Red Lion TSC Instruction PID Controller Product Manual

Red Lion TSC Instruction PID Controller Product Manual
tscCOVR-b.QXD
5/2/05 2:48 PM
Page 1
THE TEMPERATURE SETPOINT
CONTROLLER
MODEL TSC INSTRUCTION MANUAL
tscCOVR-b.QXD
5/2/05 2:48 PM
Page 2
INTRODUCTION
The Temperature Setpoint Controller Unit (TSC) is a multi-purpose series of
industrial control products that are field-programmable for solving various
applications. This series of products is built around the concept that the end user
has the capability to program different personalities and functions into the unit in
order to adapt to different indication and control requirements.
The TSC unit, which you have purchased, has the same high quality
workmanship and advanced technological capabilities that have made Red Lion
Controls the leader in today’s industrial market.
Red Lion Controls has a complete line of industrial indication and control
equipment, and we look forward to servicing you now and in the future.
C
UL
R
US LISTED
IND. CONT. EQ.
51EB
CAUTION: Read complete
instructions prior to installation
and operation of the unit.
CAUTION: Risk of electric shock.
Table of Contents
GENERAL DESCRIPTION · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 6
Safety Summary · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 7
INSTALLATION & CONNECTIONS · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 7
Installation Environment · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 7
Standard Unit Installation · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 7
NEMA 4X/IP65 Unit Installation · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 7
Unit Removal Procedure · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 9
Removing Bezel Assembly · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 9
Installing Bezel Assembly · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 9
Output Modules · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 10
Output Variations Without RS-485 Option · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 10
Output Variations With RS-485 Option · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 10
Installing Output Modules · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 10
Output Module “Output On” State · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 10
Typical Connections · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 10
Select Input Sensor Type · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 11
Select AC Power (115/230 VAC) · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 12
EMC Installation Guidelines · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 12
Wiring Connections · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 12
Signal Wiring · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 13
User Input Wiring · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 13
AC Power Wiring · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 13
FRONT PANEL DESCRIPTION · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 14
Button Functions · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 14
OPERATION OVERVIEW · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 15
Controller Power-up · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 15
Controller Power Down · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 15
Process Start-up · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 15
Manual (user) & Automatic Operation · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 15
Profile Operating Modes · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 16
Run Mode · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 16
Off Mode · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 16
-1-
Pause Mode · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 16
Delay Mode · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 17
Controlling A Profile · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 18
Profile Start Operation · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 18
Start Operation From The Profile Control Status Display · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 18
Start Operation From The Hidden Mode · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 18
Start Operation Using The User Input · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 18
Start Operation On Power-Up · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 18
Start Operation Via The RS-485 Serial Option · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 18
Profile Stop Operation · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 19
Stop Operation From The Profile Control Status Display · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 19
Stop Operation From The Hidden Mode · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 19
Stop Operation On Power-Up · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 19
Stop Operation Via The RS-485 Serial Option · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 19
Profile Advance Operation · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 19
Advance Operation From The Profile Control Status Display · · · · · · · · · · · · · · · · · · · · · · · · · · 19
Advance Operation From The Hidden Mode · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 20
Advance Operation Via The RS-485 Serial Option · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 20
Profile Pause Operation · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 20
Pause Operation From The Profile Control Status Display · · · · · · · · · · · · · · · · · · · · · · · · · · · · 20
Pause Operation From The Hidden Mode · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 20
Pause Operation Using The User Input · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 20
Pause Operation Via The RS-485 Serial Option · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 20
Profile Continue Operation · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 20
Continue Operation From The Profile Control Status Display · · · · · · · · · · · · · · · · · · · · · · · · · · 20
Continue Operation From The Hidden Mode · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 21
Continue Operation Using The User Input · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 21
Continue Operation Via The RS-485 Serial Option · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 21
Reset Event Outputs Operation · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 21
Reset Timed Event Output(s) From The Hidden Mode · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 21
Reset A Timed Event Output Using The User Input · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 21
Reset A Timed Event Output Via RS-485 Serial Option · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 21
Configuration Of Parameters · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 22
Parameter Entry · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 23
-2-
Normal Display Mode · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 23
Modifying A Secondary Display Parameter From The Front Panel · · · · · · · · · · · · · · · · · · · · · · 23
Setpoint Value Display · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 23
% Output Power Display · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 24
Profile Control Status Display · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 24
Profile Phase Time Remaining Display · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 24
UNPROTECTED PARAMETER MODE · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 25
Unprotected Parameter Mode Reference Table · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 25
PROTECTED PARAMETER MODE · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 26
Protected Parameter Mode Reference Table · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 26
Front Panel Program Disable · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 27
HIDDEN FUNCTION MODE · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 28
Hidden Function Mode Reference Table · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 28
CONFIGURATION PARAMETER MODULES · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 29
Input Module (1- IN) · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 29
Input Type (type) · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 29
Temperature Scale (SCAL) · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 29
Temperature Resolution (dCPt) · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 29
Input Signal Filter (FLtr) · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 29
Input Sensor Correction Constants (SPAN & SHFt) · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 30
Setpoint Limit Values (SPLO & SPHI) · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 30
Auto Setpoint Ramp Rate (SPrP) · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 30
User Input (InPt) · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 31
Output Module (2-OP) · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 32
Time Proportioning Cycle Time (CYCt) · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 32
Output Control Action (OPAC) · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 32
Output Power Limits (OPLO & OPHI) · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 32
Sensor Fail Preset Power (OPFL) · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 32
ON/OFF Control Hysteresis Band (CHYS) · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 32
Auto-Tune Damping Code (tcod) · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 33
Linear DC Analog Output (ANAS, ANLO, & ANHI) (Optional) · · · · · · · · · · · · · · · · · · · · · · · · · · 33
Lockouts Module (3-LC) · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 34
Lower Display Lockouts (SP, OP, P-cs, P-tr, UdSP) · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 34
Protected Mode Lockouts (Code, PID, & AL) · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 34
-3-
Hidden Mode Lockouts (ALrS, CPAC, PrAC, trnF, & tUNE) · · · · · · · · · · · · · · · · · · · · · · · · · · · · 34
Alarm Module (4-AL) (Optional) · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 35
Alarm Action (Act1, Act2) · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 35
Alarm Reset (rSt1, rSt2) · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 38
Alarm Standby Delay (Stb1, Stb2) · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 38
Alarm Value (AL-1, AL-2) · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 38
Alarm Hysteresis (AHYS) · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 39
Cooling Output Parameters Module (5-02) (Optional) · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 39
Cooling Cycle Time (CYC2) · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 39
Cooling Relative Gain (GAN2) · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 39
Heat-Cool Overlap/Deadband (db-2) · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 40
Serial Communications Module (6-SC) (Optional) · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 41
Baud Rate (bAUd) · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 41
Parity Bit (PArb) · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 41
Address Number (Addr) · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 41
Abbreviated or Full Transmission (Abrv) · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 41
Print Rate (PrAt) · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 41
Print Options (PoPt) · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 41
Control Points Module (7-CP) · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 42
Control Point Set-up (CSEt) · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 42
Setpoint Value (SP-n) · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 42
PID Values(PId) · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 42
Profiles Module (8-Pr) · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 42
Profile Set-Up · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 42
Profile Cycle Count (PnCC) · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 43
Profile Linking (PnLn) · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 43
Profile Power Cycle Status (PnSt) · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 44
Profile Error Band (PnEb) · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 44
Ramp Phase (Pnrn) · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 44
Setpoint Value (PnLn) · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 45
Hold Phase (PnHn) · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 45
Timed Event Output(s) (Pn 1 to Pn 16) · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 45
Profile Example · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 47
Factory Service Operations Module (9-FS) · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 48
-4-
RS-485 SERIAL COMMUNICATIONS INTERFACE · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 58
Communication Format · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 58
Sending Commands And Data · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 58
Receiving Data · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 60
Serial Connections · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 62
Terminal Descriptions · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 62
Connecting To A Host Terminal · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 63
Troubleshooting Serial Communications · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 63
PID CONTROL · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 64
Proportional Band · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 64
Integral Time · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 64
Derivative Time · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 65
Output Power Offset (Manual Reset) · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 65
Pid Adjustments · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 65
ON/OFF CONTROL · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 67
AUTO-TUNE · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 69
To Initiate Auto-Tune: · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 70
To Cancel Auto-Tune: (Old PID settings remain in effect). · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 70
APPENDIX “A” - APPLICATION EXAMPLE · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 71
APPENDIX “B” - SPECIFICATIONS AND DIMENSIONS · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 72
APPENDIX “C” - TROUBLESHOOTING · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 76
Output Leakage Current · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 79
APPENDIX “D” - MANUAL TUNING · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 80
APPENDIX “E” - CALIBRATION · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 82
APPENDIX “F” - USER PARAMETER VALUE CHART · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 85
APPENDIX “G” - ORDERING INFORMATION · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 87
-5-
GENERAL DESCRIPTION
The optional RS-485 multidrop serial communications interface provides
the capability of two-way communication between a TSC unit and other
compatible equipment such as a printer, a programmable controller, or a host
computer. In multipoint applications the address number of each unit on the
line can be programmed from 0-99. Up to thirty two units can be installed on a
single pair of wires. The Setpoint value, % Output Power, Setpoint Ramp
Rate, etc. can be interrogated or changed, by sending the proper command
code via serial communications. Alarm output(s) may also be reset via the
serial communications interface option.
Optional alarm output(s) may be configured to operate as a timed event
output or as a standard alarm output. As an alarm output it may be configured
to activate according to a variety of actions (Absolute HI or LO, Deviation HI
or LO, or Band IN or OUT) with adjustable hysteresis. Also, a standby feature
suppresses the output(s) on power-up until the temperature stabilizes outside
the alarm region. Timed event output(s) allow the controller to activate other
equipment while a profile is running. Each profile can define up to 16 event
states (phases), for each output(s).
An optional secondary output is available for processes that require
cooling, which provides increased control accuracy and response.
The optional linear 4-20 mA or 0 to 10 VDC output signal is available to
interface with final actuators, chart recorders, indicators, or other controllers. The
output signal can be digitally scaled and selected to transmit one of the following:
% Output Power
Measurement Value Deviation
Measurement Value
Setpoint Value
The TSC is a setpoint controller suitable for time vs. temperature, process
control applications. The TSC accepts signals from a variety of temperature
sensors (thermocouple and RTD elements), precisely displays the process
temperature, and provides an accurate output control signal (time
proportional or linear) to maintain a process at the desired control point. A
comprehensive set of easy to use steps allows the controller to solve various
application requirements. The user input can be programmed to perform a
variety of controller functions.
Dual 4-digit displays allow viewing of the measured temperature value and
setpoint or temperature and profile status simultaneously. Front panel indicators
inform the operator of controller status and output states. Replaceable output
modules (Relay, Logic/SSR drive or Triac) can be fitted to the main control
output, alarm output(s) or timed event output(s), and cooling output.
The TSC has been designed to simplify the set-up and operation of a controlled
setpoint profile program. The setpoint program is easily entered and controlled
through the front panel. Full display capabilities keep the operator informed of the
process temperature, profile status, output states, and setpoint value.
The controller can operate in the standard PID control mode for both
heating or cooling, with on-demand Auto-Tune which establishes the PID
gain set. The PID gain set can be fine tuned by the operator at any time or may
be locked from further modification. The unit can be transferred to the manual
control mode providing the operator with direct control of the output.
The TSC features four programs or profile recipes, each with up to eight
ramp/soak segments, which can be easily stored and executed at any time. Longer
profiles can be achieved by linking one or more profiles together, creating a single
profile of up to 32 ramp/soak segments. Temperature profile conformity is
assured during either soak (hold) phases or both ramp and hold phases by an
adjustable error band parameter. The program repeat function cycles the profile
either a set number of times or continuously. Power-on options automatically
re-start, stop, or resume a running profile. The profile can be controlled via the
front panel buttons, the user input, or the serial communications option.
Four control points, each having a setpoint and PID parameter set, are
available for instant front panel implementation during batch changeover, or
other process conditions. A control point may have its PID gain set values
disabled when implementing the control point.
An optional NEMA 4X/IP65 rated bezel is available for washdown and/or
dirty environments, when properly installed. Modern surface-mount
technology, extensive testing, plus high immunity to noise interference,
makes the controller extremely reliable in industrial environments.
-6-
INSTALLATION & CONNECTIONS
SAFETY SUMMARY
All safety related regulations, local codes and instructions that appear in the
manual or on equipment must be observed to ensure personal safety and to
prevent damage to either the instrument or equipment connected to it. If
equipment is used in a manner not specified by the manufacturer, the
protection provided by the equipment may be impaired.
Do not use the TSC to directly command motors, valves, or other actuators
not equipped with safeguards. To do so, can be potentially harmful to persons
or equipment in the event of a fault to the unit. An independent and redundant
temperature limit indicator with alarm outputs is strongly recommended. Red
Lion Controls model IMT (thermocouple) or model IMR (RTD) units may be
used for this purpose. The indicators should have input sensors and AC power
feeds independent from other equipment.
INSTALLATION ENVIRONMENT
The unit should be installed in a location that does not exceed the maximum
operating temperature and provides good air circulation. Placing the unit near
devices that generate excessive heat should be avoided.
Continuous exposure to direct sunlight may accelerate the aging process of
the bezel. The bezel should be cleaned only with a soft cloth and neutral soap
product. Do NOT use solvents.
Do not use tools of any kind (screwdrivers, pens, pencils, etc.) To operate
the keypad of the unit.
STANDARD UNIT INSTALLATION
Prepare the panel cutout to the dimensions shown in the installation figure.
Remove the panel latch and cardboard sleeve from the unit and discard the
cardboard sleeve. The unit should be installed with the bezel assembly in
place. Insert the unit into the panel cutout. While holding the front of the unit
in place, push the panel latch over the rear of the unit so that the tabs of the
panel latch engage in the slots on the case. The panel latch should be engaged
in the farthest forward slots possible. Tighten the screws evenly until the unit
is snug in the panel.
NEMA 4X/IP65 UNIT INSTALLATION
The optional NEMA 4X/IP65 TSC Controller is designed to provide a
watertight seal in panels with a minimum thickness of 1/8 inch. The unit meets
NEMA 4X/IP65 requirements for indoor use, when properly installed. The
units are intended to be mounted into an enclosed panel. Prepare the panel
cutout to the dimensions shown in the installation figure. Carefully apply the
adhesive side of the panel gasket to the panel cutout. Remove the panel latch
and cardboard sleeve from the unit and discard the cardboard sleeve. The unit
should be installed with the bezel assembly in place and the bezel screws
tightened slightly. Insert the unit into the panel cutout. While holding the front
of the unit in place, push the panel latch over the rear of the unit so that the tabs
of the panel latch engage in the slots on the case. The panel latch should be
engaged in the farthest forward slot possible. To achieve a proper seal, tighten
the latch screws evenly until the unit is snug in the panel (torque to
approximately 7 in-lbs [79 N-cm]). Do NOT over-tighten the screws.
-7-
PANEL INSTALLATION & REMOVAL
Note: Prior to applying power to the controller, the internal AC power
selector switch must be set. Damage to the controller may occur if the
switch is set incorrectly.
Note: The installation location of the controller is important. Be sure to keep it
away from heat sources (ovens, furnaces, etc.), away from direct contact
with caustic vapors, oils, steam, or any other process by-products in which
exposure may effect proper operation.
-8-
UNIT REMOVAL PROCEDURE
To remove a NEMA 4X/IP65 or standard unit from the panel, first unscrew
and remove the panel latch screws. Insert flat blade screwdrivers between the
latch and the case on the top and bottom of the unit so that the latches disengage
from the grooves in the case. Push the unit through the panel from the rear.
REMOVING BEZEL ASSEMBLY
The bezel assembly must be removed from the case to install or replace
output modules, to select the input sensor type, or to set the 115/230 VAC
selector switch. To remove a standard bezel assembly (without bezel securing
screws) press the latch under the lower bezel lip and withdraw the bezel
assembly. To remove the sealed NEMA 4X/IP65 bezel assembly, loosen the
two bezel securing screws until a slight “click” is felt (the screws are retained
in the bezel) and withdraw the assembly. It is recommended to disconnect
power to the unit and to the output control circuits to eliminate the potential
shock hazard with the bezel assembly removed.
Note: The bezel assembly contains electronic circuits which are damaged by
static electricity. Before removing the assembly, discharge stray static
electricity on your body by touching an earth ground point. It is also
important that the bezel assembly be handled only by the bezel itself.
Additionally, if it is necessary to handle a circuit board, be certain that
hands are free from dirt, oil, etc., to avoid circuit contamination which may
lead to malfunction.
INSTALLING BEZEL ASSEMBLY
To install the standard bezel assembly, insert the assembly into the case
until the bezel latch snaps into position.
To install the NEMA 4X/IP65 bezel assembly, insert the assembly into the
case and tighten the bezel screws uniformly until the bezel contacts the case
and then turn each screw another half turn to insure a watertight seal (do not
over-tighten screws).
Note: When substituting or replacing a bezel assembly, be certain that it is
done with the same model using the same Output Modules. Damage to the
controller may result if the unit’s output modules are not the same. A NEMA
4X/IP65 and a standard bezel assembly are NOT interchangeable.
-9-
OUTPUT MODULES
The main control, optional alarm, and optional cooling output sockets must
be fitted with the appropriate output module. Output modules are shipped
separately and must be installed by the user.
Output Variations Without RS-485 Option
The Dual Alarm or the Cooling with Alarm output, without the RS-485
option, has independent outputs. Therefore, the cooling output and/or alarm
output(s) can be installed with any combination of output modules.
Installing Output Modules
To install an output module into the controller, remove the bezel
assembly from the case (see Removing Bezel Assembly). Locate the
correct output module socket (OP1, AL1, or AL2/OP2, see hardware figure
or label outside of case) and plug the output module into the socket. No
re-programming is required. If changing an output module type, be sure the
appropriate output interface wiring changes are made. Re-install the bezel
assembly when complete.
OUTPUT MODULE “OUTPUT ON” STATE
Relay
Logic/SSR Drive
Triac
Normally open contact is closed.
Source is active.
Solid state switch is closed.
Typical Connections
Output Variations With RS-485 Option
The Dual Alarm or the Cooling with Alarm output, with RS-485 option,
does not have independent outputs. In this case, the cooling output and/or
alarm output(s) must have the same type of output modules installed since
they share the common terminal.
-10-
Relay:
Type: Form-C
Rating: 5 Amps @ 120/240 VAC or 28 VDC (resistive load), 1/8 HP @ 120
VAC (inductive load).
Life Expectancy: 100,000 cycles at maximum load rating. (Decreasing
load and/or increasing cycle time, increases life expectancy.)
SELECT INPUT SENSOR TYPE
The input sensor type (thermocouple or RTD) must be selected by an
internal hardware jumper to match the input sensor type programmed. The
jumper is located inside the case on a small accessory circuit board near the
rear of the unit on the main circuit board (See hardware selection figure and/or
label on outside of case).
Logic/SSR Drive:
Type: Non-isolated switched DC, 12 VDC typ. (internal 500 W resistance).
Drive: 10 mA max. (400 ohm external load).
Drives up to three SSR Power Units.
Protection: Short-circuit protected.
HARDWARE FIGURE
Triac:
Type: Isolated, Zero Crossing Detection.
Rating:
Voltage: 120/240 VAC.
Max. Load Current: 1 Amp @ 35°C
0.75 Amp @ 50°C
Min. Load Current: 10 mA
Off State Leakage Current: 7 mA max.
Operating Frequency: 20 to 500 Hz.
Protection: Internal Transient Snubber, Fused.
LOGIC/SSR
DRIVE
MODULE
RELAY
MODULE
-11-
SELECT AC POWER (115/230 VAC)
The AC power to the unit must be selected for either 115 VAC or 230 VAC.
The selector switch is located inside the case near the rear of the unit on the main
circuit board (See hardware figure and/or label on inside or outside of case). The
unit is shipped from the factory with the switch in the 230 VAC position.
Note: Damage to the controller may occur if the AC selector switch is set
incorrectly.
EMC INSTALLATION GUIDELINES
Although Red Lion Controls Products are designed with a high degree of
immunity to Electromagnetic Interference (EMI), proper installation and
wiring methods must be followed to ensure compatibility in each application.
The type of the electrical noise, source or coupling method into a unit may be
different for various installations. Cable length, routing, and shield
termination are very important and can mean the difference between a
successful or troublesome installation. Listed are some EMI guidelines for a
successful installation in an industrial environment.
1. A unit should be mounted in a metal enclosure, which is properly
connected to protective earth.
2. Use shielded cables for all Signal and Control inputs. The shield connection
should be made as short as possible. The connection point for the shield
depends upon the application. Listed below are the recommended methods
of connecting the shield, in order of effectiveness.
a. Connect the shield to earth ground (protective earth) at one end where
the unit is mounted.
b. Connect the shield to earth ground at both ends of the cable, usually
when the noise source frequency is over 1 MHz.
3. Never run Signal or Control cables in the same conduit or raceway with
AC power lines, conductors, feeding motors, solenoids, SCR controls,
and heaters, etc. The cables should be run through metal conduit that is
properly grounded. This is especially useful in applications where cable
runs are long and portable two-way radios are used in close proximity or
if the installation is near a commercial radio transmitter. Signal or Control
cables within an enclosure should be routed as far as possible from
contactors, control relays, transformers, and other noisy components.
4. Long cable runs are more susceptible to EMI pickup than short cable runs.
5. In extremely high EMI environments, the use of external EMI
suppression devices such as Ferrite Suppression Cores for signal and
control cables is effective. The following EMI suppression devices (or
-12-
equivalent) are recommended:
Fair-Rite part number 0443167251 (RLC part number FCOR0000)
Line Filters for input power cables:
Schaffner # FN2010-1/07 (Red Lion Controls # LFIL0000)
6. To protect relay contacts that control inductive loads and to minimize
radiated and conducted noise (EMI), some type of contact protection
network is normally installed across the load, the contacts or both. The
most effective location is across the load.
a. Using a snubber, which is a resistor-capacitor (RC) network or metal
oxide varistor (MOV) across an AC inductive load is very effective at
reducing EMI and increasing relay contact life.
b. If a DC inductive load (such as a DC relay coil) is controlled by a
transistor switch, care must be taken not to exceed the breakdown
voltage of the transistor when the load is switched. One of the most
effective ways is to place a diode across the inductive load. Most RLC
products with solid state outputs have internal zener diode
protection. However external diode protection at the load is always a
good design practice to limit EMI. Although the use of a snubber or
varistor could be used.
RLC part numbers: Snubber: SNUB0000
Varistor: ILS11500 or ILS23000
7. Care should be taken when connecting input and output devices to the
instrument. When a separate input and output common is provided, they
should not be mixed. Therefore a sensor common should NOT be
connected to an output common. This would cause EMI on the sensitive
input common, which could affect the instrument’s operation.
WIRING CONNECTIONS
After the unit has been mechanically mounted, it is ready to be wired. All
wiring connections are made on a fixed terminal block. When wiring the unit, use
the numbers on the label to identify the position number with the proper function.
All conductors should meet voltage and current ratings for each terminal.
Also cabling should conform to appropriate standards of good installation,
local codes and regulations. It is recommended that power supplied to the unit
(AC or DC) be protected by a fuse or circuit breaker. Strip the wire leaving
approximately ¼" (6 mm) bare wire exposed (stranded wires should be tinned
with solder). Insert the wire into the terminal and tighten the screw until the
wire is clamped in tightly. Each terminal can accept up to two, 18-gage wires.
Wire each terminal block in this manner.
Signal Wiring
When connecting the thermocouple or RTD leads, be certain that the
connections are clean and tight. If the thermocouple probe cannot be
connected directly to the controller, thermocouple wire or thermocouple
extension-grade wire must be used to extend the connection points (copper
wire will not work). Always refer to the thermocouple manufacturer’s
recommendations for mounting, temperature range, shielding, etc. For
multi-probe temperature averaging applications, two or more thermocouple
probes may be connected to the controller (always use the same type).
Paralleling a single thermocouple to more than one controller is NOT
recommended. Generally, the red wire from the thermocouple is negative and
connected to the controller’s common.
RTD sensors are used where a higher degree of accuracy and stability is
required when compared to thermocouples. Most RTD sensors available are
the three wire type. The third wire is a sense lead for canceling the effects of
lead resistance of the probe. Four wire RTD elements may be used by leaving
one of the sense leads disconnected.
Thermocouple Connection
RTD Connection
Two wire RTD sensors may be used in either of two ways:
A) Install a shorting wire between terminals #8 & #9. A temperature offset
error of 2.5°C/ohm of lead resistance will exist. The error may be
compensated for by programming a temperature offset.
B) Install a copper sense wire of the same wire gage as the RTD leads. Attach
one end of the wire at the probe and the other end to terminal #8. Complete
lead wire compensation will be in effect. (preferred method)
Note: With extended cable runs, be sure the lead resistance is less than 10
ohms/lead.
User Input Wiring
The programmed User Input function is performed when terminal #7 is
used in conjunction with common (terminal #10). Any form of mechanical
switch may be connected to terminal #7. Sinking open collector logic with less
than 0.7 V saturation may also be used (no pull-up resistance is necessary).
Note: Do not tie the commons of multiple units to a single switch. Use either a
multiple pole switch for ganged operation or a single switch for each unit.
AC Power Wiring
Primary AC power is connected to the separate two position terminal block
labeled AC. To reduce the chance of noise spikes entering the AC line and
affecting the controller, a separate AC feed should be used to power the
controller. Be certain that the AC power to the controller is relatively “clean”
and within the -15%, +10% variation limit. Connecting power from heavily
loaded circuits or circuits that also power loads that cycle on and off, (contacts,
relays, motors, etc.) should be avoided.
-13-
FRONT PANEL DESCRIPTION
The front panel bezel material is flame and
scratch resistant tinted plastic. Available is an
optional NEMA 4X/IP65 version which has a
bezel that meets NEMA 4X/IP65 requirements,
when properly installed. There are two 4-digit
LED displays, a red upper Main Display and a
lower green Secondary Display.
There are up to six annunciators depending
on options installed, with red backlighting,
which illuminate to inform the operator of the
controller and output status.
Four front panel buttons are used to access
different modes and parameters. The
following is a description of each button.
BUTTON FUNCTIONS
DSP - In the normal operating mode, the Display
(DSP) button is used to select one of the four
parameters in the secondary display or
indicate the temperature unit’s (°F or °C). In
the Configuration Parameter Modes, pressing
this button causes the unit to exit (escape) to
the normal operating mode with NO changes
made to the selected parameter.
UP, DN - In the normal operating mode, the
up/dn buttons can be used to modify the
setpoint value, % output power (manual
mode only), the profile status, or the
profile phase time remaining, when viewed in the secondary display.
The variables for each parameter are selected using the up/dn buttons. In
the Hidden Mode, the up/dn buttons can be used to reset alarm(s), event
output(s), select auto or manual operation, invoke or cancel auto-tune,
load a control point, or change the status of a running profile.
-14-
PAR - The Parameter (PAR) button is used to access, enter, and scroll through
the available parameters in any mode.
OPERATION OVERVIEW
CONTROLLER POWER-UP
Upon applying power, the controller delays control action and temperature
indication for five seconds to perform several self-diagnostic tests and
displays basic controller information. Initially, the controller illuminates both
displays and all annunciators to verify that all display elements are
functioning. Following, the controller displays the programmed input sensor
type in the Main display (verify that the input select sensor jumper matches the
programming). Concurrently, it displays the current revision number of the
operating system software in the bottom display. The controller checks for
correct internal operation and displays an error message (E-XX) if an internal
fault is detected (see Troubleshooting).
A profile can be programmed to Start (run mode), Stop (off mode), or Pause if
it was running on power-up (see “Profile Power Cycle Status Parameter” section).
Upon completion of this sequence, the controller begins control action by
displaying the temperature and updating the outputs based upon the PID
control value.
CONTROLLER POWER DOWN
At power down, the steady state control value as well as all parameters and
control modes are saved, to provide a quick and predictable temperature
response on the next power-up.
When powering down the process, it is important to power down the
controller at the same time. This prevents the reset action of the controller
from shifting the proportional band while the temperature is dropping, which
prevents excessive overshoot on the next process start-up.
PROCESS START-UP
After starting the process, the controller’s PID settings must be initially
“tuned” to the process for optimum temperature control. Tuning consists of
adjusting the Proportional Band, Integral Time, and Derivative Time
parameters to achieve the optimum response to a process disturbance. Once
the controller is tuned, it may need to be re-tuned if the process has been
changed significantly. Several options exist for tuning these parameters:
A) Use the controller’s built-in Auto-Tune feature (see Auto-Tune).
B) Use a manual tuning technique (see manual tuning).
C) Use a third party tuning software package (generally expensive and not
always precise).
D) Use values based on control loop experience or values from a similar process.
If the controller is a replacement, the PID settings from the unit being
replaced may be used as good initial values. Be sure to consider any
differences in the units and the PID settings when replacing. The PID settings
may be fine tuned by using the techniques outlined in the PID Control section.
After tuning the controller to the process, it is important to power the load and
the controller at the same time for best start-up response.
MANUAL (USER) & AUTOMATIC OPERATION
The controller can be transfered between Automatic control (closed loop;
PID or ON/OFF control) and Manual control (open loop). Placing the
controller in the Manual Mode does not impede the advancement or operation
of a running profile. In the Hidden Function Mode, the “trnf” parameter allows
the operator to select the desired operating mode. To allow front panel
switching between control modes, program the transfer (trnf) parameter to
“Enbl” in the Lockout module. The User Input or RS-485 serial interface
option may also be used to perform the auto/manual transfer function,
independent of the setting in the Lockout module.
Manual operation provides direct control of the output(s) from 0 to +100%,
or -100% to +100% if cooling output is installed. The MAN (manual)
annunciator flashes to indicate that the unit is in manual operation.
In the Manual Mode, the output power can be adjusted using the front panel
arrow buttons when % output power is viewed in the lower display. If the %
output power is locked or read only, then the output power can be adjusted in
the unprotected parameter mode when OP is viewed. With the serial option,
the % output power can be modified independent of what is viewed in the
display as long as the unit is in the manual mode.
When transferring the controller mode from/to automatic, the control
power output(s) remain constant, exercising true “bumpless” transfer. When
transferring from manual to automatic, the power initially remains steady but
integral action will correct (if necessary) the closed loop power demand at a
rate proportional to the Integral Time. The programmable high and low power
limit values are ignored when the unit is in manual operation.
-15-
PROFILE OPERATING MODES
Run Mode
The controller is in the Run Mode when a profile is executing. While in the
Run Mode, the profile can be stopped (Off Mode), paused (Pause Mode) or
advanced to the next phase. A profile is started and placed into the Run Mode
either manually or automatically when the controller is powered-up. The
advancement of the profile can be viewed in the secondary display.
Off Mode
The Off Mode signifies that all profiles are dormant. The Off Mode is
achieved by manually terminating a profile in progress or by allowing a profile
to run to completion. When a profile ends or is terminated, the active setpoint
is the last hold setpoint value. A profile terminated during a ramp phase results
in the active setpoint value to be the setpoint value at the instant of termination.
A profile terminated during a hold phase results in the active setpoint value to
be the setpoint value at the hold level.
-16-
Pause Mode
The pause mode signifies that a profile is active but the time base is stopped.
The pause mode is caused only by a manual action. Pausing a profile during a
ramp phase stops the ramp and the controller maintains the setpoint value at
the instant of the pause action. During hold phases, the timing of the hold
phase is stopped. The use of pause mode effectively lengthens the total run
time of a profile. Pause mode is indicated by “PAUS” flashing in the profile
control status display. A profile can be placed in the pause mode via the front
panel buttons, the user input, or the serial communications option. The unit
remains in the pause mode until a continue operation is performed. The
continue operation places the profile into the run mode.
PROFILE PAUSE MODE
Delay Mode
The Delay Mode signifies that a profile is active but the time base, or profile
advancement is stopped. This is caused by automatic action of the controller
when the input temperature deviates more than a specified amount from the
profile setpoint. The Delay Mode is similar to the pause mode, except the
delay mode is invoked automatically by the controller.
The Profile Deviation Error Band programmed for a positive value, allows
the Delay Mode to be invoked only during hold phases. A negative value
allows the delay mode to be invoked during “both” ramp and hold phases. The
profile automatically resumes when the process temperature is within the
prescribed error band value. The Delay Mode is indicated by “dEly” flashing
in the profile control status display and by a flashing decimal point in the upper
main display. The Delay Mode can be terminated manually by changing the
deviation error band value to a larger value or to zero for off. The new error
band value takes effect immediately.
PROFILE DELAY MODE
-17-
CONTROLLING A PROFILE
Profile Start Operation
A profile always starts at the first ramp phase and the setpoint value ramps
from the current temperature value. The profile can be programmed to ramp
from a known setpoint value (see Ramp Phase section). Link-started profiles
use the last target setpoint level as the starting point. A profile is started from
the off mode, which places the controller into the run mode. To re-start a
running profile from the beginning, it is necessary to first stop the profile.
Start Operation From The Profile Control Status Display
1. Verify the profile control status display (P-CS) is enabled in lockout
programming.
2. Profile must be in the off mode (no profiles running).
3. Press and hold “up” button for three seconds until “Pr-1” appears.
4. Select the desired profile by using the “up/down” buttons.
5. Press the “PAR” button to start the selected profile. The unit displays
“Strt” in the secondary display and starts the profile. If the “PAR”
button is not pressed within five seconds, no action is taken.
Start Operation From The Hidden Mode
1. Verify profile access (PrAC) in the hidden mode is enabled in lockout
programming.
2. Profile must be in the off mode (no profiles running).
3. Press and hold the “PAR” button for three seconds to enter the
hidden mode.
4. Scroll to “Prun” (if necessary) by pressing the “PAR” button.
5. When “Prun” is displayed, use the “up/down” buttons to select the
desired profile (Pr-1, Pr-2, Pr-3, or Pr-4).
6. Press the “PAR” button to start the selected profile. The unit displays
“End” in the secondary display and starts the profile. If a selection is
not made within ten seconds, no action is taken.
-18-
Start Operation Using The User Input
The user input can only start profile #1.
User Input Selected For Run/Stop (P1rS):
A low to high transition at terminal # 7 always starts profile 1.
User Input Selected For Run/Pause (P1rH):
A low to high transition at terminal # 7 starts profile 1, if no profiles
are in the pause mode.
Note: Refer to input module 1, user input section, for more details.
Start Operation On Power-Up
If power is interrupted or removed from the unit, the profile can be
programmed to automatically start when power is restored. In the Setpoint
Profiles Module (8-Pr), a profile can be programmed to automatically re-start
on power-up. The “Strt” option must selected for each profile (see power cycle
status parameter for details).
Start Operation Via The RS-485 Serial Option
Any profile can be started via the serial communications option. Transmit the
unit address, command letter with the value identifier and the desired profile
number via the serial port (see serial communication section for details).
Shown below is a typical command string.
Start profile 2 of TSC unit 6.
N6CU2*
Profile Stop Operation
Stopping a profile places the controller into the off mode.
When a profile is stopped, the active setpoint value is the old profile
setpoint value.
Stop Operation From The Profile Control Status Display
1. Verify the profile control status display (P-CS) is enabled in lockout
programming.
2. Press and hold the “up/down” buttons simultaneously for three seconds.
3. “OFF” appears in the secondary display and the profile is placed in the
off mode.
Profile Advance Operation
Advancing a profile ends the currently active phase and begins the next
phase of the profile. The total run time of the profile is shortened by using
the advance operation. Profiles in the pause mode must have a continue
operation performed before an advance operation. The profile can be
advanced from the delay mode.
PROFILE ADVANCE FUNCTION
Stop Operation From The Hidden Mode
1. Verify profile access (PrAC) in the hidden mode is enabled in
lockout programming.
2. Press and hold the “PAR” button for three seconds to enter the
hidden mode.
3. Scroll to “Prun” (if necessary) by pressing the “PAR” button.
4. When “Prun” is displayed, use the “up/down” buttons to select stop (off).
5. Press the “PAR” button to stop the profile. The unit displays “End” in
the secondary display and stops the profile. If a selection is not made
within ten seconds, no action is taken.
Stop Operation On Power-Up
If power is interrupted or removed to the unit, the profile can be
programmed to automatically stop when power is restored. In the Setpoint
Profiles Module (8-Pr), each profile must be selected for the “Stop” option
(see power cycle status parameter for details).
Stop Operation Via The RS-485 Serial Option
A running profile can be stopped via the serial communications option.
Transmit the unit address, command letter, with the value identifier and
number via the serial port (see serial communication section for details).
Shown below is a typical command string.
Stop the currently running profile of TSC unit 6.
N6CU5*
Advance Operation From The Profile Control Status Display
1. Verify the profile control status display (P-CS) is enabled in lockout
programming.
2. Press and hold the “up” button for three seconds.
3. “Adnc” appears in the secondary display and the profile advances to
the next phase.
-19-
Advance Operation From The Hidden Mode
1. Verify profile access (PrAC) in the hidden mode is enabled in lockout
programming.
2. Press and hold the “PAR” button for three seconds to enter the
hidden mode.
3. Scroll to “Prun” (if necessary) by pressing the “PAR” button.
4. When “Prun” is displayed, use the “up/down” buttons to select
advance (Adnc).
5. Press the “PAR” button to advance the profile to the next phase.
6. The unit displays “End” in the secondary display and the profile
advances to the next phase. If a selection is not made within ten
seconds, no action is taken.
Advance Operation Via The RS-485 Serial Option
A running profile can be advaced to the next phase via the serial
communications option. Transmit the unit address, command letter, the
value identifier and number via the serial port (see serial communication
section for details).
Shown below is a typical command string.
Advance the currently running profile of TSC unit 6 to the next phase.
N6CU8*
Profile Pause Operation
The pause mode freezes the state of the profile. The controller maintains the
setpoint value at the instant the profile is placed into the pause mode. The profile
must have a continue operation performed to resume the profile operation.
Pause Operation From The Profile Control Status Display
1. Verify the profile control status display (P-CS) is enabled in lockout
programming.
2. Press and hold the “down” button for three seconds.
3. “PAUS” appears in the secondary display and the profile is placed in
the pause mode.
Pause Operation From The Hidden Mode
1. Verify profile access (PrAC) in the hidden mode is enabled in lockout
programming.
2. Press and hold the “PAR” button for three seconds to enter the
hidden mode.
3. Scroll to “Prun” (if necessary) by pressing the “PAR” button.
-20-
4. When “Prun” is displayed, use the “up/down” buttons to select pause
(PAUS).
5. Press the “PAR” button to pause the profile.
6. The unit displays “End” in the secondary display and the profile is
paused. If a selection is not made within ten seconds, no action is taken.
Pause Operation Using The User Input
The user input can pause a running profile.
User Input Selected For Run/Pause (P1rH):
A low level at terminal # 7 pauses a profile that is running.
Note: Refer to input module 1, user input section, for more details.
Pause Operation Via The RS-485 Serial Option
A profile can be paused via the serial communications option. Transmit the
unit address, command letter, with the value identifier and number via the
serial port (see serial communication section for details).
Shown below is a typical command string.
Pause the currently running profile of TSC unit 6.
N6CU6*
Profile Continue Operation
The continue operation resumes operation of a profile that is in the pause
mode. The continue operation places the profile back into the run mode. The
profile resumes normal execution from the point where it was paused.
Continue Operation From The Profile Control Status Display
1. Verify the profile control status display (P-CS) is enabled in lockout
programming.
2. Profile must be in the pause mode.
3. Press and hold the “up” button for three seconds.
4. “Cont” appears in the secondary display and the profile is placed into
the run mode.
Continue Operation From The Hidden Mode
1. Verify profile access (PrAC) in the hidden mode is enabled in lockout
programming.
2. Unit must be in the pause mode.
3. Press and hold the “PAR” button for three seconds to enter the
hidden mode.
4. Scroll to “Prun” (if necessary) by pressing the “PAR” button.
5. When “Prun” is displayed, use the “up/down” buttons to select
continue (Cont).
6. Press the “PAR” button to continue the profile.
7. The unit displays “End” in the secondary display and the profile resumes
to run. If a selection is not made within ten seconds, no action is taken.
Continue Operation Using The User Input
The user input can continue a paused profile.
User Input Selected For Run/Pause (P1rH):
A high level continues the profile.
Note: Refer to input module 1, user input section, for more details.
Continue Operation Via The RS-485 Serial Option
A paused profile can be continued via the serial communications option.
Transmit the unit address, command letter, with the value identifier and
number via the serial port (see serial communication section, for details).
Shown below is a typical command string.
Continue profile 2 of TSC unit 6.
N6CU7*
Reset Event Outputs Operation
The Timed Event Output(s) may be manually reset to the “Off” state at any
time during profile execution. Once reset, the outputs remain reset until the
profile advances to the next phase and updates the event output states.
Reset Timed Event Output(s) From The Hidden Mode
1. Verify alarm access (ALrS) in the hidden mode is enabled in lockout
programming.
2. Press and hold the “PAR” button for three seconds to enter the
hidden mode.
3. Scroll to “ALrS” (if necessary) by pressing the “PAR” button.
4. Press the “up” button to reset event output 1. Press the “down” button
to reset event output 2. An event output remains reset during phase
transitions if the buttons are held.
5. The “up” or “down” button must be pressed within ten seconds to reset
an event output. If an output is not reset within ten seconds, no action
is taken.
Reset A Timed Event Output Using The User Input
The user input can reset the timed event outputs.
Note: The reset operation via the user input resets “Both” AL1 and AL2,
independent of their operation as an alarm or event output.
User Input Selected For Alarm Reset (ALrs):
A low level resets the timed event outputs. As long as the input is held
low, the output(s) remain reset.
Note: Refer to input module 1, user input section, for more details.
Reset A Timed Event Output Via RS-485 Serial Option
A timed event output can be reset via the serial communications option.
Transmit the unit address, command letter, with the value identifier via the
serial port (see serial communication section, for details).
Shown below is a typical command string.
Reset timed event output 2 of TSC unit 6.
N6RH*
-21-
CONFIGURATION OF PARAMETERS
As supplied from the factory, the controller parameters have been
programmed to the values listed in the Quick Reference Tables. The user must
modify the values, if necessary, to suit the application.
S These parameters may not appear due to
unit configuration or programming set-ups.
Operation and configuration of the controller is divided into five distinct
operational/programming modes to simplify the operation of the controller:
Normal Display Mode, Unprotected Parameter Mode, Protected Parameter
Mode, Hidden Function Mode, and Configuration Parameter Modules.
Note: In any mode or module, DSP returns
the controller to the normal display mode.
-22-
PARAMETER ENTRY
The PAR button is used to select the desired parameter. To modify the
parameter setting use the UP and DOWN buttons, and then press PAR to enter
the new value, the controller progresses to the next parameter. In a
Configuration Parameter Module, pressing the DSP button causes the new
value to be rejected, the controller displays “End”, and returns to the Normal
Display Mode. For those parameters outside the Configuration Parameter
Modules, the new value takes effect and is committed into controller memory
WHILE the value is keyed in. The following is a list of these commonly
modified parameters:
Setpoint
Output Power
Output Power Offset
Proportional Band
Integral Time
Derivative Time
Alarm 1 Value
Alarm 2 Value
Note: While in a Configuration Parameter Module, all new parameters are
rejected and the old ones recalled if power is lost to the controller. If power
is removed while modifying ANY parameter, be certain to check the
parameter for the proper value.
NORMAL DISPLAY MODE
In the normal display mode, the process temperature is always displayed in
the main display. By successively pressing the DSP button, one of five
parameters can be viewed in the secondary display:
Temperature Setpoint
% Output Power
Profile Control Status
Profile Phase Time Remaining
Display Temperature Units (°F or °C).
Each of these displays can be independently locked out from appearing or
from being modified by the user (see parameter lockout section).
Modifying A Secondary Display Parameter From The Front Panel
The controller must be in the normal display mode to modify any of the
secondary display parameters. Temperature units symbol indicates the
temperature scale (°F or °C) and cannot be modified from this mode. The other
four parameters can be modified when viewed in the secondary display (if not
locked). Pressing the DSP button scrolls through the secondary display
parameters. The following describes how these parameters can be modified
when viewed in secondary display.
Setpoint Value Display
Use the up and down arrow buttons to modify the setpoint value when
viewed (if not locked). If locked, the setpoint can be changed in the
unprotected or protected mode when “SP” is viewed, independent of viewing
in the secondary display. The setpoint value is constrained to the
programmable setpoint limit values (SPLO & SPHI, input module 1).
The profile setpoint value can be changed during profile operation to effect
immediate changes to the profile. If locked, the target setpoint value can be
changed when viewed in the protected mode. Permanent changes to the profile
setpoint value must be done in the profiles module (8-Pr). Changing the
setpoint value may cause the profile to enter the delay mode if the errror band
parameter is enabled.
The ramping setpoint value is displayed during ramp phases. Immediate
changes made to the ramping setpoint value do not alter the ramp rate, but
change the ramp time remaining to the next target setpoint level. This action
either lengthens or shortens the total time remaining. The phase time
remaining is effected the instant the setpoint value is changed.
The holding setpoint value is displayed during hold phases. A change to the
holding setpoint value causes the controller to immediately operate at the new
setpoint level. In addition, the next ramp phase begins ramping from the
modified setpoint value to the target setpoint value.
-23-
% Output Power Display
The % output power can only be changed when the unit is in the manual
mode. The annunciator %PW lights when viewed, then use the up and down
arrow buttons to modify the % output power (if not locked). If locked, the %
output power can be changed in the unprotected or protected mode when “OP”
is viewed, independent of viewing in the secondary display. The % output
power is not constrained to the programmable output power limit values
(OPLO & OPHI, output module 2).
Profile Control Status Display
The annunciator PGM lights when either the profile control status or the
phase time remaining is displayed. The profile control status indicates the
current mode of a profile. The table shows various displays for profile modes.
Profile Status
Display
OFF
P1r1
P2H8
P3r4
PAUS
dEly
Description
Profile is off. No profiles running.
Profile #1 is running and in ramp phase #1.
Profile #2 is running and in hold phase #8.
Profile #3 is running and in ramp phase #4.
Profile is Paused (PAUS flashes). Currently running
profile is in the pause mode.
Profile is Delayed (dEly flashes). Currently running
profile is in the delay mode.
The front panel buttons allow the operator to change the profile status. The
operation of a profile is controlled directly from the profile control status
display, if not locked (see controlling a profile section for details).
-24-
Profile Phase Time Remaining Display
The annunciator PGM lights when either the phase time remaining or the
profile control status is viewed. Use the up/down front panel buttons to change
the time remaining, if not locked. The ramp or hold phase time remaining can
be changed during profile operation to effect immediate changes to the profile.
Permanent changes to the profile must be done in the profiles module (8-Pr).
During ramp phases the display indicates the time remaining until the next
hold phase. If the time remaining is changed during a ramp phase, the
controller calculates a new, but temporary, ramp rate. The setpoint ramps at
the new ramp rate value to the next setpoint level. The new ramp rate may be at
a faster or slower rate depending on the direction that the time remaining was
changed. Changing the time remaining value to zero causes an immediate
advance to the next hold phase, unless the profile is in the pause mode. In this
case, when the profile is placed back into the run mode, the profile
immediately advances to the next hold phase.
During hold phases the display indicates time remaining until the next ramp
phase. Changes to the time remaining during a hold phase effect the duration
of the hold phase. A value of zero causes the profile to advance to the next
ramp phase unless the profile is in the pause mode.
Changing the time remaining effects the total run time of the profile. When
the profile is in the off mode, “0.0” minutes is displayed in the phase time
remaining display.
UNPROTECTED PARAMETER MODE
The Unprotected Parameter Mode is accessed by
pressing the PAR button from the normal display mode
with program disable inactive. In this mode, the operator
has access to the list of the most commonly modified
controller parameters. At the end of the list, a
configuration “access point” allows the operator to enter
the configuration parameter modules. These modules
allow access to the fundamental set-up parameters of the
controller. When the program list has been scrolled
through, the controller displays “End” and returns to the
normal display mode. The unit automatically returns to
the normal display mode if a button is not pressed within
eight seconds.
Unprotected Parameter Mode Reference Table
Display
Parameter
Range and Units
(Factory Setting Value)
Description/Comments
SP
Temperature
Setpoint
Must be within range of limits
SPLO, SPHI 1 or 0.1 degree
(0)
Appears only if setpoint value is locked (LOC) or read
only (rEd). During a profile ramp phase, indicates the
target setpoint value.
OPOF
%Output
Power Offset
-99.9% to 100.0%
SPLO, SPHI 1 or 0.1 degree
(0.0)
Appears only if integral time (Intt) = 0 and controller
is in automatic mode.
OP
Output Power
-99.9% to 100.0%
SPLO, SPHI 1 or 0.1 degree
(0.0)
Appears only if controller is in user (manual) mode
and % output power is locked (LOC) or read only
(rEd). This parameter is not limited to output power
limits (OPL0 & OPHI)
ProP
Proportional
Band
0.0 to 999.9% of selected
input range
(4.0)
0.0% is ON/OFF control. If = 0.0%, set control
hysteresis appropriately.
Intt
Integral Time
0 to 9999 sec.
(120)
0 is off. This parameter does not appear if
proportional band = 0.0%.
dErt
Derivative
Time
0 to 9999 sec.
(30)
0 is off. This parameter does not appear if
proportional band = 0.0%.
AL-1
Alarm 1 Value
-999 to 9999 1 or 0.1 degree
(0)
This parameter does not appear if the alarm option is
not installed or is configured as a timed event output.
AL-2
Alarm 2 Value
-999 to 9999 1 or 0.1 degree
(0)
This parameter does not appear if the alarm option is
not installed or is configured as a timed event output.
Also does not appear if the cooling option is installed.
CNFP
Configuration
Access Point
NO
Return to normal display mode.
YES
Enter Configuration modules.
1-IN
Configure input parameters.
2-OP
Configure output parameters.
3-LC
Configure parameter lockouts.
4-AL
Configure alarms (optional)
5-02
Configure cooling output (optional)
6-SC
Configure serial communications (optional)
7-CP
Configure control points
8-PR
Configure profiles
9-FS
Factory service operations (Qualified technicians
only)
End
Unit returns to —
normal display
mode.
-25-
Brief display message
PROTECTED PARAMETER MODE
The Protected Parameter Mode is accessed from the
normal display mode by pressing the PAR button with
program disable active. In this mode, the operator has
access to the list of the most commonly modified controller
parameters that have been “unlocked” in the configuration
parameter lockouts module. Depending on the code
number entered in the lockout module, access to the
unprotected parameter mode and hence, the configuration
parameter modules, is possible. The controller returns to
the normal display mode if the unprotected mode and
configuration modules cannot be accessed.
Protected Parameter Mode Reference Table
Display
Parameter
Range and Units
(Factory Setting Value)
Description/Comments
ProP
Proportional Band
0.0 to 999.9% of selected
input range
(4.0)
0.0% is ON/OFF control. If = 0.0%, set control
hysteresis appropriately. This parameter does
not appear if locked (LOC).
Intt
Integral Time
0 to 9999 sec.
(120)
0 is off. This parameter does not appear if
proportional band = 0.0% or locked (LOC).
dErt
Derivative Time
0 to 9999 sec.
(30)
0 is off. This parameter does not appear if
proportional band = 0.0% or locked (LOC).
AL-1
Alarm 1 value
-999 to 9999 or 0.1 degree
(0)
This parameter does not appear if the alarm
option is not installed, locked (LOC), or
configured as a timed event output.
AL-2
Alarm 2 value
-999 to 9999 1 or 0.1 degree This parameter does not appear if the alarm
(0)
option is not installed, the cooling option is
installed, locked (LOC), or configured as a
timed event output.
Code
Access code to
unprotected mode
0 to 250
(0)
End
Unit returns to
normal display
mode
-26-
To gain access to unprotected mode, enter the
same value for Code as entered in parameter
lockouts. This parameter does not appear if
zero is entered in code parameter lockout.
Brief display message display mode
FRONT PANEL PROGRAM DISABLE
There are several ways to limit operator access to the programming of
parameters from the front panel buttons. The settings of the parameters in the
parameter lockout module, the code number entered, and the state and/or
function of the user input (terminal #7) affect front panel access.
The following chart describes the possible program disable settings.
TERMINAL #7
User Input
Programmed
For PLOC
Code Number
Description
Inactive
0
Full access to all modes and parameter modules.
Active
0
Access to protected parameter mode only. Code
number will NOT appear.
Active
Any # between
1 & 250
NOT programmed
for PLOC
0
NOT programmed
for PLOC
Any # between
1 & 250
Access to protected parameter mode. Correct
programmed code number allows access to
unprotected parameter mode and configuration
modules.
Full access to all modes and parameter modules.
Access to protected parameter mode. Correct
programmed code number allows access to
unprotected parameter mode and configuration
modules.
Note: A universal code number 222 can be entered to gain access to the
unprotected mode and configuration modules, independent of the
programmed code number.
-27-
HIDDEN FUNCTION MODE
The Hidden Function Mode is only accessible from
the normal display mode by pressing and holding the
PAR button for three seconds. In this mode, five
controller functions can be performed.
Automatic/Manual Transfer
Initiate/Cancel Auto-tune
Reset Alarm/Timed Event Output(s)
Load Control Point
Control Profile Status
Each function may be “locked out” in the
configuration parameter lockouts module. The PAR
button is used to scroll to the desired function and the
up and down buttons are used to select the operation.
Pressing the PAR button while the function is
displayed executes the function and returns the unit to
the normal display mode. Pressing the DSP button
exits this mode with no action taken. The unit
automatically returns to the normal display mode if a
function is not executed in eight seconds.
Hidden Function Mode Reference Table
Display
Parameter
Range and Units
(Factory Setting Value)
Description/Comments
CP
Load Control Point
NO
cp-1
cp-2
cp-3
cp-4
(NO)
This step does not appear if locked (LOC). Exits
to normal display mode if executed. Select
control point to load then press PAR to
implement.
PruN
Control profile
status
Pr-1
Pr-2
Pr-3
Pr-4
(OFF)
This step does not appear if locked (LOC), or
profile is running.
Exits to normal display mode if executed. Select
profile to start, then press PAR button.
Adnc
Cont
PAUS
OFF
(Cont)
This step does not appear if locked (LOC), or
profile is in OFF mode.
If profile is running, select control mode, then
press PAR button.
trnF
Transfer mode of
operation
Auto - Automatic control
User - Manual control (Auto)
This step does not appear if locked (LOC). Exits
to normal display mode if executed.
tUNE
Auto-Tune
invocation
YES/NO (NO)
Yes: starts /restarts auto-tune sequence.
No: terminates auto-tune sequence.This step
does not appear if locked (LOC) or exits to
normal display mode if executed.
ALrS
Reset alarm/timed
event output(s)
UP key resets Alarm 1/event
output 1
DOWN key resets Alarm
2/event output 2
This step does not appear if alarm option not
installed, if locked (LOC) or previous step
performed.
-28-
CONFIGURATION PARAMETER MODULES
Accessible from the unprotected parameter mode, the configuration
parameter modules allow the operator access to the controller’s fundamental
set-up parameters. There are nine possible configuration stages that can be
accessed. At the configuration stage access point “CNFP”, the operator uses
the UP & DOWN arrow buttons to select the desired configuration parameter
module. Press the PAR button to enter the module where the settings can be
viewed or modified.
The PAR button is used to scroll through the parameters and the UP and
DOWN buttons are used to modify the parameter value. The PAR button
enters the desired choice, advancing to the next parameter. The operator can
press the DSP button to exit (escape) without modifying the parameter, which
returns the unit to the normal display mode. After the parameters in a module
are viewed or modified, the unit returns to the configuration access point,
allowing access to other modules.
INPUT MODULE (1- IN)
The controller has several input set-up parameters which must be
programmed prior to setting any other controller parameters.
Input Type (type)
Select from the list of various thermocouple and RTD sensors. Be sure to set
the internal input select jumper to the appropriate position (TC or RTD, see
select input sensor type or the label on inside of case for location of jumper).
The following is a list of the possible sensors:
tc-t
tc-E
tc-J
tc-k
tc-r
tc-S
tc-B
tc-N
LIN
r385
r392
rLIN
-
Temperature Scale (SCAL)
Select either degrees Fahrenheit (°F) or degrees Celsius (°C). If changed, be
sure to check All parameters.
Temperature Resolution (dCPt)
Select either 1 or 0.1 degree resolution. If changed, be sure to check All
parameters.
Input Signal Filter (FLtr)
Select the relative degree of input signal filtering. The filter is an adaptive
digital filter which discriminates between measurement noise and actual
process changes, therefore, the influence on step response time is minimal. If
the signal is varying too greatly due to measurement noise, increase the filter
value. Additionally, with large derivative times, control action may be too
unstable for accurate control. Increase the filter value. Conversely, if the
fastest controller response is desired, decrease the filter value.
0-minimal
1-normal
2-increased
3-maximum
Type T TC
Type E TC
Type J TC
Type K TC
Type R TC
Type S TC
Type B TC
Type N TC
Linear mV display
385 curve RTD
392 curve RTD
Linear ohms display
-29-
INPUT MODULE (1- IN) (Cont’d)
Input Sensor Correction Constants (SPAN & SHFt)
If the controller temperature disagrees with a reference temperature
instrument or if the temperature sensor has a known calibration, the controller
temperature can be compensated by a correction slope (SPAN) and offset
(SHFt).
SPAN - 0.001 to 9.999
SHFt - -999 to 9999
The following equation expresses the relationship:
Desired Display Temp = (Controller Temp x SPAN) + SHFt
EX1.) The controller reads 293°F while a reference instrument indicates
300°F. A SHFT value of +7°F corrects the controller indication to match
the reference. (Use SPAN = 1.000)
EX2.) A thermocouple probe is calibrated over the region of operation to
achieve more accurate temperature control. The calibration results are as
follows:
Desired Temperature
Thermocouple Output
400.0F
395.0F
800.0F
804.0F
SPAN = 800F - 400F = 0.978
804F - 395F
SHFT = 400F - (0.978 x 395F) = 13.7°F
Auto Setpoint Ramp Rate (SPrP)
The setpoint can be programmed to ramp independent of the controller’s
display resolution. The setpoint ramp rate can reduce thermal shock to the
process, reduce temperature overshoot on start-up or setpoint changes, or
ramp the process at a controlled rate
SPrP - 0.1 to 999.9 degrees/minute
A ramp value of zero disables setpoint ramping. If the user input is
programmed for setpoint ramp, it affects the enabling and disabling of setpoint
ramping (refer to user input section). Setpoint ramping is initiated on
power-up or when the setpoint value is changed and is indicated by a decimal
point flashing in the far right corner of the main display.
Note: The auto setpoint ramp rate is independent from the operation of a profile.
Once the ramping setpoint reaches the target setpoint, the setpoint ramp rate
is disengaged until the setpoint is changed again. If the ramp value is changed
during ramping, the new ramp rate takes effect. If the setpoint is ramping prior
to invoking Auto-Tune, the ramping is suspended during auto-tune and then
resumed afterward using the current temperature as a starting value. Deviation
and band alarms are relative to the target setpoint, not the ramping setpoint. If
the analog output is programmed to transmit the setpoint value, the
instantaneous ramping setpoint value is transmitted.
SPAN value of 0.978 and SHFT value of 13.7°F corrects the indicator to
the probe.
Setpoint Limit Values (SPLO & SPHI)
The controller has programmable high and low setpoint limit values to restrict
the setting range of the setpoint. Set the limit values so that the temperature
setpoint value cannot be set outside the safe operating area of the process.
SPLO - -999 to 9999
SPHI - -999 to 9999
Note: Depending on the ramp rate relative to the process dynamics, the actual
process temperature may not track the ramping setpoint value.
-30-
User Input (InPt)
The User Input requires the input to be in its active state for 100 msec
minimum to perform the function. The unit will execute all functions in 100
msec, except the print request function which requires 110 to 200 msec for a
response. A function is performed when the User Input (terminal 7), is used in
conjunction with common (terminal 10).
Note: Do not tie the commons of multiple units to a single switch. Either use a
multiple pole switch for ganged operation or a single switch for each unit.
Transition activated functions do not occur on controller power-up.
Below is a list of the available functions.
PLOC - Program Lock. A low level enables the program disable function
which places the unit in the Protected Parameter Mode. A high level
disables the program disable function.
Note: Front panel disable is possible without using this program lock
function, refer to front panel program disable section.
CP - Control Point Select. A high to low transition loads Control Point 2 into the
memory of the controller. The controller now operates with data of Control
Point 2. A low to high transition loads Control Point 1 into the memory of the
controller. The controller now operates with data of Control Point 1.
Note: Control Point data loaded into memory overwrites the existing
data setpoint and optionally the PID gain set. Control Points may
be loaded during profile operation.
P1rH - Profile Run/Pause. A low level pauses any running profile. A high level
allows a paused profile to resume. A low to high transition starts Profile 1, if
no other profile was running.
P1rS - Profile Run/Stop. A low level stops any running profile. A high level
allows any profile to run. A low to high transition always starts profile 1.
ILOC - Integral Action Lock. A low level disables the integral action of the
PID computation. A high level resumes the integral action.
trnF - Auto/Manual Transfer. A negative transition places the unit in the manual
(user) mode and a positive transition places the unit in the automatic operating
mode. The output is “bumpless” when transferring to either operating mode.
SPrP - Setpoint Ramp. A low level terminates auto setpoint ramping and the
controller operates at the target setpoint. Terminating auto setpoint
ramping is the same as setting the ramp rate to zero (SPrP = 0.0). A high
level enables the auto setpoint ramp rate.
Note: This does not operate with a profile.
ALrS - Alarm/Timed Event Output Reset. If the alarm option is installed, a
low level resets the alarm/timed event output(s) to their inactive state as
long as the user input is low.
Prnt - Print Request. A low level transmits the print options selected in the
serial communications module (6-SC). If the user input is held low, after the
printing is complete a second print request is issued.
-31-
OUTPUT MODULE (2-OP)
The controller has parameters which affect how the main control output
(OP1) responds to temperature changes and sensor failures.
Time Proportioning Cycle Time (CYCt)
The selection of cycle time depends on the time constant of the process and
the type of output module used.
CYCt - 0 to 120 seconds
For best control, a cycle time equal to 1/10 of the process time constant is
recommended; longer cycle times could degrade temperature control, and
shorter cycle times will provide little benefit at the expense of shortened relay
life. When using a Triac module or a Logic/SSR drive output module with the
SSR Power Unit, a relatively short cycle time may be selected.
A setting of zero keeps the main control output and front panel indicator off.
Therefore, if using the analog output for control, the main output and indicator
can be disabled.
Output Control Action (OPAC)
For heat and cool applications, the main output (OP1) should be used for
heating (reverse acting) and the optional cooling output (OP2) should be used
for cooling (direct acting).
OPAC - rEv (Reverse acting)
drct (Direct acting)
If drct (direct acting) is selected, the main output (OP1) is direct acting and
the cooling output (OP2) is reverse acting.
Note: When using a relay output module, the control action may also be
reversed by using the normally closed contacts.
The linear DC analog output, when assigned to output power (OP) for
control purposes, will always follow the controller output power demand. A
direct acting linear output signal can be implemented in two ways:
1. Use “direct” for output control action (OPAC).
2. Interchange the two analog output scaling points ANLO & ANHI (see linear
DC analog output in the output parameter module section).
-32-
Output Power Limits (OPLO & OPHI)
Enter the safe output power limits for the process. These parameters may
also be used to limit the minimum and maximum controller power due to
process disturbances or setpoint changes to reduce overshoots by limiting the
process approach level.
OPLO & OPHI - 0 to 100%
If the cooling option is installed, the limits range from:
OLO & OPHI - -100 to 100%
With the cooling option installed, the Lower Limit can be set to less than 0%
to limit maximum cooling or set to greater than 0% to limit minimum heating.
Set the High Limit to less than 0% to limit minimum cooling or greater than
0% to limit maximum heating. When controlling power in the manual mode,
the output power limits do not take affect.
Sensor Fail Preset Power (OPFL)
If a failed sensor is detected, the control output(s) default to a preset
power output.
OPFL - 0% (OP1 output full “off”) to 100% (OP1 output full “on”)
If the cooling option is installed, the range is extended from:
OPFL - -100% to +100%
At 0% both outputs are off, at 100% OP1 is on and OP2 is off, and at -100%
OP2 is on and OP1 is off. The alarm outputs always have an up-scale drive
(+9999), independent of this setting, for failed sensor.
ON/OFF Control Hysteresis Band (CHYS)
The controller can be placed in the ON/OFF control mode by setting the
proportional band to 0.0%. The control hysteresis value affects only the main
control output (OP1).
CHYS - 1 to 250 degrees
The hysteresis band should be set to a minimum value to eliminate output
chatter at the setpoint. Generally, 2 to 5° is sufficient for this purpose. Set the
hysteresis band to a sufficient level prior to invoking Auto-Tune.
Auto-Tune Damping Code (tcod)
Prior to invoking Auto-Tune, the damping code should be set to achieve the
desired damping level under PID control. When set to 0, this yields the fastest
process response with some overshoot. A setting of 4 yields the slowest
response with the least amount of overshoot. Damping codes of 0 or 1 are
recommended for most thermal processes.
DAMPING CODE FIGURE
With high and low digital scaling points, the range of the Linear DC output
can be set independent of the controller’s range.
ANLO (4 mA or 0 VDC) - -999 to 9999
ANHI (20 mA or 10 VDC) - -999 to 9999
This allows interfacing directly with chart recorders, remote indicators,
slave controllers, or linear power control units. The output is isolated from
input common and located on rear terminals #11 (OUT+) & #12 (OUT-).
When using the linear DC analog output for main control by assigning the DC
output for percent output power, the front panel indicator OP1 can be disabled
by setting the time proportioning cycle time equal to zero. This also disables
the main control output, OP1.
If transmitting the setpoint value, (for cascaded control with additional
controllers), the controller transmits the instantaneous ramping setpoint, not
the target value, when running a profile.
This also applies if the analog output is configured for process setpoint
deviation (dEV).
EX1.) Chart Record Process Display Value (0 to 10 VDC):
The process range is 300-700. Programming 300 for ANLO (0
VDC value) and 700 for ANHI (10 VDC value) yields full scale
deflection for a chart recorder (0 to 10 VDC). The 0 to 10 VDC
output is assigned to transmit the input process (ANAS = INP).
EX2.) Linear Control Output (4 to 20 mA):
A linear DC input power control unit is used for process control.
Programming 0.0% for ANLO (4 mA value) and +100.0% for
ANHI (20 mA value) configures the output. The 4-20 mA output is
assigned to transmit percent output power (ANAS = OP).
Note: Actual responses may vary depending on the
process, step changes, etc.
Linear DC Analog Output (ANAS, ANLO, & ANHI) (Optional)
The Linear DC output can be programmed to transmit one of four controller
parameters:
ASSIGN DC OUTPUT (ANAS):
INP - Scaled input process value
OP - Percent output power
dEV - Process setpoint deviation
SP - Process setpoint value
-33-
LOCKOUTS MODULE (3-LC)
The controller can be programmed to limit operator access to various
parameters, control modes, and display contents. The configuration of the
lockouts is grouped into three sections: Lower Display Lockouts, Protected
Mode Lockouts and Hidden Mode Lockouts.
Lower Display Lockouts (SP, OP, P-cs, P-tr, UdSP)
The contents of the secondary display can be changed in the normal display
mode by successively pressing the DSP button. This scrolls through the four
possible display parameters, if enabled. Each parameter can be set for one of
the following:
LOC (Lockout) - Prevents the parameter from appearing in the
secondary display.
rEd (Read only) - Parameter appears, but cannot be modified.
Ent (Entry) - Parameter appears and can be modified.
The five lower display content possibilities are:
SP
- Setpoint Value
OP
- % Output Power
P-CS
- Profile Control Status
P-tr
- Profile Phase Time Remaining
UdSP
- Temperature Units
If all parameters are set to lock “LOC”, the display will remain on the last
parameter that was viewed.
Note: If a parameter is active in the lower display and then subsequently
locked out, press “DSP” once in the normal display mode to remove it from
the display.
-34-
Protected Mode Lockouts (Code, PID, & AL)
The protected mode is active when program disable is active. The PID and
Alarm parameters can be set for one of the following:
LOC (Lockout) - Prevents the parameter from appearing in the display
rEd (Read only) - Parameter appears, but cannot be modified.
Ent (Entry) - Parameter appears and can be modified.
The PID setting allows access to Proportional Band (ProP), Integral Time
(Intt), and Derivative Time (dErt) parameters. Alarm 1 and 2 values (AL1 &
AL2) may also be locked out if installed.
A code number to enter the unprotected mode can be programmed into the
controller. To enter the unprotected mode from the protected mode, the code
number must match the code number entered. Refer to front panel program
disable section for access levels.
Code - 0 to 250
Hidden Mode Lockouts (ALrS, CPAC, PrAC, trnF, & tUNE)
The hidden mode is accessible from the normal display mode by pressing
and holding the PAR button for three seconds. The parameters can be set for:
LOC (Lockout) - Prevents the parameter from appearing in the display.
ENbL (Enable) - Allows operator to perform function.
The five controller functions are executed in hidden mode and are
accessible independent of the status of program disable.
ALrs - Reset (override) an alarm/timed event output(s).
trnF - Transfer controller from or to automatic to manual operation.
CPAC - Load 1 of the 4 control points (CP).
PrAC - Allows the operator to start one of the 4 profiles.
If a profile is running, the status (Adnc, Cont, PAUS, or OFF)
can be changed.
tUNE - Invoke or cancel Auto-Tune.
ALARM MODULE (4-AL) (OPTIONAL)
The controller may be optionally fitted with the dual alarm option (AL1 and
AL2), or a single alarm with the cooling output option (AL1 and OP2). One of
three types of output modules (Relay, Logic/SSR Drive or Triac) must be
ordered separately and installed into the alarm channel socket.
Note: Units with RS-485 serial option must have the same type of modules
installed for the Dual Alarms setup.
The output modules may be replaced or interchanged (with appropriate
wiring considerations) at any time without re-programming the controller.
With an open sensor, the alarm outputs are up-scale drive (+9999) and with a
shorted sensor (RTD only) they are down-scale drive (-9999).
A front panel annunciator illuminates to indicate that the alarm output is on
(AL1 for alarm 1 and AL2 for alarm 2).
Note: When deviation low-acting with positive alarm value (d-LO), deviation
high-acting with negative value (d-HI), or Band inside-acting (b-IN) is
selected for the alarm action, the indicator is “OFF” when the alarm
output is “ON”.
The alarm values can be accessed in configuration module (4-AL), the
unprotected mode, and in the protected mode, if not locked.
CAUTION: In applications where equipment or material damage, or risk to
personnel due to controller malfunction could occur, an independent and
redundant temperature limit indicator with alarm outputs is strongly
recommended. Red Lion Controls model IMT (thermocouple) or model
IMR (RTD) units may be used for this purpose. The indicators should have
independent input sensors and AC power feeds from the other equipment.
Alarm Action (Act1, Act2)
The alarm(s) may be independently configured for one of six possible alarm
modes or configured to operate as a timed event output(s). The timed event
output(s) are programmed in profiles module 8 (8-Pr).
Absolute High Acting
Absolute Low Acting
Deviation High Acting
Deviation Low Acting
Band Inside Acting
Band Outside Acting
Timed Event Output
(A-HI)
(A-LO)
(d-HI)
(d-LO)
(b-in)
(b-Ot)
(P-Ev)
-
Tracks Setpoint Value
Tracks Setpoint Value
Tracks Setpoint Value
Tracks Setpoint Value
Note: If an alarm is programmed for Timed Event Output (P-Ev), the
remaining alarm parameters are not applicable.
Alarms configured for deviation or band action, track the setpoint during
ramp and hold phases of a profile. Deviation and band alarms trigger from the
target setpoint when the auto setpoint ramp rate (SPrP) feature is enabled.
The alarm action figures describe the status of the alarm output and the front
panel indicator for various over/under temperature conditions. (See output
module “OUTPUT ON” state table for definitions, under installing output
modules section.) The alarm output waveform is shown with the output in the
automatic reset mode.
Note: Select the alarm action with care. In some configurations, the front
panel indicator (LED) might be “OFF” while the output is “ON”.
-35-
-36-
-37-
Alarm Reset (rSt1, rSt2)
Each alarm reset action may be independently configured.
LAtC - Latching
Auto - Automatic
Latched alarms require operator acknowledgment to reset the alarm
condition. The front panel buttons can be used to reset an alarm when the
controller is in the hidden mode (see hidden function mode). An Alarm
condition may also be reset via the RS-485 serial interface or by the user input.
Automatic (Auto) reset alarms are reset by the controller when the alarm
condition clears. The alarm reset figure depicts the reset types.
Alarm Standby Delay (Stb1, Stb2)
The alarm(s) may be independently configured to exhibit a power-on,
standby delay which suppresses the alarm output from turning “ON” until the
temperature first stabilizes outside the alarm region. After this condition is
satisfied, the alarm standby delay is canceled and the alarm triggers normally,
until the next controller power-on. The alarm standby delay figure depicts a
typical operation sequence.
ALARM STANDBY DELAY SEQUENCE
ALARM RESET SEQUENCE
Alarm Value (AL-1, AL-2)
The alarm values are either absolute (absolute alarms) or relative to the
setpoint value (deviation and band alarms). An absolute alarm value is the value
that is entered. A relative alarm value is offset from the temperature setpoint
value by the amount entered and tracks the setpoint value as it changes.
AL-1 and AL-2 - -999 to 9999
If the alarm action is set as a Band Alarm, then only a positive value can be
entered.
AL-1 and AL-2 - 0 to 9999
-38-
Alarm Hysteresis (AHYS)
The alarm(s) values have a programmable hysteresis band to prevent alarm
output chatter near the alarm trigger temperature. The hysteresis value should
be set to eliminate this effect. A value of 2 to 5° is usually sufficient for most
applications. A single alarm hysteresis value applies to both alarms.
Refer to the alarm action figures for the effect of hysteresis on the various
alarm types.
AHYS - 1 to 250 degrees
Cooling Relative Gain (GAN2)
This parameter defines the gain of the cooling band relative to the heating
band. A value of 0.0 places the cooling output into ON/OFF control mode with
the Heat-Cool parameter (db-2) becoming the cooling output hysteresis. This
may be done independent of the main output control mode (PID or ON/OFF).
Relative gain is generally set to balance the effects of cooling to that of heating
for best control.
GAN2 - 0.0 to 10.0
COOLING OUTPUT PARAMETERS MODULE (5-02)
(OPTIONAL)
Example: If 10 kW of heating and 5kW of cooling is available, initially set the
cooling gain to (2.0). The heat/cool operation figure illustrates the effect of
different gains.
The optional secondary output (OP2) operates as an independent cooling
output for systems that use heating and cooling. One of the three types of
output modules (Relay, Logic/SSR Drive or Triac) must be ordered separately
and installed into the cooling channel socket.
Note: Units with the RS-485 serial communications option must have the same
type of modules installed for the cooling output and alarm output.
The output modules may be replaced or interchanged (with appropriate
wiring considerations) at any time without re-programming the controller.
The front panel indicator OP2 illuminates when the cooling output is on. (See
Output Module “OUTPUT ON” State Table for definition, under installing
output modules section). Cooling output power is defined as ranging from
-100% (full cooling) to 0% (no cooling, unless a heat-cool band overlap is used).
Cooling Cycle Time (CYC2)
A value of 0 turns off the cooling output, independent of cooling power
demand.
CYC2 - 0 to 120 seconds
-39-
Heat-Cool Overlap/Deadband (db-2)
This parameter defines the area in which both heating and cooling are active
(negative value) or the deadband area between the bands (positive value). The
parameter units are degrees or tenth’s of degrees (depending on system
resolution). If a heat/cool overlap is specified, the displayed percent output
power is the sum of the heat power (OP1) and the cool power (OP2).
db-2 - -999 to 9999
If cooling relative gain is zero, the cooling output operates in the ON/OFF
mode, with this parameter becoming the cooling output hysteresis (positive
value only). This parameter should be set prior to Auto-Tune with cooling.
The heat/cool operation figures illustrate the effects of different deadbands.
In practice with the cooling output, observe the controlled temperature
characteristics and if the temperature remains above setpoint with a sluggish
return, increase the cooling gain. Similarly, if the temperature drops too
sharply with an overall saw-tooth pattern, decrease the cooling gain. Alter the
heat-cool overlap until a smooth response in the controlled temperature is
observed during band transition.
-40-
SERIAL COMMUNICATIONS MODULE (6-SC) (OPTIONAL)
When communicating with a TSC unit via the serial port, the data formats
of both units must be identical. A print operation occurs when the user input,
programmed for the print request function is activated, when a “P” command
is sent via the serial communications port, or after the time expires for the
automatic print rate,if enabled. Serial communication is covered in detail in
the RS-485 SERIAL COMMUNICATIONS SECTION.
Print Options (PoPt)
Selecting YES for the print options will allow the operator to scroll through
the available options using the PAR button. The up and down arrow keys
toggle between “yes” and “no” with “yes” enabling the option to be printed
when a print function occurs.
INP
SEt
OPr
Pdb
INt
dEr
AL1
AL2
dEv
OFP
r-P
CrG
Cdb
P-t
P-S
Baud Rate (bAUd)
The available baud rates are:
300, 600, 1200, 2400, 4800, or 9600
Parity Bit (PArb)
Parity can be odd, even, or no parity.
Address Number (Addr)
Multiple units connected on the same RS-485 interface line must each have
a different address number. A value of 0 does not require the address specifier
command, when communicating with the TSC. The address numbers range
from 0 to 99.
Abbreviated or Full Transmission (Abrv)
When transmitting data, the TSC can be programmed to suppress the
address number, mnemonics, units, and some spaces by selecting YES. An
example of abbreviated and full transmission are shown below:
NO - 6 SET 123.8F<CR> <LF>
Full Transmission
YES - 123.8<CR> <LF>
Abbreviated Transmission
Print Rate (PrAt)
The TSC can be programmed to automatically transmit the selected print
options at the programmed print rate. Selecting 0 disables the automatic print
rate feature.
PrAt - 0 to 9999 seconds
-41-
Print Input Temperature Value
Print Setpoint Value
Print % Output Power Value
Print % Proportional Band Value
Print Integral Time Value
Print Derivative Time Value
Print Alarm 1 Value
Print Alarm 2 Value
Print Deviation From Setpoint Value
Print % Output Power Offset Value
Print Setpoint Ramp Rate Value
Print Cooling Relative Gain Value
Print Cooling Deadband Value
Print Profile Phase Time Remaining
Print Profile Operation Status
CONTROL POINTS MODULE (7-CP)
There are four Control Points, each having a setpoint value and an
associated PID gain set value. A control point can be implemented at any time
to accommodate changing process requirements due to batch changeover,
level changes, etc.
The PID gain set values (ProP, Int, & Dert) may be optionally implemented
with the setpoint value. A Control Point can be loaded from the hidden mode
or by the user input (control points 1 and 2 only, see user input control point
(CP) function).
The control point overwrites the previous setpoint and optionally the PID
values. The unit begins controlling based on these new values. When a control
point is loaded, the controller suppresses the output ‘bump’ usually associated
with PID gain changes. Control points must be manually loaded and may be
used in conjunction with a running profile.
Control Point Set-up (CSEt)
Select the control point to be configured.
NO
CP-1
CP-2
CP-3
CP-4
Selecting NO returns the unit to the configuration access point.
Setpoint Value (SP-n)
Enter the temperature setpoint value for the selected control point. This
value is constrained to the setpoint low (SPLO) and setpoint high (SPHI)
range limits (see inputs configuration module).
SP-n - -999 to 9999
PID Values(PId)
Choose the option of loading the PID gain set values with setpoint value
when implementing a Control Point.
NO - Disables PID entries and returns to control point set-up (CSEt).
YES - PID gain set is implemented when control point is loaded.
Enter the desired PID gain set values.
Pb-n - Proportional Band 0.0 to 999.9%
It-n - Integral Time 0 to 9999 secs
dt-n - Derivative Time 0 to 9999 secs
-42-
PROFILES MODULE (8-PR)
Prior to programming a profile, it is recommended to configure the basic
controller operation. A profile is a series of one or more programmable ramp
and hold phases. A minimum of three parameters are required for a profile:
Ramp Rate (Pnrn)
Target Setpoint (PnLn)
Hold Time (PnHn)
Each profile can be programmed with up to eight ramp and hold phases.
Associated with each profile is a timed event output set that updates as the
profile advances. Additional parameters are provided which enhance the
controller and profile capabilities.
Profile Set-Up
Select which profile or timed event output to program.
PSEt - Pr-1
Pr-2
Pr-3
Pr-4
PE-1
PE-2
PE-3
PE-4
Profile 1
Profile 2
Profile 3
Profile 4
Timed event output for profile 1
Timed event output for profile 2
Timed event output for profile 3
Timed event output for profile 4
The programming parameters for each profile are the same. The operator
programs each phase and continues until all eight phases are programmed or a
ramp rate of -0.1 is entered. Shown below are the parameters for profile 1.
Pr-1 - P1CC
P1L1
P1St
P1Eb
P1r1
P1L1
P1H1
P1r2
P1L2
P1H2
P1r3
P1L3
P1H3
P1r4
Cycle count
Linking
Power cycle status
Error band
Ramp rate 1
Setpoint level 1
Hold time 1
Ramp rate 2
Setpoint level 2
Hold time 2
Ramp rate 3
Setpoint level 3
Hold time 3
Ramp rate 4
P1L4
P1H4
P1r5
P1L5
P1H5
P1r6
P1L6
P1H6
P1r7
P1L7
P1H7
P1r8
P1L8
P1H8
Setpoint level 4
Hold time 4
Ramp rate 5
Setpoint level 5
Hold time 5
Ramp rate 6
Setpoint level 6
Hold time 6
Ramp rate 7
Setpoint level 7
Hold time 7
Ramp rate 8
Setpoint level 8
Hold time 8
PROFILES MODULE (8-PR) (Cont’d)
Profile Linking (PnLn)
Each profile can have up to eight ramp and eight hold phases
programmed. If more than eight phases are required, profiles may be
linked together. Linking allows the next profile to automatically start
when the current profile has completed its cycle count. A single profile can
be expanded up to 32 ramp and hold phases of execution by linking.
P1Ln - Selecting YES links profile 1 to profile 2.
P2Ln - Selecting YES links profile 2 to profile 3.
P3Ln - Selecting YES links profile 3 to profile 4.
P4Ln - Selecting YES links profile 4 to profile 1.
Profiles execute the prescribed number of cycle counts prior to linking
to the next profile. A linked profile uses the last setpoint value of the
previous profile as its starting point. The linking parameter can be changed
during profile operation.
PROFILE
Changes can be made to any profile parameter while the
profile is running. Ramp rate, hold time, and setpoint level
changes take effect as the profile advances. If a change is
made to a phase that is active, the change is not recognized
until the next time the profile is run.
From the normal display mode, the phase time remaining
and target setpoint value allow temporary changes to a
running profile. These changes take effect immediately.
PROFILE CYCLE COUNT & LINK FEATURES
Profile Cycle Count (PnCC)
Once a profile is started, it runs the programmed number
of cycles and then automatically defaults to the off mode. If
this parameter is changed while the profile is running, the
new value does not take effect until the profile is stopped
(off mode). It is not possible to examine the number of
profile cycle counts that a profile has completed. A cycle
count value of 0 prevents the profile from operating. A cycle
count value of 250 allows continuous profile cycling.
-43-
Profile Power Cycle Status (PnSt)
Upon controller power-on, several profile operating modes exist. Each
profile has an independent power cycle status.
StOP - Stop places a profile into the Off mode, regardless of the mode
prior to power down.
CONt - Continue resumes the operation of a running profile (including
event output states) at the point where power was removed
to the controller.
Strt - Start automatically re-starts a profile. This is useful for
automatic execution, soft-start profile at power-up,
or automatic execution of a standard profile.
Power cycle status may be changed while a profile is running. The options
of the power cycle status may create conflicts between one or more profiles.
The priority structure for the power cycle status is:
Priority #1 - The profile that was running and programmed for continue
resumes operation when power is restored.
Priority #2 - If the profile that was running prior to power down is
not programmed for continue, any profile programmed
for start will re-start. Profile 1 has the highest priority.
Ramp Phase (Pnrn)
The ramp phase is defined as automatic changing (ramping) of the setpoint
value over a discrete time period at a predefined rate. The ramp rate is
expressed in tenths of degree per minute.
Pnrn - 0.1 to 999.9 degrees/minute
The slope of the ramp phase (up or down) is automatically determined by
the controller using the current setpoint value and target setpoint value. Upon
starting a profile, the setpoint value begins ramping from the measured input
temperature value to the target setpoint value. A profile can begin ramping
from a defined setpoint level by entering 0.0 for the first ramp phase and 0.0
for the first hold phase. Entering 0.0 causes the profile to advance directly to
the target setpoint value and begin the hold phase. This is known as a Step
Ramp Phase. Timed Event outputs update at a Step Ramp Phase. The next
ramp phase starts after the hold phase times-out.
A “staged” ramp approach is possible by using hold phase times of 0.0
minutes and redefining the new ramp rate(s).
Profile Error Band (PnEb)
Profile temperature conformity can be assured by using the profile Error
Band parameter. If the process temperature deviates outside the error band
value while a profile is running, the controller enters the delay mode. In the
delay mode, the time base of the profile is held (delayed) until the process
temperature is within the deviation error band. At this time, the profile
continues running unless the process temperature again deviates. These
actions assure that the actual process temperature conforms to the profile. The
error band can be programmed for a positive or negative value which is
expressed in degrees.
PnEb - -999 to 9999 degrees
STAGED RAMP & STEP RAMP PROFILE
A Positive Error Band value operates on hold phases only. This is useful
when temperature soak time must be assured without affecting ramp phase
time. A Negative Error Band value allows a profile to enter the delay mode on
both ramp AND hold phases. This parameter may be altered during profile
operation and the new values takes effect immediately. A value of 0 disables
Error Band detection.
-44-
Setpoint Value (PnLn)
The controller ramps to the Target Setpoint Value and then maintains the
Target Setpoint Value over the hold phase time. The setpoint value is
constrained to the setpoint limit values (SPLO & SPHI).
PnLn
-999 to 9999 degrees
Each phase of the profile corresponds to an Event Output number. One of
the output state assignments is programmed to each profile phase. The table
lists the correspondence.
Hold Phase (PnHn)
The controller maintains the target setpoint value constant during a hold phase
for a fixed period of time. The hold phase is expressed in tenths of minutes.
0.1 to 999.9 minutes
Holds times longer than 999.9 minutes are possible by joining two or more
hold phases. Hold phases are joined by setting the in-between ramp rate to 0.0,
which skips the ramp phase.
A hold phase time value of 0.0 minutes skips the hold phase. Although
Event Outputs assigned to that phase are updated. Two or more ramp phases
(staged ramps) may be joined together by setting the in-between hold phase
time to 0.0 minutes.
Timed Event Output(s) (Pn 1 to Pn 16)
The alarm channels can be independently configured to operate as an Alarm
Output or a Timed Event Output. The alarm(s) must be configured in the
Alarm Module (4-AL). If configured as an alarm, the output state assignments
are ignored.
Timed Event Outputs use AL1 and/or AL2 to signal or activate other
equipment during execution of a profile. The Timed Event Outputs are
updated at the start of each ramp and hold phase and remain defined for the
duration of that phase. Front panel annunciators AL1 or AL2 light, if the
Timed Event Output phase is programmed to activate the corresponding
output. The table lists the four assignment choices for each phase:
Mnemonic
Description
1F2F
Alarm 1 off, Alarm 2 off
1F2N
Alarm 1 off, Alarm 2 on
1N2F
Alarm 1 on, Alarm 2 off
1N2N
Alarm 1 on, Alarm 2 on
Timed Event
Output Number
Profile Phase
Mnemonic
Description
Pn 1
Pn 2
Pn 3
Pn 4
Pn 5
Pn 6
Pn 7
Pn 8
Pn 9
Pn 10
Pn 11
Pn 12
Pn 13
Pn 14
Pn 15
Pn 16
Pnr1
PnH1
Pnr2
PnH2
Pnr3
PnH3
Pnr4
PnH4
Pnr5
PnH5
Pnr6
PnH6
Pnr7
PnH7
Pnr8
PnH8
Ramp Rate 1
Hold Time 1
Ramp Rate 2
Hold Time 2
Ramp Rate 3
Hold Time 3
Ramp Rate 4
Hold Time 4
Ramp Rate 5
Hold Time 5
Ramp Rate 6
Hold Time 6
Ramp Rate 7
Hold Time 7
Ramp Rate 8
Hold Time 8
Note: Each Timed Event Output number can be programmed to one of the
output states (1F2F, 1F2N, 1N2F, or 1N2N).
If using the Timed Event Outputs for Profile #4, and the other profiles are
set for “Stop” operation, the unit will power-up with the outputs in an
indeterminate state. To define the Timed Event Outputs under this condition,
assign all of the Timed Event Outputs in Profile #4 to off.
-45-
Timed Event Output(s) (Pn 1 to Pn 16) (Cont’d)
It is possible to have the Event Outputs operate during
profile phases by creating ‘phantom’ phases, whose sole
function is to allow a new state of Event Outputs.
Each profile corresponds to a Timed Event Output.
The Event Output(s) may be manually reset to the off
state at any time during profile execution. A timed event
output may be reset via the user input (if programmed), the
front panel buttons (in the hidden mode), or the RS-485
serial communication option. Once reset they remain in that
state until the profile advances to the next phase and the
event output updates.
TIMED EVENT OUTPUT(S)
Phase
Pnr1
PnH1
Pnr2
PnH2
Pnr3
PnH3
-46-
Timed Event Output
Number
State
Pn 1
1N2F
Pn 2
1N2N
Pn 3
1F2N
Pn 4
1F2F
Pn 5
1F2F
Pn 6
1N2F
Profile Example
The following example shows the set-up of a profile
that executes one time and uses the timed event outputs.
General Requirements:
1. Program data into profile 1.
2. Delay profile if temperature is not within 8 degrees,
only during hold phases.
3. Continue profile if power is removed to the controller.
4. Implement User Input for profile 1 run/pause operation.
Profile Requirements:
A. Ramp up from idle process temperature of 85° to 350°
at 4.0°/minute (ramp time = 66.3 minutes). Hold at
350° for 20.0 minutes.
B. Ramp up from 350° to 500° at 3.0°/minute (ramp time
= 50.0 minutes). Hold at 50°0 for 60.0° minutes.
C. Step ramp up from 500° to 750°. No hold phase at 750°.
D. Ramp up from 750° to 875° at 7.5°/minute (ramp time =
16.7 minutes). Hold at 875° for 2.5 hours (150 minutes).
E. Ramp down from 875° to 250° at 10.0°/minute (ramp
time = 62.5 minutes). Engage auxiliary cooling
during this ramp (Event output 1).
F. No hold phase at 250°. Turn off auxiliary cooling.
G. Ramp down from 250° to 100° at 3.75°/minute (ramp
time = 40.0 minutes). No hold phase at 100°. Turn on
end of program signal (Event output #2).
H. End program at 100°.
PROFILE EXAMPLE
-47-
The Programming Data For The Example:
Input Module 1 (1-IN)
Mnemonic
InPt
operation
Value
P1rH
Alarm Module 4 (4-AL)
Mnemonic
Act 1
Act 2
Value
P-Ev
P-Ev
Profile Module 8 (8-Pr)
Mnemonic
P1CC
P1Ln
P1St
P1Eb
P1r1
P1L1
P1H1
P1r2
P1L2
P1H2
P1r3
P1L3
P1H3
P1r4
P1L4
P1H4
P1r5
P1L5
P1H5
P1r6
P1L6
P1H6
P1r7
Value
1
no
Cont
8
4.0
350
20.0
3.0
500
60.0
0.0
750
0.0
7.5
875
150.0
10.0
250
0.0
3.8
100
0.0
-0.1
Profile Module 8 (8-Pr) (Cont’d)
Mnemonic
P1 1
P1 2
P1 3
P1 4
P1 5
P1 6
P1 7
P1 8
P1 9
P110
P111
P112
Description
User input is programmed for run/pause
Description
Program alarm 1 for timed event output
Program alarm 2 for timed event output
Description
Cycle profile once after started
Do not link to profile 2 when done
Continue profile operation when power is restored
Delay mode if temperature deviates ± 8°
Ramp rate 1 is 4.0/minute
Setpoint level 1 is 350
Hold time 1 is 20.0 minutes
Ramp rate 2 is 3.0/minute
Setpoint level 2 is 500
Hold time 2 is 60.0 minutes
Ramp rate 3 is step ramp
Setpoint level 3 is 750
Hold time 3 is skipped
Ramp rate 4 is 7.5/minute
Setpoint Level 4 is 875
Hold time 4 is 150.0 minutes
Ramp rate 5 is 10.0/minute
Setpoint level 5 is 250
Hold time 5 is skipped
Ramp rate 6 is 3.8/minute
Setpoint level 6 is 100
Hold time 6 is skipped
Ramp rate 7 ends profile
-48-
Value
1F2F
1F2F
1F2F
1F2F
1F2F
1F2F
1F2F
1F2F
1N2F
1F2F
1F2F
1F2N
Description
Keep both outputs off
Keep both outputs off
Keep both outputs off
Keep both outputs off
Keep both outputs off
Keep both outputs off
Keep both outputs off
Keep both outputs off
Turn on auxiliary cooling
Turn off auxiliary cooling
Keep both outputs off
Turn on end of profile signal
FACTORY SERVICE OPERATIONS MODULE (9-FS)
The Factory Service Operations are programming functions which are
performed on an infrequent basis. They include: controller calibration, and reset
programming to factory configuration setting. Given the ramifications of these
operations, access to each is protected by an access code number. Entering code
66 will restore all parameters to factory settings, the unit will indicate the
operation after the PAR button is pressed, by displaying “rSEt” in the lower
display momentarily. The calibration operations are detailed in Appendix “F”.
Note: Entering code 66 will reset all programming parameters to the
factory settings.
QUICK REFERENCE TABLE: CONFIGURATION INPUT MODULE 1 (1-IN)
Display
tYPE
Parameter
Input type
Range and Units
(Factory Setting
Value)
Description/
Comments
tc-t - Type T TC
tc-E -Type E TC
tc-J - Type J TC
tc-k - Type K TC
tc-r - Type R TC
tc-S - Type S TC
tc-B - Type B TC
tc-N - Type N TC
LIN - Linear mV display
If changed, check PID
settings and input select
jumper position. (jumper in
TC position)
r385 - 385 curve RTD
r392 - 392 curve RTD
rLIN - Linear ohms display
(tc-J)
(jumper in RTD position)
SCAL
Temperature
scale
°F/°C
(°F)
If scale is changed, all
parameters must be
checked.
dCPt
Temperature
resolution
0 or 0.0
(0)
If resolution changed, all
parameters must be
checked.
FLtr
Digital filtering for
input signal
0 to 3
(1)
Increase number for more
filtering effect.
SPAN
Input signal slope
(correction factor)
0.001 to 9.999
(1.000)
Normally set to 1.000
SHFt
Input signal offset
(correction shift)
-999 to 9999
1 or 0.1 degree
(0)
Normally set to 0
SPLO
Lower limit
setpoint range
-999 to 9999
1 or 0.1 degree
(0)
Set low limit below high
limit.
SPHI
Upper limit
setpoint range
-999 to 9999
1 or 0.1 degree
(9999)
Set high limit above low
limit.
Display
-49-
Parameter
Range and Units
(Factory Setting
Value)
SPrP
Setpoint ramp rate 0.0 to 999.9
degrees/minute
(0.0)
InPt
User input
PLOC - Program disable
ILOC - Integral action
on/off
trnF - Auto/manual transfer
SPrP - Ramp rate on/off
ALrS - Reset alarm
output(s)
Prnt - Print request
CP - Control point load
P1rH - Run/pause a profile
or start profile 1
P1rS - Profile 1 stop/restart
(PLOC)
Description/
Comments
0.0 is off (no auto
ramping)
(Not related to profile
operation.)
QUICK REFERENCE TABLE: CONFIGURATION OUTPUT MODULE 2 (2-OP)
Display
Parameter
Range and Units
(Factory Setting
Value)
Description/
Comments
CYCt
Cycle time
0 to 120 seconds
(2)
0 turns OP1 off.
OPAC
Control action
drct - cooling
rEv - heating
(rev)
For both PID &
ON/OFF control.
OPLO
Output power lower
limit range
0% to 100%, OP1
-100% to 100%,
OP1 & OP2
(0, no cooling)
(-100, cooling)
Set OPLO < OPHI
If cooling option is
installed.
OPHI
Output power upper
limit range
0% to 100%, OP1
-100% to 100%,
OP1 & OP2
(100)
Set OPHI > OPLO
If cooling option is
installed.
OPFL
Sensor fail power
preset
0% to 100%, OP1
-100% to 100%,
OP1 & OP2
(0)
Set to a value to safely
control the process in
the event of input
sensor failure.
CHYS
ON/OFF control
hysteresis
1 to 250
1 or 0.1 degree
(1)
Heating side only.
tcod
Auto-tune damping
code
0 to 4
(0)
0 = fastest response
4 = slowest response
ANAS
Linear DC output
assignment
OP - % output power
INP - input temp.
SP - setpoint value
dEv - deviation
(OP)
This parameter does
not appear if analog
option is not installed.
ANLO
Linear DC output low
scaling value
-999 to 9999
(0.0)
Units depend on ANAS
selection. This
parameter does not
appear if analog option
is not installed.
ANHI
Linear DC output high
scaling value
-999 to 9999
(100.0)
Units depend on ANAS
selection. This
parameter does not
appear if analog option
is not installed.
-50-
QUICK REFERENCE TABLE: CONFIGURATION LOCKOUT MODULE 3 (3-LC)
Display
Parameter
Range and Units
(Factory Setting
Value)
Description/
Comments
SP
Setpoint access
LOC - lockout
rEd - read only
Ent - enter
(Ent)
Allows access to
temperature
setpoint
OP
Output power
access
LOC - lockout
rEd - read only
Ent - enter
(Ent)
Allows direct
access to output
power. %PW
indicator illuminates
when parameter is
selected in display.
P-CS
Profile status
display
LOC - lockout
rEd - read only
Ent - enter
(rEd)
Allows access to
profile status. PGM
indicator illuminates
when parameter is
selected in display.
P-tr
Profile time
remaining
LOC - lockout
rEd - read only
Ent - enter
(rEd)
Allows access to
phase time
remaining. PGM
indicator illuminates
when parameter is
selected in display
UdSP
Units display
LOC - lockout
rEd - read only
Ent - enter
(rEd)
Allows display of °F
or °C
Code
Access code
0 to 250
(0)
Refer to front panel
disable section for
access levels.
PId
PID values enable
LOC - lockout
rEd - read only
Ent - enter
(LOC)
Protected mode
lockout
AL
Alarm values
enable
LOC - lockout
rEd - read only
Ent - enter
(LOC)
Protected mode
lockout
ALrS
Reset alarm/timed
event outputs
enable
LOC - lockout
ENBL - enable
(LOC)
Hidden mode
lockout
Display
-51-
Parameter
Range and Units
(Factory Setting
Value)
Description/
Comments
CPAC
Control point
access
LOC - lockout
ENBL - enable
(LOC)
Hidden mode
lockout
PrAC
Ramp/hold profile
access
LOC - lockout
ENBL - enable
(LOC)
Hidden mode
lockout
trnF
Automatic / Manual
(user) transfer
enable
LOC - lockout
ENBL - enable
(LOC)
Hidden mode
lockout
tuNE
Auto-tune enable
LOC - lockout
ENBL - enable
(LOC)
Hidden mode
lockout
QUICK REFERENCE TABLE: CONFIGURATION ALARMS MODULE 4 (4-AL)
Unit returns to configuration access point if alarm(s) are not installed.
Display
Parameter
Range and Units
(Factory Setting
Value)
Description/
Comments
Act1
Alarm 1 operation
mode
A-HI absolute high
A-LO absolute low
d-HI deviation high
d-LO deviation low
b-IN band inside
b-ot band outside
P-Ev timed event
output
(A-HI)
If changed, check
alarm values. If
P-Ev is selected,
remaining
parameters for
Alarm 1 does not
appear.
rSt1
Alarm 1 reset mode
Auto - automatic
LAtc - manual reset
(Auto)
Manual reset via
hidden mode.
Stb1
Alarm 1 standby
function (delay)
yes/no
(no)
Power-up standby
delay
AL-1
Alarm 1 value
-999 to 9999
1 or .1 degree
(0)
If band alarm
action, positive
values only.
Act2
Alarm 2 operation
mode
A-HI absolute high
A-LO absolute low
d-HI deviation high
d-LO deviation low
b-IN band inside
b-ot band outside
P-Ev timed event
output
(A-HI)
If changed, check
alarm values. If
P-Ev is selected,
remaining
parameters for
Alarm 2 does not
appear.
rSt2
Alarm 2 reset mode
Auto - automatic
LAtc - manual reset
(Auto)
Manual reset via
hidden mode.
Stb2
Alarm 2 standby
function (delay)
yes/no
(no)
Power-up standby
delay
AL-2
Alarm 2 value
-999 to 9999
1 or .1 degree
(0)
If band alarm
action, positive
values only.
AHYS
Alarm Hysteresis
value
1 to 250
1 or .1 degree
(1)
Applies to both
alarms. Set to
elimated chatter.
-52-
QUICK REFERENCE TABLE: CONFIGURATION COOLING MODULE 5 (5-O2)
Unit returns to configuration access point if cooling option not installed.
Display
Parameter
Range and Units
(Factory Setting
Value)
Description/
Comments
CYC2
Cooling output
cycle time
0 to 120 sec
(2)
0 turns OP2 off.
GAN2
Relative cooling
gain
0.0 to 10.0
(1.0)
0.0 places cooling
output into ON/OFF
control mode and
db-2 becomes
hysteresis value,
db-2
Heating/cooling
overlap-deadband
-999 to 9999
(0)
Positive value is
deadband.
Negative value is
overlap. If GAN2 =
0, this parameter is
cooling ON/OFF
control hysteresis.
-53-
QUICK REFERENCE TABLE: CONFIGURATION SERIAL COMMUNICATIONS MODULE 6 (6-SC)
Unit returns to configuration access point if RS-485 serial option is not installed.
Display
Parameter
Range and Units
(Factory Setting
Value)
Description/
Comments
bAUd
Baud rate
300 to 9600
(1200)
Baud rate of unit must
match other equipment.
PArb
Parity bit
odd, even, no parity
(odd)
Parity of unit must
match other equipment.
Add
Unit address
0 to 99
(0)
For multiple units,
each unit must have a
unique address.
Abr
Abbreviated or full
transmission
yes/no
(no)
Selecting yes, the
controller does NOT
transmit mnemonics.
PrAt
Auto print rate
0 to 9999
(0)
0 disables auto print
function
PoPt
Print options
Yes/no (no)
Selecting yes allows
print options to be
programmed.
INP
Input Temperature
Yes/no (yes)
SEt
Setpoint
Yes/no (yes)
OPr
% Output Power
Yes/no (yes)
Pdb
% Proportional Band
Yes/no (no)
INt
Integral Time
Yes/no (no)
dEr
Derivative Time
Yes/no (no)
AL1
Alarm 1
Yes/no (no)
AL2
Alarm 2
Yes/no (no)
dEv
Deviation From Setpoint
Yes/no (no)
OFP
% Output Power Offset
Yes/no (no)
r-P
Setpoint Ramp Rate
Yes/no (no)
Crg
Cooling Relative Gain
Yes/no (no)
Cdb
Cooling Deadband
Yes/no (no)
P-t
Profile Phase Time
Remaining
Yes/no (no)
P-S
Profile Operation Status
Yes/no (no)
-54-
QUICK REFERENCE TABLE: CONFIGURATION CONTROL POINT MODULE 7 (7-CP)
Display
CSEt
Parameter
Control Point
set-up
Range and Units
(Factory Setting
Value)
NO
CP-1
CP-2
CP-3
CP-4
(NO)
Description/
Comments
NO - Return to
CONF
Control Point 1
Control Point 2
Control Point 3
Control Point 4
The parameters for the four Control Points are the same. (n = control point 1, 2, 3, or 4.)
SP-n
Setpoint value for
Control Point n
SPLO to SPHI
1 or .1 degree
(0)
Limited to setpoint
limit values.
PId
PID gain set for
Control Point n
NO - disable PID,
return to CSEt
yES - continue with
entry of PID
(NO)
PID values to be
loaded with
setpoint entry,
when implemented.
Pb-n
Proportional band
for Control Point n
0.0 to 999.9%
(4.0)
0.0% = ON/OFF
control
It-n
Integral time for
Control Point n
0 to 9999 seconds
(120)
0 is off. Does not
appear in Pb-n =
0.0%
dt-n
Derivative time for
Control Point n
0 to 9999 seconds
(30)
0 is off. Does not
appear in Pb-n =
0.0%
Return to “CSet” to program other Control Points if desired.
-55-
QUICK REFERENCE TABLE: CONFIGURATION PROFILE MODULE 8 (8-PR)
Display
PSEt
Parameter
Setpoint Profile
Range and Units
(Factory Setting
Value)
NO
Pr-1
Pr-2
Pr-3
Pr-4
PE-1
PE-2
PE-3
PE-4
(NO)
Description/
Comments
NO - Return to
CNFP
Profile 1
Profile 2
Profile 3
Profile 4
Time event output
for profile 1
Time event output
for profile 2
Time event output
for profile 3
Time event output
for profile 4
Profile n
cycle count
0-250
(0)
0 = off
250 = continuous
PnLn
Profile n link option
YES/NO
(NO)
Link if more than 8
ramp/soak phases
are required.
PnSt
Profile n power-on
status
Stop- Stop profile
CONt - Continue
profile
Strt - Start profile
(Stop)
Continue has
priority.
PnEb
Profile n error band
-999 to 9999
1 or .1 degree
(0)
0 = off. (+) Values
hold phases only
(-) values ramp and
hold phases
Pnr1
Profile n ramp rate
0.0 to 999.9
degrees/minute
(0.0)
0.0 = step (instant
ramp) -0.1 ends the
profile.
PnL1
Profile n setpoint
level 1
SPLO to SPHI
1 or .1 degree
(0)
Constrained to
setpoint limit
values.
PnH1
Profile n
hold time 1
0.0 to 999.9
minutes
(0.0)
0.0 = no hold
phase.
Description/
Comments
Parameter
Pnr8
Profile n ramp rate
8
0.0 to 999.9
degrees/minute
(0.0)
Same as ramp 1.
PnL8
Profile n setpoint
level 8
SPLO to SPH
1 or .1 degree
(0)
Same as setpoint
1.
PnH8
Profile n hold time
8
0.0 to 999.9
minutes
(0.0)
Same as hold 1.
Profile returns to “PSEt” stage.
The parameters for the four timed event outputs are the same. (Pn = Timed Event
Output for proflile 1, 2, 3, or 4.)
Pn 1
The parameters for the four profiles are the same. (Pn = profile 1, 2, 3, or 4)
PnCC
Range and Units
(Factory Setting
Value)
Display
Event output
number 1 for profile
n
1F2F
1F2N
1N2F
1N2N
(1F2F)
Assign alarms to
timed event output
in alarm action.
F = OFF; N = ON
1 = AL1; 2 = AL2
Each event output has the same programmable options. Event updates end when profile ends.
Pn 16
Event output
number 16, for
profile n
1F2F
1F2N
1F2F
1N2N
(1F2F)
Event Output step returns to “PSEt” stage.
Program up to 8 ramp/hold phases. Profile ends when ramp = -0.1 or PnH8 is programmed.
-56-
Assign alarms to
timed event output
in alarm action.
F = OFF; N = ON
1 = AL1; 2 = AL2
QUICK REFERENCE TABLE: CONFIGURATION FACTORY SERVICE OPERATIONS MODULE 9 (9-FS)
Display
Code
Parameter
Enter factory
service function
code
Range and Units
(Factory Setting
Value)
48 - Calibrate
instrument
Description/
Comments
Refer to Appendix
F for details.
66 - Reset
parameters to
factory settings
-57-
RS-485 SERIAL COMMUNICATIONS INTERFACE
RS-485 communications allows for transmitting and receiving of data over
a single pair of wires. This optional feature can be used for monitoring various
values, resetting output(s), and changing values, all from a remote location.
Typical devices that are connected to a TSC unit are a printer, a terminal, a
programmable controller, or a host computer.
The RS-485 differential (balanced) design has good noise immunity and
allows for communication distances of up to 4000 feet. Up to 32 units can be
connected on a pair of wires and a common. The RS-485 common is isolated
from the controller input signal common to eliminate ground loop problems
associated with the input probe. The unit’s address can be programmed from 0
to 99. An Optional RLC Serial Converter Module (RS-422 to 20 mA current
loop) can be installed to expand the unit’s flexibility.
COMMUNICATION FORMAT
The half-duplex communication operation sends data by switching voltage
levels on the common pair of wires. Data is received by monitoring the levels
and interpreting the codes that were transmitted.
In order for data to be interpreted correctly, there must be identical formats
and baud rates between the communicating devices. The formats available for
the TSC unit are 1 start bit, 7 data bits, No parity or 1 parity bit (odd or even)
and 1 stop bit. The programmable baud rates are; 300, 600, 1200, 2400, 4800,
or 9600 baud.
10 BIT DATA FORMAT
9 BIT DATA FORMAT
Before serial communication can take place, the unit must be programmed
to the same baud rate and parity as the connected equipment. In addition, the
loop address number and print options should be known. When used with a
terminal or host computer and only one unit is employed, an address of zero
(0) may be used to eliminate the requirement for the address specifier when
sending a command. If more than one unit is on the line, each unit should be
assigned a different address number.
SENDING COMMANDS AND DATA
When sending commands to a TSC unit, a command string must be
constructed. The command string may consist of command codes, value
identifiers, and numerical data. Below is a list of commands and value
identifiers that are used when communicating with the TSC unit.
COMMAND DESCRIPTION
-58-
N (4EH)
Address command; Followed by a one or two digit address number 0-99.
P (50H)
Transmit print options command; Transmits the options selected in the
Program Options (PoPt) section
R (52H)
Reset command; Followed by one of the Value Identifiers (G or H)
T (54H)
Transmit value command; Followed by one of the Value Identifiers (A-M, O, Q).
C (43H)
Control action command; Followed by the Value Identifier (S or U) and number.
V (56H)
Change value command; Followed by one Value Identifier (B-H & J-M, O),
then the proper numerical data.
VALUE
IDENTIFIER
A
B
C
D
E
F
G
H
I
J
K
L
M
O
Q
S
U
DESCRIPTION
Temperature Display Value
Setpoint
Output Power
Proportional Band
Integral Time
Derivative Time
Alarm 1
Alarm 2
Deviation
Output Power Offset
Setpoint Ramp Rate Q
Cooling Relative Gain
Cooling Deadband
Program Phase Time Remaining
Program Phase Status
Control Mode
1 - Automatic
2 - Manual (User)
1 = Start Profile 1 Operation
2 = Start Profile 2 Operation
3 = Start Profile 3 Operation
4 = Start Profile 4 Operation
5 = Stop Profile Operation
6 = Pause Profile Operation
7 = Continue Profile Operation
8 = Advance Profile to Next Phase
SERIAL
MNEMONIC
UNITS
TMP
SET
PWR
PBD
INT
DER
AL1
AL2
DEV
OFP
RMP
CRG
CDB
TIM
STS
--
F/C
F/C
%
%
S
S
F/C
F/C
F/C
%
R
G
F/C
M
---
---------
---------
Note: The % output power can be changed only if the controller is in the
manual mode of operation.
Profile data cannot be configured via the serial interface. Only status
changes can be made to a running profile.
Q The Auto Setpoint Ramp Rate is not associated with a profile. This
parameter is programmed in the Input Parameter Module (1-IN) (see
Setpoint Ramp Rate for details).
A command string is constructed by using a command, a value identifier,
and a data value if required. The Data value need not contain the decimal point
since it is fixed within the unit, when programmed at the front panel. The TSC
will accept the decimal point, however it does not interpret them in any way.
Leading zeros can be eliminated, but all trailing zeros must be present.
Example: If an alarm value of 750.0 is to be sent, the data value can be
transmitted as 750.0 or 7500. If a 750 is transmitted, the alarm value is
changed to 75.0 in the unit.
The address command allows a transmission string to be directed to a
specific unit on the serial communications line. When the unit address is zero,
transmission of the address command is not required. For applications that
require several units, it is recommended that each unit on the line be assigned a
specific address.
If they are assigned the same address, a Transmit Value Command, will cause
all the units to respond simultaneously, resulting in a communication collision.
The command string is constructed in a specific logical sequence. The TSC
does not accept command strings that do not follow this sequence. Only one
operation can be performed per command string.
The following procedure should be used when constructing a command string.
1. The first two to three characters of the command string must consist of the
Address Command (N) and the address number of the unit (0-99). If the unit
address is zero, the address command and number need NOT be sent.
2. The next character in the command string is the command that the unit is to
perform (P, R, T, C, or V).
3. A Value Identifier is next if it pertains to the command. The command P
(print) does not require a Value Identifier.
4. The numerical data will be next in the command string if the “Change
Value” or “Control Action” command is used.
5. All command strings must be terminated with an asterisk Q (2AH). This
character indicates to the unit that the command string is complete and
begins processing the command.
Below are typical examples of command strings.
Ex. 1 Change Proportional Band Value to 13.0% on the unit with an address
of 2.
Command String: N2VD130Q
Ex. 2 Transmit the Temperature Value of the unit with an address of 3.
Command String: N3TAQ
Ex. 3 Reset Alarm Output 1 of the unit with an address of 0.
Command String: RGQ
Ex. 4 Start profile 1 of the unit with an address of 13.
Command String: Nl3CU1Q
If illegal commands or characters are sent to the TSC, the string must be
re-transmitted.
-59-
SENDING COMMANDS AND DATA (Cont’d)
When writing application programs in Basic, the transmission of spaces or
carriage return and line feed should be inhibited by using the semicolon
delimiter with the “PRINT” statement. The unit does not accept a carriage
return or line feed as valid characters.
It is recommended that a “Transmit Value” command follow a “Change
Value” Command. If this is done, the reception of the data can provide a
timing reference for sending another command and insures that the change has
occurred. When a “Change Value or Reset” command is sent to the unit, there
is time required for the unit to process the command string. The diagrams
show the timing considerations that need to be made.
RECEIVING DATA
Data is transmitted from the TSC when a “T” Transmit Value or a “P”
Transmit Print Options command is sent to the unit via the serial port. Also,
when the User Input, programmed for the Print Request function, is activated.
The print rate features allows the selected print options to be transmitted at a
programmable automatic rate via the serial port. The format for a typical
transmission string with mnemonics is shown below:
The first two digits transmitted are the unit address followed by one blank
space. If the unit address is 0, the first locations are blank. The next three
characters are the mnemonics followed by one or more blank spaces. The
numerical data value is transmitted next followed by the identifying units.
Negative values are indicated by a “-” sign.
The decimal point position “floats” within the data field depending on
the actual value it represents. The numeric data is right justified without
leading zeros.
When a “T” command or print request is issued, the above character string
is sent for each line of a block transmission. An extra <SP><CR><LF> is
transmitted following the last line of transmission from a print request, to
provide separation between print outs.
If abbreviated transmission is selected, just numeric data is sent. If
abbreviated transmission is NOT selected, the unit transmits Mnemonics and
the units.
-60-
If more than one string is transmitted, there is a 100 msec minimum to 200
msec maximum built-in time delay after each transmission string and after
each block of transmission. When interfacing to a printer, sending mnemonics
are usually desirable. Examples of transmissions are shown below:
1 TMP 500F<CR><LF>100 - 200 msec
Mnemonics Sent
1 SET 525F<CR><LF>100 - 200 msec
1 PWR 20%<CR><LF><SP><CR><LF>100 - 200 msec
-673.5<CR><LF>100 - 200 msec
NO Mnemonics Sent
The Print Options provide a choice of which TSC data values are to be
transmitted. The TSC will transmit the Print Options when either the User
Input, programmed for the print request function is activated, a “P” (Transmit
Print Options) command is sent to the TSC via the serial port, or the Automatic
Print Rate is set for a specific time. The Print Options are programmed in the
Serial Communications Module (6-SC) with the available options:
1. Print Display Temperature Value.
2. Print Setpoint Value.
3. Print % Output Power Value.
4. Print % Proportional Band Value.
5. Print Integral Time Value.
6. Print Derivative Time Value.
7. Print Alarm 1 Value.
8. Print Alarm 2 Value.
9. Print Deviation From Setpoint Value.
10. Print % Output Power Offset Value.
11. Print Setpoint Ramp Rate Value.
12. Print Cooling Relative Gain Value.
13. Print Cooling Deadband Value.
14. Print Profile Phase Time Remaining.
15. Print Profile Status.
A print out from a TSC unit with an address of 1 and all print options
selected is shown below:
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
TMP
SET
PWR
PBD
INT
DER
AL1
AL2
DEV
OFP
RMP
CRG
CDB
TIM
STS
500F
525F
20.0%
4.0%
120S
30S
600F
475F
-25F
0.0%
0.0R
1.0G
10F
1.6M
P2H3
Note: If the cooling option is installed, AL2 is not printed or functional.
-61-
SERIAL CONNECTIONS
When wiring the terminal block at the rear of the unit, refer to the label with
the terminal description for installing each wire in its proper location. It is
recommended that shielded (screened) cable be used for serial
communications. This unit meets the EMC specifications using Alpha #2404
cable or equivalent. There are higher grades of shielded cable, such as four
conductor twisted pair, that offer an even higher degree of noise immunity.
Only two transceiver wires and a common are needed.
The two data (transceiver) wires connect to the TX/RX(+) and TX/RX(-)
terminals, appropriately.
The cable should consist of a shielded twisted pair and in some applications
a signal ground may be required to establish a ground reference. The signal
ground is required if the equipment does not have internal bias resistors
connected to the RS-485 transceiver lines. The signal ground is connected at
the RS-485 common of only one TSC unit to the RS-485 equipment. If
necessary, the shield can be used as the signal ground.
The signal input common is isolated from the RS-485 common and the
analog output “-” terminal.
Note: Do NOT connect any of the commons to the 4-20 mA output “-” terminal.
Terminal Descriptions
RS-485 COMM. - Common may be required for communication hook-up.
TX/RX (+) & TX/RX (-) - The TSC transmits and receives on these two
terminals which are connected to the external device.
TX EN. - Used with a Red Lion Controls (RLC) GCM422 Serial Converter
Module (RS422 to 20 mA Loop). Otherwise not normally used.
-62-
Connecting To A Host Terminal
Six TSC units are used to control a process in a plant. The TSC units are
located at the proper location to optimize the process. A communication line is
run to an industrial computer located in the production office. The drawing
shows the line connection. Each TSC is programmed for a different address
and are all programmed for the same baud rate and parity as the computer (ex
9600 baud, parity even).
An application program is written to send and receive data from the units
using the proper commands.
TROUBLESHOOTING SERIAL COMMUNICATIONS
If problems are encountered when interfacing the TSC(s) and host device or
printer, the following check list can be used to help find a solution.
1. Check all wiring. Refer to the previous application examples and use them
as a guide to check your serial communication wiring. Proper polarity of all
units and other peripherals must be observed.
2. If the TSC is connected to a “host computer”, device or printer, check to
make sure that the computer or device is configured with the same baud rate
and communication format as the TSC. The communication format the
TSC will accept is; 1 start bit, 7 data bits, no parity or 1 parity bit (odd or
even), and 1 stop bit.
3. Check the TSC’s unit address. If the Address command is not used when
transmitting a command to the TSC, the TSC’s address must be set to 0. See
“Sending Commands & Data” section for command structure.
4. If two-way communications are to be established between the TSC and a
computer, have the computer receive transmissions from the TSC first.
Activating the User Input, programmed for the print request function, will
initiate transmissions from the TSC.
5. When sending commands to the TSC, an asterisk * (2Ah) must terminate the
command. After system power-up an asterisk must first be sent to clear the
TSC input buffer.
6. In multiple unit configurations, make sure each unit has a different address
other than zero.
7. If all of the above has been done, try reversing the polarity of the transceiver
wires between the TSC(s) and the RS-485 interface card. Some cards have
the polarity reversed.
-63-
PID CONTROL
INTEGRAL TIME
PROPORTIONAL BAND
Proportional band is defined as the “band” of temperature the process
changes to cause the percent output power to change from 0% to 100%. The
band may or may not be centered about the setpoint value depending upon the
steady state requirements of the process. The band is shifted by manual offset
or integral action (automatic reset) to maintain zero error. Proportional band is
expressed as percent of input sensor range.
Integral time is defined as the time, in seconds, in which the output due to
integral action alone equals the output due to proportional action with a
constant process error. As long as a constant error exists, integral action will
“repeat” the proportional action every integral time. Integral action shifts the
center point position of the proportional band to eliminate error in the steady
state. The units of integral time are seconds per repeat.
(Ex. Thermocouple type T with a temperature range of 600°C is used and is
indicated in degrees C with a proportional band of 5%. This yields a band of
600°C x 5% = 30°C)
The proportional band should be set to obtain the best response to a
disturbance while minimizing overshoot. Low proportional band settings
(high gain) result in quick controller response at expense of stability and
increased overshoot. Settings that are excessively low will produce
continuous oscillations at setpoint. High proportional band settings (low gain)
results in a sluggish response with long periods of process “droop”. A
proportional band of 0.0% forces the controller into ON/OFF control mode
with its characteristic cycling at setpoint (see ON/OFF Control).
-64-
Integral action (also known as “automatic reset”) changes the output power
to bring the process to setpoint. Integral times that are too fast (small times) do
not allow the process to respond to the new output value and, in effect, “over
compensate” which leads to an unstable process with excessive overshoot.
Integral times that are too slow (large times) produce a response which is
sluggish to eliminate steady state errors. Integral action may be disabled by
setting the term to 0. If done so, the previous integral output power value is
maintained to keep the output at a constant level.
INTEGRAL TIME (Cont’d)
If integral action is disabled (Automatic Reset), manual reset is available by
modifying the output power offset (“OPOF” initially set to zero) to eliminate
steady state errors. This parameter appears in unprotected parameter mode
when integral time is set to zero. The controller has the feature to prevent
integral action when operating outside the proportional band. This prevents
“reset wind-up”.
Note: The Proportional band shift due to integral action may itself be “reset”
by temporarily setting the controller into the ON/OFF control mode
(proportional band =0).
DERIVATIVE TIME
Derivative time is defined as the time, in seconds, in which the output due to
proportional action alone equals the output due to derivative action with a
ramping process error. As long as ramping error exists, the derivative action
will be “repeated” by proportional action every derivative time. The units of
derivative time are seconds per repeat.
Derivative action is used to shorten the process response time and helps to
stabilize the process by providing an output based on the rate of change of the
process. In effect, derivative action anticipates where the process is headed
and changes the output before it actually “arrives”. Increasing the derivative
time helps to stabilize the response, but too much derivative time coupled
with noisy signal processes, may cause the output to fluctuate too greatly
yielding poor control. None or too little derivative action usually results in
decreased stability with higher overshoots. No derivative action usually
requires a wider proportional and slower integral times to maintain the same
degree of stability as with derivative action. Derivative action is defeated by
setting the time to zero.
OUTPUT POWER OFFSET (MANUAL RESET)
If the integral time is set to 0 (automatic reset is off), it may be necessary to
modify the output power to eliminate errors in the steady state. The output
power offset (OPOF) parameter will appear in the unprotected mode, if the
integral time = 0. If integral action (automatic reset) is later invoked, the
previous output power offset remains in effect.
PID ADJUSTMENTS
To aid in the adjustment of the PID parameters for improved process
control, a temperature chart recorder is necessary to provide a visual means of
analyzing the process. Compare the actual process response to the PID
response figures with a step change to the process. Make changes to the PID
parameters in no more than 20% increments from the starting value and allow
the process sufficient time to stabilize before evaluating the effects of the new
parameter settings.
-65-
PROCESS RESPONSE EXTREMES
-66-
ON/OFF CONTROL
The controller can operate in the
ON/OFF control mode by setting the
proportional band = 0.0. The ON/OFF
control hysteresis band (CHYS) parameter
can be used to eliminate output chatter
around setpoint. The cooling output can
also be used in the ON/OFF control by
setting the relative gain = 0.0
The phase of the control action can be
reversed by the output control action
parameter. ON/OFF control is usually
characterized by significant temperature
oscillations about the setpoint value. Large
control hysteresis values makes the
oscillations larger. ON/OFF control should
only be used where the constant oscillations
have little effect on the process.
MAIN CONTROL OUTPUT (OP1)
-67-
COOLING OUTPUT (OP2)
ON/OFF CONTROL
ON/OFF and PID control can be used for the heat and cool output in several
combinations. The following lists the valid control modes:
OP1 & OP2 VALID CONTROL MODES
OP1 MODE OP2 MODE
MANUAL MODE OUTPUT
POWER RANGE
OP1 STATE
PID
0% to +100.0%
OP1-TP
ON/OFF
(PrOP=0.0)
+100.0%
OP1-ON
Any other setting
OP1-OFF
OP2 STATE
PID
PID
-100.0% to +100.0%
OP1-TP
OP2-TP
PID
ON/OFF
0% to +100.0%
OP1-TP
OP2-OFF
(GAN2=0.0)
ON/OFF
(PrOP=0.0)
ON/OFF
(GAN2=0.0)
-100.0% to 0%
OP1-TP
OP2-ON
+100.0%
OP1-ON
OP2-OFF
-100.0%
OP1-OFF
OP2-ON
Any other settings
OP1-OFF
OP2-OFF
TP - Time Proportioning
Note: In manual mode, the % output power is not limited to the output power limits
(OPLO & OPHI).
-68-
AUTO-TUNE
Auto-Tune is a user initiated function in which the
controller automatically determines the optimum
PID settings based upon the process characteristics.
The desired temperature setpoint should be entered
first. Auto-Tune may then be initiated at start-up,
from setpoint, or at any other process temperature
point. Auto-Tune may be invoked while a profile is
running and after Auto-Tune is complete, the profile
resumes operation.
After Auto-Tune is complete, the PID settings
remain constant until user modified. As shown in the
Auto-Tune Operation figure, Auto-Tune cycles the
process at a control point 3/4 of the distance between
the current process temperature where Auto-Tune
was initiated and the temperature setpoint. The 3/4
control point was selected to reduce the chance of
temperature overshoot at setpoint when
Auto-Tuning at start-up. If Auto-Tuning from
setpoint and temperature overshoot is unacceptable,
place the controller in the user (manual) mode and
reduce the power to lower the process temperature.
Allow the temperature to stabilize and execute
Auto-Tune from the lower temperature. After
starting Auto-Tune, the secondary display indicates
the current phase (Aut1, Aut2, Aut3, Aut4, & Aut5).
If the controller remains in an Auto-Tune phase
unusually long, the process or connections may be faulty. Auto-Tune may be
terminated at any time without disturbing the previous PID constants. As an
alternative to auto-tuning, the manual tuning procedure can be used to give
satisfactory results.
Prior to initiating Auto-Tune, it is essential that the controller be configured
to the application. In particular, control hysteresis (CHYS) and Auto-Tune
damping code (tcod) must be set in the Output Parameters section. Generally,
control hysteresis of 2 - 5 degrees is adequate. The damping code may be set to
yield the response characteristics shown in the damping code figure.
AUTO-TUNE OPERATION FIGURE
-69-
AUTO-TUNE (Cont’d)
To Initiate Auto-Tune:
A damping code setting of 0 gives the fastest response with some overshoot,
and a code of 4 gives the slowest response with minimum overshoot.
For heat/cool systems, use a damping code of 1 or 2. On these systems, the
relative cooling gain (Gan2) and heat/cool overlap (db-2) must be set by the
user (the controller will not alter these parameters). (See Cooling section for
adjustment of these parameters). During Auto-Tune, it is important that
external load disturbances be minimized, and if present, other zone controllers
idled as these will have an effect on the PID constant determination. Keep in
mind for large thermal systems with long time constants, Auto-Tune may take
hours to complete.
DAMPING CODE FIGURE
Make sure that Auto-Tuning is enabled in parameter lockouts module.
Place the controller into the normal display mode.
Press PAR for 3 seconds from normal display mode.
Scroll to “tUNE” by use of PAR, if necessary.
Select “YES” and press PAR.
Auto-Tune is initiated.
To Cancel Auto-Tune: (Old PID settings remain in effect).
A) Make sure that Auto-Tuning is enabled in parameter lockouts module.
Place the controller into the normal display mode.
Press PAR for 3 seconds from normal display mode.
Scroll to “tUNE” by use of PAR, if necessary.
Select “NO” and press PAR.
Auto-Tune canceled.
B) Or reset the controller by disconnecting AC power.
Note: If using the linear DC output for control, full power will be applied
(+100% OP1 or -100% OP2) regardless of the output power limit settings.
Note: Actual responses may vary depending on the
process, step changes, etc.
-70-
APPENDIX “A” - APPLICATION EXAMPLE
TSC Glass Tempering Application
A manufacturer of glass items needs to anneal (temper) their products to
reduce the brittleness of the glass structure. The tempering process
requires the glass to be heated and subsequently cooled at a controlled rate
to change the structure of the glass. Different tempering profiles are
required for different types of glass products.
A TSC is employed to control the temperature profile of the annealing
oven. Four different temperature profiles are stored in the controller. The
4-20 mA analog output option is utilized to cool the annealing oven during
the cool down ramp phases. An event output is used to quickly cool the oven
at the end of the batch run (alarm 1). Alarm 2 is used to signal the operator
whenever the temperature is outside the prescribed profile.
Note: Units equipped with the RS-485 option have different terminal
designators. See “Output Variations with or without the RS-485 Option”.
The programming for this profile is as follows:
Parameter
“P1r1”
“P1L1”
“P1H1”
“P1r2”
“P1L2”
“P1H2”
“P1r3”
“P1 1”
“P1 2”
“P1 3”
“P1 4”
Value
5.0
300
40.0
3.0
150
0.0
-0.1
1F2F
1F2F
1F2F
1N2F
Description
Ramp from ambient temp. during heat phase at 5.0°/min.
Target setpoint level 300°
Heat at 300° for 40.0 minutes
Ramp down 3.0°/min. during cooling phase
Target Setpoint is 150°
Do not hold at 150° (used as “phantom” hold time for
triggering event output for auxiliary cooling)
End Program
Turn off output 1 (output 2 is alarm)
Keep off output 1
Keep off output 1
Turn on output 1 for Auxiliary Exhaust Fan
-71-
APPENDIX “B” - SPECIFICATIONS AND DIMENSIONS
1. DISPLAY: Dual 4-digit
Upper Temperature Display: 0.4" (10.2 mm) High Red LED
Lower Auxiliary Display: 0.3" (7.6 mm) High Green LED
Display Messages:
“OLOL”
“ULUL”
“OPEN”
“SHrt”
“....”
“-...”
-
3. ANNUNCIATORS:
6 LED Backlight Status Indicators:
%PW
PGM
MAN
OP1
AL1
AL2
OP2
Appears when measurement exceeds + sensor range.
Appears when measurement exceeds - sensor range.
Appears when open sensor is detected.
Appears when shorted sensor is detected (RTD only).
Appears when display value exceeds + display range.
Appears when display value exceeds - display range.
2. POWER: Switch selectable 115/230 VAC (+10%, -15%) no observable
line variation effect, 48-62 Hz, 10 VA
-
Lower auxiliary display shows power output in (%).
Lower auxiliary display shows profile status or profile time remaining.
Controller is in manual mode.
Main control output is active.
Alarm #1 is active.
Alarm #2 is active (For dual alarm option).
Cooling output is active (For cooling option).
4. CONTROLS: Four front panel push buttons for setup and modification of
controller functions and one external input.
DIMENSIONS In inches (mm)
Note: Recommended minimum clearance (behind the panel) for panel latch installation is 5.5" (140)H x 2.1" (53.4)W.
PANEL CUT-OUT
-72-
5. SETPOINT PROFILE:
Profiles: 4
Segments Per Profile: 8 ramp/hold segments (linkable to 32 segments).
Ramp Rate: 0.1 to 999.9 degrees/minute or step ramp.
Hold Time: Off or from 0.1 to 999.9 minutes, can be extended to 500
hours by linking.
Error Band Conformity: Off or from 1 to 9999 degrees deviation,
+ value for hold phases, - value for both ramp and hold phases.
Power-On Modes: Stop, auto-start, or profile resume.
Start Mode: Ramps from process temperature.
Program Auto Cycle: 1 to 249, or continuous.
Event Outputs: 2, time activated with profile [uses Alarm output(s)].
Control: Front panel buttons, user input, or RS-485 communications.
6. CONTROL POINTS:
Setpoints: 4
PID gain sets: 4
Control: Front panel buttons or user input.
7. SENSOR INPUT:
Sample Period: 100 msec
Response Time: 300 msec (to within 99% of final value w/step input;
typically, response is limited to response time of probe).
Failed Sensor Response:
Main Control Output(s): Programmable preset output.
Display: “OPEN”.
Alarms: Upscale drive.
DC Linear: Programmable preset output.
Normal Mode Rejection: 40 dB @ 50/60 Hz
(improves with increased digital filtering).
Common Mode Rejection: 100 dB, DC to 50/60 Hz.
Protection: Input overload voltage; 240 VAC @ 30 sec max.
8. THERMOCOUPLE:
Types: T, E, J, K, R, S, B, N or Linear mV.
Input Impedance: 20 MW, all types.
Lead Resistance Effect: 20 mV/350 W.
Cold Junction Compensation: Less than ±1°C error over 0-50°C
ambient temperature range. Disabled for linear mV type.
Resolution: 1°C/F all types, or 0.1°C/F for T, E, J, K, and N only.
9. RTD: 2, 3 or 4 wire, 100 W platinum,
alpha = 0.00385 (DIN 43760),
alpha = 0.003916
Excitation: 0.175 mA
Resolution: 1 or 0.1 degree
Lead Resistance: 7W max.
10. RANGE AND ACCURACY:
Errors include NIST conformity and A/D conversion errors at 23°C after 20
minutes warm-up. Thermocouple errors include cold junction effect. Errors
are expressed as ±(% of reading) and ± 3/4 LSD unless otherwise noted.
TC TYPE
RANGE
ACCURACY
T
-200 to +400°C
-328 to +752°F
0.20% + 1.5°C
0.20% + 2.7°F
-200 to +750°C
-328 to +1382°F
0.20% + 1.5°C
0.20% + 2.7°F
violet
-200 to +760°C
-328 to +1400°F
0.15% + 1.5°C
0.15% + 2.7°F
white
-200 to +1250°C
-328 to +2282°F
0.20% + 1.5°C
0.20% + 2.7°F
yellow
0 to +1768°C
+32 to 3214°F
0.15% + 2.5°C
0.15% + 4.5°F
black
0 to +1768°C
+32 to 3214°F
0.15% + 2.5°C
0.15% + 4.5°F
+200 to +1820°C
+300 to +3300°F
0.15% + 2.5°C
0.15% + 4.5°F
-200 to +1300°C
-328 to +2372°F
-5.00 to 56.00
0.20% + 1.5°C
0.20% + 2.5°F
orange
0.15% + 1 LSD
-200 to +600°C
-328 to +1100°F
0.10% + 0.5°C
0.10% + 0.9°F
——
——
-200 to +600°C
-328 to +1100°F
1.0 to 320.0
0.10% + 0.5°C
0.10% + 0.9°F
0.15% + 1 LSD
E
J
K
R
S
B
N
mV
RTD
(385)
RTD
(392)
OHMS
-73-
WIRE COLOR
(ANSI)
blue
black
grey
——
——
APPENDIX “B” - SPECIFICATIONS & DIMENSIONS (Cont’d)
11. OUTPUT MODULES [Optional] (For All Output Channels):
Relay:
Type: Form-C (Form-A with RS-485 option)
Rating: 5 Amps @ 120/240 VAC or 28 VDC (resistive load),
1/8 HP @ 120 VAC (inductive load).
Life Expectancy: 100,000 cycles at maximum rating. (Decreasing
load and/or increasing cycle time, increases life expectancy).
Logic/SSR Drive: Can drive up to three SSR Power Units.
Type: Non-isolated switched DC, 12 VDC typical
Drive: 45 mA max.
Protection: Short-circuit protected.
Triac:
Type: Isolated, Zero Crossing Detection.
Ratings:
Voltage: 120/240 VAC
Max Load Current: 1 AMP @ 35°C
0.75 AMP @ 50°C
Min Load Current: 10 mA
Off State Leakage Current: 7 mA max. @ 60 Hz
Operating Frequency: 20 to 500 Hz
Protection: Internal Transient Snubber, Fused.
12. MAIN CONTROL OUTPUT (Heating or Cooling):
Control: PID or ON/OFF.
Output: Time proportioning or linear DC.
Hardware: Plug-in, replaceable output modules.
Cycle time: Programmable.
Auto-Tune: When performed, sets proportional band, integral time,
and derivative time values.
Probe Break Action: Programmable.
13. COOLING OUTPUT (Optional):
Control: PID or ON/OFF.
Output: Time proportioning or linear DC.
Hardware: Plug-in, replaceable output modules.
Cycle time: Programmable.
Proportional Gain Adjust: Programmable.
Heat/Cool DeadBand: Programmable.
-74-
14. LINEAR DC DRIVE (Optional): With digital scale and offset,
programmable deadband and update time.
4-20 mA:
Resolution: 1 part in 3500 typical
Accuracy: ±(0.1% of reading + 25 mA)
Compliance: 10 V (500 W max. loop impedance)
0 to 10 VDC:
Resolution: 1 part in 3500 typical
Accuracy: ±(0.1% of reading + 35 mV)
Min Load Resistance: 10 KW (1 mA max.)
Source: % output power, setpoint, deviation, or temperature.
(Available for heat or cool, but not both.)
15. ALARMS (Optional):
Hardware: Plug-in, replaceable output module.
Modes: Absolute high acting
Absolute low acting
Deviation high acting
Deviation low acting
Inside band acting
Outside band acting
Timed event output(s)
Reset Action: Programmable; automatic or latched.
Delay: Programmable; enable or disable.
Hysteresis: Programmable.
Probe Break Action: Upscale.
Annunciator: LED backlight for “AL1”, “AL2”, (Alarm #2 not available
with cooling output).
16. SERIAL COMMUNICATIONS (Optional):
Type: RS-485 Multi-point, Balanced Interface.
Communication Format:
Baud Rate: Programmable from 300 to 9600.
Parity: Programmable for odd, even, or no parity.
Frame: 1 start bit, 7 data bits, 1 or no parity bit, 1 stop bit.
Unit Address: Programmable from 0-99, maximum of 32 units per line.
Transmit Delay: 100 msec Minimum, 200 msec Maximum.
RS-485 Common: Isolated from signal input common.
Auto Print Time: Off to 9999 seconds between print-outs.
17. USER INPUT: Internally pulled to +5 VDC; VIN Max = 5.25 VDC,
VIL = 0.85 VMAX; VIH = 2.0 VMIN, Response time 100 msec maximum.
Functions:
Program Lock
Print Request
Integral Action Lock
Load Control Point
Auto/Manual Transfer Run/Hold Profile 1
Setpoint Ramp Select
Run/Stop Profile 1
Reset Alarms
18. ENVIRONMENTAL CONDITIONS:
Operating Temperature: 0° to 50°C
Storage Temperature: -40° to 80°C
Op er ating and Stor age Hu mid ity: 85% max. Rel a tive hu mid ity
(non-con densing) from 0 to 50°C.
Vibration to IEC 68-2-6: Operational 5 to 150 Hz, 1 g.
Shock to IEC 68-2-27: Operational 5 g.
Span Drift: £100 ppm/°C
Zero Drift: £1mV/°C
Altitude: Up to 2000 meters
19. CERTIFICATIONS AND COMPLIANCES:
CE Approved
EN 61326-1 Immunity to Industrial Locations
Emission CISPR 11 Class A
Safety requirements for electrical equipment for measurement, control,
and laboratory use:
EN 61010-1: General Requirements
E N 6 1 0 1 0 -2 - 0 3 0 : Pa r ti c u l ar R e q u ir e me n t s f o r T e s ti n g a n d
Measuring Circuits
RoHS Compliant
UL Recognized Component: File # E156876
UL Listed: File #E137808
Type 2 or 4X Enclosure rating (Face only)
IP65 Enclosure rating (Face only)
Refer to the EMC Installation Guidelines section of the manual for
additional information.
20. CONNECTION: Jaw-type terminal block.
Wire Range: 12-30 AWG copper wire
Torque: 5-7 inch-lbs (56-79 N-cm)
21. CONSTRUCTION:
Front Panel: Flame and scratch re sis tant tinted plastic.
Case: High impact black plastic. (Mounting collar included).
NEMA 4X/IP65 model only: Sealed be zel utilizing 2 cap tive mount ing
screws (panel gasket included). This unit is rated for NEMA 4X/IP65
indoor use. Installation Category II, Pollution Degree 2.
22. WEIGHT: 1.3 lbs. (0.6 kgs)
-75-
APPENDIX “C” - TROUBLESHOOTING
The majority of problems can be traced to improper connections or incorrect set-up
parameters. Be sure all connections are clean and tight, that the correct output module is
fitted, and that the set-up parameters are correct. For further technical assistance, contact
technical support at the numbers listed on the back cover of the instruction manual.
PROBLEMS
POSSIBLE CAUSE
REMEDIES
NO DISPLAY
1. Power off
2. Voltage selector switch in the wrong position.
3. Brown out condition
4. Loose connection or improperly wired.
5. Bezel assembly not fully seated into rear of unit.
1. Check power.
2. Check selector switch position.
3. Verify power reading.
4. Check connections.
5. Check installation.
INDICATOR
NOT WORKING
1. Incorrect parameter set-up
1. Check set-up parameters.
a. Power-up unit for self-test.
“E-FP” IN DISPLAY
1. Defective front panel button.
1. Press DSP to escape, then check all buttons
for proper operation.
2. Replace unit.
“E-UP” IN DISPLAY
1. Internal problem with controller.
1. Replace unit.
“E-E2” IN DISPLAY
1. Loss of set-up parameters due to noise spike.
1. Press DSP to clear then check ALL set-up
parameters.
a. Check sensor input & AC line for
excessive noise.
b. If fault persists, replace unit.
“E-CJ” FLASHING IN
UPPER DISPLAY
1. Input jumper set for RTD and input programming set
for thermocouple.
1. Check input jumper position.
“....” or “-...” IN DISPLAY
1. Temperature over 999.9 or under -99.9.
1. Change to 1° resolution.
a. Verify temperature reading.
2. Check cold junction calibration.
3. Check set-up parameters.
4. Check calibration.
2. Defective or mis-calibrated cold junction circuit.
3. Loss of set-up parameters.
4. Internal malfunction.
-76-
APPENDIX “C” - TROUBLESHOOTING (Cont’d)
PROBLEMS
POSSIBLE CAUSE
REMEDIES
“OPEN” IN DISPLAY
1. Probe disconnected.
2. Input selector jumper in wrong position.
3. Broken or burned out probe.
4. Corroded or broken terminations.
5. Excessive process temperature.
1. Connect probe.
2. Verify correct jumper position.
3. Replace probe.
4. Check connections.
5. Check process parameters.
“OLOL” IN DISPLAY
1. Temperature exceeds range of input probe.
1. Change to input sensor with a higher
temperature range.
2. Reduce temperature.
3. Check set-up.
2. Excessive positive probe temperature.
3. Loss of set-up parameters.
“ULUL” IN DISPLAY
1. Temperature below range of input probe.
2. Excessive negative probe temperature.
3. Loss of set-up parameters.
1. Change to input sensor with lower bottom
range.
2. Increase temperature.
3. Check set-up parameters.
“SHrt” IN DISPLAY
1. RTD probe shorted.
1. Check wiring.
2. Replace RTD probe.
DISPLAY INCORRECT
OR DISPLAY WANDERS
1. Incorrect probe.
1. Verify that input type selector and
programming agree.
2. Check connections.
3. Check connections.
4. Check extension wire.
5. Check or replace probe.
6. Evaluate probe placement.
a. Increase digital input filtering.
7. Check calibration.
(see Appendix “E” Calibration Accuracy)
2. Connections reversed.
3. Loose or corroded connections.
4. Wrong thermocouple extension wire.
5. Failing or failed probe.
6. Probe placed in unsuitable location or insulated from
actual process temperature.
7. Controller needs calibration.
-77-
APPENDIX “C” - TROUBLESHOOTING (Cont’d)
PROBLEMS
POSSIBLE CAUSE
REMEDIES
TEMPERATURE NOT
STABLE OR SLUGGISH
1. Incorrect PID values.
2. Heater undersized.
3. Improper probe location.
1. See PID CONTROL.
2. Increase heating power.
3. Evaluate probe location.
OUTPUTS NOT WORKING
1. Improperly wired.
2. Incorrect output module.
3. Defective output module.
1. Check wiring.
2. Check output module.
3. Check or replace output module.
LINEAR DC OUTPUT
NOT WORKING
1. Too high load resistance.
1. Check that maximum load resistance is
< 500 W (10 V).
2. Check programming.
3. Check connections.
4. This is an active loop. Remove all DC
voltage sources.
CONTROLLER LOCKS UP
OR RESETS
2. Incorrect programming or scaling.
3. Connections reversed.
4. DC voltage source in loop.
1. Noise spikes entering controller due to load
switching transients.
2. Defective controller.
-78-
1. a. Use Triac output module, if possible.
b. Use RC snubbers or similar noise suppressors
at load point. (Do NOT use at the controller.)
c. Use separate AC feed line to controller.
d. Locate controller & signal lines away from
noise producing mechanisms (solenoids,
transformers, relays, etc.).
e. See “Installation Considerations Of
Electronic Instruments Controls In Industrial
Environments” in RLC catalog.
2. Replace unit.
OUTPUT LEAKAGE CURRENT
The AL1 and AL2/OP2 outputs of the TSC have an RC Network (Snubber)
on the Normally Open contacts. High energy noise spikes are generated
whenever current through an inductive load (such as motors, solenoids or
relay coils) is interrupted. This noise may interfere with the unit doing the
switching and other nearby equipment causing erratic operation and
accelerate relay contact wear.
The Snubber Network is specifically designed with a capacitor and resistor
connected in series and installed across relay contacts. The network will have
a small amount of AC leakage current even when the TSC’s Relay Module is
“off”. The leakage current is 2.1 mA nominal at a line voltage of 120 VAC, and
4.3 mA nominal at 240 VAC respectively. Leakage current may cause some
loads to stay on or to turn on when the Relay Module is turned off. This would
only occur in unusual applications (such as with a relay with unusually low
holding current or an LED). The leakage current may be eliminated by
disabling the snubber, however, doing so will degrade the EMC performance
of the unit.
First determine which output is associated with the leakage current: either
AL1 or AL2/OP2. Remove the Bezel Assembly from the case (see Removing
Bezel Assembly, page 9). The snubbers are located on the Option PCB (on the
right side of the unit when viewed from the front). The snubbers consist of a
capacitor and a resistor. The two resistors are located along the upper rear edge
of the Option PCB. They are green in color and have color code stripes of
yellow, violet, black and gold. There will be markings on the PCB close to the
resistors that say “SNUB1” and “SNUB2” for AL1 and AL2/OP2
respectively. Using a pair of diagonal cutters, cut both leads of the appropriate
resistor and remove it from the unit. Be sure to remove the resistor for only the
problem alarm channel; leave the other channel’s snubber functional in case it
is needed.
The above stated leakage currents are valid when using the Relay Module
(OMD00000). The Triac Module (OMD00001) has it’s own built in snubber
and will introduce additional leakage current into the circuit. The Triac
Module has leakage current of 2.1 mA nominal at a line voltage of 120 VAC,
and 4.3 mA nominal at 240 VAC.
Note: The Snubber Network will be in one of the two configurations shown at
right, depending on model ordered.
-79-
APPENDIX “D” - MANUAL TUNING
Parameter
OPEN LOOP STEP RESPONSE METHOD
The Open Loop Step Response Method is a tuning procedure that does not
induce process oscillations. This method involves making a step change to the
process and observing the process reaction. A strip paper recorder or other
high resolution data logging equipment is required for this procedure. This
procedure requires that all disturbances to the process are minimized because
the data is influenced by these disturbances.
1) Connect a chart recorder to log temperature and set the paper speed
appropriate for the process.
2) Set the controller to manual (user) control mode.
3) Allow the process to stabilize (line out).
4) Make a step change of 10% or more in the controller output. It may be
necessary to increase the size of the step to yield a sufficient process
reaction curve.
5) Record the response of the process. Use the information from the table to
calculate the controller tuning values. The PID tuning parameters are
determined graphically from the Process Reaction Curve Figure. Draw a
vertical line at the moment the step change was made. Draw a line (labeled
tangent) through the process reaction curve at its maximum upward slope.
Extend this line to intersect the vertical line.
Proportional Band (%)
Integral Time (Sec)
Derivative Time (Sec)
Output Power
Dampening (Sec)
Fast Response
20000a
Range ´ Step%
3t
Damped
Response
40000a
60000a
Range ´ Step% Range ´ Step%
4t
5t
0.4t
0.4t
0.4t
t/20
t/15
t/10
Example: From the Process reaction Curve
a = 30°, t = 300 sec, step = 10%, thermocouple range = 1700°F.
For fast response:
Prop
Intt
dert
OPdP
=
=
=
=
35.3%
900 sec
120 sec
15
Process Reaction Curve
-80-
Slow
Response
CLOSED LOOP CYCLING METHOD
An alternative to auto-tuning is manual tuning. This tuning method induces
oscillations into the process in the same way as the controller’s auto-tune
function. If oscillations are not acceptable, the open-loop tuning method can
be used.
The following is a manual tuning procedure for determination of the PID
control constants.
1. Connect a chart recorder to log temperature and set the paper speed
appropriate for the process.
2. Set the controller to automatic (auto) control mode.
3. Set proportional band to 999.9%. (maximum setting)
4. Set integral time and derivative time to 0 seconds.
5. Decrease proportional band (increase controller gain) by factors of two until
process just begins to oscillate and the oscillations are sustained. Make a
small change in setpoint to provide a stimulus for oscillations. Allow
adequate time for the process to respond. If oscillations appear to grow,
increase proportional band. Adjust the proportional band until steady
oscillations appear.
6. Note the peak-to-peak amplitude of the cycle (a) in degrees and the period of
oscillation (t) in seconds.
Parameter
Proportional Band (%)
Integral Time (sec)
Derivative Time (sec)
Output Power
Dampening (sec)
Fast Response
200a/range
1t
0.2t
t/40
Damped
Response
400a/range
2t
0.25t
t/30
Closed Loop Tuning
Slow
Response
600a/range
3t
0.25t
t/20
-81-
APPENDIX “E” - CALIBRATION
Calibration Check
The instrument has been fully calibrated at the factory for ALL
thermocouple and RTD types. If the unit appears to be indicating or
controlling incorrectly, refer to the troubleshooting section before attempting
this procedure.
If the controller is suspected of reading incorrectly, the instrument may be
checked for indication accuracy without disturbing the factory calibration.
The four parameters to be checked are: mV reading, thermocouple cold
junction temperature, RTD ohms reading, and linear DC output. The
following procedures are used for this purpose.
Note: Allow 1/2 hour warm-up with the controller in an upright position in
such a manner to allow adequate ventilation to the case before checking
these parameters.
mV Reading Check
1) Place the input sensor selection jumper in the TC position.
2) Connect a DC mV source with an accuracy of 0.01% or better to terminal #9
(+) & #10 (-).
3) Select the controller to indicate linear mV (LIN), in configure input
parameters.
4) Compare the controller readout to the standard at various points over the
range (-5.00 mV to 54.00 mV).
The tolerance is 0.15% of reading ± 1 LSD
5) Calibrate the controller if the readings are out of tolerance.
Thermocouple Cold Junction Temperature Check
1) Place the input sensor selection jumper in the TC position.
2) Place a reference temperature probe in immediate vicinity of terminal #9
& #10.
3) Install a shorting wire to terminals #9 & #10.
4) With thermocouple type T selected, compare controller readout with a
calibrated probe. Allow sufficient time for temperatures to equalize. The
tolerance is ±1°C.
5) Calibrate the cold junction temperature if out of tolerance.
-82-
RTD Ohms Reading
1) Place the input sensor jumper in the RTD position.
2) Connect RTD simulator to terminals #8, #9, & #10 (with an accuracy of 0.1
ohm or better).
3) Select the controller for linear OHMS (rLIN) readout, in configure input
parameters.
4) Compare the controller readout with the RTD simulator at various points
over the range 0.0 to 300.0 ohms.
The tolerance is 0.15% of reading ± 1 LSD.
5) Calibrate the controller RTD ohms if out of tolerance.
Linear DC Output Check
4 to 20 mA
1) Connect an ammeter to the linear output (#11 & #12) with an accuracy of
0.1% or better.
2) Set “ANAS” (analog assignment) to “INP”, in configure input parameters.
3) Drive the input signal level below the programmed “ANLO” value.
Check for 4 mA (±0.02 mA).
4) Drive the input signal level above the programmed “ANHI” value.
Check for 20 mA (±0.03 mA).
5) Calibrate the controller linear DC output if out of tolerance.
0 to 10 VDC
1) Connect a voltmeter to the linear output (#11 & #12).
2) Set “ANAS” (Analog Assignment) to “INP”, in Configure Input Parameters.
3) Drive the input signal level below the programmed “ANLO” value.
Check for 0 VDC (±20 mV).
4) Drive the input signal level above the programmed “ANHI” value.
Check for 10 VDC (±30 mV).
5) Calibrate the controller linear DC output if out of tolerance.
CALIBRATION
When calibration is required (generally every two years),
this procedure should only be performed by qualified
technicians using appropriate equipment. Equipment source
accuracies of 0.01% or better are required.
The procedure consists of four parts: applying accurate
mV signals, setting the thermocouple cold junction
temperature, applying precision resistances and measuring
accurate mA currents. Allow a 30 minute warm-up period
before starting this procedure. Do not use thermocouple
wire at any stage of calibration.
This procedure may be aborted by disconnecting power
to the controller before exiting the configuration mode. The
existing calibration settings remain in affect.
Note: After completing any of the calibration sequences, the
controller will default the input sensor type to
thermocouple type “j” (tc-j). Be sure to set input sensor
for proper type.
Configure Step 9 - Factory Service Operations (9-FS)
Display
Parameter
Code
Enter factory
service
function code
CAL
CJC
rtd
ANCL
Description/Comments
48
Calibrate instrument
Millivolt
calibration
yes/no
Calibration required for both RTD and TC input. If this
procedure is performed the cold junction temp. and RTD
ohms calibration procedures in turn must be completed.
Thermocouple
cold junction
temperature
calibration
yes/no
Not required if only using RTD input. This procedure can
only be performed AFTER an accurate mV calibration.
RTD
resistance
calibration
yes/no
Not required if only using TC input. This procedure can
only be performed AFTER an accurate mV calibration.
analog output
yes/no
This parameter does not appear if analog output option is
not installed.
Millivolt Calibration (CAL)
Connect precision millivolt source with an accuracy of 0.01% to terminals (+) #9 and (-) #10.
Display
Parameter
Description/Comments
StP1
0.0 mV step
Apply 0.0 mV, wait 10 seconds, press PAR
StP2
9.0 mV step
Apply 9.0 mV, wait 10 seconds, press PAR
StP3
18.0 mV step
Apply 18.0 mV, wait 10 seconds, press PAR
StP4
27.0 mV step
Apply 27.0 mV, wait 10 seconds, press PAR
StP5
36.0 mV step
Apply 36.0 mV, wait 10 seconds, press PAR
StP6
45.0 mV step
Apply 45.0 mV, wait 10 seconds, press PAR
StP7
54.0 mV step
Apply 54.0 mV, wait 10 seconds, press PAR
Stp-
Pause
The controller imposes a 5 second delay. (Keep the 54mV signal applied)
The unit advances to CJC - NO.
-83-
Thermocouple Cold Junction Calibration (CJC)
This procedure must be performed AFTER an accurate mV calibration.
Place the internal input sensor selection jumper to “TC” position. Place
precision thermometer (accuracy of 0.1C) in the immediate vicinity of
terminals #9 and #10.
Display
CJ F
CJ C
Parameter
Cold junction
temperature
Description/Comments
Allow 5 minutes for temperatures to equalize.
Observe indicated cold junction temperature
and compare with precision thermometer. If
equal press PAR. If not equal, directly key-in
the correct cold junction temperature. Press
PAR.
Rtd2
277.0 ohms step
4 to 20 mA
Press PAR until ANCL appears in the display. Connect precision ammeter
(0.1% accuracy) to rear terminals (+) #11 and (-) #12.
Display
Parameter
ANC1
Analog output 4 mA
code value
ANC2
RTD Ohms Calibration(rtd)
This procedure must be performed AFTER an accurate mV calibration.
Place the internal input sensor selection jumper to “RTD” position. Connect
one leg of precision resistance (accuracy of 0.1 ohm) to terminals #8 and #9
together, and other leg to #10.
Display
Parameter
Rtd1
0.0 ohms step
Analog Output Calibration (ANCL)
Description/Comments
Connect 0.0 ohms resistance (jumper
wire), wait ten seconds, press PAR.
Connect 277.0 ohm resistance, wait ten
seconds, press PAR.
Analog Output Calibration (ANCL) (Cont’d)
0 to 10 VDC
Press PAR until ANCL appears in the display. Connect a precision
voltmeter (0.1% accuracy) to rear terminals (+) #11 and (-) #12.
Display
Parameter
ANC1
Analog output 0 VDC
code value
ANC2
-84-
Analog output 20 mA
code value
Description/Comments
Observe current reading. If 4.00 mA,
press PAR. If not equal, modify existing
code value using up and down buttons
to achieve 4.00 mA. Press PAR.
Observe current reading. If 20.00 mA,
Press PAR. If not equal, modify existing
code value using up and down buttons
to achieve 20.00 mA. Press PAR.
Description/Comments
Observe voltage reading. If 0.00 VDC,
press PAR. If not equal, modify existing
code value using up and down buttons
to achieve 0.00 VDC. Press PAR.
Analog output 10 VDC Observe voltage reading. If 10.00 VDC,
code value
Press PAR. If not equal, modify existing
code value using up and down buttons
to achieve 10.00 VDC. Press PAR.
APPENDIX “F” - USER PARAMETER VALUE CHART
Unit Number
Mnemonic
SP
OPOF
OP
ProP
Parameter
Temperature Setpoint
Configure Lockouts
User Setting
Mnemonic
SP
Configure Serial Communications
Parameter
Mnemonic
Parameter
Access Setpoint
bAUd
Baud Rate
Output Power Offset
OP
Access Output Power
PArb
Parity Bit
Output Power
P-cs
Access Profile Status
Addr
Unit Address
Proportional Band
P-tr
Intt
Integral Time
UdSP
Code
dErt
Derivative Time
AL-1
Alarm 1
AL-2
Alarm 2
Configure Input
tYPE
Input Sensor Type
SCAL
Temperature Scale Units
dCPt
Temperature Resolution
FLtr
Digital Filtering
PID
Access Time Remaining
Abrv
Abbrev. or Full Transmission
Access Display Units
PrAt
Automatic Print Rate
Access Code Number
PoPt
INP
AL
Access Alarm(s) Values
SEt
ALrS
Enable Reset Alarm(s)
OPr
CPAC
Enable Control Points
Pdb
PrAC
Enable Profile Status
INt
Enable Auto/Man Transfer
dEr
Enable Auto-Tune
AL1
trnF
tUNE
AL2
Configure Alarms
Input Slope
SHFt
Input Offset
Act1
Alarm 1 Operation Mode
SPLO
Setpoint Lower Limit
rSt1
Alarm 1 Reset Mode
SPHI
Setpoint Upper Limit
Stb1
Alarm 1 Standby Enabled
SPrP
Auto Ramp Rate
AL-1
Alarm 1 Value
InPt
User Input
Act2
Alarm 2 Operation Mode
rSt2
Alarm 2 Reset Mode
Stb2
Alarm 2 Standby Enabled
AL-1
Alarm 2 Value
Configure Output
CYCt
Cycle Time
OPAC
Control Action
OPLO
Output Power Lower
Limit Range
Output Power Upper
Limit Range
OPFL
Sensor Fail Power Preset
CHYS
ON/OFF Control Hysteresis
tcod
Auto-Tune Damping Code
ANAS
Linear Output Assignment
ANLO
Linear Output Scale Value
ANHI
Linear Output Scale Value
Print Options
Access PID Values
SPAN
OPHI
User Setting
AHYS
Alarm Hysteresis Value
Configure Cooling
CYC2
OP2 Output Cycle Time
GAN2
Relative Cooling Gain
db-2
Heat-Cool Overlap/Deadband
-85-
dEv
OFP
rP
Crg
Cdb
P-t
P-s
User Setting
APPENDIX “F” - USER PARAMETER VALUE CHART (Cont’d)
Configure Control Points
Mnemonic
Parameter
SP
Setpoint Value
PID
YES/NO Load With
Setpoint Value
Pb
Proportional Band
It
Integral Time
dt
Derivative Time
CP-1
User Setting
CP-2
CP-3
Mnemonic
CP-4
Configure Profiles
Mnemonic
PnCC
Parameter
Pr-1
Pr-2
Pr-3
Pnln
Profile Link
Profile Status
PnEb
Profile Error Band
Pnr1
Profile Ramp Rate 1
Pnl1
Profile Setpoint Level 1
PnH1
Profile Hold Time 1
Pnr2
Profile Ramp Rate 2
Pnl2
Profile Setpoint Level 2
PnH2
Profile Hold Time 2
Pnr3
Profile Ramp Rate 3
Pnl3
Profile Setpoint Level 3
PnH3
Profile Hold Time 3
Pnr4
Profile Ramp Rate 4
Pnl4
Profile Setpoint Level 4
PnH4
Profile Hold Time 4
Pnr5
Profile Ramp Rate 5
Pnl5
Profile Setpoint Level 5
PnH5
Profile Hold Time 5
Pnr6
Profile Ramp Rate 6
Pnl6
Profile Setpoint Level 6
PnH6
Profile Hold Time 6
Pnr7
Profile Ramp Rate 7
Profile Setpoint Level 7
PnH7
Profile Hold Time 7
Pnr8
Profile Ramp Rate 8
Pnl8
Profile Setpoint Level 8
PnH8
Profile Hold Time 8
Timed Event
Outputs
Pn 1
Event 1
Pn 2
Event 2
Pn 3
Event 3
Pn 4
Event 4
Pn 5
Event 5
Pn 6
Event 6
Pn 7
Event 7
Pn 8
Event 8
Pn 9
Event 9
Pn 10
Event 10
Pn 11
Event 11
Pn 12
Event 12
Pn 13
Event 13
Pn 14
Event 14
Pn 15
Event 15
Pn 16
Event 16
Controller Operating Mode
Automatic or Manual
Auto-Tune Invoked at
-86-
Pr-1
Pnl7
Configure
Pr-4
Profile Cycle Count
PnSt
Parameter
PE-1
PE-2
User Setting
Pr-2
Pr-3
PE-3
Pr-4
PE-4
APPENDIX “G” - ORDERING INFORMATION
MODEL
NO.
TSC
DESCRIPTION
Temperature Setpoint Controller
NEMA
4X/IP65
BEZEL
NO
YES
YES
YES
YES
YES
YES
4 to 20 mA
ANALOG
OUTPUT
YES
YES
YES
YES
YES
NO
NO
0 to 10 VDC
ANALOG
OUTPUT
NO
NO
NO
NO
NO
YES
YES
ALARM
OUTPUTS
COOLING
OUTPUT
RS485
COM
2
2
1
2
1
2
1
NO
NO
YES
NO
YES
NO
YES
NO
NO
NO
YES
YES
YES
YES
PART NUMBER
TSC01001
TSC11001
TSC11002
TSC11004
TSC11005
TSC12004
TSC12005
Relay Module
OMD00000
Triac Module
OMD00001
Logic/SSR Drive Module
OMD00003
PMK5
Panel Mount Adapter Kit (1/4 DIN to 1/8 DIN)
PMK50000
RLY5
SSR Power Unit
RLY50000
RLY6
Single Phase 25 A DIN Rail Mount Solid State Relay
RLY60000
RLY6A
Single Phase 40 A DIN Rail Mount Solid State Relay
RLY6A000
RLY7
Three Phase DIN Rail Mount Solid State Relay
RLY70000
These models have dual alarm outputs, or single alarm with cooling outputs, with shared common terminals (Form AA Type). As a result, these outputs should be
fitted with the same type of output module. The main output (OP1) may be fitted with any type of output module.
Note: Output Modules are NOT supplied with the controller. When specifying the controller, be sure to purchase the appropriate output module for the Main Control Output
and if necessary, the alarm output(s) and cooling output. The controller can be fitted with any combination of output modules that do not have the RS-485 option.
The Logic/SSR Drive Module is a switched DC source, intended to drive the DC input of an SSR power unit. It should never be connected to a line voltage.
All modules are shipped separately and must be installed by the user.
-87-
This page is intentionally left blank.
-88-
LIMITED WARRANTY
The Company warrants the products it manufactures against defects in materials and workmanship for a
period limited to two years from the date of shipment, provided the products have been stored, handled,
installed, and used under proper conditions. The Company’s liability under this limited warranty shall
extend only to the repair or replacement of a defective product, at The Company’s option. The Company
disclaims all liability for any affirmation, promise or representation with respect to the products.
The customer agrees to hold Red Lion Controls harmless from, defend, and indemnify RLC against
damages, claims, and expenses arising out of subsequent sales of RLC products or products containing
components manufactured by RLC and based upon personal injuries, deaths, property damage, lost profits,
and other matters which Buyer, its employees, or sub-contractors are or may be to any extent liable,
including without limitation penalties imposed by the Consumer Product Safety Act (P.L. 92-573) and
liability imposed upon any person pursuant to the Magnuson-Moss Warranty Act (P.L. 93-637), as now in
effect or as amended hereafter.
No warranties expressed or implied are created with respect to The Company’s products except those
expressly contained herein. The Customer acknowledges the disclaimers and limitations contained herein
and relies on no other warranties or affirmations.
TSC/IM - C 01/15
DRAWING NO. LP0275
Red Lion Controls
Headquarters
20 Willow Springs Circle
York PA 17406
Tel +1 (717) 767-6511
Fax +1 (717) 764-0839
Red Lion Controls
Europe
Softwareweg 9
NL - 3821 BN Amersfoort
Tel +31 (0) 334 723 225
Fax +31 (0) 334 893 793
Red Lion Controls
India
201-B, 2nd Floor, Park Centra
Opp 32 Mile Stone, Sector-30
Gurgaon-122002 Haryana, India
Tel +91 984 487 0503
Red Lion Controls
China
Unit 302, XinAn Plaza
Building 13, No.99 Tianzhou Road
ShangHai, P.R. China 200223
Tel +86 21 6113 3688
Fax +86 21 6113 3683
Was this manual useful for you? yes no
Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Download PDF

advertisement