Texas Instruments | DS90UB95x-Q1EVM Deserializer (Rev. A) | User Guides | Texas Instruments DS90UB95x-Q1EVM Deserializer (Rev. A) User guides

Texas Instruments DS90UB95x-Q1EVM Deserializer (Rev. A) User guides
User's Guide
SNLU223A – August 2017 – Revised May 2019
DS90UB95x-Q1EVM Deserializer User's Guide
The Texas Instruments DS90UB95x-Q1EVM evaluation modules (EVM) are functional board designs for
evaluating the DS90UB95x-Q1 FPD-Link III deserializers, which convert serialized camera data to MIPI
CSI-2 for processing. The MIPI CSI-2 output has four available lanes, and can be configured for either
four-lane output or replicated two-lane output. When paired with a compatible serializer, the deserializers
receive data from imager(s) supporting cameras as well as satellite RADAR. The DS90UB954-Q1 also
supports DS90UB913A/933 serializers.
Some variants are single channel; for these variants ignore references to RX1. Some references are
made to serializer backward compatibility; refer to the product datasheet for serializer compatibility.
The DS90UB954-Q1EVM is configured for communication with a DS90UB953-Q1 on channel 0 (RX0),
and a DS90UB933-Q1 on channel 1 (RX1). The EVM has two Rosenberger FAKRA connectors and
configurable Power-over-Coax (PoC) voltage for connecting the camera modules (not included). FPD-Link
III interfaces also include a separate low latency bidirectional control channel that conveys control
information from an I2C port. General purpose I/O signals such as those required for camera
synchronization and functional safety features also make use of this bidirectional control channel to
program registers in the DS90UB954-Q1 as well as the connected serializer and any remote I2C
connected devices. There is an onboard MSP430 which functions as a USB2ANY bridge for interfacing
with a PC for evaluation. The USB2ANY interfaces with the Analog LaunchPAD GUI tool.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
Contents
Introduction ................................................................................................................... 3
Quick Start Guide ............................................................................................................ 4
DS90UB95x-Q1EVM Board Configuration .............................................................................. 6
Enable and Reset .......................................................................................................... 12
Use with DS90UB936-Q1 ................................................................................................. 12
Typical Connection and Test Equipment ................................................................................ 13
Termination Device ........................................................................................................ 13
Typical Test Setup ......................................................................................................... 13
Equipment References .................................................................................................... 14
Cable References .......................................................................................................... 14
Software for DS90UB95xQ1-EVM Evaluation - Analog LaunchPAD (ALP) Software Setup ..................... 15
Using ALP and DS90UB95x Profile...................................................................................... 20
Troubleshooting ALP Software ........................................................................................... 36
DS90UB95x-Q1EVM PCB Schematics, Layout and Bill of Materials - DS90UB95x-Q1EVM Schematic ...... 39
DS90UB95x-Q1 EVM PCB Layout....................................................................................... 47
DS90UB95xQ1-EVM Bill of Materials ................................................................................... 57
List of Figures
.......................................................................................................
1
DS90UB95x-Q1EVM
2
Applications Diagram ........................................................................................................ 4
3
Interfacing to the EVM ...................................................................................................... 5
4
DS90UB95x-Q1EVM with Jumpers Highlighted ......................................................................... 6
5
Power-over-Coax Network For Use With DS90UB953 ................................................................. 7
6
Power-over-Coax Network For Use With DS90UB933 ................................................................. 8
7
Typical Test Setup for Evaluation ........................................................................................ 13
8
Launching ALP Splash Screen ........................................................................................... 16
SNLU223A – August 2017 – Revised May 2019
Submit Documentation Feedback
DS90UB95x-Q1EVM Deserializer User's Guide
Copyright © 2017–2019, Texas Instruments Incorporated
3
1
www.ti.com
9
Initial ALP Screen .......................................................................................................... 16
10
Select USB2ANY/Aardvark Setup to Change Profile .................................................................. 17
11
ALP Profiles Dialog
12
ALP Profiles Dialog (continued) .......................................................................................... 19
13
ALP Information Tab ....................................................................................................... 20
14
ALP Registers Tab ......................................................................................................... 21
15
ALP Device ID Expanded ................................................................................................. 22
16
Save Register Settings Step 1
23
17
Save Register Settings Step 2
24
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
........................................................................................................
...........................................................................................
...........................................................................................
Save Register Settings Step 3 ...........................................................................................
Load Register Settings Step 1 ............................................................................................
Load Register Settings Step 2 ............................................................................................
Load Register Settings Step 3 ............................................................................................
ALP Scripting Tab ..........................................................................................................
Pre-Defined Scripts ........................................................................................................
Custom Button Creation Step 1 ..........................................................................................
Custom Button Creation Step 2 ..........................................................................................
GPIO Tab ...................................................................................................................
Forwarding Tab .............................................................................................................
CSI Registers Tab..........................................................................................................
Remote Registers Tab.....................................................................................................
ALP No Devices Error .....................................................................................................
Windows 7, ALP USB2ANY Driver ......................................................................................
ALP in Demo Mode ........................................................................................................
ALP Preferences Menu ....................................................................................................
USB2ANY Firmware Update Notice .....................................................................................
USB2ANY Firmware Update Procedure ................................................................................
DS90UB95x-Q1EVM Block Diagram ....................................................................................
DS90UB95x-Q1EVM Main Circuit - Page 1 ............................................................................
DS90UB95x-Q1EVM CSI-2 Connectors - Page 2 .....................................................................
DS90UB95x-Q1EVM PoC Circuits - Page 3............................................................................
DS90UB95x-Q1EVM Power Distribution Circuits - Page 4 ...........................................................
DS90UB95x-Q1EVM LED Circuits - Page 5............................................................................
DS90UB95x-Q1EVM USB2ANY Circuits - Page 6 ....................................................................
DS90UB95x-Q1EVM Miscellaneous Hardware ........................................................................
Top View Composite .......................................................................................................
Layer 1: Top Signal Layer.................................................................................................
Layer 2: GND Plane 1 ....................................................................................................
Layer 3: Mid Signal Layer 1...............................................................................................
Layer 4: GND Plane 2 .....................................................................................................
Layer 5: GND Plane 3 .....................................................................................................
Layer 6: Mid Signal Layer 2...............................................................................................
Layer 7: GND Plane 4 .....................................................................................................
Layer 8: Bottom Signal Layer .............................................................................................
Bottom View Composite ...................................................................................................
18
24
25
25
26
27
28
29
29
32
33
34
35
36
36
37
37
38
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
List of Tables
1
2
2
................................................................................................................
Power-over-Coax Power Supply Feed Configuration ...................................................................
Power Supply
DS90UB95x-Q1EVM Deserializer User's Guide
6
8
SNLU223A – August 2017 – Revised May 2019
Submit Documentation Feedback
Copyright © 2017–2019, Texas Instruments Incorporated
Introduction
www.ti.com
3
4
5
6
7
8
9
10
11
12
13
.......................................................................... 9
FPD-Link III Signals ........................................................................................................ 10
IDx I2C Device Address Select - J23 .................................................................................... 10
I2C Interface Header - J25 ................................................................................................ 10
VDDIO Interface Header - J16 ........................................................................................... 11
GPIO Interface Header - J22 ............................................................................................. 11
CMLOUT Output Signals .................................................................................................. 11
FPD-Link III Mode Control- J15 .......................................................................................... 11
Device Mode Control - J11 ............................................................................................... 11
LEDs ......................................................................................................................... 12
DS90UB95x-Q1EVM BOM ................................................................................................ 57
MIPI CSI-2 Output Signals - J5 and J6 Pinout
Trademarks
All trademarks are the property of their respective owners.
1
Introduction
NOTE: The demo board is not optimized for EMI testing. The demo board was designed for easy
accessibility to device pins with tap points for monitoring or applying signals, additional pads
for termination, and multiple connector options.
Figure 1. DS90UB95x-Q1EVM
SNLU223A – August 2017 – Revised May 2019
Submit Documentation Feedback
DS90UB95x-Q1EVM Deserializer User's Guide
Copyright © 2017–2019, Texas Instruments Incorporated
3
Quick Start Guide
2
Quick Start Guide
2.1
System Requirements
2.1.1
www.ti.com
Included Components
The major components of the DS90UB95x-Q1EVM are:
• DS90UB95x-Q1
• On-board Power-over-Coax (PoC) interface
• FAKRA coax connector(s) for digital video, power, control and diagnostics
• Samtec QSH type connector for CSI-2 interface
• On-board I2C programming interface
2.1.2
Additional Required Components
To demonstrate the functionality of the DS90UB95x-Q1, the following components are required (not
included):
• One compatible serializer.
• One DACAR/FAKRA coax cable
• USB to mini USB cable OR I2C host controller that supports clock stretching (such as USB2ANY)
• Power supply for 12V @ 1A (current limited bench supply recommended)
• Optional: MIPI CSI-2 output analyzer or host processor
Applications Diagram
MIPI CSI-2
3.2 Gbps
DS90UB953
Serializer
RAW 10/12
DS90UB933
Serializer
DS90UB954-Q1
Deserializer
CSI-2
Tx Port
2.2
MIPI CSI-2
1.6 Gbps/lane X 4
Host / ISP
Figure 2. Applications Diagram
4
DS90UB95x-Q1EVM Deserializer User's Guide
SNLU223A – August 2017 – Revised May 2019
Submit Documentation Feedback
Copyright © 2017–2019, Texas Instruments Incorporated
Quick Start Guide
www.ti.com
2.3
Major Components of DS90UB95x-Q1EVM
Figure 3. Interfacing to the EVM
SNLU223A – August 2017 – Revised May 2019
Submit Documentation Feedback
DS90UB95x-Q1EVM Deserializer User's Guide
Copyright © 2017–2019, Texas Instruments Incorporated
5
Quick Start Guide
2.4
www.ti.com
DS90UB95x-Q1EVM Setup
1. Use the mini USB to USB cable to connect J2 to computer USB port for register programming and
open Analog LaunchPAD. See Section 11 for details on installing and using Analog LaunchPAD.
2. Configure jumpers J8, J10, J11, J15, J16, J23, J27 to set device’s operating modes. The default
configuration can be seen in Figure 4.
3. Configure Power-over-Coax power supplies for RX0 and RX1 with J18 and J17 respectively.
4. Connect the DS90UB95x-Q1EVM to DS90UB953-Q1EVM (or variant) to RX0 and/or DS90UB933Q1EVM to RX1 using a coax cable.
5. Interface MIPI CSI-2 output signals (J24) to test equipment or host processor (optional, not required to
check status of FPD-Link III connection between serializer and deserializer).
6. Provide power to board. TI recommends using current limited bench supply to provide power to J1
(barrel jack) or J3.
3
DS90UB95x-Q1EVM Board Configuration
3.1
Default Configuration
Default jumper placement shown in red. This configuration sets the device into the following mode
• Device is set for FPD-Link III inputs from coax in CSI mode (for DS90UB953-Q1EVM (or variant))
• VDDIO is set to 1.8V
• VDD5V is powered by the 5V LDO
• The 3.3V + 1.1V LDO (U10) is powered by VDD5V
• The 9V LDO for PoC for RX0 and RX1 are enabled
•
Figure 4. DS90UB95x-Q1EVM with Jumpers Highlighted
3.2
Power Supply
Table 1. Power Supply
Reference
J1/J3
6
Signal
Description
+12V
Main Power
Single +12VDC (nominal) power connector that supplies power to the
entire board.
DS90UB95x-Q1EVM Deserializer User's Guide
SNLU223A – August 2017 – Revised May 2019
Submit Documentation Feedback
Copyright © 2017–2019, Texas Instruments Incorporated
DS90UB95x-Q1EVM Board Configuration
www.ti.com
3.3
Power-over-Coax Interface
The DS90UB95x-Q1EVM offers two Power-over-Coax interfaces (PoC) to connect cameras through a
coaxial cable with FAKRA connectors. Power is delivered on the same conductor that is used to transmit
video and control channel data between the host and the camera. By default, 5V power supply is applied
over the coax cable. Refer to for other PoC configurations.
NOTE: For port RX0, the PoC network is configured for a DS90UB953-Q1EVM (or variant), and for
RX1 the PoC network is configured for a DS90UB933-Q1. Only use a serializer EVM with the
correct PoC network. To use PoC with two DS90UB953-Q1EVM (or variant) or DS90UB933Q1 EVM's, one of the PoC networks must be reworked. You may also open the PoC circuit
and power the serializer EVM directly from another supply.
For Power-over-Coax (PoC) on the EVM, the circuit uses a filter network as shown in Figure 6. The PoC
network frequency response corresponds to the bandwidth compatible with DS90UB953-Q1EVM (or
variant) chipsets.
Figure 5. Power-over-Coax Network For Use With DS90UB953
SNLU223A – August 2017 – Revised May 2019
Submit Documentation Feedback
DS90UB95x-Q1EVM Deserializer User's Guide
Copyright © 2017–2019, Texas Instruments Incorporated
7
DS90UB95x-Q1EVM Board Configuration
www.ti.com
Figure 6. Power-over-Coax Network For Use With DS90UB933
WARNING
Verify that the Power-over-Coax voltage is properly set before
plugging into RX0 or RX1. Power supply is not fused. Over-voltage
will cause damage to boards directly connected due to incorrect
input power supplies. DS90UB913A-Q1EVM is designed for a
maximum of 5V PoC. To use DS90UB913A-Q1EVM with
DS90UB954-Q1EVM, open J17 or J18 to disable PoC, and either
power the DS90UB913A-Q1EVM separately or by applying 5V to the
J17 or J18 pin on DS90UB954-Q1EVM.
Table 2. Power-over-Coax Power Supply Feed Configuration
Reference
Signal
Description
This sets the voltage for Power-over-Coax on RX0
J18
VPOC_RX0
Jumper installed: +9V power supply from VPOC_LDO0_9V
Jumper Open: No PoC connected. Apply power to pin1 or leave open and power
serializer separately.
This sets the voltage for Power-over-Coax on RX1
J17
VPOC_RX1
Jumper installed: +9V power supply from VPOC_LDO1_9V
Jumper Open: No PoC connected. Apply power to pin1 or leave open and power
serializer separately.
8
DS90UB95x-Q1EVM Deserializer User's Guide
SNLU223A – August 2017 – Revised May 2019
Submit Documentation Feedback
Copyright © 2017–2019, Texas Instruments Incorporated
DS90UB95x-Q1EVM Board Configuration
www.ti.com
3.4
MIPI CSI-2 Output Signals
There are two options provided for passing out the deserialized data on the DS90UB95x-Q1EVM . The
first is a Samtec QSH-type connector, J24, on the top of the board that can be mated with a matching
QTH type connector. The mating connector part number for the J24 connector is QTH-020-01-H-D-DP-A.
On the bottom of the board is a Samtec QTH-type connector, J26, meant for mating with a TDAx
evaluation kit. The signals to the connectors are the same, including access to I2C and other signals
including PDB and GPIO. Only one connector should be used at a time. If the J6 connector on the bottom
is to be used, populate the zero ohm resistors on the bottom of the board which extend the traces to the
J26 connector.
There are third party solutions like the HDR-128291-XX breakout board from Samtec which can be used.
The HDR- 128291-XX is a breakout board with a mating connector to J24 or J26, providing access to
each pin through standard SMA male connectors. More info on this breakout board can be obtained from
Samtec website. Another third party option is the ZX100 by Zebax Technologies. More information on this
board can be obtained from Zebax website.
Table 3. MIPI CSI-2 Output Signals - J5 and J6 Pinout
Pin #
Signal Name
Pin #
Signal Name
1
NC
2
EXP_SCL
(I2C_SCL or I2C_SCL2)
3
NC
4
EXP_SDA
(I2C_SDA or I2C_SDA2)
5
CSI_CLK0_P
6
NC
7
CSI_CLK0_N
8
NC
EXP_REF_CLK
(REFCLK)
9
CSI_D0_P
10
11
CSI_D0_N
12
GND
RESET
(PDB)
13
CSI_D1_P
14
15
CSI_D1_N
16
GND
17
CSI_D2_P
18
SPI_MOSI
(GPIO0 or GPIO3)
19
CSI_D2_N
20
SPI_SCLK
(GPIO1 or GPIO4)
21
CSI_D3_P
22
SPI_CS
(GPIO2 or GPIO5)
23
CSI_D3_N
24
GND
25
CSI_CLK1_P
26
NC
27
CS_CLK1_N
28
NC
29
NC
30
VDD_3V3
31
NC
32
VDD_3V3
33
NC
34
VDD_3V3
35
NC
36
VDD_3V3
37
NC
38
VDD_1V8
39
NC
40
VDD_1V8
NOTE: Populate R60-R69, R71,R72 (0Ω resistors) only when using the J26 connector on the bottom
of the board. Do not use J24 and J26 connectors at the same time.
SNLU223A – August 2017 – Revised May 2019
Submit Documentation Feedback
DS90UB95x-Q1EVM Deserializer User's Guide
Copyright © 2017–2019, Texas Instruments Incorporated
9
DS90UB95x-Q1EVM Board Configuration
3.5
www.ti.com
FPD-Link III Signals
Table 4. FPD-Link III Signals
3.6
Reference
Signal
Description
RX0p
RIN0+
FAKRA connector for DS90UB953-Q1EVM (or variant) serializer
RX0n
RIN0-
FAKRA connector footprint for use with STP applications.
RX1
RIN1+
FAKRA connector for DS90UB933-Q1 serializer
I2C Interface
In addition to the on-board USB2ANY controller accessible via the mini-USB port, a standalone external
I2C host can connect via J25 for programming purposes. Examples of external I2C host controllers are
Texas Instruments USB2ANY and Total Phase Aardvark I2C/SPI host adapter (Total Phase Part#:
TP240141).
When the I2C interface is accessed through connector J25, I2C signal levels can be configured through
J16 to be at 1.8V or 3.3V. Optional access to I2C signals are also available via CSI-2 connectors J24 (top)
and J26 (bottom).
Table 5. IDx I2C Device Address Select - J23
Reference
Signal
Description
Selects I2C Device Address
J23
IDX Select
Open: 0x30 (7'b) or 0x60 (8'b)
Short: 0x3D (7'b) or 0x7A (8'b) (Default)
Table 6. I2C Interface Header - J25
Reference
10
Signal
Description
2
J25.1
VDDIO
J25.2
I2C_SCL
I2C Clock Interface for I2C bus
J25.3
I2C_SDA
I2C Data Interface for I2C bus
J25.4
GND
DS90UB95x-Q1EVM Deserializer User's Guide
I C bus voltage (tied to VDDIO)
Ground
SNLU223A – August 2017 – Revised May 2019
Submit Documentation Feedback
Copyright © 2017–2019, Texas Instruments Incorporated
DS90UB95x-Q1EVM Board Configuration
www.ti.com
3.7
Control Interface
Table 7. VDDIO Interface Header - J16
Reference
Signal
Description
Selects VDDIO bus voltage
J16
VDDIO
Short pins 1-2: 3.3V IO (Default)
Short pins 2-3: 1.8V IO
Table 8. GPIO Interface Header - J22
Reference
Signal
Description
J22.1
GPIO0
General Purpose Input/Output 0
J22.3
GPIO1
General Purpose Input/Output 1
J22.5
GPIO2
General Purpose Input/Output 2
J22.7
GPIO3/INTB
J22.9
GPIO4
General Purpose Input/Output 4
J22.11
GPIO5
General Purpose Input/Output 5
J22.13
GPIO6
General Purpose Input/Output 6
J22.15
EN 25MHz
Enable/Disable 25MHz Oscillator
General Purpose Input/Output 3 / Interrupt (Active Low).
Pulled up to VDDIO by 4.7kΩ
Table 9. CMLOUT Output Signals
Reference
Signal
Description
TP16
CMLOUTP
Test Pad for Channel Monitor Loop-through Driver
TP17
CMLOUTN
Test Pad for Channel Monitor Loop-through Driver
Table 10. FPD-Link III Mode Control- J15 (1)
(1)
(2)
Reference
Mode
Description
J15.1
1
CSI Mode (DS90UB953-Q1 compatible) (2)
J15.2
2
RAW12 / LF (DS90UB933 compatible)
J15.3
3
RAW12 / HF (DS90UB933 compatible)
J15.4
4
RAW10 (DS90UB933 compatible)
Only set one ON.
This function is only available with 2-MP ADAS chipsets.
Table 11. Device Mode Control - J11
Reference
Signal
Input = L
Input = H
Description
J11.1
BISTEN
For Normal operation
(Default)
Test Mode enable
Test Mode
J11.2
RSVD
Tied to GND (Default)
N/A
Reserved
J11.3
VDD_SEL
Internal 1.1V regulator from
1.8V supply (Default)
1.1V is supplied to VDD1V1
pins
VDD 1.1V Source Select
J11.4
PDB
Device is powered down
Device is enabled (Default)
Power-down Mode
SNLU223A – August 2017 – Revised May 2019
Submit Documentation Feedback
DS90UB95x-Q1EVM Deserializer User's Guide
Copyright © 2017–2019, Texas Instruments Incorporated
11
Enable and Reset
www.ti.com
Table 12. LEDs
4
Reference
LED Color
LED Name
Description
D3
Red
VDDIO
Illuminates on VDDIO Power
D4
Red
VDD5V
Illuminates on +5V
D5
Red
VDD_EXT
Illuminates if 12V Power is applied to DC-IN J24
D6
Orange
VPOC_RX1
Illuminates if VPOC_RX1 is ON
D7
Orange
VPOC_RX0
Illuminates if VPOC_RX0 is ON
D8
Orange
PASS
Illuminates if PASS pin is HIGH
D9
Green
LOCK
Illuminates if LOCK pin is HIGH
D10
Green
GPIO6
Illuminates if GPIO6 is HIGH
D11
Green
GPIO5
Illuminates if GPIO5 is HIGH
D12
Green
GPIO4
Illuminates if GPIO4 is HIGH
D13
Green
GPIO3/INTB
Illuminates if GPIO3 is HIGH, or GPIO3 disabled (pulled-up)
D14
Green
GPIO2
Illuminates if GPIO2 is HIGH
D15
Green
GPIO1
Illuminates if GPIO1 is HIGH
D16
Green
GPIO0
Illuminates if GPIO0 is HIGH
Enable and Reset
The DS90UB95x-Q1 is enabled and reset by controlling the PDB input level. PDB has an internal pull
down, and should remain low until all supplies are stable. There are three device enable and reset/powerdown options for the EVM.
• RC timing option: The RC delay created with C123 and R131 connected to the PDB pin is the default
option for delaying PDB on the EVM. This is used for simplicity of debugging and using the device. TI
recommends using a GPIO signal from a host process or to drive PDB after all rails have settled in
customer designs.
• External control option: A momentary push-button switch, SW1, is available for manually driving the
PDB signal low while the button is held.
• Software control option: The PDB pin is also made available in the J24 and J26 CSI-2 output
connectors, allowing a host processor to control the PDB pin.
5
Use with DS90UB936-Q1
The DS90UB954-Q1EVM may also be used to evaluate the DS90UB936-Q1. The only modification
required is to swap the DS90UB954-Q1 with the DS90UB936-Q1.
12
DS90UB95x-Q1EVM Deserializer User's Guide
SNLU223A – August 2017 – Revised May 2019
Submit Documentation Feedback
Copyright © 2017–2019, Texas Instruments Incorporated
Typical Connection and Test Equipment
www.ti.com
6
Typical Connection and Test Equipment
The following is a list of typical test equipment that may be used to monitor the MIPI CSI-2 signals from
the DS90UB95x-Q1:
1. Logic Analyzer
2. Any SCOPE with a bandwidth of at least 4 GHz for observing differential signals.
3. UNH-IOL MIPI D-PHY Reference Termination Board (RTB)
4. UNH-IOL MIPI D-PHY/CSI/DSI Probing Board
5. UNH-IOL CSIGUI Tool
7
Termination Device
A termination device is required to properly monitor and measure the transmission of the MIPI DPHY
signals. The termination device should support the change of signals as it switches between LP and HS
modes. This can be provided by either a CSI-2 receiver or a dedicated dynamic termination board. The
recommended termination board is the UNH-IOL MIPI D-PHY Reference Termination Board (RTB).
8
Typical Test Setup
Figure 7 illustrates a typical test set up used to measure and evaluate DS90UB95x-Q1.
Figure 7. Typical Test Setup for Evaluation
SNLU223A – August 2017 – Revised May 2019
Submit Documentation Feedback
DS90UB95x-Q1EVM Deserializer User's Guide
Copyright © 2017–2019, Texas Instruments Incorporated
13
Equipment References
9
www.ti.com
Equipment References
NOTE: Please note that the following references are supplied only as a courtesy to our valued
customers. It is not intended to be an endorsement of any particular equipment or supplier.
Logic Analyzer:
Keysight Technologies
www.keysight.com
MIPI Test Fixtures:
University of New Hampshire InterOperability Laboratory (UNH-IOL)
www.iol.unh.edu/services/testing/mipi/fixtures.php
Aardvark I2C/SPI Host Adapter Part Number: TP240141
www.totalphase.com/products/aardvark_i2cspi
10
Cable References
FAKRA coaxial cable:
www.leoni-automotive-cables.com
Rosenberger FAKRA connector:
http://www.rosenberger.com/en/products/automotive/fakra.php
14
DS90UB95x-Q1EVM Deserializer User's Guide
SNLU223A – August 2017 – Revised May 2019
Submit Documentation Feedback
Copyright © 2017–2019, Texas Instruments Incorporated
Software for DS90UB95xQ1-EVM Evaluation - Analog LaunchPAD (ALP) Software Setup
www.ti.com
11
Software for DS90UB95xQ1-EVM Evaluation - Analog LaunchPAD (ALP) Software Setup
11.1 System Requirements
Operating System:
USB:
USB2ANY Firmware Version:
Windows 7 64-bit
USB2ANY (on-board, accessible
via mini USB connector)
2.5.2.0
Aardvark I2C/SPI host adapter
p/n TP240141
USB:
11.2 Download Contents
Latest TI Analog LaunchPAD can be downloaded from: http://www.ti.com/tool/alp.
Download and extract the zip file to a temporary location that can be deleted later.
The following installation instructions are for a PC running Windows 7 64-bit Operating System.
11.3 Installation of the ALP Software
Execute the ALP Setup Wizard program called “ALPF_setup_v_x_x_x.exe” that was extracted to a
temporary location on the local drive of your PC.
There are 7 steps to the installation once the setup wizard is started:
1. Select the "Next" button.
2. Select “I accept the agreement” and then select the “Next” button.
3. Select the location to install the ALP software and then select the “Next” button.
4. Select the location for the start menu shortcut and then select the “Next” button.
5. There will then be a screen that allows the creation of a desktop icon. After selecting the desired
choices select the “Next” button.
6. Select the “Install” button, and the software will then be installed to the selected location.
7. Uncheck “Launch Analog LaunchPAD” and select the “Finish” button. The ALP software will start if
“Launch Analog LaunchPAD” is checked, but it will not be useful until the USB driver is installed and
board is attached.
Power the DS90UB95x-Q1 EVM board with a 12 VDC power supply.
SNLU223A – August 2017 – Revised May 2019
Submit Documentation Feedback
DS90UB95x-Q1EVM Deserializer User's Guide
Copyright © 2017–2019, Texas Instruments Incorporated
15
Software for DS90UB95xQ1-EVM Evaluation - Analog LaunchPAD (ALP) Software Setup
www.ti.com
11.4 Startup - First Launch
Make sure all the software has been installed and the hardware is powered on and connected to the PC.
Execute “Analog LaunchPAD” shortcut from the start menu. The default start menu location is under All
Programs > Texas Instruments > Analog LaunchPAD vx.x.x > Analog LaunchPAD to start MainGUI.exe.
Figure 8. Launching ALP Splash Screen
Upon first launch of the Analog LaunchPAD utility, the default device will be DS90UB925. The active
device can be seen as highlighted in Figure 9, here showing the DS90UB95x as active. If the active
device is already set to DS90UB95x you may skip to Section 12.
Figure 9. Initial ALP Screen
16
DS90UB95x-Q1EVM Deserializer User's Guide
SNLU223A – August 2017 – Revised May 2019
Submit Documentation Feedback
Copyright © 2017–2019, Texas Instruments Incorporated
www.ti.com
Software for DS90UB95xQ1-EVM Evaluation - Analog LaunchPAD (ALP) Software Setup
Follow the steps beginning with Figure 10 to change the ALP profile to DS90UB95x.
Figure 10. Select USB2ANY/Aardvark Setup to Change Profile
SNLU223A – August 2017 – Revised May 2019
Submit Documentation Feedback
DS90UB95x-Q1EVM Deserializer User's Guide
Copyright © 2017–2019, Texas Instruments Incorporated
17
Software for DS90UB95xQ1-EVM Evaluation - Analog LaunchPAD (ALP) Software Setup
www.ti.com
Select the active profile and click "Remove". Scroll down the list of available profiles to DS90UB95x, click
to highlight it, click "Add", and click "Ok".
Figure 11. ALP Profiles Dialog
18
DS90UB95x-Q1EVM Deserializer User's Guide
SNLU223A – August 2017 – Revised May 2019
Submit Documentation Feedback
Copyright © 2017–2019, Texas Instruments Incorporated
www.ti.com
Software for DS90UB95xQ1-EVM Evaluation - Analog LaunchPAD (ALP) Software Setup
Figure 12. ALP Profiles Dialog (continued)
SNLU223A – August 2017 – Revised May 2019
Submit Documentation Feedback
DS90UB95x-Q1EVM Deserializer User's Guide
Copyright © 2017–2019, Texas Instruments Incorporated
19
Using ALP and DS90UB95x Profile
12
www.ti.com
Using ALP and DS90UB95x Profile
12.1 Information Tab
Under the Devices tab click on “DS90UB95x” to select the device and open up the device profile and its
associated tabs. After selecting the DS90UB95x, the following screen should appear. Figure 13 shows the
Information tab. The information tab shown assumes active and locked connection to a DS90UB953 on
RX0, and an open port on RX1.
Figure 13. ALP Information Tab
20
DS90UB95x-Q1EVM Deserializer User's Guide
SNLU223A – August 2017 – Revised May 2019
Submit Documentation Feedback
Copyright © 2017–2019, Texas Instruments Incorporated
Using ALP and DS90UB95x Profile
www.ti.com
12.2 Registers Tab
The Registers tab is shown in Figure 14. Note that the value of the currently selected register is populated
in the "Value: " box at the top. Figure 14 shows the register I2C_DEVICE_ID is reading a hexadecimal
value of 0x60.
Figure 14. ALP Registers Tab
SNLU223A – August 2017 – Revised May 2019
Submit Documentation Feedback
DS90UB95x-Q1EVM Deserializer User's Guide
Copyright © 2017–2019, Texas Instruments Incorporated
21
Using ALP and DS90UB95x Profile
www.ti.com
12.3 Registers Tab - Address 0x00 Expanded
By double clicking on the Address bar
or a single click on
can be expanded.
. Address 0x00 expanded reveals contents by bits. Any register address displayed
Figure 15. ALP Device ID Expanded
Any RW Type register can be written into by writing the hex value into the “Value:” box,
or
putting the pointer into the individual register bit(s) box by a left mouse click to put a check mark
(indicating a “1”) or unchecking to remove the check mark (indicating a “0”). Click the “Apply” button to
write to the register, and “refresh” to see the new value of the selected (highlighted) register.
The box toggles on every mouse click.
12.3.1
Port Specific Registers
Certain registers in the DS90UB95x-Q1 are port specific and have two copies, one for each FPD-Link RX
port. The "Select RX Port" drop-down menu controls which port's registers are read. If the "Write All RX
Ports" box is checked, both ports' registers will be written to. If it is not checked, only the port indicated by
the drop-down menu will be written to. These controls set the value of register 0x4C, which is used to set
which port is being read and which port(s) are being written to.
22
DS90UB95x-Q1EVM Deserializer User's Guide
SNLU223A – August 2017 – Revised May 2019
Submit Documentation Feedback
Copyright © 2017–2019, Texas Instruments Incorporated
Using ALP and DS90UB95x Profile
www.ti.com
12.4 Saving and Loading Register Settings
Register settings can be saved and later loaded to the device using the "Save" and "Load" buttons. To
save, click on the "Save" button, select the file location, and name the file. If desired, comments may be
recorded about the register settings . After the registers are saved, a dialog box will appear confirming that
the registers were saved successfully. To load saved registers, click the "Load" button and select the .nrd
file. Additional information about the register settings, including any comments, will be displayed in the
dialog box. After confirming these are the desired registers settings, a message will appear confirming that
the registers were successfully loaded.
1
2
Figure 16. Save Register Settings Step 1
SNLU223A – August 2017 – Revised May 2019
Submit Documentation Feedback
DS90UB95x-Q1EVM Deserializer User's Guide
Copyright © 2017–2019, Texas Instruments Incorporated
23
Using ALP and DS90UB95x Profile
www.ti.com
3
Figure 17. Save Register Settings Step 2
4
Figure 18. Save Register Settings Step 3
24
DS90UB95x-Q1EVM Deserializer User's Guide
SNLU223A – August 2017 – Revised May 2019
Submit Documentation Feedback
Copyright © 2017–2019, Texas Instruments Incorporated
Using ALP and DS90UB95x Profile
www.ti.com
1
2
Figure 19. Load Register Settings Step 1
3
Figure 20. Load Register Settings Step 2
SNLU223A – August 2017 – Revised May 2019
Submit Documentation Feedback
DS90UB95x-Q1EVM Deserializer User's Guide
Copyright © 2017–2019, Texas Instruments Incorporated
25
Using ALP and DS90UB95x Profile
www.ti.com
4
Figure 21. Load Register Settings Step 3
26
DS90UB95x-Q1EVM Deserializer User's Guide
SNLU223A – August 2017 – Revised May 2019
Submit Documentation Feedback
Copyright © 2017–2019, Texas Instruments Incorporated
Using ALP and DS90UB95x Profile
www.ti.com
12.5 Scripting Tab
Figure 22 shows the Scripting tab. The script window provides a full Python scripting environment which
can be for running scripts and interacting with the device in an interactive or automated fashion.
Commands may be written directly into the Scripting tab or may be run from a .py file using the "Run"
button. Example scripts may be found using the "Run PreDef Script" button.
Figure 22. ALP Scripting Tab
SNLU223A – August 2017 – Revised May 2019
Submit Documentation Feedback
DS90UB95x-Q1EVM Deserializer User's Guide
Copyright © 2017–2019, Texas Instruments Incorporated
27
Using ALP and DS90UB95x Profile
www.ti.com
Figure 23. Pre-Defined Scripts
It is also possible to create custom buttons on the Scripting tab to run a desired script. To do so, click on
the "Setup" button, then say "Add", and select the desired name and script. To make the button appear in
future instances of ALP, click the "Set As Default" button.
28
DS90UB95x-Q1EVM Deserializer User's Guide
SNLU223A – August 2017 – Revised May 2019
Submit Documentation Feedback
Copyright © 2017–2019, Texas Instruments Incorporated
Using ALP and DS90UB95x Profile
www.ti.com
1
3
4
2
5
Figure 24. Custom Button Creation Step 1
7
6
Figure 25. Custom Button Creation Step 2
SNLU223A – August 2017 – Revised May 2019
Submit Documentation Feedback
DS90UB95x-Q1EVM Deserializer User's Guide
Copyright © 2017–2019, Texas Instruments Incorporated
29
Using ALP and DS90UB95x Profile
www.ti.com
WARNING
Directly interacting with devices either through register
modifications or calling device support library functions can effect
the performance and/or functionality of the user interface and may
even crash the ALP Framework application.
12.5.1
Example Functions
The following are Python functions commonly used to interact with FPD-Link devices.
12.5.1.1
Local I2C Reads/Writes
These functions will perform reads and writes only for the I2C assigned to board.devAddr, which by
default will be the detected address for the DS90UB95x-Q1.
board.ReadReg(Register Address , # of Bytes) OR board.ReadReg(Register Address)— I2C Read
Command
• Accepts both hex & decimal inputs
• Number of bytes will default to 1 if omitted
• Ex: board.ReadReg(0x00) will return the value in Register 0 for the local device
board.WriteReg(Register Address , Data) — I2C Write Command
• Accepts both hex & decimal inputs
• Ex: board.WriteReg(0x01, 0x01) will set Register 0 to have a value of 1
board.devAddr = [I2C Address]— Assigns I2C address to be used for board.ReadReg and
board.WriteReg commands
• Accepts both hex & decimal inputs
• Uses the 8-bit form of the I2C address
• Can be used to shorten read/write commands
• Ex: board.devAddress = 0x60 sets the board address to 0x60
12.5.1.2
General I2C Reads/Writes:
These I2C commands will work for any I2C address on the local bus and remote devices configured in the
slave ID and slave alias registers of the device. The 8-bit form of I2C addresses should be used.
board.ReadI2C(Device Address, Register Address , # of Bytes) OR board.ReadI2C(Device Address,
Register Address) — I2C Read Command
• Accepts both hex & decimal inputs
• Number of bytes will default to 1 if omitted
• Ex: board.ReadI2C(0x60, 0x00) will return the value in Register 0 for the device with address
0x60 (8-bit form)
board.WriteI2C(Device Address, Register Address , Data) — I2C Write Command
• Accepts both hex & decimal inputs
• Ex: board.WriteI2C(0x60, 0x01, 0x01) will set Register 1 of the device with address 0x60 (8-bit
form) to have a value of 1
12.5.1.3
I2C Reads/Writes with Multi-Byte Register Addresses
These I2C commands will work for any I2C address on the local bus and remote devices configured in the
slave ID and slave alias registers of the device. The 8-bit form of I2C addresses should be used.
30
DS90UB95x-Q1EVM Deserializer User's Guide
SNLU223A – August 2017 – Revised May 2019
Submit Documentation Feedback
Copyright © 2017–2019, Texas Instruments Incorporated
Using ALP and DS90UB95x Profile
www.ti.com
board.ReadI2C(Device Address, Register Address Byte 2,[Register Address Byte 1, # of Bytes]) OR
board.ReadI2C(Device Address, Register Address Byte 2, [Register Address Byte 1]) — I2C
Read Command for devices with multi-byte register addresses
• Accepts both hex & decimal inputs
• Number of bytes will default to 1 if omitted
• Ex: board.ReadI2C(0x60, 0x30, [0x00]) will return the value in Register 0x3000 for the device
with address 0x60 (8-bit form)
board.WriteI2C(Device Address, Register Address Byte 2, [Register Address Byte 1, Data])— I2C
Write Command for devices with multi-byte register addresses
• Accepts both hex & decimal inputs
• Number of bytes will default to 1 if omitted
• • Ex: board.WriteI2C(0x60, 0x30, [0x01, 0x01]) will set Register 0x3000 of the device with
address 0x60 (8-bit form) to have a value of 1
SNLU223A – August 2017 – Revised May 2019
Submit Documentation Feedback
DS90UB95x-Q1EVM Deserializer User's Guide
Copyright © 2017–2019, Texas Instruments Incorporated
31
Using ALP and DS90UB95x Profile
www.ti.com
12.6 GPIO Tab
Figure 26 shows the GPIO tab. This tab may be used to configure the DS90UB95x-Q1 GPIO pins,
including the configuration of back channel GPIOs, and FrameSync generation.
Figure 26. GPIO Tab
32
DS90UB95x-Q1EVM Deserializer User's Guide
SNLU223A – August 2017 – Revised May 2019
Submit Documentation Feedback
Copyright © 2017–2019, Texas Instruments Incorporated
Using ALP and DS90UB95x Profile
www.ti.com
12.7 Forwarding Tab
Figure 27 shows the Forwarding tab. This tab may be used to configure the forwarding of CSI-2 data.
Figure 27. Forwarding Tab
SNLU223A – August 2017 – Revised May 2019
Submit Documentation Feedback
DS90UB95x-Q1EVM Deserializer User's Guide
Copyright © 2017–2019, Texas Instruments Incorporated
33
Using ALP and DS90UB95x Profile
www.ti.com
12.8 CSI Registers Tab
Figure 28 shows the CSI Registers tab. This tab operates in the same way as the Registers tab, but holds
the indirect access registers used to configure pattern generation.
Figure 28. CSI Registers Tab
34
DS90UB95x-Q1EVM Deserializer User's Guide
SNLU223A – August 2017 – Revised May 2019
Submit Documentation Feedback
Copyright © 2017–2019, Texas Instruments Incorporated
Using ALP and DS90UB95x Profile
www.ti.com
12.9
Remote Registers Tab
Figure 29 shows the Remote Registers tab. This tab may be used to read and write to the registers of the
partner serializer. The RX Port selection drop-down controls which serializer is communicated with, the
serializer connect to Port 0 or the serializer connected to Port 1.
Figure 29. Remote Registers Tab
SNLU223A – August 2017 – Revised May 2019
Submit Documentation Feedback
DS90UB95x-Q1EVM Deserializer User's Guide
Copyright © 2017–2019, Texas Instruments Incorporated
35
Troubleshooting ALP Software
13
www.ti.com
Troubleshooting ALP Software
13.1 ALP Does Not Detect The EVM
If the following window opens after starting the ALP software, double check the hardware setup.
Figure 30. ALP No Devices Error
It may also be that the USB2ANY driver is not installed. Check the device manager. There should be a
“HID-compliant device” under the “Human Interface Devices” as shown in Figure 31.
Figure 31. Windows 7, ALP USB2ANY Driver
The software should start with only “DS90UB95x” in the “Devices” pull down menu. If there are more
devices then the software is most likely in demo mode. When the ALP is operating in demo mode there is
a “(Demo Mode)” indication in the lower left of the application status bar as shown in Figure 32.
36
DS90UB95x-Q1EVM Deserializer User's Guide
SNLU223A – August 2017 – Revised May 2019
Submit Documentation Feedback
Copyright © 2017–2019, Texas Instruments Incorporated
Troubleshooting ALP Software
www.ti.com
Figure 32. ALP in Demo Mode
Disable the demo mode by selecting the “Preferences” pull down menu and un-checking “Enable Demo
Mode”.
Figure 33. ALP Preferences Menu
After demo mode is disabled, the ALP software will poll the ALP hardware. The ALP software will update
and have only “DS90UB95x” under the “Devices” pull down menu.
13.2 USB2ANY Firmware Issues
If upon plugging in the board to the PC, the user is presented with a message stating USB2ANY firmware
is out of date or is 0.0.0.0, similar to Figure 34, try unplugging the USB cable and plugging it in again
(holding S1 while plugging in the USB cable puts the USB2ANY into firmware update mode). If that does
not solve the problem you will have to re-flash the on-board USB2ANY firmware. To re-flash the
USB2ANY, download USB2ANY Explorer USB2ANY Explorer Installer v2.7.0.0 and install the application.
Launch the USB2ANY Firmware Loader available at "C:\Program Files (x86)\TI USB2ANY
SDK\bin\USB2ANY Firmware Loader.exe" and follow the instructions to flash the latest version of
USB2ANY firmware. The firmware loading screen is shown in Figure 35.
SNLU223A – August 2017 – Revised May 2019
Submit Documentation Feedback
DS90UB95x-Q1EVM Deserializer User's Guide
Copyright © 2017–2019, Texas Instruments Incorporated
37
Troubleshooting ALP Software
www.ti.com
Figure 34. USB2ANY Firmware Update Notice
Figure 35. USB2ANY Firmware Update Procedure
38
DS90UB95x-Q1EVM Deserializer User's Guide
SNLU223A – August 2017 – Revised May 2019
Submit Documentation Feedback
Copyright © 2017–2019, Texas Instruments Incorporated
www.ti.com
14
DS90UB95x-Q1EVM PCB Schematics, Layout and Bill of Materials - DS90UB95x-Q1EVM Schematic
DS90UB95x-Q1EVM PCB Schematics, Layout and Bill of Materials - DS90UB95x-Q1EVM Schematic
Figure 36. DS90UB95x-Q1EVM Block Diagram
SNLU223A – August 2017 – Revised May 2019
Submit Documentation Feedback
DS90UB95x-Q1EVM Deserializer User's Guide
Copyright © 2017–2019, Texas Instruments Incorporated
39
DS90UB95x-Q1EVM PCB Schematics, Layout and Bill of Materials - DS90UB95x-Q1EVM Schematic
www.ti.com
Figure 37. DS90UB95x-Q1EVM Main Circuit - Page 1
40
DS90UB95x-Q1EVM Deserializer User's Guide
SNLU223A – August 2017 – Revised May 2019
Submit Documentation Feedback
Copyright © 2017–2019, Texas Instruments Incorporated
www.ti.com
DS90UB95x-Q1EVM PCB Schematics, Layout and Bill of Materials - DS90UB95x-Q1EVM Schematic
Figure 38. DS90UB95x-Q1EVM CSI-2 Connectors - Page 2
SNLU223A – August 2017 – Revised May 2019
Submit Documentation Feedback
DS90UB95x-Q1EVM Deserializer User's Guide
Copyright © 2017–2019, Texas Instruments Incorporated
41
DS90UB95x-Q1EVM PCB Schematics, Layout and Bill of Materials - DS90UB95x-Q1EVM Schematic
www.ti.com
Figure 39. DS90UB95x-Q1EVM PoC Circuits - Page 3
42
DS90UB95x-Q1EVM Deserializer User's Guide
SNLU223A – August 2017 – Revised May 2019
Submit Documentation Feedback
Copyright © 2017–2019, Texas Instruments Incorporated
www.ti.com
DS90UB95x-Q1EVM PCB Schematics, Layout and Bill of Materials - DS90UB95x-Q1EVM Schematic
Figure 40. DS90UB95x-Q1EVM Power Distribution Circuits - Page 4
SNLU223A – August 2017 – Revised May 2019
Submit Documentation Feedback
DS90UB95x-Q1EVM Deserializer User's Guide
Copyright © 2017–2019, Texas Instruments Incorporated
43
DS90UB95x-Q1EVM PCB Schematics, Layout and Bill of Materials - DS90UB95x-Q1EVM Schematic
www.ti.com
Figure 41. DS90UB95x-Q1EVM LED Circuits - Page 5
44
DS90UB95x-Q1EVM Deserializer User's Guide
SNLU223A – August 2017 – Revised May 2019
Submit Documentation Feedback
Copyright © 2017–2019, Texas Instruments Incorporated
www.ti.com
DS90UB95x-Q1EVM PCB Schematics, Layout and Bill of Materials - DS90UB95x-Q1EVM Schematic
Figure 42. DS90UB95x-Q1EVM USB2ANY Circuits - Page 6
SNLU223A – August 2017 – Revised May 2019
Submit Documentation Feedback
DS90UB95x-Q1EVM Deserializer User's Guide
Copyright © 2017–2019, Texas Instruments Incorporated
45
DS90UB95x-Q1EVM PCB Schematics, Layout and Bill of Materials - DS90UB95x-Q1EVM Schematic
www.ti.com
Figure 43. DS90UB95x-Q1EVM Miscellaneous Hardware
46
DS90UB95x-Q1EVM Deserializer User's Guide
SNLU223A – August 2017 – Revised May 2019
Submit Documentation Feedback
Copyright © 2017–2019, Texas Instruments Incorporated
DS90UB95x-Q1 EVM PCB Layout
www.ti.com
15
DS90UB95x-Q1 EVM PCB Layout
Figure 44. Top View Composite
SNLU223A – August 2017 – Revised May 2019
Submit Documentation Feedback
DS90UB95x-Q1EVM Deserializer User's Guide
Copyright © 2017–2019, Texas Instruments Incorporated
47
DS90UB95x-Q1 EVM PCB Layout
www.ti.com
Figure 45. Layer 1: Top Signal Layer
48
DS90UB95x-Q1EVM Deserializer User's Guide
SNLU223A – August 2017 – Revised May 2019
Submit Documentation Feedback
Copyright © 2017–2019, Texas Instruments Incorporated
DS90UB95x-Q1 EVM PCB Layout
www.ti.com
Figure 46. Layer 2: GND Plane 1
SNLU223A – August 2017 – Revised May 2019
Submit Documentation Feedback
DS90UB95x-Q1EVM Deserializer User's Guide
Copyright © 2017–2019, Texas Instruments Incorporated
49
DS90UB95x-Q1 EVM PCB Layout
www.ti.com
Figure 47. Layer 3: Mid Signal Layer 1
50
DS90UB95x-Q1EVM Deserializer User's Guide
SNLU223A – August 2017 – Revised May 2019
Submit Documentation Feedback
Copyright © 2017–2019, Texas Instruments Incorporated
DS90UB95x-Q1 EVM PCB Layout
www.ti.com
Figure 48. Layer 4: GND Plane 2
SNLU223A – August 2017 – Revised May 2019
Submit Documentation Feedback
DS90UB95x-Q1EVM Deserializer User's Guide
Copyright © 2017–2019, Texas Instruments Incorporated
51
DS90UB95x-Q1 EVM PCB Layout
www.ti.com
Figure 49. Layer 5: GND Plane 3
52
DS90UB95x-Q1EVM Deserializer User's Guide
SNLU223A – August 2017 – Revised May 2019
Submit Documentation Feedback
Copyright © 2017–2019, Texas Instruments Incorporated
DS90UB95x-Q1 EVM PCB Layout
www.ti.com
Figure 50. Layer 6: Mid Signal Layer 2
SNLU223A – August 2017 – Revised May 2019
Submit Documentation Feedback
DS90UB95x-Q1EVM Deserializer User's Guide
Copyright © 2017–2019, Texas Instruments Incorporated
53
DS90UB95x-Q1 EVM PCB Layout
www.ti.com
Figure 51. Layer 7: GND Plane 4
54
DS90UB95x-Q1EVM Deserializer User's Guide
SNLU223A – August 2017 – Revised May 2019
Submit Documentation Feedback
Copyright © 2017–2019, Texas Instruments Incorporated
DS90UB95x-Q1 EVM PCB Layout
www.ti.com
Figure 52. Layer 8: Bottom Signal Layer
SNLU223A – August 2017 – Revised May 2019
Submit Documentation Feedback
DS90UB95x-Q1EVM Deserializer User's Guide
Copyright © 2017–2019, Texas Instruments Incorporated
55
DS90UB95x-Q1 EVM PCB Layout
www.ti.com
Figure 53. Bottom View Composite
56
DS90UB95x-Q1EVM Deserializer User's Guide
SNLU223A – August 2017 – Revised May 2019
Submit Documentation Feedback
Copyright © 2017–2019, Texas Instruments Incorporated
DS90UB95xQ1-EVM Bill of Materials
www.ti.com
16
DS90UB95xQ1-EVM Bill of Materials
Table 13. DS90UB95x-Q1EVM BOM
ITEM
QTY
DESIGNATOR
1
1
!PCB1
2
2
C1, C8
3
1
4
PART NUMBER
MANUFACT
URER
DESCRIPTION
HSDC007
Any
Printed Circuit Board
220pF
06035A221FAT2A
AVX
CAP, CERM, 220 pF, 50 V, +/- 1%,
C0G/NP0, 0603
C2
0.01uF
C1608X7R1H103K080AA
TDK
CAP, CERM, 0.01 µF, 50 V, +/10%, X7R, 0603
5
C3, C13, C14,
C75, C111
0.1uF
0603YC104JAT2A
AVX
CAP, CERM, 0.1 µF, 16 V, +/- 5%,
X7R, 0603
5
2
C4, C12
0.1uF
GRM155R71C104KA88D
MuRata
CAP, CERM, 0.1 µF, 16 V, +/10%, X7R, 0402
6
1
C5
1uF
C0805C105K3RACTU
Kemet
CAP, CERM, 1 µF, 25 V, +/- 10%,
X7R, 0805
7
1
C6
2.2uF
0805YD225KAT2A
AVX
CAP, CERM, 2.2 µF, 16 V, +/10%, X5R, 0805
8
1
C7
22uF
EEE-1AA220WR
Panasonic ECG
CAP ALUM 22UF 10V 20% SMD
9
2
C9, C10
30pF
GRM1885C2A300JA01D
MuRata
CAP, CERM, 30 pF, 100 V, +/- 5%,
C0G/NP0, 0603
10
1
C11
2200pF
C0603X222K5RACTU
Kemet
CAP, CERM, 2200 pF, 50 V, +/10%, X7R, 0603
11
4
C15, C19, C105,
C109
4.7uF
GRM21BR71C475KA73L
MuRata
CAP, CERM, 4.7uF, 16V, +/-10%,
X7R, 0805
12
5
C16, C20, C110,
C114, C123
10uF
GRM21BR71A106KE51L
MuRata
CAP, CERM, 10uF, 10V, +/-10%,
X7R, 0805
13
12
C17, C18, C21,
C22, C51, C113,
C116, C117,
C121, C122,
C125, C128
0.1uF
GRM155R71C104KA88D
MuRata
CAP, CERM, 0.1uF, 16V, +/-10%,
X7R, 0402
14
1
C23
10pF
GRM1555C1H100JA01D
MuRata
CAP, CERM, 10pF, 50V, +/-5%,
C0G/NP0, 0402
15
1
C24
3300pF
GRM155R71H332KA01D
MuRata
CAP, CERM, 3300pF, 50V, +/10%, X7R, 0402
16
2
C25, C124
1uF
GCM188R71C105KA64D
MuRata
CAP, CERM, 1 µF, 16 V, +/- 10%,
X7R, AEC-Q200 Grade 1, 0603
17
9
C26, C28, C30,
1uF
C31, C101, C102,
C104, C119,
C120
GRM185R61C105KE44D
MuRata
CAP, CERM, 1 µF, 16 V, +/- 10%,
X5R, 0603
18
1
C27
10uF
GRM188R61E106MA73D
MuRata
CAP, CERM, 10 µF, 25 V, +/20%, X5R, 0603
19
14
C29,
C41,
C53,
C67,
C87,
22uF
GRT31CR61E226KE01L
MuRata
CAP, CERM, 22 µF, 25 V,+/- 10%,
X5R, AEC-Q200 Grade 3, 1206
20
2
C32, C35
22uF
GRT31CR61E226KE01L
MuRata
CAP, CERM, 22 µF, 25 V, +/10%, X5R, AEC-Q200 Grade 3,
1206
21
8
C33, C42, C47,
C63, C66, C71,
C78, C79
0.1uF
CGA2B3X7R1H104K050BB
TDK
CAP, CERM, 0.1 µF, 50 V, +/10%, X7R, AEC-Q200 Grade 1,
0402
22
4
C36, C43, C61,
C72
4.7uF
C0805C475K3PACTU
Kemet
CAP, CERM, 4.7 µF, 25 V, +/10%, X5R, 0805
C34,
C48,
C54,
C81,
C93
VALUE
C40,
C49,
C62,
C86,
SNLU223A – August 2017 – Revised May 2019
Submit Documentation Feedback
DS90UB95x-Q1EVM Deserializer User's Guide
Copyright © 2017–2019, Texas Instruments Incorporated
57
DS90UB95xQ1-EVM Bill of Materials
www.ti.com
Table 13. DS90UB95x-Q1EVM BOM (continued)
58
ITEM
QTY
DESIGNATOR
VALUE
PART NUMBER
MANUFACT
URER
DESCRIPTION
23
9
C37, C44, C45,
C60, C64, C65,
C68, C77, C80
0.01uF
GCM155R71H103KA55D
MuRata
CAP, CERM, 0.01uF, 50V, +/-10%,
C0G/NP0, 0402
24
3
C38, C39, C83
0.033uF CGA2B3X7R1H333K050BB
TDK
CAP, CERM, 0.033 µF, 50 V, +/10%, X7R, AEC-Q200 Grade 1,
0402
25
8
C46, C59, C73,
1uF
C82, C100, C103,
C112, C118
C1005JB1V105K050BC
TDK
CAP, CERM, 1 µF, 35 V, +/- 10%,
JB, 0402
26
2
C50, C106
0.1uF
C1005X5R1H104K050BB
TDK
CAP, CERM, 0.1 µF, 50 V, +/10%, X5R, 0402
27
4
C52, C56, C130,
C131
4700pF
08051C472KAT2A
AVX
CAP, CERM, 4700 pF, 100 V, +/10%, X7R, 0805
28
2
C55, C58
12pF
GRM1555C1E120JA01D
MuRata
CAP, CERM, 12pF, 25V, +/-5%,
C0G/NP0, 0402
29
3
C57, C88, C92
10uF
CL21A106KAFN3NE
Samsung
CAP, CERM, 10 µF, 25 V, +/10%, X5R, 0805
30
4
C69, C94, C99,
C127
22uF
293D226X0025D2TE3
VishaySprague
CAP, TA, 22uF, 25V, +/-20%, 0.7
ohm, SMD
31
5
C70, C85, C90,
C96, C98
0.1uF
C1005X7R1H104K050BB
TDK
CAP, CERM, 0.1 µF, 50 V, +/10%, X7R, 0402
32
1
C74
0.01uF
06031C103KAT2A
AVX
CAP, CERM, 0.01 µF, 100 V, +/10%, X7R, 0603
33
1
C76
0.047uF C1005X7R1H473K050BB
TDK
CAP, CERM, 0.047 µF, 50 V, +/10%, X7R, 0402
34
1
C84
0.015uF CGA2B3X7R1H153K050BB
TDK
CAP, CERM, 0.015 µF, 50 V, +/10%, X7R, AEC-Q200 Grade 1,
0402
35
4
C89, C91, C95,
C97
10uF
C1608X5R1E106M080AC
TDK
CAP, CERM, 10 µF, 25 V, +/20%, X5R, 0603
36
1
C107
47uF
GRM32ER61C476ME15L
MuRata
CAP, CERM, 47uF, 16V, +/-20%,
X5R, 1210
37
1
C108
100uF
T495D107M016ATE100
Kemet
CAP, TA, 100uF, 16V, +/-20%, 0.1
ohm, SMD
38
1
C115
0.01uF
06031C103JAT2A
AVX
CAP, CERM, 0.01uF, 100V, +/-5%,
X7R, 0603
39
1
C126
0.47uF
GRM188R71A474KA61D
MuRata
CAP, CERM, 0.47 µF, 10 V, +/10%, X7R, 0603
40
1
C129
2.2uF
293D225X9025A2TE3
VishaySprague
CAP, TA, 2.2uF, 25V, +/-10%, 6.3
ohm, SMD
41
9
D1, D8, D10, D11, Green
D12, D13, D14,
D15, D16
150060VS75000
Wurth
Elektronik
eiSos
LED, Green, SMD
42
1
D2
7.5V
1SMB5922BT3G
ON
Diode, Zener, 7.5 V, 550 mW,
Semiconduct SMB
or
43
3
D3, D4, D5
Super
Red
150060SS75000
Wurth
Elektronik
eiSos
LED, Super Red, SMD
44
3
D6, D7, D9
Orange
LTST-C190KFKT
Lite-On
LED, Orange, SMD
45
1
D17
40V
1N5819HW-7-F
Diodes Inc.
Diode, Schottky, 40V, 1A, SOD123
46
1
F1
0440002.WR
Littelfuse
Fuse, 2 A, 32 V, SMD
47
1
FB1
BK1608HS600-T
Taiyo Yuden
Ferrite Bead, 60 ohm @ 100 MHz,
0.8 A, 0603
60 ohm
DS90UB95x-Q1EVM Deserializer User's Guide
SNLU223A – August 2017 – Revised May 2019
Submit Documentation Feedback
Copyright © 2017–2019, Texas Instruments Incorporated
DS90UB95xQ1-EVM Bill of Materials
www.ti.com
Table 13. DS90UB95x-Q1EVM BOM (continued)
ITEM
QTY
DESIGNATOR
48
6
49
VALUE
PART NUMBER
MANUFACT
URER
DESCRIPTION
FID1, FID2, FID3,
FID4, FID5, FID6
N/A
N/A
Fiducial mark. There is nothing to
buy or mount.
1
H1
BMI-S-201-F
Laird
EMI SHIELD, 13.66 x 12.70 mm,
SMT
50
4
H1, H2, H5, H6
NY PMS 440 0025 PH
BF Fastener
Supply
Machine Screw, Round, 4-40 x 1/4,
Nylon, Philips panhead
51
1
J1
PJ-102A
CUI Inc.
Connector, DC Jack 2.1X5.5 mm,
TH
52
1
J2
1734035-2
TE
Connectivity
Connector, Receptacle, Mini-USB
Type B, R/A, Top Mount SMT
53
7
J3, J13, J14, J17,
J18, J23, J28
5-146261-1
TE
Connectivity
Header, 100mil, 2x1, Gold plated,
TH
54
5
J6, J9, J10, J12,
J16
TSW-103-07-G-S
Samtec, Inc.
Header, TH, 100mil, 3x1, Gold
plated, 230 mil above insulator
55
1
J7
TSW-102-07-G-D
Samtec
Header, 100mil, 2x2, Gold, TH
56
4
J8, J11, J15, J27
TSW-104-07-G-D
Samtec
Header, 100mil, 4x2, Gold, TH
57
1
J21
MMCX-J-P-H-ST-TH1
Samtec
Connector, MMCX 50 ohm, TH
58
1
J22
TSW-110-07-G-D
Samtec
Header, 100mil, 10x2, Gold, TH
59
1
J24
QSH-020-01-H-D-DP-A
Samtec
Receptacle, Differential, 0.5mm, 10
pair x2, Gold, SMT
60
1
J25
0022112042
Molex
Header, 100mil, 4x1, White, TH
61
1
J26
QTH-020-04-L-D-DP-A
Samtec
Header(shrouded), 0.5mm, 10 pair
x 2, Gold, SMT
62
3
J29, J30, J31
59S20X-40ML5-Z
Rosenberger Connector, RF, 50 Ohm, R/A, TH
63
8
L1, L2, L3, L4, L5, 120
L6, L7, L8
ohm
BLM18SG121TN1D
MuRata
Ferrite Bead, 120 ohm @ 100
MHz, 3 A, 0603
64
2
L10, L18
100uH
CLF6045NIT-101M-D
TDK
Inductor, Wirewound, Ferrite, 100
µH, 0.61 A, 0.32 ohm, AEC-Q200
Grade 0, SMD
65
1
L11
10uH
LQH3NPN100NG0
MuRata
Inductor, Wirewound, Ferrite, 10
µH, 0.5 A, 0.57 ohm, SMD
66
1
L12
DLW21SN900HQ2L
MuRata
Coupled inductor, 0.28 A, 0.41
ohm, +/- 25%, SMD
67
2
L13, L20
1000
ohm
BLM18AG102SN1D
MuRata
Ferrite Bead, 1000 ohm @ 100
MHz, 0.4 A, 0603
68
1
L14
330
ohm
MPZ1005S331ETD25
TDK
Ferrite Bead, 330 ohm @ 100
MHz, 0.7 A, 0402
69
2
L15, L16
1500
ohm
BLM18HE152SN1D
MuRata
Ferrite Bead, 1500 ohm @ 100
MHz, 0.5 A, 0603
70
1
L17
47 ohm
MPZ1005F470ETD25
TDK
Ferrite Bead, 47 ohm @ 100 MHz,
0.45 A, 0402
71
1
L19
10uH
LQH3NPN100MJRL
MuRata
Inductor, Wirewound, Ferrite, 10
µH, 0.81 A, 0.24 ohm, SMD
72
1
L21
4.7uH
7440650047
Wurth
Elektronik
Inductor, Shielded Drum Core,
Ferrite, 4.7 µH, 4.2 A, 0.02 ohm,
SMD
73
2
Q1, Q2
50V
BSS138
Fairchild
MOSFET, N-CH, 50 V, 0.22 A,
Semiconduct SOT-23
or
74
1
R1
200
CRCW0603200RFKEA
Vishay-Dale
RES, 200, 1%, 0.1 W, 0603
75
1
R2
1.5k
CRCW04021K50JNED
Vishay-Dale
RES, 1.5k ohm, 5%, 0.063W, 0402
76
2
R3, R10
33k
CRCW040233K0JNED
Vishay-Dale
RES, 33k ohm, 5%, 0.063W, 0402
77
1
R4
1.2Meg
CRCW06031M20JNEA
Vishay-Dale
RES, 1.2 M, 5%, 0.1 W, 0603
SNLU223A – August 2017 – Revised May 2019
Submit Documentation Feedback
DS90UB95x-Q1EVM Deserializer User's Guide
Copyright © 2017–2019, Texas Instruments Incorporated
59
DS90UB95xQ1-EVM Bill of Materials
www.ti.com
Table 13. DS90UB95x-Q1EVM BOM (continued)
60
ITEM
QTY
DESIGNATOR
78
12
79
VALUE
PART NUMBER
MANUFACT
URER
DESCRIPTION
R5, R6, R29, R30, 0
R32, R35, R48,
R75, R82, R85,
R86, R130
ERJ-2GE0R00X
Panasonic
RES, 0, 5%, 0.063 W, 0402
25
R7, R33, R34,
R38, R39, R40,
R41, R42, R43,
R44, R45, R46,
R47, R60, R61,
R62, R63, R64,
R65, R66, R67,
R68, R69, R71,
R72
0
ERJ-1GE0R00C
Panasonic
RES, 0, 5%, 0.05 W, 0201
80
7
R8, R11, R12,
R54, R55, R78,
R115
0
ERJ-2GE0R00X
Panasonic
RES, 0 ohm, 5%, 0.063W, 0402
81
1
R9
10.0k
CRCW040210K0FKED
Vishay-Dale
RES, 10.0 k, 1%, 0.063 W, 0402
82
4
R13, R19, R21,
R112
3.24k
CRCW04023K24FKED
Vishay-Dale
RES, 3.24k ohm, 1%, 0.063W,
0402
83
1
R14
124k
CRCW0402124KFKED
Vishay-Dale
RES, 124k ohm, 1%, 0.063W,
0402
84
5
R15, R76, R123,
R124, R133
100k
CRCW0402100KJNED
Vishay-Dale
RES, 100k ohm, 5%, 0.063W,
0402
85
4
R16, R25, R87,
R125
10k
CRCW040210K0JNED
Vishay-Dale
RES, 10k ohm, 5%, 0.063W, 0402
86
14
R17, R22, R26,
0
R50, R51, R56,
R57, R103, R106,
R109, R113,
R122, R126,
R129
CRCW06030000Z0EA
Vishay-Dale
RES, 0 ohm, 5%, 0.1W, 0603
87
1
R18
29.4k
CRCW040229K4FKED
Vishay-Dale
RES, 29.4 k, 1%, 0.063 W, 0402
88
7
R20, R74, R79,
R102, R107,
R111, R132
10.0k
CRCW040210K0FKED
Vishay-Dale
RES, 10.0k ohm, 1%, 0.063W,
0402
89
2
R23, R105
34.0k
CRCW040234K0FKED
Vishay-Dale
RES, 34.0 k, 1%, 0.063 W, 0402
90
1
R24
100
ERJ-2RKF1000X
Panasonic
RES, 100, 1%, 0.1 W, 0402
91
5
R27, R28, R37,
R88, R95
0
CRCW02010000Z0ED
Vishay-Dale
RES, 0, 5%, 0.05 W, 0201
92
1
R31
50
504L50R0FTNCFT
AT Ceramics RES, 50, 1%, 0.125 W, AEC-Q200
Grade 1, 0402
93
3
R36, R52, R53
4.7k
CRCW04024K70JNED
Vishay-Dale
RES, 4.7k ohm, 5%, 0.063W, 0402
94
1
R49
10.0k
ERJ-2RKF1002X
Panasonic
RES, 10.0 k, 1%, 0.1 W, 0402
95
10
R58, R59, R70,
R77, R80, R81,
R89, R91, R101,
R104
220
CRCW0402220RJNED
Vishay-Dale
RES, 220, 5%, 0.063 W, 0402
96
1
R73
470
CRCW0402470RJNED
Vishay-Dale
RES, 470 ohm, 5%, 0.063W, 0402
97
3
R83, R100, R108
4.02k
CRCW06034K02FKEA
Vishay-Dale
RES, 4.02 k, 1%, 0.1 W, 0603
98
1
R84
0
CRCW06030000Z0EA
Vishay-Dale
RES, 0, 5%, 0.1 W, 0603
99
1
R90
49.9
CRCW020149R9FKED
Vishay-Dale
RES, 49.9, 1%, 0.05 W, 0201
100
2
R92, R94
470
CRCW0402470RJNED
Vishay-Dale
RES, 470, 5%, 0.063 W, 0402
101
1
R93
22.1k
CRCW040222K1FKED
Vishay-Dale
RES, 22.1k ohm, 1%, 0.063W,
0402
102
1
R96
49.9
ERJ-2RKF49R9X
Panasonic
RES, 49.9, 1%, 0.1 W, AEC-Q200
Grade 0, 0402
DS90UB95x-Q1EVM Deserializer User's Guide
SNLU223A – August 2017 – Revised May 2019
Submit Documentation Feedback
Copyright © 2017–2019, Texas Instruments Incorporated
DS90UB95xQ1-EVM Bill of Materials
www.ti.com
Table 13. DS90UB95x-Q1EVM BOM (continued)
ITEM
QTY
DESIGNATOR
VALUE
PART NUMBER
MANUFACT
URER
DESCRIPTION
103
2
R97, R98
2.4k
CRCW04022K40JNED
Vishay-Dale
RES, 2.4 k, 5%, 0.063 W, 0402
104
2
R99, R110
5.6k
CRCW04025K60JNED
Vishay-Dale
RES, 5.6 k, 5%, 0.063 W, 0402
105
1
R114
10k
CRCW040210K0JNED
Vishay-Dale
RES, 10 k, 5%, 0.063 W, 0402
106
1
R116
25.5k
CRCW040225K5FKED
Vishay-Dale
RES, 25.5 k, 1%, 0.063 W, 0402
107
1
R117
95.3k
CRCW040295K3FKED
Vishay-Dale
RES, 95.3 k, 1%, 0.063 W, 0402
108
1
R118
39.2k
CRCW040239K2FKED
Vishay-Dale
RES, 39.2 k, 1%, 0.063 W, 0402
109
2
R119, R120
78.7k
CRCW040278K7FKED
Vishay-Dale
RES, 78.7 k, 1%, 0.063 W, 0402
110
1
R121
97.6k
CRCW040297K6FKED
Vishay-Dale
RES, 97.6 k, 1%, 0.063 W, 0402
111
1
R127
1.87k
CRCW04021K87FKED
Vishay-Dale
RES, 1.87k ohm, 1%, 0.063W,
0402
112
1
R128
4.99k
CRCW04024K99FKED
Vishay-Dale
RES, 4.99k ohm, 1%, 0.063W,
0402
113
1
R131
33.2k
CRCW040233K2FKED
Vishay-Dale
RES, 33.2 k, 1%, 0.063 W, 0402
114
2
R134, R135
33
CRCW040233R0JNED
Vishay-Dale
RES, 33 ohm, 5%, 0.063W, 0402
115
1
S1
EVQ-PSD02K
Panasonic
Switch, Tactile, SPST-NO, SMT
116
12
SH-J1, SH-J2,
SH-J3, SH-J4,
SH-J5, SH-J6,
SH-J7, SH-J8,
SH-J9, SH-J10,
SH-J11, SH-J12
2SN-BK-G
Samtec
Shunt, 2mm, Gold plated, Black
117
1
SW1
KSR221GLFS
C and K
Components
Switch, Normally open, 2.3N force,
200k operations, SMD
118
1
T1
ACM9070-701-2PL-TL01
TDK
Coupled inductor, 5 A, 0.01 ohm,
SMD
119
1
U1
TPD4E004DRYR
Texas
Instruments
4-CHANNEL ESD-PROTECTION
ARRAY FOR HIGH-SPEED DATA
INTERFACES, DRY006A
120
1
U2
TPS73533DRBR
Texas
Instruments
500mA, Low Quiescent Current,
Ultra-Low Noise, High PSRR LowDropout Linear Regulator,
DRB0008A
121
1
U3
TCA9406DCUR
Texas
Instruments
TCA9406 Dual Bidirectional 1-MHz
I2C-BUS and SMBus Voltage
Level-Translator, 1.65 to 3.6 V, -40
to 85 degC, 8-pin US8 (DCU),
Green (RoHS & no Sb/Br)
122
1
U4
TPS54225PWPR
Texas
Instruments
4.5V to 18V Input, 2-A
Synchronous Step-Down SWIFT™
Converter, PWP0014E
123
1
U5
DS90UB954TRGZRQ1
Texas
Instruments
FPD\Link III Deserializer with CSI\2
interface for 2.3MP/60fps cameras,
RGZ0048B (VQFN-48)
124
3
U6, U7, U8
LM2941LD/NOPB
Texas
Instruments
1A Low Dropout Adjustable
Regulator, 8-pin LLP, Pb-Free
125
1
U9
TPS74801TDRCRQ1
Texas
Instruments
Single Output LDO, 1.5 A,
Adjustable 0.8 to 3.6 V Output, 0.8
to 5.5 V Input, with Programmable
Soft Start, 10-pin SON (DRC), -40
to 105 degC, Green (RoHS & no
Sb/Br)
126
1
U10
TPS767D318PWP
Texas
Instruments
Dual Output LDO, 1 A, Fixed 1.8,
3.3 V Output, 2.7 to 10 V Input, 28pin HTSSOP (PWP), -40 to 125
degC, Green (RoHS & no Sb/Br)
1x2
SNLU223A – August 2017 – Revised May 2019
Submit Documentation Feedback
DS90UB95x-Q1EVM Deserializer User's Guide
Copyright © 2017–2019, Texas Instruments Incorporated
61
DS90UB95xQ1-EVM Bill of Materials
www.ti.com
Table 13. DS90UB95x-Q1EVM BOM (continued)
62
ITEM
QTY
DESIGNATOR
127
1
128
VALUE
PART NUMBER
MANUFACT
URER
DESCRIPTION
U11
MSP430F5529IPN
Texas
Instruments
25 MHz Mixed Signal
Microcontroller with 128 KB Flash,
8192 B SRAM and 63 GPIOs, -40
to 85 degC, 80-pin QFP (PN),
Green (RoHS & no Sb/Br)
1
Y1
ABM3-25.000MHZ-D2W-T
Abracon
Corportation
Crystal, 25 MHz, 18 pF, SMD
129
1
Y2
SG210STF25.000000MHZY
Epson
OSC, 25 MHz, 1.6 to 3.6 V, SMD
130
1
Y3
ECS-240-20-5PX-TR
ECS Inc.
Crystal, 24.000MHz, 20pF, SMD
DS90UB95x-Q1EVM Deserializer User's Guide
SNLU223A – August 2017 – Revised May 2019
Submit Documentation Feedback
Copyright © 2017–2019, Texas Instruments Incorporated
Revision History
www.ti.com
Revision History
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.
Changes from Original (August 2017) to A Revision ..................................................................................................... Page
•
Updated User's Guide throughout
......................................................................................................
SNLU223A – August 2017 – Revised May 2019
Submit Documentation Feedback
Copyright © 2017–2019, Texas Instruments Incorporated
Revision History
1
63
IMPORTANT NOTICE AND DISCLAIMER
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you
permission to use these resources only for development of an application that uses the TI products described in the resource. Other
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third
party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims,
damages, costs, losses, and liabilities arising out of your use of these resources.
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on
ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable
warranties or warranty disclaimers for TI products.
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2019, Texas Instruments Incorporated
Was this manual useful for you? yes no
Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Download PDF

advertising