Advertisement
Advertisement
Eaton HFX Product Family Installation and Operation Manual
HFX Product Line
HFX Product Family
DISCLAIMER OF WARRANTIES AND LIMITATION OF LIABILITY
The information, recommendations, descriptions and safety notations in this document are based on Eaton Corporation’s
("Eaton") experience and judgment and may not cover all contingencies. If further information is required, an Eaton sales office should be consulted. Sale of the product shown in this literature is subject to the terms and conditions outlined in appropriate Eaton selling policies or other contractual agreement between Eaton and the purchaser.
THERE ARE NO UNDERSTANDINGS, AGREEMENTS, WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING
WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE OR MERCHANTABILITY, OTHER THAN THOSE
SPECIFICALLY SET OUT IN ANY EXISTING CONTRACT BETWEEN THE PARTIES. ANY SUCH CONTRACT STATES THE
ENTIRE OBLIGATION OF EATON. THE CONTENTS OF THIS DOCUMENT SHALL NOT BECOME PART OF OR MODIFY
ANY CONTRACT BETWEEN THE PARTIES.
In no event will Eaton be responsible to the purchaser or user in contract, in tort (including negligence), strict liability or other-wise for any special, indirect, incidental or consequential damage or loss whatsoever, including but not limited to damage or loss of use of equipment, plant or power system, cost of capital, loss of power, additional expenses in the use of existing power facilities, or claims against the purchaser or user by its customers resulting from the use of the information, recommendations and descriptions contained herein. The information contained in this technical documentation is subject to change without notice.
2 EATON HFX Product Family Installation and Operation Manual E-ELCL-II002-E2 July 2019
HFX Product Family
Safety Considerations
Definitions and Symbols
This symbol is the "Safety Alert Symbol". It occurs with either of two signal words: CAUTION or
WARNING, as described below.
WARNING
Indicates a potentially hazardous situation which, if not avoided, can result in serious injury or death.
CAUTION
Indicates a potentially hazardous situation which, if not avoided, can result in minor to moderate injury, or serious damage to the product. The situation described in the
CAUTION may, if not avoided, lead to serious results.
Important safety measures are described in CAUTION (as well as WARNING).
EATON HFX Product Family Installation and Operation Manual E-ELCL-II002-E2 July 2019 3
HFX Product Family
General Information
Before beginning installation of this product:
Read and follow all installation instructions.
Please contact Eaton immediately if you have any questions.
Note: This manual was written with great care and precision. However, since the potential for error exists, we can provide no assurance of the absolute accuracy of its contents.
In order to consistently bring you the highest quality, full featured products, we reserve the right to change our specifications and designs at any time.
A limited warranty is given with these Eaton products.
Please see our website for details. http://www.eaton.com/Eaton/ProductsServices/Hydraulics/
WarrantyTermsConditions/PCT_612027
4 EATON HFX Product Family Installation and Operation Manual E-ELCL-II002-E2 July 2019
Table of Contents
Section Description
1.0 INTRODUCTION
2.0 TECHNICAL SPECIFICATIONS
3.0
4.0
KEY FEATURES
SAFETY CONSIDERATIONS
5.0 APPLICATION
6.0 HARDWARE DESCRIPTION
7.0
8.0
SOFTWARE DESCRIPTION
SERVICE TOOL INSTALLATION AND GETTING STARTED
8.2
8.3
Install The HFX Service Tool Software
Launch The HFX Service Tool
9.0 FIRMWARE
9.1
10.0 PRO-FX-CONTROL
10.2
10.3
10.4
11.0
11.2
12.0
Install Pro-FX Control
Install The Pro-FX Control Gateway File for HFX
Install The HFX Target Definitions
GETTING STARTED
Connect And Program Your Controller
FUNCTIONALITY & BASIC OPERATION
12.2
12.3
12.4
12.5
12.6
12.7
13.0
Sleep Mode (Time Delay Operation)
Task Configuration
Watchdog Operation
Controller Memory
Calibration parameter memory
LED Operation
INSTALLING THE CONTROLLER
13.2
14.0
Recommended Wiring
ELECTRICAL CONNECTION INFORMATION
14.1
15.0 CONFIGURATION
15.2
15.3
16.0
Input Modes
Analog Configuration
ANALOG INPUT CIRCUIT (PASSIVE REPRESENTATION)
16.2
17.0
Frequency Configuration
FREQUENCY INPUT CIRCUIT (PASSIVE REPRESENTATION)
17.2
H-Bridge
Page No.
19
19
19
19
17
17
18
19
16
16
17
17
16
16
16
16
24
25
25
27
20
22
22
24
15
15
16
16
14
14
14
14
11
11
11
14
8
9
11
29
31
31
34
EATON HFX Product Family Installation and Operation Manual E-ELCL-II002-E2 July 2019 5
Table of Contents
Section Description
18.0 OUTPUT CIRCUIT (PASSIVE REPRESENTATION)
18.1
19.0 PWM
19.1
20.0
21.0
CAN & SAE J1939
INPUT STATUS, FEEDBACK AND DIAGNOSIS
21.1
22.0 TESTING & VALIDATION
23.0
24.0
SERVICE TOOL
FAULT CONDITIONS
25.0 APPENDIX
25.2
Supported
25.3
Not Supported
26.0
27.0
DEVICE COMMUNICATION TROUBLESHOOTING
DEVICE RECOVERY
Page No.
56
56
56
57
57
43
44
49
56
35
37
37
39
35
35
35
6 EATON HFX Product Family Installation and Operation Manual E-ELCL-II002-E2 July 2019
(THIS PAGE INTENTIONALLY LEFT BLANK)
EATON HFX Product Family Installation and Operation Manual E-ELCL-II002-E2 July 2019 7
HFX Product Family
1.0 INTRODUCTION
The Eaton HFX product family is a series of advanced, CAN-based controllers for use with mobile and industrial equipment. Using a standardized
IEC 61131-3 programming environment, these controllers enable functional control over electrically operated components within a variety of applications
(e.g. agricultural, construction, material handling).
It is recommended that an individual have experience with control engineering and programming within the CODESYS 3.5 or MATLAB/Simulink & C software environment before using this hardware.
Key Acronyms and Abbreviations
CODESYS Controller Development System
FW Firmware
HW Hardware
IDE
IP
Integrated Development Environment
Ingress Protection
MIL
POU
PWM
RTS
Malfunction Indicator Lamp
Program Organization Unit
Pulse Width Modulation
Run Time System
SW Software
The HFX product family is optimized for reliable operation in severe environments, possessing
IP and temperature ratings that exceed existing solutions from competitors. HFX controllers employ several advanced technologies (e.g. I/O with variable configuration architecture), enabling simple management and enhancing both ease of use and functionality. These controllers are intended as both a standalone solution, or as the centerpiece to a complete control system that can include other
CAN-based devices such as displays and keypads.
8 EATON HFX Product Family Installation and Operation Manual E-ELCL-II002-E2 July 2019
HFX Product Family
2.0 TECHNICAL SPECIFICATIONS
Eaton HFX Controllers
Dimensions
Weight
Storage Temperature Range
Operating Temperature Range
IP Rating
212.61mm L x 134.17mm W x 58.55mm H
43.2 ounces (1225 grams)
-40 - +125 °C
-40 - +105°C (USB use is limited to 85°C)
Operating Altitude
Supply Voltage
Reverse Polarity Protection
Peak Supply Voltage
IP67/IP69K
0-4000 m
6-32 VDC, Nominal operation @ 12 /24 VDC
Integrated
Maximum Current
Idle Current 12/24 VDC
Standby Current 12/24 VDC
Ignition Pin (A16)
CPU Type
Frequency
36 VDC
48 A @ 85°C (40 A @ 105°C)
120 mA
<3.5mA@12V, <2.5mA@24V
Enable/Disable standby mode
Renesas Super H 72546
200 MHz
32 Bit Bit Width
FPU
Data Memory (RAM retain) (additional to cpu)
Flash (ROM program & data combined)
Integrated on chip
32 Kbyte
3.75 Mbyte
256 Kbyte SRAM
EEPROM
CAN Specification
CAN Baud Rates
CAN Protocol
CAN CCP Default Node Address
CAN Default Baud Rate
USB Specification
USB Baud Rates
USB Default Node Address
USB Default Baud Rate
128 Kbyte
2.0A, 2.0B
50 kb/s,100 kb/s,125 kb/s,250 kb/s,500 kb/s,800 kb/s,1Mb/s
CANOpen, SAE J1939
0
250kb/s
USB 2.0 (Note: 3.0 devices are compatible)
See below
N.A.
1.5 Mb/s
Number of Sensor Supplies 2
Sensor Supply Output Voltage 5 VDC or 10 VDC (configurable)
Sensor Supply Maximum Current
Analog Input Resolution
Accuracy
Measuring Ranges
Short Circuit Protection
Open Circuit Detection
Input Sampling Frequency
Input Type
Maximum Input Frequency
Switch-on Level
Switch-off Level
Input Type
Maximum Input Frequency Ch 3-8 (FREQ) (0-5 V square wave)
200 mA @ 5VDC, 100 mA @ 10V per supply
12 bits, *10 bits
+/- 1 % FS
0...5 V, 0...10 V*, 0...32 V, 0...20 mA
Integrated
Dependent upon selectable termination
1 kHz
Digital Low/High Side (Software configurable)
200 Hz
Software configurable
Software configurable
Frequency, Digital Low/High side, (Software configurable)
Ch 3-8 0 Hz...50 kHz* in Frequency mode. Note: maximum aggregate is 200 kHz,
Minimum detectable pulse duration is 20 μsec
Maximum Input Frequency Ch 3-8 (Dig)
Switch-on Level (design review required)
Switch-off Level (design review required)
Standard switch on at 3.0 V (this can be changed in hardware)
Standard switch off at 2.0 V (this can be changed in hardware)
EATON HFX Product Family Installation and Operation Manual E-ELCL-II002-E2 July 2019 9
HFX Product Family
Input Type
Analog Input Resolution
Accuracy
Measuring Range
Input Type
Maximum Input Frequency Ch 1-2 (FREQ) (0-5 V square or sine wave)
Switch-on Level
Switch-off Level
Input Type
Analog Input Resolution
Accuracy
Measuring Range
Output Type
Max Amperage
Diagnostics
Output Type
Max Amperage
Diagnostics
Output Type
Max Amperage
Diagnostics
PWM Frequency
Dither Frequency
Dither Amplitude
Control Range
Control Resolution
Fly Back Protection
Duty Cycle Resolution
Output Type
Max Amperage
Diagnostics
PWM Frequency
Dither Frequency
Dither Amplitude
Control Range
Control Resolution
Fly Back Protection
Duty Cycle Resolution
Connector Manufacturer
Model
Contact Surface
A and B Connector Assembly Parts List
A and B Connector Tooling Manufacturer
A and B Connector Hand Tool Part Number
A and B Connector Contact Removal Tool
P Connector Assembly Parts List
P Connector Tooling Manufacturer
P Connector Hand Tool Part Number
Frequency, Ch 3-8, Analog, Pull-up or Pull-down Resistor (Software Configurable)
9 bits
+/- 2% FS
0…5V
Variable reluctance (Software configurable)
0Hz...25kHz* Note: maximum aggregate is 200 kHz. Note: phase and duty cycle are not supported by these inputs minimum detectable pulse duration is 20 μsec
Selectable as 2.2 V or self-adaptive (input device changes voltage with frequency)
Selectable as 0.0 V or 1.0 V
Variable Reluctance, Ch 1-2, Analog (Software Configurable)
9 bits
+/- 15% FS
0…5V
High Side (Software configurable)
2A
Open/Short circuit protection
Low/High side, H-Bridge (Software configurable)
4A
Open/Short circuit protection
PWMi, High side (Software configurable)
2A
Open/Short Circuit Protection
50 – 2 kHz
Configurable 1 - 500 Hz
Configurable 1 - 100%
0.05 - 2 A
1 mA
Integrated
.01% @ 250 Hz
PWMi, High Side (Software configurable)
4A
Open/Short circuit protection
50 – 2 kHz
Configurable 1 - 500 Hz
Configurable 1 - 100%
0.05 - 4 A
1.5 mA
Integrated
.01% @ 250H
Deutsch Inc.
DRC23-40PA & DRC23-40PB
Nickel plated
Mating connector: P/N: DRC26-40SA & DRC26-40SB, size 20 solid contacts P/N: 0462-201-20141 intended for 20AWG wire, P/N: 0462-005-20141 intended for 16-18 AWG wire, size 20 stamped and formed contacts P/N: 1062-20-0122 (nickel plated), and sealing plug P/N: 0413-204-2005
Deutsch
Solid contacts: Service crimper: HST-1561 Production crimper(ratcheting): HDT-48-00
Stamped contacts: DTT-20-00
P/N: 0411-240-2005
Mating connector DT06-6S-EP06, size 16 solid contacts P/N 0462-201-16141 intended for 14-18AWG wire, size 16 stamped and formed contacts P/N 1062-16-0122(nickel plated), wedge W6S-P012, sealing plug P/N 0413-217-1605
Deutsch
Solid contacts: Service crimper: HST-1561 Production crimper(ratcheting): HDT-48-00
Stamped contacts: DTT-16-00
10 EATON HFX Product Family Installation and Operation Manual E-ELCL-II002-E2 July 2019
HFX Product Family
3.0
4.0
KEY FEATURES
•
•
•
•
•
•
•
•
•
•
•
•
Robust, compact, fully sealed & potted cast aluminum construction
Completely protected outputs (thermal and overcurrent)
Reverse polarity protection
Up to 24 multifunction inputs, depending on model
Up to 24 multifunction outputs, depending on model
Diagnostic feedback for short circuit & wire break on all outputs
Use of proven Deutsch connectors for rigorous IP protection
Programmable via USB for simple connection to
PC
Three CAN ports
Sleep input for improved power management
Regulated supply for sensors
One customer programmable LED status indicator
SAFETY CONSIDERATIONS
This operating and installation manual is intended for use by a competent programmer, electrician, technician, or engineer. The instructions included in this manual should be read and kept as a reference document prior to initial controller installation and use. Incorrect operation of these controllers can present a significant threat to both individuals and equipment. In the event of an equipment break down, do not attempt to repair the controller as there are no user serviceable parts inside the enclosure.
Any evidence of tampering will invalidate the warranty.
6.0
5.0 APPLICATION
This operating and installation manual should be used in conjunction with the online help provided with the
Pro-FX Control development environment. Together, this information should form a basis for the simple configuration of the controller and the creation of programs specific to your application needs. Proper operation of the controller is dependent on the program that is created and ultimately downloaded to the hardware, therefore extensive testing is required.
Customers programming the controller possess the responsibility of ensuring that both the hardware and software performs as intended with their applications.
Note: That each controller within the HFX product family requires the installation of hardware-specific firmware, description files and libraries before initial use in the application environment.
HARDWARE DESCRIPTION
The Eaton HFX product line consists of four controller models (HFX12m, HFX20m, HFX32m, and HFX48m), each possessing a unique number of I/O. The HFX12m/HFX20m (pictured below) and HFX32m/HFX48m (pictured below) both share common housings.
Each of these units is designed to function over an extended operating range of supply voltage, from 6 – 32 VDC.
HFX12m/HFX20m
HFX32m/HFX48m
The three integrated CAN ports on these units support CAN 2.0B, the first of which also possesses a software configurable termination.
Both SAE J1939 and CANOpen stacks are available in the software development environment.
Additionally, the CANLayer2 software library is available for use with CAN bus.
HFX controllers are programmed via a standard
USB port. The gateway from a user’s computer automatically detects the hardware, eliminating the need to manually assign a COM port to the unit.
The two regulated outputs (sensor supplies) can be configured individually for either 5 or 10 V operation.
EATON HFX Product Family Installation and Operation Manual E-ELCL-II002-E2 July 2019 11
HFX Product Family
The table below represents an I/O overview of the various HFX controller models.
Controller Model
HFX48m HFX32m HFX20m HFX12m
(24 I/O) (16 I/O) (10 I/O) (6 I/O)
Total 2 A channels
Number of channels supporting function
PWM
PWMi
High Side output
Total 4 A channels
Number of channels supporting function
PWM
PWMi
High Side output
Low Side output
24 16 10 6
16 10 6 4
16 10 6 4
8
16 10 6 4
16 10 6 4
6 4 2
8
8
8 6 4 2
8 6 4 2
6
6
4
4
4 3 2 1
2
2
Controller Model
Total frequency channels
Number of channels supporting function
High Side input
Low Side input
Total analog channels
Number of channels supporting function
0 - 5 V input
0 - 10 V input
0 - 32 V input
4 - 20 mA input
High Side input
Low Side input
Thermistor
HFX48m HFX32m HFX20m HFX12m
(24 I/O) (16 I/O) (10 I/O) (6 I/O)
24 16 10 6
8 6 4 2
8 6 4 2
2 2 2 2
8 6 4 2
8
16
6
10
4
6
2
4
16
16
16
16
16
10
10
10
10
10
6
6
6
6
6
16 10 6
16 10 6 4
4
4
4
4
4
4
12 EATON HFX Product Family Installation and Operation Manual E-ELCL-II002-E2 July 2019
HFX Product Family
The HFX48m incorporates 24 total outputs, comprised of:
•
•
8 x 4 A channels
16 x 2 A channels
Each channel is capable of:
•
•
•
High Side output
Open loop PWM
Closed loop PWM with current control
The 8 x 4 A channels are also capable of
Low Side output and can be configured in pairs for H-Bridge operation.
The HFX48m also incorporates 24 total inputs, comprised of:
•
•
•
8 x Frequency (2 of which are capable of measuring variable reluctance sensors)
16 x Analog (0-5 V, 0-10 V, 0-32 V, 4-20 mA, and Thermistor)
All 24 inputs can be configured to add either an internal pull-up or pull-down resistor.
The HFX32m incorporates 16 total outputs, comprised of:
•
•
6 x 4 A channels
10 x 2 A channels
Each channel is capable of:
•
•
•
High Side output
Open loop PWM
Closed loop PWM with current control
The 6 x 4 A channels are also capable of
Low Side output and can be configured in pairs for H-Bridge operation.
The HFX32m also incorporates 16 total inputs, comprised of:
•
•
6 x Frequency (2 of which are capable of handling variable reluctance sensors)
10 x Analog (0-5 V, 0-10 V, 0-32 V,
4-20 mA, and Thermistor)
All 16 inputs can be configured to add either an internal pull-up or pull-down resistor.
The HFX20m incorporates 10 total outputs, comprised of:
•
•
4 x 4 A channels
6 x 2 A channels
EATON HFX Product Family Installation and Operation Manual E-ELCL-II002-E2 July 2019
Each channel is capable of:
•
•
•
High Side output
Open loop PWM
Closed loop PWM with current control
The 4 x 4 A channels are also capable of
Low Side output and can be configured in pairs for H-Bridge operation.
The HFX20m also incorporates 10 total inputs, comprised of:
•
4 x Frequency (2 of which are capable of handling variable reluctance sensors)
•
•
6 x Analog (0-5 V, 0-10 V, 0-32 V, 4-20 mA, and Thermistor)
All 10 inputs can be configured to add either an internal pull-up or pull-down resistor.
The HFX12m incorporates 6 total outputs, comprised of:
•
•
2 x 4 A channels
4 x 2 A channels
Each channel is capable of:
•
High Side output
•
•
Open loop PWM
Closed loop PWM with current control
The 2 x 4 A channels are also capable of
Low Side output and can be configured as a pair for H-Bridge operation.
The HFX12m also incorporates 6 total inputs, comprised of:
•
•
2 x Frequency (2 of which are capable of handling variable reluctance sensors)
4 x Analog (0-5 V, 0-10 V, 0-32 V, 4-20 mA, and Thermistor)
All 6 inputs can be configured to add either an internal pull-up or pull-down resistor.
All 4 of the HFX controllers also integrate an internal temperature measurement that can be used with the IEC application environment.
13
HFX Product Family
7.0
8.0
SOFTWARE DESCRIPTION
Software for the HFX family of controllers is provided in the form of the HFX Platform Support
Package. This is distributed as a .package file
(C:\Users\Public\Pro-FX) and contains the following elements:
•
•
•
•
•
•
Firmware files (MOT files): A separate file is provided for each HFX controller model.
Device description package for Pro-FX Control:
The HFX package file can be installed using the
Pro-FX Control Package Manager. Once it is installed, any of the HFX devices can be used within Pro-FX Control.
HFX Service Tool: Setup.exe in the Service Tool folder is the installation file.
Gateway file: Gateway.cfg defines how Pro-FX
Control connects to the HFX device.
HFX USB Driver: Pro-FX Control connects to the
HFX using USB. This is the driver to support that connection.
ECOM USB Driver: The Pro-FX Configure HFX
Service Tool connects to the HFX over CAN
Port 1 at 250k, using the ECOM device. This is the driver for that device.
When updating an existing HFX Support Package, it is necessary to update each of the above elements except for the USB drivers, which do not need to be updated unless explicitly mentioned in a given release.
SERVICE TOOL - INSTALLATION AND
GETTING STARTED
8.1 Installation Procedure
8.1.1 Launch the ProFXConfigure_v2.3.0.exe
8.1.2 Click Next from the Welcome screen
8.1.3 Agree to the software license and click Next
8.1.4 Choose Complete or Custom installation, then click Next
8.1.4.1 If Custom is shown, pick which options you'd like installed then click Next
14 EATON HFX Product Family Installation and Operation Manual E-ELCL-II002-E2 July 2019
HFX Product Family
8.1.5 Click Install from the Ready to Install dialog 9.0 FIRMWARE
9.1 Install the Firmware
9.1.1 Launch Pro-FX Configure for HFX & SFX, select the appropriate adapter and click Next
8.1.6 Once the installation is complete, desktop shortcuts for the applications will be created as well as Start
Menu shortcuts
9.1.2 Once the Pro-FX Configure UI is displayed, select the Application/Firmware Update tab. From this tab you can browse for a firmware file and click Update.
During an update, the rest of Pro-FX Configure will not be usable. Once the update is complete, the application will relaunch.
EATON HFX Product Family Installation and Operation Manual E-ELCL-II002-E2 July 2019 15
HFX Product Family
10.0 PRO-FX CONTROL
10.1 Install Pro-FX Control
10.1.1 Install Pro-FX Control if it is not already installed.
10.2 Install the HFX Support Package
10.2.1 Launch Pro-FX Control and select Tools->Package
Manager.
Note: That it is necessary to run Pro-FX Control with
Administrator privileges to complete this step.
10.2.2 Click the "Install..." button.
10.2.3 Highlight the HFX Support package file and select open.
10.2.4 Follow the prompts to finish the installation. Close the Package Manager.
11.0 GETTING STARTED
11.1 Create your First Project
11.1.1 Click File->New Project.
11.1.2 Select "Standard Pro-FX Project". Click "OK".
11.1.3 Select the appropriate HFX device and I/O count for the controller you will be using for your project.
Click OK.
11.2 Connect and Program your Controller
11.2.1 Connect the HFX controller to the USB port of your computer via the 6-pin Deutsch connector.
11.2.2 Ensure that the unit is powered-up properly by verifying that LED A is green.
11.2.3 In the Pro-FX Control "Devices" tree view, double click on the "Device".
11.2.4 Click on the "Communication Settings" tab.
11.2.5 Click on the "Gateway-1" and then click "Scan
Network".
11.2.6 One HFX should appear. Click on it and select "Set active Path". If you have problems with this step, please see the troubleshooting steps in Appendix A.
11.2.7 Select "Online->Login" and then acknowledge any prompts that are displayed.
11.2.8 Click "Debug->Start".
11.2.9 You have now programmed an empty project to your
HFX controller and are connected for the first time.
LED A should be flashing on your controller which indicates that there is an application currently running on your controller.
16 EATON HFX Product Family Installation and Operation Manual E-ELCL-II002-E2 July 2019
HFX Product Family
12.0 FUNCTIONALITY AND BASIC OPERATION 12.2 Sleep Mode (Time Delay Operation)
12.1 Reset Procedure
A different service tool is required for the reset procedure. Run the HFX Service Tool installation file setup.exe in the Service Tool folder of the HFX
Support Package. Follow the installation prompts to install the service tool.
Sleep Mode provides a mechanism to have a controlled shutdown of the vehicle control system.
This is a benefit because the unit can be put into an idle state where less current is required thus extending battery life. It is also useful with applications where, prior to shut down, the controller needs to return key functional outputs to a predefined or home position.
When launching the HFX Service Tool you may be prompted for a password. The latest passwords can be found in the file `Password.txt', located in the Service Tool folder of the HFX support package.
You have the option to select `Save password and
S/N', which stores the password for the next time the software is used. Note: The current read only password is: “YZJI-K2LH-0KCX-CYRC”
Operating
Mode
Sleep
Awaken
Enter Sleep bit State
True
False
Sleep Allowed State
True (Sleep Pin> approximately 6.6 V or
Ignition Pin < approximately 6.6 V)
False (Sleep Pin< approximately 6.6 V and
Ignition Pin > approximately 6.6 V)
At initial startup, the controller enters the bootloader.
A bootloader is simply a small program that loads the rest of the firmware when the controller is initially powered up. This firmware resides in the flash memory and provides the necessary memory mapping and instructions for the controller, allowing the application program to be processed. The bootstrap mechanism provides the means to enter the bootloader. The IEC bootstrap mechanism is as follows:
1. Check for PWM1&2 ≥ 11.0 V
2. Delay 3 seconds
3. If either the HFX service tool or IEC is connected, abort and don’t load IEC app from flash
4. Otherwise, load and run the IEC app in flash like normal.
This provides a mechanism to remove a frozen application.
1. Load a new application, or
2. Reset origin will clear entire application memory.
The controller will enter sleep by setting the “enterSleep” bit to TRUE anytime that the “sleepAllowed” status bit is TRUE
({Sleep is high} or {IGN is low or not connected}).
The controller will awaken from sleep if
{Sleep is low or not connected} and {IGN is high}
Sleep current 2.4 mA, @ 10 V, 1.9 mA @ 15 V,
1.6 mA@ 20 V, 1.2 mA @ 25 V
12.3 Task Configuration
The maximum number of tasks is 5. The controller supports the following tasks:
•
•
Cyclic: Task processed in a predefined time.
Freewheeling: Task processed as soon as the program is started. When complete, it will automatically restart in a continuous loop.
Note: There are no external events available to trigger task execution.
Boot Process
PWM 1&2 ≥ 11 VDC
Yes
No
IEC or HFX service tool is detected within delay period
Yes
Abort and don’t load IEC app from flash
Continue Booting &
Load IEC from flash
No
EATON HFX Product Family Installation and Operation Manual E-ELCL-II002-E2 July 2019 17
HFX Product Family
12.4 Watchdog Operation
Watchdogs are present to provide an indication that something has gone wrong. Systems that are programmable can hang for a number of different reasons. One of the most common is the execution of an infinite loop due to a programming logic error.
This type of failure prevents any of the other code from executing. Also, if an unusual number of interrupts arrives during a single cycle of the loop this can prevent the main loop from having sufficient time to execute. Another possibility is a failure in hardware that causes a constant reset.
Each controller has an internal hardware watchdog that is continuously running in the background to monitor for a system malfunction. This watchdog is not user serviceable and is not visible to the user.
It will trigger in the event of a task timeout and can only be reset through a hard reset of the controller, which means that the user must connect the service tool or IEC programming tool to the controller, tie PWM 1 & 2 to supply voltage, and then power up the unit. This will prevent the IEC application code from loading.Each controller also features a second watchdog, which monitors the Pro-FX Control runtime system with a default value of 2 seconds and recommendation to be set above a minimum
100 ms. This is user configurable via the System
Config Configuration tab (see below screen).
Note: That this watchdog is reset using the same protocol used to reset the internal hardware watchdog.
Pro-FX Control also has a watchdog that monitors specific tasks; the time is user configurable via the Task
Configuration/MainTask tab (see below screen). For additional details see Pro-FX Control online help. It is typically reset by resetting an associated fault.
18 EATON HFX Product Family Installation and Operation Manual E-ELCL-II002-E2 July 2019
HFX Product Family
12.5 Controller Memory
The controller utilizes an advanced superscalar
32 Bit processor operating at 200 MHz. The memory is arranged into the following areas:
•
•
•
•
Flash 3.75 Mbyte (1.75 Mbyte reserved for IEC application)
EEPROM 128 kbyte reserved for internal use i.e. firmware/bootloader
RAM 256 kbyte
MRAM 32 kbyte (24 kbyte user accessible file-system + 4kbyte redundant retain)
12.6 Calibration parameter memory
The Pro-FX Control development Environment offers the ability to have local calibration parameters through the use of the parameter handler included in the
Pro-FX Control standard project in the HFX templates.
For further information on how to use the Parameter handler please review the information on the parameter handler in the Pro-FX Control help system.
12.7 LED Operation
LED A (left-most) - Green power LED
•
•
•
Off ==> Not powered up
Solid on ==> Powered up and Pro-FX Control application not running
Fast flash (100ms on, 100ms off) ==> Pro-FX
Control application running
LED B (middle) - Red MIL (Malfunction Indicator Lamp)
•
•
Pro-FX Control application running
•
Flashing (200ms on, 200ms off) ==> critical fault is active
•
Solid on ==> standard fault is active
•
Off ==> no fault
Pro-FX Control application not running
•
Fast Flashing (200ms on, 200ms off) ==> critical fault is active
•
Slow pulse (100ms on, 1500ms off) ==> historic fault is set
- must be manually cleared
•
Solid on ==> standard fault is active
•
Off ==> no fault
LED C (right-most) - Green user programmable LED
•
User programmable via System Config I/O variable: userLedState
Miscellaneous states
•
LED A Off and MIL light solid on ==> No firmware present
•
•
MIL light will pulse briefly for a bulb check on every powerup
MIL light will retain its state for 3 seconds after an active fault goes inactive
13.0 INSTALLING THE CONTROLLER
13.1 Product Dimensions
HFX32m & HFX48m Dimensional Data
3
12
7.743
196.67
8.371
212.61
4X .256
6.50
4.654
118.22
5.282
134.17
2X 2.305
58.55
4X .379
9.61
2.305
58.55
4X .379
9.61
EATON HFX Product Family Installation and Operation Manual E-ELCL-II002-E2 July 2019 19
HFX Product Family
HFX12m & HF20m Dimensional Data
5.144
130.67
5.756
146.21
4X .256
6.50
4.654
118.22
5.282
134.17
2X 2.305
58.55
4X .379
9.61
2.305
58.55
4X .379
9.61
13.2 Mounting Considerations
The following procedure is recommended when mounting the HFX series controllers.
•
•
•
Ideally the controller should be mounted on a vertical flat surface with the open end of the connector facing down.
Use four standard threaded fasteners to securely mount the controller to the surface (either 6mm or
¼” diameter are acceptable).
Note that the HFX series is designed for ambient operating temperatures up to 105°C maximum.
The housing is constructed of cast aluminum and it allows for effective heat dissipation when mounted to metal surfaces and/or when adequate ventilation is available.
•
•
•
When mounting multiple controllers inside a vented enclosure please allow for a minimum of
2” between adjacent controller surfaces so that adequate air flow is present to aid in cooling.
When mounting a controller(s) inside a sealed unvented enclosure, it is important to note that the temperature rise above ambient is determined by the size of the enclosure (surface area) and the expected power dissipation of the controller(s).
A conservative guideline to use for the maximum power dissipation expected from one HFX controller is 50 watts.
Please check with your enclosure manufacturer for appropriate guidelines concerning the necessary enclosure volume to adequately limit thermal rise below the maximum operating temperature of 105°C
13.3 Recommended Wiring Practices
This section contains information about the controller connectors and pin outs. Please use the following recommended wiring practices when installing and using the controller:
•
•
•
•
•
•
•
•
•
•
•
Ensure correct and adequate single point ground to prevent ground loops.
Use twisted or twisted shielded pair cable for CAN per the applicable standard.
Confirm that the CAN network is properly terminated using 120Ω resistors.
Ensure the appropriate sized conductor cross section is specified for the intended load current in the harness design.
Note: Please review individual overcurrent shutdown values in the configuration and use the correct wire gauge conductor to accommodate maximum load current configured
Make sure that voltage drops are kept within reasonable levels under maximum continuous load conditions e.g. 1 volt on 12-volt systems and 2 volts on 24-volt systems.
Verify that the harness is constructed to meet the needs of the application environment (e.g. shock, vibration, moisture, temperature, chemicals, and impact).
Make certain that the harness is designed and constructed to minimize induced interference resulting from EMI coupling between signal wires.
Separate power circuits from low-level signals.
All splices (soldered or crimped) should use adhesive lined heat shrink tubing.
Make provisions for drip loops to attach devices in exposed locations and prevent moisture entry and formation.
Provide sufficient clearance from moving parts.
20 EATON HFX Product Family Installation and Operation Manual E-ELCL-II002-E2 July 2019
HFX Product Family
•
•
•
•
•
Wires routed through holes in the vehicle body/ chassis should use grommets.
Avoid sharp metal edges, fasteners, and other abrasive surfaces or use protective shielding when routing harness assembly.
Route wires to avoid exhaust system components or other high temperature areas, use appropriate heat shielding or other insulation where routing is a problem.
Avoid routing near wheel wells or provide adequate mechanical protection to the assembly.
Use a protective fuse sized appropriately for the controller supply current.
Note: typical maximum load current is 60% - 80% of fuse rating. Verify that wiring can handle more current than the fuse rating. Note the following guideline for maximum fuse recommendations:
•
All Units: +VBat = 2 A
•
HFX48 :+Load total < 50 A depending upon anticipated load requirements.
•
HFX32: +Load total < 42 A depending upon anticipated load requirements.
•
HFX20: +Load total < 34 A depending upon anticipated load requirements.
•
HFX12: +Load total < 26 A depending upon anticipated load requirements.
WARNING
On a HFX12m or HFX20m all HFX Load PWR+ pins
(9A, 10A, and 19A) must be connected to the same supply voltage source. On a HFX12m or HFX20m all
SFX LOAD_PWR- pins (18A, 28A, and 29A) must be connected to the same supply voltage return point.
On a HFX32m or HFX48m all HFX Load PWR+ pins
(9A, 10A, 19A, 1B, 2B, and 3B) must be connected to the same supply voltage source. On a HFX32m or
HFX48m all HFX LOAD_PWR- pins (18A, 28A, 29A),
12B, 13B, and 22B) must be connected to the same supply voltage return point.
Failure to connect all the pins to their respective sources or returns or to use them to power or ground other devices may cause internal failures of the HFX controller, damage to the controller connector, or damage to the wiring harness, and is not covered by warranty.
WARNING
Prior to Welding
In order to avoid damaging the HFX controller ensure that all electrical connectors are fully disconnected from the HFX controller prior to welding on the machine.
Prior to Electrostatic painting
In order to avoid damaging the HFX controller ensure that all electrical connectors are fully disconnected from the HFX controller and that sealed mating connectors without wires are installed on the HFX connector ports prior to Electrostatic painting on the machine.
CAUTION
To maintain the environmental ratings of the HFX controller all connector locations must have a weather sealed connector as specified in the technical specifications installed. A dust plug may be shipped in the C connector of the controller, it is not an environmental seal. All connector cavities in each connector must have either an appropriate sized wire or the correct sealing plug installed. Torque the A and
B connector, if applicable, to 25-28 in-lbs
(2.82 – 3.16 Nm)
EATON HFX Product Family Installation and Operation Manual E-ELCL-II002-E2 July 2019 21
HFX Product Family
14.0 ELECTRICAL CONNECTION INFORMATION
14.1 Wiring Pin Out
1
11
21
31
2
12
22
32
3
13
23
33
KEY A Similiar to: DRC23-40PA, Mating Connector: DRC26-40SA
4
14
24
34
5
15
25
35
6
16
26
36
7
17
27
37
8
18
28
38
9
19
29
39
10
20
30
40
Note: All 4 of the HFX units share a common pin-out. The HFX12 does not utilize the following pins: 8, 15, 17, 25, 27, 31, 32, and 40.
1
11
21
31
2
12
22
32
3
13
23
33
KEY B Similiar to: DRC23-40PB, Mating Connector: DRC26-40SB
4
14
24
34
5
15
25
35
6
16
26
36
7
17
27
37
8
18
28
38
9
19
29
39
10
20
30
40
Note: Although all 4 of the HFX units share a common pin-out, both the HFX12 and the HFX20 do not have connector B. The HFX32 does not utilize the following pins: 4, 6, 8, 14, 17, 18, 24, 27, 29, 30, 31, 36, 37, 39, and 40.
22 EATON HFX Product Family Installation and Operation Manual E-ELCL-II002-E2 July 2019
HFX Product Family
DT04-6P
1 2 3
6 5 4
The above connector is used for programming and is common to all 4 models of the HFX controller.
EATON HFX Product Family Installation and Operation Manual E-ELCL-II002-E2 July 2019 23
HFX Product Family
15.0 CONFIGURATION
15.1 System Configuration
The controller features an advanced view into the hardware through the System Config I/O Mapping tab. There are numerous predefined variables associated with the controller that are accessible via the application program. This dramatically simplifies programming. All of these variables are pre-mapped with a relevant name linked with their respective channel. This name can be changed by the user if desirable. Each variable also has an associated address, type, and description all intended to help the programmer. The System Config I/O Mapping is organized into folders of related variables e.g. the System State folder contains information such as Supply Voltage, Regulator Voltage, Ignition Pin
Voltage, Sleep Pin Voltage, User LED State, USB
Connected, etc. The other folders consist of System
Information e.g. Firmware Rev, Serial Number, Hour
Meter, etc.; Internal Relay status; Global Fault Status for both active and historic faults; and a Fault Monitor for managing faults (see below image).
The above variables can be monitored in the application program to alter controller response. For example, if the battery voltage falls below a predefined limit, or the temperature exceeds a limit, the programmer can choose to initiate a shutdown. Some variables can also be manipulated in the application control program. For instance, the user
LED can be used to impart additional information to the user and the internal relay current can be monitored, and if it exceeds a predetermined limit, forced off.
Note: The variable radio button “Always update variables” (located in the lower right corner of the above picture) should be checked. If this is deselected, only variables used by the IEC application will be updated.
24 EATON HFX Product Family Installation and Operation Manual E-ELCL-II002-E2 July 2019
HFX Product Family
The system configuration has a second tab, the system config configuration that enables the user to configure settings for Regulator Voltage, CAN 1
Termination, Watchdog Time, and Low Memory
Fault threshold.
Note: That depending on the parameter, double clicking the value in the appropriate value field will either open a drop down menu to select, allow direct editing or toggle the variable (see picture below).
15.2 Input Modes
The controller has either 6, 10, 16 or 24 inputs available for use, depending on the selected model.
The specific inputs are as follows:
•
Configurable Analog/Digital Inputs
15.3 Analog Configuration
•
•
Configurable Frequency/Digital Inputs
Configurable Differential Frequency/Digital Inputs
These different configurations are possible through selection of the appropriate mode in the PLC configuration tab in the IDE (see screens below).
Figure 1: Analog/Digital Inputs I/O Mapping tab.
This is the area where analog or digit input values are mapped to addresses. These variables are all accessible in the application program.
Variables:
•
•
AnalogInValue#: Analog value with units dependent upon configured mode.
AnalogInBinaryValue#: Digital value after debounce and rising/falling voltage thresholds are applied.
Note: # above represents input numerical
16, 10, 6, or 4 of the inputs (depending on the model chosen) can be configured as either Analog or Digital.
Both the Analog and Digital value have a name, value, address, type and description associated.
The name can be altered by the programmer, if desired. Analog Inputs are displayed in actual engineering units depending on the mode configuration (either Voltage – mV, Current – μA,
Resistance - Ω, or Temperature °C). Binary inputs are evaluated as true or false and our bits.
EATON HFX Product Family Installation and Operation Manual E-ELCL-II002-E2 July 2019 25
HFX Product Family
Figure 2: Analog/Digital Inputs Configuration tab.
The programmer changes the configuration of an individual input using the AIN mode value drop down selection.
Note: That if any of the following auto configurations is selected offline, the state for the corresponding pull-up, pull-down, and current shunt will change once the program is downloaded into the application controller.
Variables:
•
•
•
•
AIN mode: This represents the type of input connected.
Pull-up enabled: This is used in manual mode to activate the Pull-up resistor.
Pull-down enabled: This is used in manual mode to activate the Pull-down resistor.
Current shunt enabled: This is used in manual mode to activate the Current shunt resistor.
•
•
•
•
•
•
Filter time constant: This is a Digital low pass filter time constant that the input passes through, this is useful if you wish to filter out some random variation on the input or if you wish to reduce how quickly the input changes value.
DIN debounce: This is a time value used to debounce mechanical switches that would otherwise trigger the input multiple times when closed.
DIN rising threshold: This sets the lower limit voltage level necessary for the input to register as high.
DIN falling threshold: This sets the upper limit voltage level necessary for the input to register as low. Used in conjunction with the above DIN rising threshold, an appropriate hysteresis level can be defined.
Over-range limit: This sets the upper range limit for the associated over range fault.
Under-range limit: This sets the lower range limit for the associated under range fault.
26 EATON HFX Product Family Installation and Operation Manual E-ELCL-II002-E2 July 2019
HFX Product Family
16.0 ANALOG INPUT CIRCUIT (PASSIVE
REPRESENTATION)
The options are as follows:
Manual Config mode:
•
•
•
Pull-up configurable
Pull-down configurable
Shunt configurable
Note: The manual mode is useful when connecting binary sensors. If you have a sensor that is switching ground to the input, you should enable the pull-up and set the rising threshold appropriately for the sensor (normally 2500 mV). If you have a sensor that is switching battery voltage, you should enable the pull-down and set the falling threshold appropriately for the sensor (normally less than half the battery voltage). Make sure to take into consideration the effect of hysteresis i.e. have some margin between rising and falling thresholds.
0-5 V mode (ratiometric):
•
•
•
Pull-down forced off
Pull-up configurable
Shunt configurable
0-5 V mode (absolute):
•
•
•
Pull-down forced off
Pull-up configurable
Shunt configurable
0-10 V and 0-34 V mode:
•
Pull-down forced on
•
•
Pull-up configurable
Shunt configurable
0-22 mA mode:
•
•
•
Pull-up forced off
Pull-down forced off
Shunt forced on
Thermistor raw mode
(output the 10 kΩ to 50 kΩ value):
•
•
•
Pull-up forced on
Pull-down forced off
Shunt forced off
Thermistor #1 & #2 mode
(output the temperature value):
•
•
•
Pull-up forced on
Pull-down forced off
Shunt forced off
The status of the Pull-up, Pull-down, and Shunt are displayed for convenience. In Manual Config, the programmer has complete control to alter these values.
Each of the analog modes offers a user adjustable filter. The purpose of this is to smooth an input signal and/or limit how quickly it is changing. The filter is a digital approximation of a first order series
RC network (low pass filter). The adjustable time constant is equivalent to the product of R*C in a conventional RC filter. The input should follow the following curve approximately (+/- 10%): 63% of the new step-response value after 1 time constant - after
2 time constants you will get to 86% and after 3 you will get 98%.
The digital mode features adjustable rising and falling threshold levels. This is intended to offer additional flexibility in input device selection. There is also a debounce associated with each input. It is only intended for digital use (mainly to prevent inadvertent input triggering from multiple mechanical contact closures). The debounce has a user configurable time period. Each digital input can function with either
Low Side or High Side input types.
Additionally, each of the modes offer a user configurable under-range and over-range limit coupled to respective fault bits.
Note 1: There is an overcurrent fault that triggers when the input exceeds approximately 23.5 mA for 25 ms in 0 – 22 mA mode.
Note 2: Ratiometric mode compensates for the measured regulated output voltage variance and normalizes the input value relative to 5 volt sensor supply.
EATON HFX Product Family Installation and Operation Manual E-ELCL-II002-E2 July 2019 27
HFX Product Family
Note: Thermistor #1 & #2 modes display value based on two user configurable lookup tables, see below:
28 EATON HFX Product Family Installation and Operation Manual E-ELCL-II002-E2 July 2019
HFX Product Family
16.1 Thermistor
We use 22 kΩ Pull-up resistors in this mode and therefore recommend that you use resistances in the range of 10 kΩ and 50 kΩ for optimal performance. The defaults shown above were derived from measuring an actual 100 kΩ thermistor.
Thermistor example of actual readings per channel.
Input
Channel 0 ohm 100 ohm 1 kohm 10 kohm 20 kohm 50 kohm
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
10.8 113.8 1010.9 10088.8 20350.0 52347.0
10.2 108.5 1007.0 10089.2 20350.0 52438.0
6.8 108.5 1005.2 10089.2 20350.0 52418.0
8.8 108.5 1005.0 10074.8 20330.0 52346.0
5.4 108.3 1005.0 10066.0 20309.7 52283.0
10.8 108.5 1005.0 10066.0 20309.7 52346.0
X 103.0 999.1 10043.0 20269.8 52210.0
X 103.0 999.1 10031.3 20239.8 52094.0
0 99.5 993.2 10019.8 20228.7 52068.0
5.4 108.5 1005.0 10066.0 20309.7 52336.0
0 98.6 993.2 10006.0 20188.3 51969.0
0 102.5 999.1 10054.5 20289.4 52220.0
5.8 108.5 1005.0 10054.5 20289.4 52283.0
5.4 105.8 1005.0 10066.0 20309.7 52283.0
6.8 108.5 1005.0 10077.6 20330.0 52400.0
6.4 108.5 1005.0 10077.8 20331.0 52408.0
16.2 Frequency Configuration
Figure 3: Frequency/Digital Input I/O Mapping Tab.
The tab displays the following: Selected Input,
Variable, Address, Type, and Description. The tab also has predefined measurements of Voltage,
Duty Cycle, Phase Angle, Pulse Count, Frequency, and Digital Value.
Variables:
•
• digitalInVoltage#: This is the voltage present at the input pin.
digitalInDutyCycle#: This is the measured duty cycle at the input pin.
•
•
•
• digitalInPhaseAngle#: This is the phase angle relative to the channel pair defined in the configuration digitalInPulseCount#: This is a rolling pulse counter.
digitalInFrequency#: This is the measured frequency of the input waveform.
digitalInValue#: This is the digital value after debounce and rising/falling voltage thresholds are applied.
EATON HFX Product Family Installation and Operation Manual E-ELCL-II002-E2 July 2019 29
HFX Product Family
Figure 4:Frequency/Digital Input Configuration tab
This tab allows the user to configure any of the frequency input tabs.
Variables:
•
•
•
•
•
Termination mode: This is where the combination of pull-up and pull-down resistors is configured.
DIN debounce: This is the time value used to debounce mechanical switches that would otherwise trigger the input multiple times when closed.
DIN rising threshold: This is the rising threshold voltage for digital inputs (effects the digital value only).
DIN falling threshold: This is the falling threshold voltage for digital inputs (effects the digital value only).
Phase channel pair: This selects channel pair used for phase comparison (1 is 1st pair, 2nd is 2nd pair, etc.). When configured in Encoder Mode.
•
•
•
•
•
Filter time constant: This is a low pass filter time constant that is used on the following values: frequency, duty cycle, and voltage measurements.
Over-voltage limit: This is the upper limit used for the over-voltage fault.
Lower-voltage limit: This is the lower voltage limit used for the under-voltage fault.
Frequency rising edge threshold: This enables either the adaptive (peak-detect) rising edge voltage threshold or the fixed 2.2 V threshold for the frequency circuit.
Frequency falling edge threshold: This enables either 1.0 V or 0 V as the falling edge voltage threshold for the frequency circuit.
This tab enables the programmer to change the configuration of an individual input using the termination mode value drop down selection.
The options are as follows:
30 EATON HFX Product Family Installation and Operation Manual E-ELCL-II002-E2 July 2019
HFX Product Family
17.0 FREQUENCY INPUT CIRCUIT
(PASSIVE REPRESENTATION)
Open Circuit mode:
•
•
•
•
Pull to VLoad
Pull to 5 V
Pull to Ground
Pull to 5 V & Ground
Note that the VR input can be configured with preset rising (2.2 V) and falling (0 or 1 V) thresholds for the measurement of our proprietary adaptive algorithm which compensates for large increases in peak level that are common with these types of sensors. Due to the nature of the circuit design used in the differential frequency inputs, duty cycle calculation is not supported on these two channels.
Additionally, note that the accuracy of phase measurement is more limited than with the other
6 channels. Also, when measuring frequency, phase, pulse width, or count, the measurement limit is the shortest detectable pulse i.e. 20 μS. When using inputs configured as Frequency, voltage indication is not supported. Also note that the debounce filters are not intended for frequency inputs in general.
When using channels 3 – 8 as frequency input, these are single ended inputs and trigger on 3 volt rising and 2 volt falling.
Note: That there is a fault (Max Total input frequency limit exceeded) that trips, if the combined input frequency of all channels exceeds 200 kHz. This does not stop operation but is intended as a warning that you are exceeding the limits of what the hardware can measure.
The frequency inputs function similar to the digital inputs and add the ability to report the frequency of the input signal. It features the same set of parameters for configuring debounce, rising threshold level, and falling threshold. These inputs also support both Low-Side and High-Side input types. Although it is dependent on the specific sensor, normally in the case of a high side input (input is connected to ground) the Pull to VLoad should be selected. In this case it is important to make sure the sensor is rated for the full load voltage. Normally in the case of a low side input (input is connected to Battery +), the Pull to Ground option should be selected.
There are 8, 6, 4, or 2 inputs that can be configured as Frequency depending on the model selected.
Inputs 1 and 2 have the additional capability to handle differential signals (i.e. VR inputs on all models). When measuring phase, do not mix Inputs
1 and 2 with any of the other frequency inputs.
The differential inputs also work with single ended sensors. In order to use these, just ground the input on the differential pair.
Note: When any of the above channels are configured as digital
(HS or LS) the sampling frequency is 200 Hz. The debounce filters are intended for this mode.
17.1 Output Modes
The controller has either 6, 10, 16, or 24 outputs available for use. The outputs are all configurable as
High Side Digital (ON/OFF), PWM open loop voltage,
PWM(i) closed loop current control. In addition to these options a group of outputs support Low Side
Digital Output (ON/OFF), PWM
1. High Side Switch (HS): This mode of operation is the standard output to turn a load on or off. The individual outputs can switch up to either 2 or 4
A loads depending on the output selected. This mode also supports PWM to drive a load proportionally.
2. Binary: This mode is intended for strictly on/off switching of a load.
3. Dither Current: The amount of peak-to-peak variation(in milliamps) to use for dithering.
4. Load resistance: The estimated load resistance in ohms of the driven load.
EATON HFX Product Family Installation and Operation Manual E-ELCL-II002-E2 July 2019 31
HFX Product Family
Figure 5: Current/PWM Outputs I/O Mapping tab.
This tab displays the desired current, actual current, desired PWM duty cycle, actual PWM duty cycle, and the binary output status.
Variables:
• desiredCurrent#_#A: This is the desired output current for the channel.
Note: That this is only active in Current Control mode.
• measuredCurrent#_#A: This is the average current measured over a single dither period.
• desiredDuty#_#A: This is the desired PWM duty cycle.
Note: That this is only active in PWM mode.
•
• actualDuty#_#A: This is the PWM duty cycle commanded by the hardware.
binaryOutput#_#A: This is the commanded output state of the high or low side output (false: open or True: closed).
Note: That this is only active in Binary mode.
32 EATON HFX Product Family Installation and Operation Manual E-ELCL-II002-E2 July 2019
HFX Product Family
Above is the Current/PWM Outputs Configuration tab.
This tab displays indications that reflect faults associated with the outputs (i.e. short to Vbat, short to ground, open circuit, over current, and loss of control). Additionally, the individual channels PWM
Frequency, Dither Frequency, Dither Amplitude,
Drive Mode, Fault processing, Proportional, and
Integral gain can all be configured here.
Variables:
•
•
•
•
PWM Frequency: This is the fundamental frequency used to drive the output driver (note) that this must be ≥ Dither Frequency. The 2 A outputs support a maximum of 2 kHz & the 4 A outputs support a maximum of 500 Hz.
Dither Frequency: This is the frequency that modulates the PWM duty cycle signal (note) that this must be ≤ PWM Frequency.
Dither Amplitude: This is the amount of peak to peak variation in % of PWM duty cycle used for dithering.
Drive Mode: This selects between closed loop current control mode or open loop PWM duty cycle mode.
•
•
•
•
•
•
•
•
High or Low Side: Selects between a high or low side driver for the channel (note that this only applies to 4 A channels).
Enable Channel Faults: Select to enable automatic system fault processing for this output channel.
K_p: Proportional gain for current control loop.
K_i: Integral gain for current control loop.
Shared Variables:
DUTY_HS: High Side PWM duty cycle commanded
Less Than High Side PWM measured indicates a short to battery fault.
DUTY_LS: Low Side PWM duty cycle commanded
Greater Than Low Side PWM measured indicates a potential short to battery fault.
VLOAD_RATIO: Measured output voltage > commanded output voltage indicates a potential short to battery fault.
OPEN_DUTY: Commanded duty cycle > measured duty cycle indicates a potential open load condition.
EATON HFX Product Family Installation and Operation Manual E-ELCL-II002-E2 July 2019 33
HFX Product Family
•
•
•
•
•
OPEN_CURRENT: Commanded current > measured current indicates a potential open load condition.
GND_SHRT_DUTY: Measured low side duty cycle < commanded indicates a potential short to ground condition.
GND_SHRT_VRATIO: Measured voltage < commanded voltage indicates a potential short to ground condition.
MAX_CURRENT: The value selected here sets a software limit for monitoring individual High Side output current. If the measured current exceeds either the hardware limit or the value defined here, it will cause the Over Current fault.
OFF_CURRENT: If Duty Cycle = 0% and measured current > OFF_CURRENT value defined here or the measured reverse current > 75 mA the Loss of
Control fault will be triggered.
17.2 H-Bridge
The HFX 4A PWM output channels have hardware support for both High-Side and Low-Side drivers.
Starting with HFX Support Package 1.1.0, an
H-Bridge mode is also supported. This corresponds to Firmware Minor version of 21622 on the HFX, as reported by the HFX Service Tool. H-Bridge mode supports PWM mode, but not closed loop current control. 4A PWM outputs can be paired in any combination in H-Bridge mode. For an application to pair outputs, it is critical they be configured with the same frequency. All remaining synchronization is handled automatically in the firmware, including a
50µs dead time.
Each leg of an H-Bridge is individually given a command between -100% and 100%. A positive command closes the Low-Side driver and switches the High-Side PWM corresponding to the command value. The inverse occurs for a negative command.
A command of 0% switches off both sides.
There are a number of strategies to work with
H-Bridge. For thermal efficiency, the recommended approach is Low-Side switching.
The following function block provides an example of how to work the H-Bridge with Low-Side switching:
FUNCTION_BLOCK HBridge
VAR_INPUT
Command : REAL;
HighSideCurrent : REAL;
LowSideCurrent : REAL;
END_VAR
VAR_OUTPUT
HighSidePct : REAL;
LowSidePct : REAL;
ELSE
MeasuredCurrent : REAL;
END_VAR
IF Command >= 0 THEN
HighSidePct
LowSidePct
: = 100.0;
: = -Command;
MeasuredCurrent : = HighSideCurrent - LowSideCurrent;
HighSidePct
LowSidePct
: = Command;
: = 100.0;
MeasuredCurrent : = -(LowSideCurrent - HighSideCurrent);
END_IF
The block would be used in an application like this: measuredCurrent1_4A measuredCurrent2_4A
Command
HighSideCurrent
LowSideCurrent
HB
HBridge
HighSidePct
LowSIdePct
MeasuredCurrent
0 desiredDuty1_4A desiredDuty2_4A
1
2
Figure 6: H Bridge Example
Note: That because current is measured only in the positive direction, the accuracy of the reported current is limited when rapidly switching command polarity on highly inductive loads.
34 EATON HFX Product Family Installation and Operation Manual E-ELCL-II002-E2 July 2019
HFX Product Family
18.0 OUTPUT CIRCUIT (PASSIVE REPRESENTATION)
18.1 Overcurrent Shutdown
The individual outputs of the unit are fully protected and will switch off if overloaded. When diagnostics are enabled and an overcurrent event occurs, the output will switch and remain off until another off/on command is received. The overcurrent shutdown is dependent upon the specific output.
2 A rated outputs have a slow blow level of approximately 2.1 A and a fast blow level of approximately 2.4 A. 4 A rated outputs have a slow blow level of approximately 4.1 A and a fast blow level of approximately 4.4 A. All outputs are additionally protected via an internal solid state relay.
The relay can be active monitored for current and controlled in the user program.
19.1.1 Dither
Dither is a small modulation of the PWM signal. This is intended to compensate for stiction and hysteresis by continually changing the PWM signal slightly and thus keeping the valve spool in constant motion.
This can dramatically improve the valve performance by improving response to small signal changes.
The following oscilloscope images illustrate both the
PWM voltage and current waveforms. Also illustrated are the effects of varying PWM duty cycle and of adding dither.
19.1.2.1 PWM
19.0 Pulse Width Modulation (PWM)
19.1 What is PWM?
PWM stands for Pulse Width Modulation. It is a method that can be used to efficiently drive solenoid valves. Typically the output device is switched at a fast rate (60 Hz – 2 kHz).
In the past solenoid valves were driven using a transistor or op amp in linear mode. This worked well to control the valve as a directly proportional voltage signal could be easily controlled using feedback. The negative of this technique is that it generates a great deal of heat, is inefficient, and requires a larger enclosure since the output device is operated in between cutoff and saturation and is behaving like a variable resistor constantly having to dissipate the power not used by the load as heat.
PWM uses the output device digitally and therefore the device is either on or off. Using this technique, the output device supplies a series of pulses of the same voltage level to the load. Since transistors are very efficient when either on or off, much less heat is dissipated. Varying the duty cycle (on time/switching period) the output power is modulated effectively emulating an analog signal, especially at the higher switching frequencies through a solenoid valve coils inductance.
Current feedback can be used to more effectively control the valve. With a known current flowing through the valve coil, the valve spool position can be precisely determined. The added advantage of this method is that it is independent of temperature.
Depiction of 2 kHz PWM. Lower waveform is voltage, upper is current through a typical inductance.
19.1.2.2 PWM
Depiction of 2 kHz PWM waveforms (note faster time scale factor of 10). Lower waveform is voltage, upper waveform is current through a typical inductance.
EATON HFX Product Family Installation and Operation Manual E-ELCL-II002-E2 July 2019 35
HFX Product Family
19.1.3.1 PWM with Dither 19.1.3.3 PWM with Dither
Depiction of 2 kHz PWM with 100 Hz 40% dither.
Lower waveform is voltage, upper waveform is current through a typical inductance.
19.1.3.2 PWM with Dither
PWM with dither illustrating duty cycle
62% (42% + 20%)
19.1.3.4 PWM with Dither
Single cycle of 2 kHz PWM with 100 Hz 40% dither.
Note: PWM voltage duty cycle is changing value +/- 20% from commanded value at a rate of 100 Hz.
PWM with dither illustrating duty cycle
22% (42% - 20%)
36 EATON HFX Product Family Installation and Operation Manual E-ELCL-II002-E2 July 2019
HFX Product Family
20.0 CAN & SAE J1939
•
•
•
Each device added to the J1939 manager represents a physical device on the bus.
•
So a "local device" represents the local mobile controller. This is the message the controller will be *transmitting*. See the "local device" checkbox in the general tab.
•
A non-"local device" represents a physical device on the bus.
Thus its "Tx Signals" are what the device is sending and the mobile controller is receiving.
•
Thus you should generally add one "device" to the tree to represent each device that is on the physical bus, including the
"local" device.
•
Also make sure you have the "local device" checked for the node that you want to use to transmit or receive P2P signals. While this is not intuitive at first, it makes complete sense once you are aware of it.
There are no function blocks and everything happens automatically in the background.
You just get scaled variables you can read or write from code.
All transmission happens automatically per the configuration for each PGN.
The "TransmissionMode" tab specifies the interval.
Relevant options are "Change of State" and
"Cyclic", but the default is change of state, so the packet will not be sent unless one of the variables changes (i.e. from your code). Cyclic is the more traditional J1939 method and better for testing.
The "I/O" mapping tab represents all the variables available in the device. These can be used in code for either inputs or outputs depending on whether it is a transmitted or received packet.
•
•
•
You can automatically convert and scale variables by clicking on the SPN in the "Tx Signals" page, and then enabling the "Conversion" option. This lets you deal in engineering units (i.e. %, rpm, mph, etc.) as opposed to the raw data bytes.
Variables in the I/O mapping tab will not be updated unless physically used in code. This is an optimization done by the 3S compiler to reduce computation for unused variables. For debugging, you can check the "Always update variables" box and it will instruct the compiler/debugger to always display and update the values.
The CAN "Network" option is an indexed value that starts counting at Zero. Thus Network 0 represents the first CAN bus, Network 1 represents the second CAN bus, and Network 2 represents the third.
21.0 INPUT STATUS, FEEDBACK, AND DIAGNOSTICS
A fault table is integrated in the IDE. Please see the below samples. When a fault occurs, an exclamation will come on the “Fault Table” icon indicating
“Diagnostic message available”. If there is an active fault that relates to a PWM, analog, or frequency channel, then the respective icon will also display the red triangle as well. One message is displayed at a time in the “Fault Table Status” tab. When
Acknowledge is selected the current fault is cleared and the next fault is displayed. If the fault cannot be cleared, it will remain until the condition is fixed.
EATON HFX Product Family Installation and Operation Manual E-ELCL-II002-E2 July 2019 37
HFX Product Family
Figure 7: Fault Table I/O Mapping
This is convenient location where all active and historic faults can be viewed. Additionally, user defined faults from the
IEC application can be set here for monitoring. There are numerous faults and further details in the appendix.
38 EATON HFX Product Family Installation and Operation Manual E-ELCL-II002-E2 July 2019
HFX Product Family
21.1 Block Diagram
6A VBATT+
26A Sleep
16A IGN
9A Load_PWR+
10A Load_PWR+
19A Load_PWR+
1P USB_GND
2P USB_D-
3P USB_D+
6P USB_+5V
4P CAN1_H
5P CAN1_L
22A CAN1_H
12A CAN1_L
13A CAN2_H
23A CAN2_L
14A CAN3_H
24A CAN3_L
HFX12m
Controller Power
Output Power
VBATT- 7A
Load_PWR- 18A
Load_PWR- 28A
Load_PWR- 29A
SENS_PWR+ 30A
SENS_PWR- 20A
21A INPUT_1
11A INPUT_2
33A INPUT_3
34A INPUT_4
PWM1_2A 2A
PWM2_2A 3A
PWM3_2A 4A
PWM4_2A 5A
I/O System (6 Inputs/
6 Outputs)
36A FREQ1_POS
37A FREQ1_NEG
38A FREQ2_POS
39A FREQ2_NEG
PWM1_4A 1A
PWM2_4A 35A
*Note: Only FREQ1 & FREQ2 support variable reluctance type sensors inputs
EATON HFX Product Family Installation and Operation Manual E-ELCL-II002-E2 July 2019 39
HFX Product Family
6A VBATT+
26A Sleep
16A IGN
9A Load_PWR+
10A Load_PWR+
19A Load_PWR+
1P USB_GND
2P USB_D-
3P USB_D+
6P USB_+5V
4P CAN1_H
5P CAN1_L
22A CAN1_H
12A CAN1_L
13A CAN2_H
23A CAN2_L
14A CAN3_H
24A CAN3_L
HFX20m
Controller Power
Output Power
VBATT- 7A
Load_PWR- 18A
Load_PWR- 28A
Load_PWR- 29A
SENS_PWR+ 30A
SENS_PWR- 20A
21A INPUT_1
11A INPUT_2
33A INPUT_3
34A INPUT_4
25A INPUT_5
15A INPUT_6
PWM1_2A 2A
PWM2_2A 3A
PWM3_2A 4A
PWM4_2A 5A
PWM5_2A 40A
PWM6_2A 32A
I/O System (10 Inputs/
10 Outputs)
36A FREQ1_POS
37A FREQ1_NEG
38A FREQ2_POS
39A FREQ2_NEG
17A FREQ3
27A FREQ4
PWM1_4A 1A
PWM2_4A 35A
PWM3_4A 31A
PWM4_4A 8A
*Note: Only FREQ1 & FREQ2 support variable reluctance type sensors inputs
40 EATON HFX Product Family Installation and Operation Manual E-ELCL-II002-E2 July 2019
HFX Product Family
HFX32m
6A VBATT+
26A Sleep
16A IGN
9A Load_PWR+
10A Load_PWR+
19A Load_PWR+
1B Load_PWR+
2B Load_PWR+
3B Load_PWR+
1P USB_GND
2P USB_D-
3P USB_D+
6P USB_+5V
4P CAN1_H
5P CAN1_L
Controller Power
Output Power
VBATT- 7A
Load_PWR- 18A
Load_PWR- 28A
Load_PWR- 29A
Load_PWR- 12B
Load_PWR- 13B
Load_PWR- 22B
SENS_PWR1+ 30A
SENS_PWR1+ 21B
SENS_PWR1- 20A
SENS_PWR1- 11B
22A CAN1_H
12A CAN1_L
13A CAN2_H
23A CAN2_L
14A CAN3_H
24A CAN3_L
SENS_PWR2+ 15B
SENS_PWR2+ 16B
SENS_PWR2- 25B
SENS_PWR2- 26B
21A INPUT_1
11A INPUT_2
33A INPUT_3
34A INPUT_4
25A INPUT_5
15A INPUT_6
5B INPUT_7
7B INPUT_8
28B INPUT_9
19B INPUT_10
36A FREQ1_POS
37A FREQ1_NEG
38A FREQ2_POS
39A FREQ2_NEG
17A FREQ3
27A FREQ4
10B FREQ5
20B FREQ6
I/O System (16 Inputs/
16 Outputs)
*Note: Only FREQ1 & FREQ2 support variable reluctance type sensors inputs
PWM1_2A 2A
PWM2_2A 3A
PWM3_2A 4A
PWM4_2A 5A
PWM5_2A 40A
PWM6_2A 32A
PWM7_2A 35B
PWM8_2A 34B
PWM9_2A 33B
PWM10_2A 23B
PWM1_4A 1A
PWM2_4A 35A
PWM3_4A 31A
PWM4_4A 8A
PWM5_4A 38B
PWM6_4A 32B
EATON HFX Product Family Installation and Operation Manual E-ELCL-II002-E2 July 2019 41
HFX Product Family
HFX48m
6A VBATT+
26A Sleep
16A IGN
9A Load_PWR+
10A Load_PWR+
19A Load_PWR+
1B Load_PWR+
2B Load_PWR+
3B Load_PWR+
1P USB_GND
2P USB_D-
3P USB_D+
6P USB_+5V
4P CAN1_H
5P CAN1_L
22A CAN1_H
12A CAN1_L
13A CAN2_H
23A CAN2_L
14A CAN3_H
24A CAN3_L
21A INPUT_1
11A INPUT_2
33A INPUT_3
34A INPUT_4
25A INPUT_5
15A INPUT_6
5B INPUT_7
7B INPUT_8
28B INPUT_9
19B INPUT_10
18B INPUT_11
14B INPUT_12
17B INPUT_13
27B INPUT_14
9B INPUT_15
8B INPUT_16
36A FREQ1_POS
37A FREQ1_NEG
38A FREQ2_POS
39A FREQ2_NEG
17A FREQ3
27A FREQ4
10B FREQ5
20B FREQ6
29B FREQ7
30B FREQ8
Controller Power
Output Power
I/O System (24 Inputs/
24 Outputs)
VBATT- 7A
Load_PWR- 18A
Load_PWR- 28A
Load_PWR- 29A
Load_PWR- 12B
Load_PWR- 13B
Load_PWR- 22B
SENS_PWR1+ 30A
SENS_PWR1+ 21B
SENS_PWR1- 20A
SENS_PWR1- 11B
SENS_PWR2+ 15B
SENS_PWR2+ 16B
SENS_PWR2- 25B
SENS_PWR2- 26B
PWM1_2A 2A
PWM2_2A 3A
PWM3_2A 4A
PWM4_2A 5A
PWM5_2A 40A
PWM6_2A 32A
PWM7_2A 35B
PWM8_2A 34B
PWM9_2A 33B
PWM10_2A 23B
PWM11_2A 39B
PWM12_2A 31B
PWM13_2A 24B
PWM14_2A 36B
PWM15_2A 37B
PWM16_2A 40B
PWM1_4A 1A
PWM2_4A 35A
PWM3_4A 31A
PWM4_4A 8A
PWM5_4A 38B
PWM6_4A 32B
PWM7_4A 6B
PWM8_4A 4B
*Note: Only FREQ1 & FREQ2 support variable reluctance type sensors inputs
42 EATON HFX Product Family Installation and Operation Manual E-ELCL-II002-E2 July 2019
HFX Product Family
22.0 TESTING AND VALIDATION
Requirement Specifications
Electrical/EMI/EMC
2004/104/EC
CISPR 25
CISPR 25
ISO 11452-4
ISO 11452-2
SAE J1113-2:2004
ISO7637-2:2004
ISO7637-2:2004
ISO7637-2:2004
ISO7637-2:2004
ISO7637-2:2004
SAE J1113-12
SAE J1113-12
ISO 10605:2001 Sect 5.2.2
10605:2001 Sect 5.2.3
ISO 10605:2001 Sect 7
ISO 10605:2001 Sect 7
EN61000-4-2:1995 Sect 8.3.2.1&2
J1113-26
SAE J1113-26
Mechanical/Environmental
Storage Temperature Range
Operating Temperature Range
Initial Conditioning
High Temperature endurance
Range
Ignition Cycling
Thermal Shock
Humidity/Temp Cycling
Rain Cycle
Thermal Cycling
Brine Ingestion
Hot Plugging
Ingress Protection
Transit Shock
Vibration
Shock
Fluid Compatibility
Dust
Thermal Shock
Handling Drop Test
Salt Spray
Wash Down
Ice
Maximum Voltage
Salt Fog
Short Circuit
Steam Clean
Tri-Temperature Functional
Chemical Compatibility
Temperature Destruct Test
European Union automotive EMC directive
Conducted emissions (EU broadband & narrowband limits)
Radiated emissions (EU broadband & narrowband limits)
Immunity to narrowband conducted electromagnetic energy via bulk current injection
Immunity to narrowband radiated electromagnetic energy via absorption lined chamber
Audio frequency noise immunity
Automotive test pulse 1 reference level IV
Automotive test pulse 2a, 2b reference level IV
Automotive test pulse 3a, 3b reference level IV
Automotive test pulse 4 reference level IV
Automotive test pulse 5 reference level IV
Chattering relay test
Mutual coupling
ESD powered up test - direct contact discharge test level IV ISO
ESD powered up test - air discharge test level IV
ESD unpowered handling - direct contact discharge test level IV
ESD unpowered handling - air discharge test level IV
ESD indirect discharge with horizontal and vertical coupling plane method test level IV SAE
Immunity to A.C. power line electric fields reference +/- 15 kV
Immunity to A.C. power line magnetic fields reference 40 uT
-40°C - 125°C
-40°C - 105°C (USB use is limited to 85°C)
-40°C for 24 hours, 105°C for 24 hours
125°C for 200 hours unpowered. After test unit must be functional Voltage
6 V - 32 V
10,000 cycles of I minute max supply voltage alternating with 1 minute no voltage at power supply connection.
J1455 Section 4.1.3.2; 2 hour -40°C two hour soak, 5 four hour cycles, two hours @ -40°C & two hours @ 105°C
J1455 Section 4.2.3 Six 48 hour cycle at 20°C to 60°C, 90 - 98% RH
100 cycles 1 hour tap water spray, 1 hour 71°C
1000 cycles from -40°C to 105°C powered, test full load every 200 cycles
8 cycles of 1 hour at 105°C followed by 1 hour in brine solution @ 13°C
5 cycles connect/disconnect while active
IP67/IP69K
J1455 Section 4.11.3.2
J1455 Section 4.10.4.1/5.82Grms, 8 hours per axis
J1455 Section 4.10.4/6+/-pulses, 50 G's, 6 ms
J1455 Section 4.4.3
J1455 Section 4.7.3/IEC529
J1455 Section 4.1.3.2
J1455 Section 4.11.3.1/ 1 meter drop on concrete on each of 6 box faces
J1455 Section 4.3.3
J1455 Section 4.5.3/4.83MPa, 11.4 l/min, 10.2 cm away, 2 minutes duration
3 cycles (stabilize -20°C then submerge in 0°C water, then -20°C)
168 hours at 105°C with 16 VDC
ASTM-B117/96 hours at 35°C 5% NaCl
Short each pin to supply and ground in powered state
5.7 l/min 2.41 Mpa 20 -30 cm distance for 375 cycles
One 24 hour cycle form -40°C to +105°C
See list below
Increase temperature until unit is destroyed (dwell at max for 10 minutes, bring down to room temp and repeat cyclically)
EATON HFX Product Family Installation and Operation Manual E-ELCL-II002-E2 July 2019 43
HFX Product Family
23.0 SERVICE TOOL
Please see page 13 for details covering firmware installation. One of the primary purposes of the Service tool is to provide an aid for troubleshooting. There are five pages that display and or allow configuration of various I/O types.
Figure 8: Service Tool Main Page
This page allows the user to check the status of the MIL, supply voltage, ignition pin voltage, solid state relay, hours of use, and application. It also provides the total output current and several additional details about the software and hardware setup. Additionally, the output voltage on the regulated sensor supply can be adjusted.
44 EATON HFX Product Family Installation and Operation Manual E-ELCL-II002-E2 July 2019
HFX Product Family
Figure 9: Service Tool Analog Input Page
This page enables the user to view input values associated with the analog channels and configure each channel for a specific type of input. It also offers the ability to individually select filters for each channel.
EATON HFX Product Family Installation and Operation Manual E-ELCL-II002-E2 July 2019 45
HFX Product Family
Figure 10: Service Tool Frequency Input Page
This page enables the user to view input values associated with the frequency channels and configure each channel for a specific type of input.
46 EATON HFX Product Family Installation and Operation Manual E-ELCL-II002-E2 July 2019
HFX Product Family
Figure 11: Service Tool Output Page
This page enables the user to view controller temperature, individual channel feedback current/voltage, dither, duty cycle, frequency and current control gain specific to each output channel. Each channel can also be configured as current control, or PWM. Additionally, the 4 A channels can be configured as Low-Side outputs.
EATON HFX Product Family Installation and Operation Manual E-ELCL-II002-E2 July 2019 47
HFX Product Family
Figure 12: The Service Tool Fault Page
The faults page displays warnings, system status, and any faults that are active.
48 EATON HFX Product Family Installation and Operation Manual E-ELCL-II002-E2 July 2019
HFX Product Family
24.0 FAULT CONDITIONS
Note: That while every effort has been taken to assist in identifying faults and providing a system to manage these faults, there is still the possibility of faults occurring that are not detected. The system designer must take this into account.
This system is intended to assist with faults but is not intended to take the place of a safety system.
The controller features a highly refined fault management system. The system consists of a fault table of predefined system faults. All of the faults are mapped to addresses that are directly accessible in the application control program. There is also a reserved area for user defined IEC faults in this section. This is very flexible as all faults can be easily scanned through in one area of the environment.
Both the predefined System Faults and the User
Faults feature active and historic fault indication.
Please see below:
Fault table indicating User and System faults
The range limits for many of the faults have default values that can be overwritten in the appropriate
I/O configuration tab. Please see below:
Note in this example the range limit for an analog input is highlighted (34,000 mV), this is used for defining the appropriate range limit and if exceeded the corresponding fault will trigger if active.
EATON HFX Product Family Installation and Operation Manual E-ELCL-II002-E2 July 2019 49
HFX Product Family
Fault table indicating PWM faults:
The range limits for many of the faults have default values that can be overwritten in the appropriate
I/O configuration tab. Please see below:
DUTY_HS and VLOAD_RATIO – In High Side output configuration, if duty cycle is commanded below
DUTY_HS (25%) and (Voltage on output/Input Load
Power) >VLOAD_RATIO (90%), then trigger the
“Short to Power” fault.
DUTY_LS and VLOAD_RATIO – In Low Side output configuration, if duty cycle is commanded above
DUTY_LS (50%) and (Voltage on output/Input Load
Power) >VLOAD_RATIO (90%), then trigger the
“Short to Power” fault.
OPEN_DUTY and OPEN_CURRENT – If the duty cycle is commanded above OPEN_DUTY (10%) and the measured current is less than OPEN_CURRENT
(50mA), trigger the PWM output “Open is Active” fault.
GND_SHRT_DUTY and GND_SHRT_VRATIO – In
Low Side output configuration, if duty cycle is commanded below GND_SHRT_DUTY (10%) and
(Voltage on output/Input Load Power) <GND_SHRT_
VRATIO (10%), trigger the “Open is Active” fault
MAX_CURRENT – If measured current is greater than
MAX_CURRENT, then trigger the “Over Current”
Fault.
OFF_CURRENT – If the output duty cycle is 0% and the measured current is greater than OFF_CURRENT
(75mA), then trigger the “Loss of Control” fault.
50 EATON HFX Product Family Installation and Operation Manual E-ELCL-II002-E2 July 2019
HFX Product Family
The System Configuration I/O mapping contains the following:
A set of Global fault status variables to aid in managing faults. This consists of active and historic faults, a fault count, as well as a means to clear the faults. There is also a Fault Monitor where specific faults can be monitored. See below:
Figure 13:
Note: the location of Global Fault Status and Fault Monitor shown above.
The following are the predefined faults:
List of Codesys Faults
VE5_max and VE5b_max – indicates the sensor_ supply_1/2 are shorted to something above 5V (i.e.
12V power).
VE5_min and VE5b_min – indicates the sensor_ supply_1/2 is shorted to ground.
VE5ab_OOR – Both sensor supplies are "out-of- range". So if you short both high or short both low it will occur. It is functionally (VE5_max OR VE5_min)
AND (VE5b_max OR VE5b_min).
COPfail is active – This is the system/firmware COP
(computer operating properly) fault, AKA watchdog.
This will only occur if there is a bug that causes the firmware to lock up or not trigger the COP approximately every 100ms.
RTI is active – This indicates that one of the internal firmware loops is not executing (1ms/5ms/50ms).
Basically, this is similar to a COP for each of our internal loops.
RTI2 is active – This indicates that one of the internal firmware loops is not executing (1ms/5ms/50ms).
Basically, this is similar to a COP for each of our internal loops.
RTI3 is active – This indicates that one of the internal firmware loops is not executing (1ms/5ms/50ms).
Basically, this is similar to a COP for each of our internal loops.
Adloss is active – This occurs if the ADC routine is not running for some reason (similar to a COP overseeing the ADC operation).
Interrupt is active – This is caused if an invalid/ unhandled interrupt is ever executed.
flash_fail is active – CPU hardware error.
RAM_fail is active – CPU hardware error.
HWID_fail is active – 2 specific resistors are present on the PCB. Their value is used to identify the PCB hardware version. If these are at an unknown value, this fault will trigger.
J1939_Tx(x)Fail is active – Currently unsupported in
CODESYS.
J1939_Rx(x)Fail is active – Currently unsupported in
CODESYS.
DevDesc_error is active – This indicates there is a mismatch between the firmware and CODESYS device description.xml.
EATON HFX Product Family Installation and Operation Manual E-ELCL-II002-E2 July 2019 51
HFX Product Family
Illegal_flash write is active – This is an indication that CODESYS is attempting to write to a restricted address in flash.
Cpu_addr_err is active – This fault occurs if the CPU attempts to read or write an illegal or mis- aligned address. CODESYS will trigger this fault if you don't do a clean all.
Illegal_instr is active – This is similar to cpu_addr_err; however, it is for illegal instructions encountered by the CPU
FPU_exception is active – This fault is not supported by our hardware
MRAM_fail is active – This indicates a detected CRC error or other problem with the MRAM used to store
RETAIN variables. If this error occurs it is a major hardware failure.
PWMx_loss control is active – This is an indication that an output channel has failed. It should occur if the PWM driver fails in a shorted condition.
It indicates that the program is instructing the output off, but the output is still flowing current. When this occurs it will then trip the secondary protection which is the internal solid state relay. This fault may also occur if a higher than supply voltage is placed on the output pin as this will cause reverse current to flow (through the body diode of the high side FET), which should be detected and thus trip the solid state relay.
CODESYS exception is active – CODESYS has its own exception implementation. Take for example the watchdog you can enable for each task. If you set enable the task watchdog and violate it then
CODESYS throws an exception and displays an error message in the IDE and this fault will mirror that activity.
CODESYS low mem is active – running low on
CODESYS memory. There is 16KB of internal
"dynamic" memory that is allocated to CODESYS –
This is used for all of their code. There is information about this on the EDIS "Debug Sys" page.
CODESYS out of dn mem is active – similar to low memory fault above, but this is when the operating system is out of dynamic memory.
CODESYS bad pointer is active – CODESYS internal code calls a function that checks if memory is good
CODESYS target mismatch – The CODESYS target description does not match the firmware
CODESYS exception is active – CODESYS has its own exception implementation. Take for example the watchdog you can enable for each task. If you set enable the task watchdog and violate it then
CODESYS throws an exception and displays an error message in the IDE and this fault will mirror that activity.
CODESYS watchdog is active – This is monitoring the internal CODESYS task in firmware that executes all things CODESYS. Subtly but significantly different from the watchdog you enable in CODESYS via the
IDE. This will happen if CODESYS locks up for any reason. Take for example you write a while(TRUE)
{} loop in IEC code. Since everything runs from a single context, CODESYS will never see that the while(TRUE) loop has locked up, but the operating system will and in turn trigger this error. The watchdog time for this is configured in"CODESYS
Runtime Watchdog" under System Config
Configuration tab. The default for the "CODESYS watchdog" is 2 seconds so your individual task watchdog should be less.
CODESYS low mem is active – running low on
CODESYS memory. There is 16KB of internal
"dynamic" memory that is allocated to CODESYS –
This is used for all of their code. There is information about this on the EDIS "Debug Sys" page.
CODESYS out of dn mem is active – similar to low memory fault above, but this is when the operating system is out of dynamic memory.
CODESYS bad pointer is active – CODESYS internal code calls a function that checks if memory is good
CODESYS target mismatch – The CODESYS target description does not match the firmware
52 EATON HFX Product Family Installation and Operation Manual E-ELCL-II002-E2 July 2019
HFX Product Family
List of Battery Faults
Batt_Low – This occurs whenever the supply voltage drops below 6 V for more than 5 seconds.
Batt_High – This occurs whenever the supply voltage exceeds 32 V for more than 3 seconds.
List of PWM Faults for PWM1_2A to PWM16_2A
PWM#_2A Loss of Control – This fault indicates that current or reverse current exceeding a default 75 mA is flowing without any commanded output current on the channel.
PWM#_2A Over Current – High-Side current measured on output 1(2A) is greater than the hardware limit or greater than a default Max current of 2000 mA. The default current values can be overwritten in the configuration of the unit.
PWM#_2A Short to battery – This fault indicates when output channel 1(2A) has a short to the battery.
Note: That the controller is comparing commanded current value to the measured value to evaluate for the fault. The default current value is 25 mA but can be overwritten in the configuration of the unit.
PWM#_2A Open circuit or Low-Side drive grounded
– This fault indicates when there is an open circuit on output channel 1(2A). The controller is comparing the commanded current value to the measured value or checking for a ground short on the output. The default values can be overwritten in the configuration of the unit.
List of PWM Faults for PWM1_4A to PWM8_4A –
Fault Description
PWM#_4A Loss of Control – This fault indicates that current or reverse current exceeding a default 75 mA is flowing without any commanded output current on the channel.
PWM#_4A Over Current – High-Side current measured on the output (4A) is greater than the hardware limit or greater than a default Max current of 4000 mA. The default current values can be overwritten in the configuration of the unit.
PWM#_4A Short to battery – This fault indicates when output channel (4A) has a short to the battery.
Note: That the controller is comparing commanded current value to the measured value to evaluate for the fault. The default current value is 25 mA but can be overwritten in the configuration of the unit.
PWM#_4A Open circuit or Low-Side drive grounded
– This fault indicates when there is an open circuit on the output channel (4A). The controller is comparing the commanded current value to the measured value or checking for a ground short on the output. The default values can be overwritten in the configuration of the unit.
EATON HFX Product Family Installation and Operation Manual E-ELCL-II002-E2 July 2019 53
HFX Product Family
List of CAN Bus Faults: – Fault Description
CANx Tx Failure – Can transmit error counter exceeds 100
CANx Rx Failure – Can receive error counter exceeds 100.
List of Analog Faults for AIN1 to AIN16 – Fault
Description
AINX max current exceeded – The max current for input X in analog mode has been exceeded
AINX value over-range – The value of the signal on the analog input X is too high.
AINX value under-range – The value of the signal on the analog input X is too low.
Frequency Fault List: For FREQ1 to FREQ8 –
Fault Description
FREQX Input over voltage – The max voltage for input X in frequency mode has been exceeded
(>34 Volts).
FREQX max frequency limit exceeded – The max frequency for input X in frequency mode has been exceeded (>50 kHz).
Max Total input frequency limit exceeded – The maximum aggregate frequency for all frequency inputs in total has been exceeded (>200kHz).
FREQX Input under voltage – The voltage for input X in frequency mode is too low. ( < -5 Volts).
54 EATON HFX Product Family Installation and Operation Manual E-ELCL-II002-E2 July 2019
HFX Product Family
EATON HFX Product Family Installation and Operation Manual E-ELCL-II002-E2 July 2019 55
HFX Product Family
25.0 APPENDIX
25.1 Supported & Unsupported CODESYS Features
Since CODESYS is a generic broad based software environment that supports a multitude of different products, not all features are relevant with a given product. This is the list of supported and unsupported features in HFX controllers:
25.2 Supported
1. Debug variable viewing
2. Login
3. Logout
4. Download (single Application)
5. Run
6. Stop
7. Reset (warm, cold, origin)
8. Logger
9. Files and directories (24KB max storage and
16 character names or directories)
10. Write values
11. Create boot application
(downloaded with service tool)
12. Debug visualization (debugging in IDE)
13. Task monitor (no jitter measurements though)
14. Retain (cycle-by-cycle, 4K)
15. Task timing – cyclic, freewheeling, event
16. Dynamic IO configuration.
17. Fault monitoring and acknowledgement.
18. Debug > Display mode
19. Simulation
20. IEC Task watchdog
21. IEC 61131-3 Programming languages
22. Microsecond time resolution
23. Force/unforce (available next release)
24. Breakpoints
25. Single-cycle
26. Step through (step over, step into,
9 step out – depends on #1)
27. Trace
25.3 Not Supported
1. Show call stack
2. Display flow stack
3. PLC shell
4. Users and groups
5. Access rights
6. Online change
7. Source download
8. Persistent
9. Data server
10. Alarm manager
11. Text editor
12. Path3D
13. Cam displayer
14. Task timing – status, external event
56 EATON HFX Product Family Installation and Operation Manual E-ELCL-II002-E2 July 2019
HFX Product Family
26.0 DEVICE COMMUNICATION TROUBLESHOOTING
The following is a list of things to check, in order of priority, if you are having problems connecting to your controller from Pro-FX Control.
1. Make sure the device is powered up. You should see a green light on LED A of the device. It is okay if this is flashing (this just means the controller is currently in run mode).
2. Make sure the USB port is connected and
Windows has properly loaded the drivers.
In the device manager you should see under
"Ports" an entry that say’s "Mobile Controller:
Enhanced COM Port".
3. Make sure that the gateway.cfg file has been properly installed per the instructions in this document. Installation of an alternate CODESYS device gateway may have overwritten this file.
4. In the Pro-FX Control "Communication Settings", select "None" for the "Filter". Then rescan for the device. If something new shows up, then it could be that the device variant being used by your project is different than the connected device.
Pro-FX Control will only let you connect to a device variant that matches the configuration of your project. To switch to the appropriate device, right click on it in the "Devices" project tree and select "Update Device".
5. Stop and start the gateway. Plug and unplug the
USB port.
6. Restart Pro-FX Control.
7. Restart your PC
8. In some cases, Windows will automatically assign a high COM port number to the USB device. If the device manager shows something higher than "COM20" then you should reassign it to something lower. Then restart the gateway and unplug and plug the USB port.
9. Each time a unique mobile controller is connected to your PC, Windows will provide 2 new COM port numbers. In some cases, Pro-FX Control appears to have problems automatically discovering the device's COM port when the value gets too high. In this case there are 2
•
• options:
From the device manager, click the COM port's properties, select "Port Settings" tab, click
"Advanced", and select a "Com Port Number" that is below COM20. Then restart the gateway and replug the USB device to ensure changes are applied properly.
You can alternately edit the gateway.cfg to manually assign your device's COM port number.
Open the gateway.cfg file located in the directory
{ProgramFiles (x86)}\3S CODESYS\GatewayPLC and change the line that begins with "Com.0.Port".
After making this change, restart the gateway.
Note: After making this change, your installation will no longer automatically detect other controllers, so this must be repeated for all unique controllers that are connected to your PC.
27.0 DEVICE RECOVERY
On HFX, short PWM1_2A *AND* PWM2_2A to
VBAT (must be > 11 V). Then power the system with either the service tool running or attempt to connect via CODESYS within 3 seconds after powerup. This will prevent the CODESYS application from running and then you can recover it.
EATON HFX Product Family Installation and Operation Manual E-ELCL-II002-E2 July 2019 57
Eaton
Hydraulics Group USA
14615 Lone Oak Road
Eden Prairie, MN 55344
USA
Tel: 952-937-9800
Fax: 952-294-7722 www.eaton.com/hydraulics
Eaton
Hydraulics Group Europe
Route de la Longeraie 7
1110 Morges
Switzerland
Tel: +41 (0) 21 811 4600
Fax: +41 (0) 21 811 4601
Eaton
Hydraulics Group Asia Pacific
Eaton Building
No.7 Lane 280 Linhong Road
Changning District,
Shanghai 200335
China
Tel: (+86 21) 5200 0099
Fax: (+86 21) 2230 7240
© 2019 Eaton
All Rights Reserved
Printed in USA
Document No. E-ELCL-II002-E2
July 2019
Advertisement