Texas Instruments | TMS320TCI6487/88 Hardware Design (Rev. E) | Application notes | Texas Instruments TMS320TCI6487/88 Hardware Design (Rev. E) Application notes

Texas Instruments TMS320TCI6487/88 Hardware Design (Rev. E) Application notes
Application Report
SPRAAG5E – December 2006 – Revised July 2010
TMS320TCI6487/88 Hardware Design Guide
Ronald Lerner ..................................................................................................................................
ABSTRACT
This document describes hardware system design considerations for the TMS320TCI6487/88 device.
1
2
3
4
5
6
7
8
9
Contents
Introduction .................................................................................................................. 3
Mechanical ................................................................................................................... 4
Device Configurations and Initialization .................................................................................. 5
Clocking ...................................................................................................................... 6
Power Supplies ............................................................................................................ 14
I/O Buffers .................................................................................................................. 24
Peripherals Section ........................................................................................................ 25
SERDES-LVDS Termination Options ................................................................................... 37
References ................................................................................................................. 40
List of Figures
1
Non-Solder-Mask Defined (NSMD) PCB Land .......................................................................... 4
2
TCI6487/88 Reference Clocks ............................................................................................ 7
3
Unused LJCB Connections ................................................................................................ 7
4
Differential Single Device LVDS Clock Solution ........................................................................ 9
5
Differential Single Device LVPECL Clock Solution ..................................................................... 9
6
Single Ended Oscillator for Differential Inputs
7
Multiple Devices LVDS Clock Solution ................................................................................. 10
8
RIOCLK Multiple Devices LVPECL Clock Solution ................................................................... 11
9
Multiple Devices 1.8 V LVDS Clock Solution .......................................................................... 11
10
CDCL6010 Solution With LVDS Input .................................................................................. 11
..........................................................................
9
11
CDCL6010 With Single Ended Input .................................................................................... 12
12
TCI6487/88 Power Supplies ............................................................................................. 14
13
Recommended Power Supply Filter
14
15
16
17
18
19
20
21
22
23
24
25
26
....................................................................................
VREFSSTL Reference Voltage ...............................................................................................
Multiple DSP Remote Sense Connections .............................................................................
Single DSP Remote Sense Connections...............................................................................
Bulk Capacitor Placement ................................................................................................
SmartReflex Operation ...................................................................................................
TI SmartReflex System Solution.........................................................................................
SGMII MAC to MAC Connection ........................................................................................
Unused LVDS Connections ..............................................................................................
Emulator With Trace, Solution #1 .......................................................................................
Emulation With Trace, Solution #2 ......................................................................................
Emulator Voltage Translation With Buffers ............................................................................
Emulator Voltage Translation With Switches ..........................................................................
LVDS to CML Connection ................................................................................................
SPRAAG5E – December 2006 – Revised July 2010
TMS320TCI6487/88 Hardware Design Guide
Copyright © 2006–2010, Texas Instruments Incorporated
15
15
17
18
20
22
23
29
33
35
35
36
36
37
1
www.ti.com
27
28
29
30
.............................................................................
External Terminations: Receiver Has No Internal Terminations ....................................................
External Terminations: Receiver With 100 Ω ..........................................................................
External Terminations: Receiver With 100 Ω ..........................................................................
CML to LVDS Connection Basic Diagram
37
38
38
39
List of Tables
2
.............................................
1
Example of TCI6487/88 Worst-Case Power Consumption Breakdown
2
PLL Reference Clock Requirements ..................................................................................... 8
3
Non-PLL Clock Requirements ........................................................................................... 13
4
Bulk and Bypass Capacitor Recommendations ....................................................................... 21
5
VCNTL Pin Mapping ...................................................................................................... 22
6
SGMII PLL Multiplier Settings............................................................................................ 28
7
SRIO PLL Multiplier Settings ............................................................................................. 30
8
AIF SERDES Clocking Options .......................................................................................... 31
9
Frame Sync Module Config Options .................................................................................... 32
TMS320TCI6487/88 Hardware Design Guide
5
SPRAAG5E – December 2006 – Revised July 2010
Copyright © 2006–2010, Texas Instruments Incorporated
Introduction
www.ti.com
1
Introduction
1.1
Purpose and Scope
This document is intended to aid in the hardware design and implementation of a TCI6487/88-based
system. The document should be used along with the data manual and other relevant user guides and
application reports.
1.2
Terms and Abbreviations
AIF
BGA
CML
CPU
DDR2
EMAC
EMIF
FC-BGA
FSM
GPIO
HSTL
I2C
JEDEC
LJCB
LVDS
LVPECL
McBSP
MDIO
NSMD
OBSAI
PCB
PHY
PLL
SerDes
SGMII
SRIO
SSTL_18
TBD
UI
XAUI
Antenna Interface
Ball Grid Array
Current Mode Logic, I/O type
Central Processing Unit
Double Data Rate 2 (SDRAM Memory)
Ethernet Media Access Controller
External Memory Interface
Flip-Chip BGA
Frame Sync Module
General-Purpose Input/Output I/O
High-Speed Transceiver
Inter-IC Control Bus
Joint Electronics Device Engineering Council
Low Jitter Clock Buffer: Differential clock input buffer type, compatible with LVDS
and LVPECL
Low Voltage Differential Swing, I/O type
Low-Voltage Positive-Reference Emitter Coupled Logic
Multi-Channel Buffered Serial Port
Management Data Input/Output
Non-Solder Mask Defined BGA Land
Open Base Station Architecture Initiative
Printed Circuit Board
Physical Layer of the Interface
Phase-Locked Loop
Serializer/De-Serializer
Serial Gigabit Media Independent Interface
Serial RapidIO
Stub Series Terminated Logic
To Be Determined. Implies something is currently under investigation and will be
clarified in a later version of the specification.
Unit Interval
10 Gigabit (X) Attachment Unit Interface standard
SmartReflex, C6000 are trademarks of Texas Instruments.
RapidIO is a registered trademark of RapidIO Trade Assocation.
All other trademarks are the property of their respective owners.
SPRAAG5E – December 2006 – Revised July 2010
TMS320TCI6487/88 Hardware Design Guide
Copyright © 2006–2010, Texas Instruments Incorporated
3
Mechanical
www.ti.com
2
Mechanical
2.1
Ball Grid Array (BGA) Layout Guidelines
The BGA footprint and pin escapes can be laid-out as defined in Flip Chip BGA Users Guide (SPRU811)
[14]. If the DDR2 interface is used, there are specific recommendations for the BGA pad and pin escape
vias given in TMS320TCI6487/88 DDR2 Implementation Guidelines (SPRAAG6) [18]. Given the 0.80
mm-pitch, it is recommended that non-solder mask defined (NSMD) PCB lands be used for mounting the
device to the board. With the NSMD method, the land area is etched inside the solder mask area. While
the size control is dependent on copper etching and is not as accurate as the SMD method, the overall
pattern registration is dependent on the copper artwork, which is quite accurate. The tradeoff is between
accurate dot placement and accurate dot size. NSMD lands are recommended for small-pitch BGA
packages because more space is left between the copper lands for signal traces. Dimensioning for the
pad and mask are provided in Flip Chip BGA Users Guide (SPRU811) [14].
Solder Mask
Pad
Figure 1. Non-Solder-Mask Defined (NSMD) PCB Land
2.2
Thermal Issues
A proper understanding of the thermal characteristics of the TCI6487/88 is critical for proper design of the
board and system. The maximum case temperature of the device must not be exceeded, which requires
adequate heat dispersion through a heat sink to be a part of the thermal design.
2.2.1
TCI6487/88 Power Consumption Estimate
The TCI6487/88 device can consume up to 8 W of power, though the exact power dissipation depends
heavily on the exact device usage. Expectation is that a typical system configuration calls for
approximately 6 W - 7 W, assuming that a majority of the interfaces are used and assuming that CVDD is
scaled to process by following the SmartReflex™ circuit design and software - Class 0.
The expected power consumption by the TCI6487/88 device is highly dependent on processing load and
environmental conditions. The worst-case power consumption numbers are under analysis, assuming the
maximum operating temperature and strong device process corner. Estimates on the maximum power
numbers are provided in Section 5.3. For more information, see the TMS320TCI6487/88 Power
Consumption Summary application report (SPRAAS3) [46].
Table 1 shows an estimate on the breakdown of how power is consumed (assuming SmartReflex).
4
TMS320TCI6487/88 Hardware Design Guide
SPRAAG5E – December 2006 – Revised July 2010
Copyright © 2006–2010, Texas Instruments Incorporated
Device Configurations and Initialization
www.ti.com
Table 1. Example of TCI6487/88 Worst-Case Power Consumption Breakdown
(1)
2.2.2
Modules
Dynamic Power
Leakage Power
Total Power
Core 0
6.5%
4.5%
11%
Core 1
6.5%
4.5%
11%
Core 2
6.5%
4.5%
11%
Memory
8.6%
6.8%
15.4%
RAC (1)
9%
4%
13%
RSA
2.5%
0.9%
3.5%
Peripheral Logic
10.4%
3.7%
14.1%
Peripheral I/O
21.1%
0%
21.1%
Total
69.1%
30.9%
100%
RAC is available only for TCI6488.
System Thermal Analysis
For an overview on performing a thermal analysis and suggestions on system level thermal solutions,
refer to the TMS320DM644x Thermal Considerations application report (SPRAAE4).
3
Device Configurations and Initialization
On the TCI6487/88 device, boot mode and certain device configuration selections are determined at
device reset via certain general-purpose I/O (GPIO) pins, while peripheral usage (enabled/disabled) is
determined by the peripheral configuration registers after the device reset. Most of the peripherals on the
TCI6487/88 device are "enabled" after reset but some default disabled. The basic information on
configuration options, boot modes options and use of the power configuration registers can be found in the
TMS320TCI6487/88 Communications Infrastructure Digital Signal Processor data manual (SPRS358)
(referred to as the TCI6487/88 data manual throughout the remainder of this document).
3.1
Device Reset
There are several ways to reset the TCI6487/88 and these are described in the TCI6487/88 data manual.
The 2 external resets, POR and XWRST, need to be at valid logic levels at all times. POR must be
asserted (low) on a power-up while the clocks and power planes become stable. XWRST should be
de-asserted before POR on a power-up, otherwise the TCI6487/88 comes up in the warm reset condition.
XWRST can be used after the powered-up state to issue a warm reset, which performs the same as a
POR except:
• Test and emulation logic are not reset
• AIF and FSMs are not reset
• Configuration strapping options (via GPIO pins) are not latched
The warm reset (XWRST) does not reset the AIF and FSM modules so that the serial link connections can
be maintained and do not lose synchronization.
If warm reset is not needed, XWRST can be pulled up to DVDD18.
The RESETSTAT signal indicates the internal reset state. The RESETSTAT is asserted (low) on power-on
reset (issued by POR), warm reset (issued by XWRST), max reset (issued by an emulator), or system
reset (issued by the emulator or the SRIO peripheral). The only reset that does not cause RESETSTAT to
be asserted is a CPU reset (issued by watchdog timers).
3.2
Device Configuration
Some TCI6487/88 device configuration strapping options are multiplexed on the GPIO[9:0] pins. There are
two dedicated configuration pins: CORECLKSEL and DDRSLRATE. The state of these pins is not latched
and must be held at the desired state at all times. For details on the configuration options, see the
TCI6487/88 data manual. If the GPIO signals are not used, the internal pullup and pulldown resistors can
be used to set the input level and an external pullup/down resistors are only needed if the opposite setting
is desired. If the GPIO pins are connected to other components, the internal pullup/pulldown resistor
should not be relied upon; 1-kΩ pullup and pulldown resistors are recommended for all desired settings.
SPRAAG5E – December 2006 – Revised July 2010
TMS320TCI6487/88 Hardware Design Guide
Copyright © 2006–2010, Texas Instruments Incorporated
5
Clocking
www.ti.com
The PLL multiplier can only be set by CPU register writes. The registers are not accessible through boot
peripherals. All boot modes except No Boot automatically change the PLL multiplier to 16×, so the core
PLL reference clock (either SYSCLKP/N or ALTCORECLKP/N) must be no more than 66 MHz.
For details on the configuration of the PLL, see the TMS320C6472/TMS320TCI64x DSP
Software-Programmable Phase-Locked Loop (PLL) Controller User's Guide (SPRU806) [30] and the
TCI6487/88 data manual.
3.3
Peripheral Configuration
Other than the device reset configuration covered in Section 3.1, all other configurations are done by
register accesses. Peripherals that default disabled can be enabled using the peripheral configuration
registers. If the boot-mode selection specifies a particular interface for boot (SRIO, Ethernet, I2C), it is
automatically enabled and configured. For more details on peripheral configuration refer to the Device
Configuration section of the TCI6487/88 data manual.
For some peripherals, the peripheral operating frequency is dependent on the CPU core clock frequency.
This should be accounted for when configuring the peripheral.
3.4
Configuration Tables in I2C ROM
I2C ROM contents can contain configuration tables that allow customer defined memory map accesses
during the I2C-boot mode. These accesses can be used to configure peripherals during the boot process.
For details, see TMS320TCI64x Bootloader User's Guide (SPRUEA7) [33].
3.5
Boot Modes
The interfaces which support a boot loading process are: I2C, Serial RapidIO® and EMAC. For a summary
of the boot modes supported, see the TCI6487/88 data manual. For details regarding boot modes, see the
TMS320TCI64x Bootloader User's Guide (SPRUEA7) [33].
Regardless of the boot mode selected, an emulator connection can always reset the device to acquire
control.
4
Clocking
4.1
PLL Reference Clock Solutions
This section describes the clock requirements and a system solution for the PLL reference clocks. There
are two types of PLLs and each type has different needs for their reference clocks. The core PLL and
DDR2 PLL source clocks for digital logic, whereas, the AIF, SRIO, and SGMII PLLs source clocks for
serializer/deserializer SERDES links.
Figure 2 is a functional representation of how the reference clocks are connected in the TCI6487/88
device.
6
TMS320TCI6487/88 Hardware Design Guide
SPRAAG5E – December 2006 – Revised July 2010
Copyright © 2006–2010, Texas Instruments Incorporated
Clocking
www.ti.com
RIOSGMIICLKP/N
SRIO SERDES PLL
SGMII SERDES PLL
SYSCLKP/N
AIF SERDES PLL
CORE PLL
ALTCORECLKP/N
CORECLKSEL
DDRREFCLKP/N
DDR PLL
Figure 2. TCI6487/88 Reference Clocks
The core PLL can be configured with multiplier values from 4× to 32× and any integer value in between,
as long as the PLL output frequency does not violate the maximum operating frequency for the
TCI6487/88 device. There are minimum core clock frequency requirements for some peripherals so the
datasheet should be referenced to check for any limitations with the desired core clock frequency. The
DDR2 PLL always uses a multiplier of 10× (40 MHz input for DDR2-400 operation to 66 MHz for
DDR2-667 operation). Note that the PLL output is 2× the DDR2 interface clock frequency. The SERDES
PLL multipliers are covered in the peripherals section.
All differential clock input buffers are LJCBs. These input buffers include a 100 Ω termination (P to N) and
a common-mode biasing. Because the common-mode biasing is included, the clock source must be ac
coupled. LVDS and LVPECL clock sources are compatible with the LJCBs.
Any unused LJCB inputs should be connected to produce a valid logic level. The recommended
connections are shown in Figure 3. The 1 K resistor is to reduce power.
1.1 V
LJCB_P
DSP
100 Ω
LJCB_N
1 KΩ
Figure 3. Unused LJCB Connections
SPRAAG5E – December 2006 – Revised July 2010
TMS320TCI6487/88 Hardware Design Guide
Copyright © 2006–2010, Texas Instruments Incorporated
7
Clocking
4.1.1
www.ti.com
Clock Requirements
The clock requirements are given in Table 2.
Table 2. PLL Reference Clock Requirements
Logic
Input Jitter
Trise/ Tfall
Duty Cycle
Stability
Frequency Range
ALTCORECLKP/
ALTCORECLKN
LVDS or
LVPECL
100 pS pk-pk (1)
50 - 1300 pS
40/60%
± 100 PPM
50 MHz - 61.44 MHz
SYSCLKP/ SYSCLKN
LVDS or
LVPECL
2 pS RMS (OBSAI, 1x10E-15)
4 pS RMS (CPRI, 1x10E-12)
100 pS pk-pk (2)
50 - 1300 pS
40/60%
± 100 PPM
61.44MHz
(CORECLKSEL = 0)
61.44 MHz
153.6 MHz (CORECLKSEL = 1)
DDRREFCLKP/
DDRREFCLKN
LVDS or
LVPECL
2.0% of DDRREFCLKP/N
input period pk-pk
50 - 1300 pS
40/60%
± 100 PPM
40 MHz - 66 MHz
RIOSGMIICLKP/
RIOSGMIICLKN (if RIO is
used)
LVDS or
LVPECL
4 pS RMS
56 ps pk-pk @ 1×10E-12 BER
50 - 1300 pS
40/60%
± 100 PPM
125 MHz,
156.25 MHz,
312.5 MHz
RIOSGMIICLKP/
RIOSGMIICLKN (if only
SGMII is used)
LVDS or
LVPECL
8 pS RMS 112 ps pk-pk @
1×10E-12 BER
50 - 1300 pS
40/60%
± 100 PPM
125 MHz,
156.25 MHz,
312.5 MHz
(1)
(2)
Peak-to-peak accumulated total jitter values for ALTCORECLK and DDRREFCLK is for 10,000 sample points.
Total RMS jitter values (SYSCLK and RIOSGMIICLK) are specified for a target BER for the associated SERDES interfaces.
Trise/Tfall values are given for 10% to 90% of the voltage swing.
The concerns for the differential reference clocks are low jitter and proper termination. Either LVDS or
LVPECL clock sources can be used but they require different terminations. The input buffer sets its own
common mode voltage so ac coupling is necessary. It also includes a 100 Ω differential termination
resistor, eliminating the need for an external 100 Ω termination when using an LVDS driver. For
generation information on ac termination schemes, see AC-Coupling Between Differential LVPECL, LVDS,
HSTL, and CML (SCAA059). For information on dc coupling, see DC-Coupling Between Differential
LVPECL, LVDS, HSTL, and CM (SCAA062)
4.1.2
Single Device Solution
It is assumed that the source clock is an oscillator on the same board as the device. Use of distributed
clocks can require a jitter cleaner device such as the CDCL6010. If an on-board oscillator is used with one
device, no other components should be needed except for terminations.
Examples of 3.3 V differential oscillators are:
• Pletronics LVDS LV77D oscillator
– http://www.pwgdev.com/~datasheets/lv77d%203.3v.pdf
• Pletronics LVPECL PE77D oscillator
– http://www.pwgdev.com/~datasheets/pe77d%203.3v.pdf
These oscillators have not been tested but are examples of oscillators that meet the specification
requirements for all TMS320TCI6487/88 differential reference clocks. Note that these oscillators require
3.3 V. No availability of 1.8 V differential oscillators that meet the clocking requirements was found,
although they may exist.
8
TMS320TCI6487/88 Hardware Design Guide
SPRAAG5E – December 2006 – Revised July 2010
Copyright © 2006–2010, Texas Instruments Incorporated
Clocking
www.ti.com
Figure 4 shows an LVDS-based solution including terminations.
0.1 μF
CLKP
Low Jitter
LVDS
Oscillator
DSP
CLKN
0.1 μF
Figure 4. Differential Single Device LVDS Clock Solution
Figure 5 shows an LVPECL-based solution including terminations.
0.1 μF
CLKP
Low Jitter
LVPECL
Oscillator
DSP
CLKN
0.1 μF
150 Ω
150 Ω
Figure 5. Differential Single Device LVPECL Clock Solution
A single ended oscillator plus an LVDS transmitter can provide a lower cost solution and still meet the
clocking requirements. An example of this is shown in Figure 6.
0.1 μF
Low Jitter
LVCMOS
Oscillator
CLKP
SN65LVDS1
LVDS
Transmitter
DSP
CLKN
0.1 μF
Figure 6. Single Ended Oscillator for Differential Inputs
4.1.3
Multiple Device Fanout Solutions
For systems with multiple TMS320TCI6487/88 devices, you may prefer to use one oscillator and a fanout
buffer instead of multiple oscillators. This would allow for fewer components as well as lower cost. The
fanout buffer can increase the jitter at the clock input, so take care when selecting the combination of
oscillator and fanout buffer.
In most cases, the same oscillators described in Section 4.1.2 can be used for the fan out case. The
oscillator output specifications should be compared to the fanout buffer input specifications to make sure
they are compatible.
If 3.3 V is available, there are many options for clock oscillators and fanout buffers. There are fewer
options for 1.8 V fanout buffers but TI does offer one: the CDCL1810 (see Figure 9).
For an all 1.8 V solution, a 1.8 V single-ended oscillator can be used with the CDCL6010. Since the
CDCL6010 is a jitter cleaner,the single-ended oscillator does not need to be low-jitter which allows it to be
low cost. Also, if a distributed clock with jitter exceeding the input jitter specification is the source (either
single ended or differential), the TI CDCL6010 can be used for both jitter cleaning and distribution. The
solution using the CDCL6010 is described in Section 4.1.3.2.
SPRAAG5E – December 2006 – Revised July 2010
TMS320TCI6487/88 Hardware Design Guide
Copyright © 2006–2010, Texas Instruments Incorporated
9
Clocking
4.1.3.1
www.ti.com
Fanout Solutions (No jitter cleaning)
Suggested 3.3 V fanout buffers are:
• TI SN65LVDS108 LVDS 1:8 clock fanout buffer (see Figure 7)
– SN65LVDS108 8-Port LVDS Repeater Data Sheet (SLLS399)
• TI CDCLVP110 LVPECL 2:10 clock fanout buffer (see Figure 8)
– CDCLVP110 Low-Voltage 1:10 LVPECL/HSTL With Selectable Input Clock Driver Data Sheet
(SCAS683)
There are also 4-port and 16-port versions of the SN65LVDS108.
Texas Instruments also has a 1.8 V fanout buffer that includes some options for providing divided down
outputs. This is:
• TI CDCL1810 1:10 clock fanout buffer (see Figure 9)
– New Product: see TI representative for details
These buffers have not been tested but are examples of buffers that meet the specification requirements
for all of the TMS320TCI6487/88 differential clock inputs.
Examples in this section show differential oscillators; however, depending on clocking specifications for
the particular clock input, it may be possible to use a single ended oscillator to reduce cost. Many
differential buffers can support a single ended input. Another option would be to use a single ended to
differential transmitter such as the SN65LVDS1 as shown in Figure 6.
Jitter performance for the SN65LVDS108 is found in its datasheet - SN65LVDS108 8 - Port LVDS
Repeater Data Sheet (SLLS399). For the CDCLVP110, see Advantage of Using TI's Lowest Jitter
Differential Clock Buffer Application Report (SCAA068)
The fanout buffer outputs should not be used to drive additional fanout buffers since the jitter accumulates.
Low Jitter
LVDS
Oscillator
SN65LVS108
CLK0
CLK0
CLKP
0.1 μF
CLKN
0.1 μF
100 Ω
CLKP
CLKN
DSP1
0.1 μF
CLKN
CLK7
CLKP
CLKN
DSP8
0.1 μF
Figure 7. Multiple Devices LVDS Clock Solution
10
TMS320TCI6487/88 Hardware Design Guide
SPRAAG5E – December 2006 – Revised July 2010
Copyright © 2006–2010, Texas Instruments Incorporated
Clocking
www.ti.com
0.1 μF
CDCLVP110
CLK0
CLK0
CLKP
Low Jitter
LVPECL
Oscillator
150 Ω
CLKP
CLKN
DSP1
CLKP
CLKN
DSP10
0.1 μF
150 Ω
CLKN
0.1 μF
CLKN
CLK9
0.1 μF
150 Ω
50 Ω
150 Ω
50 Ω
50 Ω
Figure 8. RIOCLK Multiple Devices LVPECL Clock Solution
0.1 μF
CDCL1810
CLK0
CLKP
CLKN
CLK0
Low Jitter
LVDS
Oscillator
CLKP
0.1 μF
CLKN
0.1 μF
CLKP
CLKN
CLKN
CLK9
DSP1
DSP10
0.1 μF
Figure 9. Multiple Devices 1.8 V LVDS Clock Solution
4.1.3.2
CDCL6010 Based Solutions (jitter cleaning)
The CDCL6010 is a jitter cleaner and 1:10 fanout buffer that is well suited for use with the
TMS320TCI6487/88 device. It operates from 1.8 V and meets the jitter requirements for all differential
clock inputs on the TCI6487/88 device. Figure 10 an example of the connections when using an LVDS
signal as the source.
0.1 μF
CDCL6010
CLK0
CLK0
CLKP
0.1 μF
CLKN
0.1 μF
CLKP
CLKN
DSP1
CLKP
CLKN
DSP10
LVDS Signal
CLK9
CLK9
0.1 μF
Figure 10. CDCL6010 Solution With LVDS Input
SPRAAG5E – December 2006 – Revised July 2010
TMS320TCI6487/88 Hardware Design Guide
Copyright © 2006–2010, Texas Instruments Incorporated
11
Clocking
www.ti.com
The connection of a single ended input clock to CDCL6010 is given in Figure 11. This source could be a
1.8 V source or, using a voltage divider, a 3.3 V source such as the CDCE706 or the CDCE906. The
CDCx706/x906 Termination and Signal Integrity Guidelines (SCAA080) describes the interface between
the CDCE706/CDCE906 and the CDCL6010 in detail.
CDCL6010
CLK0
1.8 V Single
Ended Signal
CLK0
CLKP
CLKN
CLK9
CLK9
Figure 11. CDCL6010 With Single Ended Input
4.1.4
Layout Recommendations (LVDS and LVPECL)
Placement:
• The oscillator, buffer, and DSPs should be placed as close to each other as practical
• Fanout buffers should be placed in a central area to equalize the trace lengths to each DSP
• ac coupling capacitors should be placed near the receivers
• 50 Ω resistors used in LVPECL dc termination should be placed near the receiver
• 150 Ω resistors used in LVPECL ac termination should be placed near the driver
Trace routing:
• A GND plane should be placed below the oscillator
• Digital signals should not be routed near or under the clock sources.
• Traces should be 100 Ω differential impedance and 50 Ω single ended impedance
• Clock routes should be routed as differential pairs with no more than 2 vias per connection (not
counting pin escapes)
• The number of vias on each side of a differential pair should match
• Differential clock routes must be length matched to within 10 mils
• Maintain at least 25 mil spacing to other traces
4.2
Non-PLL Reference Clock Solutions
There are several peripherals that use reference clock inputs for operation. These are:
• Frame Sync Module: FSYNCCLKP/N, ALTFSYNCCLK, TRTCLK
• McBSP: CLKS0, CLKS1
• Timers: TIMI0, TIMI1
12
TMS320TCI6487/88 Hardware Design Guide
SPRAAG5E – December 2006 – Revised July 2010
Copyright © 2006–2010, Texas Instruments Incorporated
Clocking
www.ti.com
With the exception of FSYNCCLKP/N, these are all single-ended clocks with 1.8-V LVCMOS inputs. The
specific requirements for these clocks are given in Table 3. Use of standard oscillators and buffers should
be adequate for these clocks with the exception that they do require 1.8-V operation. For updated
information, see the TCI6487/88 data manual.
Table 3. Non-PLL Clock Requirements
Logic
Input Jitter
Duty Cycle
Frequency Range
FSYNCCLKP/N
LVDS
2.5% of input clock
period
40/60%
3.84 MHz - 122.88 MHz
ALTFSYNCCLK
1.8 V LVCMOS
2.5% of input clock
period
40/60%
3.84 MHz - 122.88 MHz
TRTCLK
1.8 V LVCMOS
2.5% of input clock
period
40/60%
3.84 MHz - 122.88 MHz
CLKS0, CLKS1
(McBSP)
1.8 V LVCMOS
Not specified
Not specified
0 Hz - 104.448 MHz
TIMI0, TIMI1 (Timer)
1.8 V LVCMOS
Not specified
Not specified
0 Hz - 43.52 MHz
There are some 1.8-V LVCMOS oscillators and 1.8 V 1:N clock buffers available, although the selection is
limited. One alternative is to have a 3.3-V oscillator supply multiple loads of a dual-supply buffer, such as
TI's SN74AVCH4T245. 3.3-V tolerant buffers should not be used for clocks due to the duty cycle distortion
that occurs.
SPRAAG5E – December 2006 – Revised July 2010
TMS320TCI6487/88 Hardware Design Guide
Copyright © 2006–2010, Texas Instruments Incorporated
13
Power Supplies
www.ti.com
5
Power Supplies
5.1
Power Plane Generation
All power supplies can be generated from switching supplies. Filters are recommended for some
TCI6487/88 device voltages. An overview of the recommended power supply generation architecture is
shown in Figure 12. All power planes are required even if the peripheral associated with the supply is not
used.
Board Voltage
(i.e. 5 V, 8 V, 9.6 V)
TCI6487/88
Voltage
Planes
Adjustable Regulator
0.9 V to 1.1 V
CVDD
Switching Regulator
1.8 V
DVDD18
Filter
AVDD118
Filter
AVDD218
Filter
AIF_VDDR18
Filter
SGR_VDDR18
Fixed Switching
Regulator
1.1 V
AIF_VDDD11
SGR_VDDD11
Filter
AIF_VDDA11
Filter
AIF_VDDT11
Filter
SGR_VDDA11
Filter
SGR_VDDT11
Figure 12. TCI6487/88 Power Supplies
14
TMS320TCI6487/88 Hardware Design Guide
SPRAAG5E – December 2006 – Revised July 2010
Copyright © 2006–2010, Texas Instruments Incorporated
Power Supplies
www.ti.com
The recommended filter circuit is given in Figure 13. The filter component shown is an EMI filter from
Murata. If the peripheral associated with the power supply is not used, it still needs to be powered but the
filters are not required.
From
Power
Supply
To TCI6487/88
NFM18CC223R1C3
0.1 μF
560 pF
Figure 13. Recommended Power Supply Filter
A reference voltage is needed for the SSTL DDR2 interface. This is done through a simple voltage divider
as shown in Figure 14. For additional details, see Section 5.4.
DVDD_18
1 K 1%
0.1 μF
VREFSSTL (DDR2)
1 K 1%
0.1 μF
Figure 14. VREFSSTL Reference Voltage
5.2
Power Supply Sequencing
The recommended power supply sequencing is:
DVDD18 followed by CVDD and all 1.1 V voltages ramping together. The delay between DVDD18 and the other
supplies is 500 mS minimum, 200 mS maximum.
The CVDD and other 1.1-V voltages must ramp to a valid level within 15 mS of each other.
For more details, see the TCI6487/88 data manual [19].
SPRAAG5E – December 2006 – Revised July 2010
TMS320TCI6487/88 Hardware Design Guide
Copyright © 2006–2010, Texas Instruments Incorporated
15
Power Supplies
5.3
www.ti.com
Voltage Plane Power Requirements
Power requirements are highly dependent on the usage of the device. This includes which peripherals are
used as well as the operating frequencies. For more detailed information, see the TMS320TCI6487/88
Power Consumption Summary application report (SPRAAS3) [46]. The recommended power supplies and
margins are based on initial silicon power measurements. Depending on your design and usage, the
worse-case transient conditions should be taken into account when evaluating power supplies and
associated capacitors (5.61 and 5.62). Designs outside of the approximate maximum values should
re-examine power supply selection and design layout. These values should not be used to estimate
thermal performance.
5.4
Power Supply Layout Recommendations
Core and I/O supply voltage regulators should be located close to the DSP (or DSP array) to minimize
inductance and resistance in the power delivery path. Additionally, when designing for high-performance
applications utilizing the C6000™ platform of DSPs, the PCB should include separate power planes for
core, I/O, and ground, all bypassed with high-quality low-ESL/ESR capacitors.
For VREFSSTL, one reference voltage divider should be used for both the TCI6487/88 and the reference
voltage input on the SDRAMs. The VREF resistor divider should be placed between the two devices and the
routes made as directly as possible with a minimum 20 mil wide trace.
There should be a 2× trace width clearance between the routing of the reference voltage and any
switching signals.
5.5
Voltage Tolerances, Noise, and Transients
The voltage tolerances specified in the data sheet include all dc tolerances and the transient response of
the power supply. These specify the absolute maximum and minimum levels that must be maintained at
the pins of the TCI6487/88 device under all conditions. Special attention to the power supply solution is
needed to achieve this level of performance, especially the 3% tolerance on the core power plane (CVDD).
To maintain the 3% tolerance at the pins, the tolerance must be a combination of the power supply dc
output accuracy and the effect of transients. A reasonable goal for the dc power supply output accuracy is
1.5%, leaving 1.5% for the transients. For example, at CVDD of 1.0 V, 3% tolerance is ±30 mV. This allows
15 mV of dc accuracy from the output of the power supply and another 15 mV due to transients.
5.5.1
Using Remote Sense Power Supplies
Use of a power supply that supports the remote sense capability allows the power supply to control the
voltage at the load. Special layout care must be used to keep this sense trace from being lost during PCB
layout. One solution is placement of a small resistor at the load and connecting the sense trace to the
voltage plane through it. If a power plane is shared by a group of DSPs, the sense resistor should be
placed at the center of this group. If a negative sense pin is supported by the voltage regulator, it should
be handled in a similar way. An example of this type of implementation is shown in Figure 15 for DVDD18.
16
TMS320TCI6487/88 Hardware Design Guide
SPRAAG5E – December 2006 – Revised July 2010
Copyright © 2006–2010, Texas Instruments Incorporated
Power Supplies
www.ti.com
DVDD18
DVDD18
DVDD18
TCI6487/88
#1
VSS
TCI6487/88
#2
VSS
VSS
DVDD18
VSS
DVDD18
DVDD18
TCI6487/88
#3
VSS
DVDD18
Regulator
VSS
0Ω
Routed as a signal
0Ω
VSS
Routed as a signal
DVDD18
VSS
VOUT
+SENSE
VSS
-SENSE
DVDD18
VDD and VSS
Routed as Planes
TCI6487/88
#4
VSS
DVDD18
VSS
Figure 15. Multiple DSP Remote Sense Connections
If the connection is between one DSP and one voltage regulator, there are voltage monitor pins that can
be used for this case (CVDDMON and DVDD18MON). The monitor pins indicate the voltage on the die and,
therefore, provide the best remote sense voltage. These monitor pins should be connected directly to the
positive side sense pin of the voltage regulator.
NOTE:
If the monitor pins are not used to monitor the voltage, they should be connected to their
respective power planes (i.e., CVDDMON connects to CVDD, DVDD18MON connects to DVDD18).
SPRAAG5E – December 2006 – Revised July 2010
TMS320TCI6487/88 Hardware Design Guide
Copyright © 2006–2010, Texas Instruments Incorporated
17
Power Supplies
www.ti.com
The voltage regulator output could become unstable and drive to a high voltage if the positive sense line
does not receive the correct voltage. Some voltage regulators (i.e., TI's PTH08T240F) include a
low-impedance path between the VOUT and +SENSE so that this would only result in a small drop in
performance. If this feature is not present in the voltage regulator, place a 100 Ω resistor near the DSP
between the voltage plane and the monitor pin. If the VDD monitor connection to the DSP (i.e., CVDDMON) is
not present, the positive sense still regulates to the proper voltage. If a negative sense pin is provided by
the regulator, this should be connected to the GND plane near the DSP using a 0 Ω resistor. The single
DSP remote sense connections are shown in Figure 16 for the CVDD plane. The same solution could be
used for all/any planes.
TCI6487/88
Regulator
CVDD
CVDD
CVDD
VOUT
100 Ω
Routed as a signal
CVDDMON
VSS
VSS
+SENSE
VSS
VSS
Routed as a signal
-SENSE
0Ω
Figure 16. Single DSP Remote Sense Connections
5.5.2
Voltage Plane IR Drop
The voltage gradient (IR drop) needs to be considered whether or not a supply with the remote sense
capability is used. The DSPs closer to the supply have a slightly higher voltage and the DSPs farther from
the supply have a slightly lower voltage. This voltage differential can be minimized by making the copper
planes thicker or by spacing the DSPs across a wider area of the plane. Be sure to consider both the core
power plane(s) and the ground plane(s). The resistance of the plane can be determined by the following
formula:
R = rho * length/(width * thickness)
where rho is the resistivity of copper equal to 1.72E-8 Ω-meters. PCB layer thickness is normally stated in
ounces. One ounce of copper is about 0.012 inches or 30.5E-6 meters thick. The width must be de-rated
to account for vias and other obstructions. A 50 mm wide strip of 1 oz copper plane de-rated 50% for vias
has a resistance of 0.57 mΩ per inch.
5.6
Power-Supply Decoupling and Bulk Capacitors
To properly decouple the supply planes from system noise, decoupling and bulk capacitors are required.
Given current technology, 0402 sized capacitors should be used for standard decouplers where possible.
Proper board design and layout allow for correct placement of all capacitors (see Table 4 for capacitor
recommendations and values).
Generically speaking, bulk capacitors are used to minimize the effects of low frequency current transients
(see Section 5.6.1) and decoupling or bypass capacitors are used to minimize higher frequency noise (see
Section 5.6.3). Proper printed circuit board design is required to assure functionality and performance.
One key element to consider during the circuit board (target) design is added lead inductance or the
pad-to-plane length. Where possible, attachment for decoupler and bypass capacitors to the respective
power planes should be made using multiple vias in each pad that connects the pad to the respective
plane. The inductance of the via connect can eliminate the effectiveness of the capacitor so proper via
connections are important. Trace length from the pad to the via should be no more than 10 mils (0.0.1")
and the width of the trace should be the same width as the pad.
As with selection of any component, verification of capacitor availability over the product's production
lifetime should be considered. Additionally the effects of the intended operating environment (temperature,
humidity, etc.) should also be considered when selecting the appropriate decoupling and bulk capacitors.
18
TMS320TCI6487/88 Hardware Design Guide
SPRAAG5E – December 2006 – Revised July 2010
Copyright © 2006–2010, Texas Instruments Incorporated
Power Supplies
www.ti.com
NOTE: All values and recommendations are based on a single TMS320TCI6487/88 device. The
use of recommended on-board power supply modules, alternate power supplies and
decoupling/bulk capacitor values require additional evaluation.
For further information in determining the minimal amount of bulk and decoupling capacitance required [for
PTH08T240Fxx module only], see the TMS320TCI6487/88 Capacitor Selection Guide - Using the
PTH08T240F Power Module (SPRAAM9) and the selection spreadsheet.
5.6.1
Selecting Bulk Capacitance
Two factors need to be considered when selecting the bulk capacitance:
• Effective impedance for the power plane to stay within the voltage tolerance
• Amount of capacitance needed to provide power during the entire period when the voltage regulator
cannot respond (sometimes referred to as the transient period)
The effective impedance of the core power plane is determined by:
(Allowable Voltage Deviation due to Current Transients) / (Max Current)
In the example in Section 5.5, it was suggested that the allowable voltage deviation allowed due to
transient response is 15 mV (based on 1.5% of CVDD). Using this 15 mV and a max current of 5 amps, the
maximum allowable impedance can be calculated:
15 mV/5 Amps = 3 mΩ
The effective ESR of the bulk capacitors should not exceed this impedance value. Multiple bulk capacitors
in parallel help achieve this overall ESR. Therefore, to achieve a maximum transient voltage peak
deviation of 15 mV, the power supply output impedance, which is a function of the power supply
bandwidth and the low impedance output capacitance, should not exceed 3 mΩ.
The expected maximum current change for the TCI6487/88 device is on the order of 3 Amps. This current
assumes a transient from a device operating with a minimal activity and no peripheral usage to a worst
case power condition. It does not include current transients that occur during power-on. Care should be
taken during power-on that the device does not transition from the OFF state to a max power state faster
than 100 mS. TI has tested the PTH08T240Fxx power module (that has been optimized for the
TCI6487/88 device) and currently recommends the use of ~3000 mF of low ESR capacitance (see
Section 5.6.3 for specific requirements).
Capacitance values should not be less than those specified in Section 5.6.3. Final capacitor selection is
determined using the provided capacitor selection tool. For more information, see the TMS320TCI6488
Capacitor Selection Guide - Using the PTH08T240F Power Module application report (SPRAAM9).
This covers both the output capacitance requirements of the module and the bulk capacitance needs for
the TCI6487/88 device. TI has also tested an optimized SWIFT TPS54010-based solution that requires a
similar amount of capacitance. An additional power supply has also been developed by TI (TPS40197);
the total capacitance and inductor size differs and must be recalculated when used with your TCI6487/88
DSP. All three power supplies utilize slightly different components. For additional details, see the
TCI6487/88 data manual. Other regulators solutions should be analyzed and, if possible, tested in a lab
environment to determine the optimal output capacitance.
Some intermediate size ceramic bulk capacitors (i.e., 22 mF and 47 mF as listed under Section 5.6.3) are
recommended to cover the response time between the bypass capacitors and the larger bulk capacitors.
SPRAAG5E – December 2006 – Revised July 2010
TMS320TCI6487/88 Hardware Design Guide
Copyright © 2006–2010, Texas Instruments Incorporated
19
Power Supplies
5.6.1.1
www.ti.com
Bulk Capacitor Details and Placement
Place all bulk capacitors in close proximity to the power supply module. For the purpose of this document
and related devices, a bulk capacitor should be defined as any capacitor ≥ 22 mF unless otherwise noted.
Figure 17 shows an example of the bulk capacitor placement with the use of the recommended
PTH08T240F module and the capacitance recommendations from Table 4. Each bulk capacitor in this
example has reduced trace lengths less than 10 mils and contain multiple vias to tie the pad to the
respective power plane; it is recommended that all bulk capacitors be low ESR. The acceptability of each
output capacitors should be based on the following criteria:
1000 < capacitance × ESR ≤ 5000
PTH08T240Fxx
TCI6487/88
22 and 47 μF
>220 μF
Figure 17. Bulk Capacitor Placement
5.6.2
Selecting Decoupling Capacitors
All decoupling or bypass capacitors need to be close to the DSP, in practice they should be within 1.25 cm
maximum distance to be effective. Ideally, these caps should be connected directly to the via attached to
the BGA power pin. Parasitic inductance limits the effectiveness of the decoupling capacitors; therefore,
physically smaller capacitors (0402 or 0201) are recommended.
Proper capacitance values are also important. Place small bypass caps (near 560 pF) closest to the
power pins on the target DSP. Medium bypass caps (100 nF or as large as can be obtained in a small
package such as an 0402) should be the next closest. TI recommends placing decoupling capacitors
immediately next to the BGA vias, using the interior BGA space and at least the corners of the exterior.
The inductance of the via connect can eliminate the effectiveness of the capacitor so proper via
connections are important. Trace length from the pad to the via should be no more than 10 mils and the
width of the trace should be the same width as the pad. If necessary, placing decoupler capacitors on the
back side of the board is acceptable provided the placement and attachment is designed correctly.
5.6.2.1
Decoupling Capacitor Details and Placement
All decoupling capacitors should be placed in close proximity to the DSP. For the purpose of this
document and related devices, a decoupler or bypass capacitor is defined as any capacitor < 22 µF,
unless otherwise noted.
See Table 4 for recommended decoupler capacitor values. Each decoupler or bypass capacitor should be
directly coupled to the DSP via. Where direct coupling is impractical, use a trace 10 mil (0.010"/0.254 mm)
or shorter, and having the same width as the capacitor pad is strongly recommended.
20
TMS320TCI6487/88 Hardware Design Guide
SPRAAG5E – December 2006 – Revised July 2010
Copyright © 2006–2010, Texas Instruments Incorporated
Power Supplies
www.ti.com
5.6.3
Example Capacitance
An example of an adequate capacitor selection is given in Table 4. This is the capacitance that should be
dedicated for the TCI6487/88 device and does not cover the decoupling needed for any other components
or for the filters outlined in Section 5.1. The bulk capacitance assumes the use of the PTH08T240F power
module. Power modules that do not support a Turbo-Trans type of feature would require additional output
capacitance.
Table 4. Bulk and Bypass Capacitor Recommendations
Voltage Supply
CVDD
Capacitors
10 * 560 pF Ceramic
Total Capacitance
2,027.003006 mF
Description
Scalable Core
30 * 100 nF Ceramic
3 * 22 mF Ceramic
3 * 47 mF Ceramic
1 * 220 mF Low ESR
2 * 330 mF Low ESR
2 * 470 mF Low ESR
AIF_VDDD_11
SGR_VDDD_11
4 * 560 pF
20 mF
Fixed 1.1 V
352 mF
1.8 V I/O
6 * 100 nF
2 * 10 mF (ceramic)
DVDD18
10 * 560 pF
20 * 100 nF
1 * 22 mF (ceramic)
1 * 330 mF
Final CVDD capacitor value should not be less than the value specified in Table 4. The final selection is
determined using the provided capacitor selection tool. For more information, see the TMS320TCI6488
Capacitor Selection Guide - Using the PTH08T240F Power Module application report (SPRAAM9). This
takes into account the board impedance, variation in the CVDD supply voltage, and the ESR of the bulk
and decoupling capacitors selected.
SPRAAG5E – December 2006 – Revised July 2010
TMS320TCI6487/88 Hardware Design Guide
Copyright © 2006–2010, Texas Instruments Incorporated
21
Power Supplies
5.7
www.ti.com
SmartReflex
In order to reduce device power, SmartReflex provides a feature that allows the core voltage to be
optimized based on the process corner of the device. This requires a voltage regulator for each
TCI6487/88 device. The voltage selection is done using four VCNTL pins that are used to select the
output voltage of the core voltage regulator. The mapping of the VCNTL pins state to the CVDD is shown in
Table 5.
Table 5. VCNTL Pin Mapping
VCNTL #
VCNTL[3:0]
CVDD
0
0000
0.900
1
0001
0.920
2
0010
0.940
3
0011
0.960
4
0100
0.980
5
0101
1.000
6
0110
1.020
7
0111
1.040
8
1000
1.060
9
1001
1.080
10
1010
1.100
11
1011
1.120
12
1100
1.140
13
1101
1.160
14
1110
1.180
15
1111
1.200
1.8 V Fixed
1.1 V Fixed
Power
Module
Scaled Core
Voltage
(0.9 V to 1.2 V)
TCI6487/88
Voltage ID: VCNTL[3:0]
Figure 18. SmartReflex Operation
22
TMS320TCI6487/88 Hardware Design Guide
SPRAAG5E – December 2006 – Revised July 2010
Copyright © 2006–2010, Texas Instruments Incorporated
Power Supplies
www.ti.com
5.7.1
SmartReflex Power Supply Solution
A recommended power supply solution used to implement the TCI6487/88 scalable core voltage with full
support for the SmartReflex feature can be implemented with TI's PTH08T240F power module. This
solution is shown in Figure 19. The NFET shown (NTA4153NT1) is a low voltage FET available from ON
Semiconductor.
The NFET selection is critical to meeting the ±3% tolerance for CVDD. The NFET specifications must meet
the following requirements:
• Max 48 Ω impedance @ 100 mA load at Vgs of 1.62 V (1.8 V - 10%)
• Idss (leakage current) ← 1 nA @ 25°C
• All SmartReflex resistors (resistor divider network) must be 0.5% or better tolerance. Other values and
combinations may also be suitable, provided the same values are derived. Please note that the
incremental steps of SmartReflex voltages must be uniform.
PTH08T240F
SENSE-
1.8 V
RSET
10 KΩ
348 KΩ
0.5 %
154 KΩ
0.5 %
76.80 KΩ 37.40 KΩ 31.2 KΩ
0.5 %
0.5 %
0.5 %
VCNTL0
VCNTL1
NTA4153NT1
TCI6487/88
VCNTL2
VCNTL3
Figure 19. TI SmartReflex System Solution
5.8
5.8.1
Power Saving Options
Clock Gating Unused Peripherals
The TCI6487/88 device can keep (or put) inactive/unused peripherals into a low-power state, which is
discussed in the TCI6487/88 data manual. After power-up, only those peripherals that are needed should
be left enabled.
5.8.2
General Power Saving Techniques
The following are some additional methods for reducing power:
• Lower frequency operation means lower power. The core and peripherals should be operated at the
lowest frequency that meets your requirements and the device requirements
• SERDES link power does not scale linearly with data rate. For SRIO and AIF, ports with higher link
rates have a higher bandwidth/watt than slower links. Generally, running fewer high-speed links is
more power efficient than multiple slower links.
SPRAAG5E – December 2006 – Revised July 2010
TMS320TCI6487/88 Hardware Design Guide
Copyright © 2006–2010, Texas Instruments Incorporated
23
I/O Buffers
www.ti.com
6
I/O Buffers
6.1
Process, Temperature, Voltage (PTV) Compensated Buffers
The impedance of I/O buffers is affected by process, temperature, and voltage. For the DDR2 interface,
these impedance changes can make it difficult to meet specifications across the full range of these
parameters. For that reason, the TCI6487/88 device uses PTV compensated I/O buffers for the DDR2
interface. The PTV compensation works by adjusting internal impedances to nominal values based on an
external reference resistance. This is implemented by connecting a resistor between the PTV18 pin and
VSS. For details, see the TMS320TCI6487/88 DDR2 Implementation Guidelines (SPRAAG6) [18].
6.2
I/O Timings
The I/O timings in the TCI6487/88 data manual are given for the tester test load. These timings need to be
adjusted based on the actual board topology. It is highly recommended that timing for all high speed
interfaces (with the exception of SERDES-based interfaces) on a TCI6487/88 design be checked using
IBIS simulations. For more details on performing IBIS simulations, see Using IBIS Models for Timing
Analysis (SPRA839) [28].
6.3
External Terminators
Series impedance is not always needed but is useful for some interfaces to avoid over-shoot/under-shoot
problems. Check the recommendations in the peripherals sections and/or perform IBIS simulations on the
interface.
6.4
6.4.1
Signaling Standards
1.8 V LVCMOS
All LVCMOS I/O buffers are JEDEC compliant 1.8-V LVMOS I/Os as defined in [16]. There are several
different LVCMOS buffers used in the TCI6487/88 device. The differences are mainly whether an internal
pullup or pulldown resistor is implemented. There are also some differences in the drive strength for some
I/Os. For details on different LVCMOS buffer types, see the TCI6487/88 data manual [19].
Some LVCMOS I/Os include internal pullup or pulldown resistors. These internal pullup and pulldown
resistors can be can be considered a 100 mA current source (with a range of 45 mA to 170 mA). This
equates to a nominal pullup/pulldown resistor of 18-kΩ (with a possible range of 10-kΩ to 42-kΩ)
The 1.8-V LVCMOS interfaces are not 2.5-V or 3.3-V tolerant so connections to 2.5-V or 3.3-V CMOS
logic require voltage translation. For input buffers at moderate frequencies, TI's LVC logic family can be
operated at 1.8-V and is 3.3-V tolerant. For faster signaling, TI's AUC family is optimized to operate at
1.8-V and is also 3.3-V tolerant. Good options for voltage translation for 1.8-V outputs that need to drive
2.5-V or higher inputs would be the CBTLV family (for a non-buffered solution) or the AVC family (for a
buffered solution). Some useful TI application reports on voltage translation options are:
• Voltage Translation Between 3.3-V, 2.5-V, 1.8-V, and 1.5-V Logic Standards With the TI AVCA164245
and AVCB164245 Dual-Supply Bus-Translating Transceivers Application Report (SCEA030)
• Selecting the Right Level-Translation Solution Application Report (SCEA035)
6.4.2
SSTL
The DDR2 interface is compatible with the JEDEC JESD8-15 (SSTL-1.8V) Specification [5]. The I/O
buffers are optimized for use with direct connections to up to 2 DDR2 SDRAMs and are not intended to
drive DDR2 DIMM modules. It is not intended that external parallel terminations be used with the DDR2
I/Os, but both series resistors and/or on-die-terminations (ODT) are supported. For more details, see [18].
24
TMS320TCI6487/88 Hardware Design Guide
SPRAAG5E – December 2006 – Revised July 2010
Copyright © 2006–2010, Texas Instruments Incorporated
Peripherals Section
www.ti.com
6.4.3
SERDES Interfaces
There are three peripherals on the TCI6487/88 device that use high-speed serial interfaces: SGMII EMAC,
AIF, and SRIO. These serial interfaces all use 8b/10b encoded links and SERDES macros. These
interfaces use a clock recovery mechanism so that a separate clock is not needed. Each link is a serial
stream with an embedded clock so there are no ac timings or drive strengths as found in the LVCMOS or
SSTL interfaces. There are several programmable settings for each SERDES interface that affect the
electrical signaling. The most important of these are: transmitter output amplitude, transmitter
de-emphasis, and receiver adaptive equalization. Recommendations for these settings for particular board
topologies are provided in
TMS320TCI6487/88 SERDES Implementation Guidelines (SPRAAG7) [21].
The SERDES interfaces use CML logic. Compatibility to LVDS signals is possible and is described in
Section 8.1
7
Peripherals Section
This section covers each of the TCI6487/88 device's peripherals/modules. This section is intended to be
used in addition to the information provided in the TCI6487/88 data manual, the Module Guides provided
for each of the peripherals and relevant Application Reports. The four types of documents should be used
as follows:
• Data Manual: ac Timings, register offsets
• Module Guide: Functional Description, Programming Guide
• Applications Reports: System level issues
• This Chapter: Configuration, system level issues not covered in a separate application report
Each peripheral section includes recommendations on how to handle pins on interfaces that are disabled
or for unused pins on interfaces that are enabled. Generally, if internal pullup or pulldown resistors are
included, the pins can be left floating. Any pin that is output only can always be floated. Normally, if
internal pullup and pulldown resistors are not included, pins can still be floated with no functional issues
for the device. However, this normally causes additional leakage currents that can be eliminated if external
pullup or pulldown resistors are used. Inputs that are not floating have a leakage current of approximately
100 mA per pin. Leakage current is the same for a high- or low-input (either pullup or pulldown resistors
can be used). When the pins are floating, the leakage can be several milliamps per pin. Connections
directly to power or ground can be used only if the pins can be assured to never be configured as outputs
and the boundary scan is not run on those pins.
7.1
Multichannel Buffered Serial Port (McBSP)
Relevant documentation for McBSP:
• TMS320TCI648x Multichannel Buffered Serial Port (McBSP) User's Guide (SPRU803) [26]
• TMS320TCI6487/88 IBIS Model File (SPRM337)
• Using IBIS Models for Timing Analysis (SPRA839) [28]
7.1.1
Configuration of McBSP
McBSP0 and McBSP1 are not multiplexed with any other peripherals and are enabled after power up.
Each McBSP port can either be driven by an external clock (CLKS), by an internal CLKS, or by the
internal sample rate generator in the McBSP. The internal CLKS clock rate is core clock / X, where X is
programmable from 6 to 32. Default is X = 10. CLKS (either sourced internally or externally) cannot
exceed 104.448 MHz. The sample rate generator clock rate is core clock / 6 and can be further divided
down inside the McBSP module. Please note that if this clock is used, it must be divided down at least by
/2.
If a McBSP port is not used or some of the signals are not used, the pins can be left unconnected since
internal pullup/down resistors are included. The CLKS also has an internal pulldown resistor so that it can
be left unconnected if not used.
All standard McBSP modes are supported (as compared to the TMS320TCI6487/88) with the exception of
SPI mode.
SPRAAG5E – December 2006 – Revised July 2010
TMS320TCI6487/88 Hardware Design Guide
Copyright © 2006–2010, Texas Instruments Incorporated
25
Peripherals Section
7.1.2
www.ti.com
System Implementation of McBSP
The maximum McBSP performance is achievable only when using source synchronous modes and
point-to-point connections. In this case, use series resistance to reduce over/under-shoot. Generally
acceptable values are 10 Ω, 22 Ω, or 33 Ω. To determine the optimum value simulations using the IBIS,
models should be performed to check signal integrity and ac timings.
Multiple DSPs can be connected to a common McBSP bus using TDM mode. The additional loads require
a reduction in the operating frequency. Also, the specific routing topology becomes much more significant
as additional DSPs are included. The way to determine the best topology and maximum operating
frequency are by performing IBIS simulations.
7.2
GPIO/Device Interrupts
Documentation for GPIO/Interrupts:
• TMS320C6472/TMS320TCI648x DSP General-Purpose Input/Output (GPIO) User's Guide (SPRU725)
[25]
• TMS320TCI6487/88 IBIS Model File (SPRM337)
• Using IBIS Models for Timing Analysis (SPRA839) [28]
7.2.1
Configuration of GPIO/Interrupts
None of the GPIOs are multiplexed with other peripherals but several of the GPIOs are used for device
configuration strapping options. The strapping options are latched by POR going high. After POR is high
the pins are available as GPIO pins.
GPIOs are enabled at power-up and default to inputs.
All GPIOs can be used as interrupts and/or EDMA events to any of the cores.
All GPIOs have internal pulldown resistors, except GPIO4, which has an internal pullup resistor. Because
the internal pullup and pulldown resistors are present, the pins can be no-connects if not used. If the
opposite configuration settings is desired, use an external 1-kΩ resistor to overcome the internal
pullup/down resistor.
7.2.2
System Implementation of GPIO/Interrupts
It is recommended that GPIO's used as outputs have a series resistance (22 or 33 Ω being typical values).
The value (or need) for the series resistor can be determined by simulating with the IBIS models.
If you want to have a GPIO input default to a particular state (low or high), use an external resistor. A
pullup resistor value of 1-kΩ is recommended to make sure that it over-rides the internal pulldown resistor
present on some GPIOs. If this GPIO is also used as a strapping option, the default state needs to also be
the desired boot strapping option. The RESETSTAT signal can be used to tri-state logic that drives a
GPIO boot strapping state during the POR transition.
7.3
Timers
Documentation for Timers:
• TMS320C6472/TMS320TCI648x DSP 64-Bit Timer User's Guide (SPRU818) [27]
• TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide (SPRU732) [29]
• TMS320TCI6487/88 IBIS Model File (SPRM337)
• Using IBIS Models for Timing Analysis (SPRA839) [28]
26
TMS320TCI6487/88 Hardware Design Guide
SPRAAG5E – December 2006 – Revised July 2010
Copyright © 2006–2010, Texas Instruments Incorporated
Peripherals Section
www.ti.com
7.3.1
Configuration of Timers
There are six timer peripherals and they are enabled at power-up.
Each timer can be configured as a single 64-bit timer, as two 32-bit timers or as a watch-dog timer. There
are two external timer input signals and two external timer output signals. Each of the six timers can select
either one of the two timer input pins as a source, between two internal sources from the frame sync
module, or an internal clock that is core clock /6. Each of the two timer output pins can be driven by any of
the six timers. When a timer is used as two 32-bit timers, the timer input and output can only be used with
the lower 32-bit timer. When used as a watchdog timer, Timers 3, 4, and 5 correspond to CPU cores 0, 1,
and 2, respectively. When in watchdog mode, a watchdog timeout on any of these timers can optionally
reset that particular CPU automatically.
The timer module is clocked from CPU core clock frequency/6.
If the external timer input signals are not used, the pins can be left unconnected and the internal pulldown
resistors bring the input to a low state.
In addition to the timer peripherals, each CPU core has a 64-bit free running counter that advances each
CPU clock after counting is enabled. The counter is accessed using two 32-bit read-only control registers
in the CPU. For more details on this timer, see the Time Stamp Counter Registers described in the
TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide (SPRU732) [29].
Timer inputs can optionally be used as general-purpose inputs. Timer outputs can optionally be used as
general-purpose outputs.
7.3.2
System Implementation of Timers
It is recommended that external timer signals use series resistance (22 Ω or 33 m being typical values).
The value (or need) for the series resistor can be determined by simulating with the IBIS models.
External timer input signals are synchronized to the internal timer clock. Since the timer operates at CPU
core/6, the timer input can be delayed from the timer input as much as one CPU core clock period * 6
(seconds).
7.4
Inter-Integrated Circuit (I2C)
Documentation for I2C:
• TMS320C6472/TMS320TCI648x DSP Inter-Integrated Circuit (I2C) Module User's Guide (SPRUE11)
[24]
• TMS320TCI6487/88 IBIS Model File (SPRM337)
• Using IBIS Models for Timing Analysis (SPRA839) [28]
• Philip's I2C Specification, Version 2.1
7.4.1
Configuration of I2C
The I2C peripheral powers up enabled. The input clock for the I2C module is core clock /6. There is a
prescaler in the I2C module that needs to be set up to reduce this frequency to an internal module clock of
7 MHz to 12 MHz.
If the I2C signals are not used, the SDA and SCL pins can be left floating. This causes a slight increase in
power due to leakage, which can be avoided by having pullup resistors.
SPRAAG5E – December 2006 – Revised July 2010
TMS320TCI6487/88 Hardware Design Guide
Copyright © 2006–2010, Texas Instruments Incorporated
27
Peripherals Section
7.4.2
www.ti.com
System Implementation of I2C
External pullup resistors to 1.8 V are needed on the I2C signals (SCL, SDA). The recommended pullup
resistor value is 4.7-kΩ.
Multiple I2C devices can be connected to the interface, but the speed may need to be reduced (400 KHz
is the maximum) if many devices are connected.
The I2C pins are not 2.5 V or 3.3 V tolerant. For connection to 2.5 V or 3.3 V I2C peripherals, the
PCA9306 Dual Bidirectional I2C Bus and SMBus Voltage-Level Translator Data Sheet (SCPS113) [38]
can be used.
7.5
Ethernet
Documentation for EMAC:
• TMS320TCI648x DSP Ethernet Media Access Controller (EMAC)/Management Data Input/Output
(MDIO) User's Guide (SPRUE12) [23]
• SGMII Specification (ENG-46158), Version 1.8, dated April 27, 2005 [6]
• TMS320TCI6487/88 SERDES Implementation Guidelines (SPRAAG7) [21]
7.5.1
Configuration of EMAC, SGMII and MDIO
The EMAC interface is compliant with the SGMII Specification (ENG-46158), Version 1.8 [6] that specifies
LVDS signals. Only the data channels are implemented so that the connected device must support clock
recovery and not require a separate clock signal. When EMAC is enabled, the MDIO interface is enabled.
The MDIO interface (MDCLK, MDIO) uses 1.8 V LVCMOS buffers.
EMAC must be enabled via software before it can be accessed unless the Boot over Ethernet bootmode is
selected.
If EMAC is used, a RIOSGMIICLKP/N clock must be provided and the SERDES must be setup to
generate a 1.25Gbps link. The PLL multiplier settings for the three recommended RIOSGMIICLKP/N
clocks frequencies are given in Table 6. Although the SGMII SERDES share a reference clock with the
SRIO SERDES, they have separate PLLs which can be setup with different multipliers.
Table 6. SGMII PLL Multiplier Settings
Reference Clock
PLL Multiplier
Full Rate
Half Rate
Quarter Rate
125 MHz
10
Not used
1.25 Gbps
Not used
156.25 MHz
8
Not used
1.25 Gbps
Not used
312.5 MHz
4
Not used
1.25 Gbps
Not used
If EMAC is not used, the SERDES signals can be left unconnected. MDIO can be left unconnected, but
results in an increase in leakage current. This could be avoided by adding an external pullup resistor. If
both EMAC and SRIO are not used, the RIOSGMIICLKP/N pins should be terminated as shown in
Figure 3.
7.5.2
System Implementation of SGMII
SGMII specifies LVDS signaling as defined in [7]. The TCI6487/88 uses a CML based SERDES interface
that requires ac coupling to interface to LVDS levels; use 0.1 mF ac coupling capacitors for this purpose.
The SERDES receiver includes a 100 Ω termination so an external 100 Ω termination is not needed.
Examples of SERDES to LVDS connections are given in Section 8.1.
If the connected SGMII device does not provide common-mode biasing, external components need to be
added to bias the LVDS side of the ac-coupling capacitors to the nominal LVDS offset voltage, normally
1.2 V.
For information regarding supported topologies and layout guidelines,see TMS320TCI6487/88 SERDES
Implementation Guidelines (SPRAAG7) [21].
The SGMII interface supports hot-swap, where the ac coupled inputs of the device can be driven without a
supply voltage applied.
28
TMS320TCI6487/88 Hardware Design Guide
SPRAAG5E – December 2006 – Revised July 2010
Copyright © 2006–2010, Texas Instruments Incorporated
Peripherals Section
www.ti.com
Suggestions on SGMII reference clocking solutions can be found in Section 4.1.
SRIO/SGMII SERDES power planes and power filtering requirements are covered in Section 5.
7.5.3
SGMII MAC to MAC Connection
The SGMII interface can be connected from the TCI6487/88 device to PHY or from the TCI6487/88 device
to MAC, including TCI6487/88-to-TCI6487/88 device direct connects. An example of the hardware
connections is shown in Figure 20. For auto-negotiation purposes, the TCI6487/88 device can be
configured as a master or a slave or it can be setup for fixed configuration. If the TCI6487/88 device is
connected to another MAC, the electrical compatibility must be evaluated to determine if additional
terminations are needed.
0.1 μF
TXP
RXP
0.1 μF
TXN
RXN
TCI6487/88
(master)
0.1 μF
TXP
TCI6487/88
(slave)
RXP
0.1 μF
TXN
RXN
Figure 20. SGMII MAC to MAC Connection
7.6
Serial RapidIO (SRIO)
Relevant documentation for SRIO:
• TMS320C6472/TMS320TCI648x DSP Serial RapidIO User's Guide (SPRUE13) [20]
• RapidIO Interconnect Part VI: Physical Layer 1x/4x LP-Serial Specification, Version 1.2 [9]
• TMS320TCI6487/88 SERDES Implementation Guidelines (SPRAAG7) [21]
7.6.1
Configuration of SRIO
SRIO defaults disabled and with internal memories for the module in a sleep state. The memories,
followed by the module, must be enabled by software before use (unless Boot over SRIO is selected).
There are two SRIO lanes. A simple form of SRIO forwarding is supported to allow a daisy chain
implementation.
SPRAAG5E – December 2006 – Revised July 2010
TMS320TCI6487/88 Hardware Design Guide
Copyright © 2006–2010, Texas Instruments Incorporated
29
Peripherals Section
www.ti.com
The SRIO requires a differential reference clock: RIOSGMIICLKP/N. Supported frequencies for this clock
are 125 MHz, 156.25 MHz, and 312.5 MHz. The SERDES used in the SRIO solution has a PLL that
needs to be configured based on this reference clock and the desired link rate. Link rates can be full, half
or quarter rate relative to the PLL frequency. Refer to Table 7 for PLL multiplier settings relative to link
rate.
Table 7. SRIO PLL Multiplier Settings
Reference Clock
PLL Multiplier
Full Rate
Half Rate
Quarter Rate
125 MHz
12.5
3.125 Gbps
Not used
Not used
156.25 MHz
10
3.125 Gbps
Not used
Not used
125 MHz
10
2.5 Gbps
1.25 Gbps
Not used
156.25 MHz
8
2.5 Gbps
1.25 Gbps
Not used
312.5 MHz
5
3.125 Gbps
Not used
Not used
312.5 MHz
4
2.5 Gbps
1.25 Gbps
Not used
It is possible to configure the TCI6487/88 device to boot load application code over the SRIO interface.
Boot over SRIO is a feature that is selected using boot strapping options. For details on boot strapping
options, see the TCI6487/88 data manual.
If the SRIO peripheral is not used, the SRIO link pins can be left floating and the SERDES links should be
left in the disabled state. If the SRIO and SGMII peripherals are both unused, the link pins can be left
floating; however, the RIOSGMIICLKP/N should be terminated as shown in Figure 3.
The SRIO SERDES ports support hot-swap, where the ac coupled inputs of the device can be driven
without a supply voltage applied.
If the SRIO peripheral is enabled but only 1 link is used, the pins of the unused link can be left floating.
7.6.2
System Implementation of SRIO
The Serial RapidIO implementation is compliant to the RapidIO Interconnect Part VI: Physical Layer 1x/4x
LP-Serial Specification, Version 1.2 [9].
For information regarding supported topologies and layout guidelines, see TMS320TCI6487/88 SERDES
Implementation Guidelines (SPRAAG7) [21].
Suggestions on SRIO reference clocking solutions can be found in Section 4.1.
SRIO/SGMII SERDES power planes and power filtering requirements are covered in Section 5.
7.7
Antenna Interface (AIF)
Relevant documentation for AIF:
• OBSAI RP3 Specifications [1] and [2]
• CPRI Specification Version 2.0 [4]
• XAUI Electrical Specification (IEEE-802.3ae-2002), dated 2002 [8]
• TMS320TCI6487/88 DSP Antenna Interface User's Guide (SPRUEF4) [31]
• TMS320TCI6487/88 SERDES Implementation Guidelines (SPRAAG7) [21]
7.7.1
Configuration of AIF
AIF defaults disabled and with the internal memories for the module in a sleep state. The memories,
followed by the module, must be enabled by software before use.
There are two protocol modes supported on the AIF interface: OBSAI and CPRI. The mode is selected by
software after power-up. All links are the same mode.
30
TMS320TCI6487/88 Hardware Design Guide
SPRAAG5E – December 2006 – Revised July 2010
Copyright © 2006–2010, Texas Instruments Incorporated
Peripherals Section
www.ti.com
The AIF module requires the AIF reference clock (SYSCLKP/N) to drive the SERDES PLLs and requires
frame sync timing signals provided by the frame sync module. The frame sync clock provided to the FSM
has the following requirements:
• RP1 mode:
– FSYNCCLKP/N must be 30.72 MHz (8× UMTS chip rate)
– FRAMEBURSTP/N must provide a UMTS frame boundary signal
• Non-RP1 mode:
– ALTFSYNCCLK must be 1×, 2×, 4×, 8×, or 16× UMTS chip rate
– ALTFSYNCPULSE must provide UMTS frame boundary pulse
For proper operation of the AIF, the SYSCLKP/N (which is the antenna interface SERDES reference
clock) and the frame sync clock (either FSYNCCLKP/N or ALTFSYNCCLK) must be generated from the
same clock source and must be assured not to drift relative to each other.
The AIF reference clock and the SERDES PLL multiplier are used to select the link rates. Both CPRI and
OBSAI have 3 supported line rates that run at 1×, 2×, and 4× the base line rate. The SERDES line rates
can be operated at full rate, half rate, or quarter rate of the PLL output. For that reason, it is suggested
that the AIF SERDES PLL be run at the 4× line rate. Each link pair can be configured as full rate (4×), half
rate (2×), or quarter rate (1×). Table 8 shows AIF SERDES suggested clocking options.
If OBSAI 4× links are used, the CPU minimum frequency is 1 GHz. If OBSAI 1×/2× links or used, or if
CPRI is used, the CPU minimum frequency is 800 MHz.
Table 8. AIF SERDES Clocking Options
Reference Clock
CPRI
OBSAI
PLL Multiplier
Full Rate
Half Rate
Quarter Rate
61.44 MHz
20
2.4576 Gbps
1.2288 Gbps
614.4 Mbps
122.88 MHz
10
153.6 MHz
8
3.072Gbps
1.536 Gbps
768 Mbps
61.44 MHz
25
122.88 MHz
12.5
153.6 MHz
10
The AIF SERDES ports supports hot-swap, where the ac coupled inputs of the device can be driven
without a supply voltage applied.
Any TX/RX links not used can be left floating. If the AIF peripheral is not used, the link pins can be left
floating. The reference clock should be terminated as shown in Figure 3.
7.7.2
System Implementation of AIF
In OBSAI RP3 mode, the interface is electrically compatible with the OBSAI RP3 Specification, Version
3.0 [1]. From a protocol implementation, the interface is compatible with RP3, February 5th 2004 [2] and
partly compatible with Version 3.0 [1].
In CPRI mode, the interface is electrically compatible with the XAUI Electrical Specification
(IEEE-802.3ae-2002) [8].
For information regarding supported topologies and layout guidelines, see the TMS320TCI6487/88
SERDES Implementation Guidelines (SPRAAG7) [21].
Suggestions on AIF reference clocking solutions can be found in Section 4.1.
AIF SERDES power planes and power filtering requirements are covered in Section 5.
7.8
Frame Sync Module (FSM)
Relevant documentation for FSM:
• OBSAI RP1 Version 1.0 [3]
• TMS320TCI6487/88 DSP Frame Synchronization Module User's Guide (SPRUEF5) [32]
SPRAAG5E – December 2006 – Revised July 2010
TMS320TCI6487/88 Hardware Design Guide
Copyright © 2006–2010, Texas Instruments Incorporated
31
Peripherals Section
7.8.1
www.ti.com
Configuration of FSM
The FSM provides system timing events for the entire TCI6487/88 device and is required for proper
operation of the AIF. At a minimum, the FSM requires two external signals: a frame clock and a
synchronization event. At most, the FSM can support two reference clocks and two synchronization
events.
For an OBSAI RP1 compliant interface, supply the FSYNCLKP/N input with a 30.72 MHz clock and the
FrameBurstP/N should provide the frame burst signaling as defined in the RP1 specification.
The software can select singled ended pins for frame clock and a synchronization event instead of the
LVDS inputs as mentioned above. In this case, FSYNCLKP/N is replaced with ALTFSYNCLK and
ALTFSYNCPULSE replaces FrameBurstP/N. These are 1.8 V CMOS input buffers. ALTSYNCPULSE can
be used to indicate a synchronization event, but cannot be used to transmit a serial data pattern as is
done with FrameBurstP/N. With ALTFSYNCPULSE, the frame boundary is indicated the first time
ALTFSYNCPULSE is latched high by the frame clock after the FSM has been configured to latch a new
frame boundary. Once the frame boundary is latched, it is not latched again unless the FSM is configured
to do so. Because of this, the pulse duration time of ALTFSYNCPULSE is not critical.
For proper operation of the AIF, the SYSCLKP/N (which is the antenna interface SERDES reference
clock) and the frame sync clock (either FSYNCCLKP/N or ALTFSYNCCLK) must be generated from the
same clock source and assured not to drift relative to each other.
The FSM has one counter used to generate AIF timing and events and can be used to generate other
events as well. This counter is controlled by the signals mentioned above. The FSM includes a second
counter that can generate multiple chip events. This can be controlled by either the same signals
mentioned above or by a separate clock and synchronization event. The alternate clock and sync event
that can control the system counter are: TRTCLK and TRT (time reference tick). These are both 1.8 V
CMOS inputs.
The valid FSM synchronization and clocking options are described in Table 9.
Table 9. Frame Sync Module Config Options
AIF Timer Sync
AIF Timer Clock
System Timer Sync
System Timer Clock
Intended Used
FRAMEBURSTP/N
FSYNCCLKP/N
FRAMEBURSTP/N
FSYNCCLKP/N
RP1 or non-RP1
differential sync,
differential clock
ALTFSYNCPULSE
ALTFSYNCCLK
ALTFSYNCPULSE
ALTFSYNCCLK
RP1 or non-RP1
single-ended sync,
single-ended clock
ALTFSYNCPULSE
FSYNCCLKP/N
ALTFSYNCPULSE
FSYNCCLKP/N
RP1 or non-RP1
single-ended sync,
differential clock
ALTFSYNCPULSE
ALTFSYNCCLK
TRT
TRT_CLK
Non-RP1 or
non-UMTS
single-ended sync,
single-ended clock
Single-ended inputs have internal pulldown resistors; if these inputs are not used, they can be left
unconnected.
32
TMS320TCI6487/88 Hardware Design Guide
SPRAAG5E – December 2006 – Revised July 2010
Copyright © 2006–2010, Texas Instruments Incorporated
Peripherals Section
www.ti.com
If the LVDS inputs (FSYNCCLKP/N pins AD7/AD8 and FRAMEBURST pins AD9/AD10) are not used,
external connections should be provided to generate a valid logic level. The recommended connections for
unused LVDS inputs are shown in Figure 21. The 1-kΩ resistor is used to reduce power.
1.8 V
DSP
LVDS_F
100 Ω
LVDS_N
1 KΩ
Figure 21. Unused LVDS Connections
7.8.2
System Implementation of FSM
For an RP1 compliant interface, the frame sync clock and frame sync burst signal defined by the RP1
Specification [3] should be connected to FSYNCCLKP/N and FRAMEBURSTP/N, respectively.
LVDS 1:N buffers (such as the SN65LVDS108 or CDCL1810) can be used to connect these signals to
multiple DSPs on a single board. The 100 Ω LVDS termination resistor is included in the TCI6487/88
LVDS receiver so an external 100 Ω resistor is not needed. These are standard LVDS inputs so, unlike
the LJCB inputs, these inputs should not be ac coupled. They should be driven directly by an LVDS
compliant driver.
The SMFRAMECLK output is available to generate a frame sync output to other devices based on the
frame clock and frame sync inputs. Its switching frequency and offset are programmable in the FSM. This
output edge is not aligned with the frame clock input so take care if this output needs to be latched based
on this clock.
For information on clocking distribution options for the single-ended frame sync clocks, see Section 4.2.
7.9
DDR2
Relevant documentation for DDR2:
• TMS320C6472/TMS320TCI648x DSP DDR2 Memory Controller User's Guide (SPRU894) [22]
• TMS320TCI6487/88 DDR2 Implementation Guidelines (SPRAAG6) [18]
• JEDEC JESD79-2B [10]
7.9.1
Configuration of DDR2
The DDR2 peripheral is enabled at power-up.
The DDR2 output clock is derived from the DDR2 PLL that uses DDRREFCLKP/N as a reference clock.
The DDR2 PLL operates at 10× the DDRREFCLKP/N frequency and the DDR2 output clock is 1/2 of the
PLL output clock. For example, a 66.6 MHz reference clock results in a 667 MHz PLL output and a DDR2
output clock of 333 MHz for DDR2-667 support.
If the DDR2 peripheral is disabled, all interface signals (including reference clocks) can be left floating and
the input buffers are powered down.
SPRAAG5E – December 2006 – Revised July 2010
TMS320TCI6487/88 Hardware Design Guide
Copyright © 2006–2010, Texas Instruments Incorporated
33
Peripherals Section
www.ti.com
If the DDR2 is operated in 16-bit mode, pull the upper DDR2 bi-directional pins to valid states through
1-kΩ resistors. DDRDQS2, DDRDQS3, and DDRD[31:16] should have 1-kΩ pullup resistors to DVDD18.
DDRDQS2 and DDRDQS3 should have 1-kΩ pulldown resistors to GND. DDRDQM2, DDRDQM3, and
DDRCLKOUT1P/N can be left unconnected.
7.9.2
System Implementation of DDR2
For information regarding supported topologies and layout guidelines, see the TMS320TCI6487/88 DDR2
Implementation Guidelines (SPRAAG6) [18].
Suggestions on DDR2 reference clocking solutions can be found in Section 4.1.
7.10 JTAG / Emulation
Relevant documentation for the JTAG/Emulation:
• Emulation and Trace Headers Technical Reference Manual (SPRU655) (but note differences defined
below) [15]
• Boundary Scan Test Specification (IEEE-1149.1) [11]
• AC Coupled Net Test Specification (IEEE-1149.6) [12]
7.10.1
Configuration of JTAG/Emulation
The IEEE Standard 1149.1-1990, IEEE Standard Test Access Port and Boundary-Scan Architecture
(JTAG) interface can be used for boundary scan and emulation. The boundary scan implementation is
compliant to both IEEE-1149.1 and 1149.6 (for SERDES ports). Boundary scan can be used regardless of
the device configuration.
As an emulation interface, the JTAG port can be used in various modes:
• Standard emulation: requires only five standard JTAG signals
• HS-RTDX emulation: requires five standard JTAG signals plus EMU0 and/or EMU1. EMU0 and/or
EMU1 are bidirectional in this mode.
• Trace port: The trace port allows real-time dumping of certain internal data. The trace port uses the
EMU[18:00] pins to output the trace data, however, the number of pins used is configurable.
Emulation can be used regardless of the device configuration.
For supported JTAG clocking rates (TCLK), see the TCI6487/88 data manual. The EMU[18:00] signals
can operate up to 166 Mbps, depending on the quality of the board level implementation.
Any unused emulation port signals can be left floating.
7.10.2
System Implementation of JTAG / Emulation
For most system level implementation details, see the Emulation and Trace Headers Technical Reference
Manual (SPRU655). However, there are a few differences for the TCI6487/88 device implementation
compared with this document:
• Although the document implies 3.3-V signaling, 1.8-V signaling is supported as long as the TVD source
is 1.8 V.
For a single DSP connection where the trace feature is used, the standard non-buffered connections can
be used along with the standard 14 pin connector. If the trace feature is used, which requires the 60-pin
emulator connector, the five standard JTAG signals should be buffered and TCLK and RTCLK should be
buffered separately. It is recommended to have the option for an ac parallel termination on TCLK since it
is critical that the TCLK have a clean transition. EMU0 and EMU1 should not be buffered since these are
used as bidirectional signals when used for HS-RTDX.
For a system with multiple DSPs that do not use the trace analysis features, the JTAG signals should be
buffered as described above but the standard 14 pin connector can be used.
There are two recommended solutions if trace analysis is desired in a system with multiple DSPs.
Emulator with trace, solution #1: trace header for each DSP (see Figure 22)
34
TMS320TCI6487/88 Hardware Design Guide
SPRAAG5E – December 2006 – Revised July 2010
Copyright © 2006–2010, Texas Instruments Incorporated
Peripherals Section
www.ti.com
60 pin
JTAG
EMU[1:n] EMU0
60 pin
JTAG
JTAG (TDI, TDO, etc.)
EMU[1:n]
EMU[1:n] EMU0
Device n
EMU0
JTAG
JTAG (TDI, TDO, etc.)
EMU0
EMU[1:n]
EMU[1:n] EMU0
Device 2
EMU[1:n]
Device 1
JTAG (TDI, TDO, etc.)
•
Pros
– Most simple
– Most clean solution electrically
Cons
– Expensive (multiple headers)
– Takes up board real estate
– No global breakpoints, synchronous run/halt
EMU0
•
60 pin
Figure 22. Emulator With Trace, Solution #1
Emulator with trace, solution #2: single trace header (see Figure 23)
• Pros
– Fairly clean solution electrically
– Supports global breakpoints, synchronous run/halt
• Cons
– Supports trace on only one device
– Less bandwidth for trace (EMU0 used for global breakpoints)
– Loss of AET action points on EMU1 (only significant if EMU1 has been used as a trigger
input/output between devices. EMU0 can be used instead if needed).
Device 1
JTAG
EMU[1:n] EMU0
Device n
JTAG
EMU[1:n] EMU0
JTAG
JTAG (TDI, TDO, etc.)
EMU0
EMU[1:n]
EMU[1:n] EMU0
Device 2
60 pin
Figure 23. Emulation With Trace, Solution #2
SPRAAG5E – December 2006 – Revised July 2010
TMS320TCI6487/88 Hardware Design Guide
Copyright © 2006–2010, Texas Instruments Incorporated
35
Peripherals Section
www.ti.com
No external pullup/down resistors are needed since there are internal pullup/down resistors on all
emulation signals.
Although no buffer is shown, for multiple DSP connections it is recommended to buffer the five standard
(TDI, TDO, TMS, TCK, and TRST) JTAG signals.
If trace is used, it is not recommended to add both a 60-pin header and a 14-pin header due to signal
integrity concerns. 60-pin to 14-pin adapters are available to allow connection to emulators that only
support the 14-pin connector.
Some emulators may not support 1.8 V I/O levels. Check emulators intended to operate with the
TCI6487/88 device for supported I/O levels. If 1.8 V is not supported, a voltage translator circuit is needed
or a voltage converter board may be available. If the TCI6487/88 device is in a JTAG chain with devices
that have a different voltage level than 1.8 V (i.e., 3.3 V), voltage translation is needed.
Figure 24 shows a dual voltage JTAG solution using buffers to perform the voltage translation. The ALVC
family for 3.3 V and the AUC family for 1.8 V are both used because they have similar propagation delays
and high-drive outputs.
3.3 V Signals
1.8 V Signals
3.3 V TVC
3.3 V
Emulator
(Optional)
TCK_RET
1.8 V
3.3 V
TCK, TRST, TMS
3.3 V Device
TDO
TDI, TCK, TRST, TMS
3.3 V
AUC125
ALVC125
TD
TCI6487/88
TDO
AVC2T45
1.8 V
Figure 24. Emulator Voltage Translation With Buffers
Figure 25 shows an example of using FET switch devices for voltage translation. If EMU0 and EMU1 are
connected, use this approach since these are bi-directional signals.
3.3 V Signals
1.8 V Signals
3.3 V TVD
Emulator
(Optional)
TCK_RET
3.3 V
1.8 V
ALVC125
TCK, TRST, TMS
3.3 V JTAG
Device
TDO
TDI, TCK, TRST, TMS
CBTLV
or TVC
Device
TCI6487/88
TDO
TDI
Figure 25. Emulator Voltage Translation With Switches
36
TMS320TCI6487/88 Hardware Design Guide
SPRAAG5E – December 2006 – Revised July 2010
Copyright © 2006–2010, Texas Instruments Incorporated
SERDES-LVDS Termination Options
www.ti.com
If the trace signals are supported, they may need to have voltage translation as well. Due to the speed of
that interface, connect these signals directly to the emulation header.
8
SERDES-LVDS Termination Options
TI SERDES are CML implementations and do not directly support LVDS levels. Compatibility with
standard LVDS signals is achievable with proper terminations as described in this section.
8.1
LVDS to CML Example
The following is an example of an LVDS to CML connection.
• Requires ac termination because the LVDS common-mode voltage is too high for the TCI6487/88
device SERDES receivers
• CML receivers include 100 Ω termination needed by LVDS and include internal biasing (no external
biasing needed)
• Refer to Figure 26.
0.8*VDDT
LVDS
Transmitter
50 Ω
DSP
50 Ω
0.1 µF
TI SERDES CML
Input
0.1 µF
Figure 26. LVDS to CML Connection
8.2
CML to LVDS Example
The following is an example of a CML to LVDS connection:
• Requires ac termination because TCI6487/88 device CML output voltage is too low for LVDS receiver
and the common-mode voltages are incompatible.
• LVDS receivers require 100 Ω terminations and proper biasing.
• Some LVDS receivers include 100 Ω termination and some do not.
• Some LVDS receivers include internal biasing and some do not.
• The basic connection diagram is shown in Figure 27.
VDDT
DSP
50 Ω
50 Ω
0.1 µF
pos(+)
neg (-)
TI SERDES CML
400 mV Swing
0.1 µF
External
Termination
LVDS
Receiver
Figure 27. CML to LVDS Connection Basic Diagram
•
If the LVDS receiver includes the 100 Ω termination and internal biasing, there is no need for external
SPRAAG5E – December 2006 – Revised July 2010
TMS320TCI6487/88 Hardware Design Guide
Copyright © 2006–2010, Texas Instruments Incorporated
37
SERDES-LVDS Termination Options
•
www.ti.com
terminations.
If the LVDS receiver includes neither the 100 Ωs or biasing, use the external terminations shown in
Figure 28.
No Internal Termination
Fixed 1.1 V
50 Ω
50 Ω
pos (+)
neg (-)
External Termination
Figure 28. External Terminations: Receiver Has No Internal Terminations
•
If the LVDS receive includes the 100 Ω termination but no biasing, use the external terminations shown
in Figure 29.
VCC (1.5 V)
4.7
KΩ
4.7
KΩ
pos (+)
100 Ω
neg (-)
10
KΩ
External
Termination
10
KΩ
LVDS
Receiver
Figure 29. External Terminations: Receiver With 100 Ω
•
38
If the LVDS receiver includes 100 Ω terminations and internal pullup resistors (sometimes used for
fail-safe), use the type of termination shown in Figure 30. Adjust the external resistor values based on
the VCC and internal resistors to generate a bias voltage of 1.0 V to 1.2 V.
TMS320TCI6487/88 Hardware Design Guide
SPRAAG5E – December 2006 – Revised July 2010
Copyright © 2006–2010, Texas Instruments Incorporated
SERDES-LVDS Termination Options
www.ti.com
VCC (3.3 V)
100
KΩ
100
KΩ
pos (+)
100
Ω
neg (-)
45
KΩ
45
KΩ
External
Termination
LVDS Receiver
Figure 30. External Terminations: Receiver With 100 Ω
•
There are other combinations that may be needed for other types of input buffers. The important
factors are that there is a 100 Ω impedance and a bias voltage set around 1.2 V.
SPRAAG5E – December 2006 – Revised July 2010
TMS320TCI6487/88 Hardware Design Guide
Copyright © 2006–2010, Texas Instruments Incorporated
39
References
9
www.ti.com
References
1.
2.
3.
4.
OBSAI Reference Point 3 Specification, Version 3.0
OBSAI Reference Point 3 Specification, February 5th, 2004
OBSAI Reference Point 1 Specification, Version 1.0, dated October 16, 2003
CPRI Specification, Version 2.0
http://www.cpri.info/spec.html
5. JEDEC JESD8-15 (SSTL-1.8V) Specification (EAI/JESD8-15a), dated September 2003
http://www.jedec.org/download/search/JESD8-15a.pdf
6. SGMII Specification (ENG-46158), Version 1.8, dated April 27, 2005
7. LVDS Electrical Specification (IEEE-1596.3-1996), dated 1996
8. XAUI Electrical Specification (IEEE-802.3ae-2002), dated 2002
9. RapidIO Interconnect Part VI: Physical Layer 1x/4x LP-Serial Specification, Version 1.2, dated June
2002
10. JEDEC DDR2 SDRAM Specification (EAI/JESD79-2B)
http://www.jedec.org/download/search/JESD79-2B.pdf
11. Boundary Scan Test Specification (IEEE-1149.1)
12. AC Coupled Net Test Specification (IEEE-1149.6)
13. I2C Bus Specification (9398 393 40011), Version 2.1, dated January, 2000
http://www.semiconductors.philips.com/acrobat_download/literature/9398/39340011.pdf
14. Flip Chip BGA Users Guide (SPRU811)
15. Emulation and Trace Headers Technical Reference Manual (SPRU655)
16. JEDEC 2.5 V ± 0.2 V (Normal Range), and 1.8 V to 2.7 V (Wide Range) Power Supply Voltage and
Interface Standard for Nonterminated Digital Integrated Circuit Specification (EAI/JESD8-5), dated
October 1995
http://www.jedec.org/download/search/JESD8-5.pdf
17. JEDEC Power Supply Voltage and Interface Standard Specification (EAI/JESD8-7), dated February
1997
http://www.jedec.org/download/search/JESD8-7.pdf
18. TMS320TCI6487/88 DDR2 Implementation Guidelines (SPRAAG6)
19. TMS320TCI6487/88 Communications Infrastructure Digital Signal Processor data manual (SPRS358)
20. TMS320C6472/TMS320TCI648x DSP Serial RapidIO User's Guide (SPRUE13)
21. TMS320TCI6487/88 SERDES Implementation Guidelines (SPRAAG7)
22. TMS320C6472/TMS320TCI648x DSP DDR2 Memory Controller User's Guide (SPRU894)
23. TMS320TCI648x DSP Ethernet Media Access Controller (EMAC)/Management Data Input/Output
(MDIO) User's Guide (SPRUE12)
24. TMS320C6472/TMS320TCI648x DSP Inter-Integrated Circuit (I2C) Module User's Guide (SPRUE11)
25. TMS320C6472/TMS320TCI648x DSP General-Purpose Input/Output (GPIO) User's Guide
(SPRU725)
26. TMS320TCI648x Multichannel Buffered Serial Port (McBSP) User's Guide (SPRU803)
27. TMS320C6472/TMS320TCI648x DSP 64-Bit Timer User's Guide (SPRU818)
28. Using IBIS Modes for Timing Analysis (SPRA839)
29. TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide (SPRU732)
30. TMS320C6472/TMS320TCI648x DSP Software-Programmable Phase-Locked Loop (PLL) Controller
User's Guide (SPRU806)
31. TMS320TCI6487/88 DSP Antenna Interface User's Guide (SPRUEF4)
32. TMS320TCI6487/88 DSP Frame Synchronization Module User's Guide (SPRUEF5)
33. TMS320TCI64x Bootloader User's Guide (SPRUEA7)
34. Filtering Techniques: Isolating Analog and Digital Power Supplies in TI's PLL-Based CDC Devices
(SCAA048)
35. PTH08T240F 10-A, 4.5-V to 14-V Input, Non-Isolated Power Module for 3-GHz DSP Systems
(SLTS277)
36. CDCx706/x906 Termination and Signal Integrity Guidelines (SCAA080)
40
TMS320TCI6487/88 Hardware Design Guide
SPRAAG5E – December 2006 – Revised July 2010
Copyright © 2006–2010, Texas Instruments Incorporated
References
www.ti.com
37. TMS320TCI6487/88 Capacitor Selection Guide - Using the PTH08T240F Power Module (SPRAAM9)
38. Voltage Translation Between 3.3-V, 2.5-V, 1.8-V, and 1.5-V Logic Standards With the TI
AVCA164245 and AVCB164245 Dual-Supply Bus-Translating Transceivers Application Report
(SCEA030)
39. Selecting the Right Level-Translation Solution Application Report (SCEA035)
40. PCA9306 Dual Bidirectional I2C Bus and SMBus Voltage-Level Translator Data Sheet (SCPS113)
41. TMS320DM644x Thermal Considerations (SPRAAE4)
42. AC-Coupling Between Differential LVPECL, LVDS, HSTL, and CML (SCAA059)
43. DC-Coupling Between Differential LVPECL, LVDS, HSTL, and CM (SCAA062)
44. SN65LVDS108 8-Port LVDS Repeater Data Sheet (SLLS399)
45. CDCLVP110 Low-Voltage 1:10 LVPECL/HSTL With Selectable Input Clock Driver Data Sheet
(SCAS683)
46. TMS320TCI6487/88 Power Consumption Summary application report (SPRAAS3)
SPRAAG5E – December 2006 – Revised July 2010
TMS320TCI6487/88 Hardware Design Guide
Copyright © 2006–2010, Texas Instruments Incorporated
41
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not
responsible or liable for any such statements.
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in
such safety-critical applications.
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, TI will not be responsible for any failure to meet such requirements.
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:
Products
Applications
Amplifiers
amplifier.ti.com
Audio
www.ti.com/audio
Data Converters
dataconverter.ti.com
Automotive
www.ti.com/automotive
DLP® Products
www.dlp.com
Communications and
Telecom
www.ti.com/communications
DSP
dsp.ti.com
Computers and
Peripherals
www.ti.com/computers
Clocks and Timers
www.ti.com/clocks
Consumer Electronics
www.ti.com/consumer-apps
Interface
interface.ti.com
Energy
www.ti.com/energy
Logic
logic.ti.com
Industrial
www.ti.com/industrial
Power Mgmt
power.ti.com
Medical
www.ti.com/medical
Microcontrollers
microcontroller.ti.com
Security
www.ti.com/security
RFID
www.ti-rfid.com
Space, Avionics &
Defense
www.ti.com/space-avionics-defense
RF/IF and ZigBee® Solutions www.ti.com/lprf
Video and Imaging
www.ti.com/video
Wireless
www.ti.com/wireless-apps
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2010, Texas Instruments Incorporated
Was this manual useful for you? yes no
Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Related manuals

Download PDF

advertising