MICRO-EPSILON optoNCDT 1700 User manual

MICRO-EPSILON optoNCDT 1700 User manual
Operating Instructions
optoNCDT 1700
optoNCDT 1710
ILD1700-2
ILD1700-10
ILD1700-20
ILD1700-40
ILD1700-50
ILD1700-100
ILD1700-200
ILD1700-250VT
ILD1700-300
ILD1700-500
ILD1700-750
ILD1700-2DR
ILD1700-10DR
ILD1700-20DR
ILD1700-2LL
ILD1700-10LL
ILD1700-20LL
ILD1700-50LL
ILD1710-50
ILD1710-1000
ILD1700-20BL
ILD1700-200BL
ILD1700-500BL
ILD1700-750BL
ILD1710-50BL
ILD1710-1000BL
Intelligent laser optical displacement measurement
MICRO-EPSILON
MESSTECHNIK
GmbH & Co. KG
Koenigbacher Str. 15
94496 Ortenburg / Germany
Tel. +49 (0) 8542 / 168-0
Fax +49 (0) 8542 / 168-90
e-mail [email protected]
www.micro-epsilon.com
Softwareversion: 6.000
Contents
1.
Safety......................................................................................................................................... 7
1.1
1.2
1.3
1.4
1.5
Symbols Used.................................................................................................................................................. 7
Warnings........................................................................................................................................................... 7
Notes on CE Marking....................................................................................................................................... 8
Proper Use........................................................................................................................................................ 8
Proper Environment.......................................................................................................................................... 9
2.
Laser class .............................................................................................................................. 10
3.
3.1
3.2
3.3
3.4
3.5
4.
4.1
4.2
5.
5.1
5.2
5.3
5.4
6.
6.1
6.2
6.3
6.4
6.5
Functional Principle, Technical Data ..................................................................................... 12
Functional Principle ....................................................................................................................................... 12
3.1.1
Diffuse Reflection .......................................................................................................................... 12
3.1.2
Direct Reflection............................................................................................................................ 13
Real Time Control........................................................................................................................................... 13
Exposure Control ........................................................................................................................................... 14
Technical Data................................................................................................................................................ 14
Control and Indicator Elements...................................................................................................................... 19
Delivery.................................................................................................................................... 20
Scope of Delivery ........................................................................................................................................... 20
Storage .......................................................................................................................................................... 20
Installation............................................................................................................................... 21
Sensor Mounting Diffuse Reflection............................................................................................................... 22
Sensor Mounting Direct Reflection................................................................................................................. 29
Connector and Sensor Cable......................................................................................................................... 32
Switching Inputs Laser On/Off, Setting Masters and the Mid-point............................................................... 33
Operation................................................................................................................................. 34
Getting Ready for Operation.......................................................................................................................... 34
Membrane Keys.............................................................................................................................................. 35
LED-Functions................................................................................................................................................ 36
Inputs and Outputs......................................................................................................................................... 36
Menu, Setting the Parameters........................................................................................................................ 37
optoNCDT 1700
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14
7.
7.1
7.2
7.3
7.4
8.
8.1
8.2
8.3
8.4
Average Setting.............................................................................................................................................. 39
6.6.1
Averaging Number N..................................................................................................................... 39
6.6.2
Moving Average (Default Setting)................................................................................................. 40
6.6.3
Recursive Average......................................................................................................................... 41
6.6.4
Median........................................................................................................................................... 41
Setting Masters .............................................................................................................................................. 42
Setting Mid-Point............................................................................................................................................ 44
Frequency and Output Rate........................................................................................................................... 46
Operation Mode.............................................................................................................................................. 47
6.10.1
Error Mode
(Error Control)................................................................................................................................................. 47
6.10.2
Switch Mode ................................................................................................................................. 47
6.10.3
Output Circuit for the Switching Outputs...................................................................................... 49
Synchronization of Sensors............................................................................................................................ 49
Exposure Time................................................................................................................................................ 50
Timing, Measurement Value Flux................................................................................................................... 51
Triggering........................................................................................................................................................ 53
6.14.1
Basics............................................................................................................................................ 53
6.14.2
Trigger Modes............................................................................................................................... 53
6.14.3
Trigger Signal Levels..................................................................................................................... 54
6.14.4
Trigger Pulse.................................................................................................................................. 54
6.14.5
Pin Assignment for External Trigger Signal.................................................................................. 55
Measurement Value Output.................................................................................................... 56
Voltage Output................................................................................................................................................ 56
Current Output................................................................................................................................................ 57
Digital Value Output........................................................................................................................................ 57
Digital Error Modes......................................................................................................................................... 58
Serial Interface RS422............................................................................................................ 59
Interface Parameters....................................................................................................................................... 60
Data Format for Measurement Values and Error Codes................................................................................ 60
8.2.1
Binary Format................................................................................................................................ 60
8.2.2
ASCII Format................................................................................................................................. 61
Set-up of the Commands............................................................................................................................... 62
Command Reply............................................................................................................................................. 63
8.4.1
Communication without Error....................................................................................................... 63
8.4.2
Communication with Error............................................................................................................ 64
optoNCDT 1700
8.5
9.
9.1
9.2
9.3
9.4
Commands..................................................................................................................................................... 65
8.5.1
Overview........................................................................................................................................ 65
8.5.2
Reading out the Sensor Parameters............................................................................................. 67
8.5.3
Reading out the Sensor Settings.................................................................................................. 68
8.5.4
Set Average Number..................................................................................................................... 72
8.5.5
Set Average Type.......................................................................................................................... 75
8.5.6
Starting and Stopping the Measurement Value Output................................................................ 76
8.5.7
Set Limit Values............................................................................................................................. 77
8.5.8
Assignment of the Limits to the Switch Outputs........................................................................... 78
8.5.9
Operation Mode............................................................................................................................ 79
8.5.10
Set the Measurement Value Output Type..................................................................................... 80
8.5.11
Set Measurement Frequency (Speed).......................................................................................... 80
8.5.12
Error Output (Analog Output)........................................................................................................ 82
8.5.13
Synchronous and Trigger Mode................................................................................................... 83
8.5.14
Switching off the Laser (External)................................................................................................. 84
8.5.15
Switching the Data Format............................................................................................................ 85
8.5.16
Key Lock........................................................................................................................................ 86
8.5.17
Set Factory Setting........................................................................................................................ 86
8.5.18
Reset Sensor................................................................................................................................. 87
8.5.19
Reading out the Measurements.................................................................................................... 88
8.5.20
Enable / Lock the Flash for Setting Masters and the Mid-point................................................... 89
8.5.21
Mastering or Setting Mid-point...................................................................................................... 90
Instruction for Operating........................................................................................................ 92
Reflection Factor of the Target Surface.......................................................................................................... 92
Error Influences.............................................................................................................................................. 93
9.2.1
Light from other Sources............................................................................................................... 93
9.2.2
Color Differences........................................................................................................................... 93
9.2.3
Temperature Influences................................................................................................................. 93
9.2.4
Mechanical Vibration..................................................................................................................... 93
9.2.5
Movement Blurs............................................................................................................................. 93
9.2.6
Surface Roughness....................................................................................................................... 94
9.2.7
Sensor Tilting................................................................................................................................. 95
Optimizing the Measuring Accuracy.............................................................................................................. 96
Protective Housing......................................................................................................................................... 97
optoNCDT 1700
10.
10.1
ILD1700 Tool.......................................................................................................................... 100
10.2
Installation and Preparation for Measurements........................................................................................... 100
10.1.1
System Requirements................................................................................................................. 100
10.1.2
Cable and Program Routine Requirements................................................................................ 100
Measurement................................................................................................................................................ 101
11.
Software Support with MEDAQLib....................................................................................... 102
12.
Liability for Material Defects................................................................................................. 103
13.
Service, Repair...................................................................................................................... 103
14.
Decommissioning, Disposal................................................................................................. 103
Appendix
A1
Accessory.............................................................................................................................. 104
A2
Factory Setting...................................................................................................................... 105
A3
Output Rate optoNCDT1700................................................................................................. 106
A4
Pin Assignment Sensor Cable.............................................................................................. 107
A5
Pin Assignment RS422 Connection..................................................................................... 109
A6
Pin Assignment PC1700-x/x/USB/OE/IND .......................................................................... 110
optoNCDT 1700
Safety
1.
Safety
The handling of the sensor assumes knowledge of the instruction manual.
1.1
Symbols Used
The following symbols are used in this instruction manual:
WARNING! - potentially dangerous situation
IMPORTANT! - useful tips and information
1.2
Warnings
Avoid unnecessary laser radiation to be exposed to the human body
-- Switch off the sensor for cleaning and maintenance.
-- Switch off the sensor for system maintenance and repair if the sensor is integrated into a system.
Caution - use of controls or adjustments or performance of procedures other than those specified herein may
result in hazardous radiation exposure.
Connect the power supply and the display/output device in accordance with the safety regulations for electrical equipment.
>> Risk of injury
>> Damage to or destruction of the sensor
Avoid shocks and impacts to the sensor.
>> Damage to or destruction of the sensor
Mount the sensor only to the existing holes on a flat surface. Clamps of any kind are not permitted.
>> Damage to or destruction of the sensor
optoNCDT 1700
Page 7
Safety
The power supply may not exceed the specified limits
>> Damage to or destruction of the sensor
Avoid continuous exposure to spray on the sensor.
>> Damage to or destruction of the sensor
Avoid exposure to aggressive materials (washing agent, penetrating liquids or similar) on the sensor.
>> Damage to or destruction of the sensor
1.3
Notes on CE Marking
The following apply to the optoNCDT 1700:
-- EU directive 2014/30/EU -- EU directive 2011/65/EU, “RoHS” category 9
Products which carry the CE mark satisfy the requirements of the EU directives cited and the European
harmonized standards (EN) listed therein. The EU Declaration of Conformity is available to the responsible
authorities according to EU Directive, article 10, at:
MICRO-OPTRONIC MESSTECHNIK GmbH
Lessingstr. 14
01465 Langebrück / Germany
The measuring system is designed for use in industrial environments and meets the requirements.
1.4
Proper Use
-- The optoNCDT 1700 is designed for use in industrial applications. It is used
ƒƒ for measuring displacement, distance, position and elongation
ƒƒ for in-process quality control and dimensional testing
-- The sensor must only be operated within the limits specified in the technical data, see Chap. 3.4.
-- The sensor must be used in such a way that no persons are endangered or machines and other material
goods are damaged in the event of malfunction or total failure of the sensor.
-- Take additional precautions for safety and damage prevention in case of safety-related applications.
optoNCDT 1700
Page 8
Safety
1.5
IMPORTANT!
The protection class
is limited to water (no
penetrating liquids or
similar)!
optoNCDT 1700
Proper Environment
-- Protection class:
IP 65 (Only with sensor cable connected )
-- Lenses are excluded from protection class. Contamination of the lenses leads to impairment or failure of
the function.
-- Operating temperature: 0 to +50 °C (+32 to +104 °F)
-- Storage temperature: -20 to +70 °C (-4 to +158 °F)
-- Humidity:
5 - 95 % (no condensation)
-- Pressure:
atmospheric pressure
-- EMC:
according to:
ƒƒ EN 61326-1: 2006-10
Electrical equipment for measurement, control and laboratory use - EMC requirements - Part 1: General
requirements
ƒƒ DIN EN 55011: 2007-11 (Group 1, class B)
Industrial, scientific and medical (ISM) radio-frequency equipment - Electromagnetic disturbance characteristics - Limits and methods of measurement
ƒƒ EN 61000-6-2: 2006-03
Electromagnetic compatibility (EMC), Part 6-2: Generic standards, Immunity for industrial environments
Page 9
Laser class
2.
IMPORTANT!
Comply with all
regulations on lasers.
Laser class
The optoNCDT1700 sensors operate with a semiconductor laser with a wavelength of 670 nm (visible/red,
ILD 1700) respectively 405 nm (visible/blue, ILD 1700BL). The laser is operated on a pulsed mode, the pulse
frequency corresponding to the measuring frequency. The duration of the pulse is regulated in dependency
on the object to be measured and can form an almost permanent beam. The maximum optical power is ≤ 1
mW. The sensors fall within Laser Class 2 (II).
Class 2 (II) lasers are not notifiable and a laser protection officer is not required either.
The following warning labels are attached to the cover (front and/or rear side) of the sensor housing:
LASER RADIATION
Do not stare into the beam
CLASS 2 LASER PRODUCT
WARNING!
Never deliberately look
into the laser beam!
Consciously close
your eyes or turn away
immediately if ever the
laser beam should hit
your eyes.
IEC 60825-1: 2014
P≤1 mW; λ= 670 nm
IEC label
LASER RADIATION
Do not stare into the beam
CLASS 2 LASER PRODUCT
COMPLIES WITH 21 CFR 1040.10 AND 1040.11
EXCEPT FOR CONFORMANCE WITH
IEC 60825-1 ED. 3., AS DESCRIBED IN
LASER NOTICE NO. 56, DATED MAY 8, 2019
IEC 60825-1: 2014
P≤1 mW; λ= 405 nm
Only for USA
IEC label for ILD1700-x BL only
During operation of the sensor the pertinent regulations acc. to EN 60825-1 on „radiation safety of laser
equipment“ must be fully observed at all times. The sensor complies with all applicable laws for the manufacturer of laser devices.
COMPLIES WITH 21 CFR 1040.10 AND 1040.11
EXCEPT FOR CONFORMANCE WITH
IEC 60825-1 ED. 3., AS DESCRIBED IN
LASER NOTICE NO. 56, DATED MAY 8, 2019
IMPORTANT!
If both warning labels
are covered over
when the unit is
installed the user
must ensure that
supplementary labels
are applied.
optoNCDT 1700
2014
Laser spot
2014
COMPLIES WITH 21 CFR 1040.10 AND 1040.11
EXCEPT FOR CONFORMANCE WITH
IEC 60825-1 ED. 3., AS DESCRIBED IN
LASER NOTICE NO. 56, DATED MAY 8, 2019
Laser spot
Fig. 1 True reproduction of the sensor with its actual location of the warning labels, ILD1700-x
Page 10
Laser class
The laser warning labels for Germany have already been applied. Those for other non German-speaking
countries an IEC standard label is included in delivery. The versions applicable to the user’s country must be
applied before the equipment is used for the first time. Laser operation is indicated by LED, see Chap. 3.5.
Although the laser output is low looking directly into the laser beam must be avoided. Due to the visible light
beam eye protection is ensured by the natural blink reflex.
The housing of the optical sensors optoNCDT 1700 may only be opened by the manufacturer, see Chap. 12.
For repair and service purposes the sensors must always be sent to the manufacturer.
laser off
error
o.k.
midrange
normal
zero
1
4
32
128
1
1/2
1/4
1/8
4 - 20 mA
0 - 10 V
RS 422
optoNCDT
LASER RADIATION
Do not stare into the beam
CLASS 2 LASER PRODUCT
IEC 60825-1: 2014
COMPLIES WITH 21 CFR 1040.10 AND 1040.11
EXCEPT FOR CONFORMANCE WITH
IEC 60825-1 ED. 3., AS DESCRIBED IN
LASER NOTICE NO. 56, DATED MAY 8, 2019
Laser spot
True reproduction of the sensor with its actual location of the warning labels, ILD1710-1000
optoNCDT 1700
Page 11
Functional Principle, Technical Data
Functional Principle
3.1.1
Diffuse Reflection
The optoNCDT1700 consists of an laser-optical
sensor and a signal conditioning electronics. The
sensor uses the principle of optical triangulation,
i.e. a visible, modulated point of light is projected
onto the target surface.
The diffuse element of the reflection of the light
spot is imaged by a receiver optical element
positioned at a certain angle to the optical axis of
the laser beam onto a high-sensitivity resolution
element (CCD), in dependency on distance. From
the output signal of the CCD element a digital
signal processor (DSP) in the sensor calculates
the distance between the light spot on the object
being measured and the sensor. The distance is
linearized and then issued via an analog or digital
interface.
Sensor
ILD1700
SMR
EMR = End of
measuring range
3.1
Measuring range
MMR = Midrange
Functional Principle, Technical Data
Midrange
SMR = Start of
measuring range
3.
Analog output
0 VDC
4 mA
5 VDC (MMR)
12 mA
10 VDC (EMR)
20 mA
Fig. 2 Definition of terms, output signal
optoNCDT 1700
Page 12
Functional Principle, Technical Data
Direct Reflection
MMR = Midrange
EMR = End of
measuring range
On shining or mirroring surfaces the direct element
of the reflection of the laser spot is greater and covers therefore the diffuse part. Suppression of the
2nd reflection from the glass rear side in the sensor is possible for measurements on glass panels.
Sensors for direct reflection (ILD1700-2DR, ILD170010DR and ILD1700-20DR) are calibrated in tilted
position. Therefore the can not be used for diffuse
reflection.
3.2
e
Measuring range
SMR = Start of
measuring range
Sensor
ILD1700DR
rang
The optoNCDT1700DR consists of an laser-optical
sensor and a signal conditioning electronics. The
sensor uses the principle of optical triangulation, i.e.
a visible, modulated point of light is projected onto
the target surface. The direct element of the reflection of the light spot is imaged by a receiver optical
element onto a high-sensitivity resolution element
(CCD), in dependency on distance. From the output
signal of the CCD element a digital signal processor
(DSP) in the sensor calculates the distance between
the light spot on the object being measured and the
sensor. The distance is linearized and then issued
via an analog or digital interface.
Mid
3.1.2
Analog output
0 VDC
4 mA
5 VDC (MMR) 12 mA
10 VDC (EMR) 20 mA
Fig. 3 Definiton of terms, output signal
Real Time Control
The signal from the CCD element is used to determine the intensity of the diffuse reflection. This enables the
sensor to compensate for fluctuations in brightness on the object being measured. What is more, it does so
in a range from almost total absorption to almost total reflection.
optoNCDT 1700
Page 13
Functional Principle, Technical Data
3.3
Exposure Control
Dark or shining objects to be measured may require a longer exposure time. However, the controller is not
capable of providing exposure which is any longer than permitted by the measurement frequency. For a
longer exposure time, therefore, the measurement frequency of the sensor has to be reduced either manually
or by command, see Chap. 6.9.
3.4
Technical Data
Type
ILD 1700-
2
10
20
40
50 100
200
250VT
300
500
750
Measuring range
mm
2
10
20
40
50
200
250
300
500
750
Start of measuring range
mm
24
30
40
175
45
70
70
70
200
200
200
Midrange (MMR)
mm
25
35
50
195
70
120
170
195
350
450
575
End of measuring range
mm
26
40
60
215
95
170
270
320
500
700
Linearity
FSO ±0.1 %
Resolution 1
µm
0.1
±0.08 %
0.5
1.5
4
±0.1 % ±0.25 %
3
6
12
50
18
±0.1 %
30
2.5 kHz (1); 1.25 kHz (1/2); 625 Hz (1/4); 312.5 Hz (1/8)
Light source (laser diode)
Wave length 670 nm, red, max. power 1 mW, laser class 2
Spot diameter
Temperature stability
SMR
MMR
EMR
% FSO/°C
10.000 lx
80
35
80
0.025
110 320 230 570 740
50 45 210 55 60
110 320 230 570 700
0.01
15.000 lx
1300
1300
1300
1500
1500
1500
0.025
950
±0.08 %
Measurement frequency
programmable
Permissible ambient light (at 2.5 kHz)
optoNCDT 1700
100
50
10.000 lx
1500
1500
1500
1500
1500
1500
1500
1500
1500
0.01
Page 14
Functional Principle, Technical Data
Type
ILD 1700-
2
10
Operating
temperature
20
40
50
100
200
0 ... +50 °C
250VT
300
0 ... +55 °C
Storage temperature
-20 ... +70 °C
IP 65 (with plugged connection)
Power supply UB
24 V (11 ... 30 V) DC; max. 150 mA
Measurement value
output
selectable
4 -20 mA; 0 -10 V; RS422
Voltage output
Ri = 100 Ohm, I max = 5 mA, short-circuit proof
Load current output
RLoad < (UB -6 V) / 20 mA, RLoad 250 Ohm for UB = 11 VDC
programmable
Error or/and limit values, short-circuit proof
programmable
Simultaneous or alternating
Switching inputs
Synchronization
750
0 ... +50 °C
Protection class
Switching outputs
500
Laser ON/OFF; Zero
Sensor cable
Standard
Extension
0.25 m (with cable jack)
3 / 10 m
EN 61326-1: 2006-10
DIN EN 55011: 2007-11 (Group 1, class B)
EN 61 000-6-2: 2006-03
Electromagnetic compatibility (EMC)
Vibration (acc. to IEC 60068-2-6) 2
Shock (acc. to IEC 60068-2-29)
2 g / 20 ... 500 Hz
15 g / 6 ms
2
Housing size
Weight (with 25 cm cable)
S
550 g
600 g
M
550 g
550 g
600 g
The specified data apply to a white, diffuse reflecting surface (Reference: Ceramic).
SMR = Start of measurement range; MMR = Midrange; EMR = End of measuring range
FSO = Full Scale Output
1) At a measurement frequency of 2.5 kHz, without averaging
2) ILD1700-250VT: 20 g, vibration and shock resistant sensor model for use on vehicles
optoNCDT 1700
Page 15
Functional Principle, Technical Data
optoNCDT1700 - for direct reflective surfaces
Type
Legend:
mm (inches)
ILD 1700-
2DR
10DR
20DR
2
10
20
Measuring range
mm
Start of measuring range
mm
Midrange (MMR)
mm
End of measuring range
mm
Linearity, j/2
FSO
±0.1 %
±0.1 %
±0.2 %
Linearity, j/2 ±0.3 °
FSO
±0.2 %
±0.25 %
±2 % 2
Resolution 1
µm
Tilt angle (j/2)
Dimensional drawing, see Fig. 16, et seq.
0.1
0.5
3
20 °
17.6 °
11.5 °
Housing size
S
Not specified data correspond to those of the standard sensors.
MMR = Midrange
FSO = Full Scale Output
1) At a measurement frequency of 2.5 kHz, without averaging
2) Measuring range 18 (.71)
optoNCDT 1700LL - for metallic shiny and rough surfaces
Type
Measuring range
Spot diameter
Housing size
ILD 1700mm
SMR
MMR
EMR
2LL
2
85 x 240 µm
24 x 280 µm
64 x 400 µm
10LL
10
120 x 405 µm
35 x 585 µm
125 x 835 µm
S
20LL
20
185 x 485 µm
55 x 700 µm
195 x 1200 µm
50LL
50
350 x 320 µm
70 x 960 µm
300 x 1940 µm
For measurements against high glossary surfaces (targets), resolution depends on the material.
Not specified data correspond to those of the standard sensors.
SMR = Start of measurement range; MMR = Midrange; EMR = End of measuring range
optoNCDT 1700
Page 16
Functional Principle, Technical Data
optoNCDT 1710 - for long distance to the target
ILD 1710-50
ILD 1710-1000
Measuring range
Type
mm
50
1000
Start of measuring range
mm
550
1000
Midrange (MMR)
mm
575
1500
End of measuring range
mm
600
2000
Linearity
mm
±0.05
±1
Resolution 1
µm
5
100
Spot diameter
SMR
0.4 ... 0.5 mm
2.5...5 mm
MMR
0.4 ... 0.5 mm
2.5...5 mm
EMR
0.4 ... 0.5 mm
2.5...5 mm
Sensor cable
0.25 m integrated
Weight
ca. 0.8 kg
Protection class
Temperature stability
Operating temperature
IP 65
% FSO/ °C
°C
0.01
0 ... 50
Housing size
L
Not specified data correspond to those of the standard sensors.
SMR = Start of measurement range; MMR = Midrange; EMR = End of measuring range
FSO = Full Scale Output
1) At a measurement frequency of 2.5 kHz, without averaging
optoNCDT 1700
Page 17
Functional Principle, Technical Data
optoNCDT 17x0BL
Type
ILD
1700-20BL
1710-50BL
1710-1000BL
Measuring range
mm
20
200
500
750
50
1000
Start of measuring
range
mm
40
100
200
200
550
1000
Midrange
mm
50
200
450
575
575
1500
End of measuring
range
mm
60
300
700
950
600
2000
Linearity
FSO ≤ ±0.08 %
≤ ±0.1 %
≤ ±0.08 %
12
30
Resolution
µm
1
1700-200BL 1700-500BL 1700-750BL
1,5
Measurement frequency
50
5
100
2.5 kHz; 1.25 kHz; 625 Hz; 312.5 Hz (adjustable)
Light source
Semiconductor laser < 1 mW, 405 nm (blue purple)
Laser protection class
Light spot diameter
(µm)
≤ ±0.1 %
Class 2 acc. to DIN EN 60825-1: 2015-07
SMR, µm
MMR, µm
EMR, µm
320
45
320
Housing size
Weight (with 25 cm cable)
1300
1300
1300
1500
1500
1500
appr. 550 g
appr. 600 g
S
appr. 550 g
1500
1500
1500
400 x 500
400 x 500
400 x 500
appr. 600 g
appr. 800 g
M
2.5 ... 5 mm
2.5 ... 5 mm
2.5 ... 5 mm
L
appr. 800 g
The specified data apply to a white, diffuse reflecting surface (Reference: Ceramic).
SMR = Start of measurement range; MMR = Midrange; EMR = End of measuring range
FSO = Full Scale Output
1) At a measurement frequency of 2.5 kHz, without averaging
optoNCDT 1700
Page 18
Functional Principle, Technical Data
3.5
Control and Indicator Elements
LED
Color
Current (4 ... 20 mA)
o
output
red
green
IMPORTANT!
Keys can be locked
via the serial interface,
see Chap. 8.5.16.
For the meanings of
the LEDs in setup
mode, see Chap. 6.3.
red
1/2 = 1.25 kHz
green yel- 1/4 = 625 Hz
low
1/8 = 312.5 Hz
red
4 (5)
green yel- 32 (7)
low
128 (9)
avg
IMPORTANT!
If the function/
enter key is pressed
more than 5 sec, all
para-meters are overwritten by the factory
settings.
Average: 1 (Median: 3)
o
Fig. 4 Keys and LED‘s on the sensor
(1) select/zero key Measurement mode:
Sets analog output to
„Master“ or „Mid-point“, see Chap. 6.7, see
Chap. 6.8.
Setup mode: For changing the sensor
parameters, see Chap. 6.5.
(2) function/enter key
For switching between measurement mode
and setup mode.
red
flashing
zero
o
state
Voltage (0 ... 10 V)
Serial (RS422)
Measurement frequency
1 = 2.5 kHz
o
speed
Meaning
Mid-point set / mastered
Slave not synchronized
Laser off
red
Error
green yel- O.K.
low
MMR (midrange)
Fig. 5 Meanings of the LEDs in measurement mode
Note: In measurement mode (factory setting) only the
LED „state“ lights up, subject to the current position of
the object to be measured.
(3) LEDs, see Fig. 5.
optoNCDT 1700
Page 19
Delivery
4.
Delivery
4.1
Scope of Delivery
1 Sensor optoNCDT1700 with 0.25 m connecting cable and cable jack
2 Laser warning labels in accordance with IEC standards
1 Instruction manual
1 CD with driver and demo program
For ILD1700-xxDR: 1 fit-up aid (convenient to measuring range)
Optional accessory, packed separately:
1 PC1700 sensor cable, 3 m or 10 m in length, with cable plug and open cable ends (subject to order).
Check for completeness and shipping damage immediately after unpacking. In case of damage or missing
parts, please contact the manufacturer or supplier.
4.2
optoNCDT 1700
Storage
Storage temperature:
-20 up to +70 °C (-4 to +158 °F)
Humidity : 5 - 95 % (no condensation)
Page 20
Installation
5.
Installation
The sensor optoNCDT 1700 is an optical sensor for measurements with micrometer accuracy. Make sure it is handled carefully when
installing and operating.
Bolt connection
Housing
Through
length
mm
30
35
48
S
M
L
Screw
Washer
Tightening
torque per
screw
ISO 4762-A2 ISO 7089-A2 µ = 0.12
Nm
M4
A4,3
2
M4
A4,3
2
M5
A5,3
3.5
Direct fastening
Screw depth
Minimum
mm
8
9.6
Maximum
mm
10
10
Screw
ISO 4762-A2
M5
M6
Tightening
torque per
screw
µ = 0.12
Nm
3.5
5
Fig. 6 Mounting conditions
Housing sizes, see Chap. 3.4.
Recommended tightening torque
max. + 10 % permissible, not deceed min. -20 %!
The tightening torques specified in the table are approximate and may vary depending on the application.
Basis of considerations µ = 0.12
The bearing surfaces surrounding the fastening holes (through-holes) are slightly raised.
i
Mount the sensor only to the existing holes on a flat surface. Clamps of any kind are not permitted.
To align the sensor, please comply with the “Instructions for Operation“, see Chap. 9.3, especially.
If the sensors are to be used in soiled environments or in higher ambient temperatures than normal, MICRO-EPSILON recommends
the use of protective housings, see Chap. 9.4.
The suggested free space in the tuning range, see Fig. 8, is kept clear at least until the end of the measuring range of foreign material
and ambient light of other laser sensors.
optoNCDT 1700
Page 21
Installation
IMPORTANT!
Mount the sensor only
to the existing holes on
a flat surface. Clamps
of any kind are not permitted. Do not exceed
torques.
5.1
Sensor Mounting Diffuse Reflection
The sensor is mounted by means of 3 screws according to the table, see Fig. 6.
The bearing surfaces surrounding the fastening holes (through-holes) are slightly raised.
The laser beam must be directed perpendicularly onto the surface of the target after sensor mounting. In
case of misalignment it is possible that the measurement results will not always be accurate.
IMPORTANT!
Handle optical
sensors with care.
optoNCDT 1700
Page 22
24.2
(.95)
15
(.59)
(.52)
13.2
30 (1.2)
Installation
36.1 (1.4)
A
B
Mounting
holes
3 x ø 4.5


Housing size S
13.4
(.53)
15
SMR
67 (2.6)
75 (3.0)
37.5 (1.48)
(.18 dia.)
(.31 dia.)
(.59)
MR
4
13.4
(.16)

80 (3.15)
89 (3.5)
97 (3.82)
(.53)
Fig. 7 Dimensional drawing
optoNCDT 1700-2/10/20/50/100/200/250VT
1700-2LL/10LL/20LL/50LL
dimensions in mm (inches), not to scale
optoNCDT 1700
ø8
ø4
(.16 dia.)
MR
SMR
a
e
2
24 35.0 ° 44.8 °
10
30 34.3 ° 35.6 °
20
40 28.8 ° 26.7 °
50
45 26.5 ° 18.3 °
100
70 19.0 ° 10.9 °
200
70 19.0 ° 7.0 °
250VT 70 19.0 ° 6.0 °
A
25.8
28.7
30.1
31.5
32.6
33.1
33.5
B
16.8
20.5
22.0
22.5
24.1
24.1
24.1
Fig. 8 Free space for optics
SMR = Start of measuring range
MR = Measuring range
Page 23
24.2
(.95)
15
(.59)
(.52)
13.2
30 (1.2)
Installation
36.1 (1.4)
A
B
Mounting
holes
3 x ø 4.5
ø8
37.5 (1.48)
(.18 dia.)


Housing size S
13.4
(.53)
15
SMR
67 (2.6)
75 (3.0)
ø4
(.16 dia.)
(.31 dia.)
(.59)
Fig. 9 Dimensional drawing
optoNCDT 1700-20/200BL
dimensions in mm, not to scale
MR
4
13.4
80 (3.15)
89 (3.5)
97 (3.82)
(.16)

(.53)
MR
20
200
SMR
a
e
40 28.8 ° 26.7 °
100 13.5 ° 6.3 °
A
30.1
33,1
B
22.0
24.1
Fig. 10 Free space for optics
optoNCDT 1700-20/200BL
dimensions in mm, not to scale
SMR = Start of measuring range
MR = Measuring range
optoNCDT 1700
Page 24
(.69)
17.5
35 (1.38)
Installation
(.73)
18.5
75 (2.95)
70 (2.76)
80 (3.15)
Mounting
holes
3 x ø 4.5 mm
Housing size M
20xx
130 (5.12)
140 (5.51)
150 (5.91)
5
Laser spot
(.20)
40
(.18 dia.)
15
(.59)
Fig. 11 Dimensional drawing
optoNCDT 1700-40/300/500/750
optoNCDT 1700-500/750BL
dimensions in mm, not to scale
optoNCDT 1700
Page 25
Installation
Housing size M
101 (3.98)
85 (3.35)
ø5
15
12
(.20 dia.)
17.5
(.59)
(.69)
(.47)
35 (1.38)
SMR


MR
Start of measuring range
optoNCDT 1700
MR
40
300
500
750
SMR
175
200
200
200
a
22.1 °
18,3
19.3 °
19.3 °
e
21.8 °
9,6
7.0 °
5.0 °
Fig. 12 Free space for optics,
ranges 1700-40/500/750 mm,
ranges 1700-500/750BL mm,
dimensions in mm (inches), not
to scale
Page 26
Installation
47 (1.85)
Fig. 13 Dimensional drawing
optoNCDT ILD 1710-50/1000
optoNCDT ILD 1710-50/1000BL
dimensions in mm, not to scale
85 (3.34)
190 (7.48)
200 (7.87)
95 (3.74)
6)
Control
panel
61 (2.40)
71 (2.80)
73 (2.87)
83 (3.27)
5
(0.20)
(ø
ø9
14
(0.55) Laser spot
17.5 ±1
(0.69 ±0.04)
max. opt.
effective
optoNCDT 1700
ø 20
(0.79 dia.)
147 (5.79)
(1.
26 ø 32
dia
.)
50 ±1
(1.97 ±0.04)
ø16 (.63 dia.)
5
(0.20)
24
48 (0.95)
(1.89)
Housing size L
Page 27
Connection
cable
0.25 m
Fig. 14 Free space for optics
optoNCDT ILD 1710-50/1000,
optoNCDT ILD 1710-50/1000BL,
dimensions in mm, not to scale
optoNCDT 1700
Minimum visual range
of the sensor to be kept free.



(4.65°)
(7.45°)
ø9
(.35 dia.) 144 (5.67)
Label
ø9
ø 33
(.25 24
(1.29
dia.) (0.95)
dia.)
Installation
MR
SMR
MR
SMR
50
1000
550
1000
a
e
13.35 ° 15.15 °
7.45 ° 4.65 °
Page 28
Installation
5.2
Sensor Mounting Direct Reflection
IMPORTANT!
The sensor is mounted by
means of 3 screws type M4. The
bearing surfaces surrounding the
fastening holes (through-holes)
are slightly raised.
Handle optical
sensors with care!
Legend:
mm (inches)
Mount the sensor, that the reflected laser light hits the receiver
element, see Fig. 16, see Fig. 17,
see Fig. 18.
Use a fit-up aid to mount the sensor, see Fig. 15.
82.6 (3.25)
83.7 (3.30)
49.5 (1.95)
13.4
(.53
45.6
(1.04)
MB 2 (.08)
1 (.04)
90 °
Fig. 15 Accessory to mount the sensor
optoNCDT 1700
.98)
26.5
(1.79)
25 (
15
(.59)
16.7 (.66)
20.7 (.81)
20 °
)
Direct reflecting target
Fig. 16 Dimensional drawings optoNCDT1700-2DR (not to scale)
Page 29
Installation
91.1 (3.59)
96.2 (3.79)
49.2 (1.94)
13.4
(.20)
5
MB 10
(.39)
90 °
28.3 (1.11)
32.3 (1.27)
29
(1.14)
17.6 °
45.7 (1.80)
35.5
15
(.59)
(1.4
0)
(.53)
Legend:
mm (inches)
Direct reflecting target
Fig. 17 Dimensional drawings optoNCDT1700-10DR (not to scale)
MR = Measuring range
optoNCDT 1700
Page 30
Installation
44.3
(1.74)
113.2 (4.46)
128.2 (5.05)
13.4
(.53)
49.6
30.9
63.5 (2
.50
(.39)
MR 20 (.79)
10
90 °
Legend:
mm (inches)
11.5 °
(1.22)
)
(1.95)
58.6 (2.31)
62.6 (2.46)
15
(.59)
Direct reflecting target
Fig. 18 Dimensional Drawings range optoNCDT1700-20DR (not to scale)
optoNCDT 1700
MR = Measuring range
Page 31
Installation
Mounting steps
-- Switch on the operating voltage
-- Watch the “State“ LED on the top side of the sensor, see Fig. 20.
-- Position a shining or mirroring measuring object.
Measuring object
-- Move the fit-up aid between sensor and measuring object.
-- The “State“ LED illuminates yellow, see Fig. 20.
-- Mount the sensor by means of 3 screws type M4.
-- Remove the fit-up aid between sensor and measuring object.
5.3
optoNCDT 1700
Connector and Sensor Cable
Never bend the sensor cable by more than the bending radius of 60 mm.
The sensor comes with a permanently mounted connection cable of 0.25 m in length. Depending on where
it is installed, a 3 m or 10 m sensor cable has to be attached to the connection cable.
MICRO-EPSILON recommends the use of the PC1700 standard sensor cable with a chain-type cable capability.
Page 32
Installation
The connector and the cable component are marked with red markings which have to be aligned opposite each other before connection. In addition, they come with guidance grooves to prevent them from being wrongly connected. To release the plug-in connection,
hold the plug-in connector on the grooved grips (outer sleeves) and pull apart in a straight line. Pulling on the cable and the lock nut
will only lock the plug-in connector (ODU MINI-SNAP FP - lock) and will not release the connection. It is important, therefore, that the
cable is never subjected to excessive pull force. If a cable of over 5 m in length is used and it hangs vertically without being secured,
make sure that some form of strain-relief is provided close to the connector. Never twist the connectors in opposite directions to one
another when connected.
Connect the cable shield to the potential equalization (PE, protective earth conductor) on the evaluator (control cabinet, PC housing)
and avoid ground loops.
Never lay signal leads next to or together with power cables or pulse-loaded cables (e.g. for drive units and solenoid valves) in a
bundle or in cable ducts. Always use separate ducts.
Recommended strand cross-section for self-made connection cables: ≥ 0.14 mm² (AWG 25)
i
5.4
Disconnect or connect the D-sub connection between RS422 and USB converter when the sensor is disconnected from power
supply only.
Switching Inputs Laser On/Off, Setting Masters and the Mid-point
The switching inputs for Laser On/Off and Setting Masters / Mid-point are similarly wired.
Please connect Pin 9 and Pin 6 in order to activate the laser.
If the connection is released, the laser is deactivated.
ILD 1700
Uint
UL  0.2 V
I L  0.5 mA
9 (10)
IL
UL
6
N-Channel
optoNCDT 1700
Relais/
Switch
OpenCollector
Fig. 19 Switching examples for Laser Off, Mastering, Set Midpoint
Page 33
Operation
IMPORTANT!
The laser diode in the
sensor will only be
activated
if the input „Laser
on/off“ is connected to
GND.
6.
Operation
6.1
Getting Ready for Operation
Install and assemble the optoNCDT1700 in accordance with the instructions set out, see Chap. 5. and connect with the indicator or monitoring unit and the power supply, having full regard to the connection instructions set out, see Chap. 6.3.
The laser diode in the sensor can only be activated if the input „Laser on/off“ (Pin 9 or the red-blue wire in the
sensor cable) is connected to GND.
Once the operating voltage has been switched on the sensor runs through an initialization sequence. This
is indicated by the momentary activation of all the LEDs and the two switch outputs. If initialization has been
finished, the sensor transmits the info string once in ASCII format via the serial interface independent of the
selected interface. The initialization including the info string transmission takes up to 10 seconds. Within this
period, the sensor neither executes nor replies commands.
To be able to produce reproducible measurements the sensor typically requires a start-up time of 20 minutes.
Once this has elapsed the sensor will be in measurement mode and, in accordance with the factory settings,
see Chap. A 2, only the “state“ LED will be illuminated.
If the “state“ LED is not on, this means that
- either there is no operating voltage or
- the laser has been switched off.
Operating Voltage
-- Nominal value: 24 VDC (11 ... 30 V, max. 150 mA).
-- Use the power supply unit for measurement instruments only, and not for drive units or similar sources of
pulse interference at the same time.
Switch on the power supply unit, if wiring is done.
optoNCDT 1700
Page 34
Operation
6.2
Membrane Keys
The two membrane keys function/enter and select/zero have dual assignments, depending on the operating status.
Measurement mode (normal operation):
-- zero key:
ƒƒ Sets the analog output to the value for the mid-point of the
measurement range, i.e. 5 VDC or 12 mA.
ƒƒ Pressing the zero key again resets the function, see Chap. 6.7, see
Chap. 6.8.
-- function key:
ƒƒ Switches the sensor to setup mode, see Chap. 6.5.
Pressing and holding the function/enter key for longer than 5 seconds
overwrites all the parameter values with the factory settings (default values,
see Chap. A 2.
IMPORTANT!
In setup mode the
sensor continues to
send measurement
values to the output.
Fig. 20 Top view of the
optoNCDT1700
Setup mode („function“ key actuated):
-- function key:
ƒƒ For running through the levels and parameters.
-- select key
ƒƒ To open the selection list and
ƒƒ select the value of the parameter in sequence.
-- enter key:
ƒƒ For saving the selected parameter value and
ƒƒ Returning to measurement mode.
If approximately 15 seconds have elapsed since the last press of the function key or 30 seconds since the last press of the select key, the sensor
returns to measurement mode without changing the parameters.
optoNCDT 1700
Page 35
Operation
6.3
The LEDs on the
sensor, see Fig. 20,
have different indicator
functions depending
on whether the sensor
is in measurement
mode or setup mode.
LED-Functions
LED
Status
illuminated
off
Measurement mode
Setup mode
Object is in the measurement range or error
...
Sensor off or laser off
Selected parameter value matches the
flashes slowly
...
saved value
Selected parameter value does not
flashes quickly
...
match the saved value
illuminated or flashing Indication of the parameter value from level 1 Selected parameter value
state
output
speed
avg
flashing red
illuminated
off
flashing
zero
6.4
Pin
Analog output
13
Laser on/off
9
Zero
10
Switching output 1 8
Switching output 2 7
IMPORTANT!
optoNCDT 1700
Sensor „master“ or „ set to mid-point“
Normal operation
Sensor as slave without synchronous signal
Inputs and Outputs
Signal
Disconnect or connect
the D-sub connection
between RS422 and
USB converter when
the sensor is disconnected from power
supply only.
Status „off“
Explanation
Configuration
Current 4 ... 20 mA
RLimit < (UB -6 V) / 20 mA; RLimit max. = 250 Ohm with UB = 11 V
Voltage 0 ... 10 VDC
Ri = 100 Ohm, Imax = 5 mA, short-circuit protection from 7 mA, 2
Switching input
Laser operates if pin 9 is connected with GND
Connect 0.5 ... 3 s with GND: SET, connect 3 ... 6s with GND:
Switching input, Chap. 6.7
RESET
Error or limit output 1
Open-Collector (NPN), Imax = 100 mA, Umax = 30 VDC,
Interrupt supply voltage to cancel the short-circuit protection
Limit output 2
Sync +/Sync ­
3/4
Synchronizaton
Tx +/Tx ­-
1/2
Serial output RS422
Rx +/Rx ­-
12/11 Serial input RS422
1
Symmetrical synchron output (Master) or synchron input (Slave)
Terminate with 120 Ohm receive-site
Internally terminated with 120 Ohm
1) Input is used for triggering in trigger mode, see Chap. 6.14.
2) The use of a 10 nF capacitance at the entrance for interference suppression is recommended.
Page 36
Operation
IMPORTANT!
Parameters for
- Output type
(„Measurement value
output“)
- Measurement
frequency
- Average number
- Analog error
6.5
Menu, Setting the Parameters
The sensor parameters can be set in setup mode using the function/enter and select/zero keys.
Measurement
mode
Save
parameters
function
enter
LED output
Measurement value
output
select
zero
4 ... 20 mA
LED state
flashes green
LED speed
Measuring frequency
select
zero
red (flashes)
1
2.5 kHz
LED avg
Averaging number N
select
zero
red (flashes)
1
(Median 3)
0 ... 10 VDC
green
select
zero
RS422
select
zero
select
zero
red
1/2
1.25 kHz
select
zero
green
1/4
625 Hz
select
zero
yello
1/8
312.5 Hz
select
zero
select
zero
red
4
(Median 5)
select
zero
green
32
(Median 7)
select
zero
yello
128
(Median 9)
select
zero
red
3 mA
10.2 VDC
select
zero
function
enter
function
enter
LED output
LED state
flashes red
Voltage outp.
function
enter
function
enter
- if 30 seconds elapse
after the last press of
the select/zero
key.
select
zero
function
enter
function
enter
The system returns to
measurement mode
without saving the
parameters:
- if 15 seconds elapse
after the last press of
the function/enter key.
red
red (flashes)
Current output
Error analog
select
zero
red (flashes)
hold last
value
select
zero
function
enter
A
optoNCDT 1700
B
C
Page 37
Operation
A
B
IMPORTANT!
Parameters for
- Synchronization
- Averaging type
- Operation mode
- Trigger mode
- Baud rate
- Data format
The system returns to
measurement mode
without saving the
parameters:
- if 15 seconds elapse
after the last press of
the function/enter key
- if 30 seconds elapse
after the last press of
the select/zero
key.
function
enter
LED speed
Trigger
Synchronization1
select
zero
Sync.
LED state
flashes red
Edge LH
Master Sync
off
LED avg
select
zero
moving
select
zero
red (flashes)
Sync. Error
Mode
LED speed
red (flashes)
select
zero
115.2 kBd
LED avg
function
enter
Slave
Master
alternating
select
zero
red
select
zero
recursive
green
select
zero
Median
select
zero
Trigger Error
Mode
select
zero
19.2 kBd
select
zero
red
select
zero
Sync. Switch
Mode
green
yellow
select
zero
Trigger Switch
Mode
select
zero
red
select
zero
57.6 kBd
green
yellow
select
zero
9.6 kBd
select
zero
function
enter
function
enter
Data format
Level L
select
zero
function
enter
function
enter
Baud rate
Master Sync
on
Level H
select
zero
C
yellow
function
enter
LED output
LED state
flashes yellow
Edge HL
select
zero
red (flashes)
function
enter
Operation mode
green
function
enter
function
enter
Averaging type
red
red (flashes)
select
zero
red
red (flashes)
Binary
select
zero
ASCII
select
zero
function
enter
1) Depends on operation mode settings (synchronization or trigger).
optoNCDT 1700
Page 38
Operation
6.6
Average Setting
The optoNCDT1700 is supplied ex factory with the default setting „moving averaging, number of averaging
N = 1“ (no averaging activated). Averaging methods:
The purpose of averaging is to:
-- Moving average
- Improve the resolution
-- Recursive average
- Eliminate signal spikes
-- Median
- „Smooth out“ the signal.
Averaging has no effect on linearity.
6.6.1
Averaging Number N
In every measurement cycle (at a measurement frequency of 2.5 kHz every 0.4 ms) the internal average is
calculated anew. The averaging number N indicates the number of consecutive measurement values to be
averaged in the sensor.
IMPORTANT!
The preset average
value and the number
of averaging are
saved after switching
off.
optoNCDT 1700
Averaging type Averaging number LED „avg“
In setup mode the averaging number can be set to
4 different, predefined fixed values. Further details
moving
1 (no averaging)
on these, see Chap. 6.5. The selected averaging
recursive
1 (no averaging)
off
number is also indicated in measurement mode by
Median
3
the “avg“ LED, see Fig. 21.
moving
4
recursive
4
red
Averaging does not affect the measurement freMedian
5
quency or data rates in digital measurement value
moving
32
output.
recursive
32
green
More averaging counts can also be used if proMedian
7
grammed via the digital interface, see Chap. 8.5.4.
moving
128
recursive
128
yellow
Median
9
Fig. 21 Specification of the averaging count
The averaging is recommended for static measurements or slowly changing measuring values.
Page 39
Operation
6.6.2
Moving Average (Default Setting)
The selected number N of successive measurement values (window width) is used to generate the arithmetic
average value Mgl on the basis of the following formula:
N
MV (k)
M gl =
k=1
N
MV
N
k
M gl
=
=
=
=
Measuring value
Averaging number
Running index
Averaging value respectively output value
Mode:
Each new measurement value is added and the first (oldest) measurement value from the averaging process
(from the window) taken out again. This results in short transient recovery times for jumps in measurement
values.
Example: N = 4
... 0, 1, 2, 2, 1, 3
2, 2, 1, 3
= M gl (n)
4
... 1, 2, 2, 1, 3, 4
2, 1, 3, 4
= M gl (n+1)
4
Measurement value
Output value
Standard values for N: The values N = 1, 4, 32, 128 are permanently stored in the sensor. For other
permissible values for N, see Chap. 8.5.4.
Characteristics:
The sliding average in the optoNCDT1700 can only be generated for up to a maximum of 128 values.
optoNCDT 1700
Page 40
Operation
6.6.3
Recursive Average
Formula
M rek (n) =
MV
(n)
+ (N-1) x M rek (n-1)
N
MV =
N =
n
=
M rek =
Measuring value
Averaging number
Measurement value index
Average value respectively output value
Mode:
Each new measurement value MV(n) is added, as a weighted value, to the sum of the previous measurement
values Mrek (n-1).
Standard values for N: The values N = 1, 4, 32, 128 are permanently stored in the sensor. For other
permissible values for N, see Chap. 8.5.4 „Averaging“.
Characteristics:
The recursive average permits a high degree of smoothing of the measurement values. However, it requires
extremely long transient recovery times for steps in measurement values. The recursive average shows lowpass behavior.
6.6.4
Median
The median is generated from a pre-selected number of measurement values. To do so, the incoming
measurement values (3, 5, 7 or 9 measurement values) are resorted again after every measurement. The
average value is then given as the median. In generating the median in the controller, 3, 5, 7 or 9
measurement values are taken into account, i.e. there is never a median of 1.
This permits individual interference pulses to be repressed, but the measurement value curve is not
smoothed to any great extent.
Example: Average from five measurement values
optoNCDT 1700
... 0 1 2 4 5 1 3
Sorted measurement values: 1 2 3 4 5
Median (n) = 3
... 1 2 4 5 1 3 5
Sorted measurement values: 1 3 4 5 5
Median (n+1) = 4
Page 41
Operation
6.7
IMPORTANT!
“Master“ is only
available in “Switch
mode“ and “Set midpoint“ is only available
in “Error mode“, see
Chap. 6.5.
“Master“ or “Set midpoint“ requires that an
object to be measured
is within the measurement range.
„Master“ has an influence on the analog and
digital output.
optoNCDT 1700
Setting Masters
“Mastering” enables the measurement values at
the sensor output (analog/digital) to be compared
with a known measurement object (master).
This function is primarily used for comparison of
mounting tolerances. The value which is given
during measurement on the sensor output of the
“mastering object“ is the “master value”. This
involves the parallel displacement of the sensor´s
characteristic curve.
Storing of the master value in the sensor:
This master value has to be inserted and stored in
the sensor before mastering. Currently, there are
two possibilities:
1. In the configuration program “ILD1700 Tool“,
see Chap. 10..
2. Command „Set_LIMITS“, see Chap. 8.5.7, (Set
limit values) as digital value in the „master value“.
A detailed description of the calculation, see Chap.
7.3.
Therefore the master value is available even after
a restart of the sensor. Detailed information, see
Chap. 8.5.20 “Enable / Lock the Flash for Setting
Masters and the Mid-Point”. In the case that the
sensor configuration is set to „permanent in flash“,
the master value can permanently be solved in the
sensor in the ILD1700 tool.
The displacement of the characteristic curve
reduces the usable measurement range of the
sensor the further the master value is away from
the master position.
Advice:
In the case of a new ILD1700 sensor 0.5 x measuring
range is set as the master value. Resetting to factory
settings also includes that the master value is set to
0.5 x measuring range.
The action „mastering“ can be activated in three different ways:
-- Press the button zero/select on the sensor.
Afterwards the red LED flashes “Zero”. The initial
state is reached by a second press.
-- External Low-Signal at the input “Zero”:
Connect GND 0.5 … 3 s: SET (mastering),
Connect GND 3 … 6 s: RESET (reset)
-- At Firmeware version 6.000 using the command
“SETZero”, see Chap. 8.5.21.
using parameters x = 1
setting
;
using parameters x = 0
reset
Page 42
Operation
„Mastering“
ic
16207 20 mA 10 V
Programmed master value
Move object to be measured and sensor to desired position relative to one
another.
Press Zero key once or connect the
Step 2
“Zero” input to GND for 0.5 up to 3 s
or command „SetZero“ 1.
Output signals after “Mastering”
Indicator
LED „zero“ lights up.
161 4 mA
0V
ma
st
5V
t ch
ara
cte
rist
ic a
fter
8184 12 mA
= Measurement range
Iout, M
= Measurement range
Master value . 20 mA
Digital value D A = Master value
tpu
Master value . 10 V
Uout, M
Ou
Analog
value
erin
Step 1
g
cte
rist
switch-mode
Ou
tpu
t ch
ara
Sequence
Operation
mode
Setpoint
value
0%
xm
Measurement 100 %
range
Fig. 22 Characteristic for mastering
Fig. 23 Sequence for mastering
Example:
Measurement range 50 mm, voltage output 0 ... 10 V
Master value 17 mm, related to the centre of the measurement range (MR) = 5 V,
Analog value during mastering: 3.4 V
After the mastering, the sensor gives new measurement values, related to the master value. The non-mastered condition applies by means of a reset.
1) Possible at Firmware version 6.0
optoNCDT 1700
Page 43
Operation
6.8
Setting Mid-Point
The function „Setting mid-point“ displaces the analog measurement value to the value for the mid-point of the
measurement range, so +5 V respectively 12 mA.
IMPORTANT!
“Master“ is only
available in “Switch
mode“ and “Set midpoint“ is only available
in “Error mode“, see
Chap. 6.5.
“Master“ or “Set midpoint“ requires that an
object to be measured
is within the measurement range.
“Set Midpoint“ has an
influence on the
analog and digital 1
output.
The action „set mid point“ can be activated in three different ways:
-- Press the button Zero/Select on the sensor. Afterwards the red LED flashes “Zero”. The initial state is
reached by a second press.
-- External Low-Signal at the input “Zero”.
Connect GND 0.5 ... 3 s: SET (mid-point)
Connect GND 3 ... 6 s: RESET (reset)
At firmware version 6.000 using the command “SETZero”, see Chap. 8.5.21
using parameters x = 1
setting
;
using parameters x = 0
reset
Sequence
„Set mid-point“
Operation
error-mode
mode
Setpoint value Centre of the analog area
Step 1
Move object to be measured and sensor to desired position relative to one another.
Press Zero key once or connect the “Zero” input to GND for 0.5 up to 3 s or comStep 2
mand “SetZero” 1.
Output signals after ”Set mid-point”
Indicator
„Zero“ LED lights up.
Analog values
U A = 5 V or
I A = 12 mA
Digital value
DA = 8184
Fig. 24 Sequence for setting the mid-point
1) Possible at Firmware version 6.0
optoNCDT 1700
Page 44
Operation
Measurement range 50 mm, voltage output 0 ... 10 V
Mid-point is set at the position xm = 10 mm
Set mid-point results in an output signal of 5 V.
16207 20 mA
10 V
8184 12 mA
5V
Ou
t
mid put c
-po hara
Ou
int
cte
tpu
rist
ic a
t ch
fter
ara
cte
set
rist
ting
ic
Example:
Remaining measurement range respectively
output range:
x max = 35 mm
Out min = 3 V respectively 8.8 mA
After setting mid-point the sensor gives new
measurement values, related to the mid-point.
The condition before setting mid-point can be
achieved by a reset.
Out min
Set mid-point (only error mode): no limit control
The displacement of the characteristic curve reduces the usable measurement range of the sensor.
161
4 mA
0V
0%
xm
x max
Measurement range 100 %
Fig. 25 Characteristic for setting the mid-point
optoNCDT 1700
Page 45
Operation
IMPORTANT!
Synchronized
sensors must always
be set to the same
measurement
frequency.
6.9
Frequency and Output Rate
The measurement frequency defines the number of measurements performed by the sensor per second. The
measurement frequency may be 2.5 kHz, 1.25 kHz, 625 Hz or 312.5 Hz. Details of how to change the
measurement frequency, see Chap. 6.5.
The output rate gives the actual number of measurement values at the sensor output per second. The
maximum output rate can never exceed the measurement frequency.
Please, see Chap. A 3.
Recommendations:
- Use a high measurement frequency for light
colored and matt objects to be measured.
- Use a low measurement frequency for
dark or shiny objects to
be measured (e.g.
surfaces covered in
black lacquer), for better measurement
results.
Output
Maximum output rate
Current
Measurement frequency
Voltage
Measurement frequency
RS422
Output rate Measurement frequency;
Dependent on the transmission rate
(baud rate) and data format (ASCII-Code).
The sensor continues to measure internally but holds
back the output until the last measurement value has
been issued in full. The next measurement value is
the last valid value, with other values between being
lost.
Fig. 26 Output rates for the output types
Calculation of the output rate using the RS422 serial interface:
Output rate = Measuring frequency n
n = int (b * 11 * MR / BR) + 1
Abbreviations used:
n = Partial factor
int = Integral part of ( )
b = Byte/measurement value
(binary format b=2, ASCII b=6))
MR = Measurement frequency [Hz]
BR = Baud rate [Baud]
The values are summarized, see Chap. A 3.
Example:
Measurement frequency = 1250 Hz, ASCII-Format (b=6), Baud rate = 19200 Baud
--> n = int (4.3) + 1 = 5
--> Output rate = 1.25 kHz / 5 = 250 Hz.
optoNCDT 1700
Page 46
Operation
6.10
Operation Mode
6.10.1 Error Mode
(Error Control)
Measured value
EMR
In error mode, the switching output 1 is used as
an error output. The switching output 2 remains
inactive. The error mode can be programmed
using both the keypad and the programming
interface.
The error output is activated (conducting to
GND) when:
-- the object to be measured is outside the
measurement range, see Fig. 27,
-- there is no object to be measured present, or
-- if the object to be measured is unsuitable (too
dark, polished metal, insufficiently reflective).
Transparent objects can be penetrated by the
light of the laser and the laser spot unacceptably
enlarged, resulting in unreliable measurements.
This will also trigger the error output.
6.10.2
Switch Mode
(Limit Control)
In switch mode, both switching outputs
are used as limit switches, see Fig. 28.
The individual limits can be programmed using
the digital programming interface, see Chap.
8.5.7, see Chap. 8.5.8.
optoNCDT 1700
SMR
Time
+
GND
+
GND
Switching output 1
Switching output 2
Fig. 27 Signal sequence for the switching outputs in the
operation mode „Sync error“ and „Trigger error“
Error mode:
Setting mid-point only, no limit control
Switch mode: Mastering only, limit control
Page 47
Operation
The following four values are used:
-- Upper limit (UL),
-- Lower limit (LL),
-- Upper hysteresis value (UH),
-- Lower hysteresis value (LH).
IMPORTANT!
The limit control is
based on the average.
Measured value
EMR
UL
UH
If the upper limit is exceeded the assigned
switching output 1 will be activated (conducing), and deactivated again with the follow-on
shortfall on the upper hysteresis value. The same LH
applies in principle to a shortfall on the lower
LL
limit and switching output 2, see Fig. 28.
SMR
Standard setting
Upper limit (UL):
101 % FSO / Digital value: 16365
+
Upper hysteresis value (UH):
100 % FSO / Digital value: 16207
GND
Lower hysteresis value (LH):
0 % FSO / Digital value: 161
GND
Lower limit (LL):
-1 % FSO / Digital value: 0
+
+
GND
Time
Switching output 1
Switching output 2
SET_UPPERLIMIT F1
Switching output 1
In switch mode, both switching outputs are
+
activated when:
Switching output 2
-- the object to be measured is outside the mea- GND
SET_LOWERLIMIT F1
surement range, see Fig. 28,
-- there is no object to be measured present, or
-- if the object to be measured is unsuitable (too
Fig. 28 Signal sequence for the switching outputs in operadark, polished metal, insufficiently reflective).
tion mode „Sync switch“ and „Trigger switch“
optoNCDT 1700
Page 48
Operation
6.10.3
Output Circuit for the Switching Outputs
Switching output
Pin 7 / 8
In the active state the transistor T is conductive.
The switch outputs are short-circuit-proof.
To reset the short-circuit protection:
-- Clear the external short circuit
-- Switch off the sensor and switch on again, or
-- Send the software command “Reset“ to the
sensor.
GND Pin 6
The two limit outputs (Pin 7 and 8) may also be
actuated in parallel as window comparator (OK/
Not OK separation).
+UB Pin 5
+24 VDC
ILD1700
WARNING!
Never connect the
relay without a
protective diode! Risk
of damage to the
switch output.
T
max. 100 mA
Fig. 29 Switching output: Examples of external protective
circuit with pull-up resistor or relay with protective diode
6.11
Synchronization of Sensors
If two sensors are used on a single object to be measured, they can be synchronized with each other. The
optoNCDT1700 distinguishes between two types of synchronization, see Fig. 30.
IMPORTANT!
Synchronization
requires that the
master and slave
sensors have the
same measurement
frequency.
Type
Used for
Measurement of differences (thickness, difference in height) on
Simultaneous
Both sensors measure in
opaque objects. Here, Sensor 1 must be programmed as the
synchronization the same cycle.
“Master“ and Sensor 2 as the “Slave“.
Alternating
Both sensors measure
synchronization alternately
Thickness measurements on translucent objects or measurements of difference on closely spaced measurement points.
The alternating synchronization requires that the lasers are
switched on and off alternately so that the two sensors do not
interfere with each other optically.
Fig. 30 Characteristics of and uses for the different types of synchronization
For alternating synchronization the master sensor has to be run in „Master alternating“ mode, see Chap. 6.5.
optoNCDT 1700
Page 49
Operation
IMPORTANT!
Although this does not change the measurement frequency, the output rate is reduced by half in this mode.
An unsynchronized slave switches the laser off, sends an accordant error signal.
The slave sensor
should be operated
unsynchronized as far
as possible!
Pin 3, blue
Pin 4, pink
Pin 6,
1
brown (black)
WARNING!
The synchronous
terminals must never
be connected to the
operating voltage
and/or GND, even
momentarily. Risk of
permanent damage
from overloading!
1) Connect the
ground connectors
(GND, pin 6, black), of
the sensors if the
sensors are not
operated on the same
power supply.
Conductors twisted together in the cable must
be used for synchronization. Terminals with the
same polarity (Sync+ and Sync-) should be
connected.
The optoNCDT1700 contains a terminating
resistor, see Fig. 31, between pin 3 and 4 for line
matching.
Fig. 31 Synchronization of two optoNCDT1700
Synchronization with external signal
If a sensor is synchronized with an external signal the levels of the signal must comply with the LVDS specifications (Low Voltage Differential Signals). Further information, see Chap. 6.14.3. The synchronization
frequency is to maintain with a tolerance of ±1 % of the measurement frequency.
Triggering is done with an accordant hardware only. Use the optional available triggerBOX1700 from
MICRO-EPSILON.
6.12
Exposure Time
At a maximum measurement frequency of 2.5 kHz the CCD element is exposed 2500 times per second. This
gives a predefined maximum exposure time (laser exposure time) of 0.4 ms at this measurement frequency.
The lower the measurement frequency, the longer the maximum exposure time.
The real-time control of the sensor reduces the exposure time in dependency on the amount of light hitting
the CCD element and therefore compensates for reflection changes at the same time, e.g. caused by imprints
on the surface of the object being measured.
optoNCDT 1700
Page 50
Operation
6.13
Timing, Measurement Value Flux
The controller operates internally with real time cycles in a pipeline mode:
1. Exposure: Charging the image detector in the receiver (measurement).
2. Reading: Reading out of the imaging device and converting into digital data.
3. Computation: Measurement computation.
4. Controlling
The output through the analog and digital interface starts with the beginning of every new cycle. The analog
value and digital switch outputs are updated immediately and the digital output starts with the start bit.
Each cycle takes 400 μs at a measuring rate of 2.5 kHz (speed=1). The measured value N is available after
each cycle with a constant lag of four cycles in respect to the real time event. The delay between the input
reaction and the signal output is therefore 1.2 up to 1.6 ms. The processing of the cycles occurs sequentially
in time and parallel in space, see Fig. 32, pipelining). This guarantees a true constant real time data stream.
Cycle
Time
1. Layer
2. Layer
1.
400 µs
Exposure N
(Output N-4)
Controlling N-3
2.
800 µs
Reading N
3. Layer
Exposure N+1
(Output N-3)
Computation N-2 Controlling N-2
4. Layer
Reading N-1
Computation N-1
3.
1200 µs
Computation N
Reading N+1
Exposure N+2
(Output N-2)
Controlling N-1
4.
1600 µs
Controlling N
5.
2000 µs
Exposure N+4
(Output N)
Computation N+1 Controlling N+1
Reading N+2
Exposure N+3
(Output N-1)
Computation
N+2
Reading N+3
Fig. 32 Sensor timing
optoNCDT 1700
Page 51
Operation
Measurement value
as raw value
Test
Median
1, 3, 5, 7
Average
moving
Average
recursive
Measurement mode
Trigger or
continiously
:
Limit values
Limit value outputs
Calculation
Analog (with offset / factor),
digital and limit values
Master
Output
Analog, digital values
Trigger
Fig. 33 Measurement value flux ILD 1700
optoNCDT 1700
Page 52
Operation
IMPORTANT!
Triggering is done
with an accordant
hardware only. Use
the optional available
triggerBOX1700 from
MICRO-EPSILON.
6.14
Triggering
6.14.1
Basics
The optoNCDT1700 measurement output is controllable through an external signal (electrical signal or command). Thereby the analog or digital output is affected only. Triggering does not influence the measuring
frequency respectively the timing, see Chap. 6.13, so that between the trigger event (level change) and the
output reaction always lie 4 cycles.
The synchronization inputs are used for external triggering. So the sensors can alternatively be synchronized
or triggered. The change between synchronization (default setting) and triggering is done with the keys,
see Chap. 6.5, „Operation mode“ or the SET_ERROROUTPUT command, see Chap. 8.5.9.
6.14.2
IMPORTANT!
The limit control is activated only in the operation mode „Trigger
switch mode“.
Trigger Modes
The measurement output in trigger mode can be controlled with the edge as well as the level of the trigger
signal. Implemented trigger conditions:
-- Rising edge,
-- Falling edge,
-- High level or
-- Low level.
Set the trigger conditions (edge or level) with the keys, see Chap. 6.5, „Synchronization“ or the SET_TRIGGERMODE command, see Chap. 8.5.13.
Edge triggering
The analog output is updated after a trigger edge. If the digital
output is selected only a single digital value, see Fig. 34, is
transmitted through the RS422 interface. Between the analog
output is temporarily stopped (“Sample and hold“), see Fig. 35.
UI
t
D0
t
Fig. 34 Rising trigger edge (above) and
digital output signal (below)
optoNCDT 1700
Page 53
Operation
Level Triggering
So long measurements are transmitted as the trigger condition
is fulfilled.
The GET_MEASVALUE command, see Chap. 8.5.19, supplies
the specified amount of digital measurements which must be
defined in the related parameter. Digital measurements are
output in binary, see Chap. 8.2.1 or ASCII format, see Chap.
8.2.2, in trigger mode.
6.14.3
Trigger Signal Levels
The inputs (Trig+, Trig-;, see Fig. 40) are used for external
triggering. The necessary signal levels comply to the LVDS
(Low Voltage Differential Signals) specification. Thus only LVDS
driver circuits with 3.3 V operation voltage are used for triggering.
The difference between both input signals Trig+ (pin 3) and
Trig- (pin 4) must be according to amount greater than 100
mV. Each individual signal may lie in the range between 0 V
and +2.9 V related to GND. The sensor detects a high level,
see Fig. 37, if the voltage on Trig+ is greater than on Trig-. The
optoNCDT1700 contains a terminating resistor, see Fig. 38,
between pin 3 and 4 for line matching.
td
tn
ti
UI
Pulse duration
Non-pulse period
Pulse interval
Input signal level
6.14.4
Trigger Pulse
The trigger pulse duration td must be one cycle time (= 1 /
measuring frequency) at least. Shorter measuring frequencies
need a longer trigger pulse duration
(e.g. from td = 400 μs with speed = 1 up to td = 3.2 ms with
speed = 1/8).
UI
t
D0
t
Fig. 35 High trigger level (above) and
analog output signal (below)
UI
t
D0
t
Fig. 36 Low trigger level (above) and
digital output signal (below)
UI
2.9 V
Trig Trig+
H
L
td
tn
ti
H
t
Fig. 37 Timing trigger signal
optoNCDT 1700
Page 54
Operation
IMPORTANT!
Exceeding the maximum trigger frequency
leads in measuring inaccuracy shown by the
flashing zero LED and
the set error output (if
operation mode trigger/
error is selected).
IMPORTANT!
Triggering is done
with an accordant
hardware only. Use
the optional available
triggerBOX1700 from
MICRO-EPSILON.
IMPORTANT!
Connect the trigger
source ground with
the sensor ground
(GND, pin 6) before
sending trigger
signals.
Edge triggering
The pulse interval ti between two trigger pulses must be at minimum four cycles. Then the triggered measurement is issued
before a new trigger edge arrives. This results in a maximum
trigger frequency of 625 Hz for a measuring frequency of
2.5 kHz.
If the trigger level has changed, all measurements must be
issued before a new trigger lever can be identified. The sensor
requires a non-pulse period tn of 4 cycles. The minimum pulse
interval amounts therefore 5 cycles (ti = td + tn), see Fig. 39.
This results in a maximum trigger frequency of 500 Hz for a
measuring frequency of 2.5 kHz.
Trigger mode
Edge triggering
Level triggering
Pulse duration t d
1 Cycle = 400 µs
1 Cycle = 400 µs
Non-pulse period t n 3 Cycles = 1.2 ms
4 Cycles = 1.6 ms
Pulse interval t I
5 Cycles = 2.0 ms
4 Cycles = 1.6 ms
Trigger frequency fT f T = f M / 4 = 625 Hz
optoNCDT1700
Trigger
source
4
Level triggering
UI
6
GND
Fig. 38 Trigger wiring
f T = f M / 5 = 500 Hz
fM = Measurement frequency
Fig. 39 Minimum pulse values and maximum trigger frequency for speed = 1
6.14.5
Pin Assignment for External Trigger Signal
Pin
Input
3
4
Trigger+ Differential
Trigger - input
6
optoNCDT 1700
3
GND
View on solder-pin side
male cable connector,
insulator
Characteristics Color sensor cable PC1700-x
blue
pink
System ground black
3
4
6
Fig. 40 Pin assignment
for external trigger signal
Page 55
Measurement Value Output
7.
A 10 nF ceramic
capacitor between
analog output and
AGND of subsequent
devices reduces high
frequency interferences.
Measurement Value Output
The optoNCDT1700 can issue the measurement values either via the analog output or the RS422 serial interface. The two different types of output cannot be used concurrently. The analog output can be programmed
for use as a current output or a voltage output.
7.1
Voltage Output
Range for measurement voltages
-0.1 V ... +10.1 V
Output amplification  U OUT
10.0 V = 100 % Measuring range
Error value:
10.2 V (±10 mV)
Calculation of a measurement value x in mm from analog voltage:
x [mm] = U OUT *
SMR = Start of
measuring range
MR [mm]
10.0 [V]
Reference
value: SMR
x [mm] = U OUT *
MR [mm]
10.0 [V]
- MR/2
Reference
value: MMR
Example: Measuring range = 10 mm, U OUT = 4.6 V; Result: x = 4.6 mm respectively x = -0.4 mm
10.2 V
10 V
MMR = Midrange
EMR = End of
measuring range
0 V
-0.1 V
MR = Measuring
range
SMR
EMR
Measuring object
Fig. 41 Voltage output signal
optoNCDT 1700
Page 56
Measurement Value Output
7.2
Current Output
Max. range
4 mA ... 20 mA
Output amplification  I OUT
16 mA = 100 % Measuring range
Error value: 3 mA (±3 μA)
Calculation of measurement value x in mm from analog current
Reference value SMR:
Reference value MMR:
x [mm] = (I OUT - 4 mA)*
MR [mm]
16 [mA]
x [mm] = (I OUT - 4 mA)*
MR [mm]
16 [mA]
- MR/2
Example: Measuring range = 10 mm, I OUT = 12 mA; Result: x = 5 mm respectively x = 0 mm
7.3
Digital Value Output
The digital measurement values are issued as unsigned digital values (raw values).
Digital value
Used for
Digital value
Used for
0 ... 16367
Value range
16208 ... 16367
EMR back-up (1 %)
0 ... 160
SMR back-up (1 %)
16370 ... 16383
Error codes
161 ... 16207 Measurement range
Calculation of a measurement value in mm from digital output
Reference value SMR:
x [mm] = (digital OUT *
Reference value MMR:
1.02
16368
- 0.01) * MR [mm]
x [mm] = (digital OUT *
1.02
16368
- 0.51) * MR [mm]
Example: MR =10 mm, Reference value = SMR
optoNCDT 1700
Page 57
Measurement Value Output
Digital value
Conversion Measurement value
8184
(8184 * 6.23167e-5 - 0.01) * 10 mm
= 5 mm
10261
(10261 * 6.23167e-5 - 0.01) * 10 mm
= 6.294 mm
161
(161 * 6.23167e-5 - 0.01) * 10 mm
= 0 mm (=MMR)
(=SMR)
Note: A digital value can be calculated from a measurement value (millimeter) as follows:
digital OUT =
7.4
x [mm]
16368
+ 0.01 *
MR [mm]
1.02
Digital Error Modes
Digital error codes are issued in the same way
as measurement values.
Value range for error codes:
16370 ... 16383 (digital OUT)
optoNCDT 1700
This formula can be used, for example, in the programming of switching thresholds, see Chap. 8.5.7.
F1 bad object
F2 out of range F3 out of range +
F4 poor target
F5 Laser off
16370 No object detected
16372 Too close to sensor
16374 Too far from sensor
16376 Object cannot be evaluated
16378 external laser off
16380 Sensor in trigger mode
Trigger pulses come to fast.
Page 58
Serial Interface RS422
8.
Serial Interface RS422
PC1700-x/IF2008
IF2008
PC
Fig. 42 System structure to operate the interface card IF2008
optoNCDT 1700
Pin Signal
Signal
5 24 V
24 V supply 1
12 Rx + (Input)
Sensor 1/3 TxD+
Sensor 1
11 Rx - (Input)
Sensor 1/3 TxD 14-pol.
1 Tx + (Output)
Sensor 1/3 RxD+
ODU-con2
Tx
(Output)
Sensor 1/3 RxD nector
3 Sync +
TRG +
4 Sync TRG 6 GND
GND
When using 3 sensors apply the optional available Yadapter cable IF2008-Y.
5 24 V
24 V supply 1
12 Rx +
Sensor 2/4 TxD+
11
Rx
Sensor 2/4 TxD Sensor 2
1
Tx
+
Sensor 2/4 RxD+
14-pol.
ODU con- 2 Tx Sensor 2/4 RxD nector
3 Sync +
TRG +
4 Sync TRG 6 GND
GND
Pin
10
2
1
4
3
6
7
IF2008,
15
X1 and X2,
15-pol.
Sub-D
10
12
11
14
13
6
7
15
Required cables and program
routines
-- IF2008
RS422 interface card, for 1
to 4 laser-optic sensors from
the ILD1700 series and 2 encoders, including MEDAQlib
programming interface.
-- PC1700-x/IF2008
Power supply and output
cable, x = length with 3, 6 or
8 m.
Alternatively, data can be transferred with the demo software
(ILD1700 Tool) and a RS422
converter to USB, see Chap. 10..
Fig. 43 Pin assignment for two
PC1700-x/IF2008 and IF2008
1) Supply voltage for the connected sensors and encoders,
output current 1.25 A max.
Page 59
Serial Interface RS422
8.1
Interface Parameters
The optoNCDT1700 comes with a RS422 serial interface to enable the sensor to be operated from a standard
computer and measurement values and error codes to be transferred.
Data format: 8 Data bits, no parity, one stop bit (8,N,1)
The factory-set baud rate is 115.2 kBaud but it can be programmed to a different value, see Chap. 6.5. The
maximum measurement frequency is 2.5 kHz.
8.2
Data Format for Measurement Values and Error Codes
8.2.1
Binary Format
The data word is comprised of two consecutive bytes (H-byte/L-byte). One flag bit in each byte differentiates
a high from a low byte.
Start
1
7 Bit MSB
Stop
Start
0
7 Bit LSB
Stop
Conversion of the binary data format:
For conversion purposes the high and low bytes must be identified on the basis of the first bit (flag bit), the
flag bits deleted and the remaining 2 x 7 bits compiled into 14 bit data word.
Reception:
H-Byte 1
D13
D12
D11
D10
D9
D8
D7
L-Byte
D6
D5
D4
D3
D2
D1
D0
D11 D10
D9
0
Result of conversion
0
optoNCDT 1700
0
D13
D12
D8
D7
D6
D5
D4
D3
D2
D1
D0
Page 60
Serial Interface RS422
Conversion must be done in the application program.
Example:
Digital value: 2099 (= 0x0833 = 0b0010000 0110011)
14 Bit
Binary format
H-Byte: Transfer 0x90 (0b10010000)
-> converted 0x10 (0b0010000)
L-Byte: Transfer 0x33 (0b00110011)
-> converted 0x33 (0b110011)
8 Bit
7 Bit
8 Bit
7 Bit
with flag bit
without flag bit
with flag bit
without flag bit
Flag bits deleted and compiled: 0x833
8.2.2
ASCII Format
Output of 5 characters (digits) in ASCII code for the digital value + 1 tag „CR“ (= 0x0D), i.e. a total of 6
characters. Digital values with just 3 or 4 digits are preceded by blank characters.
Example: Digital value 2099
Transfer: “_2099“ (preceded by 1 blank character) „CR“
ASCII-Code (Hex.) 0x20
Characters
SP
0x32
2
0x30
0
0x39
9
0x39
9
0x0D
CR
Advices:
ASCII characters can be easily shown using a terminal program.
The output rate in ASCII format is reduced automatically by skipping individual measurement values, see
Chap. 6.9.
optoNCDT 1700
Page 61
Serial Interface RS422
8.3
Set-up of the Commands
The commands for the sensors are comprised of command data which are transmitted in full duplex mode.
Each command packet is comprised of a whole number multiple of 32 bit words, see Fig. 44.
1
31
24
23
2
3
IMPORTANT!
The sensor continues
to deliver measurement
values to the analog
output even while
communicating with
the sensor.
4
5
6
16
15
Header
8
7
0
(ID)
Command
(16 Bit)
Data 1
...
Data (n)
Package length
(16 Bit)
Start word
Sensor identifier
e.g. „ILD1“
Command code
Contents
Command header
(2 words)
Data word quantity n+2
1st Data word (4 Bytes)
...
nth Data word (4 Bytes)
Fig. 44 Structure of a command packet
Since most serial interfaces use an 8 bit data format, 4 consecutive bytes are combined into a 32 bit word.
Each command packet has a header consisting of two 32 bit words followed by the command and, if required, other data as well. The top two bits (No. 31 and 30) are always “0“ in the transmitted command.
Example:
Command SET_AVX. Sets the averaging number N for the moving and recursive average.
Command: 0x2075
Averaging number: N = 1024, therewith X = log2 1024 = 10 (= 0xA)
Data word: n = 1
Package length: 3
For further informations on this command, see Chap. 8.5.4.
optoNCDT 1700
Page 62
Serial Interface RS422
Format:
31 24
„+“
„I“
23 16
„+“
„L“
15
8
„+“
„D“
7
0
hex
0x0d („CR“) 0x2B2B2B0D
„1“
0x494C4431
0x20
0x75
0x00
0x03
0x20750003
0x00
0x00
0x00
0x0A
0x0000000A
8.4
Command Reply
8.4.1
Communication without Error
Contents
Start word
Identifier ID „ILD1“
Command (0x2075)
Package length
2 top bits = 0
=3
Data word 1 (X = 0xA)
No start word is transmitted, if the sensor replies to a command. The 1st word then is the sensor identifier.
The second word is the command with set MSB (Bit 31 = 1, corresponding an OR operation of the command
with 0x8000) and the new package length, if there was no error during communication. With longer answers
(e.g. GET_INFO) the package length is larger according to the quantity of data words to be transmitted. A
firm 32 bit word 0x20200D0A forms the conclusion of the answer. The conclusion word is not a data word.
Example: Sensor reply (without error) to the SET_AVX command.
31
23 16
„L“
15
8
„D“
0xA0
0x75
0x00
0x02
0xA0750002
0x20
0x20
0x0D
0x0A
0x20200D0A
„I“
24
7
„1“
0
hex
0x494C4431
Contents
Identifier ID „ILD1“
0x2075 OR 0x8000
Package length
(MSB = 1)
(2)
Conclusion word
Wait until the sensor reply, before you send a new command to the sensor.
optoNCDT 1700
Page 63
Serial Interface RS422
8.4.2
Communication with Error
If the sensor detects an error during the execution of a command, the second highest bit (bit 30) of the
command is also set (the command is OR operated with 0xC000). Additionally a command error code is
transferred as data word, see Fig. 45. The resulting package length amounts to now 3 data words. The reply
is finished with a 32 bit word 0x20200D0A (2 blank characters + CR + LF).
Error-Code X
1
2
3
4
5
6
Description
Command unknown
Incorrect parameter value
Invalid parameter
Time out
Command failed
Warning for averaging type and averaging number 1
Fig. 45 Command error codes
Example: Sensor operates in the average mode “Median“. The command SET_AVX is not possible in this
averaging mode and leads to the following answer.
31
23 16
„L“
15
8
„D“
0xE0
0x73
0x00
0x03
0xE0730003
0x00
0x00
0x00
0x05
0x00000005
0x20
0x20
0x0D
0x0A
0x20200D0A
„I“
24
7
„1“
0
hex
0x494C4431
Contents
Identifier ID „ILD1“
0x2075 OR 0xC000
Package length
(2 top bits = 1)
=3
Command error code: 5
„Command failed“
Conclusion word
The sensor continues to deliver measurement values to the analog output even while communicating with the
sensor. The measurement value output on the digital interface is momentarily interrupted.
1) , see Chap. 8.5.5.
optoNCDT 1700
Page 64
Serial Interface RS422
8.5
Commands
8.5.1
Overview
Information commando
IMPORTANT!
Wait until the sensor
reply, before you
send a new command
to the sensor.
0x20490002
GET_INFO
Shows sensor data
0x204A0002
GET_SETTINGS
Shows sensor settings
0x20700002
0x20710002
0x20720002
0x20730002
0x20750003
SET_AV0
SET_ AV1
SET_ AV2
SET_ AV3
SET_ AVX
0x207D0003
SET_AV_T
Sets Average 0 = 1 (Median 3)
Sets Average 1 = 4 (Median 5)
Sets Average 2 = 32 (Median 7)
Sets Average 3 = 128 (Median 9)
Average X = log 2 (MV)
Average
Selects average type
Measurement value output
0x20770002
DAT_OUT_ON
Permanent measurement value output
0x20760002
DAT_OUT_OFF
Stops measurement value output
0x202C0003
GET_MEASVALUE
Reduced measurement value output (polling)
Fixed points and limits
0x207E0007
SET_LIMITS
Sets limits, hysteresis and master
0x20830002
SET_UPPERLIMIT_F1
Assignment OG -> Limit 1
0x20840002
SET_LOWERLIMIT_F1
Assignment UGt -> Limit 1
Error and measurement value autputs
0x20950003
SET_ERROROUTPUT
Error mode and switchmode for synchronization or triggering
0x20900003
SET_OUTPUTTYP
Measurement value output : Current, Voltage, RS422
0x20850003
SET_SPEED
Measurement frequency: 2.5 kHz; 1.25 kHz; 625 Hz; 312.5 Hz
0x20800003
SET_BAUDRATE
Baudrate: 115.2/ 57.6/19.2/9.6 kBaud
Speed
optoNCDT 1700
Page 65
Serial Interface RS422
Error output (Analog output)
0x20810003
SET_ERRORHANDLER
In case of error: Keep / do not keep last valid measurement
value
Synchron or trigger mode
0x20820003
SET_SYNCMODE
SET_TRIGGERMODE
Master / Slave, on, off, alternating;
triggering
Switching off the laser (external)
0x20870002
LASER_ON
Switches the laser on
0x20860002
LASER_OFF
Switches the laser off
Measurement value data format
0x20880003
ASCII_OUTPUT
Options: ASCII / Binary
SET_KEYLOCK
Options: Keys enables or locked
0x20F10002
SET_DEFAULT
Reset to default factory settings
0x20F00002
RESET_BOOT
Reboot the sensor
Key lock
0x20600003
Reset
Lock Flashwrite
0x20610003
WriteFlashZero
Lock the Flashwriting for setting masters and the mid-point
Setting Masters, Setting Mid-Point
0x20660003
optoNCDT 1700
SET_ZERO
Start setting masters measurement respectively relative
measurement
Page 66
Serial Interface RS422
8.5.2
IMPORTANT!
If initialization has been
finished, the sensor
transmits the info
string once in ASCII
format. The initialization
including the info string
transmission takes up
to 10 seconds. Within
this period, the sensor
neither executes nor
replies commands.
Reading out the Sensor Parameters
Name:
Get_Info
Description:
Supplies the info string. This shows all parameters currently stored in the sensor.
Format:
Reply:
31
24 23
16 15
8 7
0
hex
„+“
„+“
„+“
0x0d („CR“)
0x2B2B2B0D
„l“
„L“
„D“
„1“
0x494C4431
0x20
0x49
0x00
0x02
0x20490002
31
24 23
16 15
8 7
0
hex
„l“
„L“
„D“
„1“
0x494C4431
0xA0
0x49
0x00
0x70
0xA0490070
Info string in the form of a readable ASCII character string:
ILD 1700 : Standard
output : RS422err
frequency : 2500 Hz
average-number : 1
syncmode 1: M S off
keylock: no
range: 10
option : 0
date: 06/03/09
sw type: 0
Softwareversion : 5.005
speed : 1
average-type : moving
hold value : yes
ASCII-output: no
Flash enable: yes
serialnumber: 1234568
articlenumber : 4120088
bootloaderversion: 1.52
0x20
0x20
0x0D
0x0A
0x20200D0A
1) Depends on operation mode settings (synchronization or trigger). Options with synchronization: Master
sync. off, master sync. on, slave, master alternating. Options with trigger: Edge LH, edge HL, level H, level L
optoNCDT 1700
Page 67
Serial Interface RS422
8.5.3
Name:
Reading out the Sensor Settings
Get_Settings
Description:
Supplies the current sensor settings
These are as follows:
Average: Integer in hex form of the exponents as the base
2 of the average number for the moving and recursive
veraging types. For Median:
0=3
2=5
5=7
7=9
Upper limit: Integer in hex form (count value)
Lower limit: Integer in hex form (count value)
Upper hysteresis value: Integer in hex form (count value)
Lower hysteresis value: Integer in hex form (count value)
Master value: Integer in hex form (count value)
Average type:
0 = Recursive
1 = Moving
2 = Median
Master and mid-point value set (M):
0 = Not mastered in switch mode, mid-point value not set in
error mode
1 = Mastered in switch mode, mid-point value not set in
error mode
2 = Not mastered in switch mode, mid-point value set in
error mode
3 = Mastered in switch mode, mid-point value set in error
mode
Baud rate:
Flag for hold last value:
0 = Do not keep last measurement value
1 = Keep last measurement value
optoNCDT 1700
Synchron mode 1:
0 = Master synch off
1 = Mast synch on
2 = Slave
3 = Master synch
alternating
Assignment of the limits to the error outputs
1 = upper limit > F1, lower limit > F2
0 = upper limit > F2, lower limit > F1
0 = 115.200 Baud
1 = 57.600 Baud
2 = 19.200 Baud
3 = 9.600 Baud
ASCII output
0 = Binary format
1 = ASCII format
Laser status
0 = Laser off
1 = Laser on
Trigger mode 1:
0 = Edge LH
1 = Edge HL
2 = Level high
3 = Level low
Output type:
0 = Current
1 = Voltage
2 = digital
Measurement
speed:
0=1
1 = 1/2
2 = 1/4
3 = 1/8
Operation mode:
0 = Sync. error
1 = Sync. switch
2 = Trigger error
3 = Trigger switch
1) Depends on
operation mode
settings (synchronization or trigger).
Page 68
Serial Interface RS422
Measurement range:
Integer in hex form in mm
Digital data output:
0 = Data output switched off
1 = Data output switched on
Key lock:
0 = Keys enabled
1 = Keys locked
Format:
Reply:
Enable Flash:
0 = Flashwrite locked
1 = Flashwrite enabled
31
24 23
16 15
8 7
0
hex
„+“
„+“
„+“
0x0d („CR“)
0x2B2B2B0D
„l“
„L“
„D“
„1“
0x494C4431
0x20
0x4A
0x00
0x02
0x204A0002
31
24 23
16 15
„l“
„L“
0xA0
0x4A
8 7
0
hex
„D“
„1“
0x494C4431
0x00
0x17
0xA04A0017
0x00
0x0X
0x0000000X
0x0X
0x0000000X
0x0X
0x0000000X
Output type
0x00
0x00
Measurement speed
0x00
0x00
0x00
Averaging number
0x00
optoNCDT 1700
0x00
0x00
Page 69
Serial Interface RS422
Flag hold last value
0x00
0x00
0x00
0x0X
0x0000000X
0x0X
0x0000000X
0x0X
0x0000000X
0x00
0x0X
0x0000000X
0x00
0x0X
0x0000000X
0x00
0x0X
0x0000000X
0xXX
0xXX
0x0000XXXX
0xXX
0xXX
0x0000XXXX
0xXX
0x0000XXXX
0xXX
0xXX
0x0000XXXX
0xXX
0xXX
0x0000XXXX
Synchron mode
0x00
0x00
0x00
Averaging type
0x00
0x00
0x00
0x00
0x00
0x00
0x00
Operation mode
Baud rate
ASCII / Binary output
0x00
0x00
Upper limit
0x00
0x00
Upper limit
0x00
0x00
0x00
0x00
Upper hysteresis value
0xXX
Lower Hysteresis value
0x00
0x00
0x00
0x00
Master value
optoNCDT 1700
Page 70
Serial Interface RS422
Master and mid-point value set
0x00
0x00
0x00
0x0X
0x0000000X
0xXX
0x0000XXXX
0xXX
0xXX
0x0000XXXX
0x00
0x0X
0x0000000X
0x0X
0x0000000X
Measuring range
0x00
0x00
0xXX
Assignment of the limits to the switching outputs
0x00
0x00
0x00
0x00
0x00
0x00
Key lock
Data output digital
0x00
Laser status
0x00
0x00
0x00
0x0X
0x0000000X
0x20
0x20
0x0D
0x0A
0x20200D0A
0x00
0x00
0x0X
0x0X
0x0000000X
0x20
0x20
0x0A
0x0A
0x20200D0A
Enable Flash
optoNCDT 1700
Page 71
Serial Interface RS422
8.5.4
IMPORTANT!
The “avg“ LED shows
the current status
after the command
SET_AVO...3 on.
Set Average Number
Name:
SET_AV0
Description:
Sets the averaging number to 1 for moving and recursive averages, and to 3 for median.
Format:
Reply:
31
optoNCDT 1700
8 7
0
hex
„+“
0x0d („CR“)
0x2B2B2B0D
„l“
„L“
„D“
„1“
0x494C4431
0x20
0x70
0x00
0x02
0x20700002
24 23
16 15
8 7
0
hex
„l“
„L“
„D“
„1“
0x494C4431
0xA0
0x70
0x00
0x02
0xA0700002
0x20
0x20
0x0D
0x0A
0x20200D0A
SET_AV1
Sets the averaging number to 4 for moving and recursive averages, and to 5 for median.
31
24 23
„+“
Reply:
16 15
„+“
31
Name:
Description:
Format:
24 23
„+“
16 15
„+“
8 7
„+“
0
0x0d („CR“)
hex
0x2B2B2B0D
„l“
„L“
„D“
„1“
0x494C4431
0x20
0x71
0x00
0x02
0x207130002
31
24 23
16 15
8 7
0
hex
„l“
„L“
„D“
„1“
0x494C4431
0xA0
0x71
0x00
0x02
0xA0710002
0x20
0x20
0x0D
0x0A
0x20200D0A
Page 72
Serial Interface RS422
Name:
SET_AV2
Description:
Sets the averaging number to 32 for moving and recursive averages, and to 7 for median.
Format:
Reply:
31
24 23
8 7
0
hex
„+“
„+“
„+“
0x0d („CR“)
0x2B2B2B0D
„l“
„L“
„D“
„1“
0x494C4431
0x20
0x72
0x00
0x02
0x20720002
31
24 23
16 15
8 7
„D“
0
„1“
hex
„l“
„L“
0x494C4431
0xA0
0x72
0x00
0x02
0xA0720002
0x20
0x20
0x0D
0x0A
0x20200D0A
Name:
SET_AV3
Description:
Sets the averaging number to 128 for moving and recursive averages, and to 9 for median.
Format:
31
24 23
„+“
Reply:
optoNCDT 1700
16 15
16 15
„+“
8 7
„+“
0
hex
0x0d („CR“)
0x2B2B2B0D
„l“
„L“
„D“
„1“
0x494C4431
0x20
0x73
0x00
0x02
0x20730002
31
24 23
16 15
8 7
0
hex
„l“
„L“
„D“
„1“
0x494C4431
0xA0
0x73
0x00
0x02
0xA0730002
0x20
0x20
0x0D
0x0A
0x20200D0A
Page 73
Serial Interface RS422
Name:
IMPORTANT!
SET_AVX is not available for the median!
The maximum value for
N for the moving average is 128.
SET_AVX
Description:
Sets the averaging number N for the moving and recursive averages to N=2^X.
Value range for X : 0...15 (0x00...0x0F). This command is not available for the median. If attempted, the sensor issues the message „Command failed“.
Format:
31
24 23
16 15
„+“
Note: The “avg“ LED
goes off after SET_AVX.
Reply:
„+“
8 7
„+“
0
hex
0x0d („CR“)
0x2B2B2B0D
0x494C4431
„l“
„L“
„D“
„1“
0x20
0x75
0x00
0x03
0x20750003
0x00
0x00
0x00
0x0X
0x0000000X
31
24 23
16 15
8 7
0
hex
„l“
„L“
„D“
„1“
0x494C4431
0xA0
0x75
0x00
0x02
0xA0750002
0x20
0x20
0x0D
0x0A
0x20200D0A
X = log2 (N)
N = averaging number
This results in the following values for the averaging number N:
Advice: If the existing
averaging number
is higher than that
permitted for the new
averaging type, the
averaging number will
be set to the upper limit
for the new average
type.
N
X
1
0
2
1
Overview:
8
3
16
4
32
5
64
6
128 256 512 1024
7
8
9
10
Command
2048
11
4096
12
8192
13
16384
14
32768
15
Averaging number N
recursive average
Example:
Average 8
Average 512
optoNCDT 1700
4
2
moving average
Median
SET_AV 0...3 1, 4, 32, 128
1, 4, 32, 128
3, 5, 7, 9
SET_AVX
1 ... 128
Command failed
1 ... 32767
X = log 2 (8)
X = log 2 (512)
=3
=9
Page 74
Serial Interface RS422
8.5.5
Set Average Type
Name:
SET_AV_T
Description:
Sets the type of average.
Options:
-- moving average for 1 to 128 measurement values
-- Recursive average for 1 to 32768 measurement values
-- Median for 3, 5, 7 or 9 measurement values
Format:
Reply:
31
24 23
16 15
8 7
0
hex
„+“
„+“
„+“
0x0d („CR“)
0x2B2B2B0D
„l“
„L“
„D“
„1“
0x494C4431
0x20
0x7D
0x00
0x03
0x207D0003
0x00
0x00
0x00
0x0X
0x0000000X
31
24 23
16 15
8 7
0
hex
„l“
„L“
„D“
„1“
0x494C4431
0xA0
0x7D
0x00
0x02
0xA07D0002
0x20
0x20
0x0D
0x0A
0x20200D0A
Parameter:
-- X = 0 --> recursive average
-- X = 1 --> recursive average
-- X = 2 --> Median
optoNCDT 1700
Page 75
Serial Interface RS422
8.5.6
Start command
Starting and Stopping the Measurement Value Output
Name:
DAT_OUT_ON
Description:
Switches on the digital data output for the measurement values. The output channel
(output type) must also be set to the digital output, otherwise the measurement data cannot be received by
the sensor.
Format:
Reply:
Stop command
31
24 23
8 7
0
hex
„+“
„+“
„+“
0x0d („CR“)
0x2B2B2B0D
„l“
„L“
„D“
„1“
0x494C4431
0x20
0x77
0x00
0x02
0x20770002
31
Name:
16 15
24 23
16 15
8 7
0
hex
„l“
„L“
„D“
„1“
0x494C4431
0xA0
0x77
0x00
0x02
0xA0770002
0x20
0x20
0x0D
0x0A
0x20200D0A
DAT_OUT_OFF
Description:
Switches off the digital output for the measurement values. This has no effect on
communication with the sensor via the digital interface. This command has a higher priority than
GET_MEASVALUE in trigger mode.
Format:
IMPORTANT!
The STOP command
is volatile and is lost
if the power supply is
switched off or the
RESET_BOOT
command is sent.
optoNCDT 1700
31
24 23
16 15
8 7
0
hex
„+“
„+“
„+“
0x0d („CR“)
0x2B2B2B0D
„l“
„L“
„D“
„1“
0x494C4431
0x20
0x76
0x00
0x02
0x20760002
Advice: The sensor sends digital measurement values again when the operating voltage has been switched
on again.
Page 76
Serial Interface RS422
Reply:
8.5.7
31
24 23
8 7
0
hex
„l“
„L“
„D“
„1“
0x494C4431
0xA0
0x76
0x00
0x02
0xA0760002
0x20
0x20
0x0D
0x0A
0x20200D0A
Set Limit Values
Name:
SET_LIMITS
Description:
Sets limits and hysteresis values in the operation mode „Sync. switch mode“ respectively
„Trigger switch mode“ (upper/lower limit, upper/lower hysteresis value).
31
24 23
„+“
Note: The hysteresis
values have the effect
of resetting the assigned switch outputs
when the measurement
values return to the
target range.
16 15
16 15
„+“
8 7
„+“
0
hex
0x0d („CR“)
0x2B2B2B0D
„l“
„L“
„D“
„1“
0x494C4431
0x20
0x7E
0x00
0x07
0x207E0007
0x00
0x00
0xXX
0x0000XXXX
0xXX
0x0000XXXX
0xXX
0x0000XXXX
0xXX
0xXX
0x0000XXXX
0xXX
0xXX
0x0000XXXX
Upper limit value
0xXX
Lower limit value
0x00
0x00
0xXX
Upper hysteresis value
0x00
0x00
0xXX
Lower hysteresis value
0x00
0x00
Master value
0x00
optoNCDT 1700
0x00
Page 77
Serial Interface RS422
Reply:
31
24 23
16 15
8 7
0
hex
„l“
„L“
„D“
„1“
0x494C4431
0xA0
0x7E
0x00
0x02
0xA07E0002
0x20
0x20
0x0D
0x0A
0x20200D0A
Note: All values are absolute values; Input as an integer value (whole number count value) of 2 bytes, completed by two advance bytes with the value “0“ to a total length of 32 bits.
8.5.8
Standard setting:
Switching output 1
Upper limit,
Switching output 2
Lower limit
optoNCDT 1700
Assignment of the Limits to the Switch Outputs
Name:
SET_UPPERLIMIT_F1
Description:
Assigns the upper limit to switching output 1 and the lower limit to switching output 2.
Format:
Reply:
31
24 23
16 15
8 7
0
hex
„+“
„+“
„+“
0x0d („CR“)
0x2B2B2B0D
„l“
„L“
„D“
„1“
0x494C4431
0x20
0x83
0x00
0x02
0x20830002
31
24 23
16 15
8 7
„D“
0
„1“
hex
„l“
„L“
0x494C4431
0xA0
0x83
0x00
0x02
0xA0830002
0x20
0x20
0x0D
0x0A
0x20200D0A
Name:
SET_LOWERLIMIT_F1
Description:
Assigns the upper limit to switching output 2 and the lower limit to switching output 1.
Page 78
Serial Interface RS422
Format:
Reply:
8.5.9
31
8 7
0
hex
„+“
„+“
0x0d („CR“)
0x2B2B2B0D
„l“
„L“
„D“
„1“
0x494C4431
0x20
0x84
0x00
0x02
0x20840002
24 23
16 15
8 7
„D“
0
„1“
hex
„l“
„L“
0x494C4431
0xA0
0x84
0x00
0x02
0xA0840002
0x20
0x20
0x0D
0x0A
0x20200D0A
Operation Mode
SET_ERROROUTPUT
Description:
Sets the use on synchron mode or trigger mode. Both modes exclude each other as the
input lines are used for synchronisation or triggering. Additionally the use of the switching outputs is set. In
error mode, switching output 1 is used as the error output. In switch mode, both outputs are used as limit
outputs.
Format:
31
24 23
„+“
Reply:
optoNCDT 1700
16 15
„+“
31
Name:
Standard setting:
Sync error
Options:
X = 0 > Snyc error
X = 1 > Snyc switch
X = 2 > Trigger error
X = 3 > Trigger switch
24 23
16 15
„+“
8 7
„+“
0
hex
0x0d („CR“)
0x2B2B2B0D
„l“
„L“
„D“
„1“
0x494C4431
0x20
0x95
0x00
0x03
0x20950003
0x00
0x00
0x00
0x0X
0x0000000X
31
24 23
16 15
8 7
„D“
0
„1“
hex
„l“
„L“
0x494C4431
0xA0
0x95
0x00
0x02
0xA0950002
0x20
0x20
0x0D
0x0A
0x20200D0A
Page 79
Serial Interface RS422
8.5.10
Options:
X = 0 > Current
(4..20 mA)
Set the Measurement Value Output Type
Name:
SET_OUTPUTTYP
Description:
Sets the output type for the measurement values.
Format:
31
X = 1 > Voltage
(0..10 V)
X = 2 > RS422
Reply:
8.5.11
Options:
X = 0 > 2.5 kHz
X = 1 > 1.25 kHz
X = 2 > 625 Hz
X = 3 > 312.5 Hz
optoNCDT 1700
24 23
„+“
16 15
„+“
0
hex
0x0d („CR“)
0x2B2B2B0D
„l“
„L“
„D“
„1“
0x494C4431
0x20
0x90
0x00
0x03
0x20900003
0x00
0x00
0x00
0x0X
0x0000000X
31
24 23
16 15
8 7
„D“
0
„1“
hex
„l“
„L“
0xA0
0x90
0x00
0x02
0xA0900002
0x20
0x20
0x0D
0x0A
0x20200D0A
0x494C4431
Set Measurement Frequency (Speed)
Name:
SET_SPEED
Description:
Sets the measurement frequency
Format:
8 7
„+“
31
24 23
16 15
8 7
0
hex
„+“
„+“
„+“
0x0d („CR“)
0x2B2B2B0D
„l“
„L“
„D“
„1“
0x494C4431
0x20
0x85
0x00
0x03
0x20850003
0x00
0x00
0x00
0x0X
0x0000000X
Page 80
Serial Interface RS422
Reply:
Options:
X = 0 > 115200 Baud
X = 1 > 57600 Baud
X = 2 > 19200 Baud
X = 3 > 9600 Baud
31
24 23
16 15
hex
„l“
„L“
„D“
„1“
0x494C4431
0x85
0x00
0x02
0xA0850002
0x20
0x20
0x0D
0x0A
0x20200D0A
SET_BAUDRATE
Description:
Sets the transmission rate
Reply:
0
0xA0
Name:
Format:
8 7
31
24 23
16 15
8 7
0
hex
„+“
„+“
„+“
0x0d („CR“)
0x2B2B2B0D
„l“
„L“
„D“
„1“
0x494C4431
0x20
0x80
0x00
0x03
0x20800003
0x00
0x00
0x00
0x0X
0x0000000X
31
24 23
16 15
8 7
0
hex
„l“
„L“
„D“
„1“
0x494C4431
0xA0
0x80
0x00
0x02
0xA0800002
0x20
0x20
0x0D
0x0A
0x20200D0A
The sensor still sends the reply with the old baud rate and only switches to the new baud rate once the reply
has been sent. The output rate reduces automatically when the baud rate is changed because individual
measurement values are skipped.
optoNCDT 1700
Page 81
Serial Interface RS422
8.5.12
Error Output (Analog Output)
Name:
SET_ERRORHANDLER
Description:
Switches on the flag for keep / do not keep the last measurement value
This flag only affects the analog output. If set to X = 1 the last valid measurement value will continue to be issued if an error occurs (no object, invalid object, object outside the measurement range or laser turned off). If
set to X = 0 an error signal will be generated for the current output that has an error value of 3 mA and for the
voltage output that has a value of 10.2 V.
Format:
31
Options:
X = 0 > Do not hold
the last value
X = 1 > Hold last
value
optoNCDT 1700
Reply:
24 23
16 15
8 7
0
hex
„+“
„+“
„+“
0x0d („CR“)
0x2B2B2B0D
„l“
„L“
„D“
„1“
0x494C4431
0x20
0x81
0x00
0x03
0x20810003
0x00
0x00
0x00
0x0X
0x0000000X
31
24 23
16 15
8 7
0
hex
„l“
„L“
„D“
„1“
0x494C4431
0xA0
0x81
0x00
0x02
0xA0810002
0x20
0x20
0x0D
0x0A
0x20200D0A
Page 82
Serial Interface RS422
8.5.13
Options:
X = 0 > Synchronous
master off
X = 1 > Synchronous
master on
X = 2 > Slave
X = 3 > Alternating
synchronous master
Synchronous and Trigger Mode
Name:
SET_SYNCMODE/TRIGGERMODE
Synchron mode: This command can be used for synchronizing two (or more) sensors with each other.
One sensor functions as the master, the other as the slave. Master and Slave alternately measure in alternating mode to avoid interference of each other when measuring on transparent objects.
Advice: The same measurement frequency (speed) must be set for the master and the slave, otherwise there
is a risk of unreliable measurements.
Trigger mode: The synchron lines are used as trigger inputs. Four trigger types are available:
Format:
31
Options:
X = 0 > edge LH,
X = 1 > edge HL,
X = 2 > level high,
X = 3 > level low.
Reply:
optoNCDT 1700
24 23
„+“
16 15
„+“
8 7
„+“
0
hex
0x0d („CR“)
0x2B2B2B0D
0x494C4431
„l“
„L“
„D“
„1“
0x20
0x82
0x00
0x03
0x20820003
0x00
0x00
0x00
0x0X
0x0000000X
31
24 23
16 15
8 7
„D“
0
„1“
hex
„l“
„L“
0x494C4431
0xA0
0x82
0x00
0x02
0xA0820002
0x20
0x20
0x0D
0x0A
0x20200D0A
Page 83
Serial Interface RS422
IMPORTANT!
The command
LASER_OFF is
volatile. This means
that the laser is
switched on again if
the power supply
was switched off or
the sensor was
rebooted by means
of the RESET_BOOT
command and pin 9
is connected with
GND.
8.5.14
Switching off the Laser (External)
Name:
LASER_OFF
Description:
Switches off the laser.
Format:
Reply:
31
24 23
16 15
hex
„+“
0x0d („CR“)
0x2B2B2B0D
„l“
„L“
„D“
„1“
0x494C4431
0x20
0x86
0x00
0x02
0x20860002
31
24 23
16 15
8 7
0
hex
„l“
„L“
„D“
„1“
0x494C4431
0xA0
0x86
0x00
0x02
0xA0860002
0x20
0x20
0x0D
0x0A
0x20200D0A
LASER_ON
Description:
Switches the laser on
Reply:
0
„+“
Name:
Format:
8 7
„+“
31
24 23
16 15
8 7
0
hex
„+“
„+“
„+“
0x0d („CR“)
0x2B2B2B0D
„l“
„L“
„D“
„1“
0x494C4431
0x20
0x87
0x00
0x02
0x20870002
31
24 23
16 15
8 7
„D“
0
„1“
hex
„l“
„L“
0x494C4431
0xA0
0x87
0x00
0x02
0xA0870002
0x20
0x20
0x0D
0x0A
0x20200D0A
The command LASER_ON is effective only if pin 9 is connected with GND.
optoNCDT 1700
Page 84
Serial Interface RS422
8.5.15
Switching the Data Format
Name:
ASCII_OUTPUT
Description:
Switches the data format for the measurement value output via the digital interface.
Format:
Reply:
31
24 23
16 15
8 7
0
hex
„+“
„+“
„+“
0x0d („CR“)
0x2B2B2B0D
„l“
„L“
„D“
„1“
0x494C4431
0x20
0x88
0x00
0x03
0x20880003
0x00
0x00
0x00
0x0X
0x0000000X
31
24 23
16 15
8 7
0
hex
„l“
„L“
„D“
„1“
0x494C4431
0xA0
0x88
0x00
0x02
0xA0880002
0x20
0x20
0x0D
0x0A
0x20200D0A
Options:
X = 0 > Binary output (2 Byte)
X = 1 > ASCII output (6 Byte)
optoNCDT 1700
Page 85
Serial Interface RS422
8.5.16
Options:
X = 0 > Enable keys
Key Lock
Name:
SET_KEYLOCK
Description:
Locks or enables the membrane keys. The set status is not volatile.
Format:
31
X = 1 > Lock keys
Reply:
8.5.17
24 23
16 15
0
hex
„+“
„+“
0x0d („CR“)
0x2B2B2B0D
„l“
„L“
„D“
„1“
0x494C4431
0x20
0x60
0x00
0x03
0x20600003
0x00
0x00
0x00
0x0X
0x0000000X
31
24 23
16 15
8 7
0
hex
„l“
„L“
„D“
„1“
0x494C4431
0xA0
0x60
0x00
0x02
0xA0600002
0x20
0x20
0x0D
0x0A
0x20200D0A
Set Factory Setting
Name:
SET_DEFAULT
Description:
Resets the set parameters to the default settings (factory settings).
This concerns:
-- Output type (current)
-- Measurement frequency
-- Averaging number (1)
-- Hold last measurement value,
-- Synchronization (no synchronization),
-- Averaging type (moving),
-- Operation mode (sync error),
-- Baud rate (115200 baud),
-- Binary output,
-- Laser (on),
-- Data output (on),
optoNCDT 1700
8 7
„+“
-- Assignment of the switching outputs (upper limit > F1, lower
limit > F2),
-- Default values for master, offset, limit and hysteresis values
-- Keys enabled
-- Flash enabled
Page 86
Serial Interface RS422
Format:
Reply:
8.5.18
31
IMPORTANT!
optoNCDT 1700
16 15
8 7
0
hex
„+“
„+“
„+“
0x0d („CR“)
0x2B2B2B0D
„l“
„L“
„D“
„1“
0x494C4431
0x20
0xF1
0x00
0x02
0x20F10002
31
24 23
16 15
8 7
0
hex
„l“
„L“
„D“
„1“
0xA0
0xF1
0x00
0x02
0x494C4431
0xA0F10002
0x20
0x20
0x0D
0x0A
0x20200D0A
Reset Sensor
Name:
The volatile commands Laser_off and
DAT_ UT_ OFF are lost
after the RESET command.
This means that the
laser is switched on
again and the sensor
sends measurement
values again.
24 23
RESET_BOOT
Description:
Starts the sensor’s initialization phase. The set parameters are retained. The short-circuit
protection for the switch outputs is also reset in the process.
Format:
Reply:
31
24 23
16 15
8 7
0
hex
„+“
„+“
„+“
0x0d („CR“)
0x2B2B2B0D
„l“
„L“
„D“
„1“
0x494C4431
0x20
0xF0
0x00
0x02
0x20F00002
31
24 23
16 15
8 7
„D“
0
„1“
hex
„l“
„L“
0x494C4431
0xA0
0xF0
0x00
0x02
0xA0F00002
0x20
0x20
0x0D
0x0A
0x20200D0A
Page 87
Serial Interface RS422
8.5.19
Reading out the Measurements
Name:
GET_MEASVALUE
Description:
The command is used for polling measurements in trigger mode. The amount of measurements which the sensor should supply must be specified in the parameter. The command DAT_OUT_
OFF resets the amount of possible measurements to be transferred to 0.
Format:
31
24 23
16 15
8 7
0
hex
„+“
„+“
„+“
0x0d („CR“)
0x2B2B2B0D
„l“
„L“
„D“
„1“
0x494C4431
0x20
0x2C
0x00
0x03
0x202C0003
0xXX
0xXX
0xXX
0xXX
0xXXXXXXXX
Measurements are output in binary, see Chap. 8.2.1 or ASCII format, see Chap. 8.2.2, in trigger mode.
Reply:
optoNCDT 1700
31
24 23
16 15
8 7
0
hex
„l“
„L“
„D“
„1“
0x494C4431
0xE0
0x2C
0x00
0x03
0xE02C0003
0x00
0x00
0x00
0x05
0x00000005
0x20
0x20
0x0D
0x0A
0x20200D0A
Page 88
Serial Interface RS422
8.5.20
Enable / Lock the Flash for Setting Masters and the Mid-point
Name:
WriteFlashZero
Description:
This command enables or locks saving the master values into the flash.
Parameter:
X = parameter value ( 0; 1 )
Format:
31
24 23
„+“
The factory setting:
“Flash enabled“
Reply:
0 = lock Flash
1 = enable Flash
16 15
„+“
8 7
„+“
0
hex
0x0d („CR“)
0x2B2B2B0D
„l“
„L“
„D“
„1“
0x494C4431
0x20
0x61
0x00
0x03
0x20610003
0x00
0x00
0x00
0x0X
0x0000000X
31
24 23
16 15
8 7
0
hex
„l“
„L“
„D“
„1“
0x494C4431
0xA0
0x61
0x00
0x02
0xA0610002
Advices:
The command WriteFlashZero should be used by applications, which set before every measuring process
mastering and mid-point automatically through the external input line, see Chap. 6.7, see Chap. 6.8. It will do,
that the command “Lock Flash“ will be sent once.
The values for master and mid-point are saved at “Lock Flash“ only in the RAM of the sensor and get lost by
switching-off the sensor. When switching-on the before saved master and mid-point values or the factory
setting, see Chap. A 2, are loaded. The command “WriteFlashZero“ itself is non-volatile. The setup “Lock
Flash“ also survive after switching-off.
The command “WriteFlashZero“ only influences the setting masters and mid-point. All the others flash
operations were applied as before.
optoNCDT 1700
Page 89
Serial Interface RS422
8.5.21
Mastering or Setting Mid-point
Name:
Set_Zero
Description:
The command “SetşZero“ enables to
-- set the sensor to mid-point in the operation mode “Error-Mode“ or
-- mastering the sensor in the operation mode “Switch-Mode“
For sensors with software versions prior to 6,000 mid-point setting and mastering is possible with the sensor
button “select/zero“ or the digital “Zero“ input.
Parameter X:
0 = Undo set mid-point or mastering
Format:
31
Reply,
31
no error:
Reply,
with error:
24 23
1 = Set mid-point or mastering
16 15
0
hex
„+“
„+“
0x0D
0x2B2B2B0D
„l“
„L“
„D“
„1“
0x494c4431
0x20
0x66
0x00
0x03
0x20660003
0x00
0x00
0x00
0x0X
0x0000000X
24 23
16 15
8 7
0xA0
0x66
0x00
0x02
0xA0660002
0x20
0x20
0x0D
0x0A
0x20200D0A
24 23
16 15
„1“
hex
„L“
31
„D“
0
„l“
8 7
„l“
„L“
„D“
0xE0
0x66
0x00
0x00
0x20
0x20
Error code X: Detailed information, see Chap. 8.4.2.
optoNCDT 1700
8 7
„+“
0x494C4431
0
hex
„1“
0x494C4431
0x00
0x03
0xA0660002
0x00
0x0X
0x0000000X
0x0D
0x0A
0x20200D0A
Page 90
Serial Interface RS422
Example: X = 5 (“Command failed“), e.g. if no target is within the sensor measuring range.
Notes from version 6,000:
-- With version 6,000 you can set the serial output (RS422 interface) to mid-point in the operation mode
“Error-Mode“ (Sync/error or Trigger/error). Mid-point means to set the analog or digital output on midrange, see Chap. 7..
-- If you use the digital input “Zero“ for mid-point setting or mastering, you need no long pulse to undo it
before you do mid-point setting or mastering again. With each short pulse (0.5 ... 3 s) mid-point setting or
mastering is done always again. This also applies to the command Set_Zero with the parameter value = 1.
optoNCDT 1700
Page 91
Instruction for Operating
9.
Instruction for Operating
9.1
Reflection Factor of the Target Surface
In principle the sensor evaluates the diffuse part of the reflected laser light, see Fig. 46.
Laser beam
Laser beam
Laser beam
2
Ideal diffuse reflection

Direct mirror
reflecion
Real reflecion
Fig. 46 Reflection factor of the target surface
A statement concerning a minimum reflectance is difficult to make, because even a small diffuse fraction can
be evaluated from highly reflecting surfaces. This is done by determining the intensity of the diffuse reflection
from the CCD array signal in real time and subsequent compensation for intensity fluctuations, see Chap. 3.2.
Dark or shiny objects being measured, e.g. black rubber, may require longer exposure times. The exposure
time is dependent on the measurement frequency and can only be increased by reducing the sensor’s
measurement frequency.
optoNCDT 1700
Page 92
Instruction for Operating
9.2
Error Influences
9.2.1
Light from other Sources
Thanks to their integrated optical interference filters the optoNCDT1700 sensors offer outstanding performance in suppressing light from other sources. However, this does not preclude the possibility of interference
from other light sources if the objects being measured are shiny and if lower measurement frequencies are
selected. Should this be the case it is recommended that suitable shields be used to screen the other light
sources. This applies in particular to measurement work performed in close proximity to welding equipment.
9.2.2
Color Differences
Because of intensity compensation, color difference of targets affect the measuring result only slightly. However, such color differences are often combined with different penetration depths of the laser light into the
material. Different penetration depths then result in apparent changes of the measuring spot size. Therefore
color differences in combination with changes of penetration depth may lead to measuring errors.
9.2.3
Temperature Influences
When the sensor is commissioned a warm-up time of at least 20 minutes is required to achieve uniform
temperature distribution in the sensor. If measurement is performed in the micron accuracy range, the effect
of temperature fluctuations on the sensor holder must be considered. Due to the damping effect of the heat
capacity of the sensor sudden temperature changes are only measured with delay.
9.2.4
Mechanical Vibration
If the sensor should be used for resolutions in the μm to sub-μm range, special care must be taken to ensure
stable and vibration-free mounting of sensor and target.
9.2.5
Movement Blurs
If the objects being measured are fast moving and the measurement frequency is low it is possible that movement blurs may result. Always select a high measurement frequency for high-speed operations, therefore, in
order to prevent errors.
optoNCDT 1700
Page 93
Instruction for Operating
9.2.6
Surface Roughness
Laser-optical sensors detect the surface using an extremely small laser spot. They also track slight surface
unevenness. In contrast, a tactile, mechanical measurement, e.g. using a caliper, detects a much larger area
of the measurement object. In case of traversing measurements, surface roughnesses of 5 μm and more lead
to an apparent distance change.
Min.
Max.
Suitable parameters for the averaging number may improve the comparability of optical and mechanical
measurements.
h > 5 µm
Ceramic reference surface
Structured surface
Recommendation for parameter choice:
-- The averaging number should be selected in such a way that a surface area the size of which is comparable to those with mechanical measurements is averaged.
optoNCDT 1700
Page 94
Instruction for Operating
9.2.7
Sensor Tilting
Tilt angles of the sensor in diffuse reflection both around the X and the Y axes of less than 5 ° only have a
disturbing effect with surfaces which are highly reflecting. Tilt angles between 5 ° and 15 ° lead to an apparent
distance change of approximately 0.12 ... 0.2 % of the measuring range, see Fig. 47.
Tilt angles between 15 ° and 30 ° lead to an apparent distance change of approximately 0.5 % of the measuring range. These influences must be considered especially when scanning structured surfaces. In principle
the angle behavior in triangulation also depends on the reflectivity of the target.
Angle
X-axis
Y-axis
Fig. 47 Angle influences
Angle
X-axis %
Y-axis %
±5 °
typ. 0.12
typ. 0.12
±15 °
typ. 0.2
typ. 0.2
±30 °
typ. 0.5
typ. 0.5
Fig. 48 Measurement errors through tilting with diffuse reflection
optoNCDT 1700
Page 95
Instruction for Operating
9.3
Optimizing the Measuring Accuracy
Color strips
In case of rolled or polished metals that are
moved past the sensor the sensor plane must
be arranged in the direction of the rolling or
rinding marks. The same arrangement must be
used for color strips, see Fig. 49.
Direction of movement
output
speed
avg
zero
state
default
>5s
function
enter
select
zero
Fig. 49 Sensor arrangement in case of ground or
striped surfaces
Grinding or rolling marks
In case of bore holes, blind holes, and edges in
the surface of moving targets the sensor must
be arranged in such a way that the edges do not
obscure the laser spot, see Fig. 50.
Correct
Incorrect
(shadow)
Fig. 50 Sensor arrangement for holes and ridges
optoNCDT 1700
Page 96
Instruction for Operating
9.4
Model types:
-- SGH size S
SGH size M:
without air purging (with inlet and
exhaust for cooling) and
-- SGHF size S
SGHF size M:
with air purging.
IMPORTANT!
The protection class
is limited to water (no
penetrating liquids or
similar)!
Protective Housing
The protective housing are designed to be used especially if the sensor operates in a dirty environment or
higher ambient temperature. It is available as an accessory. If these protective housings are used, the linearity
of the sensors in the complete system may deteriorate. For the sole purpose of protection against mechanical
damage a simple protective shield with sufficiently large opening is therefore more advantageous. Installation
of the sensors in the protective housings should be performed by the manufacturer, because especially in
case of short reference distances the protective window must be included in the calibration.
The following guidelines must be observed if the sensors are operated in a protective housing:
-- The maximum ambient temperature within the protective housing is 45 °C.
-- The requirements for compressed-air are:
ƒƒ Temperature at the inlet < 25 °C
ƒƒ The compressed-air must be free of oil and water residues. It is recommended to use two oil separators
in series arrangement.
-- With a flow rate for example 240 l/min (2.5 * 105 Pa) the maximum outside temperature is 65 °C.
-- For higher ambient temperatures it is recommended to use an additional water-cooled carrier and cover
plates outside the protective housing.
-- No direct heat radiation (including sunlight!) on the protective housing. In case of direct heat radiation additional thermal protective shields must be installed.
-- It is recommended that the protective window is cleaned from time to time with a soft alcohol-soaked cloth
or cotton pad.
The delivery includes:
The rotatable plug-nipple glands type LCKN-1/8-PK-6 (FESTO) for the compressed-air tubes with a inner
diameter of 6 mm, the air plate (SGHF) and the sensor fastening accessories are included in the delivery of
the protective housing.
optoNCDT 1700
Page 97
Instruction for Operating
Dimension in mm (inches), not to scale
25.5
(1.0)
For SGH size S: Exhaust air connector
For SGHF size S: Closed with blind plug
ø4.5 (dia. .18)(4x)
Mounting
holes
5,5
Air inlet
(Air supply
can be
pivoted,
for flexible
tube
with 6 mm
inner diameter)
103 (4.06)
Sensor
cable
with
connector
140 (5.51)
SGH/SGHF size S
47.9 (1.89)
125 (4.92)
140 ((5.51)
168 (6.61)
28
(1.10)
Laser spot
Laser spot
Fig. 51 Protective housing for measuring ranges 10/20/50/100/200/250 mm
optoNCDT 1700
Page 98
Instruction for Operating
SGH/SGHF size M
Air inlet
Sensor cable
(Air supply can be pivoted, for
with connector
flexible tube with 6 mm inner diameter)
For SGH size M: Exhaust air connector
For SGHF size M: Closed with blind plug
60.0
28.0
(1.1)
25.5 (1.0)
Dimensions in mm
(inches), not to scale
42.0
(1.65)
4
(.16)
6.5
(.26)
168 (6.61)
140 (5.51)
103 (4.06)
4x
Mounting
holes
ø4.5 (dia. .18)
165 (6.50)
180 (7.09)
42.5
(1.67)
Laser spot
32.5
(1.28)
71 (2.80)
Laser spot
Fig. 52 Protective housing for measuring ranges 40/500/750 mm
optoNCDT 1700
Page 99
ILD1700 Tool
10.
ILD1700 Tool
The software ILD1700 Tool
-- transfers and reads sensor parameters and
-- reads and displays measuring results in a diagram.
All data are transmitted through a RS422 interface and can be saved on demand.
i
Disconnect or connect the D-sub connection between RS422 and USB converter when the sensor is
disconnected from power supply only.
10.1
Installation and Preparation for Measurements
10.1.1
System Requirements
The following system requirements are recommended:
-- Windows 2000, Windows XP or Windows 7 / Pentium III ≥ 1 GHz / 1 GB RAM
-- Free USB port or IF2008
PC1700-x/USB/IND
Pin
Signal
1
RX -­
2
Rx+
3
TX+­
4
TX -
5
GND
Pin assignment,
9-pol. D SUB
10.1.2 Cable and Program Routine Requirements
-- PC1700-x/USB/IND Sensor cable with RS422-USB converter and 24 V power supply
-- ILD1700 Tool Configuration and measurement program
-- RS422/USB converter, inclusive CD with driver
PC1700-x/USB/IND
optoNCDT
1700
RS422
USB
Fig. 53 Setup of the system for the demonstration software
You will find the actual drivers respectively program routines under:
www.micro-epsilon.com/link/opto/1700
USB cable
You will find details to the driver installation in the mounting instructions „Converter RS422 to USB“.
optoNCDT 1700
Page 100
ILD1700 Tool
10.2
Measurement
i
If the sensor’s analog output
is to be used after termination of the ILD1700 tool, it
previously has to be defined
as output version. Do not
forget to save the settings
made.
Fig. 54 Start screen of the measurement program
This sub program can be used to acquire, evaluate and store data from an ILD1700 sensor.
optoNCDT 1700
Page 101
Software Support with MEDAQLib
11.
Software Support with MEDAQLib
The Micro-Epsilon Data Acquisition Library offers you a high level interface library to access optoNCDT laser
sensors from your Windows application in combination with
-- RS422/USB converter (optional accessory) and a suitable PC1700-x/USB/IND cable or
-- IF2008 PCI interface card and PC1700-x/IF2008 cable
into an existing or a customized PC software.
You need no knowledge about the sensor protocol to communicate with the individual sensors. The individual commands and parameters for the sensor to be addressed will be set with abstract functions.
MEDAQLib translates the abstract functions in comprehensible instructions for the sensor.
MEDAQLib
-- is a DLL/LIB usable for C, C++, VB, Delphi and many other Windows programming languages,
-- supports functions to talk to the sensor
-- hides the details on how to talk to the communication interface (RS232,RS422,USB,TCP)
-- hides the details of the sensor protocol
-- converts the incoming data to „expected data values“
-- provides a consistent programming interface for all Micro-Epsilon sensors
-- provides many programming examples many different programming languages
-- the interface is documented in a large *.pdf file
You will find the latest MEDAQLib version at:
www.micro-epsilon.com/download
www.micro-epsilon.com/link/software/medaqlib
optoNCDT 1700
Page 102
Liability for Material Defects
12.
Liability for Material Defects
All components of the device have been checked and tested for functionality at the factory. However, if defects occur despite our careful quality control, MICRO-EPSILON or your dealer must be notified immediately.
The liability for material defects is 12 months from delivery. Within this period, defective parts, except for
wearing parts, will be repaired or replaced free of charge, if the device is returned to MICRO-EPSILON with
shipping costs prepaid. Any damage that is caused by improper handling, the use of force or by repairs or
modifications by third parties is not covered by the liability for material defects. Repairs are carried out exclusively by MICRO-EPSILON.
Further claims can not be made. Claims arising from the purchase contract remain unaffected. In particular,
MICRO-EPSILON shall not be liable for any consequential, special, indirect or incidental damage. In the interest of further development, MICRO-EPSILON reserves the right to make design changes without notification.
For translations into other languages, the German version shall prevail.
13.
Service, Repair
If the sensor or sensor cable is defective:
-- If possible, save the current sensor settings in a parameter
set, see ILD1700 Tool, Measurement / Configuration menu,
to reload them into the sensor after the repair.
-- Please send us the affected parts for repair or exchange.
If the cause of a fault cannot be clearly identified, please send
the entire measuring system to:
14.
MICRO-EPSILON Optronic GmbH
Lessingstr. 14
01465 Langebrück / Germany
Tel. +49 (0) 35201 / 729-0
Fax +49 (0) 35201 / 729-90
[email protected]
www.micro-epsilon.com
Decommissioning, Disposal
Remove the power supply cable and output cable from the sensor.
Incorrect disposal may cause harm to the environment.
Dispose of the device, its components and accessories, as well as the packaging materials in compliance with the applicable country-specific waste treatment and disposal regulations of the region of use.
optoNCDT 1700
Page 103
Appendix| Accessory
Appendix
A1
optoNCDT 1700
Accessory
PC1700-3
Power supply and output cable, 3 m long, cable carriers suitable;
cable diameter 6.8 mm ± 0.2 mm
PC1700-10
Power supply and output cable, 10 m long, cable carriers suitable;
cable diameter 6.8 mm ± 0.2 mm
PC1700-x/IF2008
Interface and supply cable
PC1700-x/USB/IND
USB power supply and output cable, 3 m, 10 m or 20 m long, including
power supply unit (90 ... 235 VAC)
RS422/USB converter
Interface converter RS422 to USB (useable with cable 1700-x/USB/IND inclusive driver)
IF2001/USB
1-Channel RS422/USB converter
PC1700-x/x/USB/OE/IND
Like PC1700-x/USB, with additional open leads for analog output
PS2010
Power supply 24 V for mounting on DIN-rail (input 230 VAC, output
24 VDC/2.5 A)
IF2008
The IF2008 interface card enables the synchronous capture of 4 digital
sensor signals series optoNCDT1700 or others and 2 encoders. In combination with the IF2008E a total of 6 digital signals, 2 encoder signals, 2 analog
signals and 8 I/O signals can be acquired synchronously.
SGH size S, M
Without air purging (with inlet and exhaust for cooling)
SGHF size S, M
With air purging for the protective window
Assembly aid
Stock no.
Sensor
20.0 °
2555059
ILD1700-2DR
17.6 °
2555060
ILD1700-10DR
11.5 °
2555061
ILD1700-20DR
Aluminum device for easy mounting of
a sensor in direct reflection.
Page 104
Appendix| Factory Setting
A2
Factory Setting
Name
LED
Setting
Level 1
Level 2
Level 3
output
Current
Hold last value
Sync/Error
speed
2.5 kHz
Master Synch off
115.2 KBaud
1 (3)
Moving average
Binary format (no ASCII)
avg
zero
off
Master value:
...
0.5 x measurement range
...
Upper limit:
101 % FSO / Digital value: 16365
Upper hysteresis value:
100 % FSO / Digital value: 16207
Lower hysteresis value:
0 % FSO / Digital value:
161
Lower limit:
-1 % FSO / Digital value:
0
Press the „function/enter“ key 5 seconds to activate the factory settings if the sensor is in measurement mode
(the “state“ LED is illuminated).
optoNCDT 1700
Page 105
Appendix| Output Rate optoNCDT1700
A3
Output Rate optoNCDT1700
Baud rate
Measurement
LED speed
frequency
Bytes
115200
57600
19200
9600
Synchron mode: Master on, Slave synchronized, Master off
2.5 kHz
1
2
2500
2500
833.33
416.66
1.25 kHz
1/2
2
1250
1250
625
416.66
625 Hz
1/4
2
625
625
625
312.5
312.5 Hz
1/8
2
312.5
312.5
312.5
312.5
2.5 kHz
1
6
1250
833.33
277.77
138.88
1.25 kHz
1/2
6
1250
625
250
138.88
625 Hz
1/4
6
625
625
208.33
125
312.5 Hz
1/8
6
312.5
312.5
156.25
104.16
Binary output
ASCII output
Synchron mode: Master alternating, Slave synchronized
(alternating)
optoNCDT 1700
2.5 kHz
1
2
1250
1250
625
416.66
1.25 kHz
1/2
2
625
625
625
312.5
625 Hz
1/4
2
312.5
312.5
312.5
312.5
312.5 Hz
1/8
2
156.25
156.25
156.25
156.25
2.5 kHz
1
6
1250
625
250
138.88
1.25 kHz
1/2
6
625
625
208.33
125
625 Hz
1/4
6
312.5
312.5
156.25
104.16
312.5 Hz
1/8
6
156.25
156.25
156.25
78.12
Binary output
ASCII output
Page 106
Appendix| Pin Assignment Sensor Cable
A4
1
2
10
12
3
9
11
14
13
4
5
8
Pin Assignment Sensor Cable
Designation
Characteristics
5
+U B
Power supply (11 ... 30 VDC)
6
GND
System ground for power supply
switch signals (Laser on/off, Midpoint, Limits)
13
Analog­ output
Current 4 ... 20 mA or
Voltage 0 ... 10 V
14
AGND
Reference potential for analog output
9
Laser on/off
Switching input Laser ON / OFF
10
Zero
Switching input for reset
8
Switching output 1 Error or limit output
7
Switching output 2 Limit output
violet
3
4
Sync +
Sync - ­1
Symmetrical synchron output
(Master) or input (Slave)
blue
pink
1
2
Tx +
Tx -
RS422 - Output (symmetric)
green
brown
12
11
Rx +
Rx -
RS422 - Input (symmetric)
gray
yellow
7
6
View: Solder-pin side
male cable connector,
insulator
Color Sensor Cable
Pin
1
PC1700-x
red
black
Coaxial inner conductor, white, see Fig. 55
Coaxial screening, black, see Fig. 55
red and blue
white and green
gray and pink
Plug connector:
ODU MINI-SNAP, 14-pin, series B, Dimension 2, Code 0, IP 68
More information on www.odu.de
1) Used as trigger inputs in mode “Triggering“, see Chap. 6.14.
optoNCDT 1700
Page 107
Appendix| Pin Assignment Sensor Cable
IMPORTANT!
Don’t cut the coaxial inner cable (pin 13 / white)
and the coaxial screening (pin 14 / black).
Twist the outer braid,
(pin 14), otherwise the
analog output cannot
be connected to the terminals of the customer
electronics.
Pin 14: Coaxial screening, black
Pin 13: Coaxial inner cable, white
Fig. 55 View on pin 13 / pin 14
optoNCDT 1700
Page 108
Appendix| Pin Assignment RS422 Connection
A5
Pin Assignment RS422 Connection
PC1700-X
ILD1700
IMPORTANT!
The system ground
must be connected
with the terminal
ground (USB converter,
pin 5) before
connecting the Rx and
Tx lines.
S4 OFF
S3 OFF
S2 ON
S1 ON
X = Cable length in m
Fig. 56 Principle setup
Cross the lines for connections between sensor and PC.
ILD1700
Signal
Signal
Pin
TX-
1
gray
TX+
2
TX+
green
RX+
3
TX-
brown
RX-
4
GND (Pin 6)
black
ground 5
RXRX+
IMPORTANT!
Disconnect or connect
the D-sub connection
between RS422 and
USB converter when
the sensor is disconnected from power
supply only.
optoNCDT 1700
Converter
Color PC1700
yellow
Fig. 57 Pin assignment and wiring
Page 109
Appendix| Pin Assignment PC1700-x/x/USB/OE/IND
A6
Pin Assignment PC1700-x/x/USB/OE/IND
9-pin Sub-D
2-pin cable
Pin
1
2
3
4
5
Assignment
Tx Tx +
Rx +
Rx GND
Color
Assignment
white (red)
4 ... 20 mA or 0 ... 10 V
brown (black) AGND
Power
supply unit
Analog
output
Sensor
PC
The PC1700-x/x/
USB/OE/IND
includes open
leads for analog
output signal
and power
supply unit for
90 ... 235 VAC.
Length x = 3 or
10 m.
1) No longer available!
optoNCDT 1700
Page 110
MICRO-EPSILON MESSTECHNIK GmbH & Co. KG
Koenigbacher Str. 15 · 94496 Ortenburg / Germany
Tel. +49 (0) 8542 / 168-0 · Fax +49 (0) 8542 / 168-90
[email protected] · www.micro-epsilon.com
X9751139-D111129SWE
MICRO-EPSILON MESSTECHNIK
*X9751139-D10*
Was this manual useful for you? yes no
Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Download PDF

advertisement