Texas Instruments | SN74AXC1T45 Single-Bit Dual-Supply Bus Transceiver With Configurable Voltage Translation (Rev. B) | Datasheet | Texas Instruments SN74AXC1T45 Single-Bit Dual-Supply Bus Transceiver With Configurable Voltage Translation (Rev. B) Datasheet

Texas Instruments SN74AXC1T45 Single-Bit Dual-Supply Bus Transceiver With Configurable Voltage Translation (Rev. B) Datasheet
Product
Folder
Order
Now
Support &
Community
Tools &
Software
Technical
Documents
SN74AXC1T45
SCES882B – DECEMBER 2017 – REVISED JUNE 2018
SN74AXC1T45 Single-Bit Dual-Supply Bus Transceiver With Configurable Voltage
Translation
1 Features
3 Description
•
•
•
The SN74AXC1T45 is a single-bit noninverting bus
transceiver that uses two separate configurable
power-supply rails. The device is operational with
both VCCA and VCCB supplies as low as 0.65 V. The A
port is designed to track VCCA, which accepts any
supply voltage from 0.65 V to 3.6 V. The B port is
designed to track VCCB, which also accepts any
supply voltage from 0.65 V to 3.6 V.
1
•
•
•
•
•
•
Up and Down Translation Across 0.65 V to 3.6 V
Operating Temperature: –40°C to +125°C
Designed with glitch suppression circuitry to
improve power sequencing performance
Maximum Quiescent Current (ICCA + ICCB) of 6 µA
(85°C Maximum) and 14 µA (125°C Maximum)
Up to 500-Mbps Support When Translating from
1.8 to 3.3V
VCC Isolation Feature
– If Either VCC Input is Below 100 mV, All I/Os
Outputs are Disabled and Become HighImpedance
Ioff Supports Partial-Power-Down Mode Operation
Latch-Up Performance Exceeds 100 mA Per
JESD 78, Class II
ESD Protection Exceeds JESD 22
– 8000-V Human Body Model
– 1000-V Charged-Device Model
The DIR pin determines the direction of signal
propagation. With the DIR pin configured HIGH,
translation is from Port A to Port B. With DIR
configured LOW, translation is from Port B to Port A.
The DIR pin is referenced to VCCA, meaning that its
logic-high and logic-low thresholds track with VCCA.
This device is fully specified for partial-power-down
applications using the Ioff current. The Ioff protection
circuitry ensures that no excessive current is drawn
from or to an input, output, or combined I/O that is
biased to a specific voltage while the device is
powered down.
2 Applications
The VCC isolation feature ensures that if either VCCA
or VCCB is less than 100 mV, both I/O ports enter a
high-impedance state by disabling their outputs.
•
•
•
The glitch suppression circuitry enables either supply
rail to be powered on or off in any order, providing
robust power sequencing performance.
Enterprise and Communications
Industrial
Personal Electronics
Device Information(1)
PART NUMBER
PACKAGE
BODY SIZE (NOM)
SN74AXC1T45DBV
SOT-23 (6)
2.90 mm × 1.60 mm
SN74AXC1T45DCK
SC70 (6)
2.00 mm × 1.25 mm
SN74AXC1T45DRL
SOT-5X3 (6)
1.60 mm × 1.20 mm
SN74AXC1T45DEA
X2SON (6)
1.00 mm x 1.00 mm
SN74AXC1T45DTQ
X2SON (6)
1.00 mm x 0.80 mm
(1) For all available packages, see the orderable addendum at
the end of the data sheet.
Example Application
0.7 V
Processor
Control Block
3.3 V
VCCA
DIR
A
VCCB
B
Power Management
Unit
SN74AXC1T45
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,
intellectual property matters and other important disclaimers. PRODUCTION DATA.
SN74AXC1T45
SCES882B – DECEMBER 2017 – REVISED JUNE 2018
www.ti.com
Table of Contents
1
2
3
4
5
6
Features ..................................................................
Applications ...........................................................
Description .............................................................
Revision History.....................................................
Pin Configuration and Functions .........................
Specifications.........................................................
6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.19 Switching Characteristics: VCCA = 2.5 V, TA = –40°C
to +85°C ................................................................... 34
6.20 Switching Characteristics: VCCA = 2.5 V, TA = –40°C
to +125°C ................................................................. 36
6.21 Switching Characteristics: VCCA = 3.3 V ± 0.3 V, TA
= –40°C to +85°C..................................................... 38
6.22 Switching Characteristics: VCCA = 3.3 V ± 0.3 V, TA
= –40°C to +125°C................................................... 40
6.23 Operating Characteristics...................................... 42
6.24 Typical Characteristics .......................................... 43
1
1
1
2
3
4
Absolute Maximum Ratings ...................................... 4
ESD Ratings.............................................................. 4
Recommended Operating Conditions....................... 5
Thermal Information .................................................. 5
Electrical Characteristics: –40°C ≤ TA ≤ +85°C ....... 6
Electrical Characteristics: –40°C ≤ TA ≤ +125°C ...... 8
Switching Characteristics: VCCA = 0.7 V, TA = –40°C
to +85°C ................................................................... 10
6.8 Switching Characteristics: VCCA = 0.7 V, TA = –40°C
to +125°C ................................................................. 12
6.9 Switching Characteristics: VCCA = 0.8 V, TA = –40°C
to +85°C ................................................................... 14
6.10 Switching Characteristics: VCCA = 0.8 V, TA = –40°C
to +125°C ................................................................. 16
6.11 Switching Characteristics: VCCA = 0.9 V, TA = –40°C
to +85°C ................................................................... 18
6.12 Switching Characteristics: VCCA = 0.9 V, TA = –40°C
to +125°C ................................................................. 20
6.13 Switching Characteristics: VCCA = 1.2 V, TA = –40°C
to +85°C ................................................................... 22
6.14 Switching Characteristics: VCCA = 1.2 V, TA = –40°C
to +125°C ................................................................. 24
6.15 Switching Characteristics: VCCA = 1.5 V, TA = –40°C
to +85°C ................................................................... 26
6.16 Switching Characteristics: VCCA = 1.5 V, TA = –40°C
to +125°C ................................................................. 28
6.17 Switching Characteristics: VCCA = 1.8 V, TA = –40°C
to +85°C ................................................................... 30
6.18 Switching Characteristics: VCCA = 1.8 V, TA = –40°C
to +125°C ................................................................. 32
7
Parameter Measurement Information ................ 45
8
Detailed Description ............................................ 47
7.1 Load Circuit and Voltage Waveforms ..................... 45
8.1
8.2
8.3
8.4
9
Overview .................................................................
Functional Block Diagram .......................................
Feature Description.................................................
Device Functional Modes........................................
47
47
47
47
Application and Implementation ........................ 48
9.1 Application Information............................................ 48
9.2 Typical Applications ................................................ 48
10 Power Supply Recommendations ..................... 52
10.1 Power-Up Considerations ..................................... 52
11 Layout................................................................... 52
11.1 Layout Guidelines ................................................. 52
11.2 Layout Example .................................................... 52
12 Device and Documentation Support ................. 53
12.1
12.2
12.3
12.4
12.5
12.6
Documentation Support .......................................
Receiving Notification of Documentation Updates
Community Resources..........................................
Trademarks ...........................................................
Electrostatic Discharge Caution ............................
Glossary ................................................................
53
53
53
53
53
53
13 Mechanical, Packaging, and Orderable
Information ........................................................... 53
4 Revision History
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.
Changes from Original (April 2018) to Revision B
Page
•
Added DEA and DTQ as active package options .................................................................................................................. 1
•
Changed product status from Production Mix to Production Data ......................................................................................... 1
Changes from Original (December 2017) to Revision A
Page
•
Added pinout drawing for DEA package ............................................................................................................................... 3
•
Added pinout drawing for DTQ package ............................................................................................................................... 3
2
Submit Documentation Feedback
Copyright © 2017–2018, Texas Instruments Incorporated
Product Folder Links: SN74AXC1T45
SN74AXC1T45
www.ti.com
SCES882B – DECEMBER 2017 – REVISED JUNE 2018
5 Pin Configuration and Functions
DRL Package
6-Pin SOT-5X3
Top View
DBV Package
6-Pin SOT-23
Top View
VCCA
1
6
VCCA 1
6
VCCB
GND 2
5
DIR
A 3
4
B
VCCB
GND
2
5
DIR
A
3
4
B
DEA Package
6-Pin X2SON
Transparent Top View
DCK Package
6-Pin SC70
Top View
VCCA
1
6
VCCB
GND
2
5
DIR
A
3
4
B
VCCA
1
6
VCCB
GND
2
5
DIR
A
3
4
B
DTQ Package
6-Pin X2SON
Transparent Top View
VCCA
1
2
GND
A
6
3
5
VCCB
DIR
4
B
Pin Functions
PIN
NO.
NAME
TYPE
DESCRIPTION
1
VCCA
—
A-port supply voltage. 0.65V ≤ VCCA ≤ 3.6 V
2
GND
—
Ground
3
A
I/O
Input/output A. This pin is referenced to VCCA. When this pin is configured as an input, do not
leave it floating.
4
B
I/O
Input/output B. This pin is referenced to VCCB. When this pin is configured as an input, do not
leave it floating.
5
DIR
I
Direction control signal. Set to Logic High for A-to-B level translation. Set to Logic Low for Bto-A level translation.
6
VCCB
—
B-port supply voltage. 0.65V ≤ VCCB ≤ 3.6 V.
Submit Documentation Feedback
Copyright © 2017–2018, Texas Instruments Incorporated
Product Folder Links: SN74AXC1T45
3
SN74AXC1T45
SCES882B – DECEMBER 2017 – REVISED JUNE 2018
www.ti.com
6 Specifications
6.1 Absolute Maximum Ratings
over operating free-air temperature range (unless otherwise noted) (1)
VCCA
Supply voltage, VCCA
VCCB
Supply voltage, VCCB
Input voltage (2)
VI
MIN
MAX
UNIT
–0.5
4.2
V
V
–0.5
4.2
I/O ports (A port)
–0.5
4.2
I/O ports (B port)
–0.5
4.2
DIR
–0.5
4.2
A port
–0.5
4.2
B port
–0.5
4.2
A port
–0.5
VCCA + 0.2
B port
–0.5
VCCB + 0.2
V
VO
Voltage applied to any output in the high-impedance or power-off
state (2)
VO
Voltage applied to any output in the high or low state (2) (3)
IIK
Input clamp current
VI < 0
–50
mA
IOK
Output clamp current
VO < 0
–50
mA
IO
Continuous output current
–50
50
mA
Continuous current through VCCA, VCCB, or GND
–100
100
mA
150
°C
150
°C
TJ
Operating junction temperature
Tstg
Storage temperature
(1)
(2)
(3)
–65
V
V
Stresses beyond those listed under the Absolute Maximum Ratings table may cause permanent damage to the device. These are stress
ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended
Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.
The output positive-voltage rating may be exceeded up to 4.2 V maximum if the output current ratings are observed.
6.2 ESD Ratings
VALUE
V(ESD)
(1)
(2)
4
Electrostatic discharge
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1)
±8000
Charged-device model (CDM), per JEDEC specification JESD22-C101 (2)
±1000
UNIT
V
JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.
Submit Documentation Feedback
Copyright © 2017–2018, Texas Instruments Incorporated
Product Folder Links: SN74AXC1T45
SN74AXC1T45
www.ti.com
SCES882B – DECEMBER 2017 – REVISED JUNE 2018
6.3 Recommended Operating Conditions
over operating free-air temperature range (unless otherwise noted)
MIN
MAX
UNIT
VCCA Supply voltage, VCCA
0.65
3.6
V
VCCB Supply voltage, VCCB
0.65
3.6
V
0
3.6
V
Active state
0
VCCO (2)
Tri-state
0
3.6
Input voltage (1) (2)
VI
VO
Output voltage
Δt/Δv Input transition rise or fall rate
TA
(1)
(2)
Operating free-air temperature
–40
V
100
ns/V
125
°C
All unused data inputs of the device must be held at VCCI or GND to assure proper device operation. For more information, refer to the
Implications of Slow or Floating CMOS Inputs application report.
VCCI is the VCC with the input port. VCCO is the VCC associated with the output port.
6.4 Thermal Information
SN74AXC1T45
THERMAL METRIC (1)
DBV
(SOT-23)
DCK
(SC70)
DRL
(SOT-5X3)
DEA
(X2SON)
DTQ
(X2SON)
UNIT
6 PINS
6 PINS
6 PINS
6 PINS
6 PINS
RθJA
Junction-to-ambient thermal resistance
202.2
235.3
298.9
358.0
327.8
°C/W
RθJC(top)
Junction-to-case (top) thermal
resistance
137.2
160.5
148.4
201.0
194.9
°C/W
RθJB
Junction-to-board thermal resistance
80.2
76.9
165.0
221.8
248.4
°C/W
ψJT
Junction-to-top characterization
parameter
64.0
59.7
20.7
26.1
24.1
°C/W
ψJB
Junction-to-board characterization
parameter
80.4
77.1
164.9
220.8
247.6
°C/W
(1)
For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application
report.
Submit Documentation Feedback
Copyright © 2017–2018, Texas Instruments Incorporated
Product Folder Links: SN74AXC1T45
5
SN74AXC1T45
SCES882B – DECEMBER 2017 – REVISED JUNE 2018
www.ti.com
6.5 Electrical Characteristics: –40°C ≤ TA ≤ +85°C
over recommended operating free-air temperature range (unless otherwise noted) (1)
TEST CONDITIONS (2) (3)
PARAMETER
VIH
High-level input voltage
VCCI × 0.70
VCCI = 0.76 V – 1 V, VCCO= 0.65 V – 3.60 V
VCCI × 0.70
VCCI = 1.1 V – 1.95 V, VCCO = 0.65 V – 3.60 V
VCCI × 0.65
VCCI = 2.3 V – 2.7 V, VCCO= 0.65 V – 3.60 V
VCCI = 3 V – 3.6 V, VCCO= 0.65 V – 3.60 V
VIL
Low-level input voltage
MIN
VCCI = 0.65 V – 0.75 V, VCCO = 0.65 V – 3.60 V
High-level input voltage
DIR
VIL
Low-level input voltage
DIR
2
VCCI x 0.30
VCCI = 0.76 V – 1 V, VCCO= 0.65 V – 3.60 V
VCCI x 0.30
VCCI = 1.1 V – 1.95 V, VCCO= 0.65 V – 3.60 V
VCCI x 0.35
VCCI = 2.3 V – 2.7 V, VCCO= 0.65 V – 3.60 V
0.7
VCCA × 0.70
VCCI = 0.76 V – 1 V, VCCO= 0.65 V – 3.60 V
VCCA × 0.70
VCCI = 1.1 V – 1.95 V, VCCO= 0.65 V – 3.60 V
VCCA × 0.65
VCCI = 2.3 V – 2.7 V, VCCO= 0.65 V – 3.60 V
1.6
VOL
II
(1)
(2)
(3)
6
High-level output voltage
Low-level output voltage
Input leakage current
DIR
V
2
VCCI = 0.65 V – 0.75 V, VCCO= 0.65 V – 3.60 V
VCCA x 0.30
VCCI = 0.76 V – 1 V, VCCO= 0.65 V – 3.60 V
VCCA x 0.30
VCCI = 1.1 V – 1.95 V, VCCO= 0.65 V – 3.60 V
VCCA x 0.35
VCCI = 2.3 V – 2.7 V, VCCO= 0.65 V – 3.60 V
0.7
VI = VIH, IOH = –100 µA, VCCA = VCCB
VCCI = 0.7 V – 3.6 V, VCCO= 0.7 V – 3.6 V
V
0.8
VCCO – 0.1
VI = VIH, IOH = –50 µA
VCCI = 0.65 V, VCCO= 0.65 V
0.55
VI = VIH, IOH = –200 µA
VCCI = 0.76 V, VCCO= 0.76 V
0.58
VI = VIH, IOH = –500 µA
VCCI = 0.85 V, VCCO= 0.85 V
0.65
VI = VIH, IOH = –3 mA
VCCI = 1.1 V, VCCO= 1.1 V
0.85
VI = VIH, IOH = –6 mA
VCCI = 1.4 V, VCCO= 1.4 V
1.05
VI = VIH, IOH = –8 mA
VCCI = 1.65 V VCCO= 1.65 V
1.2
VI = VIH, IOH = –9 mA
VCCI = 2.3 V, VCCO= 2.3 V
1.75
VI = VIH, IOH = –12 mA
VCCI = 3 V, VCCO= 3 V
2.3
V
VI = VIL, IOL = 100 µA, VCCA = VCCB
VCCI = 0.7 V – 3.6 V, VCCO= 0.7 V – 3.6 V
0.1
VI = VIL, IOL = 50 µA
VCCI = 0.65 V, VCCO= 0.65 V
0.1
VI = VIL, IOL = 200 µA
VCCI = 0.76 V VCCO= 0.76 V
0.18
VI = VIL, IOL = 500 µA
VCCI = 0.85 V, VCCO= 0.85 V
0.2
VI = VIL, IOL = 3 mA
VCCI = 1.1 V, VCCO= 1.1 V
0.25
VI = VIL, IOL = 6 mA
VCCI = 1.4 V, VCCO= 1.4 V
0.35
VI = VIL, IOL = 8 mA
VCCI = 1.65 V, VCCO= 1.65 V
0.45
VI = VIL, IOL = 9 mA
VCCI = 2.3 V, VCCO= 2.3 V
0.55
VI = VIL, IOL = 12 mA
VCCI = 3 V, VCCO= 3 V
0.7
VI = VCCA or GND
VCCI = 0.65 V – 3.6 V, VCCO= 0.65 V – 3.6 V
V
0.8
VCCI = 0.65 V – 0.75 V, VCCO= 0.65 V – 3.60 V
VCCI = 3 V – 3.6 V, VCCO= 0.65 V – 3.60 V
VOH
V
VCCI = 0.65 V – 0.75 V, VCCO= 0.65 V – 3.60 V
VCCI = 3 V – 3.6 V, VCCO= 0.65 V – 3.60 V
UNIT
1.6
VCCI = 3 V – 3.6 V, VCCO= 0.65 V – 3.60 V
VIH
MAX
–1
1
V
µA
All unused data inputs of the device must be held at VCCI or GND to assure proper device operation. For more information, see the
Implications of Slow or Floating CMOS Inputs application report.
VCCI is the VCC associated with the input port.
VCCO is the VCC associated with the output port.
Submit Documentation Feedback
Copyright © 2017–2018, Texas Instruments Incorporated
Product Folder Links: SN74AXC1T45
SN74AXC1T45
www.ti.com
SCES882B – DECEMBER 2017 – REVISED JUNE 2018
Electrical Characteristics: –40°C ≤ TA ≤ +85°C (continued)
over recommended operating free-air temperature range (unless otherwise noted)(1)
TEST CONDITIONS (2) (3)
PARAMETER
Ioff
IOZ
Off-state current
High-impedance-state output
current
MIN
MAX
A port:
VI or VO = 0 to 3.6 V
VCCI = 0 V, VCCO= 0 – 3.6 V
–5
5
B port:
VI or VO = 0 to 3.6 V
VCCI = 0 – 3.6 V, VCCO= 0 V
–5
5
B port:
VO = VCCO or GND, VI = VCCI or GND
VCCI = 0 V, VCCO= 3.6 V
–5
5
A port:
VO = VCCO or GND, VI = VCCI or GND
VCCI = 3.6 V, VCCO= 0 V
–5
5
µA
µA
VI = VCCI or GND, IO = 0
VCCI = 0.65 V – 3.6 V, VCCO= 0.65 V – 3.6 V
ICCA
ICCB
VCCA supply current
VCCB supply current
UNIT
VI = VCCI or GND, IO = 0
VCCI = 0 V, VCCO= 3.6 V
6
-2
µA
VI = VCCI or GND, IO = 0
VCCI = 3.6 V, VCCO= 0 V
2
VI = VCCI or GND, IO = 0
VCCI = 0.65 V – 3.6 V, VCCO= 0.65 V – 3.6 V
6
VI = VCCI or GND, IO = 0
VCCI = 0 V, VCCO= 3.6 V
2
µA
6
µA
4.4
pF
VI = VCCI or GND, IO = 0
VCCI = 3.6 V, VCCO= 0 V
-2
ICCA
+
ICCB
Combined supply current
VI = VCCI or GND, IO = 0
VCCI = 0.65 V – 3.6 V, VCCO= 0.65 V – 3.6 V
CI
Input capacitance
DIR
VI = 0V, 3.30 V
VCCI = 3.3 V, VCCO= 3.3 V
CI/O
Input-to-output internal
capacitance
A Port:
VO = 1.65V DC + 1 MHz, –16-dBm sine wave
VCCI = 3.3 V, VCCO= 0 V
5
pF
CI/O
Input-to-output internal
capacitance
B Port:
VO = 1.65V DC + 1 MHz, –16-dBm sine wave
VCCI = 0 V, VCCO= 3.3 V
5
pF
Submit Documentation Feedback
Copyright © 2017–2018, Texas Instruments Incorporated
Product Folder Links: SN74AXC1T45
7
SN74AXC1T45
SCES882B – DECEMBER 2017 – REVISED JUNE 2018
www.ti.com
6.6 Electrical Characteristics: –40°C ≤ TA ≤ +125°C
over recommended operating free-air temperature range (unless otherwise noted) (1)
TEST CONDITIONS (2)
PARAMETER
VIH
High-level input voltage
(3)
VCCI × 0.70
VCCI = 0.76 V – 1 V, VCCO = 0.65 V – 3.60 V
VCCI × 0.70
VCCI = 1.1 V – 1.95 V, VCCO = 0.65 V – 3.60 V
VCCI × 0.65
VCCI = 2.3 V – 2.7 V, VCCO = 0.65 V – 3.60 V
1.6
VCCI = 3 V – 3.6 V, VCCO = 0.65 V – 3.60 V
VIL
Low-level input voltage
MIN
VCCI = 0.65 V – 0.75 V, VCCO = 0.65 V – 3.60 V
High-level input voltage
DIR
2
VCCI x 0.30
VCCI = 0.76 V – 1 V, VCCO = 0.65 V – 3.60 V
VCCI x 0.30
VCCI = 1.1 V – 1.95 V, VCCO = 0.65 V – 3.60 V
VCCI x 0.35
VCCI = 2.3 V – 2.7 V, VCCO = 0.65 V – 3.60 V
0.7
VIL
Low-level input voltage
DIR
VCCA × 0.70
VCCI = 0.76 V – 1 V, VCCO = 0.65 V – 3.60 V
VCCA × 0.70
VCCI = 1.1 V – 1.95 V, VCCO = 0.65 V – 3.60 V
VCCA × 0.65
VCCI = 2.3 V – 2.7 V, VCCO = 0.65 V – 3.60 V
1.6
2
VCCA x 0.30
VCCI = 0.76 V – 1 V, VCCO = 0.65 V – 3.60 V
VCCA x 0.30
VCCI = 1.1 V – 1.95 V, VCCO = 0.65 V – 3.60 V
VCCA x 0.35
VCCI = 2.3 V – 2.7 V, VCCO = 0.65 V – 3.60 V
0.7
VCCI = 3 V – 3.6 V, VCCO = 0.65 V – 3.60 V
VOH
VOL
II
(1)
(2)
(3)
8
High-level output voltage
Low-level output voltage
Input leakage current
DIR
V
VCCI = 0.65 V – 0.75 V, VCCO = 0.65 V – 3.60 V
VI = VIH, IOH = –100 µA , VCCA = VCCB
VCCI = 0.7 V – 3.6 V, VCCO = 0.7 V – 3.6 V
V
0.8
VCCO – 0.1
VI = VIH, IOH = –50 µA
VCCI = 0.65 V, VCCO = 0.65 V
0.55
VI = VIH, IOH = –200 µA
VCCI = 0.76 V, VCCO = 0.76 V
0.58
VI = VIH, IOH = –500 µA
VCCI = 0.85 V, VCCO = 0.85 V
0.65
VI = VIH IOH = –3 mA
VCCI = 1.1 V, VCCO = 1.1 V
0.85
VI = VIH, IOH = –6 mA
VCCI = 1.4 V, VCCO = 1.4 V
1.05
VI = VIH, IOH = –8 mA
VCCI = 1.65 V, VCCO = 1.65 V
1.2
VI = VIH, IOH = –9 mA
VCCI = 2.3 V, VCCO = 2.3 V
1.75
VI = VIH, IOH = –12 mA
VCCI = 3 V, VCCO = 3 V
2.3
V
VI = VIL, IOL = 100 µA , VCCA = VCCB
VCCI = 0.7 V – 3.6 V, VCCO = 0.7 V – 3.6 V
0.1
VI = VIL, IOL = 50 µA
VCCI = 0.65 V, VCCO = 0.65 V
0.1
VI = VIL, IOL = 200 µA
VCCI = 0.76 V, VCCO = 0.76 V
0.18
VI = VIL, IOL = 500 µA
VCCI = 0.85 V, VCCO = 0.85 V
0.2
VI = VIL, IOL = 3 mA
VCCI = 1.1 V, VCCO = 1.1 V
0.25
VI = VIL, IOL = 6 mA
VCCI = 1.4 V, VCCO = 1.4 V
0.35
VI = VIL, IOL = 8 mA
VCCI = 1.65 V, VCCO = 1.65 V
0.45
VI = VIL, IOL = 9 mA
VCCI = 2.3 V, VCCO = 2.3 V
0.55
VI = VIL, IOL = 12 mA
VCCI = 3 V, VCCO = 3 V
0.7
VI = VCCA or GND
VCCI = 0.65 V – 3.6 V, VCCO = 0.65 V – 3.6 V
V
0.8
VCCI = 0.65 V – 0.75 V, VCCO = 0.65 V – 3.60 V
VCCI = 3 V – 3.6 V, VCCO = 0.65 V – 3.60 V
UNIT
V
VCCI = 0.65 V – 0.75 V, VCCO = 0.65 V – 3.60 V
VCCI = 3 V – 3.6 V, VCCO = 0.65 V – 3.60 V
VIH
MAX
-1.5
1.5
V
µA
All unused data inputs of the device must be held at VCCI or GND to assure proper device operation. For more information, see the
Implications of Slow or Floating CMOS Inputs application report.
VCCI is the VCC associated with the input port.
VCCO is the VCC associated with the output port.
Submit Documentation Feedback
Copyright © 2017–2018, Texas Instruments Incorporated
Product Folder Links: SN74AXC1T45
SN74AXC1T45
www.ti.com
SCES882B – DECEMBER 2017 – REVISED JUNE 2018
Electrical Characteristics: –40°C ≤ TA ≤ +125°C (continued)
over recommended operating free-air temperature range (unless otherwise noted)(1)
TEST CONDITIONS (2)
PARAMETER
Ioff
IOZ
Off-state current
High-impedance-state
output current
(3)
MIN
MAX
A port:
VI or VO = 0 to 3.6 V
VCCI = 0 V, VCCO = 0 – 3.6 V
-7.5
7.5
B port:
VI or VO = 0 to 3.6 V
VCCI = 0 – 3.6 V, VCCO = 0 V
-7.5
7.5
B port:
VO = VCCO or GND, VI = VCCI or GND
VCCI = 0 V, VCCO = 3.6 V
-7.5
7.5
A port:
VO = VCCO or GND, VI = VCCI or GND
VCCI = 3.6 V, VCCO = 0 V
-7.5
7.5
µA
µA
VI = VCCI or GND, IO = 0
VCCI = 0.65 V – 3.6 V, VCCO = 0.65 V – 3.6 V
ICCA
VCCA supply current
VI = VCCI or GND, IO = 0
VCCI = 0 V, VCCO = 3.6 V
8
-8
VI = VCCI or GND, IO = 0
VCCI = 3.6 V, VCCO = 0 V
VCCB supply current
µA
8
VI = VCCI or GND, IO
VCCI = 0.65 V – 3.6 V, VCCO = 0.65 V – 3.6 V
ICCB
UNIT
8.5
VI = VCCI or GND, IO
VCCI = 0 V, VCCO = 3.6 V
VI = VCCI or GND, IO
VCCI = 3.6 V, VCCO = 0 V
8
µA
-8
ICCA +
ICCB
Combined supply current
VI = VCCI or GND, IO = 0
VCCI = 0.65 V – 3.6 V, VCCO = 0.65 V – 3.6 V
14
µA
CI
Input capacitance
DIR
VI = 0V, 3.30V
VCCI = 3.3 V, VCCO = 3.3 V
4.4
pF
CI/O
Input-to-output internal
capacitance
A Port:
VO = 1.65V DC + 1 MHz, –16-dBm sine wave
VCCI = 3.3 V, VCCO = 0 V
5
pF
CI/O
Input-to-output internal
capacitance
B Port:
VO = 1.65V DC + 1 MHz, –16-dBm sine wave
VCCI = 0 V, VCCO = 3.3 V
5
pF
Submit Documentation Feedback
Copyright © 2017–2018, Texas Instruments Incorporated
Product Folder Links: SN74AXC1T45
9
SN74AXC1T45
SCES882B – DECEMBER 2017 – REVISED JUNE 2018
www.ti.com
6.7 Switching Characteristics: VCCA = 0.7 V, TA = –40°C to +85°C
over recommended operating free-air temperature range, VCCA = 0.7 V (see Figure 1)
PARAMETER
TEST CONDITIONS
A-to-B
tpd
Propagation delay
B-to-A
Port A
tdis
Disable time
Port B
10
MIN
MAX
VCCB = 0.7 V ± 0.05 V
0.5
173
VCCB = 0.8 V ± 0.04 V
0.5
117
VCCB = 0.9 V ± 0.045 V
0.5
85
VCCB = 1.2 V ± 0.1 V
0.5
51
VCCB = 1.5 V ± 0.1 V
0.5
50
VCCB = 1.8 V ± 0.15 V
0.5
53
VCCB = 2.5 V ± 0.2 V
0.5
65
VCCB = 3.3 V ± 0.3 V
0.5
143
VCCB = 0.7 V ± 0.05 V
0.5
173
VCCB = 0.8 V ± 0.04 V
0.5
154
VCCB = 0.9 V ± 0.045 V
0.5
127
VCCB = 1.2 V ± 0.1 V
0.5
88
VCCB = 1.5 V ± 0.1 V
0.5
83
VCCB = 1.8 V ± 0.15 V
0.5
82
VCCB = 2.5 V ± 0.2 V
0.5
80
VCCB = 3.3 V ± 0.3 V
0.5
80
VCCB = 0.7 V ± 0.05 V
0.5
143
VCCB = 0.8 V ± 0.04 V
0.5
143
VCCB = 0.9 V ± 0.045 V
0.5
143
VCCB = 1.2 V ± 0.1 V
0.5
143
VCCB = 1.5 V ± 0.1 V
0.5
143
VCCB = 1.8 V ± 0.15 V
0.5
143
VCCB = 2.5 V ± 0.2 V
0.5
143
VCCB = 3.3 V ± 0.3 V
0.5
143
VCCB = 0.7 V ± 0.05 V
0.5
163
VCCB = 0.8 V ± 0.04 V
0.5
123
VCCB = 0.9 V ± 0.045 V
0.5
100
VCCB = 1.2 V ± 0.1 V
0.5
50
VCCB = 1.5 V ± 0.1 V
0.5
45
VCCB = 1.8 V ± 0.15 V
0.5
49
VCCB = 2.5 V ± 0.2 V
0.5
61
VCCB = 3.3 V ± 0.3 V
0.5
109
Submit Documentation Feedback
UNIT
ns
ns
ns
ns
Copyright © 2017–2018, Texas Instruments Incorporated
Product Folder Links: SN74AXC1T45
SN74AXC1T45
www.ti.com
SCES882B – DECEMBER 2017 – REVISED JUNE 2018
Switching Characteristics: VCCA = 0.7 V, TA = –40°C to +85°C (continued)
over recommended operating free-air temperature range, VCCA = 0.7 V (see Figure 1)
PARAMETER
TEST CONDITIONS
Port A
ten
Enable time
Port B
MIN
MAX
VCCB = 0.7 V ± 0.05 V
389
VCCB = 0.8 V ± 0.04 V
331
VCCB = 0.9 V ± 0.045 V
287
VCCB = 1.2 V ± 0.1 V
143
VCCB = 1.5 V ± 0.1 V
134
VCCB = 1.8 V ± 0.15 V
137
VCCB = 2.5 V ± 0.2 V
147
VCCB = 3.3 V ± 0.3 V
200
VCCB = 0.7 V ± 0.05 V
369
VCCB = 0.8 V ± 0.04 V
313
VCCB = 0.9 V ± 0.045 V
281
VCCB = 1.2 V ± 0.1 V
247
VCCB = 1.5 V ± 0.1 V
246
VCCB = 1.8 V ± 0.15 V
249
VCCB = 2.5 V ± 0.2 V
261
VCCB = 3.3 V ± 0.3 V
339
UNIT
Submit Documentation Feedback
Copyright © 2017–2018, Texas Instruments Incorporated
Product Folder Links: SN74AXC1T45
ns
ns
11
SN74AXC1T45
SCES882B – DECEMBER 2017 – REVISED JUNE 2018
www.ti.com
6.8 Switching Characteristics: VCCA = 0.7 V, TA = –40°C to +125°C
over recommended operating free-air temperature range, VCCA = 0.7 V (see Figure 9)
PARAMETER
A-to-B
tpd
Propagation delay
B-to-A
Port A
tdis
Disable time
Port B
12
TEST CONDITIONS
MIN
MAX
VCCB = 0.7 V ± 0.05 V
0.5
173
VCCB = 0.8 V ± 0.04 V
0.5
117
VCCB = 0.9 V ± 0.045 V
0.5
85
VCCB = 1.2 V ± 0.1 V
0.5
51
VCCB = 1.5 V ± 0.1 V
0.5
50
VCCB = 1.8 V ± 0.15 V
0.5
53
VCCB = 2.5 V ± 0.2 V
0.5
65
VCCB = 3.3 V ± 0.3 V
0.5
143
VCCB = 0.7 V ± 0.05 V
0.5
173
VCCB = 0.8 V ± 0.04 V
0.5
154
VCCB = 0.9 V ± 0.045 V
0.5
127
VCCB = 1.2 V ± 0.1 V
0.5
88
VCCB = 1.5 V ± 0.1 V
0.5
83
VCCB = 1.8 V ± 0.15 V
0.5
82
VCCB = 2.5 V ± 0.2 V
0.5
80
VCCB = 3.3 V ± 0.3 V
0.5
80
VCCB = 0.7 V ± 0.05 V
0.5
143
VCCB = 0.8 V ± 0.04 V
0.5
143
VCCB = 0.9 V ± 0.045 V
0.5
143
VCCB = 1.2 V ± 0.1 V
0.5
143
VCCB = 1.5 V ± 0.1 V
0.5
143
VCCB = 1.8 V ± 0.15 V
0.5
143
VCCB = 2.5 V ± 0.2 V
0.5
143
VCCB = 3.3 V ± 0.3 V
0.5
143
VCCB = 0.7 V ± 0.05 V
0.5
163
VCCB = 0.8 V ± 0.04 V
0.5
123
VCCB = 0.9 V ± 0.045 V
0.5
100
VCCB = 1.2 V ± 0.1 V
0.5
50
VCCB = 1.5 V ± 0.1 V
0.5
45
VCCB = 1.8 V ± 0.15 V
0.5
49
VCCB = 2.5 V ± 0.2 V
0.5
161
VCCB = 3.3 V ± 0.3 V
0.5
109
Submit Documentation Feedback
UNIT
ns
ns
ns
ns
Copyright © 2017–2018, Texas Instruments Incorporated
Product Folder Links: SN74AXC1T45
SN74AXC1T45
www.ti.com
SCES882B – DECEMBER 2017 – REVISED JUNE 2018
Switching Characteristics: VCCA = 0.7 V, TA = –40°C to +125°C (continued)
over recommended operating free-air temperature range, VCCA = 0.7 V (see Figure 9)
PARAMETER
TEST CONDITIONS
Port A
ten
Enable time
Port B
MIN
MAX
VCCB = 0.7 V ± 0.05 V
406
VCCB = 0.8 V ± 0.04 V
333
VCCB = 0.9 V ± 0.045 V
287
VCCB = 1.2 V ± 0.1 V
143
VCCB = 1.5 V ± 0.1 V
134
VCCB = 1.8 V ± 0.15 V
137
VCCB = 2.5 V ± 0.2 V
147
VCCB = 3.3 V ± 0.3 V
200
VCCB = 0.7 V ± 0.05 V
395
VCCB = 0.8 V ± 0.04 V
339
VCCB = 0.9 V ± 0.045 V
307
VCCB = 1.2 V ± 0.1 V
273
VCCB = 1.5 V ± 0.1 V
272
VCCB = 1.8 V ± 0.15 V
275
VCCB = 2.5 V ± 0.2 V
287
VCCB = 3.3 V ± 0.3 V
365
UNIT
Submit Documentation Feedback
Copyright © 2017–2018, Texas Instruments Incorporated
Product Folder Links: SN74AXC1T45
ns
ns
13
SN74AXC1T45
SCES882B – DECEMBER 2017 – REVISED JUNE 2018
www.ti.com
6.9 Switching Characteristics: VCCA = 0.8 V, TA = –40°C to +85°C
over recommended operating free-air temperature range, VCCA = 0.8 V (see Figure 2)
PARAMETER
TEST CONDITIONS
A-to-B
tpd
Propagation
delay
B-to-A
Port A
tdis
Disable time
Port B
14
MIN
MAX
VCCB = 0.7 V ± 0.05 V
0.5
153
VCCB = 0.8 V ± 0.04 V
0.5
95
VCCB = 0.9 V ± 0.045 V
0.5
64
VCCB = 1.2 V ± 0.1 V
0.5
33
VCCB = 1.5 V ± 0.1 V
0.5
27
VCCB = 1.8 V ± 0.15 V
0.5
26
VCCB = 2.5 V ± 0.2 V
0.5
27
VCCB = 3.3 V ± 0.3 V
0.5
36
VCCB = 0.7 V ± 0.05 V
0.5
117
VCCB = 0.8 V ± 0.04 V
0.5
96
VCCB = 0.9 V ± 0.045 V
0.5
78
VCCB = 1.2 V ± 0.1 V
0.5
52
VCCB = 1.5 V ± 0.1 V
0.5
42
VCCB = 1.8 V ± 0.15 V
0.5
41
VCCB = 2.5 V ± 0.2 V
0.5
40
VCCB = 3.3 V ± 0.3 V
0.5
39
VCCB = 0.7 V ± 0.05 V
0.5
100
VCCB = 0.8 V ± 0.04 V
0.5
100
VCCB = 0.9 V ± 0.045 V
0.5
100
VCCB = 1.2 V ± 0.1 V
0.5
100
VCCB = 1.5 V ± 0.1 V
0.5
100
VCCB = 1.8 V ± 0.15 V
0.5
100
VCCB = 2.5 V ± 0.2 V
0.5
100
VCCB = 3.3 V ± 0.3 V
0.5
100
VCCB = 0.7 V ± 0.05 V
0.5
151
VCCB = 0.8 V ± 0.04 V
0.5
111
VCCB = 0.9 V ± 0.045 V
0.5
88
VCCB = 1.2 V ± 0.1 V
0.5
38
VCCB = 1.5 V ± 0.1 V
0.5
32
VCCB = 1.8 V ± 0.15 V
0.5
30
VCCB = 2.5 V ± 0.2 V
0.5
30
VCCB = 3.3 V ± 0.3 V
0.5
38
Submit Documentation Feedback
UNIT
ns
ns
ns
ns
Copyright © 2017–2018, Texas Instruments Incorporated
Product Folder Links: SN74AXC1T45
SN74AXC1T45
www.ti.com
SCES882B – DECEMBER 2017 – REVISED JUNE 2018
Switching Characteristics: VCCA = 0.8 V, TA = –40°C to +85°C (continued)
over recommended operating free-air temperature range, VCCA = 0.8 V (see Figure 2)
PARAMETER
TEST CONDITIONS
Port A
ten
Enable time
Port B
MIN
MAX
VCCB = 0.7 V ± 0.05 V
321
VCCB = 0.8 V ± 0.04 V
261
VCCB = 0.9 V ± 0.045 V
226
VCCB = 1.2 V ± 0.1 V
96
VCCB = 1.5 V ± 0.1 V
80
VCCB = 1.8 V ± 0.15 V
78
VCCB = 2.5 V ± 0.2 V
76
VCCB = 3.3 V ± 0.3 V
87
VCCB = 0.7 V ± 0.05 V
309
VCCB = 0.8 V ± 0.04 V
251
VCCB = 0.9 V ± 0.045 V
220
VCCB = 1.2 V ± 0.1 V
189
VCCB = 1.5 V ± 0.1 V
183
VCCB = 1.8 V ± 0.15 V
182
VCCB = 2.5 V ± 0.2 V
183
VCCB = 3.3 V ± 0.3 V
192
Submit Documentation Feedback
Copyright © 2017–2018, Texas Instruments Incorporated
Product Folder Links: SN74AXC1T45
UNIT
ns
ns
15
SN74AXC1T45
SCES882B – DECEMBER 2017 – REVISED JUNE 2018
www.ti.com
6.10 Switching Characteristics: VCCA = 0.8 V, TA = –40°C to +125°C
over recommended operating free-air temperature range, VCCA = 0.8 V (see Figure 10)
PARAMETER
TEST CONDITIONS
A-to-B
tpd
Propagation
delay
B-to-A
Port A
tdis
Disable time
Port B
16
MIN
MAX
VCCB = 0.7 V ± 0.05 V
0.5
153
VCCB = 0.8 V ± 0.04 V
0.5
95
VCCB = 0.9 V ± 0.045 V
0.5
64
VCCB = 1.2 V ± 0.1 V
0.5
33
VCCB = 1.5 V ± 0.1 V
0.5
27
VCCB = 1.8 V ± 0.15 V
0.5
26
VCCB = 2.5 V ± 0.2 V
0.5
27
VCCB = 3.3 V ± 0.3 V
0.5
36
VCCB = 0.7 V ± 0.05 V
0.5
117
VCCB = 0.8 V ± 0.04 V
0.5
96
VCCB = 0.9 V ± 0.045 V
0.5
78
VCCB = 1.2 V ± 0.1 V
0.5
52
VCCB = 1.5 V ± 0.1 V
0.5
42
VCCB = 1.8 V ± 0.15 V
0.5
41
VCCB = 2.5 V ± 0.2 V
0.5
40
VCCB = 3.3 V ± 0.3 V
0.5
39
VCCB = 0.7 V ± 0.05 V
0.5
100
VCCB = 0.8 V ± 0.04 V
0.5
100
VCCB = 0.9 V ± 0.045 V
0.5
100
VCCB = 1.2 V ± 0.1 V
0.5
100
VCCB = 1.5 V ± 0.1 V
0.5
100
VCCB = 1.8 V ± 0.15 V
0.5
100
VCCB = 2.5 V ± 0.2 V
0.5
100
VCCB = 3.3 V ± 0.3 V
0.5
100
VCCB = 0.7 V ± 0.05 V
0.5
151
VCCB = 0.8 V ± 0.04 V
0.5
111
VCCB = 0.9 V ± 0.045 V
0.5
88
VCCB = 1.2 V ± 0.1 V
0.5
40
VCCB = 1.5 V ± 0.1 V
0.5
33
VCCB = 1.8 V ± 0.15 V
0.5
30
VCCB = 2.5 V ± 0.2 V
0.5
30
VCCB = 3.3 V ± 0.3 V
0.5
38
Submit Documentation Feedback
UNIT
ns
ns
ns
ns
Copyright © 2017–2018, Texas Instruments Incorporated
Product Folder Links: SN74AXC1T45
SN74AXC1T45
www.ti.com
SCES882B – DECEMBER 2017 – REVISED JUNE 2018
Switching Characteristics: VCCA = 0.8 V, TA = –40°C to +125°C (continued)
over recommended operating free-air temperature range, VCCA = 0.8 V (see Figure 10)
PARAMETER
TEST CONDITIONS
Port A
ten
Enable time
Port B
MIN
MAX
VCCB = 0.7 V ± 0.05 V
341
VCCB = 0.8 V ± 0.04 V
266
VCCB = 0.9 V ± 0.045 V
229
VCCB = 1.2 V ± 0.1 V
97
VCCB = 1.5 V ± 0.1 V
80
VCCB = 1.8 V ± 0.15 V
78
VCCB = 2.5 V ± 0.2 V
76
VCCB = 3.3 V ± 0.3 V
87
VCCB = 0.7 V ± 0.05 V
317
VCCB = 0.8 V ± 0.04 V
259
VCCB = 0.9 V ± 0.045 V
228
VCCB = 1.2 V ± 0.1 V
197
VCCB = 1.5 V ± 0.1 V
191
VCCB = 1.8 V ± 0.15 V
190
VCCB = 2.5 V ± 0.2 V
191
VCCB = 3.3 V ± 0.3 V
200
Submit Documentation Feedback
Copyright © 2017–2018, Texas Instruments Incorporated
Product Folder Links: SN74AXC1T45
UNIT
ns
ns
17
SN74AXC1T45
SCES882B – DECEMBER 2017 – REVISED JUNE 2018
www.ti.com
6.11 Switching Characteristics: VCCA = 0.9 V, TA = –40°C to +85°C
over recommended operating free-air temperature range, VCCA = 0.9 V (see Figure 3)
PARAMETER
TEST CONDITIONS
A-to-B
tpd
Propagation delay
B-to-A
Port A
tdis
Disable time
Port B
18
MIN
MAX
VCCB = 0.7 V ± 0.05 V
0.5
126
VCCB = 0.8 V ± 0.04 V
0.5
78
VCCB = 0.9 V ± 0.045 V
0.5
52
VCCB = 1.2 V ± 0.1 V
0.5
23
VCCB = 1.5 V ± 0.1 V
0.5
18
VCCB = 1.8 V ± 0.15 V
0.5
16
VCCB = 2.5 V ± 0.2 V
0.5
15
VCCB = 3.3 V ± 0.3 V
0.5
18
VCCB = 0.7 V ± 0.05 V
0.5
85
VCCB = 0.8 V ± 0.04 V
0.5
64
VCCB = 0.9 V ± 0.045 V
0.5
53
VCCB = 1.2 V ± 0.1 V
0.5
40
VCCB = 1.5 V ± 0.1 V
0.5
28
VCCB = 1.8 V ± 0.15 V
0.5
24
VCCB = 2.5 V ± 0.2 V
0.5
22
VCCB = 3.3 V ± 0.3 V
0.5
21
VCCB = 0.7 V ± 0.05 V
0.5
75
VCCB = 0.8 V ± 0.04 V
0.5
75
VCCB = 0.9 V ± 0.045 V
0.5
75
VCCB = 1.2 V ± 0.1 V
0.5
75
VCCB = 1.5 V ± 0.1 V
0.5
75
VCCB = 1.8 V ± 0.15 V
0.5
75
VCCB = 2.5 V ± 0.2 V
0.5
75
VCCB = 3.3 V ± 0.3 V
0.5
75
VCCB = 0.7 V ± 0.05 V
0.5
144
VCCB = 0.8 V ± 0.04 V
0.5
105
VCCB = 0.9 V ± 0.045 V
0.5
82
VCCB = 1.2 V ± 0.1 V
0.5
32
VCCB = 1.5 V ± 0.1 V
0.5
25
VCCB = 1.8 V ± 0.15 V
0.5
24
VCCB = 2.5 V ± 0.2 V
0.5
21
VCCB = 3.3 V ± 0.3 V
0.5
23
Submit Documentation Feedback
UNIT
ns
ns
ns
ns
Copyright © 2017–2018, Texas Instruments Incorporated
Product Folder Links: SN74AXC1T45
SN74AXC1T45
www.ti.com
SCES882B – DECEMBER 2017 – REVISED JUNE 2018
Switching Characteristics: VCCA = 0.9 V, TA = –40°C to +85°C (continued)
over recommended operating free-air temperature range, VCCA = 0.9 V (see Figure 3)
PARAMETER
TEST CONDITIONS
Port A
ten
Enable time
Port B
MIN
MAX
VCCB = 0.7 V ± 0.05 V
282
VCCB = 0.8 V ± 0.04 V
223
VCCB = 0.9 V ± 0.045 V
195
VCCB = 1.2 V ± 0.1 V
77
VCCB = 1.5 V ± 0.1 V
59
VCCB = 1.8 V ± 0.15 V
54
VCCB = 2.5 V ± 0.2 V
48
VCCB = 3.3 V ± 0.3 V
54
VCCB = 0.7 V ± 0.05 V
262
VCCB = 0.8 V ± 0.04 V
214
VCCB = 0.9 V ± 0.045 V
188
VCCB = 1.2 V ± 0.1 V
159
VCCB = 1.5 V ± 0.1 V
154
VCCB = 1.8 V ± 0.15 V
152
VCCB = 2.5 V ± 0.2 V
151
VCCB = 3.3 V ± 0.3 V
154
Submit Documentation Feedback
Copyright © 2017–2018, Texas Instruments Incorporated
Product Folder Links: SN74AXC1T45
UNIT
ns
ns
19
SN74AXC1T45
SCES882B – DECEMBER 2017 – REVISED JUNE 2018
www.ti.com
6.12 Switching Characteristics: VCCA = 0.9 V, TA = –40°C to +125°C
over recommended operating free-air temperature range, VCCA = 0.9 V (see Figure 11)
PARAMETER
TEST CONDITIONS
A-to-B
tpd
Propagation delay
B-to-A
Port A
tdis
Disable time
Port B
20
MIN
MAX
VCCB = 0.7 V ± 0.05 V
0.5
126
VCCB = 0.8 V ± 0.04 V
0.5
78
VCCB = 0.9 V ± 0.045 V
0.5
52
VCCB = 1.2 V ± 0.1 V
0.5
23
VCCB = 1.5 V ± 0.1 V
0.5
18
VCCB = 1.8 V ± 0.15 V
0.5
16
VCCB = 2.5 V ± 0.2 V
0.5
15
VCCB = 3.3 V ± 0.3 V
0.5
18
VCCB = 0.7 V ± 0.05 V
0.5
85
VCCB = 0.8 V ± 0.04 V
0.5
64
VCCB = 0.9 V ± 0.045 V
0.5
53
VCCB = 1.2 V ± 0.1 V
0.5
40
VCCB = 1.5 V ± 0.1 V
0.5
28
VCCB = 1.8 V ± 0.15 V
0.5
24
VCCB = 2.5 V ± 0.2 V
0.5
22
VCCB = 3.3 V ± 0.3 V
0.5
21
VCCB = 0.7 V ± 0.05 V
0.5
79
VCCB = 0.8 V ± 0.04 V
0.5
79
VCCB = 0.9 V ± 0.045 V
0.5
79
VCCB = 1.2 V ± 0.1 V
0.5
79
VCCB = 1.5 V ± 0.1 V
0.5
79
VCCB = 1.8 V ± 0.15 V
0.5
79
VCCB = 2.5 V ± 0.2 V
0.5
79
VCCB = 3.3 V ± 0.3 V
0.5
79
VCCB = 0.7 V ± 0.05 V
0.5
144
VCCB = 0.8 V ± 0.04 V
0.5
105
VCCB = 0.9 V ± 0.045 V
0.5
83
VCCB = 1.2 V ± 0.1 V
0.5
36
VCCB = 1.5 V ± 0.1 V
0.5
28
VCCB = 1.8 V ± 0.15 V
0.5
26
VCCB = 2.5 V ± 0.2 V
0.5
21
VCCB = 3.3 V ± 0.3 V
0.5
23
Submit Documentation Feedback
UNIT
ns
ns
ns
ns
Copyright © 2017–2018, Texas Instruments Incorporated
Product Folder Links: SN74AXC1T45
SN74AXC1T45
www.ti.com
SCES882B – DECEMBER 2017 – REVISED JUNE 2018
Switching Characteristics: VCCA = 0.9 V, TA = –40°C to +125°C (continued)
over recommended operating free-air temperature range, VCCA = 0.9 V (see Figure 11)
PARAMETER
TEST CONDITIONS
Port A
ten
Enable time
Port B
MIN
MAX
VCCB = 0.7 V ± 0.05 V
304
VCCB = 0.8 V ± 0.04 V
229
VCCB = 0.9 V ± 0.045 V
199
VCCB = 1.2 V ± 0.1 V
81
VCCB = 1.5 V ± 0.1 V
62
VCCB = 1.8 V ± 0.15 V
56
VCCB = 2.5 V ± 0.2 V
49
VCCB = 3.3 V ± 0.3 V
54
VCCB = 0.7 V ± 0.05 V
269
VCCB = 0.8 V ± 0.04 V
221
VCCB = 0.9 V ± 0.045 V
195
VCCB = 1.2 V ± 0.1 V
166
VCCB = 1.5 V ± 0.1 V
161
VCCB = 1.8 V ± 0.15 V
159
VCCB = 2.5 V ± 0.2 V
158
VCCB = 3.3 V ± 0.3 V
161
Submit Documentation Feedback
Copyright © 2017–2018, Texas Instruments Incorporated
Product Folder Links: SN74AXC1T45
UNIT
ns
ns
21
SN74AXC1T45
SCES882B – DECEMBER 2017 – REVISED JUNE 2018
www.ti.com
6.13 Switching Characteristics: VCCA = 1.2 V, TA = –40°C to +85°C
over recommended operating free-air temperature range, VCCA = 1.2 V (see Figure 4)
PARAMETER
TEST CONDITIONS
A-to-B
tpd
Propagation
delay
B-to-A
Port A
tdis
Disable time
Port B
22
MIN
MAX
VCCB = 0.7 V ± 0.05 V
0.5
87
VCCB = 0.8 V ± 0.04 V
0.5
52
VCCB = 0.9 V ± 0.045 V
0.5
39
VCCB = 1.2 V ± 0.1 V
0.5
15
VCCB = 1.5 V ± 0.1 V
0.5
9
VCCB = 1.8 V ± 0.15 V
0.5
8
VCCB = 2.5 V ± 0.2 V
0.5
7
VCCB = 3.3 V ± 0.3 V
0.5
7
VCCB = 0.7 V ± 0.05 V
0.5
51
VCCB = 0.8 V ± 0.04 V
0.5
33
VCCB = 0.9 V ± 0.045 V
0.5
23
VCCB = 1.2 V ± 0.1 V
0.5
15
VCCB = 1.5 V ± 0.1 V
0.5
12
VCCB = 1.8 V ± 0.15 V
0.5
10
VCCB = 2.5 V ± 0.2 V
0.5
7
VCCB = 3.3 V ± 0.3 V
0.5
7
VCCB = 0.7 V ± 0.05 V
0.5
22
VCCB = 0.8 V ± 0.04 V
0.5
22
VCCB = 0.9 V ± 0.045 V
0.5
22
VCCB = 1.2 V ± 0.1 V
0.5
22
VCCB = 1.5 V ± 0.1 V
0.5
22
VCCB = 1.8 V ± 0.15 V
0.5
22
VCCB = 2.5 V ± 0.2 V
0.5
22
VCCB = 3.3 V ± 0.3 V
0.5
22
VCCB = 0.7 V ± 0.05 V
0.5
137
VCCB = 0.8 V ± 0.04 V
0.5
98
VCCB = 0.9 V ± 0.045 V
0.5
74
VCCB = 1.2 V ± 0.1 V
0.5
24
VCCB = 1.5 V ± 0.1 V
0.5
18
VCCB = 1.8 V ± 0.15 V
0.5
16
VCCB = 2.5 V ± 0.2 V
0.5
13
VCCB = 3.3 V ± 0.3 V
0.5
13
Submit Documentation Feedback
UNIT
ns
ns
ns
ns
Copyright © 2017–2018, Texas Instruments Incorporated
Product Folder Links: SN74AXC1T45
SN74AXC1T45
www.ti.com
SCES882B – DECEMBER 2017 – REVISED JUNE 2018
Switching Characteristics: VCCA = 1.2 V, TA = –40°C to +85°C (continued)
over recommended operating free-air temperature range, VCCA = 1.2 V (see Figure 4)
PARAMETER
TEST CONDITIONS
Port A
ten
Enable time
Port B
MIN
MAX
VCCB = 0.7 V ± 0.05 V
240
VCCB = 0.8 V ± 0.04 V
185
VCCB = 0.9 V ± 0.045 V
157
VCCB = 1.2 V ± 0.1 V
45
VCCB = 1.5 V ± 0.1 V
36
VCCB = 1.8 V ± 0.15 V
33
VCCB = 2.5 V ± 0.2 V
26
VCCB = 3.3 V ± 0.3 V
29
VCCB = 0.7 V ± 0.05 V
115
VCCB = 0.8 V ± 0.04 V
80
VCCB = 0.9 V ± 0.045 V
67
VCCB = 1.2 V ± 0.1 V
43
VCCB = 1.5 V ± 0.1 V
37
VCCB = 1.8 V ± 0.15 V
36
VCCB = 2.5 V ± 0.2 V
35
VCCB = 3.3 V ± 0.3 V
35
Submit Documentation Feedback
Copyright © 2017–2018, Texas Instruments Incorporated
Product Folder Links: SN74AXC1T45
UNIT
ns
ns
23
SN74AXC1T45
SCES882B – DECEMBER 2017 – REVISED JUNE 2018
www.ti.com
6.14 Switching Characteristics: VCCA = 1.2 V, TA = –40°C to +125°C
over recommended operating free-air temperature range, VCCA = 1.2 V (see Figure 12)
PARAMETER
TEST CONDITIONS
A-to-B
tpd
Propagation
delay
B-to-A
Port A
tdis
Disable time
Port B
24
MIN
MAX
VCCB = 0.7 V ± 0.05 V
0.5
87
VCCB = 0.8 V ± 0.04 V
0.5
52
VCCB = 0.9 V ± 0.045 V
0.5
39
VCCB = 1.2 V ± 0.1 V
0.5
15
VCCB = 1.5 V ± 0.1 V
0.5
10
VCCB = 1.8 V ± 0.15 V
0.5
9
VCCB = 2.5 V ± 0.2 V
0.5
7
VCCB = 3.3 V ± 0.3 V
0.5
8
VCCB = 0.7 V ± 0.05 V
0.5
51
VCCB = 0.8 V ± 0.04 V
0.5
33
VCCB = 0.9 V ± 0.045 V
0.5
23
VCCB = 1.2 V ± 0.1 V
0.5
15
VCCB = 1.5 V ± 0.1 V
0.5
12
VCCB = 1.8 V ± 0.15 V
0.5
10
VCCB = 2.5 V ± 0.2 V
0.5
8
VCCB = 3.3 V ± 0.3 V
0.5
7
VCCB = 0.7 V ± 0.05 V
0.5
29
VCCB = 0.8 V ± 0.04 V
0.5
29
VCCB = 0.9 V ± 0.045 V
0.5
29
VCCB = 1.2 V ± 0.1 V
0.5
29
VCCB = 1.5 V ± 0.1 V
0.5
29
VCCB = 1.8 V ± 0.15 V
0.5
29
VCCB = 2.5 V ± 0.2 V
0.5
29
VCCB = 3.3 V ± 0.3 V
0.5
29
VCCB = 0.7 V ± 0.05 V
0.5
137
VCCB = 0.8 V ± 0.04 V
0.5
98
VCCB = 0.9 V ± 0.045 V
0.5
78
VCCB = 1.2 V ± 0.1 V
0.5
30
VCCB = 1.5 V ± 0.1 V
0.5
23
VCCB = 1.8 V ± 0.15 V
0.5
21
VCCB = 2.5 V ± 0.2 V
0.5
17
VCCB = 3.3 V ± 0.3 V
0.5
16
Submit Documentation Feedback
UNIT
ns
ns
ns
ns
Copyright © 2017–2018, Texas Instruments Incorporated
Product Folder Links: SN74AXC1T45
SN74AXC1T45
www.ti.com
SCES882B – DECEMBER 2017 – REVISED JUNE 2018
Switching Characteristics: VCCA = 1.2 V, TA = –40°C to +125°C (continued)
over recommended operating free-air temperature range, VCCA = 1.2 V (see Figure 12)
PARAMETER
TEST CONDITIONS
Port A
ten
Enable time
Port B
MIN
MAX
VCCB = 0.7 V ± 0.05 V
265
VCCB = 0.8 V ± 0.04 V
193
VCCB = 0.9 V ± 0.045 V
164
VCCB = 1.2 V ± 0.1 V
51
VCCB = 1.5 V ± 0.1 V
41
VCCB = 1.8 V ± 0.15 V
37
VCCB = 2.5 V ± 0.2 V
30
VCCB = 3.3 V ± 0.3 V
32
VCCB = 0.7 V ± 0.05 V
121
VCCB = 0.8 V ± 0.04 V
86
VCCB = 0.9 V ± 0.045 V
73
VCCB = 1.2 V ± 0.1 V
49
VCCB = 1.5 V ± 0.1 V
44
VCCB = 1.8 V ± 0.15 V
43
VCCB = 2.5 V ± 0.2 V
41
VCCB = 3.3 V ± 0.3 V
42
Submit Documentation Feedback
Copyright © 2017–2018, Texas Instruments Incorporated
Product Folder Links: SN74AXC1T45
UNIT
ns
ns
25
SN74AXC1T45
SCES882B – DECEMBER 2017 – REVISED JUNE 2018
www.ti.com
6.15 Switching Characteristics: VCCA = 1.5 V, TA = –40°C to +85°C
over recommended operating free-air temperature range, VCCA = 1.5 V (see Figure 5)
PARAMETER
TEST CONDITIONS
A-to-B
tpd
Propagation delay
B-to-A
Port A
tdis
Disable time
Port B
26
MIN
MAX
VCCB = 0.7 V ± 0.05 V
0.5
83
VCCB = 0.8 V ± 0.04 V
0.5
42
VCCB = 0.9 V ± 0.045 V
0.5
28
VCCB = 1.2 V ± 0.1 V
0.5
12
VCCB = 1.5 V ± 0.1 V
0.5
8
VCCB = 1.8 V ± 0.15 V
0.5
7
VCCB = 2.5 V ± 0.2 V
0.5
5
VCCB = 3.3 V ± 0.3 V
0.5
5
VCCB = 0.7 V ± 0.05 V
0.5
50
VCCB = 0.8 V ± 0.04 V
0.5
28
VCCB = 0.9 V ± 0.045 V
0.5
18
VCCB = 1.2 V ± 0.1 V
0.5
10
VCCB = 1.5 V ± 0.1 V
0.5
8
VCCB = 1.8 V ± 0.15 V
0.5
7
VCCB = 2.5 V ± 0.2 V
0.5
5
VCCB = 3.3 V ± 0.3 V
0.5
4
VCCB = 0.7 V ± 0.05 V
0.5
15
VCCB = 0.8 V ± 0.04 V
0.5
15
VCCB = 0.9 V ± 0.045 V
0.5
15
VCCB = 1.2 V ± 0.1 V
0.5
15
VCCB = 1.5 V ± 0.1 V
0.5
15
VCCB = 1.8 V ± 0.15 V
0.5
15
VCCB = 2.5 V ± 0.2 V
0.5
15
VCCB = 3.3 V ± 0.3 V
0.5
15
VCCB = 0.7 V ± 0.05 V
0.5
136
VCCB = 0.8 V ± 0.04 V
0.5
96
VCCB = 0.9 V ± 0.045 V
0.5
72
VCCB = 1.2 V ± 0.1 V
0.5
22
VCCB = 1.5 V ± 0.1 V
0.5
16
VCCB = 1.8 V ± 0.15 V
0.5
14
VCCB = 2.5 V ± 0.2 V
0.5
11
VCCB = 3.3 V ± 0.3 V
0.5
11
Submit Documentation Feedback
UNIT
ns
ns
Copyright © 2017–2018, Texas Instruments Incorporated
Product Folder Links: SN74AXC1T45
SN74AXC1T45
www.ti.com
SCES882B – DECEMBER 2017 – REVISED JUNE 2018
Switching Characteristics: VCCA = 1.5 V, TA = –40°C to +85°C (continued)
over recommended operating free-air temperature range, VCCA = 1.5 V (see Figure 5)
PARAMETER
TEST CONDITIONS
Port A
ten
Enable time
Port B
MIN
MAX
VCCB = 0.7 V ± 0.05 V
238
VCCB = 0.8 V ± 0.04 V
178
VCCB = 0.9 V ± 0.045 V
151
VCCB = 1.2 V ± 0.1 V
38
VCCB = 1.5 V ± 0.1 V
30
VCCB = 1.8 V ± 0.15 V
28
VCCB = 2.5 V ± 0.2 V
22
VCCB = 3.3 V ± 0.3 V
24
VCCB = 0.7 V ± 0.05 V
104
VCCB = 0.8 V ± 0.04 V
63
VCCB = 0.9 V ± 0.045 V
49
VCCB = 1.2 V ± 0.1 V
33
VCCB = 1.5 V ± 0.1 V
29
VCCB = 1.8 V ± 0.15 V
28
VCCB = 2.5 V ± 0.2 V
26
VCCB = 3.3 V ± 0.3 V
26
Submit Documentation Feedback
Copyright © 2017–2018, Texas Instruments Incorporated
Product Folder Links: SN74AXC1T45
UNIT
ns
27
SN74AXC1T45
SCES882B – DECEMBER 2017 – REVISED JUNE 2018
www.ti.com
6.16 Switching Characteristics: VCCA = 1.5 V, TA = –40°C to +125°C
over recommended operating free-air temperature range, VCCA = 1.5 V (see Figure 13)
PARAMETER
TEST CONDITIONS
A-to-B
tpd
Propagation delay
B-to-A
Port A
tdis
Disable time
Port B
28
MIN
MAX
VCCB = 0.7 V ± 0.05 V
0.5
83
VCCB = 0.8 V ± 0.04 V
0.5
42
VCCB = 0.9 V ± 0.045 V
0.5
28
VCCB = 1.2 V ± 0.1 V
0.5
12
VCCB = 1.5 V ± 0.1 V
0.5
9
VCCB = 1.8 V ± 0.15 V
0.5
8
VCCB = 2.5 V ± 0.2 V
0.5
6
VCCB = 3.3 V ± 0.3 V
0.5
6
VCCB = 0.7 V ± 0.05 V
0.5
50
VCCB = 0.8 V ± 0.04 V
0.5
28
VCCB = 0.9 V ± 0.045 V
0.5
18
VCCB = 1.2 V ± 0.1 V
0.5
10
VCCB = 1.5 V ± 0.1 V
0.5
9
VCCB = 1.8 V ± 0.15 V
0.5
8
VCCB = 2.5 V ± 0.2 V
0.5
6
VCCB = 3.3 V ± 0.3 V
0.5
5
VCCB = 0.7 V ± 0.05 V
0.5
20
VCCB = 0.8 V ± 0.04 V
0.5
20
VCCB = 0.9 V ± 0.045 V
0.5
20
VCCB = 1.2 V ± 0.1 V
0.5
20
VCCB = 1.5 V ± 0.1 V
0.5
20
VCCB = 1.8 V ± 0.15 V
0.5
20
VCCB = 2.5 V ± 0.2 V
0.5
20
VCCB = 3.3 V ± 0.3 V
0.5
20
VCCB = 0.7 V ± 0.05 V
0.5
136
VCCB = 0.8 V ± 0.04 V
0.5
96
VCCB = 0.9 V ± 0.045 V
0.5
76
VCCB = 1.2 V ± 0.1 V
0.5
29
VCCB = 1.5 V ± 0.1 V
0.5
21
VCCB = 1.8 V ± 0.15 V
0.5
19
VCCB = 2.5 V ± 0.2 V
0.5
15
VCCB = 3.3 V ± 0.3 V
0.5
14
Submit Documentation Feedback
UNIT
ns
ns
Copyright © 2017–2018, Texas Instruments Incorporated
Product Folder Links: SN74AXC1T45
SN74AXC1T45
www.ti.com
SCES882B – DECEMBER 2017 – REVISED JUNE 2018
Switching Characteristics: VCCA = 1.5 V, TA = –40°C to +125°C (continued)
over recommended operating free-air temperature range, VCCA = 1.5 V (see Figure 13)
PARAMETER
TEST CONDITIONS
Port A
ten
Enable time
Port B
MIN
MAX
VCCB = 0.7 V ± 0.05 V
263
VCCB = 0.8 V ± 0.04 V
186
VCCB = 0.9 V ± 0.045 V
157
VCCB = 1.2 V ± 0.1 V
44
VCCB = 1.5 V ± 0.1 V
36
VCCB = 1.8 V ± 0.15 V
33
VCCB = 2.5 V ± 0.2 V
26
VCCB = 3.3 V ± 0.3 V
27
VCCB = 0.7 V ± 0.05 V
109
VCCB = 0.8 V ± 0.04 V
68
VCCB = 0.9 V ± 0.045 V
54
VCCB = 1.2 V ± 0.1 V
38
VCCB = 1.5 V ± 0.1 V
35
VCCB = 1.8 V ± 0.15 V
34
VCCB = 2.5 V ± 0.2 V
32
VCCB = 3.3 V ± 0.3 V
32
Submit Documentation Feedback
Copyright © 2017–2018, Texas Instruments Incorporated
Product Folder Links: SN74AXC1T45
UNIT
ns
29
SN74AXC1T45
SCES882B – DECEMBER 2017 – REVISED JUNE 2018
www.ti.com
6.17 Switching Characteristics: VCCA = 1.8 V, TA = –40°C to +85°C
over recommended operating free-air temperature range, VCCA = 1.8 V (see Figure 6)
PARAMETER
A-to-B
tpd
Propagation
delay
B-to-A
Port A
tdis
Disable time
Port B
30
TEST CONDITIONS
MIN
MAX
VCCB = 0.7 V ± 0.05 V
0.5
81
VCCB = 0.8 V ± 0.04 V
0.5
41
VCCB = 0.9 V ± 0.045 V
0.5
24
VCCB = 1.2 V ± 0.1 V
0.5
10
VCCB = 1.5 V ± 0.1 V
0.5
7
VCCB = 1.8 V ± 0.15 V
0.5
6
VCCB = 2.5 V ± 0.2 V
0.5
5
VCCB = 3.3 V ± 0.3 V
0.5
4
VCCB = 0.7 V ± 0.05 V
0.5
53
VCCB = 0.8 V ± 0.04 V
0.5
26
VCCB = 0.9 V ± 0.045 V
0.5
16
VCCB = 1.2 V ± 0.1 V
0.5
8
VCCB = 1.5 V ± 0.1 V
0.5
7
VCCB = 1.8 V ± 0.15 V
0.5
6
VCCB = 2.5 V ± 0.2 V
0.5
5
VCCB = 3.3 V ± 0.3 V
0.5
4
VCCB = 0.7 V ± 0.05 V
0.5
13
VCCB = 0.8 V ± 0.04 V
0.5
13
VCCB = 0.9 V ± 0.045 V
0.5
13
VCCB = 1.2 V ± 0.1 V
0.5
13
VCCB = 1.5 V ± 0.1 V
0.5
13
VCCB = 1.8 V ± 0.15 V
0.5
13
VCCB = 2.5 V ± 0.2 V
0.5
13
VCCB = 3.3 V ± 0.3 V
0.5
13
VCCB = 0.7 V ± 0.05 V
0.5
136
VCCB = 0.8 V ± 0.04 V
0.5
96
VCCB = 0.9 V ± 0.045 V
0.5
72
VCCB = 1.2 V ± 0.1 V
0.5
22
VCCB = 1.5 V ± 0.1 V
0.5
15
VCCB = 1.8 V ± 0.15 V
0.5
14
VCCB = 2.5 V ± 0.2 V
0.5
11
VCCB = 3.3 V ± 0.3 V
0.5
11
Submit Documentation Feedback
UNIT
ns
ns
Copyright © 2017–2018, Texas Instruments Incorporated
Product Folder Links: SN74AXC1T45
SN74AXC1T45
www.ti.com
SCES882B – DECEMBER 2017 – REVISED JUNE 2018
Switching Characteristics: VCCA = 1.8 V, TA = –40°C to +85°C (continued)
over recommended operating free-air temperature range, VCCA = 1.8 V (see Figure 6)
PARAMETER
TEST CONDITIONS
Port A
ten
Enable time
Port B
MIN
MAX
VCCB = 0.7 V ± 0.05 V
241
VCCB = 0.8 V ± 0.04 V
176
VCCB = 0.9 V ± 0.045 V
148
VCCB = 1.2 V ± 0.1 V
35
VCCB = 1.5 V ± 0.1 V
28
VCCB = 1.8 V ± 0.15 V
26
VCCB = 2.5 V ± 0.2 V
21
VCCB = 3.3 V ± 0.3 V
24
VCCB = 0.7 V ± 0.05 V
101
VCCB = 0.8 V ± 0.04 V
61
VCCB = 0.9 V ± 0.045 V
44
VCCB = 1.2 V ± 0.1 V
30
VCCB = 1.5 V ± 0.1 V
27
VCCB = 1.8 V ± 0.15 V
26
VCCB = 2.5 V ± 0.2 V
25
VCCB = 3.3 V ± 0.3 V
24
Submit Documentation Feedback
Copyright © 2017–2018, Texas Instruments Incorporated
Product Folder Links: SN74AXC1T45
UNIT
ns
31
SN74AXC1T45
SCES882B – DECEMBER 2017 – REVISED JUNE 2018
www.ti.com
6.18 Switching Characteristics: VCCA = 1.8 V, TA = –40°C to +125°C
over recommended operating free-air temperature range, VCCA = 1.8 V (see Figure 14)
PARAMETER
TEST CONDITIONS
A-to-B
tpd
Propagation delay
B-to-A
Port A
tdis
Disable time
Port B
32
MIN
MAX
VCCB = 0.7 V ± 0.05 V
0.5
81
VCCB = 0.8 V ± 0.04 V
0.5
41
VCCB = 0.9 V ± 0.045 V
0.5
24
VCCB = 1.2 V ± 0.1 V
0.5
10
VCCB = 1.5 V ± 0.1 V
0.5
8
VCCB = 1.8 V ± 0.15 V
0.5
7
VCCB = 2.5 V ± 0.2 V
0.5
5
VCCB = 3.3 V ± 0.3 V
0.5
5
VCCB = 0.7 V ± 0.05 V
0.5
53
VCCB = 0.8 V ± 0.04 V
0.5
26
VCCB = 0.9 V ± 0.045 V
0.5
16
VCCB = 1.2 V ± 0.1 V
0.5
9
VCCB = 1.5 V ± 0.1 V
0.5
7
VCCB = 1.8 V ± 0.15 V
0.5
7
VCCB = 2.5 V ± 0.2 V
0.5
5
VCCB = 3.3 V ± 0.3 V
0.5
4
VCCB = 0.7 V ± 0.05 V
0.5
18
VCCB = 0.8 V ± 0.04 V
0.5
18
VCCB = 0.9 V ± 0.045 V
0.5
18
VCCB = 1.2 V ± 0.1 V
0.5
18
VCCB = 1.5 V ± 0.1 V
0.5
18
VCCB = 1.8 V ± 0.15 V
0.5
18
VCCB = 2.5 V ± 0.2 V
0.5
18
VCCB = 3.3 V ± 0.3 V
0.5
18
VCCB = 0.7 V ± 0.05 V
0.5
136
VCCB = 0.8 V ± 0.04 V
0.5
96
VCCB = 0.9 V ± 0.045 V
0.5
75
VCCB = 1.2 V ± 0.1 V
0.5
28
VCCB = 1.5 V ± 0.1 V
0.5
20
VCCB = 1.8 V ± 0.15 V
0.5
18
VCCB = 2.5 V ± 0.2 V
0.5
14
VCCB = 3.3 V ± 0.3 V
0.5
13
Submit Documentation Feedback
UNIT
ns
ns
Copyright © 2017–2018, Texas Instruments Incorporated
Product Folder Links: SN74AXC1T45
SN74AXC1T45
www.ti.com
SCES882B – DECEMBER 2017 – REVISED JUNE 2018
Switching Characteristics: VCCA = 1.8 V, TA = –40°C to +125°C (continued)
over recommended operating free-air temperature range, VCCA = 1.8 V (see Figure 14)
PARAMETER
TEST CONDITIONS
Port A
ten
Enable time
Port B
MIN
MAX
VCCB = 0.7 V ± 0.05 V
266
VCCB = 0.8 V ± 0.04 V
184
VCCB = 0.9 V ± 0.045 V
155
VCCB = 1.2 V ± 0.1 V
42
VCCB = 1.5 V ± 0.1 V
33
VCCB = 1.8 V ± 0.15 V
32
VCCB = 2.5 V ± 0.2 V
24
VCCB = 3.3 V ± 0.3 V
26
VCCB = 0.7 V ± 0.05 V
105
VCCB = 0.8 V ± 0.04 V
65
VCCB = 0.9 V ± 0.045 V
48
VCCB = 1.2 V ± 0.1 V
34
VCCB = 1.5 V ± 0.1 V
32
VCCB = 1.8 V ± 0.15 V
31
VCCB = 2.5 V ± 0.2 V
29
VCCB = 3.3 V ± 0.3 V
29
Submit Documentation Feedback
Copyright © 2017–2018, Texas Instruments Incorporated
Product Folder Links: SN74AXC1T45
UNIT
ns
33
SN74AXC1T45
SCES882B – DECEMBER 2017 – REVISED JUNE 2018
www.ti.com
6.19 Switching Characteristics: VCCA = 2.5 V, TA = –40°C to +85°C
over recommended operating free-air temperature range, VCCA = 2.5 V (see Figure 8)
PARAMETER
TEST CONDITIONS
A-to-B
tpd
Propagation delay
B-to-A
Port A
tdis
Disable time
Port B
34
MIN
MAX
VCCB = 0.7 V ± 0.05 V
0.5
80
VCCB = 0.8 V ± 0.04 V
0.5
40
VCCB = 0.9 V ± 0.045 V
0.5
22
VCCB = 1.2 V ± 0.1 V
0.5
7
VCCB = 1.5 V ± 0.1 V
0.5
5
VCCB = 1.8 V ± 0.15 V
0.5
5
VCCB = 2.5 V ± 0.2 V
0.5
4
VCCB = 3.3 V ± 0.3 V
0.5
4
VCCB = 0.7 V ± 0.05 V
0.5
66
VCCB = 0.8 V ± 0.04 V
0.5
27
VCCB = 0.9 V ± 0.045 V
0.5
15
VCCB = 1.2 V ± 0.1 V
0.5
7
VCCB = 1.5 V ± 0.1 V
0.5
5
VCCB = 1.8 V ± 0.15 V
0.5
5
VCCB = 2.5 V ± 0.2 V
0.5
4
VCCB = 3.3 V ± 0.3 V
0.5
3
VCCB = 0.7 V ± 0.05 V
0.5
10
VCCB = 0.8 V ± 0.04 V
0.5
10
VCCB = 0.9 V ± 0.045 V
0.5
10
VCCB = 1.2 V ± 0.1 V
0.5
10
VCCB = 1.5 V ± 0.1 V
0.5
10
VCCB = 1.8 V ± 0.15 V
0.5
10
VCCB = 2.5 V ± 0.2 V
0.5
10
VCCB = 3.3 V ± 0.3 V
0.5
10
VCCB = 0.7 V ± 0.05 V
0.5
136
VCCB = 0.8 V ± 0.04 V
0.5
95
VCCB = 0.9 V ± 0.045 V
0.5
71
VCCB = 1.2 V ± 0.1 V
0.5
21
VCCB = 1.5 V ± 0.1 V
0.5
14
VCCB = 1.8 V ± 0.15 V
0.5
13
VCCB = 2.5 V ± 0.2 V
0.5
10
VCCB = 3.3 V ± 0.3 V
0.5
10
Submit Documentation Feedback
UNIT
ns
ns
Copyright © 2017–2018, Texas Instruments Incorporated
Product Folder Links: SN74AXC1T45
SN74AXC1T45
www.ti.com
SCES882B – DECEMBER 2017 – REVISED JUNE 2018
Switching Characteristics: VCCA = 2.5 V, TA = –40°C to +85°C (continued)
over recommended operating free-air temperature range, VCCA = 2.5 V (see Figure 8)
PARAMETER
TEST CONDITIONS
Port A
ten
Enable time
Port B
MIN
MAX
VCCB = 0.7 V ± 0.05 V
254
VCCB = 0.8 V ± 0.04 V
176
VCCB = 0.9 V ± 0.045 V
147
VCCB = 1.2 V ± 0.1 V
33
VCCB = 1.5 V ± 0.1 V
25
VCCB = 1.8 V ± 0.15 V
24
VCCB = 2.5 V ± 0.2 V
19
VCCB = 3.3 V ± 0.3 V
22
VCCB = 0.7 V ± 0.05 V
99
VCCB = 0.8 V ± 0.04 V
55
VCCB = 0.9 V ± 0.045 V
41
VCCB = 1.2 V ± 0.1 V
22
VCCB = 1.5 V ± 0.1 V
24
VCCB = 1.8 V ± 0.15 V
20
VCCB = 2.5 V ± 0.2 V
23
VCCB = 3.3 V ± 0.3 V
19
Submit Documentation Feedback
Copyright © 2017–2018, Texas Instruments Incorporated
Product Folder Links: SN74AXC1T45
UNIT
ns
35
SN74AXC1T45
SCES882B – DECEMBER 2017 – REVISED JUNE 2018
www.ti.com
6.20 Switching Characteristics: VCCA = 2.5 V, TA = –40°C to +125°C
over recommended operating free-air temperature range, VCCA = 2.5 V (see Figure 15)
PARAMETER
TEST CONDITIONS
A-to-B
tpd
Propagation delay
B-to-A
MIN
MAX
VCCB = 0.7 V ± 0.05 V
0.5
80
VCCB = 0.8 V ± 0.04 V
0.5
40
VCCB = 0.9 V ± 0.045 V
0.5
22
VCCB = 1.2 V ± 0.1 V
0.5
8
VCCB = 1.5 V ± 0.1 V
0.5
6
VCCB = 1.8 V ± 0.15 V
0.5
5
VCCB = 2.5 V ± 0.2 V
0.5
5
VCCB = 3.3 V ± 0.3 V
0.5
4
VCCB = 0.7 V ± 0.05 V
0.5
66
VCCB = 0.8 V ± 0.04 V
0.5
27
VCCB = 0.9 V ± 0.045 V
0.5
15
VCCB = 1.2 V ± 0.1 V
0.5
7
VCCB = 1.5 V ± 0.1 V
0.5
6
VCCB = 1.8 V ± 0.15 V
0.5
5
VCCB = 2.5 V ± 0.2 V
0.5
5
VCCB = 3.3 V ± 0.3 V
0.5
4
VCCB = 0.7 V ± 0.05 V
0.5
13
VCCB = 0.8 V ± 0.04 V
0.5
13
VCCB = 0.9 V ± 0.045 V
0.5
13
VCCB = 1.2 V ± 0.1 V
0.5
13
Port A
disable time VCCB = 1.5 V ± 0.1 V
tdis
Disable time
0.5
13
VCCB = 1.8 V ± 0.15 V
0.5
13
VCCB = 2.5 V ± 0.2 V
0.5
13
VCCB = 3.3 V ± 0.3 V
0.5
13
VCCB = 0.7 V ± 0.05 V
0.5
136
VCCB = 0.8 V ± 0.04 V
0.5
95
VCCB = 0.9 V ± 0.045 V
0.5
75
0.5
27
0.5
20
VCCB = 1.8 V ± 0.15 V
0.5
17
VCCB = 2.5 V ± 0.2 V
0.5
13
VCCB = 3.3 V ± 0.3 V
0.5
12
VCCB = 1.2 V ± 0.1 V
Port B
disable time VCCB = 1.5 V ± 0.1 V
36
Submit Documentation Feedback
UNIT
ns
ns
Copyright © 2017–2018, Texas Instruments Incorporated
Product Folder Links: SN74AXC1T45
SN74AXC1T45
www.ti.com
SCES882B – DECEMBER 2017 – REVISED JUNE 2018
Switching Characteristics: VCCA = 2.5 V, TA = –40°C to +125°C (continued)
over recommended operating free-air temperature range, VCCA = 2.5 V (see Figure 15)
PARAMETER
TEST CONDITIONS
Port A
enable time
ten
Enable time
Port B
enable time
MIN
MAX
VCCB = 0.7 V ± 0.05 V
278
VCCB = 0.8 V ± 0.04 V
185
VCCB = 0.9 V ± 0.045 V
153
VCCB = 1.2 V ± 0.1 V
39
VCCB = 1.5 V ± 0.1 V
31
VCCB = 1.8 V ± 0.15 V
29
VCCB = 2.5 V ± 0.2 V
23
VCCB = 3.3 V ± 0.3 V
25
VCCB = 0.7 V ± 0.05 V
98
VCCB = 0.8 V ± 0.04 V
58
VCCB = 0.9 V ± 0.045 V
40
VCCB = 1.2 V ± 0.1 V
26
VCCB = 1.5 V ± 0.1 V
24
VCCB = 1.8 V ± 0.15 V
23
VCCB = 2.5 V ± 0.2 V
23
VCCB = 3.3 V ± 0.3 V
22
Submit Documentation Feedback
Copyright © 2017–2018, Texas Instruments Incorporated
Product Folder Links: SN74AXC1T45
UNIT
ns
37
SN74AXC1T45
SCES882B – DECEMBER 2017 – REVISED JUNE 2018
www.ti.com
6.21 Switching Characteristics: VCCA = 3.3 V ± 0.3 V, TA = –40°C to +85°C
over recommended operating free-air temperature range, VCCA = 3.3 V ± 0.3 V (see Figure 7)
PARAMETER
A-to-B
tpd
Propagation delay
B-to-A
Port A
tdis
Disable time
Port B
38
TEST CONDITIONS
MIN
MAX
VCCB = 0.7 V ± 0.05 V
0.5
79
VCCB = 0.8 V ± 0.04 V
0.5
39
VCCB = 0.9 V ± 0.045 V
0.5
22
VCCB = 1.2 V ± 0.1 V
0.5
7
VCCB = 1.5 V ± 0.1 V
0.5
4
VCCB = 1.8 V ± 0.15 V
0.5
4
VCCB = 2.5 V ± 0.2 V
0.5
3
VCCB = 3.3 V ± 0.3 V
0.5
3
VCCB = 0.7 V ± 0.05 V
0.5
144
VCCB = 0.8 V ± 0.04 V
0.5
36
VCCB = 0.9 V ± 0.045 V
0.5
18
VCCB = 1.2 V ± 0.1 V
0.5
7
VCCB = 1.5 V ± 0.1 V
0.5
5
VCCB = 1.8 V ± 0.15 V
0.5
4
VCCB = 2.5 V ± 0.2 V
0.5
4
VCCB = 3.3 V ± 0.3 V
0.5
3
VCCB = 0.7 V ± 0.05 V
0.5
9
VCCB = 0.8 V ± 0.04 V
0.5
9
VCCB = 0.9 V ± 0.045 V
0.5
9
VCCB = 1.2 V ± 0.1 V
0.5
9
VCCB = 1.5 V ± 0.1 V
0.5
9
VCCB = 1.8 V ± 0.15 V
0.5
9
VCCB = 2.5 V ± 0.2 V
0.5
9
VCCB = 3.3 V ± 0.3 V
0.5
9
VCCB = 0.7 V ± 0.05 V
0.5
136
VCCB = 0.8 V ± 0.04 V
0.5
95
VCCB = 0.9 V ± 0.045 V
0.5
71
VCCB = 1.2 V ± 0.1 V
0.5
21
VCCB = 1.5 V ± 0.1 V
0.5
14
VCCB = 1.8 V ± 0.15 V
0.5
12
VCCB = 2.5 V ± 0.2 V
0.5
10
VCCB = 3.3 V ± 0.3 V
0.5
10
Submit Documentation Feedback
UNIT
ns
ns
Copyright © 2017–2018, Texas Instruments Incorporated
Product Folder Links: SN74AXC1T45
SN74AXC1T45
www.ti.com
SCES882B – DECEMBER 2017 – REVISED JUNE 2018
Switching Characteristics: VCCA = 3.3 V ± 0.3 V, TA = –40°C to +85°C (continued)
over recommended operating free-air temperature range, VCCA = 3.3 V ± 0.3 V (see Figure 7)
PARAMETER
TEST CONDITIONS
Port A
ten
Enable time
Port B
MIN
MAX
VCCB = 0.7 V ± 0.05 V
331
VCCB = 0.8 V ± 0.04 V
185
VCCB = 0.9 V ± 0.045 V
149
VCCB = 1.2 V ± 0.1 V
33
VCCB = 1.5 V ± 0.1 V
25
VCCB = 1.8 V ± 0.15 V
23
VCCB = 2.5 V ± 0.2 V
19
VCCB = 3.3 V ± 0.3 V
22
VCCB = 0.7 V ± 0.05 V
98
VCCB = 0.8 V ± 0.04 V
58
VCCB = 0.9 V ± 0.045 V
41
VCCB = 1.2 V ± 0.1 V
26
VCCB = 1.5 V ± 0.1 V
23
VCCB = 1.8 V ± 0.15 V
23
VCCB = 2.5 V ± 0.2 V
22
VCCB = 3.3 V ± 0.3 V
22
Submit Documentation Feedback
Copyright © 2017–2018, Texas Instruments Incorporated
Product Folder Links: SN74AXC1T45
UNIT
ns
39
SN74AXC1T45
SCES882B – DECEMBER 2017 – REVISED JUNE 2018
www.ti.com
6.22 Switching Characteristics: VCCA = 3.3 V ± 0.3 V, TA = –40°C to +125°C
over recommended operating free-air temperature range, VCCA = 3.3 V ± 0.3 V (see Figure 16)
PARAMETER
A-to-B
tpd
Propagation delay
B-to-A
Port A
tdis
Disable time
Port B
40
TEST CONDITIONS
MIN
MAX
VCCB = 0.7 V ± 0.05 V
0.5
79
VCCB = 0.8 V ± 0.04 V
0.5
39
VCCB = 0.9 V ± 0.045 V
0.5
22
VCCB = 1.2 V ± 0.1 V
0.5
7
VCCB = 1.5 V ± 0.1 V
0.5
5
VCCB = 1.8 V ± 0.15 V
0.5
4
VCCB = 2.5 V ± 0.2 V
0.5
4
VCCB = 3.3 V ± 0.3 V
0.5
4
VCCB = 0.7 V ± 0.05 V
0.5
144
VCCB = 0.8 V ± 0.04 V
0.5
36
VCCB = 0.9 V ± 0.045 V
0.5
18
VCCB = 1.2 V ± 0.1 V
0.5
8
VCCB = 1.5 V ± 0.1 V
0.5
6
VCCB = 1.8 V ± 0.15 V
0.5
5
VCCB = 2.5 V ± 0.2 V
0.5
4
VCCB = 3.3 V ± 0.3 V
0.5
4
VCCB = 0.7 V ± 0.05 V
0.5
12
VCCB = 0.8 V ± 0.04 V
0.5
12
VCCB = 0.9 V ± 0.045 V
0.5
12
VCCB = 1.2 V ± 0.1 V
0.5
12
VCCB = 1.5 V ± 0.1 V
0.5
12
VCCB = 1.8 V ± 0.15 V
0.5
12
VCCB = 2.5 V ± 0.2 V
0.5
12
VCCB = 3.3 V ± 0.3 V
0.5
12
VCCB = 0.7 V ± 0.05 V
0.5
136
VCCB = 0.8 V ± 0.04 V
0.5
95
VCCB = 0.9 V ± 0.045 V
0.5
75
VCCB = 1.2 V ± 0.1 V
0.5
27
VCCB = 1.5 V ± 0.1 V
0.5
19
VCCB = 1.8 V ± 0.15 V
0.5
17
VCCB = 2.5 V ± 0.2 V
0.5
13
VCCB = 3.3 V ± 0.3 V
0.5
12
Submit Documentation Feedback
UNIT
ns
ns
Copyright © 2017–2018, Texas Instruments Incorporated
Product Folder Links: SN74AXC1T45
SN74AXC1T45
www.ti.com
SCES882B – DECEMBER 2017 – REVISED JUNE 2018
Switching Characteristics: VCCA = 3.3 V ± 0.3 V, TA = –40°C to +125°C (continued)
over recommended operating free-air temperature range, VCCA = 3.3 V ± 0.3 V (see Figure 16)
PARAMETER
TEST CONDITIONS
VCCB = 0.7 V ± 0.05 V
Port A
ten
Enable time
Port B
MIN
MAX
356
VCCB = 0.8 V ± 0.04 V
93
VCCB = 0.9 V ± 0.045 V
156
VCCB = 1.2 V ± 0.1 V
40
VCCB = 1.5 V ± 0.1 V
31
VCCB = 1.8 V ± 0.15 V
29
VCCB = 2.5 V ± 0.2 V
22
VCCB = 3.3 V ± 0.3 V
24
VCCB = 0.7 V ± 0.05 V
99
VCCB = 0.8 V ± 0.04 V
59
VCCB = 0.9 V ± 0.045 V
42
VCCB = 1.2 V ± 0.1 V
27
VCCB = 1.5 V ± 0.1 V
25
VCCB = 1.8 V ± 0.15 V
24
VCCB = 2.5 V ± 0.2 V
24
VCCB = 3.3 V ± 0.3 V
24
Submit Documentation Feedback
Copyright © 2017–2018, Texas Instruments Incorporated
Product Folder Links: SN74AXC1T45
UNIT
ns
41
SN74AXC1T45
SCES882B – DECEMBER 2017 – REVISED JUNE 2018
www.ti.com
6.23 Operating Characteristics
TA = 25°C
PARAMETER
TEST CONDITIONS
A-port input,
B-port output
CpdA
Power
dissipation
capacitance per
transceiver
CL = 0 pF,
f = 1 MHz,
tr = tf = 1 ns
B-port input,
A-port output
A-port input,
B-port output
CpdB
Power
dissipation
capacitance per
transceiver
CL = 0 pF,
f = 1 MHz,
tr = tf = 1 ns
B-port input,
A-port output
42
MIN
TYP
VCCA = VCCB = 0.7 V
1.3
VCCA = VCCB = 0.8 V
1.3
VCCA = VCCB = 0.9 V
1.3
VCCA = VCCB = 1.2 V
1.3
VCCA = VCCB = 1.5 V
1.3
VCCA = VCCB = 1.8 V
1.4
VCCA = VCCB = 2.5 V
1.7
VCCA = VCCB = 3.3 V
2.1
VCCA = VCCB = 0.7 V
9.2
VCCA = VCCB = 0.8 V
9.4
VCCA = VCCB = 0.9 V
9.4
VCCA = VCCB = 1.2 V
9.8
VCCA = VCCB = 1.5 V
10.1
VCCA = VCCB = 1.8 V
11.0
VCCA = VCCB = 2.5 V
14.4
VCCA = VCCB = 3.3 V
18.6
VCCA = VCCB = 0.7 V
9.2
VCCA = VCCB = 0.8 V
9.3
VCCA = VCCB = 0.9 V
9.4
VCCA = VCCB = 1.2 V
9.7
VCCA = VCCB = 1.5 V
10.1
VCCA = VCCB = 1.8 V
11.0
VCCA = VCCB = 2.5 V
14.4
VCCA = VCCB = 3.3 V
18.3
VCCA = VCCB = 0.7 V
1.3
VCCA = VCCB = 0.8 V
1.3
VCCA = VCCB = 0.9 V
1.3
VCCA = VCCB = 1.2 V
1.3
VCCA = VCCB = 1.5 V
1.3
VCCA = VCCB = 1.8 V
1.4
VCCA = VCCB = 2.5 V
1.7
VCCA = VCCB = 3.3 V
2.1
Submit Documentation Feedback
MAX
UNIT
pF
pF
Copyright © 2017–2018, Texas Instruments Incorporated
Product Folder Links: SN74AXC1T45
SN74AXC1T45
www.ti.com
SCES882B – DECEMBER 2017 – REVISED JUNE 2018
6.24 Typical Characteristics
50
45
CL = 45 pF
CL = 62 pF
CL = 79 pF
CL = 105 pF
CL = 123 pF
TA = 25°C
40
35
30
25
20
15
0.9
1.2
1.5
1.8
2.1
Supply B (V)
2.4
2.7
3
3.3
TA = 25°C
1.5
1.8
2.1
Supply B (V)
2.4
2.7
3
3.3
D001
VCCA = 0.8 V
30
CL = 45 pF
CL = 62 pF
CL = 79 pF
CL = 105 pF
CL = 123 pF
Propagation delay (ns)
27
25
20
15
10
24
21
18
15
12
9
5
0.6
0.9
1.2
1.5
1.8
2.1
Supply B (V)
2.4
2.7
3
6
0.6
3.3
0.9
1.2
1.5
D002
VCCA = 0.9 V
TA = 25°C
Figure 3. Typical Propagation Delay of Low-to-High
(A to B) vs Load Capacitance
1.8
2.1
Supply B (V)
2.4
2.7
3
3.3
D003
VCCA = 1.2 V
Figure 4. Typical Propagation Delay of Low-to-High
(A to B) vs Load Capacitance
30
27
CL = 45 pF
CL = 62 pF
CL = 79 pF
CL = 105 pF
CL = 123 pF
24
CL = 45 pF
CL = 62 pF
CL = 79 pF
CL = 105 pF
CL = 123 pF
24
Propagation delay (ns)
27
21
18
15
12
9
21
18
15
12
9
6
6
0.6
TA = 25°C
1.2
Figure 2. Typical Propagation Delay of Low-to-High
(A to B) vs Load Capacitance
CL = 45 pF
CL = 62 pF
CL = 79 pF
CL = 105 pF
CL = 123 pF
30
TA = 25°C
0.9
D016
35
Propagation delay (ns)
25
10
0.6
40
Propagation delay (ns)
30
15
0.6
VCCA = 0.7 V
0.9
1.2
1.5
1.8
2.1
Supply B (V)
2.4
2.7
3
3
0.6
3.3
0.9
1.2
1.5
D004
VCCA = 1.5 V
TA = 25°C
Figure 5. Typical Propagation Delay of Low-to-High
(A to B) vs Load Capacitance
1.8
2.1
Supply B (V)
2.4
2.7
3
3.3
D005
VCCA = 1.8 V
Figure 6. Typical Propagation Delay of Low-to-High
(A to B) vs Load Capacitance
27
27
CL = 45 pF
CL = 62 pF
CL = 79 pF
CL = 105 pF
CL = 123 pF
21
CL = 45 pF
CL = 62 pF
CL = 79 pF
CL = 105 pF
CL = 123 pF
24
Propagation delay (ns)
24
Propagation delay (ns)
35
20
Figure 1. Typical Propagation Delay of Low-to-High
(A to B) vs Load Capacitance
18
15
12
9
6
21
18
15
12
9
6
3
0.6
TA = 25°C
CL = 45 pF
CL = 62 pF
CL = 79 pF
CL = 105 pF
CL = 123 pF
40
Propagation delay (ns)
Propagation delay (ns)
45
0.9
1.2
1.5
1.8
2.1
Supply B (V)
2.4
2.7
3
3
0.6
3.3
0.9
1.2
1.5
D007
VCCA = 3.3 V
TA = 25°C
Figure 7. Typical Propagation Delay of Low-to-High
(A to B) vs Load Capacitance
1.8
2.1
Supply B (V)
2.4
2.7
3
3.3
D006
VCCA = 2.5 V
Figure 8. Typical Propagation Delay of Low-to-High
(A to B) vs Load Capacitance
Submit Documentation Feedback
Copyright © 2017–2018, Texas Instruments Incorporated
Product Folder Links: SN74AXC1T45
43
SN74AXC1T45
SCES882B – DECEMBER 2017 – REVISED JUNE 2018
www.ti.com
Typical Characteristics (continued)
40
50
CL = 45 pF
CL = 62 pF
CL = 79 pF
CL = 105 pF
CL = 123 pF
40
35
30
25
15
0.6
0.9
1.2
1.5
1.8
2.1
Supply A (V)
2.4
2.7
3
TA = 25°C
1.5
1.8
2.1
Supply A (V)
2.4
2.7
3
3.3
D009
Figure 10. Typical Propagation Delay of Low-to-High
(B to A) vs Load Capacitance
30
27
CL = 45 pF
CL = 62 pF
CL = 79 pF
CL = 105 pF
CL = 123 pF
25
Propagation delay (ns)
Propagation delay (ns)
1.2
27.5
CL = 45 pF
CL = 62 pF
CL = 79 pF
CL = 105 pF
CL = 123 pF
33
24
21
18
15
22.5
20
17.5
15
12.5
10
12
9
0.6
0.9
1.2
1.5
1.8
2.1
Supply A (V)
2.4
2.7
3
7.5
0.6
3.3
TA = 25°C
Figure 11. Typical Propagation Delay of Low-to-High
(B to A) vs Load Capacitance
1.2
1.5
1.8
2.1
Supply A (V)
2.4
2.7
3
3.3
D011
VCCA = 1.2 V
Figure 12. Typical Propagation Delay of Low-to-High
(B to A) vs Load Capacitance
30
25
CL = 45 pF
CL = 62 pF
CL = 79 pF
CL = 105 pF
CL = 123 pF
24
CL = 45 pF
CL = 62 pF
CL = 79 pF
CL = 105 pF
CL = 123 pF
22.5
Propagation delay (ns)
27
21
18
15
12
9
6
0.6
0.9
D010
VCCA = 0.9 V
Propagation delay (ns)
0.9
VCCA = 0.8 V
36
20
17.5
15
12.5
10
7.5
0.9
1.2
1.5
1.8
2.1
Supply A (V)
2.4
2.7
3
5
0.6
3.3
0.9
1.2
1.5
1.8
2.1
Supply A (V)
D012
VCCA = 1.5 V
TA = 25°C
Figure 13. Typical Propagation Delay of Low-to-High
(B to A) vs Load Capacitance
2.4
2.7
3
3.3
D013
VCCA = 1.8 V
Figure 14. Typical Propagation Delay of Low-to-High
(B to A) vs Load Capacitance
30
30
CL = 45 pF
CL = 62 pF
CL = 79 pF
CL = 105 pF
CL = 123 pF
CL = 45 pF
CL = 62 pF
CL = 79 pF
CL = 105 pF
CL = 123 pF
27
Propagation delay (ns)
25
Propagation delay (ns)
20
D008
Figure 9. Typical Propagation Delay of Low-to-High
(B to A) vs Load Capacitance
TA = 25°C
25
10
0.6
3.3
VCCA = 0.7 V
TA = 25°C
30
15
20
TA = 25°C
CL = 45 pF
CL = 62 pF
CL = 79 pF
CL = 105 pF
CL = 123 pF
35
Propagation delay (ns)
Propagation delay (ns)
45
20
15
10
24
21
18
15
12
9
6
5
0.6
TA = 25°C
0.9
1.2
1.5
1.8
2.1
Supply A (V)
2.4
2.7
3
0.9
1.2
1.5
D014
VCCA = 2.5 V
TA = 25°C
Figure 15. Typical Propagation Delay of Low-to-High
(B to A) vs Load Capacitance
44
3
0.6
3.3
1.8
2.1
Supply A (V)
2.4
2.7
3
3.3
D015
VCCA = 3.3 V
Figure 16. Typical Propagation Delay of Low-to-High
(B to A) vs Load Capacitance
Submit Documentation Feedback
Copyright © 2017–2018, Texas Instruments Incorporated
Product Folder Links: SN74AXC1T45
SN74AXC1T45
www.ti.com
SCES882B – DECEMBER 2017 – REVISED JUNE 2018
7 Parameter Measurement Information
7.1 Load Circuit and Voltage Waveforms
Unless otherwise noted, all input pulses are supplied by generators having the following characteristics:
• f = 1 MHz
• ZO = 50 Ω
• dv/dt ≤ 1 ns/V
Measurement Point
2 x VCCO
S1
RL
Open
Output Pin
Under Test
GND
CL(1)
(1)
RL
CL includes probe and jig capacitance.
Figure 17. Load Circuit
Table 1. Load Circuit Conditions
Parameter
VCCO
RL
CL
S1
VTP
Δt/Δv
Input transition rise or fall rate
0.65 V – 3.6 V
1 MΩ
15 pF
Open
N/A
1.1 V – 3.6 V
2 kΩ
15 pF
Open
N/A
tpd
Propagation (delay) time
0.65 V – 0.95
V
20 kΩ
15 pF
Open
N/A
ten, tdis Enable time, disable time
ten, tdis Enable time, disable time
3 V – 3.6 V
2 kΩ
15 pF
2 × VCCO
0.3 V
1.65 V – 2.7 V
2 kΩ
15 pF
2 × VCCO
0.15 V
1.1 V – 1.6 V
2 kΩ
15 pF
2 × VCCO
0.1 V
0.65 V – 0.95
V
20 kΩ
15 pF
2 × VCCO
0.1 V
3 V – 3.6 V
2 kΩ
15 pF
GND
0.3 V
1.65 V – 2.7 V
2 kΩ
15 pF
GND
0.15 V
1.1 V – 1.6 V
2 kΩ
15 pF
GND
0.1 V
0.65 V – 0.95
V
20 kΩ
15 pF
GND
0.1 V
VCCI(1)
VCCI(1)
Input A, B
Input A, B
VCCI / 2
VCCI / 2
100 kHz
500 ps/V ± 100 ns/V
0V
tpd
VOH(2)
tpd
VOH(2)
Output B, A
VCCI / 2
Output B, A
Ensure Monotonic
Rising and Falling Edge
VCCI / 2
VOL(2)
1.
2.
0V
VCCI is the supply pin associated with the input port.
VOH and VOL are typical output voltage levels that occur with
specified RL, CL, and S1
1.
2.
VOL(2)
VCCI is the supply pin associated with the input port.
VOH and VOL are typical output voltage levels that occur with
specified RL, CL, and S1
Figure 19. Input Transition Rise or Fall Rate
Figure 18. Propagation Delay
Submit Documentation Feedback
Copyright © 2017–2018, Texas Instruments Incorporated
Product Folder Links: SN74AXC1T45
45
SN74AXC1T45
SCES882B – DECEMBER 2017 – REVISED JUNE 2018
www.ti.com
VCCA
DIR
VCCA / 2
VCCA / 2
GND
ten(1)
Output A(2)
VCCO(5)
VCCO / 2
VOL + VTP
VOL(6)
tdis
VOH(6)
VOH - VTP
Output A(3)
VCCO / 2
GND
ten
Output B
(1)
(2)
VCCO(5)
VCCO / 2
VOL + VTP
VOL(6)
tdis
VOH(6)
Output B(3)
VOH - VTP
VCCO / 2
GND
1.
Illustrative purposes only. Enable Time is a calculation as described in the data sheet.
2.
Output waveform on the condition that input is driven to a valid Logic Low.
3.
Output waveform on the condition that input is driven to a valid Logic High.
4.
VCCI is the supply pin associated with the input port
5.
VCCO is the supply pin associated with the output port.
6.
VOH and VOL are typical output voltage levels that occur with specified RL, CL, and S1
Figure 20. Disable and Enable Time
46
Submit Documentation Feedback
Copyright © 2017–2018, Texas Instruments Incorporated
Product Folder Links: SN74AXC1T45
SN74AXC1T45
www.ti.com
SCES882B – DECEMBER 2017 – REVISED JUNE 2018
8 Detailed Description
8.1 Overview
The SN74AXC1T45 is single-bit, dual-supply, noninverting voltage level translation. Pin A and the direction
control pin are support by VCCA and pin B is support by VCCB. The A port can accept I/O voltages ranging from
0.65 V to 3.6 V, and the B port can accept I/O voltages from 0.65 V to 3.6 V. A high logic on the DIR pin allows
data transmission from A to B and a logic low on the DIR pin allows data transmission from B to A.
8.2 Functional Block Diagram
DIR
A
5
3
4
V CCA
B
V CCB
8.3 Feature Description
8.3.1 Fully Configurable Dual-Rail Design Allows Each Port to Operate Over the Full 0.65-V to 3.6-V
Power-Supply Range
Both the VCCA and VCCB pins can be supplied at any voltage from 0.65 V to 3.6 V, making the device suitable for
translating between any of the voltage nodes (0.7 V, 0.8 V, 0.9 V, 1.2 V, 1.8 V, 2.5 V and 3.3 V).
8.3.2 Support High-Speed Translation
The SN74AXC1T45 device can support high data-rate applications. The translated signal data rate can be up to
500 Mbps when signal is translated from 1.8 V to 3.3 V.
8.3.3 Ioff Supports Partial-Power-Down Mode Operation
The Ioff circuit prevents backflow current by disabling the I/O output circuits when the device is in partial-powerdown mode.
8.4 Device Functional Modes
Table 2 lists the device functions for the DIR input.
Table 2. Function Table
(1)
INPUT (1)
DIR
OPERATION
L
B data to A bus
H
A data to B bus
Input circuits of the data I/Os
always are active.
Submit Documentation Feedback
Copyright © 2017–2018, Texas Instruments Incorporated
Product Folder Links: SN74AXC1T45
47
SN74AXC1T45
SCES882B – DECEMBER 2017 – REVISED JUNE 2018
www.ti.com
9 Application and Implementation
NOTE
Information in the following applications sections is not part of the TI component
specification, and TI does not warrant its accuracy or completeness. TI’s customers are
responsible for determining suitability of components for their purposes. Customers should
validate and test their design implementation to confirm system functionality.
9.1 Application Information
The SN74AXC1T45 device can be used in level-translation applications for interfacing devices or systems with
one another when they are operating at different interface voltages. The maximum data rate can be up to 500
Mbps when the device translate signal is from 1.8 V to 3.3 V.
9.1.1 Enable Times
Calculate the enable times for the SN74AXC1T45 using the following formulas:
tPZH (DIR to A) = tPLZ (DIR to B) + tPLH (B to A)
tPZL (DIR to A) = tPHZ (DIR to B) + tPHL (B to A)
tPZH (DIR to B) = tPLZ (DIR to A) + tPLH (A to B)
tPZL (DIR to B) = tPHZ (DIR to A) + tPHL (A to B)
(1)
(2)
(3)
(4)
In a bidirectional application, these enable times provide the maximum delay time from the time the DIR bit is
switched until an output is expected. For example, if the SN74AXC1T45 initially is transmitting from A to B, then
the DIR bit is switched; the B port of the device must be disabled before presenting it with an input. After the B
port has been disabled, an input signal applied to it appears on the corresponding A port after the specified
propagation delay.
9.2 Typical Applications
9.2.1 Unidirectional Logic Level-Shifting Application
Figure 21 shows an example of the SN74AXC1T45 being used in a unidirectional logic level-shifting application.
VCC1
VCC1
VCC2
1
6
2
5
3
4
SYSTEM-1
VCC2
SYSTEM-2
Figure 21. Unidirectional Logic Level-Shifting Application
Table 3. Unidirectional Level Shifting Function
48
PIN
NAME
FUNCTION
1
VCCA
VCC1
SYSTEM-1 supply voltage (0.65 V to 3.6 V)
DESCRIPTION
2
GND
GND
Device GND
3
A
OUT
Output level depends on VCC1 voltage.
4
B
IN
5
DIR
DIR
GND (low level) determines B-port to A-port direction.
6
VCCB
VCC2
SYSTEM-2 supply voltage (0.65 V to 3.6 V)
Input threshold value depends on VCC2 voltage.
Submit Documentation Feedback
Copyright © 2017–2018, Texas Instruments Incorporated
Product Folder Links: SN74AXC1T45
SN74AXC1T45
www.ti.com
SCES882B – DECEMBER 2017 – REVISED JUNE 2018
9.2.1.1 Design Requirements
For this design example, use the parameters listed in Table 4.
Table 4. Design Parameters
DESIGN PARAMETERS
EXAMPLE VALUES
Input voltage range
0.65 V to 3.6 V
Output voltage range
0.65 V to 3.6 V
9.2.1.2 Detailed Design Procedure
To begin the design process, determine the following:
• Input voltage range
– Use the supply voltage of the device that is driving the SN74AXC1T45 device to determine the input
voltage range. For a valid logic-high, the value must exceed the high-level input voltage (VIH) of the input
port. For a valid logic low the value must be less than the low-level input voltage (VIL) of the input port.
• Output voltage range
– Use the supply voltage of the device that the SN74AXC1T45 device is driving to determine the output
voltage range.
9.2.1.3 Application Curve
Figure 22. Up Translation at 2.5 MHz (0.7 V to 3.3 V)
Submit Documentation Feedback
Copyright © 2017–2018, Texas Instruments Incorporated
Product Folder Links: SN74AXC1T45
49
SN74AXC1T45
SCES882B – DECEMBER 2017 – REVISED JUNE 2018
www.ti.com
9.2.2 Bidirectional Logic Level-Shifting Application
Figure 23 shows the SN74AXC1T45 being used in a bidirectional logic level-shifting application. Because the
SN74AXC1T45 does not have an output-enable (OE) pin, the system designer should take precautions to avoid
bus contention between SYSTEM-1 and SYSTEM-2 when changing directions.
VCC1
VCC1
VCC2
Pullup/Pulldown
or Bus Hold†
Pullup/Pulldown
or Bus Hold†
I/O-1
VCC2
1
6
2
5
3
4
I/O-2
DIR CTRL
SYSTEM-1
SYSTEM-2
Figure 23. Bidirectional Logic Level-Shifting Application
Table 5 lists the data transmission from SYSTEM-1 to SYSTEM-2 and then from SYSTEM-2 to SYSTEM-1.
Table 5. Data Transmission: SYSTEM-1 and SYSTEM-2
STATE
DIR CTRL
I/O-1
I/O-2
1
H
Out
In
2
H
Hi-Z
Hi-Z
SYSTEM-2 is getting ready to send data to SYSTEM-1. I/O-1 and I/O-2 are disabled. The busline state depends on pullup or pulldown resistors. (1)
3
L
Hi-Z
Hi-Z
DIR bit is flipped. I/O-1 and I/O-2 still are disabled. The bus-line state depends on pullup or
pulldown resistors. (1)
4
L
In
Out
SYSTEM-2 data to SYSTEM-1
(1)
DESCRIPTION
SYSTEM-1 data to SYSTEM-2
SYSTEM-1 and SYSTEM-2 must use the same conditions, essentially, both pullup or both pulldown.
9.2.2.1 Design Requirements
Refer to Design Requirements.
9.2.2.2 Detailed Design Procedure
Refer to Detailed Design Procedure.
50
Submit Documentation Feedback
Copyright © 2017–2018, Texas Instruments Incorporated
Product Folder Links: SN74AXC1T45
SN74AXC1T45
www.ti.com
SCES882B – DECEMBER 2017 – REVISED JUNE 2018
9.2.2.3 Application Curve
Figure 24. Up Translation at 2.5 MHz (0.7 V to 3.3 V)
Submit Documentation Feedback
Copyright © 2017–2018, Texas Instruments Incorporated
Product Folder Links: SN74AXC1T45
51
SN74AXC1T45
SCES882B – DECEMBER 2017 – REVISED JUNE 2018
www.ti.com
10 Power Supply Recommendations
The SN74AXC1T45 device uses two separate configurable power-supply rails, VCCA and VCCB. The VCCA powersupply rail accepts any supply voltage from 0.65 V to 3.6 V and the VCCB power-supply rail accepts any supply
voltage from 0.65 V to 3.6 V. The A port and B port are designed to track the VCCA and VCCB supplies
respectively allowing for low-voltage, bidirectional translation between any of the 0.7-V, 0.8-V, 0.9-V, 1.2-V, 1.5 V, 1.8-V, 2.5-V, and 3.3-V voltage nodes.
10.1 Power-Up Considerations
A proper power-up sequence must be followed to avoid excessive supply current, bus contention, oscillations, or
other anomalies. To guard against such power-up problems, take the following precautions:
1. Connect the ground before any supply voltage is applied.
2. Power up the VCCA and VCCB supplies. The VCCA and VCCB supplies can be ramped in any order.
11 Layout
11.1 Layout Guidelines
To
•
•
•
ensure reliability of the device, following common printed-circuit board layout guidelines is recommended:
Bypass capacitors should be used on power supplies.
Short trace lengths should be used to avoid excessive loading.
Placing pads on the signal paths for loading capacitors or pullup resistors to help adjust rise and fall times of
signals depending on the system requirements.
11.2 Layout Example
LEGEND
VIA to Power Plane
Polygonal Copper Pour
VIA to GND Plane (Inner Layer)
VCCB
VCCA
1
VCCA
VCCB 6
2
GND
DIR 5
3
A
VCCA
B 4
From Controller
To System
Figure 25. PCB Layout Example
52
Submit Documentation Feedback
Copyright © 2017–2018, Texas Instruments Incorporated
Product Folder Links: SN74AXC1T45
SN74AXC1T45
www.ti.com
SCES882B – DECEMBER 2017 – REVISED JUNE 2018
12 Device and Documentation Support
12.1 Documentation Support
12.1.1 Related Documentation
For related documentation see the following:
• Texas Instruments, Evaluate SN74AXC1T45DRL Using a Generic EVM application report
• Texas Instruments, Implications of Slow or Floating CMOS Inputs application report
• Texas Instruments, Power Sequencing for the AXC Family of Devices application report
12.2 Receiving Notification of Documentation Updates
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper
right corner, click on Alert me to register and receive a weekly digest of any product information that has
changed. For change details, review the revision history included in any revised document.
12.3 Community Resources
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of
Use.
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help
solve problems with fellow engineers.
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and
contact information for technical support.
12.4 Trademarks
E2E is a trademark of Texas Instruments.
12.5 Electrostatic Discharge Caution
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more
susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.
12.6 Glossary
SLYZ022 — TI Glossary.
This glossary lists and explains terms, acronyms, and definitions.
13 Mechanical, Packaging, and Orderable Information
The following pages include mechanical, packaging, and orderable information. This information is the most
current data available for the designated devices. This data is subject to change without notice and revision of
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.
Submit Documentation Feedback
Copyright © 2017–2018, Texas Instruments Incorporated
Product Folder Links: SN74AXC1T45
53
PACKAGE OPTION ADDENDUM
www.ti.com
15-Jul-2019
PACKAGING INFORMATION
Orderable Device
Status
(1)
Package Type Package Pins Package
Drawing
Qty
Eco Plan
Lead/Ball Finish
MSL Peak Temp
(2)
(6)
(3)
Op Temp (°C)
Device Marking
(4/5)
SN74AXC1T45DBVR
ACTIVE
SOT-23
DBV
6
3000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 125
1GRL
SN74AXC1T45DCKR
ACTIVE
SC70
DCK
6
3000
Green (RoHS
& no Sb/Br)
CU SN
Level-1-260C-UNLIM
-40 to 125
1A3
SN74AXC1T45DEAR
ACTIVE
X2SON
DEA
6
5000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 125
CR
SN74AXC1T45DRLR
ACTIVE
SOT-5X3
DRL
6
4000
Green (RoHS
& no Sb/Br)
CU NIPDAUAG
Level-1-260C-UNLIM
-40 to 125
1A1
SN74AXC1T45DTQR
ACTIVE
X2SON
DTQ
6
3000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 125
CW
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may
reference these types of products as "Pb-Free".
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based
flame retardants must also meet the <=1000ppm threshold requirement.
(3)
MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
(4)
There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
(5)
Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation
of the previous line and the two combined represent the entire Device Marking for that device.
(6)
Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish
value exceeds the maximum column width.
Addendum-Page 1
Samples
PACKAGE OPTION ADDENDUM
www.ti.com
15-Jul-2019
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
OTHER QUALIFIED VERSIONS OF SN74AXC1T45 :
• Automotive: SN74AXC1T45-Q1
NOTE: Qualified Version Definitions:
• Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects
Addendum-Page 2
PACKAGE MATERIALS INFORMATION
www.ti.com
12-Jul-2018
TAPE AND REEL INFORMATION
*All dimensions are nominal
Device
Package Package Pins
Type Drawing
SPQ
SOT-23
DBV
6
3000
180.0
8.4
SN74AXC1T45DCKR
SC70
DCK
6
3000
178.0
9.0
SN74AXC1T45DEAR
X2SON
DEA
6
5000
180.0
9.5
SN74AXC1T45DRLR
SOT-5X3
DRL
6
4000
180.0
8.4
SN74AXC1T45DTQR
X2SON
DTQ
6
3000
180.0
9.5
SN74AXC1T45DBVR
Reel
Reel
A0
Diameter Width (mm)
(mm) W1 (mm)
Pack Materials-Page 1
B0
(mm)
K0
(mm)
P1
(mm)
3.2
1.4
4.0
8.0
Q3
2.4
2.5
1.2
4.0
8.0
Q3
1.13
1.13
0.5
4.0
8.0
Q3
1.98
1.78
0.69
4.0
8.0
Q3
0.94
1.13
0.5
2.0
8.0
Q2
3.2
W
Pin1
(mm) Quadrant
PACKAGE MATERIALS INFORMATION
www.ti.com
12-Jul-2018
*All dimensions are nominal
Device
Package Type
Package Drawing
Pins
SPQ
Length (mm)
Width (mm)
Height (mm)
SN74AXC1T45DBVR
SN74AXC1T45DCKR
SOT-23
DBV
6
3000
210.0
185.0
35.0
SC70
DCK
6
3000
180.0
180.0
18.0
SN74AXC1T45DEAR
X2SON
DEA
6
5000
189.0
185.0
36.0
SN74AXC1T45DRLR
SOT-5X3
DRL
6
4000
183.0
183.0
20.0
SN74AXC1T45DTQR
X2SON
DTQ
6
3000
189.0
185.0
36.0
Pack Materials-Page 2
PACKAGE OUTLINE
DBV0006A
SOT-23 - 1.45 mm max height
SCALE 4.000
SMALL OUTLINE TRANSISTOR
C
3.0
2.6
1.75
1.45
PIN 1
INDEX AREA
1
0.1 C
B
A
6
2X 0.95
1.9
1.45 MAX
3.05
2.75
5
2
4
0.50
6X
0.25
0.2
C A B
3
(1.1)
0.15
TYP
0.00
0.25
GAGE PLANE
8
TYP
0
0.22
TYP
0.08
0.6
TYP
0.3
SEATING PLANE
4214840/B 03/2018
NOTES:
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing
per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.
4. Leads 1,2,3 may be wider than leads 4,5,6 for package orientation.
5. Refernce JEDEC MO-178.
www.ti.com
EXAMPLE BOARD LAYOUT
DBV0006A
SOT-23 - 1.45 mm max height
SMALL OUTLINE TRANSISTOR
PKG
6X (1.1)
1
6X (0.6)
6
SYMM
2
5
3
4
2X (0.95)
(R0.05) TYP
(2.6)
LAND PATTERN EXAMPLE
EXPOSED METAL SHOWN
SCALE:15X
SOLDER MASK
OPENING
METAL
SOLDER MASK
OPENING
METAL UNDER
SOLDER MASK
EXPOSED METAL
EXPOSED METAL
0.07 MIN
ARROUND
0.07 MAX
ARROUND
NON SOLDER MASK
DEFINED
(PREFERRED)
SOLDER MASK
DEFINED
SOLDER MASK DETAILS
4214840/B 03/2018
NOTES: (continued)
6. Publication IPC-7351 may have alternate designs.
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.
www.ti.com
EXAMPLE STENCIL DESIGN
DBV0006A
SOT-23 - 1.45 mm max height
SMALL OUTLINE TRANSISTOR
PKG
6X (1.1)
1
6X (0.6)
6
SYMM
2
5
3
4
2X(0.95)
(R0.05) TYP
(2.6)
SOLDER PASTE EXAMPLE
BASED ON 0.125 mm THICK STENCIL
SCALE:15X
4214840/B 03/2018
NOTES: (continued)
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate
design recommendations.
9. Board assembly site may have different recommendations for stencil design.
www.ti.com
PACKAGE OUTLINE
DTQ0006A
X2SON - 0.4 mm max height
SCALE 12.000
PLASTIC SMALL OUTLINE - NO LEAD
1.05
0.95
B
A
PIN 1 INDEX AREA
0.85
0.75
0.40 MAX
C
SEATING PLANE
(0.1) TYP
0.05 C
(0.1)
2X 0.6
(0.027) TYP
0.4
3
0.25
+0.05
TYP
-0.03
0.05
0.00
4
PKG
2
5
(0.08)
4X
PIN 1 ID
(OPTIONAL)
NOTE 5
1
PKG
0.25
0.17
6
4X
0.30
0.22
0.1
0.05
C A B
C
4224056/A 11/2017
NOTES:
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing
per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. The package thermal pads must be soldered to the printed circuit board for optimal thermal and mechanical performance.
4. The size and shape of this feature may vary.
5. Features may not exist. Recommend use of pin 1 marking on top of package for orientation purposes.
www.ti.com
EXAMPLE BOARD LAYOUT
DTQ0006A
X2SON - 0.4 mm max height
PLASTIC SMALL OUTLINE - NO LEAD
SOLDER MASK OPEING
TYP
SYMM
4X (0.25)
0.05 MIN
ALL AROUND
TYP
6
1
(0.25)
TYP
4X (0.4)
SYMM
(0.8)
5
2
(0.2) TYP
EXPOSED METAL
CLEARANCE
METAL UNDER
SOLDER MASK
TYP
3
4
(0.027) TYP
(0.2)
TYP
(R0.05) TYP
(0.4)
(0.6)
LAND PATTERN EXAMPLE
SOLDER MASK DEFINED
SCALE:50X
4224056/A 11/2017
NOTES: (continued)
6. This package is designed to be soldered to a thermal pads on the board. For more information, see Texas Instruments literature
number SLUA271 (www.ti.com/lit/slua271).
7. Vias are optional depending on application, refer to device data sheet. If some or all are implemented, recommended via locations are shown.
www.ti.com
EXAMPLE STENCIL DESIGN
DTQ0006A
X2SON - 0.4 mm max height
PLASTIC SMALL OUTLINE - NO LEAD
4X (0.25)
SYMM
(0.027) TYP
(0.279)
TYP
6
1
4X (0.4)
SYMM
5
2
(0.8)
(0.2) TYP
SOLDER MASK
EDGE, 2X
METAL UNDER
SOLDER MASK
TYP
3
4
(0.2)
TYP
(R0.05) TYP
(0.21)
(0.367)
4X (0.6)
SOLDER PASTE EXAMPLE
BASED ON 0.07 mm THICK STENCIL
PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE
SCALE:50X
4224056/A 11/2017
NOTES: (continued)
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate
design recommendations.
www.ti.com
PACKAGE OUTLINE
DRL0006A
SOT - 0.6 mm max height
SCALE 8.000
PLASTIC SMALL OUTLINE
1.7
1.5
PIN 1
ID AREA
1
A
6
4X 0.5
1.7
1.5
NOTE 3
2X 1
4
3
B
1.3
1.1
6X
0.3
0.1
0.6 MAX
0.05
TYP
0.00
C
SEATING PLANE
6X
0.18
0.08
0.05 C
SYMM
SYMM
6X
6X
0.4
0.2
0.27
0.15
0.1
0.05
C A B
4223266/A 09/2016
NOTES:
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing
per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
exceed 0.15 mm per side.
www.ti.com
EXAMPLE BOARD LAYOUT
DRL0006A
SOT - 0.6 mm max height
PLASTIC SMALL OUTLINE
6X (0.67)
SYMM
1
6
6X (0.3)
SYMM
4X (0.5)
4
3
(R0.05) TYP
(1.48)
LAND PATTERN EXAMPLE
SCALE:30X
0.05 MIN
AROUND
0.05 MAX
AROUND
SOLDER MASK
OPENING
METAL
METAL UNDER
SOLDER MASK
NON SOLDER MASK
DEFINED
(PREFERRED)
SOLDER MASK
OPENING
SOLDER MASK
DEFINED
SOLDERMASK DETAILS
4223266/A 09/2016
NOTES: (continued)
4. Publication IPC-7351 may have alternate designs.
5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.
www.ti.com
EXAMPLE STENCIL DESIGN
DRL0006A
SOT - 0.6 mm max height
PLASTIC SMALL OUTLINE
6X (0.67)
SYMM
1
6
6X (0.3)
SYMM
4X (0.5)
4
3
(R0.05) TYP
(1.48)
SOLDER PASTE EXAMPLE
BASED ON 0.1 mm THICK STENCIL
SCALE:30X
4223266/A 09/2016
NOTES: (continued)
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate
design recommendations.
7. Board assembly site may have different recommendations for stencil design.
www.ti.com
PACKAGE OUTLINE
DEA0006A
X2SON - 0.4 mm max height
SCALE 12.000
PLASTIC SMALL OUTLINE - NO LEAD
1.05
0.95
B
A
PIN 1 INDEX AREA
1.05
0.95
C
0.4 MAX
SEATING PLANE
0.04
0.00
(0.102) TYP
0.08 C
0.55
SYMM
6X
3
0.35
0.27
4
SYMM
2X
0.7
4X
0.35
6
1
0.40
0.32
PIN 1 ID
45 X 0.075
6X
0.20
0.12
0.1
0.05
C B A
C
4223910/C 12/2017
NOTES:
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing
per ASME Y14.5M.
2. This drawing is subject to change without notice.
www.ti.com
EXAMPLE BOARD LAYOUT
DEA0006A
X2SON - 0.4 mm max height
PLASTIC SMALL OUTLINE - NO LEAD
5X (0.31)
(0.36)
6X (0.16)
1
6
(R0.05) TYP
SYMM
4X (0.35)
4
3
SYMM
(0.55)
LAND PATTERN EXAMPLE
EXPOSED METAL SHOWN
SCALE:40X
0.05 MIN
ALL AROUND
EXPOSED METAL
SOLDER MASK
OPENING
METAL UNDER
SOLDER MASK
SOLDER MASK
DEFINED
SOLDER MASK DETAILS
4223910/C 12/2017
NOTES: (continued)
3. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).
www.ti.com
EXAMPLE STENCIL DESIGN
DEA0006A
X2SON - 0.4 mm max height
PLASTIC SMALL OUTLINE - NO LEAD
5X (0.31)
(0.36)
6X (0.16)
1
6
(R0.05) TYP
SYMM
4X (0.35)
4
3
SYMM
(0.55)
SOLDER PASTE EXAMPLE
BASED ON 0.075 mm THICK STENCIL
SCALE:40X
4223910/C 12/2017
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate
design recommendations.
www.ti.com
IMPORTANT NOTICE AND DISCLAIMER
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you
permission to use these resources only for development of an application that uses the TI products described in the resource. Other
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third
party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims,
damages, costs, losses, and liabilities arising out of your use of these resources.
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on
ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable
warranties or warranty disclaimers for TI products.
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2019, Texas Instruments Incorporated
Was this manual useful for you? yes no
Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Related manuals

Download PDF

advertising