Texas Instruments | TMS320C62x/67x Power Supply Solutions for 1-2 DSPs Using the TL5001A and TPS7133 (Rev. A) | Application notes | Texas Instruments TMS320C62x/67x Power Supply Solutions for 1-2 DSPs Using the TL5001A and TPS7133 (Rev. A) Application notes

Texas Instruments TMS320C62x/67x Power Supply Solutions for 1-2 DSPs Using the TL5001A and TPS7133 (Rev. A) Application notes
TMS320C62x/67x Power
Supply Solutions for 1-2
DSPs: Using the TL5001A
and TPS7133
Application
Report
June 1999
Mixed Signal Products
SLVA066A
IMPORTANT NOTICE
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue
any product or service without notice, and advise customers to obtain the latest version of relevant information
to verify, before placing orders, that information being relied on is current and complete. All products are sold
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those
pertaining to warranty, patent infringement, and limitation of liability.
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily
performed, except those mandated by government requirements.
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO
BE FULLY AT THE CUSTOMER’S RISK.
In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards must be provided by the customer to minimize inherent or procedural hazards.
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other
intellectual property right of TI covering or relating to any combination, machine, or process in which such
semiconductor products or services might be or are used. TI’s publication of information regarding any third
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.
Copyright  1999, Texas Instruments Incorporated
Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2 Circuit Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3 Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.1 Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.2 Electrical Characteristics Over Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
4 Bill of Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
5 Test Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
6 Board Layouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
8 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
List of Figures
1 Circuit Diagram for 1.8 V Core/3.3 V I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2 Efficiency of 1.8 V Output With 3.3 V/0 A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3 Efficiency of 2.5 V Output With 3.3 V/0 A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4 Efficiency of 3.3 V Output With 1.8 V or 2.5 V/0 A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
5 Efficiency of 1.8 V/3.3 V at Same Output Current Increasing Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
6 Efficiency of 2.5 V/3.3 V at Same Output Current Increasing Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
7 Load Regulation on 3.3 V Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
8 Load Regulation of 1.8 V Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
9 Load Regulation of 2.5 V Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
10 1.8 V/3.3 V Output Voltage Start-Up Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
11 2.5 V/3.3 V Output Voltage Start-Up Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
12 Board Layout (Top Side) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
13 Board Layout (Bottom Side) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
14 Board Assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
List of Tables
1
2
3
4
Summary of the Voltage Supply and Consumption Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Power Supply Products for TMS320C6000 DSPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Bill of Materials for 1.8 V Core/3.3 V I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
TMS320C62x/67x Power Supply Solutions for 1–2 DSPs: Using the TL5001A and TPS7133
1
2
2
6
iii
iv
SLVA066A
TMS320C62x/67x Power Supply Solutions for 1–2 DSPs: Using
the TL5001A and TPS7133
Feng Lin and Everett Rogers
ABSTRACT
This application report describes a low-cost power solution for Texas Instruments’
TMS320C6000 DSP applications using the TL5001 PWM controller and the TPS7133 low
drop-out voltage regulator. The reference design included in this report uses the
TL5001AEVM-122 (SLVP122) evaluation module (EVM), which is available for customer
testing and evaluation.
1 Introduction
The TMS320C6000 series of digital signal processors (DSPs) is Texas
Instrument’s highest performance DSP, ranging in operating frequency from
100 MHz to 250 MHz with an execution speed of up to 2000 MIPS. In order to
maintain high performance and low power consumption a separate core and I/O
supply must be supplied to the ’C6000. For the current generation of ’C6000
DSPs, the I/O supply is 3.3 V. The core supply requirement depends on the
specific DSP, and for the current generation of ’C6000 devices is either 2.5 V or
1.8 V. Table 1 summarizes the voltage supply and consumption requirements for
the current ’C6000 devices. For the most current and detailed information on the
power requirements of the TMS320C6000 series of DSPs, refer to the application
note entitled TMS320C6000 Power Consumption Summary.
Table 1. Summary of the Voltage Supply and Consumption Requirements
DEVICE
MAX
FREQUENCY
CORE
VOLTAGE
’C6201
200 MHz
2.5 V
’C6201B
200 MHz
’C6202
250 MHz
’C6211
CURRENT
REQUIRED
I/O
VOLTAGE
CURRENT
REQUIRED
TYPICAL I/O
SYSTEM CURRENT
~0 to 2.5 A
3.3 V
~0 to 130 mA
~430 mA
1.8 V
~0 to 800 mA
3.3 V
~0 to 130 mA
~430 mA
1.8 V
~0 to 1.3 A
3.3 V
~0 to 160 mA
~460 mA
150 MHz
1.8 V
~0 to 800 mA
3.3 V
~0 to 130 mA
~430 mA
’C6701
167 MHz
1.8 V
~0 to 800 mA
3.3 V
~0 to 160 mA
~460 mA
’C6711
150 MHz
1.8 V
~0 to 700 mA
3.3 V
~0 to 130 mA
~430 mA
In single-DSP applications, the power requirement is usually higher to cover the
whole application. Another important note is that the start-up sequencing should
be considered for TMS320C6000 DSPs. The specification states that both core
and I/O supplies should be brought up simultaneously, but, if possible, the core
should be brought up first. This specification prevents unknown values from being
driven on the I/O pins due to the core not being fully powered up. Therefore, the
design presented here assures that the core powers up before the I/O supply. The
cost and the component count are also important for DSP users.
1
Introduction
In systems including more than one DSP, the total power for the DSPs must be
supplied in addition to the power required for the rest of the system. This
increased power can exceed the current ratings for the design described in this
application report. TI provides other solutions to cover higher output power.
Table 2 shows available power supply products for a given output current
requirement. Appropriate SVS (Supply Voltage Supervisors) products are shown
in the table combined with LDO and SVS products from TI. The latest version of
this table can be found at the URL http://www.ti.com/sc/docs/msp/c6000.htm.
Table 2. Power Supply Products for TMS320C6000 DSPs
DSP
S
SUPPLY
VOLTAGE
DSP FAMILY
TMS320C6201
TMS320C6201B
TMS320C6202
TMS320C6211
TMS320C6701
DSP
SUPPLY
CURRENT
(TYPICAL)
2.5 V core
2.5 A @ 200 MHZ
3.3 V I/O
150 mA @ 200 MHz
1.8 V core
830 mA @ 200 MHz
3.3 V I/O
130 mA @ 200 MHz
1.8 V core
1.4 A @ 250 MHZ
3.3 V I/O
160 mA @ 250 MHz
1.8 V core
830 mA @ 150 MHz
3.3 V I/O
130 mA @ 150 MHz
1.8 V core
830 mA @ 167 MHz
3.3 V I/O
160 mA @ 167 MHz
SUPPLY CURRENT
SVS
TPS3305-25
TPS3305 18
TPS3305-18
TPS3305 18
TPS3305-18
TPS3305-18
TPS3305 18
TPS3305-18
SYSTEM INCLUDING ONE OR MORE DSPs
POWERING
DSP ONLY
<250 mA
250–500 mA
LDO
LDO
LDO+SVS
TPS7233
TPS7133
TPS7333
TL5001A
TPS7133
TL5001A
TPS7133
TPS7233
TPS7133
TPS7333
TL5001A
TPS7133
TPS7233
TPS7133
TPS7333
TL5001A
TPS7233
TPS7233
TPS7133
TPS7333
TL5001A
TPS7133
TPS7233
TPS7133
TPS7333
500 mA–3 A
3A
SMPS
SMPS
TL5001A
TPS5625
TL5001A
TPS5633
TL5001A
TPS5618
TL5001A
TPS5633
TL5001A
TPS5618
TL5001A
TPS5633
TL5001A
TPS5618
TL5001A
TPS5633
TL5001A
TPS5618
TL5001A
TPS5633
The design in this application report fully meets all the above requirements by
using a low cost switching power supply using the TL5001A PWM controller and
TPS7133 low dropout voltage regulator from Texas Instruments. The TL5001A
PWM controlled power supply is implemented to offer 1.8 V at 3 A for core power,
which is more than adequate for TI’s current family of ’C6000 DSPs. For other
’C6000 DSP applications requiring 2.5 V for core power, the design is also
capable of being configured for an output of 2.5 V at 3 A. The single output
reference design using TL5001A (see references) is used for this application.
The TPS7133 low dropout voltage regulator is used to offer 3.3 V at 0.50 A for
I/O power. The total component count is minimized to approximately 36, including
board and connectors. The TL5001A offers a 3% voltage reference tolerance.
The input and the logic voltage for both outputs are 5 V.
The design shown in this application report is a reference design, and evaluation
module (EVM), TL5001AEVM-122 (SLVP122), is available for customer testing
and evaluation. The intent is to allow a customer to fully evaluate the given design
using the plug-in EVM supply shown here. For subsequent customer board
revisions, the EVM design can be copied onto the users’ PCB to shorten design
cycle time, component count, and board cost.
Table 3 summarizes the outputs of this design.
Table 3. Outputs
INPUT VOLTAGE
VI = 4.5 ~ 5.5 V
OUTPUT VOLTAGE
Vout1 = 1.8 Vor 2.5 V
Vout2 = 3.3 V
OUTPUT CURRENT
Iout1 = 3 A
Iout2 = 0.5 A
The design is also ready for the other output voltages. For example, output 1 can
be 1.5 V or 1.3 V.
2
SLVA066A
Circuit Diagram
2 Circuit Diagram
Figure 1 shows the circuit diagram for supplying a core voltage of 1.8 V and an
I/O voltage of 3.3 V.
4
3
2
1
C14
0.1 µ F
C16
0.1 µ F
5
OUT
IN
6
OUT 7
IN
EN SENFB
8
GND
PG
C15
10 µ F
U3
TPS7133CD
R10
51 kΩ
R11
1Ω
R12
4.7 Ω
P1
L1
0.1 µ H
L2
10 µ H
Q1
IRF7404
+
C7
100 µ F
D1
R2
4.7 Ω
R6
4.7 Ω
C9
10 µ F C12
0.1 µ F
R7
1 kΩ
C6
1000 pF
R9
300 Ω
C13
0.022 µ F
3
REG
4
TPS2817DBV
U1
5
C2
0.1 µ F
MBRS340T3
+
C1
100 µ F
2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
1
3.3 VO
3.3 V SENSE
GND
1.8 V SENSE
VI
4.5 –5.5 V VI
VI
GND
GND
GND
GND
GND
1.8 VO
1.8 VO
1.8 VO
C3
0.1 µ F
U2
2 TL5001ACD
VCC
SLVP122
1.8 V, 3 A
3.3 V, 500 mA
DTC
R1
1 kΩ
C4
0.1 µ F
COMP
1
5
OUT
FB
SCP
RT
6
C8
1500 pF
3
R4
C11
620Ω 0.056 µ F
4
7
GND
C5
0.1 µ F
8
R3
13.7 kΩ
C10
0.01 µ F
R5
27.4 kΩ
R8
1.24 kΩ
Frequency = 400 kHz
Figure 1. Circuit Diagram for 1.8 V Core/3.3 V I/O
The TL5001A PWM controller provides a cost-effective solution for supplying
core power to a high performance DSP such as the TMS320C6201. This
controller satisfies all requirements for powering this DSP, such as low cost, low
parts count, good transient response, and excellent output voltage accuracy.
TMS320C62x/67x Power Supply Solutions for 1–2 DSPs: Using the TL5001A and TPS7133
3
Circuit Diagram
The TPS7133 is a nominal 5 V input to 3.3 V low dropout voltage regulator also
designed by Texas Instruments. A 1 Ω resistor (R11) is in series with a 10 µF
output capacitor (C15) to achieve the output voltage regulation stability. A resistor
(R10) and capacitor (C14) are connected to the enable pin to get the correct
start-up sequence.
Start-up sequencing is required by the TMS320C6000. The specifications state
that to avoid potential I/O contention on a system level, the core and I/O supplies
should come up simultaneously, or the core first, followed by the I/O supply. R10
and C14 in the circuit delay the 3.3V enough to assure the sequence. As seen
in Figure 9 and Figure 10, this design satisfies that requirement. It can be seen
from the start-up waveforms that the 1.8-V or 2.5-V output reaches the nominal
voltage first, followed by the 3.3 V output.
Reset of both regulators due to fault conditions is accomplished automatically
when the condition is removed.
These two supplies should be close to the DSP to minimize the trace resistance
and inductance and the ground loop current between the two output grounds.
Ground loop current can generate radiated EMI noise that can adversely affect
any circuitry within the loop. Make the ground connection right on the DSP to
minimize the problem.
4
SLVA066A
Operating Conditions
3 Operating Conditions
The recommended operating conditions and electrical characteristics for the
design circuit are described in 3.1 and 3.2.
3.1
Recommended Operating Conditions
VI
Operating ambient temperature, TA
3.2
MIN
TYP
MAX
4.5
5
5.5
V
85
°C
0
UNIT
Electrical Characteristics Over Recommended Operating Conditions
PARAMETER
TEST CONDITIONS
MIN
Output voltage 1 setpoint tolerance, (1.8 V or 2.5 V)
Over all conditions
–1.5%
Output voltage 2 setpoint tolerance, (3.3 V)
Over all conditions
–1.5%
Load regulation of 1.8 V or 2.5 V
Over all conditions
Load regulation of 3.3 V
Over all conditions
Output current 1 (1.8 V or 2.5 V)
TA = 25°C
TA = 25°C
Output current 2 (3.3 V)
Turnon input voltage
Under voltage lockout
Over current 1
Over current 2
Short circuit current 1†
Short circuit current 2†
1.6%
0.6%
2.1%
TA = 25°C,
1.8 V/3.3 V
71%
(full load)
TA = 25°C,
2.5 V/3.3 V
76%
(full load)
TA = 25°C,
TA = 25°C,
TA = 25°C,
TA = 25°C,
TA = 25°C,
3
A
0.5
A
400
4.30
50% load
UNIT
1.5%
0.01%
0
TA = 25°C
TA = 25°C
MAX
1.5%
0
Efficiency
Switching frequency of 1.8 or 2.5 V output
TYP
4.30
kHz
4.49
V
4.48
V
VI = 5 V
VI = 5 V
3.25
A
1.2
A
VI = 5 V
VI = 5 V
0
A
0
A
† Under short circuit condition, the outputs are turned off.
TMS320C62x/67x Power Supply Solutions for 1–2 DSPs: Using the TL5001A and TPS7133
5
Bill of Materials
4 Bill of Materials
Table 4 lists the materials required to construct the design.
Table 4. Bill of Materials for 1.8 V Core/3.3 V I/O
REF.
DESCRIPTION
SIZE
PART NUMBER
MFR
C1
Capacitor, POSCAP, 100 µF, 10 V, 20%
D case
10TPB100M
Sanyo
C2
Capacitor, Ceramic, 0.1µF, 16 V, X7R, 20%
1206
GRM42–6X7R104M016A
muRata
C3
Capacitor, Ceramic, 0.1 µF, 16 V, X7R, 20%
1206
GRM42–6X7R104M016A
muRata
C4
Capacitor, Ceramic, 0.1 µF, 16 V, X7R, 20%
1206
GRM42–6X7R104M016A
muRata
C5
Capacitor, Ceramic, 0.1 µF, 16 V, X7R, 20%
1206
GRM42–6X75104M016A
muRata
C6
Capacitor, Ceramic, 1000 pF, 50 V, X7R, 20%
603
GRM39X7R104M050A
muRata
C7
Capacitor, POSCAP, 100 µF, 10 V, X7R, 20%
D case
10TPB100M
Sanyo
C8
Capacitor, Ceramic, 1500 pF, 50 V, X7R, 10%
603
GRM39X7R152K050A
muRata
C9
Capacitor, Ceramic, 10 µF, 16 V, Y5V,+80%–20%
1210
GRM235Y5V106Z016A
muRata
C10
Capacitor, Ceramic, 0.01 µF, 50 V, X7R, 20%
1206
GRM42–6X7R103M050A
muRata
C11
Capacitor, Ceramic, 0.056 µF, 50 V, X7R, 10%
805
GRM40X7R103M050A
muRata
C12
Capacitor, Ceramic, 0.1 µF, 16 V, X7R, 20%
1206
GRM42–6X7R104M016A
muRata
C13
Capacitor, Ceramic, 0.022 µF, 50 V, X7R, 10%
805
GRM40X7R223K050A
muRata
C14
Capacitor, Ceramic, 0.1 µF, 16 V, X7R, 20%
1206
GRM42–6X7R104M016A
muRata
C15
Capacitor, Ceramic, 10 µF, 16 V, Y5V, +80%–20%
1210
GRM235Y5V106Z016A
muRata
C16
Capacitor, Ceramic, 0.1 µF, 16 V, X7R, 20%
1206
GRM42–6X7R104M016A
muRata
D1
Diode, Schottky, 3 A, 40 V
SMC
MBRS340T3
Mot
L1
Inductor, SM, Shielded, 0.1 µH, 2.13A, 25 mΩ
1812
S1008–101K
Delevan
L2
Inductor, 10 µH, 3.9 A, 0.025 Ω
0.51 × 0.37
DO3316P–103
Coilcraft
P1
Header, Right Angle, 15-pin, 0.1 ctrs, 0.3” pins
0.1
PTC36SBBN
Sullins
Q1
MOSFET, P-Ch, 20 V, 0.040 Ω
SO–8
IRF7404
IR
R1
Resistor, SMD, MF, 1 kΩ, 1/16 W, 5%
603
R2
Resistor, SMD, MF, 4.7 Ω, 1/16 W, 5%
603
R3
Resistor, SMD, MF, 13.7 kΩ, 1/16 W, 1%
603
R4
Resistor, SMD, MF, 620 Ω, 1/16 W, 5%
603
R5
Resistor, SMD, MF, 27.4 kΩ, 1/16 W, 1%
603
R6
Resistor, SMD, MF, 4.7 Ω, 1/16 W, 5%
603
R7
R8†
Resistor, SMD, MF, 1 kΩ, 1/16 W, 1%
603
Resistor, SMD, MF, 1.24 kΩ, 1/16 W, 1%
603
R9
Resistor, SMD, MF, 300 Ω, 1/16 W, 5%
603
R10
Resistor, SMD, MF, 51 kΩ, 1/16 W, 5%
603
R11
Resistor, SMD, MF, 1 Ω, 1/16 W, 5%
603
R12
Resistor, SMD, MF, 4.7 Ω, 1/16 W, 5%
603
U1
Driver, high-speed, single channel, 2A
SOT25
TPS2817DBV
TI
U2
PWM controller
SO-8
TL5001AD
TI
D case
TPS7133CD
TI
U3
Low dropout voltage regulator
† The value of R8 for the 2.5 V core output is 665 Ω.
6
SLVA066A
Test Results
5 Test Results
EFFICIENCY OF 1.8 V OUTPUT
82
VI = 5 V
IO (3.3 V) = 0 A
80
Efficiency – %
78
76
74
72
70
68
0.5
1
1.5
2
IO – Output – A
2.5
3
Figure 2. Efficiency of 1.8 V Output With 3.3 V/0 A
EFFICIENCY OF 2.5 V OUTPUT
86
VI = 5 V
IO (3.3 V) = 0 A
84
Efficiency – %
82
80
78
76
74
72
70
0.5
1
1.5
2
2.5
IO – Output Current – A
3
Figure 3. Efficiency of 2.5 V Output With 3.3 V/0 A
TMS320C62x/67x Power Supply Solutions for 1–2 DSPs: Using the TL5001A and TPS7133
7
Test Results
EFFICIENCY OF 3.3 V OUTPUT
66
65
Efficiency – %
64
63
62
61
60
59
VI = 5 V
IO (1.8 V or 2.5 V = 0 A
58
57
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
IO – Output Current – A
Figure 4. Efficiency of 3.3 V Output With 1.8 V or 2.5 V/0 A
EFFICIENCY OF 1.8 V/3.3 V
77
76
Efficiency – %
75
74
73
72
71
70
69
Both Output Currents Increased
With Same % of Full Load
69
10
20
30
40
50
60
70
80
90 100
Percentage of Full Output Current – %
Figure 5. Efficiency of 1.8 V/3.3 V at Same Output Current Increasing Rate
8
SLVA066A
Test Results
EFFICIENCY OF 2.5 V/3.3 V
82
81
Efficiency – %
80
79
78
77
76
75
74
Both Output Currents Increased
With Same % of Full Load
73
10
20
30
40
50
60
70
80
90 100
Persentage of Full Output Current – %
Figure 6. Efficiency of 2.5 V/3.3 V at Same Output Current Increasing Rate
LOAD REGULATION OF 3.3 V OUTPUT
3.295
VI = 5 V
VO – Output Voltage – V
3.29
3.285
3.28
3.275
3.27
3.265
3.26
3.255
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
IO – Output Current – A
Figure 7. Load Regulation on 3.3 V Output
TMS320C62x/67x Power Supply Solutions for 1–2 DSPs: Using the TL5001A and TPS7133
9
Test Results
LOAD REGULATION OF 1.8 V OUTPUT
1.81
VI = 5 V
VO – Output Voltage – V
1.805
1.8
1.795
1.79
1.785
1.78
0.5
1
1.5
2
2.5
IO – Output Current – A
3
Figure 8. Load Regulation of 1.8 V Output
LOAD REGULATION OF 2.5 V OUTPUT
2.52
VI = 5 V
VO – Output Voltage – V
2.51
2.5
2.49
2.48
2.47
0
0.5
1
1.5
2
2.5
IO – Output Current – A
3
Figure 9. Load Regulation of 2.5 V Output
10
SLVA066A
Test Results
3.3 V (1 V/div)
1.8 V (1 V/div)
1 ms/div
Figure 10. 1.8 V/3.3 V Output Voltage Start-Up Waveforms
3.3 V (1 V/div)
2.5 V (1 V/div)
1 ms/div
Figure 11. 2.5 V/3.3 V Output Voltage Start-Up Waveforms
TMS320C62x/67x Power Supply Solutions for 1–2 DSPs: Using the TL5001A and TPS7133
11
Board Layouts
6 Board Layouts
The board size is 2.10 (in) L × 0.875 (in) W × 0.375 (in) H.
Figure 12. Board Layout (Top Side)
Figure 13. Board Layout (Bottom Side)
Figure 14. Board Assembly
12
SLVA066A
Summary
7 Summary
The design in this application report provides a simple, cost-effective solution for
powering high-performance DSPs.
8 References
1. TL5001, TL5001A, TL5001Y Pulse-Width-Modulation Control Circuits, Texas
Instruments, revised 1998, Literature No. SLVS084D.
2. TPS7101Q, TPS7133Q, TPS7148Q, TPS7150Q, TPS7101Y, TPS7133Y,
TPS7148Y, TPS7150Y Low-Dropout Voltage Regulators, Texas Instruments,
revised 1997, Literature No. SLVS092F.
3. SLVP101, SLVP102, and SLVP103 Buck Converter Design Using the
TL5001 User’s Guide, Texas Instruments, 1998, Literature No. SLVU005.
TMS320C62x/67x Power Supply Solutions for 1–2 DSPs: Using the TL5001A and TPS7133
13
14
SLVA066A
Was this manual useful for you? yes no
Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Download PDF

advertising