Texas Instruments | SN74ACT08-EP | Datasheet | Texas Instruments SN74ACT08-EP Datasheet

Texas Instruments SN74ACT08-EP Datasheet
SCAS779 − SEPTEMBER 2004
D Controlled Baseline
D
D
D
D
D Inputs Accept Voltages to 5.5 V
D Max tpd of 10 ns at 5 V
D Inputs Are TTL-Voltage Compatible
− One Assembly/Test Site, One Fabrication
Site
Enhanced Diminishing Manufacturing
Sources (DMS) Support
Enhanced Product-Change Notification
Qualification Pedigree†
4.5-V to 5.5-V VCC Operation
D PACKAGE
(TOP VIEW)
1A
1B
1Y
2A
2B
2Y
GND
† Component qualification in accordance with JEDEC and industry
standards to ensure reliable operation over an extended
temperature range. This includes, but is not limited to, Highly
Accelerated Stress Test (HAST) or biased 85/85, temperature
cycle, autoclave or unbiased HAST, electromigration, bond
intermetallic life, and mold compound life. Such qualification
testing should not be viewed as justifying use of this component
beyond specified performance and environmental limits.
1
14
2
13
3
12
4
11
5
10
6
9
7
8
VCC
4B
4A
4Y
3B
3A
3Y
description/ordering information
The SN74ACT08 is a quadruple 2-input positive-AND gate. This device performs the Boolean functions
Y = A B or Y = A + B in positive logic.
ORDERING INFORMATION
ORDERABLE
PART NUMBER
PACKAGE‡
TA
TOP-SIDE
MARKING
−40°C to 85°C
SOIC − D
Tape and reel SN74ACT08IDREP
SACT08IEP
‡ Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are
available at www.ti.com/sc/package.
FUNCTION TABLE
(each gate)
INPUTS
A
B
OUTPUT
Y
H
H
H
L
X
L
X
L
L
logic diagram, each gate (positive logic)
A
Y
B
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
Copyright  2004, Texas Instruments Incorporated
!"# $"%&! '#(
'"! ! $#!! $# )# # #* "#
'' +,( '"! $!#- '# #!#&, !&"'#
#- && $##(
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
1
SCAS779 − SEPTEMBER 2004
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†
Supply voltage range, VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to 7 V
Input voltage range, VI (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to VCC + 0.5 V
Output voltage range, VO (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to VCC + 0.5 V
Input clamp current, IIK (VI < 0 or VI > VCC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±20 mA
Output clamp current, IOK (VO < 0 or VO > VCC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±20 mA
Continuous output current, IO (VO = 0 to VCC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±50 mA
Continuous current through VCC or GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±200 mA
Package thermal impedance, θJA (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86°C/W
Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65°C to 150°C
† Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.
2. The package thermal impedance is calculated in accordance with JESD 51-7.
recommended operating conditions (see Note 3)
MIN
MAX
4.5
5.5
VCC
VIH
Supply voltage
VIL
VI
Low-level input voltage
Input voltage
0
VO
IOH
Output voltage
0
IOL
∆t/∆v
High-level input voltage
2
UNIT
V
V
0.8
V
VCC
VCC
V
High-level output current
−24
mA
Low-level output current
24
mA
8
ns/V
Input transition rise or fall rate
V
TA
Operating free-air temperature
−40
85
°C
NOTE 3: All unused inputs of the device must be held at VCC or GND to ensure proper device operation. Refer to the TI application report,
Implications of Slow or Floating CMOS Inputs, literature number SCBA004.
2
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SCAS779 − SEPTEMBER 2004
electrical characteristics over recommended operating free-air temperature range (unless
otherwise noted)
PARAMETER
TEST CONDITIONS
MIN
4.5 V
4.4
4.49
5.5 V
5.4
5.49
4.5 V
3.86
3.76
IOH = −24 mA
5.5 V
4.86
4.76
IOH = −75 mA†
5.5 V
IOH = −50 µA
A
VOH
IOL = 50 µA
A
VOL
TA = 25°C
TYP
MAX
VCC
IOL = 24 mA
II
IOL = 75 mA†
VI = VCC or GND
ICC
DICC‡
VI = VCC or GND,
One input at 3.4 V,
MIN
MAX
4.4
5.4
V
3.85
4.5 V
0.001
5.5 V
0.001
0.1
0.1
0.1
0.1
4.5 V
0.36
0.44
5.5 V
0.36
0.44
5.5 V
V
1.65
"0.1
5.5 V
IO = 0
Other inputs at GND or VCC
UNIT
5.5 V
"1
2
5.5 V
0.6
µA
20
µA
1.5
mA
Ci
VI = VCC or GND
5V
4.5
† Not more than one output should be tested at a time, and the duration of the test should not exceed 2 ms.
‡ This is the increase in supply current for each input that is at one of the specified TTL voltage levels, rather than 0 V or VCC.
pF
switching characteristics over recommended operating free-air temperature range,
VCC = 5 V " 0.5 V (unless otherwise noted) (see Figure 1)
PARAMETER
FROM
(INPUT)
TO
(OUTPUT)
tPLH
tPHL
A or B
Y
MIN
TA = 25°C
TYP
MAX
MIN
MAX
1
6.5
9
1
10
1
6.5
9
1
10
UNIT
ns
operating characteristics, VCC = 5 V, TA = 25°C
PARAMETER
Cpd
TEST CONDITIONS
Power dissipation capacitance
CL = 50 pF,
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
f = 1 MHz
TYP
UNIT
20
pF
3
SCAS779 − SEPTEMBER 2004
PARAMETER MEASUREMENT INFORMATION
TEST
S1
tPLH/tPHL
Open
From Output
Under Test
CL = 50 pF
(see Note A)
S1
Open
1.5 V
1.5 V
0V
tPHL
tPLH
2 × VCC
500 Ω
3V
Input
(see Note B)
In-Phase
Output
50% VCC
tPLH
tPHL
500 Ω
Out-of-Phase
Output
LOAD CIRCUIT
VOH
50% VCC
VOL
50% VCC
VOH
50% VCC
VOL
VOLTAGE WAVEFORMS
NOTES: A. CL includes probe and jig capacitance.
B. All input pulses are supplied by generators having the following characteristics: PRR ≤ 1 MHz, ZO = 50 Ω, tr v 2.5 ns, tf v 2.5 ns.
C. The outputs are measured one at a time, with one input transition per measurement.
Figure 1. Load Circuit and Voltage Waveforms
4
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
PACKAGE OPTION ADDENDUM
www.ti.com
26-Sep-2015
PACKAGING INFORMATION
Orderable Device
Status
(1)
Package Type Package Pins Package
Drawing
Qty
Eco Plan
Lead/Ball Finish
MSL Peak Temp
(2)
(6)
(3)
Op Temp (°C)
Device Marking
(4/5)
SN74ACT08IDREP
ACTIVE
SOIC
D
14
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 85
SACT08IEP
V62/04759-01XE
ACTIVE
SOIC
D
14
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 85
SACT08IEP
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability
information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight
in homogeneous material)
(3)
MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
(4)
There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
(5)
Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation
of the previous line and the two combined represent the entire Device Marking for that device.
(6)
Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish
value exceeds the maximum column width.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.
Addendum-Page 1
Samples
PACKAGE OPTION ADDENDUM
www.ti.com
26-Sep-2015
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
OTHER QUALIFIED VERSIONS OF SN74ACT08-EP :
• Catalog: SN74ACT08
• Military: SN54ACT08
NOTE: Qualified Version Definitions:
• Catalog - TI's standard catalog product
• Military - QML certified for Military and Defense Applications
Addendum-Page 2
PACKAGE MATERIALS INFORMATION
www.ti.com
6-Nov-2008
TAPE AND REEL INFORMATION
*All dimensions are nominal
Device
SN74ACT08IDREP
Package Package Pins
Type Drawing
SOIC
D
14
SPQ
Reel
Reel
Diameter Width
(mm) W1 (mm)
2500
330.0
16.4
Pack Materials-Page 1
A0 (mm)
B0 (mm)
K0 (mm)
P1
(mm)
6.5
9.0
2.1
8.0
W
Pin1
(mm) Quadrant
16.0
Q1
PACKAGE MATERIALS INFORMATION
www.ti.com
6-Nov-2008
*All dimensions are nominal
Device
Package Type
Package Drawing
Pins
SPQ
Length (mm)
Width (mm)
Height (mm)
SN74ACT08IDREP
SOIC
D
14
2500
333.2
345.9
28.6
Pack Materials-Page 2
IMPORTANT NOTICE AND DISCLAIMER
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you
permission to use these resources only for development of an application that uses the TI products described in the resource. Other
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third
party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims,
damages, costs, losses, and liabilities arising out of your use of these resources.
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on
ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable
warranties or warranty disclaimers for TI products.
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2019, Texas Instruments Incorporated
Was this manual useful for you? yes no
Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Download PDF

advertising