Texas Instruments | 16-Bit, Quad-Channel, Ultra-Low Glitch, Voltage Output DAC (Rev. B) | Datasheet | Texas Instruments 16-Bit, Quad-Channel, Ultra-Low Glitch, Voltage Output DAC (Rev. B) Datasheet

Texas Instruments 16-Bit, Quad-Channel, Ultra-Low Glitch, Voltage Output DAC (Rev. B) Datasheet
 DA
C8
554
DAC8554
SLAS431B – JUNE 2005 – REVISED OCTOBER 2006
16-BIT, QUAD-CHANNEL, ULTRA-LOW GLITCH, VOLTAGE OUTPUT
DIGITAL-TO-ANALOG CONVERTER
FEATURES
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
Relative Accuracy: 4LSB
Glitch Energy: 0.15nV-s
MicroPower Operation:
150µA per channel at 2.7V
Power-On Reset to Zero-Scale
Power Supply: +2.7V to +5.5V
16-Bit Monotonic Over Temperature
Settling Time: 10µs to ±0.003% FSR
Ultra-Low AC Crosstalk: –100dB Typ
Low Power SPI™ Compatible Serial Interface
with Schmitt-Triggered Inputs: Up to 50MHz
On-Chip Output Buffer Amplifier with
Rail-to-Rail Operation
Double Buffered Input Architecture
Simultaneous or Sequential Output Update
and Power-Down
16-Channel Broadcast Capability
1.8V to 5.5V Logic Compatibility
Available in a TSSOP-16 Package
APPLICATIONS
•
•
•
•
•
•
Portable Instrumentation
Closed-Loop Servo-Control
Process Control
Data Acquisition Systems
Programmable Attenuation
PC Peripherals
DESCRIPTION
The DAC8554 is a 16-bit, quad-channel, voltage
output, digital-to-analog converter (DAC), offering
low-power operation and a flexible serial host
interface. It offers monotonicity, good linearity, and
exceptionally low glitch. Each on-chip precision
output amplifier allows rail-to-rail output swing to be
achieved over the supply range of 2.7V to 5.5V. The
device supports a standard 3-wire serial interface
capable of operating with input data clock
frequencies up to 50MHz for IOVDD = 5V.
The DAC8554 requires an external reference voltage
to set the output range of each DAC channel. Also
incorporated into the device is a power-on reset
circuit which ensures that the DAC outputs power up
at zero-scale and remain there until a valid write
takes place. The DAC8554 provides a per channel
power-down feature, accessed over the serial
interface, that reduces the current consumption to
175nA per channel at 5V.
The low-power consumption of this device in normal
operation makes it ideally suited to portable
battery-operated equipment and other low-power
applications. The power consumption is 4.25mW at
5V, reducing to 4µW in power-down mode.
The DAC8554 is available in a TSSOP-16 package
with a specified operating temperature range of
–40°C to +105°C.
FUNCTIONAL BLOCK DIAGRAM
AVDD
IOVDD
VREFH
Data
Buffer A
DAC
Register A
VOUTA
DAC A
VOUTB
VOUTC
Data
Buffer D
18
SYNC
SCLK
24-Bit
Serial-to-Parallel
Shift Register
8
Buffer
Control
DAC
Register D
Register
Control
Power-Down
Control Logic
Resistor
Network
DIN
A0
A1
LDAC ENABLE
VOUTD
DAC D
VREFL
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
SPI, QSPI are trademarks of Motorola, Inc.
Microwire is a trademark of National Semiconductor.
All other trademarks are the property of their respective owners.
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of the Texas
Instruments standard warranty. Production processing does not
necessarily include testing of all parameters.
Copyright © 2005–2006, Texas Instruments Incorporated
DAC8554
www.ti.com
SLAS431B – JUNE 2005 – REVISED OCTOBER 2006
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be
more susceptible to damage because very small parametric changes could cause the device not to meet its published
specifications.
PACKAGING/ORDERING INFORMATION (1)
PRODUCT
MAXIMUM
RELATIVE
ACCURACY
(LSB)
MAXIMUM
DIFFERENTIAL
NONLINEARITY
(LSB)
PACKAGELEAD
PACKAGE
DESIGNATOR
SPECIFIED
TEMPERATURE
RANGE
PACKAGE
MARKING
DAC8554
±12
±1
TSSOP-16
PW
–40°C to +105°C
D8554
(1)
ORDERING
NUMBER
TRANSPORT
MEDIA, QUANTITY
DAC8554IPW
Tube, 90
DAC8554IPWR
Tape and Reel, 2000
For the most current package and ordering information see the Package Option Addendum at the end of this document, or see the TI
web site at www.ti.com.
ABSOLUTE MAXIMUM RATINGS (1)
UNIT
AVDD to GND
–0.3V to 6V
Digital input voltage to GND
–0.3 V to AVDD + 0.3V
VO(A) to VO(D) to GND
–0.3V to AVDD + 0.3V
Operating temperature range
–40°C to +105°C
Storage temperature range
–65°C to +150°C
Junction temperature range (TJ max)
150°C
Power dissipation
θJA Thermal impedance
118°C/W
θJC Thermal impedance
29°C/W
ESD rating
(1)
(TJmax – TA)/θJA
Human body model (HBM)
1500V
Charged device model (CDM)
1000V
Stresses above those listed under absolute maximum ratings may cause permanent damage to the device. Exposure to absolute
maximum conditions for extended periods may affect device reliability.
ELECTRICAL CHARACTERISTICS
VDD = 2.7V to 5.5V,– 40°C to +105°C range (unless otherwise noted).
PARAMETER
TEST CONDITIONS
MIN
TYP
MAX
UNIT
±4
±12
LSB
±0.25
±1
LSB
±2
±12
STATIC PERFORMANCE (1)
Resolution
16
Relative accuracy
Measured by line passing through codes 485 and 64741
Differential nonlinearity
16-bit monotonic
Zero-scale error
Measured by line passing through codes 485 and 64741
±5
Zero-scale error drift
Full-scale error
Gain error
Measured by line passing through codes 485 and 64741,
(AVDD = 5V, VREF = 4.99V) and (AVDD = 2.7V, VREF = 2.69V)
Power-Supply Rejection Ratio RL = 2kΩ, CL = 200pF
mV
µV/°C
±0.3
±0.5
% of FSR
±0.05
±0.15
% of FSR
ppm of
FSR/°C
±1
Gain temperature coefficient
PSRR
Bits
0.75
mV/V
OUTPUT CHARACTERISTICS (2)
Output voltage range
Output voltage settling time
0
To ±0.003% FSR, 0200h to FD00h, RL = 2kΩ,
0pF < CL < 200pF
RL = 2kΩ, CL = 500pF
(1)
(2)
2
Linearity calculated using a reduced code range of 485 to 64741; output unloaded.
Ensured by design and characterization; not production tested.
Submit Documentation Feedback
8
12
VREFH
V
10
µs
µs
DAC8554
www.ti.com
SLAS431B – JUNE 2005 – REVISED OCTOBER 2006
ELECTRICAL CHARACTERISTICS (continued)
VDD = 2.7V to 5.5V,– 40°C to +105°C range (unless otherwise noted).
PARAMETER
TEST CONDITIONS
MIN
Slew rate
Capacitive load stability
Code change glitch impulse
TYP
MAX
UNIT
1.8
V/µs
470
pF
RL = 2kΩ
1000
pF
1LSB change around major carry
0.15
RL = ∞
Digital feedthrough
nV-s
0.15
DC crosstalk
Full-scale swing on adjacent channel.
AVDD = 5V, VREF = 4.096V
0.25
LSB
AC crosstalk
1kHz sine wave
–100
dB
DC output impedance
At mid-point input
1
Ω
Short-circuit current
Power-up time
AVDD = 5V
50
AVDD = 3V
20
Coming out of power-down mode, AVDD = 5V
2.5
Coming out of power-down mode, AVDD = 3V
5
mA
µs
AC PERFORMANCE
SNR
95
THD
–85
BW = 20kHz, AVDD = 5V, FOUT = 1kHz,
1st 19 harmonics removed for SNR calculation
SFDR
dB
87
SINAD
84
REFERENCE INPUT
VREFH Voltage
VREFL < VREFH, AVDD – (VREFH + VREFL)/2 > 1.2V
0
AVDD
VREFL Voltage
VREFL < VREFH , AVDD – (VREFH + VREFL)/2 > 1.2V
0
AVDD/2
V
Reference input current
Reference input impedance
V
VREFL = GND, VREFH = AVDD = 5V
180
250
µA
VREFL = GND, VREFH = AVDD = 3V
120
200
µA
VREFL < VREFH
31
kΩ
LOGIC INPUTS (3)
VIL
Logic input LOW voltage
VIH
Logic input HIGH voltage
2.7V ≤ IOVDD ≤ 5.5V
0.3 × IOVDD
1.8V ≤ IOVDD ≤ 2.7V
0.1 × IOVDD
2.7 ≤ IOVDD ≤ 5.5V
0.7 × IOVDD
1.8 ≤ IOVDD < 2.7V
0.95 × IOVDD
V
V
Pin capacitance
3
pF
POWER REQUIREMENTS
AVDD
2.7
5.5
IOVDD
1.8
5.5
IDD (normal mode)
Input code = 32768, no load, reference current not included
IOIDD
AVDD = 3.6V to 5.5V
V
VIH = IOVDD and VIL = GND
AVDD = 2.7V to 3.6V
10
20
0.65
0.95
0.6
0.9
0.7
2
0.4
2
µA
mA
IDD (all power-down modes)
AVDD = 3.6V to 5.5V
VIH = IOVDD and VIL = GND
AVDD = 2.7V to 3.6V
µA
POWER EFFICIENCY
IOUT/IDD
IL = 2mA, AVDD = 5V
89
%
TEMPERATURE RANGE
Specified performance
(3)
–40
+105
°C
Ensured by design and characterization; not production tested.
Submit Documentation Feedback
3
DAC8554
www.ti.com
SLAS431B – JUNE 2005 – REVISED OCTOBER 2006
PIN CONFIGURATION
VOUTA
1
16 LDAC
VOUTB
2
15 ENABLE
VREFH
3
14 A1
AVDD
4
13 A0
DAC8554
VREFL
5
12
IOVDD
GND
6
11
DIN
VOUTC
7
10 SCLK
VOUTD
8
9
SYNC
PIN DESCRIPTIONS
4
PIN
NAME
DESCRIPTION
1
VOUTA
Analog output voltage from DAC A.
2
VOUTB
Analog output voltage from DAC B.
3
VrefH
Positive reference voltage input.
4
AVDD
Power supply input, 2.7V to 5.5V.
5
VrefL
Negative reference voltage input.
6
GND
Ground reference point for all circuitry on the part.
7
VOUTC
Analog output voltage DAC C.
8
VOUTD
Analog output voltage DAC D.
9
SYNC
Level-triggered control input (active LOW). This is the frame synchronization signal for the input data. When
SYNC goes LOW, it enables the input shift register and data is transferred in on the falling edges of the
following clocks. The DAC is updated following the 24th clock (unless SYNC is taken HIGH before this edge,
in which case the rising edge of SYNC acts as an interrupt and the write sequence is ignored by the
DAC8554). Schmitt-Trigger-Logic input.
10
SCLK
Serial clock input. Data can be transferred at rates up to 50MHz. Schmitt-Trigger-Logic input.
11
DIN
12
IOVDD
13
A0
Address 0 — sets device address; see Table 2
14
A1
Address 1 — sets device address; see Table 2
15
ENABLE
16
LDAC
Serial data input. Data is clocked into the 24-bit input shift register on each falling edge of the serial clock
input. Schmitt-Trigger-Logic input.
Digital input-output power supply
Active LOW, ENABLE LOW connects the SPI interface to the serial port.
Load DACs, rising edge triggered, loads all DAC registers.
Submit Documentation Feedback
DAC8554
www.ti.com
SLAS431B – JUNE 2005 – REVISED OCTOBER 2006
SERIAL WRITE OPERATION
t9
t1
SCLK
1
24
t8
t2
t3
t4
t7
SYNC
t6
t5
DIN
DB23
DB0
DB23
TIMING REQUIREMENTS (1) (2)
AVDD = 2.7V to 5.5V, all specifications –40°C to +105°C (unless otherwise noted)
PARAMETER
TEST CONDITIONS
t1 (3)
SCLK cycle time
t2
SCLK HIGH time
t3
SCLK LOW time
t4
SYNC falling edge to SCLK rising edge setup time
t5
Data setup time
t6
Data hold time
t7
24th SCLK falling edge to SYNC rising edge
t8
Minimum SYNC HIGH time
t9
24th SCLK falling edge to SYNC falling edge
(1)
(2)
(3)
MIN
IOVDD = AVDD = 2.7V to 3.6V
40
IOVDD = AVDD = 3.6V to 5.5V
20
IOVDD = AVDD = 2.7V to 3.6V
20
IOVDD = AVDD = 3.6V to 5.5V
10
IOVDD = AVDD = 2.7V to 3.6V
20
IOVDD = AVDD = 3.6V to 5.5V
10
IOVDD = AVDD = 2.7V to 3.6V
0
IOVDD = AVDD = 3.6V to 5.5V
0
IOVDD = AVDD = 2.7V to 3.6V
5
IOVDD = AVDD = 3.6V to 5.5V
5
IOVDD = AVDD = 2.7V to 3.6V
4.5
IOVDD = AVDD = 3.6V to 5.5V
4.5
IOVDD = AVDD = 2.7V to 3.6V
0
IOVDD = AVDD = 3.6V to 5.5V
0
IOVDD = AVDD = 2.7V to 3.6V
40
IOVDD = AVDD = 3.6V to 5.5V
20
IOVDD = AVDD = 2.7V to 5.5V
130
TYP
MAX
UNIT
ns
ns
ns
ns
ns
ns
ns
ns
ns
All input signals are specified with tR = tF = 3ns (10% to 90% of AVDD) and timed from a voltage level of (VIL + VIH)/2.
See Serial Write Operation timing diagram.
Maximum SCLK frequency is 50MHz at IOVDD = AVDD = 3.6V to 5.5V and 25MHz at IOVDD = AVDD = 2.7V to 3.6V.
Submit Documentation Feedback
5
DAC8554
www.ti.com
SLAS431B – JUNE 2005 – REVISED OCTOBER 2006
TYPICAL CHARACTERISTICS: VDD = 5V
At TA = +25°C, unless otherwise noted.
LINEARITY ERROR AND
DIFFERENTIAL LINEARITY ERROR
vs DIGITAL INPUT CODE
LE (LSB)
1.0
1.0
0.5
0.5
0
-0.5
-1.0
8
6
4
2
0
-2
-4
-6
-8
0
-0.5
8192
16384 24576 32768 40960 49152
Digital Input Code
57344 65536
0
16384 24576 32768 40960 49152
Digital Input Code
LINEARITY ERROR AND
DIFFERENTIAL LINEARITY ERROR
vs DIGITAL INPUT CODE
LINEARITY ERROR AND
DIFFERENTIAL LINEARITY ERROR
vs DIGITAL INPUT CODE
8
6
4
2
0
-2
-4
-6
-8
VDD = 5V, VREF = 4.99V
LE (LSB)
Channel C
VDD = 5V, VREF = 4.99V
Channel D
1.0
0.5
0
-0.5
-1.0
0.5
0
-0.5
-1.0
0
8192
16384 24576 32768 40960 49152
Digital Input Code
57344 65536
0
8192
16384 24576 32768 40960 49152
Digital Input Code
Figure 3.
Figure 4.
ZERO-SCALE ERROR
vs TEMPERATURE
FULL-SCALE ERROR
vs TEMPERATURE
57344 65536
0
5.0
VDD = 5V
VREF = 4.99V
AVDD = 5V, VREF = 4.99V
CH C
-5
Error (mV)
2.5
CH A
0
CH D
-10
CH C
-15
CH A
CH B
-2.5
CH D
-20
CH B
-25
-5.0
-40
6
57344 65536
Figure 2.
DLE (LSB)
DLE (LSB)
8192
Figure 1.
1.0
Error (mV)
VDD = 5V, VREF = 4.99V
Channel B
-1.0
0
LE (LSB)
8
6
4
2
0
-2
-4
-6
-8
VDD = 5V, VREF = 4.99V
Channel A
DLE (LSB)
DLE (LSB)
LE (LSB)
8
6
4
2
0
-2
-4
-6
-8
LINEARITY ERROR AND
DIFFERENTIAL LINEARITY ERROR
vs DIGITAL INPUT CODE
0
40
80
120
-40
0
40
Temperature (°C)
Temperature (°C)
Figure 5.
Figure 6.
Submit Documentation Feedback
80
120
DAC8554
www.ti.com
SLAS431B – JUNE 2005 – REVISED OCTOBER 2006
TYPICAL CHARACTERISTICS: VDD = 5V (continued)
At TA = +25°C, unless otherwise noted.
SUPPLY CURRENT
vs LOGIC INPUT VOLTAGE
SOURCE CURRENT CAPABILITY (ALL CHANNELS)
6.0
2000
5.6
1600
TA = +25°C, SYNC Input (All other inputs = GND)
CH A Powered Up (All other channels in powerdown)
Reference Current Included
5.2
IDD (mA)
VOUT (V)
IOVDD = AVDD = VREF = 5V
4.8
4.4
AVDD = 5.5V
VREF = AVDD - 10mV
DAC Loaded with FFFFh
1200
800
400
4.0
0
0
2
4
6
8
10
0
1
2
ISOURCE (mA)
Figure 8.
POWER SPECTRAL DENSITY
TOTAL HARMONIC DISTORTION
vs OUTPUT FREQUENCY
-50
-70
-40
-60
-70
THD
-90
-80
-110
-90
-130
-100
2nd Harmonic
5k
10k
5
AVDD = VREF = 5V
-1dB FSR Digital Input
fS = 1MSPS
Measurement Bandwidth = 20kHz
-50
THD (dB)
AVDD = 5V
VREF = 4.096V
fCLK = 1MSPS
fOUT = 1kHz
THD = 79dB
SNR = 96dB
-30
Gain (dB)
4
Figure 7.
-10
0
3
VLOGIC (V)
15k
20k
0
1
3rd Harmonic
2
3
4
5
Frequency (Hz)
fOUT (kHz)
Figure 9.
Figure 10.
FULL-SCALE SETTLING TIME: 5V RISING EDGE
FULL-SCALE SETTLING TIME: 5V FALLING EDGE
Trigger Pulse: 5V/div
Trigger Pulse: 5V/div
AVDD = 5V,
VREF = 4.096V,
From Code: FFFF
To Code: 0000
AVDD = 5V,
VREF = 4.096V,
From Code: 0000
To Code: FFFF
Rising
Edge
1V/div
Zoomed Rising Edge
1mV/div
Falling
Edge
1V/div
Time (2ms/div)
Zoomed Falling Edge
1mV/div
Time (2ms/div)
Figure 11.
Figure 12.
Submit Documentation Feedback
7
DAC8554
www.ti.com
SLAS431B – JUNE 2005 – REVISED OCTOBER 2006
TYPICAL CHARACTERISTICS: VDD = 5V (continued)
At TA = +25°C, unless otherwise noted.
HALF-SCALE SETTLING TIME: 5V RISING EDGE
HALF-SCALE SETTLING TIME: 5V FALLING EDGE
Trigger Pulse: 5V/div
Rising
Edge
1V/div
Trigger Pulse: 5V/div
AVDD = 5V,
VREF = 4.096V,
From Code: CFFF
To Code: 4000
AVDD = 5V,
VREF = 4.096V,
From Code: 4000
To Code: CFFF
Falling
Edge
1V/div
Zoomed Rising Edge
1mV/div
8
Time (2ms/div)
Figure 14.
GLITCH ENERGY: 5V, 1LSB STEP, RISING EDGE
GLITCH ENERGY: 5V, 1LSB STEP, FALLING EDGE
VOUT (500mV/div)
Figure 13.
AVDD = 5V,
VREF = 4.096V,
From Code: 7FFF
To Code: 8000
Glitch: 0.08nV-s
AVDD = 5V,
VREF = 4.096V,
From Code: 8000
To Code: 7FFF
Glitch: 0.16nV-s
Measured Worst Case
Time (400ns/div)
Time (400ns/div)
Figure 15.
Figure 16.
GLITCH ENERGY: 5V, 16LSB STEP, RISING EDGE
GLITCH ENERGY: 5V, 16LSB STEP, FALLING EDGE
AVDD = 5V,
VREF = 4.096V,
From Code: 8000
To Code: 8010
Glitch: 0.04nV-s
VOUT (500mV/div)
VOUT (500mV/div)
VOUT (500mV/div)
Time (2ms/div)
Zoomed Falling Edge
1mV/div
AVDD = 5V,
VREF = 4.096V,
From Code: 8010
To Code: 8000
Glitch: 0.08nV-s
Time (400ns/div)
Time (400ns/div)
Figure 17.
Figure 18.
Submit Documentation Feedback
DAC8554
www.ti.com
SLAS431B – JUNE 2005 – REVISED OCTOBER 2006
TYPICAL CHARACTERISTICS: VDD = 5V (continued)
At TA = +25°C, unless otherwise noted.
GLITCH ENERGY: 5V, 256LSB STEP, FALLING EDGE
AVDD = 5V,
VREF = 4.096V,
From Code: 8000
To Code: 80FF
Glitch: Not Detected
Theoretical Worst Case
Time (400ns/div)
Time (400ns/div)
Figure 19.
Figure 20.
OUTPUT NOISE DENSITY
SIGNAL-TO-NOISE RATIO
vs OUTPUT FREQUENCY
350
98
AVDD = 5V
VREF = 4.096V
Code = 7FFF
No Load
300
AVDD = VREF = 5V
-1dB FSR Digital Inputs
fS = 1MSPS
Measurement Bandwidth = 20kHz
96
94
250
SNR (dB)
Noise (nV/ÖHz)
AVDD = 5V,
VREF = 4.096V,
From Code: 80FF
To Code: 8000
Glitch: Not Detected
Theoretical Worst Case
VOUT (5mV/div)
VOUT (5mV/div)
GLITCH ENERGY: 5V, 256LSB STEP, RISING EDGE
200
92
90
88
150
86
100
100
84
1k
10k
100k
0
Frequency (Hz)
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
fOUT (kHz)
Figure 21.
Figure 22.
Submit Documentation Feedback
9
DAC8554
www.ti.com
SLAS431B – JUNE 2005 – REVISED OCTOBER 2006
TYPICAL CHARACTERISTICS: VDD = 2.7V
At TA = +25°C, unless otherwise noted.
LINEARITY ERROR AND
DIFFERENTIAL LINEARITY ERROR
vs DIGITAL INPUT CODE
8
6
4
2
0
-2
-4
-6
-8
VDD = 2.7V, VREF = 2.69V
Channel A
LE (LSB)
LE (LSB)
8
6
4
2
0
-2
-4
-6
-8
LINEARITY ERROR AND
DIFFERENTIAL LINEARITY ERROR
vs DIGITAL INPUT CODE
1.0
DLE (LSB)
DLE (LSB)
1.0
0.5
0
-0.5
-1.0
8
6
4
2
0
-2
-4
-6
-8
8192
16384 24576 32768 40960 49152
Digital Input Code
0
-0.5
57344 65536
0
16384 24576 32768 40960 49152
Digital Input Code
57344 65536
Figure 24.
LINEARITY ERROR AND
DIFFERENTIAL LINEARITY ERROR
vs DIGITAL INPUT CODE
LINEARITY ERROR AND
DIFFERENTIAL LINEARITY ERROR
vs DIGITAL INPUT CODE
8
6
4
2
0
-2
-4
-6
-8
VDD = 2.7V, VREF = 2.69V
LE (LSB)
Channel C
1.0
1.0
0.5
0.5
0
-0.5
-1.0
VDD = 2.7V, VREF = 2.69V
Channel D
0
-0.5
-1.0
0
8192
16384 24576 32768 40960 49152
Digital Input Code
57344 65536
0
8192
16384 24576 32768 40960 49152
Digital Input Code
Figure 25.
Figure 26.
ZERO-SCALE ERROR
vs TEMPERATURE
FULL-SCALE ERROR
vs TEMPERATURE
57344 65536
0
5.0
VDD = 2.7V
VREF = 2.69V
AVDD = 2.7V, VREF = 2.69V
-5
Error (mV)
CH C
2.5
Error (mV)
8192
Figure 23.
DLE (LSB)
LE (LSB)
DLE (LSB)
0.5
-1.0
0
CH A
0
CH D
CH B
-2.5
CH C
CH A
-10
CH D
CH B
-15
-20
-25
-5.0
-40
10
VDD = 2.7V, VREF = 2.69V
Channel B
0
40
80
120
-40
0
40
Temperature (°C)
Temperature (°C)
Figure 27.
Figure 28.
Submit Documentation Feedback
80
120
DAC8554
www.ti.com
SLAS431B – JUNE 2005 – REVISED OCTOBER 2006
TYPICAL CHARACTERISTICS: VDD = 2.7V (continued)
At TA = +25°C, unless otherwise noted.
SUPPLY CURRENT
vs LOGIC INPUT VOLTAGE
SOURCE CURRENT CAPABILITY (ALL CHANNELS)
3.0
800
TA = +25°C, SYNC Input (All other inputs = GND)
CH A Powered Up (All other channels in powerdown)
Reference Current Included
2.7
600
IDD (mA)
VOUT (V)
IOVDD = AVDD = VREF = 2.7V
2.4
2.1
1.8
400
200
AVDD = 2.7V
VREF = AVDD - 10mV
DAC Loaded with FFFFh
1.5
0
0
2
4
6
8
10
0
0.5
1.0
1.5
2.0
2.5 2.7
ISOURCE (mA)
VLOGIC (V)
Figure 29.
Figure 30.
FULL-SCALE SETTLING TIME: 2.7V RISING EDGE
FULL-SCALE SETTLING TIME: 2.7V FALLING EDGE
Trigger Pulse: 2.7V/div
Rising
Edge
0.5V/div
Trigger Pulse: 2.7V/div
AVDD = 2.7V,
VREF = 2.5V,
From Code: 0000
To Code: FFFF
Zoomed Rising Edge
1mV/div
AVDD = 2.7V,
VREF = 2.5V,
From Code: FFFF
To Code: 0000
Falling
Edge
0.5V/div
Time (2ms/div)
Zoomed Falling Edge
1mV/div
Time (2ms/div)
Figure 31.
Figure 32.
HALF-SCALE SETTLING TIME: 2.7V RISING EDGE
HALF-SCALE SETTLING TIME: 2.7V FALLING EDGE
Trigger Pulse: 2.7V/div
Trigger Pulse: 2.7V/div
AVDD = 2.7V,
VREF = 2.5V,
From Code: CFFF
To Code: 4000
AVDD = 2.7V,
VREF = 2.5V,
From Code: 4000
To Code: CFFF
Rising
Edge
0.5V/div
Zoomed Rising Edge
1mV/div
Falling
Edge
0.5V/div
Time (2ms/div)
Zoomed Falling Edge
1mV/div
Time (2ms/div)
Figure 33.
Figure 34.
Submit Documentation Feedback
11
DAC8554
www.ti.com
SLAS431B – JUNE 2005 – REVISED OCTOBER 2006
TYPICAL CHARACTERISTICS: VDD = 2.7V (continued)
At TA = +25°C, unless otherwise noted.
VOUT (200mV/div)
AVDD = 2.7V,
VREF = 2.5V,
From Code: 7FFF
To Code: 8000
Glitch: 0.08nV-s
AVDD = 2.7V,
VREF = 2.5V,
From Code: 8000
To Code: 7FFF
Glitch: 0.16nV-s
Measured Worst Case
Time (400ns/div)
Time (400ns/div)
Figure 35.
Figure 36.
GLITCH ENERGY: 2.7V, 16LSB STEP, RISING EDGE
GLITCH ENERGY: 2.7V, 16LSB STEP, FALLING EDGE
AVDD = 2.7V,
VREF = 2.5V,
From Code: 8000
To Code: 8010
Glitch: 0.04nV-s
AVDD = 2.7V,
VREF = 2.5V,
From Code: 8010
To Code: 8000
Glitch: 0.12nV-s
Time (400ns/div)
Figure 37.
Figure 38.
GLITCH ENERGY: 2.7V, 256LSB STEP, RISING EDGE
GLITCH ENERGY: 2.7V, 256LSB STEP, FALLING EDGE
AVDD = 2.7V,
VREF = 2.5V,
From Code: 8000
To Code: 80FF
Glitch: Not Detected
Theoretical Worst Case
VOUT (5mV/div)
Time (400ns/div)
VOUT (5mV/div)
12
GLITCH ENERGY: 2.7V, 1LSB STEP, FALLING EDGE
VOUT (200mV/div)
VOUT (200mV/div)
VOUT (200mV/div)
GLITCH ENERGY: 2.7V, 1LSB STEP, RISING EDGE
AVDD = 2.7V,
VREF = 2.5V,
From Code: 80FF
To Code: 8000
Glitch: Not Detected
Theoretical Worst Case
Time (400ns/div)
Time (400ns/div)
Figure 39.
Figure 40.
Submit Documentation Feedback
DAC8554
www.ti.com
SLAS431B – JUNE 2005 – REVISED OCTOBER 2006
TYPICAL CHARACTERISTICS: VDD = 5V and 2.7V
At TA = +25°C, unless otherwise noted.
SUPPLY CURRENT
vs DIGITAL INPUT CODE
SINK CURRENT CAPABILITY (ALL CHANNELS)
0.150
1200
VREF = AVDD - 10mV
DAC Loaded with 0000h
Reference Current Included
1000
0.125
800
IDD (mA)
VOUT (V)
AVDD = VREF = 5V
VDD = 2.7V
0.100
VDD = 5.5V
0.075
600
AVDD = VREF = 2.7V
0.050
400
0.025
200
0
0
0
2
4
6
8
0
10
8192 16384 24576 32768 40960 49152 57344 65535
Digital Input Code
ISINK (mA)
Figure 41.
Figure 42.
SUPPLY CURRENT
vs FREE-AIR TEMPERATURE
SUPPLY CURRENT
vs SUPPLY VOLTAGE
1200
900
VREF = AVDD, All DACs Powered,
Reference Current Included, No Load
Reference Current Included
1000
850
AVDD = VREF = 5V
800
IDD (mA)
IDD (mA)
800
AVDD = VREF = 2.7V
600
750
400
700
200
650
0
-40
600
0
40
80
120
2.7
3.05
3.4
3.75
4.1
4.45
Temperature (°C)
AVDD (V)
Figure 43.
Figure 44.
Submit Documentation Feedback
4.8
5.15
5.5
13
DAC8554
www.ti.com
SLAS431B – JUNE 2005 – REVISED OCTOBER 2006
THEORY OF OPERATION
DAC SECTION
VREFH
The architecture of each channel of the DAC8554
consists of a resistor-string DAC followed by an
output buffer amplifier. Figure 45 shows a simplified
block diagram of the DAC architecture.
VREFH
50kW
RDIVIDER
VREF
2
50kW
R
62kW
VOUT
REF(+)
Resistor String
REF(-)
DAC
Register
R
To Output Amplifier
(2x Gain)
VREFL
Figure 45. DAC8554 Architecture
The input coding for each device is unipolar straight
binary, so the ideal output voltage is given by:
V OUTX + 2
V REFL ) (V REFH * V REFL)
DIN
65536
R
where DIN = decimal equivalent of the binary code
that is loaded to the DAC register; it can range from
0 to 65535.
R
RESISTOR STRING
The resistor string section is shown in Figure 46. It is
simply a divide-by-2 resistor followed by a string of
resistors. The code loaded into the DAC register
determines at which node on the string the voltage is
tapped off. This voltage is then applied to the output
amplifier by closing one of the switches connecting
the string to the amplifier.
OUTPUT AMPLIFIER
Each output buffer amplifier is capable of generating
rail-to-rail voltages on its output that approaches an
output range of 0V to AVDD (gain and offset errors
must be taken into account). Each buffer is capable
of driving a load of 2kΩ in parallel with 1000pF to
GND. The source and sink capabilities of the output
amplifier can be seen in the Typical Characteristics.
SERIAL INTERFACE
The DAC8554 uses a 3-wire serial interface (SYNC,
SCLK, and DIN), which is compatible with SPI,
QSPI™, and Microwire™ interface standards, as well
as most DSPs. See the Serial Write Operation timing
diagram for an example of a typical write sequence.
14
VREFL
Figure 46. Resistor String
The write sequence begins by bringing the SYNC
line LOW. Data from the DIN line are clocked into the
24-bit shift register on each falling edge of SCLK.
The serial clock frequency can be as high as 50MHz,
making the DAC8554 compatible with high-speed
DSPs. On the 24th falling edge of the serial clock,
the last data bit is clocked into the shift register and
the shift register gets locked. Further clocking does
not change the shift register data. Once 24 bits are
locked into the shift register, the eight MSBs are
used as control bits and the 16 LSBs are used as
data. After receiving the 24th falling clock edge, The
DAC8554 decodes the eight control bits and 16 data
bits to perform the required function, without waiting
for a SYNC rising edge. A new SPI sequence starts
at the next falling edge of SYNC. A rising edge of
SYNC before the 24-bit sequence is complete resets
the SPI interface; no data transfer occurs.
Submit Documentation Feedback
DAC8554
www.ti.com
SLAS431B – JUNE 2005 – REVISED OCTOBER 2006
After the 24th falling edge of SCLK is received, the
SYNC line may be kept LOW or brought HIGH. In
either case, the minimum delay time from the 24th
falling SCLK edge to the next falling SYNC edge
must be met in order to properly begin the next
cycle.
To assure the lowest power consumption of the
device, care should be taken that the levels are as
close to each rail as possible. [Refer to the Typical
Characteristics section for the Supply Current vs
Logic Input Voltage
(5V and 2.7V) transfer
characteristic curves.]
IOVDD AND VOLTAGE TRANSLATORS
The IOVDD pin powers the digital input structures of
the DAC8554. For single-supply operation, it can be
tied to AVDD. For dual-supply operation, the IOVDD
pin provides interface flexibility with various CMOS
logic families and should be connected to the logic
supply of the system. Analog circuits and internal
logic of the DAC8554 use AVDD as the supply
voltage. The external logic high inputs get translated
to AVDD by level shifters. These level shifters use the
IOVDD voltage as a reference to shift the incoming
logic HIGH levels to AVDD. IOVDD is ensured to
operate from 2.7V to 5.5V regardless of the AVDD
voltage, which ensures compatibility with various
logic families. Although specified down to 2.7V,
IOVDD will operate at as low as 1.8V with degraded
timing and temperature performance. For lowest
power consumption, logic VIH levels should be as
close as possible to IOVDD, and logic VIL levels
should be as close as possible to GND voltages
INPUT SHIFT REGISTER
The input shift register (SR) of the DAC8554 is 24
bits wide, as shown in Figure 47, and is made up of
eight control bits (DB23–DB16) and 16 data bits
(DB15–DB0). The first two control bits (DB23 and
DB22) are the address match bits. The DAC8554
offers additional hardware-enabled addressing
capability, allowing a single host to talk to up to four
DAC8554s through a single SPI bus without any glue
logic, enabling up to 16-channel operation. The state
of DB23 should match the state of pin A1; similarly,
the state of DB22 should match the state of pin A0. If
there is no match, the control command and the data
(DB21...DB0) are ignored by the DAC8554. That is, if
there is no match, the DAC8554 is not addressed.
Address matching can be overridden by the
broadcast update.
LD1 (DB21) and LD0 (DB20) control the updating of
each analog output with the specified 16-bit data
value or power-down command. Bit DB19 is a don't
care bit that does not affect the operation of the
DAC8554, and can be '1' or '0'. The DAC channel
select bits (DB18, DB17) control the destination of
the data (or power-down command) from DAC A
through DAC D. The final control bit, PD0 (DB16),
selects the power-down mode of the DAC8554
channels.
DB23
A1
DB12
A0
LD1
LD0
X
DAC Select 1
DAC Select 0
PD0
D15
D14
D13
DB11
D11
D12
DB0
D10
D9
D8
D7
D6
D5
D4
D3
D2
D1
D0
Figure 47. DAC8554 Data Input Register Format
Submit Documentation Feedback
15
DAC8554
www.ti.com
SLAS431B – JUNE 2005 – REVISED OCTOBER 2006
The DAC8554 also supports a number of different
load commands. The load commands include
broadcast commands to address all the DAC8554s
on an SPI bus. The load commands can be
summarized as follows:
Power-down/data selection is as follows:
DB16 is a power-down flag. If this flag is set, then
DB15 and DB14 select one of the four power-down
modes of the device as described in Table 1. If DB16
= 1, DB15 and DB14 no longer represent the two
MSBs of data, but represent a power-down condition
described in Table 1. Similar to data, power-down
conditions can be stored at the temporary registers
of each DAC. It is possible to update DACs
simultaneously either with data, power-down, or a
combination of both.
DB21 = 0 and DB20 = 0: Single-channel store.
The temporary register (data buffer) corresponding to
a DAC selected by DB18 and DB17 is updated with
the contents of SR data (or power-down).
DB21 = 0 and DB20 = 1: Single-channel update.
The temporary register and DAC register
corresponding to a DAC selected by DB18 and DB17
are updated with the contents of SR data (or
power-down).
Refer to Table 2 for more information.
Table 1. DAC8554 Power-Down Modes
DB21 = 1 and DB20 = 0: Simultaneous update. A
channel selected by DB18 and DB17 gets updated
with the SR data, and simultaneously, all the other
channels get updated with previous stored data (or
power-down) from temporary registers.
PD0
PD1
PD2
(DB16) (DB15) (DB14)
DB21 = 1 and DB20 = 1: Broadcast update. All the
DAC8554s on the SPI bus respond, regardless of
address matching. If DB18 = 0, then SR data gets
ignored, all channels from all DAC8554s get updated
with previously stored data (or power-down). If DB18
= 1, then SR data (or power-down) updates all
channels of all DAC8554s in the system. This
broadcast update feature allows the simultaneous
update of up to 16 channels.
OPERATING MODE
1
0
0
Output high impedance
1
0
1
Output typically 1kΩ to GND
1
1
0
Output typically 100kΩ to GND
1
1
1
Output high impedance
Table 2. Control Matrix
DB23
A1
DB22
A0
DB21
LD 1
DB20
DB19
DB18
DB17
DB16
DB15
DB14
DB13-DB0
LD 0
Don't
Care
DAC Sel 1
DAC Sel 0
PD0
MSB
MSB-1
MSB-2...LSB
(Address Select)
0/1
DESCRIPTION
0/1
This address selects 1 of 4 possible devices on a
single SPI data bus based on each device's address
pin(s) state.
See Below
A0 and A1 should
correspond to the
package address
set via pins 13
and 14.
0
0
X
0
0
0
Data
Write to buffer A with data
0
0
X
0
1
0
Data
Write to buffer B with data
0
0
X
1
0
0
Data
Write to buffer C with data
0
0
X
1
1
0
Data
0
0
X
(00, 01, 10, or 11)
1
0
1
X
(00, 01, 10, or 11)
0
0
1
X
(00, 01, 10, or 11)
1
1
0
X
(00, 01, 10, or 11)
0
1
0
X
(00, 01, 10, or 11)
1
See Table 1
Write to buffer D with data
0
Write to buffer with data and load DAC (selected by
DB17 and DB18)
Data
See Table 1
0
Write to buffer with power-down command and load
DAC (selected by DB17 and DB18)
Write to buffer with data (selected by DB17 and DB18)
and then load all DACs simultaneously from their
corresponding buffers.
Data
See Table 1
Write to buffer (selected by DB17 and DB18) with
power-down command
0
Write to buffer with power-down command (selected by
DB17 and DB18) and then load all DACs
simultaneously from their corresponding buffers.
Broadcast Modes
16
X
X
1
1
X
0
X
X
X
X
1
1
X
1
X
0
X
X
1
1
X
1
X
1
Simultaneously update all channels of all DAC8554
devices in the system with data stored in each
channels temporary register.
X
Data
See Table 1
Submit Documentation Feedback
Write to all devices and load all DACs with SR data
0
Write to all devices and load all DACs with
power-down command in SR.
DAC8554
www.ti.com
SLAS431B – JUNE 2005 – REVISED OCTOBER 2006
SYNC INTERRUPT
POWER-ON RESET
In a normal write sequence, the SYNC line is kept
LOW for at least 24 falling edges of SCLK and the
addressed DAC register is updated on the 24th
falling edge. However, if SYNC is brought HIGH
before the 24th falling edge, it acts as an interrupt to
the write sequence; the shift register is reset and the
write sequence is discarded. Neither an update of
the data buffer contents, DAC register contents, nor
a change in the operating mode occurs (see
Figure 48).
The DAC8554 contains a power-on reset circuit that
controls the output voltage during power-up. On
power-up, the DAC registers are filled with zeros and
the output voltages are set to zero-scale; they
remain that way until a valid write sequence and load
command are made to the respective DAC channel.
The power-on reset is useful in applications where it
is important to know the state of the output of each
DAC while the device is in the process of powering
up. No device pin should be brought high before
power is applied to the device.
24th Falling Edge
SCLK
1
2
1
24th Falling Edge
2
SYNC
Invalid Write-Sync Interrupt:
SYNC HIGH Before 24th Falling Edge
DIN
DB23 DB22
DB0
Valid Write-Buffer/DAC Update:
SYNC HIGH After 24th Falling Edge
DB23 DB22
DB1 DB0
Figure 48. Interrupt and Valid SYNC Timing
Submit Documentation Feedback
17
DAC8554
www.ti.com
SLAS431B – JUNE 2005 – REVISED OCTOBER 2006
POWER-DOWN MODES
The DAC8554 utilizes four modes of operation.
These modes are accessed by setting three bits
(PD2, PD1, and PD0) in the shift register and
performing a Load action to the DACs. The
DAC8554 offers a very flexible power-down interface
based on channel register operation. A channel
consists of a single 16-bit DAC with power-down
circuitry, a temporary storage register (TR), and a
DAC register (DR). TR and DR are both 18 bits wide.
Two MSBs represent a power-down condition and 16
LSBs represent data for TR and DR. By adding bits
17 and 18 to TR and DR, a power-down condition
can be temporarily stored and used as data. Internal
circuits ensure that DB15 and DB14 get transferred
to TR17 and TR16 (DR17 and DR16), when DB16 =
1.
The DAC8554 treats the power-down condition as
data; all the operational modes are still valid for
power-down. It is possible to broadcast a
power-down condition to all the DAC8554s in a
system, or it is possible to simultaneously
power-down a channel while updating data on other
channels.
Individual channels can be separately powered
down, reducing the total power consumption. When
all channels are powered down, the DAC8554 power
consumption drops below 2µA. There is no power-up
command. When a channel is updated with data, it
automatically exits power-down. All channels exit
power-down simultaneously after a broadcast data
update. The time to exit power-down is
approximately 5µs. See Table 1 and Table 2 for
power-down operation details.
Resistor
String
DAC
Power-Down
Circuitry
VOUTX
Resistor
Network
Figure 49. Output Stage During Power-Down
(High-Impedance)
DB16, DB15, and DB14 = '100' (or '111') represent a
power-down condition with Hi-Z output impedance
for a selected channel. '101' represents a
power-down condition with 1kΩ output impedance,
and '110' represents a power-down condition with
100kΩ output impedance.
18
Amplifier
Submit Documentation Feedback
DAC8554
www.ti.com
SLAS431B – JUNE 2005 – REVISED OCTOBER 2006
OPERATION EXAMPLES
Example 1: Write to Data Buffer A Through Buffer D; Load DAC A Through DAC D Simultaneously
• 1st — Write to data buffer A:
•
•
•
A1
A0
LD1
LD0
DC
DAC Sel 1
DAC Sel 0
PD0
DB15
—
DB1
DB0
0
0
0
0
X
0
0
0
D15
—
D1
D0
2nd — Write to data buffer B:
A1
A0
LD1
LD0
DC
DAC Sel 1
DAC Sel 0
PD0
DB15
—
DB1
DB0
0
0
0
0
X
0
1
0
D15
—
D1
D0
3rd — Write to data buffer C:
A1
A0
LD1
LD0
DC
DAC Sel 1
DAC Sel 0
PD0
DB15
—
DB1
DB0
0
0
0
0
X
1
0
0
D15
—
D1
D0
4th — Write to data buffer D and simultaneously update all DACs:
A1
A0
LD1
LD0
DC
DAC Sel 1
DAC Sel 0
PD0
DB15
—
DB1
DB0
0
0
1
0
X
1
1
0
D15
—
D1
D0
The DAC A, DAC B, DAC C, and DAC D analog outputs simultaneously settle to the specified values upon
completion of the 4th write sequence. (The DAC voltages update simultaneously after the 24th SCLK falling
edge of the 4th write cycle).
Example 2: Load New Data to DAC A Through DAC D Sequentially
• 1st — Write to data buffer A and load DAC A: DAC A output settles to specified value upon completion:
•
•
•
A1
A0
LD1
LD0
DC
DAC Sel 1
DAC Sel 0
PD0
DB15
—
DB1
DB0
0
0
0
1
X
0
0
0
D15
—
D1
D0
2nd — Write to data buffer B and load DAC B: DAC B output settles to specified value upon completion:
A1
A0
LD1
LD0
DC
DAC Sel 1
DAC Sel 0
PD0
DB15
—
DB1
DB0
0
0
0
1
X
0
1
0
D15
—
D1
D0
3rd — Write to data buffer C and load DAC C: DAC C output settles to specified value upon completion:
A1
A0
LD1
LD0
DC
DAC Sel 1
DAC Sel 0
PD0
DB15
—
DB1
DB0
0
0
0
1
X
1
0
0
D15
—
D1
D0
4th — Write to data buffer D and load DAC D: DAC D output settles to specified value upon completion:
A1
A0
LD1
LD0
DC
DAC Sel 1
DAC Sel 0
PD0
DB15
—
DB1
DB0
0
0
0
1
X
1
1
0
D15
—
D1
D0
After completion of each write cycle, DAC analog output settles to the voltage specified.
Submit Documentation Feedback
19
DAC8554
www.ti.com
SLAS431B – JUNE 2005 – REVISED OCTOBER 2006
Example 3: Power-Down DAC A and DAC B to 1kΩ and Power-Down DAC C and DAC D to 100kΩ
Simultaneously
• Write power-down command to data buffer A: DAC A to 1kΩ.
•
•
•
A1
A0
LD1
LD0
DC
DAC Sel 1
DAC Sel 0
PD0
DB15
DB14
DB13
—
0
0
0
0
X
0
0
1
0
1
X
—
Write power-down command to data buffer B: DAC B to 1kΩ.
A1
A0
LD1
LD0
DC
DAC Sel 1
DAC Sel 0
PD0
DB15
DB14
DB13
—
0
0
0
0
X
0
1
1
0
1
X
—
Write power-down command to data buffer C: DAC C to 1kΩ.
A1
A0
LD1
LD0
DC
DAC Sel 1
DAC Sel 0
PD0
DB15
DB14
DB13
—
0
0
0
0
X
1
0
1
1
0
X
—
Write power-down command to data buffer D: DAC D to 100kΩ and simultaneously update all DACs.
A1
A0
LD1
LD0
DC
DAC Sel 1
DAC Sel 0
PD0
DB15
DB14
DB13
—
0
0
1
0
X
1
1
1
1
0
X
—
The DAC A, DAC B, DAC C, and DAC D analog outputs simultaneously power-down to each respective
specified mode upon completion of the 4th write sequence.
Example 4: Power-Down DAC A Through DAC D to High-Impedance Sequentially:
• Write power-down command to data buffer A and load DAC A: DAC A output = Hi-Z:
•
•
•
A1
A0
LD1
LD0
DC
DAC Sel 1
DAC Sel 0
PD0
DB15
DB14
DB13
—
0
0
0
1
X
0
0
1
1
1
X
—
Write power-down command to data buffer B and load DAC B: DAC B output = Hi-Z:
A1
A0
LD1
LD0
DC
DAC Sel 1
DAC Sel 0
PD0
DB15
DB14
DB13
—
0
0
0
1
X
0
1
1
1
1
x
—
Write power-down command to data buffer C and load DAC C: DAC C output = Hi-Z:
A1
A0
LD1
LD0
DC
DAC Sel 1
DAC Sel 0
PD0
DB15
DB14
DB13
—
0
0
0
1
X
1
0
1
1
1
X
—
Write power-down command to data buffer D and load DAC D: DAC D output = Hi-Z:
A1
A0
LD1
LD0
DC
DAC Sel 1
DAC Sel 0
PD0
DB15
DB14
DB13
—
0
0
0
1
X
1
1
1
1
1
X
—
The DAC A, DAC B, DAC C, and DAC D analog outputs sequentially power-down to high-impedance upon
completion of the 1st, 2nd, 3rd, and 4th write sequences, respectively.
20
Submit Documentation Feedback
DAC8554
www.ti.com
SLAS431B – JUNE 2005 – REVISED OCTOBER 2006
LDAC FUNCTIONALITY
The DAC8554 offers both a software and hardware
simultaneous update function. The DAC8554
double-buffered architecture has been designed so
that new data can be entered for each DAC without
disturbing the analog outputs. The software
simultaneous update capability is controlled by the
load 1 (LD1) and load 0 (LD0) control bits. By setting
load 1 = 1, all of the DAC registers will be updated
on the falling edge of the 24th clock signal. When the
new data has been entered into the device, all of the
DAC outputs can be updated simultaneously and
synchronously with the clock.
DAC8554 data updates are synchronized with the
falling edge of the 24th SCLK cycle, which follows a
falling edge of SYNC. For such synchronous
updates, the LDAC pin is not required and it must be
connected to GND permanently. The LDAC pin is
used as a positive edge triggered timing signal for
asynchronous DAC updates. Data buffers of all
channels must be loaded with desired data before
LDAC is triggered. After a low-to-high LDAC
transition, all DACs are simultaneously updated with
the contents of the corresponding data buffers. If the
contents of a data buffer are not changed by the
serial interface, the corresponding DAC output will
remain unchanged after the LDAC trigger.
ENABLE PIN
For normal operation, the enable pin must be tied to
a logic low. If the enable pin is tied high, the
DAC8554 stops listening to the serial port. This
feature can be useful for applications that share the
same serial port.
Submit Documentation Feedback
21
DAC8554
www.ti.com
SLAS431B – JUNE 2005 – REVISED OCTOBER 2006
DAC8554 to 68HC11 Interface
MICROPROCESSOR INTERFACING
DAC8554 to 8051 Interface
See Figure 50 for a serial interface between the
DAC8554 and a typical 8051-type microcontroller.
The setup for the interface is as follows: TXD of the
8051 drives SCLK of the DAC8554, while RXD
drives the serial data line of the device. The SYNC
signal is derived from a bit-programmable pin on the
port of the 8051. In this case, port line P3.3 is used.
When data are to be transmitted to the DAC8554,
P3.3 is taken LOW. The 8051 transmits data in 8-bit
bytes; thus, only eight falling clock edges occur in
the transmit cycle. To load data to the DAC, P3.3 is
left LOW after the first eight bits are transmitted, then
a second and third write cycle are initiated to
transmit the remaining data. P3.3 is taken HIGH
following the completion of the third write cycle. The
8051 outputs the serial data in a format that presents
the LSB first, while the DAC8554 requires its data
with the MSB as the first bit received. The 8051
transmit routine must therefore take this into account,
and mirror the data as needed.
80C51/80L51(1)
DAC8554
P3.3
SYNC
TXD
SCLK
RXD
DIN
(1) Additional pins omitted for clarity.
Figure 50. DAC8554 to 80C51/80L51 Interface
DAC8554 to Microwire Interface
Figure 51 shows an interface between the DAC8554
and any Microwire-compatible device. Serial data are
shifted out on the falling edge of the serial clock and
clocked into the DAC8554 on the rising edge of the
SK signal.
Figure 52 shows a serial interface between the
DAC8554 and the 68HC11 microcontroller. SCK of
the 68HC11 drives the SCLK of the DAC8554, while
the MOSI output drives the serial data line of the
DAC. The SYNC signal is derived from a port line
(PC7), similar to the 8051 diagram.
68HC11(1)
DAC8554
PC7
SYNC
SCK
SCLK
MOSI
DIN
(1) Additional pins omitted for clarity.
Figure 52. DAC8554 to 68HC11 Interface
The 68HC11 should be configured so that its CPOL
bit is '0' and its CPHA bit is '1'. This configuration
causes data appearing on the MOSI output to be
valid on the falling edge of SCLK. When data are
being transmitted to the DAC, the SYNC line is held
LOW (PC7). Serial data from the 68HC11 are
transmitted in 8-bit bytes with only eight falling clock
edges occurring in the transmit cycle. (Data are
transmitted MSB first.) In order to load data to the
DAC8554, PC7 is left LOW after the first eight bits
are transferred, then a second and third serial write
operation are performed to the DAC. PC7 is taken
HIGH at the end of this procedure.
DAC8554 to TMS320 DSP Interface
Figure 53 shows the connections between the
DAC8554 and a TMS320 digital signal processor
(DSP). A single DSP can control up to four
DAC8554s without any interface logic.
DAC8554
Positive Supply
AVDD
0.1mF
MicrowireTM
DAC8554
10mF
TMS320 DSP
CS
SYNC
FSX
SK
SCLK
DX
SO
DIN
CLKX
(1) Additional pins omitted for clarity.
SYNC
DIN
SCLK
VOUTA
Output A
VOUTD
Output D
VREFL
Microwire is a registered trademark of National Semiconductor.
Reference
Input
VREFH
0.1mF
1mF to 10mF
GND
Figure 51. DAC8554 to Microwire Interface
Figure 53. DAC8554 to TMS320 DSP
22
Submit Documentation Feedback
DAC8554
www.ti.com
SLAS431B – JUNE 2005 – REVISED OCTOBER 2006
APPLICATION INFORMATION
CURRENT CONSUMPTION
The DAC8554 typically consumes a maximum of
208µA at AVDD = 5V and 180µA at AVDD = 3V for
each active channel, including reference current
consumption. Additional current consumption can
occur at the digital inputs if VIH << IOVDD. For most
efficient power operation, CMOS logic levels are
recommended at the digital inputs to the DAC.
In power-down mode, typical current consumption is
175nA per channel. A delay time of 10ms to 20ms
after a power-down command is issued to the DAC
is typically sufficient for the power-down current to
drop below 10µA.
DRIVING RESISTIVE AND CAPACITIVE
LOADS
The DAC8554 output stage is capable of driving
loads of up to 1000pF while remaining stable. Within
the offset and gain error margins, the DAC8554 can
operate rail-to-rail when driving a capacitive load.
Resistive loads of 2kΩ can be driven by the
DAC8554 while achieving good load regulation.
When the outputs of the DAC are driven to the
positive rail under resistive loading, the PMOS
transistor of each Class-AB output stage can enter
into the linear region. When this scenario occurs, the
added IR voltage drop deteriorates the linearity
performance of the DAC. This deterioration only
occurs within approximately the top 100mV of the
DAC output voltage characteristic. Under resistive
loading conditions, good linearity is preserved as
long as the output voltage is at least 100mV below
the AVDD voltage.
CROSSTALK AND AC PERFORMANCE
The DAC8554 architecture uses separate resistor
strings for each DAC channel in order to achieve
ultra-low crosstalk performance. dc crosstalk seen at
one channel during a full-scale change on the
neighboring channel is typically less than 0.5LSBs.
The ac crosstalk measured (for a full-scale, 1kHz
sine wave output generated at one channel, and
measured at the remaining output channel) is
typically under –100dB.
In addition, the DAC8554 can achieve typical ac
performance of 96dB signal-to-noise ratio (SNR) and
85dB total harmonic distortion (THD), making the
DAC8554 a solid choice for applications requiring
high SNR at output frequencies at or below 10kHz.
OUTPUT VOLTAGE STABILITY
The DAC8554 exhibits excellent temperature stability
of 5ppm/°C typical output voltage drift over the
specified temperature range of the device. This
stability enables the output voltage of each channel
to stay within a ±25µV window for a ±1°C ambient
temperature change.
Good
power-supply
rejection
ratio
(PSRR)
performance reduces supply noise present on AVDD
from appearing at the outputs to well below 10µV-s.
Combined with good dc noise performance and true
16-bit differential linearity, the DAC8554 becomes a
perfect choice for closed-loop control applications.
SETTLING TIME AND OUTPUT GLITCH
PERFORMANCE
The DAC8554 settles to ±0.003% of its full-scale
range within 10µs, driving a 200pF 2kΩ load. For
good settling performance, the outputs should not
approach the top and bottom rails. Small signal
settling time is under 1µs, enabling data update rates
exceeding 1MSPS for small code changes.
Many applications are sensitive to undesired
transient signals such as glitch. The DAC8554 has a
proprietary, ultra-low glitch architecture addressing
such applications. Code-to-code glitches rarely
exceed 1mV and they last under 0.3µs. Typical glitch
energy is an outstanding 0.15nV-s. Theoretical
worst-case glitch should occur during a 256LSB step,
but it is so low, it cannot be detected.
DIFFERENTIAL AND INTEGRAL
NONLINEARITY
The DAC8554 uses precision thin film resistors to
achieve monotonicity and good linearity. Typical
linearity error is ±4LSBs, with a ±0.3mV error for a
5V range. Differential linearity is typically ±0.25LSBs,
with a ±19µV error for a consecutive code change.
Submit Documentation Feedback
23
DAC8554
www.ti.com
SLAS431B – JUNE 2005 – REVISED OCTOBER 2006
USING THE REF02 AS A POWER SUPPLY
FOR THE DAC8554
Due to the extremely low supply current required by
the DAC8554, a possible configuration is to use a
REF02 (+5V precision voltage reference) to supply
the required voltage to the DAC8554 supply input as
well as the reference input, as illustrated in
Figure 54. This is especially useful if the power
supply is quite noisy or if the system supply voltages
are at some value other than 5V. The REF02 will
output a steady supply voltage for the DAC8554. If
the REF02 is used, the current it needs to supply to
the DAC8554 is 0.85mA typical for AVDD = 5V. When
a DAC output is loaded, the REF02 also needs to
supply the current to the load. The total typical
current required (with a 5kΩ load on a given DAC
output) is:
BIPOLAR OPERATION USING THE DAC8554
The DAC8554 has been designed for single-supply
operation, but a bipolar output range is also possible
using the circuit in Figure 55. The circuit shown will
give an output voltage range of ±VREF. Rail-to-rail
operation at the amplifier output is achievable using
an amplifier such as the OPA703, as shown in
Figure 55.
The output voltage for any input code can be
calculated as follows:
ƪ
V OUTX + VREF
D Ǔ
ǒ65536
ǒR R) R Ǔ * V
1
2
1
where D represents the input code in decimal
(0–65535).
With VREF = 5V, R1 = R2 = 10kΩ.
0.85mA + (5V/5kΩ) = 1.085mA
ǒ
Ǔ
V OUTX + 10 D * 5V
65536
+15V
Using this example, an output voltage range of ±5V
with 0000h corresponding to a –5V output and
FFFFh corresponding to a 5V output can be
achieved. Similarly, using VREF = 2.5V, a ±2.5V
output voltage range can be achieved.
+5V
REF02
AIDD + IREF
R2
10kW
+5V
Three-Wire
Serial
Interface
ǒRR Ǔƫ
2
REF
1
SYNC
AVDD, VREF
SCLK
DAC8554
VOUT = 0V to 5V
+6V
R1
10kW
DIN
OPA703
AVDD, VREF
10mF
0.1mF
±5V
VOUTX
DAC8554
-6V
Figure 54. REF02 as a Power Supply to the
DAC8554
(Other pins omitted for clarity.)
Figure 55. Bipolar Operation With the DAC8554
24
Submit Documentation Feedback
DAC8554
www.ti.com
SLAS431B – JUNE 2005 – REVISED OCTOBER 2006
LAYOUT
A precision analog component requires careful
layout,
adequate
bypassing,
and
clean,
well-regulated power supplies.
The DAC8554 offers single-supply operation, and it
will often be used in close proximity with digital logic,
microcontrollers, microprocessors, and digital signal
processors. The more digital logic present in the
design and the higher the switching speed, the more
difficult it is to keep digital noise from appearing at
the output.
Due to the single ground pin of the DAC8554, all
return currents, including digital and analog return
currents for the DAC, must flow through a single
point. Ideally, GND would be connected directly to an
analog ground plane. This plane would be separate
from the ground connection for the digital
components until they were connected at the
power-entry point of the system.
The power applied to AVDD should be well-regulated
and low-noise. Switching power supplies and dc/dc
converters often have high-frequency glitches or
spikes riding on the output voltage. In addition, digital
components can create similar high-frequency
spikes. This noise can easily couple into the DAC
output voltage through various paths between the
power connections and analog output.
As with the GND connection, AVDD should be
connected to a positive power-supply plane or trace
that is separate from the connection for digital logic
until they are connected at the power-entry point. In
addition, a 1µF to 10µF capacitor in parallel with a
0.1µF bypass capacitor is strongly recommended. In
some situations, additional bypassing may be
required, such as a 100µF electrolytic capacitor or
even a Pi filter made up of inductors and
capacitors—all designed to essentially low-pass filter
the supply, removing the high-frequency noise.
Up to four DAC8554 devices can be used on a single
SPI bus without any glue logic to create a high
channel count solution. Special attention is required
to avoid digital signal integrity problems when using
multiple DAC8554s on the same SPI bus. Signal
integrity of SYNC, SCLK, and DIN lines will not be an
issue as long as the rise times of these digital signals
are longer than six times the propagation delay
between any two DAC8554 devices. Propagation
speed is approximately six inches/ns on standard
printed circuit boards (PCBs). Therefore, if the digital
signal rise time is 1ns, the distance between any two
DAC8554s has to be further apart on the PCB, and
the signal rise times should be reduced by placing
series resistors at the drivers for SYNC, SCLK, and
DIN lines. If the largest distance between any two
DAC8554s must be six inches, the rise time should
be reduced to 6ns with an RC network formed by the
series resistor at the digital driver and the total trace
and input capacitance on the PCB.
Submit Documentation Feedback
25
PACKAGE OPTION ADDENDUM
www.ti.com
24-Aug-2018
PACKAGING INFORMATION
Orderable Device
Status
(1)
Package Type Package Pins Package
Drawing
Qty
Eco Plan
Lead/Ball Finish
MSL Peak Temp
(2)
(6)
(3)
Op Temp (°C)
Device Marking
(4/5)
DAC8554IPW
ACTIVE
TSSOP
PW
16
90
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 105
D8554
DAC8554IPWG4
ACTIVE
TSSOP
PW
16
90
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 105
D8554
DAC8554IPWR
ACTIVE
TSSOP
PW
16
2000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 105
D8554
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may
reference these types of products as "Pb-Free".
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based
flame retardants must also meet the <=1000ppm threshold requirement.
(3)
MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
(4)
There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
(5)
Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation
of the previous line and the two combined represent the entire Device Marking for that device.
(6)
Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish
value exceeds the maximum column width.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.
Addendum-Page 1
Samples
PACKAGE OPTION ADDENDUM
www.ti.com
24-Aug-2018
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
Addendum-Page 2
PACKAGE MATERIALS INFORMATION
www.ti.com
26-Feb-2019
TAPE AND REEL INFORMATION
*All dimensions are nominal
Device
DAC8554IPWR
Package Package Pins
Type Drawing
TSSOP
PW
16
SPQ
Reel
Reel
A0
Diameter Width (mm)
(mm) W1 (mm)
2000
330.0
12.4
Pack Materials-Page 1
6.9
B0
(mm)
K0
(mm)
P1
(mm)
5.6
1.6
8.0
W
Pin1
(mm) Quadrant
12.0
Q1
PACKAGE MATERIALS INFORMATION
www.ti.com
26-Feb-2019
*All dimensions are nominal
Device
Package Type
Package Drawing
Pins
SPQ
Length (mm)
Width (mm)
Height (mm)
DAC8554IPWR
TSSOP
PW
16
2000
350.0
350.0
43.0
Pack Materials-Page 2
PACKAGE OUTLINE
PW0016A
TSSOP - 1.2 mm max height
SCALE 2.500
SMALL OUTLINE PACKAGE
SEATING
PLANE
C
6.6
TYP
6.2
A
0.1 C
PIN 1 INDEX AREA
14X 0.65
16
1
2X
5.1
4.9
NOTE 3
4.55
8
9
B
0.30
0.19
0.1
C A B
16X
4.5
4.3
NOTE 4
1.2 MAX
(0.15) TYP
SEE DETAIL A
0.25
GAGE PLANE
0.15
0.05
0 -8
0.75
0.50
DETAIL A
A 20
TYPICAL
4220204/A 02/2017
NOTES:
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing
per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
exceed 0.15 mm per side.
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
5. Reference JEDEC registration MO-153.
www.ti.com
EXAMPLE BOARD LAYOUT
PW0016A
TSSOP - 1.2 mm max height
SMALL OUTLINE PACKAGE
SYMM
16X (1.5)
(R0.05) TYP
1
16
16X (0.45)
SYMM
14X (0.65)
8
9
(5.8)
LAND PATTERN EXAMPLE
EXPOSED METAL SHOWN
SCALE: 10X
SOLDER MASK
OPENING
METAL UNDER
SOLDER MASK
METAL
SOLDER MASK
OPENING
EXPOSED METAL
EXPOSED METAL
0.05 MAX
ALL AROUND
NON-SOLDER MASK
DEFINED
(PREFERRED)
0.05 MIN
ALL AROUND
SOLDER MASK
DEFINED
SOLDER MASK DETAILS
15.000
4220204/A 02/2017
NOTES: (continued)
6. Publication IPC-7351 may have alternate designs.
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.
www.ti.com
EXAMPLE STENCIL DESIGN
PW0016A
TSSOP - 1.2 mm max height
SMALL OUTLINE PACKAGE
16X (1.5)
SYMM
(R0.05) TYP
1
16X (0.45)
16
SYMM
14X (0.65)
8
9
(5.8)
SOLDER PASTE EXAMPLE
BASED ON 0.125 mm THICK STENCIL
SCALE: 10X
4220204/A 02/2017
NOTES: (continued)
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate
design recommendations.
9. Board assembly site may have different recommendations for stencil design.
www.ti.com
IMPORTANT NOTICE AND DISCLAIMER
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you
permission to use these resources only for development of an application that uses the TI products described in the resource. Other
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third
party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims,
damages, costs, losses, and liabilities arising out of your use of these resources.
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on
ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable
warranties or warranty disclaimers for TI products.
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2019, Texas Instruments Incorporated
Was this manual useful for you? yes no
Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Download PDF

advertising