC1 Threshold 1
0x10
0x1B
T2_1
4 / 9.23
0xFE800000
DRC1 Threshold 2
0x14
0x1B
off1_1
4 / 9.23
0x00000000
DRC1 Offset 1
0x18
0x1B
off2_1
4 / 9.23
0x00000000
DRC1 Offset 2
DRC2 Energy Time constant
MAIN DRC 2
0x1C
0x1B
DRC2 Energy
4 / 1.31
0x7FFFFFFF
0x20
0x1B
DRC2 Attack
4 / 1.31
0x7FFFFFFF
DRC2 Attack Time constant
0x24
0x1B
DRC2 Decay
4 / 1.31
0x7FFFFFFF
DRC2 Decay Time constant
SLAA737B – March 2017 – Revised October 2017
Submit Documentation Feedback
Copyright © 2017, Texas Instruments Incorporated
TAS5782M Process Flows
75
DSP Memory Map for Process Flow 5
www.ti.com
Table 11. DSP Memory Map for Process Flow 5 — Book 0x8C (continued)
Sub
Address
Page
Register Name
Number of
Bytes/Format
Default Value
Description
0x28
0x1B
k0_2
4 / 9.23
0x00000000
DRC2 Region 1 Slope (comp/Exp)
0x2C
0x1B
k1_2
4 / 9.23
0x00000000
DRC2 Region 2 Slope (comp/Exp)
0x30
0x1B
k2_2
4 / 9.23
0x00000000
DRC2 Region 3 Slope (comp/Exp)
0x34
0x1B
t1_2
4 / 9.23
0xE7000000
DRC2 Threshold 1
0x38
0x1B
t2_2
4 / 9.23
0xFE800000
DRC2 Threshold 2
0x3C
0x1B
off1_2
4 / 9.23
0x00000000
DRC2 Offset 1
0x40
0x1B
off2_2
4 / 9.23
0x00000000
DRC2 Offset 2
DRC3 Energy Time constant
MAIN DRC 3
0x44
0x1B
DRC3 Energy
4 / 1.31
0x7FFFFFFF
0x48
0x1B
DRC3 Attack
4 / 1.31
0x7FFFFFFF
DRC3 Attack Time constant
0x4C
0x1B
DRC3 Decay
4 / 1.31
0x7FFFFFFF
DRC3 Decay Time constant
0x50
0x1B
k0_3
4 / 9.23
0x00000000
DRC3 Region 1 Slope (comp/Exp)
0x54
0x1B
k1_3
4 / 9.23
0x00000000
DRC3 Region 2 Slope (comp/Exp)
0x58
0x1B
k1_3
4 / 9.23
0x00000000
DRC3 Region 3 Slope (comp/Exp)
0x5C
0x1B
t1_3
4 / 9.23
0xE7000000
DRC3 Threshold 1
0x60
0x1B
t2_3
4 / 9.23
0xFE800000
DRC3 Threshold 2
0x64
0x1B
off1_3
4 / 9.23
0x00000000
DRC3 Offset 1
0x68
0x1B
off2_3
4 / 9.23
0x00000000
DRC3 Offset 2
Sub Channel DRC1 Energy Time constant
SUB DRC 1
0x6C
0x1B
CH-Sub DRC1 Energy
4 / 1.31
0x7FFFFFFF
0x70
0x1B
CH-Sub DRC1 Attack
4 / 1.31
0x7FFFFFFF
Sub Channel DRC1 Attack Time constant
0x74
0x1B
CH-Sub DRC1 Decay
4 / 1.31
0x7FFFFFFF
Sub Channel DRC1 Decay Time constant
0x78
0x1B
CH-Sub K0_1
4 / 9.23
0x00000000
Sub Channel DRC1 Region 1 Slope
(comp/Exp)
0x7C
0x1B
CH-Sub K1_1
4 / 9.23
0x00000000
Sub Channel DRC1 Region 2 Slope
(comp/Exp)
0x08
0x1C
CH-Sub K2_1
4 / 9.23
0x00000000
Sub Channel DRC1 Region 3 Slope
(comp/Exp)
0x0C
0x1C
CH-Sub T1_1
4 / 9.23
0xE7000000
Sub Channel DRC1 Threshold 1
0x10
0x1C
CH-Sub T2_1
4 / 9.23
0xFE800000
Sub Channel DRC1 Threshold 2
0x14
0x1C
CH-Sub off1_1
4 / 9.23
0x00000000
Sub Channel DRC1 Offset 1
0x18
0x1C
CH-Sub off2_1
4 / 9.23
0x00000000
Sub Channel DRC1 Offset 2
Sub Channel DRC2 Energy Time constant
SUB DRC 2
0x1C
0x1C
CH-Sub DRC2 Energy
4 / 1.31
0x7FFFFFFF
0x20
0x1C
CH-Sub DRC2 Attack
4 / 1.31
0x7FFFFFFF
Sub Channel DRC2 Attack Time constant
0x24
0x1C
CH-Sub DRC2 Decay
4 / 1.31
0x7FFFFFFF
Sub Channel DRC2 Decay Time constant
0x28
0x1C
CH-Sub k0_2
4 / 9.23
0x00000000
Sub Channel DRC2 Region 1 Slope
(comp/Exp)
0x2C
0x1C
CH-Sub k1_2
4 / 9.23
0x00000000
Sub Channel DRC2 Region 2 Slope
(comp/Exp)
0x30
0x1C
CH-Sub k2_2
4 / 9.23
0x00000000
Sub Channel DRC2 Region 3 Slope
(comp/Exp)
0x34
0x1C
CH-Sub t1_2
4 / 9.23
0xE7000000
Sub Channel DRC2 Threshold 1
0x38
0x1C
CH-Sub t2_2
4 / 9.23
0xFE800000
Sub Channel DRC2 Threshold 2
0x3C
0x1C
CH-Sub off1_2
4 / 9.23
0x00000000
Sub Channel DRC2 Offset 1
0x40
0x1C
CH-Sub off2_2
4 / 9.23
0x00000000
Sub Channel DRC2 Offset 2
Sub Channel DRC3 Energy Time constant
SUB DRC 3
76
0x44
0x1C
CH-Sub DRC3 Energy
4 / 1.31
0x7FFFFFFF
0x48
0x1C
CH-Sub DRC3 Attack
4 / 1.31
0x7FFFFFFF
Sub Channel DRC3 Attack Time constant
0x4C
0x1C
CH-Sub DRC3 Decay
4 / 1.31
0x7FFFFFFF
Sub Channel DRC3 Decay Time constant
0x50
0x1C
CH-Sub k0_3
4 / 9.23
0x00000000
Sub Channel DRC3 Region 1 Slope
(comp/Exp)
TAS5782M Process Flows
SLAA737B – March 2017 – Revised October 2017
Submit Documentation Feedback
Copyright © 2017, Texas Instruments Incorporated
DSP Memory Map for Process Flow 5
www.ti.com
Table 11. DSP Memory Map for Process Flow 5 — Book 0x8C (continued)
Sub
Address
Page
Register Name
Number of
Bytes/Format
Default Value
Description
0x54
0x1C
CH-Sub k1_3
4 / 9.23
0x00000000
Sub Channel DRC1 Region 2 Slope
(comp/Exp)
0x58
0x1C
CH-Sub k1_3
4 / 9.23
0x00000000
Sub Channel DRC3 Region 3 Slope
(comp/Exp)
0x5C
0x1C
CH-Sub t1_3
4 / 9.23
0xE7000000
Sub Channel DRC3 Threshold 1
0x60
0x1C
CH-Sub t2_3
4 / 9.23
0xFE800000
Sub Channel DRC3 Threshold 2
0x64
0x1C
CH-Sub off1_3
4 / 9.23
0x00000000
Sub Channel DRC3 Offset 1
0x68
0x1C
CH-Sub off2_3
4 / 9.23
0x00000000
Sub Channel DRC3 Offset 2
SPATIALIZER BQs
0x6C
0x1C
BQ 1 B0
4 / 1.31
0x7FFFFFFF
Spatializer BQ coefficient
0x70
0x1C
BQ 1 B1
4 / 2.30
0x00000000
Spatializer BQ coefficient
0x74
0x1C
BQ 1 B2
4 / 1.31
0x00000000
Spatializer BQ coefficient
0x78
0x1C
BQ 1 A1
4 / 2.30
0x00000000
Spatializer BQ coefficient
0x7C
0x1C
BQ 1 A2
4 / 1.31
0x00000000
Spatializer BQ coefficient
0x08
0x1D
BQ 2 B0
4 / 1.31
0x7FFFFFFF
Spatializer BQ coefficient
0x0C
0x1D
BQ 2 B1
4 / 2.30
0x00000000
Spatializer BQ coefficient
0x10
0x1D
BQ 2 B2
4 / 1.31
0x00000000
Spatializer BQ coefficient
0x14
0x1D
BQ 2 A1
4 / 2.30
0x00000000
Spatializer BQ coefficient
0x18
0x1D
BQ 2 A2
4 / 1.31
0x00000000
Spatializer BQ coefficient
0x02DEAD00
DPEQ Sense Energy
DPEQ CONTROL
0x1C
0x1D
Alpha
4 / 1.31
Time constant
0x20
0x1D
Gain
4 / 1.31
0x74013901
DPEQ Threshold Gain
0x24
0x1D
Offset
4 / 1.31
0x0020C49B
DPEQ Threshold Offset
0x28
0x1D
No Sub
SUB CHANNEL CONTROL
4 / 32.0
0x00000000
Sub Channel Flag
THD CLIPPER
0x2C
0x1D
CH-LR THD Boost
4 / 9.23
0x00800000
THD LR Channel prescale coefficient
0x30
0x1D
CH-Sub THD Boost
4 / 9.23
0x00800000
THD Sub Channel prescale coefficient
0x34
0x1D
CH-L Fine Volume
4 / 2.30
0x3FFFFFFF
THD L Channel postscale coefficient
0x38
0x1D
CH-R Fine Volume
4 / 2.30
0x3FFFFFFF
THD R Channel postscale coefficient
0x3C
0x1D
CH-Sub Fine Volume
4 / 2.30
0x3FFFFFFF
THD Sub Channel postscale coefficient
DRC MIXER GAIN
0x40
0x1D
DRC 1 Mixer Gain
4 / 9.23
0x00800000
DRC 1 Mixer Gain coefficient
0x44
0x1D
DRC 2 Mixer Gain
4 / 9.23
0x00000000
DRC 2 Mixer Gain coefficient
0x48
0x1D
DRC 3 Mixer Gain
4 / 9.23
0x00000000
DRC 3 Mixer Gain coefficient
0x4C
0x1D
CH-Sub DRC 1 Mixer Gain
4 / 9.23
0x00800000
CH-Sub DRC 1 Mixer Gain coefficient
0x50
0x1D
CH-Sub DRC 2 Mixer Gain
4 / 9.23
0x00000000
CH-Sub DRC 2 Mixer Gain coefficient
0x54
0x1D
CH-Sub DRC 3 Mixer Gain
4 / 9.23
0x00000000
CH-Sub DRC 3 Mixer Gain coefficient
0x00000000
Gang Left and Right EQ flag
GANG EQ
0x58
0x1D
Gang LR EQ
4 / 32.0
INPUT MIXER
0x5C
0x1D
Left to Left
4 / 9.23
0x00800000
Left Channel Mixer Left Input Gain
0x60
0x1D
Right to Left
4 / 9.23
0x00000000
Left Channel Mixer Right
0x64
0x1D
Left to Right
4 / 9.23
0x00000000
Right Channel Mixer Left
0x68
0x1D
Right to Right
4 / 9.23
0x00800000
Right Channel Mixer Right Input Gain
0x6C
0x1D
Left to Sub
4 / 9.23
0x00000000
Sub Channel Mixer Left Input Gain
0x70
0x1D
Right to Sub
4 / 9.23
0x00000000
Sub Channel Mixer Right Input Gain
0x74
0x1D
Sub Mix ScratchL
4 / 9.23
0x00800000
Sub Channel Mixer ScratchL Input Gain
0x78
0x1D
Sub Mix ScratchR
4 / 9.23
0x00000000
Sub Channel Mixer ScratchR Input Gain
MIX/GAIN ADJUST
SLAA737B – March 2017 – Revised October 2017
Submit Documentation Feedback
Copyright © 2017, Texas Instruments Incorporated
TAS5782M Process Flows
77
DSP Memory Map for Process Flow 5
www.ti.com
Table 11. DSP Memory Map for Process Flow 5 — Book 0x8C (continued)
Sub
Address
Page
Register Name
Number of
Bytes/Format
Default Value
0x7C
0x08
0x0C
Description
0x1D
Bass Mono Left
4 / 9.23
0x00800000
Mono Left Input Gain
0x1E
Bass Mono Right
4 / 9.23
0x00800000
Mono Right Input Gain
0x1E
Bass Mono Sub
4 / 9.23
0x00000000
Mono Sub Input Gain
SPATIALIZER LEVEL
0x10
0x1E
Spatializer Level
4 / 9.23
0x00000000
Spatializer Level coefficient
OUTPUT CROSS BAR
0x14
0x1E
Digital Left from Left
4 / 9.23
0x00800000
I2S Left output gain from left
0x18
0x1E
Digital Left from Right
4 / 9.23
0x00000000
I2S Left output gain from Right
0x1C
0x1E
Digital Left from Sub
4 / 9.23
0x00000000
I2S Left output gain from Sub
0x20
0x1E
Digital Right from Left
4 / 9.23
0x00000000
I2S Right output gain from left
0x24
0x1E
Digital Right from Right
4 / 9.23
0x00800000
I2S Right output gain from Right
0x28
0x1E
Digital Right from Sub
4 / 9.23
0x00000000
I2S Right output gain from Sub
0x2C
0x1E
Analog Left from Left
4 / 9.23
0x00800000
Analog Left output gain from left
0x30
0x1E
Analog Left from Right
4 / 9.23
0x00000000
Analog Left output gain from Right
0x34
0x1E
Analog Left from Sub
4 / 9.23
0x00000000
Analog Left output gain from Sub
0x38
0x1E
Analog Right from Left
4 / 9.23
0x00000000
Analog Right output gain from left
0x3C
0x1E
Analog Right from Right
4 / 9.23
0x00800000
Analog Right output gain from Right
0x40
0x1E
Analog Right from Sub
4 / 9.23
0x00000000
Analog Right output gain from Sub
VOLUME CONTROL
0x44
0x1E
CH-L Volume
4 / 9.23
0x00800000
Left Channel volume coefficient
0x48
0x1E
CH-R Volume
4 / 9.23
0x00800000
Right Channel volume coefficient
0x4C
0x1E
CH-Sub Volume
4 / 9.23
0x00800000
Sub Channel volume coefficient
DPEQ Sense Input Gain
DPEQ GAIN SCALE
0x50
0x1E
DPEQ Sense Scale
4 / 2.30
0x40000000
0x54
0x1E
DPEQ Low Scale
4 / 6.26
0x04000000
DPEQ Low Input Gain
0x58
0x1E
DPEQ High Scale
4 / 6.26
0x04000000
DPEQ High Input Gain
0x6C
0x1E
CH-Sub Attack Threshold
4 / 1.31
0x40000000
Sub Channel Threshold linear
0x70
0x1E
CH-Sub Softening Filter Alpha
4 / 1.31
0x06153BD1
Sub Channel AGL Alpha Time constant
0x74
0x1E
CH-Sub Attack Rate
4 / 1.31
0x0001B4E8
Sub Channel AGL Attack Time constant
0x78
0x1E
CH-Sub AGL Enable
4 / 1.31
0x40000000
Sub Channel AGL Enable flag
0x08
0x1F
CH-Sub Softening Filter Omega
4 / 1.31
0x79EAC42F
Sub Channel AGL Omega Time constant
0x0C
0x1F
CH-Sub Release Rate
4 / 1.31
0x00002BB1
Sub Channel AGL Release Time constant
0x14
0x1F
Attack Threshold
4 / 1.31
0x40000000
Threshold linear
AGL
78
0x18
0x1F
Softening Filter Alpha
4 / 1.31
0x06153BD1
AGL Alpha Time constant
0x1C
0x1F
Attack Rate
4 / 1.31
0x0001B4E8
AGL Attack Time constant
0x20
0x1F
AGL Enable
4 / 1.31
0x40000000
AGL Enable flag
0x28
0x1F
Softening Filter Omega
4 / 1.31
0x79EAC42F
AGL Omega Time constant
0x2C
0x1F
Release Rate
4 / 1.31
0x00002BB1
AGL Release Time constant
TAS5782M Process Flows
SLAA737B – March 2017 – Revised October 2017
Submit Documentation Feedback
Copyright © 2017, Texas Instruments Incorporated
DSP Memory Map for Process Flow 6
www.ti.com
A.6
DSP Memory Map for Process Flow 6
Table 12 lists the DSP memory map for process flow 6.
Table 12. DSP Memory Map for Process Flow 6 — Book 0x8C
Sub
Address
Page
Register Name
Number of
Bytes/Format
Default Value
Description
0x58
0x11
BQ 1 B0
4 / 1.31
0x7FFFFFFF
Cross Over BQ coefficient
0x5C
0x11
BQ 1 B1
4 / 2.30
0x00000000
Cross Over BQ coefficient
0x60
0x11
BQ 1 B2
4 / 1.31
0x00000000
Cross Over BQ coefficient
0x64
0x11
BQ 1 A1
4 / 2.30
0x00000000
Cross Over BQ coefficient
0x68
0x11
BQ 1 A2
4 / 1.31
0x00000000
Cross Over BQ coefficient
0x6C
0x11
BQ 2 B0
4 / 1.31
0x7FFFFFFF
Cross Over BQ coefficient
0x70
0x11
BQ 2 B1
4 / 2.30
0x00000000
Cross Over BQ coefficient
0x74
0x11
BQ 2 B2
4 / 1.31
0x00000000
Cross Over BQ coefficient
0x78
0x11
BQ 2 A1
4 / 2.30
0x00000000
Cross Over BQ coefficient
0x7C
0x11
BQ 2 A2
4 / 1.31
0x00000000
Cross Over BQ coefficient
0x08
0x12
BQ 3 B0
4 / 1.31
0x7FFFFFFF
Cross Over BQ coefficient
0x0C
0x12
BQ 3 B1
4 / 2.30
0x00000000
Cross Over BQ coefficient
0x10
0x12
BQ 3 B2
4 / 1.31
0x00000000
Cross Over BQ coefficient
0x14
0x12
BQ 3 A1
4 / 2.30
0x00000000
Cross Over BQ coefficient
0x18
0x12
BQ 3 A2
4 / 1.31
0x00000000
Cross Over BQ coefficient
0x1C
0x12
BQ 4 B0
4 / 1.31
0x7FFFFFFF
Cross Over BQ coefficient
0x20
0x12
BQ 4 B1
4 / 2.30
0x00000000
Cross Over BQ coefficient
0x24
0x12
BQ 4 B2
4 / 1.31
0x00000000
Cross Over BQ coefficient
0x28
0x12
BQ 4 A1
4 / 2.30
0x00000000
Cross Over BQ coefficient
0x2C
0x12
BQ 4 A2
4 / 1.31
0x00000000
Cross Over BQ coefficient
0x30
0x12
BQ 5 B0
4 / 1.31
0x7FFFFFFF
Cross Over BQ coefficient
0x34
0x12
BQ 5 B1
4 / 2.30
0x00000000
Cross Over BQ coefficient
0x38
0x12
BQ 5 B2
4 / 1.31
0x00000000
Cross Over BQ coefficient
0x3C
0x12
BQ 5 A1
4 / 2.30
0x00000000
Cross Over BQ coefficient
0x40
0x12
BQ 5 A2
4 / 1.31
0x00000000
Cross Over BQ coefficient
CROSS OVER BQs
SUB CROSS OVER BQs
0x44
0x12
CH-Sub BQ 1 B0
4 / 1.31
0x7FFFFFFF
Sub Cross Over BQ coefficient
0x48
0x12
CH-Sub BQ 1 B1
4 / 2.30
0x00000000
Sub Cross Over BQ coefficient
0x4C
0x12
CH-Sub BQ 1 B2
4 / 1.31
0x00000000
Sub Cross Over BQ coefficient
0x50
0x12
CH-Sub BQ 1 A1
4 / 2.30
0x00000000
Sub Cross Over BQ coefficient
0x54
0x12
CH-Sub BQ 1 A2
4 / 1.31
0x00000000
Sub Cross Over BQ coefficient
0x58
0x12
CH-Sub BQ 2 B0
4 / 1.31
0x7FFFFFFF
Sub Cross Over BQ coefficient
0x5C
0x12
CH-Sub BQ 2 B1
4 / 2.30
0x00000000
Sub Cross Over BQ coefficient
0x60
0x12
CH-Sub BQ 2 B2
4 / 1.31
0x00000000
Sub Cross Over BQ coefficient
0x64
0x12
CH-Sub BQ 2 A1
4 / 2.30
0x00000000
Sub Cross Over BQ coefficient
0x68
0x12
CH-Sub BQ 2 A2
4 / 1.31
0x00000000
Sub Cross Over BQ coefficient
0x6C
0x12
CH-Sub BQ 3 B0
4 / 1.31
0x7FFFFFFF
Sub Cross Over BQ coefficient
0x70
0x12
CH-Sub BQ 3 B1
4 / 2.30
0x00000000
Sub Cross Over BQ coefficient
0x74
0x12
CH-Sub BQ 3 B2
4 / 1.31
0x00000000
Sub Cross Over BQ coefficient
0x78
0x12
CH-Sub BQ 3 A1
4 / 2.30
0x00000000
Sub Cross Over BQ coefficient
0x7C
0x12
CH-Sub BQ 3 A2
4 / 1.31
0x00000000
Sub Cross Over BQ coefficient
0x08
0x13
CH-Sub BQ 4 B0
4 / 1.31
0x7FFFFFFF
Sub Cross Over BQ coefficient
0x0C
0x13
CH-Sub BQ 4 B1
4 / 2.30
0x00000000
Sub Cross Over BQ coefficient
0x10
0x13
CH-Sub BQ 4 B2
4 / 1.31
0x00000000
Sub Cross Over BQ coefficient
0x14
0x13
CH-Sub BQ 4 A1
4 / 2.30
0x00000000
Sub Cross Over BQ coefficient
0x18
0x13
CH-Sub BQ 4 A2
4 / 1.31
0x00000000
Sub Cross Over BQ coefficient
0x1C
0x13
CH-Sub BQ 5 B0
4 / 1.31
0x7FFFFFFF
Sub Cross Over BQ coefficient
SLAA737B – March 2017 – Revised October 2017
Submit Documentation Feedback
Copyright © 2017, Texas Instruments Incorporated
TAS5782M Process Flows
79
DSP Memory Map for Process Flow 6
www.ti.com
Table 12. DSP Memory Map for Process Flow 6 — Book 0x8C (continued)
Sub
Address
Page
Register Name
Number of
Bytes/Format
Default Value
Description
0x20
0x13
CH-Sub BQ 5 B1
4 / 2.30
0x00000000
Sub Cross Over BQ coefficient
0x24
0x13
CH-Sub BQ 5 B2
4 / 1.31
0x00000000
Sub Cross Over BQ coefficient
0x28
0x13
CH-Sub BQ 5 A1
4 / 2.30
0x00000000
Sub Cross Over BQ coefficient
0x2C
0x13
CH-Sub BQ 5 A2
4 / 1.31
0x00000000
Sub Cross Over BQ coefficient
DPEQ SENSE BQ
0x58
0x14
BQ 1 B0
4 / 1.31
0x7FFFFFFF
DPEQ sense BQ coefficient
0x5C
0x14
BQ 1 B1
4 / 2.30
0x00000000
DPEQ sense BQ coefficient
0x60
0x14
BQ 1 B2
4 / 1.31
0x00000000
DPEQ sense BQ coefficient
0x64
0x14
BQ 1 A1
4 / 2.30
0x00000000
DPEQ sense BQ coefficient
0x68
0x14
BQ 1 A2
4 / 1.31
0x00000000
DPEQ sense BQ coefficient
0x6C
0x14
BQ 2 B0
4 / 1.31
0x7FFFFFFF
DPEQ sense BQ coefficient
0x70
0x14
BQ 2 B1
4 / 2.30
0x00000000
DPEQ sense BQ coefficient
0x74
0x14
BQ 2 B2
4 / 1.31
0x00000000
DPEQ sense BQ coefficient
0x78
0x14
BQ 2 A1
4 / 2.30
0x00000000
DPEQ sense BQ coefficient
0x7C
0x14
BQ 2 A2
4 / 1.31
0x00000000
DPEQ sense BQ coefficient
DPEQ LOW LEVEL PATH BQ
0x08
0x15
BQ 1 B0
4 / 1.31
0x7FFFFFFF
DPEQ low BQ coefficient
0x0C
0x15
BQ 1 B1
4 / 2.30
0x00000000
DPEQ low BQ coefficient
0x10
0x15
BQ 1 B2
4 / 1.31
0x00000000
DPEQ low BQ coefficient
0x14
0x15
BQ 1 A1
4 / 2.30
0x00000000
DPEQ low BQ coefficient
0x18
0x15
BQ 1 A2
4 / 1.31
0x00000000
DPEQ low BQ coefficient
0x1C
0x15
BQ 2 B0
4 / 1.31
0x7FFFFFFF
DPEQ low BQ coefficient
0x20
0x15
BQ 2 B1
4 / 2.30
0x00000000
DPEQ low BQ coefficient
0x24
0x15
BQ 2 B2
4 / 1.31
0x00000000
DPEQ low BQ coefficient
0x28
0x15
BQ 2 A1
4 / 2.30
0x00000000
DPEQ low BQ coefficient
0x2C
0x15
BQ 2 A2
4 / 1.31
0x00000000
DPEQ low BQ coefficient
DPEQ HIGH LEVEL PATH BQ
0x30
0x15
BQ 1 B0
4 / 1.31
0x7FFFFFFF
DPEQ high BQ coefficient
0x34
0x15
BQ 1 B1
4 / 2.30
0x00000000
DPEQ high BQ coefficient
0x38
0x15
BQ 1 B2
4 / 1.31
0x00000000
DPEQ high BQ coefficient
0x3C
0x15
BQ 1 A1
4 / 2.30
0x00000000
DPEQ high BQ coefficient
0x40
0x15
BQ 1 A2
4 / 1.31
0x00000000
DPEQ high BQ coefficient
0x44
0x15
BQ 2 B0
4 / 1.31
0x7FFFFFFF
DPEQ high BQ coefficient
0x48
0x15
BQ 2 B1
4 / 2.30
0x00000000
DPEQ high BQ coefficient
0x4C
0x15
BQ 2 B2
4 / 1.31
0x00000000
DPEQ high BQ coefficient
0x50
0x15
BQ 2 A1
4 / 2.30
0x00000000
DPEQ high BQ coefficient
0x54
0x15
BQ 2 A2
4 / 1.31
0x00000000
DPEQ high BQ coefficient
EQ LEFT 14 BQs
80
0x58
0x15
CH -L BQ 1 B0
4 / 1.31
0x7FFFFFFF
Left BQ coefficient
0x5C
0x15
CH -L BQ 1 B1
4 / 2.30
0x00000000
Left BQ coefficient
0x60
0x15
CH -L BQ 1 B2
4 / 1.31
0x00000000
Left BQ coefficient
0x64
0x15
CH -L BQ 1 A1
4 / 2.30
0x00000000
Left BQ coefficient
0x68
0x15
CH -L BQ 1 A2
4 / 1.31
0x00000000
Left BQ coefficient
0x6C
0x15
CH -L BQ 2 B0
4 / 1.31
0x7FFFFFFF
Left BQ coefficient
0x70
0x15
CH -L BQ 2 B1
4 / 2.30
0x00000000
Left BQ coefficient
0x74
0x15
CH -L BQ 2 B2
4 / 1.31
0x00000000
Left BQ coefficient
0x78
0x15
CH -L BQ 2 A1
4 / 2.30
0x00000000
Left BQ coefficient
0x7C
0x15
CH -L BQ 2 A2
4 / 1.31
0x00000000
Left BQ coefficient
0x08
0x16
CH -L BQ 3 B0
4 / 1.31
0x7FFFFFFF
Left BQ coefficient
0x0C
0x16
CH -L BQ 3 B1
4 / 2.30
0x00000000
Left BQ coefficient
0x10
0x16
CH -L BQ 3 B2
4 / 1.31
0x00000000
Left BQ coefficient
TAS5782M Process Flows
SLAA737B – March 2017 – Revised October 2017
Submit Documentation Feedback
Copyright © 2017, Texas Instruments Incorporated
DSP Memory Map for Process Flow 6
www.ti.com
Table 12. DSP Memory Map for Process Flow 6 — Book 0x8C (continued)
Sub
Address
Page
Register Name
Number of
Bytes/Format
Default Value
Description
0x14
0x16
CH -L BQ 3 A1
4 / 2.30
0x00000000
Left BQ coefficient
0x18
0x16
CH -L BQ 3 A2
4 / 1.31
0x00000000
Left BQ coefficient
0x1C
0x16
CH -L BQ 4 B0
4 / 1.31
0x7FFFFFFF
Left BQ coefficient
0x20
0x16
CH -L BQ 4 B1
4 / 2.30
0x00000000
Left BQ coefficient
0x24
0x16
CH -L BQ 4 B2
4 / 1.31
0x00000000
Left BQ coefficient
0x28
0x16
CH -L BQ 4 A1
4 / 2.30
0x00000000
Left BQ coefficient
0x2C
0x16
CH -L BQ 4 A2
4 / 1.31
0x00000000
Left BQ coefficient
0x30
0x16
CH -L BQ 5 B0
4 / 1.31
0x7FFFFFFF
Left BQ coefficient
0x34
0x16
CH -L BQ 5 B1
4 / 2.30
0x00000000
Left BQ coefficient
0x38
0x16
CH -L BQ 5 B2
4 / 1.31
0x00000000
Left BQ coefficient
0x3C
0x16
CH -L BQ 5 A1
4 / 2.30
0x00000000
Left BQ coefficient
0x40
0x16
CH -L BQ 5 A2
4 / 1.31
0x00000000
Left BQ coefficient
0x44
0x16
CH -L BQ 6 B0
4 / 1.31
0x7FFFFFFF
Left BQ coefficient
0x48
0x16
CH -L BQ 6 B1
4 / 2.30
0x00000000
Left BQ coefficient
0x4C
0x16
CH -L BQ 6 B2
4 / 1.31
0x00000000
Left BQ coefficient
0x50
0x16
CH -L BQ 6 A1
4 / 2.30
0x00000000
Left BQ coefficient
0x54
0x16
CH -LBQ 6 A2
4 / 1.31
0x00000000
Left BQ coefficient
0x58
0x16
CH -L BQ 7 B0
4 / 1.31
0x7FFFFFFF
Left BQ coefficient
0x5C
0x16
CH -L BQ 7 B1
4 / 2.30
0x00000000
Left BQ coefficient
0x60
0x16
CH -L BQ 7 B2
4 / 1.31
0x00000000
Left BQ coefficient
0x64
0x16
CH -L BQ 7 A1
4 / 2.30
0x00000000
Left BQ coefficient
0x68
0x16
CH -L BQ 7 A2
4 / 1.31
0x00000000
Left BQ coefficient
0x6C
0x16
CH -L BQ 8 B0
4 / 1.31
0x7FFFFFFF
Left BQ coefficient
0x70
0x16
CH -L BQ 8 B1
4 / 2.30
0x00000000
Left BQ coefficient
0x74
0x16
CH -L BQ 8 B2
4 / 1.31
0x00000000
Left BQ coefficient
0x78
0x16
CH -L BQ 8 A1
4 / 2.30
0x00000000
Left BQ coefficient
0x7C
0x16
CH -L BQ 8 A2
4 / 1.31
0x00000000
Left BQ coefficient
0x08
0x17
CH -L BQ 9 B0
4 / 1.31
0x7FFFFFFF
Left BQ coefficient
0x0C
0x17
CH -L BQ 9 B1
4 / 2.30
0x00000000
Left BQ coefficient
0x10
0x17
CH -L BQ 9 B2
4 / 1.31
0x00000000
Left BQ coefficient
0x14
0x17
CH -L BQ 9 A1
4 / 2.30
0x00000000
Left BQ coefficient
0x18
0x17
CH -L BQ 9 A2
4 / 1.31
0x00000000
Left BQ coefficient
0x1C
0x17
CH -L BQ 10 B0
4 / 1.31
0x7FFFFFFF
Left BQ coefficient
0x20
0x17
CH -L BQ 10 B1
4 / 2.30
0x00000000
Left BQ coefficient
0x24
0x17
CH -L BQ 10 B2
4 / 1.31
0x00000000
Left BQ coefficient
0x28
0x17
CH -L BQ 10 A1
4 / 2.30
0x00000000
Left BQ coefficient
0x2C
0x17
CH -L BQ 10 A2
4 / 1.31
0x00000000
Left BQ coefficient
0x30
0x17
CH -L BQ 11 B0
4 / 1.31
0x7FFFFFFF
Left BQ coefficient
0x34
0x17
CH -L BQ 11 B1
4 / 2.30
0x00000000
Left BQ coefficient
0x38
0x17
CH -L BQ 11 B2
4 / 1.31
0x00000000
Left BQ coefficient
0x3C
0x17
CH -L BQ 11 A1
4 / 2.30
0x00000000
Left BQ coefficient
0x40
0x17
CH -L BQ 11 A2
4 / 1.31
0x00000000
Left BQ coefficient
0x44
0x17
CH -L BQ 12 B0
4 / 1.31
0x7FFFFFFF
Left BQ coefficient
0x48
0x17
CH -L BQ 12 B1
4 / 2.30
0x00000000
Left BQ coefficient
0x4C
0x17
CH -L BQ 12 B2
4 / 1.31
0x00000000
Left BQ coefficient
0x50
0x17
CH -L BQ 12 A1
4 / 2.30
0x00000000
Left BQ coefficient
0x54
0x17
CH -L BQ 12 A2
4 / 1.31
0x00000000
Left BQ coefficient
0x58
0x17
CH -L BQ 13 B0
4 / 1.31
0x7FFFFFFF
Left BQ coefficient
0x5C
0x17
CH -L BQ 13 B1
4 / 2.30
0x00000000
Left BQ coefficient
0x60
0x17
CH -L BQ 13 B2
4 / 1.31
0x00000000
Left BQ coefficient
0x64
0x17
CH -L BQ 13 A1
4 / 2.30
0x00000000
Left BQ coefficient
SLAA737B – March 2017 – Revised October 2017
Submit Documentation Feedback
Copyright © 2017, Texas Instruments Incorporated
TAS5782M Process Flows
81
DSP Memory Map for Process Flow 6
www.ti.com
Table 12. DSP Memory Map for Process Flow 6 — Book 0x8C (continued)
Sub
Address
Page
Register Name
Number of
Bytes/Format
Default Value
Description
0x68
0x17
CH -L BQ 13 A2
4 / 1.31
0x00000000
Left BQ coefficient
0x6C
0x17
CH -L BQ 14 B0
4 / 1.31
0x7FFFFFFF
Left BQ coefficient
0x70
0x17
CH -L BQ 14 B1
4 / 2.30
0x00000000
Left BQ coefficient
0x74
0x17
CH -L BQ 14 B2
4 / 1.31
0x00000000
Left BQ coefficient
0x78
0x17
CH -L BQ 14 A1
4 / 2.30
0x00000000
Left BQ coefficient
0x7C
0x17
CH -L BQ 14 A2
4 / 1.31
0x00000000
Left BQ coefficient
LEFT INTGAIN BQ
0x08
0x18
CH -L BQ 15 B0
4 / 5.27
0x08000000
Left gain scale BQ coefficient
0x0C
0x18
CH -L BQ 15 B1
4 / 6.26
0x00000000
Left gain scale BQ coefficient
0x10
0x18
CH -L BQ 15 B2
4 / 5.27
0x00000000
Left gain scale BQ coefficient
0x14
0x18
CH -L BQ 15 A1
4 / 2.30
0x00000000
Left gain scale BQ coefficient
0x18
0x18
CH -L BQ 15 A2
4 / 1.31
0x00000000
Left gain scale BQ coefficient
EQ RIGHT 14 BQs
82
0x1C
0x18
CH -R BQ 1 B0
4 / 1.31
0x7FFFFFFF
Right BQ coefficient
0x20
0x18
CH -R BQ 1 B1
4 / 2.30
0x00000000
Right BQ coefficient
0x24
0x18
CH -R BQ 1 B2
4 / 1.31
0x00000000
Right BQ coefficient
0x28
0x18
CH -R BQ 1 A1
4 / 2.30
0x00000000
Right BQ coefficient
0x2C
0x18
CH -R BQ 1 A2
4 / 1.31
0x00000000
Right BQ coefficient
0x30
0x18
CH -R BQ 2 B0
4 / 1.31
0x7FFFFFFF
Right BQ coefficient
0x34
0x18
CH -R BQ 2 B1
4 / 2.30
0x00000000
Right BQ coefficient
0x38
0x18
CH -R BQ 2 B2
4 / 1.31
0x00000000
Right BQ coefficient
0x3C
0x18
CH -R BQ 2 A1
4 / 2.30
0x00000000
Right BQ coefficient
0x40
0x18
CH -R BQ 2 A2
4 / 1.31
0x00000000
Right BQ coefficient
0x44
0x18
CH -R BQ 3 B0
4 / 1.31
0x7FFFFFFF
Right BQ coefficient
0x48
0x18
CH -R BQ 3 B1
4 / 2.30
0x00000000
Right BQ coefficient
0x4C
0x18
CH -R BQ 3 B2
4 / 1.31
0x00000000
Right BQ coefficient
0x50
0x18
CH -R BQ 3 A1
4 / 2.30
0x00000000
Right BQ coefficient
0x54
0x18
CH -R BQ 3 A2
4 / 1.31
0x00000000
Right BQ coefficient
0x58
0x18
CH -R BQ 4 B0
4 / 1.31
0x7FFFFFFF
Right BQ coefficient
0x5C
0x18
CH -R BQ 4 B1
4 / 2.30
0x00000000
Right BQ coefficient
0x60
0x18
CH -R BQ 4 B2
4 / 1.31
0x00000000
Right BQ coefficient
0x64
0x18
CH -R BQ 4 A1
4 / 2.30
0x00000000
Right BQ coefficient
0x68
0x18
CH -R BQ 4 A2
4 / 1.31
0x00000000
Right BQ coefficient
0x6C
0x18
CH -R BQ 5 B0
4 / 1.31
0x7FFFFFFF
Right BQ coefficient
0x70
0x18
CH -R BQ 5 B1
4 / 2.30
0x00000000
Right BQ coefficient
0x74
0x18
CH -R BQ 5 B2
4 / 1.31
0x00000000
Right BQ coefficient
0x78
0x18
CH -R BQ 5 A1
4 / 2.30
0x00000000
Right BQ coefficient
0x7C
0x18
CH -R BQ 5 A2
4 / 1.31
0x00000000
Right BQ coefficient
0x08
0x19
CH -R BQ 6 B0
4 / 1.31
0x7FFFFFFF
Right BQ coefficient
0x0C
0x19
CH -R BQ 6 B1
4 / 2.30
0x00000000
Right BQ coefficient
0x10
0x19
CH -R BQ 6 B2
4 / 1.31
0x00000000
Right BQ coefficient
0x14
0x19
CH -R BQ 6 A1
4 / 2.30
0x00000000
Right BQ coefficient
0x18
0x19
CH -R BQ 6 A2
4 / 1.31
0x00000000
Right BQ coefficient
0x1C
0x19
CH -R BQ 7 B0
4 / 1.31
0x7FFFFFFF
Right BQ coefficient
0x20
0x19
CH -R BQ 7 B1
4 / 2.30
0x00000000
Right BQ coefficient
0x24
0x19
CH -R BQ 7 B2
4 / 1.31
0x00000000
Right BQ coefficient
0x28
0x19
CH -R BQ 7 A1
4 / 2.30
0x00000000
Right BQ coefficient
0x2C
0x19
CH -R BQ 7 A2
4 / 1.31
0x00000000
Right BQ coefficient
0x30
0x19
CH -R BQ 8 B0
4 / 1.31
0x7FFFFFFF
Right BQ coefficient
0x34
0x19
CH -R BQ 8 B1
4 / 2.30
0x00000000
Right BQ coefficient
0x38
0x19
CH -R BQ 8 B2
4 / 1.31
0x00000000
Right BQ coefficient
TAS5782M Process Flows
SLAA737B – March 2017 – Revised October 2017
Submit Documentation Feedback
Copyright © 2017, Texas Instruments Incorporated
DSP Memory Map for Process Flow 6
www.ti.com
Table 12. DSP Memory Map for Process Flow 6 — Book 0x8C (continued)
Sub
Address
Page
Register Name
Number of
Bytes/Format
Default Value
Description
0x3C
0x19
CH -R BQ 8 A1
4 / 2.30
0x00000000
Right BQ coefficient
0x40
0x19
CH -R BQ 8 A2
4 / 1.31
0x00000000
Right BQ coefficient
0x44
0x19
CH -R BQ 9 B0
4 / 1.31
0x7FFFFFFF
Right BQ coefficient
0x48
0x19
CH -R BQ 9 B1
4 / 2.30
0x00000000
Right BQ coefficient
0x4C
0x19
CH -R BQ 9 B2
4 / 1.31
0x00000000
Right BQ coefficient
0x50
0x19
CH -R BQ 9 A1
4 / 2.30
0x00000000
Right BQ coefficient
0x54
0x19
CH -R BQ 9 A2
4 / 1.31
0x00000000
Right BQ coefficient
0x58
0x19
CH -R BQ 10 B0
4 / 1.31
0x7FFFFFFF
Right BQ coefficient
0x5C
0x19
CH -R BQ 10 B1
4 / 2.30
0x00000000
Right BQ coefficient
0x60
0x19
CH -R BQ 10 B2
4 / 1.31
0x00000000
Right BQ coefficient
0x64
0x19
CH -R BQ 10 A1
4 / 2.30
0x00000000
Right BQ coefficient
0x68
0x19
CH -R BQ 10 A2
4 / 1.31
0x00000000
Right BQ coefficient
0x6C
0x19
CH -R BQ 11 B0
4 / 1.31
0x7FFFFFFF
Right BQ coefficient
0x70
0x19
CH -R BQ 11 B1
4 / 2.30
0x00000000
Right BQ coefficient
0x74
0x19
CH -R BQ 11 B2
4 / 1.31
0x00000000
Right BQ coefficient
0x78
0x19
CH -R BQ 11 A1
4 / 2.30
0x00000000
Right BQ coefficient
0x7C
0x19
CH -R BQ 11 A2
4 / 1.31
0x00000000
Right BQ coefficient
0x08
0x1A
CH -R BQ 12 B0
4 / 1.31
0x7FFFFFFF
Right BQ coefficient
0x0C
0x1A
CH -R BQ 12 B1
4 / 2.30
0x00000000
Right BQ coefficient
0x10
0x1A
CH -R BQ 12 B2
4 / 1.31
0x00000000
Right BQ coefficient
0x14
0x1A
CH -R BQ 12 A1
4 / 2.30
0x00000000
Right BQ coefficient
0x18
0x1A
CH -R BQ 12 A2
4 / 1.31
0x00000000
Right BQ coefficient
0x1C
0x1A
CH -R BQ 13 B0
4 / 1.31
0x7FFFFFFF
Right BQ coefficient
0x20
0x1A
CH -R BQ 13 B1
4 / 2.30
0x00000000
Right BQ coefficient
0x24
0x1A
CH -R BQ 13 B2
4 / 1.31
0x00000000
Right BQ coefficient
0x28
0x1A
CH -R BQ 13 A1
4 / 2.30
0x00000000
Right BQ coefficient
0x2C
0x1A
CH -R BQ 13 A2
4 / 1.31
0x00000000
Right BQ coefficient
0x30
0x1A
CH -R BQ 14 B0
4 / 1.31
0x7FFFFFFF
Right BQ coefficient
0x34
0x1A
CH -R BQ 14 B1
4 / 2.30
0x00000000
Right BQ coefficient
0x38
0x1A
CH -R BQ 14 B2
4 / 1.31
0x00000000
Right BQ coefficient
0x3C
0x1A
CH -R BQ 14 A1
4 / 2.30
0x00000000
Right BQ coefficient
0x40
0x1A
CH -R BQ 14 A2
4 / 1.31
0x00000000
Right BQ coefficient
RIGHT INTGAIN BQ
0x44
0x1A
CH -R BQ 15 B0
4 / 5.27
0x08000000
Right gain scale BQ coefficient
0x48
0x1A
CH -R BQ 15 B1
4 / 6.26
0x00000000
Right gain scale BQ coefficient
0x4C
0x1A
CH -R BQ 15 B2
4 / 5.27
0x00000000
Right gain scale BQ coefficient
0x50
0x1A
CH -R BQ 15 A1
4 / 2.30
0x00000000
Right gain scale BQ coefficient
0x54
0x1A
CH -R BQ 15 A2
4 / 1.31
0x00000000
Right gain scale BQ coefficient
VOLUME ALPHA FILTER
0x58
0x1A
Softening Filter Alpha
4 / 1.31
0x00A7264A
Volume time constant
PHASE OPTIMIZER
0x60
0x1A
Delay Left
4 / 32.0
0x00000000
Left Channel Phase Optimizer
0x64
0x1A
Delay Right
4 / 32.0
0x00000000
Right Channel Phase Optimizer
0x68
0x1A
Delay Sub
4 / 32.0
0x00000000
Sub Channel Phase Optimizer
SPATIALIZER BQs
0x6C
0x1C
BQ 1 B0
4 / 1.31
0x7FFFFFFF
Spatializer BQ coefficient
0x70
0x1C
BQ 1 B1
4 / 2.30
0x00000000
Spatializer BQ coefficient
0x74
0x1C
BQ 1 B2
4 / 1.31
0x00000000
Spatializer BQ coefficient
0x78
0x1C
BQ 1 A1
4 / 2.30
0x00000000
Spatializer BQ coefficient
0x7C
0x1C
BQ 1 A2
4 / 1.31
0x00000000
Spatializer BQ coefficient
0x08
0x1D
BQ 2 B0
4 / 1.31
0x7FFFFFFF
Spatializer BQ coefficient
SLAA737B – March 2017 – Revised October 2017
Submit Documentation Feedback
Copyright © 2017, Texas Instruments Incorporated
TAS5782M Process Flows
83
DSP Memory Map for Process Flow 6
www.ti.com
Table 12. DSP Memory Map for Process Flow 6 — Book 0x8C (continued)
Sub
Address
Page
Register Name
Number of
Bytes/Format
Default Value
Description
0x0C
0x1D
BQ 2 B1
4 / 2.30
0x00000000
Spatializer BQ coefficient
0x10
0x1D
BQ 2 B2
4 / 1.31
0x00000000
Spatializer BQ coefficient
0x14
0x1D
BQ 2 A1
4 / 2.30
0x00000000
Spatializer BQ coefficient
0x18
0x1D
BQ 2 A2
4 / 1.31
0x00000000
Spatializer BQ coefficient
DPEQ Sense Energy Time constant
DPEQ CONTROL
0x1C
0x1D
Alpha
4 / 1.31
0x02DEAD00
0x20
0x1D
Gain
4 / 1.31
0x74013901
DPEQ Threshold Gain
0x24
0x1D
Offset
4 / 1.31
0x0020C49B
DPEQ Threshold Offset
0x28
0x1D
No Sub
SUB CHANNEL CONTROL
4 / 32.0
0x00000000
Sub Channel Flag
THD CLIPPER
0x2C
0x1D
CH-LR THD Boost
4 / 9.23
0x00800000
THD LR Channel prescale coefficient
0x30
0x1D
CH-Sub THD Boost
4 / 9.23
0x00800000
THD Sub Channel prescale coefficient
0x34
0x1D
CH-L Fine Volume
4 / 2.30
0x3FFFFFFF
THD L Channel postscale coefficient
0x38
0x1D
CH-R Fine Volume
4 / 2.30
0x3FFFFFFF
THD R Channel postscale coefficient
0x3C
0x1D
CH-Sub Fine Volume
4 / 2.30
0x3FFFFFFF
THD Sub Channel postscale coefficient
0x58
0x1D
Gang LR EQ
4 / 32.0
0x00000000
Gang Left and Right EQ flag
GANG EQ
INPUT MIXER
0x5C
0x1D
Left to Left
4 / 9.23
0x00800000
Left Channel Mixer Left Input Gain
0x60
0x1D
Right to Left
4 / 9.23
0x00000000
Left Channel Mixer Right Input Gain
0x64
0x1D
Left to Right
4 / 9.23
0x00000000
Right Channel Mixer Left Input Gain
0x68
0x1D
Right to Right
4 / 9.23
0x00800000
Right Channel Mixer Right Input Gain
0x6C
0x1D
Left to Sub
4 / 9.23
0x00000000
Sub Channel Mixer Left Input Gain
0x70
0x1D
Right to Sub
4 / 9.23
0x00000000
Sub Channel Mixer Right Input Gain
0x74
0x1D
Sub Mix ScratchL
4 / 9.23
0x00800000
Sub Channel Mixer ScratchL Input Gain
0x78
0x1D
Sub Mix ScratchR
4 / 9.23
0x00000000
Sub Channel Mixer ScratchR Input Gain
0x7C
0x1D
Bass Mono Left
4 / 9.23
0x00800000
Mono Left Input Gain
0x08
0x1E
Bass Mono Right
4 / 9.23
0x00800000
Mono Right Input Gain
0x0C
0x1E
Bass Mono Sub
4 / 9.23
0x00000000
Mono Sub Input Gain
MIX/GAIN ADJUST
SPATIALIZER LEVEL
0x10
0x1E
Spatializer Level
4 / 9.23
0x00000000
Spatializer Level coefficient
OUTPUT CROSS BAR
0x14
0x1E
Digital Left from Left
4 / 9.23
0x00800000
I2S Left output gain from left
0x18
0x1E
Digital Left from Right
4 / 9.23
0x00000000
I2S Left output gain from Right
0x1C
0x1E
Digital Left from Sub
4 / 9.23
0x00000000
I2S Left output gain from Sub
0x20
0x1E
Digital Right from Left
4 / 9.23
0x00000000
I2S Right output gain from left
0x24
0x1E
Digital Right from Right
4 / 9.23
0x00800000
I2S Right output gain from Right
0x28
0x1E
Digital Right from Sub
4 / 9.23
0x00000000
I2S Right output gain from Sub
0x2C
0x1E
Analog Left from Left
4 / 9.23
0x00800000
Analog Left output gain from left
0x30
0x1E
Analog Left from Right
4 / 9.23
0x00000000
Analog Left output gain from Right
0x34
0x1E
Analog Left from Sub
4 / 9.23
0x00000000
Analog Left output gain from Sub
0x38
0x1E
Analog Right from Left
4 / 9.23
0x00000000
Analog Right output gain from left
0x3C
0x1E
Analog Right from Right
4 / 9.23
0x00800000
Analog Right output gain from Right
0x40
0x1E
Analog Right from Sub
4 / 9.23
0x00000000
Analog Right output gain from Sub
VOLUME CONTROL
84
0x44
0x1E
CH-L Volume
4 / 9.23
0x00800000
Left Channel volume coefficient
0x48
0x1E
CH-R Volume
4 / 9.23
0x00800000
Right Channel volume coefficient
0x4C
0x1E
CH-Sub Volume
4 / 9.23
0x00800000
Sub Channel volume coefficient
TAS5782M Process Flows
SLAA737B – March 2017 – Revised October 2017
Submit Documentation Feedback
Copyright © 2017, Texas Instruments Incorporated
DSP Memory Map for Process Flow 6
www.ti.com
Table 12. DSP Memory Map for Process Flow 6 — Book 0x8C (continued)
Sub
Address
Page
Register Name
Number of
Bytes/Format
Default Value
Description
0x50
0x1E
DPEQ Sense Scale
4 / 2.30
0x40000000
0x54
0x1E
DPEQ Low Scale
4 / 6.26
0x04000000
DPEQ Low Input Gain
0x58
0x1E
DPEQ High Scale
4 / 6.26
0x04000000
DPEQ High Input Gain
0x5C
0x1E
Thermal
4/-
0x0020C49C
Generated by GUI
0x60
0x1E
Thermal
4/-
0x0020C49C
Generated by GUI
0x64
0x1E
Thermal
4/-
0x0020C49C
Generated by GUI
0x68
0x1E
Thermal
4/-
0x0020C49C
Generated by GUI
DPEQ GAIN SCALE
DPEQ Sense Input Gain
THERMAL PROTECT
RAM
THERMAL PROTECT
0x34
0x1F
Thermal
4/-
0x00A7264A
Generated by GUI
0x38
0x1F
Thermal
4/-
0x00A7264A
Generated by GUI
MORPHING CONTROL
0x3C
0x1F
Morphing Energy
4 / 1.31
0x7FFFFFFF
0x40
0x1F
Morphing Attack
4 / 1.31
0x7FFFFFFF
Morphing Energy Time constant
Morphing Attack Time constant
0x44
0x1F
Morphing Decay
4 / 1.31
0x7FFFFFFF
Morphing Decay Time constant
0x48
0x1F
Morphing K0_1
4 / 9.23
0x00000000
Morphing Region 1 Slope (comp/Exp)
0x4C
0x1F
Morphing K1_1
4 / 9.23
0x00000000
Morphing Region 2 Slope (comp/Exp)
0x50
0x1F
Morphing K2_1
4 / 9.23
0x00000000
Morphing Region 3 Slope (comp/Exp)
0x54
0x1F
Morphing T1_1
4 / 9.23
0xE7000000
Morphing Threshold 1
0x58
0x1F
Morphing T2_1
4 / 9.23
0xFE800000
Morphing Threshold 2
0x5C
0x1F
Morphing off1_1
4 / 9.23
0x00000000
Morphing Offset 1
0x60
0x1F
Morphing off2_1
4 / 9.23
0x00000000
Morphing Offset 2
EXCURSION
0x64
0x1F
Excursion
4/-
0x024D9999
Generated by GUI
0x68
0x1F
Excursion
4/-
0xFDB26667
Generated by GUI
0x6C
0x1F
Excursion
4/-
0x00800000
Generated by GUI
0x70
0x1F
Excursion
4/-
0x00000000
Generated by GUI
0x74
0x1F
Excursion
4/-
0x00000000
Generated by GUI
0x78
0x1F
Excursion
4/-
0x00000000
Generated by GUI
0x7C
0x1F
Excursion
4/-
0x00000000
Generated by GUI
0x08
0x20
Excursion
4/-
0x00000000
Generated by GUI
0x0C
0x20
Excursion
4/-
0x00000000
Generated by GUI
0x10
0x20
Excursion
4/-
0x00000000
Generated by GUI
0x14
0x20
Excursion
4/-
0x00000000
Generated by GUI
0x18
0x20
Excursion
4/-
0x00000000
Generated by GUI
0x1C
0x20
Excursion
4/-
0x00000000
Generated by GUI
0x20
0x20
Excursion
4/-
0x00000000
Generated by GUI
0x24
0x20
Excursion
4/-
0x00000000
Generated by GUI
0x28
0x20
Excursion
4/-
0x00000000
Generated by GUI
0x2C
0x20
Excursion
4/-
0x00000000
Generated by GUI
0x30
0x20
Excursion
4/-
0x00000000
Generated by GUI
0x34
0x20
Excursion
4/-
0x00000000
Generated by GUI
0x38
0x20
Excursion
4/-
0x00000000
Generated by GUI
0x3C
0x20
Excursion
4/-
0x00000000
Generated by GUI
0x40
0x20
Excursion
4/-
0x00000000
Generated by GUI
0x44
0x20
Excursion
4/-
0x00000000
Generated by GUI
0x48
0x20
Excursion
4/-
0x00000000
Generated by GUI
0x4C
0x20
Excursion
4/-
0x00000000
Generated by GUI
0x50
0x20
Excursion
4/-
0x00000000
Generated by GUI
SLAA737B – March 2017 – Revised October 2017
Submit Documentation Feedback
Copyright © 2017, Texas Instruments Incorporated
TAS5782M Process Flows
85
DSP Memory Map for Process Flow 6
www.ti.com
Table 12. DSP Memory Map for Process Flow 6 — Book 0x8C (continued)
Sub
Address
Page
Register Name
Number of
Bytes/Format
Default Value
Description
0x54
0x20
Excursion
4/-
0x00000000
Generated by GUI
0x58
0x20
Excursion
4/-
0x00000000
Generated by GUI
0x5C
0x20
Excursion
4/-
0x00000000
Generated by GUI
0x60
0x20
Excursion
4/-
0x00000000
Generated by GUI
0x64
0x20
Excursion
4/-
0x00000000
Generated by GUI
0x68
0x20
Excursion
4/-
0x00000000
Generated by GUI
0x6C
0x20
Excursion
4/-
0x00000000
Generated by GUI
0x70
0x20
Excursion
4/-
0x7FFFFFFF
Generated by GUI
0x74
0x20
Excursion
4/-
0x00000000
Generated by GUI
0x78
0x20
Excursion
4/-
0x00000000
Generated by GUI
0x7C
0x20
Excursion
4/-
0x00000000
Generated by GUI
0x08
0x21
Excursion
4/-
0x00000000
Generated by GUI
0x0C
0x21
Excursion
4/-
0x7FFFFFFF
Generated by GUI
0x10
0x21
Excursion
4/-
0x00000000
Generated by GUI
0x14
0x21
Excursion
4/-
0x00000000
Generated by GUI
0x18
0x21
Excursion
4/-
0x00000000
Generated by GUI
0x1C
0x21
Excursion
4/-
0x00000000
Generated by GUI
MORPHING BQs
0x20
0x21
BQ 1 B0
4 / 1.31
0x7FFFFFFF
Morphing BQ coefficient
0x24
0x21
BQ 1 B1
4 / 2.30
0x00000000
Morphing BQ coefficient
0x28
0x21
BQ 1 B2
4 / 1.31
0x00000000
Morphing BQ coefficient
0x2C
0x21
BQ 1 A1
4 / 2.30
0x00000000
Morphing BQ coefficient
0x30
0x21
BQ 1 A2
4 / 1.31
0x00000000
Morphing BQ coefficient
0x34
0x21
BQ 2 B0
4 / 1.31
0x7FFFFFFF
Morphing BQ coefficient
0x38
0x21
BQ 2 B1
4 / 2.30
0x00000000
Morphing BQ coefficient
0x3C
0x21
BQ 2 B2
4 / 1.31
0x00000000
Morphing BQ coefficient
0x40
0x21
BQ 2 A1
4 / 2.30
0x00000000
Morphing BQ coefficient
0x44
0x21
BQ 2 A2
4 / 1.31
0x00000000
Morphing BQ coefficient
0x48
0x21
CH-Sub Gain scale
4 / 9.23
0x00800000
Sub Channel Morphing Gain
0x4C
0x21
Thermal
4/-
0x7FFFFFFF
Generated by GUI
0x50
0x21
Thermal
4/-
0x7FFFFFFF
Generated by GUI
THERMAL PROTECT TRESHOLD
86
TAS5782M Process Flows
SLAA737B – March 2017 – Revised October 2017
Submit Documentation Feedback
Copyright © 2017, Texas Instruments Incorporated
Appendix B
SLAA737B – March 2017 – Revised October 2017
Power-Up and Power-Down Sequence
B.1
Power-Up Sequence
Use the following list for power-up:
1. Hold all digital inputs low and bring up power supplies (it doesn’t matter if AVDD/DVDD or PVDD
comes up first).
2. Hold RESET low and initialize digital inputs to their desired states. Wait at least 100 µs, pull RESET
high and then wait at least another 100 µs.
3. Configure the SAI (Serial Audio Interface) as required via i2c and then start MCLK, SCLK and LRCLK
(no sequence required).
4. Mute the device (write 0x11 to B0-P0-R3) or pulling low SPK_MUTE pin.
5. Once clocks are stable, put the device into normal operation mode (write 0x00 to B0-P0-R2), and wait
at least 103 FS periods (normally 5ms).
6. Start to program DSP coefficients. If a process flow with SmartAmp processing is used, like Process
Flow 2, Process Flow 4 or Process Flow 6, it is required to download DSP instructions only after DSP
has been reset (write 0x80 to B0-P0-R2).
7. Unmute the device (write 0x00 to B0-P0-R3) or pulling high SPK_MUTE pin.
8. The device is now in normal operation.
Initialization
AVDD/DVDD
Normal Operation
0 ns
PVDD
100 µs
RESET
I2S (MCLK, SCLK, LRCK)
0 ns
100 µs
I2C
SAI Configuration
Mute
Enable DSP
DSP Coefficients
Unmute
Wait for clocks to be stable 103 FS periods (normally 5ms)
Figure 36. Power-Up Timing
SLAA737B – March 2017 – Revised October 2017
Submit Documentation Feedback
Copyright © 2017, Texas Instruments Incorporated
TAS5782M Process Flows
87
Power-Down Sequence
B.2
www.ti.com
Power-Down Sequence
The following list details the power-down sequence:
1. Put the device into power down mode (write 0x01 to B0-P0-R2).
2. Wait at least 2 ms and then pull RESET low.
3. The clocks can be stopped and the power supplies brought down after RESET has been low for at
least 2 µs.
4. The device is now fully shutdown and powered off.
AVDD/DVDD
2 µs
PVDD
2 µs
RESET
2 ms
I2C
2 µs
Power Down Device
Figure 37. Power-Down Timing
Revision History
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.
Changes from A Revision (June 2017) to B Revision .................................................................................................... Page
•
•
•
•
•
•
Added use cases to Supported Use Cases. ........................................................................................... 4
Added Process Flows 5–6. .............................................................................................................. 5
Added Process Flow 5 (48 kHz, 2.1 Standard Processing) . ...................................................................... 14
Added Process Flow 6 (48 kHz, 2.1 SmartAmp Processing) . .................................................................... 16
Added DSP Memory Map for Process Flow 5 ....................................................................................... 70
Added DSP Memory Map for Process Flow 6. ...................................................................................... 79
Revision History
Changes from Original (March 2017) to A Revision ....................................................................................................... Page
•
•
•
•
•
•
•
•
88
Deleted the following sentence, "All BQ coefficients are written in the 1.31 format." in the Equalizer section. .............
Deleted sentence and equation below the Volume Attack and Decay image. ..................................................
Deleted SWAP FLAG entry from DSP Memory Map for Process Flow 1 — Book 0x8C table. ...............................
Deleted SWAP FLAG entry from DSP Memory Map for Process Flow 2 — Book 0x8C table. ...............................
Changed title of the table in the DSP Memory Map for Process Flow 3 section to the current title. .........................
Deleted SWAP FLAG entry from DSP Memory Map for Process Flow 3 — Book 0x8C table. ...............................
Changed title of the table in the DSP Memory Map for Process Flow 4 section to the current title. .........................
Deleted SWAP FLAG entry from DSP Memory Map for Process Flow 4— Book 0x8C table. ................................
Revision History
19
21
46
51
56
56
63
63
SLAA737B – March 2017 – Revised October 2017
Submit Documentation Feedback
Copyright © 2017, Texas Instruments Incorporated
IMPORTANT NOTICE FOR TI DESIGN INFORMATION AND RESOURCES
Texas Instruments Incorporated (‘TI”) technical, application or other design advice, services or information, including, but not limited to,
reference designs and materials relating to evaluation modules, (collectively, “TI Resources”) are intended to assist designers who are
developing applications that incorporate TI products; by downloading, accessing or using any particular TI Resource in any way, you
(individually or, if you are acting on behalf of a company, your company) agree to use it solely for this purpose and subject to the terms of
this Notice.
TI’s provision of TI Resources does not expand or otherwise alter TI’s applicable published warranties or warranty disclaimers for TI
products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections,
enhancements, improvements and other changes to its TI Resources.
You understand and agree that you remain responsible for using your independent analysis, evaluation and judgment in designing your
applications and that you have full and exclusive responsibility to assure the safety of your applications and compliance of your applications
(and of all TI products used in or for your applications) with all applicable regulations, laws and other applicable requirements. You
represent that, with respect to your applications, you have all the necessary expertise to create and implement safeguards that (1)
anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that
might cause harm and take appropriate actions. You agree that prior to using or distributing any applications that include TI products, you
will thoroughly test such applications and the functionality of such TI products as used in such applications. TI has not conducted any
testing other than that specifically described in the published documentation for a particular TI Resource.
You are authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include
the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO
ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY
RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or
endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
TI RESOURCES ARE PROVIDED “AS IS” AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR
REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING TI RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO
ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL
PROPERTY RIGHTS.
TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY YOU AGAINST ANY CLAIM, INCLUDING BUT NOT
LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF
DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL,
COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR
ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.
You agree to fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of your noncompliance with the terms and provisions of this Notice.
This Notice applies to TI Resources. Additional terms apply to the use and purchase of certain types of materials, TI products and services.
These include; without limitation, TI’s standard terms for semiconductor products http://www.ti.com/sc/docs/stdterms.htm), evaluation
modules, and samples (http://www.ti.com/sc/docs/sampterms.htm).
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2017, Texas Instruments Incorporated
Was this manual useful for you? yes no
Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Related manuals

Download PDF

advertising