Texas Instruments | SN54LVTH162373, SN74LVTH162373 (Rev. M) | Datasheet | Texas Instruments SN54LVTH162373, SN74LVTH162373 (Rev. M) Datasheet

Texas Instruments SN54LVTH162373, SN74LVTH162373 (Rev. M) Datasheet
SN54LVTH162373,, SN74LVTH162373
3.3-V ABT 16-BIT TRANSPARENT D-TYPE LATCHES
WITH 3-STATE OUTPUTS
www.ti.com
SCBS261M – JULY 1993 – REVISED DECEMBER 2006
FEATURES
•
•
•
•
•
•
•
•
•
•
•
Members of the Texas Instruments Widebus™
Family
Output Ports Have Equivalent 22-Ω Series
Resistors, So No External Resistors Are
Required
Support Mixed-Mode Signal Operation (5-V
Input and Output Voltages With 3.3-V VCC)
Support Unregulated Battery Operation Down
to 2.7 V
Typical VOLP (Output Ground Bounce) <0.8 V
at VCC = 3.3 V, TA = 25°C
Ioff and Power-Up 3-State Support Hot
Insertion
Bus Hold on Data Inputs Eliminates the Need
for External Pullup/Pulldown Resistors
Distributed VCC and GND Pins Minimize
High-Speed Switching Noise
Flow-Through Architecture Optimizes PCB
Layout
Latch-Up Performance Exceeds 500 mA Per
JESD 17
ESD Protection Exceeds JESD 22
– 2000-V Human-Body Model (A114-A)
– 200-V Machine Model (A115-A)
SN54LVTH162373 . . . WD PACKAGE
SN74LVTH162373 . . . DGG OR DL PACKAGE
(TOP VIEW)
1OE
1Q1
1Q2
GND
1Q3
1Q4
VCC
1Q5
1Q6
GND
1Q7
1Q8
2Q1
2Q2
GND
2Q3
2Q4
VCC
2Q5
2Q6
GND
2Q7
2Q8
2OE
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
1LE
1D1
1D2
GND
1D3
1D4
VCC
1D5
1D6
GND
1D7
1D8
2D1
2D2
GND
2D3
2D4
VCC
2D5
2D6
GND
2D7
2D8
2LE
DESCRIPTION/ORDERING INFORMATION
The 'LVTH162373 devices are16-bit transparent D-type latches with 3-state outputs designed for low-voltage
(3.3-V) VCC operation, but with the capability to provide a TTL interface to a 5-V system environment. These
devices are particularly suitable for implementing buffer registers, I/O ports, bidirectional bus drivers, and
working registers.
ORDERING INFORMATION
PACKAGE (1)
TA
Tube of 25
SSOP – DL
Reel of 1000
–40°C to 85°C
TSSOP – DGG
Reel of 2000
VFBGA – GQL
–55°C to 125°C
(1)
ORDERABLE PART NUMBER
TOP-SIDE MARKING
SN74LVTH162373DL
74LVTH162373DLG4
SN74LVTH162373DLR
LVTH162373
74LVTH162373DLRG4
SN74LVTH162373DGGR
74LVTH162373DGGRE4
LVTH162373
SN74LVTH162373KR
VFBGA – ZQL
(Pb-free)
Reel of 1000
CFP – WD
Tube
74LVTH162373ZQLR
SNJ54LVTH162373WD
LL2373
SNJ54LVTH162373WD
Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at
www.ti.com/sc/package.
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
Widebus is a trademark of Texas Instruments.
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of the Texas
Instruments standard warranty. Production processing does not
necessarily include testing of all parameters.
Copyright © 1993–2006, Texas Instruments Incorporated
SN54LVTH162373,, SN74LVTH162373
3.3-V ABT 16-BIT TRANSPARENT D-TYPE LATCHES
WITH 3-STATE OUTPUTS
www.ti.com
SCBS261M – JULY 1993 – REVISED DECEMBER 2006
DESCRIPTION/ORDERING INFORMATION (CONTINUED)
A buffered output-enable (OE) input can be used to place the eight outputs in either a normal logic state (high or
low logic levels) or a high-impedance state. In the high-impedance state, the outputs neither load nor drive the
bus lines significantly. The high-impedance state and the increased drive provide the capability to drive bus lines
without interface or pullup components.
OE does not affect internal operations of the latch. Old data can be retained or new data can be entered while
the outputs are in the high-impedance state.
The outputs, which are designed to source or sink up to 12 mA, include equivalent 22-Ω series resistors to
reduce overshoot and undershoot.
Active bus-hold circuitry holds unused or undriven inputs at a valid logic state. Use of pullup or pulldown
resistors with the bus-hold circuitry is not recommended.
When VCC is between 0 and 1.5 V, the devices are in the high-impedance state during power up or power down.
However, to ensure the high-impedance state above 1.5 V, OE should be tied to VCC through a pullup resistor;
the minimum value of the resistor is determined by the current-sinking capability of the driver.
These devices are fully specified for hot-insertion applications using Ioff and power-up 3-state. The Ioff circuitry
disables the outputs, preventing damaging current backflow through the devices when they are powered down.
The power-up 3-state circuitry places the outputs in the high-impedance state during power up and power down,
which prevents driver conflict.
These devices can be used as two 8-bit latches or one 16-bit latch. When the latch-enable (LE) input is high, the
Q outputs follow the data (D) inputs. When LE is taken low, the Q outputs are latched at the levels set up at the
D inputs.
TERMINAL ASSIGNMENTS (1)
GQL OR ZQL PACKAGE
(TOP VIEW)
1
2
3
4
5
6
A
B
C
D
E
1
2
3
4
5
6
A
1OE
NC
NC
NC
NC
1LE
B
1Q2
1Q1
GND
GND
1D1
1D2
C
1Q4
1Q3
VCC
VCC
1D3
1D4
D
1Q6
1Q5
GND
GND
1D5
1D6
E
1Q8
1Q7
1D7
1D8
F
2Q1
2Q2
2D2
2D1
G
2Q3
2Q4
GND
GND
2D4
2D3
H
2Q5
2Q6
VCC
VCC
2D6
2D5
F
J
2Q7
2Q8
GND
GND
2D8
2D7
G
K
2OE
NC
NC
NC
NC
2LE
H
J
K
(1)
NC - No internal connection
FUNCTION TABLE
(each 8-bit section)
INPUTS
2
OE
LE
D
OUTPUT
Q
L
H
H
H
L
H
L
L
L
L
X
Q0
H
X
X
Z
Submit Documentation Feedback
SN54LVTH162373,, SN74LVTH162373
3.3-V ABT 16-BIT TRANSPARENT D-TYPE LATCHES
WITH 3-STATE OUTPUTS
www.ti.com
SCBS261M – JULY 1993 – REVISED DECEMBER 2006
LOGIC DIAGRAM (POSITIVE LOGIC)
1OE
1LE
1
2OE
48
2LE
C1
1D1
47
2
1D
24
25
C1
1Q1
2D1
36
13
1D
To Seven Other Channels
2Q1
To Seven Other Channels
Pin numbers shown are for the DGG, DL, and WD packages.
Absolute Maximum Ratings (1)
over recommended operating free-air temperature range (unless otherwise noted)
MIN
MAX
VCC
Supply voltage range
–0.5
4.6
V
VI
Input voltage range (2)
–0.5
7
V
–0.5
7
V
–0.5
VCC + 0.5
state (2)
UNIT
VO
Voltage range applied to any output in the high-impedance or power-off
VO
Voltage range applied to any output in the high state (2)
IO
Current into any output in the low state
IO
Current into any output in the high state (3)
IIK
Input clamp current
VI < 0
IOK
Output clamp current
VO < 0
–50
mA
θJA
Package thermal impedance (4)
Tstg
(1)
(2)
(3)
(4)
mA
30
mA
–50
mA
DGG package
70
DL package
63
GQL/ZQL package
42
Storage temperature range
–65
V
30
150
°C/W
°C
Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings
only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating
conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
This current flows only when the output is in the high state and VO > VCC.
The package thermal impedance is calculated in accordance with JESD 51-7.
Recommended Operating Conditions (1)
SN54LVTH162373
SN74LVTH162373
MIN
MAX
MIN
MAX
2.7
3.6
2.7
3.6
UNIT
VCC
Supply voltage range
VIH
High-level input voltage
VIL
Low-level input voltage
0.8
0.8
VI
Input voltage
5.5
5.5
V
IOH
High-level output current
–12
–12
mA
IOL
Low-level output current
12
12
mA
∆t/∆v
Input transition rise or fall rate
10
10
ns/V
∆t/∆VCC
Power-up ramp rate
200
TA
Operating free-air temperature
–55
(1)
2
Outputs enabled
2
V
–40
V
µs/V
200
125
V
85
°C
All unused control inputs of the device must be held at VCC or GND to ensure proper device operation. Refer to the TI application report,
Implications of Slow or Floating CMOS Inputs, literature number SCBA004.
Submit Documentation Feedback
3
SN54LVTH162373,, SN74LVTH162373
3.3-V ABT 16-BIT TRANSPARENT D-TYPE LATCHES
WITH 3-STATE OUTPUTS
www.ti.com
SCBS261M – JULY 1993 – REVISED DECEMBER 2006
Electrical Characteristics
over operating free-air temperature range (unless otherwise noted)
PARAMETER
TEST CONDITIONS
SN54LVTH162373
SN74LVTH162373
MIN TYP (1)
MIN TYP (1)
MAX
VIK
VCC = 2.7 V,
II = –18 mA
VOH
VCC = 3 V,
IOH = –12 mA
VOL
VCC = 3 V,
IOL = 12 mA
0.8
0.8
VCC = 0 or 3.6 V,
VI = 5.5 V
10
10
VI = VCC or GND
±1
±1
1
1
–5
–5
Control inputs VCC = 3.6 V,
II
Data inputs
Ioff
VCC = 3.6 V
VCC = 0,
2
2
VI = VCC
VI = 0
VI = 2 V
V (2),
75
75
–75
–75
UNIT
V
V
±100
VI = 0.8 V
Data inputs
VCC = 3.6
–1.2
VI or VO = 0 to 4.5 V
VCC = 3 V
II(hold)
–1.2
MAX
V
µA
µA
µA
500
–750
VI = 0 to 3.6 V
5
5
µA
–5
–5
µA
VCC = 0 to 1.5 V, VO = 0.5 V to 3 V,
OE = don't care
±100 (3)
±100
µA
IOZPD
VCC = 1.5 V to 0, VO = 0.5 V to 3 V,
OE = don't care
±100 (3)
±100
µA
VCC = 3.6 V,
IO = 0,
VI = VCC or GND
0.19
0.19
ICC
IOZH
VCC = 3.6 V,
VO = 3 V
IOZL
VCC = 3.6 V,
VO = 0.5 V
IOZPU
Outputs high
Outputs low
Outputs disabled
5
5
0.19
0.19
0.2
0.2
mA
∆ICC (4)
VCC = 3 V to 3.6 V, One input at VCC – 0.6 V,
Other inputs at VCC or GND
Ci
VI = 3 V or 0
3
3
pF
Co
VO = 3 V or 0
9
9
pF
(1)
(2)
(3)
(4)
mA
All typical values are at VCC = 3.3 V, TA = 25°C.
This is the bus-hold maximum dynamic current. It is the minimum overdrive current required to switch the input from one state to
another.
On products compliant to MIL-PRF-38535, this parameter is not production tested.
This is the increase in supply current for each input that is at the specified TTL voltage level, rather than VCC or GND.
Timing Requirements
over operating free-air temperature range (unless otherwise noted) (see Figure 1)
SN54LVTH162373
VCC = 3.3 V
±0.3 V
MIN
4
tw
Pulse duration, LE high
tsu
Setup time, data before LE↓
th
Hold time, data after LE↓
MAX
SN74LVTH162373
VCC = 2.7 V
MIN
MAX
VCC = 3.3 V
±0.3 V
MIN
MAX
VCC = 2.7 V
MIN
UNIT
MAX
3
3
3
3
ns
1.3
0.6
1
0.6
ns
1
1.1
1
1.1
ns
Submit Documentation Feedback
SN54LVTH162373,, SN74LVTH162373
3.3-V ABT 16-BIT TRANSPARENT D-TYPE LATCHES
WITH 3-STATE OUTPUTS
www.ti.com
SCBS261M – JULY 1993 – REVISED DECEMBER 2006
Switching Characteristics
over recommended operating free-air temperature range, CL = 50 pF (unless otherwise noted) (see Figure 1)
SN54LVTH162373
PARAMETER
tPLH
tPHL
tPLH
tPHL
tPZH
tPZL
tPHZ
tPLZ
(1)
FROM
(INPUT)
TO
(OUTPUT)
D
Q
LE
Q
OE
Q
OE
Q
VCC = 3.3 V
±0.3 V
SN74LVTH162373
VCC = 3.3 V
±0.3 V
VCC = 2.7 V
VCC = 2.7 V
UNIT
MAX
MIN
TYP (1)
MAX
5
5.7
1.9
3.1
4.6
5.1
1.8
4.4
4.8
1.9
2.8
4
4.3
2.1
5.4
6.2
2.2
3.4
5.1
5.8
2.1
4.9
4.7
2.2
3.2
4.6
4.3
1.7
5.6
7
1.8
3.2
5.4
6.6
1.7
5.3
5.9
1.8
3.2
4.9
5.5
2.3
6.3
6.6
2.4
3.8
5.4
5.7
1
7.4
6.4
2.2
3.5
5.1
5
MIN
MAX
1.8
MIN
tsk(LH)
0.5
tsk(HL)
0.5
MIN
MAX
ns
ns
ns
ns
ns
All typical values are at VCC = 3.3 V, TA = 25°C.
Submit Documentation Feedback
5
SN54LVTH162373,, SN74LVTH162373
3.3-V ABT 16-BIT TRANSPARENT D-TYPE LATCHES
WITH 3-STATE OUTPUTS
www.ti.com
SCBS261M – JULY 1993 – REVISED DECEMBER 2006
PARAMETER MEASUREMENT INFORMATION
6V
500 W
From Output
Under Test
S1
Open
GND
CL = 50 pF
(see Note A)
500 W
TEST
S1
tPLH/tPHL
tPLZ/tPZL
tPHZ/tPZH
Open
6V
GND
2.7 V
LOAD CIRCUIT
Timing Input
1.5 V
0V
tw
tsu
2.7 V
1.5 V
Input
th
2.7 V
1.5 V
Data Input
1.5 V
1.5 V
0V
0V
VOLTAGE WAVEFORMS
SETUP AND HOLD TIMES
VOLTAGE WAVEFORMS
PULSE DURATION
2.7 V
Input
1.5 V
1.5 V
0V
tPHL
tPLH
VOH
Output
1.5 V
1.5 V
VOL
1.5 V
1.5 V
1.5 V
VOL
VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES
INVERTING AND NONINVERTING OUTPUTS
1.5 V
0V
tPLZ
tPZL
3V
1.5 V
Output
Waveform 2
S1 at GND
(see Note B)
VOL + 0.3 V
VOL
tPHZ
tPZH
VOH
Output
Output
Waveform 1
S1 at 6 V
(see Note B)
tPLH
tPHL
2.7 V
Output
Control
1.5 V
VOH – 0.3 V
VOH
»0 V
VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES
LOW- AND HIGH-LEVEL ENABLING
NOTES: A. CL includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control.
Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: PRR £ 10 MHz, ZO = 50 W, tr £ 2.5 ns, tf £ 2.5 ns.
D. The outputs are measured one at a time, with one transition per measurement.
Figure 1. Load Circuit and Voltage Waveforms
6
Submit Documentation Feedback
PACKAGE OPTION ADDENDUM
www.ti.com
27-Dec-2019
PACKAGING INFORMATION
Orderable Device
Status
(1)
Package Type Package Pins Package
Drawing
Qty
Eco Plan
Lead/Ball Finish
MSL Peak Temp
(2)
(6)
(3)
Op Temp (°C)
Device Marking
(4/5)
5962-9763801VXA
ACTIVE
CFP
WD
48
1
TBD
A42
N / A for Pkg Type
-55 to 125
5962-9763801VX
A
SNV54LVTH16237
3WD
74LVTH162373ZQLR
NRND
BGA
MICROSTAR
JUNIOR
ZQL
56
1000
Green (RoHS
& no Sb/Br)
SNAGCU
Level-1-260C-UNLIM
-40 to 85
LL2373
SN74LVTH162373DGGR
ACTIVE
TSSOP
DGG
48
2000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 85
LVTH162373
SN74LVTH162373DL
ACTIVE
SSOP
DL
48
25
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 85
LVTH162373
SN74LVTH162373DLR
ACTIVE
SSOP
DL
48
1000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 85
LVTH162373
SNJ54LVTH162373WD
LIFEBUY
CFP
WD
48
TBD
Call TI
Call TI
-55 to 125
5962-9763801QX
A
SNJ54LVTH16237
3WD
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may
reference these types of products as "Pb-Free".
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based
flame retardants must also meet the <=1000ppm threshold requirement.
(3)
MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
(4)
There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
Addendum-Page 1
Samples
PACKAGE OPTION ADDENDUM
www.ti.com
27-Dec-2019
(5)
Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation
of the previous line and the two combined represent the entire Device Marking for that device.
(6)
Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish
value exceeds the maximum column width.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
OTHER QUALIFIED VERSIONS OF SN54LVTH162373, SN54LVTH162373-SP, SN74LVTH162373 :
• Catalog: SN74LVTH162373, SN54LVTH162373
• Enhanced Product: SN74LVTH162373-EP, SN74LVTH162373-EP
• Military: SN54LVTH162373
• Space: SN54LVTH162373-SP
NOTE: Qualified Version Definitions:
• Catalog - TI's standard catalog product
• Enhanced Product - Supports Defense, Aerospace and Medical Applications
• Military - QML certified for Military and Defense Applications
• Space - Radiation tolerant, ceramic packaging and qualified for use in Space-based application
Addendum-Page 2
PACKAGE MATERIALS INFORMATION
www.ti.com
12-Feb-2019
TAPE AND REEL INFORMATION
*All dimensions are nominal
Device
74LVTH162373ZQLR
Package Package Pins
Type Drawing
SPQ
Reel
Reel
A0
Diameter Width (mm)
(mm) W1 (mm)
B0
(mm)
K0
(mm)
P1
(mm)
W
Pin1
(mm) Quadrant
BGA MI
CROSTA
R JUNI
OR
ZQL
56
1000
330.0
16.4
4.8
7.3
1.5
8.0
16.0
Q1
SN74LVTH162373DGGR TSSOP
DGG
48
2000
330.0
24.4
8.6
13.0
1.8
12.0
24.0
Q1
DL
48
1000
330.0
32.4
11.35
16.2
3.1
16.0
32.0
Q1
SN74LVTH162373DLR
SSOP
Pack Materials-Page 1
PACKAGE MATERIALS INFORMATION
www.ti.com
12-Feb-2019
*All dimensions are nominal
Device
Package Type
Package Drawing
Pins
SPQ
Length (mm)
Width (mm)
Height (mm)
74LVTH162373ZQLR
BGA MICROSTAR
JUNIOR
ZQL
56
1000
350.0
350.0
43.0
SN74LVTH162373DGGR
TSSOP
DGG
48
2000
367.0
367.0
45.0
SN74LVTH162373DLR
SSOP
DL
48
1000
367.0
367.0
55.0
Pack Materials-Page 2
MECHANICAL DATA
MTSS003D – JANUARY 1995 – REVISED JANUARY 1998
DGG (R-PDSO-G**)
PLASTIC SMALL-OUTLINE PACKAGE
48 PINS SHOWN
0,27
0,17
0,50
48
0,08 M
25
6,20
6,00
8,30
7,90
0,15 NOM
Gage Plane
1
0,25
24
0°– 8°
A
0,75
0,50
Seating Plane
0,15
0,05
1,20 MAX
PINS **
0,10
48
56
64
A MAX
12,60
14,10
17,10
A MIN
12,40
13,90
16,90
DIM
4040078 / F 12/97
NOTES: A.
B.
C.
D.
All linear dimensions are in millimeters.
This drawing is subject to change without notice.
Body dimensions do not include mold protrusion not to exceed 0,15.
Falls within JEDEC MO-153
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
PACKAGE OUTLINE
ZQL0056A
JRBGA - 1 mm max height
SCALE 2.100
PLASTIC BALL GRID ARRAY
4.6
4.4
B
A
BALL A1 CORNER
7.1
6.9
1 MAX
C
SEATING PLANE
0.35
TYP
0.15
BALL TYP
0.1 C
3.25 TYP
(0.625) TYP
SYMM
K
(0.575) TYP
J
H
G
5.85
TYP
SYMM
F
E
D
C
56X
NOTE 3
B
A
0.65 TYP
BALL A1 CORNER
1
2
3
4
5
0.45
0.35
0.15
0.08
C B A
C
6
0.65 TYP
4219711/B 01/2017
NOTES:
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing
per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. No metal in this area, indicates orientation.
www.ti.com
EXAMPLE BOARD LAYOUT
ZQL0056A
JRBGA - 1 mm max height
PLASTIC BALL GRID ARRAY
(0.65) TYP
56X ( 0.33)
2
1
3
4
5
6
A
(0.65) TYP
B
C
D
E
SYMM
F
G
H
J
K
SYMM
LAND PATTERN EXAMPLE
EXPOSED METAL SHOWN
SCALE:15X
SOLDER MASK
OPENING
0.05 MAX
METAL UNDER
SOLDER MASK
0.05 MIN
EXPOSED METAL
( 0.33)
METAL
( 0.33)
SOLDER MASK
OPENING
EXPOSED METAL
SOLDER MASK
DEFINED
NON-SOLDER MASK
DEFINED
(PREFERRED)
SOLDER MASK DETAILS
NOT TO SCALE
4219711/B 01/2017
NOTES: (continued)
4. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints.
For information, see Texas Instruments literature number SPRAA99 (www.ti.com/lit/spraa99).
www.ti.com
EXAMPLE STENCIL DESIGN
ZQL0056A
JRBGA - 1 mm max height
PLASTIC BALL GRID ARRAY
56X ( 0.33)
(0.65) TYP
1
2
3
4
5
6
A
(0.65) TYP
B
C
D
E
SYMM
F
G
H
J
K
SYMM
SOLDER PASTE EXAMPLE
BASED ON 0.125 mm THICK STENCIL
SCALE:15X
4219711/B 01/2017
NOTES: (continued)
5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.
www.ti.com
MECHANICAL DATA
MCFP010B – JANUARY 1995 – REVISED NOVEMBER 1997
WD (R-GDFP-F**)
CERAMIC DUAL FLATPACK
48 LEADS SHOWN
0.120 (3,05)
0.075 (1,91)
0.009 (0,23)
0.004 (0,10)
1.130 (28,70)
0.870 (22,10)
0.370 (9,40)
0.250 (6,35)
0.390 (9,91)
0.370 (9,40)
0.370 (9,40)
0.250 (6,35)
48
1
0.025 (0,635)
A
0.014 (0,36)
0.008 (0,20)
25
24
NO. OF
LEADS**
48
56
A MAX
0.640
(16,26)
0.740
(18,80)
A MIN
0.610
(15,49)
0.710
(18,03)
4040176 / D 10/97
NOTES: A.
B.
C.
D.
E.
All linear dimensions are in inches (millimeters).
This drawing is subject to change without notice.
This package can be hermetically sealed with a ceramic lid using glass frit.
Index point is provided on cap for terminal identification only
Falls within MIL STD 1835: GDFP1-F48 and JEDEC MO -146AA
GDFP1-F56 and JEDEC MO -146AB
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
IMPORTANT NOTICE AND DISCLAIMER
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you
permission to use these resources only for development of an application that uses the TI products described in the resource. Other
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third
party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims,
damages, costs, losses, and liabilities arising out of your use of these resources.
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on
ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable
warranties or warranty disclaimers for TI products.
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2019, Texas Instruments Incorporated
Was this manual useful for you? yes no
Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Related manuals

Download PDF

advertising