NXP MC13145 Datasheet

NXP MC13145 Datasheet
Freescale Semiconductor, Inc.Order this document by MC13145/D
MC13145
ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005
Low Power Integrated Receiver
for ISM Band Applications
•
•
•
•
•
•
•
Externally Programmable Mixer linearity: IIP3 = 10(nom.) to 17 dBm
(Mixer1); IIP3 = 10 (nom.) to 17 dBm (Mixer2)
50 W Mixer Input Impedance and Open Collector Output (Mixer 1 and
Mixer 2); 50 W Second LO (LO2) Input Impedance
Low Power 64/65 Dual Modulus Prescalar (MC12053 type)
48
1
FTA SUFFIX
PLASTIC PACKAGE
CASE 932
(LQFP–48)
Split IF for Improved Filtering and Extended RSSI Range
Internal 330 W Terminations for 10.7 MHz Filters
Linear Coilless FM/FSK Demodulator with Externally Programmable
Bandwidth, Center Frequency and Audio level
2.7 to 6.5 V Operation, Low Current Drain (< 27 mA, Typ @ 3.6 V) with
Power Down Mode (<10 mA, Typ)
2.4 GHz RF, 1.0 GHz IF1 and 50 MHz IF2 Bandwidth
ORDERING INFORMATION
Device
Temperature Range
Package
MC13145FTA
TA = –20 to 70°C
LQFP– 48
VCC
VCC
MC
PRSC Out
VEE
RSSI
Det Out
Det Gain
AFT In
AFT Out
Fadj
VEE
PIN CONNECTIONS AND FUNCTIONAL BLOCK DIAGRAM
12
11
10
9
8
7
6
5
4
3
2
1
VEE 13
48 VEE
Demod
47 BWadj
LNA In 14
VEE 15
RF
/64, 65
VEE 16
46 Lim Dec2
S
LNA
Lim
45 Lim Dec1
44 Lim In
LNA Out 17
43 VCC
Mxr1In 19
42 VCC
Lin Adj1 20
41 IF Out
Enable 21
25
26
27
28
29
30
31
32
33
34
35
36
LO2
V EE
IF2+
IF2–
37 VEE
V EE
oscB 24
VCC
38 IF In
Mxr2 In
oscE 23
LinAdj2
39 IF Dec1
IF1–
oscC 22
IF1+
ESD Sensitive —
Handle with Care
40 IF Dec2
IF
V EE
LO
Control
VEE 18
VCC
ARCHIVE INFORMATION
ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005
Freescale Semiconductor, Inc...
•
IF1
 Motorola, Inc. 1999
MOTOROLA RF/IF DEVICE DATA For More Information On This Product,
Go to: www.freescale.com
IF2
This device contains
626 active transistors.
Rev 4
1
ARCHIVE INFORMATION
UHF WIDEBAND
RECEIVER SUBSYSTEM
(LNA, Mixer, VCO, Prescalar,
IF Subsystem,
Coilless Detector)
The MC13145 is a dual conversion integrated RF receiver intended for
ISM band applications. It features a Low Noise Amplifier (LNA), two 50 W
linear Mixers with linearity control, Voltage Controlled Oscillator (VCO),
second LO amplifier, divide by 64/65 dual modulus Prescalar, split IF
Amplifier and Limiter, RSSI output, Coilless FM/FSK Demodulator and
power down control. Together with the transmit chip (MC13146) and the
baseband chip (MC33410 or MC33411A/B), a complete 900 MHz cordless
phone system can be implemented. This device may be used in applications
up to 1.8 GHz.
• Low (<1.8 dB @ 900 MHz) Noise Figure LNA with 14 dB Gain
Freescale Semiconductor,
Inc.
MC13145
OVERALL RECEIVER SPECIFICATIONS
MAXIMUM RATINGS
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ARCHIVED BYRating
FREESCALE SEMICONDUCTOR,
INC. 2005
Symbol
Value
Unit
Power Supply Voltage
VCC(max)
7.0
Vdc
Junction Temperature
TJ(max)
150
°C
Storage Temperature Range
Tstg
– 65 to 150
°C
Maximum Input Signal
Pin
5.0
dBm
NOTES: 1. Maximum Ratings are those values beyond which damage to the device may occur.
Functional operation should be restricted to the limits in the Recommended Operating
Conditions, Electrical Characteristics tables or Pin Descriptions section.
2. Meets Human Body Model (HBM) ≤250 V and Machine Model (MM) ≤25 V. ESD data
available upon request.
Rating
Symbol
Min
Typ
Max
Unit
VCC
VEE
2.7
–
6.5
Vdc
0
0
0
Input Frequency (LNA In, Mxr1 In)
fin
100
–
1800
MHz
Ambient Temperature Range
TA
– 20
–
70
°C
Input Signal Level (with minor performance degradation)
Pin
–
–10
–
dBm
Power Supply Voltage (TA = 25°C)
RECEIVER DC ELECTRICAL CHARACTERISTICS (TA = 25°C; VCC = 3.6 Vdc; No Input Signal,
unless otherwise noted)
Characteristics
Symbol
Min
Typ
Max
Unit
Total Supply Current (Enable = VCC)
Itotal
24
27
34
mA
Power Down Current (Enable = VEE)
Itotal
–
10
50
mA
RECEIVER AC ELECTRICAL CHARACTERISTICS (TA = 25°C; VCC = 3.6 Vdc; RF In = 1.0 GHz; 1st LO Freq = 1070.7 MHz; 2nd
LO Freq = 60 MHz; fmod = 1.0 kHz; fdev = ± 40 kHz; IF filter bandwidth = 280 kHz, unless otherwise noted. See Figure 1 Test Circuit)
Input
Measure
Pin
Pin
Characteristics
Symbol
MIn
Typ
Max
Unit
SINAD @ –110 dBm LNA Input
LNA In
Det Out
SINAD
12
20
–
dB
12 dB SINAD Sensitivity (Apps Circuit with
C–message filter at DetOut)
LNA In
Det Out
SINAD12dB
–
–115
–
dBm
30 dB SINAD Sensitivity (No IF filter distortion within
±40 kHz)
LNA In
Det Out
SINAD30dB
–
–100
–
dBm
SINAD Variation with IF Offset of ±40 kHz (No IF filter
distortion within ±40 kHz)
LNA In
Det Out
–
–
5.0
–
dB
Noise Figure: LNA, 1st Mixer & 2nd Mixer
LNA In
IF Out
NF
–
3.5
5.0
dB
Power Gain: LNA, 1st Mixer & 2nd Mixer
LNA In
IF Out
G
15
19
25
dB
RSSI Dynamic Range
IF In
RSSI
–
–
80
–
RSSI Current
–10 dBm @ IF Input
–20 dBm @ IF Input
–30 dBm @ IF Input
–40 dBm @ IF Input
–50 dBm @ IF Input
–60 dBm @ IF Input
–70 dBm @ IF Input
–80 dBm @ IF Input
–90 dBm @ IF Input
IF In
RSSI
–
ARCHIVE INFORMATION
ARCHIVE INFORMATION
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005
Freescale Semiconductor, Inc...
RECOMMENDED OPERATING CONDITIONS
dB
µA
35
–
–
–
15
–
–
–
–
40
35
30
25
20
15
10
5.0
1.0
55
–
–
–
37
–
–
–
7.0
–
–18
–
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
Input 1.0 dB Compression Point(Measured at IF
output)
2
Pin1dB
dBm
For More Information On This Product, MOTOROLA RF/IF DEVICE DATA
Go to: www.freescale.com
Freescale Semiconductor,
Inc.
MC13145
RECEIVER AC ELECTRICAL CHARACTERISTICS (TA = 25°C; VCC = 3.6 Vdc; RF In = 1.0 GHz; 1st LO Freq = 1070.7 MHz; 2nd
LO Freq = 60 MHz; fmod = 1.0 kHz; fdev = ± 40 kHz; IF filter bandwidth = 280 kHz, unless otherwise noted. See Figure 1 Test Circuit)
Input
Measure
ARCHIVED BY FREESCALE SEMICONDUCTOR,
INC.
2005
Pin
Pin
Characteristics
Symbol
MIn
Typ
Max
Unit
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
W
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ARCHIVE INFORMATION
ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005
Freescale Semiconductor, Inc...
Demodulator Output Swing (50 k || 56 pF Load)
IF In
Det Out
IIP3
–
–8.0
–
dBm
Vout
0.8
1.0
1.2
Vpp
–
100
–
Demodulator Bandwidth (±1.0 dB bandwidth)
Det Out
BW
Prescalar Output Level (10 k //8.0 pF load)
Prescaler 64 Frequency = 16.72968 MHz
Prescaler 65 Frequency = 16.4723 MHz
PRSCout
Vout
kHz
Vpp
0.4
0.4
0.51
0.51
0.6
0.6
MC Current Input (High)
MC
Iih
70
100
130
µA
MC Current Input (Low)
MC
Iil
–130
–100
–70
µA
Input high voltage
Enable
Vih
VCC
– 0.4
–
VCC
V
Input low voltage
Enable
Vil
0
–
0.4
V
Input Current
Enable
Iin
–50
–
50
µA
PRSCout
TPLL
–
10
–
nS
SNR @ –30 dBm Signal Input (<40 kHz
deviation;with C–Message Filter)
–
50
–
dB
Total Harmonic Distortion (<40 kHz deviation;with
C–Message Filter)
–
1.0
–
%
Spurious Response SINAD (RF In: –50 dBm)
–
12
–
dB
ARCHIVE INFORMATION
Input 3rd Order Intercept Point (Measured at IF
output)
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
PLL Setup Time [Note 1]
MC
MOTOROLA RF/IF DEVICE DATA For More Information On This Product,
Go to: www.freescale.com
3
Freescale Semiconductor,
Inc.
MC13145
Figure 1. Test Circuit
ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005
MC
PRSC Out
10 k
7.2 p
10 n
1.0 n
RSSI
2.0 k
51 k
2.0 k
56 p
Det Out
10 k
51 k
100 n 68 k
3
2
15
64/65
LNA
1
48
BWadj
100 k
47
1.0 n
46
S
16
6.8 n
ARCHIVE INFORMATION
4
Fadj
5
AFT Out
6
AFT
7
Det Out
13
1.5 p
14
1.0 n
8
Det Gain
9
RSSI
6.8 p
10
VCC VCC
6.8 n
100 p
11
PRSC Out
LNA In
12
MC
1.0 n
100 n
Lim
45
1.0 n
44
17
18
19
20
1.0 n
EN
21
MC13145
43
VCC
42
41
1.0 n
40
100 n
IF
22
1.0 n
VCC
39
4.7 p
1.0 n
38
23
4.7 p
24
47 p
VCC
25
37
VCC
26
27
28
29
30
31
32
33
34
35
10M7
3.3 nH
*CF2
1.0 p
*CF1
1.0 M
10M7
20
Control
ARCHIVE INFORMATION
ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005
Freescale Semiconductor, Inc...
2.7 k
36
10 n
1.0 M
1.0 n
10 p
1.0 k
RFLO
50
16 p
VCC
1.0 µ
100 n
12 p
T1**
100 n
10
1.0 µ
1.0 n
10 n
1.0 n
RFLO2
IF In
10
1.0 µ
*CF1 & CF2 = 280 kHz, 6.0 dB BW, 10.7 MHz Ceramic Filter
**T1 = Toko Part # 600ENAS–A998EK
4
100 n
T2
TC4
IF Out
For More Information On This Product, MOTOROLA RF/IF DEVICE DATA
Go to: www.freescale.com
Freescale Semiconductor,
Inc.
MC13145
CIRCUIT DESCRIPTION
General
contributing to the RSSI. This section has internal DC
FM receiver incorporating a split IF. This device is designated
for use as the receiver in analog and digital FM systems such
as 900 Mhz ISM Band Cordless phones and wideband data
links with data rates up to 150kbps. It contains a 1st and 2nd
mixer , 1st and 2nd local oscillator, Received Signal Strength
Indicator (RSSI), IF amplifier, limiting IF, a unique coilless
quadrature detector, and a device enable function.
symmetry and stability. The total gain of the IF amplifier block
is approximately 40 dB up to 40MHz.
The fixed internal input impedance is 330 Ω. When using
ceramic filters requiring source and load impedances of
330 Ω, no external matching is necessary. Overall RSSI
linearity is dependent on having total midband attenuation of
10 dB (4.0 dB insertion loss plus 6.0 dB impedance matching
loss) for the filter. The output of the IF amplifier is buffered
and the impedance is 330 Ω.
1st and 2nd Mixer
Each mixer is a double–balanced class AB four quadrant
multiplier which may be externally biased for high mixer
dynamic range. Mixer input third order intercept point of up to
17 dBm is achieved with only 7.0 mA of additional supply
current. The 1st mixer has a single–ended input at 50 Ω and
operates at 1.0 GHz with –3.0 dB of power gain at
approximately 100 mVrms LO drive level. The mixers have
open collector differential outputs to provide excellent mixer
dynamic range and linearity.
1st Local Oscillator
The 1st LO has an on–chip transistor which operates with
coaxial transmssion line and LC resonant elements up to
1.8 GHz. A VCO output is available for multi–frequency
operation under PLL synthesizer control.
RSSI
The received signal strength indicator (RSSI) output is a
current proportional to the log of the received signal
amplitude. The RSSI current output (Pin 7) is derived by
summing the currents from the IF and limiting amplifier
stages. An increase in RSSI dynamic range, particularly at
higher input signal levels is achieved. The RSSI circuit is
designed to provide typically 80 dB of dynamic range with
temperature compensation.
Linearity of the RSSI is optimized by using external
ceramic bandpass filters which have an insertion loss of
4.0 dB and 330 Ω source and load impedance.
Coilless Quadrature Detector
The coilless detector is a unique design which eliminates
the conventional tunable quadrature coil in FM receiver
systems. The frequency detector implements a phase locked
loop with a fully integrated on chip relaxation oscillator which
is current controlled and externally adjusted, a bandwidth
adjust, and an automatic frequency tuning circuit. The loop
filter is external to the chip allowing the user to set the loop
dynamics. Two outputs are used: one to deliver the audio
signal (detector output) and the other to filter and tune the
detector (AFT).
Figure 2. 2nd Mixer NF & Gain
versus LO Power
25
–2.0
20
–4.0
–6.0
15
GAIN
Low Noise Amplifier (LNA)
The LNA is a cascoded common emitter amplifier
configuration. Under very large RF input signals, the DC
base current of the common emitter and cascode transistors
can become very significant. To maintain linear operation of
the LNA, adequate dc current source is needed to establish
the 2Vbe reference at the base of the RF cascoded transistor
and to provide the base voltage on the common emitter
transistor. A sensing circuit, together with a current mirror
guarantees that there is always sufficient dc base current
available for the cascode transistor under all power levels.
Limiter
The limiter section is similar to the IF amplifier section
except that five stages are used with the middle three
contributing to the RSSI. The fixed internal input impedance
is 330 Ω. The total gain of the limiting amplifier section is
approximately 84 dB. This IF limiting amplifier section
internally drives the coilless quadrature detector section.
NOISE FIGURE (dB)
ARCHIVE INFORMATION
ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005
Freescale Semiconductor, Inc...
Current Regulation/Enable
The MC13145 is designed for battery powered portable
applications. Supply current is typically 27 mA at 3.6 Vdc.
Temperature compensating, voltage independent current
regulators are controlled by the Enable Pin where ”high”
powers up and ”low” powers down the entire circuit.
NF
–8.0
10
Gain
VCC = 3.6 Vdc
TA = 25°C
PRF = –25 dBm
Lim Adj Current = 0
5.0
0
–14
ARCHIVE INFORMATION
feedback
ARCHIVED
BYisFREESCALE
SEMICONDUCTOR,
2005 and external input decoupling for improved
The MC13145
a low power dual
conversion wideband INC.
–9.0
–4.0
–1.0
6.0
–10
–12
11
LO POWER (dBm)
Evaluation PCB
The evaluation PCB is a versatile board which allows the
MC13145 to be configured as a dual–conversion receiver, or
to characterize individual operating parameters.
The general purpose schematic and associated parts list
for a typical application are given in Figure 15. Please refer to
AN1687/D and AN1691/D for additional details and
applications for the device.
IF Amplifier
The first IF amplifier section is composed of three
differential stages with the second and third stages
MOTOROLA RF/IF DEVICE DATA For More Information On This Product,
Go to: www.freescale.com
5
Freescale Semiconductor, Inc.
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
MC13145
PIN FUNCTION DESCRIPTION
Symbol/Type
Description
Fadj
1, 48
VEE
3
AFT Out
ARCHIVE INFORMATION
2
ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005
Freescale Semiconductor, Inc...
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Frequency Adjust
The free running frequency of the detector
oscillator is defined by the combination of an
on–chip capacitor and an external resistor, Radj
from frequency adjust pin to ground.
VEE, Negative Supply
These pins are VEE supply for the coilless detector
circuit.
AFT Out
The AFT is low pass filtered with a corner frequency
below the audio bandwidth allowing the error to be
added to the center frequency adjust signal at Fadj,
Pin 2. The low frequency high pass corner is set by
the external capacitor, Ct from AFT out (Pin 3) to
AFT in (Pin 4) and external resistor, Rt from AFT
out to Fadj (Pin 2).
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
4
AFT In
5
Det Gain
6
Det Out
Description
COILLESS DETECTOR
Bandwidth Adjust
The deviation bandwidth of the detector response is
determined by the combination of an on–chip
capacitor and an external resistor to ground.
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
AFT In
The AFT in is used to set the buffer transfer
function.
Detector Gain
The AFT buffer is used to set the buffer transfer
function.
Detector Output
Set gain and output level of detector with resistor to
Det Out Pin.
Figure 3. Coilless Detector Internal Circuit
i
Current Amplifier
i
Phase
Detector
ICO
VCC
VCC
IF
4
A*i
A*i
5
AFT In
Vref2
BWadj
2Ib
RI
Ct
Fadj
Vref1
2
Rt
3
AFT Out
47
Rb
6
Det Out
Rf
2I
VEE
48, 1
6
ARCHIVE INFORMATION
Pin
ARCHIVED
BY
FREESCALE
SEMICONDUCTOR, INC. 2005
See Figure 3.
47
BWadj
For More Information On This Product, MOTOROLA RF/IF DEVICE DATA
Go to: www.freescale.com
Freescale Semiconductor, Inc.
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
MC13145
Pin
Symbol/Type
8
VEE
Description
Description
ARCHIVED BY FREESCALE11 SEMICONDUCTOR, INC. 2005
VEE, Negative Supply Voltage
VCC
9
PRSCout
Prescaler Output
The prescaler output provides typically 500 mVpp
drive to the fin pin of a PLL synthesizer. Conjugately
matching the interface will increase the drive
delivered to the PLL input.
9
PRSC Out
1.0 mA
8
VCC
VEE
10
MC
Dual Modulus Control Current Input
This requires a current input of typically 200 µApp.
10
11, 12
VCC
14
LNA In
VCC, Positive Supply
VCC pin is taken to the incoming positive battery or
regulated dc voltage through a low impedance trace
on the PCB. It decoupled to VEE ground at the pin
of the IC.
17
LNA In
The input is the base of the common emitter
transistor. Minimum external matching is required to
optimize the input return loss and gain.
LNAout
15, 16
VEE
13, 15,
& 16
VEE
133
Vref2
VEE
14
Vref1
LNAin
2.0 mA
11,12
VEE, Negative Supply
VEE pin is taken to an ample dc ground plane
through a low impedance path. The path should be
kept as short as possible. A minimum two sided
PCB is recommended so that ground returns can
be easily made through via holes.
VCC
17
LNAout
19
Mxr1In
LNA Out
The output is from the collector of the cascode
transistor amplifier. The output may be conjugately
matched with a shunt L (needed to dc bias the open
collector), and series L and C network.
1st Mixer Input
The mixer input impedance is broadband 50 Ω for
applications up to 2.4 GHz. It easily interfaces with
a RF ceramic filter.
VCC
20
LinAdj1
20
Lin Adj1
19
Mxr1 In
450 µA
1st Mixer Linearity Control
The mixer linearity control circuit accepts
approximately 0 to 300 µA control current to set the
dynamic range of the mixer. An Input Third Order
Intercept Point, IIP3 of 17 dBm may be achieved at
300 µA of control current.
MOTOROLA RF/IF DEVICE DATA For More Information On This Product,
Go to: www.freescale.com
7
ARCHIVE INFORMATION
ARCHIVE INFORMATION
ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005
Freescale Semiconductor, Inc...
MC
Freescale Semiconductor, Inc.
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
MC13145
Pin
Symbol/Type
21
Enable
Description
Description
ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005
21
Enable
Enable the receiver by pulling the pin up to VCC.
10 k
Enable
26
VEE
VEE, Negative Supply
VEE supply for the mixer IF output.
ARCHIVE INFORMATION
ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005
Freescale Semiconductor, Inc...
27
IF1+
IF1++
1st Mixer Outputs
The Mixer is a differential open collector output
configuration which is designed to use over a wide
frequency range. The differential output of the mixer
has back to back diodes across them to limit the
output
out
ut voltage swing and to prevent
revent pulling
ulling of the
VCO. Differential to single–ended circuit
configuration and matching options are shown in
the Test Circuit. Additional mixer gain can be
achieved by matching the outputs for the desired
passband Q.
26
VEE
28
IF1–
288
IF1–
22
On–board VCO Transistor
The transistor has the emitter, base, collector, VCC,
and VEE pins available. Internal biasing which is
compensated for stability over temperature is
provided. It is recommended that the base pin is
pulled up to VCC through an RFC chosen for the
particular oscillator center frequency .
Collector
25
23
Emitter
VCC
24
24
Base
25
VCC
Bas
Base
18,
8 266
VCC, Positive Supply Voltage
A VCC pin is provided for the VCO. The operating
supply voltage range is from 2.7 Vdc to 6.5 Vdc.
VEE
23
Emitter
2.0 mA
18, 26
VEE
500 µA
VEE, Negative Supply Voltage
22
Collector
29
Lin Adj2
31, VCC
29
Lin Adj2
30
Mxr2 In
2nd Mixer Input
The mixer input impedance is broadband 50 Ω.
30
Mxr2 In
31
8
VCC
2nd Mixer Linearity Control
The mixer linearity control circuit accepts
approximately 0 to 400 µA control current to set the
dynamic range of the mixer. An Input Third Order
Intercept Point, IIP3 of 17 dBm may be achieved at
400 µA of control current. IIP3 default with no
external bias is 10 dBm.
450 µ
µA
VCC, Positive Supply
For More Information On This Product, MOTOROLA RF/IF DEVICE DATA
Go to: www.freescale.com
ARCHIVE INFORMATION
27
Freescale Semiconductor, Inc.
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
MC13145
Pin
Symbol/Type
32, 34
VEE
Description
Description
ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005
VEE, Negative Supply Voltage
VCC
LO Out+
(to Mxr2)
LO Out–
33
LO2
2nd Local Oscillator
The 2nd LO input impedance is broadband 50 Ω; it
is driven from an external 50 Ω source. Typical level
is –15 to –10 dBm.
33
LO2
390 µA
32
35
IF2+
35
IF2+
2nd Mixer Outputs
The Mixer is a differential open collector
configuration.
34
VEE
36
IF2–
36
IF2–
See Figure 4.
37
VEE
VEE, Negative Supply Voltage
38
IF In
IF Amplifier Input
IF amplifier input source impedance is 330 Ω.. The
three stage amplifier has 40 dB of gain with 3.0 dB
bandwidth of 40 MHz.
39, 40
IF Dec1,
IF Dec2
IF Decoupling
These pins are decoupled to VCC to provide stable
operation of the limiting IF amplifier.
41
IF Out
42
VCC
VCC, Positive Supply Voltage
7
RSSI
RSSI
The RSSI circuitry in the 2nd & 3rd amplifier stages
outputs a current when the output of the previous
stage enters limiting. The net result is a RSSI
current which represents the logarithm of the IF
input voltage. An external resistor to ground is used
to provide a voltage output.
IF Amplifier Output
IF amplifier output load impedance is 330 Ω.
MOTOROLA RF/IF DEVICE DATA For More Information On This Product,
Go to: www.freescale.com
9
ARCHIVE INFORMATION
ARCHIVE INFORMATION
ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005
Freescale Semiconductor, Inc...
VEE
Freescale Semiconductor,
Inc.
MC13145
Figure 4. IF Amplifier Functional Diagram
ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005
RSSI
39
IF Dec1
Σ
38
IF In
40
IF Dec2
41
ARCHIVE INFORMATION
ARCHIVE INFORMATION
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005
Freescale Semiconductor, Inc...
IF Out
Pin
Symbol/Type
Description
43
VCC
44
Lim In
Limiting Amplifier Input
Limiting amplifier input source impedance is 330 Ω.
This amplifier has 84 dB of gain with 3.0 dB
bandwidth of 40 MHz; this enables the IF and
limiting ampliers chain to hard limit on noise.
45, 46
Lim Dec1,
Lim Dec2
If Decoupling
These pins are decoupled to VCC to provide stable
operation of the 2nd IF limiting amplifier.
7
RSSI
RSSI
The RSSI circuitry in the 2nd, 3rd, & 4th amplifier
stages outputs a current when the output of the
previous stage enters limiting. The net result is a
RSSI current which represents the logarithm of the
IF input voltage. An external resistor to ground is
used to provide a voltage output.
See Figure 5.
Description
VCC, Positive Supply Voltage
Figure 5. Limiter Amplifier Functional Diagram
7
RSSI
45
Lim Dec1
Σ
44
Lim In
46
Lim+
Demod
Lim–
Lim Dec2
10
For More Information On This Product, MOTOROLA RF/IF DEVICE DATA
Go to: www.freescale.com
Freescale Semiconductor,
Inc.
MC13145
Figure 7. 2nd Mixer P1dB
versus LO Drive
Figure 6. 2nd Mixer Gain
versus LO Drive
ARCHIVED
BY FREESCALE SEMICONDUCTOR, INC. 2005
6.0
–6.0
VCC = 3.6 V
TA = 25°C
PRF = –25 dBm
Lin Adj Current = 400 µA
5.0
4.0
–6.8
P1dB (dB)
GAIN (dB)
–6.4
–7.2
3.0
2.0
–18
–16
–14
–12
0
–20
–10
–18
–16
–14
–12
LO DRIVE (dBm)
LO DRIVE (dBm)
Figure 8. 2nd Mixer IP3/P1dB
versus Lin Adj Current
Figure 9. 2nd Mixer Gain
versus Lin Adj Current
18
–10
–6.0
16
VCC = 3.6 V
TA = 25°C
PLO = –15 dBm
PRF = –25 dBm
–6.2
14
IP3
12
VCC = 3.6 V
TA = 25°C
PLO = –15 dBm
Adj Channel = 75 kHz
10
8.0
GAIN (dB)
dBm
ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005
ARCHIVE INFORMATION
–8.0
–20
Freescale Semiconductor, Inc...
VCC = 3.6 V
TA = 25°C
Lin Adj Current = 400 µA
1.0
–6.4
–6.6
6.0
P1dB
4.0
–6.8
2.0
0
0
100
200
300
400
500
–7.0
600
0
100
LIN ADJ CURRENT (µA)
200
300
400
500
600
LIN ADJ CURRENT (µA)
Figure 10. Test Circuit for Figures 6 thru 9.
Lin Adj
Current
RFin
LO2in
5.1 k
29 Lin Adj2
VCC
10 n
30 Mxr2 In
33 LO2
IF2+
35
IF2–
1.0 k
36
T1
IFout
16:1
T1 = Toko 600ENAS–A998EK
MOTOROLA RF/IF DEVICE DATA For More Information On This Product,
Go to: www.freescale.com
11
ARCHIVE INFORMATION
–7.6
Freescale Semiconductor,
Inc.
MC13145
APPLICATION INFORMATION
Input Matching / Components
negative resistance associated with this undesired mode of
mixer to provide image frequency rejection. The filter is
selected based on cost, size and performance tradeoffs.
Typical RF filters have 1.5 to 2.5 dB insertion loss. The
evaluation PC board layout accommodates ceramic RF
filters which are offered by various suppliers.
Interface matching between the LNA, RF filter and the
mixer will be required. The interface matching networks
shown in the evaluation circuit are designed for 50 Ω
interfaces.
small resistor in the range of 27 to 68 ohms has very little
effect on the desired Butler mode of oscillation.
The crystal parallel capacitance, Co, provides a feedback
path that is low enough in reactance at frequencies of 5th
overtones or higher to cause trouble. Co has little effect near
resonance because of the low impedance of the crystal
motional arm (Rm–Lm–Cm). As the tunable inductor which
forms the resonant tank with the tap capacitors is tuned off
the crystal resonant frequency it may be difficult to tell if the
oscillation is under crystal control. Frequency jumps may
occur as the inductor is tuned. In order to eliminate this
behavior an inductor, Lo, is placed in parallel with the crystal.
Lo is chosen to be resonant with the crystal parallel
capacitance, Co, at the desired operation frequency. The
inductor provides a feedback path at frequencies well below
resonance; however, the parallel tank network of the tap
capacitors and tunable inductor prevent oscillation at these
frequencies.
2nd Mixer & Limiting IF Matching / Filtering
A simple LCR network is needed to interface the 2nd mixer
differential outputs to 330 ohm ceramic filters or directly to the
330 ohm IF input. TDK, Toko and Murata offer single 10.7
MHz ceramic filters with various 3.0 dB bandwidths from 110
to 380 kHz. Murata offers a series–parallel resonator pair
(part number KMFC545) with a 3.0 dB bandwidth of ±325
kHz and a maximum insertion loss of 5.0 dB. However, even
the series–parallel ceramic filter pair yields only a maximum
bandpass of 650 kHz. In some data applications a wider band
IF bandpass is necessary.
Local Oscillators – VHF/UHF Applications
The on–chip transistor may be used for HF and VHF local
oscillator with higher order overtone crystals. It is
recommended that a Butler overtone oscillator configuration
is used. The crystal is driven from the emitter and is coupled
to the high impedance base through a capacitive tap
network. Operation at the desired overtone frequency is
ensured by the parallel resonant circuit formed by an inductor
and the tap capacitors and parasitic capacitances of the
on–chip transistor and PC board. A high tolerance, high Q
ceramic or air wound surface mount component may be used
if the other components have tight enough tolerances;
however, a variable inductor provides an adjustment for gain
and frequency of the resonant tank ensuring lock up and
start–up of the crystal oscillator. The overtone crystal is
chosen with ESR of typically 80 ohms and 120 ohms
maximum; if the resistive loss in the crystal is too high the
performance of oscillator may be impacted by lower gain
margins.
A series LC network to ac ground (which is VCC) is
comprised of the inductance of the base lead of the on–chip
transistor and PC board traces and tap capacitors. Parasitic
oscillations often occur in the 200 to 900 MHz range. A small
resistor is placed in series with the base (pin 9) to cancel the
12
Coilless Detector
The coilless detector (see Figure 3) is unique and offers
cost and performance advantages over the conventional
quadrature detector. It consists of a current controlled
oscillator (ICO) and a phase detector. The error current, I is
also amplified to provide an output, and the output is
duplicated and filtered and fed back to the oscillator to
provide automatic fine tuning (AFT).
The oscillator free running frequency, fo is set by Rf and is
calculated by the following equation where C is
approximately 4.0 pF:
fo = 1/(8*Rf*C)
The demodulator bandwidth is set by Rb and is shown in
Figure 14.
The AFT is filtered by Ct and Rt. The low pass pole creates
a high pass pole in the overall demodulator frequency
response at:
A/(2*π*Ct*Rt)
where A, the current gain = 10.
Typical coilless detector output level is:
Vout(peak) = (fpeak dev/fIF)*A*i*Rl
For example, if peak deviation is 25 kHz, i = 250 µA at fIF
= 10.7 MHz, and RI is 50 kΩ; then Vout is 292 mVp or
584 mVpp.
The AFT Out pin is capable of voltage swings from about
300 mV to VCC – 300 mV. At these extreme values, the AFT
circuit can become saturated and very long detector lock–up
times may be observed. It is best, therefore, to limit the AFT
Out swing from about 500 mV to VCC – 500 mV and attempt
to center the AFT Out voltage at VCC/2 for a detector lock
condition.
As an example, for VCC = 2.7 V, the ideal AFT Out voltage
at lock would be 1.35 V, with an available swing of 0.5 V to
2.2 V (1.7 V total). If the AFT tuning range is to be ±500 kHz,
this corresponds to an adjustment current of 1.0 MHz/fIF*i.
From Figure 11, to set fIF at 10.7 MHz, i is approximately
240 µA, and the total adjustment current range is therefor
about 22.4 µA over a 1.7 V total swing, or Rt = 75.9 k. At lock,
For More Information On This Product, MOTOROLA RF/IF DEVICE DATA
Go to: www.freescale.com
ARCHIVE INFORMATION
1st Mixer Output & 2nd Mixer Input Interface Matching
In a wideband system the primary sensitivity of the
receiver backend may be achieved before the last mixer. The
evaluation circuit shows the matching and impedance
transformation network bewtween the 1st mixer open
collector differential outputs and 2nd mixer single ended 50
ohm input. This adjustable shielded transformer and tapped
capacitor transform network does two things: 1) bandpass
limits the 1st IF signal with a loaded Q of approximately 40
and 2) provides adequate second image rejection and a low
cost alternative to a SAW filter.
However, a SAW filter may be selected as a more costly
alternative while providing improved 2nd image rejection and
a fixed tuned 1st IF filter.
ARCHIVE INFORMATION
ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005
Freescale Semiconductor, Inc...
ARCHIVED
BY
FREESCALE
2005 Since the base input impedance is so large a
oscillation.
It is desirable
to use
a RF ceramic SEMICONDUCTOR,
or SAW filter before the INC.
Freescale Semiconductor,
Inc.
MC13145
current equaling (AFT Out – Fadj)/Rt will be flowing into the
Fadj node. This current then is approximately (1.35 V –
0.7 V)/75.9 kΩ or 8.6 µA. The Fadj resistor, Rf, is therefore
equal to 0.7 V/(240 µA + 8.6 µA) or about 2.82 kΩ.
ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005
Figure 12. Fadj Resistor
versus IF Frequency
Figure 11. Fadj Current
versus IF Frequency
500
7.0
450
6.0
300
250
5.0
4.0
3.0
2.0
150
100
5.0
10
15
1.0
5.0
20
15
IF FREQUENCY (MHz)
Figure 13. BWadj Resistor
versus BWadj Current
Figure 14. IF Frequency
versus BWadj Current
900
10.90
800
10.85
IF FREQUENCY (MHz)
700
600
500
400
300
20
10.80
10.75
10.70
10.65
10.60
200
100
1.0
10
IF FREQUENCY (MHz)
2.0
3.0
4.0
5.0
6.0
10.55
1.0
2.0
BWadj CURRENT (µA)
3.0
4.0
5.0
6.0
BWadj CURRENT (µA)
MOTOROLA RF/IF DEVICE DATA For More Information On This Product,
Go to: www.freescale.com
13
ARCHIVE INFORMATION
Fadj RESISTOR (K Ω )
350
200
BWadj RESISTOR (KΩ )
ARCHIVE INFORMATION
ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005
Freescale Semiconductor, Inc...
CURRENT (µ A)
400
Freescale Semiconductor,
Inc.
MC13145
Freq
S11
S11
S21
S21
ARCHIVE INFORMATION
ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005
Freescale Semiconductor, Inc...
(MHz)
Ang SEMICONDUCTOR,
Mag
Ang
ARCHIVED
BYMag
FREESCALE
INC. 2005
14
S12
Mag
S12
Ang
S22
mag
S22
Ang
25
0.84
–3.0
10.8
176
0.00005
–27
1.0
–1.2
50
0.84
–71
10.7
171
0.0004
76
1.0
–3.7
100
0.83
–15
10.3
162
0.0006
61
0.99
–4.9
150
0.81
–22
10.
154
0.0011
91
0.99
–7.3
200
0.78
–28
9.6
147
0.001
60
0.99
–9.7
300
0.73
–41
9.0
132
0.002
42
0.99
–15
400
0.66
–50
7.8
116
0.00070
22
0.95
–19
450
0.64
–54
7.4
111
0.0014
39
0.96
–21
500
0.62
–59
7.0
106
0.0009
69
0.96
–23
750
0.51
–77
5.5
80
0.0013
–51
0.94
–33
800
0.49
–80
5.2
75
0.002
–80
0.93
–36
850
0.47
–81
4.9
71
0.004
–120
0.92
–37
900
0.46
–82
4.6
67
0.0057
–130
0.92
–38
950
0.44
––82
4.3
62
0.008
–142
0.91
–40
1000
0.45
–81
3.9
58
0.014
–162
0.95
–41
1250
0.55
–94
3.5
47
0.029
140
0.099
–50
1500
0.48
–120
3.1
24
0.02
63
0.94
–65
1750
0.43
–126
2.5
6.9
0.0066
79
0.93
–74
2000
0.43
–135
2.1
–9.9
0.0099
129
0.92
–85
2250
0.45
–145
1.8
–27
0.017
133
0.91
–96
2500
0.47
–155
1.5
–43
0.021
132
0.89
–106
2750
0.51
–167
1.2
–60
0.03
130
0.88
–118
3000
0.55
–180
1.0
–78
0.039
120
0.85
–129
For More Information On This Product, MOTOROLA RF/IF DEVICE DATA
Go to: www.freescale.com
ARCHIVE INFORMATION
Table 1. LNA S–Parameters: 3.6 Vdc
MOTOROLA RF/IF DEVICE DATA For More Information On This Product,
Go to: www.freescale.com
L6 RFC
LO2
J11
FRx
RX MC
Rx PD
Det Out
RSSI
Rx EN
C40
C50
IF1
C44
C36
R3
15
D1
C42
C38
Rx MC
Rx EN
C41
C39
VCC
VCC
L7
C3
C48
C13
C12
R8
C33
R12
R6
C35
R11
R10
R9
C34
C2
R7
C16
L1
C47
R13
C46
VCC
10 MC
21 Enable
4 AFT In
3 AFT Out
2 Fadj
47 BWadj
29 Lin Adj2
20 Lin Adj1
33 LO2
30 Mxr2 In
24 oscB
23 oscE
22 oscC
19 Mxr1 In
14 LNA In
PRSC Out 9
C32
C54
FRx
RSSI
R14
C20
L5
L4
RSSI 7
C31
R5
C29
C28
C27
C26
L8
C52
T1
R2
Det Out
C30
C25
C19
L9
C9
C7
C8
C6
Det Out 6
Det Gain 5
Lim In 44
Lim Dec2 46
Lim Dec1 45
IF In 38
IF Out 41
IF Dec2 40
IF Dec1 39
IF2– 36
IF2+ 35
IF1– 28
IF1+ 27
LNA Out 17
C45
ARCHIVE INFORMATION
C43
C37
C15
C14
R1
VCC
CF3
H5X2
1
2
3
4
5
6
7
8
9
10
JP1
C49
Mxr2 In
J10
Rx PD
C51
CF1
C1
L2
C5
CF2
TP2
J2
Gnd
J1
VCC
TP1
oscB
J9
Mxr1 In
J12
LNA In
J3
U1
MC13145
Figure 15. MC13145 Evaluation PCB Schematic
Typical Application
ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005
ARCHIVE INFORMATION
Freescale Semiconductor, Inc...
C23
TP4
IF Out
C21
TP5
C24
C22
VCC
IF In
J13
C17
C53
IF1 Out
TP3 IF2 I/O
JP2
C10
C11
VCC
LNA Out
J5
ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005
C18
J7
IF1 Out
IF1
VCC
Freescale Semiconductor,
Inc.
MC13145
Figure 15.
Freescale Semiconductor,
Inc.
MC13145
Figure 16. Evaluation PCB Component Side
Figure 17. Evaluation PCB Solder Side
ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005
2.25″
2.5″
CF1
2.5″
TDK CF6118702
or TDK CF6118902
CF2,CF3
Toko Type CFSK Series
SK107MX–AE–XXX
C1,C3,C5,C7,C13,C17,C31,
C41,C42,C43,C44,C48,C51
100 p
C2
1.5 p
C6,C12,C21,C23,C26,C27,
C28,C29,C33,C34,C36,C37,
C38,C39,C54
1.0 n
C8,C15,C16,C18,C32,C53
0.01
C9
16 p
C10
10 p
C11
12 p
C14
2.0–4.0 p
C19
36 p
C20
39 p
C22,C24,C25,C30,C35
0.1
C40
10 µ
C45
3.3 p
C46,C47
2.0 p
16
C49
22
C50
1.0
R1,R7,R8,L8,L9,C52,
J5,J7,J9,J10,J12,J13
No Component
D1
MMBV809LT1
L1
6.8 n
L2
5.6 n
L4, L5
2.7 µ
L6
RFC
L7
2.7 n
R2
10
R3
33 k
R5
27 k
R6,R11,R12,R14
51 k
R9
68 k
R10
2.85 k
R13
51 or RFC
T1
Toko A638AN–A099YWN
U1
MC13145FTA
J3,J11
J1,J2
JP1
SMA EF Johnson 142–0701–851
Bananna Johnson Components
108–0902–001
Header, 5x2
Default Units: Ohms, Microfarads, and Microhenries
For More Information On This Product, MOTOROLA RF/IF DEVICE DATA
Go to: www.freescale.com
ARCHIVE INFORMATION
ARCHIVE INFORMATION
ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005
Freescale Semiconductor, Inc...
2.25″
Freescale Semiconductor,
Inc.
MC13145
Figure 18. Evaluation PCB Ground Plane
ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005
ARCHIVE INFORMATION
ARCHIVE INFORMATION
ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005
Freescale Semiconductor, Inc...
2.25″
2.5″
Figure 19. Evaluation PCB Power Plane
2.25″
2.5″
MOTOROLA RF/IF DEVICE DATA For More Information On This Product,
Go to: www.freescale.com
17
Freescale Semiconductor,
Inc.
MC13145
OUTLINE DIMENSIONS
ARCHIVED BY FREESCALE SEMICONDUCTOR,
INC. 2005
FTA SUFFIX
0.200 AB T–U Z
9
DETAIL Y
A
P
A1
48
37
1
36
U
ARCHIVE INFORMATION
B
V
AE
B1
ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005
12
25
13
AE
V1
24
Z
S1
T, U, Z
S
DETAIL Y
4X
0.200 AC T–U Z
0.080 AC
G
AB
AD
M_
AC
TOP & BOTTOM
BASE METAL
ÇÇÇÇ
ÉÉÉ
ÇÇÇÇ
ÉÉÉ
ÇÇÇÇ
N
DIM
A
A1
B
B1
C
D
E
F
G
H
J
K
L
M
N
P
R
S
S1
V
V1
W
AA
MILLIMETERS
MIN
MAX
7.000 BSC
3.500 BSC
7.000 BSC
3.500 BSC
1.400
1.600
0.170
0.270
1.350
1.450
0.170
0.230
0.500 BSC
0.050
0.150
0.090
0.200
0.500
0.700
1_
5_
12 _REF
0.090
0.160
0.250 BSC
0.150
0.250
9.000 BSC
4.500 BSC
9.000 BSC
4.500 BSC
0.200 REF
1.000 REF
R
0.250
Freescale Semiconductor, Inc...
T
NOTES:
1 DIMENSIONING AND TOLERANCING PER ASME
Y14.5M, 1994.
2 CONTROLLING DIMENSION: MILLIMETER.
3 DATUM PLANE AB IS LOCATED AT BOTTOM OF
LEAD AND IS COINCIDENT WITH THE LEAD
WHERE THE LEAD EXITS THE PLASTIC BODY AT
THE BOTTOM OF THE PARTING LINE.
4 DATUMS T, U, AND Z TO BE DETERMINED AT
DATUM PLANE AB.
5 DIMENSIONS S AND V TO BE DETERMINED AT
SEATING PLANE AC.
6 DIMENSIONS A AND B DO NOT INCLUDE MOLD
PROTRUSION. ALLOWABLE PROTRUSION IS
0.250 PER SIDE. DIMENSIONS A AND B DO
INCLUDE MOLD MISMATCH AND ARE
DETERMINED AT DATUM PLANE AB.
7 DIMENSION D DOES NOT INCLUDE DAMBAR
PROTRUSION. DAMBAR PROTRUSION SHALL
NOT CAUSE THE D DIMENSION TO EXCEED
0.350.
8 MINIMUM SOLDER PLATE THICKNESS SHALL BE
0.0076.
9 EXACT SHAPE OF EACH CORNER IS OPTIONAL.
J
C
E
GAUGE PLANE
4X
F
D
0.080
M
AC T–U Z
W
H
L_
SECTION AE–AE
K
DETAIL AD
AA
18
For More Information On This Product, MOTOROLA RF/IF DEVICE DATA
Go to: www.freescale.com
ARCHIVE INFORMATION
PLASTIC PACKAGE
CASE 932–02
(LQFP)
ISSUE E
Freescale Semiconductor,
Inc.
MC13145
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and
specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola
data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”
must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of
others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other
applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury
or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees
arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that
Motorola was negligent regarding the design or manufacture of the part. Motorola and
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal
Opportunity/Affirmative Action Employer.
Mfax is a trademark of Motorola, Inc.
How to reach us:
USA / EUROPE / Locations Not Listed: Motorola Literature Distribution;
P.O. Box 5405, Denver, Colorado 80217. 1–303–675–2140 or 1–800–441–2447
JAPAN: Motorola Japan Ltd.; SPD, Strategic Planning Office, 141,
4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan. 81–3–5487–8488
Customer Focus Center: 1–800–521–6274
Mfax: [email protected] – TOUCHTONE 1–602–244–6609
ASIA / PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Centre,
Motorola Fax Back System
– US & Canada ONLY 1–800–774–1848 2, Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong.
– http://sps.motorola.com/mfax/
852–26668334
HOME PAGE: http://motorola.com/sps/
MOTOROLA RF/IF DEVICE DATA◊ For More Information On This Product,
Go to: www.freescale.com
MC13145/D
19
ARCHIVE INFORMATION
ARCHIVE INFORMATION
ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005
Freescale Semiconductor, Inc...
ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005
Was this manual useful for you? yes no
Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Download PDF

advertisement