Silicon Labs C8051F33x-DK User's Guide

Silicon Labs C8051F33x-DK  User's Guide

C 8 0 5 1 F 3 3 x C 8 0 5 1 F 3 3 X D E V E L O P M E N T K I T U S E R ’ S G U I D E

1. Kit Contents

The C8051F33x Development Kit contains the following items: • C8051F330 Target Board • C8051Fxxx Development Kit Quick-Start Guide • AC to DC Power Adapter • USB Debug Adapter (USB to Debug Interface) • USB Cable • CD-ROM

2. Hardware Setup Using a USB Debug Adapter

The target board is connected to a PC running the Silicon Laboratories IDE via the USB Debug Adapter as shown

in Figure 1.





Connect the USB Debug Adapter to the


connector on the target board with the 10-pin ribbon cable.

Connect one end of the USB cable to the USB connector on the USB Debug Adapter. Connect the other end of the USB cable to a USB Port on the PC.

Connect the ac/dc power adapter to power jack


on the target board.


• Use the Reset button in the IDE to reset the target when connected using a USB Debug Adapter.

• Remove power from the target board and the USB Debug Adapter before connecting or disconnecting the ribbon cable from the target board. Connecting or disconnecting the cable when the devices have power can damage the device and/or the USB Debug Adapter.

AC/DC Adapter PC USB Cable USB Debug Adapter PWR Target Board SILICON LABORATORIES



Port 2 Port 1 Port 0 Port 3 Port 4

Figure 1. Hardware Setup Using a USB Debug Adapter

Rev. 0.7 2/14 Copyright © 2014 by Silicon Laboratories C8051F33x

C 8 0 5 1 F 3 3 x

3. Software Setup

Simplicity Studio greatly reduces development time and complexity with Silicon Labs EFM32 and 8051 MCU products by providing a high-powered IDE, tools for hardware configuration, and links to helpful resources, all in one place.

Once Simplicity Studio is installed, the application itself can be used to install additional software and documentation components to aid in the development and evaluation process.

Figure 2. Simplicity Studio

The following Simplicity Studio components are required for the C8051F330 Development Kit:  8051 Products Part Support  Simplicity Developer Platform Download and install Simplicity Studio from or .

Once installed, run Simplicity Studio by selecting


Silicon Labs

Simplicity Studio

Simplicity Studio

from the start menu or clicking the

Simplicity Studio

shortcut on the desktop. Follow the instructions to install the software and click

Simplicity IDE

to launch the IDE.

The first time the project creation wizard runs, the

Setup Environment

wizard will guide the user through the process of configuring the build tools and SDK selection.

In the

Part Selection

step of the wizard, select from the list of installed parts only the parts to use during development. Choosing parts and families in this step affects the displayed or filtered parts in the later device selection menus. Choose the C8051F33x family by checking the


check box. Modify the part selection at any time by accessing the

Part Management

dialog from the



Simplicity Studio

Part Management

menu item.

Simplicity Studio can detect if certain toolchains are not activated. If the

Licensing Helper

is displayed after completing the

Setup Environment

wizard, follow the instructions to activate the toolchain.

2 Rev. 0.7


3.1. Running Blinky

Each project has its own source files, target configuration, SDK configuration, and build configurations such as the




build configurations. The IDE can be used to manage multiple projects in a collection called a workspace. Workspace settings are applied globally to all projects within the workspace. This can include settings such as key bindings, window preferences, and code style and formatting options. Project actions, such as build and debug are context sensitive. For example, the user must select a project in the

Project Explorer

view in order to build that project.

To create a project based on the Blinky example: 1. Click the

Simplicity IDE

tile from the Simplicity Studio home screen.

2. Click the

Create new project

link from the welcome screen or go to



Silicon Labs MCU Project


3. In the


drop-down, select

C8051F330 Development Kit

, in the


drop-down, select


, and in the


drop-down, select the desired SDK. Click



4. Select


and click



5. Under

C8051F330 Development Kit

in the


folder, select

F330-5 Blinky

and click



6. Click on the project in the

Project Explorer

and click


, the hammer icon in the top bar. Alternatively, go to


Build Project


7. Click


to download the project to the hardware and start a debug session.

8. Press the


button to start the code running. The LED should blink. 9. Press the


button to stop the code.

10. Press the

Reset the device

button to reset the target MCU.

11. Press the


button to return to the development perspective.

3.2. Simplicity Studio Help

Simplicity Studio includes detailed help information and device documentation within the tool. The help contains descriptions for each dialog window. To view the documentation for a dialog, click the question mark icon in the window: This will open a pane specific to the dialog with additional details.

The documentation within the tool can also be viewed by going to


Help Contents





Rev. 0.7


C 8 0 5 1 F 3 3 x

3.3. Legacy 8-bit IDE


Using the Simplicity Studio tools with the C8051F330 Development Kit is recommended. See section 3. "Software Setup‚" on page 2 for more information.

Download the 8-bit software from the website ( ) or use the provided installer on the CD-ROM to install the software tools for the C8051F33x devices. After installation, examples can be found in


in the installation directory. At a minimum, the C8051F330 DK requires: 

Silicon Labs IDE

—Software enabling initial evaluation, development, and debugging.


Configuration Wizard 2

—Initialization code generation software for the C8051F33x devices.


Keil C51 Tools

—Keil 8051 Compiler/Assembler/Linker toolchain.

Other software available includes: 

Keil µVision Driver

—Driver for the Keil µVision IDE that enables development and debugging on C8051Fxxx MCUs.


Flash Programming Utilities


MCU Production Programmer

—Programming utilities for the production line. More information on the available programming options can be found on the website:



ToolStick Development Tools

—Software and examples for the ToolStick development platform. More information on this platform can be found at .

The development kit includes the latest version of the C51 Keil 8051 toolset. This toolset is initially limited to a code size of 2 kB and programs start at code address 0x0800. After registration, the code size limit is removed entirely and programs will start at code address 0x0000.

To register the Keil toolset: 1. Find the

Product Serial Number

printed on the CD-ROM. If you no longer have this serial number, register on the Silicon Labs website ( ) to obtain the serial number.

2. Open the Keil µVision4 IDE from the installation directory with administrative privileges.

3. Select


License Management

to open the License Management window.


Figure 3. Keil µVision4 IDE License Management Window

4. Click on the

Get LIC via Internet...

button to open the Obtaining a License IDE Code (LIC) window.

5. Press


to open a browser window to the Keil website. If the window doesn’t open, navigate to


6. Enter the Silicon Labs

Product Serial Number

printed on the CD-ROM, along with any additional required

Rev. 0.7



7. Once the form is complete, click the


button. An email will be sent to the provided email address with the license activation code.

8. Copy the License ID Code (LIC) from the email.

9. Paste the LIC into the

New License ID Code (LIC)

text box at the bottom of the License Management window in µVision4.

10. Press the


button. The window should now list the

PK51 Prof. Developers Kit for Silabs

as a licensed product.

11. Click the



Rev. 0.7


6 C 8 0 5 1 F 3 3 x

4. Target Board

The C8051F33x Development Kit includes a target board with a C8051F330 device pre-installed for evaluation and preliminary software development. Numerous input/output (I/O) connections are provided to facilitate prototyping

using the target board. Refer to Figure 4 for the locations of the various I/O connectors.

P1 J1 J3 J4 J5 P2 J6 J8 J9, J10 Power connector (accepts input from 7 to 15 VDC unregulated power adapter) 22-pin Expansion I/O connector Port I/O Configuration Jumper Block DEBUG connector for Debug Adapter interface DB-9 connector for UART0 RS232 interface Analog I/O terminal block Connects IDAC to P0.1 pin USB Debug Adapter target board power connector External crystal enable connectors J6 P0.7

Reset J9 J10 Pin 1 Pin 1 Pin 2 J3 Pin 2 P1.3

J5 J1 J8 C8051 F33X P1 J4 P2 PWR Pin 1 Prototyping Area I/O Connection Points

Figure 4. C8051F330 Target Board

Pin 1

Rev. 0.7


4.1. System Clock Sources

The C8051F330 device installed on the target board features a calibrated programmable internal oscillator which is enabled as the system clock source on reset. After reset, the internal oscillator operates at a frequency of 3.0625 MHz (±2%) by default but may be configured by software to operate at other frequencies. Therefore, in many applications an external oscillator is not required. However, if you wish to operate the C8051F330 device at a frequency not available with the internal oscillator, an external crystal may be used. Refer to the C8051F33x data sheet for more information on configuring the system clock source.

The target board is designed to facilitate the installation of an external crystal. Remove shorting blocks at headers J9 and J10 and install the crystal at the pads marked Y1. Install a 10 M  resistor at R9 and install capacitors at C14 and C15 using values appropriate for the crystal you select. Refer to the C8051F33x data sheet for more information on the use of external oscillators.

4.2. Switches and LEDs

Two switches are provided on the target board. Switch SW1 is connected to the RESET pin of the C8051F330.

Pressing SW1 puts the device into its hardware-reset state. Switch SW2 is connected to the C8051F330’s general purpose I/O (GPIO) pin through headers. Pressing SW2 generates a logic low signal on the port pin. Remove the shorting block from the jumper to disconnect SW2 from the port pins. The port pin signal is also routed to a pin on

the J1 I/O connector. See Table 1 for the port pins and headers corresponding to each switch.

Two LEDs are also provided on the target board. The red LED labeled PWR is used to indicate a power connection to the target board. The green LED labeled with a port pin name is connected to the C8051F330’s GPIO pin through headers. Remove the shorting block from the jumper to disconnect the LED from the port pin. The port pin

signal is also routed to a pin on the J1 I/O connector. See Table 1 for the port pins and headers corresponding to

each LED.

Table 1. Target Board I/O Descriptions Description

SW1 SW2 Green LED Red LED


Reset P0.7




none J3[3–4] J3[1–2] none

Rev. 0.7


8 C 8 0 5 1 F 3 3 x

4.3. Expansion I/O Connector (J1)

The 22-pin Expansion I/O connector J1 provides access to all signal pins of the C8051F330 device. Pins for +3 V, digital ground and the output of an on-board low-pass filter are also available. A small through-hole prototyping area is also provided. All I/O signals routed to connector J1 are also routed to through-hole connection points

between J1 and the prototyping area (see Figure 4 on page 6). Each connection point is labeled indicating the

signal available at the connection point. See Table 2 for a list of pin descriptions for J1.

Pin #

1 2 3 4 5 6 7 8 9 10 11

Table 2. J1 Pin Descriptions Description

+3 VD (+3.3 VDC) IDAC P0.0









Pin #

12 13 14 15 16 17 18 19 20 21 22











4.4. Target Board DEBUG Interface (J4)

The DEBUG connector (J4) provides access to the DEBUG (C2) pins of the C8051F330. It is used to connect the Serial Adapter or the USB Debug Adapter to the target board for in-circuit debugging and Flash programming.

Table 3 shows the DEBUG pin definitions.

Table 3. DEBUG Connector Pin Descriptions Pin #

1 2, 3, 9 4 5 6 7 8 10


+3 VD (+3.3 VDC) GND (Ground) C2D /RST (Reset) P3.0

C2CK Not Connected USB Power

Rev. 0.7


4.5. Serial Interface (J5)

A RS232 transceiver circuit and DB-9 (J5) connector are provided on the target board to facilitate serial connections to UART0 of the C8051F330. The TX, RX, RTS and CTS signals of UART0 may be connected to the DB-9 connector and transceiver by installing shorting blocks on header J3.

J3[5–6]- Install shorting block to connect UART0 TX (P0.4) to transceiver.

J3[7–8]- Install shorting block to connect UART0 RX (P0.5) to transceiver.

J3[9–10]- Install shorting block to connect UART0 RTS (P1.1) to transceiver.

J3[11–12]- Install shorting block to connect UART0 CTS (P1.2) to transceiver.

4.6. Analog I/O (P2)

Several of the C8051F330 target device’s port pins are connected to the J6 terminal block. Refer to Table 4 for the

P2 terminal block connections.

Table 4. P2 Terminal Block Pin Descriptions Pin #

1 2 3 4 5 6




GND (Ground) P0.0 / Vref (Voltage Reference)

4.7. IDAC Connector (J6)

The C8051F330 target board also features a Current-to-Voltage 1 K  load resistor that may be connected to the 10-bit current-mode Digital-to-Analog Converter (IDAC) on port pin (P0.1). Install a shorting block on J6 to connect the IDAC pin of the target device to the load resistor. The IDAC signal is then routed to the J1[2] and P2[2] connectors.

4.8. USB Debug Adapter Target Board Power Connector (J8)

The USB Debug Adapter includes a connection to provide power to the target board. This connection is routed from J4[10] to J8[1]. Place a shorting block at header J8[2–3] to power the board directly from an ac/dc power adapter. Place a shorting block at header J8[1–2] to power the board from the USB Debug Adapter. Please note that the second option is not supported with either the EC1 or EC2 Serial Adapters.

Rev. 0.7


C 8 0 5 1 F 3 3 x

5. Schematic

10 Rev. 0.7


Revision 0.4 to Revision 0.5

 Section 1, added USB Debug Adapter and USB Cable.

 Section 2, changed name from "Hardware Setup" to "Hardware Setup using an EC2 Serial Adapter".

 Section 2, added 2 Notes bullets.

 Section 2, removed Note from bottom of page.

 Added Section 3, "Hardware Setup using a USB Debug Adapter".

 Section 5.4.2, changed step 2 to include new instructions.

 Section 7, J4, changed "Serial Adapter" to "Debug Adapter".

 Target Board DEBUG Interface Section, added USB Debug Adapter.

 DEBUG Connector Pin Descriptions Table, changed pin 4 to C2D.

 Changed "jumper" to "header".

 EC2 Serial Adapter section, added EC2 to the section title, table title and figure title.

 EC2 Serial Adapter section, changed "JTAG" to "DEBUG".

 Added "USB Debug Adapter" section.

 Section 7, J8, changed "Serial Adapter" to "USB Debug Adapter"  DEBUG Connector Pin Descriptions Table, changed pin 10 to USB Power  USB Debug Adapter Target Board Power Connector (J8) Section, changed "Serial" to "USB Debug"

Revision 0.5 to Revision 0.6

 Removed EC2 Serial Adapter from Kit Contents.

 Removed Section 2. Hardware Setup using an EC2 Serial Adapter. See RS232 Serial Adapter (EC2) User's Guide.

 Removed Section 8. EC2 Serial Adapter. See RS232 Serial Adapter (EC2) User's Guide.

 Removed Section 9. USB Debug Adapter. See USB Debug Adapter User's Guide.

Revision 0.6 to Revision 0.7


Updated 3. "Software Setup‚" on page 2.

Rev. 0.7


Simplicity Studio

One-click access to MCU and wireless tools, documentation, software, source code libraries & more. Available for Windows, Mac and Linux!

IoT Portfolio



Support and Community


Silicon Laboratories intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Silicon Laboratories products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Laboratories reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Silicon Laboratories shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products must not be used within any Life Support System without the specific written consent of Silicon Laboratories. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Laboratories products are generally not intended for military applications. Silicon Laboratories products shall under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.

Trademark Information

Silicon Laboratories Inc., Silicon Laboratories, Silicon Labs, SiLabs and the Silicon Labs logo, CMEMS®, EFM, EFM32, EFR, Energy Micro, Energy Micro logo and combinations thereof, "the world’s most energy friendly microcontrollers", Ember®, EZLink®, EZMac®, EZRadio®, EZRadioPRO®, DSPLL®, ISOmodem ®, Precision32®, ProSLIC®, SiPHY®, USBXpress® and others are trademarks or registered trademarks of Silicon Laboratories Inc. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders.

Silicon Laboratories Inc.

400 West Cesar Chavez Austin, TX 78701 USA

Was this manual useful for you? yes no
Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Download PDF