Texas Instruments | SN74ALVC245 (Rev. D) | Datasheet | Texas Instruments SN74ALVC245 (Rev. D) Datasheet

Texas Instruments SN74ALVC245 (Rev. D) Datasheet
SN74ALVC245
OCTAL BUS TRANSCEIVER
WITH 3-STATE OUTPUTS
www.ti.com
SCES271D – APRIL 1999 – REVISED JULY 2004
•
•
DGV, DW, NS, OR PW PACKAGE
(TOP VIEW)
1
20
2
19
3
18
4
17
5
16
6
15
7
14
8
13
9
12
10
11
VCC
OE
B1
B2
B3
B4
B5
B6
B7
B8
VCC
DIR
A1
A2
A3
A4
A5
A6
A7
A8
GND
RGY PACKAGE
(TOP VIEW)
1
20
3
4
19 OE
18 B1
17 B2
5
6
16 B3
15 B4
7
8
14 B5
13 B6
2
A1
A2
A3
A4
A5
A6
A7
A8
12 B7
9
10
11
B8
Operates from 1.65 V to 3.6 V
Max tpd of 3.4 ns at 3.3 V
DIR
•
•
±24-mA Output Drive at 3.3 V
Latch-Up Performance Exceeds 250 mA Per
JESD 17
GND
FEATURES
DESCRIPTION/ORDERING INFORMATION
This octal bus transceiver is designed for 1.65-V to 3.6-V VCC operation.
The SN74ALVC245 is designed for asynchronous communication between data buses. The device transmits
data from the A bus to the B bus or from the B bus to the A bus, depending on the logic level at the
direction-control (DIR) input. The output-enable (OE) input can be used to disable the device so the buses are
effectively isolated.
To ensure the high-impedance state during power up or power down, OE should be tied to VCC through a pullup
resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.
ORDERING INFORMATION
PACKAGE (1)
TA
QFN - RGY
SOIC - DW
-40°C to 85°C
SOP - NS
TSSOP - PW
TVSOP - DGV
(1)
ORDERABLE PART NUMBER
Tape and reel
SN74ALVC245RGYR
Tube
SN74ALVC245DW
Tape and reel
SN74ALVC245DWR
Tape and reel
SN74ALVC245NSR
Tube
SN74ALVC245PW
Tape and reel
SN74ALVC245PWR
Tape and reel
SN74ALVC245DGVR
TOP-SIDE MARKING
VA245
ALVC245
ALVC245
VA245
VA245
Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at
www.ti.com/sc/package.
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of the Texas
Instruments standard warranty. Production processing does not
necessarily include testing of all parameters.
Copyright © 1999–2004, Texas Instruments Incorporated
SN74ALVC245
OCTAL BUS TRANSCEIVER
WITH 3-STATE OUTPUTS
www.ti.com
SCES271D – APRIL 1999 – REVISED JULY 2004
FUNCTION TABLE
INPUTS
OPERATION
OE
DIR
L
L
B data to A bus
L
H
A data to B bus
H
X
Isolation
LOGIC DIAGRAM (POSITIVE LOGIC)
DIR
1
19
A1
OE
2
18
B1
To Seven Other Channels
ABSOLUTE MAXIMUM RATINGS (1)
over operating free-air temperature range (unless otherwise noted)
VCC
Supply voltage range
MIN
MAX
-0.5
4.6
Except I/O ports (2)
-0.5
4.6
I/O ports (2) (3)
-0.5
VCC + 0.5
-0.5
VCC + 0.5
UNIT
V
VI
Input voltage range
VO
Output voltage range (2) (3)
IIK
Input clamp current
VI < 0
-50
mA
IOK
Output clamp current
VO < 0
-50
mA
IO
Continuous output current
±50
mA
±100
mA
Continuous current through VCC or GND
θJA
Package thermal impedance
DGV package (4)
92
DW package (4)
58
package (4)
60
PW package (4)
83
NS
RGY package (5)
Tstg
(1)
(2)
(3)
(4)
(5)
2
Storage temperature range
V
V
°C/W
37
-65
150
°C
Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings
only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating
conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.
This value is limited to 4.6 V, maximum.
The package thermal impedance is calculated in accordance with JESD 51-7.
The package thermal impedance is calculated in accordance with JESD 51-5.
SN74ALVC245
OCTAL BUS TRANSCEIVER
WITH 3-STATE OUTPUTS
www.ti.com
SCES271D – APRIL 1999 – REVISED JULY 2004
RECOMMENDED OPERATING CONDITIONS (1)
VCC
Supply voltage
VCC = 1.65 V to 1.95 V
VIH
High-level input voltage
MIN
MAX
1.65
3.6
Low-level input voltage
VI
Input voltage
VO
Output voltage
IOH
High-level output current
IOL
Low-level output current
∆t/∆v
Input transition rise or fall rate
TA
Operating free-air temperature
(1)
V
0.65 × VCC
VCC = 2.3 V to 2.7 V
1.7
VCC = 2.7 V to 3.6 V
2
V
0.35 × VCC
VCC = 1.65 V to 1.95 V
VIL
UNIT
VCC = 2.3 V to 2.7 V
0.7
VCC = 2.7 V to 3.6 V
0.8
V
0
VCC
V
0
VCC
V
VCC = 1.65 V
-4
VCC = 2.3 V
-12
VCC = 2.7 V
-12
VCC = 3 V
-24
VCC = 1.65 V
4
VCC = 2.3 V
12
VCC = 2.7 V
12
VCC = 3 V
24
-40
mA
mA
10
ns/V
85
°C
All unused inputs of the device must be held at VCC or GND to ensure proper device operation. Refer to the TI application report,
Implications of Slow or Floating CMOS Inputs, literature number SCBA004.
3
SN74ALVC245
OCTAL BUS TRANSCEIVER
WITH 3-STATE OUTPUTS
www.ti.com
SCES271D – APRIL 1999 – REVISED JULY 2004
ELECTRICAL CHARACTERISTICS
over recommended operating free-air temperature range (unless otherwise noted)
PARAMETER
TEST CONDITIONS
VCC
IOH = -100 µA
1.65 V to 3.6 V
1.65 V
IOH = -6 mA
2.3 V
2
2.3 V
1.7
2.7 V
2.2
3V
2.4
IOH = -24 mA
3V
2
IOL = 100 µA
IOH = -12 mA
MAX
V
1.65 V to 3.6 V
0.2
1.65 V
0.45
IOL = 6 mA
2.3 V
0.4
2.3 V
0.7
IOL = 24 mA
UNIT
1.2
IOL = 4 mA
IOL = 12 mA
II
TYP (1)
VCC - 0.2
IOH = -4 mA
VOH
VOL
MIN
2.7 V
0.4
3V
0.55
V
VI = VCC or GND
3.6 V
±5
µA
VO = VCC or GND
3.6 V
±10
µA
ICC
VI = VCC or GND, IO = 0
3.6 V
10
µA
∆ICC
One input at VCC - 0.6 V, Other inputs at VCC or GND
3 V to 3.6 V
750
µA
IOZ
(2)
Ci
Control inputs
VI = VCC or GND
3.3 V
4.5
pF
Cio
A or B ports
VO = VCC or GND
3.3 V
11.5
pF
(1)
(2)
All typical values are at VCC = 3.3 V, TA = 25°C.
For I/O ports, the parameter IOZ includes the input leakage current.
SWITCHING CHARACTERISTICS
over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)
FROM
(INPUT)
TO
(OUTPUT)
tpd
A or B
B or A
ten
OE
A or B
tdis
OE
A or B
PARAMETER
VCC = 1.8 V
± 0.15 V
MIN
VCC = 2.5 V
± 0.2 V
VCC = 3.3 V
± 0.3 V
VCC = 2.7 V
MAX
MIN
MAX
1.5
6
1
3.4
8.6
2
2.7
8
1
MIN
UNIT
MAX
MIN
MAX
3.5
3.6
1.3
3.4
ns
6
6.3
1.6
5.5
ns
4.8
5.3
1.7
5.5
ns
OPERATING CHARACTERISTICS
TA = 25°C
PARAMETER
Cpd
4
Power dissipation
capacitance per transceiver
TEST CONDITIONS
Outputs enabled
Outputs disabled
CL = 0 pF, f = 10 MHz
VCC = 1.8 V VCC = 2.5 V VCC = 3.3 V
TYP
TYP
TYP
25
27
30
0
0
0
UNIT
pF
SN74ALVC245
OCTAL BUS TRANSCEIVER
WITH 3-STATE OUTPUTS
www.ti.com
SCES271D – APRIL 1999 – REVISED JULY 2004
PARAMETER MEASUREMENT INFORMATION
VLOAD
S1
RL
From Output
Under Test
Open
GND
CL
(see Note A)
RL
TEST
S1
tpd
tPLZ/tPZL
tPHZ/tPZH
Open
VLOAD
GND
LOAD CIRCUIT
INPUT
VCC
1.8 V ± 0.15 V
2.5 V ± 0.2 V
2.7 V
3.3 V ± 0.3 V
VI
tr/tf
VCC
VCC
2.7 V
2.7 V
≤2 ns
≤2 ns
≤2.5 ns
≤2.5 ns
VM
VLOAD
CL
RL
V∆
VCC/2
VCC/2
1.5 V
1.5 V
2 × VCC
2 × VCC
6V
6V
30 pF
30 pF
50 pF
50 pF
1 kΩ
500 Ω
500 Ω
500 Ω
0.15 V
0.15 V
0.3 V
0.3 V
tw
VI
Timing
Input
VM
VM
VM
0V
VOLTAGE WAVEFORMS
SETUP AND HOLD TIMES
VM
VM
0V
tPLH
Output
Control
(low-level
enabling)
tPLZ
VLOAD/2
VM
tPZH
VOH
VM
VOL
VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES
VM
0V
Output
Waveform 1
S1 at VLOAD
(see Note B)
tPHL
VM
VI
VM
tPZL
VI
Input
VOLTAGE WAVEFORMS
PULSE DURATION
th
VI
Data
Input
VM
0V
0V
tsu
Output
VI
VM
Input
Output
Waveform 2
S1 at GND
(see Note B)
VOL + V∆
VOL
tPHZ
VOH
VM
VOH − V∆
0V
VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES
NOTES: A. CL includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control.
Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, ZO = 50 Ω.
D. The outputs are measured one at a time, with one transition per measurement.
E. tPLZ and tPHZ are the same as tdis.
F. tPZL and tPZH are the same as ten.
G. tPLH and tPHL are the same as tpd.
H. All parameters and waveforms are not applicable to all devices.
Figure 1. Load Circuit and Voltage Waveforms
5
PACKAGE OPTION ADDENDUM
www.ti.com
24-Aug-2018
PACKAGING INFORMATION
Orderable Device
Status
(1)
Package Type Package Pins Package
Drawing
Qty
Eco Plan
Lead/Ball Finish
MSL Peak Temp
(2)
(6)
(3)
Op Temp (°C)
Device Marking
(4/5)
SN74ALVC245DGVR
ACTIVE
TVSOP
DGV
20
2000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 85
VA245
SN74ALVC245DW
ACTIVE
SOIC
DW
20
25
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 85
ALVC245
SN74ALVC245DWR
ACTIVE
SOIC
DW
20
2000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 85
ALVC245
SN74ALVC245NSR
ACTIVE
SO
NS
20
2000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 85
ALVC245
SN74ALVC245PW
ACTIVE
TSSOP
PW
20
70
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 85
VA245
SN74ALVC245PWG4
ACTIVE
TSSOP
PW
20
70
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 85
VA245
SN74ALVC245PWR
ACTIVE
TSSOP
PW
20
2000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 85
VA245
SN74ALVC245PWRE4
ACTIVE
TSSOP
PW
20
2000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 85
VA245
SN74ALVC245RGYR
ACTIVE
VQFN
RGY
20
3000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-2-260C-1 YEAR
-40 to 85
VA245
SN74ALVC245RGYRG4
ACTIVE
VQFN
RGY
20
3000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-2-260C-1 YEAR
-40 to 85
VA245
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may
reference these types of products as "Pb-Free".
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based
flame retardants must also meet the <=1000ppm threshold requirement.
(3)
MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
Addendum-Page 1
Samples
PACKAGE OPTION ADDENDUM
www.ti.com
(4)
24-Aug-2018
There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
(5)
Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation
of the previous line and the two combined represent the entire Device Marking for that device.
(6)
Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish
value exceeds the maximum column width.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
Addendum-Page 2
PACKAGE MATERIALS INFORMATION
www.ti.com
6-May-2017
TAPE AND REEL INFORMATION
*All dimensions are nominal
Device
Package Package Pins
Type Drawing
SPQ
Reel
Reel
A0
Diameter Width (mm)
(mm) W1 (mm)
B0
(mm)
K0
(mm)
P1
(mm)
W
Pin1
(mm) Quadrant
SN74ALVC245DGVR
TVSOP
DGV
20
2000
330.0
12.4
6.9
5.6
1.6
8.0
12.0
Q1
SN74ALVC245DWR
SOIC
DW
20
2000
330.0
24.4
10.8
13.3
2.7
12.0
24.0
Q1
SN74ALVC245NSR
SO
NS
20
2000
330.0
24.4
8.4
13.0
2.5
12.0
24.0
Q1
SN74ALVC245PWR
TSSOP
PW
20
2000
330.0
16.4
6.95
7.1
1.6
8.0
16.0
Q1
SN74ALVC245RGYR
VQFN
RGY
20
3000
330.0
12.4
3.8
4.8
1.6
8.0
12.0
Q1
Pack Materials-Page 1
PACKAGE MATERIALS INFORMATION
www.ti.com
6-May-2017
*All dimensions are nominal
Device
Package Type
Package Drawing
Pins
SPQ
Length (mm)
Width (mm)
Height (mm)
SN74ALVC245DGVR
TVSOP
DGV
20
2000
367.0
367.0
35.0
SN74ALVC245DWR
SOIC
DW
20
2000
367.0
367.0
45.0
SN74ALVC245NSR
SO
NS
20
2000
367.0
367.0
45.0
SN74ALVC245PWR
TSSOP
PW
20
2000
367.0
367.0
38.0
SN74ALVC245RGYR
VQFN
RGY
20
3000
367.0
367.0
35.0
Pack Materials-Page 2
MECHANICAL DATA
MPDS006C – FEBRUARY 1996 – REVISED AUGUST 2000
DGV (R-PDSO-G**)
PLASTIC SMALL-OUTLINE
24 PINS SHOWN
0,40
0,23
0,13
24
13
0,07 M
0,16 NOM
4,50
4,30
6,60
6,20
Gage Plane
0,25
0°–8°
1
0,75
0,50
12
A
Seating Plane
0,15
0,05
1,20 MAX
PINS **
0,08
14
16
20
24
38
48
56
A MAX
3,70
3,70
5,10
5,10
7,90
9,80
11,40
A MIN
3,50
3,50
4,90
4,90
7,70
9,60
11,20
DIM
4073251/E 08/00
NOTES: A.
B.
C.
D.
All linear dimensions are in millimeters.
This drawing is subject to change without notice.
Body dimensions do not include mold flash or protrusion, not to exceed 0,15 per side.
Falls within JEDEC: 24/48 Pins – MO-153
14/16/20/56 Pins – MO-194
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
GENERIC PACKAGE VIEW
RGY 20
VQFN - 1 mm max height
PLASTIC QUAD FGLATPACK - NO LEAD
3.5 x 4.5, 0.5 mm pitch
This image is a representation of the package family, actual package may vary.
Refer to the product data sheet for package details.
4225264/A
www.ti.com
PACKAGE OUTLINE
RGY0020A
VQFN - 1 mm max height
SCALE 3.000
PLASTIC QUAD FLATPACK - NO LEAD
3.65
3.35
A
B
PIN 1 INDEX AREA
4.65
4.35
1.0
0.8
C
SEATING PLANE
0.05
0.00
0.08 C
2.05 0.1
2X 1.5
(0.2) TYP
10
11
9
EXPOSED
THERMAL PAD
12
14X 0.5
2X
3.5
21
SYMM
3.05 0.1
2
PIN 1 ID
19
20X
20
1
SYMM
0.30
0.18
0.1
0.05
0.5
20X
0.3
C A B
4225320/A 09/2019
NOTES:
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing
per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.
www.ti.com
EXAMPLE BOARD LAYOUT
RGY0020A
VQFN - 1 mm max height
PLASTIC QUAD FLATPACK - NO LEAD
(2.05)
SYMM
1
20
20X (0.6)
2
19
20X (0.24)
(1.275)
(4.3)
21
SYMM
(3.05)
14X (0.5)
(0.775)
9
12
(R0.05) TYP
( 0.2) TYP
VIA
11
10
(0.75) TYP
(3.3)
LAND PATTERN EXAMPLE
EXPOSED METAL SHOWN
SCALE:18X
0.07 MIN
ALL AROUND
0.07 MAX
ALL AROUND
SOLDER MASK
OPENING
METAL
EXPOSED
METAL
SOLDER MASK
OPENING
EXPOSED
METAL
NON SOLDER MASK
DEFINED
(PREFERRED)
METAL UNDER
SOLDER MASK
SOLDER MASK
DEFINED
SOLDER MASK DETAILS
4225320/A 09/2019
NOTES: (continued)
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature
number SLUA271 (www.ti.com/lit/slua271).
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown
on this view. It is recommended that vias under paste be filled, plugged or tented.
www.ti.com
EXAMPLE STENCIL DESIGN
RGY0020A
VQFN - 1 mm max height
PLASTIC QUAD FLATPACK - NO LEAD
SYMM
4X (0.92)
(R0.05) TYP
20
1
20X (0.6)
2
19
20X (0.24)
4X
(1.33)
21
SYMM
(4.3)
(0.77)
14X (0.5)
(0.56)
9
12
METAL
TYP
11
10
(0.75)
TYP
(3.3)
SOLDER PASTE EXAMPLE
BASED ON 0.125 mm THICK STENCIL
EXPOSED PAD 21
78% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE
SCALE:20X
4225320/A 09/2019
NOTES: (continued)
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate
design recommendations.
www.ti.com
PACKAGE OUTLINE
DW0020A
SOIC - 2.65 mm max height
SCALE 1.200
SOIC
C
10.63
TYP
9.97
SEATING PLANE
PIN 1 ID
AREA
A
0.1 C
20
1
13.0
12.6
NOTE 3
18X 1.27
2X
11.43
10
11
B
7.6
7.4
NOTE 4
20X
0.51
0.31
0.25
C A B
2.65 MAX
0.33
TYP
0.10
SEE DETAIL A
0.25
GAGE PLANE
0 -8
0.3
0.1
1.27
0.40
DETAIL A
TYPICAL
4220724/A 05/2016
NOTES:
1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing
per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
exceed 0.15 mm per side.
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.43 mm per side.
5. Reference JEDEC registration MS-013.
www.ti.com
EXAMPLE BOARD LAYOUT
DW0020A
SOIC - 2.65 mm max height
SOIC
20X (2)
SYMM
1
20
20X (0.6)
18X (1.27)
SYMM
(R0.05)
TYP
10
11
(9.3)
LAND PATTERN EXAMPLE
SCALE:6X
SOLDER MASK
OPENING
METAL
SOLDER MASK
OPENING
METAL UNDER
SOLDER MASK
0.07 MAX
ALL AROUND
0.07 MIN
ALL AROUND
SOLDER MASK
DEFINED
NON SOLDER MASK
DEFINED
SOLDER MASK DETAILS
4220724/A 05/2016
NOTES: (continued)
6. Publication IPC-7351 may have alternate designs.
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.
www.ti.com
EXAMPLE STENCIL DESIGN
DW0020A
SOIC - 2.65 mm max height
SOIC
20X (2)
SYMM
1
20
20X (0.6)
18X (1.27)
SYMM
11
10
(9.3)
SOLDER PASTE EXAMPLE
BASED ON 0.125 mm THICK STENCIL
SCALE:6X
4220724/A 05/2016
NOTES: (continued)
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate
design recommendations.
9. Board assembly site may have different recommendations for stencil design.
www.ti.com
IMPORTANT NOTICE AND DISCLAIMER
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you
permission to use these resources only for development of an application that uses the TI products described in the resource. Other
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third
party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims,
damages, costs, losses, and liabilities arising out of your use of these resources.
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on
ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable
warranties or warranty disclaimers for TI products.
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2019, Texas Instruments Incorporated
Was this manual useful for you? yes no
Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Related manuals

Download PDF

advertising