Texas Instruments | SN74ALVCH16501 (Rev. J) | Datasheet | Texas Instruments SN74ALVCH16501 (Rev. J) Datasheet

Texas Instruments SN74ALVCH16501 (Rev. J) Datasheet
SN74ALVCH16501
18-BIT UNIVERSAL BUS TRANSCEIVER
WITH 3-STATE OUTPUTS
www.ti.com
SCES024J – JULY 1995 – REVISED OCTOBER 2004
FEATURES
•
•
•
•
•
•
•
•
DGG OR DL PACKAGE
(TOP VIEW)
Member of the Texas Instruments Widebus™
Family
UBT™ Transceiver Combines D-Type Latches
and D-Type Flip-Flops for Operation in
Transparent, Latched, or Clocked Modes
Operates From 1.65 V to 3.6 V
Max tpd of 3.9 ns at 3.3 V
±24-mA Output Drive at 3.3 V
Bus Hold on Data Inputs Eliminates the Need
for External Pullup/Pulldown Resistors
Latch-Up Performance Exceeds 250 mA Per
JESD 17
ESD Protection Exceeds JESD 22
- 2000-V Human-Body Model (A114-A)
- 200-V Machine Model (A115-A)
OEAB
LEAB
A1
GND
A2
A3
VCC
A4
A5
A6
GND
A7
A8
A9
A10
A11
A12
GND
A13
A14
A15
VCC
A16
A17
GND
A18
OEBA
LEBA
DESCRIPTION/ORDERING INFORMATION
This 18-bit universal bus transceiver is designed for
1.65-V to 3.6-V VCC operation.
Data flow in each direction is controlled by
output-enable (OEAB and OEBA), latch-enable
(LEAB and LEBA), and clock (CLKAB and CLKBA)
inputs. For A-to-B data flow, the device operates in
the transparent mode when LEAB is high. When
LEAB is low, the A data is latched if CLKAB is held at
a high or low logic level. If LEAB is low, the A data is
stored in the latch/flip-flop on the low-to-high
transition of CLKAB. When OEAB is high, the outputs
are active. When OEAB is low, the outputs are in the
high-impedance state.
1
56
2
55
3
54
4
53
5
52
6
51
7
50
8
49
9
48
10
47
11
46
12
45
13
44
14
43
15
42
16
41
17
40
18
39
19
38
20
37
21
36
22
35
23
34
24
33
25
32
26
31
27
30
28
29
GND
CLKAB
B1
GND
B2
B3
VCC
B4
B5
B6
GND
B7
B8
B9
B10
B11
B12
GND
B13
B14
B15
VCC
B16
B17
GND
B18
CLKBA
GND
Data flow for B to A is similar to that of A to B, but uses OEBA, LEBA, and CLKBA. The output enables are
complementary (OEAB is active high, and OEBA is active low).
ORDERING INFORMATION
PACKAGE (1)
TA
SSOP - DL
-40°C to 85°C
TSSOP - DGG
VFBGA - GQL
VFBGA - ZQL (Pb-free)
(1)
ORDERABLE PART NUMBER
Tube
SN74ALVCH16501DL
Tape and reel
SN74ALVCH16501DLR
Tape and reel
SN74ALVCH16501DGGR
Tape and reel
SN74ALVCH16501KR
74ALVCH16501ZQLR
TOP-SIDE MARKING
ALVCH16501
ALVCH16501
VH501
Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at
www.ti.com/sc/package.
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
Widebus, UBT are trademarks of Texas Instruments.
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of the Texas
Instruments standard warranty. Production processing does not
necessarily include testing of all parameters.
Copyright © 1995–2004, Texas Instruments Incorporated
SN74ALVCH16501
18-BIT UNIVERSAL BUS TRANSCEIVER
WITH 3-STATE OUTPUTS
www.ti.com
SCES024J – JULY 1995 – REVISED OCTOBER 2004
DESCRIPTION/ORDERING INFORMATION (CONTINUED)
To ensure the high-impedance state during power up or power down, OEBA should be tied to VCC through a
pullup resistor, and OEAB should be tied to GND through a pulldown resistor; the minimum value of the resistor
is determined by the current-sinking capability of the driver.
Active bus-hold circuitry holds unused or undriven inputs at a valid logic state. Use of pullup or pulldown resistors
with the bus-hold circuitry is not recommended.
GQL OR ZQL PACKAGE
(TOP VIEW)
1
2
3
4
5
6
A
B
C
D
E
F
G
H
J
K
TERMINAL ASSIGNMENTS
2
1
2
3
4
5
6
A
A1
LEAB
OEAB
GND
CLKAB
B1
B
A3
A2
GND
GND
B2
B3
C
A5
A4
VCC
VCC
B4
B5
D
A7
A6
GND
GND
B6
B7
E
A9
A8
B8
B9
F
A10
A11
B11
B10
G
A12
A13
GND
GND
B13
B12
H
A14
A15
VCC
VCC
B15
B14
J
A16
A17
GND
GND
B17
B16
K
A18
OEBA
LEBA
GND
CLKBA
B18
SN74ALVCH16501
18-BIT UNIVERSAL BUS TRANSCEIVER
WITH 3-STATE OUTPUTS
www.ti.com
SCES024J – JULY 1995 – REVISED OCTOBER 2004
FUNCTION TABLE (1)
INPUTS
(1)
(2)
(3)
OEAB
LEAB
CLKAB
A
OUTPUT
B
L
X
X
X
Z
H
H
X
L
L
H
H
X
H
H
H
L
↑
L
L
H
L
↑
H
H
H
L
H
X
B0 (2)
H
L
L
X
B0 (3)
A-to-B data flow is shown; B-to-A flow is similar, but uses OEBA,
LEBA, and CLKBA.
Output level before the indicated steady-state input conditions were
established, provided that CLKAB was high before LEAB went low
Output level before the indicated steady-state input conditions were
established
space
LOGIC DIAGRAM (POSITIVE LOGIC)
OEAB
CLKAB
LEAB
LEBA
CLKBA
OEBA
A1
1
55
2
28
30
27
3
1D
C1
CLK
54
B1
1D
C1
CLK
To 17 Other Channels
Pin numbers shown are for the DGG and DL packages.
3
SN74ALVCH16501
18-BIT UNIVERSAL BUS TRANSCEIVER
WITH 3-STATE OUTPUTS
www.ti.com
SCES024J – JULY 1995 – REVISED OCTOBER 2004
ABSOLUTE MAXIMUM RATINGS (1)
over operating free-air temperature range (unless otherwise noted)
VCC
Supply voltage range
MIN
MAX
-0.5
4.6
Except I/O ports (2)
-0.5
4.6
I/O ports (2) (3)
-0.5
VCC + 0.5
-0.5
VCC + 0.5
UNIT
V
VI
Input voltage range
VO
Output voltage range (2) (3)
IIK
Input clamp current
VI < 0
-50
mA
IOK
Output clamp current
VO < 0
-50
mA
IO
Continuous output current
±50
mA
±100
mA
Continuous current through each VCC or GND
θJA
Package thermal impedance (4)
Tstg
Storage temperature range
DGG package
64
DL package
56
GQL/ZQL package
(1)
(2)
(3)
(4)
V
V
°C/W
42
-65
150
°C
Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings
only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating
conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.
This value is limited to 4.6 V maximum.
The package thermal impedance is calculated in accordance with JESD 51-7.
RECOMMENDED OPERATING CONDITIONS (1)
VCC
Supply voltage
VCC = 1.65 V to 1.95 V
VIH
High-level input voltage
MIN
MAX
1.65
3.6
UNIT
V
0.65 × VCC
VCC = 2.3 V to 2.7 V
1.7
VCC = 2.7 V to 3.6 V
2
V
0.35 × VCC
VCC = 1.65 V to 1.95 V
VIL
Low-level input voltage
VCC = 2.3 V to 2.7 V
0.7
VI
Input voltage
0
VCC
V
VO
Output voltage
0
VCC
V
VCC = 2.7 V to 3.6 V
IOH
High-level output current
IOL
Low-level output current
∆t/∆v
Input transition rise or fall rate
TA
Operating free-air temperature
(1)
4
V
0.8
VCC = 1.65 V
-4
VCC = 2.3 V
-12
VCC = 2.7 V
-12
VCC = 3 V
-24
VCC = 1.65 V
4
VCC = 2.3 V
12
VCC = 2.7 V
12
VCC = 3 V
24
-40
mA
mA
10
ns/V
85
°C
All unused control inputs of the device must be held at VCC or GND to ensure proper device operation. Refer to the TI application report,
Implications of Slow or Floating CMOS Inputs, literature number SCBA004.
SN74ALVCH16501
18-BIT UNIVERSAL BUS TRANSCEIVER
WITH 3-STATE OUTPUTS
www.ti.com
SCES024J – JULY 1995 – REVISED OCTOBER 2004
ELECTRICAL CHARACTERISTICS
over recommended operating free-air temperature range (unless otherwise noted)
PARAMETER
TEST CONDITIONS
IOH = -100 µA
1.65 V to 3.6 V
1.65 V
IOH = -6 mA
2.3 V
2
2.3 V
1.7
2.7 V
2.2
3V
2.4
IOH = -24 mA
3V
2
IOL = 100 µA
IOH = -12 mA
II(hold)
V
1.65 V to 3.6 V
0.2
1.65 V
0.45
IOL = 6 mA
2.3 V
0.4
2.3 V
0.7
IOL = 24 mA
II
1.2
IOL = 4 mA
IOL = 12 mA
2.7 V
0.4
3V
0.55
3.6 V
VI = 0.58 V
1.65 V
25
VI = 1.07 V
1.65 V
-25
VI = 0.7 V
2.3 V
45
VI = 1.7 V
2.3 V
-45
VI = 0.8 V
3V
75
3V
-75
VI = 0 V to 3.6
VO = VCC or GND
ICC
VI = VCC or GND,
∆ICC
One input at VCC - 0.6 V, Other inputs at VCC or GND
µA
µA
3.6 V
±500
3.6 V
±10
µA
3.6 V
40
µA
3 V to 3.6 V
750
µA
V (2)
IOZ (3)
V
±5
VI = VCC or GND
VI = 2 V
UNIT
VCC - 0.2
IOH = -4 mA
VOH
VOL
MIN TYP (1) MAX
VCC
IO = 0
Ci
Control inputs VI = VCC or GND
3.3 V
4
pF
Cio
A or B ports
3.3 V
8
pF
(1)
(2)
(3)
VO = VCC or GND
All typical values are at VCC = 3.3 V, TA = 25°C.
This is the bus-hold maximum dynamic current. It is the minimum overdrive current required to switch the input from one state to
another.
For I/O ports, the parameter IOZ includes the input leakage current.
TIMING REQUIREMENTS
over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)
VCC = 2.5 V
± 0.2 V
MIN
fclock
Clock frequency
tw
Pulse duration
tsu
Setup time
Hold time
MIN
150
MAX
VCC = 3.3 V
± 0.3 V
MIN
150
3.3
3.3
3.3
CLK high or low
3.3
3.3
3.3
Data before LE↓
2.2
2.1
1.7
CLK high
1.9
1.6
1.5
CLK low
1.3
1.1
1
0.6
0.6
0.7
1.4
1.7
1.4
Data after CLK↑
Data after LE↓
CLK high or low
UNIT
MAX
150
LE high
Data before CLK↑
th
MAX
VCC = 2.7 V
MHz
ns
ns
ns
5
SN74ALVCH16501
18-BIT UNIVERSAL BUS TRANSCEIVER
WITH 3-STATE OUTPUTS
www.ti.com
SCES024J – JULY 1995 – REVISED OCTOBER 2004
SWITCHING CHARACTERISTICS
over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)
PARAMETER
FROM
(INPUT)
TO
(OUTPUT)
A or B
B or A
fmax
tpd
VCC = 2.5 V
± 0.2 V
MIN
MAX
150
LE
A or B
CLK
VCC = 3.3 V
± 0.3 V
VCC = 2.7 V
MIN
MAX
150
MIN
UNIT
MAX
150
MHz
1
4.8
4.5
1
3.9
1.1
5.7
5.3
1.3
4.6
1.2
6.1
5.6
1.4
4.9
ns
ten
OEAB
B
1
5.8
5.3
1
4.6
ns
tdis
OEAB
B
1.5
6.2
5.7
1.4
5
ns
ten
OEBA
A
1.3
6.3
6
1.1
5
ns
tdis
OEBA
A
1.3
5.3
4.6
1.3
4.2
ns
OPERATING CHARACTERISTICS
TA = 25°C
PARAMETER
Cpd
6
Power dissipation capacitance
TEST CONDITIONS
Outputs enabled
Outputs disabled
CL = 50 pF, f = 10 MHz
VCC = 2.5 V
VCC = 3.3 V
TYP
TYP
44
54
6
6
UNIT
pF
SN74ALVCH16501
18-BIT UNIVERSAL BUS TRANSCEIVER
WITH 3-STATE OUTPUTS
www.ti.com
SCES024J – JULY 1995 – REVISED OCTOBER 2004
PARAMETER MEASUREMENT INFORMATION
VLOAD
S1
RL
From Output
Under Test
Open
GND
CL
(see Note A)
RL
TEST
S1
tpd
tPLZ/tPZL
tPHZ/tPZH
Open
VLOAD
GND
LOAD CIRCUIT
INPUT
VCC
1.8 V
2.5 V ± 0.2 V
2.7 V
3.3 V ± 0.3 V
VI
tr/tf
VCC
VCC
2.7 V
2.7 V
≤2 ns
≤2 ns
≤2.5 ns
≤2.5 ns
VM
VLOAD
CL
RL
V∆
VCC/2
VCC/2
1.5 V
1.5 V
2 × VCC
2 × VCC
6V
6V
30 pF
30 pF
50 pF
50 pF
1 kΩ
500 Ω
500 Ω
500 Ω
0.15 V
0.15 V
0.3 V
0.3 V
tw
VI
Timing
Input
VM
VM
VM
0V
VOLTAGE WAVEFORMS
SETUP AND HOLD TIMES
VM
VM
0V
tPLH
Output
Control
(low-level
enabling)
tPLZ
VLOAD/2
VM
tPZH
VOH
VM
VOL
VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES
VM
0V
Output
Waveform 1
S1 at VLOAD
(see Note B)
tPHL
VM
VI
VM
tPZL
VI
Input
VOLTAGE WAVEFORMS
PULSE DURATION
th
VI
Data
Input
VM
0V
0V
tsu
Output
VI
VM
Input
Output
Waveform 2
S1 at GND
(see Note B)
VOL + V∆
VOL
tPHZ
VOH
VM
VOH − V∆
0V
VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES
NOTES: A. CL includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control.
Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, ZO = 50 Ω.
D. The outputs are measured one at a time, with one transition per measurement.
E. tPLZ and tPHZ are the same as tdis.
F. tPZL and tPZH are the same as ten.
G. tPLH and tPHL are the same as tpd.
H. All parameters and waveforms are not applicable to all devices.
Figure 1. Load Circuit and Voltage Waveforms
7
PACKAGE OPTION ADDENDUM
www.ti.com
27-Dec-2019
PACKAGING INFORMATION
Orderable Device
Status
(1)
Package Type Package Pins Package
Drawing
Qty
Eco Plan
Lead/Ball Finish
MSL Peak Temp
(2)
(6)
(3)
Op Temp (°C)
Device Marking
(4/5)
74ALVCH16501DGGRG4
ACTIVE
TSSOP
DGG
56
2000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 85
ALVCH16501
74ALVCH16501ZQLR
NRND
BGA
MICROSTAR
JUNIOR
ZQL
56
1000
Green (RoHS
& no Sb/Br)
SNAGCU
Level-1-260C-UNLIM
-40 to 85
VH501
SN74ALVCH16501DGGR
ACTIVE
TSSOP
DGG
56
2000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 85
ALVCH16501
SN74ALVCH16501DL
ACTIVE
SSOP
DL
56
20
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 85
ALVCH16501
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may
reference these types of products as "Pb-Free".
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based
flame retardants must also meet the <=1000ppm threshold requirement.
(3)
MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
(4)
There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
(5)
Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation
of the previous line and the two combined represent the entire Device Marking for that device.
(6)
Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish
value exceeds the maximum column width.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and
Addendum-Page 1
Samples
PACKAGE OPTION ADDENDUM
www.ti.com
27-Dec-2019
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
Addendum-Page 2
PACKAGE MATERIALS INFORMATION
www.ti.com
12-Feb-2019
TAPE AND REEL INFORMATION
*All dimensions are nominal
Device
74ALVCH16501ZQLR
Package Package Pins
Type Drawing
SPQ
Reel
Reel
A0
Diameter Width (mm)
(mm) W1 (mm)
B0
(mm)
K0
(mm)
P1
(mm)
W
Pin1
(mm) Quadrant
BGA MI
CROSTA
R JUNI
OR
ZQL
56
1000
330.0
16.4
4.8
7.3
1.5
8.0
16.0
Q1
SN74ALVCH16501DGGR TSSOP
DGG
56
2000
330.0
24.4
8.6
15.6
1.8
12.0
24.0
Q1
Pack Materials-Page 1
PACKAGE MATERIALS INFORMATION
www.ti.com
12-Feb-2019
*All dimensions are nominal
Device
Package Type
Package Drawing
Pins
SPQ
Length (mm)
Width (mm)
Height (mm)
74ALVCH16501ZQLR
BGA MICROSTAR
JUNIOR
ZQL
56
1000
350.0
350.0
43.0
SN74ALVCH16501DGGR
TSSOP
DGG
56
2000
367.0
367.0
45.0
Pack Materials-Page 2
PACKAGE OUTLINE
DGG0056A
TSSOP - 1.2 mm max height
SCALE 1.200
SMALL OUTLINE PACKAGE
C
8.3
TYP
7.9
SEATING PLANE
PIN 1 ID
AREA
A
0.1 C
54X 0.5
56
1
14.1
13.9
NOTE 3
2X
13.5
28
B
6.2
6.0
29
56X
0.27
0.17
0.08
1.2 MAX
C A
B
(0.15) TYP
SEE DETAIL A
0.25
GAGE PLANE
0 -8
0.15
0.05
0.75
0.50
DETAIL A
TYPICAL
4222167/A 07/2015
NOTES:
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing
per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
exceed 0.15 mm per side.
4. Reference JEDEC registration MO-153.
www.ti.com
EXAMPLE BOARD LAYOUT
DGG0056A
TSSOP - 1.2 mm max height
SMALL OUTLINE PACKAGE
56X (1.5)
SYMM
1
56
56X (0.3)
54X (0.5)
(R0.05)
TYP
SYMM
28
29
(7.5)
LAND PATTERN EXAMPLE
SCALE:6X
SOLDER MASK
OPENING
METAL
SOLDER MASK
OPENING
METAL UNDER
SOLDER MASK
0.05 MAX
ALL AROUND
0.05 MIN
ALL AROUND
SOLDER MASK
DEFINED
NON SOLDER MASK
DEFINED
SOLDER MASK DETAILS
4222167/A 07/2015
NOTES: (continued)
5. Publication IPC-7351 may have alternate designs.
6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.
www.ti.com
EXAMPLE STENCIL DESIGN
DGG0056A
TSSOP - 1.2 mm max height
SMALL OUTLINE PACKAGE
56X (1.5)
SYMM
1
56
56X (0.3)
54X (0.5)
(R0.05) TYP
SYMM
29
28
(7.5)
SOLDER PASTE EXAMPLE
BASED ON 0.125 mm THICK STENCIL
SCALE:6X
4222167/A 07/2015
NOTES: (continued)
7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate
design recommendations.
8. Board assembly site may have different recommendations for stencil design.
www.ti.com
PACKAGE OUTLINE
ZQL0056A
JRBGA - 1 mm max height
SCALE 2.100
PLASTIC BALL GRID ARRAY
4.6
4.4
B
A
BALL A1 CORNER
7.1
6.9
1 MAX
C
SEATING PLANE
0.35
TYP
0.15
BALL TYP
0.1 C
3.25 TYP
(0.625) TYP
SYMM
K
(0.575) TYP
J
H
G
5.85
TYP
SYMM
F
E
D
C
56X
NOTE 3
B
A
0.65 TYP
BALL A1 CORNER
1
2
3
4
5
0.45
0.35
0.15
0.08
C B A
C
6
0.65 TYP
4219711/B 01/2017
NOTES:
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing
per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. No metal in this area, indicates orientation.
www.ti.com
EXAMPLE BOARD LAYOUT
ZQL0056A
JRBGA - 1 mm max height
PLASTIC BALL GRID ARRAY
(0.65) TYP
56X ( 0.33)
2
1
3
4
5
6
A
(0.65) TYP
B
C
D
E
SYMM
F
G
H
J
K
SYMM
LAND PATTERN EXAMPLE
EXPOSED METAL SHOWN
SCALE:15X
SOLDER MASK
OPENING
0.05 MAX
METAL UNDER
SOLDER MASK
0.05 MIN
EXPOSED METAL
( 0.33)
METAL
( 0.33)
SOLDER MASK
OPENING
EXPOSED METAL
SOLDER MASK
DEFINED
NON-SOLDER MASK
DEFINED
(PREFERRED)
SOLDER MASK DETAILS
NOT TO SCALE
4219711/B 01/2017
NOTES: (continued)
4. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints.
For information, see Texas Instruments literature number SPRAA99 (www.ti.com/lit/spraa99).
www.ti.com
EXAMPLE STENCIL DESIGN
ZQL0056A
JRBGA - 1 mm max height
PLASTIC BALL GRID ARRAY
56X ( 0.33)
(0.65) TYP
1
2
3
4
5
6
A
(0.65) TYP
B
C
D
E
SYMM
F
G
H
J
K
SYMM
SOLDER PASTE EXAMPLE
BASED ON 0.125 mm THICK STENCIL
SCALE:15X
4219711/B 01/2017
NOTES: (continued)
5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.
www.ti.com
IMPORTANT NOTICE AND DISCLAIMER
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you
permission to use these resources only for development of an application that uses the TI products described in the resource. Other
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third
party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims,
damages, costs, losses, and liabilities arising out of your use of these resources.
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on
ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable
warranties or warranty disclaimers for TI products.
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2019, Texas Instruments Incorporated
Was this manual useful for you? yes no
Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Download PDF

advertising