Texas Instruments | Basics of Load Switches (Rev. A) | Application notes | Texas Instruments Basics of Load Switches (Rev. A) Application notes

Texas Instruments Basics of Load Switches (Rev. A) Application notes
Application Report
SLVA652A – April 2014 – Revised September 2018
Basics of Load Switches
Benjamin Mak
............................................................................................. Drivers and Load Switches
ABSTRACT
Integrated load switches are electronic switches that can be used to turn on and turn off power supply rails
in systems, similar to a relay or a discrete FET. Load switches offer many other benefits to the system
some including protection features that are often difficult to implement with discrete components. There
are many different applications where load switches are implemented including, but not limited to:
•
•
•
•
•
Power Distribution
Power Sequencing and Power State Transition
Reduced Leakage Current in Standby Mode
Inrush Current Control
Controlled Power down
This application note will provide the fundamental basics of what load switches are, when they should be
used, and how they can be implemented in a system.
For additional technical support and product information, please visit Load Switches
.
1
2
3
4
5
Contents
What Are Load Switches? .................................................................................................. 2
1.1
General Load Switch Block Diagram ............................................................................. 2
1.2
Datasheet Parameters ............................................................................................. 3
Why Do You Need Load Switches ........................................................................................ 3
2.1
Power Distribution .................................................................................................. 3
2.2
Power Sequencing and Power State Transition ................................................................ 4
2.3
Reduced Leakage Current......................................................................................... 5
2.4
Inrush Current Control ............................................................................................. 5
2.5
Controlled Power Down ............................................................................................ 6
2.6
Protection Features ................................................................................................. 6
2.7
Lower BOM Count and PCB Area ................................................................................ 7
Part Selection and Design Considerations ............................................................................... 7
3.1
NMOS vs PMOS .................................................................................................... 7
3.2
ON-State Resistance (RON) ........................................................................................ 8
3.3
Voltage (VIN) and Current (IMAX) Rating ........................................................................... 8
3.4
Shutdown Current (ISD) and Quiescent Current (IQ) ............................................................ 8
3.5
Rise Time (tR) ........................................................................................................ 8
3.6
Quick Output Discharge (QOD) ................................................................................... 8
3.7
Package Size ........................................................................................................ 9
3.8
Input and Output Capacitance .................................................................................... 9
Basic Calculations ........................................................................................................... 9
4.1
Voltage Drop ........................................................................................................ 9
4.2
Inrush Current ....................................................................................................... 9
4.3
Power Dissipation ................................................................................................... 9
4.4
Thermal Considerations .......................................................................................... 10
Design Examples and Application Examples ........................................................................... 10
SLVA652A – April 2014 – Revised September 2018
Submit Documentation Feedback
Load Switches: What Are They, Why Do You Need Them And How Do You
Choose The Right One?
Copyright © 2014–2018, Texas Instruments Incorporated
1
What Are Load Switches?
6
7
1
www.ti.com
5.1
RON and Inrush Current Calculations ............................................................................
5.2
Standby Power Savings ..........................................................................................
5.3
Power Sequencing without Processor Intervention ...........................................................
5.4
2-to-1 Power Mux .................................................................................................
Conclusion ..................................................................................................................
References .................................................................................................................
10
11
11
12
12
13
What Are Load Switches?
Integrated load switches are integrated electronic switches used to turn on and turn off power rails. Basic
load switches consist of four pins: input voltage, output voltage, enable and ground. When the device is
enabled via the ON pin, the pass FET turns on, thereby allowing current to flow from the input pin to the
output pin, and power is passed to the downstream circuitry.
VOUT
VIN
CL
RL
CIN
ON
ON
GND
OFF
Figure 1. General Load Switch Circuit Diagram
1.1
General Load Switch Block Diagram
An understanding of what the architecture of a load switch looks like will be helpful in determining the
specifications of a load switch. Shown in Figure 2 is a block diagram of a basic load switch, which is made
up of five basic blocks. Additional blocks can be included to add functionality to the load switch.
VIN
6 Reverse
Current
Protection*
4 Charge
Pump*
2
3
ON
Control Logic
1
Pass
FET
Driver
6
6
Current
Limiting*
Thermal
Shutdown*
VOUT
5
Quick Output
Discharge*
GND
*Not present on all load switches
Figure 2. Block Diagram of General Load Switch
2
Load Switches: What Are They, Why Do You Need Them And How Do You
Choose The Right One?
SLVA652A – April 2014 – Revised September 2018
Submit Documentation Feedback
Copyright © 2014–2018, Texas Instruments Incorporated
What Are Load Switches?
www.ti.com
1. The pass FET is the main component of the load switch, which determines the maximum input voltage
and maximum load current the load switch can handle. The on-resistance of the load switch is a
characteristic of the pass FET and will be used in calculating the power dissipated by the load switch.
The pass FET can be either an N-channel or P-channel FET, which will determine the architecture of
the load switch.
2. The gate driver charges and discharges the gate of the FET in a controlled manner, thereby controlling
the rise time of the device.
3. The control logic is driven by an external logic signal. It controls the turn-on and turn-off of the pass
FET and other blocks, such as quick output discharge, the charge pump, and blocks with protection
features. This external logic signal is commonly connected directly to an external microcontroller.
4. The charge pump is not included in all load switches. This is used in load switches with an N-channel
FET, since a positive differential voltage between the gate and the source (VOUT) is needed in order
to turn on the FET properly.
5. Quick output discharge is an on-chip resistor from VOUT to GND that is turned on when the device is
disabled via the ON pin. This will discharge the output node, preventing the output from floating. For
the devices with quick output discharge, this feature is only present when VIN and VBIAS are within
the operating range.
6. Additional features are included in different load switches. These include, but are not limited to, thermal
shutdown, current limiting, and reverse current protection.
1.2
Datasheet Parameters
Below is a list of common datasheet parameters and definitions for load switches.
•
•
•
•
•
•
•
•
2
Input voltage range (VIN) – This is the range of input voltages that the load switch can support.
Bias voltage range (VBIAS) – This is the range of bias voltages that the load switch can support. This
may be required to power the internal blocks of the load switch, depending on the architecture of
the load switch.
Maximum continuous current (IMAX) – This is the maximum continuous DC current the load switch
can support. System thermal performance plays a key role in determining the maximum continuous
DC current in a system.
ON-state resistance (RON) – This is the resistance measured from the VIN pin to the VOUT pin,
which takes into consideration the resistance of the packaging and the internal pass FET.
Quiescent Current (IQ) – This is the required amount of current to power the internal blocks of the
device, which is measured as the current flowing into the VIN pin without any load on VOUT.
Shutdown Current (ISD) – This is the amount of current flowing into VIN when the device is disabled.
ON pin input leakage current (ION) – This is the amount of current that is flowing into the ON pin
when the ON pin has a high voltage applied to it.
Pull-down resistance (RPD) – This is the value of the pull-down resistor from VOUT to GND when
the device is disabled.
Why Do You Need Load Switches
This section will provide a general overview of some applications where using a load switch is beneficial.
2.1
Power Distribution
Many systems have limited control of sub-systems power distribution. As iillustrated in Figure 3, load
switches can be used to turn on and off sub-systems of the same input voltage instead of using multiple
DC/DC converters or LDO’s. By using a load switch, power can be distributed across different loads with
control for each individual load.
SLVA652A – April 2014 – Revised September 2018
Submit Documentation Feedback
Load Switches: What Are They, Why Do You Need Them And How Do You
Choose The Right One?
Copyright © 2014–2018, Texas Instruments Incorporated
3
Why Do You Need Load Switches
www.ti.com
Load
Power Supply
Load
Load Switch
Load
Load Switch
Figure 3. Power Distribution Block Diagram
2.2
Power Sequencing and Power State Transition
In some systems, especially those with a processor, there is a strict power-up sequence that must be
followed. By using a GPIO or I2C interface, load switches are a simple solution to implement power
sequencing to meet the power-up requirements. Load switches can provide independent control of each
power path to provide simplified point-of-load control for power sequencing, as shown in Figure 4.
Load 1
Power Supply
Load 2
Load Switch
Load 3
Load Switch
VSupply
VLoad 1
VLoad 2
VLoad 3
Time
Figure 4. Power Sequencing with Load Switches
4
Load Switches: What Are They, Why Do You Need Them And How Do You
Choose The Right One?
SLVA652A – April 2014 – Revised September 2018
Submit Documentation Feedback
Copyright © 2014–2018, Texas Instruments Incorporated
Why Do You Need Load Switches
www.ti.com
2.3
Reduced Leakage Current
In many designs, there are sub-systems that are only used during certain modes of operation. Load
switches can be used to limit the amount of leakage current and power consumption by turning off power
to these sub-systems. Figure 5 shows a comparison of the leakage current with and without a load switch.
Refer to the Input and Output Capacitance section for more details.
Current 1
Load
Power Supply
Current 2
Load
Power Supply
Load Switch
Input Supply Current
ISUPPLY
Time
Figure 5. Comparison of Leakage Current with and without the Load Switch
In some applications, the circuitry such as DC/DC converters, LDOs, and modules can be disabled and
put into standby mode. However, the leakage current of these modules can be relatively high, even in the
shutdown state. By placing a load switch before the load, as shown above, the leakage can be reduced to
significantly lower levels. Thus, power consumption can be reduced significantly with a load switch placed
in the power path.
2.4
Inrush Current Control
When turning on a sub-system without any slew rate control, the input rail may sag because of the inrush
current that can happen from quickly charging a load capacitor. This can be problematic as this rail may
be supplying power to other sub-systems (Figure 6). Load switches solve this issue by controlling the rise
time of the output voltage, thereby eliminating the sag on the input voltage (Figure 7). The inrush current
is proportional to the load capacitance as will be explained later in the Section 4.2 section.
Vsupply
Supply Dip
Inrush Current
ILoad
VLoad
Voltage Droop
Figure 6. Inrush Current Causing Power Supply Dip
Vsupply
ILoad
VLoad
Slew Rate Control
Figure 7. Slew Rate Control with Load Switch
SLVA652A – April 2014 – Revised September 2018
Submit Documentation Feedback
Load Switches: What Are They, Why Do You Need Them And How Do You
Choose The Right One?
Copyright © 2014–2018, Texas Instruments Incorporated
5
Why Do You Need Load Switches
2.5
www.ti.com
Controlled Power Down
When a DC/DC converter or LDO without quick output discharge turns off, the load voltage is left floating
and power down timing is dictated by the load, as shown in Figure 8. This can cause unwanted activity as
modules downstream are not powered down to a defined state.
Load
Voltage
DC/DC or LDO
Uncontrolled power down
Supply Voltage
Time
Figure 8. Uncontrolled Power Down without Load Switch
Using a load switch with quick output discharge can mitigate these problems. The load will be powered
down quickly in a controlled manner and will be reset to a known good state for the next power up, as
shown in Figure 9. This will eliminate any floating voltages at the input of the load and ensure that the load
remains in a defined power state at all times.Refer to the Quick Output Discharge (QOD) section for more
details.
Load Switch
Power Supply
Load
Voltage
Controlled power down
due to quick output
discharge
Supply Voltage
Load Voltage
Time
Figure 9. Controlled Power Down with Load Switch
2.6
Protection Features
Certain applications may require fault protection features to be integrated into the load switch. Some load
switches include integrated features such as reverse current protection, ON pin hysteresis, current limiting,
undervoltage lock-out and over temperature protection. Instead of implementing these complex circuits
through discrete components, using an integrated load switch reduces BOM count, solution size, and
development time. The list below briefly explains what some of these features can be:
•
6
Reverse current protection will stop current from flowing from the VOUT pin to the VIN pin. In the
absence of this feature, current may flow from the VOUT pin to the VIN pin!~, if the voltage on VOUT
is greater than VIN by a diode drop. Thus, reverse current blocking may be beneficial in certain
applications, such as in a power mux application where current should not flow from VOUT to VIN.
There are many different methods of implementing reverse current protection. In some situations, such
as the TPS22916, the device will monitor the voltage levels at the VIN pin and VOUT pin. When this
differential voltage exceeds a certain threshold, the switch is disabled and the body diode is
disengaged to prevent any reverse current flow to VIN. Some devices, such as the TPS22963C, only
Load Switches: What Are They, Why Do You Need Them And How Do You
Choose The Right One?
SLVA652A – April 2014 – Revised September 2018
Submit Documentation Feedback
Copyright © 2014–2018, Texas Instruments Incorporated
Why Do You Need Load Switches
www.ti.com
•
•
•
•
have reverse current protection when the device is disabled.
ON pin hysteresis allows for more robust GPIO enable. With a voltage difference between a logic level
high and logic level low on the ON pin, the control circuitry will operate as intended when there is noise
on the GPIO line. Figure 10 illustrates how ON pin hysteresis can provide robustness on the GPIO
enable line.
Current limiting is a feature that will limit the amount of current the load switch will output. This will
ensure that there is not an excessive amount of current being pulled by an external circuitry. If current
is not limited, the external circuitry can potentially bring the main system down. In the current limited
mode, load switch works as a constant current until the switch current falls below the current limit.
Undervoltage lock-out (UVLO) is used to turn off the device if the VIN voltage drops below a threshold
value, ensuring that the downstream circuitry is not damaged by being supplied by a voltage lower
than intended.
Over temperature protection disables the switch if the temperature of the device exceeds a threshold
temperature. With this feature, the device can operate as a safety switch that turns off when a high
temperature is detected.
VON
Noise on ON pin
VOUT without
ON Pin Hysteresis
VOUT with
ON Pin Hysteresis
Erratic Behavior on Output
Output is immune to noise
Time
Figure 10. ON Pin Hysteresis
2.7
Lower BOM Count and PCB Area
Using an integrated load switch can lower the BOM count of a system. If there are discrete FETs that are
used in conjunction with other components, a load switch could be considered to reduce the number of
total components in the system. When a load switch is created discretely, there are many resistors,
capacitors and transistors that will be required to implement a gate driver, control logic, output discharge
and protection features. With an integrated load switch, this is all accomplished with only a single device
and the BOM count is significantly reduced.
3
Part Selection and Design Considerations
This section will look at the specifications that need to be kept in mind in choosing a load switch.
3.1
NMOS vs PMOS
In an NMOS device, the pass FET is turned on by bringing the gate voltage above the source. Usually, the
source voltage is at the same potential as the VIN terminal. In order to create this voltage differential
between the gate and the source, a charge pump is required. Using a charge pump will increase the
quiescent current of the device.
In a PMOS device, the pass FET is turned on by bringing the gate voltage below the source voltage. The
architecture of a PMOS device does not require a charge pump, resulting in a lower quiescent current
when compared to a NMOS device.
One major difference between a PMOS based architecture and NMOS based architecture is that PMOS
based load switches do not perform well at lower voltages, while NMOS devices are good for lower VIN
applications.
SLVA652A – April 2014 – Revised September 2018
Submit Documentation Feedback
Load Switches: What Are They, Why Do You Need Them And How Do You
Choose The Right One?
Copyright © 2014–2018, Texas Instruments Incorporated
7
Part Selection and Design Considerations
3.2
www.ti.com
ON-State Resistance (RON)
ON-state resistance (RON) is a particularly important specification, as this determines the voltage drop
across the load switch and power dissipation of the load switch. The larger the RON, the larger the voltage
drop across the load switch will be and the higher the power dissipation. Refer to Section 4 for
calculations on how to determine the voltage drop and power dissipation.
3.3
Voltage (VIN) and Current (IMAX) Rating
One of the key considerations in selecting a load switch is the voltage and current required for the
application. The load switch must be able to support the DC voltage and current that is expected during
steady state operation, as well as the transient voltages and peak currents. It is important to note that
some load switches require a bias voltage to turn on the device and bias the internal circuitry. This bias
voltage is independent from the input voltage.
3.4
Shutdown Current (ISD) and Quiescent Current (IQ)
Quiescent current is the current that the load switch consumes when the load switch is ON. Quiescent
current, in addition to the I2R losses, will determine the amount of power that is consumed by the load
switch when it is powered on. If the load currents are large enough, the power consumed due to quiescent
current is negligible.
Shutdown current determines the amount of power the load switch consumes when it is disabled via the
ON pin. By using a load switch to power down subsystems, there can be a significant decrease in the
standby power of a power rail. Refer to Section 5.2 for an example of how this may be an important
specification.
3.5
Rise Time (tR)
Rise time varies from device to device. The rise time may need to be shorter or longer depending on the
application. In addition to this, inrush current is inversely proportional to rise time. Knowing what inrush
current is acceptable for the system can be beneficial. Refer to Section 4.2 for more details.
3.6
Quick Output Discharge (QOD)
Some load switches have an internal resistor that will pull the output to ground when the switch is turned
off, preventing it from floating. For the quick output discharge feature to function, the voltage on the input
voltage pins need within the operating range.
There are many benefits to having the quick output discharge, such as:
•
•
The output is not left floating and is always in a determined state.
Downstream modules are always turned off completely.
However, there are applications where quick output discharge would not be beneficial.
•
If the output of the load switch was connected to a battery, quick output discharge would cause the
battery to drain when the load switch is disabled via the ON pin.
• If two load switches are being used as a 2 input, 1 output multiplexer – where the outputs are tied
together – the load switches cannot have quick output discharge. Otherwise, power would be
constantly wasted through the quick output discharge, as current will be flowing through the internal
resistor to ground whenever the load switch is disabled via the ON pin.
Load switches can offer the quick output discharge feature in either of these categories:
• Fixed quick output discharge. Devices with a fixed quick output discharge feature an internal, fixed
resistor
• Adjustable quick output discharge. Devices such as TPS22918 have a dedicated pin that allows
adjusting the discharge rate externally.
• No quick output discharge at all.
8
Load Switches: What Are They, Why Do You Need Them And How Do You
Choose The Right One?
SLVA652A – April 2014 – Revised September 2018
Submit Documentation Feedback
Copyright © 2014–2018, Texas Instruments Incorporated
Part Selection and Design Considerations
www.ti.com
3.7
Package Size
Integrated load switch come in all different shapes and sizes. Depending on the application, board space
could be limited. In space constrained systems, it may be necessary to choose a smaller package size.
For example, it may be undesirable to use 0.4 mm pitch devices. Thus, package size should be taken into
consideration when deciding which device to choose.
3.8
Input and Output Capacitance
In load switch applications, input capacitors should be placed to limit the amount of voltage drop on the
input supply caused by the transient inrush currents into the discharged load capacitors. A 1-µF capacitor
between VIN and GND placed near the VIN terminal (CIN) is highly recommended. Higher values of
capacitance will reduce the voltage drop during high-current applications. While this is highly
recommended, it is not necessary for the load switch to operate.
The total output capacitance (CL) between VOUT and GND may cause the voltage on VOUT to exceed
the voltage on VIN when the supply is removed, which may result in current flow from VOUT to VIN
through the body diode in the pass FET for devices without reverse current protection. It is recommended,
but not required, to maintain a 10 to 1 ratio between the input capacitor and the load capacitance to
prevent this.
4
Basic Calculations
This section has calculations that can be used to determine the specifications required for the load switch.
4.1
Voltage Drop
To determine an appropriate device for an application, it is necessary to understand how much voltage
drop across the load switch is acceptable. The lower the acceptable drop, the lower the RON of the load
switch must be. Use Equation 1 to determine the VIN to VOUT voltage drop:
DVmax
RON, max =
ILOAD
(1)
Where:
∆Vmax = maximum voltage drop from VIN to VOUT
ILOAD = load current
RON, max = maximum on-resistance of the device for a given VIN
4.2
Inrush Current
To determine how much inrush current will be caused by the CL capacitor, use Equation 2:
dV
IINRUSH = CL ´ OUT
dt
(2)
Where:
IINRUSH = amount of inrush current caused by CL
CL = total capacitance on VOUT
dVOUT = change in voltage of VOUT when the device is enabled
dt = the time it takes for VOUT voltage to change by dVOUT
The value of the inrush current is determined by the total capacitance on VOUT and the rate of change of
the VOUT voltage. Thus, it is important to ensure that the rise time of the load switch is chosen such that
the device to exceed the maximum specifications – specifically IPLS – upon startup as indicated in the
datasheet. Some devices have a separate CT pin, which allows the rise time to be programmed with an
external capacitor from the CT pin to GND.
4.3
Power Dissipation
The input voltage and load current is necessary to calculate the power dissipated in the load switch. Use
Equation 3 to determine the power dissipation of the load switch:
SLVA652A – April 2014 – Revised September 2018
Submit Documentation Feedback
Load Switches: What Are They, Why Do You Need Them And How Do You
Choose The Right One?
Copyright © 2014–2018, Texas Instruments Incorporated
9
Basic Calculations
www.ti.com
2
PD = VIN ´ IQ + ILOAD
´ RON
(3)
Where:
VIN = input voltage
IQ = quiescent current of the load switch
ILOAD = load current of the load switch
RON = ON-resistance of the load switch
For large load currents, it is possible to ignore the IQ of the device, since the product of VIN and IQ may be
negligible when compared to the losses due to RON.
4.4
Thermal Considerations
The maximum IC junction temperature should be restricted to the maximum junction temperature as
indicated on the absolute maximum table under normal operating conditions. To calculate the maximum
allowable power dissipation, PD(max) for a given output current and ambient temperature, use Equation 4:
TJ(max) - TA
PD(max) =
qJA
(4)
Where:
PD(max) = maximum allowable power dissipation
TJ(max) = maximum allowable junction temperature
TA = ambient temperature of the device
θJA = junction to air thermal impedance. This parameter is highly dependent upon board layout.
5
Design Examples and Application Examples
This section will discuss several examples that utilize the equations that were discussed in the previous
section and present a few configurations of how a load switch can be used in a system.
5.1
RON and Inrush Current Calculations
Listed below are the system specifications for this example:
Power Supply
Load
Load Switch
Design Parameter
Example Value
VIN
5.0 V
ILOAD
500 mA
Max IINRUSH
1A
ΔVMAX
0.3 V
CL
20 µF
PD
150 mW
With this system information, the formulas listed above can be used to develop specifications for a load
switch.
DVmax 0.3 V
RON, max =
=
= 600 mW
ILOAD
0.5 A
(5)
Thus, a device with an RON of 600 mΩ maximum can be chosen.
10
Load Switches: What Are They, Why Do You Need Them And How Do You
Choose The Right One?
SLVA652A – April 2014 – Revised September 2018
Submit Documentation Feedback
Copyright © 2014–2018, Texas Instruments Incorporated
Design Examples and Application Examples
www.ti.com
Conversely, the RON constraint may be driven by a power dissipation budget. If, for example, it is
determined that the maximum power dissipation of the load switch can be 150 mW, the maximum RON,max
can be estimated by:
DVmax 2
0.3V 2
=
= 600mW
PD
150mW
(6)
Next, the minimum rise time for a given load capacitance of 20 µF can be determined.
dV
IINRUSH = CL ´ OUT
dt
dVOUT ´ CL 5V ´ 20µF
dt =
=
= 100μs
1A
IINRUSH
(7)
(8)
Since CL and IINRUSH are system level constraints, it is easy to calculate the rise time of the load switch.
Based on that, the rise time of the load switch can be calculated. A particular load switch can easily be
narrowed down at Load Switches, since the load switches can be sorted by rise time.
5.2
Standby Power Savings
For some battery operated systems, there is a power budget that must be met when operating in different
modes. This section will illustrate the potential power savings with a load switch in the power path.
Some modules, such as LCD displays, power amplifiers, GPS modules, and processors, can have several
mA or more of leakage current in their standby mode, but using a load switch can reduce this current to
µA’s. For example, there is a 5 V rail with a downstream module that has 1 mA of leakage current, the
power dissipated by this rail with the downstream module disabled is:
5 V × 1 mA = 5 mW
With a load switch in the system, the path that the leakage current is shunted to ground through the load
switch and can be reduced to less than 1 µA. Thus, the power dissipated by this rail now becomes:
5 V × 1 µA = 5 µW
Thus, using a load switch will result in power savings by a factor of 1000. As the number of rails increase,
placing additional load switches to reduce the power consumption of standby rails that have excessive
leakage current can result in significant power savings.
5.3
Power Sequencing without Processor Intervention
In the configuration shown in Figure 11, the load switches are arranged such that there is power-up
sequencing without any processor intervention. In the diagram shown below, when the µC GPIO turns on
the load switch, it will provide power to load 1. Once the voltage rail of load 1 has exceeded the VIH level
of the second load switch, the second load switch will turn on. While the diagram below only shows one
additional load switch is being enabled, this can be expanded to allow for one GPIO line to sequence
many load switches. For more information, consider looking at Power Sequencing Reference Design using
Load Switches.
SLVA652A – April 2014 – Revised September 2018
Submit Documentation Feedback
Load Switches: What Are They, Why Do You Need Them And How Do You
Choose The Right One?
Copyright © 2014–2018, Texas Instruments Incorporated
11
Design Examples and Application Examples
Power Supply
www.ti.com
VIN
VOUT
Load 1
Load Switch
ON
GND
µC GPIO
VIN
Power Supply
Load 2
VOUT
Load Switch
ON
GND
Figure 11. Power Sequencing without Processor Intervention
5.4
2-to-1 Power Mux
In the following configuration (Figure 12), two active-low load switches with reverse current protection can
be configured to multiplex two supplies to one load. Active-low load switches are devices that turn on
when the ON pin is pulled low. As shown in the following figure, this configuration gives priority to Power
Supply 1. Whenever Power Supply 1 has a voltage applied, the load switch on the bottom gets disabled
due to the resistor divider. The load switch connected to Power Supply 1 is kept on, but reverse current
protection will prevent current from flowing from VOUT to VIN. Without external resistors, a microcontroller
GPIO can drive the individual ON pins of the load switches. For more information, consider reading Power
Multiplexing Using Load Switches and eFuses.
Power Supply 1
VIN
VOUT
Load Switch
ON
GND
Load
Power Supply 2
VIN
VOUT
Load Switch
ON
GND
Figure 12. 2-to-1 Power Mux Configuration
6
Conclusion
Integrated load switches are an effective solution for achieving power sequencing, power distribution,
controlled rise time, lower standby power, lower BOM count, and smaller PCB area. As shown in this
application note, a load switch from the TPS229xx and TPS2281x family can be easily integrated into any
system with a few simple calculations to lower power consumption and simplify power supply design.
12
Load Switches: What Are They, Why Do You Need Them And How Do You
Choose The Right One?
SLVA652A – April 2014 – Revised September 2018
Submit Documentation Feedback
Copyright © 2014–2018, Texas Instruments Incorporated
References
www.ti.com
7
References
For more details on any of the concepts described in this document, refer to the following documents:
1.
2.
3.
4.
5.
6.
7.
8.
Integrated Load Switches versus Discrete MOSFETs (SLVA716)
Managing Inrush Current (SLVUA74)
Load Switch Thermal Considerations (SLVUA74)
Quiescent Current vs Shutdown Current for Load Switch Power Consumption (SLVA757)
Reverse Current Protection in Load Switches (SLVA730)
Fundamentals of On-Resistance in Load Switches (SLVA771)
Timing of Load Switches (SLVA883)
Power Multiplexing Using Load Switches and eFuses (SLVA811)
For additional information, refer to Load Switches.
SLVA652A – April 2014 – Revised September 2018
Submit Documentation Feedback
Load Switches: What Are They, Why Do You Need Them And How Do You
Choose The Right One?
Copyright © 2014–2018, Texas Instruments Incorporated
13
IMPORTANT NOTICE AND DISCLAIMER
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you
permission to use these resources only for development of an application that uses the TI products described in the resource. Other
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third
party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims,
damages, costs, losses, and liabilities arising out of your use of these resources.
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on
ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable
warranties or warranty disclaimers for TI products.
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2018, Texas Instruments Incorporated
Was this manual useful for you? yes no
Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Related manuals

Download PDF

advertising