Texas Instruments | SN74LVC2G04-EP | Datasheet | Texas Instruments SN74LVC2G04-EP Datasheet

Texas Instruments SN74LVC2G04-EP Datasheet
SN74LVC2G04-EP
DUAL INVERTER GATE
www.ti.com
SGLS365 – AUGUST 2006
FEATURES
•
•
•
•
•
•
•
•
•
•
•
•
•
•
Controlled Baseline
– One Assembly Site
– One Test Site
– One Fabrication Site
Extended Temperature Performance of –55°C
to 125°C
Enhanced Diminishing Manufacturing
Sources (DMS) Support
Enhanced Product-Change Notification
Qualification Pedigree(1)
Available in the Texas Instruments
NanoStar™ and NanoFree™ Packages
Supports 5-V VCC Operation
Inputs Accept Voltages to 5.5 V
Max tpd of 4.1 ns at 3.3 V
Low Power Consumption, 10-µA Max ICC
±24-mA Output Drive at 3.3 V
Typical VOLP (Output Ground Bounce) <0.8 V
at VCC = 3.3 V, TA = 25°C
Typical VOHV (Output VOH Undershoot) >2 V at
VCC = 3.3 V, TA = 25°C
DBV PACKAGE
(TOP VIEW)
1A
1
6
Ioff Supports Partial Power-Down-Mode
Operation
Latch-Up Performance Exceeds 100 mA Per
JESD 78, Class II
ESD Protection Exceeds JESD 22
– 2000-V Human-Body Model (A114-A)
– 200-V Machine Model (A115-A)
– 1000-V Charged-Device Model (C101)
•
•
(1)
Component qualification in accordance with JEDEC and
industry standards to ensure reliable operation over an
extended temperature range. This includes, but is not limited
to, Highly Accelerated Stress Test (HAST) or biased 85/85,
temperature cycle, autoclave or unbiased HAST,
electromigration, bond intermetallic life, and mold compound
life. Such qualification testing should not be viewed as
justifying use of this component beyond specified
performance and environmental limits.
DCK PACKAGE
(TOP VIEW)
1A
1Y
GND
2
5
VCC
2A
3
4
2Y
1
6
DRL PACKAGE
(TOP VIEW)
1Y
GND
2
5
VCC
2A
3
4
2Y
1A
GND
2A
1
2
3
6
5
4
1Y
VCC
2Y
YEA, YEP, YZA,
OR YZP PACKAGE
(BOTTOM VIEW)
2A
3 4
2Y
GND
2 5
VCC
1A
1 6
1Y
See mechanical drawings for dimensions.
DESCRIPTION/ORDERING INFORMATION
This dual inverter is designed for 1.65-V to 5.5-V VCC operation. The SN74LVC2G04 performs the Boolean
function Y = A.
NanoStar™ and NanoFree™ package technology is a major breakthrough in IC packaging concepts, using the
die as the package.
This device is fully specified for partial-power-down applications using Ioff. The Ioff circuitry disables the outputs,
preventing damaging current backflow through the device when it is powered down.
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
NanoStar, NanoFree are trademarks of Texas Instruments.
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of the Texas
Instruments standard warranty. Production processing does not
necessarily include testing of all parameters.
Copyright © 2006, Texas Instruments Incorporated
SN74LVC2G04-EP
DUAL INVERTER GATE
www.ti.com
SGLS365 – AUGUST 2006
ORDERING INFORMATION
PACKAGE (1)
TA
–55°C to
125°C
(1)
(2)
(3)
ORDERABLE PART NUMBER
NanoStar™ – WCSP (DSBGA)
0,17-mm Small Bump – YEA
SN74LVC2G04MYEAREP (3)
NanoFree™ – WCSP (DSBGA)
0,17-mm Small Bump – YZA
(Pb-free)
SN74LVC2G04MYZAREP (3)
Reel of 3000
NanoStar™ – WCSP (DSBGA)
0,23-mm Large Bump – YEP
SN74LVC2G04MYEPREP (3)
NanoFree™ – WCSP (DSBGA)
0,23-mm Large Bump – YZP
(Pb-free)
SN74LVC2G04MYZPREP (3)
SOT (SOT-23) – DBV
Reel of 3000
SN74LVC2G04MDBVREP (3)
SOT (SC-70) – DCK
Reel of 3000
SN74LVC2G04MDCKREP
SOT (SOT-563) – DRL
Reel of 4000
SN74LVC2G04MDRLREP (3)
BUG
Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at
www.ti.com/sc/package.
DBV/DCK/DRL: The actual top-side marking has one additional character that designates the assembly/test site.
YEA/YZA,YEP/YZP: The actual top-side marking has three preceding characters to denote year, month, and sequence code, and one
following character to designate the assembly/test site. Pin 1 identifier indicates solder-bump composition (1 = SnPb, • = Pb-free).
Product Preview
FUNCTION TABLE
(EACH INVERTER)
INPUT
A
OUTPUT
Y
H
L
L
H
LOGIC DIAGRAM (POSITIVE LOGIC)
1A
2A
2
TOP-SIDE MARKING (2)
1
6
3
4
Submit Documentation Feedback
1Y
2Y
SN74LVC2G04-EP
DUAL INVERTER GATE
www.ti.com
SGLS365 – AUGUST 2006
Absolute Maximum Ratings
(1)
over operating free-air temperature range (unless otherwise noted)
MIN
MAX
VCC
Supply voltage range
–0.5
6.5
V
VI
Input voltage range (2)
–0.5
6.5
V
–0.5
6.5
V
–0.5
VCC + 0.5
state (2)
UNIT
VO
Voltage range applied to any output in the high-impedance or power-off
VO
Voltage range applied to any output in the high or low state (2) (3)
IIK
Input clamp current
VI < 0
–50
mA
IOK
Output clamp current
VO < 0
–50
mA
IO
Continuous output current
±50
mA
±100
mA
Continuous current through VCC or GND
θJA
Package thermal impedance (4)
DBV package
165
DCK package
259
DRL package
142
YEA/YZA package
143
YEP/YZP package
Tstg
(1)
(2)
(3)
(4)
Storage temperature range
V
°C/W
123
–65
150
°C
Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings
only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating
conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.
The value of VCC is provided in the recommended operating conditions table.
The package thermal impedance is calculated in accordance with JESD 51-7.
Submit Documentation Feedback
3
SN74LVC2G04-EP
DUAL INVERTER GATE
www.ti.com
SGLS365 – AUGUST 2006
Recommended Operating Conditions (1)
VCC
Supply voltage
Operating
Data retention only
VCC = 1.65 V to 1.95 V
VIH
High-level input voltage
VCC = 2.3 V to 2.7 V
VCC = 3 V to 3.6 V
VCC = 4.5 V to 5.5 V
MIN
MAX
1.65
5.5
1.5
Low-level input voltage
1.7
V
2
0.7 × VCC
0.35 × VCC
VCC = 2.3 V to 2.7 V
0.7
VCC = 3 V to 3.6 V
0.8
V
0.3 × VCC
VCC = 4.5 V to 5.5 V
VI
Input voltage
0
5.5
V
VO
Output voltage
0
VCC
V
VCC = 1.65 V
–4
VCC = 2.3 V
IOH
High-level output current
–8
–16
VCC = 3 V
–32
VCC = 1.65 V
4
VCC = 2.3 V
IOL
Low-level output current
∆t/∆v
Input transition rise or fall rate
8
16
VCC = 3 V
32
VCC = 1.8 V ± 0.15 V, 2.5 V ± 0.2 V
20
VCC = 3.3 V ± 0.3 V
10
(1)
Operating free-air temperature
ns/V
5
–55
125
All unused inputs of the device must be held at VCC or GND to ensure proper device operation. See the TI application report,
Implications of Slow or Floating CMOS Inputs, literature number SCBA004.
Submit Documentation Feedback
mA
24
VCC = 4.5 V
VCC = 5 V ± 0.5 V
TA
mA
–24
VCC = 4.5 V
4
V
0.65 × VCC
VCC = 1.65 V to 1.95 V
VIL
UNIT
°C
SN74LVC2G04-EP
DUAL INVERTER GATE
www.ti.com
SGLS365 – AUGUST 2006
Electrical Characteristics
over recommended operating free-air temperature range (unless otherwise noted)
PARAMETER
TEST CONDITIONS
IOH = –100 µA
VOH
1.65 V to 5.5 V
1.65 V
1.2
IOH = –8 mA
2.3 V
1.9
4.5 V
IOL = 100 µA
1.65 V to 5.5 V
0.1
IOL = 4 mA
1.65 V
0.45
IOL = 8 mA
2.3 V
0.3
3.8
0.4
3V
IOL = 24 mA
IOL = 32 mA
A inputs
2.3
IOH = –32 mA
IOL = 16 mA
II
V
2.4
3V
IOH = –24 mA
ICC
VI = 5.5 V or GND,
IO = 0
∆ICC
One input at VCC – 0.6 V,
Other inputs at VCC or GND
Ci
VI = VCC or GND
(1)
All typical values are at VCC = 3.3 V, TA = 25°C.
0.55
0 to 5.5 V
±5
µA
0
±10
µA
1.65 V to 5.5 V
10
µA
500
µA
VI = 5.5 V or GND
VI or VO = 5.5 V
V
0.55
4.5 V
Ioff
UNIT
VCC – 0.1
IOH = –4 mA
IOH = –16 mA
VOL
MIN TYP (1) MAX
VCC
3 V to 5.5 V
3.3 V
3.5
pF
Switching Characteristics
over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)
PARAMETER
tpd
FROM
(INPUT)
TO
(OUTPUT)
A
Y
VCC = 1.8 V
± 0.15 V
VCC = 2.5 V
± 0.2 V
VCC = 3.3 V
± 0.3 V
VCC = 5 V
± 0.5 V
MIN
MAX
MIN
MAX
MIN
MAX
MIN
MAX
3.1
8
1.5
6.0
1.2
5.0
1
4.0
UNIT
ns
Operating Characteristics
TA = 25°C
Cpd
PARAMETER
TEST CONDITIONS
Power dissipation capacitance
f = 10 MHz
VCC = 1.8 V
VCC = 2.5 V
VCC = 3.3 V
VCC = 5 V
TYP
TYP
TYP
TYP
14
14
14
16
Submit Documentation Feedback
UNIT
pF
5
SN74LVC2G04-EP
DUAL INVERTER GATE
www.ti.com
SGLS365 – AUGUST 2006
PARAMETER MEASUREMENT INFORMATION
VLOAD
S1
RL
From Output
Under Test
CL
(see Note A)
Open
GND
RL
TEST
S1
tPLH/tPHL
tPLZ/tPZL
tPHZ/tPZH
Open
VLOAD
GND
LOAD CIRCUIT
INPUTS
VCC
1.8 V ± 0.15 V
2.5 V ± 0.2 V
3.3 V ± 0.3 V
5 V ± 0.5 V
VI
tr/tf
VCC
VCC
3V
VCC
≤2 ns
≤2 ns
≤2.5 ns
≤2.5 ns
VM
VLOAD
CL
RL
V∆
VCC/2
VCC/2
1.5 V
VCC/2
2 × VCC
2 × VCC
6V
2 × VCC
30 pF
30 pF
50 pF
50 pF
1 kΩ
500 Ω
500 Ω
500 Ω
0.15 V
0.15 V
0.3 V
0.3 V
VI
Timing Input
VM
0V
tw
tsu
VI
Input
VM
VM
th
VI
Data Input
VM
VM
0V
0V
VOLTAGE WAVEFORMS
PULSE DURATION
VOLTAGE WAVEFORMS
SETUP AND HOLD TIMES
VI
VM
Input
VM
0V
tPLH
VM
VM
VOL
tPHL
VM
VM
0V
Output
Waveform 1
S1 at VLOAD
(see Note B)
tPLH
tPLZ
VLOAD/2
VM
tPZH
VOH
Output
VM
tPZL
tPHL
VOH
Output
VI
Output
Control
VM
VOL
Output
Waveform 2
S1 at GND
(see Note B)
VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES
INVERTING AND NONINVERTING OUTPUTS
VOL + V∆
VOL
tPHZ
VM
VOH − V∆
VOH
≈0 V
VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES
LOW- AND HIGH-LEVEL ENABLING
NOTES: A. CL includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control.
Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, ZO = 50 Ω.
D. The outputs are measured one at a time, with one transition per measurement.
E. tPLZ and tPHZ are the same as tdis.
F. tPZL and tPZH are the same as ten.
G. tPLH and tPHL are the same as tpd.
H. All parameters and waveforms are not applicable to all devices.
Figure 1. Load Circuit and Voltage Waveforms
6
Submit Documentation Feedback
PACKAGE OPTION ADDENDUM
www.ti.com
31-May-2014
PACKAGING INFORMATION
Orderable Device
Status
(1)
Package Type Package Pins Package
Drawing
Qty
Eco Plan
Lead/Ball Finish
MSL Peak Temp
(2)
(6)
(3)
Op Temp (°C)
Device Marking
(4/5)
SN74LVC2G04MDCKREP
ACTIVE
SC70
DCK
6
3000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-55 to 125
BUG
V62/06632-01XE
ACTIVE
SC70
DCK
6
3000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 85
BUG
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability
information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight
in homogeneous material)
(3)
MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
(4)
There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
(5)
Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation
of the previous line and the two combined represent the entire Device Marking for that device.
(6)
Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish
value exceeds the maximum column width.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.
Addendum-Page 1
Samples
PACKAGE OPTION ADDENDUM
www.ti.com
31-May-2014
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
OTHER QUALIFIED VERSIONS OF SN74LVC2G04-EP :
• Catalog: SN74LVC2G04
NOTE: Qualified Version Definitions:
• Catalog - TI's standard catalog product
Addendum-Page 2
PACKAGE MATERIALS INFORMATION
www.ti.com
3-Aug-2017
TAPE AND REEL INFORMATION
*All dimensions are nominal
Device
SN74LVC2G04MDCKREP
Package Package Pins
Type Drawing
SC70
DCK
6
SPQ
Reel
Reel
A0
Diameter Width (mm)
(mm) W1 (mm)
3000
180.0
8.4
Pack Materials-Page 1
2.4
B0
(mm)
K0
(mm)
P1
(mm)
2.5
1.2
4.0
W
Pin1
(mm) Quadrant
8.0
Q3
PACKAGE MATERIALS INFORMATION
www.ti.com
3-Aug-2017
*All dimensions are nominal
Device
Package Type
Package Drawing
Pins
SPQ
Length (mm)
Width (mm)
Height (mm)
SN74LVC2G04MDCKREP
SC70
DCK
6
3000
202.0
201.0
28.0
Pack Materials-Page 2
IMPORTANT NOTICE
Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its
semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers
should obtain the latest relevant information before placing orders and should verify that such information is current and complete.
TI’s published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated
circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and
services.
Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is
accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced
documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements
different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the
associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.
Buyers and others who are developing systems that incorporate TI products (collectively, “Designers”) understand and agree that Designers
remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have
full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products
used in or for Designers’ applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with
respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous
consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and
take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will
thoroughly test such applications and the functionality of such TI products as used in such applications.
TI’s provision of technical, application or other design advice, quality characterization, reliability data or other services or information,
including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, “TI Resources”) are intended to
assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any
way, Designer (individually or, if Designer is acting on behalf of a company, Designer’s company) agrees to use any particular TI Resource
solely for this purpose and subject to the terms of this Notice.
TI’s provision of TI Resources does not expand or otherwise alter TI’s applicable published warranties or warranty disclaimers for TI
products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections,
enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically
described in the published documentation for a particular TI Resource.
Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that
include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE
TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY
RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or
endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
TI RESOURCES ARE PROVIDED “AS IS” AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR
REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO
ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL
PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM,
INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF
PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL,
DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN
CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949
and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.
Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such
products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards
and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must
ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in
life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use.
Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life
support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all
medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.
TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product).
Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications
and that proper product selection is at Designers’ own risk. Designers are solely responsible for compliance with all legal and regulatory
requirements in connection with such selection.
Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer’s noncompliance with the terms and provisions of this Notice.
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2017, Texas Instruments Incorporated
Was this manual useful for you? yes no
Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Download PDF

advertising