Texas Instruments | Low-Power Applications Processor (Rev. B) | Datasheet | Texas Instruments Low-Power Applications Processor (Rev. B) Datasheet

Texas Instruments Low-Power Applications Processor (Rev. B) Datasheet
OMAPL137-HT
www.ti.com
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
Low-Power Applications Processor
Check for Samples: OMAPL137-HT
1 Low-Power Applications Processor
1.1
Features
12345
• Highlights
– Dual Core SoC
• 300-MHz ARM926EJ-S™ RISC MPU
• 300-MHz C674x™ VLIW DSP
– TMS320C674x Fixed/Floating-Point VLIW
DSP Core
– Enhanced Direct-Memory-Access Controller
3 (EDMA3)
– 128K-Byte RAM Shared Memory
– Two External Memory Interfaces
– Two External Memory Interfaces Modules
– LCD Controller
– Two Serial Peripheral Interfaces (SPI)
– Multimedia Card (MMC)/Secure Digital (SD)
– Two Master/Slave Inter-Integrated Circuit
– One Host-Port Interface (HPI)
– USB 1.1 OHCI (Host) With Integrated PHY
(USB1)
• Applications
– Industrial Diagnostics
– Test and measurement
– Military Sonar/Radar
– Medical measurement
– Professional Audio
– Down Hole Industry
• Software Support
– TI DSP/BIOS™
– Chip Support Library and DSP Library
• ARM926EJ-S Core
– 32-Bit and 16-Bit (Thumb®) Instructions
– DSP Instruction Extensions
– Single Cycle MAC
– ARM® Jazelle® Technology
– EmbeddedICE-RT™ for Real-Time Debug
• ARM9 Memory Architecture
• C674x Instruction Set Features
– Superset of the C67x+™ and C64x+™ ISAs
– Up to 3648/2736 C674x MIPS/MFLOPS
– Byte-Addressable (8-/16-/32-/64-Bit Data)
– 8-Bit Overflow Protection
– Bit-Field Extract, Set, Clear
– Normalization, Saturation, Bit-Counting
– Compact 16-Bit Instructions
• C674x Two Level Cache Memory Architecture
– 32K-Byte L1P Program RAM/Cache
– 32K-Byte L1D Data RAM/Cache
– 256K-Byte L2 Unified Mapped RAM/Cache
– Flexible RAM/Cache Partition (L1 and L2)
– 1024KB L2 ROM
• Enhanced Direct-Memory-Access Controller 3
(EDMA3):
– 2 Transfer Controllers
– 32 Independent DMA Channels
– 8 Quick DMA Channels
– Programmable Transfer Burst Size
• TMS320C674x™ Fixed/Floating-Point VLIW DSP
Core
– Load-Store Architecture With Non-Aligned
Support
– 64 General-Purpose Registers (32 Bit)
– Six ALU (32-/40-Bit) Functional Units
• Supports 32-Bit Integer, SP (IEEE Single
Precision/32-Bit) and DP (IEEE Double
Precision/64-Bit) Floating Point
• Supports up to Four SP Additions Per
Clock, Four DP Additions Every 2 Clocks
• Supports up to Two Floating Point (SP or
DP) Approximate Reciprocal or Square
Root Operations Per Cycle
– Two Multiply Functional Units
• Mixed-Precision IEEE Floating Point
Multiply Supported up to:
– 2 SP x SP -> SP Per Clock
– 2 SP x SP -> DP Every Two Clocks
– 2 SP x DP -> DP Every Three Clocks
– 2 DP x DP -> DP Every Four Clocks
• Fixed Point Multiply Supports Two 32 x
32-Bit Multiplies, Four 16 x 16-Bit
Multiplies, or Eight 8 x 8-Bit Multiplies per
Clock Cycle, and Complex Multiples
– Instruction Packing Reduces Code Size
1
2
3
4
5
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
DSP/BIOS, C67x+, C64x+, TMS320C6000, C6000 are trademarks of Texas Instruments.
ARM926EJ-S, EmbeddedICE-RT, ETM9, CoreSight are trademarks of ARM Limited.
ARM, Jazelle are registered trademarks of ARM Limited.
Windows is a registered trademark of Microsoft Corporation.
PRODUCTION DATA information is current as of publication date. Products conform to
specifications per the terms of the Texas Instruments standard warranty. Production
processing does not necessarily include testing of all parameters.
Copyright © 2012–2013, Texas Instruments Incorporated
OMAPL137-HT
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
•
•
•
•
•
•
•
•
•
•
•
•
2
– All Instructions Conditional
– Hardware Support for Modulo Loop
Operation
– Protected Mode Operation
– Exceptions Support for Error Detection and
Program Redirection
128K-Byte RAM Shared Memory
3.3V LVCMOS IOs (except for USB interfaces)
Two External Memory Interfaces:
– EMIFA
• NOR (8-/16-Bit-Wide Data)
• NAND (8-/16-Bit-Wide Data)
• 16-Bit SDRAM With 128MB Address
Space
– EMIFB
• 32-Bit or 16-Bit SDRAM With 256MB
Address Space
Three Configurable 16550 type UART Modules:
– UART0 With Modem Control Signals
– Autoflow control signals (CTS, RTS) on
UART0 only
– 16-byte FIFO
– 16x or 13x Oversampling Option
LCD Controller
Two Serial Peripheral Interfaces (SPI) Each
With One Chip-Select
Multimedia Card (MMC)/Secure Digital (SD)
Card Interface with Secure Data I/O (SDIO)
Two Master/Slave Inter-Integrated Circuit (I2C
Bus™)
One Host-Port Interface (HPI) With 16-Bit-Wide
Muxed Address/Data Bus For High Bandwidth
Programmable Real-Time Unit Subsystem
(PRUSS)
– Two Independent Programmable Realtime
Unit (PRU) Cores
• 32-Bit Load/Store RISC architecture
• 4K Byte instruction RAM per core
• 512 Bytes data RAM per core
• PRU Subsystem (PRUSS) can be disabled
via software to save power
– Standard Power Management Mechanism
• Clock Gating
• Entire Subsystem Under a Single PSC
Clock Gating Domain
– Dedicated Interrupt Controller
– Dedicated Switched Central Resource
USB 1.1 OHCI (Host) With Integrated PHY
(USB1)
USB 2.0 OTG Port With Integrated PHY (USB0):
– USB 2.0 High-/Full-Speed Client
– USB 2.0 High-/Full-/Low-Speed Host
– End Point 0 (Control)
www.ti.com
•
•
•
•
•
•
•
•
•
•
•
•
•
– End Points 1,2,3,4 (Control, Bulk, Interrupt or
ISOC) Rx and Tx
Three Multichannel Audio Serial Ports:
– Six Clock Zones and 28 Serial Data Pins
– Supports TDM, I2S, and Similar Formats
– DIT-Capable (McASP2)
– FIFO buffers for Transmit and Receive
10/100 Mb/s Ethernet MAC (EMAC):
– IEEE 802.3 Compliant (3.3-V I/O Only)
– RMII Media Independent Interface
– Management Data I/O (MDIO) Module
Real-Time Clock With 32 KHz Oscillator and
Separate Power Rail
Crystal oscillators not validated beyond 125°C.
Recommend use of external oscillator.
One 64-Bit General-Purpose Timer
(Configurable as Two 32-Bit Timers)
One 64-Bit General-Purpose Timer/Watchdog
Timer (Configurable as Two 32-bit GeneralPurpose Timers)
Three Enhanced Pulse Width Modulators
(eHRPWM):
– Dedicated 16-Bit Time-Base Counter With
Period And Frequency Control
– 6 Single Edge, 6 Dual Edge Symmetric or 3
Dual Edge Asymmetric Outputs
– Dead-Band Generation
– PWM Chopping by High-Frequency Carrier
– Trip Zone Input
Three 32-Bit Enhanced Capture Modules
(eCAP):
– Configurable as 3 Capture Inputs or 3
Auxiliary Pulse Width Modulator (APWM)
outputs
– Single Shot Capture of up to Four Event
Time-Stamps
Two 32-Bit Enhanced Quadrature Encoder
Pulse Modules (eQEP)
176-pin PowerPADTM Plastic Quad Flat Pack
[PTP suffix], 0.5-mm Pin Pitch
High Temperature (175°C) Application
Texas Instruments High Temperature Products
Use Highly Optimized Silicon Solutions with
Design and Process Enhancements to
Maximize Performance over Extended
Temperatures. All Devices are Characterized
and Qualified for 1000 Hours Continuous
Operating Life at Maximum Rated Temperature
Community Resources
– TI E2E Community
– TI Embedded Processors Wiki
Low-Power Applications Processor
Copyright © 2012–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
OMAPL137-HT
www.ti.com
1.2
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
Trademarks
DSP/BIOS, TMS320C6000™, C6000, TMS320, TMS320C62x, and TMS320C67x are trademarks of
Texas Instruments.
All trademarks are the property of their respective owners.
Low-Power Applications Processor
Copyright © 2012–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
3
OMAPL137-HT
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
1.3
www.ti.com
Description
The OMAPL137 is a low-power applications processor based on an ARM926EJ-S and a C674x DSP core.
It consumes significantly lower power than other members of the TMS320C6000 platform of DSPs.
The OMAPL137 enables OEMs and ODMs to quickly bring to market devices featuring robust operating
systems support, rich user interfaces, and high processing performance life through the maximum
flexibility of a fully integrated mixed processor solution.
The dual-core architecture of the OMAPL137 provides benefits of both DSP and Reduced Instruction Set
Computer (RISC) technologies, incorporating a high-performance TMS320C674x DSP core and an
ARM926EJ-S core.
The ARM926EJ-S is a 32-bit RISC processor core that performs 32-bit or 16-bit instructions and
processes 32-bit, 16-bit, or 8-bit data. The core uses pipelining so that all parts of the processor and
memory system can operate continuously.
The ARM core has a coprocessor 15 (CP15), protection module, and Data and program Memory
Management Units (MMUs) with table look-aside buffers. It has separate 16K-byte instruction and 16Kbyte data caches. Both are four-way associative with virtual index virtual tag (VIVT). The ARM core also
has a 8KB RAM (Vector Table) and 64KB ROM.
The OMAPL137 DSP core uses a two-level cache-based architecture. The Level 1 program cache (L1P)
is a 32KB direct mapped cache and the Level 1 data cache (L1D) is a 32KB 2-way set-associative cache.
The Level 2 program cache (L2P) consists of a 256KB memory space that is shared between program
and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two.
Although the DSP L2 is accessible by ARM and other hosts in the system, an additional 128KB RAM
shared memory is available for use by other hosts without affecting DSP performance.
The peripheral set includes: a 10/100 Mb/s Ethernet MAC (EMAC) with a Management Data Input/Output
(MDIO) module; two inter-integrated circuit (I2C) bus interfaces; 3 multichannel audio serial ports (McASP)
with 16/12/4 serializers and FIFO buffers; 2 64-bit general-purpose timers each configurable (one
configurable as watchdog); a configurable 16-bit host port interface (HPI) ; up to 8 banks of 16 pins of
general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed
with other peripherals; 3 UART interfaces (one with RTS and CTS); 3 enhanced high-resolution pulse
width modulator (eHRPWM) peripherals; 3 32-bit enhanced capture (eCAP) module peripherals which can
be configured as 3 capture inputs or 3 auxiliary pulse width modulator (APWM) outputs; 2 32-bit enhanced
quadrature pulse (eQEP) peripherals; and 2 external memory interfaces: an asynchronous and SDRAM
external memory interface (EMIFA) for slower memories or peripherals, and a higher speed memory
interface (EMIFB) for SDRAM.
The Ethernet Media Access Controller (EMAC) provides an efficient interface between the OMAP-L137
and the network. The EMAC supports both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and
100 Mbps in either half- or full-duplex mode. Additionally an Management Data Input/Output (MDIO)
interface is available for PHY configuration.
The HPI, I2C, SPI, USB1.1 and USB2.0 ports allow the device to easily control peripheral devices and/or
communicate with host processors.
The rich peripheral set provides the ability to control external peripheral devices and communicate with
external processors. For details on each of the peripherals, see the related sections later in this document
and the associated peripheral reference guides.
The device has a complete set of development tools for both the ARM and DSP. These include C
compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows® debugger
interface for visibility into source code execution.
4
Low-Power Applications Processor
Copyright © 2012–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
OMAPL137-HT
www.ti.com
1.4
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
Functional Block Diagram
Figure 1-1 shows the functional block diagram of the device.
JTAG Interface
ARM Subsystem
DSP Subsystem
ARM926EJ-S CPU
With MMU
C674x™
DSP CPU
4 KB ETB
AET
System Control
PLL/Clock
Generator
w/OSC
Input
Clock(s)
GeneralPurpose
Timer
GeneralPurpose
Timer
(Watchdog)
16 KB
16 KB
I-Cache D-Cache
Power/Sleep
Controller
RTC/
Pin
32-KHz Multiplexing
OSC
32 KB
L1 Pgm
32 KB
L1 RAM
8 KB RAM
(Vector Table)
256 KB L2 RAM
64 KB ROM
BOOT ROM
Switched Central Resource (SCR)
Peripherals
DMA
GPIO
McASP
w/FIFO
(3)
EDMA3
I2C
(2)
eCAP
(3)
SPI
(2)
UART
(3)
Internal Memory
LCD
Ctlr
Connectivity
Control Timers
eHRPWM
(3)
Display
Serial Interfaces
Audio Ports
eQEP
(2)
USB2.0
OTG Ctlr
PHY
USB1.1
OHCI Ctlr
PHY
(10/100)
EMAC
(RMII)
MDIO
128 KB
RAM
PRU
Subsystem
External Memory Interfaces
HPI
MMC/SD
(8b)
EMIFA(8b/16B)
NAND/Flash
16b SDRAM
EMIFB
SDRAM Only
(16b/32b)
Note: Not all peripherals are available at the same time due to multiplexing.
Figure 1-1. OMAPL137 Functional Block Diagram
Low-Power Applications Processor
Copyright © 2012–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
5
OMAPL137-HT
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
1
Low-Power Applications Processor ................. 1
5.12
MMC / SD / SDIO (MMCSD)
............................................. 1
1.2
Trademarks .......................................... 3
1.3
Description ........................................... 4
1.4
Functional Block Diagram ........................... 5
Device Overview ........................................ 7
2.1
Device Characteristics ............................... 7
2.2
Device Compatibility ................................. 8
2.3
ARM Subsystem ..................................... 8
2.4
DSP Subsystem .................................... 11
2.5
Memory Map Summary ............................ 17
2.6
Bare Die Information ............................... 21
2.7
Pin Assignments .................................... 28
2.8
Terminal Functions ................................. 29
Device Configuration ................................. 45
3.1
Introduction ......................................... 45
3.2
Boot Modes Supported ............................. 45
3.3
SYSCFG Module ................................... 45
Device Operating Conditions ....................... 48
5.13
Ethernet Media Access Controller (EMAC) ......... 92
5.14
5.15
Management Data Input/Output (MDIO) ........... 98
Multichannel Audio Serial Ports (McASP0, McASP1,
and McASP2) ..................................... 100
5.16
Serial Peripheral Interface Ports (SPI0, SPI1)
114
5.17
Enhanced Capture Module (eCAP)
132
5.18
5.19
135
Enhanced High-Resolution Pulse-Width Modulator
(eHRPWM) ........................................ 137
1.1
2
3
4
www.ti.com
Features
4.1
Absolute Maximum Ratings Over Operating Case
Temperature Range
(Unless Otherwise Noted) ................................. 48
5
Recommended Operating Conditions
49
4.3
Electrical Characteristics
50
Peripheral Information and Electrical
Specifications .......................................... 51
5.1
5.2
Parameter Information .............................. 51
Recommended Clock and Control Signal Transition
Behavior ............................................ 51
5.3
.....................................
Reset ...............................................
Crystal Oscillator or External Clock Input ..........
Clock PLLs .........................................
Interrupts ............................................
General-Purpose Input/Output (GPIO) .............
EDMA ...............................................
External Memory Interface A (EMIFA) .............
External Memory Interface B (EMIFB) .............
Power Supplies
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
6
..............
...........................
4.2
6
7
.......................
....
...............
Enhanced Quadrature Encoder Module (eQEP) ..
90
5.20
LCD Controller
Timers
155
5.22
5.23
....................................
.............................................
Inter-Integrated Circuit Serial Ports (I2C0, I2C1) .
140
5.21
157
Universal Asynchronous Receiver/Transmitter
(UART) ............................................ 161
............
........................
5.26 Universal Host-Port Interface (UHPI) .............
5.27 Memory Protection Units (MPU) ..................
5.28 Power and Sleep Controller (PSC) ................
5.29 Emulation Logic ...................................
5.30 Real Time Clock (RTC) ...........................
Device and Document Support ...................
6.1
Device Support ....................................
6.2
Documentation Support ...........................
163
5.24
USB1 Host Controller (USB1.1 OHCI)
5.25
USB0 OTG (USB2.0 OTG)
164
172
176
178
181
188
191
191
192
Mechanical Packaging and Orderable
Information ............................................ 193
7.1
Device and Development-Support Tool
Nomenclature ..................................... 193
52
7.2
Packaging Materials Information
53
7.3
7.4
Thermal Data for PTP ............................. 195
Supplementary Information About the 176-pin PTP
PowerPAD™ Package ............................ 195
55
56
59
67
70
75
84
..................
............................
7.6
Mechanical Drawings .............................
7.7
dMAX ..............................................
7.8
Key Manager ......................................
7.9
SECCTRL .........................................
Revision History ...........................................
7.5
Packaging Information
Contents
194
196
196
198
198
199
200
Copyright © 2012–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
OMAPL137-HT
www.ti.com
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
2 Device Overview
2.1
Device Characteristics
Table 2-1 provides an overview of OMAPL137. The table shows significant features of the device,
including the capacity of on-chip RAM, peripherals, and the package type with pin count.
Table 2-1. Characteristics of the OMAPL137 Processor
HARDWARE FEATURES
EMIFB
SDRAM only, 16-bit bus width, up to 256 Mbit
EMIFA
Asynchronous (8-bit bus width) RAM, Flash, NOR, NAND
Flash Card Interface
EDMA3
Peripherals
Not all peripherals pins
are available at the
same time (for more
detail, see the Device
Configurations section).
MMC and SD cards supported.
32 independent channels, 8 QDMA channels, 2 Transfer controllers
dMAX
16 independent channels
Timers
2 64-Bit General Purpose (configurable as 2 separate 32-bit timers, 1 configurable as
Watch Dog)
UART
3 (one with RTS and CTS flow control)
SPI
2 (Each with one hardware chip select)
I2C
2 (both Master/Slave)
Multichannel Audio
Serial Port [McASP]
10/100 Ethernet MAC
with Management Data
I/O
eHRPWM
3 (each with transmit/receive, FIFO buffer, 16/12/4 serializers)
1 (RMII Interface)
6 Single Edge, 6 Dual Edge Symmetric, or 3 Dual Edge Asymmetric Outputs
eCAP
3 32-bit capture inputs or 3 32-bit auxiliary PWM outputs
eQEP
2 32-bit QEP channels with 4 inputs/channel
UHPI
-
USB 2.0 (USB0)
Full Speed Host Or Device with On-Chip PHY
USB 1.1 (USB1)
-
General-Purpose
Input/Output Port
8 banks of 16-bit
LCD Controller
RTC
Size (Bytes)
1
1 (32 KHz oscillator and seperate power trail. Provides time and date tracking and alarm
capability.)
488KB RAM, 1088KB ROM
DSP
32KB L1 Program (L1P)/Cache (up to 32KB)
32KB L1 Data (L1D)/Cache (up to 32KB)
256KB Unified Mapped RAM/Cache (L2)
1024KB ROM (L2)
DSP Memories can be made accessible to ARM, EDMA3, and other peripherals.
On-Chip Memory
Organization
ARM
16KB I-Cache
16KB D-Cache
8KB RAM (Vector Table)
64KB ROM
ADDITIONAL SHARED MEMORY
128KB RAM
C674x CPU ID + CPU
Rev ID
Control Status Register
(CSR.[31:16])
0x1400
C674x Megamodule
Revision
Revision ID Register
(MM_REVID[15:0])
0x0000
JTAG BSDL_ID
DEVIDR0 register
CPU Frequency
MHz
0x8B7DF02F
674x DSP 300 MHz
ARM926 300 MHz
Device Overview
Copyright © 2012–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
7
OMAPL137-HT
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
www.ti.com
Table 2-1. Characteristics of the OMAPL137 Processor (continued)
HARDWARE FEATURES
Cycle Time
Voltage
ns
ARM926 3.33 ns
Core (V)
1.2 V
I/O (V)
3.3 V
Package
24 mm x 24 mm, 176-Pin, 0.5 mm pitch, TQFP (PTP)
Product Status (1)
(1)
674x DSP 3.33 ns
Product Preview (PP),
Advance Information
(AI),
or Production Data
(PD)
AI
ADVANCE INFORMATION concerns new products in the sampling or preproduction phase of development. Characteristic data and
other specifications are subject to change without notice.
PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas
Instruments standard warranty. Production processing does not necessarily include testing of all parameters.
2.2
Device Compatibility
The ARM926EJ-S RISC CPU is compatible with other ARM9 CPUs from ARM Holdings plc.
The C674x DSP core is code-compatible with the C6000™ DSP platform and supports features of both
the C64x+ and C67x+ DSP families.
2.3
ARM Subsystem
The ARM Subsystem includes the following features:
• ARM926EJ-S RISC processor
• ARMv5TEJ (32/16-bit) instruction set
• Little endian
• System Control Co-Processor 15 (CP15)
• MMU
• 16KB Instruction cache
• 16KB Data cache
• Write Buffer
• Embedded Trace Module and Embedded Trace Buffer (ETM/ETB)
• ARM Interrupt controller
2.3.1
ARM926EJ-S RISC CPU
The ARM Subsystem integrates the ARM926EJ-S processor. The ARM926EJ-S processor is a member of
ARM9 family of general-purpose microprocessors. This processor is targeted at multi-tasking applications
where full memory management, high performance, low die size, and low power are all important. The
ARM926EJ-S processor supports the 32-bit ARM and 16 bit THUMB instruction sets, enabling the user to
trade off between high performance and high code density. Specifically, the ARM926EJ-S processor
supports the ARMv5TEJ instruction set, which includes features for efficient execution of Java byte codes,
providing Java performance similar to Just in Time (JIT) Java interpreter, but without associated code
overhead.
The ARM926EJ-S processor supports the ARM debug architecture and includes logic to assist in both
hardware and software debug. The ARM926EJ-S processor has a Harvard architecture and provides a
complete high performance subsystem, including:
• ARM926EJ -S integer core
• CP15 system control coprocessor
• Memory Management Unit (MMU)
8
Device Overview
Copyright © 2012–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
OMAPL137-HT
www.ti.com
•
•
•
•
•
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
Separate instruction and data Caches
Write buffer
Separate instruction and data (internal RAM) interfaces
Separate instruction and data AHB bus interfaces
Embedded Trace Module and Embedded Trace Buffer (ETM/ETB)
For more complete details on the ARM9, refer to the ARM926EJ-S Technical Reference Manual, available
at http://www.arm.com
2.3.2
CP15
The ARM926EJ-S system control coprocessor (CP15) is used to configure and control instruction and
data caches, Memory Management Unit (MMU), and other ARM subsystem functions. The CP15 registers
are programmed using the MRC and MCR ARM instructions, when the ARM in a privileged mode such as
supervisor or system mode.
2.3.3
MMU
A single set of two level page tables stored in main memory is used to control the address translation,
permission checks and memory region attributes for both data and instruction accesses. The MMU uses a
single unified Translation Lookaside Buffer (TLB) to cache the information held in the page tables. The
MMU features are:
• Standard ARM architecture v4 and v5 MMU mapping sizes, domains and access protection scheme.
• Mapping sizes are:
– 1MB (sections)
– 64KB (large pages)
– 4KB (small pages)
– 1KB (tiny pages)
• Access permissions for large pages and small pages can be specified separately for each quarter of
the page (subpage permissions)
• Hardware page table walks
• Invalidate entire TLB, using CP15 register 8
• Invalidate TLB entry, selected by MVA, using CP15 register 8
• Lockdown of TLB entries, using CP15 register 10
2.3.4
Caches and Write Buffer
The size of the Instruction Cache is 16KB, Data cache is 16KB. Additionally, the Caches have the
following features:
• Virtual index, virtual tag, and addressed using the Modified Virtual Address (MVA)
• Four-way set associative, with a cache line length of eight words per line (32-bytes per line) and with
two dirty bits in the Dcache
• Dcache supports write-through and write-back (or copy back) cache operation, selected by memory
region using the C and B bits in the MMU translation tables.
• Critical-word first cache refilling
• Cache lockdown registers enable control over which cache ways are used for allocation on a line fill,
providing a mechanism for both lockdown, and controlling cache corruption
• Dcache stores the Physical Address TAG (PA TAG) corresponding to each Dcache entry in the TAG
RAM for use during the cache line write-backs, in addition to the Virtual Address TAG stored in the
TAG RAM. This means that the MMU is not involved in Dcache write-back operations, removing the
possibility of TLB misses related to the write-back address.
• Cache maintenance operations provide efficient invalidation of, the entire Dcache or Icache, regions of
the Dcache or Icache, and regions of virtual memory.
Device Overview
Copyright © 2012–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
9
OMAPL137-HT
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
www.ti.com
The write buffer is used for all writes to a noncachable bufferable region, write-through region and write
misses to a write-back region. A separate buffer is incorporated in the Dcache for holding write-back for
cache line evictions or cleaning of dirty cache lines. The main write buffer has 16-word data buffer and a
four-address buffer. The Dcache write-back has eight data word entries and a single address entry.
2.3.5
Advanced High-Performance Bus (AHB)
The ARM Subsystem uses the AHB port of the ARM926EJ-S to connect the ARM to the Config bus and
the external memories. Arbiters are employed to arbitrate access to the separate D-AHB and I-AHB by the
Config Bus and the external memories bus.
2.3.6
Embedded Trace Macrocell (ETM) and Embedded Trace Buffer (ETB)
To support real-time trace, the ARM926EJ-S processor provides an interface to enable connection of an
Embedded Trace Macrocell (ETM). The ARM926EJ-S Subsystem in the device also includes the
Embedded Trace Buffer (ETB). The ETM consists of two parts:
• Trace Port provides real-time trace capability for the ARM9.
• Triggering facilities provide trigger resources, which include address and data comparators, counter,
and sequencers.
The device trace port is not pinned out and is instead only connected to the Embedded Trace Buffer. The
ETB has a 4KB buffer memory. ETB enabled debug tools are required to read/interpret the captured trace
data.
This device uses ETM9™ version r2p2 and ETB version r0p1. Documentation on the ETM and ETB is
available from ARM Ltd. Reference the ' CoreSight™ ETM9™ Technical Reference Manual, revision r0p1'
and the 'ETM9 Technical Reference Manual, revision r2p2'.
2.3.7
ARM Memory Mapping
By default the ARM has access to most on and off chip memory areas, including the DSP Internal
memories, EMIFA, EMIFB, and the additional 128K byte on chip shared SRAM. Likewise almost all of the
on chip peripherals are accessible to the ARM by default.
To improve security and/or robustness the device has extensive memory and peripheral protection units
which can be configured to limit access rights to the various on / off chip resources to specific hosts;
including the ARM as well as other master peripherals. This allows the system tasks to be partitioned
between the ARM and DSP as best suites the particular application; while enhancing the overall
robustness of the solution.
See Table 2-3 for a detailed top level OMAPL137 memory map that includes the ARM memory space.
10
Device Overview
Copyright © 2012–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
OMAPL137-HT
www.ti.com
2.4
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
DSP Subsystem
The DSP Subsystem includes the following features:
• C674x DSP CPU
• 32KB L1 Program (L1P)/Cache (up to 32KB)
• 32KB L1 Data (L1D)/Cache (up to 32KB)
• 256KB Unified Mapped RAM/Cache (L2)
• 1MB Mask-programmable ROM
• Little endian
32K Bytes
L1P RAM/
Cache
256K Bytes
L2 RAM
Boot ROM
256
256
256
256
Cache Control
Memory Protect
Cache Control
Memory Protect
L1P
Bandwidth Mgmt
L2
Bandwidth Mgmt
256
256
256
Instruction Fetch
256
Power Down
Interrupt
Controller
C674x
Fixed/Floating Point CPU
IDMA
Register
File A
Register
File B
64
64
256
CFG
Bandwidth Mgmt
Memory Protect
EMC
L1D
Cache Control
32
MDMA
8 x 32
64
Configuration
Peripherals
Bus
SDMA
64
64
64
High
Performance
Switch Fabric
32K Bytes
L1D RAM/
Cache
Figure 2-1. C674x Megamodule Block Diagram
Device Overview
Copyright © 2012–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
11
OMAPL137-HT
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
2.4.1
www.ti.com
C674x DSP CPU Description
The C674x Central Processing Unit (CPU) consists of eight functional units, two register files, and two
data paths as shown in Figure 2-2. The two general-purpose register files (A and B) each contain 32 32bit registers for a total of 64 registers. The general-purpose registers can be used for data or can be data
address pointers. The data types supported include packed 8-bit data, packed 16-bit data, 32-bit data, 40bit data, and 64-bit data. Values larger than 32 bits, such as 40-bit-long or 64-bit-long values are stored in
register pairs, with the 32 LSBs of data placed in an even register and the remaining 8 or 32 MSBs in the
next upper register (which is always an odd-numbered register).
The eight functional units (.M1, .L1, .D1, .S1, .M2, .L2, .D2, and .S2) are each capable of executing one
instruction every clock cycle. The .M functional units perform all multiply operations. The .S and .L units
perform a general set of arithmetic, logical, and branch functions. The .D units primarily load data from
memory to the register file and store results from the register file into memory.
The C674x CPU combines the performance of the C64x+ core with the floating-point capabilities of the
C67x core.
Each C674x .M unit can perform one of the following each clock cycle: one 32 x 32 bit multiply, one 16 x
32 bit multiply, two 16 x 16 bit multiplies, two 16 x 32 bit multiplies, two 16 x 16 bit multiplies with
add/subtract capabilities, four 8 x 8 bit multiplies, four 8 x 8 bit multiplies with add operations, and four
16 x 16 multiplies with add/subtract capabilities (including a complex multiply). There is also support for
Galois field multiplication for 8-bit and 32-bit data. Many communications algorithms such as FFTs and
modems require complex multiplication. The complex multiply (CMPY) instruction takes four 16-bit inputs
and produces a 32-bit real and a 32-bit imaginary output. There are also complex multiplies with rounding
capability that produces one 32-bit packed output that contain 16-bit real and 16-bit imaginary values. The
32 x 32 bit multiply instructions provide the extended precision necessary for audio and other highprecision algorithms on a variety of signed and unsigned 32-bit data types.
The .L or (Arithmetic Logic Unit) now incorporates the ability to do parallel add/subtract operations on a
pair of common inputs. Versions of this instruction exist to work on 32-bit data or on pairs of 16-bit data
performing dual 16-bit add and subtracts in parallel. There are also saturated forms of these instructions.
The C674x core enhances the .S unit in several ways. On previous cores, dual 16-bit MIN2 and MAX2
comparisons were only available on the .L units. On the C674x core they are also available on the .S unit
which increases the performance of algorithms that do searching and sorting. Finally, to increase data
packing and unpacking throughput, the .S unit allows sustained high performance for the quad 8-bit/16-bit
and dual 16-bit instructions. Unpack instructions prepare 8-bit data for parallel 16-bit operations. Pack
instructions return parallel results to output precision including saturation support.
Other new features include:
• SPLOOP - A small instruction buffer in the CPU that aids in creation of software pipelining loops where
multiple iterations of a loop are executed in parallel. The SPLOOP buffer reduces the code size
associated with software pipelining. Furthermore, loops in the SPLOOP buffer are fully interruptible.
• Compact Instructions - The native instruction size for the C6000 devices is 32 bits. Many common
instructions such as MPY, AND, OR, ADD, and SUB can be expressed as 16 bits if the C674x
compiler can restrict the code to use certain registers in the register file. This compression is
performed by the code generation tools.
• Instruction Set Enhancement - As noted above, there are new instructions such as 32-bit
multiplications, complex multiplications, packing, sorting, bit manipulation, and 32-bit Galois field
multiplication.
• Exceptions Handling - Intended to aid the programmer in isolating bugs. The C674x CPU is able to
detect and respond to exceptions, both from internally detected sources (such as illegal op-codes) and
from system events (such as a watchdog time expiration).
• Privilege - Defines user and supervisor modes of operation, allowing the operating system to give a
basic level of protection to sensitive resources. Local memory is divided into multiple pages, each with
read, write, and execute permissions.
12
Device Overview
Copyright © 2012–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
OMAPL137-HT
www.ti.com
•
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
Time-Stamp Counter - Primarily targeted for Real-Time Operating System (RTOS) robustness, a freerunning time-stamp counter is implemented in the CPU which is not sensitive to system stalls.
For more details on the C674x CPU and its enhancements over the C64x architecture, see the following
documents:
• TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide (literature number SPRU732)
• TMS320C64x Technical Overview (literature number SPRU395)
Device Overview
Copyright © 2012–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
13
OMAPL137-HT
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
www.ti.com
src1
Odd
register
file A
(A1, A3,
A5...A31)
src2
.L1
odd dst
Even
register
file A
(A0, A2,
A4...A30)
(D)
even dst
long src
ST1b
ST1a
8
32 MSB
32 LSB
long src
8
even dst
odd dst
.S1
src1
Data path A
(D)
src2
.M1
dst2
dst1
src1
32
32
src2
LD1b
LD1a
(A)
(B)
(C)
32 MSB
32 LSB
dst
DA1
.D1
src1
src2
2x
1x
.D2
LD2a
LD2b
Odd
register
file B
(B1, B3,
B5...B31)
src2
DA2
src1
dst
32 LSB
32 MSB
src2
.M2
Even
register
file B
(B0, B2,
B4...B30)
(C)
src1
dst2
32
(B)
dst1
32
(A)
src2
src1
.S2 odd dst
even dst
long src
Data path B
ST2a
ST2b
(D)
8
32 MSB
32 LSB
long src
even dst
.L2
8
(D)
odd dst
src2
src1
Control
Register
Figure 2-2. TMS320C674x™ CPU (DSP Core) Data Paths
2.4.2
DSP Memory Mapping
The DSP memory map is shown in Section 2.5
14
Device Overview
Copyright © 2012–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
OMAPL137-HT
www.ti.com
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
By default the DSP also has access to most on and off chip memory areas, with the exception of the ARM
RAM, ROM, and AINTC interrupt controller. The DSP also boots first, and must release the ARM from
reset before the ARM can execute any code.
Additionally, the DSP megamodule includes the capability to limit access to its internal memories through
its SDMA port; without needing an external MPU unit.
2.4.2.1
ARM Internal Memories
The DSP does not have access to the ARM internal memory.
2.4.2.2
External Memories
The DSP has access to the following External memories:
• Asynchronous EMIF / SDRAM / NAND / NOR Flash (EMIFA)
• SDRAM (EMIFB)
2.4.2.3
DSP Internal Memories
The DSP has access to the following DSP memories:
• L2 RAM
• L1P RAM
• L1D RAM
2.4.2.4
C674x CPU
The C674x core uses a two-level cache-based architecture. The Level 1 Program cache (L1P) is 32 KB
direct mapped cache and the Level 1 Data cache (L1D) is 32 KB 2-way set associated cache. The Level 2
memory/cache (L2) consists of a 256 KB memory space that is shared between program and data space.
L2 memory can be configured as mapped memory, cache, or a combination of both.
Table 2-2 shows a memory map of the C674x CPU cache registers for the device.
Table 2-2. C674x Cache Registers
HEX ADDRESS RANGE
REGISTER ACRONYM
0x0184 0000
L2CFG
0x0184 0020
L1PCFG
0x0184 0024
L1PCC
0x0184 0040
L1DCFG
0x0184 0044
L1DCC
0x0184 0048 - 0x0184 0FFC
-
DESCRIPTION
L2 Cache configuration register
L1P Size Cache configuration register
L1P Freeze Mode Cache configuration register
L1D Size Cache configuration register
L1D Freeze Mode Cache configuration register
Reserved
0x0184 1000
EDMAWEIGHT
0x0184 1004 - 0x0184 1FFC
-
L2 EDMA access control register
0x0184 2000
L2ALLOC0
L2 allocation register 0
0x0184 2004
L2ALLOC1
L2 allocation register 1
0x0184 2008
L2ALLOC2
L2 allocation register 2
0x0184 200C
L2ALLOC3
L2 allocation register 3
0x0184 2010 - 0x0184 3FFF
-
0x0184 4000
L2WBAR
L2 writeback base address register
0x0184 4004
L2WWC
L2 writeback word count register
0x0184 4010
L2WIBAR
L2 writeback invalidate base address register
0x0184 4014
L2WIWC
L2 writeback invalidate word count register
0x0184 4018
L2IBAR
L2 invalidate base address register
0x0184 401C
L2IWC
L2 invalidate word count register
0x0184 4020
L1PIBAR
Reserved
Reserved
L1P invalidate base address register
Device Overview
Copyright © 2012–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
15
OMAPL137-HT
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
www.ti.com
Table 2-2. C674x Cache Registers (continued)
HEX ADDRESS RANGE
REGISTER ACRONYM
0x0184 4024
L1PIWC
0x0184 4030
L1DWIBAR
L1D writeback invalidate base address register
0x0184 4034
L1DWIWC
L1D writeback invalidate word count register
0x0184 4038
-
0x0184 4040
L1DWBAR
L1D Block Writeback
0x0184 4044
L1DWWC
L1D Block Writeback
0x0184 4048
L1DIBAR
L1D invalidate base address register
L1D invalidate word count register
Reserved
0x0184 404C
L1DIWC
0x0184 4050 - 0x0184 4FFF
-
0x0184 5000
L2WB
0x0184 5004
L2WBINV
0x0184 5008
L2INV
0x0184 500C - 0x0184 5027
-
0x0184 5028
L1PINV
DESCRIPTION
L1P invalidate word count register
Reserved
L2 writeback all register
L2 writeback invalidate all register
L2 Global Invalidate without writeback
Reserved
L1P Global Invalidate
0x0184 502C - 0x0184 5039
-
0x0184 5040
L1DWB
Reserved
0x0184 5044
L1DWBINV
L1D Global Writeback
L1D Global Writeback with Invalidate
0x0184 5048
L1DINV
L1D Global Invalidate without writeback
0x0184 8000 – 0x0184 80FF
MAR0 - MAR63
Reserved 0x0000 0000 – 0x3FFF FFFF
0x0184 8100 – 0x0184 817F
MAR64 – MAR95
Memory Attribute Registers for EMIFA SDRAM Data (CS0) 0x4000 0000 –
0x5FFF FFFF
0x0184 8180 – 0x0184 8187
MAR96 - MAR97
Memory Attribute Registers for EMIFA Async Data (CS2) 0x6000 0000 –
0x61FF FFFF
0x0184 8188 – 0x0184 818F
MAR98 – MAR99
Memory Attribute Registers for EMIFA Async Data (CS2) 0x6200 0000 –
0x63FF FFFF
0x0184 8190 – 0x0184 8197
MAR100 – MAR101
Memory Attribute Registers for EMIFA Async Data (CS2) 0x6400 0000 –
0x65FF FFFF
0x0184 8198 – 0x0184 819F
MAR102 – MAR103
Memory Attribute Registers for EMIFA Async Data (CS2) 0x6600 0000 –
0x67FF FFFF
0x0184 81A0 – 0x0184 81FF
MAR104 – MAR127
Reserved 0x6800 0000 – 0x7FFF FFFF
0x0184 8200
MAR128
0x0184 8204 – 0x0184 82FF
MAR129 – MAR191
Reserved 0x8200 0000 – 0xBFFF FFFF
0x0184 8300 – 0x0184 837F
MAR192 – MAR223
Memory Attribute Registers for EMIFD SDRAM Data (CS2) 0xC000 0000 –
0xDFFF FFFF
0x0184 8380 – 0x0184 83FF
MAR224 – MAR255
Reserved 0xE000 0000 – 0xFFFF FFFF
Memory Attribute Register for Shared RAM 0x8000 0000 – 0x8001 FFFF
Reserved 0x8002 0000 – 0x81FF FFFF
See Table 2-3 for a detailed top level OMAPL137 memory map that includes the DSP memory space.
16
Device Overview
Copyright © 2012–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
OMAPL137-HT
www.ti.com
2.5
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
Memory Map Summary
Table 2-3. OMAPL137 Top Level Memory Map
Start Address
End Address
Size
0x0000 0000
0x0000 0FFF
4K
0x0000 1000
0x006F FFFF
6M +
1020K
0x0070 0000
0x007F FFFF
1024K
-
DSP L2 ROM
0x0080 0000
0x0083 FFFF
256K
-
DSP L2 RAM
0x0084 0000
0x00DF FFFF
5M +
768K
0x00E0 0000
0x00E0 7FFF
32K
0x00E0 8000
0x00EF FFFF
992K
ARM Mem
Map
DSP Mem Map
EDMA Mem
Map
-
dMAX Mem
Map
Master
Peripheral
Mem Map
dMAX Local
Address
Space
-
LCDC
Mem
Map
-
DSP L1P RAM
-
0x00F0 0000
0x00F0 7FFF
32K
0x00F0 8000
0x017F FFFF
8M +
992K
-
DSP L1D RAM
-
0x0180 0000
0x0180 FFFF
64K
-
DSP Interrupt
Controller
-
0x0181 0000
0x0181 0FFF
4K
-
DSP Powerdown
Controller
-
0x0181 1000
0x0181 1FFF
4K
-
DSP Security ID
-
0x0181 2000
0x0181 2FFF
4K
-
DSP Revision ID
-
0x0181 3000
0x0181 FFFF
52K
-
-
-
0x0182 0000
0x0182 FFFF
64K
-
DSP EMC
-
0x0183 0000
0x0183 FFFF
64K
-
DSP Internal
Reserved
-
0x0184 0000
0x0184 FFFF
64K
-
DSP Memory
System
-
0x0185 0000
0x0187 FFFF
192K
-
0x0188 0000
0x01BC 03FF
3M +
257K
-
0x01BC 0400
0x01BC 042F
48
-
0x01BC 0430
0x01BC 044F
32
0x01BC 0000
0x01BC 0FFF
4K
ARM ETB
memory
-
0x01BC 1000
0x01BC 17FF
2K
ARM ETB reg
-
0x01BC 1800
0x01BC 18FF
256
ARM Ice
Crusher
-
0x01BC 0500
0x01BC FFFF
62K +
768
-
0x01BD 0000
0x01BD FFFF
64K
-
0x01BE 0000
0x01BF FFFF
128K
-
0x01C0 0000
0x01C0 7FFF
32K
EDMA3 CC
-
0x01C0 8000
0x01C0 83FF
1024
EDMA3 TC0
-
0x01C0 8400
0x01C0 87FF
1024
EDMA3 TC1
-
0x01C0 8800
0x01C0 FFFF
30K
0x01C1 0000
0x01C1 0FFF
4K
PSC 0
-
0x01C1 1000
0x01C1 1FFF
4K
PLL Controller
-
0x01C1 2000
0x01C1 3FFF
8K
0x01C1 4000
0x01C1 4FFF
4K
-
-
-
SYSCFG
-
Device Overview
Copyright © 2012–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
17
OMAPL137-HT
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
www.ti.com
Table 2-3. OMAPL137 Top Level Memory Map (continued)
Start Address
End Address
Size
ARM Mem
Map
DSP Mem Map
EDMA Mem
Map
0x01C1 5000
0x01C1 5FFF
4K
-
0x01C1 6000
0x01C1 6FFF
4K
-
dMAX Mem
Map
Master
Peripheral
Mem Map
LCDC
Mem
Map
0x01C1 7000
0x01C1 7FFF
4K
0x01C1 8000
0x01C1 FFFF
32K
-
0x01C2 0000
0x01C2 0FFF
4K
Timer64P 0
-
0x01C2 1000
0x01C2 1FFF
4K
Timer64P 1
-
0x01C2 2000
0x01C2 2FFF
4K
I2C 0
-
0x01C2 3000
0x01C2 3FFF
4K
RTC
0x01C2 4000
0x01C2 4FFF
4K
0x01C2 5000
0x01C2 FFFF
44K
0x01C3 0000
0x01C3 01FF
512
0x01C3 0200
0x01C3 1FFF
7K +
512
-
dMAX Data RAM 0
-
-
0x01C3 2000
0x01C3 21FF
512
0x01C3 2200
0x01C3 3FFF
7K +
512
0x01C3 4000
0x01C3 7FFF
16K
dMAX Control Registers
-
0x01C3 8000
0x01C3 8FFF
4K
dMAX MAX0 Configuration Memory
-
0x01C3 9000
0x01C3 BFFF
12K
0x01C3 C000
0x01C3 CFFF
4K
0x01C3 D000
0x01C3 FFFF
12K
-
0x01C4 0000
0x01C4 0FFF
4K
MMC/SD 0
-
0x01C4 1000
0x01C4 1FFF
4K
SPI 0
-
0x01C4 2000
0x01C4 2FFF
4K
UART 0
0x01C4 3000
0x01C4 3FFF
4K
-
0x01C4 4000
0x01CF FFFF
752K
-
0x01D0 0000
0x01D0 0FFF
4K
McASP 0 Control
-
0x01D0 1000
0x01D0 1FFF
4K
McASP 0 AFIFO Ctrl
-
0x01D0 2000
0x01D0 2FFF
4K
McASP 0 Data
-
0x01D0 3000
0x01D0 3FFF
4K
0x01D0 4000
0x01D0 4FFF
4K
McASP 1 Control
-
0x01D0 5000
0x01D0 5FFF
4K
McASP 1 AFIFO Ctrl
-
0x01D0 6000
0x01D0 6FFF
4K
McASP 1 Data
-
0x01D0 7000
0x01D0 7FFF
4K
0x01D0 8000
0x01D0 8FFF
4K
McASP 2 Control
-
0x01D0 9000
0x01D0 9FFF
4K
McASP 2 AFIFO Ctrl
-
0x01D0 A000
0x01D0 AFFF
4K
McASP 2 Data
-
0x01D0 B000
0x01D0 BFFF
4K
0x01D0 C000
0x01D0 CFFF
4K
UART 1
0x01D0 D000
0x01D0 DFFF
4K
UART 2
0x01D0 E000
0x01D0 EFFF
4K
0x01D0 F000
0x01DF FFFF
964K
0x01E0 0000
0x01E0 FFFF
64K
USB0
0x01E1 0000
0x01E1 0FFF
4K
UHPI
0x01E1 1000
0x01E1 1FFF
4K
0x01E1 2000
0x01E1 2FFF
4K
18
dMAX Data RAM 1
-
-
dMAX MAX1 Configuration Memory
-
-
-
-
SPI 1
Device Overview
-
Copyright © 2012–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
OMAPL137-HT
www.ti.com
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
Table 2-3. OMAPL137 Top Level Memory Map (continued)
Start Address
End Address
Size
ARM Mem
Map
DSP Mem Map
EDMA Mem
Map
dMAX Mem
Map
Master
Peripheral
Mem Map
LCDC
Mem
Map
0x01E1 3000
0x01E1 3FFF
4K
LCD Controller
-
0x01E1 4000
0x01E1 4FFF
4K
MPU 1
-
MPU 2
0x01E1 5000
0x01E1 5FFF
4K
0x01E1 6000
0x01E1 FFFF
40K
-
0x01E2 0000
0x01E2 1FFF
8K
EMAC Control Module RAM
-
0x01E2 2000
0x01E2 2FFF
4K
EMAC Control Module Registers
-
0x01E2 3000
0x01E2 3FFF
4K
EMAC Control Registers
-
0x01E2 4000
0x01E2 4FFF
4K
EMAC MDIO port
-
0x01E2 5000
0x01E2 5FFF
4K
USB1
-
0x01E2 6000
0x01E2 6FFF
4K
GPIO
-
0x01E2 7000
0x01E2 7FFF
4K
PSC 1
-
0x01E2 8000
0x01E2 8FFF
4K
I2C 1
-
-
0x01E2 9000
0x01E2 9FFF
4K
0x01E2 A000
0x01EF FFFF
856K
-
0x01F0 0000
0x01F0 0FFF
4K
EPWM 0
-
0x01F0 1000
0x01F0 1FFF
4K
HRPWM 0
-
0x01F0 2000
0x01F0 2FFF
4K
eHRPWM 1
-
0x01F0 3000
0x01F0 3FFF
4K
HRPWM 1
-
0x01F0 4000
0x01F0 4FFF
4K
eHRPWM 2
-
0x01F0 5000
0x01F0 5FFF
4K
HRPWM 2
-
0x01F0 6000
0x01F0 6FFF
4K
ECAP 0
-
0x01F0 7000
0x01F0 7FFF
4K
ECAP 1
-
0x01F0 8000
0x01F0 8FFF
4K
ECAP 2
-
0x01F0 9000
0x01F0 9FFF
4K
EQEP 0
-
0x01F0 A000
0x01F0 AFFF
4K
EQEP 1
0x01F0 B000
0x01F0 BFFF
4K
-
0x01F0 C000
0x116F FFFF
247M +
976K
-
0x1170 0000
0x117F FFFF
1024K
DSP L2 ROM
-
0x1180 0000
0x1183 FFFF
256K
DSP L2 RAM
-
0x1184 0000
0x11DF FFFF
5M +
768K
0x11E0 0000
0x11E0 7FFF
32K
0x11E0 8000
0x11EF FFFF
992K
0x11F0 0000
0x11F0 7FFF
32K
0x11F0 8000
0x3FFF FFFF
736M +
992K
0x4000 0000
0x5FFF FFFF
512M
EMIFA SDRAM data (CS0)
-
0x6000 0000
0x61FF FFFF
32M
EMIFA async data (CS2)
-
0x6200 0000
0x63FF FFFF
32M
EMIFA async data (CS3)
-
0x6400 0000
0x65FF FFFF
32M
EMIFA async data (CS4)
-
0x6600 0000
0x67FF FFFF
32M
EMIFA async data (CS5)
-
0x6800 0000
0x6800 7FFF
32K
EMIFA Control Regs
-
0x6800 8000
0x7FFF FFFF
383M +
992K
0x8000 0000
0x8001 FFFF
128K
-
-
DSP L1P RAM
-
DSP L1D RAM
-
-
Shared RAM
-
Device Overview
Copyright © 2012–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
19
OMAPL137-HT
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
www.ti.com
Table 2-3. OMAPL137 Top Level Memory Map (continued)
Start Address
End Address
Size
ARM Mem
Map
DSP Mem Map
EDMA Mem
Map
0x8002 0000
0xAFFF FFFF
767M +
896K
-
dMAX Mem
Map
0xB000 0000
0xB000 7FFF
32K
EMIFB Control Regs
0xB000 8000
0xBFFF FFFF
255M +
992K
-
0xC000 0000
0xDFFF FFFF
512M
EMIFB SDRAM Data
0xE000 0000
0xFFFC FFFF
511M +
832K
-
0xFFFD 0000
0xFFFD FFFF
64K
ARM local
ROM
Master
Peripheral
Mem Map
LCDC
Mem
Map
-
0xFFFE 0000
0xFFFE DFFF
56K
0xFFFE E000
0xFFFE FFFF
8K
ARM Interrupt
Controller
-
0xFFFF 0000
0xFFFF 1FFF
8K
ARM local
RAM
-
0xFFFF 2000
0xFFFF FFFF
56K
-
The DSP L2 ROM is used for boot purposes and cannot be programmed with application code.
20
Device Overview
Copyright © 2012–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
OMAPL137-HT
www.ti.com
2.6
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
Bare Die Information
DIE THICKNESS
BACKSIDE FINISH
BACKSIDE
POTENTIAL
BOND PAD
METALLIZATION COMPOSITION
BOND PAD
THICKNESS
380 µm
Silicon with backgrind
Floating
TaN/AlCu
1000 nm
Device Overview
Copyright © 2012–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
21
OMAPL137-HT
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
www.ti.com
Table 2-4. Bond Pad Coordinates in Microns
X MIN
Y MIN
X MAX
Y MAX
AXR1_00
DESCRIPTION
1
209.005
13.225
274.005
78.225
UART0_RXD
2
279.005
13.225
344.005
78.225
UART0_TXD
3
349.005
13.225
414.005
78.225
AXR1_10
4
419.005
13.225
484.005
78.225
VDDSHV
5
509.005
13.225
574.005
78.225
N/C
6
582.755
13.225
647.755
78.225
VSS
7
652.755
13.225
717.755
78.225
AXR1_11
8
722.755
13.225
787.755
78.225
SPI0_SCSN
9
792.755
13.225
857.755
78.225
VDD
10
862.755
13.225
927.755
78.225
SPI0_CLK
11
932.755
13.225
997.755
78.225
SPI0_ENAN
12
1002.755
13.225
1067.755
78.225
SPI1_SOMI
13
1072.755
13.225
1137.755
78.225
SPI1_SIMO
14
1142.755
13.225
1207.755
78.225
VDDSHV
15
1212.755
13.225
1277.755
78.225
VSS
16
1299.005
13.225
1364.005
78.225
N/C
17
1372.755
13.225
1437.755
78.225
SPI1_CLK
18
1442.755
13.225
1507.755
78.225
SPI0_SOMI
19
1512.755
13.225
1577.755
78.225
SPI0_SIMO
20
1582.755
13.225
1647.755
78.225
EMA_WAIT
21
1652.755
13.225
1717.755
78.225
VDD
22
1722.755
13.225
1787.755
78.225
EMA_OEN
23
1792.755
13.225
1857.755
78.225
EMA_CSN_2
24
1862.755
13.225
1927.755
78.225
VDDSHV
25
1932.755
13.225
1997.755
78.225
N/C
26
2002.755
13.225
2067.755
78.225
VSS
27
2089.005
13.225
2154.005
78.225
N/C
28
2159.005
13.225
2224.005
78.225
N/C
29
2229.005
13.225
2294.005
78.225
EMA_BA_1
30
2299.005
13.225
2364.005
78.225
EMA_A_10
31
2369.005
13.225
2434.005
78.225
VDD
32
2439.005
13.225
2504.005
78.225
EMA_A_00
33
2509.005
13.225
2574.005
78.225
EMA_A_01
34
2579.005
13.225
2644.005
78.225
EMA_A_02
35
2649.005
13.225
2714.005
78.225
EMA_A_03
36
2719.005
13.225
2784.005
78.225
VDDSHV
37
2789.005
13.225
2854.005
78.225
VSS
38
2879.005
13.225
2944.005
78.225
N/C
39
2954.005
13.225
3019.005
78.225
EMA_A_04
40
3024.005
13.225
3089.005
78.225
EMA_A_05
41
3094.005
13.225
3159.005
78.225
EMA_A_06
42
3164.005
13.225
3229.005
78.225
EMA_A_07
43
3234.005
13.225
3299.005
78.225
VDD
44
3304.005
13.225
3369.005
78.225
EMA_A_08
45
3374.005
13.225
3439.005
78.225
EMA_A_09
46
3444.005
13.225
3509.005
78.225
EMA_A_11
47
3514.005
13.225
3579.005
78.225
22
PAD NUMBER
Device Overview
Copyright © 2012–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
OMAPL137-HT
www.ti.com
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
Table 2-4. Bond Pad Coordinates in Microns (continued)
X MIN
Y MIN
X MAX
Y MAX
EMA_A_12
DESCRIPTION
48
PAD NUMBER
3584.005
13.225
3649.005
78.225
N/C
49
3654.005
13.225
3719.005
78.225
VDDSHV
50
3739.005
13.225
3804.005
78.225
N/C
51
3814.005
13.225
3879.005
78.225
N/C
52
3884.005
13.225
3949.005
78.225
N/C
53
3954.005
13.225
4019.005
78.225
N/C
54
4024.005
13.225
4089.005
78.225
VSS
55
4094.005
13.225
4159.005
78.225
N/C
56
4284.785
209.005
4349.785
274.005
EMA_D_00
57
4284.785
279.435
4349.785
344.435
N/C
58
4284.785
349.865
4349.785
414.865
EMA_D_01
59
4284.785
420.295
4349.785
485.295
EMA_D_02
60
4284.785
510.725
4349.785
575.725
N/C
61
4284.785
580.91
4349.785
645.91
N/C
62
4284.785
650.91
4349.785
715.91
VDDSHV
63
4284.785
720.91
4349.785
785.91
N/C
64
4284.785
790.91
4349.785
855.91
VSS
65
4284.785
860.91
4349.785
925.91
EMA_D_03
66
4284.785
930.91
4349.785
995.91
N/C
67
4284.785
1000.91
4349.785
1065.91
EMA_D_04
68
4284.785
1070.91
4349.785
1135.91
N/C
69
4284.785
1140.91
4349.785
1205.91
VDD
70
4284.785
1210.91
4349.785
1275.91
N/C
71
4284.785
1280.91
4349.785
1345.91
EMA_D_05
72
4284.785
1355.885
4349.785
1420.885
N/C
73
4284.785
1444.97
4349.785
1509.97
EMA_D_06
74
4284.785
1514.97
4349.785
1579.97
N/C
75
4284.785
1584.97
4349.785
1649.97
VSS
76
4284.785
1654.97
4349.785
1719.97
VDDSHV
77
4284.785
1724.97
4349.785
1789.97
N/C
78
4284.785
1794.97
4349.785
1859.97
N/C
79
4284.785
1864.97
4349.785
1929.97
N/C
80
4284.785
1934.97
4349.785
1999.97
EMA_D_07
81
4284.785
2004.97
4349.785
2069.97
N/C
82
4284.785
2074.97
4349.785
2139.97
EMA_WEN
83
4284.785
2150.615
4349.785
2215.615
N/C
84
4284.785
2235.345
4349.785
2300.345
VDD
85
4284.785
2305.345
4349.785
2370.345
VSS
86
4284.785
2375.345
4349.785
2440.345
N/C
87
4284.785
2445.345
4349.785
2510.345
VDDSHV
88
4284.785
2515.345
4349.785
2580.345
VDDSHV
89
4284.785
2585.345
4349.785
2650.345
VDD
90
4284.785
2655.345
4349.785
2720.345
VDD
91
4284.785
2725.345
4349.785
2790.345
N/C
92
4284.785
2795.345
4349.785
2860.345
VSS
93
4284.785
2865.345
4349.785
2930.345
N/C
94
4284.785
2935.345
4349.785
3000.345
Device Overview
Copyright © 2012–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
23
OMAPL137-HT
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
www.ti.com
Table 2-4. Bond Pad Coordinates in Microns (continued)
X MIN
Y MIN
X MAX
Y MAX
VDDSHV
DESCRIPTION
95
4284.785
3015.775
4349.785
3080.775
VDDAR1
96
4284.785
3106.205
4349.785
3171.205
N/C
97
4284.785
3176.635
4349.785
3241.635
N/C
98
4284.785
3247.065
4349.785
3312.065
VDDNWA1
99
4284.785
3325.925
4349.785
3390.925
VDDNWA1
100
4284.785
3400.02
4349.785
3465.02
VDD
101
4284.785
3470.02
4349.785
3535.02
VSS
102
4284.785
3540.02
4349.785
3605.02
VDDSHV
103
4284.785
3610.02
4349.785
3675.02
N/C
104
4284.785
3680.02
4349.785
3745.02
N/C
105
4284.785
3750.02
4349.785
3815.02
VSS
106
4284.785
3824.225
4349.785
3889.225
N/C
107
4284.785
3913.46
4349.785
3978.46
VDDSHV
108
4284.785
3983.46
4349.785
4048.46
VDD
109
4284.785
4053.46
4349.785
4118.46
N/C
110
4284.785
4123.46
4349.785
4188.46
N/C
111
4284.785
4193.46
4349.785
4258.46
VSS
112
4284.785
4263.46
4349.785
4328.46
N/C
113
4284.785
4333.46
4349.785
4398.46
VDDSHV
114
4284.785
4407.665
4349.785
4472.665
VSS
115
4284.785
4497.34
4349.785
4562.34
N/C
116
4284.785
4567.34
4349.785
4632.34
N/C
117
4284.785
4637.34
4349.785
4702.34
VDDSHV
118
4284.785
4707.34
4349.785
4772.34
VSS
119
4284.785
4777.34
4349.785
4842.34
VDDSHV
120
4284.785
4847.34
4349.785
4912.34
VDD
121
4284.785
4917.34
4349.785
4982.34
N/C
122
4284.785
4987.34
4349.785
5052.34
VSS
123
4284.785
5061.535
4349.785
5126.535
VDDSHV
124
4284.785
5150.345
4349.785
5215.345
VDD
125
4284.785
5220.345
4349.785
5285.345
VSS
126
4284.785
5290.345
4349.785
5355.345
VDDSHV
127
4284.785
5360.345
4349.785
5425.345
AXR0_00
128
4284.785
5430.345
4349.785
5495.345
N/C
129
4284.785
5500.345
4349.785
5565.345
AXR0_01
130
4284.785
5574.545
4349.785
5639.545
AXR0_02
131
4284.785
5665.445
4349.785
5730.445
VDD
132
4090.765
5861.225
4155.765
5926.225
N/C
133
4020.555
5861.225
4085.555
5926.225
N/C
134
3949.215
5861.225
4014.215
5926.225
N/C
135
3878.885
5861.225
3943.885
5926.225
N/C
136
3808.415
5861.225
3873.415
5926.225
N/C
137
3738.31
5861.225
3803.31
5926.225
AXR0_03
138
3663.735
5861.225
3728.735
5926.225
N/C
139
3588.51
5861.225
3653.51
5926.225
AXR0_05
140
3518.415
5861.225
3583.415
5926.225
AXR0_06
141
3447.745
5861.225
3512.745
5926.225
24
PAD NUMBER
Device Overview
Copyright © 2012–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
OMAPL137-HT
www.ti.com
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
Table 2-4. Bond Pad Coordinates in Microns (continued)
X MIN
Y MIN
X MAX
Y MAX
VSS
DESCRIPTION
142
PAD NUMBER
3376.035
5861.225
3441.035
5926.225
VDDSHV
143
3304.27
5861.225
3369.27
5926.225
AXR0_07
144
3233.645
5861.225
3298.645
5926.225
AXR0_08
145
3163.25
5861.225
3228.25
5926.225
AFSX0
146
3089.875
5861.225
3154.875
5926.225
VDDSHV
147
3019.115
5861.225
3084.115
5926.225
N/C
148
2948.625
5861.225
3013.625
5926.225
VSS
149
2869.395
5861.225
2934.395
5926.225
AHCLKR0
150
2798.835
5861.225
2863.835
5926.225
AFSR0
151
2726.12
5861.225
2791.12
5926.225
VPP
152
2652.81
5861.225
2717.81
5926.225
VPP
153
2581.05
5861.225
2646.05
5926.225
IFORCE
154
2510.13
5861.225
2575.13
5926.225
VSENSE
155
2439.42
5861.225
2504.42
5926.225
VDDA18V_USB1
156
2369.155
5861.225
2434.155
5926.225
VSS
157
2298.685
5861.225
2363.685
5926.225
USB1_DP
158
2228.45
5861.225
2293.45
5926.225
N/C
159
2158.275
5861.225
2223.275
5926.225
USB1_DM
160
2087.535
5861.225
2152.535
5926.225
VDDA33_USB1
161
2009.505
5861.225
2074.505
5926.225
VDD
162
1936.205
5861.225
2001.205
5926.225
VSS
163
1865.53
5861.225
1930.53
5926.225
USB0_ID
164
1795.4
5861.225
1860.4
5926.225
USB0_VBUS
165
1722.27
5861.225
1787.27
5926.225
VDDA12_USB0
166
1649.685
5861.225
1714.685
5926.225
VDDA18_USB0
167
1579.34
5861.225
1644.34
5926.225
VSSA_USB0
168
1509.05
5861.225
1574.05
5926.225
USB0_DP
169
1438.645
5861.225
1503.645
5926.225
N/C
170
1368.375
5861.225
1433.375
5926.225
USB0_DM
171
1298.05
5861.225
1363.05
5926.225
VSSA33_USB0
172
1219.04
5861.225
1284.04
5926.225
VDDA33_USB0
173
1147.91
5861.225
1212.91
5926.225
VSS
174
1076.44
5861.225
1141.44
5926.225
VDDA12_PLL
175
998.275
5861.225
1063.275
5926.225
VSSA12_PLL
176
925.39
5861.225
990.39
5926.225
OSCIN
177
854.085
5861.225
919.085
5926.225
OSCVSS
178
782.785
5861.225
847.785
5926.225
RESETN
179
709.655
5861.225
774.655
5926.225
VDD
180
637.15
5861.225
702.15
5926.225
N/C
181
559.62
5861.225
624.62
5926.225
RTC_XI
182
489.565
5861.225
554.565
5926.225
RTC_VSS
183
419.505
5861.225
484.505
5926.225
RTC_XO
184
349.49
5861.225
414.49
5926.225
VDD2
185
279.295
5861.225
344.295
5926.225
N/C
186
209.175
5861.225
274.175
5926.225
TRSTN
187
13.225
5666.345
78.225
5731.345
TRSTN
188
13.225
5595.145
78.225
5660.145
Device Overview
Copyright © 2012–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
25
OMAPL137-HT
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
www.ti.com
Table 2-4. Bond Pad Coordinates in Microns (continued)
X MIN
Y MIN
X MAX
Y MAX
N/C
DESCRIPTION
189
13.225
5524.925
78.225
5589.925
N/C
190
13.225
5454.07
78.225
5519.07
N/C
191
13.225
5382.485
78.225
5447.485
N/C
192
13.225
5311.205
78.225
5376.205
N/C
193
13.225
5228.885
78.225
5293.885
N/C
194
13.225
5154.21
78.225
5219.21
N/C
195
13.225
5079.015
78.225
5144.015
N/C
196
13.225
5008.685
78.225
5073.685
N/C
197
13.225
4937.99
78.225
5002.99
N/C
198
147.195
4831.665
212.195
4896.665
N/C
199
147.195
4735.485
212.195
4800.485
VSS
200
147.195
4622.615
212.195
4687.615
VDDSHV
201
147.195
4435.67
212.195
4500.67
N/C
202
147.195
4360.73
212.195
4425.73
TDI
203
147.795
4235.69
212.795
4300.69
VDD
204
147.795
4164.985
212.795
4229.985
N/C
205
147.795
4069.08
212.795
4134.08
TCK
206
147.795
3989.035
212.795
4054.035
N/C
207
13.225
3906.515
78.225
3971.515
TDO
208
13.225
3836.385
78.225
3901.385
VDDSHV
209
13.225
3766.245
78.225
3831.245
N/C
210
13.225
3696.23
78.225
3761.23
VSS
211
13.225
3626.11
78.225
3691.11
VDDAR
212
13.225
3548.85
78.225
3613.85
VDDNWA
213
13.225
3478.71
78.225
3543.71
VDD
214
13.225
3406.13
78.225
3471.13
VDD
215
13.225
3335.39
78.225
3400.39
VDDSHV
216
13.225
3264.465
78.225
3329.465
N/C
217
13.225
3193.185
78.225
3258.185
N/C
218
13.225
3121.465
78.225
3186.465
VSS
219
13.225
3051.285
78.225
3116.285
AFSR1
220
13.225
2977.55
78.225
3042.55
N/C
221
13.225
2907.235
78.225
2972.235
VDD
222
13.225
2830.14
78.225
2895.14
VDD
223
13.225
2746.55
78.225
2811.55
VDDSHV
224
13.225
2674
78.225
2739
VSS
225
13.225
2603.34
78.225
2668.34
VSS
226
13.225
2524.765
78.225
2589.765
N/C
227
13.225
2452.975
78.225
2517.975
AXR1_04
228
13.225
2380.355
78.225
2445.355
AXR1_03
229
13.225
2306.825
78.225
2371.825
AXR1_02
230
13.225
2236.715
78.225
2301.715
AXR1_01
231
13.225
2155.32
78.225
2220.32
N/C
232
13.225
2077.3
78.225
2142.3
N/C
233
13.225
2006.525
78.225
2071.525
N/C
234
13.225
1934.25
78.225
1999.25
N/C
235
13.225
1864.03
78.225
1929.03
26
PAD NUMBER
Device Overview
Copyright © 2012–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
OMAPL137-HT
www.ti.com
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
Table 2-4. Bond Pad Coordinates in Microns (continued)
X MIN
Y MIN
X MAX
Y MAX
N/C
DESCRIPTION
236
PAD NUMBER
13.225
1793.885
78.225
1858.885
N/C
237
13.225
1723.855
78.225
1788.855
N/C
238
13.225
1653.45
78.225
1718.45
N/C
239
13.225
1582.67
78.225
1647.67
N/C
240
13.225
1512.07
78.225
1577.07
N/C
241
13.225
1436.115
78.225
1501.115
N/C
242
13.225
1361.85
78.225
1426.85
N/C
243
13.225
1290.35
78.225
1355.35
N/C
244
13.225
1218.39
78.225
1283.39
N/C
245
13.225
1147.875
78.225
1212.875
N/C
246
13.225
1073.32
78.225
1138.32
N/C
247
13.225
1000.655
78.225
1065.655
N/C
248
13.225
929.045
78.225
994.045
N/C
249
13.225
858.22
78.225
923.22
N/C
250
13.225
788.035
78.225
853.035
N/C
251
13.225
715.485
78.225
780.485
N/C
252
13.225
641.13
78.225
706.13
N/C
253
13.225
570.685
78.225
635.685
N/C
254
13.225
488.67
78.225
553.67
N/C
255
13.225
417.65
78.225
482.65
N/C
256
13.225
346.84
78.225
411.84
N/C
257
13.225
275.62
78.225
340.62
Device Overview
Copyright © 2012–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
27
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
132
131
130
129
128
127
126
125
124
123
122
121
120
119
118
117
116
115
114
113
112
111
110
109
108
107
106
105
104
103
102
101
100
99
98
97
96
95
94
93
92
91
90
89
AMUTE1/EHRPWMTZ/GP4[14]
AFSR0/GP3[12]
ACLKR0/ECAP1/APWM1/GP2[15]
AHCLKR0/RMII_MHZ_50_CLK/GP2[14]/BOOT[11]
DVDD
AFSX0/GP2[13]/BOOT[10]
ACLKX0/ECAP0/APWM0/GP2[12]
AHCLKX0/AHCLKX2/USB_REFCLKIN/GP2[11]
AXR0[11]/AXR2[0]/GP3[11]
UART1_TXD/AXR0[10]/GP3[10]
UART1_RXD/AXR0[9]/GP3[9]
AXR0[8]/MDIO_D/GP3[8]
AXR0[7]/MDIO_CLK/GP3[7]
DVDD
AXR0[6]/RMII_RXER/ACLKR2/GP3[6]
AXR0[5]/RMII_RXD[1]/AFSX2/GP3[5]
AXR0[4]/RMII_RXD[0]/AXR2[1]/GP3[4]
AXR0[3]/RMII_CRS_DV/AXR2[2]/GP3[3]
CVDD
AXR0[2]/RMII_TXEN/AXR2[3]/GP3[2]
AXR0[1]/RMII_TXD[1]/ACLKX2/GP3[1]
AXR0[0]/RMII_TXD[0]/AFSR2/GP3[0]
EMB_RAS
DVDD
EMB_CS[0]
EMB_BA[0]/GP7[1]
EMB_BA[1]/GP7[0]
EMB_A[10]/GP7[12]
CVDD
EMB_A[0]/GP7[2]
EMB_A[1]/GP7[3]
EMB_A[2]/GP7[4]
EMB_A[3]/GP7[5]
DVDD
EMB_A[4]/GP7[6]
EMB_A[5]/GP7[7]
EMB_A[6]/GP7[8]
EMB_A[7]/GP7[9]
EMB_A[8]/GP7[10]
CVDD
EMB_A[9]/GP7[11]
EMB_A[11]/GP7[13]
DVDD
EMB_A[12]/GP3[13]
2.7
2.7.1
RSV2
USB0_VDDA12
USB0_VDDA18
NC
USB0_DP
USB0_DM
NC
USB0_VDDA33
PLL0_VDDA
PLL0_VSSA
OSCIN
OSCVSS
OSCOUT
RESET
CVDD
RTC_XI
RTC_CVDD
TRST
DVDD
TMS
TDI
CVDD
TCK
TDO
RTCK/GP7[14]
DVDD
CVDD
AHCLKX1/EPWM0B/GP3[14]
CVDD
ACLKX1/EPWM0A/GP3[15]
AFSX1/EPWMSYNCI/EPWMSYNC0/GP4[10]
DVDD
ACLKR1/ECAP2/APWM2/GP4[12]
AFSR1/GP4[13]
CVDD
AXR1[8]/EPWM1A/GP4[8]
AXR1[7]/EPWM1B/GP4[7]
AXR1[6]/EPWM2A/GP4[6]
AXR1[5]/EPWM2B/GP4[5]
DVDD
AXR1[4]/EQEP1B/GP4[4]
AXR1[3]/EQEP1A/GP4[3]
AXR1[2]/GP4[2]
AXR1[1]/GP4[1]
28
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
CVDD
SPI0_CLK/EQEP1I/GP5[2]/BOOT[2]
SPI0_ENA/UART0_CTS/EQEP0A/GP5[3]/BOOT[3]
SPI1_SOMI[0]/I2C1_SCL/GP5[5]/BOOT[5]
SPI1_SIMO[0]/I2C1_SDA/GP5[6]/BOOT[6]
DVDD
SPI1_CLK/EQEP1S/GP5[7]/BOOT[7]
SPI0_SOMI[0]/EQEP0I/GP5[0]/BOOT[0]
SPI0_SIMO[0]/EQEP0S/GP5[1]/BOOT[1]
EMA_WAIT[0]/UHPI_HRDY/GP2[10]
CVDD
EMA_CS[3]/AMUTE2/GP2[6]
EMA_OE//UHPI_HDS1/AXR0[13]/GP2[7]
EMA_CS[2]/UHPI_HCS/GP2[5]/BOOT[15]
DVDD
EMA_BA[0]/LCD_D[4]/GP1[14]
EMA_BA[1]/LCD_D[5]/UHPI_HHWIL/GP1[13]
EMA_A[10]/LCD_VSYNC/GP1[10]
CVDD
EMA_A[0]/LCD_D[7]/GP1[0]
EMA_A[1]/MMCSD_CLK/UHPI_HCNTL0/GP1[1]
EMA_A[2]/MMCSD_CMD/UHPI_HCNTL1/GP1[2]
EMA_A[3]/LCD_D[6]/GP1[3]
DVDD
EMA_A[4]/LCD_D[3]/GP1[4]
EMA_A[5]/LCD_D[2]/GP1[5]
EMA_A[6]/LCD_D[1]/GP1[6]
EMA_A[7]/LCD_D[0]/GP1[7]
CVDD
EMA_A[8]/LCD_PCLK/GP1[8]
EMA_A[9]/LCD_HSYNC/GP1[9]
EMA_A[11]/LCD_AC_ENB_CS/GP1[11]
EMA_A[12]/LCD_MCLK/GP1[12]
DVDD
EMA_D[0]/MMCSD_DAT[0]/UHPI_HD[0]/GP0[0]/BOOT[12]
AXR1[0]/GP4[0]
UART0_RXD/I2C0_SDA/TM64P0_IN12/GP5[8]/BOOT[8]
UART0_TXD/I2C0_SCL/TM64P0_OUT12/GP5[9]/BOOT[9]
AXR1[10]/GP5[10]
DVDD
AXR1[11]/GP5[11]
SPI1_ENA/UART2_RXD/GP5[12]
SPI1_SCS[0]/UART2_TXD/GP5[13]
SPI0_SCS[0]/UART0_RTS/EQEP0B/GP5[4]/BOOT[4]
OMAPL137-HT
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
www.ti.com
Pin Assignments
Extensive use of pin multiplexing is used to accommodate the largest number of peripheral functions in
the smallest possible package. Pin multiplexing is controlled using a combination of hardware
configuration at device reset and software programmable register settings.
Pin Map (Bottom View)
Figure 2-3 shows the pin assignments for the PTP package. Note that micro-vias are not required. Contact
your TI representative for routing recommendations.
VSS
(177)
Thermal Pad
Device Overview
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
88
87
86
85
84
83
82
81
80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
EMB_SDCKE
DVDD
EMB_CLK
EMB_WE_DQM[1]/GP5[14]
EMB_D[8]/GP6[8]
EMB_D[9]/GP6[9]
EMB_D[10]/GP6[10]
DVDD
EMB_D[11]/GP6[11]
EMB_D[12]/GP6[12]
EMB_D[13]/GP6[13]
CVDD
EMB_D[14]/GP6[14]
DVDD
EMB_D[15]/GP6[15]
EMB_D[0]/GP6[0]
EMB_D[1]/GP6[1]
DVDD
EMB_D[2]/GP6[2]
CVDD
EMB_D[3]/GP6[3]
CVDD
EMB_D[4]/GP6[4]
DVDD
EMB_D[5]/GP6[5]
EMB_D[6]/GP6[6]
EMB_D[7]/GP6[7]
CVDD
EMB_WE_DQM[0]/GP5[15]
EMB_WE
DVDD
EMB_CAS
CVDD
EMA_WE/UHPI_HRW/AXR0[12]/GP2[3]/BOOT[14]
EMA_D[7]/MMCSD_DAT[7]/UHPI_HD[7]/GP0[7]/BOOT[13]
DVDD
EMA_D[6]/MMCSD_DAT[6]/UHPI_HD[6]/GP0[6]
EMA_D[5]/MMCSD_DAT[5]/UHPI_HD[5]/GP0[5]
CVDD
EMA_D[4]/MMCSD_DAT[4]/UHPI_HD[4]/GP0[4]
EMA_D[3]/MMCSD_DAT[3]/UHPI_HD[3]/GP0[3]
DVDD
EMA_D[2]/MMCSD_DAT[2]/UHPI_HD[2]/GP0[2]
EMA_D[1]/MMCSD_DAT[1]/UHPI_HD[1]/GP0[1]
Figure 2-3. Pin Map (PTP)
Copyright © 2012–2013, Texas Instruments Incorporated
OMAPL137-HT
www.ti.com
2.8
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
Terminal Functions
Table 2-5 to Table 2-25 identify the external signal names, the associated pin/ball numbers along with the
mechanical package designator, the pin type (I, O, IO, OZ, or PWR), whether the pin/ball has any internal
pullup/pulldown resistors, whether the pin/ball is configurable as an IO in GPIO mode, and a functional pin
description.
2.8.1
Device Reset and JTAG
Table 2-5. Reset and JTAG Terminal Functions
PIN NO
SIGNAL NAME
PTP
TYPE (1)
PULL (2)
DESCRIPTION
RESET
RESET
146
I
Device reset input
TMS
152
I
IPU
JTAG test mode select
TDI
153
I
IPU
JTAG test data input
TDO
156
O
IPD
JTAG test data output
TCK
155
I
IPU
JTAG test clock
TRST
150
I
IPD
JTAG test reset
RTCK/GP7[14]
157
I/O
IPD
JTAG test-port return clock output.
JTAG
(1)
(2)
I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different
types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor
2.8.2
High-Frequency Oscillator and PLL
Table 2-6. High-Frequency Oscillator and PLL Terminal Functions
SIGNAL NAME
PIN NO
PTP
TYPE (1)
PULL (2)
DESCRIPTION
1.2-V OSCILLATOR
OSCIN
143
I
Oscillator input
OSCOUT
145
O
Oscillator output
OSCVSS
144
GND
Oscillator ground (for filter only)
1.2-V PLL
PLL0_VDDA
141
PWR
PLL analog VDD (1.2-V filtered supply)
PLL0_VSSA
142
GND
PLL analog VSS (for filter)
(1)
(2)
I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different
types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor
Device Overview
Copyright © 2012–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
29
OMAPL137-HT
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
2.8.3
www.ti.com
Real-Time Clock and 32-kHz Oscillator
Table 2-7. Real-Time Clock (RTC) and 1.2-V, 32-kHz Oscillator Terminal Functions
PIN NO
SIGNAL NAME
PTP
TYPE (1)
RTC_CVDD
149
PWR
RTC_XI
148
I
(1)
(2)
PULL (2)
DESCRIPTION
RTC module core power ( isolated from rest of chip CVDD)
Low-frequency (32-kHz) oscillator receiver for real-time clock
I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for
that particular peripheral.
IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor
2.8.4
External Memory Interface A (ASYNC, SDRAM)
Table 2-8. External Memory Interface A (EMIFA) Terminal Functions
PIN NO
SIGNAL NAME
PTP
TYPE (1)
PULL (2)
EMA_D[7]/MMCSD_DAT[7]/UHPI_HD[7]/GP0[7]/BOOT[13]
54
I/O
IPU
EMA_D[6]/MMCSD_DAT[6]/UHPI_HD[6]/GP0[6]
52
I/O
IPU
EMA_D[5]/MMCSD_DAT[5]/UHPI_HD[5]/GP0[5]
51
I/O
IPU
EMA_D[4]/MMCSD_DAT[4]/UHPI_HD[4]/GP0[4]
49
I/O
IPU
EMA_D[3]/MMCSD_DAT[3]/UHPI_HD[3]/GP0[3]
48
I/O
IPU
EMA_D[2]/MMCSD_DAT[2]/UHPI_HD[2]/GP0[2]
46
I/O
IPU
EMA_D[1]/MMCSD_DAT[1]/UHPI_HD[1]/GP0[1]
45
I/O
IPU
EMA_D[0]/MMCSD_DAT[0]/UHPI_HD[0]/GP0[0]/BOOT[12]
44
I/O
IPU
EMA_A[12]/ LCD_MCLK/GP1[12]
42
O
IPU
EMA_A[11]/ LCD_AC_ENB_CS/GP1[11]
41
O
IPU
EMA_A[10]/ LCD_VSYNC/GP1[10]
27
O
IPU
EMA_A[9]/ LCD_HSYNC/GP1[9]
40
O
IPU
EMA_A[8]/ LCD_PCLK/GP1[8]
39
O
IPU
EMA_A[7]/ LCD_D[0]/GP1[7]
37
O
IPD
EMA_A[6]/ LCD_D[1]/GP1[6]
36
O
IPD
EMA_A[5]/ LCD_D[2]/GP1[5]
35
O
IPD
EMA_A[4]/ LCD_D[3]/GP1[4]
34
O
IPD
EMA_A[3]/ LCD_D[6]/GP1[3]
32
O
IPD
EMA_A[2]/MMCSD_CMD/UHPI_HCNTL1/GP1[2]
31
O
IPU
EMA_A[1]/MMCSD_CLK/UHPI_HCNTL0/GP1[1]
30
O
EMA_A[0]/ LCD_D[7]/GP1[0]
29
EMA_BA[1]/ LCD_D[5]/UHPI_HHWIL/GP1[13]
EMA_BA[0]/ LCD_D[4]/GP1[14]
(1)
(2)
30
MUXED
DESCRIPTION
MMC/SD,
UHPI, GPIO,
BOOT
EMIFA data bus
MMC/SD,
UHPI, GPIO
MMC/SD,
UHPI, GPIO,
BOOT
LCD, GPIO
EMIFA address bus
IPU
MMCSD,
UHPI, GPIO
EMIFA address bus.
O
IPD
LCD, GPIO
26
O
IPU
LCD, UHPI,
GPIO
25
O
IPU
LCD, GPIO
EMIFA bank address
I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different
types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor
Device Overview
Copyright © 2012–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
OMAPL137-HT
www.ti.com
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
Table 2-8. External Memory Interface A (EMIFA) Terminal Functions (continued)
PIN NO
SIGNAL NAME
PTP
TYPE (1)
PULL (2)
MUXED
DESCRIPTION
EMA_CS[3] /AMUTE2/GP2[6]
21
O
IPU
McASP2,
GPIO
EMA_CS[2] /UHPI_HCS/GP2[5]/BOOT[15]
23
O
IPU
UHPI, GPIO,
BOOT
EMA_WE /UHPI_HRW/AXR0[12]/GP2[3]/BOOT[14]
55
O
IPU
UHPI,
EMIFA SDRAM write
MCASP0,
enable.
GOPIO, BOOT
EMA_OE /UHPI_HDS1/AXR0[13]/GP2[7]
22
O
IPU
UHPI,
McASP0,
GPIO
EMIFA output enable.
EMA_WAIT[0]/ UHPI_HRDY/GP2[10]
19
I
IPU
UHPI, GPIO
EMIFA wait
input/interrupt.
EMIFA Async Chip
Select
Device Overview
Copyright © 2012–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
31
OMAPL137-HT
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
2.8.5
www.ti.com
External Memory Interface B (only SDRAM)
Table 2-9. External Memory Interface B (EMIFB) Terminal Functions
SIGNAL NAME
PIN NO
PTP
TYPE (1)
PULL (2)
MUXED
DESCRIPTION
EMB_D[15]/GP6[15]
74
I/O
IPD
EMB_D[14]/GP6[14]
76
I/O
IPD
EMB_D[13]/GP6[13]
78
I/O
IPD
EMB_D[12]/GP6[12]
79
I/O
IPD
EMB_D[11]/GP6[11]
80
I/O
IPD
EMB_D[10]/GP6[10]
82
I/O
IPD
EMB_D[9]/GP6[9]
83
I/O
IPD
EMB_D[8]/GP6[8]
84
I/O
IPD
EMB_D[7]/GP6[7]
62
I/O
IPD
EMB_D[6]/GP6[6]
63
I/O
IPD
EMB_D[5]/GP6[5]
64
I/O
IPD
EMB_D[4]/GP6[4]
66
I/O
IPD
EMB_D[3]/GP6[3]
68
I/O
IPD
EMB_D[2]/GP6[2]
70
I/O
IPD
EMB_D[1]/GP6[1]
72
I/O
IPD
EMB_D[0]/GP6[0]
73
I/O
IPD
EMB_A[12]/GP3[13]
89
O
IPD
EMB_A[11]/GP7[13]
91
O
IPD
EMB_A[10]/GP7[12]
105
O
IPD
EMB_A[9]/GP7[11]
92
O
IPD
EMB_A[8]/GP7[10]
94
O
IPD
EMB_A[7]/GP7[9]
95
O
IPD
EMB_A[6]/GP7[8]
96
O
IPD
EMB_A[5]/GP7[7]
97
O
IPD
EMB_A[4]/GP7[6]
98
O
IPD
EMB_A[3]/GP7[5]
100
O
IPD
EMB_A[2]/GP7[4]
101
O
IPD
EMB_A[1]/GP7[3]
102
O
IPD
EMB_A[0]/GP7[2]
103
O
IPD
EMB_BA[1]/GP7[0]
106
O
IPU
EMB_BA[0]/GP7[1]
107
O
IPU
EMIFB SDRAM bank
address.
EMB_CLK
86
O
IPU
EMIF SDRAM clock.
EMB_SDCKE
88
I/O
IPU
EMIFB SDRAM clock enable.
EMB_WE
59
O
IPU
EMIFB write enable
EMB_RAS
110
O
IPU
EMIFB SDRAM row address
strobe.
EMB_CAS
57
O
IPU
EMIFB column address
strobe.
EMB_CS[0]
108
O
IPU
EMIFB SDRAM chip select 0.
(1)
(2)
32
GPIO
EMIFB SDRAM data bus.
GPIO
EMIFB SDRAM row/column
address bus.
EMIFB SDRAM row/column
address.
GPIO
I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note:The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different
types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor
Device Overview
Copyright © 2012–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
OMAPL137-HT
www.ti.com
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
Table 2-9. External Memory Interface B (EMIFB) Terminal Functions (continued)
PIN NO
SIGNAL NAME
PTP
TYPE (1)
PULL (2)
EMB_WE_DQM[1] /GP5[14]
85
O
IPU
EMB_WE_DQM[0] /GP5[15]
60
O
IPU
2.8.6
MUXED
GPIO
DESCRIPTION
EMIFB write enable/data
mask for EMB_D.
Serial Peripheral Interface Modules (SPI0, SPI1)
Table 2-10. Serial Peripheral Interface (SPI) Terminal Functions
PIN NO
SIGNAL NAME
PTP
TYPE (1)
PULL (2)
MUXED
DESCRIPTION
SPI0
SPI0_SCS[0] /UART0_RTS/EQEP0B/GP5[4]/BOOT[4]
9
I/O
IPU
UART0, EQEP0B,
GPIO, BOOT
SPI0 chip select.
SPI0_ENA /UART0_CTS/EQEP0A/GP5[3]/BOOT[3]
12
I/O
IPU
UART0, EQEP0A,
GPIO, BOOT
SPI0 enable.
SPI0_CLK/EQEP1I/GP5[2]/BOOT[2]
11
I/O
IPD
eQEP1, GPIO, BOOT SPI0 clock.
SPI0_SIMO[0]/EQEP0S/GP5[1]/BOOT[1]
18
I/O
IPD
SPI0_SOMI[0]/EQEP0I/GP5[0]/BOOT[0]
17
I/O
IPD
SPI1_SCS[0] /UART2_TXD/GP5[13]
8
I/O
IPU
SPI1_ENA /UART2_RXD/GP5[12]
7
I/O
IPU
SPI1_CLK/EQEP1S/GP5[7]/BOOT[7]`
16
I/O
IPD
SPI1_SIMO[0]/I2C1_SDA/GP5[6]/BOOT[6]
14
I/O
IPU
SPI1_SOMI[0]/I2C1_SCL/GP5[5]/BOOT[5]
13
I/O
IPU
eQEP0, GPIO, BOOT
SPI0 data slave-inmaster-out.
SPI0 data slaveout-master-in.
SPI1
SPI1 chip select.
UART2, GPIO
SPI1 enable.
eQEP1, GPIO, BOOT SPI1 clock.
I2C1, GPIO, BOOT
(1)
(2)
SPI1 data slave-inmaster-out.
SPI1 data slaveout-master-in.
I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different
types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor
Device Overview
Copyright © 2012–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
33
OMAPL137-HT
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
2.8.7
www.ti.com
Enhanced Capture/Auxiliary PWM Modules (eCAP0, eCAP1, eCAP2)
The eCAP Module pins function as either input captures or auxiliary PWM 32-bit outputs, depending upon
how the eCAP module is programmed.
Table 2-11. Enhanced Capture Module (eCAP) Terminal Functions
SIGNAL NAME
PIN NO
PTP
TYPE (1)
PULL (2)
I/O
IPD
McASP0, GPIO
enhanced capture 0
input or auxiliary
PWM 0 output.
I/O
IPD
McASP0, GPIO
enhanced capture 1
input or auxiliary
PWM 1 output.
I/O
IPD
McASP1, GPIO
enhanced capture 2
input or auxiliary
PWM 2 output.
MUXED
DESCRIPTION
eCAP0
ACLKX0/ECAP0/APWM0/GP2[12]
126
eCAP1
ACLKR0/ECAP1/APWM1/GP2[15]
130
eCAP2
ACLKR1/ECAP2/APWM2/GP4[12]
(1)
(2)
165
I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different
types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor
2.8.8
Enhanced Pulse Width Modulators (eHRPWM0, eHRPWM1, eHRPWM2)
Table 2-12. Enhanced Pulse Width Modulator (eHRPWM) Terminal Functions
SIGNAL NAME
PIN NO
PTP
TYPE (1)
PULL (2)
MUXED
DESCRIPTION
eHRPWM0
eHRPWM0 A
output.
ACLKX1/EPWM0A/GP3[15]
162
I/O
IPD
AHCLKX1/EPWM0B/GP3[14]
160
I/O
IPD
AMUTE1/EPWMTZ/GP4[14]
132
I/O
IPD
McASP1,
eHRPWM1, GPIO,
eHRPWM2
eHRPWM0 trip zone
input.
AFSX1/EPWMSYNCI/EPWMSYNCO/GP4[10]
163
I/O
IPD
McASP1,
eHRPWM0, GPIO
Sync input to
eHRPWM0 module
or sync output to
external PWM.
McASP1, GPIO
eHRPWM0 B
output.
eHRPWM1
AXR1[8]/EPWM1A/GP4[8]
168
I/O
IPD
AXR1[7]/EPWM1B/GP4[7]
169
I/O
IPD
AMUTE1/EPWMTZ/GP4[14]
132
I/O
IPD
McASP1, GPIO
eHRPWM1 A (with
high-resolution).
eHRPWM1 B.
McASP1,
eHRPWM0, GPIO,
eHRPWM2
eHRPWM1 trip zone
input.
eHRPWM2
(1)
(2)
34
I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different
types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor
Device Overview
Copyright © 2012–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
OMAPL137-HT
www.ti.com
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
Table 2-12. Enhanced Pulse Width Modulator (eHRPWM) Terminal Functions (continued)
PIN NO
SIGNAL NAME
PTP
TYPE (1)
PULL (2)
AXR1[6]/EPWM2A/GP4[6]
170
I/O
IPD
AXR1[5]/EPWM2B/GP4[5]
171
I/O
IPD
AMUTE1/EPWMTZ/GP4[14]
132
I/O
IPD
2.8.9
MUXED
DESCRIPTION
eHRPWM2 A (with
high-resolution).
McASP1, GPIO
eHRPWM2 B.
McASP1,
eHRPWM0, GPIO,
eHRPWM2
eHRPWM2 trip zone
input.
Enhanced Quadrature Encoder Pulse Module (eQEP)
Table 2-13. Enhanced Quadrature Encoder Pulse Module (eQEP) Terminal Functions
PIN NO
SIGNAL NAME
PTP
TYPE (1)
PULL (2)
MUXED
DESCRIPTION
eQEP0
SPI0_ENA/UART0_CTS/EQEP0A/GP5[3]/BOOT[3]
12
I
IPU
SPI0_SCS[0]/UART0_RTS/EQEP0B/GP5[4]/BOOT[4]
9
I
IPU
SPI0_SOMI[0]/EQEP0I/GP5[0]/BOOT[0]
17
I
IPD
SPI0_SIMO[0]/EQEP0S/GP5[1]/BOOT[1]
18
I
IPD
eQEP0A quadrature
input.
SPIO, UART0,
GPIO, BOOT
eQEP0B quadrature
input.
SPI0, GPIO, BOOT
eQEP0 index.
eQEP0 strobe.
eQEP1
eQEP1A quadrature
input.
AXR1[3]/EQEP1A/GP4[3]
174
I
IPD
AXR1[4]/EQEP1B/GP4[4]
173
I
IPD
SPI0_CLK/EQEP1I/GP5[2]/BOOT[2]
11
I
IPD
SPI0, GPIO, BOOT
eQEP1 index.
SPI1_CLK/EQEP1S/GP5[7]/BOOT[7]
16
I
IPD
SPI1, GPIO, BOOT
eQEP1 strobe.
McASP1, GPIO
(1)
(2)
eQEP1B quadrature
input.
I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different
types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor
2.8.10
Boot
Table 2-14. Boot Terminal Functions (1)
PIN NO
SIGNAL NAME
PTP
TYPE (2)
PULL (3)
MUXED
DESCRIPTION
EMA_CS[2]/UHPI_HCS/GP2[5]/BOOT[15]
23
I
IPU
EMIFA, UHPI, GPIO
BOOT[15].
EMA_WE/UHPI_HRW/AXR0[12]/GP2[3]/BOOT[14]
55
I
IPU
EMIFA, UHPI,
McASP0, GPIO
BOOT[14].
EMA_D[7]/MMCSD_DAT[7]/UHPI_HD[7]/GP0[7]/BOOT[13]
54
I
IPU
EMA_D[0]/MMCSD_DAT[0]/UHPI_HD[0]/GP0[0]/BOOT[12]
44
I
IPU
AHCLKR0/RMII_MHZ_50_CLK/GP2[14]/BOOT[11]
129
I
IPD
McASP0, EMAC,
GPIO
BOOT[11].
AFSX0/GP2[13]/BOOT[10]
127
I
IPD
McASP0, GPIO
BOOT[10].
(1)
(2)
(3)
EMIFA, MMC/SD,
UHPI, GPIO
BOOT[13].
BOOT[12].
Boot decoding will be defined in the ROM datasheet.
I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different
types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor
Device Overview
Copyright © 2012–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
35
OMAPL137-HT
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
www.ti.com
Table 2-14. Boot Terminal Functions(1) (continued)
PIN NO
SIGNAL NAME
PTP
TYPE (2)
PULL (3)
MUXED
DESCRIPTION
UART0_TXD/I2C0_SCL/TM64P0_OUT12/GP5[9]/BOOT[9]
3
I
IPU
UART0, I2C0,
Timer0, GPIO
BOOT[9].
UART0_RXD/I2C0_SDA/TM64P0_IN12/GP5[8]/BOOT[8]
2
I
IPU
UART0, I2C0,
Timer0, GPIO
BOOT[8].
SPI1_CLK/EQEP1S/GP5[7]/BOOT[7]
16
I
IPD
SPI1, eQEP1, GPIO
BOOT[7].
SPI1_SIMO[0]/I2C1_SDA/GP5[6]/BOOT[6]
14
I
IPU
SPI1_SOMI[0]/I2C1_SCL/GP5[5]/BOOT[5]
13
I
IPU
SPI0_SCS[0]/UART0_RTS/EQEP0B/GP5[4]/BOOT[4]
9
I
IPU
SPI0, UART0,
eQEP0, GPIO
BOOT[4].
SPI0_ENA/UART0_CTS/EQEP0A/GP5[3]/BOOT[3]
12
I
IPU
SPI0, UART0,
eQEP0, GPIO
BOOT[3].
SPI0_CLK/EQEP1I/GP5[2]/BOOT[2]
11
I
IPD
SPIO, eQEP1, GPIO BOOT[2].
SPI0_SIMO[0]/EQEP0S/GP5[1]/BOOT[1]
18
I
IPD
SPI0_SOMI[0]/EQEP0I/GP5[0]/BOOT[0]
17
I
IPD
SPI1, I2C1, GPIO
SPI0, eQEP0, GPIO
BOOT[6].
BOOT[5].
BOOT[1].
BOOT[0].
2.8.11 Universal Asynchronous Receiver/Transmitters (UART0, UART1, UART2)
Table 2-15. Universal Asynchronous Receiver/Transmitter (UART) Terminal Functions
PIN NO
SIGNAL NAME
PTP
TYPE (1)
PULL (2)
MUXED
DESCRIPTION
UART0
UART0_RXD/I2C0_SDA/TM64P0_IN12/GP5[8]/BOOT[8]
2
I
IPU
I2C0, BOOT,
Timer0, GPIO,
UART0 receive
data.
UART0_TXD/I2C0_SCL/TM64P0_OUT12/GP5[9]/BOOT[9]
3
O
IPU
I2C0, Timer0,
GPIO, BOOT
UART0 transmit
data.
SPI0_SCS[0]/ UART0_RTS /EQEP0B/GP5[4]/BOOT[4]
9
O
IPU
SPI0_ENA/ UART0_CTS /EQEP0A/GP5[3]/BOOT[3]
12
I
IPU
I
IPD
SPIO, eQEP0,
GPIO, BOOT
UART0 ready-tosend output
UART0 clear-tosend input
UART1
UART1_RXD/AXR0[9]/GP3[9] (3)
122
McASP0, GPIO
UART1_TXD/AXR0[10]/GP3[10] (3)
123
UART1 receive
data.
O
IPD
UART1 transmit
data.
UART2 receive
data.
UART2
SPI1_ENA/UART2_RXD/GP5[12]
7
I
IPU
SPI1_SCS[0]/UART2_TXD/GP5[13]
8
O
IPU
SPI1, GPIO
(1)
(2)
(3)
36
UART2 transmit
data.
I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different
types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor
As these signals are internally pulled down while the device is in reset, it is necessary to externally pull them high with resistors if
UART1 boot mode is used. See the OMAP-L137 Applications Processor Stsyem Reference Guide - Literature Number SPRUG84 for
more for details on entering UART1 boot mode.
Device Overview
Copyright © 2012–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
OMAPL137-HT
www.ti.com
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
2.8.12 Inter-Integrated Circuit Modules(I2C0, I2C1)
Table 2-16. Inter-Integrated Circuit (I2C) Terminal Functions
PIN NO
SIGNAL NAME
PTP
TYPE (1)
PULL (2)
MUXED
DESCRIPTION
I2C0
UART0_RXD/I2C0_SDA/TM64P0_IN12/GP5[8]/BOOT[8]
2
I/O
IPU
UART0, Timer0,
GPIO, BOOT
I2C0 serial data.
UART0_TXD/I2C0_SCL/TM64P0_OUT12/GP5[9]/BOOT[9]
3
I/O
IPU
UART0, Timer0,
GPIO, BOOT
I2C0 serial clock.
I2C1
SPI1_SIMO[0]/I2C1_SDA/GP5[6]/BOOT[6]
14
I/O
IPU
SPI1_SOMI[0]/I2C1_SCL/GP5[5]/BOOT[5]
13
I/O
IPU
(1)
(2)
SPI1, GPIO,
BOOT
I2C1 serial Data.
I2C1 serial clock.
I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different
types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor
2.8.13 Timers
Table 2-17. Timers Terminal Functions
PIN NO
SIGNAL NAME
PTP
TYPE (1)
PULL (2)
MUXED
DESCRIPTION
TIMER0
UART0_RXD/I2C0_SDA/TM64P0_IN12/GP5[8]/BOOT[8]
2
I
IPU
UART0_TXD/I2C0_SCL/TM64P0_OUT12/GP5[9]/BOOT[9]
3
O
IPU
UART0, I2C0,
GPIO, BOOT
Timer0 lower
input.
Timer0 lower
output
TIMER1 (Watchdog )
No external pins. The Timer1 peripheral pins are not pinned out as external pins.
(1)
(2)
I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different
types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor
2.8.14
Universal Host-Port Interface (UHPI)
Note:
The UHPI module requires 16 data pins for the host port interface to function. Therefore on the PTP, the
UHPI is not available.
Device Overview
Copyright © 2012–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
37
OMAPL137-HT
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
www.ti.com
Table 2-18. Universal Host-Port Interface (UHPI) Terminal Functions
PIN NO
SIGNAL NAME
PTP
TYPE (
1)
PULL (2)
EMA_D[7]/MMCSD_DAT[7]/UHPI_HD[7]/GP0[7]/
BOOT[13]
54
I/O
IPU
EMA_D[6]/MMCSD_DAT[6]/UHPI_HD[6]/GP0[6]
52
I/O
IPU
EMA_D[5]/MMCSD_DAT[5]/UHPI_HD[5]/GP0[5]
51
I/O
IPU
EMA_D[4]/MMCSD_DAT[4]/UHPI_HD[4]/GP0[4]
49
I/O
IPU
EMA_D[3]/MMCSD_DAT[3]/UHPI_HD[3]/GP0[3]
48
I/O
IPU
EMA_D[2]/MMCSD_DAT[2]/UHPI_HD[2]/GP0[2]
46
I/O
IPU
EMA_D[1]/MMCSD_DAT[1]/UHPI_HD[1]/GP0[1]
45
I/O
IPU
EMA_D[0]/MMCSD_DAT[0]/UHPI_HD[0]/GP0[0]/
BOOT[12]
44
I/O
IPU
EMA_A[2]/MMCSD_CMD/UHPI_HCNTL1/GP1[2]
31
I/O
IPU
EMA_A[1]/MMCSD_CLK/UHPI_HCNTL0/GP1[1]
30
I/O
EMA_BA[1]/LCD_D[5]/UHPI_HHWIL/GP1[13]
26
EMA_WE/UHPI_HRW /AXR0[12]/GP2[3]/BOOT[14]
MUXED
DESCRIPTION
EMIFA, MMC/SD,
GPIO, BOOT
EMIFA, MMC/SD,
GPIO
UHPI data bus.
EMIFA, MMC/SD,
GPIO, BOOT
IPU
EMIFA,
MMCSD_CMD,
GPIO
UHPI access
control.
I/O
IPU
EMIFA, LCD, GPIO
UHPI half-word
identification control.
55
I/O
IPU
EMIFA, McASP,
GPIO, BOOT
UHPI read/write.
EMA_CS[2]/ UHPI_HCS /GP2[5]/BOOT[15]
23
I/O
IPU
EMIFA, GPIO,
BOOT
UHPI chip select.
EMA_OE/ UHPI_HDS1 /AXR0[13]/GP2[7]
22
I/O
IPU
EMIFA, McASP0,
GPIO
UHPI data strobe.
EMA_WAIT[0]/ UHPI_HRDY /GP2[10]
19
I/O
IPU
EMIFA, GPIO
UHPI ready.
(1)
(2)
I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different
types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor
2.8.15 Multichannel Audio Serial Ports (McASP0, McASP1, McASP2)
Table 2-19. Multichannel Audio Serial Ports (McASPs) Terminal Functions
PIN NO
SIGNAL NAME
PTP
TYPE (1) PULL (2)
MUXED
DESCRIPTION
McASP0
(1)
(2)
38
I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different
types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor
Device Overview
Copyright © 2012–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
OMAPL137-HT
www.ti.com
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
Table 2-19. Multichannel Audio Serial Ports (McASPs) Terminal Functions (continued)
PIN NO
SIGNAL NAME
PTP
TYPE (1) PULL (2)
MUXED
DESCRIPTION
EMA_OE/UHPI_HDS1/AXR0[13]/GP2[7]
24
I/O
IPU
EMIFA, UHPI,
GPIO
EMA_WE/UHPI_HRW/AXR0[12]/GP2[3]/BOOT[14]
55
I/O
IPU
EMIFA, UHPI,
GPIO, BOOT
AXR0[11]/ AXR2[0]/GP3[11]
124
I/O
IPD
McASP2,
GPIO
AXR0[10]/GP3[10]
123
I/O
IPD
GPIO
AXR0[9]/GP3[9]
122
I/O
IPD
GPIO
AXR0[8]/MDIO_D/GP3[8]
121
I/O
IPU
AXR0[7]/MDIO_CLK/GP3[7]
120
I/O
IPD
AXR0[6]/RMII_RXER[0]/ACLKR2/GP3[6]
118
I/O
IPD
AXR0[5]/RMII_RXD[1]/AFSX2/GP3[5]
117
I/O
IPD
AXR0[4]/ RMII_RXD[0]/AXR2[1]/GP3[4]
116
I/O
IPD
AXR0[3]/RMII_CRS_DV/AXR2[2]/GP3[3]
115
I/O
IPD
AXR0[2]/RMII_TXEN/AXR2[3]/GP3[2]
113
I/O
IPD
AXR0[1]/RMII_TXD[1]/ACLKX2/GP3[1]
112
I/O
IPD
AXR0[0]/RMII_TXD[0]/AFSR2/GP3[0]
111
I/O
IPD
AHCLKX0/AHCLKX2/USB_REFCLKIN/GP2[11]
125
I/O
IPD
McASP0
McASP2, USB,
transmit master
GPIO
clock.
ACLKX0/ECAP0/APWM0/GP2[12]
126
I/O
IPD
eCAP0, GPIO
McASP0
transmit bit
clock.
AFSX0/GP2[13]/BOOT[10]
127
I/O
IPD
GPIO, BOOT
McASP0
transmit frame
sync.
AHCLKR0/RMII_MHZ_50_CLK/GP2[14]/BOOT[11]
129
I/O
IPD
EMAC, GPIO,
BOOT
McASP0 receive
master clock.
ACLKR0/ECAP1/APWM1/GP2[15]
130
I/O
IPD
eCAP1, GPIO
McASP0 receive
bit clock.
AFSR0/GP3[12]
131
I/O
IPD
GPIO
McASP0 receive
frame sync.
AXR1[11]/GP5[11]
6
I/O
IPU
AXR1[10]/GP5[10]
4
I/O
IPU
AXR1[8]/EPWM1A/GP4[8]
168
I/O
IPD
eHRPWM1 A,
GPIO
AXR1[7]/EPWM1B/GP4[7]
169
I/O
IPD
eHRPWM1 B,
GPIO
AXR1[6]/EPWM2A/GP4[6]
170
I/O
IPD
eHRPWM2 A,
GPIO
eHRPWM2 B,
GPIO
MDIO, GPIO
McASP0 serial
data.
EMAC,
McASP2,
GPIO
McASP1
AXR1[5]/EPWM2B/GP4[5]
171
I/O
IPD
AXR1[4]/EQEP1B/GP4[4]
173
I/O
IPD
AXR1[3]/EQEP1A/GP4[3]
174
I/O
IPD
AXR1[2]/GP4[2]
175
I/O
IPD
AXR1[1]/GP4[1]
176
I/O
IPD
AXR1[0]/GP4[0]
1
I/O
IPD
160
I/O
IPD
AHCLKX1/EPWM0B/GP3[14]
GPIO
McASP1 serial
data.
eQEP, GPIO
GPIO
eHRPWM0,
GPIO
McASP1
transmit master
clock.
Device Overview
Copyright © 2012–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
39
OMAPL137-HT
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
www.ti.com
Table 2-19. Multichannel Audio Serial Ports (McASPs) Terminal Functions (continued)
PIN NO
SIGNAL NAME
PTP
TYPE (1) PULL (2)
MUXED
DESCRIPTION
ACLKX1/EPWM0A/GP3[15]
162
I/O
IPD
eHRPWM0,
GPIO
McASP1
transmit bit
clock.
AFSX1/EPWMSYNCI/EPWMSYNCO/GP4[10]
163
I/O
IPD
eHRPWM0,
GPIO
McASP1
transmit frame
sync.
ACLKR1/ECAP2/APWM2/GP4[12]
165
I/O
IPD
eCAP2, GPIO
McASP1 receive
bit clock.
AFSR1/GP4[13]
166
I/O
IPD
GPIO
McASP1 receive
frame sync.
eHRPWM0,
eHRPWM1,
GPIO,
eHRPWM2
McASP1 mute
output.
AMUTE1/EPWMTZ/GP4[14]
132
O
IPD
AXR0[2]/RMII_TXEN/ AXR2[3]/GP3[2]
113
I/O
IPD
AXR0[3]/RMII_CRS_DV/ AXR2[2]/GP3[3]
115
I/O
IPD
AXR0[4]/RMII_RXD[0]/ AXR2[1]/GP3[4]
116
I/O
IPD
AXR0[11]/AXR2[0]/GP3[11]
124
I/O
IPD
AHCLKX0/AHCLKX2/USB_REFCLKIN/GP2[11]
125
I/O
IPD
AXR0[1]/RMII_TXD[1]/ ACLKX2/GP3[1]
112
I/O
IPD
AXR0[5]/RMII_RXD[1]/ AFSX2/GP3[5]
117
I/O
IPD
McASP0,
EMAC, GPIO
McASP2
transmit frame
sync.
AXR0[6]/RMII_RXER[0]/ ACLKR2/GP3[6]
118
I/O
IPD
McASP0,
EMAC, GPIO
McASP2 receive
bit clock.
EMA_CS[3]/AMUTE2/GP2[6]
21
O
IPU
EMIFA, GPIO
McASP2 mute
output.
McASP2
McASP0,
EMAC, GPIO
McASP2 serial
data.
McASP0,
GPIO
McASP2
transmit master
McASP0, USB, clock.
GPIO
McASP2
transmit bit
clock.
2.8.16 Universal Serial Bus Modules (USB0, USB1)
Table 2-20. Universal Serial Bus (USB) Terminal Functions
SIGNAL NAME
PIN NO
PTP
TYPE (1) PULL (2)
DESCRIPTION
USB0 2.0 OTG
USB0_DM
138
A
USB0 PHY data minus
USB0_DP
137
A
USB0 PHY data plus
USB0_VDDA33
140
PWR
USB0 PHY 3.3-V supply
USB0_VDDA18
135
PWR
USB0 PHY 1.8-V supply input
USB0_VDDA12 (3)
134
PWR
USB0 PHY 1.2-V LDO output for bypass cap
AHCLKX0/AHCLKX2/USB_REFCLKIN/GP2[11]
125
I
(1)
(2)
(3)
40
IPD
USB_REFCLKIN. Optional 48 MHz clock input.
I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different
types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor
Core power supply LDO output for USB PHY. This pin must be connected via a 0.22 -μF capacitor to VSS. When the USB peripheral is
not used, the USB_VDDA12 signal should still be connected via a 1-μF capacitor to VSS.
Device Overview
Copyright © 2012–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
OMAPL137-HT
www.ti.com
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
Table 2-20. Universal Serial Bus (USB) Terminal Functions (continued)
SIGNAL NAME
PIN NO
TYPE (1) PULL (2)
PTP
DESCRIPTION
USB1 1.1 OHCI
AHCLKX0/AHCLKX2/USB_REFCLKIN/GP2[11]
125
I
IPD
USB_REFCLKIN. Optional 48 MHz clock input.
2.8.17 Ethernet Media Access Controller (EMAC)
Table 2-21. Ethernet Media Access Controller (EMAC) Terminal Functions
SIGNAL NAME
PIN NO
TYPE (1) PULL (2)
PTP
MUXED
DESCRIPTION
RMII
AHCLKR0/RMII_MHZ_50_CLK/GP2[14]/BOOT[11]
129
I/O
IPD
AXR0[6]/RMII_RXER[0]/ACLKR2/GP3[6]
118
I
IPD
AXR0[5]/RMII_RXD[1]/AFSX2/GP3[5]
117
I
IPD
AXR0[4]/RMII_RXD[0]/AXR2[1]/GP3[4]
116
I
IPD
AXR0[3]/RMII_CRS_DV/AXR2[2]/GP3[3]
115
I
IPD
AXR0[2]/RMII_TXEN/AXR2[3]/GP3[2]
113
O
IPD
AXR0[1]/RMII_TXD[1]/ACLKX2/GP3[1]
112
O
IPD
AXR0[0]/RMII_TXD[0]/AFSR2/GP3[0]
111
O
IPD
EMAC 50-MHz
clock input or
output.
McASP0, GPIO, BOOT
EMAC RMII
receiver error.
EMAC RMII
receive data.
McASP0, McASP2, GPIO
EMAC RMII carrier
sense data valid.
EMAC RMII
transmit enable.
EMAC RMII trasmit
data.
MDIO
AXR0[8]/MDIO_D/GP3[8]
121
I/O
IPU
AXR0[7]/MDIO_CLK/GP3[7]
120
O
IPD
(1)
(2)
McASP0, GPIO
MDIO data clock.
I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different
types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor
2.8.18 Multimedia Card/Secure Digital (MMC/SD)
Table 2-22. Multimedia Card/Secure Digital (MMC/SD) Terminal Functions
SIGNAL NAME
PIN NO
PTP
TYPE (1)
PULL (2)
EMA_A[1]/MMCSD_CLK/UHPI_HCNTL0/GP1[1]
30
O
IPU
EMA_A[2]/MMCSD_CMD/UHPI_HCNTL1/GP1[2]
31
I/O
IPU
(1)
(2)
MUXED
DESCRIPTION
EMIFA, UHPI, GPIO
MMCSD_CLK.
MMCSD_CMD.
I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different
types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor
Device Overview
Copyright © 2012–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
41
OMAPL137-HT
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
www.ti.com
Table 2-22. Multimedia Card/Secure Digital (MMC/SD) Terminal Functions (continued)
PIN NO
SIGNAL NAME
PTP
TYPE (1)
PULL (2)
MUXED
EMIFA, UHPI, GPIO,
BOOT
EMA_D[7]/MMCSD_DAT[7]/UHPI_HD[7]/GP0[7]/BOOT[13]
54
I/O
IPU
EMA_D[6]/MMCSD_DAT[6]/UHPI_HD[6]/GP0[6]
52
I/O
IPU
EMA_D[5]/MMCSD_DAT[5]/UHPI_HD[5]/GP0[5]
51
I/O
IPU
EMA_D[4]/MMCSD_DAT[4]/UHPI_HD[4]/GP0[4]
49
I/O
IPU
EMA_D[3]/MMCSD_DAT[3]/UHPI_HD[3]/GP0[3]
48
I/O
IPU
EMA_D[2]/MMCSD_DAT[2]/UHPI_HD[2]/GP0[2]
46
I/O
IPU
EMA_D[1]/MMCSD_DAT[1]/UHPI_HD[1]/GP0[1]
45
I/O
IPU
EMA_D[0]/MMCSD_DAT[0]/UHPI_HD[0]/GP0[0]/BOOT[12]
44
I/O
IPU
42
Device Overview
EMIFA, UHPI, GPIO
DESCRIPTION
MMC/SD data.
EMIFA, UHPI, GPIO,
BOOT
Copyright © 2012–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
OMAPL137-HT
www.ti.com
2.8.19
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
Liquid Crystal Display Controller(LCD)
Table 2-23. Liquid Crystal Display Controller (LCD) Terminal Functions
PIN NO
SIGNAL NAME
PTP
TYPE (1)
PULL (2)
MUXED
DESCRIPTION
EMA_A[0]/LCD_D[7]/GP1[0]
29
I/O
IPD
EMA_A[3]/LCD_D[6]/GP1[3]
32
I/O
IPD
EMA_BA[1]/LCD_D[5]/UHPI_HHWIL/GP1[13]
26
I/O
IPU
EMA_BA[0]/LCD_D[4]/GP1[14]
25
I/O
IPU
EMA_A[4]/LCD_D[3]/GP1[4]
34
I/O
IPD
EMA_A[5]/LCD_D[2]/GP1[5]
35
I/O
IPD
EMA_A[6]/LCD_D[1]/GP1[6]
36
I/O
IPD
EMA_A[7]/LCD_D[0]/GP1[7]
37
I/O
IPD
EMA_A[8]/LCD_PCLK/GP1[8]
39
O
IPU
EMA_A[9]/LCD_HSYNC/GP1[9]
40
O
IPU
LCD horizontal sync.
EMA_A[10]/LCD_VSYNC/GP1[10]
27
O
IPU
LCD vertical sync.
EMA_A[11]/ LCD_AC_ENB_CS /GP1[11]
41
O
IPU
LCD AC bias enable
chip select.
EMA_A[12]/LCD_MCLK/GP1[12]
42
O
IPU
LCD memory clock.
(1)
(2)
EMIFA, GPIO
EMIFA, UHPI,
GPIO
LCD data bus.
EMIFA, GPIO
LCD pixel clock.
I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different
types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor
2.8.20 Reserved and No-connect
Table 2-24. Reserved and No-connect Terminal Functions
SIGNAL NAME
PIN NO
PTP
TYPE (1)
DESCRIPTION
Reserved. For proper device operation, this pin must be tied
directly to CVDD.
RSV2
133
PWR
NC
139
-
-
NC
136
-
-
(1)
PWR = Supply voltage.
Device Overview
Copyright © 2012–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
43
OMAPL137-HT
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
www.ti.com
2.8.21 Supply and Ground
Table 2-25. Supply and Ground Terminal Functions
PIN NO
SIGNAL NAME
PTP
TYPE (1)
DESCRIPTION
CVDD (Core supply)
10, 20, 28, 38, 50, 56, 61,
67, 69, 77, 93, 104, 114,
147, 154, 159, 161, 167,
PWR
1.2-V core supply voltage pins
DVDD (I/O supply)
5, 15, 24, 33, 43, 47, 53, 58,
65, 71, 75, 81, 87, 90, 99,
109, 119, 128, 151, 158,
164, 172,
PWR
3.3-V I/O supply voltage pins.
VSS (Ground)
177
GND
Ground pins.
(1)
44
PWR = Supply voltage, GND - Ground.
Device Overview
Copyright © 2012–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
OMAPL137-HT
www.ti.com
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
3 Device Configuration
3.1
Introduction
This device supports a variety of boot modes through an internal DSP ROM bootloader. This device does
not support dedicated hardware boot modes; therefore, all boot modes utilize the internal DSP ROM. The
input states of the BOOT pins are sampled and latched into the BOOTCFG register, which is part of the
system configuration (SYSCFG) module, when device reset is deasserted. Boot mode selection is
determined by the values of the BOOT pins.
See Using the D800K001 Bootloader Application Report (SPRAB04) for more details on the ROM Boot
Loader.
3.2
Boot Modes Supported
The following boot modes are supported:
• NAND Flash boot
– 8-bit NAND
– 16-bit NAND
• NOR Flash boot
– NOR Direct boot
– NOR Legacy boot
– NOR AIS boot
• HPI Boot
• I2C0/I2C1 Boot
– Master boot
– Slave boot
• SPI0/SPI1 Boot
– Master boot
– Slave boot
For more details on the boot mode selection, see TMS320OMAPL137 Digital Audio System-on-Chip
User's Guide SPRUG83.
3.3
SYSCFG Module
The following system level features of the chip are controlled by the SYSCFG peripheral:
• Readable Device, Die, and Chip Revision ID
• Control of Pin Multiplexing
• Priority of bus accesses different bus masters in the system
• Capture at power on reset the chip BOOT[15:0] pin values and make them available to software
• Special case settings for peripherals:
– Locking of PLL controller settings
– Default burst sizes for EDMA3 TC0 and TC1
– Selection of the source for the eCAP module input capture (including on chip sources)
– McASP AMUTEIN selection and clearing of AMUTE status for the three McASP peripherals
– Control of the reference clock source and other side-band signals for both of the integrated USB
PHYs
– Clock source selection for EMIFA and EMIFB
• Selects the source of emulation suspend signal (from either ARM or DSP) from peripherals supporting
this function.
• Control of on-chip inter-processor interrupts for signaling between ARM and DSP
Device Configuration
Copyright © 2012–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
45
OMAPL137-HT
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
www.ti.com
Since the SYSCFG peripheral controls global operation of the device, its registers are protected against
erroneous accesses by several mechanisms:
• A special key sequence must be written to KICK0, KICK1 registers before any other registers are
writeable.
• Additionally, many registers are accessible only by a host (ARM or DSP) when it is operating in its
privileged mode. (ex. from the kernel, but not from user space code).
• On a secure OMAPL137 device, some accesses are further restricted to the DSP running in secure
mode. Note that this protection does not apply to OMAPL137 devices that are ordered with the "No
Security Option".
Table 3-1. System Configuration (SYSCFG) Module Register Access
Offset
46
Acronym
Register Description
Access
0x01C1 4000
REVID
Revision Identification Register
—
0x01C14008
DIEIDR0
Device Identification Register 0
—
0x01C1 400C
DIEIDR1
Device Identification Register 1
—
0x01C1 4010
DIEIDR2
Device Identification Register 2
—
0x01C1 4014
DIEIDR3
Device Identification Register 3
—
0x01C1 4018
DEVIDR0
Device Identification Register 0
0x01C1 4020
BOOTCFG
Boot Configuration Register
Privileged mode
—
0x01C1 4038
KICK0R
Kick 0 Register
Privileged mode
0x01C1 403C
KICK1R
Kick 1 Register
Privileged mode
0x01C1 4040
HOST0CFG
Host 0 Configuration Register
—
0x01C1 4044
HOST1CFG
Host 1 Configuration Register
0x01C1 40E0
IRAWSTAT
Interrupt Raw Status/Set Register
Privileged mode
—
0x01C1 40E4
IENSTAT
Interrupt Enable Status/Clear Register
Privileged mode
0x01C1 40E8
IENSET
Interrupt Enable Register
Privileged mode
0x01C1 40EC
IENCLR
Interrupt Enable Clear Register
Privileged mode
0x01C1 40F0
EOI
End of Interrupt Register
Privileged mode
0x01C1 40F4
FLTADDRR
Fault Address Register
Privileged mode
0x01C1 40F8
FLTSTAT
Fault Status Register
0x01C1 4110
MSTPRI0
Master Priority 0 Register
Privileged mode
0x01C1 4114
MSTPRI1
Master Priority 1 Register
Privileged mode
0x01C1 4118
MSTPRI2
Master Priority 2 Register
Privileged mode
0x01C1 4120
PINMUX0
Pin Multiplexing Control 0 Register
Privileged mode
0x01C1 4124
PINMUX1
Pin Multiplexing Control 1 Register
Privileged mode
—
0x01C1 4128
PINMUX2
Pin Multiplexing Control 2 Register
Privileged mode
0x01C1 412C
PINMUX3
Pin Multiplexing Control 3 Register
Privileged mode
0x01C1 4130
PINMUX4
Pin Multiplexing Control 4 Register
Privileged mode
0x01C1 4134
PINMUX5
Pin Multiplexing Control 5 Register
Privileged mode
0x01C1 4138
PINMUX6
Pin Multiplexing Control 6 Register
Privileged mode
0x01C1 413C
PINMUX7
Pin Multiplexing Control 7 Register
Privileged mode
0x01C1 4140
PINMUX8
Pin Multiplexing Control 8 Register
Privileged mode
0x01C1 4144
PINMUX9
Pin Multiplexing Control 9 Register
Privileged mode
0x01C1 4148
PINMUX10
Pin Multiplexing Control 10 Register
Privileged mode
0x01C1 414C
PINMUX11
Pin Multiplexing Control 11 Register
Privileged mode
0x01C1 4150
PINMUX12
Pin Multiplexing Control 12 Register
Privileged mode
0x01C1 4154
PINMUX13
Pin Multiplexing Control 13 Register
Privileged mode
0x01C1 4158
PINMUX14
Pin Multiplexing Control 14 Register
Privileged mode
0x01C1 415C
PINMUX15
Pin Multiplexing Control 15 Register
Privileged mode
Device Configuration
Copyright © 2012–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
OMAPL137-HT
www.ti.com
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
Table 3-1. System Configuration (SYSCFG) Module Register Access (continued)
Acronym
Register Description
0x01C1 4160
Offset
PINMUX16
Pin Multiplexing Control 16 Register
Privileged mode
Access
0x01C1 4164
PINMUX17
Pin Multiplexing Control 17 Register
Privileged mode
0x01C1 4168
PINMUX18
Pin Multiplexing Control 18 Register
Privileged mode
0x01C1 416C
PINMUX19
Pin Multiplexing Control 19 Register
Privileged mode
0x01C1 4170
SUSPSRC Reserved
Suspend Source Register —
0x01C1 4174
CHIPSIG
Chip Signal Register
—
0x01C1 4178
CHIPSIG_CLR
Chip Signal Clear Register
—
0x01C1 417C
CFGCHIP0
Chip Configuration 0 Register
Privileged mode
0x01C1 4180
CFGCHIP1
Chip Configuration 1 Register
Privileged mode
0x01C1 4184
CFGCHIP2
Chip Configuration 2 Register
Privileged mode
0x01C1 4188
CFGCHIP3
Chip Configuration 3 Register
Privileged mode
0x01C1 418C
CFGCHIP4
Chip Configuration 4 Register
Privileged mode
Privileged mode —
Device Configuration
Copyright © 2012–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
47
OMAPL137-HT
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
www.ti.com
4 Device Operating Conditions
4.1 Absolute Maximum Ratings Over Operating Case Temperature Range
(Unless Otherwise Noted) (1)
Core
(CVDD, RTC_CVDD, PLL0_VDDA (2) )
Supply voltage ranges
I/O, 1.8V
(USB0_VDDA18, USB1_VDDA18)
Output voltage ranges
Clamp Current
-0.5 V to 2 V
(3)
I/O, 3.3V
(DVDD, USB0_VDDA33, USB1_VDDA33)
Input voltage ranges
-0.5 V to 1.4 V
(3)
-0.5 V to 3.8 V
(3)
VI I/O, 1.2V
(OSCIN, RTC_XI)
-0.3 V to CVDD + 0.3V
VI I/O, 3.3V
(Steady State)
-0.3V to DVDD + 0.3V
VI I/O, 3.3V
(Transient)
DVDD + 20%
up to 20% of Signal Period
VI I/O, USB 5V Tolerant Pins:
(USB0_DM, USB0_DP, USB0_ID, USB1_DM, USB1_DP)
5.25V (4)
VI I/O, USB0 VBUS
5.50V (4)
VO I/O, 3.3V
(Steady State)
-0.5 V to DVDD + 0.3V
VO I/O, 3.3V
(Transient Overshoot/Undershoot)
20% of DVDD for up to
20% of the signal period
Input or Output Voltages 0.3V above or below their respective
power rails. Limit clamp current that flows through the I/O's internal
diode protection cells.
±20mA
Operating Junction Temperature
ranges, TJ
-55°C to 175°C
Storage temperature range, Tstg
-55°C to 150°C
(1)
(2)
(3)
(4)
48
Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings
only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating
conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
This pin is an internal LDO output and connected via 0.22 µF capacitor to USB0_VDDA12.
All voltage values are with respect to VSS, PLL0_VSSA, OSCVSS, RTC_VSS
Up to a max of 24 hours.
Device Operating Conditions
Copyright © 2012–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
OMAPL137-HT
www.ti.com
4.2
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
Recommended Operating Conditions
CVDD
DVDD
MIN
NOM
MAX
UNIT
Supply voltage, Core
(CVDD, RTC_CVDD, PLL0_VDDA , USB0_VDDA12 (1))
1.14
1.2
1.32
V
Supply voltage, I/O, 1.8V
(USB0_VDDA18, USB1_VDDA18)
1.71
1.8
1.89
V
Supply voltage, I/O, 3.3V
(DVDD, USB0_VDDA33, USB1_VDDA33)
3.15
3.3
3.45
V
0
0
0
V
Supply ground
(VSS, PLL0_VSSA, OSCVSS (2), RTC_VSS (2))
VSS
High-level input voltage, I/O, 3.3V
VIH
(3)
High-level input voltage, RTC_XI
High-level input voltage, OSCIN
2
V
0.8*RTC_CVDD
V
0.8*CVDD
Low-level input voltage, I/O, 3.3V
VIL
(3)
Low-level input voltage, RTC_XI
Low-level input voltage, OSCIN
Input Hysteresis
USB
USB0_VBUS
tt
Transition time, 10%-90%, All Inputs
TA
Operating ambient temperature range
FSYSCLK1,6
DSP and ARM Operating Frequency (SYSCLK1,6)
(3)
V
V
0.2*CVDD
VHYS
(1)
(2)
0.8
0.2*RTC_CVDD
160
4.75
5
mV
5.25
V
10
ns
-55
175
°C
0
300
MHz
This pin is an internal LDO output and connected via 0.22 μF capacitor to VSS.
When an external crystal is used, oscillator ground (OSC_VSS, RTC_VSS) must be kept separate from other grounds and connected
directly to the crystal load capacitor ground. These pins are shorted to VSS on the device itself and should not be connected to VSS on
the circuit board. If a crystal is not used and the clock input is driven directly, then the oscillator VSS may be connected to board ground.
These I/O specifications do not apply to USB I/Os. USB0 I/Os adhere to USB2.0 specification. USB1 I/Os adhere to USB1.1
specification.
Device Operating Conditions
Copyright © 2012–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
49
OMAPL137-HT
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
www.ti.com
Electrical Characteristics (1)
4.3
PARAMETER
VOH
TEST CONDITIONS
(2)
MAX
USB0_VDDA33
High speed:
USB0_DM and USB0_DP
360
440
Low/full speed:
USB1_DM and USB1_DP
2.8
USB1_VDDA33
DVDD= 3.15V, IOH = -4 mA
DVDD= 3.15V, IOH = -100 μA
UNIT
V
mV
V
2.4
V
2.95
V
Low/full speed:
USB0_DM and USB0_DP
0.0
0.3
V
High speed:
USB0_DM and USB0_DP
-10
10
mV
Low/full speed:
USB1_DM and USB1_DP
0.0
0.3
V
DVDD= 3.15V, IOL = 4mA
0.4
V
DVDD= 3.15V, IOL = +100 μA
0.2
V
VI = VSS to DVDD without opposing
internal resistor
±35
μA
Low-level output voltage (3.3V I/O)
II
TYP
2.8
High-level output voltage (3.3V I/O)
VOL
MIN
Low/full speed:
USB0_DM and USB0_DP
Input current
VI = VSS to DVDD with opposing
internal pullup resistor (3)
-30
-200
μA
VI = VSS to DVDD with opposing
internal pulldown resistor (3)
50
300
μA
±40
μA
VI = VSS to USB1_VDDA33 USB1_DM and USB1_DP
IOH
High-level output current
All peripherals
-4
mA
IOL
Low-level output current
All peripherals
4
mA
I/O Off-state output current
VO = VDD or VSS; Internal pull disabled
±35
μA
IOZ
(4)
CI
Input capacitance
CO
(1)
(2)
(3)
(4)
Output capacitance
LVCMOS signals
3
OSCIN
5
RTC_XI
2
LVCMOS signals
3
pF
pF
Parameters are characterized over -40°C to 125°C unless otherwise noted.
II applies to input-only pins and bi-directional pins. For input-only pins, II indicates the input leakage current. For bi-directional pins, II
indicates the input leakage current and off-state (Hi-Z) output leakage current. Does not apply to USB0 pins. Please see USB2.0
specification.
Applies only to pins with an internal pullup (IPU) or pulldown (IPD) resistor.
IOZ applies to output-only pins, indicating off-state (Hi-Z) output leakage current.
7000
Estimated Life - Hours
6000
5000
4000
3000
2000
1000
25
50
75
100
125
175
Continuous TJ - °C
A.
B.
See datasheet for absolute maximum and minimum recommended operating conditions.
The predicted operating lifetime vs. junction temperature is based on reliability modeling using electromigration as the
dominant failure mechanism affecting device wearout for the specific device process and design characteristics.
Figure 4-1. OMAPL137 Operating Life Derating Chart at 300 MHz, Core 1.2 V
50
Device Operating Conditions
Copyright © 2012–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
OMAPL137-HT
www.ti.com
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
5 Peripheral Information and Electrical Specifications
5.1
Parameter Information
5.1.1
Parameter Information Device-Specific Information
Tester Pin Electronics
42 Ω
Data Sheet Timing Reference Point
Output
Under
Test
3.5 nH
Transmission Line
Z0 = 50 Ω
(see note)
4.0 pF
A.
Device Pin
(see note)
1.85 pF
The data sheet provides timing at the device pin. For output timing analysis, the tester pin electronics and its
transmission line effects must be taken into account. A transmission line with a delay of 2 ns or longer can be used to
produce the desired transmission line effect. The transmission line is intended as a load only. It is not necessary to
add or subtract the transmission line delay (2 ns or longer) from the data sheet timings.
Input requirements in this data sheet are tested with an input slew rate of < 4 Volts per nanosecond (4 V/ns) at the
device pin.
Figure 5-1. Test Load Circuit for AC Timing Measurements
The load capacitance value stated is only for characterization and measurement of AC timing signals. This
load capacitance value does not indicate the maximum load the device is capable of driving.
5.1.1.1
Signal Transition Levels
All input and output timing parameters are referenced to Vref for both "0" and "1" logic levels. For 3.3 V I/O,
Vref = 1.65 V. For 1.8 V I/O, Vref = 0.9 V. For 1.2 V I/O, Vref = 0.6 V.”
Vref
Figure 5-2. Input and Output Voltage Reference Levels for AC Timing Measurements
All rise and fall transition timing parameters are referenced to VIL MAX and VIH MIN for input clocks,
VOLMAX and VOH MIN for output clocks.
Vref = VIH MIN (or VOH MIN)
Vref = VIL MAX (or VOL MAX)
Figure 5-3. Rise and Fall Transition Time Voltage Reference Levels
5.2
Recommended Clock and Control Signal Transition Behavior
All clocks and control signals must transition between VIH and VIL (or between VIL and VIH) in a monotonic
manner.
Copyright © 2012–2013, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
51
OMAPL137-HT
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
5.3
5.3.1
www.ti.com
Power Supplies
Power-on Sequence
OMAPL137 devices include on chip logic that ensures I/O pins are tri-stated during the power on ramp, as
long as the RESET pin is asserted. This is true even if the core voltage (CVDD) has not yet ramped.
Normally, the only requirement during the power on ramp is that both the RESET and TRST pins remain
asserted (low) until after the power supply rails have fully ramped.
However, if the on chip USB modules are used; then to limit any noise on the USB0_DM, andUSB0_DP,
USB1_DM, and USB1_DP pins to less than 200mV during the power on ramp, the sequence illustrated in
Figure 5-4 must be followed. The requirement is that the core supply (CVDD) must ramp to at least 0.9V
(1) before the IO supply (DVDD) reaches the 1.65V point in its ramp (2). And as is always the case,
RESET and TRST must remain asserted during the power on ramp and released only after CVDD and
DVDD are within their specified ranges.
(2)
1.65 V
DVDD
(3)
(1)
CVDD
900 mV
RESET, TRST
VIL
USB0_DM, USB0_DP
USB1_DM, USB1_DP
200 mV
Figure 5-4. Power Sequence
5.3.2
Unused USB0 (USB2.0) and USB1 (USB1.1) Pin Configurations
If one or both USB modules on the device are not used, then some of the power supplies to those
modules may not be required. This can eliminate the requirement for a 1.8V power supply to the USB
modules. The required pin configurations for unused USB modules are shown below.
Table 5-1. Unused USB0 and USB1 Pin Configurations
52
SIGNAL NAME
Configuration
(When USB0 and USB1 are not used)
Configuration
(When USB0 is used
and USB1 is not used)
USB0_DM
No connect
Use as USB0 function
USB0_DP
No connect
Use as USB0 function
USB0_VDDA33
No connect
3.3V
USB0_VDDA18
No connect
1.8V
USB0_ID
No connect
Use as USB0 function
USB0_VBUS
No connect
Use as USB0 function
USB0_DRVVBUS/GP4[15]
No connect or use as alternate function
Use as USB0 or alternate function
USB0_VDDA12
No connect
Internal USB0 PHY output connected to an
external filter capacitor
USB1_DM
No connect
Ground
USB1_DP
No connect
Ground
USB1_VDDA33
No connect
No connect
USB1_VDDA18
No connect
No connect
Peripheral Information and Electrical Specifications
Copyright © 2012–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
OMAPL137-HT
www.ti.com
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
Table 5-1. Unused USB0 and USB1 Pin Configurations (continued)
SIGNAL NAME
Configuration
(When USB0 and USB1 are not used)
Configuration
(When USB0 is used
and USB1 is not used)
AHCLKX0/AHCLKX2/USB_REFCLKIN/
GP2[11]
No connect or use as alternate function
Use as USB0 or alternate function
5.4
5.4.1
Reset
Power-On Reset (POR)
A power-on reset (POR) is required to place the device in a known good state after power-up. Power-On
Reset is initiated by bringing RESET and TRST low at the same time. POR sets all of the device internal
logic to its default state. All pins are tri-stated with the exception of RESETOUT which remains active
through the reset sequence. RESETOUT is an output for use by other controllers in the system that
indicates the device is currently in reset.
RTCK is maintained active through a POR.
A
•
•
•
•
•
summary of the effects of Power-On Reset is given below:
All internal logic (including emulation logic and the PLL logic) is reset to its default state
Internal memory is not maintained through a POR
RESETOUT goes active
All device pins go to a high-impedance state
The RTC peripheral is not reset during a POR. A software sequence is required to reset the RTC
CAUTION
A watchdog reset triggers a POR.
5.4.2
Warm Reset
A warm reset provides a limited reset to the device. Warm Reset is initiated by bringing only RESET low
(TRST is maintained high through a warm reset). Warm reset sets certain portions of the device to their
default state while leaving others unaltered. All pins are tri-stated with the exception of RESETOUT which
remains active through the reset sequence. RESETOUT is an output for use by other controllers in the
system that indicates the device is currently in reset.
During emulation, the emulator will maintain TRST high and hence only warm reset (not POR) is available
during emulation debug and development.
RTCK is maintained active through a POR.
A
•
•
•
•
•
5.4.3
summary of the effects of Warm Reset is given below:
All internal logic (except for the emulation logic and the PLL logic) is reset to its default state
Internal memory is maintained through a warm reset
RESETOUT goes active
All device pins go to a high-impedance state
The RTC peripheral is not reset during a warm reset. A software sequence is required to reset the
RTC
Reset Electrical Data Timings
Table 5-2 assumes testing over the recommended operating conditions.
Copyright © 2012–2013, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
53
OMAPL137-HT
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
www.ti.com
Table 5-2. Reset Timing Requirements
NO.
(1)
(2)
(3)
(4)
(1) (2) (3)
PARAMETER
MIN
1
tw(RSTL)
Pulse width, RESET/TRST low
100
ns
2
tsu(BPV-RSTH)
Setup time, boot pins valid before RESET/TRST high
20
ns
3
th(RSTH-BPV)
Hold time, boot pins valid after RESET/TRST high
20
ns
4
td(RSTH-RESETOUTH)
RESET high to RESETOUT high; Warm reset
4096
RESET high to RESETOUT high; Power-on Reset
6192
MAX
UNIT
cycles (4)
Parameters are characterized from -40°C to 125°C unless otherwise noted.
RESETOUT is multiplexed with other pin functions. See the Terminal Functions table, Table 2-5 for details.
For power-on reset (POR), the reset timings in this table refer to RESET and TRST together. For warm reset, the reset timings in this
table refer to RESET only (TRST is held high).
OSCIN cycles
Power
Supplies
Ramping
Power Supplies Stable
Clock Source Stable
OSCIN
1
RESET
TRST
4
RESETOUT
3
2
Boot Pins
Config
Figure 5-5. Power-On Reset (RESET and TRST active) Timing
Power Supplies Stable
OSCIN
TRST
1
RESET
5
4
RESETOUT
3
2
Boot Pins
Driven or Hi-Z
Config
Figure 5-6. Warm Reset (RESET active, TRST high) Timing
54
Peripheral Information and Electrical Specifications
Copyright © 2012–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
OMAPL137-HT
www.ti.com
5.5
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
Crystal Oscillator or External Clock Input
The device includes two choices to provide an external clock input, which is fed to the on-chip PLL to
generate high-frequency system clocks. These options are illustrated in Figure 5-7 and Figure 5-8. For
input clock frequencies between 12 and 20 MHz, a crystal with 80 ohm max ESR is recommended. For
input clock frequencies between 20 and 30 MHz, a crystal with 60 Ω max ESR is recommended. Typical
C1, C2 values are 10-20 pF.
The CLKMODE bit in the PLLCTL register must be 0 to use the on-chip oscillator. If CLKMODE is set to 1,
the internal oscillator is disabled.
• Figure 5-7 illustrates the option that uses on-chip 1.2V oscillator with external crystal circuit.
• Figure 5-8 illustrates the option that uses an external 1.2V clock input.
C2
OSCIN
Clock Input
to PLL
X1
OSCOUT
C1
OSCVSS
The oscillator performance is validated up to 125°C, operating above 125°C is recommended to be driven with an
external clock source.
Figure 5-7. On-Chip 1.2V Oscillator
Table 5-3. Oscillator Timing Requirements
NO.
fosc
PARAMETER
Oscillator frequency range (OSCIN/OSCOUT)
OSCIN
NC
MIN
MAX
UNIT
12
30
MHz
Clock
Input
to PLL
OSCOUT
OSCVSS
Figure 5-8. External 1.2V Clock Source
Table 5-4. OSCIN Timing Requirements
MIN
MAX
UNIT
fOSCIN
NO.
OSCIN frequency range (OSCIN)
PARAMETER
12
50
MHz
tc(OSCIN)
Cycle time, external clock driven on OSCIN
20
Copyright © 2012–2013, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
ns
55
OMAPL137-HT
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
www.ti.com
Table 5-4. OSCIN Timing Requirements (continued)
NO.
PARAMETER
MIN
tw(OSCINH) Pulse width high, external clock on OSCIN
MAX
0.4
UNIT
ns
tc(OSCIN)
tw(OSCINL) Pulse width low, external clock on OSCIN
tt(OSCIN)
Transition time, OSCIN
tj(OSCIN)
Period jitter, OSCIN
5.6
0.4
tc(OSCIN)
ns
5
ns
0.02P
ns
Clock PLLs
The device has one PLL controller that provides clock to different parts of the system. PLL0 provides
clocks (though various dividers) to most of the components of the device.
The PLL controller provides the following:
• Glitch-Free Transitions (on changing clock settings)
• Domain Clocks Alignment
• Clock Gating
• PLL power down
The various clock outputs given by the controller are as follows:
• Domain Clocks: SYSCLK [1:n]
• Auxiliary Clock from reference clock source: AUXCLK
Various dividers that can be used are as follows:
• Post-PLL Divider: POSTDIV
• SYSCLK Divider: D1, ¼, Dn
Various other controls supported are as follows:
• PLL Multiplier Control: PLLM
• Software programmable PLL Bypass: PLLEN
5.6.1
PLL Device-Specific Information
The device DSP generates the high-frequency internal clocks it requires through an on-chip PLL.
The PLL requires some external filtering components to reduce power supply noise as shown in Figure 59.
CVDD
PLL0_VDDA
50R
0.1
µF
VSS
50R
0.01
µF
PLL0_VSSA
Ferrite Bead
Figure 5-9. PLL External Filtering Components
The input to the PLL is either from the on-chip oscillator (OSCIN pin) or from an external clock on the
CLKIN pin. The PLL outputs seven clocks that have programmable divider options. Figure 5-10 illustrates
the PLL Topology.
The PLL is disabled by default after a device reset. It must be configured by software according to the
allowable operating conditions listed in Table 5-5 before enabling the DSP to run from the PLL by setting
PLLEN = 1.
56
Peripheral Information and Electrical Specifications
Copyright © 2012–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
OMAPL137-HT
www.ti.com
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
CLKMODE
OSCIN
PLLEN
Square
Wave
1
Crystal
0
PLL
Pre-Div
Post-Div
PLLM
1
PLLDIV1 (/1)
SYSCLK1
0
PLLDIV2 (/2)
SYSCLK2
PLLDIV3 (/3)
SYSCLK3
PLLDIV4 (/4)
SYSCLK4
PLLDIV5 (/3)
SYSCLK5
PLLDIV6 (/1)
SYSCLK6
PLLDIV7 (/6)
SYSCLK7
AUXCLK
0
DIV4.5
1
EMIFA
Internal
Clock
Source
CFGCHIP3[EMA_CLKSRC]
DIV4.5
1
0
EMIFB
Internal
Clock
Source
CFGCHIP3[EMB_CLKSRC]
SYSCLK1
SYSCLK2
SYSCLK3
SYSCLK4
SYSCLK5
SYSCLK6
SYSCLK7
14h
17h
18h
19h
1Ah
1Bh
1Ch
1Dh
OSCDIV
OBSCLK Pin
OCSEL[OCSRC]
Figure 5-10. PLL Topology
Copyright © 2012–2013, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
57
OMAPL137-HT
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
www.ti.com
Table 5-5. Allowed PLL Operating Conditions
NO.
PARAMETER
Default
Value
MIN
MAX
UNIT
1
PLLRST: Assertion time during
initialization
N/A
125
N/A
ns
2
Lock time: The time that the application
has to wait for the PLL to acquire locks
before setting PLLEN, after changing
PREDIV, PLLM, or OSCIN
N/A
3
PREDIV
/1
4
PLL input frequency
( PLLREF)
(1)
58
N/A
2000 N
M
where N = Pre-Divider Ratio
M = PLL Multiplier
ns
(1)
/1
/32
ns
12
30 (if internal oscillator is used)
50 (if external clock sourcce is used)
MHz
5
PLL multiplier values (PLLM)
x20
x4
x32
6
PLL output frequency. ( PLLOUT )
N/A
400
600 (1)
MHz
7
POSTDIV
/1
/2 (1)
/32
ns
PLL post divider / 2 must be used. The /4.5 clock path can be used to generate an EMIF clock from the undivided (i.e. 600 MHz) PLL
output clock.
Peripheral Information and Electrical Specifications
Copyright © 2012–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
OMAPL137-HT
www.ti.com
5.6.2
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
Device Clock Generation
PLL0 is controlled by PLL Controller 0. The PLLC0 manages the clock ratios, alignment, and gating for the
system clocks to the chip. The PLLC is responsible for controlling all modes of the PLL through software,
in terms of pre-division of the clock inputs, multiply factor within the PLL, and post-division for each of the
chip-level clocks from the PLL output. The PLLC also controls reset propagation through the chip, clock
alignment, and test points.
5.6.3
PLL Controller 0 Registers
Table 5-6. PLL Controller 0 Registers
5.7
ADDRESS
ACRONYM
REGISTER DESCRIPTION
0x01C1 1000
REVID
Revision Identification Register
0x01C1 10E4
RSTYPE
Reset Type Status Register
0x01C1 1100
PLLCTL
PLL Control Register
0x01C1 1104
OCSEL
OBSCLK Select Register
0x01C1 1110
PLLM
PLL Multiplier Control Register
0x01C1 1114
PREDIV
PLL Pre-Divider Control Register
0x01C1 1118
PLLDIV1
PLL Controller Divider 1 Register
0x01C1 111C
PLLDIV2
PLL Controller Divider 2 Register
0x01C1 1120
PLLDIV3
PLL Controller Divider 3 Register
0x01C1 1124
OSCDIV
Oscillator Divider 1 Register (OBSCLK)
0x01C1 1128
POSTDIV
PLL Post-Divider Control Register
0x01C1 1138
PLLCMD
PLL Controller Command Register
0x01C1 113C
PLLSTAT
PLL Controller Status Register
0x01C1 1140
ALNCTL
PLL Controller Clock Align Control Register
0x01C1 1144
DCHANGE
PLLDIV Ratio Change Status Register
0x01C1 1148
CKEN
Clock Enable Control Register
0x01C1 114C
CKSTAT
Clock Status Register
0x01C1 1150
SYSTAT
SYSCLK Status Register
0x01C1 1160
PLLDIV4
PLL Controller Divider 4 Register
0x01C1 1164
PLLDIV5
PLL Controller Divider 5 Register
0x01C1 1168
PLLDIV6
PLL Controller Divider 6 Register
0x01C1 116C
PLLDIV7
PLL Controller Divider 7 Register
0x01C1 11F0
EMUCNT0
Emulation Performance Counter 0 Register
0x01C1 11F4
EMUCNT1
Emulation Performance Counter 1 Register
Interrupts
The device has a large number of interrupts to service the needs of its many peripherals and subsystems.
Both the ARM and C674x CPUs are capable of servicing these interrupts equally. The interrupts can be
selectively enabled or disabled in either of the controllers. Also, the ARM and DSP can communicate with
each other through interrupts controlled by registers in the SYSCFG module.
Copyright © 2012–2013, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
59
OMAPL137-HT
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
5.7.1
www.ti.com
ARM CPU Interrupts
The ARM9 CPU core supports 2 direct interrupts: FIQ and IRQ. The ARM Interrupt Controller on the
OMAPL137 extends the number of interrupts to 100, and provides features like programmable masking,
priority, hardware nesting support, and interrupt vector generation. The OMAPL137 ARM Interrupt
controller is enhanced from previous devices like the DM6446 and DM355.
5.7.1.1
ARM Interrupt Controller (AINTC) Interrupt Signal Hierarchy
On OMAPL137, the ARM Interrupt controller organizes interrupts into the following hierarchy:
• Peripheral Interrupt Requests
– Individual Interrupt Sources from Peripherals
• 100 System Interrupts
– One or more Peripheral Interrupt Requests are combined (fixed configuration) to generate a
System Interrupt.
– After prioritization, the AINTC will provide an interrupt vector based unique to each System Interrupt
• 32 Interrupt Channels
– Each System Interrupt is mapped to one of the 32 Interrupt Channels
– Channel Number determines the first level of prioritization, Channel 0 is highest priority and 31
lowest.
– If more than one system interrupt is mapped to a channel, priority within the channel is determined
by system interrupt number (0 highest priority)
• Host Interrupts (FIQ and IRQ)
– Interrupt Channels 0 and 1 generate the ARM FIQ interrupt
– Interrupt Channels 2 through 31 Generate the ARM IRQ interrupt
• Debug Interrupts
– Two Debug Interrupts are supported and can be used to trigger events in the debug subsystem
– Sources can be selected from any of the System Interrupts or Host Interrupts
5.7.1.2
AINTC Hardware Vector Generation
The AINTC also generates an interrupt vector in hardware for both IRQ and FIQ host interrupts. This may
be used to accelerate interrupt dispatch. A unique vector is generated for each of the 100 system
interrupts. The vector is computed in hardware as:
VECTOR = BASE + (SYSTEM INTERRUPT NUMBER × SIZE)
Where BASE and SIZE are programmable. The computed vector is a 32-bit address which may
dispatched to using a single instruction of type LDR PC, [PC, #-<offset_12>] at the FIQ and IRQ vector
locations (0xFFFF0018 and 0xFFFF001C respectively).
5.7.1.3
AINTC Hardware Interrupt Nesting Support
Interrupt nesting occurs when an interrupt service routine re-enables interrupts, to allow the CPU to
interrupt the ISR if a higher priority event occurs. The AINTC provides hardware support to facilitate
interrupt nesting. It supports both global and per host interrupt (FIQ and IRQ in this case) automatic
nesting. If enabled, the AINTC will automatically update an internal nesting register that temporarily masks
interrupts at and below the priority of the current interrupt channel. Then if the ISR re-enables interrupts;
only higher priority channels will be able to interrupt it. The nesting level is restored by the ISR by writing
to the nesting level register on completion. Support for nesting can be enabled/disabled by software, with
the option of automatic nesting on a global or per host interrupt basis; or manual nesting.
5.7.1.4
AINTC System Interrupt Assignments on OMAPL137
System Interrupt assignments for the OMAPL137 are listed in Table 5-7
60
Peripheral Information and Electrical Specifications
Copyright © 2012–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
OMAPL137-HT
www.ti.com
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
Table 5-7. AINTC System Interrupt Assignments
System
Interrupt
Interrupt Name
Source
0
COMMTX
ARM
1
COMMRX
ARM
2
NINT
3
PRU_EVTOUT0
4
5
Interrupt Name
Source
51
IIC1_INT
I2C1
52
LCDC_INT
LCD Controller
ARM
53
UART_INT1
UART1
PRU Interrupt
54
MCASP_INT
McASP0, 1, 2 Combined
RX / TX Interrupts
PRU_EVTOUT1
PRU Interrupt
55
PSC1_ALLINT
PSC1
PRU_EVTOUT2
PRU Interrupt
56
SPI1_INT
SPI1
6
PRU_EVTOUT3
PRU Interrupt
57
UHPI_ARMINT
UHPI Arm Interrupt
7
PRU_EVTOUT4
PRU Interrupt
58
USB0_INT
USB0 Interrupt
8
PRU_EVTOUT5
PRU Interrupt
59
USB1_HCINT
USB1 OHCI Host
Controller Interrupt
9
PRU_EVTOUT6
PRU Interrupt
60
USB1_RWAKEUP
USB1 Remote Wakeup
Interrupt
10
PRU_EVTOUT7
PRU Interrupt
61
UART2_INT
UART2
11
EDMA3_CC0_CCINT
EDMA CC Region 0
62
-
Reserved
12
EDMA3_CC0_CCERRINT EDMA CC
63
EHRPWM0
HiResTimer / PWM0
Interrupt
13
EDMA3_TC0_TCERRINT EDMA TC0
64
EHRPWM0TZ
HiResTimer / PWM0 Trip
Zone Interrupt
14
EMIFA_INT
EMIFA
65
EHRPWM1
HiResTimer / PWM1
Interrupt
15
IIC0_INT
I2C0
66
EHRPWM1TZ
HiResTimer / PWM1 Trip
Zone Interrupt
16
MMCSD_INT0
MMCSD
67
EHRPWM2
HiResTimer / PWM2
Interrupt
17
MMCSD_INT1
MMCSD
68
EHRPWM2TZ
HiResTimer / PWM2 Trip
Zone Interrupt
18
PSC0_ALLINT
PSC0
69
ECAP0
ECAP0
19
RTC_IRQS[1:0]
RTC
70
ECAP1
ECAP1
20
SPI0_INT
SPI0
71
ECAP2
ECAP2
21
T64P0_TINT12
Timer64P0 Interrupt 12
72
EQEP0
EQEP0
22
T64P0_TINT34
Timer64P0 Interrupt 34
73
EQEP1
EQEP1
23
T64P1_TINT12
Timer64P1 Interrupt 12
74
T64P0_CMPINT0
Timer64P0 - Compare 0
24
T64P1_TINT34
Timer64P1 Interrupt 34
75
T64P0_CMPINT1
Timer64P0 - Compare 1
25
UART0_INT
UART0
76
T64P0_CMPINT2
Timer64P0 - Compare 2
26
-
Reserved
77
T64P0_CMPINT3
Timer64P0 - Compare 3
27
PROTERR
MPU1, 2, and SYSCFG
Protection Shared
Interrupt
78
T64P0_CMPINT4
Timer64P0 - Compare 4
28
SYSCFG_CHIPINT0
SYSCFG CHIPSIG
Register
79
T64P0_CMPINT5
Timer64P0 - Compare 5
29
SYSCFG_CHIPINT1
SYSCFG CHIPSIG
Register
80
T64P0_CMPINT6
Timer64P0 - Compare 6
30
SYSCFG_CHIPINT2
SYSCFG CHIPSIG
Register
81
T64P0_CMPINT7
Timer64P0 - Compare 7
31
SYSCFG_CHIPINT3
SYSCFG CHIPSIG
Register
82
T64P1_CMPINT0
Timer64P1 - Compare 0
32
EDMA3_TC1_TCERRINT EDMA TC1
83
T64P1_CMPINT1
Timer64P1 - Compare 1
33
EMAC_C0RXTHRESH
EMAC - Core 0 Receive
Threshold Interrupt
84
T64P1_CMPINT2
Timer64P1 - Compare 2
34
EMAC_C0RX
EMAC - Core 0 Receive
Interrupt
85
T64P1_CMPINT3
Timer64P1 - Compare 3
Copyright © 2012–2013, Texas Instruments Incorporated
System
Interrupt
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
61
OMAPL137-HT
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
www.ti.com
Table 5-7. AINTC System Interrupt Assignments (continued)
System
Interrupt
62
Interrupt Name
Source
35
EMAC_C0TX
EMAC - Core 0 Transmit
Interrupt
36
EMAC_C0MISC
37
System
Interrupt
Interrupt Name
Source
86
T64P1_CMPINT4
Timer64P1 - Compare 4
EMAC - Core 0
Miscellaneous Interrupt
87
T64P1_CMPINT5
Timer64P1 - Compare 5
EMAC_C1RXTHRESH
EMAC - Core 1 Receive
Threshold Interrupt
88
T64P1_CMPINT6
Timer64P1 - Compare 6
38
EMAC_C1RX
EMAC - Core 1 Receive
Interrupt
89
T64P1_CMPINT7
Timer64P1 - Compare 7
39
EMAC_C1TX
EMAC - Core 1 Transmit
Interrupt
90
ARMCLKSTOPREQ
PSC0
40
EMAC_C1MISC
EMAC - Core 1
Miscellaneous Interrupt
91
-
Reserved
41
EMIF_MEMERR
EMIFB
92
-
Reserved
42
GPIO_B0INT
GPIO Bank 0 Interrupt
93
-
Reserved
43
GPIO_B1INT
GPIO Bank 1 Interrupt
94
-
Reserved
44
GPIO_B2INT
GPIO Bank 2 Interrupt
95
-
Reserved
45
GPIO_B3INT
GPIO Bank 3 Interrupt
96
-
Reserved
46
GPIO_B4INT
GPIO Bank 4 Interrupt
97
-
Reserved
47
GPIO_B5INT
GPIO Bank 5 Interrupt
98
-
Reserved
48
GPIO_B6INT
GPIO Bank 6 Interrupt
99
-
Reserved
49
GPIO_B7INT
GPIO Bank 7 Interrupt
100
-
Reserved
50
-
Reserved
Peripheral Information and Electrical Specifications
Copyright © 2012–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
OMAPL137-HT
www.ti.com
5.7.1.5
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
AINTC Memory Map
Table 5-8. AINTC Memory Map
BYTE ADDRESS
REGISTER NAME
DESCRIPTION
0xFFFE E000
REV
Revision Register
Control Register
0xFFFE E004
CR
0xFFFE E008 - 0xFFFE E00F
-
Reserved
0xFFFE E010
GER
Global Enable Register
0xFFFE E014 - 0xFFFE E01B
-
Reserved
0xFFFE E01C
GNLR
Global Nesting Level Register
0xFFFE E020
SISR
System Interrupt Status Indexed Set Register
0xFFFE E024
SICR
System Interrupt Status Indexed Clear Register
0xFFFE E028
EISR
System Interrupt Enable Indexed Set Register
0xFFFE E02C
EICR
System Interrupt Enable Indexed Clear Register
0xFFFE E030
-
Reserved
0xFFFE E034
HIEISR
Host Interrupt Enable Indexed Set Register
0xFFFE E038
HIDISR
Host Interrupt Enable Indexed Clear Register
0xFFFE E03C - 0xFFFE E04F
-
Reserved
0xFFFE E050
VBR
Vector Base Register
0xFFFE E054
VSR
Vector Size Register
0xFFFE E058
VNR
Vector Null Register
0xFFFE E05C - 0xFFFE E07F
-
Reserved
0xFFFE E080
GPIR
Global Prioritized Index Register
0xFFFE E084
GPVR
Global Prioritized Vector Register
0xFFFE E088 - 0xFFFE E1FF
-
Reserved
System Interrupt Status Raw / Set Registers
0xFFFE E200 - 0xFFFE E20F
SRSR[1] - SRSR[3]
0xFFFE E20C - 0xFFFE E27F
-
Reserved
0xFFFE E280 - 0xFFFE E28B
SECR[1] - SECR[3]
System Interrupt Status Enabled / Clear Registers
0xFFFE E28C - 0xFFFE E2FF
-
Reserved
0xFFFE E300 - 0xFFFE E30B
ESR[1] - ESR[3]
System Interrupt Enable Set Registers
0xFFFE E30C - 0xFFFE E37F
-
Reserved
0xFFFE E380 - 0xFFFE E38B
ECR[1] - ECR[3]
System Interrupt Enable Clear Registers
0xFFFE E38C - 0xFFFE E3FF
-
Reserved
0xFFFE E400 - 0xFFFE E458
CMR[0] - CMR[22]
Channel Map Registers (Byte Wide Registers)
0xFFFE E459 - 0xFFFE E7FF
-
Reserved
Reserved
0xFFFE E800 - 0xFFFE E81F
-
0xFFFE E820 - 0xFFFE E8FF
-
Reserved
0xFFFE E900 - 0xFFFE E904
HIPIR[1] - HIPIR[2]
Host Interrupt Prioritized Index Registers
0xFFFE E908 - 0xFFFE EEFF
-
Reserved
0xFFFE EF00 - 0xFFFE EF04
-
Reserved
0xFFFE EF08 - 0xFFFE F0FF
-
Reserved
0xFFFE F100 - 0xFFFE F104
HINLR[1] - HINLR[2]
Host Interrupt Nesting Level Registers
0xFFFE F108 - 0xFFFE F4FF
-
Reserved
0xFFFE F500
HIER
Host Interrupt Enable Register
0xFFFE F504 - 0xFFFE F5FF
-
Reserved
0xFFFE F600
HIPVR[1] - HIPVR[2]
Host Interrupt Prioritized Vector Registers
0xFFFE F608 - 0xFFFE FFFF
-
Reserved
Copyright © 2012–2013, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
63
OMAPL137-HT
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
5.7.2
www.ti.com
DSP Interrupts
The C674x DSP interrupt controller combines device events into 12 prioritized interrupts. The source for
each of the 12 CPU interrupts is user programmable and is listed in Table 5-9. Also, the interrupt
controller controls the generation of the CPU exception, NMI, and emulation interrupts. Table 5-10
summarizes the C674x interrupt controller registers and memory locations. For more details on DSP
interrupt control, see the TMS320C64x+ DSP Megamodule Reference Guide, Literature Number SPRU871.
Table 5-9. OMAPL137 DSP Interrupts
EVT#
Interrupt Name
EVT#
Interrupt Name
Source
0
EVT0
C674x Int Ctl 0
64
T64P0_TINT34
Timer64P0 Interrupt 34
1
EVT1
C674x Int Ctl 1
65
GPIO_B0INT
GPIO Bank 0 Interrupt
2
EVT2
C674x Int Ctl 2
66
PRU_EVTOUT4
3
EVT3
C674x Int Ctl 3
67
SYSCFG_CHIPINT3
4
T64P0_TINT12
Timer64P0 - TINT12
68
EQEP0
EQEP0
5
SYSCFG_CHIPINT2
SYSCFG _CHIPSIG Register
69
UART2_INT
UART2
6
PRU_EVTOUT0
PRU Interrupt
70
PSC0_ALLINT
PSC0
7
EHRPWM0
HiResTimer/PWM0 Interrupt
71
PSC1_ALLINT
PSC1
8
EDMA3_CC0_INT1
EDMA3 CC0 Region 1 interrupt
72
GPIO_B7INT
GPIO Bank 7 Interrupt
LCD ControllerReserved
PRU Interrupt
SYSCFG_CHIPSIG Register
9
EMU-DTDMA
C674x-ECM
73
LCDC_INT -
10
EHRPWM0TZ
HiResTimer/PWM0 Trip Zone
Interrupt
74
PROTERR
11
EMU-RTDXRX
C674x-RTDX
75
-
Reserved
12
EMU-RTDXTX
C674x-RTDX
76
-
Reserved
13
IDMAINT0
C674x-EMC
77
-
Reserved
14
IDMAINT1
C674x-EMC
78
T64P0_CMPINT0
Timer64P0 - Compare 0
15
MMCSD_INT0
MMCSD MMC/SD Interrupt
79
T64P0_CMPINT1
Timer64P0 - Compare 1
16
MMCSD_INT1
MMCSD SDIO Interrupt
80
T64P0_CMPINT2
Timer64P0 - Compare 2
17
PRU_EVTOUT1
PRU Interrupt
81
T64P0_CMPINT3
Timer64P0 - Compare 3
18
EHRPWM1
HiResTimer/PWM1 Interrupt
82
T64P0_CMPINT4
Timer64P0 - Compare 4
19
USB0_INT
USB0 Interrupt
83
T64P0_CMPINT5
Timer64P0 - Compare 5
20
USB1_HCINT -
USB1 OHCI Host Controller
Interrupt Reserved
84
T64P0_CMPINT6
Timer64P0 - Compare 6
21
USB1_RWAKEUP -
USB1 Remote Wakeup Interrupt
Reserved
85
T64P0_CMPINT7
Timer64P0 - Compare 7
22
PRU_EVTOUT2
PRU Interrupt
86
T64P1_CMPINT0
Timer64P1 - Compare 0
23
EHRPWM1TZ
HiResTimer/PWM1 Trip Zone
Interrupt
87
T64P1_CMPINT1
Timer64P1 - Compare 1
24
EHRPWM2
HiResTimer/PWM2 Interrupt
88
T64P1_CMPINT2
Timer64P1 - Compare 2
25
EHRPWM2TZ
HiResTimer/PWM2 Trip Zone
Interrupt
89
T64P1_CMPINT3
Timer64P1 - Compare 3
EMAC_C0RXTHRESH - EMAC - Core 0 Receive
Threshold Interrupt Reserved
90
T64P1_CMPINT4
Timer64P1 - Compare 4
26
MPU1, 2, SYSCFG Protection
Shared Interrupt
27
EMAC_C0RX -
EMAC - Core 0 Receive Interrupt
Reserved
91
T64P1_CMPINT5
Timer64P1 - Compare 5
28
EMAC_C0TX -
EMAC - Core 0 Transmit
Interrupt Reserved
92
T64P1_CMPINT6
Timer64P1 - Compare 6
29
EMAC_C0MISC -
EMAC - Core 0 Miscellaneous
Interrupt Reserved
93
T64P1_CMPINT7
Timer64P1 - Compare 7
94
-
Reserved
95
-
Reserved
30
31
64
Source
EMAC_C1RXTHRESH - EMAC - Core 1 Receive
Threshold Interrupt Reserved
EMAC_C1RX -
EMAC - Core 1 Receive Interrupt
Reserved
Peripheral Information and Electrical Specifications
Copyright © 2012–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
OMAPL137-HT
www.ti.com
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
Table 5-9. OMAPL137 DSP Interrupts (continued)
EVT#
Interrupt Name
Source
EVT#
Interrupt Name
32
EMAC_C1TX -
EMAC - Core 1 Transmit
Interrupt Reserved
96
INTERR
Source
C674x-Int Ctl
33
EMAC_C1MISC -
EMAC - Core 1 Miscellaneous
Interrupt Reserved
97
EMC_IDMAERR
C674x-EMC
UHPI DSP Interrupt
98
-
Reserved
PRU Interrupt
99
-
Reserved
34
UHPI_DSPINT
35
PRU_EVTOUT3
36
IIC0_INT
I2C0
100
-
Reserved
37
SP0_INT
SPI0
101
-
Reserved
38
UART0_INT
UART0
102
-
Reserved
39
PRU_EVTOUT5
PRU Interrupt
103
-
Reserved
40
T64P1_TINT12
Timer64P1 Interrupt 12
104
-
Reserved
41
GPIO_B1INT
GPIO Bank 1 Interrupt
105
-
Reserved
42
IIC1_INT
I2C1
106
-
Reserved
43
SPI1_INT
SPI1
107
-
Reserved
44
PRU_EVTOUT6
PRU Interrupt
108
-
Reserved
45
ECAP0
ECAP0
109
-
Reserved
46
UART_INT1
UART1
110
-
Reserved
47
ECAP1
ECAP1
111
-
Reserved
48
T64P1_TINT34
Timer64P1 Interrupt 34
112
-
Reserved
49
GPIO_B2INT
GPIO Bank 2 Interrupt
113
PMC_ED
50
PRU_EVTOUT7
PRU Interrupt
114
-
Reserved
ECAP2
115
-
Reserved
GPIO Bank 3 Interrupt
116
UMC_ED1
C674x-UMC
EQEP1
117
UMC_ED2
C674x-UMC
GPIO Bank 4 Interrupt
118
PDC_INT
C674x-PDC
EMIFA
119
SYS_CMPA
C674x-SYS
C674x-PMC
51
ECAP2
52
GPIO_B3INT
53
EQEP1
54
GPIO_B4INT
55
EMIFA_INT
56
EDMA3_CC0_ERRINT
EDMA3 Channel Controller 0
120
PMC_CMPA
C674x-PMC
57
EDMA3_TC0_ERRINT
EDMA3 Transfer Controller 0
121
PMC_CMPA
C674x-PMC
58
EDMA3_TC1_ERRINT
EDMA3 Transfer Controller 1
122
DMC_CMPA
C674x-DMC
59
GPIO_B5INT
GPIO Bank 5 Interrupt
123
DMC_CMPA
C674x-DMC
60
EMIFB_INT
EMIFB Memory Error Interrupt
124
UMC_CMPA
C674x-UMC
61
MCASP_INT
McASP0,1,2 Combined RX/TX
Interrupts
125
UMC_CMPA
C674x-UMC
62
GPIO_B6INT
GPIO Bank 6 Interrupt
126
EMC_CMPA
C674x-EMC
63
RTC_IRQS
RTC Combined
127
EMC_BUSERR
C674x-EMC
Copyright © 2012–2013, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
65
OMAPL137-HT
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
www.ti.com
Table 5-10. C674x DSP Interrupt Controller Registers
BYTE ADDRESS
REGISTER NAME
DESCRIPTION
0x0180 0000
EVTFLAG0
Event flag register 0
0x0180 0004
EVTFLAG1
Event flag register 1
0x0180 0008
EVTFLAG2
Event flag register 2
0x0180 000C
EVTFLAG3
Event flag register 3
0x0180 0020
EVTSET0
Event set register 0
0x0180 0024
EVTSET1
Event set register 1
0x0180 0028
EVTSET2
Event set register 2
0x0180 002C
EVTSET3
Event set register 3
0x0180 0040
EVTCLR0
Event clear register 0
0x0180 0044
EVTCLR1
Event clear register 1
0x0180 0048
EVTCLR2
Event clear register 2
0x0180 004C
EVTCLR3
Event clear register 3
0x0180 0080
EVTMASK0
Event mask register 0
0x0180 0084
EVTMASK1
Event mask register 1
0x0180 0088
EVTMASK2
Event mask register 2
0x0180 008C
EVTMASK3
Event mask register 3
0x0180 00A0
MEVTFLAG0
Masked event flag register 0
0x0180 00A4
MEVTFLAG1
Masked event flag register 1
0x0180 00A8
MEVTFLAG2
Masked event flag register 2
0x0180 00AC
MEVTFLAG3
Masked event flag register 3
0x0180 00C0
EXPMASK0
Exception mask register 0
0x0180 00C4
EXPMASK1
Exception mask register 1
0x0180 00C8
EXPMASK2
Exception mask register 2
0x0180 00CC
EXPMASK3
Exception mask register 3
0x0180 00E0
MEXPFLAG0
Masked exception flag register 0
0x0180 00E4
MEXPFLAG1
Masked exception flag register 1
0x0180 00E8
MEXPFLAG2
Masked exception flag register 2
0x0180 00EC
MEXPFLAG3
Masked exception flag register 3
0x0180 0104
INTMUX1
Interrupt mux register 1
0x0180 0108
INTMUX2
Interrupt mux register 2
0x0180 010C
INTMUX3
Interrupt mux register 3
0x0180 0140 - 0x0180 0144
-
Reserved
0x0180 0180
INTXSTAT
Interrupt exception status
0x0180 0184
INTXCLR
Interrupt exception clear
0x0180 0188
INTDMASK
Dropped interrupt mask register
0x0180 01C0
EVTASRT
Event assert register
5.7.3
ARM/DSP Communications Interrupts
Communications Interrupts between the ARM and DSP are part of the SYSCFG module on the
OMAPL137 family of devices.
66
Peripheral Information and Electrical Specifications
Copyright © 2012–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
OMAPL137-HT
www.ti.com
5.8
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
General-Purpose Input/Output (GPIO)
The GPIO peripheral provides general-purpose pins that can be configured as either inputs or outputs.
When configured as an output, a write to an internal register can control the state driven on the output pin.
When configured as an input, the state of the input is detectable by reading the state of an internal
register. In addition, the GPIO peripheral can produce CPU interrupts and EDMA events in different
interrupt/event generation modes. The GPIO peripheral provides generic connections to external devices.
The GPIO pins are grouped into banks of 16 pins per bank (i.e., bank 0 consists of GPIO [0:15]).
The device GPIO peripheral supports the following:
• Up to 109 Pins on PTP package configurable as GPIO
• External Interrupt and DMA request Capability
– Every GPIO pin may be configured to generate an interrupt request on detection of rising and/or
falling edges on the pin.
– The interrupt requests within each bank are combined (logical or) to create eight unique bank level
interrupt requests.
– The bank level interrupt service routine may poll the INTSTATx register for its bank to determine
which pin(s) have triggered the interrupt.
– GPIO Banks 0, 1, 2, 3, 4, 5, 6, and 7 Interrupts assigned to ARM INTC Interrupt Requests 42, 43,
44, 45, 46, 47, 48, and 49 respectively
– GPIO Banks 0, 1, 2, 3, 4, 5, 6, and 7 Interrupts assigned to DSP Events 65, 41, 49, 52, 54, 59, 62
and 72 respectively
– Additionally, GPIO Banks 0, 1, 2, 3, 4, and 5 Interrupts assigned to EDMA events 6, 7, 22, 23, 28,
and 29 respectively.
• Set/clear functionality: Firmware writes 1 to corresponding bit position(s) to set or to clear GPIO
signal(s). This allows multiple firmware processes to toggle GPIO output signals without critical section
protection (disable interrupts, program GPIO, re-enable interrupts, to prevent context switching to
anther process during GPIO programming).
• Separate Input/Output registers
• Output register in addition to set/clear so that, if preferred by firmware, some GPIO output signals can
be toggled by direct write to the output register(s).
• Output register, when read, reflects output drive status. This, in addition to the input register reflecting
pin status and open-drain I/O cell, allows wired logic be implemented.
The memory map for the GPIO registers is shown in Table 5-11. See the TMS320C674x/OMAP-L1x
Processor Peripherals Overview Reference Guide. – Literature Number SPRUFK9 for more details.
5.8.1
GPIO Register Description(s)
Table 5-11. GPIO Registers
GPIO
BYTE ADDRESS
Acronym
Register Description
0x01E2 6000
REV
Peripheral Revision Register
0x01E2 6004
-
Reserved
0x01E2 6008
BINTEN
GPIO Interrupt Per-Bank Enable Register
GPIO Banks 0 and 1
0x01E2 6010
DIR01
GPIO Banks 0 and 1 Direction Register
0x01E2 6014
OUT_DATA01
GPIO Banks 0 and 1 Output Data Register
0x01E2 6018
SET_DATA01
GPIO Banks 0 and 1 Set Data Register
0x01E2 601C
CLR_DATA01
GPIO Banks 0 and 1 Clear Data Register
0x01E2 6020
IN_DATA01
GPIO Banks 0 and 1 Input Data Register
0x01E2 6024
SET_RIS_TRIG01
GPIO Banks 0 and 1 Set Rising Edge Interrupt Register
0x01E2 6028
CLR_RIS_TRIG01
GPIO Banks 0 and 1 Clear Rising Edge Interrupt Register
Copyright © 2012–2013, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
67
OMAPL137-HT
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
www.ti.com
Table 5-11. GPIO Registers (continued)
GPIO
BYTE ADDRESS
Acronym
Register Description
0x01E2 602C
SET_FAL_TRIG01
GPIO Banks 0 and 1 Set Falling Edge Interrupt Register
0x01E2 6030
CLR_FAL_TRIG01
GPIO Banks 0 and 1 Clear Falling Edge Interrupt Register
0x01E2 6034
INTSTAT01
GPIO Banks 0 and 1 Interrupt Status Register
0x01E2 6038
DIR23
GPIO Banks 2 and 3 Direction Register
0x01E2 603C
OUT_DATA23
GPIO Banks 2 and 3 Output Data Register
0x01E2 6040
SET_DATA23
GPIO Banks 2 and 3 Set Data Register
0x01E2 6044
CLR_DATA23
GPIO Banks 2 and 3 Clear Data Register
0x01E2 6048
IN_DATA23
GPIO Banks 2 and 3 Input Data Register
0x01E2 604C
SET_RIS_TRIG23
GPIO Banks 2 and 3 Set Rising Edge Interrupt Register
0x01E2 6050
CLR_RIS_TRIG23
GPIO Banks 2 and 3 Clear Rising Edge Interrupt Register
0x01E2 6054
SET_FAL_TRIG23
GPIO Banks 2 and 3 Set Falling Edge Interrupt Register
0x01E2 6058
CLR_FAL_TRIG23
GPIO Banks 2 and 3 Clear Falling Edge Interrupt Register
0x01E2 605C
INTSTAT23
GPIO Banks 2 and 3
GPIO Banks 2 and 3 Interrupt Status Register
GPIO Banks 4 and 5
0x01E2 6060
DIR45
GPIO Banks 4 and 5 Direction Register
0x01E2 6064
OUT_DATA45
GPIO Banks 4 and 5 Output Data Register
0x01E2 6068
SET_DATA45
GPIO Banks 4 and 5 Set Data Register
0x01E2 606C
CLR_DATA45
GPIO Banks 4 and 5 Clear Data Register
0x01E2 6070
IN_DATA45
GPIO Banks 4 and 5 Input Data Register
0x01E2 6074
SET_RIS_TRIG45
GPIO Banks 4 and 5 Set Rising Edge Interrupt Register
0x01E2 6078
CLR_RIS_TRIG45
GPIO Banks 4 and 5 Clear Rising Edge Interrupt Register
0x01E2 607C
SET_FAL_TRIG45
GPIO Banks 4 and 5 Set Falling Edge Interrupt Register
0x01E2 6080
CLR_FAL_TRIG45
GPIO Banks 4 and 5 Clear Falling Edge Interrupt Register
0x01E2 6084
INTSTAT45
GPIO Banks 4 and 5 Interrupt Status Register
GPIO Banks 6 and 7
68
0x01E2 6088
DIR67
GPIO Banks 6 and 7 Direction Register
0x01E2 608C
OUT_DATA67
GPIO Banks 6 and 7 Output Data Register
0x01E2 6090
SET_DATA67
GPIO Banks 6 and 7 Set Data Register
0x01E2 6094
CLR_DATA67
GPIO Banks 6 and 7 Clear Data Register
0x01E2 6098
IN_DATA67
GPIO Banks 6 and 7 Input Data Register
0x01E2 609C
SET_RIS_TRIG67
GPIO Banks 6 and 7 Set Rising Edge Interrupt Register
0x01E2 60A0
CLR_RIS_TRIG67
GPIO Banks 6 and 7 Clear Rising Edge Interrupt Register
0x01E2 60A4
SET_FAL_TRIG67
GPIO Banks 6 and 7 Set Falling Edge Interrupt Register
0x01E2 60A8
CLR_FAL_TRIG67
GPIO Banks 6 and 7 Clear Falling Edge Interrupt Register
0x01E2 60AC
INTSTAT67
GPIO Banks 6 and 7 Interrupt Status Register
Peripheral Information and Electrical Specifications
Copyright © 2012–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
OMAPL137-HT
www.ti.com
5.8.2
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
GPIO Peripheral Input/Output Electrical Data/Timing
Table 5-12. Timing Requirements for GPIO Inputs (1) (see Figure 5-11)
NO.
MIN MAX
UNIT
1
tw(GPIH)
Pulse duration, GPIx high
2C (1)
(2)
ns
2
tw(GPIL)
Pulse duration, GPIx low
2C (1)
(2)
ns
(1)
The pulse width given is sufficient to generate a CPU interrupt or an EDMA event. However, if a user wants to have the device
recognize the GPIx changes through software polling of the GPIO register, the GPIx duration must be extended to allow the device
enough time to access the GPIO register through the internal bus.
C=SYSCLK4 period in ns. For example, when running parts at 300 MHz, C=13.33 ns.
(2)
Table 5-13. Switching Characteristics Over Recommended Operating Conditions for GPIO Outputs
(see Figure 5-11)
NO.
PARAMETER
MIN
3
tw(GPOH)
Pulse duration, GPOx high
2C
4
tw(GPOL)
Pulse duration, GPOx low
2C (1)
(1)
MAX
(1) (2)
(2)
UNIT
ns
ns
This parameter value should not be used as a maximum performance specification. Actual performance of back-to-back accesses of the
GPIO is dependent upon internal bus activity.
C=SYSCLK4 period in ns. For example, when running parts at 300 MHz, C=13.33 ns.
(2)
2
1
GPIx
4
3
GPOx
Figure 5-11. GPIO Port Timing
5.8.3
GPIO Peripheral External Interrupts Electrical Data/Timing
Table 5-14. Timing Requirements for External Interrupts (1) (see Figure 5-12)
NO.
(1)
(2)
MIN MAX
(1) (2)
1
tw(ILOW)
Width of the external interrupt pulse low
2C
2
tw(IHIGH)
Width of the external interrupt pulse high
2C (1)
(2)
UNIT
ns
ns
The pulse width given is sufficient to generate an interrupt or an EDMA event. However, if a user wants to have the device recognize the
GPIO changes through software polling of the GPIO register, the GPIO duration must be extended to allow the device enough time to
access the GPIO register through the internal bus.
C=SYSCLK4 period in ns. For example, when running parts at 300 MHz, C=13.33 ns.
2
1
EXT_INTx
Figure 5-12. GPIO External Interrupt Timing
Copyright © 2012–2013, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
69
OMAPL137-HT
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
5.9
www.ti.com
EDMA
Table 5-15 is the list of EDMA3 Channel Contoller Registers and Table 5-16 is the list of EDMA3 Transfer
Controller registers. See the TMS320C674x/OMAP-L1x Processor Peripherals Overview Reference
Guide. – Literature Number SPRUFK9 for more details.
Table 5-15. EDMA3 Channel Controller (EDMA3CC) Registers
BYTE ADDRESS
Acronym
0x01C0 0000
PID
Register Description
0x01C0 0004
CCCFG
0x01C0 0200
QCHMAP0
QDMA Channel 0 Mapping Register
0x01C0 0204
QCHMAP1
QDMA Channel 1 Mapping Register
Peripheral Identification Register
EDMA3CC Configuration Register
Global Registers
0x01C0 0208
QCHMAP2
QDMA Channel 2 Mapping Register
0x01C0 020C
QCHMAP3
QDMA Channel 3 Mapping Register
0x01C0 0210
QCHMAP4
QDMA Channel 4 Mapping Register
0x01C0 0214
QCHMAP5
QDMA Channel 5 Mapping Register
0x01C0 0218
QCHMAP6
QDMA Channel 6 Mapping Register
0x01C0 021C
QCHMAP7
QDMA Channel 7 Mapping Register
0x01C0 0240
DMAQNUM0
DMA Channel Queue Number Register 0
0x01C0 0244
DMAQNUM1
DMA Channel Queue Number Register 1
0x01C0 0248
DMAQNUM2
DMA Channel Queue Number Register 2
0x01C0 024C
DMAQNUM3
DMA Channel Queue Number Register 3
0x01C0 0260
QDMAQNUM
QDMA Channel Queue Number Register
0x01C0 0284
QUEPRI
Queue Priority Register (1)
0x01C0 0300
EMR
0x01C0 0308
EMCR
Event Missed Register
Event Missed Clear Register
0x01C0 0310
QEMR
QDMA Event Missed Register
0x01C0 0314
QEMCR
QDMA Event Missed Clear Register
0x01C0 0318
CCERR
EDMA3CC Error Register
0x01C0 031C
CCERRCLR
0x01C0 0320
EEVAL
Error Evaluate Register
0x01C0 0340
DRAE0
DMA Region Access Enable Register for Region 0
0x01C0 0348
DRAE1
DMA Region Access Enable Register for Region 1
0x01C0 0350
DRAE2
DMA Region Access Enable Register for Region 2
0x01C0 0358
DRAE3
DMA Region Access Enable Register for Region 3
0x01C0 0380
QRAE0
QDMA Region Access Enable Register for Region 0
0x01C0 0384
QRAE1
QDMA Region Access Enable Register for Region 1
0x01C0 0388
QRAE2
QDMA Region Access Enable Register for Region 2
0x01C0 038C
QRAE3
QDMA Region Access Enable Register for Region 3
0x01C0 0400 - 0x01C0 043C
Q0E0-Q0E15
Event Queue Entry Registers Q0E0-Q0E15
0x01C0 0440 - 0x01C0 047C
Q1E0-Q1E15
Event Queue Entry Registers Q1E0-Q1E15
0x01C0 0600
QSTAT0
Queue 0 Status Register
0x01C0 0604
QSTAT1
Queue 1 Status Register
0x01C0 0620
QWMTHRA
0x01C0 0640
CCSTAT
EDMA3CC Error Clear Register
Queue Watermark Threshold A Register
EDMA3CC Status Register
Global Channel Registers
0x01C0 1000
(1)
70
ER
Event Register
On previous architectures, the EDMA3TC priority was controlled by the queue priority register (QUEPRI) in the EDMA3CC memorymap. However for this device, the priority control for the transfer controllers is controlled by the chip-level registers in the System
Configuration Module. You should use the chip-level registers and not QUEPRI to configure the TC priority.
Peripheral Information and Electrical Specifications
Copyright © 2012–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
OMAPL137-HT
www.ti.com
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
Table 5-15. EDMA3 Channel Controller (EDMA3CC) Registers (continued)
BYTE ADDRESS
Acronym
Register Description
0x01C0 1008
ECR
Event Clear Register
0x01C0 1010
ESR
Event Set Register
0x01C0 1018
CER
Chained Event Register
0x01C0 1020
EER
Event Enable Register
0x01C0 1028
EECR
Event Enable Clear Register
0x01C0 1030
EESR
Event Enable Set Register
0x01C0 1038
SER
Secondary Event Register
0x01C0 1040
SECR
0x01C0 1050
IER
0x01C0 1058
IECR
Interrupt Enable Clear Register
0x01C0 1060
IESR
Interrupt Enable Set Register
Secondary Event Clear Register
Interrupt Enable Register
0x01C0 1068
IPR
Interrupt Pending Register
0x01C0 1070
ICR
Interrupt Clear Register
0x01C0 1078
IEVAL
Interrupt Evaluate Register
0x01C0 1080
QER
0x01C0 1084
QEER
QDMA Event Register
0x01C0 1088
QEECR
QDMA Event Enable Clear Register
0x01C0 108C
QEESR
QDMA Event Enable Set Register
0x01C0 1090
QSER
QDMA Secondary Event Register
0x01C0 1094
QSECR
QDMA Event Enable Register
QDMA Secondary Event Clear Register
Shadow Region 0 Channel Registers
0x01C0 2000
ER
0x01C0 2008
ECR
Event Register
Event Clear Register
0x01C0 2010
ESR
Event Set Register
0x01C0 2018
CER
Chained Event Register
0x01C0 2020
EER
Event Enable Register
0x01C0 2028
EECR
Event Enable Clear Register
0x01C0 2030
EESR
Event Enable Set Register
0x01C0 2038
SER
Secondary Event Register
0x01C0 2040
SECR
0x01C0 2050
IER
0x01C0 2058
IECR
Interrupt Enable Clear Register
0x01C0 2060
IESR
Interrupt Enable Set Register
0x01C0 2068
IPR
Interrupt Pending Register
0x01C0 2070
ICR
Interrupt Clear Register
0x01C0 2078
IEVAL
0x01C0 2080
QER
Secondary Event Clear Register
Interrupt Enable Register
Interrupt Evaluate Register
QDMA Event Register
0x01C0 2084
QEER
0x01C0 2088
QEECR
QDMA Event Enable Register
QDMA Event Enable Clear Register
0x01C0 208C
QEESR
QDMA Event Enable Set Register
0x01C0 2090
QSER
QDMA Secondary Event Register
0x01C0 2094
QSECR
QDMA Secondary Event Clear Register
Shadow Region 1 Channel Registers
0x01C0 2200
ER
0x01C0 2208
ECR
Event Clear Register
0x01C0 2210
ESR
Event Set Register
0x01C0 2218
CER
Chained Event Register
Copyright © 2012–2013, Texas Instruments Incorporated
Event Register
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
71
OMAPL137-HT
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
www.ti.com
Table 5-15. EDMA3 Channel Controller (EDMA3CC) Registers (continued)
BYTE ADDRESS
Acronym
Register Description
0x01C0 2220
EER
Event Enable Register
0x01C0 2228
EECR
Event Enable Clear Register
0x01C0 2230
EESR
Event Enable Set Register
0x01C0 2238
SER
Secondary Event Register
0x01C0 2240
SECR
0x01C0 2250
IER
0x01C0 2258
IECR
Interrupt Enable Clear Register
0x01C0 2260
IESR
Interrupt Enable Set Register
0x01C0 2268
IPR
Interrupt Pending Register
0x01C0 2270
ICR
Interrupt Clear Register
0x01C0 2278
IEVAL
Secondary Event Clear Register
Interrupt Enable Register
Interrupt Evaluate Register
0x01C0 2280
QER
0x01C0 2284
QEER
QDMA Event Register
0x01C0 2288
QEECR
QDMA Event Enable Clear Register
0x01C0 228C
QEESR
QDMA Event Enable Set Register
0x01C0 2290
QSER
QDMA Secondary Event Register
0x01C0 2294
QSECR
0x01C0 4000 - 0x01C0 4FFF
—
QDMA Event Enable Register
QDMA Secondary Event Clear Register
Parameter RAM (PaRAM)
Table 5-16. EDMA3 Transfer Controller (EDMA3TC) Registers
72
Offset
Transfer Controller
0
BYTE ADDRESS
Transfer Controller
1
BYTE ADDRESS
Acronym
Register Description
0h
0x01C0 8000
0x01C0 8400
PID
Peripheral Identification Register
4h
0x01C0 8004
0x01C0 8404
TCCFG
EDMA3TC Configuration Register
100h
0x01C0 8100
0x01C0 8500
TCSTAT
EDMA3TC Channel Status Register
120h
0x01C0 8120
0x01C0 8520
ERRSTAT
Error Status Register
124h
0x01C0 8124
0x01C0 8524
ERREN
Error Enable Register
128h
0x01C0 8128
0x01C0 8528
ERRCLR
Error Clear Register
12Ch
0x01C0 812C
0x01C0 852C
ERRDET
Error Details Register
130h
0x01C0 8130
0x01C0 8530
ERRCMD
Error Interrupt Command Register
140h
0x01C0 8140
0x01C0 8540
RDRATE
Read Command Rate Register
240h
0x01C0 8240
0x01C0 8640
SAOPT
Source Active Options Register
244h
0x01C0 8244
0x01C0 8644
SASRC
Source Active Source Address Register
248h
0x01C0 8248
0x01C0 8648
SACNT
Source Active Count Register
24Ch
0x01C0 824C
0x01C0 864C
SADST
Source Active Destination Address Register
250h
0x01C0 8250
0x01C0 8650
SABIDX
Source Active B-Index Register
254h
0x01C0 8254
0x01C0 8654
SAMPPRXY
Source Active Memory Protection Proxy Register
Source Active Count Reload Register
258h
0x01C0 8258
0x01C0 8658
SACNTRLD
25Ch
0x01C0 825C
0x01C0 865C
SASRCBREF
Source Active Source Address B-Reference Register
260h
0x01C0 8260
0x01C0 8660
SADSTBREF
Source Active Destination Address B-Reference Register
280h
0x01C0 8280
0x01C0 8680
DFCNTRLD
284h
0x01C0 8284
0x01C0 8684
DFSRCBREF
Destination FIFO Set Source Address B-Reference Register
288h
0x01C0 8288
0x01C0 8688
DFDSTBREF
Destination FIFO Set Destination Address B-Reference
Register
300h
0x01C0 8300
0x01C0 8700
DFOPT0
Destination FIFO Options Register 0
304h
0x01C0 8304
0x01C0 8704
DFSRC0
Destination FIFO Source Address Register 0
308h
0x01C0 8308
0x01C0 8708
DFCNT0
Destination FIFO Count Register 0
Destination FIFO Set Count Reload Register
Peripheral Information and Electrical Specifications
Copyright © 2012–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
OMAPL137-HT
www.ti.com
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
Table 5-16. EDMA3 Transfer Controller (EDMA3TC) Registers (continued)
Offset
Transfer Controller
0
BYTE ADDRESS
Transfer Controller
1
BYTE ADDRESS
Acronym
Register Description
30Ch
0x01C0 830C
310h
0x01C0 8310
0x01C0 870C
DFDST0
Destination FIFO Destination Address Register 0
0x01C0 8710
DFBIDX0
Destination FIFO B-Index Register 0
314h
340h
0x01C0 8314
0x01C0 8714
DFMPPRXY0
0x01C0 8340
0x01C0 8740
DFOPT1
Destination FIFO Options Register 1
344h
0x01C0 8344
0x01C0 8744
DFSRC1
Destination FIFO Source Address Register 1
348h
0x01C0 8348
0x01C0 8748
DFCNT1
Destination FIFO Count Register 1
34Ch
0x01C0 834C
0x01C0 874C
DFDST1
Destination FIFO Destination Address Register 1
350h
0x01C0 8350
0x01C0 8750
DFBIDX1
Destination FIFO B-Index Register 1
354h
0x01C0 8354
0x01C0 8754
DFMPPRXY1
380h
0x01C0 8380
0x01C0 8780
DFOPT2
Destination FIFO Options Register 2
384h
0x01C0 8384
0x01C0 8784
DFSRC2
Destination FIFO Source Address Register 2
388h
0x01C0 8388
0x01C0 8788
DFCNT2
Destination FIFO Count Register 2
38Ch
0x01C0 838C
0x01C0 878C
DFDST2
Destination FIFO Destination Address Register 2
390h
0x01C0 8390
0x01C0 8790
DFBIDX2
Destination FIFO B-Index Register 2
394h
0x01C0 8394
0x01C0 8794
DFMPPRXY2
3C0h
0x01C0 83C0
0x01C0 87C0
DFOPT3
Destination FIFO Options Register 3
3C4h
0x01C0 83C4
0x01C0 87C4
DFSRC3
Destination FIFO Source Address Register 3
3C8h
0x01C0 83C8
0x01C0 87C8
DFCNT3
Destination FIFO Count Register 3
3CCh
0x01C0 83CC
0x01C0 87CC
DFDST3
Destination FIFO Destination Address Register 3
3D0h
0x01C0 83D0
0x01C0 87D0
DFBIDX3
Destination FIFO B-Index Register 3
3D4h
0x01C0 83D4
0x01C0 87D4
DFMPPRXY3
Destination FIFO Memory Protection Proxy Register 0
Destination FIFO Memory Protection Proxy Register 1
Destination FIFO Memory Protection Proxy Register 2
Destination FIFO Memory Protection Proxy Register 3
Table 5-17 shows an abbreviation of the set of registers which make up the parameter set for each of 128
EDMA events. Each of the parameter register sets consist of 8 32-bit word entries. Table 5-18 shows the
parameter set entry registers with relative memory address locations within each of the parameter sets.
Table 5-17. EDMA Parameter Set RAM
HEX ADDRESS RANGE
DESCRIPTION
0x01C0 4000 - 0x01C0 401F
Parameters Set 0 (8 32-bit words)
0x01C0 4020 - 0x01C0 403F
Parameters Set 1 (8 32-bit words)
0x01C0 4040 - 0x01cC0 405F
Parameters Set 2 (8 32-bit words)
0x01C0 4060 - 0x01C0 407F
Parameters Set 3 (8 32-bit words)
0x01C0 4080 - 0x01C0 409F
Parameters Set 4 (8 32-bit words)
0x01C0 40A0 - 0x01C0 40BF
Parameters Set 5 (8 32-bit words)
...
...
0x01C0 4FC0 - 0x01C0 4FDF
Parameters Set 126 (8 32-bit words)
0x01C0 4FE0 - 0x01C0 4FFF
Parameters Set 127 (8 32-bit words)
Copyright © 2012–2013, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
73
OMAPL137-HT
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
www.ti.com
Table 5-18. Parameter Set Entries
HEX OFFSET ADDRESS
WITHIN THE PARAMETER SET
ACRONYM
PARAMETER ENTRY
0x0000
OPT
Option
0x0004
SRC
Source Address
0x0008
A_B_CNT
0x000C
DST
A Count, B Count
0x0010
SRC_DST_BIDX
Source B Index, Destination B Index
0x0014
LINK_BCNTRLD
Link Address, B Count Reload
0x0018
SRC_DST_CIDX
Source C Index, Destination C Index
0x001C
CCNT
Destination Address
C Count
Table 5-19. EDMA Events
74
Event
Event Name / Source
Event
Event Name / Source
0
McASP0 Receive
16
MMCSD Receive
1
McASP0 Transmit
17
MMCSD Transmit
2
McASP1 Receive
18
SPI1 Receive
3
McASP1 Transmit
19
SPI1 Transmit
4
McASP2 Receive
20
dMAX EVTOUT[6]
5
McASP2 Transmit
21
dMAX EVTOUT[7]
6
GPIO Bank 0 Interrupt
22
GPIO Bank 2 Interrupt
7
GPIO Bank 1 Interrupt
23
GPIO Bank 3 Interrupt
8
UART0 Receive
24
I2C0 Receive
9
UART0 Transmit
25
I2C0 Transmit
10
Timer64P0 Event Out 12
26
I2C1 Receive
11
Timer64P0 Event Out 34
27
I2C1 Transmit
12
UART1 Receive
28
GPIO Bank 4 Interrupt
13
UART1 Transmit
29
GPIO Bank 5 Interrupt
14
SPI0 Receive
30
UART2 Receive
15
SPI0 Transmit
31
UART2 Transmit
Peripheral Information and Electrical Specifications
Copyright © 2012–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
OMAPL137-HT
www.ti.com
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
5.10 External Memory Interface A (EMIFA)
EMIFA is one of two external memory interfaces supported on the device. It is primarily intended to
support asynchronous memory types, such as NAND and NOR flash and Asynchronous SRAM. However
on this device, EMIFA also provides a secondary interface to SDRAM. See the TMS320C674x/OMAP-L1x
Processor Peripherals Overview Reference Guide. – Literature Number SPRUFK9 for more details.
5.10.1 EMIFA Asynchronous Memory Support
EMIFA supports asynchronous:
• SRAM memories
• NAND Flash memories
• NOR Flash memories
The EMIFA data bus width is up to 8 bits on the PTP package. The device supports up to fifteen address
lines and an external wait/interrupt input. Up to four asynchronous chip selects are supported by EMIFA
(EMA_CS[5:2]) . Two of the four chip selects are available on the PTP package (EMA_CS[3:2]).
Each chip select has the following individually programmable attributes:
• Data Bus Width
• Read cycle timings: setup, hold, strobe
• Write cycle timings: setup, hold, strobe
• Bus turn around time
• Extended Wait Option With Programmable Timeout
• Select Strobe Option
• NAND flash controller supports 1-bit and 4-bit ECC calculation on blocks of 512 bytes.
5.10.2 EMIFA Connection Examples
Figure 5-13 illustrates an example of how SDRAM, NOR, and NAND flash devices might be connected to
EMIFA of the device simultaneously. The SDRAM chip select must be EMA_CS[0]. Note that the NOR
flash is connected to EMA_CS[2] and the NAND flash is connected to EMA_CS[3] in this example. Note
that any type of asynchronous memory may be connected to EMA_CS[5:2].
The on-chip bootloader makes some assumptions on which chip select the contains the boot image, and
this depends on the boot mode. For NOR boot mode; the on-chip bootloader requires that the image be
stored in NOR flash on EMA_CS[2]. For NAND boot mode, the bootloader requires that the boot image is
stored in NAND flash on EMA_CS[3]. It is always possible to have the image span multiple chip selects,
but this must be supported by second stage boot code stored in the external flash.
A likely use case with more than one EMIFA chip select used for NAND flash is illustrated in Figure 5-14.
This figure shows how two multiplane NAND flash devices with two chip selects each would connect to the
device EMIFA. In this case if NAND is the boot memory, then the boot image needs to be stored in the
NAND area selected by EMA_CS[3]. Part of the application image could spill over into the NAND regions
selected by other EMIFA chip selects; but would rely on the code stored in the EMA_CS[3] area to
bootload it. Note that this example could also apply to the OMAPL137 device; except only one multiplane
NAND could be supported with only EMA_CS[3:2] available.
Copyright © 2012–2013, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
75
OMAPL137-HT
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
www.ti.com
RESET
CE
CAS
RAS
WE
SDRAM
2M x 16 x 4
CLK
Bank
CKE
BA[1:0]
A[11:0]
LDQM
UDQM
DQ[15:0]
EMA_BA[1]
EMA_CS[0]
EMA_CAS
EMIFA
EMA_RAS
EMA_WE
EMA_CLK
EMA_SDCKE
EMA_BA[1:0]
EMA_A[12:0]
EMA_WE_DQM[0]
EMA_WE_DQM[1]
EMA_D[15:0]
EMA_CS[2]
EMA_CS[3]
EMA_WAIT
EMA_OE
A[0]
A[12:1]
DQ[15:0]
NOR
CE
FLASH
WE
512K x 16
OE
RESET
A[18:13]
GPIO
(6 Pins)
RESET
...
RY/BY
EMA_A[1]
EMA_A[2]
ALE
CLE
DQ[15:0]
NAND
FLASH
CE
1Gb x 16
WE
RE
RB
DVDD
Figure 5-13. OMAPL137 Connection Diagram: SDRAM, NOR, NAND
EMA_A[1]
EMA_A[2]
EMA_D[7:0]
EMA_CS[2]
EMA_CS[3]
EMA_WE
EMA_OE
EMIFA
EMA_WAIT
EMA_CS[4]
EMA_CS[5]
ALE
CLE
DQ[7:0]
CE1
CE2
WE
RE
R/B1
R/B2
NAND
FLASH
x8,
MultiPlane
ALE
CLE
DQ[7:0]
CE1
CE2
WE
RE
R/B1
R/B2
NAND
FLASH
x8,
MultiPlane
DVDD
Figure 5-14. OMAPL137 EMIFA Connection Diagram: Multiple NAND Flash Planes
76
Peripheral Information and Electrical Specifications
Copyright © 2012–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
OMAPL137-HT
www.ti.com
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
5.10.3 External Memory Interface (EMIF)
Table 5-20 is a list of the EMIF registers. For more information about these registers, see the C674x DSP
External Memory Interface (EMIF) User's Guide (literature number SPRU711).
Table 5-20. External Memory Interface (EMIFA) Registers
BYTE ADDRESS
Register Name
Register Description
0x6800 0000
MIDR
Module ID Register
0x6800 0004
AWCC
Asynchronous Wait Cycle Configuration Register
0x6800 0008
SDCR
SDRAM Configuration Register
0x6800 000C
SDRCR
SDRAM Refresh Control Register
0x6800 0010
CE2CFG
Asynchronous 1 Configuration Register
0x6800 0014
CE3CFG
Asynchronous 2 Configuration Register
0x6800 0018
CE4CFG
Asynchronous 3 Configuration Register
0x6800 001C
CE5CFG
Asynchronous 4 Configuration Register
0x6800 0020
SDTIMR
SDRAM Timing Register
0x6800 003C
SDSRETR
SDRAM Self Refresh Exit Timing Register
0x6800 0040
INTRAW
EMIFA Interrupt Raw Register
0x6800 0044
INTMSK
EMIFA Interrupt Mask Register
0x6800 0048
INTMSKSET
EMIFA Interrupt Mask Set Register
0x6800 004C
INTMSKCLR
EMIFA Interrupt Mask Clear Register
0x6800 0060
NANDFCR
NAND Flash Control Register
0x6800 0064
NANDFSR
NAND Flash Status Register
0x6800 0070
NANDF1ECC
NAND Flash 1 ECC Register (CS2 Space)
0x6800 0074
NANDF2ECC
NAND Flash 2 ECC Register (CS3 Space)
0x6800 0078
NANDF3ECC
NAND Flash 3 ECC Register (CS4 Space)
0x6800 007C
NANDF4ECC
NAND Flash 4 ECC Register (CS5 Space)
0x6800 00BC
NAND4BITECCLOAD
NAND Flash 4-Bit ECC Load Register
0x6800 00C0
NAND4BITECC1
NAND Flash 4-Bit ECC Register 1
0x6800 00C4
NAND4BITECC2
NAND Flash 4-Bit ECC Register 2
0x6800 00C8
NAND4BITECC3
NAND Flash 4-Bit ECC Register 3
0x6800 00CC
NAND4BITECC4
NAND Flash 4-Bit ECC Register 4
0x6800 00D0
NANDERRADD1
NAND Flash 4-Bit ECC Error Address Register 1
0x6800 00D4
NANDERRADD2
NAND Flash 4-Bit ECC Error Address Register 2
0x6800 00D8
NANDERRVAL1
NAND Flash 4-Bit ECC Error Value Register 1
0x6800 00DC
NANDERRVAL2
NAND Flash 4-Bit ECC Error Value Register 2
Copyright © 2012–2013, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
77
OMAPL137-HT
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
www.ti.com
5.10.4 EMIFA Electrical Data/Timing
Table 5-21 through Table 5-22 assume testing over recommended operating conditions.
Table 5-21. EMIFA Asynchronous Memory Timing Requirements (1) (2)
NO.
MIN
Nom
MAX
UNIT
READS and WRITES
2
Pulse duration, EM_WAIT assertion and
deassertion
tw(EM_WAIT)
2E
ns
READS
12
tsu(EMDV-EMOEH) Setup time, EM_D[15:0] valid before EM_OE high
13
th(EMOEH-EMDIV) Hold time, EM_D[15:0] valid after EM_OE high
14
tsu (EMOEL-
Setup Time, EM_WAIT asserted before end of
Strobe Phase (3)
EMWAIT)
3
ns
0.5
ns
4E+3
ns
4E+3
ns
WRITES
28
tsu (EMWEL-
Setup Time, EM_WAIT asserted before end of
Strobe Phase (3)
EMWAIT)
(1)
(2)
(3)
Parameters are characterized from -40°C to 125°C unless otherwise noted.
E = EMA_CLK period or in ns. EMA_CLK is selected either as SYSCLK3 or the PLL output clock divided by 4.5. As an example, when
SYSCLK3 is selected and set to 100MHz, E=10ns.
Setup before end of STROBE phase (if no extended wait states are inserted) by which EM_WAIT must be asserted to add extended
wait states. Figure 5-19 and Figure 5-20 describe EMIF transactions that include extended wait states inserted during the STROBE
phase. However, cycles inserted as part of this extended wait period should not be counted; the 4E requirement is to the start of where
the HOLD phase would begin if there were no extended wait cycles.
Table 5-22. EMIFA Asynchronous Memory Switching Characteristics (1) (2)
NO.
PARAMETER
(3) (4)
MIN
Nom
MAX
UNIT
(TA)*E - 3
(TA)*E
(TA)*E + 3
ns
EMIF read cycle time (EW = 0)
(RS+RST+RH)*E - 3
(RS+RST+RH)*E
(RS+RST+RH)*E +
3
ns
EMIF read cycle time (EW = 1)
(RS+RST+RH+(EW
C*16))*E - 3
(RS+RST+RH+(EWC*1
6))*E
(RS+RST+RH+(EW
C*16))*E + 3
ns
Output setup time, EMA_CE[5:2] low to EMA_OE
low (SS = 0)
(RS)*E-3
(RS)*E
(RS)*E+3
ns
Output setup time, EMA_CE[5:2] low to EMA_OE
low (SS = 1)
-3
0
+3
ns
Output hold time, EMA_OE high to EMA_CE[5:2]
high (SS = 0)
(RH)*E - 3
(RH)*E
(RH)*E + 3
ns
Output hold time, EMA_OE high to EMA_CE[5:2]
high (SS = 1)
-3
0
+3
ns
READS and WRITES
1
td(TURNAROUND)
Turn around time
READS
3
4
5
tc(EMRCYCLE)
tsu(EMCEL-EMOEL)
th(EMOEH-EMCEH)
6
tsu(EMBAV-EMOEL)
Output setup time, EMA_BA[1:0] valid to EMA_OE
low
(RS)*E-3
(RS)*E
(RS)*E+3
ns
7
th(EMOEH-EMBAIV)
Output hold time, EMA_OE high to EMA_BA[1:0]
invalid
(RH)*E-3
(RH)*E
(RH)*E+3
ns
8
tsu(EMBAV-EMOEL)
Output setup time, EMA_A[13:0] valid to EMA_OE
low
(RS)*E-3
(RS)*E
(RS)*E+3
ns
9
th(EMOEH-EMAIV)
Output hold time, EMA_OE high to EMA_A[13:0]
invalid
(RH)*E-3
(RH)*E
(RH)*E+3
ns
(1)
(2)
(3)
(4)
78
Parameters are characterized from -40°C to 125°C unless otherwise noted.
TA = Turn around, RS = Read setup, RST = Read strobe, RH = Read hold, WS = Write setup, WST = Write strobe, WH = Write hold,
MEWC = Maximum external wait cycles. These parameters are programmed via the Asynchronous Bank and Asynchronous Wait Cycle
Configuration Registers. These support the following range of values: TA[4-1], RS[16-1], RST[64-1], RH[8-1], WS[16-1], WST[64-1],
WH[8-1], and MEW[1-256].
E = EMA_CLK period or in ns. EMA_CLK is selected either as SYSCLK3 or the PLL output clock divided by 4.5. As an example, when
SYSCLK3 is selected and set to 100MHz, E=10ns.
EWC = external wait cycles determined by EMA_WAIT input signal. EWC supports the following range of values EWC[256-1]. Note that
the maximum wait time before timeout is specified by bit field MEWC in the Asynchronous Wait Cycle Configuration Register.
Peripheral Information and Electrical Specifications
Copyright © 2012–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
OMAPL137-HT
www.ti.com
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
Table 5-22. EMIFA Asynchronous Memory Switching Characteristics(1)(2)
NO.
PARAMETER
10
tw(EMOEL)
11
td(EMWAITH-EMOEH)
(3) (4)
(continued)
MIN
Nom
MAX
EMA_OE active low width (EW = 0)
(RST)*E-3
(RST)*E
(RST)*E+3
ns
EMA_OE active low width (EW = 1)
(RST+(EWC*16))*E3
(RST+(EWC*16))*E
(RST+(EWC*16))*E
+3
ns
3E-3
4E
4E+3
ns
(WS+WST+WH)*E-3
(WS+WST+WH)*E
(WS+WST+WH)*E+
3
ns
(WS+WST+WH+(E (WS+WST+WH+(EWC*
WC*16))*E - 3
16))*E
(WS+WST+WH+(E
WC*16))*E + 3
ns
Delay time from EMA_WAIT deasserted to
EMA_OE high
UNIT
WRITES
EMIF write cycle time (EW = 0)
15
tc(EMWCYCLE)
EMIF write cycle time (EW = 1)
16
17
tsu(EMCEL-EMWEL)
th(EMWEH-EMCEH)
Output setup time, EMA_CE[5:2] low to EMA_WE
low (SS = 0)
(WS)*E - 3
(WS)*E
(WS)*E + 3
ns
Output setup time, EMA_CE[5:2] low to EMA_WE
low (SS = 1)
-3
0
+3
ns
Output hold time, EMA_WE high to EMA_CE[5:2]
high (SS = 0)
(WH)*E-3
(WH)*E
(WH)*E+3
ns
Output hold time, EMA_WE high to EMA_CE[5:2]
high (SS = 1)
-3
0
+3
ns
18
tsu(EMDQMV-EMWEL)
Output setup time, EMA_BA[1:0] valid to EMA_WE
low
(WS)*E-3
(WS)*E
(WS)*E+3
ns
19
th(EMWEH-EMDQMIV)
Output hold time, EMA_WE high to EMA_BA[1:0]
invalid
(WH)*E-3
(WH)*E
(WH)*E+3
ns
20
tsu(EMBAV-EMWEL)
Output setup time, EMA_BA[1:0] valid to EMA_WE
low
(WS)*E-3
(WS)*E
(WS)*E+3
ns
21
th(EMWEH-EMBAIV)
Output hold time, EMA_WE high to EMA_BA[1:0]
invalid
(WH)*E-3
(WH)*E
(WH)*E+3
ns
22
tsu(EMAV-EMWEL)
Output setup time, EMA_A[13:0] valid to EMA_WE
low
(WS)*E-3
(WS)*E
(WS)*E+3
ns
23
th(EMWEH-EMAIV)
Output hold time, EMA_WE high to EMA_A[13:0]
invalid
(WH)*E-3
(WH)*E
(WH)*E+3
ns
EMA_WE active low width (EW = 0)
(WST)*E-3
(WST)*E
(WST)*E+3
ns
24
tw(EMWEL)
EMA_WE active low width (EW = 1)
(WST+(EWC*16))*E
-3
(WST+(EWC*16))*E
(WST+(EWC*16))*E
+3
ns
25
td(EMWAITH-EMWEH)
Delay time from EMA_WAIT deasserted to
EMA_WE high
3E-3
4E
4E+3
ns
26
tsu(EMDV-EMWEL)
Output setup time, EMA_D[15:0] valid to EMA_WE
low
(WS)*E-3
(WS)*E
(WS)*E+3
ns
27
th(EMWEH-EMDIV)
Output hold time, EMA_WE high to EMA_D[15:0]
invalid
(WH)*E-3
(WH)*E
(WH)*E+3
ns
Table 5-23. Timing Requirements for EMIFA SDRAM Interface
Parameters are characterized from -40°C to 125°C unless otherwise noted.
NO.
PARAMETER
19
tsu(EMA_DV-EM_CLKH)
Input setup time, read data valid on EMA_D[15:0] before
EMA_CLK rising
20
th(CLKH-DIV)
Input hold time, read data valid on EMA_D[15:0] after
EMA_CLK rising
1.2V
MIN
1.1V
MAX
MIN
MAX
1.0V
MIN
MAX
UNIT
2
3
3
ns
1.6
1.6
1.6
ns
Table 5-24. Switching Characteristics for EMIFA SDRAM Interface
Parameters are characterized from -40°C to 125°C unless otherwise noted.
NO.
PARAMETER
1.2V
MIN
1.1V
MAX
MIN
MAX
1.0V
MIN
1
tc(CLK)
Cycle time, EMIF clock EMA_CLK
10
15
20
2
tw(CLK)
Pulse width, EMIF clock EMA_CLK high or low
3
5
8
3
td(CLKH-CSV)
Delay time, EMA_CLK rising to EMA_CS[0] valid
4
toh(CLKH-CSIV)
Output hold time, EMA_CLK rising to EMA_CS[0] invalid
Copyright © 2012–2013, Texas Instruments Incorporated
7
1
9.5
1
MAX
UNIT
ns
ns
13
1
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
ns
ns
79
OMAPL137-HT
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
www.ti.com
Table 5-24. Switching Characteristics for EMIFA SDRAM Interface (continued)
Parameters are characterized from -40°C to 125°C unless otherwise noted.
NO.
5
1.2V
PARAMETER
MIN
td(CLKH-DQMV)
Delay time, EMA_CLK rising to EMA_WE_DQM[1:0] valid
6
toh(CLKH-DQMIV)
Output hold time, EMA_CLK rising to EMA_WE_DQM[1:0]
invalid
7
td(CLKH-AV)
Delay time, EMA_CLK rising to EMA_A[12:0] and
EMA_BA[1:0] valid
8
toh(CLKH-AIV)
Output hold time, EMA_CLK rising to EMA_A[12:0] and
EMA_BA[1:0] invalid
MIN
7
1
1
1
9
td(CLKH-DV)
Delay time, EMA_CLK rising to EMA_D[15:0] valid
toh(CLKH-DIV)
Output hold time, EMA_CLK rising to EMA_D[15:0] invalid
11
td(CLKH-RASV)
Delay time, EMA_CLK rising to EMA_RAS valid
12
toh(CLKH-RASIV)
Output hold time, EMA_CLK rising to EMA_RAS invalid
13
td(CLKH-CASV)
Delay time, EMA_CLK rising to EMA_CAS valid
14
toh(CLKH-CASIV)
Output hold time, EMA_CLK rising to EMA_CAS invalid
15
td(CLKH-WEV)
Delay time, EMA_CLK rising to EMA_WE valid
16
toh(CLKH-WEIV)
Output hold time, EMA_CLK rising to EMA_WE invalid
17
tdis(CLKH-DHZ)
Delay time, EMA_CLK rising to EMA_D[15:0] tri-stated
18
tena(CLKH-DLZ)
Output hold time, EMA_CLK rising to EMA_D[15:0] driving
1.0V
MAX
7
7
1
7
9.5
ns
ns
ns
13
1
ns
ns
13
1
1
ns
ns
13
1
1
1
13
9.5
ns
ns
1
9.5
7
1
13
9.5
ns
ns
1
1
1
13
9.5
UNIT
ns
1
1
1
13
9.5
7
MAX
1
1
1
MIN
9.5
7
10
BASIC SDRAM
WRITE OPERATION
1.1V
MAX
ns
ns
1
2
2
EMA_CLK
3
4
EMA_CS[0]
5
6
EMA_WE_DQM[1:0]
7
8
7
8
EMA_BA[1:0]
EMA_A[12:0]
9
10
EMA_D[15:0]
11
12
EMA_RAS
13
EMA_CAS
15
16
EMA_WE
Figure 5-15. EMIFA Basic SDRAM Write Operation
80
Peripheral Information and Electrical Specifications
Copyright © 2012–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
OMAPL137-HT
www.ti.com
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
BASIC SDRAM
READ OPERATION
1
2
2
EMA_CLK
3
4
EMA_CS[0]
5
6
EMA_WE_DQM[1:0]
7
8
7
8
EMA_BA[1:0]
EMA_A[12:0]
19
17
2 EM_CLK Delay
20
18
EMA_D[15:0]
11
12
EMA_RAS
13
14
EMA_CAS
EMA_WE
Figure 5-16. EMIFA Basic SDRAM Read Operation
3
1
EMA_CS[5:2]
EMA_BA[1:0]
EMA_A[22:0]
EMA_WE_DQM[1:0]
1
EMA_A_RW
4
8
5
9
6
7
10
EMA_OE
13
12
EMA_D[15:0]
EMA_WE
Figure 5-17. Asynchronous Memory Read Timing for EMIFA
Copyright © 2012–2013, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
81
OMAPL137-HT
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
www.ti.com
15
1
EMA_CS[5:2]
EMA_BA[1:0]
EMA_A[22:0]
EMA_WE_DQM[1:0]
EMA_A_RW
16
17
18
19
20
21
22
23
1
24
EMA_WE
26
27
EMA_D[15:0]
EMA_OE
Figure 5-18. Asynchronous Memory Write Timing for EMIFA
EMA_CE[5:2]
SETUP
STROBE
Extended Due to EMA_WAIT
STROBE HOLD
EMA_BA[1:0]
EMA_A[12:0]
EMA_D[15:0]
14
11
EMA_OE
2
EMA_WAIT
Asserted
2
Deasserted
Figure 5-19. EMA_WAIT Read Timing Requirements
82
Peripheral Information and Electrical Specifications
Copyright © 2012–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
OMAPL137-HT
www.ti.com
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
EMA_CE[5:2]
SETUP
STROBE
Extended Due to EMA_WAIT
STROBE HOLD
EMA_BA[1:0]
EMA_A[12:0]
EMA_D[15:0]
28
25
EMA_WE
2
EMA_WAIT
Asserted
2
Deasserted
Figure 5-20. EMA_WAIT Write Timing Requirements
Copyright © 2012–2013, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
83
OMAPL137-HT
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
www.ti.com
5.11 External Memory Interface B (EMIFB)
Figure 5-21, EMIFB Functional Block Diagram illustrates a high-level view of the EMIFB and its
connections within the device. Multiple requesters have access to EMIFB through a switched central
resource (indicated as crossbar in the figure). The EMIFB implements a split transaction internal bus,
allowing concurrence between reads and writes from the various requesters. See the
TMS320C674x/OMAP-L1x Processor Peripherals Overview Reference Guide. – Literature Number
SPRUFK9 for more details.
EMIFB
Registers
CPU
EDMA
Crossbar
MPU2
Master
Peripherals
(USB, UHPI...)
EMB_CS
EMB_CAS
Cmd/Write
EMB_RAS
FIFO
EMB_WE
EMB_CLK
EMB_SDCKE
Read
EMB_BA[1:0]
FIFO
EMB_A[x:0]
EMB_D[x:0]
EMB_WE_DQM[x:0]
SDRAM
Interface
Figure 5-21. EMIFB Functional Block Diagram
EMIFB supports a 3.3V LVCMOS Interface.
84
Peripheral Information and Electrical Specifications
Copyright © 2012–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
OMAPL137-HT
www.ti.com
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
5.11.1 Interfacing to SDRAM
The EMIFB supports a glueless interface to SDRAM devices with the following characteristics:
• Pre-charge bit is A[10]
• The number of column address bits is 8, 9, 10 or 11
• The number of row address bits is 13 (in case of mobile SDR, number of row address bits can be 9,
10, 11, 12, or 13)
• The number of internal banks is 1, 2 or 4
Figure 5-22 shows an interface between the EMIFB and a 2M × 16 × 4 bank SDRAM device. In addition,
Figure 5-23 shows an interface between the EMIFB and a 2M × 32 × 4 bank SDRAM device and Figure 524 shows an interface between the EMIFB and two 4M × 16 × 4 bank SDRAM devices. Refer to Table 525, as an example that shows additional list of commonly-supported SDRAM devices and the required
connections for the address pins. Note that in Table 5-25, page size/column size (not indicated in the
table) is varied to get the required addressability range.
EMIFB
EMB_CS
EMB_CAS
EMB_RAS
EMB_WE
EMB_CLK
EMB_SDCKE
EMB_BA[1:0]
EMB_A[11:0]
EMB_WE_DQM[0]
EMB_WE_DQM[1]
EMB_D[15:0]
SDRAM
2M x 16 x 4
Bank
CE
CAS
RAS
WE
CLK
CKE
BA[1:0]
A[11:0]
LDQM
UDQM
DQ[15:0]
Figure 5-22. EMIFB to 2M × 16 × 4 bank SDRAM Interface
SDRAM
2M x 32 x 4
Bank
EMIFB
EMB_CS
EMB_CAS
EMB_RAS
EMB_WE
EMB_CLK
EMB_SDCKE
EMB_BA[1:0]
EMB_A[11:0]
EMB_WE_DQM[3:0]
EMB_D[31:0]
CE
CAS
RAS
WE
CLK
CKE
BA[1:0]
A[11:0]
DQM[3:0]
DQ[31:0]
Figure 5-23. EMIFB to 2M × 32 × 4 bank SDRAM Interface
Copyright © 2012–2013, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
85
OMAPL137-HT
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
www.ti.com
SDRAM
4M x 16 x 4
Bank
EMIFB
EMB_CS
EMB_CAS
EMB_RAS
EMB_WE
EMB_CLK
EMB_SDCKE
EMB_BA[1:0]
EMB_A[12:0]
EMB_WE_DQM[0]
EMB_WE_DQM[1]
EMB_D[15:0]
EMB_WE_DQM[2]
EMB_WE_DQM[3]
EMB_D[31:16]
CE
CAS
RAS
WE
CLK
CKE
BA[1:0]
A[12:0]
LDQM
UDQM
DQ[15:0]
SDRAM
4M x 16 x 4
Bank
CE
CAS
RAS
WE
CLK
CKE
BA[1:0]
A[12:0]
LDQM
UDQM
DQ[15:0]
Figure 5-24. EMIFB to Dual 4M × 16 × 4 bank SDRAM Interface
Table 5-25. Example of 16/32-bit EMIFB Address Pin Connections
SDRAM Size
Width
Banks
64M bits
×16
4
×32
128M bits
256M bits
×16
A[11:0]
EMIFB
EMB_A[11:0]
SDRAM
A[10:0]
EMIFB
EMB_A[10:0]
SDRAM
A[11:0]
EMIFB
EMB_A[11:0]
4
SDRAM
A[11:0]
EMIFB
EMB_A[11:0]
×16
4
SDRAM
A[12:0]
EMIFB
EMB_A[12:0]
×16
×32
86
4
SDRAM
×32
×32
512M bits
4
Address Pins
4
4
4
SDRAM
A[11:0]
EMIFB
EMB_A[11:0]
SDRAM
A[12:0]
EMIFB
EMB_A[12:0]
SDRAM
A[12:0]
EMIFB
EMB_A[12:0]
Peripheral Information and Electrical Specifications
Copyright © 2012–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
OMAPL137-HT
www.ti.com
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
Table 5-26 is a list of the EMIFB registers.
Table 5-26. EMIFB Base Controller Registers
BYTE ADDRESS
Acronym
Register
0xB000 0000
MIDR
Module ID Register
0xB000 0008
SDCFG
SDRAM Configuration Register
0xB000 000C
SDRFC
SDRAM Refresh Control Register
0xB000 0010
SDTIM1
SDRAM Timing Register 1
0xB000 0014
SDTIM2
SDRAM Timing Register 2
0xB000 001C
SDCFG2
SDRAM Configuration 2 Register
0xB000 0020
BPRIO
Peripheral Bus Burst Priority Register
0xB000 0040
PC1
Performance Counter 1 Register
0xB000 0044
PC2
Performance Counter 2 Register
0xB000 0048
PCC
Performance Counter Configuration Register
0xB000 004C
PCMRS
Performance Counter Master Region Select Register
0xB000 0050
PCT
Performance Counter Time Register
0xB000 00C0
IRR
Interrupt Raw Register
0xB000 00C4
IMR
Interrupt Mask Register
0xB000 00C8
IMSR
Interrupt Mask Set Register
0xB000 00CC
IMCR
Interrupt Mask Clear Register
5.11.2 EMIFB Electrical Data/Timing
Table 5-27. EMIFB SDRAM Interface Timing Requirements
NO.
MIN
19
tsu(DV-CLKH)
Input setup time, read data valid on EMB_D[31:0] before EMB_CLK
rising
20
th(CLKH-DIV)
Input hold time, read data valid on EMB_D[31:0] after EMB_CLK
rising
MAX UNIT
0.8
ns
1.6
ns
Table 5-28. EMIFB SDRAM Interface Switching Characteristics
NO.
PARAMETER
1 (1)
tc(CLK)
Cycle time, EMIF clock EMB_CLK
(1)
tw(CLK)
Pulse width, EMIF clock EMB_CLK high or low
3
td(CLKH-CSV)
Delay time, EMB_CLK rising to EMB_CS[0] valid
4
toh(CLKH-CSIV)
Output hold time, EMB_CLK rising to EMB_CS[0] invalid
5
td(CLKH-DQMV)
Delay time, EMB_CLK rising to EMB_WE_DQM[3:0] valid
6
toh(CLKH-DQMIV)
Output hold time, EMB_CLK rising to EMB_WE_DQM[3:0] invalid
7
td(CLKH-AV)
Delay time, EMB_CLK rising to EMB_A[12:0] and EMB_BA[1:0]
valid
8
toh(CLKH-AIV)
Output hold time, EMB_CLK rising to EMB_A[12:0] and
EMB_BA[1:0] invalid
9
td(CLKH-DV)
Delay time, EMB_CLK rising to EMB_D[31:0] valid
10
toh(CLKH-DIV)
Output hold time, EMB_CLK rising to EMB_D[31:0] invalid
11
td(CLKH-RASV)
Delay time, EMB_CLK rising to EMB_RAS valid
12
toh(CLKH-RASIV)
Output hold time, EMB_CLK rising to EMB_RAS invalid
13
td(CLKH-CASV)
Delay time, EMB_CLK rising to EMB_CAS valid
14
toh(CLKH-CASIV)
Output hold time, EMB_CLK rising to EMB_CAS invalid
2
(1)
MIN
MAX UNIT
7.5
ns
3
ns
7
0.9
ns
ns
7
0.9
ns
ns
7
0.9
ns
ns
7
0.9
ns
ns
7
0.9
ns
ns
7
0.9
ns
ns
Parameters are characterized from -40°C to 125°C unless otherwise noted.
Copyright © 2012–2013, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
87
OMAPL137-HT
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
www.ti.com
Table 5-28. EMIFB SDRAM Interface Switching Characteristics (continued)
NO.
PARAMETER
MIN
15
td(CLKH-WEV)
Delay time, EMB_CLK rising to EMB_WE valid
16
toh(CLKH-WEIV)
Output hold time, EMB_CLK rising to EMB_WE invalid
17
tdis(CLKH-DHZ)
Delay time, EMB_CLK rising to EMB_D[31:0] tri-stated
18
tena(CLKH-DLZ)
Output hold time, EMB_CLK rising to EMB_D[31:0] driving
BASIC SDRAM
WRITE OPERATION
MAX UNIT
7
0.9
ns
7
0.9
ns
ns
ns
1
2
2
EMB_CLK
3
4
EMB_CS[0]
5
6
EMB_WE_DQM[3:0]
7
8
7
8
EMB_BA[1:0]
EMB_A[12:0]
9
10
EMB_D[31:0]
11
12
EMB_RAS
13
EMB_CAS
15
16
EMB_WE
Figure 5-25. EMIFB Basic SDRAM Write Operation
88
Peripheral Information and Electrical Specifications
Copyright © 2012–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
OMAPL137-HT
www.ti.com
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
BASIC SDRAM
READ OPERATION
1
2
2
EMB_CLK
3
4
EMB_CS[0]
5
6
EMB_WE_DQM[3:0]
7
8
7
8
EMB_BA[1:0]
EMB_A[12:0]
19
17
20
2 EM_CLK Delay
18
EMB_D[31:0]
11
12
EMB_RAS
13
14
EMB_CAS
EMB_WE
Figure 5-26. EMIFB Basic SDRAM Read Operation
Copyright © 2012–2013, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
89
OMAPL137-HT
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
www.ti.com
5.12 MMC / SD / SDIO (MMCSD)
5.12.1 MMCSD Peripheral Description
The device includes an MMCSD controller which are compliant with MMC V3.31, Secure Digital Part 1
Physical Layer Specification V1.1 and Secure Digital Input Output (SDIO) V2.0 specifications.
The device MMC/SD Controller has following features:
• MultiMediaCard (MMC).
• Secure Digital (SD) Memory Card.
• MMC/SD protocol support.
• SDIO protocol support.
• Programmable clock frequency.
• 512 bit Read/Write FIFO to lower system overhead.
• Slave EDMA transfer capability.
• SD high capacity support.
The MMC/SD Controller does not support SPI mode. See the TMS320C674x/OMAP-L1x Processor
Peripherals Overview Reference Guide. – Literature Number SPRUFK9 for more details.
5.12.2
MMCSD Peripheral Register Description(s)
Table 5-29. Multimedia Card/Secure Digital (MMC/SD) Card Controller Registers
Offset
Acronym
Register Description
0x01C4 0000
MMCCTL
MMC Control Register
0x01C4 0004
MMCCLK
MMC Memory Clock Control Register
0x01C4 0008
MMCST0
MMC Status Register 0
0x01C4 000C
MMCST1
MMC Status Register 1
0x01C4 0010
MMCIM
MMC Interrupt Mask Register
0x01C4 0014
MMCTOR
MMC Response Time-Out Register
0x01C4 0018
MMCTOD
MMC Data Read Time-Out Register
0x01C4 001C
MMCBLEN
MMC Block Length Register
0x01C4 0020
MMCNBLK
MMC Number of Blocks Register
0x01C4 0024
MMCNBLC
MMC Number of Blocks Counter Register
0x01C4 0028
MMCDRR
MMC Data Receive Register
0x01C4 002C
MMCDXR
MMC Data Transmit Register
0x01C4 0030
MMCCMD
MMC Command Register
0x01C4 0034
MMCARGHL
MMC Argument Register
0x01C4 0038
MMCRSP01
MMC Response Register 0 and 1
0x01C4 003C
MMCRSP23
MMC Response Register 2 and 3
0x01C4 0040
MMCRSP45
MMC Response Register 4 and 5
0x01C4 0044
MMCRSP67
MMC Response Register 6 and 7
0x01C4 0048
MMCDRSP
MMC Data Response Register
0x01C4 0050
MMCCIDX
MMC Command Index Register
0x01C4 0064
SDIOCTL
SDIO Control Register
0x01C4 0068
SDIOST0
SDIO Status Register 0
0x01C4 006C
SDIOIEN
SDIO Interrupt Enable Register
0x01C4 0070
SDIOIST
SDIO Interrupt Status Register
0x01C4 0074
MMCFIFOCTL
MMC FIFO Control Register
90
Peripheral Information and Electrical Specifications
Copyright © 2012–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
OMAPL137-HT
www.ti.com
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
5.12.3 MMC/SD Electrical Data/Timing
Table 5-30. Timing Requirements for MMC/SD Module (1)
NO.
MIN
MAX
UNIT
1
tsu(CMDV-CLKH)
Setup time, MMCSD_CMD valid before MMCSD_CLK high
3.2
ns
2
th(CLKH-CMDV)
Hold time, MMCSD_CMD valid after MMCSD_CLK high
1.5
ns
3
tsu(DATV-CLKH)
Setup time, MMCSD_DATx valid before MMCSD_CLK high
3.2
ns
4
th(CLKH-DATV)
Hold time, MMCSD_DATx valid after MMCSD_CLK high
1.5
ns
(1)
Parameters are characterized from -40°C to 125°C unless otherwise noted.
Table 5-31. Switching Characteristics Over Recommended Operating Conditions for MMC/SD Module (1)
NO.
(1)
PARAMETER
MIN
MAX
UNIT
7
f(CLK)
Operating frequency, MMCSD_CLK
0
52
MHz
8
f(CLK_ID)
Identification mode frequency, MMCSD_CLK
0
400
KHz
9
tW(CLKL)
Pulse width, MMCSD_CLK low
6.5
10
tW(CLKH)
Pulse width, MMCSD_CLK high
6.5
ns
11
tr(CLK)
Rise time, MMCSD_CLK
12
tf(CLK)
Fall time, MMCSD_CLK
13
td(CLKL-CMD)
Delay time, MMCSD_CLK low to MMCSD_CMD transition
-4.5
14
td(CLKL-DAT)
Delay time, MMCSD_CLK low to MMCSD_DATx transition
-4.5
2.5
ns
ns
3
ns
3
ns
2.5
ns
Parameters are characterized from -40°C to 125°C unless otherwise noted.
10
9
7
MMCSD_CLK
13
13
START
MMCSD_CMD
13
XMIT
Valid
Valid
13
Valid
END
Figure 5-27. MMC/SD Host Command Timing
9
7
10
MMCSD_CLK
1
2
START
MMCSD_CMD
XMIT
Valid
Valid
Valid
END
Figure 5-28. MMC/SD Card Response Timing
10
9
7
MMCSD_CLK
14
MMCSD_DATx
14
START
14
D0
D1
Dx
14
END
Figure 5-29. MMC/SD Host Write Timing
Copyright © 2012–2013, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
91
OMAPL137-HT
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
www.ti.com
9
10
7
MMCSD_CLK
4
4
3
Start
MMCSD_DATx
3
D0
D1
Dx
End
Figure 5-30. MMC/SD Host Read and Card CRC Status Timing
5.13 Ethernet Media Access Controller (EMAC)
The Ethernet Media Access Controller (EMAC) provides an efficient interface between device and the
network. The device EMAC supports both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and
100 Mbps in either half- or full-duplex mode, with hardware flow control and quality of service (QOS)
support.
The EMAC controls the flow of packet data from the device to the PHY. The MDIO module controls PHY
configuration and status monitoring.
Both the EMAC and the MDIO modules interface to the device through a custom interface that allows
efficient data transmission and reception. This custom interface is referred to as the EMAC control
module, and is considered integral to the EMAC/MDIO peripheral. The control module is also used to
multiplex and control interrupts. See the TMS320C674x/OMAP-L1x Processor Peripherals Overview
Reference Guide. – Literature Number SPRUFK9 for more details.
5.13.1
EMAC Peripheral Register Description(s)
Table 5-32. Ethernet Media Access Controller (EMAC) Registers
BYTE ADDRESS
92
REGISTER
Register Description
0x01E2 3000
TXREV
Transmit Revision Register
0x01E2 3004
TXCONTROL
Transmit Control Register
0x01E2 3008
TXTEARDOWN
Transmit Teardown Register
0x01E2 3010
RXREV
Receive Revision Register
0x01E2 3014
RXCONTROL
Receive Control Register
0x01E2 3018
RXTEARDOWN
Receive Teardown Register
0x01E2 3080
TXINTSTATRAW
Transmit Interrupt Status (Unmasked) Register
0x01E2 3084
TXINTSTATMASKED
Transmit Interrupt Status (Masked) Register
0x01E2 3088
TXINTMASKSET
Transmit Interrupt Mask Set Register
0x01E2 308C
TXINTMASKCLEAR
Transmit Interrupt Clear Register
0x01E2 3090
MACINVECTOR
MAC Input Vector Register
0x01E2 3094
MACEOIVECTOR
MAC End Of Interrupt Vector Register
0x01E2 30A0
RXINTSTATRAW
Receive Interrupt Status (Unmasked) Register
0x01E2 30A4
RXINTSTATMASKED
Receive Interrupt Status (Masked) Register
0x01E2 30A8
RXINTMASKSET
Receive Interrupt Mask Set Register
0x01E2 30AC
RXINTMASKCLEAR
Receive Interrupt Mask Clear Register
0x01E2 30B0
MACINTSTATRAW
MAC Interrupt Status (Unmasked) Register
0x01E2 30B4
MACINTSTATMASKED
MAC Interrupt Status (Masked) Register
0x01E2 30B8
MACINTMASKSET
MAC Interrupt Mask Set Register
0x01E2 30BC
MACINTMASKCLEAR
MAC Interrupt Mask Clear Register
0x01E2 3100
RXMBPENABLE
Receive Multicast/Broadcast/Promiscuous Channel Enable Register
0x01E2 3104
RXUNICASTSET
Receive Unicast Enable Set Register
0x01E2 3108
RXUNICASTCLEAR
Receive Unicast Clear Register
0x01E2 310C
RXMAXLEN
Receive Maximum Length Register
Peripheral Information and Electrical Specifications
Copyright © 2012–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
OMAPL137-HT
www.ti.com
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
Table 5-32. Ethernet Media Access Controller (EMAC) Registers (continued)
BYTE ADDRESS
REGISTER
Register Description
0x01E2 3110
RXBUFFEROFFSET
Receive Buffer Offset Register
0x01E2 3114
RXFILTERLOWTHRESH
Receive Filter Low Priority Frame Threshold Register
0x01E2 3120
RX0FLOWTHRESH
Receive Channel 0 Flow Control Threshold Register
0x01E2 3124
RX1FLOWTHRESH
Receive Channel 1 Flow Control Threshold Register
0x01E2 3128
RX2FLOWTHRESH
Receive Channel 2 Flow Control Threshold Register
0x01E2 312C
RX3FLOWTHRESH
Receive Channel 3 Flow Control Threshold Register
0x01E2 3130
RX4FLOWTHRESH
Receive Channel 4 Flow Control Threshold Register
0x01E2 3134
RX5FLOWTHRESH
Receive Channel 5 Flow Control Threshold Register
0x01E2 3138
RX6FLOWTHRESH
Receive Channel 6 Flow Control Threshold Register
0x01E2 313C
RX7FLOWTHRESH
Receive Channel 7 Flow Control Threshold Register
0x01E2 3140
RX0FREEBUFFER
Receive Channel 0 Free Buffer Count Register
0x01E2 3144
RX1FREEBUFFER
Receive Channel 1 Free Buffer Count Register
0x01E2 3148
RX2FREEBUFFER
Receive Channel 2 Free Buffer Count Register
0x01E2 314C
RX3FREEBUFFER
Receive Channel 3 Free Buffer Count Register
0x01E2 3150
RX4FREEBUFFER
Receive Channel 4 Free Buffer Count Register
0x01E2 3154
RX5FREEBUFFER
Receive Channel 5 Free Buffer Count Register
0x01E2 3158
RX6FREEBUFFER
Receive Channel 6 Free Buffer Count Register
0x01E2 315C
RX7FREEBUFFER
Receive Channel 7 Free Buffer Count Register
0x01E2 3160
MACCONTROL
MAC Control Register
0x01E2 3164
MACSTATUS
MAC Status Register
0x01E2 3168
EMCONTROL
Emulation Control Register
0x01E2 316C
FIFOCONTROL
FIFO Control Register
0x01E2 3170
MACCONFIG
MAC Configuration Register
0x01E2 3174
SOFTRESET
Soft Reset Register
0x01E2 31D0
MACSRCADDRLO
MAC Source Address Low Bytes Register
0x01E2 31D4
MACSRCADDRHI
MAC Source Address High Bytes Register
0x01E2 31D8
MACHASH1
MAC Hash Address Register 1
0x01E2 31DC
MACHASH2
MAC Hash Address Register 2
0x01E2 31E0
BOFFTEST
Back Off Test Register
0x01E2 31E4
TPACETEST
Transmit Pacing Algorithm Test Register
0x01E2 31E8
RXPAUSE
Receive Pause Timer Register
0x01E2 31EC
TXPAUSE
Transmit Pause Timer Register
0x01E2 3200 - 0x01E2 32FC
(see Table 5-33)
EMAC Statistics Registers
0x01E2 3500
MACADDRLO
MAC Address Low Bytes Register, Used in Receive Address Matching
0x01E2 3504
MACADDRHI
MAC Address High Bytes Register, Used in Receive Address Matching
0x01E2 3508
MACINDEX
MAC Index Register
0x01E2 3600
TX0HDP
Transmit Channel 0 DMA Head Descriptor Pointer Register
0x01E2 3604
TX1HDP
Transmit Channel 1 DMA Head Descriptor Pointer Register
0x01E2 3608
TX2HDP
Transmit Channel 2 DMA Head Descriptor Pointer Register
0x01E2 360C
TX3HDP
Transmit Channel 3 DMA Head Descriptor Pointer Register
0x01E2 3610
TX4HDP
Transmit Channel 4 DMA Head Descriptor Pointer Register
0x01E2 3614
TX5HDP
Transmit Channel 5 DMA Head Descriptor Pointer Register
0x01E2 3618
TX6HDP
Transmit Channel 6 DMA Head Descriptor Pointer Register
0x01E2 361C
TX7HDP
Transmit Channel 7 DMA Head Descriptor Pointer Register
0x01E2 3620
RX0HDP
Receive Channel 0 DMA Head Descriptor Pointer Register
0x01E2 3624
RX1HDP
Receive Channel 1 DMA Head Descriptor Pointer Register
0x01E2 3628
RX2HDP
Receive Channel 2 DMA Head Descriptor Pointer Register
Copyright © 2012–2013, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
93
OMAPL137-HT
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
www.ti.com
Table 5-32. Ethernet Media Access Controller (EMAC) Registers (continued)
BYTE ADDRESS
REGISTER
Register Description
0x01E2 362C
RX3HDP
Receive Channel 3 DMA Head Descriptor Pointer Register
0x01E2 3630
RX4HDP
Receive Channel 4 DMA Head Descriptor Pointer Register
0x01E2 3634
RX5HDP
Receive Channel 5 DMA Head Descriptor Pointer Register
0x01E2 3638
RX6HDP
Receive Channel 6 DMA Head Descriptor Pointer Register
0x01E2 363C
RX7HDP
Receive Channel 7 DMA Head Descriptor Pointer Register
0x01E2 3640
TX0CP
Transmit Channel 0 Completion Pointer Register
0x01E2 3644
TX1CP
Transmit Channel 1 Completion Pointer Register
0x01E2 3648
TX2CP
Transmit Channel 2 Completion Pointer Register
0x01E2 364C
TX3CP
Transmit Channel 3 Completion Pointer Register
0x01E2 3650
TX4CP
Transmit Channel 4 Completion Pointer Register
0x01E2 3654
TX5CP
Transmit Channel 5 Completion Pointer Register
0x01E2 3658
TX6CP
Transmit Channel 6 Completion Pointer Register
0x01E2 365C
TX7CP
Transmit Channel 7 Completion Pointer Register
0x01E2 3660
RX0CP
Receive Channel 0 Completion Pointer Register
0x01E2 3664
RX1CP
Receive Channel 1 Completion Pointer Register
0x01E2 3668
RX2CP
Receive Channel 2 Completion Pointer Register
0x01E2 366C
RX3CP
Receive Channel 3 Completion Pointer Register
0x01E2 3670
RX4CP
Receive Channel 4 Completion Pointer Register
0x01E2 3674
RX5CP
Receive Channel 5 Completion Pointer Register
0x01E2 3678
RX6CP
Receive Channel 6 Completion Pointer Register
0x01E2 367C
RX7CP
Receive Channel 7 Completion Pointer Register
Table 5-33. EMAC Statistics Registers
94
HEX ADDRESS RANGE
ACRONYM
REGISTER NAME
0x01E2 3200
RXGOODFRAMES
Good Receive Frames Register
0x01E2 3204
RXBCASTFRAMES
Broadcast Receive Frames Register
(Total number of good broadcast frames received)
0x01E2 3208
RXMCASTFRAMES
Multicast Receive Frames Register
(Total number of good multicast frames received)
0x01E2 320C
RXPAUSEFRAMES
Pause Receive Frames Register
0x01E2 3210
RXCRCERRORS
0x01E2 3214
RXALIGNCODEERRORS
0x01E2 3218
RXOVERSIZED
0x01E2 321C
RXJABBER
0x01E2 3220
RXUNDERSIZED
Receive Undersized Frames Register
(Total number of undersized frames received)
0x01E2 3224
RXFRAGMENTS
Receive Frame Fragments Register
0x01E2 3228
RXFILTERED
0x01E2 322C
RXQOSFILTERED
0x01E2 3230
RXOCTETS
0x01E2 3234
TXGOODFRAMES
Good Transmit Frames Register
(Total number of good frames transmitted)
Receive CRC Errors Register (Total number of frames received with
CRC errors)
Receive Alignment/Code Errors Register
(Total number of frames received with alignment/code errors)
Receive Oversized Frames Register
(Total number of oversized frames received)
Receive Jabber Frames Register
(Total number of jabber frames received)
Filtered Receive Frames Register
Received QOS Filtered Frames Register
Receive Octet Frames Register
(Total number of received bytes in good frames)
0x01E2 3238
TXBCASTFRAMES
Broadcast Transmit Frames Register
0x01E2 323C
TXMCASTFRAMES
Multicast Transmit Frames Register
0x01E2 3240
TXPAUSEFRAMES
Pause Transmit Frames Register
Peripheral Information and Electrical Specifications
Copyright © 2012–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
OMAPL137-HT
www.ti.com
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
Table 5-33. EMAC Statistics Registers (continued)
HEX ADDRESS RANGE
ACRONYM
0x01E2 3244
TXDEFERRED
REGISTER NAME
Deferred Transmit Frames Register
Transmit Collision Frames Register
0x01E2 3248
TXCOLLISION
0x01E2 324C
TXSINGLECOLL
0x01E2 3250
TXMULTICOLL
0x01E2 3254
TXEXCESSIVECOLL
0x01E2 3258
TXLATECOLL
0x01E2 325C
TXUNDERRUN
0x01E2 3260
TXCARRIERSENSE
0x01E2 3264
TXOCTETS
0x01E2 3268
FRAME64
0x01E2 326C
FRAME65T127
Transmit and Receive 65 to 127 Octet Frames Register
0x01E2 3270
FRAME128T255
Transmit and Receive 128 to 255 Octet Frames Register
0x01E2 3274
FRAME256T511
Transmit and Receive 256 to 511 Octet Frames Register
0x01E2 3278
FRAME512T1023
Transmit and Receive 512 to 1023 Octet Frames Register
0x01E2 327C
FRAME1024TUP
Transmit and Receive 1024 to 1518 Octet Frames Register
0x01E2 3280
NETOCTETS
0x01E2 3284
RXSOFOVERRUNS
Receive FIFO or DMA Start of Frame Overruns Register
0x01E2 3288
RXMOFOVERRUNS
Receive FIFO or DMA Middle of Frame Overruns Register
0x01E2 328C
RXDMAOVERRUNS
Receive DMA Start of Frame and Middle of Frame Overruns
Register
Transmit Single Collision Frames Register
Transmit Multiple Collision Frames Register
Transmit Excessive Collision Frames Register
Transmit Late Collision Frames Register
Transmit Underrun Error Register
Transmit Carrier Sense Errors Register
Transmit Octet Frames Register
Transmit and Receive 64 Octet Frames Register
Network Octet Frames Register
Table 5-34. EMAC Control Module Registers
BYTE ADDRESS
Acronym
Register Description
0x01E2 2000
REV
EMAC Control Module Revision Register
0x01E2 2004
SOFTRESET
EMAC Control Module Software Reset Register
0x01E2 200C
INTCONTROL
EMAC Control Module Interrupt Control Register
0x01E2 2010
C0RXTHRESHEN
EMAC Control Module Interrupt Core 0 Receive Threshold Interrupt Enable
Register
0x01E2 2014
C0RXEN
EMAC Control Module Interrupt Core 0 Receive Interrupt Enable Register
0x01E2 2018
C0TXEN
EMAC Control Module Interrupt Core 0 Transmit Interrupt Enable Register
0x01E2 201C
C0MISCEN
EMAC Control Module Interrupt Core 0 Miscellaneous Interrupt Enable
Register
0x01E2 2020
C1RXTHRESHEN
EMAC Control Module Interrupt Core 1 Receive Threshold Interrupt Enable
Register
0x01E2 2024
C1RXEN
EMAC Control Module Interrupt Core 1 Receive Interrupt Enable Register
0x01E2 2028
C1TXEN
EMAC Control Module Interrupt Core 1 Transmit Interrupt Enable Register
0x01E2 202C
C1MISCEN
EMAC Control Module Interrupt Core 1 Miscellaneous Interrupt Enable
Register
0x01E2 2030
C2RXTHRESHEN
EMAC Control Module Interrupt Core 2 Receive Threshold Interrupt Enable
Register
0x01E2 2034
C2RXEN
EMAC Control Module Interrupt Core 2 Receive Interrupt Enable Register
0x01E2 2038
C2TXEN
EMAC Control Module Interrupt Core 2 Transmit Interrupt Enable Register
0x01E2 203C
C2MISCEN
EMAC Control Module Interrupt Core 2 Miscellaneous Interrupt Enable
Register
0x01E2 2040
C0RXTHRESHSTAT
EMAC Control Module Interrupt Core 0 Receive Threshold Interrupt Status
Register
0x01E2 2044
C0RXSTAT
EMAC Control Module Interrupt Core 0 Receive Interrupt Status Register
0x01E2 2048
C0TXSTAT
EMAC Control Module Interrupt Core 0 Transmit Interrupt Status Register
0x01E2 204C
C0MISCSTAT
EMAC Control Module Interrupt Core 0 Miscellaneous Interrupt Status
Register
Copyright © 2012–2013, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
95
OMAPL137-HT
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
www.ti.com
Table 5-34. EMAC Control Module Registers (continued)
BYTE ADDRESS
Acronym
Register Description
0x01E2 2050
C1RXTHRESHSTAT
EMAC Control Module Interrupt Core 1 Receive Threshold Interrupt Status
Register
0x01E2 2054
C1RXSTAT
EMAC Control Module Interrupt Core 1 Receive Interrupt Status Register
0x01E2 2058
C1TXSTAT
EMAC Control Module Interrupt Core 1 Transmit Interrupt Status Register
0x01E2 205C
C1MISCSTAT
EMAC Control Module Interrupt Core 1 Miscellaneous Interrupt Status
Register
0x01E2 2060
C2RXTHRESHSTAT
EMAC Control Module Interrupt Core 2 Receive Threshold Interrupt Status
Register
0x01E2 2064
C2RXSTAT
EMAC Control Module Interrupt Core 2 Receive Interrupt Status Register
0x01E2 2068
C2TXSTAT
EMAC Control Module Interrupt Core 2 Transmit Interrupt Status Register
0x01E2 206C
C2MISCSTAT
EMAC Control Module Interrupt Core 2 Miscellaneous Interrupt Status
Register
0x01E2 2070
C0RXIMAX
EMAC Control Module Interrupt Core 0 Receive Interrupts Per Millisecond
Register
0x01E2 2074
C0TXIMAX
EMAC Control Module Interrupt Core 0 Transmit Interrupts Per Millisecond
Register
0x01E2 2078
C1RXIMAX
EMAC Control Module Interrupt Core 1 Receive Interrupts Per Millisecond
Register
0x01E2 207C
C1TXIMAX
EMAC Control Module Interrupt Core 1 Transmit Interrupts Per Millisecond
Register
0x01E2 2080
C2RXIMAX
EMAC Control Module Interrupt Core 2 Receive Interrupts Per Millisecond
Register
0x01E2 2084
C2TXIMAX
EMAC Control Module Interrupt Core 2 Transmit Interrupts Per Millisecond
Register
Table 5-35. EMAC Control Module RAM
HEX ADDRESS RANGE
ACRONYM
0x01E2 0000 - 0x01E2 1FFF
REGISTER NAME
EMAC Local Buffer Descriptor Memory
Table 5-36. RMII Timing Requirements
NO.
1 (1)
MIN
TYP
MAX
20
UNIT
Cycle Time, RMII_MHZ_50_CLK
(1)
tw(RMII_MHZ_50_CLKH)
Pulse Width, RMII_MHZ_50_CLK High
7
13
ns
3 (1)
tw(RMII_MHZ_50_CLKL)
Pulse Width, RMII_MHZ_50_CLK Low
7
13
ns
6
tsu(RXD-RMII_MHZ_50_CLK)
Input Setup Time, RXD Valid before
RMII_MHZ_50_CLK High
4.5
ns
7
th(RMII_MHZ_50_CLK-RXD)
Input Hold Time, RXD Valid after
RMII_MHZ_50_CLK High
2.1
ns
8
tsu(CRSDV-RMII_MHZ_50_CLK)
Input Setup Time, CRSDV Valid before
RMII_MHZ_50_CLK High
4.5
ns
9
th(RMII_MHZ_50_CLK-CRSDV)
Input Hold Time, CRSDV Valid after
RMII_MHZ_50_CLK High
2.1
ns
10
tsu(RXER-RMII_MHZ_50_CLK)
Input Setup Time, RXER Valid before
RMII_MHZ_50_CLK High
4.5
ns
11
th(RMII_MHZ_50_CLK-RXER)
Input Hold Time, RXER Valid after
RMII_MHZ_50_CLK High
2.1
ns
2
(1)
PARAMETER
tc(RMII_MHZ_50_CLK)
ns
Parameters are characterized from -40°C to 125°C unless otherwise noted.
Table 5-37. RMII Timing Requirements
NO.
4
96
PARAMETER
td(RMII_MHZ_50_CLK- Output Delay Time, RMII_MHZ_50_CLKHigh to
TXD)
TXD Valid
MIN
1.8
TYP
MAX
14
UNIT
ns
Peripheral Information and Electrical Specifications
Copyright © 2012–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
OMAPL137-HT
www.ti.com
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
Table 5-37. RMII Timing Requirements (continued)
NO.
5
PARAMETER
MIN
td(RMII_MHZ_50_CLK- Output Delay Time, RMII_MHZ_50_CLK High to
TXEN)
TXEN Valid
TYP
MAX
1.8
14
UNIT
ns
1
2
3
RMII_MHz_50_CLK
5
5
RMII_TXEN
4
RMII_TXD[1:0]
6
7
RMII_RXD[1:0]
8
9
RMII_CRS_DV
10
11
RMII_REXR
Figure 5-31. RMII Timing Diagram
Copyright © 2012–2013, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
97
OMAPL137-HT
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
www.ti.com
5.14 Management Data Input/Output (MDIO)
The Management Data Input/Output (MDIO) module continuously polls all 32 MDIO addresses in order to
enumerate all PHY devices in the system.
The Management Data Input/Output (MDIO) module implements the 802.3 serial management interface to
interrogate and control Ethernet PHY(s) using a shared two-wire bus. Host software uses the MDIO
module to configure the auto-negotiation parameters of each PHY attached to the EMAC, retrieve the
negotiation results, and configure required parameters in the EMAC module for correct operation. The
module is designed to allow almost transparent operation of the MDIO interface, with very little
maintenance from the core processor. Only one PHY may be connected at any given time. See the
TMS320C674x/OMAP-L1x Processor Peripherals Overview Reference Guide. – Literature Number
SPRUFK9 for more details.
5.14.1 MDIO Registers
For a list of supported MDIO registers see Table 5-38 [MDIO Registers].
Table 5-38. MDIO Register Memory Map
HEX ADDRESS RANGE
ACRONYM
0x01E2 4000
REV
REGISTER NAME
0x01E2 4004
CONTROL
0x01E2 4008
ALIVE
MDIO PHY Alive Status Register
0x01E2 400C
LINK
MDIO PHY Link Status Register
0x01E2 4010
LINKINTRAW
0x01E2 4014
LINKINTMASKED
Revision Identification Register
MDIO Control Register
MDIO Link Status Change Interrupt (Unmasked) Register
MDIO Link Status Change Interrupt (Masked) Register
0x01E2 4018
–
0x01E2 4020
USERINTRAW
Reserved
0x01E2 4024
USERINTMASKED
MDIO User Command Complete Interrupt (Masked) Register
MDIO User Command Complete Interrupt Mask Set Register
MDIO User Command Complete Interrupt (Unmasked) Register
0x01E2 4028
USERINTMASKSET
0x01E2 402C
USERINTMASKCLEAR
0x01E2 4030 - 0x01E2 407C
–
0x01E2 4080
USERACCESS0
MDIO User Access Register 0
0x01E2 4084
USERPHYSEL0
MDIO User PHY Select Register 0
0x01E2 4088
USERACCESS1
MDIO User Access Register 1
0x01E2 408C
USERPHYSEL1
MDIO User PHY Select Register 1
0x01E2 4090 - 0x01E2 47FF
–
MDIO User Command Complete Interrupt Mask Clear Register
Reserved
Reserved
5.14.2 Management Data Input/Output (MDIO) Electrical Data/Timing
Table 5-39. Timing Requirements for MDIO Input (1) (see Figure 5-32 and Figure 5-33)
NO.
(1)
98
MIN
1
tc(MDIO_CLK)
Cycle time, MDIO_CLK
400
2
tw(MDIO_CLK)
Pulse duration, MDIO_CLK high/low
180
3
tt(MDIO_CLK)
Transition time, MDIO_CLK
4
tsu(MDIO-MDIO_CLKH)
Setup time, MDIO data input valid before MDIO_CLK high
5
th(MDIO_CLKH-MDIO)
Hold time, MDIO data input valid after MDIO_CLK high
MAX
UNIT
ns
ns
5
ns
10
ns
0
ns
Parameters are characterized from -40°C to 125°C unless otherwise noted.
Peripheral Information and Electrical Specifications
Copyright © 2012–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
OMAPL137-HT
www.ti.com
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
1
3
3
MDIO_CLK
4
5
MDIO
(input)
Figure 5-32. MDIO Input Timing
Table 5-40. Switching Characteristics Over Recommended Operating Conditions for MDIO Output (1)
(see Figure 5-33)
NO.
7
(1)
td(MDIO_CLKL-MDIO)
Delay time, MDIO_CLK low to MDIO data output valid
MIN
MAX
UNIT
0
100
ns
Parameters are characterized from -40°C to 125°C unless otherwise noted.
1
MDIO_CLK
7
MDIO
(output)
Figure 5-33. MDIO Output Timing
Copyright © 2012–2013, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
99
OMAPL137-HT
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
www.ti.com
5.15 Multichannel Audio Serial Ports (McASP0, McASP1, and McASP2)
The McASP serial port is specifically designed for multichannel audio applications. Its key features are:
• Flexible clock and frame sync generation logic and on-chip dividers
• Up to sixteen transmit or receive data pins and serializers
• Large number of serial data format options, including:
– TDM Frames with 2 to 32 time slots per frame (periodic) or 1 slot per frame (burst)
– Time slots of 8,12,16, 20, 24, 28, and 32 bits
– First bit delay 0, 1, or 2 clocks
– MSB or LSB first bit order
– Left- or right-aligned data words within time slots
• DIT Mode (optional) with 384-bit Channel Status and 384-bit User Data registers
• Extensive error checking and mute generation logic
• All unused pins GPIO-capable
Additionally, while the OMAPL137 McASP modules are backward compatible with the McASP on previous
devices, the OMAPL137 McASP includes the following new features:
• Transmit & Receive FIFO Buffers for each McASP. Allows the McASP to operate at a higher sample
rate by making it more tolerant to DMA latency.
• Dynamic Adjustment of Clock Dividers
– Clock Divider Value may be changed without resetting the McASP
The three McASPs on the device are configured with the following options:
Table 5-41. OMAPL137 McASP Configurations (1)
(1)
Module
Serializers
McASP0
16
McASP1
McASP2
AFIFO
DIT
Pins
64 Word RX
64 Word TX
N
AXR0[13:0], AHCLKR0, ACLKR0, AFSR0, AHCLKX0, ACLKX0,
AFSX0
12
64 Word RX
64 Word TX
N
AXR1[11:10], AXR1[8:0], ACLKR1, AFSR1, AHCLKX1, ACLKX1,
AFSX1, AMUTE1
4
16 Word RX
16 Word TX
Y
AXR2[3:0], ACLKR2, AFSR2, AHCLKX2, ACLKX2, AFSX2,
AMUTE2
Pins available are the maximum number of pins that may be configured for a particular McASP; not including pin multiplexing.
Pins
Peripheral
Configuration
Bus
GIO
Control
DIT RAM
384 C
384 U
Optional
McASP
DMA Bus
(Dedicated)
Transmit
Formatter
Receive
Formatter
Function
Receive Logic
Clock/Frame Generator
State Machine
AHCLKRx
ACLKRx
AFSRx
Receive Master Clock
Receive Bit Clock
Receive Left/Right Clock or Frame Sync
Clock Check and
Error Detection
AMUTEINx
AMUTEx
The McASPs DO NOT have
dedicated AMUTEINx pins.
Transmit Logic
Clock/Frame Generator
State Machine
AFSXx
ACLKXx
AHCLKXx
Transmit Left/Right Clock or Frame Sync
Transmit Bit Clock
Transmit Master Clock
Serializer 0
AXRx[0]
Transmit/Receive Serial Data Pin
Serializer 1
AXRx[1]
Transmit/Receive Serial Data Pin
Serializer y
AXRx[y]
Transmit/Receive Serial Data Pin
McASPx (x = 0, 1, 2)
Figure 5-34. McASP Block Diagram
100
Peripheral Information and Electrical Specifications
Copyright © 2012–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
OMAPL137-HT
www.ti.com
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
5.15.1 McASP Peripheral Registers Description(s)
Registers for the McASP are summarized in Table 5-42. The registers are accessed through the
peripheral configuration port. The receive buffer registers (RBUF) and transmit buffer registers (XBUF) can
also be accessed through the DMA port, as listed in Table 5-43
Registers for the McASP Audio FIFO (AFIFO) are summarized in Table 5-44. Note that the AFIFO Write
FIFO (WFIFO) and Read FIFO (RFIFO) have independent control and status registers. The AFIFO control
registers are accessed through the peripheral configuration port. See the TMS320C674x/OMAP-L1x
Processor Peripherals Overview Reference Guide. – Literature Number SPRUFK9 for more details.
Table 5-42. McASP Registers Accessed Through Peripheral Configuration Port
Offset
McASP0
BYTE
ADDRESS
McASP1
BYTE
ADDRESS
McASP2
BYTE
ADDRESS
Acronym
Register Description
0h
0x01D0 0000
0x01D0 4000
0x01D0 8000
REV
Revision identification register
10h
0x01D0 0010
0x01D0 4010
0x01D0 8010
PFUNC
Pin function register
14h
0x01D0 0014
0x01D0 4014
0x01D0 8014
PDIR
Pin direction register
18h
0x01D0 0018
0x01D0 4018
0x01D0 8018
PDOUT
Pin data output register
1Ch
0x01D0 001C
0x01D0 401C
0x01D0 801C
PDIN
Read returns: Pin data input register
1Ch
0x01D0 001C
0x01D0 401C
0x01D0 801C
PDSET
Writes affect: Pin data set register (alternate write
address: PDOUT)
20h
0x01D0 0020
0x01D0 4020
0x01D0 8020
PDCLR
Pin data clear register (alternate write address: PDOUT)
44h
0x01D0 0044
0x01D0 4044
0x01D0 8044
GBLCTL
Global control register
48h
0x01D0 0048
0x01D0 4048
0x01D0 8048
AMUTE
Audio mute control register
4Ch
0x01D0 004C
0x01D0 404C
0x01D0 804C
DLBCTL
Digital loopback control register
50h
0x01D0 0050
0x01D0 4050
0x01D0 8050
DITCTL
DIT mode control register
60h
0x01D0 0060
0x01D0 4060
0x01D0 8060
RGBLCTL
Receiver global control register: Alias of GBLCTL, only
receive bits are affected - allows receiver to be reset
independently from transmitter
64h
0x01D0 0064
0x01D0 4064
0x01D0 8064
RMASK
Receive format unit bit mask register
68h
0x01D0 0068
0x01D0 4068
0x01D0 8068
RFMT
Receive bit stream format register
6Ch
0x01D0 006C
0x01D0 406C
0x01D0 806C
AFSRCTL
Receive frame sync control register
70h
0x01D0 0070
0x01D0 4070
0x01D0 8070
ACLKRCTL
Receive clock control register
74h
0x01D0 0074
0x01D0 4074
0x01D0 8074
AHCLKRCTL
Receive high-frequency clock control register
78h
0x01D0 0078
0x01D0 4078
0x01D0 8078
RTDM
Receive TDM time slot 0-31 register
7Ch
0x01D0 007C
0x01D0 407C
0x01D0 807C
RINTCTL
Receiver interrupt control register
80h
0x01D0 0080
0x01D0 4080
0x01D0 8080
RSTAT
Receiver status register
84h
0x01D0 0084
0x01D0 4084
0x01D0 8084
RSLOT
Current receive TDM time slot register
88h
0x01D0 0088
0x01D0 4088
0x01D0 8088
RCLKCHK
Receive clock check control register
8Ch
0x01D0 008C
0x01D0 408C
0x01D0 808C
REVTCTL
Receiver DMA event control register
ACh
0x01D0 00A0
0x01D0 40A0
0x01D0 80A0
XGBLCTL
Transmitter global control register. Alias of GBLCTL,
only transmit bits are affected - allows transmitter to be
reset independently from receiver
A4h
0x01D0 00A4
0x01D0 40A4
0x01D0 80A4
XMASK
Transmit format unit bit mask register
A8h
0x01D0 00A8
0x01D0 40A8
0x01D0 80A8
XFMT
Transmit bit stream format register
ACh
0x01D0 00AC
0x01D0 40AC
0x01D0 80AC
AFSXCTL
Transmit frame sync control register
B0h
0x01D0 00B0
0x01D0 40B0
0x01D0 80B0
ACLKXCTL
Transmit clock control register
B4h
0x01D0 00B4
0x01D0 40B4
0x01D0 80B4
AHCLKXCTL
Transmit high-frequency clock control register
B8h
0x01D0 00B8
0x01D0 40B8
0x01D0 80B8
XTDM
Transmit TDM time slot 0-31 register
BCh
0x01D0 00BC
0x01D0 40BC
0x01D0 80BC
XINTCTL
Transmitter interrupt control register
C0h
0x01D0 00C0
0x01D0 40C0
0x01D0 80C0
XSTAT
Transmitter status register
C4h
0x01D0 00C4
0x01D0 40C4
0x01D0 80C4
XSLOT
Current transmit TDM time slot register
Copyright © 2012–2013, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
101
OMAPL137-HT
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
www.ti.com
Table 5-42. McASP Registers Accessed Through Peripheral Configuration Port (continued)
Offset
McASP0
BYTE
ADDRESS
McASP1
BYTE
ADDRESS
McASP2
BYTE
ADDRESS
Acronym
Register Description
C8h
0x01D0 00C8
0x01D0 40C8
0x01D0 80C8
XCLKCHK
Transmit clock check control register
CCh
0x01D0 00CC
0x01D0 40CC
0x01D0 80CC
XEVTCTL
Transmitter DMA event control register
100h
0x01D0 0100
0x01D0 4100
0x01D0 8100
DITCSRA0
Left (even TDM time slot) channel status register (DIT
mode) 0
104h
0x01D0 0104
0x01D0 4104
0x01D0 8104
DITCSRA1
Left (even TDM time slot) channel status register (DIT
mode) 1
108h
0x01D0 0108
0x01D0 4108
0x01D0 8108
DITCSRA2
Left (even TDM time slot) channel status register (DIT
mode) 2
10Ch
0x01D0 010C
0x01D0 410C
0x01D0 810C
DITCSRA3
Left (even TDM time slot) channel status register (DIT
mode) 3
110h
0x01D0 0110
0x01D0 4110
0x01D0 8110
DITCSRA4
Left (even TDM time slot) channel status register (DIT
mode) 4
114h
0x01D0 0114
0x01D0 4114
0x01D0 8114
DITCSRA5
Left (even TDM time slot) channel status register (DIT
mode) 5
118h
0x01D0 0118
0x01D0 4118
0x01D0 8118
DITCSRB0
Right (odd TDM time slot) channel status register (DIT
mode) 0
11Ch
0x01D0 011C
0x01D0 411C
0x01D0 811C
DITCSRB1
Right (odd TDM time slot) channel status register (DIT
mode) 1
120h
0x01D0 0120
0x01D0 4120
0x01D0 8120
DITCSRB2
Right (odd TDM time slot) channel status register (DIT
mode) 2
124h
0x01D0 0124
0x01D0 4124
0x01D0 8124
DITCSRB3
Right (odd TDM time slot) channel status register (DIT
mode) 3
128h
0x01D0 0128
0x01D0 4128
0x01D0 8128
DITCSRB4
Right (odd TDM time slot) channel status register (DIT
mode) 4
12Ch
0x01D0 012C
0x01D0 412C
0x01D0 812C
DITCSRB5
Right (odd TDM time slot) channel status register (DIT
mode) 5
130h
0x01D0 0130
0x01D0 4130
0x01D0 8130
DITUDRA0
Left (even TDM time slot) channel user data register
(DIT mode) 0
134h
0x01D0 0134
0x01D0 4134
0x01D0 8134
DITUDRA1
Left (even TDM time slot) channel user data register
(DIT mode) 1
138h
0x01D0 0138
0x01D0 4138
0x01D0 8138
DITUDRA2
Left (even TDM time slot) channel user data register
(DIT mode) 2
13Ch
0x01D0 013C
0x01D0 413C
0x01D0 813C
DITUDRA3
Left (even TDM time slot) channel user data register
(DIT mode) 3
140h
0x01D0 0140
0x01D0 4140
0x01D0 8140
DITUDRA4
Left (even TDM time slot) channel user data register
(DIT mode) 4
144h
0x01D0 0144
0x01D0 4144
0x01D0 8144
DITUDRA5
Left (even TDM time slot) channel user data register
(DIT mode) 5
148h
0x01D0 0148
0x01D0 4148
0x01D0 8148
DITUDRB0
Right (odd TDM time slot) channel user data register
(DIT mode) 0
14Ch
0x01D0 014C
0x01D0 414C
0x01D0 814C
DITUDRB1
Right (odd TDM time slot) channel user data register
(DIT mode) 1
150h
0x01D0 0150
0x01D0 4150
0x01D0 8150
DITUDRB2
Right (odd TDM time slot) channel user data register
(DIT mode) 2
154h
0x01D0 0154
0x01D0 4154
0x01D0 8154
DITUDRB3
Right (odd TDM time slot) channel user data register
(DIT mode) 3
158h
0x01D0 0158
0x01D0 4158
0x01D0 8158
DITUDRB4
Right (odd TDM time slot) channel user data register
(DIT mode) 4
15Ch
0x01D0 015C
0x01D0 415C
0x01D0 815C
DITUDRB5
Right (odd TDM time slot) channel user data register
(DIT mode) 5
180h
0x01D0 0180
0x01D0 4180
0x01D0 8180
SRCTL0
Serializer control register 0
184h
0x01D0 0184
0x01D0 4184
0x01D0 8184
SRCTL1
Serializer control register 1
188h
0x01D0 0188
0x01D0 4188
0x01D0 8188
SRCTL2
Serializer control register 2
102
Peripheral Information and Electrical Specifications
Copyright © 2012–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
OMAPL137-HT
www.ti.com
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
Table 5-42. McASP Registers Accessed Through Peripheral Configuration Port (continued)
Offset
McASP0
BYTE
ADDRESS
McASP1
BYTE
ADDRESS
McASP2
BYTE
ADDRESS
Acronym
Register Description
18Ch
0x01D0 018C
0x01D0 418C
0x01D0 818C
SRCTL3
Serializer control register 3
190h
0x01D0 0190
0x01D0 4190
0x01D0 8190
SRCTL4
Serializer control register 4
194h
0x01D0 0194
0x01D0 4194
0x01D0 8194
SRCTL5
Serializer control register 5
198h
0x01D0 0198
0x01D0 4198
0x01D0 8198
SRCTL6
Serializer control register 6
19Ch
0x01D0 019C
0x01D0 419C
0x01D0 819C
SRCTL7
Serializer control register 7
1A0h
0x01D0 01A0
0x01D0 41A0
0x01D0 81A0
SRCTL8
Serializer control register 8
1A4h
0x01D0 01A4
0x01D0 41A4
0x01D0 81A4
SRCTL9
Serializer control register 9
1A8h
0x01D0 01A8
0x01D0 41A8
0x01D0 81A8
SRCTL10
Serializer control register 10
1ACh
0x01D0 01AC
0x01D0 41AC
0x01D0 81AC
SRCTL11
Serializer control register 11
1B0h
0x01D0 01B0
0x01D0 41B0
0x01D0 81B0
SRCTL12
Serializer control register 12
1B4h
0x01D0 01B4
0x01D0 41B4
0x01D0 81B4
SRCTL13
Serializer control register 13
1B8h
0x01D0 01B8
0x01D0 41B8
0x01D0 81B8
SRCTL14
Serializer control register 14
1BCh
0x01D0 01BC
0x01D0 41BC
0x01D0 81BC
SRCTL15
Serializer control register 15
200h
0x01D0 0200
0x01D0 4200
0x01D0 8200
XBUF0 (1)
Transmit buffer register for serializer 0
204h
0x01D0 0204
0x01D0 4204
0x01D0 8204
XBUF1 (2)
Transmit buffer register for serializer 1
208h
0x01D0 0208
0x01D0 4208
0x01D0 8208
XBUF2 (2)
Transmit buffer register for serializer 2
(2)
Transmit buffer register for serializer 3
20Ch
0x01D0 020C
0x01D0 420C
0x01D0 820C
XBUF3
210h
0x01D0 0210
0x01D0 4210
0x01D0 8210
XBUF4 (2)
Transmit buffer register for serializer 4
214h
0x01D0 0214
0x01D0 4214
0x01D0 8214
XBUF5 (2)
Transmit buffer register for serializer 5
(2)
Transmit buffer register for serializer 6
218h
0x01D0 0218
0x01D0 4218
0x01D0 8218
XBUF6
21Ch
0x01D0 021C
0x01D0 421C
0x01D0 821C
XBUF7 (2)
Transmit buffer register for serializer 7
220h
0x01D0 0220
0x01D0 4220
0x01D0 8220
XBUF8 (2)
Transmit buffer register for serializer 8
(2)
Transmit buffer register for serializer 9
224h
0x01D0 0224
0x01D0 4224
0x01D0 8224
XBUF9
228h
0x01D0 0228
0x01D0 4228
0x01D0 8228
XBUF10 (2)
Transmit buffer register for serializer 10
22Ch
0x01D0 022C
0x01D0 422C
0x01D0 822C
XBUF11 (2)
Transmit buffer register for serializer 11
230h
0x01D0 0230
0x01D0 4230
0x01D0 8230
XBUF12 (2)
Transmit buffer register for serializer 12
(2)
Transmit buffer register for serializer 13
234h
0x01D0 0234
0x01D0 4234
0x01D0 8234
XBUF13
238h
0x01D0 0238
0x01D0 4238
0x01D0 8238
XBUF14 (2)
Transmit buffer register for serializer 14
23Ch
0x01D0 023C
0x01D0 423C
0x01D0 823C
XBUF15 (2)
Transmit buffer register for serializer 15
(3)
Receive buffer register for serializer 0
280h
0x01D0 0280
0x01D0 4280
0x01D0 8280
RBUF0
284h
0x01D0 0284
0x01D0 4284
0x01D0 8284
RBUF1 (3)
Receive buffer register for serializer 1
288h
0x01D0 0288
0x01D0 4288
0x01D0 8288
RBUF2 (3)
Receive buffer register for serializer 2
(3)
Receive buffer register for serializer 3
28Ch
0x01D0 028C
0x01D0 428C
0x01D0 828C
RBUF3
290h
0x01D0 0290
0x01D0 4290
0x01D0 8290
RBUF4 (3)
Receive buffer register for serializer 4
294h
0x01D0 0294
0x01D0 4294
0x01D0 8294
RBUF5 (3)
Receive buffer register for serializer 5
298h
0x01D0 0298
0x01D0 4298
0x01D0 8298
RBUF6 (3)
Receive buffer register for serializer 6
(3)
Receive buffer register for serializer 7
29Ch
0x01D0 029C
0x01D0 429C
0x01D0 829C
RBUF7
2A0h
0x01D0 02A0
0x01D0 42A0
0x01D0 82A0
RBUF8 (3)
Receive buffer register for serializer 8
2A4h
0x01D0 02A4
0x01D0 42A4
0x01D0 82A4
RBUF9 (3)
Receive buffer register for serializer 9
(3)
Receive buffer register for serializer 10
2A8h
0x01D0 02A8
0x01D0 42A8
0x01D0 82A8
RBUF10
2ACh
0x01D0 02AC
0x01D0 42AC
0x01D0 82AC
RBUF11 (3)
Receive buffer register for serializer 11
2B0h
0x01D0 02B0
0x01D0 42B0
0x01D0 82B0
RBUF12 (3)
Receive buffer register for serializer 12
(3)
Receive buffer register for serializer 13
Receive buffer register for serializer 14
(1)
(2)
(3)
2B4h
0x01D0 02B4
0x01D0 42B4
0x01D0 82B4
RBUF13
2B8h
0x01D0 02B8
0x01D0 42B8
0x01D0 82BB
RBUF14 (3)
Writes to XRBUF originate from peripheral configuration port only when XBUSEL = 1 in XFMT.
Writes to XRBUF originate from peripheral configuration port only when XBUSEL = 1 in XFMT.
Reads from XRBUF originate on peripheral configuration port only when RBUSEL = 1 in RFMT.
Copyright © 2012–2013, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
103
OMAPL137-HT
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
www.ti.com
Table 5-42. McASP Registers Accessed Through Peripheral Configuration Port (continued)
Offset
McASP0
BYTE
ADDRESS
McASP1
BYTE
ADDRESS
McASP2
BYTE
ADDRESS
Acronym
Register Description
2BCh
0x01D0 02BC
0x01D0 42BC
0x01D0 82BC
RBUF15 (3)
Receive buffer register for serializer 15
Table 5-43. McASP Registers Accessed Through DMA Port
Hex
Address
Register
Name
McASP0
BYTE
ADDRESS
McASP1
BYTE
ADDRESS
McASP2
BYTE
ADDRESS
Register Description
Read
Accesses
RBUF
01D0 2000
01D0 6000
01D0 A000
Receive buffer DMA port address. Cycles through receive serializers,
skipping over transmit serializers and inactive serializers. Starts at the
lowest serializer at the beginning of each time slot. Reads from DMA port
only if XBUSEL = 0 in XFMT.
Write
Accesses
XBUF
01D0 2000
01D0 6000
01D0 A000
Transmit buffer DMA port address. Cycles through transmit serializers,
skipping over receive and inactive serializers. Starts at the lowest
serializer at the beginning of each time slot. Writes to DMA port only if
RBUSEL = 0 in RFMT.
Table 5-44. McASP AFIFO Registers Accessed Through Peripheral Configuration Port
104
McASP0
BYTE ADDRESS
McASP1
BYTE ADDRESS
McASP2
BYTE ADDRESS
Acronym
Register Description
0x01D0 1000
0x01D0 5000
0x01D0 9000
AFIFOREV
AFIFO revision identification register
0x01D0 1010
0x01D0 1014
0x01D0 5010
0x01D0 9010
WFIFOCTL
Write FIFO control register
0x01D0 5014
0x01D0 9014
WFIFOSTS
Write FIFO status register
0x01D0 1018
0x01D0 5018
0x01D0 9018
RFIFOCTL
Read FIFO control register
0x01D0 101C
0x01D0 501C
0x01D0 901C
RFIFOSTS
Read FIFO status register
Peripheral Information and Electrical Specifications
Copyright © 2012–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
OMAPL137-HT
www.ti.com
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
5.15.2 McASP Electrical Data/Timing
5.15.2.1 Multichannel Audio Serial Port 0 (McASP0) Timing
Table 5-45 and Table 5-46 assume testing over recommended operating conditions (see Figure 5-35 and
Figure 5-36).
Table 5-45. McASP0 Timing Requirements (1)
NO.
MIN
1 (3)
tc(AHCLKRX)
2 (3)
tw(AHCLKRX)
3 (3)
tc(ACLKRX)
4 (3)
tw(ACLKRX)
5
tsu(AFSRX-ACLKRX)
Cycle time, AHCLKR0 external, AHCLKR0 input
20
Cycle time, AHCLKX0 external, AHCLKX0 input
20
Pulse duration, AHCLKR0 external, AHCLKR0 input
10
Pulse duration, AHCLKX0 external, AHCLKX0 input
10
Cycle time, ACLKR0 external, ACLKR0 input
greater of 2P or 20
Cycle time, ACLKX0 external, ACLKX0 input
greater of 2P or 20
Pulse duration, ACLKR0 external, ACLKR0 input
10
Pulse duration, ACLKX0 external, ACLKX0 input
10
Setup time, AFSR0 input to ACLKR0 internal (4)
10
Setup time, AFSX0 input to ACLKX0 internal
10
Setup time, AFSR0 input to ACLKR0 external input (4)
3.2
Setup time, AFSX0 input to ACLKX0 external input
3.2
Setup time, AFSR0 input to ACLKR0 external output (4)
3.2
Setup time, AFSX0 input to ACLKX0 external output
7
(1)
(2)
(3)
(4)
(5)
tsu(AXR-ACLKRX)
ns
ns
ns
ns
ns
-0.8
Hold time, AFSR0 input after ACLKR0 external input
(4)
0.6
Hold time, AFSX0 input after ACLKX0 external input
0.9
Hold time, AFSR0 input after ACLKR0 external
output (4)
0.6
Hold time, AFSX0 input after ACLKX0 external output
0.9
Setup time, AXR0[n] input to ACLKR0 internal (4)
10
Setup time, AXR0[n] input to ACLKX0 internal
UNIT
-0.8
Hold time, AFSX0 input after ACLKX0 internal
th(ACLKRX-AFSRX)
MAX
3.2
Hold time, AFSR0 input after ACLKR0 internal (4)
6
(2)
(5)
ns
10
Setup time, AXR0[n] input to ACLKR0 external input (4)
3.2
Setup time, AXR0[n] input to ACLKX0 external input (5)
3.2
Setup time, AXR0[n] input to ACLKR0 external
output (4)
3.2
Setup time, AXR0[n] input to ACLKX0 external
output (5)
3.2
ns
ACLKX0 internal – McASP0 ACLKXCTL.CLKXM = 1, PDIR.ACLKX = 1
ACLKX0 external input – McASP0 ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 0
ACLKX0 external output – McASP0 ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 1
ACLKR0 internal – McASP0 ACLKRCTL.CLKRM = 1, PDIR.ACLKR =1
ACLKR0 external input – McASP0 ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 0
ACLKR0 external output – McASP0 ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 1
P = SYSCLK2 period
Parameters are characterized from -40°C to 125°C unless otherwise noted.
McASP0 ACLKXCTL.ASYNC=1: Receiver is clocked by its own ACLKR0
McASP0 ACLKXCTL.ASYNC=0: Receiver is clocked by transmitter's ACLKX0
Copyright © 2012–2013, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
105
OMAPL137-HT
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
www.ti.com
Table 5-45. McASP0 Timing Requirements(1) (2) (continued)
NO.
8
106
MIN
th(ACLKRX-AXR)
Hold time, AXR0[n] input after ACLKR0 internal (4)
-1.25
Hold time, AXR0[n] input after ACLKX0 internal (5)
-1.25
Hold time, AXR0[n] input after ACLKR0 external
input (4)
0.9
Hold time, AXR0[n] input after ACLKX0 external
input (5)
0.9
Hold time, AXR0[n] input after ACLKR0 external
output (4)
0.9
Hold time, AXR0[n] input after ACLKX0 external
output (5)
0.9
MAX
UNIT
ns
Peripheral Information and Electrical Specifications
Copyright © 2012–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
OMAPL137-HT
www.ti.com
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
Table 5-46. McASP0 Switching Characteristics (1)
NO.
9 (2)
10
(2)
11 (2)
12 (2)
PARAMETER
tc(AHCLKRX)
tw(AHCLKRX)
tc(ACLKRX)
tw(ACLKRX)
MIN
Cycle time, AHCLKR0 internal, AHCLKR0 output
20
Cycle time, AHCLKR0 external, AHCLKR0 output
20
Cycle time, AHCLKX0 internal, AHCLKX0 output
20
Cycle time, AHCLKX0 external, AHCLKX0 output
20
Pulse duration, AHCLKR0 internal, AHCLKR0
output
(AHR/2) – 2.5 (3)
Pulse duration, AHCLKR0 external, AHCLKR0
output
(AHR/2) – 2.5 (3)
Pulse duration, AHCLKX0 internal, AHCLKX0
output
(AHX/2) – 2.5 (4)
Pulse duration, AHCLKX0 external, AHCLKX0
output
(AHX/2) – 2.5 (4)
Cycle time, ACLKR0 internal, ACLKR0 output
greater of 2P or 20 ns (5)
Cycle time, ACLKR0 external, ACLKR0 output
greater of 2P or 20 ns (5)
Cycle time, ACLKX0 internal, ACLKX0 output
greater of 2P or 20 ns (5)
Cycle time, ACLKX0 external, ACLKX0 output
greater of 2P or 20 ns (5)
(AR/2) – 2.5 (6)
Pulse duration, ACLKR0 external, ACLKR0 output
(AR/2) – 2.5 (6)
Pulse duration, ACLKX0 internal, ACLKX0 output
(AX/2) – 2.5 (7)
Pulse duration, ACLKX0 external, ACLKX0 output
(AX/2) – 2.5 (7)
(8)
Delay time, ACLKX0 internal, AFSX output
Delay time, ACLKR0 external input, AFSR output
13
td(ACLKRX-AFSRX)
(8)
td(ACLKX-AXRV)
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
tdis(ACLKX-AXRHZ)
ns
ns
0
6.2
0
6.2
2.25
12.5
2.25
12.5
Delay time, ACLKR0 external output, AFSR
output (8)
2.25
12.5
Delay time, ACLKX0 external output, AFSX output
2.25
12.5
0
6.2
Delay time, ACLKX0 external input, AXR0[n] output
2.25
12.5
Delay time, ACLKX0 external output, AXR0[n]
output
2.25
12.5
0
6.2
Disable time, ACLKX0 external input, AXR0[n]
output
2.25
12.5
Disable time, ACLKX0 external output, AXR0[n]
output
2.25
12.5
Disable time, ACLKX0 internal, AXR0[n] output
15
ns
Delay time, ACLKX0 external input, AFSX output
Delay time, ACLKX0 internal, AXR0[n] output
14
UNIT
ns
Pulse duration, ACLKR0 internal, ACLKR0 output
Delay time, ACLKR0 internal, AFSR output
MAX
ns
ns
ns
McASP0 ACLKX0 internal – ACLKXCTL.CLKXM = 1, PDIR.ACLKX = 1
ACLKX0 external input – McASP0 ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 0
ACLKX0 external output – McASP0ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 1
ACLKR0 internal – McASP0 ACLKR0CTL.CLKRM = 1, PDIR.ACLKR =1
ACLKR0 external input – McASP0 ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 0
ACLKR0 external output – McASP0 ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 1
Parameters are characterized from -40°C to 125°C unless otherwise noted.
AHR - Cycle time, AHCLKR0.
AHX - Cycle time, AHCLKX0.
P = SYSCLK2 period
AR - ACLKR0 period.
AX - ACLKX0 period.
McASP0 ACLKXCTL.ASYNC=1: Receiver is clocked by its own ACLKR0
5.15.2.2 Multichannel Audio Serial Port 1 (McASP1) Timing
Table 5-47 and Table 5-48 assume testing over recommended operating conditions (see Figure 5-35 and
Figure 5-36).
Copyright © 2012–2013, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
107
OMAPL137-HT
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
www.ti.com
Table 5-47. McASP1 Timing Requirements (1)
NO.
MIN
1 (3)
tc(AHCLKRX)
2 (3)
tw(AHCLKRX)
3 (3)
tc(ACLKRX)
4 (3)
tw(ACLKRX)
5
tsu(AFSRX-ACLKRX)
Cycle time, AHCLKR1 external, AHCLKR1 input
20
Cycle time, AHCLKX1 external, AHCLKX1 input
20
Pulse duration, AHCLKR1 external, AHCLKR1 input
10
Pulse duration, AHCLKX1 external, AHCLKX1 input
10
Cycle time, ACLKR1 external, ACLKR1 input
greater of 2P or 20
Cycle time, ACLKX1 external, ACLKX1 input
greater of 2P or 20
Pulse duration, ACLKR1 external, ACLKR1 input
10
Pulse duration, ACLKX1 external, ACLKX1 input
10
Setup time, AFSR1 input to ACLKR1 internal (4)
11
Setup time, AFSX1 input to ACLKX1 internal
11
Setup time, AFSR1 input to ACLKR1 external input (4)
2.7
Setup time, AFSX1 input to ACLKX1 external input
2.7
Setup time, AFSR1 input to ACLKR1 external output (4)
2.7
Setup time, AFSX1 input to ACLKX1 external output
6
th(ACLKRX-AFSRX)
-1.4
Hold time, AFSX1 input after ACLKX1 internal
-1.4
Hold time, AFSR1 input after ACLKR1 external input (4)
0.7
Hold time, AFSX1 input after ACLKX1 external input
0.7
Hold time, AFSR1 input after ACLKR1 external
output (4)
0.9
Hold time, AFSX1 input after ACLKX1 external output
0.9
Setup time, AXR1[n] input to ACLKR1 internal (4)
11
8
(1)
(2)
(3)
(4)
(5)
108
tsu(AXR-ACLKRX)
th(ACLKRX-AXR)
(5)
MAX
UNIT
ns
ns
ns
ns
ns
2.7
Hold time, AFSR1 input after ACLKR1 internal (4)
Setup time, AXR1[n] input to ACLKX1 internal
7
(2)
ns
11
Setup time, AXR1[n] input to ACLKR1 external input (4)
2.7
Setup time, AXR1[n] input to ACLKX1 external input (5)
2.7
Setup time, AXR1[n] input to ACLKR1 external
output (4)
2.7
Setup time, AXR1[n] input to ACLKX1 external
output (5)
2.7
Hold time, AXR1[n] input after ACLKR1 internal (4)
-1.4
Hold time, AXR1[n] input after ACLKX1 internal (5)
-1.4
Hold time, AXR1[n] input after ACLKR1 external
input (4)
0.6
Hold time, AXR1[n] input after ACLKX1 external
input (5)
0.9
Hold time, AXR1[n] input after ACLKR1 external
output (4)
0.9
Hold time, AXR1[n] input after ACLKX1 external
output (5)
0.9
ns
ns
ACLKX1 internal – McASP1 ACLKXCTL.CLKXM = 1, PDIR.ACLKX = 1
ACLKX1 external input – McASP1 ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 0
ACLKX1 external output – McASP1 ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 1
ACLKR1 internal – McASP1 ACLKRCTL.CLKRM = 1, PDIR.ACLKR =1
ACLKR1 external input – McASP1 ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 0
ACLKR1 external output – McASP1 ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 1
P = SYSCLK2 period
Parameters are characterized from -40°C to 125°C unless otherwise noted.
McASP1 ACLKXCTL.ASYNC=1: Receiver is clocked by its own ACLKR1
McASP1 ACLKXCTL.ASYNC=0: Receiver is clocked by transmitter's ACLKX1
Peripheral Information and Electrical Specifications
Copyright © 2012–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
OMAPL137-HT
www.ti.com
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
Table 5-48. McASP1 Switching Characteristics (1)
NO.
9 (2)
10
(2)
11 (2)
12 (2)
PARAMETER
tc(AHCLKRX)
tw(AHCLKRX)
tc(ACLKRX)
tw(ACLKRX)
MIN
Cycle time, AHCLKR1 internal, AHCLKR1 output
20
Cycle time, AHCLKR1 external, AHCLKR1 output
20
Cycle time, AHCLKX1 internal, AHCLKX1 output
20
Cycle time, AHCLKX1 external, AHCLKX1 output
20
Pulse duration, AHCLKR1 internal, AHCLKR1
output
(AHR/2) – 2.5 (3)
Pulse duration, AHCLKR1 external, AHCLKR1
output
(AHR/2) – 2.5 (3)
Pulse duration, AHCLKX1 internal, AHCLKX1
output
(AHX/2) – 2.5 (4)
Pulse duration, AHCLKX1 external, AHCLKX1
output
(AHX/2) – 2.5 (4)
Cycle time, ACLKR1 internal, ACLKR1 output
greater of 2P or 20 ns (5)
Cycle time, ACLKR1 external, ACLKR1 output
greater of 2P or 20 ns (5)
Cycle time, ACLKX1 internal, ACLKX1 output
greater of 2P or 20 ns (5)
Cycle time, ACLKX1 external, ACLKX1 output
greater of 2P or 20 ns (5)
(AR/2) – 2.5 (6)
Pulse duration, ACLKR1 external, ACLKR1 output
(AR/2) – 2.5 (6)
Pulse duration, ACLKX1 internal, ACLKX1 output
(AX/2) – 2.5 (7)
Pulse duration, ACLKX1 external, ACLKX1 output
(AX/2) – 2.5 (7)
(8)
Delay time, ACLKX1 internal, AFSX output
Delay time, ACLKR1 external input, AFSR output
13
td(ACLKRX-AFSRX)
(8)
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
tdis(ACLKX-AXRHZ)
ns
0.3
7
0.3
7
14.5
3
14.5
Delay time, ACLKR1 external output, AFSR
output (8)
3
14.5
3
14.5
0.3
7
Delay time, ACLKX1 external input, AXR1[n] output
3
14.5
Delay time, ACLKX1 external output, AXR1[n]
output
3
14.5
0.3
7
Disable time, ACLKX1 external input, AXR1[n]
output
3
14.5
Disable time, ACLKX1 external output, AXR1[n]
output
3
14.5
Disable time, ACLKX1 internal, AXR1[n] output
15
ns
3
Delay time, ACLKX1 internal, AXR1[n] output
td(ACLKX-AXRV)
ns
Delay time, ACLKX1 external input, AFSX output
Delay time, ACLKX1 external output, AFSX output
14
UNIT
ns
Pulse duration, ACLKR1 internal, ACLKR1 output
Delay time, ACLKR1 internal, AFSR output
MAX
ns
ns
ns
McASP1 ACLKX1 internal – ACLKXCTL.CLKXM = 1, PDIR.ACLKX = 1
McASP1 ACLKX1 external input – ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 0
McASP1 ACLKX1 external output – ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 1
McASP1 ACLKR1 internal – ACLKR1CTL.CLKRM = 1, PDIR.ACLKR =1
McASP1 ACLKR1 external input – ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 0
McASP1 ACLKR1 external output – ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 1
Parameters are characterized from -40°C to 125°C unless otherwise noted.
AHR - Cycle time, AHCLKR1.
AHX - Cycle time, AHCLKX1.
P = SYSCLK2 period
AR - ACLKR1 period.
AX - ACLKX1 period.
McASP1 ACLKXCTL.ASYNC=1: Receiver is clocked by its own ACLKR1
5.15.2.3 Multichannel Audio Serial Port 2 (McASP2) Timing
Table 5-49 and Table 5-50 assume testing over recommended operating conditions (see Figure 5-35 and
Figure 5-36).
Copyright © 2012–2013, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
109
OMAPL137-HT
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
www.ti.com
Table 5-49. McASP2 Timing Requirements (1)
NO.
MIN
1 (3)
tc(AHCLKRX)
2 (3)
tw(AHCLKRX)
3 (3)
tc(ACLKRX)
4 (3)
tw(ACLKRX)
5
tsu(AFSRX-ACLKRX)
Cycle time, AHCLKR2 external, AHCLKR2 input
13
Cycle time, AHCLKX2 external, AHCLKX2 input
13
Pulse duration, AHCLKR2 external, AHCLKR2 input
6.5
Pulse duration, AHCLKX2 external, AHCLKX2 input
6.5
Cycle time, ACLKR2 external, ACLKR2 input
greater of 2P or 13
Cycle time, ACLKX2 external, ACLKX2 input
greater of 2P or 13
Pulse duration, ACLKR2 external, ACLKR2 input
6.5
Pulse duration, ACLKX2 external, ACLKX2 input
6.5
Setup time, AFSR2 input to ACLKR2 internal (4)
11
Setup time, AFSX2 input to ACLKX2 internal
11
Setup time, AFSR2 input to ACLKR2 external input (4)
1.7
Setup time, AFSX2 input to ACLKX2 external input
1.7
Setup time, AFSR2 input to ACLKR2 external output (4)
1.7
Setup time, AFSX2 input to ACLKX2 external output
6
th(ACLKRX-AFSRX)
-1.25
Hold time, AFSX2 input after ACLKX2 internal
-1.25
Hold time, AFSR2 input after ACLKR2 external input (4)
1.3
Hold time, AFSX2 input after ACLKX2 external input
1.3
Hold time, AFSR2 input after ACLKR2 external
output (4)
1.3
Hold time, AFSX2 input after ACLKX2 external output
1.3
Setup time, AXR2[n] input to ACLKR2 internal (4)
11
8
(1)
(2)
(3)
(4)
(5)
110
tsu(AXR-ACLKRX)
th(ACLKRX-AXR)
(5)
MAX
UNIT
ns
ns
ns
ns
ns
1.7
Hold time, AFSR2 input after ACLKR2 internal (4)
Setup time, AXR2[n] input to ACLKX2 internal
7
(2)
ns
11
Setup time, AXR2[n] input to ACLKR2 external input (4)
1.7
Setup time, AXR2[n] input to ACLKX2 external input (5)
1.7
Setup time, AXR2[n] input to ACLKR2 external
output (4)
1.7
Setup time, AXR2[n] input to ACLKX2 external
output (5)
1.7
Hold time, AXR2[n] input after ACLKR2 internal (4)
-1.7
Hold time, AXR2[n] input after ACLKX2 internal (5)
-1.7
Hold time, AXR2[n] input after ACLKR2 external
input (4)
1.3
Hold time, AXR2[n] input after ACLKX2 external
input (5)
1.3
Hold time, AXR2[n] input after ACLKR2 external
output (4)
1.3
Hold time, AXR2[n] input after ACLKX2 external
output (5)
1.3
ns
ns
ACLKX2 internal – McASP2 ACLKXCTL.CLKXM = 1, PDIR.ACLKX = 1
ACLKX2 external input – McASP2 ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 0
ACLKX2 external output – McASP2 ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 1
ACLKR2 internal – McASP2 ACLKRCTL.CLKRM = 1, PDIR.ACLKR =1
ACLKR2 external input – McASP2 ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 0
ACLKR2 external output – McASP2 ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 1
P = SYSCLK2 period
Parameters are characterized from -40°C to 125°C unless otherwise noted.
McASP2 ACLKXCTL.ASYNC=1: Receiver is clocked by its own ACLKR2
McASP2 ACLKXCTL.ASYNC=0: Receiver is clocked by transmitter's ACLKX2
Peripheral Information and Electrical Specifications
Copyright © 2012–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
OMAPL137-HT
www.ti.com
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
Table 5-50. McASP2 Switching Characteristics (1)
NO.
9 (2)
10
(2)
11 (2)
12 (2)
PARAMETER
tc(AHCLKRX)
tw(AHCLKRX)
tc(ACLKRX)
tw(ACLKRX)
MIN
Cycle time, AHCLKR2 internal, AHCLKR2 output
13
Cycle time, AHCLKR2 external, AHCLKR2 output
13
Cycle time, AHCLKX2 internal, AHCLKX2 output
13
Cycle time, AHCLKX2 external, AHCLKX2 output
13
Pulse duration, AHCLKR2 internal, AHCLKR2
output
(AHR/2) – 2.5 (3)
Pulse duration, AHCLKR2 external, AHCLKR2
output
(AHR/2) – 2.5 (3)
Pulse duration, AHCLKX2 internal, AHCLKX2
output
(AHX/2) – 2.5 (4)
Pulse duration, AHCLKX2 external, AHCLKX2
output
(AHX/2) – 2.5 (4)
Cycle time, ACLKR2 internal, ACLKR2 output
greater of 2P or 13 ns (5)
Cycle time, ACLKR2 external, ACLKR2 output
greater of 2P or 13 ns (5)
Cycle time, ACLKX2 internal, ACLKX2 output
greater of 2P or 13 ns (5)
Cycle time, ACLKX2 external, ACLKX2 output
greater of 2P or 13 ns (5)
(AR/2) – 2.5 (6)
Pulse duration, ACLKR2 external, ACLKR2 output
(AR/2) – 2.5 (6)
Pulse duration, ACLKX2 internal, ACLKX2 output
(AX/2) – 2.5 (7)
Pulse duration, ACLKX2 external, ACLKX2 output
(AX/2) – 2.5 (7)
(8)
Delay time, ACLKX2 internal, AFSX output
Delay time, ACLKR2 external input, AFSR output
13
td(ACLKRX-AFSRX)
(8)
15
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
tdis(ACLKX-AXRHZ)
ns
ns
-1.5
3
-1.5
3
1.6
11
1.6
11
Delay time, ACLKR2 external output, AFSR
output (8)
1.6
11
1.6
11
Delay time, ACLKX2 internal, AXR2[n] output
td(ACLKX-AXRV)
ns
Delay time, ACLKX2 external input, AFSX output
Delay time, ACLKX2 external output, AFSX output
14
UNIT
ns
Pulse duration, ACLKR2 internal, ACLKR2 output
Delay time, ACLKR2 internal, AFSR output
MAX
-1.5
3
Delay time, ACLKX2 external input, AXR2[n] output
1.6
11
Delay time, ACLKX2 external output, AXR2[n]
output
1.6
11
Disable time, ACLKX2 internal, AXR2[n] output
-1.5
3
Disable time, ACLKX2 external input, AXR2[n]
output
1.6
11
Disable time, ACLKX2 external output, AXR2[n]
output
1.6
11
ns
ns
ns
McASP2 ACLKX2 internal – ACLKXCTL.CLKXM = 1, PDIR.ACLKX = 1
McASP2 ACLKX2 external input – ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 0
McASP2 ACLKX2 external output – ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 1
McASP2 ACLKR2 internal – ACLKR2CTL.CLKRM = 1, PDIR.ACLKR =1
McASP2 ACLKR2 external input – ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 0
McASP2 ACLKR2 external output – ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 1
Parameters are characterized from -40°C to 125°C unless otherwise noted.
AHR - Cycle time, AHCLKR2.
AHX - Cycle time, AHCLKX2.
P = SYSCLK2 period
AR - ACLKR2 period.
AX - ACLKX2 period.
McASP2 ACLKXCTL.ASYNC=1: Receiver is clocked by its own ACLKR2
Copyright © 2012–2013, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
111
OMAPL137-HT
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
www.ti.com
2
1
2
AHCLKR/X (Falling Edge Polarity)
AHCLKR/X (Rising Edge Polarity)
4
3
4
ACLKR/X (CLKRP = CLKXP = 0)(A)
ACLKR/X (CLKRP = CLKXP = 1)(B)
6
5
AFSR/X (Bit Width, 0 Bit Delay)
AFSR/X (Bit Width, 1 Bit Delay)
AFSR/X (Bit Width, 2 Bit Delay)
AFSR/X (Slot Width, 0 Bit Delay)
AFSR/X (Slot Width, 1 Bit Delay)
AFSR/X (Slot Width, 2 Bit Delay)
8
7
AXR[n] (Data In/Receive)
A.
B.
For CLKRP = CLKXP =
receiver is configured for
For CLKRP = CLKXP =
receiver is configured for
A0 A1
A30 A31 B0 B1
B30 B31 C0 C1 C2 C3
C31
0, the McASP transmitter is configured for rising edge (to shift data out) and the McASP
falling edge (to shift data in).
1, the McASP transmitter is configured for falling edge (to shift data out) and the McASP
rising edge (to shift data in).
Figure 5-35. McASP Input Timings
112
Peripheral Information and Electrical Specifications
Copyright © 2012–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
OMAPL137-HT
www.ti.com
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
10
10
9
AHCLKR/X (Falling Edge Polarity)
AHCLKR/X (Rising Edge Polarity)
12
11
12
ACLKR/X (CLKRP = CLKXP = 1)(A)
ACLKR/X (CLKRP = CLKXP = 0)(B)
13
13
13
13
AFSR/X (Bit Width, 0 Bit Delay)
AFSR/X (Bit Width, 1 Bit Delay)
AFSR/X (Bit Width, 2 Bit Delay)
13
13
13
AFSR/X (Slot Width, 0 Bit Delay)
AFSR/X (Slot Width, 1 Bit Delay)
AFSR/X (Slot Width, 2 Bit Delay)
14
15
AXR[n] (Data Out/Transmit)
A0
A.
B.
For CLKRP = CLKXP =
receiver is configured for
For CLKRP = CLKXP =
receiver is configured for
A1
A30 A31 B0 B1
B30 B31 C0
C1 C2 C3
C31
1, the McASP transmitter is configured for falling edge (to shift data out) and the McASP
rising edge (to shift data in).
0, the McASP transmitter is configured for rising edge (to shift data out) and the McASP
falling edge (to shift data in).
Figure 5-36. McASP Output Timings
Copyright © 2012–2013, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
113
OMAPL137-HT
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
www.ti.com
5.16 Serial Peripheral Interface Ports (SPI0, SPI1)
Figure 5-37 is a block diagram of the SPI module, which is a simple shift register and buffer plus control
logic. Data is written to the shift register before transmission occurs and is read from the buffer at the end
of transmission. The SPI can operate either as a master, in which case, it initiates a transfer and drives
the SPIx_CLK pin, or as a slave. Four clock phase and polarity options are supported as well as many
data formatting options.
SPIx_SIMO
SPIx_SOMI
Peripheral
Configuration Bus
Interrupt and
DMA Requests
16-Bit Shift Register
16-Bit Buffer
SPIx_ENA
GPIO
Control
(all pins)
State
Machine
SPIx_SCS
Clock
Control
SPIx_CLK
Figure 5-37. Block Diagram of SPI Module
The SPI supports 3-, 4-, and 5-pin operation with three basic pins (SPIx_CLK, SPIx_SIMO, and
SPIx_SOMI) and two optional pins (SPIx_SCS, SPIx_ENA).
The optional SPIx_SCS (Slave Chip Select) pin is most useful to enable in slave mode when there are
other slave devices on the same SPI port. The device will only shift data and drive the SPIx_SOMI pin
when SPIx_SCS is held low.
In slave mode, SPIx_ENA is an optional output and can be driven in either a push-pull or open-drain
manner. The SPIx_ENA output provides the status of the internal transmit buffer (SPIDAT0/1 registers). In
four-pin mode with the enable option, SPIx_ENA is asserted only when the transmit buffer is full, indicating
that the slave is ready to begin another transfer. In five-pin mode, the SPIx_ENA is additionally qualified
by SPIx_SCS being asserted. This allows a single handshake line to be shared by multiple slaves on the
same SPI bus.
In master mode, the SPIx_ENA pin is an optional input and the master can be configured to delay the start
of the next transfer until the slave asserts SPIx_ENA. The addition of this handshake signal simplifies SPI
communications and, on average, increases SPI bus throughput since the master does not need to delay
each transfer long enough to allow for the worst-case latency of the slave device. Instead, each transfer
can begin as soon as both the master and slave have actually serviced the previous SPI transfer.
114
Peripheral Information and Electrical Specifications
Copyright © 2012–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
OMAPL137-HT
www.ti.com
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
Optional − Slave Chip Select
SPIx_SCS
SPIx_SCS
Optional Enable (Ready)
SPIx_ENA
SPIx_ENA
SPIx_CLK
SPIx_CLK
SPIx_SOMI
SPIx_SOMI
SPIx_SIMO
SPIx_SIMO
MASTER SPI
SLAVE SPI
Figure 5-38. Illustration of SPI Master-to-SPI Slave Connection
Copyright © 2012–2013, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
115
OMAPL137-HT
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
www.ti.com
5.16.1 SPI Peripheral Registers Description(s)
Table 5-51 is a list of the SPI registers. See the TMS320C674x/OMAP-L1x Processor Peripherals
Overview Reference Guide. – Literature Number SPRUFK9 for more details.
Table 5-51. SPIx Configuration Registers
116
SPI0
BYTE ADDRESS
SPI1
BYTE ADDRESS
0x01C4 1000
0x01E1 2000
SPIGCR0
Global Control Register 0
0x01C4 1004
0x01E1 2004
SPIGCR1
Global Control Register 1
0x01C4 1008
0x01E1 2008
SPIINT0
Interrupt Register
0x01C4 100C
0x01E1 200C
SPILVL
Interrupt Level Register
0x01C4 1010
0x01E1 2010
SPIFLG
Flag Register
0x01C4 1014
0x01E1 2014
SPIPC0
Pin Control Register 0 (Pin Function)
0x01C4 1018
0x01E1 2018
SPIPC1
Pin Control Register 1 (Pin Direction)
0x01C4 101C
0x01E1 201C
SPIPC2
Pin Control Register 2 (Pin Data In)
0x01C4 1020
0x01E1 2020
SPIPC3
Pin Control Register 3 (Pin Data Out)
0x01C4 1024
0x01E1 2024
SPIPC4
Pin Control Register 4 (Pin Data Set)
0x01C4 1028
0x01E1 2028
SPIPC5
Pin Control Register 5 (Pin Data Clear)
0x01C4 102C
0x01E1 202C
Reserved
Reserved - Do not write to this register
0x01C4 1030
0x01E1 2030
Reserved
Reserved - Do not write to this register
0x01C4 1034
0x01E1 2034
Reserved
Reserved - Do not write to this register
REGISTER NAME
DESCRIPTION
0x01C4 1038
0x01E1 2038
SPIDAT0
Shift Register 0 (without format select)
0x01C4 103C
0x01E1 203C
SPIDAT1
Shift Register 1 (with format select)
0x01C4 1040
0x01E1 2040
SPIBUF
Buffer Register
0x01C4 1044
0x01E1 2044
SPIEMU
Emulation Register
0x01C4 1048
0x01E1 2048
SPIDELAY
Delay Register
0x01C4 104C
0x01E1 204C
SPIDEF
Default Chip Select Register
0x01C4 1050
0x01E1 2050
SPIFMT0
Format Register 0
0x01C4 1054
0x01E1 2054
SPIFMT1
Format Register 1
0x01C4 1058
0x01E1 2058
SPIFMT2
Format Register 2
0x01C4 105C
0x01E1 205C
SPIFMT3
Format Register 3
0x01C4 1060
0x01E1 2060
Reserved
Reserved - Do not write to this register
0x01C4 1064
0x01E1 2064
INTVEC1
Interrupt Vector for SPI INT1
Peripheral Information and Electrical Specifications
Copyright © 2012–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
OMAPL137-HT
www.ti.com
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
5.16.2 SPI Electrical Data/Timing
5.16.2.1 Serial Peripheral Interface (SPI) Timing
Table 5-52 through Table 5-67 assume testing over recommended operating conditions (see Figure 5-39
through Figure 5-42).
Table 5-52. General Timing Requirements for SPI0 Master Modes (1) (2)
NO.
Cycle Time, SPI0_CLK, All Master Modes
2
tw(SPCH)M
Pulse Width High, SPI0_CLK, All Master Modes
0.5tc(SPC)M - 1
ns
3
tw(SPCL)M
Pulse Width Low, SPI0_CLK, All Master Modes
0.5tc(SPC)M - 1
ns
5
6
7
8
td(SIMO_SPC)M
td(SPC_SIMO)M
toh(SPC_SIMO)M
tsu(SOMI_SPC)M
tih(SPC_SOMI)M
Delay, initial data bit valid
on SPI0_SIMO after initial
edge on SPI0_CLK (3)
Delay, subsequent bits
valid on SPI0_SIMO after
transmit edge of SPI0_CLK
Output hold time,
SPI0_SIMO valid after
receive edge of SPI0_CLK
Input Setup Time,
SPI0_SOMI valid before
receive edge of SPI0_CLK
Input Hold Time,
SPI0_SOMI valid after
receive edge of SPI0_CLK
greater of 2P or 20 ns
MAX UNIT
tc(SPC)M
4
(1)
(2)
(3)
MIN
1
256P
Polarity = 0, Phase = 0,
to SPI0_CLK rising
5
Polarity = 0, Phase = 1,
to SPI0_CLK rising
-0.5tc(SPC)M + 5
Polarity = 1, Phase = 0,
to SPI0_CLK falling
5
Polarity = 1, Phase = 1,
to SPI0_CLK falling
-0.5tc(SPC)M + 5
Polarity = 0, Phase = 0,
from SPI0_CLK rising
5
Polarity = 0, Phase = 1,
from SPI0_CLK falling
5
Polarity = 1, Phase = 0,
from SPI0_CLK falling
5
Polarity = 1, Phase = 1,
from SPI0_CLK rising
5
ns
ns
ns
Polarity = 0, Phase = 0,
from SPI0_CLK falling
0.5tc(SPC)M -3
Polarity = 0, Phase = 1,
from SPI0_CLK rising
0.5tc(SPC)M -3
Polarity = 1, Phase = 0,
from SPI0_CLK rising
0.5tc(SPC)M -3
Polarity = 1, Phase = 1,
from SPI0_CLK falling
0.5tc(SPC)M -3
Polarity = 0, Phase = 0,
to SPI0_CLK falling
0
Polarity = 0, Phase = 1,
to SPI0_CLK rising
0
Polarity = 1, Phase = 0,
to SPI0_CLK rising
0
Polarity = 1, Phase = 1,
to SPI0_CLK falling
0
Polarity = 0, Phase = 0,
from SPI0_CLK falling
5
Polarity = 0, Phase = 1,
from SPI0_CLK rising
5
Polarity = 1, Phase = 0,
from SPI0_CLK rising
5
Polarity = 1, Phase = 1,
from SPI0_CLK falling
5
ns
ns
ns
Parameters are characterized from -40°C to 125°C unless otherwise noted.
P = SYSCLK2 period
First bit may be MSB or LSB depending upon SPI configuration. MO(0) refers to first bit and MO(n) refers to last bit output on
SPI0_SIMO. MI(0) refers to the first bit input and MI(n) refers to the last bit input on SPI0_SOMI.
Copyright © 2012–2013, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
117
OMAPL137-HT
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
www.ti.com
Table 5-53. General Timing Requirements for SPI0 Slave Modes (1) (2)
NO.
MIN
MAX UNIT
greater of 3P or
20 ns
ns
9
tc(SPC)S
Cycle Time, SPI0_CLK, All Slave Modes
10
tw(SPCH)S
Pulse Width High, SPI0_CLK, All Slave Modes
18
ns
11
tw(SPCL)S
Pulse Width Low, SPI0_CLK, All Slave Modes
18
ns
12
13
14
15
16
(1)
(2)
(3)
(4)
118
tsu(SOMI_SPC)S
td(SPC_SOMI)S
toh(SPC_SOMI)S
tsu(SIMO_SPC)S
tih(SPC_SIMO)S
Setup time, transmit data
written to SPI before initial
clock edge from
master. (3) (4)
Delay, subsequent bits
valid on SPI0_SOMI after
transmit edge of SPI0_CLK
Output hold time,
SPI0_SOMI valid after
receive edge of SPI0_CLK
Input Setup Time,
SPI0_SIMO valid before
receive edge of SPI0_CLK
Input Hold Time,
SPI0_SIMO valid after
receive edge of SPI0_CLK
Polarity = 0, Phase = 0,
to SPI0_CLK rising
2P
Polarity = 0, Phase = 1,
to SPI0_CLK rising
2P
Polarity = 1, Phase = 0,
to SPI0_CLK falling
2P
Polarity = 1, Phase = 1,
to SPI0_CLK falling
2P
ns
Polarity = 0, Phase = 0,
from SPI0_CLK rising
19
Polarity = 0, Phase = 1,
from SPI0_CLK falling
19
Polarity = 1, Phase = 0,
from SPI0_CLK falling
19
Polarity = 1, Phase = 1,
from SPI0_CLK rising
19
ns
Polarity = 0, Phase = 0,
from SPI0_CLK falling
0.5tc(SPC)S -3
Polarity = 0, Phase = 1,
from SPI0_CLK rising
0.5tc(SPC)S -3
Polarity = 1, Phase = 0,
from SPI0_CLK rising
0.5tc(SPC)S -3
Polarity = 1, Phase = 1,
from SPI0_CLK falling
0.5tc(SPC)S -3
Polarity = 0, Phase = 0,
to SPI0_CLK falling
0
Polarity = 0, Phase = 1,
to SPI0_CLK rising
0
Polarity = 1, Phase = 0,
to SPI0_CLK rising
0
Polarity = 1, Phase = 1,
to SPI0_CLK falling
0
Polarity = 0, Phase = 0,
from SPI0_CLK falling
5
Polarity = 0, Phase = 1,
from SPI0_CLK rising
5
Polarity = 1, Phase = 0,
from SPI0_CLK rising
5
Polarity = 1, Phase = 1,
from SPI0_CLK falling
5
ns
ns
ns
Parameters are characterized from -40°C to 125°C unless otherwise noted.
P = SYSCLK2 period
First bit may be MSB or LSB depending upon SPI configuration. SO(0) refers to first bit and SO(n) refers to last bit output on
SPI0_SOMI. SI(0) refers to the first bit input and SI(n) refers to the last bit input on SPI0_SIMO.
Measured from the termination of the write of new data to the SPI module, In analyzing throughput requirements, additional internal bus
cycles must be accounted for to allow data to be written to the SPI module by either the DSP CPU or the dMAX.
Peripheral Information and Electrical Specifications
Copyright © 2012–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
OMAPL137-HT
www.ti.com
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
Table 5-54. Additional (1) SPI0 Master Timings, 4-Pin Enable Option (2)
NO.
17
(1)
(2)
(3)
(4)
(5)
MIN
td(ENA_SPC)M
18
(3)
td(SPC_ENA)M
Delay from slave assertion of
SPI0_ENA active to first
SPI0_CLK from master. (4)
Max delay for slave to deassert
SPI0_ENA after final SPI0_CLK
edge to ensure master does not
begin the next transfer. (5)
MAX UNIT
Polarity = 0, Phase = 0,
to SPI0_CLK rising
3P + 3.6
Polarity = 0, Phase = 1,
to SPI0_CLK rising
0.5tc(SPC)M + 3P + 3.6
Polarity = 1, Phase = 0,
to SPI0_CLK falling
3P + 3.6
Polarity = 1, Phase = 1,
to SPI0_CLK falling
0.5tc(SPC)M + 3P + 3.6
Polarity = 0, Phase = 0,
from SPI0_CLK falling
P+5
Polarity = 0, Phase = 1,
from SPI0_CLK falling
0.5tc(SPC)M+P+5
Polarity = 1, Phase = 0,
from SPI0_CLK rising
P+5
Polarity = 1, Phase = 1,
from SPI0_CLK rising
0.5tc(SPC)M+P+5
ns
ns
These parameters are in addition to the general timings for SPI master modes (Table 5-52).
P = SYSCLK2 period
Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four master clocking modes.
In the case where the master SPI is ready with new data before SPI0_ENA assertion.
In the case where the master SPI is ready with new data before SPI0_ENA deassertion.
Table 5-55. Additional (1) SPI0 Master Timings, 4-Pin Chip Select Option (2) (3)
NO.
19
20
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(4)
MIN
td(SCS_SPC)M
td(SPC_SCS)M
Delay from SPI0_SCS active to
first SPI0_CLK (5) (6)
Delay from final SPI0_CLK edge
to master deasserting SPI0_SCS
(7) (8)
Polarity = 0, Phase = 0,
to SPI0_CLK rising
2P -5
Polarity = 0, Phase = 1,
to SPI0_CLK rising
0.5tc(SPC)M + 2P -5
Polarity = 1, Phase = 0,
to SPI0_CLK falling
2P -5
Polarity = 1, Phase = 1,
to SPI0_CLK falling
0.5tc(SPC)M + 2P -5
Polarity = 0, Phase = 0,
from SPI0_CLK falling
0.5tc(SPC)M P-3
Polarity = 0, Phase = 1,
from SPI0_CLK falling
P-3
Polarity = 1, Phase = 0,
from SPI0_CLK rising
0.5tc(SPC)M P-3
Polarity = 1, Phase = 1,
from SPI0_CLK rising
P-3
MAX UNIT
ns
ns
These parameters are in addition to the general timings for SPI master modes (Table 5-52).
Parameters are characterized from -40°C to 125°C unless otherwise noted.
P = SYSCLK2 period
Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four master clocking modes.
In the case where the master SPI is ready with new data before SPI0_SCS assertion.
This delay can be increased under software control by the register bit field SPIDELAY.C2TDELAY[4:0].
Except for modes when SPIDAT1.CSHOLD is enabled and there is additional data to transmit. In this case, SPI0_SCS will remain
asserted.
This delay can be increased under software control by the register bit field SPIDELAY.T2CDELAY[4:0].
Copyright © 2012–2013, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
119
OMAPL137-HT
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
www.ti.com
Table 5-56. Additional (1) SPI0 Master Timings, 5-Pin Option (2) (3)
NO.
18
20
21
22
23
MIN
td(SPC_ENA)M
td(SPC_SCS)M
td(SCSL_ENAL)M
td(SCS_SPC)M
td(ENA_SPC)M
Max delay for slave to
deassert SPI0_ENA after
final SPI0_CLK edge to
ensure master does not
begin the next
transfer. (5)
Delay from final
SPI0_CLK edge to
master deasserting
SPI0_SCS (6) (7)
Delay from assertion of
SPI0_ENA low to first
SPI0_CLK edge. (11)
MAX UNIT
Polarity = 0, Phase = 0,
from SPI0_CLK falling
P+5
Polarity = 0, Phase = 1,
from SPI0_CLK falling
0.5tc(SPC)M+P+5
Polarity = 1, Phase = 0,
from SPI0_CLK rising
P+5
Polarity = 1, Phase = 1,
from SPI0_CLK rising
0.5tc(SPC)M+P+5
ns
Polarity = 0, Phase = 0,
from SPI0_CLK falling
0.5tc(SPC)M+P-3
Polarity = 0, Phase = 1,
from SPI0_CLK falling
P-3
Polarity = 1, Phase = 0,
from SPI0_CLK rising
0.5tc(SPC)M+P-3
Polarity = 1, Phase = 1,
from SPI0_CLK rising
P-3
ns
Max delay for slave SPI to drive SPI0_ENA valid
after master asserts SPI0_SCS to delay the
master from beginning the next transfer,
Delay from SPI0_SCS
active to first
SPI0_CLK (8) (9) (10)
(4)
C2TDELAY + P
Polarity = 0, Phase = 0,
to SPI0_CLK rising
2P -5
Polarity = 0, Phase = 1,
to SPI0_CLK rising
0.5tc(SPC)M + 2P -5
Polarity = 1, Phase = 0,
to SPI0_CLK falling
2P -5
Polarity = 1, Phase = 1,
to SPI0_CLK falling
0.5tc(SPC)M + 2P -5
ns
ns
Polarity = 0, Phase = 0,
to SPI0_CLK rising
3P + 3.6
Polarity = 0, Phase = 1,
to SPI0_CLK rising
0.5tc(SPC)M + 3P + 3.6
Polarity = 1, Phase = 0,
to SPI0_CLK falling
3P + 3.6
Polarity = 1, Phase = 1,
to SPI0_CLK falling
0.5tc(SPC)M + 3P + 3.6
ns
(1)
(2)
(3)
(4)
(5)
(6)
These parameters are in addition to the general timings for SPI master modes (Table 5-53).
Parameters are characterized from -40°C to 125°C unless otherwise noted.
P = SYSCLK2 period
Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four master clocking modes.
In the case where the master SPI is ready with new data before SPI0_ENA deassertion.
Except for modes when SPIDAT1.CSHOLD is enabled and there is additional data to transmit. In this case, SPI0_SCS will remain
asserted.
(7) This delay can be increased under software control by the register bit field SPIDELAY.T2CDELAY[4:0].
(8) If SPI0_ENA is asserted immediately such that the transmission is not delayed by SPI0_ENA.
(9) In the case where the master SPI is ready with new data before SPI0_SCS assertion.
(10) This delay can be increased under software control by the register bit field SPIDELAY.C2TDELAY[4:0].
(11) If SPI0_ENA was initially deasserted high and SPI0_CLK is delayed.
120
Peripheral Information and Electrical Specifications
Copyright © 2012–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
OMAPL137-HT
www.ti.com
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
Table 5-57. Additional (1) SPI0 Slave Timings, 4-Pin Enable Option (2) (3)
NO.
24
(1)
(2)
(3)
(4)
(4)
MIN
td(SPC_ENAH)S
Delay from final
SPI0_CLK edge to slave
deasserting SPI0_ENA.
MAX UNIT
Polarity = 0, Phase = 0,
from SPI0_CLK falling
1.5 P -3
2.5 P + 18.5
Polarity = 0, Phase = 1,
from SPI0_CLK falling
– 0.5tc(SPC)M + 1.5 P -3
– 0.5tc(SPC)M + 2.5 P + 18.5
Polarity = 1, Phase = 0,
from SPI0_CLK rising
1.5 P -3
2.5 P + 18.5
Polarity = 1, Phase = 1,
from SPI0_CLK rising
– 0.5tc(SPC)M + 1.5 P -3
– 0.5tc(SPC)M + 2.5 P + 18.5
ns
These parameters are in addition to the general timings for SPI slave modes (Table 5-53).
Parameters are characterized from -40°C to 125°C unless otherwise noted.
P = SYSCLK2 period
Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four slave clocking modes.
Table 5-58. Additional (1) SPI0 Slave Timings, 4-Pin Chip Select Option (2) (3)
NO.
25
26
(1)
(2)
(3)
(4)
(4)
MIN
td(SCSL_SPC)S
td(SPC_SCSH)S
Required delay from SPI0_SCS asserted at slave to first
SPI0_CLK edge at slave.
Required delay from final
SPI0_CLK edge before
SPI0_SCS is deasserted.
MAX
2P
Polarity = 0, Phase = 0,
from SPI0_CLK falling
0.5tc(SPC)M + 2P+5
Polarity = 0, Phase = 1,
from SPI0_CLK falling
2P+5
Polarity = 1, Phase = 0,
from SPI0_CLK rising
0.5tc(SPC)M + 2P+5
Polarity = 1, Phase = 1,
from SPI0_CLK rising
2P+5
UNIT
ns
ns
27
tena(SCSL_SOMI)S
Delay from master asserting SPI0_SCS to slave driving
SPI0_SOMI valid
P + 18.5
ns
28
tdis(SCSH_SOMI)S
Delay from master deasserting SPI0_SCS to slave 3-stating
SPI0_SOMI
P + 18.5
ns
These parameters are in addition to the general timings for SPI slave modes (Table 5-53).
Parameters are characterized from -40°C to 125°C unless otherwise noted.
P = SYSCLK2 period
Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four slave clocking modes.
Copyright © 2012–2013, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
121
OMAPL137-HT
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
www.ti.com
Table 5-59. Additional (1) SPI0 Slave Timings, 5-Pin Option (2) (3)
NO.
25
26
(4)
MIN
Required delay from SPI0_SCS asserted at slave to first
SPI0_CLK edge at slave.
td(SCSL_SPC)S
Required delay from final
SPI0_CLK edge before
SPI0_SCS is deasserted.
td(SPC_SCSH)S
MAX
UNIT
2P
Polarity = 0, Phase = 0,
from SPI0_CLK falling
0.5tc(SPC)M + 2P+5
Polarity = 0, Phase = 1,
from SPI0_CLK falling
2P+5
Polarity = 1, Phase = 0,
from SPI0_CLK rising
0.5tc(SPC)M + 2P+5
Polarity = 1, Phase = 1,
from SPI0_CLK rising
2P+5
ns
ns
27
tena(SCSL_SOMI)S
Delay from master asserting SPI0_SCS to slave driving
SPI0_SOMI valid
P + 18.5
ns
28
tdis(SCSH_SOMI)S
Delay from master deasserting SPI0_SCS to slave 3-stating
SPI0_SOMI
P + 18.5
ns
29
tena(SCSL_ENA)S
Delay from master deasserting SPI0_SCS to slave driving
SPI0_ENA valid
18.5
ns
30
(1)
(2)
(3)
(4)
(5)
tdis(SPC_ENA)S
Delay from final clock receive
edge on SPI0_CLK to slave
3-stating or driving high
SPI0_ENA. (5)
Polarity = 0, Phase = 0,
from SPI0_CLK falling
2.5 P + 18.5
Polarity = 0, Phase = 1,
from SPI0_CLK rising
2.5 P + 18.5
Polarity = 1, Phase = 0,
from SPI0_CLK rising
2.5 P + 18.5
Polarity = 1, Phase = 1,
from SPI0_CLK falling
2.5 P + 18.5
ns
These parameters are in addition to the general timings for SPI slave modes (Table 5-53).
Parameters are characterized from -40°C to 125°C unless otherwise noted.
P = SYSCLK2 period
Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four slave clocking modes.
SPI0_ENA is driven low after the transmission completes if the SPIINT0.ENABLE_HIGHZ bit is programmed to 0. Otherwise it is tristated. If tri-stated, an external pullup resistor should be used to provide a valid level to the master. This option is useful when tying
several SPI slave devices to a single master.
Table 5-60. General Timing Requirements for SPI1 Master Modes (1) (2)
NO.
MIN
tc(SPC)M
Cycle Time, SPI1_CLK, All Master Modes
2
tw(SPCH)M
Pulse Width High, SPI1_CLK, All Master Modes
0.5tc(SPC)M - 1
ns
3
tw(SPCL)M
Pulse Width Low, SPI1_CLK, All Master Modes
0.5tc(SPC)M - 1
ns
4
5
(1)
(2)
(3)
122
td(SIMO_SPC)M
td(SPC_SIMO)M
Delay, initial data bit valid
on SPI1_SIMO after initial
edge on SPI1_CLK (3)
Delay, subsequent bits
valid on SPI1_SIMO after
transmit edge of SPI1_CLK
greater of 3P or 20 ns
MAX UNIT
1
256P
Polarity = 0, Phase = 0,
to SPI1_CLK rising
5
Polarity = 0, Phase = 1,
to SPI1_CLK rising
-0.5tc(SPC)M + 5
Polarity = 1, Phase = 0,
to SPI1_CLK falling
5
Polarity = 1, Phase = 1,
to SPI1_CLK falling
-0.5tc(SPC)M + 5
Polarity = 0, Phase = 0,
from SPI1_CLK rising
5
Polarity = 0, Phase = 1,
from SPI1_CLK falling
5
Polarity = 1, Phase = 0,
from SPI1_CLK falling
5
Polarity = 1, Phase = 1,
from SPI1_CLK rising
5
ns
ns
ns
Parameters are characterized from -40°C to 125°C unless otherwise noted.
P = SYSCLK2 period
First bit may be MSB or LSB depending upon SPI configuration. MO(0) refers to first bit and MO(n) refers to last bit output on
SPI1_SIMO. MI(0) refers to the first bit input and MI(n) refers to the last bit input on SPI1_SOMI.
Peripheral Information and Electrical Specifications
Copyright © 2012–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
OMAPL137-HT
www.ti.com
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
Table 5-60. General Timing Requirements for SPI1 Master Modes(1)(2) (continued)
NO.
6
MIN
toh(SPC_SIMO)M
7
tsu(SOMI_SPC)M
8
tih(SPC_SOMI)M
Output hold time,
SPI1_SIMO valid after
receive edge of SPI1_CLK
Input Setup Time,
SPI1_SOMI valid before
receive edge of SPI1_CLK
Input Hold Time,
SPI1_SOMI valid after
receive edge of SPI1_CLK
Polarity = 0, Phase = 0,
from SPI1_CLK falling
0.5tc(SPC)M -3
Polarity = 0, Phase = 1,
from SPI1_CLK rising
0.5tc(SPC)M -3
Polarity = 1, Phase = 0,
from SPI1_CLK rising
0.5tc(SPC)M -3
Polarity = 1, Phase = 1,
from SPI1_CLK falling
0.5tc(SPC)M -3
Polarity = 0, Phase = 0,
to SPI1_CLK falling
0
Polarity = 0, Phase = 1,
to SPI1_CLK rising
0
Polarity = 1, Phase = 0,
to SPI1_CLK rising
0
Polarity = 1, Phase = 1,
to SPI1_CLK falling
0
Polarity = 0, Phase = 0,
from SPI1_CLK falling
5
Polarity = 0, Phase = 1,
from SPI1_CLK rising
5
Polarity = 1, Phase = 0,
from SPI1_CLK rising
5
Polarity = 1, Phase = 1,
from SPI1_CLK falling
5
MAX UNIT
ns
ns
ns
Table 5-61. General Timing Requirements for SPI1 Slave Modes (1) (2)
NO.
MIN
MAX UNIT
greater of 3P or
40 ns
ns
9
tc(SPC)S
Cycle Time, SPI1_CLK, All Slave Modes
10
tw(SPCH)S
Pulse Width High, SPI1_CLK, All Slave Modes
18
ns
11
tw(SPCL)S
Pulse Width Low, SPI1_CLK, All Slave Modes
18
ns
12
13
(1)
(2)
(3)
(4)
tsu(SOMI_SPC)S
td(SPC_SOMI)S
Setup time, transmit data
written to SPI before initial
clock edge from
master. (3) (4)
Delay, subsequent bits
valid on SPI1_SOMI after
transmit edge of SPI1_CLK
Polarity = 0, Phase = 0,
to SPI1_CLK rising
2P
Polarity = 0, Phase = 1,
to SPI1_CLK rising
2P
Polarity = 1, Phase = 0,
to SPI1_CLK falling
2P
Polarity = 1, Phase = 1,
to SPI1_CLK falling
2P
ns
Polarity = 0, Phase = 0,
from SPI1_CLK rising
19
Polarity = 0, Phase = 1,
from SPI1_CLK falling
19
Polarity = 1, Phase = 0,
from SPI1_CLK falling
19
Polarity = 1, Phase = 1,
from SPI1_CLK rising
19
ns
Parameters are characterized from -40°C to 125°C unless otherwise noted.
P = SYSCLK2 period
First bit may be MSB or LSB depending upon SPI configuration. SO(0) refers to first bit and SO(n) refers to last bit output on
SPI1_SOMI. SI(0) refers to the first bit input and SI(n) refers to the last bit input on SPI1_SIMO.
Measured from the termination of the write of new data to the SPI module, In analyzing throughput requirements, additional internal bus
cycles must be accounted for to allow data to be written to the SPI module by either the DSP CPU or the dMAX.
Copyright © 2012–2013, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
123
OMAPL137-HT
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
www.ti.com
Table 5-61. General Timing Requirements for SPI1 Slave Modes(1)(2) (continued)
NO.
14
MIN
toh(SPC_SOMI)S
15
tsu(SIMO_SPC)S
16
tih(SPC_SIMO)S
Output hold time,
SPI1_SOMI valid after
receive edge of SPI1_CLK
Input Setup Time,
SPI1_SIMO valid before
receive edge of SPI1_CLK
Input Hold Time,
SPI1_SIMO valid after
receive edge of SPI1_CLK
Polarity = 0, Phase = 0,
from SPI1_CLK falling
0.5tc(SPC)S -3
Polarity = 0, Phase = 1,
from SPI1_CLK rising
0.5tc(SPC)S -3
Polarity = 1, Phase = 0,
from SPI1_CLK rising
0.5tc(SPC)S -3
Polarity = 1, Phase = 1,
from SPI1_CLK falling
0.5tc(SPC)S -3
Polarity = 0, Phase = 0,
to SPI1_CLK falling
0
Polarity = 0, Phase = 1,
to SPI1_CLK rising
0
Polarity = 1, Phase = 0,
to SPI1_CLK rising
0
Polarity = 1, Phase = 1,
to SPI1_CLK falling
0
Polarity = 0, Phase = 0,
from SPI1_CLK falling
5
Polarity = 0, Phase = 1,
from SPI1_CLK rising
5
Polarity = 1, Phase = 0,
from SPI1_CLK rising
5
Polarity = 1, Phase = 1,
from SPI1_CLK falling
5
MAX UNIT
ns
ns
ns
Table 5-62. Additional (1) SPI1 Master Timings, 4-Pin Enable Option (2) (3)
NO.
17
18
(1)
(2)
(3)
(4)
(5)
(6)
124
(4)
MIN
td(ENA_SPC)M
td(SPC_ENA)M
Delay from slave assertion of
SPI1_ENA active to first
SPI1_CLK from master. (5)
Max delay for slave to deassert
SPI1_ENA after final SPI1_CLK
edge to ensure master does not
begin the next transfer. (6)
MAX UNIT
Polarity = 0, Phase = 0,
to SPI1_CLK rising
P+3
Polarity = 0, Phase = 1,
to SPI1_CLK rising
0.5tc(SPC)M + P + 3
Polarity = 1, Phase = 0,
to SPI1_CLK falling
P+3
Polarity = 1, Phase = 1,
to SPI1_CLK falling
0.5tc(SPC)M + P + 3
Polarity = 0, Phase = 0,
from SPI1_CLK falling
P+5
Polarity = 0, Phase = 1,
from SPI1_CLK falling
0.5tc(SPC)M+P+5
Polarity = 1, Phase = 0,
from SPI1_CLK rising
P+5
Polarity = 1, Phase = 1,
from SPI1_CLK rising
0.5tc(SPC)M+P+5
ns
ns
These parameters are in addition to the general timings for SPI master modes (Table 5-60).
Parameters are characterized from -40°C to 125°C unless otherwise noted.
P = SYSCLK2 period
Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four master clocking modes.
In the case where the master SPI is ready with new data before SPI1_ENA assertion.
In the case where the master SPI is ready with new data before SPI1_ENA deassertion.
Peripheral Information and Electrical Specifications
Copyright © 2012–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
OMAPL137-HT
www.ti.com
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
Table 5-63. Additional (1) SPI1 Master Timings, 4-Pin Chip Select Option (2) (3)
NO.
19
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
MIN
td(SCS_SPC)M
20
td(SPC_SCS)M
Delay from SPI1_SCS active to
first SPI1_CLK (5) (6)
Delay from final SPI1_CLK edge
to master deasserting SPI1_SCS
(7) (8)
Polarity = 0, Phase = 0,
to SPI1_CLK rising
2P -5
Polarity = 0, Phase = 1,
to SPI1_CLK rising
0.5tc(SPC)M + 2P -5
Polarity = 1, Phase = 0,
to SPI1_CLK falling
2P -5
Polarity = 1, Phase = 1,
to SPI1_CLK falling
0.5tc(SPC)M + 2P -5
Polarity = 0, Phase = 0,
from SPI1_CLK falling
0.5tc(SPC)M-3
Polarity = 0, Phase = 1,
from SPI1_CLK falling
-3
Polarity = 1, Phase = 0,
from SPI1_CLK rising
0.5tc(SPC)M-3
Polarity = 1, Phase = 1,
from SPI1_CLK rising
-3
ns
These parameters are in addition to the general timings for SPI master modes (Table 5-60).
Parameters are characterized from -40°C to 125°C unless otherwise noted.
P = SYSCLK2 period
Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four master clocking modes.
In the case where the master SPI is ready with new data before SPI1_SCS assertion.
This delay can be increased under software control by the register bit field SPIDELAY.C2TDELAY[4:0].
Except for modes when SPIDAT1.CSHOLD is enabled and there is additional data to transmit. In this case, SPI1_SCS will remain
asserted.
This delay can be increased under software control by the register bit field SPIDELAY.T2CDELAY[4:0].
NO.
20
21
(1)
(2)
(3)
(4)
(5)
(6)
(7)
MAX UNIT
ns
Table 5-64. Additional (1) SPI1 Master Timings, 5-Pin Option (2) (3)
18
(4)
MIN
td(SPC_ENA)M
td(SPC_SCS)M
td(SCSL_ENAL)M
Max delay for slave to
deassert SPI1_ENA after
final SPI1_CLK edge to
ensure master does not
begin the next
transfer. (5)
Delay from final
SPI1_CLK edge to
master deasserting
SPI1_SCS (6) (7)
(4)
MAX UNIT
Polarity = 0, Phase = 0,
from SPI1_CLK falling
P+3
Polarity = 0, Phase = 1,
from SPI1_CLK falling
0.5tc(SPC)M+P+3
Polarity = 1, Phase = 0,
from SPI1_CLK rising
P+3
Polarity = 1, Phase = 1,
from SPI1_CLK rising
0.5tc(SPC)M+P+3
ns
Polarity = 0, Phase = 0,
from SPI1_CLK falling
0.5tc(SPC)M-3
Polarity = 0, Phase = 1,
from SPI1_CLK falling
-3
Polarity = 1, Phase = 0,
from SPI1_CLK rising
0.5tc(SPC)M-3
Polarity = 1, Phase = 1,
from SPI1_CLK rising
-3
Max delay for slave SPI to drive SPI1_ENA valid
after master asserts SPI1_SCS to delay the
master from beginning the next transfer,
ns
C2TDELAY + P
ns
These parameters are in addition to the general timings for SPI master modes (Table 5-61).
Parameters are characterized from -40°C to 125°C unless otherwise noted.
P = SYSCLK2 period
Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four master clocking modes.
In the case where the master SPI is ready with new data before SPI1_ENA deassertion.
Except for modes when SPIDAT1.CSHOLD is enabled and there is additional data to transmit. In this case, SPI1_SCS will remain
asserted.
This delay can be increased under software control by the register bit field SPIDELAY.T2CDELAY[4:0].
Copyright © 2012–2013, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
125
OMAPL137-HT
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
www.ti.com
Table 5-64. Additional(1) SPI1 Master Timings, 5-Pin Option(2)(3) (4) (continued)
NO.
22
Delay from SPI1_SCS
active to first
SPI1_CLK (8) (9) (10)
td(SCS_SPC)M
23
(8)
(9)
(10)
(11)
MIN
Delay from assertion of
SPI1_ENA low to first
SPI1_CLK edge. (11)
td(ENA_SPC)M
Polarity = 0, Phase = 0,
to SPI1_CLK rising
2P -5
Polarity = 0, Phase = 1,
to SPI1_CLK rising
0.5tc(SPC)M + 2P -5
Polarity = 1, Phase = 0,
to SPI1_CLK falling
2P -5
Polarity = 1, Phase = 1,
to SPI1_CLK falling
0.5tc(SPC)M + 2P -5
MAX UNIT
ns
Polarity = 0, Phase = 0,
to SPI1_CLK rising
P+3
Polarity = 0, Phase = 1,
to SPI1_CLK rising
0.5tc(SPC)M + P + 3
Polarity = 1, Phase = 0,
to SPI1_CLK falling
P+3
Polarity = 1, Phase = 1,
to SPI1_CLK falling
0.5tc(SPC)M + P + 3
ns
If SPI1_ENA is asserted immediately such that the transmission is not delayed by SPI1_ENA.
In the case where the master SPI is ready with new data before SPI1_SCS assertion.
This delay can be increased under software control by the register bit field SPIDELAY.C2TDELAY[4:0].
If SPI1_ENA was initially deasserted high and SPI1_CLK is delayed.
Table 5-65. Additional (1) SPI1 Slave Timings, 4-Pin Enable Option (2) (3)
NO.
24
(1)
(2)
(3)
(4)
(4)
MIN
td(SPC_ENAH)S
Delay from final
SPI1_CLK edge to slave
deasserting SPI1_ENA.
MAX UNIT
Polarity = 0, Phase = 0,
from SPI1_CLK falling
1.5 P -3
2.5 P + 19
Polarity = 0, Phase = 1,
from SPI1_CLK falling
– 0.5tc(SPC)M + 1.5 P -3
– 0.5tc(SPC)M + 2.5 P + 19
Polarity = 1, Phase = 0,
from SPI1_CLK rising
1.5 P -3
2.5 P + 19
Polarity = 1, Phase = 1,
from SPI1_CLK rising
– 0.5tc(SPC)M + 1.5 P -3
– 0.5tc(SPC)M + 2.5 P + 19
ns
These parameters are in addition to the general timings for SPI slave modes (Table 5-61).
Parameters are characterized from -40°C to 125°C unless otherwise noted.
P = SYSCLK2 period
Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four slave clocking modes.
Table 5-66. Additional (1) SPI1 Slave Timings, 4-Pin Chip Select Option (2) (3)
NO.
25
26
(4)
MIN
td(SCSL_SPC)S
td(SPC_SCSH)S
Required delay from SPI1_SCS asserted at slave to first
SPI1_CLK edge at slave.
Required delay from final
SPI1_CLK edge before
SPI1_SCS is deasserted.
MAX
2P
Polarity = 0, Phase = 0,
from SPI1_CLK falling
0.5tc(SPC)M + 2P+5
Polarity = 0, Phase = 1,
from SPI1_CLK falling
2P+5
Polarity = 1, Phase = 0,
from SPI1_CLK rising
0.5tc(SPC)M + 2P+5
Polarity = 1, Phase = 1,
from SPI1_CLK rising
2P+5
UNIT
ns
ns
27
tena(SCSL_SOMI)S
Delay from master asserting SPI1_SCS to slave driving
SPI1_SOMI valid
P + 19
ns
28
tdis(SCSH_SOMI)S
Delay from master deasserting SPI1_SCS to slave 3-stating
SPI1_SOMI
P + 19
ns
(1)
(2)
(3)
(4)
126
These parameters are in addition to the general timings for SPI slave modes (Table 5-61).
Parameters are characterized from -40°C to 125°C unless otherwise noted.
P = SYSCLK2 period
Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four slave clocking modes.
Peripheral Information and Electrical Specifications
Copyright © 2012–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
OMAPL137-HT
www.ti.com
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
Table 5-67. Additional (1) SPI1 Slave Timings, 5-Pin Option (2) (3)
NO.
25
26
MIN
td(SCSL_SPC)S
td(SPC_SCSH)S
Required delay from SPI1_SCS asserted at slave to first
SPI1_CLK edge at slave.
Required delay from final
SPI1_CLK edge before
SPI1_SCS is deasserted.
MAX
2P
Polarity = 0, Phase = 0,
from SPI1_CLK falling
0.5tc(SPC)M + 2P
Polarity = 0, Phase = 1,
from SPI1_CLK falling
2P
Polarity = 1, Phase = 0,
from SPI1_CLK rising
0.5tc(SPC)M + 2P
Polarity = 1, Phase = 1,
from SPI1_CLK rising
2P
UNIT
ns
ns
27
tena(SCSL_SOMI)S
Delay from master asserting SPI1_SCS to slave driving
SPI1_SOMI valid
P + 19
ns
28
tdis(SCSH_SOMI)S
Delay from master deasserting SPI1_SCS to slave 3-stating
SPI1_SOMI
P + 19
ns
29
tena(SCSL_ENA)S
Delay from master deasserting SPI1_SCS to slave driving
SPI1_ENA valid
19
ns
30
(1)
(2)
(3)
(4)
(5)
(4)
tdis(SPC_ENA)S
Delay from final clock receive
edge on SPI1_CLK to slave
3-stating or driving high
SPI1_ENA. (5)
Polarity = 0, Phase = 0,
from SPI1_CLK falling
2.5 P + 19
Polarity = 0, Phase = 1,
from SPI1_CLK rising
2.5 P + 19
Polarity = 1, Phase = 0,
from SPI1_CLK rising
2.5 P + 19
Polarity = 1, Phase = 1,
from SPI1_CLK falling
2.5 P + 19
ns
These parameters are in addition to the general timings for SPI slave modes (Table 5-61).
Parameters are characterized from -40°C to 125°C unless otherwise noted.
P = SYSCLK2 period
Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four slave clocking modes.
SPI1_ENA is driven low after the transmission completes if the SPIINT0.ENABLE_HIGHZ bit is programmed to 0. Otherwise it is tristated. If tri-stated, an external pullup resistor should be used to provide a valid level to the master. This option is useful when tying
several SPI slave devices to a single master.
Copyright © 2012–2013, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
127
OMAPL137-HT
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
www.ti.com
1
2
MASTER MODE
POLARITY = 0 PHASE = 0
3
SPIx_CLK
5
4
SPIx_SIMO
MO(0)
7
SPIx_SOMI
6
MO(1)
MO(n−1)
MO(n)
8
MI(0)
MI(1)
MI(n−1)
MI(n)
MASTER MODE
POLARITY = 0 PHASE = 1
4
SPIx_CLK
6
5
SPIx_SIMO
MO(0)
7
SPIx_SOMI
MO(1)
MO(n−1)
MI(1)
MI(n−1)
MO(n)
8
MI(0)
MI(n)
4
MASTER MODE
POLARITY = 1 PHASE = 0
SPIx_CLK
5
SPIx_SIMO
6
MO(0)
7
SPIx_SOMI
MO(1)
MO(n−1)
MO(n)
8
MI(0)
MI(1)
MI(n−1)
MI(n)
MASTER MODE
POLARITY = 1 PHASE = 1
SPIx_CLK
5
4
SPIx_SIMO
MO(0)
7
SPIx_SOMI
MI(0)
6
MO(1)
MO(n−1)
MI(1)
MI(n−1)
MO(n)
8
MI(n)
Figure 5-39. SPI Timings—Master Mode
128
Peripheral Information and Electrical Specifications
Copyright © 2012–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
OMAPL137-HT
www.ti.com
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
9
12
10
SLAVE MODE
POLARITY = 0 PHASE = 0
11
SPIx_CLK
15
SPIx_SIMO
16
SI(0)
SI(1)
SI(n−1)
13
SPIx_SOMI
SO(0)
SI(n)
14
SO(1)
SO(n−1)
12
SO(n)
SLAVE MODE
POLARITY = 0 PHASE = 1
SPIx_CLK
15
SPIx_SIMO
16
SI(0)
SI(1)
13
SPIx_SOMI
SO(0)
SI(n−1)
SI(n)
SO(n−1)
SO(n)
14
SO(1)
SLAVE MODE
POLARITY = 1 PHASE = 0
12
SPIx_CLK
15
SPIx_SIMO
16
SI(0)
SI(1)
SI(n−1)
13
SPIx_SOMI
SO(0)
SO(1)
SI(n)
14
SO(n−1)
SO(n)
SLAVE MODE
POLARITY = 1 PHASE = 1
12
SPIx_CLK
15
SPIx_SIMO
16
SI(0)
SI(1)
13
SPIx_SOMI
SO(0)
SO(1)
SI(n−1)
SI(n)
14
SO(n−1)
SO(n)
Figure 5-40. SPI Timings—Slave Mode
Copyright © 2012–2013, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
129
OMAPL137-HT
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
www.ti.com
MASTER MODE 4 PIN WITH ENABLE
17
18
SPIx_CLK
SPIx_SIMO
MO(0)
SPIx_SOMI
MI(0)
MO(1)
MO(n−1)
MI(1)
MI(n−1)
MO(n)
MI(n)
SPIx_ENA
MASTER MODE 4 PIN WITH CHIP SELECT
19
20
SPIx_CLK
SPIx_SIMO
MO(0)
SPIx_SOMI
MI(0)
MO(1)
MO(n−1)
MO(n)
MI(1)
MI(n−1)
MI(n)
SPIx_SCS
MASTER MODE 5 PIN
22
20
MO(1)
23
18
SPIx_CLK
SPIx_SIMO
MO(0)
MO(n−1)
MO(n)
SPIx_SOMI
21
SPIx_ENA
MI(0)
MI(1)
MI(n−1)
MI(n)
DESEL(A)
DESEL(A)
SPIx_SCS
A. DESELECTED IS PROGRAMMABLE EITHER HIGH OR
3−STATE (REQUIRES EXTERNAL PULLUP)
Figure 5-41. SPI Timings—Master Mode (4-Pin and 5-Pin)
130
Peripheral Information and Electrical Specifications
Copyright © 2012–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
OMAPL137-HT
www.ti.com
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
SLAVE MODE 4 PIN WITH ENABLE
24
SPIx_CLK
SPIx_SOMI
SO(0)
SO(1)
SO(n−1)
SO(n)
SPIx_SIMO
SI(0)
SPIx_ENA
SI(1)
SI(n−1) SI(n)
SLAVE MODE 4 PIN WITH CHIP SELECT
26
25
SPIx_CLK
27
SPIx_SOMI
28
SO(n−1)
SO(0)
SO(1)
SO(n)
SPIx_SIMO
SI(0)
SPIx_SCS
SI(1)
SI(n−1)
SI(n)
SLAVE MODE 5 PIN
26
30
25
SPIx_CLK
27
SPIx_SOMI
28
SO(1)
SO(0)
SO(n−1)
SO(n)
SPIx_SIMO
29
SPIx_ENA
DESEL(A)
SI(0)
SI(1)
SI(n−1)
SI(n)
DESEL(A)
SPIx_SCS
A. DESELECTED IS PROGRAMMABLE EITHER HIGH OR
3−STATE (REQUIRES EXTERNAL PULLUP)
Figure 5-42. SPI Timings—Slave Mode (4-Pin and 5-Pin)
Copyright © 2012–2013, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
131
OMAPL137-HT
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
www.ti.com
5.17 Enhanced Capture Module (eCAP)
The device contains up to three enhanced capture (eCAP) modules. Figure 5-43 shows a functional block
diagram of a module.
Uses for ECAP include:
• Speed measurements of rotating machinery (e.g. toothed sprockets sensed via Hall sensors)
• Elapsed time measurements between position sensor triggers
• Period and duty cycle measurements of Pulse train signals
• Decoding current or voltage amplitude derived from cuty cycle encoded current/voltage sensors
The ECAP module described in this specification includes the following features:
• 32 bit time base
• 4 event time-stamp registers (each 32 bits)
• Edge polarity selection for up to 4 sequenced time-stamp capture events
• Interrupt on either of the 4 events
• Single shot capture of up to 4 event time-stamps
• Continuous mode capture of time-stamps in a 4 deep circular buffer
• Absolute time-stamp capture
• Difference mode time-stamp capture
• All the above resources are dedicated to a single input pin
The eCAP modules are clocked at the SYSCLK2 rate.
The clock enable bits (ECAP1/2/3/4ENCLK) in the PCLKCR1 register are used to turn off the eCAP
modules individually (for low power operation). Upon reset, ECAP1ENCLK, ECAP2ENCLK,
ECAP3ENCLK, and ECAP4EN CLK are set to low, indicating that the peripheral clock is off.
132
Peripheral Information and Electrical Specifications
Copyright © 2012–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
OMAPL137-HT
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
SYNC
www.ti.com
SYNCIn
SYNCOut
CTRPHS
(phase register−32 bit)
TSCTR
(counter−32 bit)
APWM mode
CTR_OVF
OVF
Delta−mode
RST
CTR [0−31]
PRD [0−31]
CMP [0−31]
PWM
compare
logic
32
CTR=PRD
CTR [0−31]
CTR=CMP
32
32
CAP1
(APRD active)
APRD
shadow
32
32
LD1
LD
MODE SELECT
PRD [0−31]
Polarity
select
32
CMP [0−31]
CAP2
(ACMP active)
32
LD2
LD
32
CAP3
(APRD shadow)
LD
32
CAP4
(ACMP shadow)
LD
Polarity
select
Event
qualifier
ACMP
shadow
eCAPx
Event
Pre-scale
Polarity
select
LD3
LD4
4
Capture events
Polarity
select
4
CEVT[1:4]
to Interrupt
Controller
Interrupt
Trigger
and
Flag
control
CTR_OVF
Continuous /
Oneshot
Capture Control
CTR=PRD
CTR=CMP
Figure 5-43. eCAP Functional Block Diagram
Copyright © 2012–2013, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
133
OMAPL137-HT
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
www.ti.com
Table 5-68 is the list of the ECAP registers. See the TMS320C674x/OMAP-L1x Processor Peripherals
Overview Reference Guide. – Literature Number SPRUFK9 for more details.
Table 5-68. ECAPx Configuration Registers
ECAP0
BYTE ADDRESS
ECAP1
BYTE ADDRESS
ECAP2
BYTE ADDRESS
0x01F0 6000
0x01F0 7000
0x01F0 8000
TSCTR
0x01F0 6004
0x01F0 7004
0x01F0 8004
CTRPHS
REGISTER NAME
DESCRIPTION
Time-Stamp Counter
Counter Phase Offset Value Register
0x01F0 6008
0x01F0 7008
0x01F0 8008
CAP1
Capture 1 Register
0x01F0 600C
0x01F0 700C
0x01F0 800C
CAP2
Capture 2 Register
0x01F0 6010
0x01F0 7010
0x01F0 8010
CAP3
Capture 3 Register
0x01F0 6014
0x01F0 7014
0x01F0 8014
CAP4
Capture 4 Register
0x01F0 6028
0x01F0 7028
0x01F0 8028
ECCTL1
Capture Control Register 1
0x01F0 602A
0x01F0 702A
0x01F0 802A
ECCTL2
Capture Control Register 2
0x01F0 602C
0x01F0 702C
0x01F0 802C
ECEINT
Capture Interrupt Enable Register
0x01F0 602E
0x01F0 702E
0x01F0 802E
ECFLG
Capture Interrupt Flag Register
0x01F0 6030
0x01F0 7030
0x01F0 8030
ECCLR
Capture Interrupt Clear Register
0x01F0 6032
0x01F0 7032
0x01F0 8032
ECFRC
Capture Interrupt Force Register
0x01F0 605C
0x01F0 705C
0x01F0 805C
REVID
Revision ID
Table 5-69 shows the eCAP timing requirement and Table 5-70 shows the eCAP switching characteristics.
Table 5-69. Enhanced Capture (eCAP) Timing Requirement (1)
PARAMETER
tw(CAP)
(1)
Capture input pulse width
TEST CONDITIONS
MIN
MAX
UNIT
Asynchronous
2tc(SCO)
cycles
Synchronous
2tc(SCO)
cycles
Parameters are characterized from -40°C to 125°C unless otherwise noted.
Table 5-70. eCAP Switching Characteristics (1)
PARAMETER
tw(APWM)
(1)
134
TEST CONDITIONS
Pulse duration, APWMx output high/low
MIN
20
MAX
UNIT
ns
Parameters are characterized from -40°C to 125°C unless otherwise noted.
Peripheral Information and Electrical Specifications
Copyright © 2012–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
OMAPL137-HT
www.ti.com
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
5.18 Enhanced Quadrature Encoder Module (eQEP)
The device contains up to two enhanced quadrature encoder (eQEP) modules.
System
control registers
To CPU
EQEPxENCLK
Data bus
SYSCLK2
QCPRD
QCTMR
QCAPCTL
16
16
16
Quadrature
capture unit
(QCAP)
QCTMRLAT
QCPRDLAT
Registers
used by
multiple units
QUTMR
QWDTMR
QUPRD
QWDPRD
32
16
QEPCTL
QEPSTS
UTIME
Interrupt Controller
QFLG
UTOUT
QWDOG
QDECCTL
16
WDTOUT
EQEPxAIN
QCLK
EQEPxINT
16
QPOSLAT
EQEPxIIN
QI
Position counter/
control unit
(PCCU)
EQEPxIOUT
QS Quadrature
decoder
PHE
(QDU)
QPOSSLAT
PCSOUT
QPOSILAT
EQEPxIOE
EQEPxSIN
EQEPxSOUT
EQEPxSOE
32
32
QPOSCNT
EQEPxB/XDIR
GPIO
MUX
EQEPxI
EQEPxS
16
QPOSCMP
QPOSINIT
EQEPxA/XCLK
EQEPxBIN
QDIR
QEINT
QFRC
QPOSMAX
QCLR
QPOSCTL
Enhanced QEP (eQEP) Peripheral
Figure 5-44. eQEP Functional Block Diagram
Table 5-71 is the list of the EQEP registers. See the TMS320C674x/OMAP-L1x Processor Peripherals
Overview Reference Guide. – Literature Number SPRUFK9 for more details.
Table 5-72 shows the eQEP timing requirement and Table 5-73 shows the eQEP switching
characteristics.
Copyright © 2012–2013, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
135
OMAPL137-HT
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
www.ti.com
Table 5-71. EQEP Registers
EQEP0
BYTE ADDRESS
EQEP1
BYTE ADDRESS
0x01F0 9000
0x01F0 A000
QPOSCNT
eQEP Position Counter
0x01F0 9004
0x01F0 A004
QPOSINIT
eQEP Initialization Position
Count
REGISTER NAME
DESCRIPTION
0x01F0 9008
0x01F0 A008
QPOSMAX
eQEP Maximum Position Count
0x01F0 900C
0x01F0 A00C
QPOSCMP
eQEP Position-compare
0x01F0 9010
0x01F0 A010
QPOSILAT
eQEP Index Position Latch
0x01F0 9014
0x01F0 A014
QPOSSLAT
eQEP Strobe Position Latch
0x01F0 9018
0x01F0 A018
QPOSLAT
eQEP Position Latch
0x01F0 901C
0x01F0 A01C
QUTMR
eQEP Unit Timer
0x01F0 9020
0x01F0 A020
QUPRD
eQEP Unit Period Register
0x01F0 9024
0x01F0 A024
QWDTMR
eQEP Watchdog Timer
0x01F0 9026
0x01F0 A026
QWDPRD
eQEP Watchdog Period Register
0x01F0 9028
0x01F0 A028
QDECCTL
eQEP Decoder Control Register
0x01F0 902A
0x01F0 A02A
QEPCTL
eQEP Control Register
0x01F0 902C
0x01F0 A02C
QCAPCTL
eQEP Capture Control Register
0x01F0 902E
0x01F0 A02E
QPOSCTL
eQEP Position-compare Control
Register
0x01F0 9030
0x01F0 A030
QEINT
eQEP Interrupt Enable Register
0x01F0 9032
0x01F0 A032
QFLG
eQEP Interrupt Flag Register
0x01F0 9034
0x01F0 A034
QCLR
eQEP Interrupt Clear Register
0x01F0 9036
0x01F0 A036
QFRC
eQEP Interrupt Force Register
0x01F0 9038
0x01F0 A038
QEPSTS
eQEP Status Register
0x01F0 903A
0x01F0 A03A
QCTMR
eQEP Capture Timer
0x01F0 903C
0x01F0 A03C
QCPRD
eQEP Capture Period Register
0x01F0 903E
0x01F0 A03E
QCTMRLAT
eQEP Capture Timer Latch
0x01F0 9040
0x01F0 A040
QCPRDLAT
eQEP Capture Period Latch
0x01F0 905C
0x01F0 A05C
REVID
eQEP Revision ID
Table 5-72. Enhanced Quadrature Encoder Pulse (eQEP) Timing Requirements (1)
TEST CONDITIONS
MIN
MAX
UNIT
tw(QEPP)
QEP input period
Asynchronous/synchronous
2tc(SCO)
cycles
tw(INDEXH)
QEP Index Input High time
Asynchronous/synchronous
2tc(SCO)
cycles
tw(INDEXL)
QEP Index Input Low time
Asynchronous/synchronous
2tc(SCO)
cycles
tw(STROBH)
QEP Strobe High time
Asynchronous/synchronous
2tc(SCO)
cycles
tw(STROBL)
QEP Strobe Input Low time
Asynchronous/synchronous
2tc(SCO)
cycles
(1)
Parameters are characterized from -40°C to 125°C unless otherwise noted.
Table 5-73. eQEP Switching Characteristics (1)
MAX
UNIT
td(CNTR)xin
Delay time, external clock to counter increment
PARAMETER
4tc(SCO)
cycles
td(PCS-OUT)QEP
Delay time, QEP input edge to position compare sync output
6tc(SCO)
cycles
(1)
136
TEST CONDITIONS
MIN
Parameters are characterized from -40°C to 125°C unless otherwise noted.
Peripheral Information and Electrical Specifications
Copyright © 2012–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
OMAPL137-HT
www.ti.com
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
5.19 Enhanced High-Resolution Pulse-Width Modulator (eHRPWM)
The device contains up to three enhanced PWM Modules (eHRPWM). Figure 5-45 shows a block diagram
of multiple eHRPWM modules. Figure 4-4 shows the signal interconnections with the eHRPWM. See the
TMS320C674x/OMAP-L1x Processor Peripherals Overview Reference Guide. – Literature Number
SPRUFK9 for more details.
EPWMSYNCI
EPWM0INT
EPWM0SYNCI
EPWM0A
ePWM0 module
EPWM0B
TZ
EPWM0SYNCO
EPWM1SYNCI
EPWM1INT
EPWM1A
ePWM1 module
EPWM1SYNCO
EPWM1B
GPIO
MUX
TZ
EPWM2SYNCI
EPWM2INT
Interrupt
Controllers
EPWM2A
ePWM2 module
EPWM2SYNCO
To eCAP0
Module
(sync in)
EPWM2B
TZ
EPWMSYNCO
Peripheral Bus
Figure 5-45. Multiple PWM Modules in the device
Copyright © 2012–2013, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
137
OMAPL137-HT
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
www.ti.com
Table 5-74. eHRPWM Module Control and Status Registers Grouped by Submodule
eHRPWM1
BYTE ADDRESS
eHRPWM2
BYTE ADDRESS
0x01F0 0000
0x01F0 2000
0x01F0 4000
TBCTL
1
No
Time-Base Control Register
0x01F0 0002
0x01F0 2002
0x01F0 4002
TBSTS
1
No
Time-Base Status Register
0x01F0 0004
0x01F0 2004
0x01F0 4004
TBPHSHR
1
No
Extension for HRPWM Phase Register
0x01F0 0006
0x01F0 2006
0x01F0 4006
TBPHS
1
No
Time-Base Phase Register
0x01F0 0008
0x01F0 2008
0x01F0 4008
TBCNT
1
No
Time-Base Counter Register
0x01F0 000A
0x01F0 200A
0x01F0 400A
TBPRD
1
Yes
Time-Base Period Register
Acronym
Size
(×16)
Sha
do
w Register Description
eHRPWM0
BYTE ADDRESS
Time-Base Submodule Registers
(1)
Counter-Compare Submodule Registers
0x01F0 000E
0x01F0 200E
0x01F0 400E
CMPCTL
1
No
Counter-Compare Control Register
0x01F0 0010
0x01F0 2010
0x01F0 4010
CMPAHR
1
No
Extension for HRPWM Counter-Compare A
Register (1)
0x01F0 0012
0x01F0 2012
0x01F0 4012
CMPA
1
Yes
Counter-Compare A Register
0x01F0 0014
0x01F0 2014
0x01F0 4014
CMPB
1
Yes
Counter-Compare B Register
Action-Qualifier Submodule Registers
0x01F0 0016
0x01F0 2016
0x01F0 4016
AQCTLA
1
No
Action-Qualifier Control Register for Output A
(eHRPWMxA)
0x01F0 0018
0x01F0 2018
0x01F0 4018
AQCTLB
1
No
Action-Qualifier Control Register for Output B
(eHRPWMxB)
0x01F0 001A
0x01F0 201A
0x01F0 401A
AQSFRC
1
No
Action-Qualifier Software Force Register
0x01F0 001C
0x01F0 201C
0x01F0 401C
AQCSFRC
1
Yes
Action-Qualifier Continuous S/W Force Register
Set
0x01F0 001E
0x01F0 201E
0x01F0 401E
DBCTL
1
No
Dead-Band Generator Control Register
0x01F0 0020
0x01F0 2020
0x01F0 4020
DBRED
1
No
Dead-Band Generator Rising Edge Delay Count
Register
0x01F0 0022
0x01F0 2022
0x01F0 4022
DBFED
1
No
Dead-Band Generator Falling Edge Delay Count
Register
0x01F0 003C
0x01F0 203C
0x01F0 403C
1
No
PWM-Chopper Control Register
Dead-Band Generator Submodule Registers
PWM-Chopper Submodule Registers
PCCTL
Trip-Zone Submodule Registers
0x01F0 0024
0x01F0 2024
0x01F0 4024
TZSEL
1
No
Trip-Zone Select Register
0x01F0 0028
0x01F0 2028
0x01F0 4028
TZCTL
1
No
Trip-Zone Control Register
0x01F0 002A
0x01F0 202A
0x01F0 402A
TZEINT
1
No
Trip-Zone Enable Interrupt Register
0x01F0 002C
0x01F0 202C
0x01F0 402C
TZFLG
1
No
Trip-Zone Flag Register
0x01F0 002E
0x01F0 202E
0x01F0 402E
TZCLR
1
No
Trip-Zone Clear Register
0x01F0 0030
0x01F0 2030
0x01F0 4030
TZFRC
1
No
Trip-Zone Force Register
Event-Trigger Submodule Registers
0x01F0 0032
0x01F0 2032
0x01F0 4032
ETSEL
1
No
Event-Trigger Selection Register
0x01F0 0034
0x01F0 2034
0x01F0 4034
ETPS
1
No
Event-Trigger Pre-Scale Register
0x01F0 0036
0x01F0 2036
0x01F0 4036
ETFLG
1
No
Event-Trigger Flag Register
0x01F0 0038
0x01F0 2038
0x01F0 4038
ETCLR
1
No
Event-Trigger Clear Register
0x01F0 003A
0x01F0 203A
0x01F0 403A
ETFRC
1
No
Event-Trigger Force Register
High-Resolution PWM (HRPWM) Submodule Registers
0x01F0 1040
(1)
138
0x01F0 3040
0x01F0 5040
HRCNFG
1
No
HRPWM Configuration Register
(1)
These registers are only available on eHRPWM instances that include the high-resolution PWM (HRPWM) extension; otherwise, these
locations are reserved.
Peripheral Information and Electrical Specifications
Copyright © 2012–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
OMAPL137-HT
www.ti.com
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
5.19.1 Enhanced Pulse Width Modulator (eHRPWM) Timing
PWM refers to PWM outputs on eHRPWM1-6. Table 5-75 shows the PWM timing requirements and
Table 5-76, switching characteristics.
Table 5-75. eHRPWM Timing Requirements (1)
PARAMETER
tw(SYNCIN)
(1)
TEST CONDITIONS
Sync input pulse width
MIN
MAX
UNIT
Asynchronous
2tc(SCO)
cycles
Synchronous
2tc(SCO)
cycles
Parameters are characterized from -40°C to 125°C unless otherwise noted.
Table 5-76. eHRPWM Switching Characteristics (1)
PARAMETER
TEST CONDITIONS
tw(PWM)
Pulse duration, PWMx output high/low
tw(SYNCOUT)
Sync output pulse width
td(PWM)TZA
Delay time, trip input active to PWM forced high
Delay time, trip input active to PWM forced low
td(TZ-PWM)HZ
Delay time, trip input active to PWM Hi-Z
(1)
MIN
MAX
UNIT
20
ns
8tc(SCO)
cycles
no pin load
25
ns
20
ns
Parameters are characterized from -40°C to 125°C unless otherwise noted.
5.19.2 Trip-Zone Input Timing
tw(TZ)
TZ
td(TZ_PWM)HZ
PWM (A)
A.
PWM refers to all the PWM pins in the device. The state of the PWM pins after TZ is taken high depends on the PWM
recovery software.
Figure 5-46. PWM Hi-Z Characteristics
Table 5-77. Trip-Zone Input Timing Requirements (1)
MIN
tw(TZ)
(1)
Pulse duration, TZx input low
MAX
UNIT
Asynchronous
1tc(SCO)
cycles
Synchronous
2tc(SCO)
cycles
Parameters are characterized from -40°C to 125°C unless otherwise noted.
Table 5-78 shows the high-resolution PWM switching characteristics.
Table 5-78. High Resolution PWM Characteristics at SYSCLKOUT = (60 - 100 MHz) (1)
MIN
Micro Edge Positioning (MEP) step size
(1)
(2)
(2)
TYP
MAX
200
UNIT
ps
Parameters are characterized from -40°C to 125°C unless otherwise noted.
Maximum MEP step size is based on worst-case process, maximum temperature and maximum voltage. MEP step size will increase
with low voltage and high temperature and decrease with voltage and cold temperature.
Applications that use the HRPWM feature should use MEP Scale Factor Optimizer (SFO) estimation software functions. See the TI
software libraries for details of using SFO function in end applications. SFO functions help to estimate the number of MEP steps per
SYSCLKOUT period dynamically while the HRPWM is in operation.
Copyright © 2012–2013, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
139
OMAPL137-HT
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
www.ti.com
5.20 LCD Controller
Table 5-79 lists the LCD Controller registers. See the TMS320C674x/OMAP-L1x Processor Peripherals
Overview Reference Guide. – Literature Number SPRUFK9 for more details.
Table 5-79. LCD Controller (LCDC) Registers
Address Offset
Acronym
Register Description
0x01E1 3000
REVID
LCD Revision Identification Register
0x01E1 3004
LCD_CTRL
LCD Control Register
0x01E1 3008
LCD_STAT
LCD Status Register
0x01E1 300C
LIDD_CTRL
LCD LIDD Control Register
0x01E1 3010
LIDD_CS0_CONF
LCD LIDD CS0 Configuration Register
0x01E1 3014
LIDD_CS0_ADDR
LCD LIDD CS0 Address Read/Write Register
0x01E1 3018
LIDD_CS0_DATA
LCD LIDD CS0 Data Read/Write Register
0x01E1 301C
LIDD_CS1_CONF
LCD LIDD CS1 Configuration Register
0x01E1 3020
LIDD_CS1_ADDR
LCD LIDD CS1 Address Read/Write Register
0x01E1 3024
LIDD_CS1_DATA
LCD LIDD CS1 Data Read/Write Register
0x01E1 3028
RASTER_CTRL
LCD Raster Control Register
0x01E1 302C
RASTER_TIMING_0
LCD Raster Timing 0 Register
0x01E1 3030
RASTER_TIMING_1
LCD Raster Timing 1 Register
0x01E1 3034
RASTER_TIMING_2
LCD Raster Timing 2 Register
0x01E1 3038
RASTER_SUBPANEL
LCD Raster Subpanel Display Register
0x01E1 3040
LCDDMA_CTRL
LCD DMA Control Register
0x01E1 3044
LCDDMA_FB0_BASE
LCD DMA Frame Buffer 0 Base Address Register
0x01E1 3048
LCDDMA_FB0_CEILING
LCD DMA Frame Buffer 0 Ceiling Address Register
0x01E1 304C
LCDDMA_FB1_BASE
LCD DMA Frame Buffer 1 Base Address Register
0x01E1 3050
LCDDMA_FB1_CEILING
LCD DMA Frame Buffer 1 Ceiling Address Register
5.20.1 LCD Interface Display Driver (LIDD Mode)
Table 5-80. LCD LIDD Mode Timing Requirements (1)
NO
(1)
PARAMETER
16
tsu(LCD_D)
Setup time, LCD_D[15:0] valid
before LCD_CLK (SYSCLK2) ↑
17
th(LCD_D)
Hold time, LCD_D[15:0] valid after
LCD_CLK (SYSCLK2) ↑
MIN
MAX
UNIT
7
ns
0.5
ns
Parameters are characterized from -40°C to 125°C unless otherwise noted.
Table 5-81. LCD LIDD Mode Timing Characteristics (1)
NO
(1)
140
PARAMETER
MIN
MAX
UNIT
-0.5
10
ns
4
td(LCD_D_V)
Delay time, LCD_CLK (SYSCLK2) ↑
to LCD_D[15:0] valid (write)
5
td(LCD_D_I)
Delay time, LCD_CLK (SYSCLK2) ↑
to LCD_D[15:0] invalid (write)
-0.5
10
ns
6
td(LCD_E_A)
Delay time, LCD_CLK (SYSCLK2) ↑
to LCD_AC_ENB_CS↓
-0.5
7
ns
7
td(LCD_E_I)
Delay time, LCD_CLK (SYSCLK2) ↑
to LCD_AC_ENB_CS↑
-0.5
7
ns
8
td(LCD_A_A)
Delay time, LCD_CLK (SYSCLK2) ↑
to LCD_VSYNC↓
-0.5
8
ns
9
td(LCD_A_I)
Delay time, LCD_CLK (SYSCLK2) ↑
to LCD_VSYNC↑
-0.5
8
ns
Parameters are characterized from -40°C to 125°C unless otherwise noted.
Peripheral Information and Electrical Specifications
Copyright © 2012–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
OMAPL137-HT
www.ti.com
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
Table 5-81. LCD LIDD Mode Timing Characteristics(1) (continued)
NO
PARAMETER
MIN
MAX
UNIT
-0.5
8
ns
10
td(LCD_W_A)
Delay time, LCD_CLK (SYSCLK2) ↑
to LCD_HSYNC↓
11
td(LCD_W_I)
Delay time, LCD_CLK (SYSCLK2) ↑
to LCD_HSYNC↑
-0.5
8
ns
12
td(LCD_STRB_A)
Delay time, LCD_CLK (SYSCLK2) ↑
to LCD_PCLK↑
-0.5
12
ns
13
td(LCD_STRB_I)
Delay time, LCD_CLK (SYSCLK2) ↑
to LCD_PCLK↓
-0.5
12
ns
14
td(LCD_D_Z)
Delay time, LCD_CLK (SYSCLK2) ↑
to LCD_D[15:0] in 3-state
-0.5
12
ns
15
td(Z_LCD_D)
Delay time, LCD_CLK (SYSCLK2) ↑
to 15 td(Z_LCD_D) 3-state)
LCD_D[15:0] (valid from 3-state)
-0.5
12
ns
1
W_SU
(0 to 31)
2
3
LCD_CLK
(SYSCLK2)
CS_DELAY
(0 to 3)
W_STROBE
(1 to 63)
R_SU
(0 to 31)
R_STROBE
(1 to 63)
W_HOLD
(1 to 15)
4
R_HOLD
(1 to 15)
5
14
17
16
LCD_D[15:0]
CS_DELAY
(0 to 3)
15
Data[7:0]
Write Data
Read Status
LCD_PCLK
Not Used
8
9
LCD_VSYNC
RS
10
11
LCD_HSYNC
R/W
12
12
13
13
E0
E1
LCD_AC_ENB_CS
Figure 5-47. Character Display HD44780 Write
Copyright © 2012–2013, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
141
OMAPL137-HT
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
www.ti.com
W_HOLD
(1–15)
R_SU
(0–31)
1
2
R_STROBE
R_HOLD
CS_DELAY
(1–63)
(1–5)
(0−3)
(0–31)
W_SU
17
15
4
W_STROBE
CS_DELAY
(1–63)
(0 − 3)
3
Not
Used
LCD_CLK
(SYSCLK2)
14
16
LCD_D[7:0]
5
Data[7:0]
Write Instruction
Read
Data
LCD_PCLK
Not
Used
8
9
RS
LCD_VSYNC
10
11
LCD_HSYNC
R/W
12
13
12
LCD_AC_ENB_CS
13
E0
E1
Figure 5-48. Character Display HD44780 Read
142
Peripheral Information and Electrical Specifications
Copyright © 2012–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
OMAPL137-HT
www.ti.com
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
W_HOLD
(1−15)
W_HOLD
(1−15)
1
2
W_SU
W_STROBE
CS_DELAY
W_SU
W_STROBE
(0−31)
(1−63)
(0−3)
(0−31)
(1−63)
CS_DELAY
(0−3)
3
Clock
LCD_CLK
(SYSCLK2)
4
LCD_D[15:0]
LCD_AC_ENB_CS
(async mode)
5
5
4
Write Address
Write Data
7
6
Data[15:0]
6
7
CS0
CS1
9
8
A0
LCD_VSYNC
10
11
11
10
R/W
LCD_HSYNC
12
13
12
13
E
LCD_PCLK
Figure 5-49. Micro-Interface Graphic Display 6800 Write
Copyright © 2012–2013, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
143
OMAPL137-HT
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
www.ti.com
W_HOLD
(1−15)
1
2
W_SU
W_STROBE
CS_DELAY
(0−31)
(1−63)
(0−3)
R_SU
(0−31)
R_STROBE
(1−63
R_HOLD
CS_DELAY
(1−15)
(0−3)
3
Clock
LCD_CLK
(SYSCLK2)
4
LCD_D[15:0]
5
14
16
17
15
Write Address
Data[15:0]
Read
Data
6
7
6
7
LCD_AC_ENB_CS
(async mode)
CS0
CS1
9
8
LCD_VSYNC
A0
11
10
LCD_HSYNC
R/W
12
13
12
LCD_PCLK
13
E
Figure 5-50. Micro-Interface Graphic Display 6800 Read
144
Peripheral Information and Electrical Specifications
Copyright © 2012–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
OMAPL137-HT
www.ti.com
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
R_SU
(0−31)
R_SU
(0−31)
R_STROBE R_HOLD CS_DELAY
R_STROBE R_HOLD CS_DELAY
1
2
(1−63)
3
(1−15)
(0−3)
(1−63)
(1−15)
(0−3)
Clock
LCD_CLK
(SYSCLK2)
14
16
17
15
14
17
16
15
LCD_D[15:0]
Data[15:0]
Read
Data
6
LCD_AC_ENB_CS
(async mode)
7
Read
Status
6
7
CS0
CS1
8
9
LCD_VSYNC
A0
R/W
LCD_HSYNC
12
13
12
13
E
LCD_PCLK
Figure 5-51. Micro-Interface Graphic Display 6800 Status
Copyright © 2012–2013, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
145
OMAPL137-HT
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
www.ti.com
W_HOLD
(1−15)
W_HOLD
(1−15)
1
2
W_SU
W_STROBE
CS_DELAY
W_SU
W_STROBE
CS_DELAY
(0−31)
3
(1−63)
(0−3)
(0−31)
(1−63)
(0 − 3)
Clock
LCD_CLK
(SYSCLK2)
4
LCD_D[15:0]
LCD_AC_ENB_CS
(async mode)
5
4
Write Address
5
DATA[15:0]
Write Data
7
6
6
7
CS0
CS1
8
9
LCD_VSYNC
A0
10
11
10
LCD_HSYNC
11
WR
LCD_PCLK
RD
Figure 5-52. Micro-Interface Graphic Display 8080 Write
146
Peripheral Information and Electrical Specifications
Copyright © 2012–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
OMAPL137-HT
www.ti.com
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
W_HOLD
(1−15)
W_SU
W_STROBE
R_SU
(0−31)
CS_DELAY
R_STROBE
R_HOLD
CS_DELAY
1
2
3
(0−31)
(1−63)
(0−3)
(1−63)
(1−15)
16
17
(0−3)
Clock
LCD_CLK
(SYSCLK2)
4
LCD_D[15:0]
5
14
15
Data[15:0]
Write Address
6
7
LCD_AC_ENB_CS
(async mode)
6
Read
Data
7
CS0
CS1
9
8
LCD_VSYNC
A0
10
11
WR
LCD_HSYNC
12
13
RD
LCD_PCLK
Figure 5-53. Micro-Interface Graphic Display 8080 Read
Copyright © 2012–2013, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
147
OMAPL137-HT
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
www.ti.com
R_SU
(0−31)
R_SU
(0−31)
R_STROBE
1
2
(1-63)
R_HOLD
(1-15)
CS_DELAY
R_STROBE R_HOLD
(0-3)
(1-63)
CS_DELAY
(1-15)
(0-3)
3
Clock
LCD_CLK
(SYSCLK2)
14
16
17
15
14
16
17
15
Data[15:0]
LCD_D[15:0]
Read Data
Read Status
7
6
6
7
LCD_AC_ENB_CS
CS0
CS1
8
9
A0
LCD_VSYNC
WR
LCD_HSYNC
12
13
12
13
RD
LCD_PCLK
Figure 5-54. Micro-Interface Graphic Display 8080 Status
148
Peripheral Information and Electrical Specifications
Copyright © 2012–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
OMAPL137-HT
www.ti.com
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
5.20.2 LCD Raster Mode
Table 5-82. LCD Raster Mode Timing
See Figure 5-56 through Figure 5-54
NO.
Clock frequency, pixel clock
tc(PIXEL_CLK)
Cycle time, pixel clock
(2)
tw(PIXEL_CLK_H)
3 (2)
tw(PIXEL_CLK_L)
4
td(LCD_D_V)
Delay time, LCD_PCLK↑ to LCD_D[15:0] valid (write)
5
td(LCD_D_IV)
Delay time, LCD_PCLK↑ to LCD_D[15:0] invalid (write)
1 (2)
2
(1)
(2)
(3)
PARAMETER
fclock(PIXEL_CLK)
MIN
MAX
UNIT
F/2 (1)
MHz
26.6
ns
Pulse duration, pixel clock high
10
ns
Pulse duration, pixel clock low
10
0
ns
12.5
ns
0
12.5
ns
(3)
S2+12.5 (
6
td(LCD_AC_ENB_CS_A)
Delay time, LCD_PCLK↓ to LCD_AC_ENB_CS↑
S2+0
7
td(LCD_AC_ENB_CS_I)
Delay time, LCD_PCLK↓ to LCD_AC_ENB_CS↓
S2+0 (3)
8
td(LCD_VSYNC_A)
Delay time, LCD_PCLK↓ to LCD_VSYNC↑
9
td(LCD_VSYNC_I)
Delay time, LCD_PCLK↓ to LCD_VSYNC↓
10
td(LCD_HSYNC_A)
11
td(LCD_HSYNC_I)
3)
S2+12.5 (
ns
3)
ns
0
12.5
ns
0
12.5
ns
Delay time, LCD_PCLK↑ to LCD_HSYNC↑
0
12.5
ns
Delay time, LCD_PCLK↑ to LCD_HSYNC↓
0
12.5
ns
F = frequency of LCD_PCLK in ns
Parameters are characterized from -40°C to 125°C unless otherwise noted.
S2=SYSCLK2 cycle time in ns.
Frame-to-frame timing is derived through the following parameters in the LCD (RASTER_TIMING_1)
register:
• Vertical front porch (VFP)
• Vertical sync pulse width (VSW)
• Vertical back porch (VBP)
• Lines per panel (LPP)
Line-to-line timing is derived through the following parameters in the LCD (RASTER_TIMING_0) register:
• Horizontal front porch (HFP)
• Horizontal sync pulse width (HSW)
• Horizontal back porch (HBP)
• Pixels per panel (PPL)
LCD_AC_ENB_CS timing is derived through the following parameter in the LCD (RASTER_TIMING_2)
register:
• AC bias frequency (ACB)
The display format produced in raster mode is shown in Figure 5-55. An entire frame is delivered one line
at a time. The first line delivered starts at data pixel (1, 1) and ends at data pixel (P, 1). The last line
delivered starts at data pixel (1, L) and ends at data pixel (P, L). The beginning of each new frame is
denoted by the activation of I/O signal LCD_VSYNC. The beginning of each new line is denoted by the
activation of I/O signal LCD_HSYNC.
Copyright © 2012–2013, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
149
OMAPL137-HT
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
www.ti.com
Data Pixels (From 1 to P)
1, 1
2, 1
1, 2
2, 2
P−2,
1
3, 1
P−1,
1
P, 1
P−1,
2
P, 2
P, 3
Data Lines (From 1 to L)
1, 3
LCD
P,
L−2
1,
L−2
1,
L−1
2,
L−1
1, L
2, L
P−2,
L
3, L
P−1,
L−1
P,
L−1
P−1,
L
P, L
Figure 5-55. LCD Raster-Mode Display Format
150
Peripheral Information and Electrical Specifications
Copyright © 2012–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
OMAPL137-HT
www.ti.com
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
Frame Time ~ 70Hz
Active TFT
VBP
(0 to 255)
VSW
(1 to 64)
Line
Time
LPP
VFP
(1 to 1024)
(0 to 255)
VSW
(1 to 64)
Hsync
LCD_HSYNC
LCD_VSYNC
Vsync
Data
LCD_D[15:0]
1, 1
P, 1
1, L−1
P, L−1
1, 2
P, 2
1, L
P, L
Enable
LCD_AC_ENB_CS
ACB
ACB
(0 to 255)
(0 to 255)
10
11
Hsync
LCD_HSYNC
CLK
LCD_PCLK
Data
LCD_D[15:0]
1, 1
2, 1
P, 1
PLL
16
(1 to 1024)
1, 2
HFP
HSW
HBP
(1 to 256)
(1 to 64)
(1 to 256)
2, 2
P, 2
PLL
16
(1 to 1024)
Line 2
Line 1
Figure 5-56. LCD Raster-Mode Active
Copyright © 2012–2013, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
151
OMAPL137-HT
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
www.ti.com
Frame Time ~ 70Hz
VBP = 0
VFP = 0
VBP = 0
VFP = 0
Passive STN VSW = 1
(1 to 64)
VSW = 1
(1 to 64)
LPP
(1 to 1024)
Line
Time
LCD_HSYNC
LP
LCD_VSYNC
FP
1, L
Data
LCD_D[7:0]
1, 1: 1, 2:
P, 2 P, 2
1, L:
P, L
1, 3:
P, 3
1, 4:
P, 4
1, 5:
P, 5
1, 6:
P, 6
1, L
P, L
1, L−1
P, L−1
1, 1
P, 1
1, 2
P, 2
1, L−4 1, L−3 1, L−2 1, L−1
P, L−4 P, L−3 P, L−2 P, L−1
M
LCD_AC_ENB_CS
ACB
ACB
(0 to 255)
(0 to 255)
11
10
LCD_HSYNC
LP
LCD_PCLK
CP
Data
LCD_D[7:0]
1, 5
2, 5
P, 5
PPL
16
1, 6
(1 to 1024)
HFP
HSW
HBP
(1 to 256)
(1 to 64)
(1 to 256)
2, 6
P, 6
PPL
16
(1 to 2024)
Line 6
Line 5
Figure 5-57. LCD Raster-Mode Passive
152
Peripheral Information and Electrical Specifications
Copyright © 2012–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
OMAPL137-HT
www.ti.com
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
6
LCD_AC_ENB_CS
8
LCD_VSYNC
10
11
LCD_HSYNC
1
2
3
LCD_PCLK
(passive mode)
5
4
LCD_D[7:0]
(passive mode)
1, L
2, L
P, L
1, 1
2, 1
P, 1
1
2
3
LCD_PCLK
(active mode)
4
LCD_D[15:0]
(active mode)
VBP = 0
VFP = 0
VSW = 1
1, L
2, L
PPL
16 × (1 to 1024)
Line L
5
P, L
HFP
(1 to 256
HSW
(1 to 64)
HBP
(1 to 256)
PPL
16 ×(1 to 1024)
Line 1 (Passive Only)
Figure 5-58. LCD Raster-Mode Control Signal Activation
Copyright © 2012–2013, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
153
OMAPL137-HT
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
www.ti.com
7
LCD_AC_ENB_CS
9
LCD_VSYNC
10
11
LCD_HSYNC
1
3
4
LCD_PCLK
(passive mode)
5
4
LCD_D[7:0]
(passive mode)
1, 1
2, 1
P, 1
1, 2
2, 2
P, 2
1
2
3
LCD_PCLK
(active mode)
4
LCD_D[15:0]
(active mode)
VBP = 0
VFP = 0
VSW = 1
5
1, 1
PPL
16 × (1 to 1024)
HFP
(1 to 256
HSW
(1 to 64)
HBP
(1 to 256)
Line 1 for passive
2, 1
P, 1
PPL
16 ×(1 to 1024)
Line 1 for active
Line 2 for passive
Figure 5-59. LCD Raster-Mode Control Signal Deactivation
154
Peripheral Information and Electrical Specifications
Copyright © 2012–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
OMAPL137-HT
www.ti.com
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
5.21 Timers
The timers support the following features:
• Configurable as single 64-bit timer or two 32-bit timers
• Period timeouts generate interrupts, DMA events or external pin events
• Eight 32-bit compare registers
• Compare matches generate interrupt events
• Capture capability
• 64-bit Watchdog capability (Timer64P1 only)
Table 5-83 lists the timer registers. See the TMS320C674x/OMAP-L1x Processor Peripherals Overview
Reference Guide. – Literature Number SPRUFK9 for more details.
Table 5-83. Timer Registers
Timer64P 0
Timer64P 1
0x01C2 0000
0x01C2 1000
REV
0x01C2 0004
0x01C2 1004
EMUMGT
0x01C2 0008
0x01C2 1008
GPINTGPEN
0x01C2 000C
0x01C2 100C
GPDATGPDIR
0x01C2 0010
0x01C2 1010
TIM12
Timer Counter Register 12
0x01C2 0014
0x01C2 1014
TIM34
Timer Counter Register 34
0x01C2 0018
0x01C2 1018
PRD12
Timer Period Register 12
0x01C2 001C
0x01C2 101C
PRD34
Timer Period Register 34
0x01C2 0020
0x01C2 1020
TCR
0x01C2 0024
0x01C2 1024
TGCR
0x01C2 0028
0x01C2 1028
WDTCR
0x01C2 0034
0x01C2 1034
REL12
Timer Reload Register 12
0x01C2 0038
0x01C2 1038
REL34
Timer Reload Register 34
0x01C2 003C
0x01C2 103C
CAP12
Timer Capture Register 12
0x01C2 0040
0x01C2 1040
CAP34
Timer Capture Register 34
0x01C2 0044
0x01C2 1044
INTCTLSTAT
0x01C2 0060
0x01C2 1060
CMP0
Compare Register 0
0x01C2 0064
0x01C2 1064
CMP1
Compare Register 1
0x01C2 0068
0x01C2 1068
CMP2
Compare Register 2
0x01C2 006C
0x01C2 106C
CMP3
Compare Register 3
0x01C2 0070
0x01C2 1070
CMP4
Compare Register 4
0x01C2 0074
0x01C2 1074
CMP5
Compare Register 5
0x01C2 0078
0x01C2 1078
CMP6
Compare Register 6
0x01C2 007C
0x01C2 107C
CMP7
Compare Register 7
Copyright © 2012–2013, Texas Instruments Incorporated
Acronym
Register Description
Revision Register
Emulation Management Register
GPIO Interrupt and GPIO Enable Register
GPIO Data and GPIO Direction Register
Timer Control Register
Timer Global Control Register
Watchdog Timer Control Register
Timer Interrupt Control and Status Register
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
155
OMAPL137-HT
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
5.21.1
www.ti.com
Timer Electrical Data/Timing
Table 5-84. Timing Requirements for Timer Input (1) (2)
(3)
(see Figure 5-60)
NO.
MIN
MAX
UNIT
1
tc(TIN)
Cycle time, TIM_IN
2
tw(TINPH)
Pulse duration, TIM_IN high
0.45C
0.55C
ns
3
tw(TINPL)
Pulse duration, TIM_IN low
0.45C
0.55C
ns
4
tt(TIN)
Transition time, TIM_IN
0.05C
ns
(1)
(2)
(3)
4P
ns
Parameters are characterized from -40°C to 125°C unless otherwise noted.
P = OSCIN cycle time in ns. For example, when OSCIN frequency is 27 MHz, use P = 37.037 ns.
C = TM64P0_IN12 cycle time in ns. For example, when TM64Px_IN12 frequency is 27 MHz, use C = 37.037 ns
1
2
4
3
4
TM64P0_IN12
Figure 5-60. Timer Timing
Table 5-85. Switching Characteristics Over Recommended Operating Conditions for Timer Output (1)
NO.
MIN
MAX
(2)
UNIT
5
tw(TOUTH)
Pulse duration, TM64P0_OUT12 high
4P
ns
6
tw(TOUTL)
Pulse duration, TM64P0_OUT12 low
4P
ns
(1)
(2)
Parameters are characterized from -40°C to 125°C unless otherwise noted.
P = OSCIN cycle time in ns. For example, when OSCIN frequency is 27 MHz, use P = 37.037 ns.
5
6
TM64P0_OUT12
Figure 5-61. Timer Timing
156
Peripheral Information and Electrical Specifications
Copyright © 2012–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
OMAPL137-HT
www.ti.com
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
5.22 Inter-Integrated Circuit Serial Ports (I2C0, I2C1)
5.22.1 I2C Device-Specific Information
Having two I2C modules on the device simplifies system architecture, since one module may be used by
the DSP to control local peripherals ICs (DACs, ADCs, etc.) while the other may be used to communicate
with other controllers in a system or to implement a user interface. Figure Figure 5-62 is block diagram of
the I2C Module.
Each I2C port supports:
• Compatible with Philips® I2C Specification Revision 2.1 (January 2000)
• Fast Mode up to 400 Kbps (no fail-safe I/O buffers)
• Noise Filter to Remove Noise 50 ns or less
• Seven- and Ten-Bit Device Addressing Modes
• Master (Transmit/Receive) and Slave (Transmit/Receive) Functionality
• Events: DMA, Interrupt, or Polling
• General-Purpose I/O Capability if not used as I2C
Clock Prescaler
I2CPSCx
Control
Prescaler
Register
Bit Clock Generator
I2Cx_SCL
Noise
Filter
I2CCOARx
Own Address
Register
I2CSARx
Slave Address
Register
I2CCLKHx
Clock Divide
High Register
I2CCMDRx
Mode Register
I2CCLKLx
Clock Divide
Low Register
I2CEMDRx
Extended Mode
Register
I2CCNTx
Data Count
Register
I2CPID1
Peripheral ID
Register 1
I2CPID2
Peripheral ID
Register 2
Transmit
I2Cx_SDA
Noise
Filter
I2CXSRx
Transmit Shift
Register
I2CDXRx
Transmit Buffer
Interrupt/DMA
Receive
I2CIERx
I2CDRRx
Receive Buffer
I2CSTRx
I2CRSRx
Receive Shift
Register
I2CSRCx
I2CPFUNC
Pin Function
Register
I2CPDOUT
Interrupt Enable
Register
Interrupt Status
Register
Interrupt Source
Register
Peripheral
Configuration
Bus
Interrupt DMA
Requests
Control
I2CPDIR
I2CPDIN
Pin Direction
Register
Pin Data In
Register
I2CPDSET
I2CPDCLR
Pin Data Out
Register
Pin Data Set
Register
Pin Data Clear
Register
Figure 5-62. I2C Module Block Diagram
Copyright © 2012–2013, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
157
OMAPL137-HT
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
www.ti.com
5.22.2 I2C Peripheral Registers Description(s)
Table 5-86 is the list of the I2C registers. See the TMS320C674x/OMAP-L1x Processor Peripherals
Overview Reference Guide. – Literature Number SPRUFK9 for more details.
Table 5-86. Inter-Integrated Circuit (I2C) Registers
I2C0
BYTE ADDRESS
I2C1
BYTE ADDRESS
Acronym
Register Description
0x01C2 2000
0x01E2 8000
ICOAR
I2C Own Address Register
0x01C2 2004
0x01E2 8004
ICIMR
I2C Interrupt Mask Register
0x01C2 2008
0x01E2 8008
ICSTR
I2C Interrupt Status Register
0x01C2 200C
0x01E2 800C
ICCLKL
I2C Clock Low-Time Divider Register
0x01C2 2010
0x01E2 8010
ICCLKH
I2C Clock High-Time Divider Register
0x01C2 2014
0x01E2 8014
ICCNT
I2C Data Count Register
0x01C2 2018
0x01E2 8018
ICDRR
I2C Data Receive Register
0x01C2 201C
0x01E2 801C
ICSAR
I2C Slave Address Register
0x01C2 2020
0x01E2 8020
ICDXR
I2C Data Transmit Register
0x01C2 2024
0x01E2 8024
ICMDR
I2C Mode Register
0x01C2 2028
0x01E2 8028
ICIVR
I2C Interrupt Vector Register
0x01C2 202C
0x01E2 802C
ICEMDR
I2C Extended Mode Register
0x01C2 2030
0x01E2 8030
ICPSC
I2C Prescaler Register
0x01C2 2034
0x01E2 8034
REVID1
I2C Revision Identification Register 1
0x01C2 2038
0x01E2 8038
REVID2
I2C Revision Identification Register 2
0x01C2 2048
0x01E2 8048
ICPFUNC
I2C Pin Function Register
0x01C2 204C
0x01E2 804C
ICPDIR
I2C Pin Direction Register
0x01C2 2050
0x01E2 8050
ICPDIN
I2C Pin Data In Register
0x01C2 2054
0x01E2 8054
ICPDOUT
I2C Pin Data Out Register
0x01C2 2058
0x01E2 8058
ICPDSET
I2C Pin Data Set Register
0x01C2 205C
0x01E2 805C
ICPDCLR
I2C Pin Data Clear Register
5.22.3 I2C Electrical Data/Timing
5.22.3.1 Inter-Integrated Circuit (I2C) Timing
Table 5-87 and Table 5-88 assume testing over recommended operating conditions (see Figure 5-63 and
Figure 5-64).
Table 5-87. I2C Input Timing Requirements (1)
NO.
(1)
158
MIN
1
tc(SCL)
Cycle time, I2Cx_SCL
2
tsu(SCLH-SDAL)
Setup time, I2Cx_SCL high before I2Cx_SDA
low
3
th(SCLL-SDAL)
Hold time, I2Cx_SCL low after I2Cx_SDA low
4
tw(SCLL)
Pulse duration, I2Cx_SCL low
5
tw(SCLH)
Pulse duration, I2Cx_SCL high
6
tsu(SDA-SCLH)
Setup time, I2Cx_SDA before I2Cx_SCL high
Standard Mode
10
Fast Mode
2.5
Standard Mode
4.7
Fast Mode
0.6
Standard Mode
4
Fast Mode
0.6
Standard Mode
4.7
Fast Mode
1.3
Standard Mode
4
Fast Mode
0.6
Standard Mode
250
Fast Mode
100
MAX
UNIT
μs
μs
μs
μs
μs
ns
Parameters are characterized from -40°C to 125°C unless otherwise noted.
Peripheral Information and Electrical Specifications
Copyright © 2012–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
OMAPL137-HT
www.ti.com
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
Table 5-87. I2C Input Timing Requirements(1) (continued)
NO.
MIN
7
th(SDA-SCLL)
Hold time, I2Cx_SDA after I2Cx_SCL low
8
tw(SDAH)
Pulse duration, I2Cx_SDA high
9
tr(SDA)
Rise time, I2Cx_SDA
10
tr(SCL)
Rise time, I2Cx_SCL
11
tf(SDA)
Fall time, I2Cx_SDA
12
tf(SCL)
Fall time, I2Cx_SCL
13
tsu(SCLH-SDAH)
Setup time, I2Cx_SCL high before I2Cx_SDA
high
14
tw(SP)
Pulse duration, spike (must be suppressed)
15
Cb
Capacitive load for each bus line
Standard Mode
0
Fast Mode
0
Standard Mode
4.7
Fast Mode
1.3
Standard Mode
Fast Mode
20 + 0.1Cb
Standard Mode
Fast Mode
Standard Mode
300
300
300
20 + 0.1Cb
300
4
Fast Mode
0.6
Standard Mode
N/A
Fast Mode
300
300
20 + 0.1Cb
0
UNIT
μs
μs
1000
Standard Mode
Fast Mode
0.9
1000
20 + 0.1Cb
Standard Mode
Fast Mode
MAX
ns
ns
ns
ns
μs
50
Standard Mode
400
Fast Mode
400
ns
pF
Table 5-88. I2C Switching Characteristics (1) (2)
NO.
(1)
(2)
PARAMETER
16
tc(SCL)
Cycle time, I2Cx_SCL
17
tsu(SCLH-SDAL)
Setup time, I2Cx_SCL high before I2Cx_SDA
low
18
th(SDAL-SCLL)
Hold time, I2Cx_SCL low after I2Cx_SDA low
19
tw(SCLL)
Pulse duration, I2Cx_SCL low
20
tw(SCLH)
Pulse duration, I2Cx_SCL high
21
tsu(SDAV-SCLH)
Setup time, I2Cx_SDA valid before I2Cx_SCL
high
22
th(SCLL-SDAV)
Hold time, I2Cx_SDA valid after I2Cx_SCL low
23
tw(SDAH)
Pulse duration, I2Cx_SDA high
28
tsu(SCLH-SDAH)
Setup time, I2Cx_SCL high before I2Cx_SDA
high
MIN
Standard Mode
10
Fast Mode
2.5
Standard Mode
4.7
Fast Mode
0.6
Standard Mode
0.6
Standard Mode
4.7
Fast Mode
1.3
0.6
Standard Mode
250
Fast Mode
100
Standard Mode
0
Fast Mode
0
Standard Mode
4.7
Fast Mode
1.3
Standard Mode
Fast Mode
μs
μs
μs
4
Fast Mode
UNIT
μs
4
Fast Mode
Standard Mode
MAX
μs
ns
0.9
4
0.6
μs
μs
μs
Parameters are characterized from -40°C to 125°C unless otherwise noted.
I2C must be configured correctly to meet the timings in Table 5-88.
Copyright © 2012–2013, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
159
OMAPL137-HT
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
www.ti.com
11
9
I2Cx_SDA
6
8
14
4
13
5
10
I2Cx_SCL
1
12
3
2
7
3
Stop
Start
Repeated
Start
Stop
Figure 5-63. I2C Receive Timings
26
24
I2Cx_SDA
21
23
19
28
20
25
I2Cx_SCL
16
27
18
17
22
18
Stop
Start
Repeated
Start
Stop
Figure 5-64. I2C Transmit Timings
160
Peripheral Information and Electrical Specifications
Copyright © 2012–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
OMAPL137-HT
www.ti.com
5.23
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
Universal Asynchronous Receiver/Transmitter (UART)
The device has 3 UART peripherals. Each UART has the following features:
• 16-byte storage space for both the transmitter and receiver FIFOs
• 1, 4, 8, or 14 byte selectable receiver FIFO trigger level for autoflow control and DMA
• DMA signaling capability for both received and transmitted data
• Programmable auto-rts and auto-cts for autoflow control
• Programmable Baud Rate up to 3MBaud
• Programmable Oversampling Options of x13 and x16
• Frequency pre-scale values from 1 to 65,535 to generate appropriate baud rates
• Prioritized interrupts
• Programmable serial data formats
– 5, 6, 7, or 8-bit characters
– Even, odd, or no parity bit generation and detection
– 1, 1.5, or 2 stop bit generation
• False start bit detection
• Line break generation and detection
• Internal diagnostic capabilities
– Loopback controls for communications link fault isolation
– Break, parity, overrun, and framing error simulation
• Modem control functions (CTS, RTS) on UART0 only.
The UART registers are listed in Section 5.23.1
5.23.1 UART Peripheral Registers Description(s)
Table 5-89 is the list of UART registers. See the TMS320C674x/OMAP-L1x Processor Peripherals
Overview Reference Guide. – Literature Number SPRUFK9 for more details.
Table 5-89. UART Registers
UART0
BYTE ADDRESS
UART1
BYTE ADDRESS
UART2
BYTE ADDRESS
REGISTER NAME
Register Description
0x01C4 2000
0x01D0 C000
0x01C4 2000
0x01D0 C000
0x01D0 D000
RBR
Receiver Buffer Register (read only)
0x01D0 D000
THR
Transmitter Holding Register (write only)
0x01C4 2004
0x01C4 2008
0x01D0 C004
0x01D0 D004
IER
Interrupt Enable Register
0x01D0 C008
0x01D0 D008
IIR
Interrupt Identification Register (read only)
0x01C4 2008
0x01D0 C008
0x01D0 D008
FCR
FIFO Control Register (write only)
0x01C4 200C
0x01D0 C00C
0x01D0 D00C
LCR
Line Control Register
0x01C4 2010
0x01D0 C010
0x01D0 D010
MCR
Modem Control Register
0x01C4 2014
0x01D0 C014
0x01D0 D014
LSR
Line Status Register
0x01C4 2018
0x01D0 C018
0x01D0 D018
MSR
Modem Status Register
0x01C4 201C
0x01D0 C01C
0x01D0 D01C
SCR
Scratchpad Register
0x01C4 2020
0x01D0 C020
0x01D0 D020
DLL
Divisor LSB Latch
0x01C4 2024
0x01D0 C024
0x01D0 D024
DLH
Divisor MSB Latch
0x01C4 2028
0x01D0 C028
0x01D0 D028
REVID1
Revision Identification Register 1
0x01C4 2030
0x01D0 C030
0x01D0 D030
PWREMU_MGMT
Power and Emulation Management Register
0x01C4 2034
0x01D0 C034
0x01D0 D034
MDR
Mode Definition Register
Copyright © 2012–2013, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
161
OMAPL137-HT
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
www.ti.com
5.23.2 UART Electrical Data/Timing
Table 5-90. Timing Requirements for UARTx Receive (1) (2) (see Figure 5-65)
NO.
(1)
(2)
MIN
MAX
UNIT
4
tw(URXDB)
Pulse duration, receive data bit (RXDn)
0.96U
1.05U
ns
5
tw(URXSB)
Pulse duration, receive start bit
0.96U
1.05U
ns
Parameters are characterized from -40°C to 125°C unless otherwise noted.
U = UART baud time = 1/programmed baud rate.
Table 5-91. Switching Characteristics Over Recommended Operating Conditions for UARTx Transmit (1) (2)
(see Figure 5-65)
NO.
(1)
(2)
PARAMETER
MIN
MAX
UNIT
1
f(baud)
Maximum programmable baud rate
3 MBaud
2
tw(UTXDB)
Pulse duration, transmit data bit (TXDn)
U-2
U+2
ns
3
tw(UTXSB)
Pulse duration, transmit start bit
U-2
U+2
ns
Parameters are characterized from -40°C to 125°C unless otherwise noted.
U = UART baud time = 1/programmed baud rate.
3
2
UART_TXDn
Start
Bit
Data Bits
5
4
UART_RXDn
Start
Bit
Data Bits
Figure 5-65. UART Transmit/Receive Timing
162
Peripheral Information and Electrical Specifications
Copyright © 2012–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
OMAPL137-HT
www.ti.com
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
5.24 USB1 Host Controller (USB1.1 OHCI)
All OMAPL137 USB interfaces are compliant with Universal Serial Bus Specifications, Revision 1.1.
Table 5-92 is the list of USB Host Controller registers. See the TMS320C674x/OMAP-L1x Processor
Peripherals Overview Reference Guide. – Literature Number SPRUFK9 for more details.
Table 5-92. USB Host Controller (USB1) Registers
USB
BYTE ADDRESS
(1)
(2)
(3)
REGISTER NAME
Register Description
0x01E2 5000
HCREVISION
OHCI Revision Number Register
0x01E2 5004
HCCONTROL
HC Operating Mode Register
0x01E2 5008
HCCOMMANDSTATUS
HC Command and Status Register
0x01E2 500C
HCINTERRUPTSTATUS
HC Interrupt and Status Register
0x01E2 5010
HCINTERRUPTENABLE
HC Interrupt Enable Register
0x01E2 5014
HCINTERRUPTDISABLE
HC Interrupt Disable Register
0x01E2 5018
HCHCCA
HC HCAA Address Register (1)
0x01E2 501C
HCPERIODCURRENTED
HC Current Periodic Register (1)
0x01E2 5020
HCCONTROLHEADED
HC Head Control Register (1)
0x01E2 5024
HCCONTROLCURRENTED
HC Current Control Register (1)
0x01E2 5028
HCBULKHEADED
HC Head Bulk Register (1)
0x01E2 502C
HCBULKCURRENTED
HC Current Bulk Register (1)
0x01E2 5030
HCDONEHEAD
HC Head Done Register (1)
0x01E2 5034
HCFMINTERVAL
HC Frame Interval Register
0x01E2 5038
HCFMREMAINING
HC Frame Remaining Register
0x01E2 503C
HCFMNUMBER
HC Frame Number Register
0x01E2 5040
HCPERIODICSTART
HC Periodic Start Register
0x01E2 5044
HCLSTHRESHOLD
HC Low-Speed Threshold Register
0x01E2 5048
HCRHDESCRIPTORA
HC Root Hub A Register
0x01E2 504C
HCRHDESCRIPTORB
HC Root Hub B Register
0x01E2 5050
HCRHSTATUS
HC Root Hub Status Register
0x01E2 5054
HCRHPORTSTATUS1
HC Port 1 Status and Control Register (2)
0x01E2 5058
HCRHPORTSTATUS2
HC Port 2 Status and Control Register (3)
Restrictions apply to the physical addresses used in these registers.
Connected to the integrated USB1.1 phy pins (USB1_DM, USB1_DP).
Although the controller implements two ports, the second port cannot be used.
Table 5-93. Switching Characteristics Over Recommended Operating Conditions for USB1 (1)
NO.
U1
(1)
(2)
(3)
(4)
(5)
LOW SPEED
PARAMETER
tr
Rise time, USB.DP and USB.DM signals (2)
(2)
FULL SPEED
UNIT
MIN
MAX
MAX
MAX
75 (2)
300 (2)
4 (2)
20 (2)
ns
(2)
(2)
(2)
20 (2)
ns
U2
tf
Fall time, USB.DP and USB.DM signals
U3
tRFM
Rise/Fall time matching (3)
80 (3)
120 (3)
90 (3)
110 (3)
%
U4
VCRS
Output signal cross-over voltage (2)
1.3 (2)
2 (2)
1.3 (2)
2 (2)
V
U5
tj
Differential propagation jitter
U6
fop
Operating frequency (5)
(4)
75
-25
(4)
300
25
(4)
1.5
4
-2
(4)
2
(4)
12
ns
MHz
Parameters are characterized from -40°C to 125°C unless otherwise noted.
Low Speed: CL = 200 pF. High Speed: CL = 50pF
tRFM =( tr/tf ) x 100
t jr = t px(1) - tpx(0)
fop = 1/tper
Copyright © 2012–2013, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
163
OMAPL137-HT
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
www.ti.com
5.25 USB0 OTG (USB2.0 OTG)
The USB2.0 peripheral supports the following features:
• USB 2.0 peripheral at speeds high speed and full speed (FS: 12 Mb/s)
• USB 2.0 host at speeds FS, and low speed (LS: 1.5 Mb/s)
• All transfer modes (control, bulk, interrupt, and isochronous)
• 4 Transmit (TX) and 4 Receive (RX) endpoints in addition to endpoint 0
• FIFO RAM
– 4K endpoint
– Programmable size
• Integrated USB 2.0 High Speed PHY
• Connects to a standard Charge Pump for VBUS 5 V generation
• RNDIS mode for accelerating RNDIS type protocols using short packet termination over USB
Table 5-94 is the list of USB OTG registers. See the TMS320C674x/OMAP-L1x Processor Peripherals
Overview Reference Guide. – Literature Number SPRUFK9 for more details.
Table 5-94. Universal Serial Bus OTG (USB0) Registers
BYTE ADDRESS
Acronym
0x01E0 0000
Revision Register
0x01E0 0004
CTRLR
0x01E0 0008
STATR
Control Register
Status Register
0x01E0 000C
Emulation Register
0x01E0 0010
Mode Register
0x01E0 0014
164
Register Description
AUTOREQ
Autorequest Register
0x01E0 0018
SRP Fix Time Register
0x01E0 001C
RX Teardown Register
0x01E0 0020
INTSRCR
USB Interrupt Source Register
0x01E0 0024
INTSETR
USB Interrupt Source Set Register
0x01E0 0028
INTCLRR
USB Interrupt Source Clear Register
0x01E0 002C
INTMSKR
USB Interrupt Mask Register
0x01E0 0030
INTMSKSETR
USB Interrupt Mask Set Register
0x01E0 0034
INTMSKCLRR
USB Interrupt Mask Clear Register
0x01E0 0038
INTMASKEDR
USB Interrupt Source Masked Register
0x01E0 003C
EOIR
USB End of Interrupt Register
0x01E0 0040
INTVECTR
USB Interrupt Vector Register
0x01E0 0050
RNDISEP1
Generic RNDIS Size EP1
0x01E0 0054
RNDISEP2
Generic RNDIS Size EP2
0x01E0 0058
RNDISEP3
Generic RNDIS Size EP3
0x01E0 005C
RNDISEP4
Generic RNDIS Size EP4
0x01E0 0400
FADDR
Function Address Register
0x01E0 0401
POWER
Power Management Register
0x01E0 0402
INTRTX
Interrupt Register for Endpoint 0 plus Transmit Endpoints 1 to 4
0x01E0 0404
INTRRX
Interrupt Register for Receive Endpoints 1 to 4
0x01E0 0406
INTRTXE
Interrupt enable register for INTRTX
0x01E0 0408
INTRRXE
Interrupt Enable Register for INTRRX
0x01E0 040A
INTRUSB
Interrupt Register for Common USB Interrupts
Interrupt Enable Register for INTRUSB
0x01E0 040B
INTRUSBE
0x01E0 040C
FRAME
Frame Number Register
0x01E0 040E
INDEX
Index Register for Selecting the Endpoint Status and Control Registers
Peripheral Information and Electrical Specifications
Copyright © 2012–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
OMAPL137-HT
www.ti.com
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
Table 5-94. Universal Serial Bus OTG (USB0) Registers (continued)
BYTE ADDRESS
Acronym
Register Description
0x01E0 040F
TESTMODE
Register to Enable the USB 2.0 Test Modes
Indexed Registers
These registers operate on the endpoint selected by the INDEX register
0x01E0 0410
TXMAXP
Maximum Packet Size for Peripheral/Host Transmit Endpoint (Index
register set to select Endpoints 1-4 only)
0x01E0 0412
PERI_CSR0
Control Status Register for Endpoint 0 in Peripheral Mode. (Index
register set to select Endpoint 0)
HOST_CSR0
Control Status Register for Endpoint 0 in Host Mode.
(Index register set to select Endpoint 0)
PERI_TXCSR
Control Status Register for Peripheral Transmit Endpoint. (Index
register set to select Endpoints 1-4)
HOST_TXCSR
Control Status Register for Host Transmit Endpoint.
(Index register set to select Endpoints 1-4)
0x01E0 0414
RXMAXP
Maximum Packet Size for Peripheral/Host Receive Endpoint (Index
register set to select Endpoints 1-4 only)
0x01E0 0416
PERI_RXCSR
Control Status Register for Peripheral Receive Endpoint. (Index register
set to select Endpoints 1-4)
HOST_RXCSR
Control Status Register for Host Receive Endpoint.
(Index register set to select Endpoints 1-4)
COUNT0
Number of Received Bytes in Endpoint 0 FIFO.
(Index register set to select Endpoint 0)
RXCOUNT
Number of Bytes in Host Receive Endpoint FIFO.
(Index register set to select Endpoints 1- 4)
0x01E0 0418
0x01E0 041A
HOST_TYPE0
Defines the speed of Endpoint 0
0x01E0 041B
HOST_TXTYPE
Sets the operating speed, transaction protocol and peripheral endpoint
number for the host Transmit endpoint. (Index register set to select
Endpoints 1-4 only)
HOST_NAKLIMIT0
Sets the NAK response timeout on Endpoint 0.
(Index register set to select Endpoint 0)
HOST_TXINTERVAL
Sets the polling interval for Interrupt/ISOC transactions or the NAK
response timeout on Bulk transactions for host Transmit endpoint.
(Index register set to select Endpoints 1-4 only)
0x01E0 041C
HOST_RXTYPE
Sets the operating speed, transaction protocol and peripheral endpoint
number for the host Receive endpoint. (Index register set to select
Endpoints 1-4 only)
0x01E0 041D
HOST_RXINTERVAL
Sets the polling interval for Interrupt/ISOC transactions or the NAK
response timeout on Bulk transactions for host Receive endpoint.
(Index register set to select Endpoints 1-4 only)
0x01E0 041F
CONFIGDATA
Returns details of core configuration. (Index register set to select
Endpoint 0)
FIFO
0x01E0 0420
FIFO0
Transmit and Receive FIFO Register for Endpoint 0
0x01E0 0424
FIFO1
Transmit and Receive FIFO Register for Endpoint 1
0x01E0 0428
FIFO2
Transmit and Receive FIFO Register for Endpoint 2
0x01E0 042C
FIFO3
Transmit and Receive FIFO Register for Endpoint 3
0x01E0 0430
FIFO4
Transmit and Receive FIFO Register for Endpoint 4
OTG Device Control
0x01E0 0460
DEVCTL
Device Control Register
Dynamic FIFO Control
0x01E0 0462
TXFIFOSZ
Transmit Endpoint FIFO Size
(Index register set to select Endpoints 1-4 only)
0x01E0 0463
RXFIFOSZ
Receive Endpoint FIFO Size
(Index register set to select Endpoints 1-4 only)
0x01E0 0464
TXFIFOADDR
Transmit Endpoint FIFO Address
(Index register set to select Endpoints 1-4 only)
Copyright © 2012–2013, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
165
OMAPL137-HT
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
www.ti.com
Table 5-94. Universal Serial Bus OTG (USB0) Registers (continued)
BYTE ADDRESS
Acronym
Register Description
0x01E0 0466
RXFIFOADDR
Receive Endpoint FIFO Address
(Index register set to select Endpoints 1-4 only)
Target Endpoint 0 Control Registers, Valid Only in Host Mode
0x01E0 0480
TXFUNCADDR
Address of the target function that has to be accessed through the
associated Transmit Endpoint.
0x01E0 0482
TXHUBADDR
Address of the hub that has to be accessed through the associated
Transmit Endpoint. This is used only when full speed or low speed
device is connected via a USB2.0 high-speed hub.
0x01E0 0483
TXHUBPORT
Port of the hub that has to be accessed through the associated
Transmit Endpoint. This is used only when full speed or low speed
device is connected via a USB2.0 high-speed hub.
0x01E0 0484
RXFUNCADDR
Address of the target function that has to be accessed through the
associated Receive Endpoint.
0x01E0 0486
RXHUBADDR
Address of the hub that has to be accessed through the associated
Receive Endpoint. This is used only when full speed or low speed
device is connected via a USB2.0 high-speed hub.
0x01E0 0487
RXHUBPORT
Port of the hub that has to be accessed through the associated Receive
Endpoint. This is used only when full speed or low speed device is
connected via a USB2.0 high-speed hub.
Target Endpoint 1 Control Registers, Valid Only in Host Mode
0x01E0 0488
TXFUNCADDR
Address of the target function that has to be accessed through the
associated Transmit Endpoint.
0x01E0 048A
TXHUBADDR
Address of the hub that has to be accessed through the associated
Transmit Endpoint. This is used only when full speed or low speed
device is connected via a USB2.0 high-speed hub.
0x01E0 048B
TXHUBPORT
Port of the hub that has to be accessed through the associated
Transmit Endpoint. This is used only when full speed or low speed
device is connected via a USB2.0 high-speed hub.
0x01E0 048C
RXFUNCADDR
Address of the target function that has to be accessed through the
associated Receive Endpoint.
0x01E0 048E
RXHUBADDR
Address of the hub that has to be accessed through the associated
Receive Endpoint. This is used only when full speed or low speed
device is connected via a USB2.0 high-speed hub.
0x01E0 048F
RXHUBPORT
Port of the hub that has to be accessed through the associated Receive
Endpoint. This is used only when full speed or low speed device is
connected via a USB2.0 high-speed hub.
Target Endpoint 2 Control Registers, Valid Only in Host Mode
0x01E0 0490
TXFUNCADDR
Address of the target function that has to be accessed through the
associated Transmit Endpoint.
0x01E0 0492
TXHUBADDR
Address of the hub that has to be accessed through the associated
Transmit Endpoint. This is used only when full speed or low speed
device is connected via a USB2.0 high-speed hub.
0x01E0 0493
TXHUBPORT
Port of the hub that has to be accessed through the associated
Transmit Endpoint. This is used only when full speed or low speed
device is connected via a USB2.0 high-speed hub.
0x01E0 0494
RXFUNCADDR
Address of the target function that has to be accessed through the
associated Receive Endpoint.
0x01E0 0496
RXHUBADDR
Address of the hub that has to be accessed through the associated
Receive Endpoint. This is used only when full speed or low speed
device is connected via a USB2.0 high-speed hub.
0x01E0 0497
RXHUBPORT
Port of the hub that has to be accessed through the associated Receive
Endpoint. This is used only when full speed or low speed device is
connected via a USB2.0 high-speed hub.
Target Endpoint 3 Control Registers, Valid Only in Host Mode
0x01E0 0498
166
TXFUNCADDR
Address of the target function that has to be accessed through the
associated Transmit Endpoint.
Peripheral Information and Electrical Specifications
Copyright © 2012–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
OMAPL137-HT
www.ti.com
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
Table 5-94. Universal Serial Bus OTG (USB0) Registers (continued)
BYTE ADDRESS
Acronym
Register Description
0x01E0 049A
TXHUBADDR
Address of the hub that has to be accessed through the associated
Transmit Endpoint. This is used only when full speed or low speed
device is connected via a USB2.0 high-speed hub.
0x01E0 049B
TXHUBPORT
Port of the hub that has to be accessed through the associated
Transmit Endpoint. This is used only when full speed or low speed
device is connected via a USB2.0 high-speed hub.
0x01E0 049C
RXFUNCADDR
Address of the target function that has to be accessed through the
associated Receive Endpoint.
0x01E0 049E
RXHUBADDR
Address of the hub that has to be accessed through the associated
Receive Endpoint. This is used only when full speed or low speed
device is connected via a USB2.0 high-speed hub.
0x01E0 049F
RXHUBPORT
Port of the hub that has to be accessed through the associated Receive
Endpoint. This is used only when full speed or low speed device is
connected via a USB2.0 high-speed hub.
Target Endpoint 4 Control Registers, Valid Only in Host Mode
0x01E0 04A0
TXFUNCADDR
Address of the target function that has to be accessed through the
associated Transmit Endpoint.
0x01E0 04A2
TXHUBADDR
Address of the hub that has to be accessed through the associated
Transmit Endpoint. This is used only when full speed or low speed
device is connected via a USB2.0 high-speed hub.
0x01E0 04A3
TXHUBPORT
Port of the hub that has to be accessed through the associated
Transmit Endpoint. This is used only when full speed or low speed
device is connected via a USB2.0 high-speed hub.
0x01E0 04A4
RXFUNCADDR
Address of the target function that has to be accessed through the
associated Receive Endpoint.
0x01E0 04A6
RXHUBADDR
Address of the hub that has to be accessed through the associated
Receive Endpoint. This is used only when full speed or low speed
device is connected via a USB2.0 high-speed hub.
0x01E0 04A7
RXHUBPORT
Port of the hub that has to be accessed through the associated Receive
Endpoint. This is used only when full speed or low speed device is
connected via a USB2.0 high-speed hub.
0x01E0 0502
PERI_CSR0
Control Status Register for Endpoint 0 in Peripheral Mode
HOST_CSR0
Control Status Register for Endpoint 0 in Host Mode
Number of Received Bytes in Endpoint 0 FIFO
Control and Status Register for Endpoint 0
0x01E0 0508
COUNT0
0x01E0 050A
HOST_TYPE0
Defines the Speed of Endpoint 0
0x01E0 050B
HOST_NAKLIMIT0
Sets the NAK Response Timeout on Endpoint 0
0x01E0 050F
CONFIGDATA
Returns details of core configuration.
Control and Status Register for Endpoint 1
0x01E0 0510
TXMAXP
Maximum Packet Size for Peripheral/Host Transmit Endpoint
0x01E0 0512
PERI_TXCSR
Control Status Register for Peripheral Transmit Endpoint (peripheral
mode)
HOST_TXCSR
Control Status Register for Host Transmit Endpoint
(host mode)
0x01E0 0514
RXMAXP
0x01E0 0516
PERI_RXCSR
Control Status Register for Peripheral Receive Endpoint (peripheral
mode)
HOST_RXCSR
Control Status Register for Host Receive Endpoint
(host mode)
0x01E0 0518
RXCOUNT
0x01E0 051A
HOST_TXTYPE
0x01E0 051B
HOST_TXINTERVAL
Copyright © 2012–2013, Texas Instruments Incorporated
Maximum Packet Size for Peripheral/Host Receive Endpoint
Number of Bytes in Host Receive endpoint FIFO
Sets the operating speed, transaction protocol and peripheral endpoint
number for the host Transmit endpoint.
Sets the polling interval for Interrupt/ISOC transactions or the NAK
response timeout on Bulk transactions for host Transmit endpoint.
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
167
OMAPL137-HT
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
www.ti.com
Table 5-94. Universal Serial Bus OTG (USB0) Registers (continued)
BYTE ADDRESS
Acronym
0x01E0 051C
HOST_RXTYPE
Register Description
0x01E0 051D
HOST_RXINTERVAL
0x01E0 0520
TXMAXP
0x01E0 0522
PERI_TXCSR
Control Status Register for Peripheral Transmit Endpoint (peripheral
mode)
HOST_TXCSR
Control Status Register for Host Transmit Endpoint
(host mode)
Sets the operating speed, transaction protocol and peripheral endpoint
number for the host Receive endpoint.
Sets the polling interval for Interrupt/ISOC transactions or the NAK
response timeout on Bulk transactions for host Receive endpoint.
Control and Status Register for Endpoint 2
Maximum Packet Size for Peripheral/Host Transmit Endpoint
0x01E0 0524
RXMAXP
Maximum Packet Size for Peripheral/Host Receive Endpoint
0x01E0 0526
PERI_RXCSR
Control Status Register for Peripheral Receive Endpoint (peripheral
mode)
HOST_RXCSR
Control Status Register for Host Receive Endpoint
(host mode)
0x01E0 0528
RXCOUNT
0x01E0 052A
HOST_TXTYPE
Number of Bytes in Host Receive endpoint FIFO
0x01E0 052B
HOST_TXINTERVAL
0x01E0 052C
HOST_RXTYPE
0x01E0 052D
HOST_RXINTERVAL
0x01E0 0530
TXMAXP
0x01E0 0532
PERI_TXCSR
Control Status Register for Peripheral Transmit Endpoint (peripheral
mode)
HOST_TXCSR
Control Status Register for Host Transmit Endpoint
(host mode)
Sets the operating speed, transaction protocol and peripheral endpoint
number for the host Transmit endpoint.
Sets the polling interval for Interrupt/ISOC transactions or the NAK
response timeout on Bulk transactions for host Transmit endpoint.
Sets the operating speed, transaction protocol and peripheral endpoint
number for the host Receive endpoint.
Sets the polling interval for Interrupt/ISOC transactions or the NAK
response timeout on Bulk transactions for host Receive endpoint.
Control and Status Register for Endpoint 3
Maximum Packet Size for Peripheral/Host Transmit Endpoint
0x01E0 0534
RXMAXP
0x01E0 0536
PERI_RXCSR
Maximum Packet Size for Peripheral/Host Receive Endpoint
Control Status Register for Peripheral Receive Endpoint (peripheral
mode)
HOST_RXCSR
Control Status Register for Host Receive Endpoint
(host mode)
0x01E0 0538
RXCOUNT
Number of Bytes in Host Receive endpoint FIFO
0x01E0 053A
HOST_TXTYPE
0x01E0 053B
HOST_TXINTERVAL
0x01E0 053C
HOST_RXTYPE
0x01E0 053D
HOST_RXINTERVAL
0x01E0 0540
TXMAXP
0x01E0 0542
PERI_TXCSR
Control Status Register for Peripheral Transmit Endpoint (peripheral
mode)
HOST_TXCSR
Control Status Register for Host Transmit Endpoint
(host mode)
Sets the operating speed, transaction protocol and peripheral endpoint
number for the host Transmit endpoint.
Sets the polling interval for Interrupt/ISOC transactions or the NAK
response timeout on Bulk transactions for host Transmit endpoint.
Sets the operating speed, transaction protocol and peripheral endpoint
number for the host Receive endpoint.
Sets the polling interval for Interrupt/ISOC transactions or the NAK
response timeout on Bulk transactions for host Receive endpoint.
Control and Status Register for Endpoint 4
0x01E0 0544
168
RXMAXP
Maximum Packet Size for Peripheral/Host Transmit Endpoint
Maximum Packet Size for Peripheral/Host Receive Endpoint
Peripheral Information and Electrical Specifications
Copyright © 2012–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
OMAPL137-HT
www.ti.com
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
Table 5-94. Universal Serial Bus OTG (USB0) Registers (continued)
BYTE ADDRESS
Acronym
0x01E0 0546
PERI_RXCSR
Control Status Register for Peripheral Receive Endpoint (peripheral
mode)
Register Description
HOST_RXCSR
Control Status Register for Host Receive Endpoint
(host mode)
0x01E0 0548
RXCOUNT
0x01E0 054A
HOST_TXTYPE
Number of Bytes in Host Receive endpoint FIFO
0x01E0 054B
HOST_TXINTERVAL
0x01E0 054C
HOST_RXTYPE
0x01E0 054D
HOST_RXINTERVAL
0x01E0 1000
DMAREV
Sets the operating speed, transaction protocol and peripheral endpoint
number for the host Transmit endpoint.
Sets the polling interval for Interrupt/ISOC transactions or the NAK
response timeout on Bulk transactions for host Transmit endpoint.
Sets the operating speed, transaction protocol and peripheral endpoint
number for the host Receive endpoint.
Sets the polling interval for Interrupt/ISOC transactions or the NAK
response timeout on Bulk transactions for host Receive endpoint.
DMA Registers
DMA Revision Register
0x01E0 1004
TDFDQ
0x01E0 1008
DMAEMU
DMA Teardown Free Descriptor Queue Control Register
DMA Emulation Control Register
0x01E0 1800
TGCR[0]
Transmit Channel 0 Global Configuration Register
Receive Channel 0 Global Configuration Register
0x01E0 1808
RXGCR[0]
0x01E0 180C
RXHPCRA[0]
Receive Channel 0 Host Packet Configuration Register A
0x01E0 1810
RXHPCRB[0]
Receive Channel 0 Host Packet Configuration Register B
0x01E0 1820
TGCR[1]
Transmit Channel 1 Global Configuration Register
Receive Channel 1 Global Configuration Register
0x01E0 1828
RXGCR[1]
0x01E0 182C
RXHPCRA[1]
Receive Channel 1 Host Packet Configuration Register A
0x01E0 1830
RXHPCRB[1]
Receive Channel 1 Host Packet Configuration Register B
0x01E0 1840
TGCR[2]
Transmit Channel 2 Global Configuration Register
0x01E0 1848
RXGCR[2]
Receive Channel 2 Global Configuration Register
0x01E0 184C
RXHPCRA[2]
Receive Channel 2 Host Packet Configuration Register A
0x01E0 1850
RXHPCRB[2]
Receive Channel 2 Host Packet Configuration Register B
0x01E0 1860
TGCR[3]
Transmit Channel 3 Global Configuration Register
0x01E0 1868
RXGCR[3]
Receive Channel 3 Global Configuration Register
0x01E0 186C
RXHPCRA[3]
Receive Channel 3 Host Packet Configuration Register A
Receive Channel 3 Host Packet Configuration Register B
0x01E0 1870
RXHPCRB[3]
0x01E0 2C00
DMA_SCHED_CTRL
0x01E0 2D00
ENTRY[0]
DMA Scheduler Table Word 0
0x01E0 2D04
ENTRY[1]
DMA Scheduler Table Word 1
...
...
0x01E0 2DFC
ENTRY[63]
0x01E0 4000
QMGRREV
Queue Manager Revision Register
0x01E0 4008
DIVERSION
Queue Diversion Register
0x01E0 4020
FDBSC0
Free Descriptor/Buffer Starvation Count Register 0
0x01E0 4024
FDBSC1
Free Descriptor/Buffer Starvation Count Register 1
0x01E0 4028
FDBSC2
Free Descriptor/Buffer Starvation Count Register 2
0x01E0 402C
FDBSC3
Free Descriptor/Buffer Starvation Count Register 3
0x01E0 4080
LRAM0BASE
Linking RAM Region 0 Base Address Register
0x01E0 4084
LRAM0SIZE
Linking RAM Region 0 Size Register
0x01E0 4088
LRAM1BASE
Linking RAM Region 1 Base Address Register
0x01E0 4090
PEND0
DMA Scheduler Control Register
...
DMA Scheduler Table Word 63
Queue Manager Registers
Copyright © 2012–2013, Texas Instruments Incorporated
Queue Pending Register 0
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
169
OMAPL137-HT
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
www.ti.com
Table 5-94. Universal Serial Bus OTG (USB0) Registers (continued)
BYTE ADDRESS
Acronym
0x01E0 4094
PEND1
Register Description
0x01E0 5000
QMEMRBASE[0]
Memory Region 0 Base Address Register
0x01E0 5004
QMEMRCTRL[0]
Memory Region 0 Control Register
0x01E0 5010
QMEMRBASE[1]
Memory Region 1 Base Address Register
0x01E0 5014
QMEMRCTRL[1]
Memory Region 1 Control Register
...
...
0x01E0 5070
QMEMRBASE[7]
Memory Region 7 Base Address Register
0x01E0 5074
QMEMRCTRL[7]
Memory Region 7 Control Register
0x01E0 6000
QCTRL_CTRLA[0]
Queue Manager Queue 0 Control Register A
0x01E0 6004
QCTRL_CTRLB[0]
Queue Manager Queue 0 Control Register B
0x01E0 6008
QCTRL_CTRLC[0]
Queue Manager Queue 0 Control Register C
0x01E0 600C
QCTRL_CTRLD[0]
Queue Manager Queue 0 Control Register D
0x01E0 6010
QCTRL_CTRLA[1]
Queue Manager Queue 1 Control Register A
0x01E0 6014
QCTRL_CTRLB[1]
Queue Manager Queue 1 Control Register B
Queue Pending Register 1
...
0x01E0 6018
QCTRL_CTRLC[1]
Queue Manager Queue 1 Control Register C
0x01E0 601C
QCTRL_CTRLD[1]
Queue Manager Queue 1 Control Register D
...
...
0x01E0 63F0
QCTRL_CTRLA[63]
Queue Manager Queue 63 Status Register A
0x01E0 63F4
QCTRL_CTRLB[63]
Queue Manager Queue 63 Status Register B
0x01E0 63F8
QCTRL_CTRLC[63]
Queue Manager Queue 63 Status Register C
0x01E0 63FC
QCTRL_CTRLD[63]
Queue Manager Queue 63 Status Register D
0x01E0 6800
QCTRL_STATA[0]
Queue Manager Queue 0 Status Register A
0x01E0 6804
QCTRL_STATB[0]
Queue Manager Queue 0 Status Register B
0x01E0 6808
QCTRL_STATC[0]
Queue Manager Queue 0 Status Register C
0x01E0 6810
QCTRL_STATA[1]
Queue Manager Queue 1 Status Register A
0x01E0 6814
QCTRL_STATB[1]
Queue Manager Queue 1 Status Register B
0x01E0 6818
QCTRL_STATC[1]
Queue Manager Queue 1 Status Register C
...
...
...
0x01E0 6BF0
QCTRL_STATA[63]
...
Queue Manager Queue 63 Status Register A
0x01E0 6BF4
QCTRL_STATB[63]
Queue Manager Queue 63 Status Register B
0x01E0 6BF8
QCTRL_STATC[63]
Queue Manager Queue 63 Status Register C
5.25.1 USB0 Electrical Data/Timing
Table 5-95. Switching Characteristics Over Recommended Operating Conditions for USB0 (1) (see
Figure 5-66)
NO.
1
LOW SPEED
1.5 Mbps
PARAMETER
tr(D)
Rise time, USB0_DP and USB0_DM signals (2)
(2)
FULL SPEED
12 Mbps
HIGH SPEED
480 Mbps
MIN
MAX
MIN
MAX
MIN
75
300
4
20
0.5
UNIT
MAX
ns
2
tf(D)
Fall time, USB0_DP and USB0_DM signals
75
300
4
20
0.5
3
trfM
Rise/Fall time, matching (3)
80
120
90
111
–
–
4
VCRS
Output signal cross-over voltage (2)
1.3
2
1.3
2
–
–
5
(1)
(2)
(3)
(4)
170
tjr(source)NT
Source (Host) Driver jitter, next transition
2
2
ns
%
V
(4)
ns
Parameters are characterized from -40°C to 125°C unless otherwise noted.
Low Speed: CL = 200 pF, Full Speed: CL = 50 pF, High Speed: CL = 50 pF
tRFM = (tr/tf) x 100. [Excluding the first transaction from the Idle state.]
For more detailed information, see the Universal Serial Bus Specification Revision 2.0, Chapter 7. Electrical.
Peripheral Information and Electrical Specifications
Copyright © 2012–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
OMAPL137-HT
www.ti.com
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
Table 5-95. Switching Characteristics Over Recommended Operating Conditions for USB0(1) (see
Figure 5-66) (continued)
NO.
LOW SPEED
1.5 Mbps
PARAMETER
MIN
tjr(FUNC)NT
6
Function Driver jitter, next transition
tjr(source)PT
Source (Host) Driver jitter, paired transition
tjr(FUNC)PT
Function Driver jitter, paired transition
7
tw(EOPT)
Pulse duration, EOP transmitter
8
tw(EOPR)
Pulse duration, EOP receiver
9
t(DRATE)
Data Rate
10
ZDRV
Driver Output Resistance
11
ZINP
Receiver Input Impedance
(5)
(5)
1250
FULL SPEED
12 Mbps
MAX
MIN
MAX
MAX
2
(4)
ns
1
1
(4)
ns
10
1
(4)
ns
–
ns
1500
160
175
82
1.5
–
MIN
UNIT
25
670
100k
HIGH SPEED
480 Mbps
–
–
–
12
40.5
100k
49.5
ns
480 Mb/s
40.5
49.5
Ω
-
-
Ω
tjr = tpx(1) - tpx(0)
USB0_DM
VCRS
USB0_DP
tper - tjr
90% VOH
10% VOL
tr
tf
Figure 5-66. USB0 Integrated Transceiver Interface Timing
Copyright © 2012–2013, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
171
OMAPL137-HT
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
www.ti.com
5.26 Universal Host-Port Interface (UHPI)
5.26.1 HPI Device-Specific Information
The device includes a user-configurable 16-bit Host-port interface (HPI16). See the
TMS320C674x/OMAP-L1x Processor Peripherals Overview Reference Guide. – Literature Number
SPRUFK9 for more details.
5.26.2 HPI Peripheral Register Description(s)
Table 5-96. HPI Control Registers
HEX ADDRESS RANGE
ACRONYM
0x01E1 0000
PID
0x01E1 0004
PWREMU_MGMT
REGISTER NAME
Peripheral Identification Register
HPI power and emulation management register
0x01E1 0008
-
0x01E1 000C
GPIO_EN
0x01E1 0010
GPIO_DIR1
General Purpose IO Direction Register 1
0x01E1 0014
GPIO_DAT1
General Purpose IO Data Register 1
0x01E1 0018
GPIO_DIR2
General Purpose IO Direction Register 2
0x01E1 001C
GPIO_DAT2
General Purpose IO Data Register 2
0x01E1 0020
GPIO_DIR3
General Purpose IO Direction Register 3
0x01E1 0024
GPIO_DAT3
General Purpose IO Data Register 3
0x01E1 0028
-
Reserved
0x01E1 002C
-
Reserved
0x01E1 0030
HPIC
HPI control register
0x01E1 0034
HPIA
(HPIAW) (1)
HPI address register
(Write)
0x01E1 0038
HPIA
(HPIAR) (1)
HPI address register
(Read)
0x01E1 000C - 0x01E1 07FF
-
(1)
172
COMMENTS
The CPU has read/write
access to the
PWREMU_MGMT register.
Reserved
General Purpose IO Enable Register
The Host and the CPU both
have read/write access to the
HPIC register.
The Host has read/write
access to the HPIA registers.
The CPU has only read
access to the HPIA registers.
Reserved
There are two 32-bit HPIA registers: HPIAR for read operations and HPIAW for write operations. The HPI can be configured such that
HPIAR and HPIAW act as a single 32-bit HPIA (single-HPIA mode) or as two separate 32-bit HPIAs (dual-HPIA mode) from the
perspective of the Host. The CPU can access HPIAW and HPIAR independently.
Peripheral Information and Electrical Specifications
Copyright © 2012–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
OMAPL137-HT
www.ti.com
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
5.26.3 HPI Electrical Data/Timing
Table 5-97. Timing Requirements for Host-Port Interface Cycles (1) (2)
NO.
MIN
(4)
1
tsu(SELV-HSTBL)
Setup time, select signals
2
th(HSTBL-SELV)
Hold time, select signals (4) valid after HSTROBE low
valid before HSTROBE low
3
tw(HSTBL)
4
MAX
UNIT
5
ns
2
ns
Pulse duration, HSTROBE active low
15
ns
tw(HSTBH)
Pulse duration, HSTROBE inactive high between consecutive accesses
2M
ns
11
tsu(HDV-HSTBH)
Setup time, host data valid before HSTROBE high
5
ns
12
th(HSTBH-HDV)
Hold time, host data valid after HSTROBE high
1
ns
th(HRDYL-HSTBH)
Hold time, HSTROBE high after HRDY low. HSTROBE should not be
inactivated until HRDY is active (low); otherwise, HPI writes will not
complete properly.
0
ns
13
(1)
(2)
(3)
(4)
(3)
Parameters are characterized from -40°C to 125°C unless otherwise noted.
HSTROBE refers to the following logical operation on HCS, HDS1, and HDS2: [NOT(HDS1 XOR HDS2)] OR HCS.
M=SYSCLK2 period (CPU clock frequency)/2 in ns. For example, when running parts at 300 MHz, use M=6.67 ns.
Select signals include: HCNTL[1:0], HR/W and HHWIL.
Copyright © 2012–2013, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
173
OMAPL137-HT
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
www.ti.com
Table 5-98. Switching Characteristics for Host-Port Interface Cycles (1) (2)
NO.
PARAMETER
(3) (4)
MIN
UNIT
MAX
For HPI Write, HRDY can go high (not
ready) for these HPI Write conditions;
otherwise, HRDY stays low (ready):
Case 1: Back-to-back HPIA writes (can
be either first or second half-word)
Case 2: HPIA write following a
PREFETCH command (can be either
first or second half-word)
Case 3: HPID write when FIFO is full
or flushing (can be either first or
second half-word)
Case 4: HPIA write and Write FIFO not
empty
For HPI Read, HRDY can go high (not
ready) for these HPI Read conditions:
Case 1: HPID read (with autoincrement) and data not in Read FIFO
(can only happen to first half-word of
HPID access)
Case 2: First half-word access of HPID
Read without auto-increment
For HPI Read, HRDY stays low (ready)
for these HPI Read conditions:
Case 1: HPID read with auto-increment
and data is already in Read FIFO
(applies to either half-word of HPID
access)
Case 2: HPID read without autoincrement and data is already in Read
FIFO (always applies to second halfword of HPID access)
Case 3: HPIC or HPIA read (applies to
either half-word access)
5
td(HSTBL-HRDYV)
Delay time, HSTROBE low to
HRDY valid
5a
td(HRSL-HRDYV)
Delay time HAS low to HRDY valid
6
ten(HSTBL-HD)
Enable time, HD driven from HSTROBE low
7
td(HRDYL-HDV)
Delay time, HRDY low to HD valid
8
toh(HSTBH-HDV)
Output hold time, HD valid after HSTROBE high
14
tdis(HSTBH-HDV)
Disable time, HD high-impedance from HSTROBE high
15
18
(1)
(2)
(3)
(4)
174
td(HSTBL-HDV)
td(HSTBH-HRDYV)
12
ns
13
2
ns
0
1.5
ns
ns
12
ns
Delay time, HSTROBE low to
HD valid
For HPI Read. Applies to conditions
where data is already residing in
HPID/FIFO:
Case 1: HPIC or HPIA read
Case 2: First half-word of HPID read
with auto-increment and data is
already in Read FIFO
Case 3: Second half-word of HPID
read with or without auto-increment
15
ns
Delay time, HSTROBE high to
HRDY valid
For HPI Write, HRDY can go high (not
ready) for these HPI Write conditions;
otherwise, HRDY stays low (ready):
Case 1: HPID write when Write FIFO is
full (can happen to either half-word)
Case 2: HPIA write (can happen to
either half-word)
Case 3: HPID write without autoincrement (only happens to second
half-word)
12
ns
Parameters are characterized from -40°C to 125°C unless otherwise noted.
M=SYSCLK2 period (CPU clock frequency)/2 in ns. For example, when running parts at 300 MHz, use M=6.67 ns.
HSTROBE refers to the following logical operation on HCS, HDS1, and HDS2: [NOT(HDS1 XOR HDS2)] OR HCS.
By design, whenever HCS is driven inactive (high), HPI will drive HRDY active (low).
Peripheral Information and Electrical Specifications
Copyright © 2012–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
OMAPL137-HT
www.ti.com
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
UHPI_HCS
UHPI_HAS(D)
2
2
1
1
UHPI_HCNTL[1:0]
2
1
2
1
UHPI_HR/W
2
2
1
1
UHPI_HHWIL
4
3
3
UHPI_HSTROBE
(A)(C)
15
15
14
14
6
8
UHPI_HD[15:0]
(output)
5
UHPI_HRDY
13
7
6
1st Half-Word
8
2nd Half-Word
(B)
A. UHPI_HSTROBE refers to the following logical operation on UHPI_HCS, UHPI_HDS1, and UHPI_HDS2: [NOT(HDS1
XOR HDS2)] OR UHPI_HCS.
B. Depending on the type of write or read operation (HPID without auto-incrementing; HPIA, HPIC, or HPID with
auto-incrementing) and the state of the FIFO, transitions on UHPI_HRDY may or may not occur.
.
C. UHPI_HCS reflects typical UHPI_HCS behavior when UHPI_HSTROBE assertion is caused by UHPI_HDS1 or
UHPI_HDS2. UHPI_HCS timing requirements are reflected by parameters for UHPI_HSTROBE
.
D The diagram above assumes UHPI_HAS has been pulled high.
Figure 5-67. UHPI Read Timing (HAS Not Used, Tied High)
Copyright © 2012–2013, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
175
OMAPL137-HT
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
www.ti.com
UHPI_HCS
UHPI_HAS(D)
1
1
2
2
UHPI_HCNTL[1:0]
1
1
2
2
UHPI_HR/W
1
1
2
2
UHPI_HHWIL
3
3
4
UHPI_HSTROBE(A)(C)
11
UHPI_HD[15:0]
(input)
11
12
12
1st Half-Word
5
13
2nd Half-Word
18
13
18
5
UHPI_HRDY(B)
A. UHPI_HSTROBE refers to the following logical operation on UHPI_HCS, UHPI_HDS1, and UHPI_HDS2: [NOT(HDS1 XOR HDS2)] OR
UHPI_HCS.
B. Depending on the type of write or read operation (HPID without auto-incrementing; HPIA, HPIC, or HPID with auto-incrementing) and the
state of the FIFO, transitions on UHPI_HRDY may or may not occur.
C. UHPI_HCS reflects typical UHPI_HCS behavior when UHPI_HSTROBE assertion is caused by UHPI_HDS1 or UHPI_HDS2. UHPI_HCS
timing requirements are reflected by parameters for UHPI_HSTROBE.
D The diagram above assumes UHPI_HAS has been pulled high.
Figure 5-68. UHPI Write Timing (HAS Not Used, Tied High)
5.27 Memory Protection Units (MPU)
The MPU performs memory protection checking. It inputs a VBUSM or VBUSP bus, checks the address
against the fixed and programmable regions to see if the access is allowed. If allowed the transfer is
passed unmodified to the output VBUSM or VBUSP bus. If the transfer is illegal (fails the protection check)
then the MPU does not pass the transfer to the output bus but rather services the transfer internally back
to the input bus (to prevent a hang) returning the fault status to the requestor as well as generating an
interrupt about the fault. The following features are supported by the MPU:
• Provides memory protection for fixed and programmable address ranges.
• Supports multiple programmable address region.
• Supports secure and debug access privileges.
• Supports read, write, and execute access privileges.
• Supports privid(8) associations with ranges.
• Generates an interrupt when there is a protection violation, and saves violating transfer parameters.
• MMR access is also protected.
176
Peripheral Information and Electrical Specifications
Copyright © 2012–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
OMAPL137-HT
www.ti.com
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
Table 5-99. MPU Register Descriptions
MPU1
BYTE ADDRESS
MPU2
BYTE ADDRESS
0x01E1 4000
0x01E1 5000
REVISION
0x01E1 4004
0x01E1 5004
CONFIGURATION
0x01E1 4008 - 0x01E1
4009
0x01E1 5008 - 0x01E1
5009
RSVD
0x01E1 4010
0x01E1 5010
INTR_RAW_STATUS
0x01E1 4014
0x01E1 5014
INTR_ENABLED_STATUS
Interrupt Enabled
Status/Clear
Interrupt Enable
REGISTER NAME
DESCRIPTION
Revision
Configuration
Reserved
Interrupt Raw Status/Set
0x01E1 4018
0x01E1 5018
INTR_ENABLE
0x01E1 401C
0x01E1 501C
INTR_ENABLE_CLR
0x01E1 4020
0x01E1 5020
RSVD
Reserved
0x01E1 4024
0x01E1 5024
RSVD
Reserved
0x01E1 4028 - 0x01E1
40FF
0x01E1 5028 - 0x01E1
50FF
RSVD
Reserved
0x01E1 4100
0x01E1 5100
FIXED_MPSAR
Fixed 1 Start Address
0x01E1 4104
0x01E1 5104
FIXED_MPEAR
Fixed 1 End Address
0x01E1 4108
0x01E1 5108
FIXED_MPPA
Interrupt Enable Clear
Fixed 1 MPPA
0x01E1 410C
0x01E1 510C
RSVD
Reserved
0x01E1 4110 - 0x01E1
41FF
0x01E1 5110 - 0x01E1
51FF
RSVD
Reserved
0x01E1 4200
0x01E1 5200
PROG0_MPSAR
Programmable 1 Start
Address
0x01E1 4204
0x01E1 5204
PROG0_MPEAR
Programmable 1 End
Address
0x01E1 4208
0x01E1 5208
PROG0_MPPA
0x01E1 420C
0x01E1 520C
RSVD
0x01E1 4210
0x01E1 5210
PROG1_MPSAR
0x01E1 4214
0x01E1 5214
PROG1_MPEAR
0x01E1 4218
0x01E1 5218
PROG1_MPPA
0x01E1 421C
0x01E1 521C
RSVD
0x01E1 4220
0x01E1 5220
PROG2_MPSAR
0x01E1 4224
0x01E1 5224
PROG2_MPEAR
0x01E1 4228
0x01E1 5228
PROG2_MPPA
0x01E1 422C
0x01E1 522C
RSVD
0x01E1 4230
0x01E1 5230
PROG3_MPSAR
0x01E1 4234
0x01E1 5234
PROG3_MPEAR
PROG3_MPPA
0x01E1 4238
0x01E1 5238
0x01E1 423C
0x01E1 523C
RSVD
0x01E1 4240
0x01E1 5240
PROG4_MPSAR
0x01E1 4244
0x01E1 5244
PROG4_MPEAR
PROG4_MPPA
0x01E1 4248
0x01E1 5248
0x01E1 424C
0x01E1 524C
RSVD
0x01E1 4250
0x01E1 5250
PROG5_MPSAR
0x01E1 4254
0x01E1 5254
PROG5_MPEAR
0x01E1 4258
0x01E1 5258
PROG5_MPPA
0x01E1 425C - 0x01E1
42FF
0x01E1 525C
RSVD
-
0x01E1 5260
PROG6_MPSAR
-
0x01E1 5264
PROG6_MPEAR
Copyright © 2012–2013, Texas Instruments Incorporated
Programmable 1 MPPA
Reserved
Additional Programmable
Range MMRs
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
177
OMAPL137-HT
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
www.ti.com
Table 5-99. MPU Register Descriptions (continued)
MPU1
BYTE ADDRESS
MPU2
BYTE ADDRESS
REGISTER NAME
-
0x01E1 5268
PROG6_MPPA
-
0x01E1 526C
RSVD
-
0x01E1 5270
PROG7_MPSAR
-
0x01E1 5274
PROG7_MPEAR
-
0x01E1 5278
PROG7_MPPA
-
0x01E1 527C
RSVD
-
0x01E1 5280
PROG8_MPSAR
-
0x01E1 5284
PROG8_MPEAR
-
0x01E1 5288
PROG8_MPPA
-
0x01E1 528C
RSVD
-
0x01E1 5290
PROG9_MPSAR
-
0x01E1 5294
PROG9_MPEAR
-
0x01E1 5298
PROG9_MPPA
-
0x01E1 529C
RSVD
-
0x01E1 52A0
PROG10_MPSAR
-
0x01E1 52A4
PROG10_MPEAR
-
0x01E1 52A8
PROG10_MPPA
-
0x01E1 52AC
RSVD
-
0x01E1 52B0
PROG11_MPSAR
-
0x01E1 52B4
PROG11_MPEAR
-
0x01E1 52B8
PROG11_MPPA
-
0x01E1 52BC - 0x01E1
52FF
RSVD
0x01E1 4300
0x01E1 5300
MPFAR
Fault 1 Address
0x01E1 4304
0x01E1 5304
MPFSR
Fault 1 Status
0x01E1 4308
0x01E1 5308
MPFCR
Fault 1 Clear
DESCRIPTION
5.28 Power and Sleep Controller (PSC)
The Power and Sleep Controllers (PSC) are responsible for managing transitions of system power on/off,
clock on/off, resets (device level and module level). It is used primarily to provide granular power control
for on chip modules (peripherals and CPU). A PSC module consists of a Global PSC (GPSC) and a set of
Local PSCs (LPSCs). The GPSC contains memory mapped registers, PSC interrupts, a state machine for
each peripheral/module it controls. An LPSC is associated with every module that is controlled by the PSC
and provides clock and reset control. See the TMS320C674x/OMAP-L1x Processor Peripherals Overview
Reference Guide. – Literature Number SPRUFK9 for more details.
The PSC includes the following features:
• Provides a software interface to:
– Control module clock enable/disable
– Control module reset
– Control CPU local reset
• Supports ICEpick TAP Router power, clock and reset features. For details on ICEpick features see
http://tiexpressdsp.com/wiki/index.php?title=ICEPICK.
Table 5-100. Power and Sleep Controller (PSC) Registers
178
PSC0
PSC1
0x01C1 0000
0x01E2 7000
Register
Description
REVID
Peripheral Revision and Class Information Register
Peripheral Information and Electrical Specifications
Copyright © 2012–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
OMAPL137-HT
www.ti.com
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
Table 5-100. Power and Sleep Controller (PSC) Registers (continued)
PSC0
PSC1
Register
Description
0x01C1 0018
0x01E2 7018
INTEVAL
Interrupt Evaluation Register
0x01C1 0040
0x01E2 7040
MERRPR0
Module Error Pending Register 0 (module 0-15)
(PSC0)
Module Error Pending Register 0 (module 0-31)
(PSC1)
0x01C1 0050
0x01E2 7050
MERRCR0
Module Error Clear Register 0 (module 0-15)
(PSC0)
Module Error Clear Register 0 (module 0-31)
(PSC1)
0x01C1 0060
0x01E2 7060
PERRPR
Power Error Pending Register
0x01C1 0068
0x01E2 7068
PERRCR
Power Error Clear Register
0x01C1 0120
0x01E2 7120
PTCMD
Power Domain Transition Command Register
0x01C1 0128
0x01E2 7128
PTSTAT
Power Domain Transition Status Register
0x01C1 0200
0x01E2 7200
PDSTAT0
Power Domain 0 Status Register
0x01C1 0204
0x01E2 7204
PDSTAT1
Power Domain 1 Status Register
0x01C1 0300
0x01E2 7300
PDCTL0
Power Domain 0 Control Register
0x01C1 0304
0x01E2 7304
PDCTL1
Power Domain 1 Control Register
0x01C1 0400
0x01E2 7400
PDCFG0
Power Domain 0 Configuration Register
0x01C1 0404
0x01E2 7404
PDCFG1
Power Domain 1 Configuration Register
0x01C1 0800 - 0x01C1 083C
0x01E2 7800 - 0x01E2 787C
MDSTAT0MDSTAT15
Module Status n Register (modules 0-15) (PSC0)
MDSTAT0MDSTAT31
Module Status n Register (modules 0-31) (PSC1)
MDCTL0MDCTL15
Module Control n Register (modules 0-15) (PSC0)
MDCTL0MDCTL31
Module Control n Register (modules 0-31) (PSC1)
0x01C1 0A00 - 0x01C1 0A3C
0x01E2 7A00 - 0x01E2 7A7C
5.28.1 Power Domain and Module Topology
The device includes two PSC modules. Each PSC module consists of an Always On power domain and
an additional pseudo/internal power domain that manages the sleep modes for the RAMs present in the
DSP subsystem and the L3 RAM, respectively.
Each PSC module controls clock states for several of the on chip modules, controllers and interconnect
components. Table 5-101 and Table 5-102 lists the set of peripherals/modules that are controlled by the
PSC, the power domain they are associated with, the LPSC assignment and the default (power-on reset)
module states. See the device-specific data manual for the peripherals available on a given device. The
module states and terminology are defined in Section 5.28.1.2.
Table 5-101. PSC0 Default Module Configuration
LPSC Number
Module Name
Power Domain
Default Module State
Auto Sleep/Wake Only
0
EDMA3 Channel Controller
AlwaysON (PD0)
SwRstDisable
—
1
EDMA Transfer Controller 0
AlwaysON (PD0)
SwRstDisable
—
2
EDMA Transfer Controller 1
AlwaysON (PD0)
SwRstDisable
—
3
EMIFA (BR7)
AlwaysON (PD0)
SwRstDisable
—
4
SPI 0
AlwaysON (PD0)
SwRstDisable
—
5
MMC/SD 0
AlwaysON (PD0)
SwRstDisable
—
6
Arm Interrupt Controller —
AlwaysON (PD0) —
SwRstDisable —
—
7
ARM RAM/ROM —
AlwaysON (PD0) —
Enable —
Yes —
8
-
-
-
—
9
UART 0
AlwaysON (PD0)
SwRstDisable
—
Copyright © 2012–2013, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
179
OMAPL137-HT
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
www.ti.com
Table 5-101. PSC0 Default Module Configuration (continued)
LPSC Number
Module Name
Power Domain
Default Module State
Auto Sleep/Wake Only
10
SCR0
(Br 0, Br 1, Br 2, Br 8)
AlwaysON (PD0)
Enable
Yes
11
SCR1
(Br 4)
AlwaysON (PD0)
Enable
Yes
12
SCR2
(Br 3, Br 5, Br 6)
AlwaysON (PD0)
Enable
Yes
13
dMAX
AlwaysON (PD0)
SwRstDisable
—
14
ARM —
AlwaysON (PD0) —
SwRstDisable —
—
15
DSP
PD_DSP (PD1)
Enable
—
Table 5-102. PSC1 Default Module Configuration
LPSC Number
Module Name
Power Domain
Module State
Auto Sleep/Wake Only
0
-
—
—
—
1
USB0 (USB2.0)
AlwaysON (PD0)
SwRstDisable
—
2
USB1 (USB1.1) —
AlwaysON (PD0) —
SwRstDisable —
—
3
GPIO
AlwaysON (PD0)
SwRstDisable
—
4
UHPI
AlwaysON (PD0)
SwRstDisable
—
5
EMAC —
AlwaysON (PD0) —
SwRstDisable —
—
6
EMIFB (Br 20)
AlwaysON (PD0)
SwRstDisable
—
7
McASP0 ( + McASP0 FIFO)
AlwaysON (PD0)
SwRstDisable
—
8
McASP1 ( + McASP1 FIFO)
AlwaysON (PD0)
SwRstDisable
—
9
McASP2( + McASP2 FIFO)
AlwaysON (PD0)
SwRstDisable
—
10
SPI 1
AlwaysON (PD0)
SwRstDisable
—
11
I2C 1
AlwaysON (PD0)
SwRstDisable
—
12
UART 1
AlwaysON (PD0)
SwRstDisable
—
13
UART 2
AlwaysON (PD0)
SwRstDisable
—
14-15 16
—
—
—
—
16
LCDC —
AlwaysON (PD0) —
SwRstDisable —
—
17
eHRPWM0/1/2
AlwaysON (PD0)
SwRstDisable
—
18-19
Not Used
—
—
—
20
ECAP0/1/2
AlwaysON (PD0)
SwRstDisable
—
21
EQEP0/1
AlwaysON (PD0)
SwRstDisable
—
22-23
-
—
—
—
24
SCR8
(Br 15)
AlwaysON (PD0)
Enable
Yes
25
SCR7
(Br 12)
AlwaysON (PD0)
Enable
Yes
26
SCR12
(Br 18)
AlwaysON (PD0)
Enable
Yes
27-30
-
—
—
—
31
Shared RAM
(Br 13)
PD_SHRAM (PD1)
Enable
Yes
5.28.1.1 Power Domain States
A power domain can only be in one of the two states: ON or OFF, defined as follows:
• ON: power to the domain is on
• OFF: power to the domain is off
180
Peripheral Information and Electrical Specifications
Copyright © 2012–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
OMAPL137-HT
www.ti.com
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
In the device, for both PSC0 and PSC1, the Always ON domain, or PD0 power domain, is always in the
ON state when the chip is powered-on. This domain is not programmable to OFF state.
• On PSC0 PD1/PD_DSP Domain: Controls the sleep state for DSP L1 and L2 Memories
• On PSC1 PD1/PD_SHRAM Domain: Controls the sleep state for the 128K Shared RAM
5.28.1.2 Module States
The PSC defines several possible states for a module. This states are essentially a combination of the
module reset asserted or de-asserted and module clock on/enabled or off/disabled. The module states are
defined in Table 5-103.
Table 5-103. Module States
Module State
Module Reset
Module Clock
Module State Definition
Enable
De-asserted
On
A module in the enable state has its module reset de-asserted and it has its
clock on. This is the normal operational state for a given module
SwRstDisable
Asserted
Off
A module in the SwResetDisable state has its module reset asserted and it has
its clock disabled. After initial power-on, several modules come up in the
SwRstDisable state. Generally, software is not expected to initiate this state
5.29 Emulation Logic
This section describes the steps to use a third party debugger. The debug capabilities and features for
DSP and ARM are as shown below.
For TI’s latest debug and emulation information see :
http://tiexpressdsp.com/wiki/index.php?title=Category:Emulation
DSP:
• Basic Debug
– Execution Control
– System Visibility
• Real-Time Debug
– Interrupts serviced while halted
– Low/non-intrusive system visibility while running
• Advanced Debug
– Global Start
– Global Stop
– Specify targeted memory level(s) during memory accesses
– HSRTDX (High Speed Real Time Data eXchange)
• Advanced System Control
– Subsystem reset via debug
– Peripheral notification of debug events
– Cache-coherent debug accesses
• Security
– Configurable levels of security and debug visibility
– Halting on a security violation
– Debug halts prevented during secure code execution
– Memory accesses prevented to secure memory
Copyright © 2012–2013, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
181
OMAPL137-HT
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
•
•
•
www.ti.com
Analysis Actions
– Stop program execution
– Generate debug interrupt
– Benchmarking with counters
– External trigger generation
– Debug state machine state transition
– Combinational and Sequential event generation
Analysis Events
– Program event detection
– Data event detection
– External trigger Detection
– System event detection (i.e. cache miss)
– Debug state machine state detection
Analysis Configuration
– Application access
– Debugger access
Table 5-104. DSP Debug Features
Category
Hardware Feature
Availability
Software breakpoint
Unlimited
Up to 10 HWBPs, including:
4 precise
Basic Debug
Hardware breakpoint
(1)
HWBPs inside DSP core and one of them is
associated with a counter.
2 imprecise
4 imprecise
Watch point
Analysis
(1)
(1)
(1)
HWBPs from AET.
HWBPs from AET which are shared for
watch point.
Up to 4 watch points, which are shared with HWBPs,
and can also be used as 2 watch points with data (32
bits)
Watch point with Data
Up to 2, Which can also be used as 4 watch points.
Counters/timers
1x64-bits (cycle only) + 2x32-bits (water marke counters)
External Event Trigger In
1
External Event Trigger Out
1
Precise hardware breakpoints will halt the processor immediately prior to the execution of the selected instruction. Imprecise breakpoints
will halt the processor some number of cycles after the selected instruction depending on device conditions.
ARM:
• Basic Debug
– Execution Control
– System Visibility
• Advanced Debug
– Global Start
– Global Stop
• Advanced System Control
– Subsystem reset via debug
– Peripheral notification of debug events
– Cache-coherent debug accesses
182
Peripheral Information and Electrical Specifications
Copyright © 2012–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
OMAPL137-HT
www.ti.com
•
•
•
•
•
•
•
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
Security
– Halting on a security violation (by cross-triggering via INTC)
– Memory accesses prevented to secure memory (this is ensured by system level security
mechanism)
Program Trace
– Program flow corruption
– Code coverage
– Path coverage
– Thread/interrupt synchronization problems
Data Trace
– Memory corruption
Timing Trace
– Profiling
Analysis Actions
– Stop program execution
– Control trace streams
– Generate debug interrupt
– Benchmarking with counters
– External trigger generation
– Debug state machine state transition
– Combinational and Sequential event generation
Analysis Events
– Program event detection
– Data event detection
– External trigger Detection
– System event detection (i.e. cache miss)
– Debug state machine state detection
Analysis Configuration
– Application access
– Debugger access
Table 5-105. ARM Debug Features
Category
Hardware Feature
Availability
Software breakpoint
Unlimited
Up to 14 HWBPs, including:
2 precise
Basic Debug
Hardware breakpoint
(1)
HWBP inside ARM core which are shared
with watch points.
8 imprecise (1) HWBPs from ETM’s address
comparators, which are shared with trace function, and
can be used as watch point too.
4 imprecise
(1)
(1)
HWBPs from ICECrusher.
Precise hardware breakpoints will halt the processor immediately prior to the execution of the selected instruction. Imprecise breakpoints
will halt the processor some number of cycles after the selected instruction depending on device conditions.
Copyright © 2012–2013, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
183
OMAPL137-HT
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
www.ti.com
Table 5-105. ARM Debug Features (continued)
Category
Hardware Feature
Availability
Up to 6 watch points, including:
Watch point
2 from ARM core which is shared with HWBPs and can
be associated with a data.
8 from ETM’s address comparators, which are shared
with trace function, and HWBPs.
2 from ARM core which is shared with HWBPs.
Analysis
Trace Control
Watch point with Data
8 watch points from ETM can be associated with a data
comparator, and ETM has total 4 data comparators.
Counters/timers
3x32-bit (1 cycle ; 2 event)
External Event Trigger In
1
External Event Trigger Out
1
Internal Cross-Triggering Signals
One between ARM and DSP
Address range for trace
4
Data qualification for trace
2
System events for trace control
20
Counters/Timers for trace control
2x16-bit
State Machines/Sequencers
1x3-State State Machine
Context/Thread ID Comparator
1
Independent trigger control units
12
Capture depth PC
4k bytes ETB
Capture depth PC + Timing
4k bytes ETB
Application accessible
Y
On-chip Trace
Capture
5.29.1 JTAG Port Description
The target debug interface uses the five standard IEEE 1149.1(JTAG) signals (TRST, TCK, TMS, TDI,
and TDO), a return clock (RTCK) due to the clocking requirements of the ARM926EJ-S and EMU0.
TRST holds the debug and boundary scan logic in reset (normal DSP operation) when pulled low (its
default state). Since TRST has an internal pull-down resistor, this ensures that at power up the device
functions in its normal (non-test) operation mode if TRST is not connected. Otherwise, TRST should be
driven inactive by the emulator or boundary scan controller. Boundary scan test cannot be performed
while the TRST pin is pulled low.
Table 5-106. JTAG Port Description
184
PIN
TYPE
NAME
DESCRIPTION
TRST
I
Test Logic Reset
When asserted (active low) causes all test and debug logic in
OMAPL137 to be reset along with the IEEE 1149.1 interface
TCK
I
Test Clock
This is the test clock used to drive an IEEE 1149.1 TAP state machine
and logic. Depending on the emulator attached to OMAPL137, this is a
free running clock or a gated clock depending on RTCK monitoring.
RTCK
O
Returned Test Clock
Synchronized TCK. Depending on the emulator attached to OMAPL137,
the JTAG signals are clocked from RTCK or RTCK is monitored by the
emulator to gate TCK.
TMS
I
Test Mode Select
Directs the next state of the IEEE 1149.1 test access port state machine
TDI
I
Test Data Input
Scan data input to the device
TDO
O
Test Data Output
Scan data output of the device
EMU0
I/O
Emulation 0
Channel 0 trigger + HSRTDX
Peripheral Information and Electrical Specifications
Copyright © 2012–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
OMAPL137-HT
www.ti.com
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
5.29.2 Scan Chain Configuration Parameters
Table 5-107 shows the TAP configuration details required to configure the router/emulator for this device.
Table 5-107. JTAG Port Description
Router Port ID
Default TAP
TAP Name
Tap IR Length
17
No
C674x
38
18
No
ARM926
4
19
No
ETB
4
The router is ICEpick revision C and has a 6-bit IR length.
5.29.3 Initial Scan Chain Configuration
The first level of debug interface that sees the scan controller is the TAP router module. The debugger
can configure the TAP router for serially linking up to 16 TAP controllers or individually scanning one of
the TAP controllers without disrupting the IR state of the other TAPs.
5.29.3.1 Adding TAPS to the Scan Chain
A Power-On Reset (POR) or the JTAG Test-Logic Reset state configures the TAP router to contain only
the router’s TAP.
The TAP router must be programmed to add additional TAPs to the scan chain. The following JTAG scans
must be completed to add the ARM926EJ-S to the scan chain.
Router
TDO
TDI
CLK
Steps
TMS
Router
ARM926EJ-S/ETM
Figure 5-69. Adding ARM926EJ-S to the scan chain
Pre-amble: The device whose data reaches the emulator first is listed first in the board configuration file.
This device is a pre-amble for all the other devices. This device has the lowest device ID.
Post-amble: The device whose data reaches the emulator last is listed last in the board configuration file.
This device is a post-amble for all the other devices. This device has the highest device ID.
• Function : Update the JTAG preamble and post-amble counts.
– Parameter : The IR pre-amble count is '0'.
– Parameter : The IR post-amble count is '0'.
– Parameter : The DR pre-amble count is '0'.
– Parameter : The DR post-amble count is '0'.
– Parameter : The IR main count is '6'.
– Parameter : The DR main count is '1'.
Copyright © 2012–2013, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
185
OMAPL137-HT
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
•
•
•
•
•
•
•
•
186
www.ti.com
Function : Do a send-only JTAG IR/DR scan.
– Parameter : The route to JTAG shift state is 'shortest transition'.
– Parameter : The JTAG shift state is 'shift-ir'.
– Parameter : The JTAG destination state is 'pause-ir'.
– Parameter : The bit length of the command is '6'.
– Parameter : The send data value is '0x00000007'.
– Parameter : The actual receive data is 'discarded'.
Function : Do a send-only JTAG IR/DR scan.
– Parameter : The route to JTAG shift state is 'shortest transition'.
– Parameter : The JTAG shift state is 'shift-dr'.
– Parameter : The JTAG destination state is 'pause-dr'.
– Parameter : The bit length of the command is '8'.
– Parameter : The send data value is '0x00000089'.
– Parameter : The actual receive data is 'discarded'.
Function : Do a send-only JTAG IR/DR scan.
– Parameter : The route to JTAG shift state is 'shortest transition'.
– Parameter : The JTAG shift state is 'shift-ir'.
– Parameter : The JTAG destination state is 'pause-ir'.
– Parameter : The bit length of the command is '6'.
– Parameter : The send data value is '0x00000002'.
– Parameter : The actual receive data is 'discarded'.
Function : Embed the port address in next command.
– Parameter : The port address field is '0x0f000000'.
– Parameter : The port address value is '3'.
Function : Do a send-only JTAG IR/DR scan.
– Parameter : The route to JTAG shift state is 'shortest transition'.
– Parameter : The JTAG shift state is 'shift-dr'.
– Parameter : The JTAG destination state is 'pause-dr'.
– Parameter : The bit length of the command is '32'.
– Parameter : The send data value is '0xa2002108'.
– Parameter : The actual receive data is 'discarded'.
Function : Do a send-only all-ones JTAG IR/DR scan.
– Parameter : The JTAG shift state is 'shift-ir'.
– Parameter : The JTAG destination state is 'run-test/idle'.
– Parameter : The bit length of the command is '6'.
– Parameter : The send data value is 'all-ones'.
– Parameter : The actual receive data is 'discarded'.
Function : Wait for a minimum number of TCLK pulses.
– Parameter : The count of TCLK pulses is '10'.
Function : Update the JTAG preamble and post-amble counts.
– Parameter : The IR pre-amble count is '0'.
– Parameter : The IR post-amble count is '6'.
– Parameter : The DR pre-amble count is '0'.
– Parameter : The DR post-amble count is '1'.
– Parameter : The IR main count is '4'.
– Parameter : The DR main count is '1'.
Peripheral Information and Electrical Specifications
Copyright © 2012–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
OMAPL137-HT
www.ti.com
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
The initial scan chain contains only the TAP router module. The following steps must be completed in
order to add ETB TAP to the scan chain.
Router
TDI
ARM926EJ-S/ETM
TDO
CLK
Steps
TMS
Router
•
•
•
•
•
ARM926EJ-S/ETM
ETB
Figure 5-70. Adding ETB to the scan chain
Function : Do a send-only JTAG IR/DR scan.
– Parameter : The route to JTAG shift state is 'shortest transition'.
– Parameter : The JTAG shift state is 'shift-ir'.
– Parameter : The JTAG destination state is 'pause-ir'.
– Parameter : The bit length of the command is '6'.
– Parameter : The send data value is '0x00000007'.
– Parameter : The actual receive data is 'discarded'.
Function : Do a send-only JTAG IR/DR scan.
– Parameter : The route to JTAG shift state is 'shortest transition'.
– Parameter : The JTAG shift state is 'shift-dr'.
– Parameter : The JTAG destination state is 'pause-dr'.
– Parameter : The bit length of the command is '8'.
– Parameter : The send data value is '0x00000089'.
– Parameter : The actual receive data is 'discarded'.
Function : Do a send-only JTAG IR/DR scan.
– Parameter : The route to JTAG shift state is 'shortest transition'.
– Parameter : The JTAG shift state is 'shift-ir'.
– Parameter : The JTAG destination state is 'pause-ir'.
– Parameter : The bit length of the command is '6'.
– Parameter : The send data value is '0x00000002'.
– Parameter : The actual receive data is 'discarded'.
Function : Embed the port address in next command.
– Parameter : The port address field is '0x0f000000'.
– Parameter : The port address value is '3'.
Function : Do a send-only JTAG IR/DR scan.
– Parameter : The route to JTAG shift state is 'shortest transition'.
– Parameter : The JTAG shift state is 'shift-dr'.
– Parameter : The JTAG destination state is 'pause-dr'.
– Parameter : The bit length of the command is '32'.
– Parameter : The send data value is '0xa3302108'.
– Parameter : The actual receive data is 'discarded'.
Copyright © 2012–2013, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
187
OMAPL137-HT
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
•
•
•
www.ti.com
Function : Do a send-only all-ones JTAG IR/DR scan.
– Parameter : The JTAG shift state is 'shift-ir'.
– Parameter : The JTAG destination state is 'run-test/idle'.
– Parameter : The bit length of the command is '6'.
– Parameter : The send data value is 'all-ones'.
– Parameter : The actual receive data is 'discarded'.
Function : Wait for a minimum number of TCLK pulses.
– Parameter : The count of TCLK pulses is '10'.
Function : Update the JTAG preamble and post-amble counts.
– Parameter : The IR pre-amble count is '0'.
– Parameter : The IR post-amble count is '6 + 4'.
– Parameter : The DR pre-amble count is '0'.
– Parameter : The DR post-amble count is '1 + 1'.
– Parameter : The IR main count is '4'.
– Parameter : The DR main count is '1'.
5.29.4 JTAG 1149.1 Boundary Scan Considerations
To
•
•
•
use boundary scan, the following sequence should be followed:
Execute a valid reset sequence and exit reset
Wait at least 6000 OSCIN clock cycles
Enter boundary scan mode using the JTAG pins
No specific value is required on the EMU0 pin for boundary scan testing. If TRST is not driven by the
boundary scan tool or tester, TRST should be externally pulled high during boundary scan testing.
5.30 Real Time Clock (RTC)
The RTC provides a time reference to an application running on the device. The current date and time is
tracked in a set of counter registers that update once per second. The time can be represented in 12-hour
or 24-hour mode. The calendar and time registers are buffered during reads and writes so that updates do
not interfere with the accuracy of the time and date.
Alarms are available to interrupt the CPU at a particular time, or at periodic time intervals, such as once
per minute or once per day. In addition, the RTC can interrupt the CPU every time the calendar and time
registers are updated, or at programmable periodic intervals.
The real-time clock (RTC) provides the following features:
• 100-year calendar (xx00 to xx99)
• Counts seconds, minutes, hours, day of the week, date, month, and year with leap year compensation
• Binary-coded-decimal (BCD) representation of time, calendar, and alarm
• 12-hour clock mode (with AM and PM) or 24-hour clock mode
• Alarm interrupt
• Periodic interrupt
• Single interrupt to the CPU
• Supports external 32.768-kHz crystal or external clock source of the same frequency
• Separate isolated power supply
Figure 5-71 shows a block diagram of the RTC. See the TMS320C674x/OMAP-L1x Processor Peripherals
Overview Reference Guide. – Literature Number SPRUFK9 for more details.
188
Peripheral Information and Electrical Specifications
Copyright © 2012–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
OMAPL137-HT
www.ti.com
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
RTC_XI
Counter
32 kHz
Oscillator
Compensation
Seconds
Minutes
Week
Days
XTAL
RTC_XO
Hours
Days
Months
Years
Oscillator
Alarm
Alarm
Interrupts
Timer
Periodic
Interrupts
Figure 5-71. Real-Time Clock Block Diagram
5.30.1 Clock Source
The clock reference for the RTC is an external 32.768-kHz crystal or an external clock source of the same
frequency. The RTC also has a separate power supply that is isolated from the rest of the system. When
the CPU and other peripherals are without power, the RTC can remain powered to preserve the current
time and calendar information.
The source for the RTC reference clock may be provided by a crystal or by an external clock source. The
RTC has an internal oscillator buffer to support direct operation with a crystal. The crystal is connected
between pins RTC_XI and RTC_XO. RTC_XI is the input to the on-chip oscillator and RTC_XO is the
output from the oscillator back to the crystal. A crystal with 70k-ohm max ESR is recommended. Typical
C1, C2 values are 10-20 pF.
An external 32.768-kHz clock source may be used instead of a crystal. In such a case, the clock source is
connected to RTC_XI, and RTC_XO is left unconnected.
If the RTC is not used, the RTC_XI pin should be held high and RTC_XO should be left unconnected.
RTC
Power
Source
Real Time Clock
C2
XTAL
32.768
kHz
RTC_CVDD
RTC_XI
RTC_XO
32K
OSC
C1
Real
Time
Clock
(RTC)
Module
RTC_VSS
Isolated RTC
Power Domain
The oscillator performance is validated up to 125°C, operating above 125°C is recommended to be driven with an
external clock source.
Figure 5-72. Clock Source
Copyright © 2012–2013, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
189
OMAPL137-HT
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
www.ti.com
5.30.2 Registers
Table 5-108 lists the memory-mapped registers for the RTC. See the device-specific data manual for the
memory address of these registers.
Table 5-108. Real-Time Clock (RTC) Registers
190
BYTE ADDRESS
Acronym
Register Description
0x01C2 3000
SECOND
Seconds Register
0x01C2 3004
MINUTE
Minutes Register
0x01C2 3008
HOUR
Hours Register
0x01C2 300C
DAY
Day of the Month Register
0x01C2 3010
MONTH
Month Register
0x01C2 3014
YEAR
Year Register
0x01C2 3018
DOTW
Day of the Week Register
0x01C2 3020
ALARMSECOND
Alarm Seconds Register
0x01C2 3024
ALARMMINUTE
Alarm Minutes Register
0x01C2 3028
ALARMHOUR
Alarm Hours Register
0x01C2 302C
ALARMDAY
Alarm Days Register
0x01C2 3030
ALARMMONTH
Alarm Months Register
0x01C2 3034
ALARMYEAR
Alarm Years Register
0x01C2 3040
CTRL
Control Register
0x01C2 3044
STATUS
Status Register
0x01C2 3048
INTERRUPT
Interrupt Enable Register
0x01C2 304C
COMPLSB
Compensation (LSB) Register
0x01C2 3050
COMPMSB
Compensation (MSB) Register
0x01C2 3054
OSC
Oscillator Register
0x01C2 3060
SCRATCH0
Scratch 0 (General-Purpose) Register
0x01C2 3064
SCRATCH1
Scratch 1 (General-Purpose) Register
0x01C2 3068
SCRATCH2
Scratch 2 (General-Purpose) Register
0x01C2 306C
KICK0
Kick 0 (Write Protect) Register
0x01C2 3070
KICK1
Kick 1 (Write Protect) Register
Peripheral Information and Electrical Specifications
Copyright © 2012–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
OMAPL137-HT
www.ti.com
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
6 Device and Document Support
6.1
Device Support
TI offers an extensive line of development tools for the OMAPL137 platform, including tools to evaluate
the performance of the processors, generate code, develop algorithm implementations, and fully integrate
and debug software and hardware modules. The tool's support documentation is electronically available
within the Code Composer Studio™ Integrated Development Environment (IDE).
The following products support development of applications:
Software Development Tools:
Code Composer Studio™ Integrated Development Environment (IDE): including Editor
C/C++/Assembly Code Generation, and Debug plus additional development tools
Scalable, Real-Time Foundation Software (DSP/BIOS™), which provides the basic run-time target
software needed to support any application.
Hardware Development Tools:
Extended Development System (XDS™) Emulator
For a complete listing of development-support tools for OMAPL137 , visit the Texas Instruments web
site on the Worldwide Web at http://www.ti.com uniform resource locator (URL). For information on
pricing and availability, contact the nearest TI field sales office or authorized distributor.
Device and Document Support
Copyright © 2012–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
191
OMAPL137-HT
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
6.2
www.ti.com
Documentation Support
The following documents describe the Applications Processor. Copies of these documents are available
on the Internet at www.ti.com. Tip: Enter the literature number in the search box provided at www.ti.com.
DSP Reference Guides
SPRUG82
TMS320C674x DSP Cache User's Guide. Explains the fundamentals of memory caches
and describes how the two-level cache-based internal memory architecture in the
TMS320C674x digital signal processor (DSP) can be efficiently used in DSP applications.
Shows how to maintain coherence with external memory, how to use DMA to reduce
memory latencies, and how to optimize your code to improve cache efficiency. The internal
memory architecture in the C674x DSP is organized in a two-level hierarchy consisting of a
dedicated program cache (L1P) and a dedicated data cache (L1D) on the first level.
Accesses by the CPU to the these first level caches can complete without CPU pipeline
stalls. If the data requested by the CPU is not contained in cache, it is fetched from the next
lower memory level, L2 or external memory.
192
SPRUFE8
TMS320C674x DSP CPU and Instruction Set Reference Guide. Describes the CPU
architecture, pipeline, instruction set, and interrupts for the TMS320C674x digital signal
processors (DSPs). The C674x DSP is an enhancement of the C64x+ and C67x+ DSPs with
added functionality and an expanded instruction set.
SPRU186
TMS320C6000 Assembly Language Tools User's Guide.Describes the assembly
language tools (assembler, linker, and other tools used to develop assembly language code),
assembler directives, macros, common object file format, and symbolic debugging directives
for the TMS320C6000 platform of devices (including the C64x+, C67x+, and C674x
generations).
SPRU187
TMS320C6000 Optimizing Compiler User's Guide. Describes the TMS320C6000 C
compiler and the assembly optimizer. This C compiler accepts ANSI standard C source code
and produces assembly language source code for the TMS320C6000 platform of devices
(including the C64x+, C67x+, and C674x generations). The assembly optimizer helps you
optimize your assembly code.
SPRUG83
TMS320OMAPL137 Digital Audio Processor System Reference Guide. Describes the
ARM subsystem, DSP subsystem, system memory, device clocking, phase-locked loop
controller (PLLC), power and sleep controller (PSC), power management, ARM interrupt
controller (AINTC), and system configuration module.
SPRUFK5
TMS320C674x DSP Megamodule Reference Guide. Describes the TMS320C674x digital
signal processor (DSP) megamodule. Included is a discussion on the internal direct memory
access (IDMA) controller, the interrupt controller, the power-down controller, memory
protection, bandwidth management, and the memory and cache.
SPRUFK9
TMS320C674x/OMAP-L1x Processor Peripherals Overview Reference Guide. Provides
an overview and briefly describes the peripherals available on the device.
SPRUG84
OMAP-L137 Applications Processor System Reference Guide System-on-Chip (SoC)
including the ARM subsystem, DSP subsystem, system memory, device clocking, phaselocked loop controller (PLLC), power and sleep controller (PSC), power management, ARM
interrupt controller (AINTC), and system configuration module.
Device and Document Support
Copyright © 2012–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
OMAPL137-HT
www.ti.com
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
7 Mechanical Packaging and Orderable Information
This section describes the device orderable part numbers, packaging options, materials, thermal and
mechanical parameters.
7.1
Device and Development-Support Tool Nomenclature
To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all
DSP devices and support tools. Each DSP commercial family member has one of three prefixes: TMX,
TMP, or TMS (e.g., TMS320C6745). Texas Instruments recommends two of three possible prefix
designators for its support tools: TMDX and TMDS. These prefixes represent evolutionary stages of
product development from engineering prototypes (TMX/TMDX) through fully qualified production
devices/tools (TMS/TMDS).
To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all
DSP devices and support tools. Each DSP commercial family member has one of three prefixes: X, P or
NULL (e.g., XOMAPL137). Texas Instruments recommends two of three possible prefix designators for its
support tools: TMDX and TMDS. These prefixes represent evolutionary stages of product development
from engineering prototypes (TMX/TMDX) through fully qualified production devices/tools (TMS/TMDS).
Device development evolutionary flow:
X
Experimental device that is not necessarily representative of the final device's electrical
specifications.
P
Final silicon die that conforms to the device's electrical specifications but has not completed
quality and reliability verification.
NULL
Fully-qualified production device.
Support tool development evolutionary flow:
TMDX
Development-support product that has not yet completed Texas Instruments internal
qualification testing.
TMDS
Fully qualified development-support product.
X and P devices and TMDX development-support tools are shipped against the following disclaimer:
"Developmental product is intended for internal evaluation purposes."
Null devices and TMDS development-support tools have been characterized fully, and the quality and
reliability of the device have been demonstrated fully. TI's standard warranty applies.
Predictions show that prototype devices (TMX or TMP) have a greater failure rate than the standard
production devices. Texas Instruments recommends that these devices not be used in any production
system because their expected end-use failure rate still is undefined. Only qualified production devices are
to be used.
TI device nomenclature also includes a suffix with the device family name. This suffix indicates the
package type (for example, ZBK), the temperature range (for example, "Blank" is the commercial
temperature range), and the device speed range in megahertz (for example, "Blank" is the default).
Figure 7-1 provides a legend for reading the complete device name for any OMAPL13x member.
Copyright © 2012–2013, Texas Instruments Incorporated
Mechanical Packaging and Orderable Information
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
193
OMAPL137-HT
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
X
OMAPL137
www.ti.com
( )
PTP
( )
PREFIX
X = Experimental Device
P = Prototype Device
Blank = Production Device
TEMPERATURE RANGE (JUNCTION)
Blank = 0°C to 90°C (Commercial Grade)
D = -40°C to 90°C (Industrial Grade)
A = -40°C to 105°C (Extended Grade)
T = -40°C to 125°C (Automotive Grade)
H = -55°C to 175°C (High Temp Grade)
DEVICE
SILICON REVISION
Blank = Silicon Revision 1.0
A = Silicon Revision 1.1
B = Silicon Revision 2.0 or 2.1
PACKAGE TYPE
PTP = 176 Pin PTP Package, Pb-free and Green
Figure 7-1. Device Nomenclature (PTP Package)
OMAPL137 ( )
H
KGD
( )
DEVICE
SILICON REVISION
Blank = Silicon Revision 1.0
A = Silicon Revision 1.1
B = Silicon Revision 2.0 or 2.1
TEMPERATURE RANGE (JUNCTION)
1 = Waffle Pack
PACKAGE TYPE
KGD = Known Good Die
H = -55°C to 175°C (High Temp Grade)
Figure 7-2. Device Nomenclature (KGD Package)
7.2
Packaging Materials Information
The 176-pin PTP package is lead-free (Pb-free) and green. "Lead-free" and "green" are defined as
follows:
• Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are
compatible with the current RoHS requirements for all 6 substances, including the requirement that
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high
temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
• Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of
Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in
homogeneous material).
194
Mechanical Packaging and Orderable Information
Copyright © 2012–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
OMAPL137-HT
www.ti.com
7.3
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
Thermal Data for PTP
The following table(s) show the thermal resistance characteristics for the PowerPADTM PTP mechanical
package.
Table 7-1. Thermal Resistance Characteristics (PowerPADTM Package) [PTP]
NO.
°C/W
1
RΘJCTOP
Junction-to-case top
9.3
2
RΘJB
Junction-to-board
10.3
3
RΘJA
Junction-to-free air
26.5
4
RΘJCBOT
Junction-to-case bottom
0.2
5
PsiJT
Junction-to-package top
0.4
6
PsiJB
Junction-to-board
10.1
7.4
Supplementary Information About the 176-pin PTP PowerPAD™ Package
This section highlights a few important details about the 176-pin PTP PowerPAD™ package. Texas
Instruments' PowerPAD Thermally Enhanced Package Technical Brief (literature number SLMA002)
should be consulted when creating a PCB footprint for this device.
7.4.1
Standoff Height
As illustrated in Figure 7-3, the standoff height specification for this device (between 0.050 mm and
0.150 mm) is measured from the seating plane established by the three lowest package pins to the lowest
point on the package body. Due to warpage, the lowest point on the package body is located in the center
of the package at the exposed thermal pad.
Using this definition of standoff height provides the correct result for determining the correct solder paste
thickness. According to TI's PowerPAD Thermally Enhanced Package Technical Brief (literature number
SLMA002), the recommended range of solder paste thickness for this package is between 0.152 mm and
0.178 mm.
Standoff Height
Figure 7-3. Standoff Height Measurement on 176-pin PTP Package
7.4.2
PowerPAD™ PCB Footprint
In general, for proper thermal performance, the thermal pad under the package body should be as large
as possible. However, the soldermask opening for the PowerPAD™ should be sized to match the pad size
on the 176-pin PTP package; as illustrated in Figure 7-4.
Copyright © 2012–2013, Texas Instruments Incorporated
Mechanical Packaging and Orderable Information
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
195
OMAPL137-HT
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
www.ti.com
Thermal Pad on Top Copper
should be as large as Possible.
Soldermask opening should be smaller and match
the size of the thermal pad on the DSP.
Figure 7-4. Soldermask Opening Should Match Size of DSP Thermal Pad
7.5
Packaging Information
Table 7-2. Orderable Part Numbers
PACKAGE
CPU
SPEED
EMIFB
SDRAM
SPEED
CORE
SUPPLY
I/O SUPPLY
OPERATING
JUNCTION
TEMPERATURE
RANGE
OMAPL137BPTPH
176 PTP
300 MHz
133 MHz
1.2 V
3.3 V
-55°C to 175°C
OMAPL137BHKGD1
KGD die
300 MHz
133 MHz
1.2 V
3.3 V
-55°C to 175°C
ORDERABLE PART
NUMBER
7.6
Mechanical Drawings
This section contains the detailed mechanical drawing for the PTP PowerPADTM plastic quad flat pack
package. Additionally, a detailed drawing of the actual thermal pad dimensions as well as a recommended
PCB footprint are provided.
196
Mechanical Packaging and Orderable Information
Copyright © 2012–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
OMAPL137-HT
www.ti.com
7.6.1
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
PTP (S-PQFP-G176)
PTP (S-PQFP-G176)
PowerPAD™ PLASTIC QUAD
132
89
133
88
Thermal Pad
(See Note D)
0,27
0,08
0,17
M
0,50
0,13 NOM
176
45
1
44
Gage Plane
21,50 SQ
24,20
23,80
26,20
25,80
SQ
0,25
0,15
SQ
0°-7°
0,05
1,45
0,75
1,35
0,45
Seating Plane
0,08
1,60 MAX
NOTES: A.
B.
C.
D.
All linear dimensions are in millimeters.
This drawing is subject to change without notice.
Body dimensions do not include mold flash or protrusion.
This package is designed to be soldered to a thermal pad on the board. Refer to Technical Brief, PowerPad
Thermally Enhanced Package. Texas Instruments Literature No. SLMA002 for information regarding
recommened board layout. This documrnt is available at <http://www.ti.com>.
E. Falls within JEDEC MS-026
PowerPAD is a trademark of Texas Instruments Incorporated.
Copyright © 2012–2013, Texas Instruments Incorporated
Mechanical Packaging and Orderable Information
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
197
OMAPL137-HT
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
7.7
www.ti.com
dMAX
Table 7-3 lists the dMAX control registers.
Table 7-3. dMAX Control Registers
Register
Address
dMAX
Register
Name
6000 0008h
DEPR
The dMAX event polarity register (DEPR) controls the polarity-rising edge (low
to high) or falling edge (high to low)-that sets the flag in the EFR register.
6000 000Ch
DEER
The events can be enabled by writing a 1 to dMAX Event Enable Register
(DEER).
6000 0010h
DEDR
The events can be disabled by writing a 1 to dMAX Event Disable Register
(DEDR).
6000 0014h
DEHPR
An event is assigned to the high priority event group when the bit, which
corresponds to the event, is set in the dMAX Event High Priority Register
(DEHPR).
6000 0018h
DELPR
An event is assigned to the low priority event group when the bit, which
corresponds to the event, is set in the dMAX Event Low Priority Register
(DELPR).
6000 001Ch
DEFR
The dMAX Event Flag Register (DEFR) indicates that an appropriate transition
edge (specified in the Event Polarity Register) has occurred on the event
signals. All events are captured in the event flag register, even when the
events are disabled.
6000 0034h
DER0
The dMAX event register (DER0) reflects current value of the event signals 70.
6000 0054h
DER1
The dMAX event register (DER1) reflects current value of the event signals 158.
6000 0074h
DER2
The dMAX event register (DER2) reflects current value of the event signals 2316.
6000 0094h
DER3
The dMAX event register (DER3) reflects current value of the event signals 3124.
6000 0040h
DFSR0
dMAX FIFO status register 0. Writing a 1 to the DFSR0 register clears the
corresponding bit. Writing 0 has no effect.
6000 0060h
DFSR1
dMAX FIFO status register 1. Writing a 1 to the DFSR1 register clears the
corresponding bit. Writing 0 has no effect.
6000 0080h
DTCR0
dMAX transfer completion register 0. Writing a 1 to the DTCR0 register clears
the corresponding bit. Writing 0 has no effect.
6000 00A0h
DTCR1
dMAX transfer completion register 1. Writing a 1 to the DTCR1 register clears
the corresponding bit. Writing 0 has no effect.
-
DETR
dMAX event trigger register. By toggling a bit in this register the CPU can
trigger an event. To facilitate faster CPU access, the dMAX Event Trigger
Register is not memory-mapped and is placed inside the CPU module.
-
DESR
dMAX event status register. To facilitate low CPU access overhead this
register mirrors TCC bits from DTCR0 and DTCR1 registers. The register also
keeps track of dMAX controller activity. To facilitate faster CPU access, the
dMAX Event Status Register is not memory-mapped and is placed inside the
CPU module.
7.8
Register Description
Key Manager
The Key Manager provides the management of the security keys within the Security Architecture. Its goal
as part of the architecture is to provide protection of keys / key information (known from this point on as
Keys) against unintended users.The following features are supported by the Key Manager:
• Controls the system level security key information
• Supports a configurable number of 128-bit security keys and 16-bit key checksums (up to 16)
• EFUSE scan chain snooping capabilities
– Device Type capture
– Security Key checksum validation
198
Mechanical Packaging and Orderable Information
Copyright © 2012–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
OMAPL137-HT
www.ti.com
•
•
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
Read only VBUSP slave port for register access
– Access controls for security key information
• Configurable mstid and privid filter
• Support for CBA memory protection sideband signals (secure, priv, privid, emudbg)
– Clock management interface
Interaction with system level Security controller
Table 7-4. Key Manager Register Descriptions
BYTE ADDRESS
01xC1 2000
REGISTER NAME
DESCRIPTION
REVID
Revision Register
01xC1 2004
STAT
Key Manager Status
01xC1 2008
CHKSUMSTAT
Key Checksum Status
01xC1 200C
RSVD
Reserved
01xC1 2010 - 01xC1 201C
KEY1WRD1
Key 1
01xC1 2020 - 01xC1 202C
KEY1WRD1
Key 2
...
...
...
01xC1 20F0 - 01xC1 20FC
KEY1WRD1
Key 15
01xC1 2100 - 01xC1 210C
KEY1WRD1
Key 16
01xC1 2110 - 01xC1 23FF
RSVD
Reserved
7.9
SECCTRL
Table 7-5. SECCTRL Register Descriptions
BYTE ADDRESS
REGISTER NAME
01xC1 3000
PID
RSVD
DESCRIPTION
Reserved
SYSSTATUS
SYSWR
RSVD
Reserved
ARMWR
SYSCONTROL
SYSCONTROLPROTECT
SYSTAPEN
SECRESERVED
PSTATUS
PREADDEBUGDAT
PWRITEDEBUGDAT
Copyright © 2012–2013, Texas Instruments Incorporated
Mechanical Packaging and Orderable Information
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
199
OMAPL137-HT
SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013
www.ti.com
Revision History
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.
Changes from Revision A (February 2012) to Revision B
•
•
•
•
•
200
Page
Added bare die information and bond pad coordinates for Known Good Die (KGD) ..................................... 21
Added N/C to blank descriptions in Table 2-4 .................................................................................. 22
Deleted : Murata BLM31PG500SN1L or Equivalent from Figure 5-9 ....................................................... 56
Added device nomenclature for KGD .......................................................................................... 194
Added orderable part number for KGD ........................................................................................ 196
Mechanical Packaging and Orderable Information
Copyright © 2012–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: OMAPL137-HT
PACKAGE OPTION ADDENDUM
www.ti.com
6-Aug-2019
PACKAGING INFORMATION
Orderable Device
Status
(1)
Package Type Package Pins Package
Drawing
Qty
Eco Plan
Lead/Ball Finish
MSL Peak Temp
(2)
(6)
(3)
Op Temp (°C)
Device Marking
(4/5)
OMAPL137BHKGD1
ACTIVE
XCEPT
KGD
0
35
Green (RoHS
& no Sb/Br)
Call TI
N / A for Pkg Type
-55 to 175
OMAPL137BPTPH
ACTIVE
HLQFP
PTP
176
1
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-4-260C-72 HR
-55 to 175
OMAPL137BPTPH
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may
reference these types of products as "Pb-Free".
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based
flame retardants must also meet the <=1000ppm threshold requirement.
(3)
MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
(4)
There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
(5)
Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation
of the previous line and the two combined represent the entire Device Marking for that device.
(6)
Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish
value exceeds the maximum column width.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
Addendum-Page 1
Samples
PACKAGE OPTION ADDENDUM
www.ti.com
6-Aug-2019
Addendum-Page 2
IMPORTANT NOTICE AND DISCLAIMER
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you
permission to use these resources only for development of an application that uses the TI products described in the resource. Other
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third
party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims,
damages, costs, losses, and liabilities arising out of your use of these resources.
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on
ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable
warranties or warranty disclaimers for TI products.
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2019, Texas Instruments Incorporated
Was this manual useful for you? yes no
Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Download PDF

advertising