Texas Instruments | Octal Edge-Triggered D-Type Flip Flop With 3-State Outputs (Rev. B) | Datasheet | Texas Instruments Octal Edge-Triggered D-Type Flip Flop With 3-State Outputs (Rev. B) Datasheet

Texas Instruments Octal Edge-Triggered D-Type Flip Flop With 3-State Outputs (Rev. B) Datasheet
SN74LVC574A-Q1
www.ti.com ............................................................................................................................................... SCAS715B – SEPTEMBER 2003 – REVISED APRIL 2008
OCTAL EDGE-TRIGGERED D-TYPE FLIP-FLOP
WITH 3-STATE OUTPUTS
FEATURES
1
•
•
•
•
•
•
•
•
•
Qualified for Automotive Applications
ESD Protection Exceeds 2000 V Per
MIL-STD-883, Method 3015; Exceeds 200 V
Using Machine Model (C = 200 pF, R = 0)
Operates From 2 V to 3.6 V
Inputs Accept Voltages to 5.5 V
Max tpd of 7 ns at 3.3 V
Typical VOLP (Output Ground Bounce) < 0.8 V
at VCC = 3.3 V, TA = 25°C
Typical VOHV (Output VOH Undershoot) > 2 V at
VCC = 3.3 V, TA = 25°C
Supports Mixed-Mode Signal Operation on All
Ports (5-V Input/Output Voltage With 3.3-V VCC)
Ioff Supports Partial-Power-Down Mode
Operation
DW OR PW PACKAGE
(TOP VIEW)
OE
1D
2D
3D
4D
5D
6D
7D
8D
GND
1
20
2
19
3
18
4
5
17
16
6
15
7
14
8
13
9
10
12
11
VCC
1Q
2Q
3Q
4Q
5Q
6Q
7Q
8Q
CLK
DESCRIPTION/ORDERING INFORMATION
The SN74LVC574A octal edge-triggered D-type flip-flop is designed for 2.7-V to 3.6-V VCC operation.
This device features 3-state outputs designed specifically for driving highly capacitive or relatively low-impedance
loads. It is particularly suitable for implementing buffer registers, I/O ports, bidirectional bus drivers, and working
registers.
On the positive transition of the clock (CLK) input, the Q outputs are set to the logic levels at the data (D) inputs.
A buffered output-enable (OE) input can be used to place the eight outputs in either a normal logic state (high or
low logic levels) or the high-impedance state. In the high-impedance state, the outputs neither load nor drive the
bus lines significantly. The high-impedance state and increased drive provide the capability to drive bus lines
without interface or pullup components.
OE does not affect the internal operations of the flip-flops. Old data can be retained or new data can be entered
while the outputs are in the high-impedance state.
This device is fully specified for partial-power-down applications using Ioff. The Ioff circuitry disables the outputs,
preventing damaging current backflow through the device when it is powered down.
To ensure the high-impedance state during power up or power down, OE should be tied to VCC through a pullup
resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.
Inputs can be driven from either 3.3-V or 5-V devices. This feature allows the use of thIs device as a translator in
a mixed 3.3-V/5-V system environment.
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of the Texas
Instruments standard warranty. Production processing does not
necessarily include testing of all parameters.
Copyright © 2003–2008, Texas Instruments Incorporated
SN74LVC574A-Q1
SCAS715B – SEPTEMBER 2003 – REVISED APRIL 2008 ............................................................................................................................................... www.ti.com
ORDERING INFORMATION (1)
PACKAGE (2)
TA
–40°C to 125°C
(1)
(2)
ORDERABLE PART NUMBER
TOP-SIDE MARKING
SOIC – DW
Reel of 2000
SN74LVC574AQDWRQ1
L574AQ1
TSSOP – PW
Reel of 2000
SN74LVC574AQPWRQ1
L574AQ1
For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI
web site at www.ti.com.
Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.
FUNCTION TABLE
(EACH FLIP-FLOP)
INPUTS
OE
CLK
D
OUTPUT
Q
L
↑
H
H
L
↑
L
L
L
L
X
Q0
H
X
X
Z
LOGIC DIAGRAM (POSITIVE LOGIC)
OE
CLK
1
11
C1
1D
2
19
1Q
1D
To Seven Other Channels
Absolute Maximum Ratings (1)
over operating free-air temperature range (unless otherwise noted)
VCC
MIN
MAX
Supply voltage range
–0.5
6.5
UNIT
V
(2)
VI
Input voltage range
–0.5
6.5
V
VO
Voltage range applied to any output in the high-impedance or power-off state (2)
–0.5
6.5
V
VO
Voltage range applied to any output in the high or low state (2) (3)
–0.5
VCC + 0.5
V
IIK
Input clamp current
VI < 0
–50
mA
IOK
Output clamp current
VO < 0
–50
mA
IO
Continuous output current
±50
mA
±100
mA
Continuous current through VCC or GND
θJA
Package thermal impedance (4)
Tstg
Storage temperature range
(1)
(2)
(3)
(4)
2
DW package
58
PW package
83
–65
150
°C/W
°C
Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings
only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating
conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
The input and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.
The value of VCC is provided in the recommended operating conditions table.
The package thermal impedance is calculated in accordance with JESD 51-7.
Submit Documentation Feedback
Copyright © 2003–2008, Texas Instruments Incorporated
Product Folder Link(s): SN74LVC574A-Q1
SN74LVC574A-Q1
www.ti.com ............................................................................................................................................... SCAS715B – SEPTEMBER 2003 – REVISED APRIL 2008
Recommended Operating Conditions (1)
Operating
VCC
Supply voltage
VIH
High-level input voltage
VCC = 2.7 V to 3.6 V
VIL
Low-level input voltage
VCC = 2.7 V to 3.6 V
VI
Input voltage
Data retention only
VO
Output voltage
IOH
High-level output current
IOL
Low-level output current
Δt/Δv
Input transition rise or fall rate
TA
Operating free-air temperature
(1)
MIN
MAX
2
3.6
1.5
2
UNIT
V
V
0.8
V
0
5.5
V
High or low state
0
VCC
3-state
0
5.5
VCC = 2.7 V
–12
VCC = 3 V
–24
VCC = 2.7 V
12
VCC = 3 V
24
6
–40
125
V
mA
mA
ns/V
°C
All unused inputs of the device must be held at VCC or GND to ensure proper device operation. Refer to the TI application report,
Implications of Slow or Floating CMOS Inputs, literature number SCBA004.
Electrical Characteristics
over recommended operating free-air temperature range (unless otherwise noted)
PARAMETER
TEST CONDITIONS
IOH = –100 µA
VOH
VOL
MIN
2.7 V to 3.6 V
TYP (1) MAX
2.7 V
2.2
3V
2.4
IOH = –24 mA
3V
2.2
IOL = 100 µA
2.7 V to 3.6 V
IOL = 12 mA
2.7 V
0.4
IOL = 24 mA
3V
0.55
IOH = –12 mA
UNIT
VCC – 0.2
V
0.2
V
II
VI = 0 to 5.5 V
3.6 V
±5
µA
IOZ
VO = 0 to 5.5 V
3.6 V
±15
µA
VI = VCC or GND
ICC
IO = 0
3.6 V ≤ VI ≤ 5.5 V (2)
ΔICC
(1)
(2)
VCC
One input at VCC – 0.6 V,
Other inputs at VCC or GND
10
3.6 V
10
2.7 V to 3.6 V
500
µA
µA
Ci
VI = VCC or GND
3.3 V
4
pF
Co
VO = VCC or GND
3.3 V
5.5
pF
All typical values are at VCC = 3.3 V, TA = 25°C.
This applies in the disabled state only.
Timing Requirements
over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)
VCC = 2.7 V
MIN
MAX
VCC = 3.3 V
± 0.3 V
MIN
150
UNIT
MAX
fclock
Clock frequency
tw
Pulse duration, CLK high or low
3.3
3.3
ns
tsu
Setup time, data before CLK↑
2
2
ns
th
Hold time, data after CLK↑
2
2
ns
Copyright © 2003–2008, Texas Instruments Incorporated
Product Folder Link(s): SN74LVC574A-Q1
150
Submit Documentation Feedback
MHz
3
SN74LVC574A-Q1
SCAS715B – SEPTEMBER 2003 – REVISED APRIL 2008 ............................................................................................................................................... www.ti.com
Switching Characteristics
over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)
VCC = 3.3 V
± 0.3 V
VCC = 2.7 V
FROM
(INPUT)
TO
(OUTPUT)
tpd
CLK
Q
8
1
7
ns
ten
OE
Q
9
1
7.5
ns
tdis
OE
Q
7
0.5
6.4
ns
PARAMETER
MIN
fmax
MAX
150
MIN
UNIT
MAX
150
MHz
Operating Characteristics
TA = 25°C
TEST
CONDITIONS
PARAMETER
Cpd
4
Power dissipation capacitance per flip-flop
Outputs enabled
Outputs disabled
f = 10 MHz
Submit Documentation Feedback
VCC = 2.5 V
VCC = 3.3 V
TYP
TYP
60
43
9
15
UNIT
pF
Copyright © 2003–2008, Texas Instruments Incorporated
Product Folder Link(s): SN74LVC574A-Q1
SN74LVC574A-Q1
www.ti.com ............................................................................................................................................... SCAS715B – SEPTEMBER 2003 – REVISED APRIL 2008
PARAMETER MEASUREMENT INFORMATION
VLOAD
S1
RL
From Output
Under Test
CL
(see Note A)
Open
GND
RL
TEST
S1
tPLH/tPHL
tPLZ/tPZL
tPHZ/tPZH
Open
VLOAD
GND
LOAD CIRCUIT
INPUTS
VCC
2.7 V
3.3 V ± 0.3 V
VI
tr/tf
2.7 V
2.7 V
≤2.5 ns
≤2.5 ns
VM
VLOAD
CL
RL
V∆
1.5 V
1.5 V
6V
6V
50 pF
50 pF
500 Ω
500 Ω
0.3 V
0.3 V
VI
Timing Input
VM
0V
tw
tsu
VI
Input
VM
VM
th
VI
Data Input
VM
VM
0V
0V
VOLTAGE WAVEFORMS
PULSE DURATION
VOLTAGE WAVEFORMS
SETUP AND HOLD TIMES
VI
VM
Input
VM
0V
tPLH
VM
VM
VOL
tPHL
VM
VM
0V
tPLZ
Output
Waveform 1
S1 at VLOAD
(see Note B)
tPLH
VLOAD/2
VM
tPZH
VOH
Output
VM
tPZL
tPHL
VOH
Output
VI
Output
Control
VM
VOL
VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES
INVERTING AND NONINVERTING OUTPUTS
VOL + V∆
VOL
tPHZ
Output
Waveform 2
S1 at GND
(see Note B)
VM
VOH - V∆
VOH
≈0 V
VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES
LOW- AND HIGH-LEVEL ENABLING
NOTES: A. CL includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control.
Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, ZO = 50 Ω.
D. The outputs are measured one at a time, with one transition per measurement.
E. tPLZ and tPHZ are the same as tdis.
F. tPZL and tPZH are the same as ten.
G. tPLH and tPHL are the same as tpd.
H. All parameters and waveforms are not applicable to all devices.
Figure 1. Load Circuit and Voltage Waveforms
Copyright © 2003–2008, Texas Instruments Incorporated
Product Folder Link(s): SN74LVC574A-Q1
Submit Documentation Feedback
5
PACKAGE OPTION ADDENDUM
www.ti.com
17-Mar-2017
PACKAGING INFORMATION
Orderable Device
Status
(1)
Package Type Package Pins Package
Drawing
Qty
Eco Plan
Lead/Ball Finish
MSL Peak Temp
(2)
(6)
(3)
Op Temp (°C)
Device Marking
(4/5)
CLVC574AQDWRG4Q1
ACTIVE
SOIC
DW
20
2000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 125
L574AQ1
CLVC574AQPWRG4Q1
ACTIVE
TSSOP
PW
20
2000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 125
L574AQ1
SN74LVC574AQDWRQ1
ACTIVE
SOIC
DW
20
2000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 125
L574AQ1
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability
information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight
in homogeneous material)
(3)
MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
(4)
There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
(5)
Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation
of the previous line and the two combined represent the entire Device Marking for that device.
(6)
Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish
value exceeds the maximum column width.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and
Addendum-Page 1
Samples
PACKAGE OPTION ADDENDUM
www.ti.com
17-Mar-2017
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
OTHER QUALIFIED VERSIONS OF SN74LVC574A-Q1 :
• Catalog: SN74LVC574A
• Enhanced Product: SN74LVC574A-EP
• Military: SN54LVC574A
NOTE: Qualified Version Definitions:
• Catalog - TI's standard catalog product
• Enhanced Product - Supports Defense, Aerospace and Medical Applications
• Military - QML certified for Military and Defense Applications
Addendum-Page 2
PACKAGE MATERIALS INFORMATION
www.ti.com
2-Oct-2019
TAPE AND REEL INFORMATION
*All dimensions are nominal
Device
Package Package Pins
Type Drawing
CLVC574AQDWRG4Q1
SOIC
CLVC574AQPWRG4Q1
SN74LVC574AQDWRQ1
SPQ
Reel
Reel
A0
Diameter Width (mm)
(mm) W1 (mm)
B0
(mm)
K0
(mm)
P1
(mm)
W
Pin1
(mm) Quadrant
13.3
2.7
12.0
24.0
Q1
DW
20
2000
330.0
24.4
10.8
TSSOP
PW
20
2000
330.0
16.4
6.95
7.0
1.4
8.0
16.0
Q1
SOIC
DW
20
2000
330.0
24.4
10.8
13.3
2.7
12.0
24.0
Q1
Pack Materials-Page 1
PACKAGE MATERIALS INFORMATION
www.ti.com
2-Oct-2019
*All dimensions are nominal
Device
Package Type
Package Drawing
Pins
SPQ
Length (mm)
Width (mm)
Height (mm)
CLVC574AQDWRG4Q1
SOIC
DW
20
2000
367.0
367.0
45.0
CLVC574AQPWRG4Q1
TSSOP
PW
20
2000
367.0
367.0
38.0
SN74LVC574AQDWRQ1
SOIC
DW
20
2000
367.0
367.0
45.0
Pack Materials-Page 2
PACKAGE OUTLINE
DW0020A
SOIC - 2.65 mm max height
SCALE 1.200
SOIC
C
10.63
TYP
9.97
SEATING PLANE
PIN 1 ID
AREA
A
0.1 C
20
1
13.0
12.6
NOTE 3
18X 1.27
2X
11.43
10
11
B
7.6
7.4
NOTE 4
20X
0.51
0.31
0.25
C A B
2.65 MAX
0.33
TYP
0.10
SEE DETAIL A
0.25
GAGE PLANE
0 -8
0.3
0.1
1.27
0.40
DETAIL A
TYPICAL
4220724/A 05/2016
NOTES:
1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing
per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
exceed 0.15 mm per side.
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.43 mm per side.
5. Reference JEDEC registration MS-013.
www.ti.com
EXAMPLE BOARD LAYOUT
DW0020A
SOIC - 2.65 mm max height
SOIC
20X (2)
SYMM
1
20
20X (0.6)
18X (1.27)
SYMM
(R0.05)
TYP
10
11
(9.3)
LAND PATTERN EXAMPLE
SCALE:6X
SOLDER MASK
OPENING
METAL
SOLDER MASK
OPENING
METAL UNDER
SOLDER MASK
0.07 MAX
ALL AROUND
0.07 MIN
ALL AROUND
SOLDER MASK
DEFINED
NON SOLDER MASK
DEFINED
SOLDER MASK DETAILS
4220724/A 05/2016
NOTES: (continued)
6. Publication IPC-7351 may have alternate designs.
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.
www.ti.com
EXAMPLE STENCIL DESIGN
DW0020A
SOIC - 2.65 mm max height
SOIC
20X (2)
SYMM
1
20
20X (0.6)
18X (1.27)
SYMM
11
10
(9.3)
SOLDER PASTE EXAMPLE
BASED ON 0.125 mm THICK STENCIL
SCALE:6X
4220724/A 05/2016
NOTES: (continued)
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate
design recommendations.
9. Board assembly site may have different recommendations for stencil design.
www.ti.com
IMPORTANT NOTICE AND DISCLAIMER
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you
permission to use these resources only for development of an application that uses the TI products described in the resource. Other
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third
party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims,
damages, costs, losses, and liabilities arising out of your use of these resources.
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on
ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable
warranties or warranty disclaimers for TI products.
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2019, Texas Instruments Incorporated
Was this manual useful for you? yes no
Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Download PDF

advertising