Texas Instruments | CD74HCU04-Q1 High-Speed CMOS Logic Hex Inverter | Datasheet | Texas Instruments CD74HCU04-Q1 High-Speed CMOS Logic Hex Inverter Datasheet

Texas Instruments CD74HCU04-Q1 High-Speed CMOS Logic Hex Inverter Datasheet
CD74HCU04-Q1
www.ti.com
SCHS381 – JUNE 2010
HIGH-SPEED CMOS LOGIC HEX INVERTER
Check for Samples: CD74HCU04-Q1
FEATURES
1
•
•
•
•
•
•
Qualified for Automotive Applications
Wide Operating Temperature Range:
-40°C to 125°C
Balanced Propagation Delay and Transition
Times
Significant Power Reduction Compared to
LSTTL Logic ICs
HCU Types
– 2-V to 6-V Operation
CMOS Input Compatibility: Il ≤ 1mA at VOL, VOH
PW PACKAGE
(TOP VIEW)
1A
1Y
2A
2Y
3A
3Y
GND
1
14
2
13
3
12
4
11
5
10
6
9
7
8
VCC
6A
6Y
5A
5Y
4A
4Y
DESCRIPTION
The CD74HCU04 unbuffered hex inverter utilizes silicon-gate CMOS technology to achieve operation speeds
similar to LSTTL gates, with the low power consumption of standard CMOS integrated circuits. These devices
especially are useful in crystal oscillator and analog applications.
ORDERING INFORMATION
TA
–40°C to 125°C
PACKAGE
TSSOP – PW
Reel of 2000
ORDERABLE PART NUMBER
CD74HCU04QPWRQ1
TOP-SIDE MARKING
HJU04Q
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of the Texas
Instruments standard warranty. Production processing does not
necessarily include testing of all parameters.
Copyright © 2010, Texas Instruments Incorporated
CD74HCU04-Q1
SCHS381 – JUNE 2010
www.ti.com
Functional Diagram
1
14
2
13
1A
1Y
3
12
2A
2Y
3A
3Y
GND
4
11
5
10
6
9
7
8
VCC
6A
6Y
5A
5Y
4A
4Y
Logic Symbol
nA
nY
Schematic Diagram
VCC
(3, 5, 9, 11, 13) 1
2
2 (4, 6, 8, 10, 12)
Submit Documentation Feedback
Copyright © 2010, Texas Instruments Incorporated
Product Folder Link(s): CD74HCU04-Q1
CD74HCU04-Q1
www.ti.com
SCHS381 – JUNE 2010
ABSOLUTE MAXIMUM RATINGS (1) (2)
VCC
DC supply voltage
IIK
DC input diode current, VI < -0.5V or VI > VCC + 0.5V
±20mA
IOK
DC output diode current, VO < -0.5V or VO > VCC + 0.5V
±20mA
IO
DC drain current per output, VO > -0.5V or VO < VCC + 0.5V
±25mA
ICC
DC VCC or ground current
qJA
Thermal impedance, junction to free air (3)
TJ
Maximum junction temperature
TStg
Storage temperature range
(1)
(2)
(3)
-0.5V to +7V
±50mA
112.6°C/W
150°C
-65°C to 150°C
Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings
only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating
conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
All voltages are referenced to ground.
The package thermal impedance is calculated in accordance with JESD 51-7.
RECOMMENDED OPERATING CONDITIONS
MIN
MAX
VCC
Supply voltage
2
6
UNIT
V
VI
Input voltage
0
VCC
V
VO
Output voltage
0
VCC
V
TA
Operating free-air temperature
-40
125
°C
ELECTRICAL CHARACTERISTICS
over operating free-air temperature range (unless otherwise noted)
PARAMETER
VIH
VIL
High level input voltage
Low level input voltage
TEST CONDITIONS
VI (V)
IO (mA)
—
—
—
—
VCC
MIN
High level output voltage, CMOS
loads
VOH(TTL)
High level output voltage, TTL
loads
VOL(CMOS)
Low level output voltage, CMOS
loads
VIH or VIL
VCC or GND
VIH or VIL
-0.02
MAX
MIN
2
1.7
1.7
4.5
3.6
3.6
6
4.8
4.8
UNIT
MAX
V
2
0.3
0.3
4.5
0.8
0.8
6
1.1
1.1
2
VOH(CMOS)
TA = -40 to
125°C
TA = 25°C
4.5
1.8
V
1.8
4
4
6
5.5
5.5
V
-4
4.5
3.98
3.7
-5.2
6
5.48
5.2
2
0.2
0.2
0.02
4.5
0.5
0.5
6
0.5
0.5
4
4.5
0.26
0.4
5.2
6
0.26
0.4
V
V
VOL(TTL)
Low level output voltage, TTL
loads
VCC or GND
II
Input leakage current
VCC or GND
—
6
±0.1
±1
µA
ICC
Quiescent device current
VCC or GND
0
6
2
40
µA
Submit Documentation Feedback
Copyright © 2010, Texas Instruments Incorporated
Product Folder Link(s): CD74HCU04-Q1
V
3
CD74HCU04-Q1
SCHS381 – JUNE 2010
www.ti.com
SWITCHING CHARACTERISTICS
over operating free-air temperature range (unless otherwise noted)
TEST
CONDITIONS
PARAMETER
tPLH, tPHL
Propagation delay, input to output
Y (see Figure 1)
TA = 25°C
VCC
MIN
TYP
MIN
MAX
CL = 50pF
2
70
105
CL = 50pF
4.5
14
21
CL = 50pF
6
12
18
2
75
110
CL = 50pF
4.5
15
22
13
19
tTLH, tTHL
Transition times (see Figure 1)
CI
Input capacitance
—
—
CPD
Power dissipation
capacitance (1) (2)
—
5
6
(1)
(2)
TA = -40 to 125°C
MAX
UNIT
ns
ns
See Figure 3
14
pF
CPD is used to determine the dynamic power consumption, per inverter.
PD = VCC2 × fi (CPD + CL), where fi = input frequency, CL = output load capacitance, VCC = supply voltage
TEST WAVEFORMS
tr = 6ns
tf = 6ns
VCC
90%
50%
10%
INPUT
GND
tTHL
tTLH
90%
50%
10%
INVERTING
OUTPUT
tPHL
tPLH
Figure 1. HC and HCU Transition Times and Propagation Delay Times, Combination Logic
4
Submit Documentation Feedback
Copyright © 2010, Texas Instruments Incorporated
Product Folder Link(s): CD74HCU04-Q1
CD74HCU04-Q1
www.ti.com
SCHS381 – JUNE 2010
ICC, VCC TO GND CURRENT (mA)
TYPICAL PERFORMANCE CURVES
AMBIENT TEMPERATURE
TA = 25o C
25.0
22.5
VCC = 6V
20.0
17.5
15.0
VCC = 4.5V
12.5
10.0
7.5
5.0
VCC = 2V
2.5
0
1
2
3
4
5
6
VI, INPUT VOLTAGE (V)
CI, INPUT CAPACITANCE (pF)
Figure 2. Typical Inverter Supply Current as a Function of Input Voltage
70
65
60
55
50
45
40
35
30
25
20
15
10
5
0
AMBIENT TEMPERATURE, TA = 25oC
VDD = 2V, VI 0-2V
INPUT PIN 5 CONDITIONS
VDD = 3V, VI 0-3V
VDD = 4V, VI 0-4V
VDD = 5V, VI 0-5V
VDD = 6V, VI 0-6V
1
2
3
4
5
6
VI , IINPUT VOLTAGE (V)
Figure 3. Input Capacitance as a Function of Input Voltage
Submit Documentation Feedback
Copyright © 2010, Texas Instruments Incorporated
Product Folder Link(s): CD74HCU04-Q1
5
PACKAGE OPTION ADDENDUM
www.ti.com
11-Apr-2013
PACKAGING INFORMATION
Orderable Device
Status
(1)
CD74HCU04QPWRQ1
ACTIVE
Package Type Package Pins Package
Drawing
Qty
TSSOP
PW
14
2000
Eco Plan
Lead/Ball Finish
(2)
Green (RoHS
& no Sb/Br)
MSL Peak Temp
Op Temp (°C)
Top-Side Markings
(3)
CU NIPDAU
Level-1-260C-UNLIM
(4)
-40 to 125
HJU04Q
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability
information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight
in homogeneous material)
(3)
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
(4)
Multiple Top-Side Markings will be inside parentheses. Only one Top-Side Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a
continuation of the previous line and the two combined represent the entire Top-Side Marking for that device.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
OTHER QUALIFIED VERSIONS OF CD74HCU04-Q1 :
• Catalog: CD74HCU04
Addendum-Page 1
Samples
PACKAGE OPTION ADDENDUM
www.ti.com
11-Apr-2013
NOTE: Qualified Version Definitions:
• Catalog - TI's standard catalog product
Addendum-Page 2
PACKAGE MATERIALS INFORMATION
www.ti.com
26-Jan-2013
TAPE AND REEL INFORMATION
*All dimensions are nominal
Device
CD74HCU04QPWRQ1
Package Package Pins
Type Drawing
TSSOP
PW
14
SPQ
Reel
Reel
A0
Diameter Width (mm)
(mm) W1 (mm)
2000
330.0
12.4
Pack Materials-Page 1
6.9
B0
(mm)
K0
(mm)
P1
(mm)
5.6
1.6
8.0
W
Pin1
(mm) Quadrant
12.0
Q1
PACKAGE MATERIALS INFORMATION
www.ti.com
26-Jan-2013
*All dimensions are nominal
Device
Package Type
Package Drawing
Pins
SPQ
Length (mm)
Width (mm)
Height (mm)
CD74HCU04QPWRQ1
TSSOP
PW
14
2000
367.0
367.0
35.0
Pack Materials-Page 2
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale
supplied at the time of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.
Products
Applications
Audio
www.ti.com/audio
Automotive and Transportation
www.ti.com/automotive
Amplifiers
amplifier.ti.com
Communications and Telecom
www.ti.com/communications
Data Converters
dataconverter.ti.com
Computers and Peripherals
www.ti.com/computers
DLP® Products
www.dlp.com
Consumer Electronics
www.ti.com/consumer-apps
DSP
dsp.ti.com
Energy and Lighting
www.ti.com/energy
Clocks and Timers
www.ti.com/clocks
Industrial
www.ti.com/industrial
Interface
interface.ti.com
Medical
www.ti.com/medical
Logic
logic.ti.com
Security
www.ti.com/security
Power Mgmt
power.ti.com
Space, Avionics and Defense
www.ti.com/space-avionics-defense
Microcontrollers
microcontroller.ti.com
Video and Imaging
www.ti.com/video
RFID
www.ti-rfid.com
OMAP Applications Processors
www.ti.com/omap
TI E2E Community
e2e.ti.com
Wireless Connectivity
www.ti.com/wirelessconnectivity
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2016, Texas Instruments Incorporated
Was this manual useful for you? yes no
Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Download PDF

advertising