Texas Instruments | SN74AUC1G14-EP | Datasheet | Texas Instruments SN74AUC1G14-EP Datasheet

Texas Instruments SN74AUC1G14-EP Datasheet
SN74AUC1G14-EP
SINGLE SCHMITT-TRIGGER INVERTER
www.ti.com
SCES673 – SEPTEMBER 2006
FEATURES
•
•
•
•
•
•
•
•
•
•
•
•
(1)
Controlled Baseline
– One Assembly/Test Site, One Fabrication
Site
Extended Temperature Performance of –55°C
to 125°C
Enhanced Diminishing Manufacturing
Sources (DMS) Support
Enhanced Product-Change Notification
Qualification Pedigree (1)
Available in the Texas Instruments
NanoStar™ and NanoFree™ Packages
Optimized for 1.8-V Operation and Is 3.6-V I/O
Tolerant to Support Mixed-Mode Signal
Operation
Ioff Supports Partial-Power-Down Mode
Operation
Sub-1-V Operable
Max tpd of 2.5 ns at 1.8 V
Low Power Consumption, 10-µA Max ICC
±8-mA Output Drive at 1.8 V
•
•
Latch-Up Performance Exceeds 100 mA Per
JESD 78, Class II
ESD Protection Exceeds JESD 22
– 2000-V Human-Body Model (A114-A)
– 200-V Machine Model (A115-A)
– 1000-V Charged-Device Model (C101)
DBV PACKAGE
(TOP VIEW)
NC
1
A
2
GND
3
5
VCC
4
Y
See mechanical drawings for dimensions.
NC - No internal connection
Component qualification in accordance with JEDEC and
industry standards to ensure reliable operation over an
extended temperature range. This includes, but is not limited
to, Highly Accelerated Stress Test (HAST) or biased 85/85,
temperature cycle, autoclave or unbiased HAST,
electromigration, bond intermetallic life, and mold compound
life. Such qualification testing should not be viewed as
justifying use of this component beyond specified
performance and environmental limits.
DESCRIPTION/ORDERING INFORMATION
This single Schmitt-trigger inverter is operational at 0.8-V to 2.7-V VCC, but is designed specifically for 1.65-V to
1.95-V VCC operation.
The SN74AUC1G14 contains one inverter and performs the Boolean function Y = A. The device functions as an
independent inverter, but because of Schmitt action, it may have different input threshold levels for
positive-going (VT+) and negative-going (VT–) signals.
ORDERING INFORMATION
TA
–55°C to 125°C
(1)
(2)
PACKAGE (1)
SOT (SOT-23) – DBV
ORDERABLE PART NUMBER
Reel of 3000
SN74AUC1G14MDBVREP
TOP-SIDE MARKING (2)
U14_
Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at
www.ti.com/sc/package.
DBV: The actual top-side marking has one additional character that designates the assembly/test site. Pin 1 identifier indicates
solder-bump composition (1 = SnPb, • = Pb-free).
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
NanoStar, NanoFree are trademarks of Texas Instruments.
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of the Texas
Instruments standard warranty. Production processing does not
necessarily include testing of all parameters.
Copyright © 2006, Texas Instruments Incorporated
SN74AUC1G14-EP
SINGLE SCHMITT-TRIGGER INVERTER
www.ti.com
SCES673 – SEPTEMBER 2006
DESCRIPTION/ORDERING INFORMATION (CONTINUED)
NanoStar™ and NanoFree™ package technology is a major breakthrough in IC packaging concepts, using the
die as the package.
This device is fully specified for partial-power-down applications using Ioff. The Ioff circuitry disables the outputs,
preventing damaging current backflow through the device when it is powered down.
For more information about AUC Little Logic devices, please refer to the TI application report, Applications of
Texas Instruments AUC Sub-1-V Little Logic Devices, literature number SCEA027.
FUNCTION TABLE
INPUT
A
OUTPUT
Y
H
L
L
H
LOGIC DIAGRAM (POSITIVE LOGIC)
2
4
A
Y
Absolute Maximum Ratings (1)
over operating free-air temperature range (unless otherwise noted)
MIN
MAX
VCC
Supply voltage range
–0.5
3.6
V
VI
Input voltage range (2)
–0.5
3.6
V
–0.5
3.6
V
–0.5
VCC + 0.5
state (2)
VO
Voltage range applied to any output in the high-impedance or power-off
VO
Output voltage range (2)
IIK
Input clamp current
VI < 0
–50
mA
IOK
Output clamp current
VO < 0
–50
mA
IO
Continuous output current
±20
mA
±100
mA
206
°C/W
150
°C
Continuous current through VCC or GND
θJA
Package thermal
Tstg
Storage temperature range
(1)
(2)
(3)
2
UNIT
impedance (3)
DBV package
–65
V
Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings
only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating
conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.
The package thermal impedance is calculated in accordance with JESD 51-7.
Submit Documentation Feedback
SN74AUC1G14-EP
SINGLE SCHMITT-TRIGGER INVERTER
www.ti.com
SCES673 – SEPTEMBER 2006
Recommended Operating Conditions
(1)
MIN
MAX
UNIT
VCC
Supply voltage
0.8
2.7
V
VI
Input voltage
0
3.6
V
VO
Output voltage
0
VCC
V
IOH
IOL
TA
(1)
High-level output current
Low-level output current
Operating free-air temperature
VCC = 0.8 V
–0.7
VCC = 1.1 V
–3
VCC = 1.4 V
–5
VCC = 1.65 V
–8
VCC = 2.3 V
–9
VCC = 0.8 V
0.7
VCC = 1.1 V
3
VCC = 1.4 V
5
VCC = 1.65 V
8
VCC = 2.3 V
9
–55
125
mA
mA
°C
All unused inputs of the device must be held at VCC or GND to ensure proper device operation. Refer to the TI application report,
Implications of Slow or Floating CMOS Inputs, literature number SCBA004.
Submit Documentation Feedback
3
SN74AUC1G14-EP
SINGLE SCHMITT-TRIGGER INVERTER
www.ti.com
SCES673 – SEPTEMBER 2006
Electrical Characteristics
over recommended operating free-air temperature range (unless otherwise noted)
PARAMETER
VCC
MIN TYP (1)
0.8 V
0.5
TEST CONDITIONS
VT+
Positive-going input
threshold voltage
1.1 V
0.51
1.4 V
0.65
1
0.79
1.16
2.3 V
1.11
1.56
VOH
VOL
II
A input
0.22
0.53
1.4 V
0.3
0.58
1.65 V
0.39
0.62
2.3 V
0.58
V
0.87
0.21
1.1 V
0.25
0.38
1.4 V
0.31
0.5
1.65 V
0.37
0.62
2.3 V
0.48
0.77
V
IOH = –100 µA
0.8 V to 2.7 V
IOH = –0.7 mA
0.8 V
IOH = –3 mA
1.1 V
0.8
IOH = –5 mA
1.4 V
1
IOH = –8 mA
1.65 V
1.2
IOH = –9 mA
2.3 V
1.8
IOL = 100 µA
0.8 V to 2.7 V
IOL = 0.7 mA
0.8 V
IOL = 3 mA
1.1 V
0.3
IOL = 5 mA
1.4 V
0.4
IOL = 8 mA
1.65 V
0.45
IOL = 9 mA
2.3 V
0.6
0 to 2.7 V
±5
µA
0
±10
µA
0.8 V to 2.7 V
10
µA
VI = VCC or GND
Ioff
VI or VO = 2.7 V
ICC
VI = VCC or GND,
Ci
VI = VCC or GND
(1)
V
0.3
1.1 V
0.8 V
∆VT
Hysteresis
(VT+ – VT–)
UNIT
0.86
1.65 V
0.8 V
VT–
Negative-going input
threshold voltage
MAX
IO = 0
VCC – 0.1
0.55
V
0.2
0.25
2.5 V
3.5
V
pF
All typical values are at TA = 25°C.
Switching Characteristics
over recommended operating free-air temperature range, CL = 15 pF (unless otherwise noted) (see Figure 1)
PARAMETER
tpd
4
FROM
(INPUT)
TO
(OUTPUT)
VCC = 0.8 V
A
Y
5.8
TYP
VCC = 1.2 V
± 0.1 V
VCC = 1.5 V
± 0.1 V
MIN MAX
MIN MAX
0.7
5.5
0.6
Submit Documentation Feedback
4.5
VCC = 1.8 V
± 0.15 V
VCC = 2.5 V
± 0.2 V
MIN
MAX
0.5
4.0
UNIT
MIN MAX
0.5
2.0
ns
SN74AUC1G14-EP
SINGLE SCHMITT-TRIGGER INVERTER
www.ti.com
SCES673 – SEPTEMBER 2006
Switching Characteristics
over recommended operating free-air temperature range, CL = 30 pF (unless otherwise noted) (see Figure 1)
PARAMETER
tpd
FROM
(INPUT)
TO
(OUTPUT)
A
Y
VCC = 1.8 V
± 0.15 V
MIN
0.7
VCC = 2.5 V
± 0.2 V
TYP MAX
1.6
3.0
UNIT
MIN MAX
0.5
3.0
ns
Operating Characteristics
TA = 25°C
PARAMETER
Cpd
Power dissipation
capacitance
TEST
CONDITIONS
VCC = 0.8 V
VCC = 1.2 V
VCC = 1.5 V
VCC = 1.8 V
VCC = 2.5 V
TYP
TYP
TYP
TYP
TYP
f = 10 MHz
14
15
15
16
19
Submit Documentation Feedback
UNIT
pF
5
SN74AUC1G14-EP
SINGLE SCHMITT-TRIGGER INVERTER
www.ti.com
SCES673 – SEPTEMBER 2006
PARAMETER MEASUREMENT INFORMATION
TEST
tPLH/tPHL
tPLZ/tPZL
tPHZ/tPZH
2 × VCC
S1
RL
From Output
Under Test
Open
S1
Open
2 × VCC
GND
GND
CL
(see Note A)
RL
LOAD CIRCUIT
VCC
CL
RL
V∆
0.8 V
1.2 V ± 0.1 V
1.5 V ± 0.1 V
1.8 V ± 0.15 V
2.5 V ± 0.2 V
1.8 V ± 0.15 V
2.5 V ± 0.2 V
15 pF
15 pF
15 pF
15 pF
15 pF
30 pF
30 pF
2 kΩ
2 kΩ
2 kΩ
2 kΩ
2 kΩ
1 kΩ
500 Ω
0.1 V
0.1 V
0.1 V
0.15 V
0.15 V
0.15 V
0.15 V
VCC
Timing Input
VCC/2
0V
tW
tsu
VCC
Input
VCC/2
VCC/2
th
VCC
Data Input
VCC/2
VCC/2
0V
0V
VOLTAGE WAVEFORMS
PULSE DURATION
VOLTAGE WAVEFORMS
SETUP AND HOLD TIMES
VCC
VCC/2
Input
VCC/2
0V
tPLH
VOH
Output
VCC/2
VOL
tPHL
VCC/2
tPLZ
VCC
VCC/2
tPZH
VCC/2
VOL
VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES
INVERTING AND NONINVERTING OUTPUTS
Output
Waveform 2
S1 at GND
(see Note B)
VCC/2
0V
Output
Waveform 1
S1 at 2 × VCC
(see Note B)
tPLH
VOH
Output
VCC/2
tPZL
tPHL
VCC/2
VCC
Output
Control
VOL + V∆
VOL
tPHZ
VCC/2
VOH – V∆
VOH
≈0 V
VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES
LOW- AND HIGH-LEVEL ENABLING
NOTES: A. CL includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control.
Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
C. All input pulses are supplied by generators have the following characteristics: PRR ≤ 10 MHz, ZO = 50 Ω, slew rate ≥ 1 V/ns.
D. The outputs are measured one at a time, with one transition per measurement.
E. tPLZ and tPHZ are the same as tdis.
F. tPZL and tPZH are the same as ten.
G. tPLH and tPHL are the same as tpd.
H. All parameters and waveforms are not applicable to all devices.
Figure 1. Load Circuit and Voltage Waveforms
6
Submit Documentation Feedback
PACKAGE OPTION ADDENDUM
www.ti.com
31-May-2014
PACKAGING INFORMATION
Orderable Device
Status
(1)
Package Type Package Pins Package
Drawing
Qty
Eco Plan
Lead/Ball Finish
MSL Peak Temp
(2)
(6)
(3)
Op Temp (°C)
Device Marking
(4/5)
SN74AUC1G14MDBVREP
ACTIVE
SOT-23
DBV
5
3000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-55 to 125
U14
V62/06678-01XE
ACTIVE
SOT-23
DBV
5
3000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-55 to 125
U14
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability
information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight
in homogeneous material)
(3)
MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
(4)
There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
(5)
Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation
of the previous line and the two combined represent the entire Device Marking for that device.
(6)
Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish
value exceeds the maximum column width.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.
Addendum-Page 1
Samples
PACKAGE OPTION ADDENDUM
www.ti.com
31-May-2014
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
OTHER QUALIFIED VERSIONS OF SN74AUC1G14-EP :
• Catalog: SN74AUC1G14
NOTE: Qualified Version Definitions:
• Catalog - TI's standard catalog product
Addendum-Page 2
PACKAGE MATERIALS INFORMATION
www.ti.com
3-Aug-2017
TAPE AND REEL INFORMATION
*All dimensions are nominal
Device
SN74AUC1G14MDBVRE
P
Package Package Pins
Type Drawing
SPQ
SOT-23
3000
DBV
5
Reel
Reel
A0
Diameter Width (mm)
(mm) W1 (mm)
179.0
8.4
Pack Materials-Page 1
3.2
B0
(mm)
K0
(mm)
P1
(mm)
3.2
1.4
4.0
W
Pin1
(mm) Quadrant
8.0
Q3
PACKAGE MATERIALS INFORMATION
www.ti.com
3-Aug-2017
*All dimensions are nominal
Device
Package Type
Package Drawing
Pins
SPQ
Length (mm)
Width (mm)
Height (mm)
SN74AUC1G14MDBVREP
SOT-23
DBV
5
3000
203.0
203.0
35.0
Pack Materials-Page 2
PACKAGE OUTLINE
DBV0005A
SOT-23 - 1.45 mm max height
SCALE 4.000
SMALL OUTLINE TRANSISTOR
C
3.0
2.6
1.75
1.45
PIN 1
INDEX AREA
1
0.1 C
B
A
5
2X 0.95
1.9
1.45
0.90
3.05
2.75
1.9
2
4
0.5
5X
0.3
0.2
3
(1.1)
C A B
0.15
TYP
0.00
0.25
GAGE PLANE
8
TYP
0
0.22
TYP
0.08
0.6
TYP
0.3
SEATING PLANE
4214839/E 09/2019
NOTES:
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing
per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. Refernce JEDEC MO-178.
4. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
exceed 0.15 mm per side.
www.ti.com
EXAMPLE BOARD LAYOUT
DBV0005A
SOT-23 - 1.45 mm max height
SMALL OUTLINE TRANSISTOR
PKG
5X (1.1)
1
5
5X (0.6)
SYMM
(1.9)
2
2X (0.95)
3
4
(R0.05) TYP
(2.6)
LAND PATTERN EXAMPLE
EXPOSED METAL SHOWN
SCALE:15X
SOLDER MASK
OPENING
METAL
SOLDER MASK
OPENING
METAL UNDER
SOLDER MASK
EXPOSED METAL
EXPOSED METAL
0.07 MIN
ARROUND
0.07 MAX
ARROUND
NON SOLDER MASK
DEFINED
(PREFERRED)
SOLDER MASK
DEFINED
SOLDER MASK DETAILS
4214839/E 09/2019
NOTES: (continued)
5. Publication IPC-7351 may have alternate designs.
6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.
www.ti.com
EXAMPLE STENCIL DESIGN
DBV0005A
SOT-23 - 1.45 mm max height
SMALL OUTLINE TRANSISTOR
PKG
5X (1.1)
1
5
5X (0.6)
SYMM
(1.9)
2
2X(0.95)
4
3
(R0.05) TYP
(2.6)
SOLDER PASTE EXAMPLE
BASED ON 0.125 mm THICK STENCIL
SCALE:15X
4214839/E 09/2019
NOTES: (continued)
7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate
design recommendations.
8. Board assembly site may have different recommendations for stencil design.
www.ti.com
IMPORTANT NOTICE AND DISCLAIMER
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you
permission to use these resources only for development of an application that uses the TI products described in the resource. Other
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third
party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims,
damages, costs, losses, and liabilities arising out of your use of these resources.
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on
ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable
warranties or warranty disclaimers for TI products.
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2019, Texas Instruments Incorporated
Was this manual useful for you? yes no
Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Related manuals

Download PDF

advertising