NXP MC13145 Datasheet

Freescale Semiconductor, Inc.Order this document by MC13145/D MC13145 ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005 Low Power Integrated Receiver for ISM Band Applications • • • • • • • Externally Programmable Mixer linearity: IIP3 = 10(nom.) to 17 dBm (Mixer1); IIP3 = 10 (nom.) to 17 dBm (Mixer2) 50 W Mixer Input Impedance and Open Collector Output (Mixer 1 and Mixer 2); 50 W Second LO (LO2) Input Impedance Low Power 64/65 Dual Modulus Prescalar (MC12053 type) 48 1 FTA SUFFIX PLASTIC PACKAGE CASE 932 (LQFP–48) Split IF for Improved Filtering and Extended RSSI Range Internal 330 W Terminations for 10.7 MHz Filters Linear Coilless FM/FSK Demodulator with Externally Programmable Bandwidth, Center Frequency and Audio level 2.7 to 6.5 V Operation, Low Current Drain (< 27 mA, Typ @ 3.6 V) with Power Down Mode (<10 mA, Typ) 2.4 GHz RF, 1.0 GHz IF1 and 50 MHz IF2 Bandwidth ORDERING INFORMATION Device Temperature Range Package MC13145FTA TA = –20 to 70°C LQFP– 48 VCC VCC MC PRSC Out VEE RSSI Det Out Det Gain AFT In AFT Out Fadj VEE PIN CONNECTIONS AND FUNCTIONAL BLOCK DIAGRAM 12 11 10 9 8 7 6 5 4 3 2 1 VEE 13 48 VEE Demod 47 BWadj LNA In 14 VEE 15 RF /64, 65 VEE 16 46 Lim Dec2 S LNA Lim 45 Lim Dec1 44 Lim In LNA Out 17 43 VCC Mxr1In 19 42 VCC Lin Adj1 20 41 IF Out Enable 21 25 26 27 28 29 30 31 32 33 34 35 36 LO2 V EE IF2+ IF2– 37 VEE V EE oscB 24 VCC 38 IF In Mxr2 In oscE 23 LinAdj2 39 IF Dec1 IF1– oscC 22 IF1+ ESD Sensitive — Handle with Care 40 IF Dec2 IF V EE LO Control VEE 18 VCC ARCHIVE INFORMATION ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005 Freescale Semiconductor, Inc... • IF1 Motorola, Inc. 1999 MOTOROLA RF/IF DEVICE DATA For More Information On This Product, Go to: www.freescale.com IF2 This device contains 626 active transistors. Rev 4 1 ARCHIVE INFORMATION UHF WIDEBAND RECEIVER SUBSYSTEM (LNA, Mixer, VCO, Prescalar, IF Subsystem, Coilless Detector) The MC13145 is a dual conversion integrated RF receiver intended for ISM band applications. It features a Low Noise Amplifier (LNA), two 50 W linear Mixers with linearity control, Voltage Controlled Oscillator (VCO), second LO amplifier, divide by 64/65 dual modulus Prescalar, split IF Amplifier and Limiter, RSSI output, Coilless FM/FSK Demodulator and power down control. Together with the transmit chip (MC13146) and the baseband chip (MC33410 or MC33411A/B), a complete 900 MHz cordless phone system can be implemented. This device may be used in applications up to 1.8 GHz. • Low (<1.8 dB @ 900 MHz) Noise Figure LNA with 14 dB Gain Freescale Semiconductor, Inc. MC13145 OVERALL RECEIVER SPECIFICATIONS MAXIMUM RATINGS ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ARCHIVED BYRating FREESCALE SEMICONDUCTOR, INC. 2005 Symbol Value Unit Power Supply Voltage VCC(max) 7.0 Vdc Junction Temperature TJ(max) 150 °C Storage Temperature Range Tstg – 65 to 150 °C Maximum Input Signal Pin 5.0 dBm NOTES: 1. Maximum Ratings are those values beyond which damage to the device may occur. Functional operation should be restricted to the limits in the Recommended Operating Conditions, Electrical Characteristics tables or Pin Descriptions section. 2. Meets Human Body Model (HBM) ≤250 V and Machine Model (MM) ≤25 V. ESD data available upon request. Rating Symbol Min Typ Max Unit VCC VEE 2.7 – 6.5 Vdc 0 0 0 Input Frequency (LNA In, Mxr1 In) fin 100 – 1800 MHz Ambient Temperature Range TA – 20 – 70 °C Input Signal Level (with minor performance degradation) Pin – –10 – dBm Power Supply Voltage (TA = 25°C) RECEIVER DC ELECTRICAL CHARACTERISTICS (TA = 25°C; VCC = 3.6 Vdc; No Input Signal, unless otherwise noted) Characteristics Symbol Min Typ Max Unit Total Supply Current (Enable = VCC) Itotal 24 27 34 mA Power Down Current (Enable = VEE) Itotal – 10 50 mA RECEIVER AC ELECTRICAL CHARACTERISTICS (TA = 25°C; VCC = 3.6 Vdc; RF In = 1.0 GHz; 1st LO Freq = 1070.7 MHz; 2nd LO Freq = 60 MHz; fmod = 1.0 kHz; fdev = ± 40 kHz; IF filter bandwidth = 280 kHz, unless otherwise noted. See Figure 1 Test Circuit) Input Measure Pin Pin Characteristics Symbol MIn Typ Max Unit SINAD @ –110 dBm LNA Input LNA In Det Out SINAD 12 20 – dB 12 dB SINAD Sensitivity (Apps Circuit with C–message filter at DetOut) LNA In Det Out SINAD12dB – –115 – dBm 30 dB SINAD Sensitivity (No IF filter distortion within ±40 kHz) LNA In Det Out SINAD30dB – –100 – dBm SINAD Variation with IF Offset of ±40 kHz (No IF filter distortion within ±40 kHz) LNA In Det Out – – 5.0 – dB Noise Figure: LNA, 1st Mixer & 2nd Mixer LNA In IF Out NF – 3.5 5.0 dB Power Gain: LNA, 1st Mixer & 2nd Mixer LNA In IF Out G 15 19 25 dB RSSI Dynamic Range IF In RSSI – – 80 – RSSI Current –10 dBm @ IF Input –20 dBm @ IF Input –30 dBm @ IF Input –40 dBm @ IF Input –50 dBm @ IF Input –60 dBm @ IF Input –70 dBm @ IF Input –80 dBm @ IF Input –90 dBm @ IF Input IF In RSSI – ARCHIVE INFORMATION ARCHIVE INFORMATION ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005 Freescale Semiconductor, Inc... RECOMMENDED OPERATING CONDITIONS dB µA 35 – – – 15 – – – – 40 35 30 25 20 15 10 5.0 1.0 55 – – – 37 – – – 7.0 – –18 – ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ Input 1.0 dB Compression Point(Measured at IF output) 2 Pin1dB dBm For More Information On This Product, MOTOROLA RF/IF DEVICE DATA Go to: www.freescale.com Freescale Semiconductor, Inc. MC13145 RECEIVER AC ELECTRICAL CHARACTERISTICS (TA = 25°C; VCC = 3.6 Vdc; RF In = 1.0 GHz; 1st LO Freq = 1070.7 MHz; 2nd LO Freq = 60 MHz; fmod = 1.0 kHz; fdev = ± 40 kHz; IF filter bandwidth = 280 kHz, unless otherwise noted. See Figure 1 Test Circuit) Input Measure ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005 Pin Pin Characteristics Symbol MIn Typ Max Unit ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ W ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ARCHIVE INFORMATION ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005 Freescale Semiconductor, Inc... Demodulator Output Swing (50 k || 56 pF Load) IF In Det Out IIP3 – –8.0 – dBm Vout 0.8 1.0 1.2 Vpp – 100 – Demodulator Bandwidth (±1.0 dB bandwidth) Det Out BW Prescalar Output Level (10 k //8.0 pF load) Prescaler 64 Frequency = 16.72968 MHz Prescaler 65 Frequency = 16.4723 MHz PRSCout Vout kHz Vpp 0.4 0.4 0.51 0.51 0.6 0.6 MC Current Input (High) MC Iih 70 100 130 µA MC Current Input (Low) MC Iil –130 –100 –70 µA Input high voltage Enable Vih VCC – 0.4 – VCC V Input low voltage Enable Vil 0 – 0.4 V Input Current Enable Iin –50 – 50 µA PRSCout TPLL – 10 – nS SNR @ –30 dBm Signal Input (<40 kHz deviation;with C–Message Filter) – 50 – dB Total Harmonic Distortion (<40 kHz deviation;with C–Message Filter) – 1.0 – % Spurious Response SINAD (RF In: –50 dBm) – 12 – dB ARCHIVE INFORMATION Input 3rd Order Intercept Point (Measured at IF output) ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ PLL Setup Time [Note 1] MC MOTOROLA RF/IF DEVICE DATA For More Information On This Product, Go to: www.freescale.com 3 Freescale Semiconductor, Inc. MC13145 Figure 1. Test Circuit ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005 MC PRSC Out 10 k 7.2 p 10 n 1.0 n RSSI 2.0 k 51 k 2.0 k 56 p Det Out 10 k 51 k 100 n 68 k 3 2 15 64/65 LNA 1 48 BWadj 100 k 47 1.0 n 46 S 16 6.8 n ARCHIVE INFORMATION 4 Fadj 5 AFT Out 6 AFT 7 Det Out 13 1.5 p 14 1.0 n 8 Det Gain 9 RSSI 6.8 p 10 VCC VCC 6.8 n 100 p 11 PRSC Out LNA In 12 MC 1.0 n 100 n Lim 45 1.0 n 44 17 18 19 20 1.0 n EN 21 MC13145 43 VCC 42 41 1.0 n 40 100 n IF 22 1.0 n VCC 39 4.7 p 1.0 n 38 23 4.7 p 24 47 p VCC 25 37 VCC 26 27 28 29 30 31 32 33 34 35 10M7 3.3 nH *CF2 1.0 p *CF1 1.0 M 10M7 20 Control ARCHIVE INFORMATION ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005 Freescale Semiconductor, Inc... 2.7 k 36 10 n 1.0 M 1.0 n 10 p 1.0 k RFLO 50 16 p VCC 1.0 µ 100 n 12 p T1** 100 n 10 1.0 µ 1.0 n 10 n 1.0 n RFLO2 IF In 10 1.0 µ *CF1 & CF2 = 280 kHz, 6.0 dB BW, 10.7 MHz Ceramic Filter **T1 = Toko Part # 600ENAS–A998EK 4 100 n T2 TC4 IF Out For More Information On This Product, MOTOROLA RF/IF DEVICE DATA Go to: www.freescale.com Freescale Semiconductor, Inc. MC13145 CIRCUIT DESCRIPTION General contributing to the RSSI. This section has internal DC FM receiver incorporating a split IF. This device is designated for use as the receiver in analog and digital FM systems such as 900 Mhz ISM Band Cordless phones and wideband data links with data rates up to 150kbps. It contains a 1st and 2nd mixer , 1st and 2nd local oscillator, Received Signal Strength Indicator (RSSI), IF amplifier, limiting IF, a unique coilless quadrature detector, and a device enable function. symmetry and stability. The total gain of the IF amplifier block is approximately 40 dB up to 40MHz. The fixed internal input impedance is 330 Ω. When using ceramic filters requiring source and load impedances of 330 Ω, no external matching is necessary. Overall RSSI linearity is dependent on having total midband attenuation of 10 dB (4.0 dB insertion loss plus 6.0 dB impedance matching loss) for the filter. The output of the IF amplifier is buffered and the impedance is 330 Ω. 1st and 2nd Mixer Each mixer is a double–balanced class AB four quadrant multiplier which may be externally biased for high mixer dynamic range. Mixer input third order intercept point of up to 17 dBm is achieved with only 7.0 mA of additional supply current. The 1st mixer has a single–ended input at 50 Ω and operates at 1.0 GHz with –3.0 dB of power gain at approximately 100 mVrms LO drive level. The mixers have open collector differential outputs to provide excellent mixer dynamic range and linearity. 1st Local Oscillator The 1st LO has an on–chip transistor which operates with coaxial transmssion line and LC resonant elements up to 1.8 GHz. A VCO output is available for multi–frequency operation under PLL synthesizer control. RSSI The received signal strength indicator (RSSI) output is a current proportional to the log of the received signal amplitude. The RSSI current output (Pin 7) is derived by summing the currents from the IF and limiting amplifier stages. An increase in RSSI dynamic range, particularly at higher input signal levels is achieved. The RSSI circuit is designed to provide typically 80 dB of dynamic range with temperature compensation. Linearity of the RSSI is optimized by using external ceramic bandpass filters which have an insertion loss of 4.0 dB and 330 Ω source and load impedance. Coilless Quadrature Detector The coilless detector is a unique design which eliminates the conventional tunable quadrature coil in FM receiver systems. The frequency detector implements a phase locked loop with a fully integrated on chip relaxation oscillator which is current controlled and externally adjusted, a bandwidth adjust, and an automatic frequency tuning circuit. The loop filter is external to the chip allowing the user to set the loop dynamics. Two outputs are used: one to deliver the audio signal (detector output) and the other to filter and tune the detector (AFT). Figure 2. 2nd Mixer NF & Gain versus LO Power 25 –2.0 20 –4.0 –6.0 15 GAIN Low Noise Amplifier (LNA) The LNA is a cascoded common emitter amplifier configuration. Under very large RF input signals, the DC base current of the common emitter and cascode transistors can become very significant. To maintain linear operation of the LNA, adequate dc current source is needed to establish the 2Vbe reference at the base of the RF cascoded transistor and to provide the base voltage on the common emitter transistor. A sensing circuit, together with a current mirror guarantees that there is always sufficient dc base current available for the cascode transistor under all power levels. Limiter The limiter section is similar to the IF amplifier section except that five stages are used with the middle three contributing to the RSSI. The fixed internal input impedance is 330 Ω. The total gain of the limiting amplifier section is approximately 84 dB. This IF limiting amplifier section internally drives the coilless quadrature detector section. NOISE FIGURE (dB) ARCHIVE INFORMATION ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005 Freescale Semiconductor, Inc... Current Regulation/Enable The MC13145 is designed for battery powered portable applications. Supply current is typically 27 mA at 3.6 Vdc. Temperature compensating, voltage independent current regulators are controlled by the Enable Pin where ”high” powers up and ”low” powers down the entire circuit. NF –8.0 10 Gain VCC = 3.6 Vdc TA = 25°C PRF = –25 dBm Lim Adj Current = 0 5.0 0 –14 ARCHIVE INFORMATION feedback ARCHIVED BYisFREESCALE SEMICONDUCTOR, 2005 and external input decoupling for improved The MC13145 a low power dual conversion wideband INC. –9.0 –4.0 –1.0 6.0 –10 –12 11 LO POWER (dBm) Evaluation PCB The evaluation PCB is a versatile board which allows the MC13145 to be configured as a dual–conversion receiver, or to characterize individual operating parameters. The general purpose schematic and associated parts list for a typical application are given in Figure 15. Please refer to AN1687/D and AN1691/D for additional details and applications for the device. IF Amplifier The first IF amplifier section is composed of three differential stages with the second and third stages MOTOROLA RF/IF DEVICE DATA For More Information On This Product, Go to: www.freescale.com 5 Freescale Semiconductor, Inc. ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ MC13145 PIN FUNCTION DESCRIPTION Symbol/Type Description Fadj 1, 48 VEE 3 AFT Out ARCHIVE INFORMATION 2 ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005 Freescale Semiconductor, Inc... ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Frequency Adjust The free running frequency of the detector oscillator is defined by the combination of an on–chip capacitor and an external resistor, Radj from frequency adjust pin to ground. VEE, Negative Supply These pins are VEE supply for the coilless detector circuit. AFT Out The AFT is low pass filtered with a corner frequency below the audio bandwidth allowing the error to be added to the center frequency adjust signal at Fadj, Pin 2. The low frequency high pass corner is set by the external capacitor, Ct from AFT out (Pin 3) to AFT in (Pin 4) and external resistor, Rt from AFT out to Fadj (Pin 2). ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ 4 AFT In 5 Det Gain 6 Det Out Description COILLESS DETECTOR Bandwidth Adjust The deviation bandwidth of the detector response is determined by the combination of an on–chip capacitor and an external resistor to ground. ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ AFT In The AFT in is used to set the buffer transfer function. Detector Gain The AFT buffer is used to set the buffer transfer function. Detector Output Set gain and output level of detector with resistor to Det Out Pin. Figure 3. Coilless Detector Internal Circuit i Current Amplifier i Phase Detector ICO VCC VCC IF 4 A*i A*i 5 AFT In Vref2 BWadj 2Ib RI Ct Fadj Vref1 2 Rt 3 AFT Out 47 Rb 6 Det Out Rf 2I VEE 48, 1 6 ARCHIVE INFORMATION Pin ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005 See Figure 3. 47 BWadj For More Information On This Product, MOTOROLA RF/IF DEVICE DATA Go to: www.freescale.com Freescale Semiconductor, Inc. ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ MC13145 Pin Symbol/Type 8 VEE Description Description ARCHIVED BY FREESCALE11 SEMICONDUCTOR, INC. 2005 VEE, Negative Supply Voltage VCC 9 PRSCout Prescaler Output The prescaler output provides typically 500 mVpp drive to the fin pin of a PLL synthesizer. Conjugately matching the interface will increase the drive delivered to the PLL input. 9 PRSC Out 1.0 mA 8 VCC VEE 10 MC Dual Modulus Control Current Input This requires a current input of typically 200 µApp. 10 11, 12 VCC 14 LNA In VCC, Positive Supply VCC pin is taken to the incoming positive battery or regulated dc voltage through a low impedance trace on the PCB. It decoupled to VEE ground at the pin of the IC. 17 LNA In The input is the base of the common emitter transistor. Minimum external matching is required to optimize the input return loss and gain. LNAout 15, 16 VEE 13, 15, & 16 VEE 133 Vref2 VEE 14 Vref1 LNAin 2.0 mA 11,12 VEE, Negative Supply VEE pin is taken to an ample dc ground plane through a low impedance path. The path should be kept as short as possible. A minimum two sided PCB is recommended so that ground returns can be easily made through via holes. VCC 17 LNAout 19 Mxr1In LNA Out The output is from the collector of the cascode transistor amplifier. The output may be conjugately matched with a shunt L (needed to dc bias the open collector), and series L and C network. 1st Mixer Input The mixer input impedance is broadband 50 Ω for applications up to 2.4 GHz. It easily interfaces with a RF ceramic filter. VCC 20 LinAdj1 20 Lin Adj1 19 Mxr1 In 450 µA 1st Mixer Linearity Control The mixer linearity control circuit accepts approximately 0 to 300 µA control current to set the dynamic range of the mixer. An Input Third Order Intercept Point, IIP3 of 17 dBm may be achieved at 300 µA of control current. MOTOROLA RF/IF DEVICE DATA For More Information On This Product, Go to: www.freescale.com 7 ARCHIVE INFORMATION ARCHIVE INFORMATION ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005 Freescale Semiconductor, Inc... MC Freescale Semiconductor, Inc. ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ MC13145 Pin Symbol/Type 21 Enable Description Description ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005 21 Enable Enable the receiver by pulling the pin up to VCC. 10 k Enable 26 VEE VEE, Negative Supply VEE supply for the mixer IF output. ARCHIVE INFORMATION ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005 Freescale Semiconductor, Inc... 27 IF1+ IF1++ 1st Mixer Outputs The Mixer is a differential open collector output configuration which is designed to use over a wide frequency range. The differential output of the mixer has back to back diodes across them to limit the output out ut voltage swing and to prevent revent pulling ulling of the VCO. Differential to single–ended circuit configuration and matching options are shown in the Test Circuit. Additional mixer gain can be achieved by matching the outputs for the desired passband Q. 26 VEE 28 IF1– 288 IF1– 22 On–board VCO Transistor The transistor has the emitter, base, collector, VCC, and VEE pins available. Internal biasing which is compensated for stability over temperature is provided. It is recommended that the base pin is pulled up to VCC through an RFC chosen for the particular oscillator center frequency . Collector 25 23 Emitter VCC 24 24 Base 25 VCC Bas Base 18, 8 266 VCC, Positive Supply Voltage A VCC pin is provided for the VCO. The operating supply voltage range is from 2.7 Vdc to 6.5 Vdc. VEE 23 Emitter 2.0 mA 18, 26 VEE 500 µA VEE, Negative Supply Voltage 22 Collector 29 Lin Adj2 31, VCC 29 Lin Adj2 30 Mxr2 In 2nd Mixer Input The mixer input impedance is broadband 50 Ω. 30 Mxr2 In 31 8 VCC 2nd Mixer Linearity Control The mixer linearity control circuit accepts approximately 0 to 400 µA control current to set the dynamic range of the mixer. An Input Third Order Intercept Point, IIP3 of 17 dBm may be achieved at 400 µA of control current. IIP3 default with no external bias is 10 dBm. 450 µ µA VCC, Positive Supply For More Information On This Product, MOTOROLA RF/IF DEVICE DATA Go to: www.freescale.com ARCHIVE INFORMATION 27 Freescale Semiconductor, Inc. ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ MC13145 Pin Symbol/Type 32, 34 VEE Description Description ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005 VEE, Negative Supply Voltage VCC LO Out+ (to Mxr2) LO Out– 33 LO2 2nd Local Oscillator The 2nd LO input impedance is broadband 50 Ω; it is driven from an external 50 Ω source. Typical level is –15 to –10 dBm. 33 LO2 390 µA 32 35 IF2+ 35 IF2+ 2nd Mixer Outputs The Mixer is a differential open collector configuration. 34 VEE 36 IF2– 36 IF2– See Figure 4. 37 VEE VEE, Negative Supply Voltage 38 IF In IF Amplifier Input IF amplifier input source impedance is 330 Ω.. The three stage amplifier has 40 dB of gain with 3.0 dB bandwidth of 40 MHz. 39, 40 IF Dec1, IF Dec2 IF Decoupling These pins are decoupled to VCC to provide stable operation of the limiting IF amplifier. 41 IF Out 42 VCC VCC, Positive Supply Voltage 7 RSSI RSSI The RSSI circuitry in the 2nd & 3rd amplifier stages outputs a current when the output of the previous stage enters limiting. The net result is a RSSI current which represents the logarithm of the IF input voltage. An external resistor to ground is used to provide a voltage output. IF Amplifier Output IF amplifier output load impedance is 330 Ω. MOTOROLA RF/IF DEVICE DATA For More Information On This Product, Go to: www.freescale.com 9 ARCHIVE INFORMATION ARCHIVE INFORMATION ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005 Freescale Semiconductor, Inc... VEE Freescale Semiconductor, Inc. MC13145 Figure 4. IF Amplifier Functional Diagram ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005 RSSI 39 IF Dec1 Σ 38 IF In 40 IF Dec2 41 ARCHIVE INFORMATION ARCHIVE INFORMATION ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005 Freescale Semiconductor, Inc... IF Out Pin Symbol/Type Description 43 VCC 44 Lim In Limiting Amplifier Input Limiting amplifier input source impedance is 330 Ω. This amplifier has 84 dB of gain with 3.0 dB bandwidth of 40 MHz; this enables the IF and limiting ampliers chain to hard limit on noise. 45, 46 Lim Dec1, Lim Dec2 If Decoupling These pins are decoupled to VCC to provide stable operation of the 2nd IF limiting amplifier. 7 RSSI RSSI The RSSI circuitry in the 2nd, 3rd, & 4th amplifier stages outputs a current when the output of the previous stage enters limiting. The net result is a RSSI current which represents the logarithm of the IF input voltage. An external resistor to ground is used to provide a voltage output. See Figure 5. Description VCC, Positive Supply Voltage Figure 5. Limiter Amplifier Functional Diagram 7 RSSI 45 Lim Dec1 Σ 44 Lim In 46 Lim+ Demod Lim– Lim Dec2 10 For More Information On This Product, MOTOROLA RF/IF DEVICE DATA Go to: www.freescale.com Freescale Semiconductor, Inc. MC13145 Figure 7. 2nd Mixer P1dB versus LO Drive Figure 6. 2nd Mixer Gain versus LO Drive ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005 6.0 –6.0 VCC = 3.6 V TA = 25°C PRF = –25 dBm Lin Adj Current = 400 µA 5.0 4.0 –6.8 P1dB (dB) GAIN (dB) –6.4 –7.2 3.0 2.0 –18 –16 –14 –12 0 –20 –10 –18 –16 –14 –12 LO DRIVE (dBm) LO DRIVE (dBm) Figure 8. 2nd Mixer IP3/P1dB versus Lin Adj Current Figure 9. 2nd Mixer Gain versus Lin Adj Current 18 –10 –6.0 16 VCC = 3.6 V TA = 25°C PLO = –15 dBm PRF = –25 dBm –6.2 14 IP3 12 VCC = 3.6 V TA = 25°C PLO = –15 dBm Adj Channel = 75 kHz 10 8.0 GAIN (dB) dBm ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005 ARCHIVE INFORMATION –8.0 –20 Freescale Semiconductor, Inc... VCC = 3.6 V TA = 25°C Lin Adj Current = 400 µA 1.0 –6.4 –6.6 6.0 P1dB 4.0 –6.8 2.0 0 0 100 200 300 400 500 –7.0 600 0 100 LIN ADJ CURRENT (µA) 200 300 400 500 600 LIN ADJ CURRENT (µA) Figure 10. Test Circuit for Figures 6 thru 9. Lin Adj Current RFin LO2in 5.1 k 29 Lin Adj2 VCC 10 n 30 Mxr2 In 33 LO2 IF2+ 35 IF2– 1.0 k 36 T1 IFout 16:1 T1 = Toko 600ENAS–A998EK MOTOROLA RF/IF DEVICE DATA For More Information On This Product, Go to: www.freescale.com 11 ARCHIVE INFORMATION –7.6 Freescale Semiconductor, Inc. MC13145 APPLICATION INFORMATION Input Matching / Components negative resistance associated with this undesired mode of mixer to provide image frequency rejection. The filter is selected based on cost, size and performance tradeoffs. Typical RF filters have 1.5 to 2.5 dB insertion loss. The evaluation PC board layout accommodates ceramic RF filters which are offered by various suppliers. Interface matching between the LNA, RF filter and the mixer will be required. The interface matching networks shown in the evaluation circuit are designed for 50 Ω interfaces. small resistor in the range of 27 to 68 ohms has very little effect on the desired Butler mode of oscillation. The crystal parallel capacitance, Co, provides a feedback path that is low enough in reactance at frequencies of 5th overtones or higher to cause trouble. Co has little effect near resonance because of the low impedance of the crystal motional arm (Rm–Lm–Cm). As the tunable inductor which forms the resonant tank with the tap capacitors is tuned off the crystal resonant frequency it may be difficult to tell if the oscillation is under crystal control. Frequency jumps may occur as the inductor is tuned. In order to eliminate this behavior an inductor, Lo, is placed in parallel with the crystal. Lo is chosen to be resonant with the crystal parallel capacitance, Co, at the desired operation frequency. The inductor provides a feedback path at frequencies well below resonance; however, the parallel tank network of the tap capacitors and tunable inductor prevent oscillation at these frequencies. 2nd Mixer & Limiting IF Matching / Filtering A simple LCR network is needed to interface the 2nd mixer differential outputs to 330 ohm ceramic filters or directly to the 330 ohm IF input. TDK, Toko and Murata offer single 10.7 MHz ceramic filters with various 3.0 dB bandwidths from 110 to 380 kHz. Murata offers a series–parallel resonator pair (part number KMFC545) with a 3.0 dB bandwidth of ±325 kHz and a maximum insertion loss of 5.0 dB. However, even the series–parallel ceramic filter pair yields only a maximum bandpass of 650 kHz. In some data applications a wider band IF bandpass is necessary. Local Oscillators – VHF/UHF Applications The on–chip transistor may be used for HF and VHF local oscillator with higher order overtone crystals. It is recommended that a Butler overtone oscillator configuration is used. The crystal is driven from the emitter and is coupled to the high impedance base through a capacitive tap network. Operation at the desired overtone frequency is ensured by the parallel resonant circuit formed by an inductor and the tap capacitors and parasitic capacitances of the on–chip transistor and PC board. A high tolerance, high Q ceramic or air wound surface mount component may be used if the other components have tight enough tolerances; however, a variable inductor provides an adjustment for gain and frequency of the resonant tank ensuring lock up and start–up of the crystal oscillator. The overtone crystal is chosen with ESR of typically 80 ohms and 120 ohms maximum; if the resistive loss in the crystal is too high the performance of oscillator may be impacted by lower gain margins. A series LC network to ac ground (which is VCC) is comprised of the inductance of the base lead of the on–chip transistor and PC board traces and tap capacitors. Parasitic oscillations often occur in the 200 to 900 MHz range. A small resistor is placed in series with the base (pin 9) to cancel the 12 Coilless Detector The coilless detector (see Figure 3) is unique and offers cost and performance advantages over the conventional quadrature detector. It consists of a current controlled oscillator (ICO) and a phase detector. The error current, I is also amplified to provide an output, and the output is duplicated and filtered and fed back to the oscillator to provide automatic fine tuning (AFT). The oscillator free running frequency, fo is set by Rf and is calculated by the following equation where C is approximately 4.0 pF: fo = 1/(8*Rf*C) The demodulator bandwidth is set by Rb and is shown in Figure 14. The AFT is filtered by Ct and Rt. The low pass pole creates a high pass pole in the overall demodulator frequency response at: A/(2*π*Ct*Rt) where A, the current gain = 10. Typical coilless detector output level is: Vout(peak) = (fpeak dev/fIF)*A*i*Rl For example, if peak deviation is 25 kHz, i = 250 µA at fIF = 10.7 MHz, and RI is 50 kΩ; then Vout is 292 mVp or 584 mVpp. The AFT Out pin is capable of voltage swings from about 300 mV to VCC – 300 mV. At these extreme values, the AFT circuit can become saturated and very long detector lock–up times may be observed. It is best, therefore, to limit the AFT Out swing from about 500 mV to VCC – 500 mV and attempt to center the AFT Out voltage at VCC/2 for a detector lock condition. As an example, for VCC = 2.7 V, the ideal AFT Out voltage at lock would be 1.35 V, with an available swing of 0.5 V to 2.2 V (1.7 V total). If the AFT tuning range is to be ±500 kHz, this corresponds to an adjustment current of 1.0 MHz/fIF*i. From Figure 11, to set fIF at 10.7 MHz, i is approximately 240 µA, and the total adjustment current range is therefor about 22.4 µA over a 1.7 V total swing, or Rt = 75.9 k. At lock, For More Information On This Product, MOTOROLA RF/IF DEVICE DATA Go to: www.freescale.com ARCHIVE INFORMATION 1st Mixer Output & 2nd Mixer Input Interface Matching In a wideband system the primary sensitivity of the receiver backend may be achieved before the last mixer. The evaluation circuit shows the matching and impedance transformation network bewtween the 1st mixer open collector differential outputs and 2nd mixer single ended 50 ohm input. This adjustable shielded transformer and tapped capacitor transform network does two things: 1) bandpass limits the 1st IF signal with a loaded Q of approximately 40 and 2) provides adequate second image rejection and a low cost alternative to a SAW filter. However, a SAW filter may be selected as a more costly alternative while providing improved 2nd image rejection and a fixed tuned 1st IF filter. ARCHIVE INFORMATION ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005 Freescale Semiconductor, Inc... ARCHIVED BY FREESCALE 2005 Since the base input impedance is so large a oscillation. It is desirable to use a RF ceramic SEMICONDUCTOR, or SAW filter before the INC. Freescale Semiconductor, Inc. MC13145 current equaling (AFT Out – Fadj)/Rt will be flowing into the Fadj node. This current then is approximately (1.35 V – 0.7 V)/75.9 kΩ or 8.6 µA. The Fadj resistor, Rf, is therefore equal to 0.7 V/(240 µA + 8.6 µA) or about 2.82 kΩ. ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005 Figure 12. Fadj Resistor versus IF Frequency Figure 11. Fadj Current versus IF Frequency 500 7.0 450 6.0 300 250 5.0 4.0 3.0 2.0 150 100 5.0 10 15 1.0 5.0 20 15 IF FREQUENCY (MHz) Figure 13. BWadj Resistor versus BWadj Current Figure 14. IF Frequency versus BWadj Current 900 10.90 800 10.85 IF FREQUENCY (MHz) 700 600 500 400 300 20 10.80 10.75 10.70 10.65 10.60 200 100 1.0 10 IF FREQUENCY (MHz) 2.0 3.0 4.0 5.0 6.0 10.55 1.0 2.0 BWadj CURRENT (µA) 3.0 4.0 5.0 6.0 BWadj CURRENT (µA) MOTOROLA RF/IF DEVICE DATA For More Information On This Product, Go to: www.freescale.com 13 ARCHIVE INFORMATION Fadj RESISTOR (K Ω ) 350 200 BWadj RESISTOR (KΩ ) ARCHIVE INFORMATION ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005 Freescale Semiconductor, Inc... CURRENT (µ A) 400 Freescale Semiconductor, Inc. MC13145 Freq S11 S11 S21 S21 ARCHIVE INFORMATION ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005 Freescale Semiconductor, Inc... (MHz) Ang SEMICONDUCTOR, Mag Ang ARCHIVED BYMag FREESCALE INC. 2005 14 S12 Mag S12 Ang S22 mag S22 Ang 25 0.84 –3.0 10.8 176 0.00005 –27 1.0 –1.2 50 0.84 –71 10.7 171 0.0004 76 1.0 –3.7 100 0.83 –15 10.3 162 0.0006 61 0.99 –4.9 150 0.81 –22 10. 154 0.0011 91 0.99 –7.3 200 0.78 –28 9.6 147 0.001 60 0.99 –9.7 300 0.73 –41 9.0 132 0.002 42 0.99 –15 400 0.66 –50 7.8 116 0.00070 22 0.95 –19 450 0.64 –54 7.4 111 0.0014 39 0.96 –21 500 0.62 –59 7.0 106 0.0009 69 0.96 –23 750 0.51 –77 5.5 80 0.0013 –51 0.94 –33 800 0.49 –80 5.2 75 0.002 –80 0.93 –36 850 0.47 –81 4.9 71 0.004 –120 0.92 –37 900 0.46 –82 4.6 67 0.0057 –130 0.92 –38 950 0.44 ––82 4.3 62 0.008 –142 0.91 –40 1000 0.45 –81 3.9 58 0.014 –162 0.95 –41 1250 0.55 –94 3.5 47 0.029 140 0.099 –50 1500 0.48 –120 3.1 24 0.02 63 0.94 –65 1750 0.43 –126 2.5 6.9 0.0066 79 0.93 –74 2000 0.43 –135 2.1 –9.9 0.0099 129 0.92 –85 2250 0.45 –145 1.8 –27 0.017 133 0.91 –96 2500 0.47 –155 1.5 –43 0.021 132 0.89 –106 2750 0.51 –167 1.2 –60 0.03 130 0.88 –118 3000 0.55 –180 1.0 –78 0.039 120 0.85 –129 For More Information On This Product, MOTOROLA RF/IF DEVICE DATA Go to: www.freescale.com ARCHIVE INFORMATION Table 1. LNA S–Parameters: 3.6 Vdc MOTOROLA RF/IF DEVICE DATA For More Information On This Product, Go to: www.freescale.com L6 RFC LO2 J11 FRx RX MC Rx PD Det Out RSSI Rx EN C40 C50 IF1 C44 C36 R3 15 D1 C42 C38 Rx MC Rx EN C41 C39 VCC VCC L7 C3 C48 C13 C12 R8 C33 R12 R6 C35 R11 R10 R9 C34 C2 R7 C16 L1 C47 R13 C46 VCC 10 MC 21 Enable 4 AFT In 3 AFT Out 2 Fadj 47 BWadj 29 Lin Adj2 20 Lin Adj1 33 LO2 30 Mxr2 In 24 oscB 23 oscE 22 oscC 19 Mxr1 In 14 LNA In PRSC Out 9 C32 C54 FRx RSSI R14 C20 L5 L4 RSSI 7 C31 R5 C29 C28 C27 C26 L8 C52 T1 R2 Det Out C30 C25 C19 L9 C9 C7 C8 C6 Det Out 6 Det Gain 5 Lim In 44 Lim Dec2 46 Lim Dec1 45 IF In 38 IF Out 41 IF Dec2 40 IF Dec1 39 IF2– 36 IF2+ 35 IF1– 28 IF1+ 27 LNA Out 17 C45 ARCHIVE INFORMATION C43 C37 C15 C14 R1 VCC CF3 H5X2 1 2 3 4 5 6 7 8 9 10 JP1 C49 Mxr2 In J10 Rx PD C51 CF1 C1 L2 C5 CF2 TP2 J2 Gnd J1 VCC TP1 oscB J9 Mxr1 In J12 LNA In J3 U1 MC13145 Figure 15. MC13145 Evaluation PCB Schematic Typical Application ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005 ARCHIVE INFORMATION Freescale Semiconductor, Inc... C23 TP4 IF Out C21 TP5 C24 C22 VCC IF In J13 C17 C53 IF1 Out TP3 IF2 I/O JP2 C10 C11 VCC LNA Out J5 ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005 C18 J7 IF1 Out IF1 VCC Freescale Semiconductor, Inc. MC13145 Figure 15. Freescale Semiconductor, Inc. MC13145 Figure 16. Evaluation PCB Component Side Figure 17. Evaluation PCB Solder Side ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005 2.25″ 2.5″ CF1 2.5″ TDK CF6118702 or TDK CF6118902 CF2,CF3 Toko Type CFSK Series SK107MX–AE–XXX C1,C3,C5,C7,C13,C17,C31, C41,C42,C43,C44,C48,C51 100 p C2 1.5 p C6,C12,C21,C23,C26,C27, C28,C29,C33,C34,C36,C37, C38,C39,C54 1.0 n C8,C15,C16,C18,C32,C53 0.01 C9 16 p C10 10 p C11 12 p C14 2.0–4.0 p C19 36 p C20 39 p C22,C24,C25,C30,C35 0.1 C40 10 µ C45 3.3 p C46,C47 2.0 p 16 C49 22 C50 1.0 R1,R7,R8,L8,L9,C52, J5,J7,J9,J10,J12,J13 No Component D1 MMBV809LT1 L1 6.8 n L2 5.6 n L4, L5 2.7 µ L6 RFC L7 2.7 n R2 10 R3 33 k R5 27 k R6,R11,R12,R14 51 k R9 68 k R10 2.85 k R13 51 or RFC T1 Toko A638AN–A099YWN U1 MC13145FTA J3,J11 J1,J2 JP1 SMA EF Johnson 142–0701–851 Bananna Johnson Components 108–0902–001 Header, 5x2 Default Units: Ohms, Microfarads, and Microhenries For More Information On This Product, MOTOROLA RF/IF DEVICE DATA Go to: www.freescale.com ARCHIVE INFORMATION ARCHIVE INFORMATION ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005 Freescale Semiconductor, Inc... 2.25″ Freescale Semiconductor, Inc. MC13145 Figure 18. Evaluation PCB Ground Plane ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005 ARCHIVE INFORMATION ARCHIVE INFORMATION ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005 Freescale Semiconductor, Inc... 2.25″ 2.5″ Figure 19. Evaluation PCB Power Plane 2.25″ 2.5″ MOTOROLA RF/IF DEVICE DATA For More Information On This Product, Go to: www.freescale.com 17 Freescale Semiconductor, Inc. MC13145 OUTLINE DIMENSIONS ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005 FTA SUFFIX 0.200 AB T–U Z 9 DETAIL Y A P A1 48 37 1 36 U ARCHIVE INFORMATION B V AE B1 ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005 12 25 13 AE V1 24 Z S1 T, U, Z S DETAIL Y 4X 0.200 AC T–U Z 0.080 AC G AB AD M_ AC TOP & BOTTOM BASE METAL ÇÇÇÇ ÉÉÉ ÇÇÇÇ ÉÉÉ ÇÇÇÇ N DIM A A1 B B1 C D E F G H J K L M N P R S S1 V V1 W AA MILLIMETERS MIN MAX 7.000 BSC 3.500 BSC 7.000 BSC 3.500 BSC 1.400 1.600 0.170 0.270 1.350 1.450 0.170 0.230 0.500 BSC 0.050 0.150 0.090 0.200 0.500 0.700 1_ 5_ 12 _REF 0.090 0.160 0.250 BSC 0.150 0.250 9.000 BSC 4.500 BSC 9.000 BSC 4.500 BSC 0.200 REF 1.000 REF R 0.250 Freescale Semiconductor, Inc... T NOTES: 1 DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2 CONTROLLING DIMENSION: MILLIMETER. 3 DATUM PLANE AB IS LOCATED AT BOTTOM OF LEAD AND IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE BOTTOM OF THE PARTING LINE. 4 DATUMS T, U, AND Z TO BE DETERMINED AT DATUM PLANE AB. 5 DIMENSIONS S AND V TO BE DETERMINED AT SEATING PLANE AC. 6 DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS 0.250 PER SIDE. DIMENSIONS A AND B DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE AB. 7 DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. DAMBAR PROTRUSION SHALL NOT CAUSE THE D DIMENSION TO EXCEED 0.350. 8 MINIMUM SOLDER PLATE THICKNESS SHALL BE 0.0076. 9 EXACT SHAPE OF EACH CORNER IS OPTIONAL. J C E GAUGE PLANE 4X F D 0.080 M AC T–U Z W H L_ SECTION AE–AE K DETAIL AD AA 18 For More Information On This Product, MOTOROLA RF/IF DEVICE DATA Go to: www.freescale.com ARCHIVE INFORMATION PLASTIC PACKAGE CASE 932–02 (LQFP) ISSUE E Freescale Semiconductor, Inc. MC13145 Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer. Mfax is a trademark of Motorola, Inc. How to reach us: USA / EUROPE / Locations Not Listed: Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado 80217. 1–303–675–2140 or 1–800–441–2447 JAPAN: Motorola Japan Ltd.; SPD, Strategic Planning Office, 141, 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan. 81–3–5487–8488 Customer Focus Center: 1–800–521–6274 Mfax: [email protected] – TOUCHTONE 1–602–244–6609 ASIA / PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Centre, Motorola Fax Back System – US & Canada ONLY 1–800–774–1848 2, Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong. – http://sps.motorola.com/mfax/ 852–26668334 HOME PAGE: http://motorola.com/sps/ MOTOROLA RF/IF DEVICE DATA◊ For More Information On This Product, Go to: www.freescale.com MC13145/D 19 ARCHIVE INFORMATION ARCHIVE INFORMATION ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005 Freescale Semiconductor, Inc... ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Related manuals
Download PDF
advertisement