Texas Instruments | 10-MHz to 66-MHz, 10:1-LVDS Serializer/Deserializer (Rev. E) | Datasheet | Texas Instruments 10-MHz to 66-MHz, 10:1-LVDS Serializer/Deserializer (Rev. E) Datasheet

Texas Instruments 10-MHz to 66-MHz, 10:1-LVDS Serializer/Deserializer (Rev. E) Datasheet
SN65LV1023A
SN65LV1224B
www.ti.com
SLLS621E – SEPTEMBER 2004 – REVISED DECEMBER 2009
10-MHz To 66-MHz, 10:1 LVDS SERIALIZER/DESERIALIZER
Check for Samples: SN65LV1023A SN65LV1224B
FEATURES
1
APPLICATIONS
AVCC
DVCC
DVCC
DIN1
32 31 30 29 28 27 26 25
24
1
DIN2
2
23
PWRDN
DIN3
3
22
AGND
DIN4
4
21
DO+
DIN5
5
20
DO−
DIN6
6
19
AGND
DIN7
7
18
DEN
DIN8
8
17
9 10 11 12 13 14 15 16
AGND
AGND
AVCC
DGND
RHB Package
SN65LV1023A
Serializer
(Top View)
DGND
DVCC
DVCC
AVCC
AGND
PWRDN
AGND
DO+
DO−
AGND
DEN
AGND
AVCC
DGND
DGND
DVCC
1
28
2
27
3
26
4
25
5
24
6
23
7 DB Package 22
SN65LV1023A
8
21
Serializer
9
20
10
19
11
18
12
17
13
16
14
15
DIN9
SYNC1
SYNC2
DIN0
DIN1
DIN2
DIN3
DIN4
DIN5
DIN6
DIN7
DIN8
DIN9
TCLK_R/F
TCLK
DVCC
The SN65LV1023A and SN65LV1224B are
characterized for operation over ambient air
temperature of –40°C to 85°C.
Wireless Base Station
Backplane Interconnect
DSLAM
DGND
•
•
•
The device can be entered into a power-down state
when no data transfer is required. Alternatively, a
mode is available to place the output pins in the
high-impedance state without losing PLL lock.
SYNC1
•
•
DGND
•
Upon power up, the chipset link can be initialized via
a synchronization mode with internally generated
SYNC patterns or the deserializer can be allowed to
synchronize to random data. By using the
synchronization mode, the deserializer establishes
lock within specified, shorter time parameters.
SYNC2
•
•
•
•
The SN65LV1023A serializer and SN65LV1224B
deserializer comprise a 10-bit serdes chipset
designed to transmit and receive serial data over
LVDS differential backplanes at equivalent parallel
word rates from 10 MHz to 66 MHz. Including
overhead, this translates into a serial data rate
between 120-Mbps and 792-Mbps payload encoded
throughput.
TCLK
•
DESCRIPTION
DIN0
•
100-Mbps to 660-Mbps Serial LVDS Data
Payload Bandwidth at 10-MHz to 66-MHz
System Clock
Pin-Compatible Superset of
DS92LV1023/DS92LV1224
Chipset (Serializer/Deserializer) Power
Consumption <450 mW (Typ) at 66 MHz
Synchronization Mode for Faster Lock
Lock Indicator
No External Components Required for PLL
28-Pin SSOP and Space Saving 5 × 5 mm QFN
Packages Available
Industrial Temperature Qualified,
TA = −40°C to 85°C
Programmable Edge Trigger on Clock
Flow-Through Pinout for Easy PCB Layout
TCLK_R/F
•
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of the Texas
Instruments standard warranty. Production processing does not
necessarily include testing of all parameters.
Copyright © 2004–2009, Texas Instruments Incorporated
SN65LV1023A
SN65LV1224B
SLLS621E – SEPTEMBER 2004 – REVISED DECEMBER 2009
www.ti.com
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam
during storage or handling to prevent electrostatic damage to the MOS gates.
BLOCK DIAGRAMS
SN65LV1023A
SN65LV1224B
TCLK
(10 MHz to
66 MHz)
PLL
Timing /
Control
SYNC1
SYNC2
2
Submit Documentation Feedback
Y+
A−
Y−
DEN
PLL
Clock
Recovery
10
Output Latch
A+
Serial-to-Parallel
TCLK_R/F
Input Latch
DIN
Parallel-to-Serial
LVDS
10
Timing /
Control
DOUT
REFCLK
REN
LOCK
RCLK_R/F
RCLK
(10 MHz to
66 MHz)
Copyright © 2004–2009, Texas Instruments Incorporated
Product Folder Link(s): SN65LV1023A SN65LV1224B
SN65LV1023A
SN65LV1224B
www.ti.com
SLLS621E – SEPTEMBER 2004 – REVISED DECEMBER 2009
FUNCTIONAL DESCRIPTION
The SN65LV1023A and SN65LV1224B are a 10-bit serializer/deserializer chipset designed to transmit data over
differential backplanes or unshielded twisted pair (UTP) at clock speeds from 10 MHz to 66 MHz. The chipset
has five states of operation: initialization mode, synchronization mode, data transmission mode, power-down
mode, and high-impedance mode. The following sections describe each state of operation.
INITIALIZATION MODE
Initialization of both devices must occur before data transmission can commence. Initialization refers to
synchronization of the serializer and deserializer PLLs to local clocks.
When VCC is applied to the serializer and/or deserializer, the respective outputs enter the high-impedance state,
while on-chip power-on circuitry disables internal circuitry. When VCC reaches 2.45 V, the PLL in each device
begins locking to a local clock. For the serializer, the local clock is the transmit clock (TCLK) provided by an
external source. For the deserializer, a local clock must be applied to the REFCLK pin. The serializer outputs
remain in the high-impedance state, while the PLL locks to the TCLK.
SYNCHRONIZATION MODE
The deserializer PLL must synchronize to the serializer in order to receive valid data. Synchronization can be
accomplished in one of two ways:
• Rapid Synchronization: The serializer has the capability to send specific SYNC patterns consisting of six
ones and six zeros switching at the input clock rate. The transmission of SYNC patterns enables the
deserializer to lock to the serializer signal within a deterministic time frame. This transmission of SYNC
patterns is selected via the SYNC1 and SYNC2 inputs on the serializer. Upon receiving valid SYNC1 or
SYNC2 pulse (wider than 6 clock cycles), 1026 cycles of SYNC pattern are sent.
When the deserializer detects edge transitions at the LVDS input, it attempts to lock to the embedded clock
information. The deserializer LOCK output remains high while its PLL locks to the incoming data or SYNC
patterns present on the serial input. When the deserializer locks to the LVDS data, the LOCK output goes
low. When LOCK is low, the deserializer outputs represent incoming LVDS data. One approach is to tie the
deserializer LOCK output directly to SYNC1 or SYNC2.
• Random-Lock Synchronization: The deserializer can attain lock to a data stream without requiring the
serializer to send special SYNC patterns. This allows the SN65LV1224B to operate in open-loop applications.
Equally important is the deserializer’s ability to support hot insertion into a running backplane. In the
open-loop or hot-insertion case, it is assumed the data stream is essentially random. Therefore, because lock
time varies due to data stream characteristics, the exact lock time cannot be predicted. The primary constraint
on the random lock time is the initial phase relation between the incoming data and the REFCLK when the
deserializer powers up.
The data contained in the data stream can also affect lock time. If a specific pattern is repetitive, the deserializer
could enter false lock—falsely recognizing the data pattern as the start/stop bits. This is referred to as repetitive
multitransition (RMT); see Figure 1 for RMT examples. This occurs when more than one low-high transition takes
place per clock cycle over multiple cycles. In the worst case, the deserializer could become locked to the data
pattern rather than the clock. Circuitry within the deserializer can detect that the possibility of false lock exists.
Upon detection, the circuitry prevents the LOCK output from becoming active until the potential false lock pattern
changes. Notice that the RMT pattern only affects the deserializer lock time, and once the deserializer is in lock,
the RMT pattern does not affect the deserializer state as long as the same data boundary happens each cycle.
The deserializer does not go into lock until it finds a unique four consecutive cycles of data boundary (stop/start
bits) at the same position.
The deserializer stays in lock until it cannot detect the same data boundary (stop/start bits) for four consecutive
cycles. Then the deserializer goes out of lock and hunts for the new data boundary (stop/start bits). In the event
of loss of synchronization, the LOCK pin output goes high and the outputs (including RCLK) enter a
high-impedance state. The user’s system should monitor the LOCK pin in order to detect a loss of
synchronization. Upon detection of loss of lock, sending sync patterns for resynchronization is desirable if
reestablishing lock within a specific time is critical. However, the deserializer can lock to random data as
previously noted.
Copyright © 2004–2009, Texas Instruments Incorporated
Product Folder Link(s): SN65LV1023A SN65LV1224B
Submit Documentation Feedback
3
SN65LV1023A
SN65LV1224B
SLLS621E – SEPTEMBER 2004 – REVISED DECEMBER 2009
www.ti.com
DIN0 Held Low and DIN1 Held High
Stop
Bit
Start
Bit
DIN0
Stop
Bit
Start
Bit
Stop
Bit
Start
Bit
Stop
Bit
Start
Bit
DIN1
DIN4 Held Low and DIN5 Held High
Stop
Bit
Start
Bit
DIN4
DIN5
DIN8 Held Low and DIN9 Held High
Stop
Bit
Start
Bit
DIN8
DIN9
Figure 1. RMT Pattern Examples
DATA TRANSMISSION MODE
After initialization and synchronization, the serializer accepts parallel data from inputs DIN0–DIN9. The serializer
uses the TCLK input to latch the incoming data. The TCLK_R/F pin selects which edge the serializer uses to
strobe incoming data. If either of the SYNC inputs is high for six TCLK cycles, the data at DIN0−DIN9 is ignored
regardless of the clock edge selected and 1026 cycles of SYNC pattern are sent.
After determining which clock edge to use, a start and stop bit, appended internally, frames the data bits in the
register. The start bit is always high and the stop bit is always low. The start and stop bits function as the
embedded clock bits in the serial stream.
The serializer transmits serialized data and appended clock bits (10+2 bits) from the serial data output (DO±) at
12 times the TCLK frequency. For example, if TCLK is 66 MHz, the serial rate is 66 × 12 = 792 Mbps. Because
only 10 bits are input data, the useful data rate is 10 times the TCLK frequency. For instance, if TCLK = 66 MHz,
the useful data rate is 66 × 10 = 660 Mbps. The data source, which provides TCLK, must be in the range of 10
MHz to 66 MHz.
The serializer outputs (DO±) can drive point-to-point connections or limited multipoint or multidrop backplanes.
The outputs transmit data when the enable pin (DEN) is high, PWRDN = high, and SYNC1 and SYNC2 are low.
When DEN is driven low, the serializer output pins enter the high-impedance state.
4
Submit Documentation Feedback
Copyright © 2004–2009, Texas Instruments Incorporated
Product Folder Link(s): SN65LV1023A SN65LV1224B
SN65LV1023A
SN65LV1224B
www.ti.com
SLLS621E – SEPTEMBER 2004 – REVISED DECEMBER 2009
Once the deserializer has synchronized to the serializer, the LOCK pin transitions low. The deserializer locks to
the embedded clock and uses it to recover the serialized data. ROUT data is valid when LOCK is low, otherwise
ROUT0–ROUT9 is invalid. The ROUT0−ROUT9 data is strobed out by RCLK. The specific RCLK edge polarity to be
used is selected by the RCLK_R/F input. The ROUT0–ROUT9, LOCK and RCLK outputs can drive a maximum of
three CMOS input gates (15-pF load. total for all three) with a 66-MHz clock.
POWER DOWN
When no data transfer is required, the power-down mode can be used. The serializer and deserializer use the
power-down state, a low-power sleep mode, to reduce power consumption. The deserializer enters power down
when you drive PWRDN and REN low. The serializer enters power down when you drive PWRDN low. In power
down, the PLL stops and the outputs enter a high-impedance state, which disables load current and reduces
supply current to the milliampere range. To exit power down, you must drive the PWRDN pin high.
Before valid data exchanges between the serializer and deserializer can resume, you must reinitialize and
resynchronize the devices to each other. Initialization of the serializer takes 1026 TCLK cycles. The deserializer
initialize and drives LOCK high until lock to the LVDS clock occurs.
HIGH-IMPEDANCE MODE
The serializer enters the high-impedance mode when the DEN pin is driven low. This puts both driver output pins
(DO+ and DO−) into a high-impedance state. When you drive DEN high, the serializer returns to the previous
state, as long as all other control pins remain static (SYNC1, SYNC2, PWRDN, TCLK_R/F). When the REN pin
is driven low, the deserializer enters high-impedance mode. Consequently, the receiver output pins
(ROUT0–ROUT9) and RCLK are placed into the high-impedance state. The LOCK output remains active, reflecting
the state of the PLL.
Table 1. Deserializer Truth Table
INPUTS
(1)
(2)
(3)
OUTPUTS
ROUT(0:9)
(1)
LOCK
(2)
RCLK (3)
PWRDN
REB
H
H
Z
H
Z
H
H
Active
L
Active
L
X
Z
Z
Z
H
L
Z
Active
Z
(1)
ROUT and RCLK are 3-stated when LOCK is asserted high.
LOCK output reflects the state of the deserializer with regard to the selected data stream.
RCLK active indicates the RCLK is running if the deserializer is locked. The timing of RCLK with respect to ROUT is determined by
RCLK_R/F.
FAILSAFE BIASING FOR THE SN65LV1224B
The SN65LV1224B has an input threshold sensitivity of ±50 mV. This allows for greater differential noise margin
in the SN65LV1224B. However, in cases where the receiver input is not being actively driven, the increased
sensitivity of the SN65LV1224B can pickup noise as a signal and cause unintentional locking. This may occur
when the input cable is disconnected. The SN65LV1224B has an on-chip fail-safe circuit that drives the serial
input and LOCK signal high. The response time of the fail-safe circuit depends on interconnect characteristics.
Copyright © 2004–2009, Texas Instruments Incorporated
Product Folder Link(s): SN65LV1023A SN65LV1224B
Submit Documentation Feedback
5
SN65LV1023A
SN65LV1224B
SLLS621E – SEPTEMBER 2004 – REVISED DECEMBER 2009
www.ti.com
PIN FUNCTIONS
PIN
DB PACKAGE
I/O
RHB PACKAGE
DESCRIPTION
SERIALIZER
18, 20, 23, 25
17, 19, 22, 24
AGND
Analog circuit ground (PLL and analog circuits)
17, 26
16, 25
AVCC
Analog circuit power supply (PLL and analog circuits)
19
18
DEN
LVTTL logic input. Low puts the LVDS serial output into the high-impedance state.
High enables serial data output.
15, 16
12, 13, 14, 15
DGND
3−12
32, 1−9
DIN0 − DIN9
21
20
DO−
Inverting LVDS differential output
Digital circuit ground
Parallel LVTTL data inputs
22
21
DO+
Noninverting LVDS differential output
27, 28
26, 27, 28, 29
DVCC
Digital circuit power supply
24
23
PWRDN
LVTTL logic input. Asserting this pin low turns off the PLL and places the outputs
into the high-impedance state, putting the device into a low-power mode.
LVTTL logic inputs SYNC1 and SYNC2 are ORed together. When at least one of
the two pins is asserted high for 6 cycles of TCLK, the serializer initiates
transmission of a minimum 1026 SYNC patterns. If after completion of the
transmission of 1026 patterns SYNC continues to be asserted, then the
transmission continues until SYNC is driven low and if the time SYNC holds > 6
cycles, another 1026 SYNC pattern transmission initiates.
1, 2
30, 31
SYNC1,
SYNC2
13
10
TCLK_R/F
14
11
TCLK
LVTTL-level reference clock input. The SN65LV1023A accepts a 10-MHz to
66-MHz clock. TCLK strobes parallel data into the input latch and provides a
reference frequency to the PLL.
1, 12, 13
10, 11, 28, 29, 30
AGND
Analog circuit ground (PLL and analog circuits)
4, 11
1, 8, 9
AVCC
Analog circuit power supply (PLL and analog circuits)
14, 20, 22
12, 13, 19, 21
DGND
Digital circuit ground
21, 23
20, 22
DVCC
Digital circuit power supply
10
7
LOCK
LVTTL level output. LOCK goes low when the deserializer PLL locks onto the
embedded clock edge.
7
4
PWRDN
2
31
RCLK_R/F
9
6
RCLK
3
32
REFCLK
LVTTL logic input. Use this pin to supply a REFCLK signal for the internal PLL
frequency.
8
5
REN
LVTTL logic input. Low places ROUT0−ROUT9 and RCLK in the high-impedance
state.
5
2
RI+
Serial data input. Noninverting LVDS differential input
6
3
RI–
Serial data input. Inverting LVDS differential input
28−24, 19−15
27−23, 18−14
ROUT0−ROUT9
LVTTL logic input. Low selects a TCLK falling-edge data strobe; high selects a
TCLK rising-edge data strobe.
DESERIALIZER
6
Submit Documentation Feedback
LVTTL logic input. Asserting this pin low turns off the PLL and places outputs into a
high-impedance state, putting the device into a low-power mode. To initiate power
down, this pin is held low for a minimum of 16 ns. As long as PWRDN is held low,
the device is in the power down state.
LVTTL logic input. Low selects an RCLK falling-edge data strobe; high selects an
RCLK rising-edge data strobe.
LVTTL level output recovered clock. Use RCLK to strobe ROUTx.
Parallel LVTTL data outputs
Copyright © 2004–2009, Texas Instruments Incorporated
Product Folder Link(s): SN65LV1023A SN65LV1224B
SN65LV1023A
SN65LV1224B
www.ti.com
SLLS621E – SEPTEMBER 2004 – REVISED DECEMBER 2009
ABSOLUTE MAXIMUM RATINGS
over operating free-air temperature range (unless otherwise noted) (1)
UNIT
−0.3 V to 4 V
VCC to GND
LVTTL input voltage
−0.3 V to (VCC + 0.3 V)
LVTTL output voltage
−0.3 V to (VCC + 0.3 V)
LVDS receiver input voltage
−0.3 V to 3.9 V
LVDS driver output voltage
−0.3 V to 3.9 V
LVDS output short circuit duration
Electrostatic discharge:
10 ms
HBM
up to 6 kV
MM
up to 200 V
Junction temperature
150°C
−65°C to 150°C
Storage temperature
DB package maximum package
power dissipation
TA = 25°C
1.27 W
RHB package maximum package TA = 25°C
power dissipation
2.85 W
DB package derating
10.3 mW/°C above 25°C
RHB package derating
23.6 mW/°C above 25°C
(1)
Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings
only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating
conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
RECOMMENDED OPERATING CONDITIONS
over operating free-air temperature range (unless otherwise noted)
VCC
(1)
MIN
NOM
MAX
Supply voltage
3
3.3
3.6
V
Receiver input voltage range
0
2.4
V
ID
2
ǒ Ǔ
V
V
VCM
Receiver input common mode range
V
2.4 *
Supply noise voltage
TA
(1)
ID
2
100
Operating free-air temperature
–40
UNIT
mVPP
25
°C
By design, DVCC and AVCC are separated internally and does not matter what the difference is for |DVCC−AVCC|, as long as both are
within 3 V to 3.6 V.
Copyright © 2004–2009, Texas Instruments Incorporated
Product Folder Link(s): SN65LV1023A SN65LV1224B
Submit Documentation Feedback
7
SN65LV1023A
SN65LV1224B
SLLS621E – SEPTEMBER 2004 – REVISED DECEMBER 2009
www.ti.com
ELECTRICAL CHARACTERISTICS
over recommended operating supply and temperature ranges (unless otherwise specified)
PARAMETER
TEST CONDITIONS
MIN
TYP
MAX
UNIT
SERIALIZER LVCMOS/LVTTL DC SPECIFICATIONS (1)
VIH
High-level input voltage
2
VCC
V
VIL
Low-level input voltage
GND
0.8
V
VCL
Input clamp voltage
IIN
Input current,
ICL = −18 mA
(2)
VIN = 0 V or 3.6 V
–200
-0.86
–1.5
V
±100
200
μA
DESERIALIZER LVCMOS/LVTTL DC SPECIFICATIONS (3)
VIH
High-level input voltage
2
VCC
V
VIL
Low-level input voltage
GND
0.8
V
VCL
Input clamp voltage
ICL = −18 mA
–1.5
V
IIN
Input current (pull-up and
pull-down resistors on inputs)
VIN = 0 V or 3.6 V
200
μA
VOH
High-level output voltage
IOH = −5 mA
2.2
3
VCC
V
VOL
Low-level output voltage
IOL = 5 mA
GND
0.25
0.5
V
IOS
Output short-circuit current
VOUT = 0 V
–15
–47
–85
mA
IOZ
High-impedance output current
PWRDN or REN = 0.8 V, VOUT = 0 V or VCC
–10
±1
10
μA
350
450
-0.62
–200
SERIALIZER LVDS DC SPECIFICATIONS (Apply to Pins DO+ and DO−)
VOD
Output differential voltage
(DO+)–(DO−)
ΔVOD
Output differential voltage
unbalance
VOS
Offset voltage
ΔVOS
Offset voltage unbalance
IOS
Output short circuit current
D0 = 0 V, DINx = high,
PWRDN and DEN = 2.4 V
IOZ
High-impedance output current
PWRDN or DEN = 0.8 V,
DO = 0 V or VCC
–10
IOX
Power-off output current
VCC = 0 V, DO = 0 V or 3.6 V
-20
CO
Output single-ended capacitance
RL = 27 Ω, See Figure 2
mV
35
1.1
mV
1.2
1.3
V
4.8
35
mV
-10
-90
mA
±1
10
μA
±1
25
μA
1±20%
pF
50
mV
DESERIALIZER LVDS DC SPECIFICATIONS (Apply to Pins RI+ and RI−)
VTH
Differential threshold high voltage
VTL
Differential threshold low voltage
IIN
Input current
CI
Input single-ended capacitance
VCM = 1.1 V
–50
mV
VIN = 2.4 V, VCC = 3.6 V or 0 V
–10
±1
15
VIN = 0 V, VCC = 3.6 V or 0 V
–10
±0.05
10
0.5±20%
μA
pF
SERIALIZER SUPPLY CURRENT (Applies to Pins DVCC and AVCC)
ICCD
Serializer supply current worst
case
RL = 27 Ω, See Figure 5
ICCXD
Serializer supply current
PWRDN = 0.8 V
f = 10 MHz
20
25
f = 66 MHz
55
70
200
500
f = 10 MHz
15
35
f = 66 MHz
80
95
0.36
1
mA
μA
DESERIALIZER SUPPLY CURRENT (applies to pins DVCC and AVCC)
ICCR
Deserializer supply current, worst
case
CL = 15 pF, See Figure 5
ICCXR
Deserializer supply current, power
down
PWRDN = 0.8 V, REN = 0.8 V
(1)
(2)
(3)
8
mA
mA
Apply to DIN0−DIN9, TCLK, PWRDN, TCLK_R/F, SYNC1, SYNC2, and DEN
High IIN values are due to pullup and pulldown resistors on the inputs.
Apply to pins PWRDN, RCLK_R/F, REN, and REFCLK = inputs; apply to pins ROUTx, RCLK, and LOCK = outputs
Submit Documentation Feedback
Copyright © 2004–2009, Texas Instruments Incorporated
Product Folder Link(s): SN65LV1023A SN65LV1224B
SN65LV1023A
SN65LV1224B
www.ti.com
SLLS621E – SEPTEMBER 2004 – REVISED DECEMBER 2009
1000
900
800
VOD
VOD IN - mV
700
600
500
400
300
200
100
0
0
20
40
60
80
100
120
140
Termination (RL) - W
Figure 2. Typical VOD Curve
SERIALIZER TIMING REQUIREMENTS FOR TCLK
over recommended operating supply and temperature ranges (unless otherwise specified)
PARAMETER
MIN
TYP
MAX
UNIT
15.15
T
100
ns
Transmit clock high time
0.4T
0.5T
0.6T
ns
tTCIL
Transmit clock low time
0.4T
0.5T
0.6T
ns
tt(CLK)
TCLK input transition time
3
6
tJIT
TCLK input jitter
tTCP
Transmit clock period
tTCIH
TEST CONDITIONS
See Figure 19
Frequency tolerance
-100
Copyright © 2004–2009, Texas Instruments Incorporated
Product Folder Link(s): SN65LV1023A SN65LV1224B
ns
150
ps (RMS)
+100
ppm
Submit Documentation Feedback
9
SN65LV1023A
SN65LV1224B
SLLS621E – SEPTEMBER 2004 – REVISED DECEMBER 2009
www.ti.com
SERIALIZER SWITCHING CHARACTERISTICS
over recommended operating supply and temperature ranges (unless otherwise specified)
PARAMETER
TEST CONDITIONS
tTLH(L)
LVDS low-to-high transition time
tLTHL(L)
LVDS high-to-low transition time
tsu(DI)
DIN0−DIN9 setup to TCLK
tsu(DI)
DIN0−DIN9 hold from TCLK
td(HZ)
DO± high-to-high impedance state
delay
td(LZ)
DO± low-to-high impedance state
delay
td(ZH)
DO± high-to-high impedance
state-to-high delay
td(ZL)
DO± high-to-high impedance
state-to-low delay
tw(SPW)
SYNC pulse duration
t(PLD)
Serializer PLL lock time
td(S)
Serializer delay
MIN
RL = 27 Ω, CL = 10 pF to GND, See
Figure 6
tDJIT
Deterministic jitter
RL = 27 Ω, CL = 10 pF to GND
tRJIT
Random jitter
RL = 27 Ω, CL = 10 pF to GND
0.4
ns
0.25
0.4
ns
ns
2.5
5
2.5
5
5
10
6.5
10
6×tTCP
ns
ns
1026×tTCP
tTCP+1
UNIT
ns
4
RL = 27 Ω, CL = 10 pF to GND, See
Figure 10
See Figure 13
MAX
0.2
0.5
See Figure 9
See Figure 12
TYP
ns
tTCP+2
tTCP+3
230
150
10
19
ns
ps
ps (RMS)
DESERIALIZER TIMING REQUIREMENTS FOR REFCLK
over recommended operating supply and temperature ranges (unless otherwise specified)
PARAMETER
tRFCP
REFCLK period
tRFDC
REFCLK duty cycle
tt(RF)
REFCLK transition time
Frequency tolerance
10
Submit Documentation Feedback
TEST CONDITIONS
MIN
TYP
MAX
UNIT
15.15
T
100
ns
30%
50%
70%
3
-100
6
+100
ns
ppm
Copyright © 2004–2009, Texas Instruments Incorporated
Product Folder Link(s): SN65LV1023A SN65LV1224B
SN65LV1023A
SN65LV1224B
www.ti.com
SLLS621E – SEPTEMBER 2004 – REVISED DECEMBER 2009
DESERIALIZER SWITCHING CHARACTERISTICS
over recommended operating supply and temperature ranges (unless otherwise specified)
PARAMETER
t(RCP)
Receiver out clock period
tTLH(C)
CMOS/TTL low-to-high
transition time
tTHL(C)
CMOS/TTL high-to-low
transition time
td(D)
Deserializer delay, See
Figure 14
t(ROS)
TEST
CONDITIONS
t(RCP) = t(TCP), See
Figure 13
CL = 15 pF, CL =
15 pF, See
Figure 7
Room temperature,
3.3 V
ROUTx data valid before RCLK
See Figure 15
PIN/FREQ
RCLK
MIN
TYP
15.15
ROUT0−ROUT9
LOCK, RCLK
MAX
UNIT
100
ns
1.2
2.5
1.1
2.5
ns
10 MHz
1.75×t(RCP)
+4.2
1.75×t(RCP)
+12.6
ns
66 MHz
1.75×t(RCP)
+7.4
1.75×t(RCP)
+9.7
ns
RCLK 10 MHz
0.4×t(RCP)
RCLK 66 MHz
0.4×t(RCP)
0.5×t(RCP)
0.5×t(RCP)
10 MHz
−0.4×t(RCP)
−0.5×t(RCP)
66 MHz
−0.4×t(RCP)
−0.5×t(RCP)
40%
ns
t(ROH)
ROUTx data valid after RCLK
t(RDC)
RCLK duty cycle
50%
60%
ns
td(HZ)
High-to-high impedance state
delay
6.5
8
ns
td(LZ)
Low-to-high impedance state
delay
4.7
8
ns
td(HR)
High-impedance state to high
delay
5.3
8
ns
td(ZL)
High-impedance state to low
delay
4.7
8
ns
t(DSR1)
Deserializer PLL lock time from
PWRDN (with SYNCPAT)
t(DSR2)
Deserializer PLL lock time from
SYNCPAT
td(ZHLK)
High-impedance state to high
delay (power up)
tRNM
Deserializer noise margin
(1)
(2)
See Figure 16
See Figure 17,
Figure 18,
and (1)
ROUT0−ROUT9
10 MHz
850 x tRFCP
66 MHz
850 x tRFCP
10 MHz
2
66 MHz
0.303
LOCK
See Figure 19 and
(2)
3
10 MHz
3680
66 MHz
540
μs
ns
ps
t(DSR1) represents the time required for the deserializer to register that a lock has occurred upon powerup or when leaving the
powerdown mode. t(DSR2) represents the time required to register that a lock has occurred for the powered up and enabled deserializer
when the input (RI±) conditions change from not receiving data to receiving synchronization patterns (SYNCPATs). In order to specify
deserializer PLL performance, tDSR1 and tDSR2 are specified with REFCLK active and stable and specific conditions of SYNCPATs.
tRNM represents the phase noise or jitter that the deserializer can withstand in the incoming data stream before bit errors occur.
Copyright © 2004–2009, Texas Instruments Incorporated
Product Folder Link(s): SN65LV1023A SN65LV1224B
Submit Documentation Feedback
11
SN65LV1023A
SN65LV1224B
SLLS621E – SEPTEMBER 2004 – REVISED DECEMBER 2009
www.ti.com
TIMING DIAGRAMS AND TEST CIRCUITS
TCLK
ODD DIN
EVEN DIN
Figure 3. Worst-Case Serializer ICC Test Pattern
SUPPLY CURRENT
vs
TCLK FREQUENCY
60
66 MHz, 48.88 mA
ICC − Supply Current − mA
50
40
ICC
30
20
10 MHz, 14.732 mA
10
0
0
20
40
60
80
TCLK Frequency − MHz
Figure 4.
12
Submit Documentation Feedback
Copyright © 2004–2009, Texas Instruments Incorporated
Product Folder Link(s): SN65LV1023A SN65LV1224B
SN65LV1023A
SN65LV1224B
www.ti.com
SLLS621E – SEPTEMBER 2004 – REVISED DECEMBER 2009
RCLK
ODD ROUT
EVEN ROUT
Figure 5. Worst-Case Deserializer ICC Test Pattern
10 pF
tTLH(L)
DO+
RL
tTHL(L)
80%
Vdiff
80%
20%
20%
DO−
10 pF
Vdiff = (DO+) − (DO−)
Figure 6. Serializer LVDS Output Load and Transition Times
CMOS/TTL Output
Deserializer
tTHL(C)
tTLH(C)
80%
15 pF
80%
20%
20%
Figure 7. Deserializer CMOS/TTL Output Load and Transition Times
tt(CLK)
TCLK
tt(CLK)
90%
10%
90%
10%
3V
0V
Figure 8. Serializer Input Clock Transition Time
Copyright © 2004–2009, Texas Instruments Incorporated
Product Folder Link(s): SN65LV1023A SN65LV1224B
Submit Documentation Feedback
13
SN65LV1023A
SN65LV1224B
SLLS621E – SEPTEMBER 2004 – REVISED DECEMBER 2009
www.ti.com
tTCP
1.5 V
TCLK
1.5 V
1.5 V
For TCLK_R/F = Low
th(DI)
tsu(DI)
DIN [9:0]
1.5 V
Setup
Hold
1.5 V
Figure 9. Serializer Setup/Hold Times
Parasitic Package and
Trace Capacitance
3V
DEN
1.5 V
1.5 V
0V
td(ZH)
td(HZ)
VOH
13.5 Ω
DO+
50%
1.1 V
DO−
DO±
50%
1.1 V
td(ZL)
td(LZ)
13.5 Ω
DEN
1.1 V
50%
50%
VOL
Figure 10. Serializer High-Impedance State Test Circuit and Timing
PWRDN
2V
0.8 V
1026 Cycles
td(HZ) or td(LZ)
TCLK
td(ZH) or td(ZL)
tPLD
DO±
3-State
Output Active
3-State
Figure 11. Serializer PLL Lock Time and PWRDN High-Impedance State Delays
14
Submit Documentation Feedback
Copyright © 2004–2009, Texas Instruments Incorporated
Product Folder Link(s): SN65LV1023A SN65LV1224B
SN65LV1023A
SN65LV1224B
www.ti.com
SLLS621E – SEPTEMBER 2004 – REVISED DECEMBER 2009
REN
PWRDN
TCLK
tw(SP)
SYNC1
or
SYNC2
DO±
DATA
SYNC Pattern
TCLK
SYNC1
or
SYNC2
tw(SP) Min. Timing Met
DO±
SYNC Pattern
DATA
Figure 12. SYNC Timing Delays
DIN
DIN0 − DIN9 SYMBOL N
DIN0 − DIN9 SYMBOL N+1
td(S)
TCLK
Timing for TCLK_R/F = High
Start
D00 − D09 SYMBOL N−1
Bit
Stop Start
Bit Bit
D00 − D09 SYMBOL N
Stop
Bit
DO
Figure 13. Serializer Delay
Copyright © 2004–2009, Texas Instruments Incorporated
Product Folder Link(s): SN65LV1023A SN65LV1224B
Submit Documentation Feedback
15
SN65LV1023A
SN65LV1224B
SLLS621E – SEPTEMBER 2004 – REVISED DECEMBER 2009
Start
Bit
www.ti.com
Stop Start
Bit Bit
D00 − D09 SYMBOL N
D00 − D09 SYMBOL N+1
Stop Start
Bit Bit
D00 − D09 SYMBOL N+2
Stop
Bit
RI
1.2 V
1V
tDD
RCLK
Timing for TCLK_R/F = High
ROUT
ROUT0 − ROUT9 SYMBOL N−1
ROUT0 − ROUT9 SYMBOL N
ROUT0 − ROUT9 SYMBOL N+1
Figure 14. Deserializer Delay
tLow
tHigh
RCLK
RCLK_R/F = Low
tHigh
tLow
RCLK
RCLK_R/F = High
tROH
tROS
ROUT [9:0]
1.5 V
Data Valid
Before RCLK
Data Valid
After RCLK
1.5 V
Figure 15. Deserializer Data Valid Out Times
7 V x (LZ/ZL), Open (HZ/ZH)
VOH
REN
500 Ω
450 Ω
1.5 V
1.5 V
VOL
Scope
td(LZ)
VOL + 0.5 V
50 Ω
td(ZL)
VOL + 0.5 V
VOL
ROUT[9:0]
td(HZ)
td(ZH)
VOH
VOH − 0.5 V
VOH − 0.5 V
Figure 16. Deserializer High-Impedance State Test Circuit and Timing
16
Submit Documentation Feedback
Copyright © 2004–2009, Texas Instruments Incorporated
Product Folder Link(s): SN65LV1023A SN65LV1224B
SN65LV1023A
SN65LV1224B
www.ti.com
PWRDN
SLLS621E – SEPTEMBER 2004 – REVISED DECEMBER 2009
2V
0.8 V
REFCLK
1.5 V
t(DSR1)
DATA
RI±
Not Important
td(ZHL)
LOCK
SYNC Patterns
3-State
3-State
td(ZH) or td(ZL)
ROUT[9:0]
td(HZ) or td(LZ)
3-State
3-State
SYNC Symbol or DIN[9:0]
RCLK
3-State
3-State
RCLK_R/F = Low
REN
Figure 17. Deserializer PLL Lock Times and PWRDN 3-State Delays
Copyright © 2004–2009, Texas Instruments Incorporated
Product Folder Link(s): SN65LV1023A SN65LV1224B
Submit Documentation Feedback
17
SN65LV1023A
SN65LV1224B
SLLS621E – SEPTEMBER 2004 – REVISED DECEMBER 2009
www.ti.com
3.6 V
3V
VCC
0V
PWRDN
0.8 V
REFCLK
t(DSR2)
DATA
1.2 V
RI±
Not Important
1V
SYNC Patterns
LOCK
3-State
td(ZH) or td(ZL)
ROUT[9:0]
td(HZ) or td(LZ)
3-State
3-State
SYNC Symbol or DIN[9:0]
RCLK
3-State
3-State
REN
Figure 18. Deserializer PLL Lock Time From SyncPAT
1.2 V
VTH
RI±
VTL
1V
tDJIT
tDJIT
tRNM
tRNM
tSW
Ideal Sampling Position
tSW: Setup and Hold Time (Internal Data Sampling Window)
tDJIT: Serializer Output Bit Position Jitter That Results From Jitter on TCLK
tRNM: Receiver Noise Margin Time
Figure 19. Receiver LVDS Input Skew Margin
18
Submit Documentation Feedback
Copyright © 2004–2009, Texas Instruments Incorporated
Product Folder Link(s): SN65LV1023A SN65LV1224B
SN65LV1023A
SN65LV1224B
www.ti.com
SLLS621E – SEPTEMBER 2004 – REVISED DECEMBER 2009
DO+
RL
10
Parallel-to-Serial
DIN
DO−
> TCLK
VOD = (DO+) − (DO−)
Differential Output Signal Is Shown as (DO+) − (DO−)
Figure 20. VOD Diagram
DEVICE STARTUP PROCEDURE
It is recommended that the PWRDNB pin on both the SN65LV1023A and the SN65LV1224B device be held to a
logic LOW level until after the power supplies have powered up to at least 3 V as shown in Figure 21.
3.0 V
VDD
PWRDNB
Figure 21. Device Startup
Copyright © 2004–2009, Texas Instruments Incorporated
Product Folder Link(s): SN65LV1023A SN65LV1224B
Submit Documentation Feedback
19
SN65LV1023A
SN65LV1224B
SLLS621E – SEPTEMBER 2004 – REVISED DECEMBER 2009
www.ti.com
APPLICATION INFORMATION
DIFFERENTIAL TRACES AND TERMINATION
The performance of the SN65LV1023A/SN65LV1224B is affected by the characteristics of the transmission
medium. Use controlled-impedance media and termination at the receiving end of the transmission line with the
media’s characteristics impedance.
Use balanced cables such as twisted pair or differential traces that are ran close together. A balanced cable
picks up noise together and appears to the receiver as common mode. Differential receivers reject
common-mode noise. Keep cables or traces matched in length to help reduce skew.
Running the differential traces close together helps cancel the external magnetic field, as well as maintain a
constant impedance. Avoiding sharp turns and reducing the number of vias also helps.
TOPOLOGIES
There are several topologies that the serializers can operate. Three common examples are shown below.
Figure 22 shows an example of a single-terminated point-to-point connection. Here a single termination resistor
is located at the deserializer end. The resistor value should match that of the characteristic impedance of the
cable or PC board traces. The total load seen by the serializer is 100 Ω. Double termination can be used and
typically reduces reflections compared with single termination. However, it also reduces the differential output
voltage swing.
AC-coupling is only recommended if the parallel TX data stream is encoded to achieve a dc-balanced data
stream. Otherwise the ac-capacitors can induce common mode voltage drift due to the dc-unbalanced data
stream.
Serialized Data
100 Ω
Parallel Data In
Parallel Data Out
Figure 22. Single-Terminated Point-to-Point Connection
Figure 23 shows an example of a multidrop configuration. Here there is one transmitter broadcasting data to
multiple receivers. A 50-kΩ resistor at the far end terminates the bus.
ASIC
ASIC
ASIC
ASIC
50 Ω
Figure 23. Multidrop Configuration
Figure 24 shows an example of multiple serializers and deserializers on the same differential bus, such as in a
backplane. This is a multipoint configuration. In this situation, the characteristic impedance of the bus can be
significantly less due to loading. Termination resistors that match the loaded characteristic impedance are
required at each end of the bus. The total load seen by the serializer in this example is 27 Ω.
20
Submit Documentation Feedback
Copyright © 2004–2009, Texas Instruments Incorporated
Product Folder Link(s): SN65LV1023A SN65LV1224B
SN65LV1023A
SN65LV1224B
www.ti.com
SLLS621E – SEPTEMBER 2004 – REVISED DECEMBER 2009
ASIC
ASIC
ASIC
ASIC
54 Ω
54 Ω
Figure 24. Multiple Serializers and Deserializers on the Same Differential Bus
SPACER
REVISION HISTORY
Changes from Original (September 2004) to Revision A
Page
•
Changed Figure 17 ............................................................................................................................................................. 17
•
Changed Figure 18 ............................................................................................................................................................. 18
Changes from Revision A (January 2005) to Revision B
•
Page
Added RHB package information ......................................................................................................................................... 1
Changes from Revision B (July 2005) to Revision C
•
Page
Changed Package description in the Features list. .............................................................................................................. 1
Changes from Revision C (February 2006) to Revision D
Page
•
Added the Applications List .................................................................................................................................................. 1
•
Deleted the DB and RHB packages for Deserializer ............................................................................................................ 1
•
Added Figure 2 ..................................................................................................................................................................... 9
•
Changed Figure 4 Supply Current vs TCLK Frequency ..................................................................................................... 12
Changes from Revision D (February 2009) to Revision E
•
Page
Deleted footnote - "The deserializer delay time for all frequencies does not exceed two serial bit times" From td(D) ........ 11
Copyright © 2004–2009, Texas Instruments Incorporated
Product Folder Link(s): SN65LV1023A SN65LV1224B
Submit Documentation Feedback
21
PACKAGE OPTION ADDENDUM
www.ti.com
24-Aug-2018
PACKAGING INFORMATION
Orderable Device
Status
(1)
Package Type Package Pins Package
Drawing
Qty
Eco Plan
Lead/Ball Finish
MSL Peak Temp
(2)
(6)
(3)
Op Temp (°C)
Device Marking
(4/5)
SN65LV1023ADB
ACTIVE
SSOP
DB
28
50
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 85
LV1023A
SN65LV1023ADBR
ACTIVE
SSOP
DB
28
2000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 85
LV1023A
SN65LV1023ARHBR
ACTIVE
VQFN
RHB
32
3000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-2-260C-1 YEAR
-40 to 85
SN65LV
1023A
SN65LV1023ARHBT
ACTIVE
VQFN
RHB
32
250
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-2-260C-1 YEAR
-40 to 85
SN65LV
1023A
SN65LV1224BDB
ACTIVE
SSOP
DB
28
50
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 85
LV1224B
SN65LV1224BDBG4
ACTIVE
SSOP
DB
28
50
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 85
LV1224B
SN65LV1224BDBR
ACTIVE
SSOP
DB
28
2000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 85
LV1224B
SN65LV1224BDBRG4
ACTIVE
SSOP
DB
28
2000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 85
LV1224B
SN65LV1224BRHBR
ACTIVE
VQFN
RHB
32
3000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-2-260C-1 YEAR
-40 to 85
SN65LV
1224B
SN65LV1224BRHBRG4
ACTIVE
VQFN
RHB
32
3000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-2-260C-1 YEAR
-40 to 85
SN65LV
1224B
SN65LV1224BRHBT
ACTIVE
VQFN
RHB
32
250
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-2-260C-1 YEAR
-40 to 85
SN65LV
1224B
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may
reference these types of products as "Pb-Free".
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based
flame retardants must also meet the <=1000ppm threshold requirement.
Addendum-Page 1
Samples
PACKAGE OPTION ADDENDUM
www.ti.com
24-Aug-2018
(3)
MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
(4)
There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
(5)
Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation
of the previous line and the two combined represent the entire Device Marking for that device.
(6)
Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish
value exceeds the maximum column width.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
OTHER QUALIFIED VERSIONS OF SN65LV1023A, SN65LV1224B :
• Enhanced Product: SN65LV1023A-EP, SN65LV1224B-EP
NOTE: Qualified Version Definitions:
• Enhanced Product - Supports Defense, Aerospace and Medical Applications
Addendum-Page 2
PACKAGE MATERIALS INFORMATION
www.ti.com
1-Nov-2019
TAPE AND REEL INFORMATION
*All dimensions are nominal
Device
SN65LV1023ARHBR
Package Package Pins
Type Drawing
VQFN
RHB
32
SN65LV1023ARHBT
VQFN
RHB
SN65LV1224BDBR
SSOP
DB
SN65LV1224BRHBR
VQFN
SN65LV1224BRHBT
VQFN
SPQ
Reel
Reel
A0
Diameter Width (mm)
(mm) W1 (mm)
B0
(mm)
K0
(mm)
P1
(mm)
W
Pin1
(mm) Quadrant
5.3
1.5
8.0
12.0
Q2
3000
330.0
12.4
5.3
32
250
180.0
12.4
5.3
5.3
1.5
8.0
12.0
Q2
28
2000
330.0
16.4
8.1
10.4
2.5
12.0
16.0
Q1
RHB
32
3000
330.0
12.4
5.3
5.3
1.5
8.0
12.0
Q2
RHB
32
250
180.0
12.4
5.3
5.3
1.5
8.0
12.0
Q2
Pack Materials-Page 1
PACKAGE MATERIALS INFORMATION
www.ti.com
1-Nov-2019
*All dimensions are nominal
Device
Package Type
Package Drawing
Pins
SPQ
Length (mm)
Width (mm)
Height (mm)
SN65LV1023ARHBR
VQFN
RHB
32
3000
350.0
350.0
43.0
SN65LV1023ARHBT
VQFN
RHB
32
250
210.0
185.0
35.0
SN65LV1224BDBR
SSOP
DB
28
2000
350.0
350.0
43.0
SN65LV1224BRHBR
VQFN
RHB
32
3000
350.0
350.0
43.0
SN65LV1224BRHBT
VQFN
RHB
32
250
210.0
185.0
35.0
Pack Materials-Page 2
PACKAGE OUTLINE
DB0028A
SSOP - 2 mm max height
SCALE 1.500
SMALL OUTLINE PACKAGE
C
8.2
TYP
7.4
A
0.1 C
PIN 1 INDEX AREA
SEATING
PLANE
26X 0.65
28
1
2X
10.5
9.9
NOTE 3
8.45
14
15
28X
B
5.6
5.0
NOTE 4
SEE DETAIL A
(0.15) TYP
0.38
0.22
0.15
C A B
2 MAX
0.25
GAGE PLANE
0 -8
0.95
0.55
0.05 MIN
DETAIL A
A 15
TYPICAL
4214853/B 03/2018
NOTES:
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing
per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
exceed 0.15 mm per side.
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
5. Reference JEDEC registration MO-150.
www.ti.com
EXAMPLE BOARD LAYOUT
DB0028A
SSOP - 2 mm max height
SMALL OUTLINE PACKAGE
SYMM
28X (1.85)
(R0.05) TYP
1
28X (0.45)
28
26X (0.65)
SYMM
15
14
(7)
LAND PATTERN EXAMPLE
EXPOSED METAL SHOWN
SCALE: 10X
SOLDER MASK
OPENING
SOLDER MASK
OPENING
METAL UNDER
SOLDER MASK
METAL
EXPOSED METAL
EXPOSED METAL
0.07 MAX
ALL AROUND
NON-SOLDER MASK
DEFINED
(PREFERRED)
0.07 MIN
ALL AROUND
SOLDER MASK
DEFINED
SOLDER MASK DETAILS
15.000
4214853/B 03/2018
NOTES: (continued)
6. Publication IPC-7351 may have alternate designs.
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.
www.ti.com
EXAMPLE STENCIL DESIGN
DB0028A
SSOP - 2 mm max height
SMALL OUTLINE PACKAGE
28X (1.85)
SYMM
(R0.05) TYP
1
28X (0.45)
28
26X (0.65)
SYMM
14
15
(7)
SOLDER PASTE EXAMPLE
BASED ON 0.125 mm THICK STENCIL
SCALE: 10X
4214853/B 03/2018
NOTES: (continued)
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate
design recommendations.
9. Board assembly site may have different recommendations for stencil design.
www.ti.com
GENERIC PACKAGE VIEW
RHB 32
VQFN - 1 mm max height
PLASTIC QUAD FLATPACK - NO LEAD
5 x 5, 0.5 mm pitch
Images above are just a representation of the package family, actual package may vary.
Refer to the product data sheet for package details.
4224745/A
www.ti.com
PACKAGE OUTLINE
RHB0032E
VQFN - 1 mm max height
SCALE 3.000
PLASTIC QUAD FLATPACK - NO LEAD
5.1
4.9
A
B
PIN 1 INDEX AREA
(0.1)
5.1
4.9
SIDE WALL DETAIL
OPTIONAL METAL THICKNESS
20.000
C
1 MAX
SEATING PLANE
0.05
0.00
0.08 C
2X 3.5
(0.2) TYP
3.45 0.1
9
EXPOSED
THERMAL PAD
16
28X 0.5
8
17
2X
3.5
SEE SIDE WALL
DETAIL
SYMM
33
32X
24
1
PIN 1 ID
(OPTIONAL)
32
0.3
0.2
0.1
0.05
C A B
C
25
SYMM
32X
0.5
0.3
4223442/B 08/2019
NOTES:
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing
per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.
www.ti.com
EXAMPLE BOARD LAYOUT
RHB0032E
VQFN - 1 mm max height
PLASTIC QUAD FLATPACK - NO LEAD
( 3.45)
SYMM
32
25
32X (0.6)
1
24
32X (0.25)
(1.475)
28X (0.5)
33
SYMM
(4.8)
( 0.2) TYP
VIA
8
17
(R0.05)
TYP
9
(1.475)
16
(4.8)
LAND PATTERN EXAMPLE
SCALE:18X
0.07 MIN
ALL AROUND
0.07 MAX
ALL AROUND
SOLDER MASK
OPENING
METAL
SOLDER MASK
OPENING
METAL UNDER
SOLDER MASK
NON SOLDER MASK
DEFINED
(PREFERRED)
SOLDER MASK
DEFINED
SOLDER MASK DETAILS
4223442/B 08/2019
NOTES: (continued)
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature
number SLUA271 (www.ti.com/lit/slua271).
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown
on this view. It is recommended that vias under paste be filled, plugged or tented.
www.ti.com
EXAMPLE STENCIL DESIGN
RHB0032E
VQFN - 1 mm max height
PLASTIC QUAD FLATPACK - NO LEAD
4X ( 1.49)
(0.845)
(R0.05) TYP
32
25
32X (0.6)
1
24
32X (0.25)
28X (0.5)
(0.845)
SYMM
33
(4.8)
17
8
METAL
TYP
16
9
SYMM
(4.8)
SOLDER PASTE EXAMPLE
BASED ON 0.125 mm THICK STENCIL
EXPOSED PAD 33:
75% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE
SCALE:20X
4223442/B 08/2019
NOTES: (continued)
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate
design recommendations.
www.ti.com
IMPORTANT NOTICE AND DISCLAIMER
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you
permission to use these resources only for development of an application that uses the TI products described in the resource. Other
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third
party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims,
damages, costs, losses, and liabilities arising out of your use of these resources.
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on
ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable
warranties or warranty disclaimers for TI products.
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2019, Texas Instruments Incorporated
Was this manual useful for you? yes no
Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Download PDF

advertising