Texas Instruments | SN74ALVCH16952 (Rev. E) | Datasheet | Texas Instruments SN74ALVCH16952 (Rev. E) Datasheet

Texas Instruments SN74ALVCH16952 (Rev. E) Datasheet
www.ti.com
FEATURES
•
•
•
•
•
•
Member of the Texas Instruments Widebus™
Family
EPIC™ (Enhanced-Performance Implanted
CMOS) Submicron Process
ESD Protection Exceeds 2000 V Per
MIL-STD-883, Method 3015; Exceeds 200 V
Using Machine Model (C = 200 pF, R = 0)
Latch-Up Performance Exceeds 500 mA Per
JESD 17
Bus Hold on Data Inputs Eliminates the Need
for External Pullup/Pulldown Resistors
Package Options Include Plastic 300-mil
Shrink Small-Outline (DL), Thin Shrink
Small-Outline (DGG), and Thin Very
Small-Outline (DGV) Packages
DESCRIPTION
This 16-bit registered transceiver is designed for
1.65-V to 3.6-V VCC operation.
The SN74ALVCH16952 contains two sets of D-type
flip-flops for temporary storage of data flowing in
either direction. This device can be used as two 8-bit
transceivers or one 16-bit transceiver. Data on the A
or B bus is stored in the registers on the low-to-high
transition of the clock (CLKAB or CLKBA) input,
provided that the clock-enable (CLKENAB or
CLKENBA) input is low. Taking the output-enable
(OEAB or OEBA) input low accesses the data on
either port.
SN74ALVCH16952
16-BIT REGISTERED TRANSCEIVER
WITH 3-STATE OUTPUTS
SCES011E – JULY 1995 – REVISED SEPTEMBER 2004
DGG, DGV, OR DL PACKAGE
(TOP VIEW)
1OEAB
1CLKAB
1CLKENAB
GND
1A1
1A2
VCC
1A3
1A4
1A5
GND
1A6
1A7
1A8
2A1
2A2
2A3
GND
2A4
2A5
2A6
VCC
2A7
2A8
GND
2CLKENAB
2CLKAB
2OEAB
1
56
2
55
3
54
4
53
5
52
6
51
7
50
8
49
9
48
10
47
11
46
12
45
13
44
14
43
15
42
16
41
17
40
18
39
19
38
20
37
21
36
22
35
23
34
24
33
25
32
26
31
27
30
28
29
1OEBA
1CLKBA
1CLKENBA
GND
1B1
1B2
VCC
1B3
1B4
1B5
GND
1B6
1B7
1B8
2B1
2B2
2B3
GND
2B4
2B5
2B6
VCC
2B7
2B8
GND
2CLKENBA
2CLKBA
2OEBA
To ensure the high-impedance state during power up
or power down, OE should be tied to VCC through a
pullup resistor; the minimum value of the resistor is
determined by the current-sinking capability of the
driver.
Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level.
The SN74ALVCH16952 is characterized for operation from -40°C to 85°C.
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
Widebus, EPIC are trademarks of Texas Instruments.
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of the Texas
Instruments standard warranty. Production processing does not
necessarily include testing of all parameters.
Copyright © 1995–2004, Texas Instruments Incorporated
SN74ALVCH16952
16-BIT REGISTERED TRANSCEIVER
WITH 3-STATE OUTPUTS
www.ti.com
SCES011E – JULY 1995 – REVISED SEPTEMBER 2004
FUNCTION TABLE (1)
INPUTS
(1)
(2)
2
CLKENAB
CLKAB
OEAB
A
OUTPUT
B
H
X
L
X
B0 (2)
X
L
L
X
B0 (2)
L
↑
L
L
L
L
↑
L
H
H
X
X
H
X
Z
A-to-B data flow is shown; B-to-A data flow is similar, but uses
CLKENBA, CLKBA, and OEBA.
Level of B before the indicated steady-state input conditions were
established
SN74ALVCH16952
16-BIT REGISTERED TRANSCEIVER
WITH 3-STATE OUTPUTS
www.ti.com
SCES011E – JULY 1995 – REVISED SEPTEMBER 2004
LOGIC SYMBOL(1)
1OEBA
56
54
1CLKENBA
1CLKBA
55
1
1OEAB
3
1CLKENAB
1CLKAB
2
29
2OEBA
31
2CLKENBA
2CLKBA
2OEAB
30
28
26
2CLKENAB
2CLKAB
1A1
27
5
EN3
G1
1C5
EN4
G2
2C6
EN9
G7
7C11
EN10
G8
8C12
3
6D
1A2
1A3
1A4
1A5
1A6
1A7
1A8
2A1
6
2A3
2A4
2A5
2A6
2A7
2A8
(1)
4
52
51
8
49
9
48
10
47
12
45
13
44
14
43
15
9
12D
2A2
5D
11D
42
1B1
1B2
1B3
1B4
1B5
1B6
1B7
1B8
2B1
10
16
41
17
40
19
38
20
37
21
36
23
34
24
33
2B2
2B3
2B4
2B5
2B6
2B7
2B8
This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.
3
SN74ALVCH16952
16-BIT REGISTERED TRANSCEIVER
WITH 3-STATE OUTPUTS
www.ti.com
SCES011E – JULY 1995 – REVISED SEPTEMBER 2004
LOGIC DIAGRAM (POSITIVE LOGIC)
1CLKENAB
1CLKAB
1OEBA
1A1
3
54
2
55
56
1
5
One of Eight
Channels
C1
CE
1D
52
1CLKENBA
1CLKBA
1OEAB
1B1
C1
CE
1D
To Seven Other Channels
2CLKENAB
2CLKAB
2OEBA
2A1
26
31
27
30
29
28
15
One of Eight
Channels
C1
CE
1D
C1
CE
1D
To Seven Other Channels
4
42
2CLKENBA
2CLKBA
2OEAB
2B1
SN74ALVCH16952
16-BIT REGISTERED TRANSCEIVER
WITH 3-STATE OUTPUTS
www.ti.com
SCES011E – JULY 1995 – REVISED SEPTEMBER 2004
ABSOLUTE MAXIMUM RATINGS (1)
over operating free-air temperature range (unless otherwise noted)
VCC
Supply voltage range
MIN
MAX
-0.5
4.6
Except I/O ports (2)
-0.5
4.6
I/O ports (2) (3)
-0.5
VCC + 0.5
-0.5
VCC + 0.5
UNIT
V
VI
Input voltage range
VO
Output voltage range (2) (3)
IIK
Input clamp current
VI < 0
-50
mA
IOK
Output clamp current
VO < 0
-50
mA
IO
Continuous output current
±50
mA
±100
mA
Continuous current through each VCC or GND
θJA
Package thermal impedance (4)
Tstg
Storage temperature range
DGG package
81
DGV package
86
DL package
(1)
(2)
(3)
(4)
V
V
°C/W
74
-65
°C
150
Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings
only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating
conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.
This value is limited to 4.6 V maximum.
The package thermal impedance is calculated in accordance with JESD 51.
RECOMMENDED OPERATING CONDITIONS (1)
VCC
Supply voltage
VIH
High-level input voltage
VCC = 1.65 V to 1.95 V
MIN
MAX
1.65
3.6
Low-level input voltage
VI
Input voltage
VO
Output voltage
IOH
High-level output current
IOL
Low-level output current
∆t/∆v
Input transition rise or fall rate
TA
Operating free-air temperature
(1)
V
0.65 × VCC
VCC = 2.3 V to 2.7 V
1.7
VCC = 2.7 V to 3.6 V
2
V
0.35 × VCC
VCC = 1.65 V to 1.95 V
VIL
UNIT
VCC = 2.3 V to 2.7 V
0.7
VCC = 2.7 V to 3.6 V
0.8
V
0
VCC
V
0
VCC
V
VCC = 1.65 V
-4
VCC = 2.3 V
-12
VCC = 2.7 V
-12
VCC = 3 V
-24
VCC = 1.65 V
4
VCC = 2.3 V
12
VCC = 2.7 V
12
VCC = 3 V
24
-40
mA
mA
10
ns/V
85
°C
All unused control inputs of the device must be held at VCC or GND to ensure proper device operation. Refer to the TI application report,
Implications of Slow or Floating CMOS Inputs, literature number SCBA004.
5
SN74ALVCH16952
16-BIT REGISTERED TRANSCEIVER
WITH 3-STATE OUTPUTS
www.ti.com
SCES011E – JULY 1995 – REVISED SEPTEMBER 2004
ELECTRICAL CHARACTERISTICS
over recommended operating free-air temperature range (unless otherwise noted)
PARAMETER
TEST CONDITIONS
VCC
IOH = -100 µA
1.65 V to 3.6 V
1.65 V
IOH = -6 mA
2.3 V
2
2.3 V
1.7
2.7 V
2.2
3V
2.4
IOH = -24 mA
3V
2
IOL = 100 µA
IOH = -12 mA
II(hold)
V
1.65 V to 3.6 V
0.2
1.65 V
0.45
IOL = 6 mA
2.3 V
0.4
2.3 V
0.7
IOL = 24 mA
2.7 V
0.4
3V
0.55
3.6 V
VI = 0.58 V
1.65 V
25
VI = 1.07 V
1.65 V
-25
VI = 0.7 V
2.3 V
45
VI = 1.7 V
2.3 V
-45
VI = 0.8 V
3V
75
3V
-75
VI = 0 to 3.6
V (2)
IOZ (3)
VO = VCC or GND
ICC
VI = VCC or GND,
IO = 0
∆ICC
One input at VCC - 0.6 V,
Other inputs at VCC or GND
V
±5
VI = VCC or GND
VI = 2 V
UNIT
1.2
IOL = 4 mA
IOL = 12 mA
II
TYP (1) MAX
VCC - 0.2
IOH = -4 mA
VOH
VOL
MIN
µA
µA
3.6 V
±500
3.6 V
±10
µA
3.6 V
40
µA
3 V to 3.6 V
750
µA
Ci
Control inputs
VI = VCC or GND
3.3 V
3.5
pF
Cio
A or B ports
VO = VCC or GND
3.3 V
8.5
pF
(1)
(2)
(3)
All typical values are at VCC = 3.3 V, TA = 25°C.
This is the bus-hold maximum dynamic current. It is the minimum overdrive current required to switch the input from one state to
another.
For I/O ports, the parameter IOZ includes the input leakage current.
TIMING REQUIREMENTS
over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1 through Figure 3)
VCC = 1.8 V
MIN
fclock
Clock frequency
tw
Pulse duration
tsu
Setup time
th
Hold time
(1)
6
VCC = 2.5 V
± 0.2 V
MAX
MIN MAX
(1)
150
VCC = 2.7 V
MIN
VCC = 3.3 V
± 0.3 V
MAX
MIN MAX
150
150
CLKEN high
(1)
3.3
3.3
3.3
CLK high or low
(1)
3.3
3.3
3.3
Data before CLK
(1)
1.7
1.9
1.5
CLKEN before CLK
(1)
1.2
1
1
Data after CLK
(1)
0.6
0.6
0.8
CLKEN after CLK
(1)
1.1
0.9
1.1
This information was not available at the time of publication.
UNIT
MHz
ns
ns
ns
SN74ALVCH16952
16-BIT REGISTERED TRANSCEIVER
WITH 3-STATE OUTPUTS
www.ti.com
SCES011E – JULY 1995 – REVISED SEPTEMBER 2004
SWITCHING CHARACTERISTICS
over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1 through Figure 3)
FROM
(INPUT)
PARAMETER
VCC = 1.8 V
TO
(OUTPUT)
MIN
(1)
fmax
tpd
(1)
TYP
CLK
VCC = 2.5 V
± 0.2 V
MIN
VCC = 2.7 V
MAX
150
MIN
MAX
150
(1)
1
4.1
4.6
1
5.4
1
5.3
ten
OEBA or OEAB
A or B
tdis
OEBA or OEAB
A or B
(1)
MIN
UNIT
MAX
150
A or B
(1)
VCC = 3.3 V
± 0.3 V
MHz
1
3.9
ns
5.3
1
4.4
ns
4.4
1.1
4
ns
This information was not available at the time of publication.
OPERATING CHARACTERISTICS
TA = 25°C
PARAMETER
Cpd
(1)
Power dissipation
capacitance
Outputs enabled
Outputs disabled
TEST CONDITIONS
CL = 0,
f = 10 MHz
VCC = 1.8 V
VCC = 2.5 V
VCC = 3.3 V
TYP
TYP
TYP
(1)
53
71
(1)
34
40
UNIT
pF
This information was not available at the time of publication.
7
SN74ALVCH16952
16-BIT REGISTERED TRANSCEIVER
WITH 3-STATE OUTPUTS
www.ti.com
SCES011E – JULY 1995 – REVISED SEPTEMBER 2004
PARAMETER MEASUREMENT INFORMATION
VCC = 1.8 V
2 × VCC
S1
1 kΩ
From Output
Under Test
Open
TEST
tpd
tPLZ/tPZL
tPHZ/tPZH
GND
CL = 30 pF
(see Note A)
1 kΩ
S1
Open
2 × VCC
GND
LOAD CIRCUIT
tw
VCC
Timing
Input
VCC/2
VCC/2
VCC/2
0V
VOLTAGE WAVEFORMS
SETUP AND HOLD TIMES
VCC/2
VCC/2
0V
tPLH
Output
Control
(low-level
enabling)
VCC/2
VOL
VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES
tPLZ
VCC
VCC/2
tPZH
VOH
VCC/2
0V
Output
Waveform 1
S1 at 2 × VCC
(see Note B)
tPHL
VCC/2
VCC
VCC/2
tPZL
VCC
Input
VOLTAGE WAVEFORMS
PULSE DURATION
th
VCC
Data
Input
VCC/2
0V
0V
tsu
Output
VCC
VCC/2
Input
Output
Waveform 2
S1 at GND
(see Note B)
VOL + 0.15 V
VOL
tPHZ
VCC/2
VOH
VOH − 0.15 V
0V
VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES
NOTES: A. CL includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control.
Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, ZO = 50 Ω, tr ≤ 2 ns, tf ≤ 2 ns.
D. The outputs are measured one at a time, with one transition per measurement.
E. tPLZ and tPHZ are the same as tdis.
F. tPZL and tPZH are the same as ten.
G. tPLH and tPHL are the same as tpd.
Figure 1. Load Circuit and Voltage Waveforms
8
SN74ALVCH16952
16-BIT REGISTERED TRANSCEIVER
WITH 3-STATE OUTPUTS
www.ti.com
SCES011E – JULY 1995 – REVISED SEPTEMBER 2004
PARAMETER MEASUREMENT INFORMATION
VCC = 2.5 V ± 0.2 V
2 × VCC
S1
500 Ω
From Output
Under Test
Open
TEST
tpd
tPLZ/tPZL
tPHZ/tPZH
GND
CL = 30 pF
(see Note A)
500 Ω
S1
Open
2 × VCC
GND
LOAD CIRCUIT
tw
VCC
Timing
Input
VCC/2
VCC/2
VCC/2
0V
VOLTAGE WAVEFORMS
SETUP AND HOLD TIMES
VCC/2
VCC/2
0V
tPLH
Output
Control
(low-level
enabling)
VCC/2
VOL
VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES
tPLZ
VCC
VCC/2
tPZH
VOH
VCC/2
0V
Output
Waveform 1
S1 at 2 × VCC
(see Note B)
tPHL
VCC/2
VCC
VCC/2
tPZL
VCC
Input
VOLTAGE WAVEFORMS
PULSE DURATION
th
VCC
Data
Input
VCC/2
0V
0V
tsu
Output
VCC
VCC/2
Input
Output
Waveform 2
S1 at GND
(see Note B)
VOL + 0.15 V
VOL
tPHZ
VCC/2
VOH
VOH − 0.15 V
0V
VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES
NOTES: A. CL includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control.
Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, ZO = 50 Ω, tr ≤ 2 ns, tf ≤ 2 ns.
D. The outputs are measured one at a time, with one transition per measurement.
E. tPLZ and tPHZ are the same as tdis.
F. tPZL and tPZH are the same as ten.
G. tPLH and tPHL are the same as tpd.
Figure 2. Load Circuit and Voltage Waveforms
9
SN74ALVCH16952
16-BIT REGISTERED TRANSCEIVER
WITH 3-STATE OUTPUTS
www.ti.com
SCES011E – JULY 1995 – REVISED SEPTEMBER 2004
PARAMETER MEASUREMENT INFORMATION
VCC = 2.7 V AND 3.3 V ± 0.3 V
6V
S1
500 Ω
From Output
Under Test
GND
CL = 50 pF
(see Note A)
TEST
S1
tpd
tPLZ/tPZL
tPHZ/tPZH
Open
6V
GND
Open
500 Ω
tw
LOAD CIRCUIT
2.7 V
2.7 V
Timing
Input
1.5 V
Input
1.5 V
1.5 V
0V
0V
tsu
VOLTAGE WAVEFORMS
PULSE DURATION
th
2.7 V
Data
Input
1.5 V
1.5 V
0V
VOLTAGE WAVEFORMS
SETUP AND HOLD TIMES
Output
Control
(low-level
enabling)
2.7 V
1.5 V
0V
tPZL
2.7 V
Input
1.5 V
1.5 V
0V
tPLH
1.5 V
1.5 V
VOL
VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES
tPLZ
3V
1.5 V
tPZH
VOH
Output
Output
Waveform 1
S1 at 6 V
(see Note B)
tPHL
1.5 V
Output
Waveform 2
S1 at GND
(see Note B)
VOL + 0.3 V
VOL
tPHZ
1.5 V
VOH
VOH − 0.3 V
0V
VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES
NOTES: A. CL includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control.
Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, ZO = 50 Ω, tr ≤ 2.5 ns, tf ≤ 2.5 ns.
D. The outputs are measured one at a time, with one transition per measurement.
E. tPLZ and tPHZ are the same as tdis.
F. tPZL and tPZH are the same as ten.
G. tPLH and tPHL are the same as tpd.
Figure 3. Load Circuit and Voltage Waveforms
10
PACKAGE OPTION ADDENDUM
www.ti.com
24-May-2007
PACKAGING INFORMATION
Orderable Device
Status (1)
Package
Type
Package
Drawing
Pins Package Eco Plan (2)
Qty
74ALVCH16952DGGRG4
ACTIVE
TSSOP
DGG
56
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
74ALVCH16952DGVRE4
ACTIVE
TVSOP
DGV
56
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
74ALVCH16952DGVRG4
ACTIVE
TVSOP
DGV
56
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
74ALVCH16952DLG4
ACTIVE
SSOP
DL
56
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
74ALVCH16952DLRG4
ACTIVE
SSOP
DL
56
1000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74ALVCH16952DGGR
ACTIVE
TSSOP
DGG
56
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74ALVCH16952DGVR
ACTIVE
TVSOP
DGV
56
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74ALVCH16952DL
ACTIVE
SSOP
DL
56
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74ALVCH16952DLR
ACTIVE
SSOP
DL
56
1000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
20
20
Lead/Ball Finish
MSL Peak Temp (3)
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in
a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check
http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS
compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
(3)
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder
temperature.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited
information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI
to Customer on an annual basis.
Addendum-Page 1
PACKAGE MATERIALS INFORMATION
www.ti.com
11-Mar-2008
TAPE AND REEL INFORMATION
*All dimensions are nominal
Device
Package Package Pins
Type Drawing
SPQ
Reel
Reel
Diameter Width
(mm) W1 (mm)
A0 (mm)
B0 (mm)
K0 (mm)
P1
(mm)
W
Pin1
(mm) Quadrant
8.6
15.6
1.8
12.0
24.0
Q1
SN74ALVCH16952DGGR TSSOP
DGG
56
2000
330.0
24.4
SN74ALVCH16952DGVR TVSOP
DGV
56
2000
330.0
24.4
6.8
11.7
1.6
12.0
24.0
Q1
DL
56
1000
330.0
32.4
11.35
18.67
3.1
16.0
32.0
Q1
SN74ALVCH16952DLR
SSOP
Pack Materials-Page 1
PACKAGE MATERIALS INFORMATION
www.ti.com
11-Mar-2008
*All dimensions are nominal
Device
Package Type
Package Drawing
Pins
SPQ
Length (mm)
Width (mm)
Height (mm)
SN74ALVCH16952DGGR
TSSOP
DGG
56
2000
346.0
346.0
41.0
SN74ALVCH16952DGVR
TVSOP
DGV
56
2000
346.0
346.0
41.0
SN74ALVCH16952DLR
SSOP
DL
56
1000
346.0
346.0
49.0
Pack Materials-Page 2
MECHANICAL DATA
MTSS003D – JANUARY 1995 – REVISED JANUARY 1998
DGG (R-PDSO-G**)
PLASTIC SMALL-OUTLINE PACKAGE
48 PINS SHOWN
0,27
0,17
0,50
48
0,08 M
25
6,20
6,00
8,30
7,90
0,15 NOM
Gage Plane
1
0,25
24
0°– 8°
A
0,75
0,50
Seating Plane
0,15
0,05
1,20 MAX
PINS **
0,10
48
56
64
A MAX
12,60
14,10
17,10
A MIN
12,40
13,90
16,90
DIM
4040078 / F 12/97
NOTES: A.
B.
C.
D.
All linear dimensions are in millimeters.
This drawing is subject to change without notice.
Body dimensions do not include mold protrusion not to exceed 0,15.
Falls within JEDEC MO-153
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
MECHANICAL DATA
MSSO001C – JANUARY 1995 – REVISED DECEMBER 2001
DL (R-PDSO-G**)
PLASTIC SMALL-OUTLINE PACKAGE
48 PINS SHOWN
0.025 (0,635)
0.0135 (0,343)
0.008 (0,203)
48
0.005 (0,13) M
25
0.010 (0,25)
0.005 (0,13)
0.299 (7,59)
0.291 (7,39)
0.420 (10,67)
0.395 (10,03)
Gage Plane
0.010 (0,25)
1
0°–ā8°
24
0.040 (1,02)
A
0.020 (0,51)
Seating Plane
0.110 (2,79) MAX
0.004 (0,10)
0.008 (0,20) MIN
PINS **
28
48
56
A MAX
0.380
(9,65)
0.630
(16,00)
0.730
(18,54)
A MIN
0.370
(9,40)
0.620
(15,75)
0.720
(18,29)
DIM
4040048 / E 12/01
NOTES: A.
B.
C.
D.
All linear dimensions are in inches (millimeters).
This drawing is subject to change without notice.
Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
Falls within JEDEC MO-118
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
MECHANICAL DATA
MPDS006C – FEBRUARY 1996 – REVISED AUGUST 2000
DGV (R-PDSO-G**)
PLASTIC SMALL-OUTLINE
24 PINS SHOWN
0,40
0,23
0,13
24
13
0,07 M
0,16 NOM
4,50
4,30
6,60
6,20
Gage Plane
0,25
0°–8°
1
0,75
0,50
12
A
Seating Plane
0,15
0,05
1,20 MAX
PINS **
0,08
14
16
20
24
38
48
56
A MAX
3,70
3,70
5,10
5,10
7,90
9,80
11,40
A MIN
3,50
3,50
4,90
4,90
7,70
9,60
11,20
DIM
4073251/E 08/00
NOTES: A.
B.
C.
D.
All linear dimensions are in millimeters.
This drawing is subject to change without notice.
Body dimensions do not include mold flash or protrusion, not to exceed 0,15 per side.
Falls within JEDEC: 24/48 Pins – MO-153
14/16/20/56 Pins – MO-194
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not
responsible or liable for any such statements.
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in
such safety-critical applications.
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, TI will not be responsible for any failure to meet such requirements.
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:
Products
Amplifiers
Data Converters
DSP
Clocks and Timers
Interface
Logic
Power Mgmt
Microcontrollers
RFID
RF/IF and ZigBee® Solutions
amplifier.ti.com
dataconverter.ti.com
dsp.ti.com
www.ti.com/clocks
interface.ti.com
logic.ti.com
power.ti.com
microcontroller.ti.com
www.ti-rfid.com
www.ti.com/lprf
Applications
Audio
Automotive
Broadband
Digital Control
Medical
Military
Optical Networking
Security
Telephony
Video & Imaging
Wireless
www.ti.com/audio
www.ti.com/automotive
www.ti.com/broadband
www.ti.com/digitalcontrol
www.ti.com/medical
www.ti.com/military
www.ti.com/opticalnetwork
www.ti.com/security
www.ti.com/telephony
www.ti.com/video
www.ti.com/wireless
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2008, Texas Instruments Incorporated
Was this manual useful for you? yes no
Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Download PDF

advertising