ABB REF611 Applications Manual

ABB REF611 Applications Manual

Add to My manuals
188 Pages

advertisement

ABB REF611 Applications Manual | Manualzz

Relion ® 611 series

Feeder Protection and Control

REF611

Application Manual

Document ID: 1MRS757456

Issued: 2017-10-31

Revision: D

Product version: 2.0

© Copyright 2017 ABB. All rights reserved

Copyright

This document and parts thereof must not be reproduced or copied without written permission from ABB, and the contents thereof must not be imparted to a third party, nor used for any unauthorized purpose.

The software or hardware described in this document is furnished under a license and may be used, copied, or disclosed only in accordance with the terms of such license.

Trademarks

ABB and Relion are registered trademarks of the ABB Group. All other brand or product names mentioned in this document may be trademarks or registered trademarks of their respective holders.

Warranty

Please inquire about the terms of warranty from your nearest ABB representative.

www.abb.com/substationautomation

Disclaimer

The data, examples and diagrams in this manual are included solely for the concept or product description and are not to be deemed as a statement of guaranteed properties.

All persons responsible for applying the equipment addressed in this manual must satisfy themselves that each intended application is suitable and acceptable, including that any applicable safety or other operational requirements are complied with. In particular, any risks in applications where a system failure and/or product failure would create a risk for harm to property or persons (including but not limited to personal injuries or death) shall be the sole responsibility of the person or entity applying the equipment, and those so responsible are hereby requested to ensure that all measures are taken to exclude or mitigate such risks.

This product has been designed to be connected and communicate data and information via a network interface which should be connected to a secure network.

It is the sole responsibility of the person or entity responsible for network administration to ensure a secure connection to the network and to take the necessary measures (such as, but not limited to, installation of firewalls, application of authentication measures, encryption of data, installation of anti virus programs, etc.) to protect the product and the network, its system and interface included, against any kind of security breaches, unauthorized access, interference, intrusion, leakage and/or theft of data or information. ABB is not liable for any such damages and/or losses.

This document has been carefully checked by ABB but deviations cannot be completely ruled out. In case any errors are detected, the reader is kindly requested to notify the manufacturer. Other than under explicit contractual commitments, in no event shall ABB be responsible or liable for any loss or damage resulting from the use of this manual or the application of the equipment.

Conformity

This product complies with the directive of the Council of the European Communities on the approximation of the laws of the Member States relating to electromagnetic compatibility (EMC Directive 2004/108/EC) and concerning electrical equipment for use within specified voltage limits (Low-voltage directive 2006/95/EC). This conformity is the result of tests conducted by ABB in accordance with the product standard EN 60255-26 for the EMC directive, and with the product standards EN

60255-1 and EN 60255-27 for the low voltage directive. The product is designed in accordance with the international standards of the IEC 60255 series.

Table of contents

REF611

Application Manual

Table of contents

Section 1 Introduction.......................................................................5

This manual........................................................................................ 5

Intended audience.............................................................................. 5

Product documentation.......................................................................6

Product documentation set............................................................6

Document revision history............................................................. 6

Related documentation..................................................................7

Symbols and conventions...................................................................7

Symbols.........................................................................................7

Document conventions..................................................................8

Functions, codes and symbols...................................................... 8

Section 2 REF611 overview...........................................................11

Overview...........................................................................................11

Product version history................................................................12

PCM600 and relay connectivity package version........................12

Operation functionality......................................................................13

Optional functions........................................................................13

Physical hardware............................................................................ 13

Local HMI......................................................................................... 14

Display.........................................................................................15

LEDs............................................................................................16

Keypad........................................................................................ 16

Web HMI...........................................................................................17

Command buttons....................................................................... 18

Authorization.....................................................................................19

Audit trail......................................................................................20

Communication.................................................................................22

Self-healing Ethernet ring............................................................23

Ethernet redundancy................................................................... 24

Secure communication................................................................26

Section 3 REF611 standardized configurations ............................ 27

Standardized configurations............................................................. 27

Switch groups................................................................................... 28

Input switch group ISWGAPC..................................................... 29

Output switch group OSWGAPC.................................................29

Selector switch group SELGAPC................................................ 30

Connection diagrams........................................................................31

Configuration A.................................................................................34

1

2

Table of contents

Applications................................................................................. 34

Functions.....................................................................................35

Default I/O connections.......................................................... 35

Predefined disturbance recorder connections........................36

Functional diagrams.................................................................... 36

Functional diagrams for protection......................................... 37

Functional diagrams for disturbance recorder and trip circuit supervision...................................................................44

Functional diagrams for control.............................................. 47

Switch groups..............................................................................50

Binary inputs...........................................................................50

Internal signals....................................................................... 54

Binary outputs and LEDs........................................................58

GOOSE.................................................................................. 78

Configuration B.................................................................................81

Applications................................................................................. 81

Functions.....................................................................................82

Default I/O connections.......................................................... 82

Predefined disturbance recorder connections........................83

Functional diagrams.................................................................... 83

Functional diagrams for protection......................................... 84

Functional diagrams for disturbance recorder and trip circuit supervision...................................................................89

Functional diagrams for control.............................................. 91

Switch groups..............................................................................93

Binary inputs...........................................................................94

Internal signals....................................................................... 97

Binary outputs and LEDs......................................................101

GOOSE................................................................................ 119

Configuration C...............................................................................121

Applications............................................................................... 121

Functions...................................................................................122

Default I/O connections........................................................ 123

Predefined disturbance recorder connections......................124

Functional diagrams.................................................................. 124

Functional diagrams for protection....................................... 124

Functional diagrams for disturbance recorder and trip circuit supervision.................................................................131

Functional diagrams for control............................................ 134

Switch groups............................................................................137

Binary inputs.........................................................................137

Internal signals..................................................................... 141

Binary outputs and LEDs......................................................144

GOOSE................................................................................ 165

REF611

Application Manual

REF611

Application Manual

Table of contents

Section 4 Requirements for measurement transformers..............169

Current transformers...................................................................... 169

Current transformer requirements for non-directional overcurrent protection................................................................169

Current transformer accuracy class and accuracy limit factor.................................................................................... 169

Non-directional overcurrent protection................................. 170

Example for non-directional overcurrent protection..............171

Section 5 Protection relay's physical connections........................173

Inputs..............................................................................................173

Energizing inputs.......................................................................173

Phase currents..................................................................... 173

Residual current................................................................... 173

Residual voltage...................................................................173

Phase voltage.......................................................................174

Auxiliary supply voltage input.................................................... 174

Binary inputs..............................................................................174

Outputs........................................................................................... 175

Outputs for tripping and controlling............................................175

Outputs for signalling.................................................................176

IRF.............................................................................................177

Section 6 Glossary....................................................................... 179

3

4

1MRS757456 D

Section 1 Introduction

1.1

1.2

Section 1

Introduction

This manual

The application manual contains application descriptions and setting guidelines sorted per function. The manual can be used to find out when and for what purpose a typical protection function can be used. The manual can also be used when calculating settings.

Intended audience

This manual addresses the protection and control engineer responsible for planning, pre-engineering and engineering.

The protection and control engineer must be experienced in electrical power engineering and have knowledge of related technology, such as protection schemes and principles.

REF611

Application Manual

5

Section 1

Introduction

1.3

1.3.1

Product documentation

Product documentation set

1MRS757456 D

6

1.3.2

Quick start guide

Quick installation guide

Brochure

Product guide

Operation manual

Installation manual

Connection diagram

Engineering manual

Technical manual

Application manual

Communication protocol manual

IEC 61850 engineering guide

Point list manual

Cyber security deployment guideline

GUID-0777AFDA-CADF-4AA9-946E-F6A856BDF75E V1 EN

Figure 1: The intended use of manuals in different lifecycles

Product series- and product-specific manuals can be downloaded from the ABB Web site http://www.abb.com/relion .

Document revision history

Document revision/date

A/2011-11-18

B/2016-02-22

C/2016-10-11

D/2017-10-31

Product version

1.0

2.0

2.0

2.0

History

First release

Content updated to correspond to the product version

Content updated

Content updated

Download the latest documents from the ABB Web site http://www.abb.com/substationautomation .

REF611

Application Manual

1MRS757456 D

1.3.3

1.4

1.4.1

REF611

Application Manual

Section 1

Introduction

Related documentation

Name of the document

Modbus Communication Protocol Manual

IEC 61850 Engineering Guide

Engineering Manual

Installation Manual

Operation Manual

Technical Manual

Cyber Security Deployment Guideline

Document ID

1MRS757461

1MRS757465

1MRS241255

1MRS757452

1MRS757453

1MRS757454

1MRS758337

Symbols and conventions

Symbols

The electrical warning icon indicates the presence of a hazard which could result in electrical shock.

The warning icon indicates the presence of a hazard which could result in personal injury.

The caution icon indicates important information or warning related to the concept discussed in the text. It might indicate the presence of a hazard which could result in corruption of software or damage to equipment or property.

The information icon alerts the reader of important facts and conditions.

The tip icon indicates advice on, for example, how to design your project or how to use a certain function.

Although warning hazards are related to personal injury, it is necessary to understand that under certain operational conditions, operation of damaged equipment may result in degraded process performance leading to personal injury or death. Therefore, comply fully with all warning and caution notices.

7

8

Section 1

Introduction

1.4.2

1.4.3

1MRS757456 D

Document conventions

A particular convention may not be used in this manual.

• Abbreviations and acronyms are spelled out in the glossary. The glossary also contains definitions of important terms.

• Push button navigation in the LHMI menu structure is presented by using the push button icons.

To navigate between the options, use and .

• Menu paths are presented in bold.

Select Main menu/Settings .

• LHMI messages are shown in Courier font.

To save the changes in nonvolatile memory, select Yes and press .

• Parameter names are shown in italics.

The function can be enabled and disabled with the Operation setting.

• Parameter values are indicated with quotation marks.

The corresponding parameter values are "On" and "Off".

• Input/output messages and monitored data names are shown in Courier font.

When the function starts, the START output is set to TRUE.

• This document assumes that the parameter setting visibility is "Advanced".

Functions, codes and symbols

Table 1:

Function

Protection

Functions included in the relay

IEC 61850

Three-phase non-directional overcurrent protection, low stage, instance 1

Three-phase non-directional overcurrent protection, high stage, instance 1

Three-phase non-directional overcurrent protection, high stage, instance 2

Three-phase non-directional overcurrent protection, instantaneous stage, instance 1

Non-directional earth-fault protection, low stage, instance 1

Non-directional earth-fault protection, low stage, instance 2

Non-directional earth-fault protection, high stage, instance 1

Non-directional earth-fault protection, instantaneous stage

Three-phase directional overcurrent protection, low stage, instance 1

Table continues on next page

PHLPTOC1

PHHPTOC1

PHHPTOC2

PHIPTOC1

EFLPTOC1

EFLPTOC2

EFHPTOC1

EFIPTOC1

DPHLPDOC1

IEC 60617 IEC-ANSI

3I> (1)

3I>> (1)

3I>> (2)

3I>>> (1)

Io> (1)

Io> (2)

Io>> (1)

Io>>>

3I> -> (1)

51P-1 (1)

51P-2 (1)

51P-2 (2)

50P/51P (1)

51N-1 (1)

51N-1 (2)

51N-2 (1)

50N/51N

67-1(1)

REF611

Application Manual

1MRS757456 D

REF611

Application Manual

Section 1

Introduction

Function

Three-phase directional overcurrent protection, low stage, instance 2

Three-phase directional overcurrent protection, high stage, instance 1

Directional earth-fault protection, low stage, instance 1

Directional earth-fault protection, low stage, instance 2

Directional earth-fault protection, high stage

Transient/intermittent earth-fault protection

Non-directional (cross-country) earth fault protection, using calculated Io

Negative-sequence overcurrent protection, instance 1

Negative-sequence overcurrent protection, instance 2

Phase discontinuity protection

Residual overvoltage protection, instance 1

Residual overvoltage protection, instance 2

Residual overvoltage protection, instance 3

Three-phase thermal protection for feeders, cables and distribution transformers

Circuit breaker failure protection

Three-phase inrush detector

Master trip, instance 1

Master trip, instance 2

Switch onto fault

Other

Input switch group 1)

Output switch group 2)

Selector 3)

Minimum pulse timer (2 pcs) 4)

Move (8 pcs), instance 1

Control

Circuit-breaker control

Autoreclosing

Condition monitoring and supervision

Trip circuit supervision, instance 1

Trip circuit supervision, instance 2

Table continues on next page

IEC 61850

DPHLPDOC2

DPHHPDOC1

DEFLPDEF1

DEFLPDEF2

DEFHPDEF1

INTRPTEF1

EFHPTOC1

NSPTOC1

NSPTOC2

PDNSPTOC1

ROVPTOV1

ROVPTOV2

ROVPTOV3

T1PTTR1

CCBRBRF1

INRPHAR1

TRPPTRC1

TRPPTRC2

CBPSOF1

ISWGAPC

OSWGAPC

SELGAPC

TPGAPC

MVGAPC

CBXCBR1

DARREC1

TCSSCBR1

TCSSCBR2

Io> -> IEF

Io>> (1)

I2> (1)

I2> (2)

I2/I1>

Uo> (1)

Uo> (2)

Uo> (3)

IEC 60617

3I> -> (2)

3I>> -> (1)

Io> -> (1)

Io> -> (2)

Io>> ->

3Ith>F 49F

3I>/Io>BF

3I2f>

51BF/51NBF

68

Master Trip (1) 94/86 (1)

Master Trip (2) 94/86 (2)

SOTF SOTF

67NIEF

51N-2 (1)

46 (1)

46 (2)

46PD

59G (1)

59G (2)

59G (3)

IEC-ANSI

67-1(2)

67-2(1)

67N-1 (1)

67N-1 (2)

67N-2

ISWGAPC

OSWGAPC

SELGAPC

TP

MV (1)

ISWGAPC

OSWGAPC

SELGAPC

TP

MV (1)

I <-> O CB

O -> I

I <-> O CB

79

TCS (1)

TCS (2)

TCM (1)

TCM (2)

9

Section 1

Introduction

1MRS757456 D

Function

Logging

Disturbance recorder

Fault recorder

Measurement

Three-phase current measurement, instance 1

Sequence current measurement

IEC 61850

RDRE1

FLTRFRC1

CMMXU1

CSMSQI1

Residual current measurement, instance 1

Three-phase voltage measurement, instance 1

RESCMMXU1

VMMXU1

Sequence voltage measurement, instance 1

Three-phase power and energy measurement, instance 1

VSMSQI1

Residual voltage measurement RESVMMXU1

Frequency measurement, instance 1 FMMXU1

PEMMXU1

1) 10 instances

2) 20 instances

3) 6 instances

4) 10 instances

IEC 60617

-

DR (1)

IEC-ANSI

DFR(1)

FR

3I

I1, I2, I0

Io

3U

U1, U2, U0 f

Uo

P, E

3I

I1, I2, I0

In

3U

U1, U2, U0 f

Vn

P, E

10 REF611

Application Manual

1MRS757456 D

Section 2 REF611 overview

2.1

Section 2

REF611 overview

Overview

REF611 is a dedicated feeder relay for the protection, control, measurement and supervision of utility substations and industrial power systems including radial, looped and meshed distribution networks with or without distributed power generation.

REF611 is a member of ABB’s Relion ® product family and part of the 611 protection and control product series. The 611 series relays are characterized by their compactness and withdrawable-unit design.

The 611 series offers simplified yet powerful functionality for most applications.

Once the application-specific parameter set has been entered, the installed protection relay is ready to be put into service. The further addition of communication functionality and interoperability between substation automation devices offered by the IEC 61850 standard adds flexibility and value to end users as well as electrical system manufacturers.

The 611 series relays fully support the IEC 61850 standard for communication and interoperability of substation automation devices, including fast GOOSE (Generic

Object Oriented Substation Event) messaging, and can now also benefit from the extended interoperability provided by Edition 2 of the standard. The relays further support the parallel redundancy protocol (PRP) and the high-availability seamless redundancy (HSR) protocol. The 611 series relays are able to use IEC 61850 and

Modbus® communication protocols simultaneously.

REF611

Application Manual

11

Section 2

REF611 overview

2.1.1

1MRS757456 D

Product version history

Product version

1.0

2.0

Product history

Product released

New configuration C

Additions/changes for configuration A and B

High-availablity seamless redundancy (HSR) protocol

Parallel redundancy protocol (PRP-1)

Two selectable indication colors for LEDs (red or green)

Online binary signal monitoring with PCM600

IEEE 1588 v2 time synchronization

Profibus adapter support

Import/export of settings via WHMI

Setting usability improvements

HMI event filtering tool

IEC 61850 Edition 2

Support for configuration migration (starting from Ver.1.0 to Ver.2.0)

Software closable Ethernet ports

Report summary via WHMI

Switch onto fault

2.1.2 PCM600 and relay connectivity package version

• Protection and Control IED Manager PCM600 Ver.2.7 or later

• REF611 Connectivity Package Ver.2.0 or later

• Communication Management

Configuration Wizard

Disturbance Handling

Event Viewer

Fault Record tool

Firmware Update

HMI Event Filtering

IEC 61850 Configuration

IED Compare

IED Configuration Migration

IED User Management

Label Printing

Lifecycle Traceability

Parameter Setting

Signal Matrix

Signal Monitoring

Download connectivity packages from the ABB Web site http://www.abb.com/substationautomation or directly with the

Update Manager in PCM600.

12 REF611

Application Manual

1MRS757456 D

2.2

2.2.1

2.3

Section 2

REF611 overview

Operation functionality

Optional functions

• Autoreclosing

• Modbus TCP/IP or RTU/ASCII

• IEEE 1588 time v2 synchronization

• High-availability seamless redundancy protocol (HSR)

• Parallel redundancy protocol (PRP)

Physical hardware

The protection relay consists of two main parts: plug-in unit and case. The content depends on the ordered functionality.

Table 2:

Main unit Slot ID

Plug-in unit

-

X100

Case

X120

X130

X000

Plug-in unit and case

Content options

HMI

Auxiliary power/BO module

AI/BI module

Optional BI/O module

AI/BI module

Optional communication module

Small (4 lines, 16 characters)

48...250 V DC/100...240 V AC; or 24...60 V DC

2 normally-open PO contacts

1 change-over SO contact

1 normally-open SO contact

2 double-pole PO contacts with TCS

1 dedicated internal fault output contact

Only with configuration A:

3 phase current inputs (1/5 A)

1 residual current input (1/5 A or 0.2/1 A) 1)

1 residual voltage input (60...120 V)

3 binary inputs

Only with configurations B and C:

3 phase current inputs (1/5 A)

1 residual current input (1/5 A or 0.2/1 A) 1)

4 binary inputs

Optional for configurations B and C:

6 binary inputs 3 SO contacts

Only with configuration C:

3 phase voltage inputs (60...210 V)

1 residual voltage input (60...210 V)

4 binary inputs

See technical manual for details about different type of communication modules.

1) The 0.2/1 A input is normally used in applications requiring sensitive earth-fault protection and featuring core-balance current transformers.

REF611

Application Manual

13

Section 2

REF611 overview

2.4

1MRS757456 D

Rated values of the current and voltage inputs are basic setting parameters of the protection relay. The binary input thresholds are selectable within the range 16…176

V DC by adjusting the binary input setting parameters.

See the installation manual for more information about the case and the plug-in unit.

The connection diagrams of different hardware modules are presented in this manual.

Table 3:

Conf.

A

B

C

Number of physical connections in configurations

CT

Analog channels

VT

4 1

4

4

-

4

BI

3(9) 1)

Binary channels

BO

6(9) 1)

4(10) 1)

8

6(9)

6

1)

1) With optional BIO module

Local HMI

The LHMI is used for setting, monitoring and controlling the protection relay. The

LHMI comprises the display, buttons, LED indicators and communication port.

14 REF611

Application Manual

1MRS757456 D

Section 2

REF611 overview

REF611

Overcurrent

Earth-fault

Phase unbalance

Thermal overload

AR sequence in progress

Disturb.rec.trigged

Trip circuit failure

Breaker failure

2.4.1

REF611

Application Manual

GUID-E15422BF-B3E6-4D02-8D43-D912D5EF0360 V1 EN

Figure 2: Example of the LHMI

Display

The LHMI includes a graphical display that supports two character sizes. The character size depends on the selected language. The amount of characters and rows fitting the view depends on the character size.

Table 4: Small display

Character size 1)

Small, mono-spaced (6 × 12 pixels)

Large, variable width (13 × 14 pixels)

1) Depending on the selected language

Rows in the view

5

3

Characters per row

20

8 or more

The display view is divided into four basic areas.

15

Section 2

REF611 overview

1 2

1MRS757456 D

2.4.2

2.4.3

3

GUID-24ADB995-439A-4563-AACE-1FAA193A8EF9 V1 EN

Figure 3: Display layout

1 Header

2 Icon

3 Content

4 Scroll bar (displayed when needed)

4

LEDs

The LHMI includes three protection indicators above the display: Ready, Start and

Trip.

There are also 8 programmable LEDs on front of the LHMI. The LEDs can be configured with the LHMI, WHMI or PCM600.

Keypad

The LHMI keypad contains push buttons which are used to navigate in different views or menus. With the push buttons you can give open or close commands to one object in the primary circuit, for example, a circuit breaker, a contactor or a disconnector. The push buttons are also used to acknowledge alarms, reset indications, provide help and switch between local and remote control mode.

16 REF611

Application Manual

1MRS757456 D

Section 2

REF611 overview

2.5

GUID-B681763E-EC56-4515-AC57-1FD5349715F7 V1 EN

Figure 4: LHMI keypad with object control, navigation and command push buttons and RJ-45 communication port

Web HMI

The WHMI allows secure access to the protection relay via a Web browser. When the

Secure Communication parameter in the protection relay is activated, the Web server is forced to take a secured (HTTPS) connection to WHMI using TLS encryption.The

WHMI is verified with Internet Explorer 8.0, 9.0, 10.0 and 11.0.

WHMI is enabled by default.

WHMI offers several functions.

• Programmable LEDs and event lists

• System supervision

• Parameter settings

• Measurement display

• Disturbance records

• Fault records

• Phasor diagram

• Signal configuration

• Importing/Exporting parameters

• Report summary

The menu tree structure on the WHMI is almost identical to the one on the LHMI.

REF611

Application Manual

17

Section 2

REF611 overview

1MRS757456 D

2.5.1

18

GUID-CD531B61-6866-44E9-B0C1-925B48140F3F V2 EN

Figure 5: Example view of the WHMI

The WHMI can be accessed locally and remotely.

• Locally by connecting the laptop to the protection relay via the front communication port.

• Remotely over LAN/WAN.

Command buttons

Command buttons can be used to edit parameters and control information via the

WHMI.

Table 5:

Name

Command buttons

Description

Enabling parameter editing

Disabling parameter editing

Writing parameters to the protection relay

Refreshing parameter values

Printing out parameters

Committing changes to protection relay's non-volatile flash memory

Table continues on next page

REF611

Application Manual

1MRS757456 D

2.6

REF611

Application Manual

Name

Section 2

REF611 overview

Description

Rejecting changes

Showing context sensitive help messages

Error icon

Clearing events

Triggering the disturbance recorder manually

Saving values to TXT or CSV file format

Freezing the values so that updates are not displayed

Receiving continuous updates to the monitoring view

Deleting the disturbance record

Deleting all disturbance records

Saving the disturbance record files

Viewing all fault records

Clearing all fault records

Importing settings

Exporting settings

Selecting all

Clearing all selections

Refreshing the parameter list view

Authorization

Four user categories have been predefined for the LHMI and the WHMI, each with different rights and default passwords.

The default passwords in the protection relay delivered from the factory can be changed with Administrator user rights.

User authorization is disabled by default for LHMI but WHMI always uses authorization.

19

Section 2

REF611 overview

2.6.1

1MRS757456 D

Table 6:

Username

VIEWER

OPERATOR

ENGINEER

ADMINISTRATOR

Predefined user categories

User rights

Read only access

Selecting remote or local state with

Changing setting groups

Controlling

Clearing indications

(only locally)

Changing settings

Clearing event list

Clearing disturbance records

Changing system settings such as IP address, serial baud rate or disturbance recorder settings

Setting the protection relay to test mode

Selecting language

All listed above

Changing password

Factory default activation

For user authorization for PCM600, see PCM600 documentation.

Audit trail

The protection relay offers a large set of event-logging functions. Critical system and protection relay security-related events are logged to a separate nonvolatile audit trail for the administrator.

Audit trail is a chronological record of system activities that allows the reconstruction and examination of the sequence of system and security-related events and changes in the protection relay. Both audit trail events and process related events can be examined and analyzed in a consistent method with the help of Event List in LHMI and WHMI and Event Viewer in PCM600.

The protection relay stores 2048 audit trail events to the nonvolatile audit trail.

Additionally, 1024 process events are stored in a nonvolatile event list. Both the audit trail and event list work according to the FIFO principle. Nonvolatile memory is based on a memory type which does not need battery backup nor regular component change to maintain the memory storage.

Audit trail events related to user authorization (login, logout, violation remote and violation local) are defined according to the selected set of requirements from IEEE

1686. The logging is based on predefined user names or user categories. The user audit trail events are accessible with IEC 61850-8-1, PCM600, LHMI and WHMI.

20 REF611

Application Manual

1MRS757456 D

REF611

Application Manual

Section 2

REF611 overview

Table 7: Audit trail events

Audit trail event

Configuration change

Firmware change

Firmware change fail

Attached to retrofit test case

Removed from retrofit test case

Setting group remote

Setting group local

Control remote

Control local

Test on

Test off

Reset trips

Setting commit

Time change

View audit log

Login

Logout

Password change

Firmware reset

Audit overflow

Violation remote

Violation local

Description

Configuration files changed

Firmware changed

Firmware change failed

Unit has been attached to retrofit case

Removed from retrofit test case

User changed setting group remotely

User changed setting group locally

DPC object control remote

DPC object control local

Test mode on

Test mode off

Reset latched trips (TRPPTRC*)

Settings have been changed

Time changed directly by the user. Note that this is not used when the protection relay is synchronised properly by the appropriate protocol (SNTP, IRIG-B, IEEE 1588 v2).

Administrator accessed audit trail

Successful login from IEC 61850-8-1 (MMS), WHMI, FTP or

LHMI.

Successful logout from IEC 61850-8-1 (MMS), WHMI, FTP or

LHMI.

Password changed

Reset issued by user or tool

Too many audit events in the time period

Unsuccessful login attempt from IEC 61850-8-1 (MMS),

WHMI, FTP or LHMI.

Unsuccessful login attempt from IEC 61850-8-1 (MMS),

WHMI, FTP or LHMI.

PCM600 Event Viewer can be used to view the audit trail events and process related events. Audit trail events are visible through dedicated Security events view. Since only the administrator has the right to read audit trail, authorization must be used in

PCM600. The audit trail cannot be reset, but PCM600 Event Viewer can filter data.

Audit trail events can be configured to be visible also in LHMI/WHMI Event list together with process related events.

To expose the audit trail events through Event list, define the

Authority logging level parameter via Configuration/

Authorization/Security . This exposes audit trail events to all users.

21

Section 2

REF611 overview

2.7

22

1MRS757456 D

Table 8:

Audit trail event

Configuration change

Firmware change

Firmware change fail

Attached to retrofit test case

Removed from retrofit test case

Setting group remote

Setting group local

Comparison of authority logging levels

None

Configurati on change

Authority logging level

Setting group

Setting group, control

Control remote

Control local

Test on

Test off

Reset trips

Setting commit

Time change

View audit log

Login

Logout

Password change

Firmware reset

Violation local

Violation remote

Settings edit

All

Communication

The protection relay supports a range of communication protocols including IEC

61850 and Modbus ® . Operational information and controls are available through these protocols. However, some communication functionality, for example, horizontal communication between the protection relays, is only enabled by the IEC

61850 communication protocol.

The IEC 61850 communication implementation supports all monitoring and control functions. Additionally, parameter settings, disturbance recordings and fault records can be accessed using the IEC 61850 protocol. Disturbance recordings are available to any Ethernet-based application in the IEC 60255-24 standard COMTRADE file format. The protection relay can send and receive binary signals from other devices

(so-called horizontal communication) using the IEC 61850-8-1 GOOSE profile,

REF611

Application Manual

1MRS757456 D

2.7.1

Section 2

REF611 overview where the highest performance class with a total transmission time of 3 ms is supported. The protection relay meets the GOOSE performance requirements for tripping applications in distribution substations, as defined by the IEC 61850 standard.

The protection relay can support five simultaneous clients. If PCM600 reserves one client connection, only four client connections are left, for example, for IEC 61850 and Modbus.

All communication connectors, except for the front port connector, are placed on integrated optional communication modules. The protection relay can be connected to

Ethernet-based communication systems via the RJ-45 connector (100Base-TX) or the fiber-optic LC connector (100Base-FX). An optional serial interface is available for

RS-485 communication.

Self-healing Ethernet ring

For the correct operation of self-healing loop topology, it is essential that the external switches in the network support the RSTP protocol and that it is enabled in the switches. Otherwise, connecting the loop topology can cause problems to the network. The protection relay itself does not support link-down detection or RSTP.

The ring recovery process is based on the aging of the MAC addresses, and the linkup/link-down events can cause temporary breaks in communication. For a better performance of the self-healing loop, it is recommended that the external switch furthest from the protection relay loop is assigned as the root switch (bridge priority

= 0) and the bridge priority increases towards the protection relay loop. The end links of the protection relay loop can be attached to the same external switch or to two adjacent external switches. A self-healing Ethernet ring requires a communication module with at least two Ethernet interfaces for all protection relays.

REF611

Application Manual

23

Section 2

REF611 overview

Client A

Manag ed Eth ernet switch with RSTP su pport

1MRS757456 D

Client B

Manag ed Eth ernet switch with RSTP su pport

Network

Network

2.7.2

24

GUID-A19C6CFB-EEFD-4FB2-9671-E4C4137550A1 V2 EN

Figure 6: Self-healing Ethernet ring solution

The Ethernet ring solution supports the connection of up to 30 protection relays. If more than 30 protection relays are to be connected, it is recommended that the network is split into several rings with no more than 30 protection relays per ring. Each protection relay has a 50-μs store-and-forward delay, and to fulfil the performance requirements for fast horizontal communication, the ring size is limited to 30 protection relays.

Ethernet redundancy

IEC 61850 specifies a network redundancy scheme that improves the system availability for substation communication. It is based on two complementary protocols defined in the IEC 62439-3:2012 standard: parallel redundancy protocol

PRP-1 and high-availability seamless redundancy HSR protocol. Both protocols rely on the duplication of all transmitted information via two Ethernet ports for one logical network connection. Therefore, both are able to overcome the failure of a link or switch with a zero-switchover time, thus fulfilling the stringent real-time requirements for the substation automation horizontal communication and time synchronization.

PRP specifies that each device is connected in parallel to two local area networks.

HSR applies the PRP principle to rings and to the rings of rings to achieve costeffective redundancy. Thus, each device incorporates a switch element that forwards frames from port to port. The HSR/PRP option is available for all 611 series protection relays.

REF611

Application Manual

1MRS757456 D

Section 2

REF611 overview

IEC 62439-3:2012 cancels and replaces the first edition published in

2010. These standard versions are also referred to as IEC 62439-3

Edition 1 and IEC 62439-3 Edition 2. The protection relay supports

IEC 62439-3:2012 and it is not compatible with IEC 62439-3:2010.

PRP

Each PRP node, called a doubly attached node with PRP (DAN), is attached to two independent LANs operated in parallel. These parallel networks in PRP are called

LAN A and LAN B. The networks are completely separated to ensure failure independence, and they can have different topologies. Both networks operate in parallel, thus providing zero-time recovery and continuous checking of redundancy to avoid communication failures. Non-PRP nodes, called single attached nodes (SANs), are either attached to one network only (and can therefore communicate only with

DANs and SANs attached to the same network), or are attached through a redundancy box, a device that behaves like a DAN.

Managed

Ethernet switch

IEC 61850 PRP

Managed

Ethernet switch

REF611

Application Manual

GUID-AA005F1B-A30B-48F6-84F4-A108F58615A2 V1 EN

Figure 7: PRP solution

In case a laptop or a PC workstation is connected as a non-PRP node to one of the PRP networks, LAN A or LAN B, it is recommended to use a redundancy box device or an

Ethernet switch with similar functionality between the PRP network and SAN to remove additional PRP information from the Ethernet frames. In some cases, default

PC workstation adapters are not able to handle the maximum-length Ethernet frames with the PRP trailer.

There are different alternative ways to connect a laptop or a workstation as SAN to a

PRP network.

25

Section 2

REF611 overview

1MRS757456 D

• Via an external redundancy box (RedBox) or a switch capable of connecting to

PRP and normal networks

• By connecting the node directly to LAN A or LAN B as SAN

• By connecting the node to the protection relay's interlink port

HSR

HSR applies the PRP principle of parallel operation to a single ring, treating the two directions as two virtual LANs. For each frame sent, a node, DAN, sends two frames, one over each port. Both frames circulate in opposite directions over the ring and each node forwards the frames it receives, from one port to the other. When the originating node receives a frame sent to itself, it discards that to avoid loops; therefore, no ring protocol is needed. Individually attached nodes, SANs, such as laptops and printers, must be attached through a “redundancy box” that acts as a ring element. For example, a 615 or 620 series protection relay with HSR support can be used as a redundancy box.

Devices not supporting HSR

Ethernet switch

Redundancy box

Redundancy box

Redundancy box

X

X

IEC 61850 HSR

X

Unicast traffic

Message is recognized as a duplicat e and is immediately forwarded

Sending device removes the message from t he ri ng

2.7.3

26

GUID-B24F8609-0E74-4318-8168-A6E7FCD0B313 V1 EN

Figure 8: HSR solution

Secure communication

The protection relay supports secure communication for WHMI and file transfer protocol. If the Secure Communication parameter is activated, protocols require TLS based encryption method support from the clients. In this case WHMI must be connected from a Web browser using the HTTPS protocol and in case of file transfer the client must use FTPS.

As a factory default, Secure Communication is “ON”.

REF611

Application Manual

1MRS757456 D

Section 3

REF611 standardized configurations

Section 3 REF611 standardized configurations

3.1 Standardized configurations

REF611 is available in three alternative configurations.

To increase the user-friendliness of the configurations and to emphasize the relay's simplicity of usage, only the application-specific parameters need setting within the relay's intended area of application.

The standard signal configuration can be altered by local HMI, Web HMI or optional application functionality of Protection and Control IED Manager PCM600.

Table 9: Standardized configurations

Description

Non-directional overcurrent and directional earth-fault protection

Non-directional overcurrent and earth-fault protection

Directional overcurrent and earth-fault protection

Conf.

A

B

C

Table 10:

Function

Protection

Supported functions

IEC 61850

Three-phase non-directional overcurrent protection, low stage

Three-phase non-directional overcurrent protection, high stage

PHLPTOC

PHHPTOC

Three-phase non-directional overcurrent protection, instantaneous stage PHIPTOC

Non-directional earth-fault protection, low stage EFLPTOC

Non-directional earth-fault protection, high stage

Non-directional earth-fault protection, instantaneous stage

EFHPTOC

EFIPTOC

Three-phase directional overcurrent protection, low stage

Three-phase directional overcurrent protection, high stage

Directional earth-fault protection, low stage

Directional earth-fault protection, high stage

Transient/intermittent earth-fault protection INTRPTEF

Non-directional (cross-country) earth fault protection, using calculated Io EFHPTOC

Negative-sequence overcurrent protection

Phase discontinuity protection

Residual overvoltage protection

NSPTOC

PDNSPTOC

ROVPTOV

Table continues on next page

DPHLPDOC

DPHHPDOC

DEFLPDEF

DEFHPDEF

REF611

Application Manual

A

1

1

2

2 1)2)

1 1)2)

1

1 3)

2

1

3 2)

B

1

2

1

2 1)

1 1)

1 1)

2

1

C

1

2

1

2 1)2)

1 1)2)

1

1 3)

2

1

3 2)

27

Section 3

REF611 standardized configurations

1MRS757456 D

Function

Three-phase thermal protection for feeders, cables and distribution transformers

Circuit breaker failure protection

Three-phase inrush detector

Master trip

Switch onto fault

Control

Circuit-breaker control

Autoreclosing

Condition monitoring and supervision

Trip circuit supervision

Logging

Disturbance recorder

Fault recorder

Measurement

IEC 61850

T1PTTR

CCBRBRF

INRPHAR

TRPPTRC

CBPSOF

CBXCBR

DARREC

TCSSCBR

RDRE

FLTRFRC

A

1

1

1

2

1

1

(1)

2

1

1

B

1

1

1

2

1

1

(1)

2

1

1

C

1

1

1

2

1

1

(1)

2

1

1

Three-phase current measurement

Sequence current measurement

Residual current measurement

Three-phase voltage measurement

Sequence voltage measurement

Residual voltage measurement

Frequency measurement

Three-phase power and energy measurement

CMMXU

CSMSQI

RESCMMXU

VMMXU

VSMSQI

RESVMMXU

FMMXU

PEMMXU

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Other

Input switch group

Output switch group

Selector

ISWGAPC

OSWGAPC

SELGAPC

10

21

6

10

21

6

10

21

6

Minimum pulse timer (2 pcs)

Move (8 pcs)

TPGAPC

MVGAPC

10

1

10

1

10

1

1, 2, ... = Number of included instances. The instances of a protection function represent the number of identical protection function blocks available in the standardized configuration.

() = optional

1) Io selectable by parameter and default value is "Io measured"

2) "Uo measured" is always used

3) Io selectable by parameter and default value is "Io calculated"

3.2

28

Switch groups

The default application configurations cover the most common application cases, however, changes can be made according to specific needs through LHMI, WHMI and PCM600.

REF611

Application Manual

1MRS757456 D

3.2.1

Section 3

REF611 standardized configurations

Programming is easily implemented with three switch group functions including input switch group ISWGAPC, output switch group OSWGAPC and selector switch group

SELGAPC. Each switch group has several instances.

Connections of binary inputs to functions, GOOSE signals to functions, functions to functions, functions to binary outputs and functions to LEDs have been preconnected through corresponding switch groups.

The real connection logic and the application configuration can be modified by changing the parameter values of the switch groups. It is also possible to modify the real connection logic and the application configuration through the matrix view in the signal configuration menu in the WHMI.

Input switch group ISWGAPC

The input switch group ISWGAPC has one input and a number of outputs. Every input and output has a read-only description. ISWGAPC is used for connecting the input signal to one or several outputs of the switch group. Each output can be set to be connected or not connected with the input separately via the “OUT_x connection” setting.

3.2.2

GUID-2D549B56-6CF7-4DCB-ACDE-E9EF601868A8 V1 EN

Figure 9: Input switch group ISWGAPC

Output switch group OSWGAPC

The output switch group OSWGAPC has a number of inputs and one output. Every input and output has a read-only description. OSWGAPC is used for connecting one or several inputs to the output of the switch group via OR logic. Each input can be set to be connected or not connected with the OR logic via the “IN_x connection” settings. The output of OR logic is routed to switch group output.

REF611

Application Manual

29

Section 3

REF611 standardized configurations

1MRS757456 D

3.2.3

GUID-1EFA82D5-F9E7-4322-87C2-CDADD29823BD V1 EN

Figure 10: Output switch group OSWGAPC

Selector switch group SELGAPC

The selector switch group SELGAPC has a number of inputs and outputs. Every input and output has a read-only description. Each output can be set to be connected with one of the inputs via the OUT_x connection setting. An output can also be set to be not connected with any of the inputs. In SELGAPC, one output signal can only be connected to one input signal but the same input signal can be routed to several output signals.

30

GUID-E3AEC7AB-2978-402D-8A80-C5DE9FED67DF V1 EN

Figure 11: Selector switch group SELGAPC

REF611

Application Manual

1MRS757456 D

3.3

Section 3

REF611 standardized configurations

Connection diagrams

L1

L2

L3

A

N

REF611

Positive

Current

Direction

P1

P2

P1 S1

P2

S2

S1

S2 da dn

X120

1

2

3

4

5

6

7

8

9

12

13

14

60 -

210V

N

1/5A

N

1/5A

N

1/5A

N

1/5A

N

BI 1

BI 2

BI 3

Uo

IL1

2)

IL2

IL3

Io

SO1

PO3

TCS1

PO4

TCS2

IRF

PO1

PO2

SO2

U

+ aux

-

X100

1

2

3

4

5

6

7

X130

1

2

3

4

5

BI 1

1)

BI 2

BI 3

1)

SO1

SO2

6

7

8

BI 4

BI 5

SO3

9

BI 6

1) Optional

2) The IED features an automatic short-circuit

mechanism in the CT connector when plug-in

unit is detached

GUID-EAC6CB29-0D2C-4714-9273-72694FB77E90 V1 EN

Figure 12: Connection diagram for configuration A

X130

10

12

11

13

15

14

16

18

17

14

16

17

15

19

18

20

22

21

23

24

8

10

11

12

13

REF611

Application Manual

31

Section 3

REF611 standardized configurations

L1

L2

L3

1MRS757456 D

REF611

Positive

Current

Direction

P1 S1

P2

S2

P1

S1

S2

P2

X120

1

2

3

4

8

9

10

11

5

6

7

12

13

14

1/5A

N

1/5A

N

1/5A

N

1/5A

N

BI 1

BI 2

BI 3

BI 4

IL1

2)

IL2

IL3

Io

SO1

PO3

TCS1

PO4

TCS2

IRF

PO1

PO2

SO2

+

U aux

-

X100

1

2

3

4

5

X130

1

2

BI 1

1) 1)

SO1

3

4

5

BI 2

BI 3

SO2

SO3

6

7

8

BI 4

BI 5

BI 6

9

GUID-6692D10C-76A4-475F-AFD9-E8CD93973428 V1 EN

Figure 13: Connection diagram for configuration B

1) Optional

2) The IED features an automatic short-circuit

mechanism in the CT connector when plug-in

unit is detached

X130

10

12

11

13

15

14

16

18

17

6

7

14

16

21

23

24

17

15

19

18

20

22

8

9

10

11

12

13

32 REF611

Application Manual

1MRS757456 D

Section 3

REF611 standardized configurations n a

L1

L2

L3

A

N da dn

Positive

Current

Direction

P1 S1

P2

S2

P1

S1

S2

P2

X120

1

2

3

4

X130

1

2

5

6

3

4

16

17

18

13

14

15

9

10

11

12

7

8

60 -

210V

N

60 -

210V

N

60 -

210V

N

60 -

210V

N

60 -

210V

N

8

9

10

11

12

5

6

7

14

1/5A

N

1/5A

N

1/5A

N

1/5A

N

BI 1

BI 2

BI 3

BI 4 not in use

U1

U2

U3

Uo

BI 1

BI 2

BI 3

BI 4

IL1

1)

IL2

IL3

Io

REF611

SO1

PO3

TCS1

PO4

TCS2

SO2

IRF

PO1

PO2

+

U aux

-

X100

1

2

3

4

5

6

7

14

16

17

15

19

18

20

22

21

23

24

8

9

10

11

12

13

1) The IED features an automatic short-circuit

mechanism in the CT connector when plug-in

unit is detached

GUID-60AF0CAB-1B4F-4749-A79F-3C04B1503077 V1 EN

Figure 14: Connection diagram for configuration C

REF611

Application Manual

33

Section 3

REF611 standardized configurations

3.4

3.4.1

Configuration A

1MRS757456 D

Applications

Configuration A for non-directional overcurrent and directional earth-fault protection is mainly intended for cable and overhead-line feeder applications in isolated and resonant-earthed distribution networks.

The protection relay with a standardized configuration is delivered from the factory with default settings and parameters. The end-user flexibility for incoming, outgoing and internal signal designation within the protection relay enables this configuration to be further adapted to different primary circuit layouts and the related functionality needs by modifying the internal functionality using PCM600.

34 REF611

Application Manual

1MRS757456 D

Section 3

REF611 standardized configurations

3.4.2 Functions

Uo

3I

Io

REF611 FEEDER PROTECTION RELAY

PROTECTION

Master Trip

Lockout relay

94/86

I2>

46

I2/I1>

46PD

3I>/Io>BF

51BF/51NBF

3Ith>F

49F

3I>>>

50P/51P

3I>

51P-1

3I>>

51P-2

3I2f>

68

Io

Io>>

51N-2

Io> →

67N-1

Io>> →

67N-2

Io>IEF →

67NIEF

Uo>

59G

SOTF

SOTF

LOCAL HMI

I

ESC

O

Measurements

Disturbance records

A

R

L

STANDARD

CONFIGURATION

A

ALSO AVAILABLE

- Disturbance and fault recorders

- Event log and recorded data

- Local/Remote push button on LHMI

- Self-supervision

- Time synchronization: IEEE 1588 v2,

SNTP, IRIG-B

- User management

- Web-HMI

CONDITION MONITORING

AND SUPERVISION

TCS

TCM

CONTROL AND INDICATION 1)

Object

CB

DC

Ctrl 2)

1

-

Ind 3)

ES -

1) Check availability of binary inputs/outputs

from technical documentation

2) Control and indication function for

primary object

3) Status indication function for

primary object

-

-

O → I

79

COMMUNICATION

Protocols:

IEC 61850-8-1

Modbus®

Interfaces:

Ethernet: TX (RJ-45), FX (LC)

Serial: RS-485

Redundant protocols:

HSR

PRP

RSTP

MEASUREMENT

- I, Io, Uo

- Limit value supervision

- Symmetrical components

Analog interface types

Current transformer

Voltage transformer

1)

Conventional transformer inputs

REMARKS

Optional function

3× No. of instances

Io/Uo

Calculated value

OR Alternative function to be defined when ordering

1)

4

1

GUID-22599DC2-ADFC-482B-BB9A-985109CE4F9D V1 EN

Figure 15: Functionality overview for configuration A

3.4.2.1 Default I/O connections

Table 11:

Binary input

X120-BI1

X120-BI2

X120-BI3

Default connections for binary inputs

Description

Blocking of overcurrent instantaneous stage

Circuit breaker closed position indication

Circuit breaker open position indication

Connector pins

X120:1-2

X120:3,2

X120:4,2

REF611

Application Manual

35

Section 3

REF611 standardized configurations

3.4.2.2

3.4.3

36

1MRS757456 D

Table 12:

Binary input

X100-PO1

X100-PO2

X100-PO3

X100-PO4

X100-SO1

X100-SO2

Default connections for binary outputs

Description

Close circuit breaker

Circuit breaker failure protection trip to upstream breaker

Open circuit breaker/trip coil 1

Open circuit breaker/trip coil 2

General start indication

General operate indication

Connector pins

X100:6-7

X100:8-9

X100:15-19

X100:20-24

X100:10-12

X100:13-15

5

6

3

4

7

8

Table 13:

LED

1

2

Default connections for LEDs

Description

Non-directional overcurrent operate

Earth fault protection operate

Negative-sequence overcurrent/phase discontinuity operate

Thermal overload alarm

Autoreclose in progress

Disturbance recorder triggered

Trip circuit supervision alarm

Circuit-breaker failure operate

Predefined disturbance recorder connections

Table 14:

2

3

Channel

1

4

5

Predefined analog channel setup

Description

IL1

IL2

IL3

Io

Uo

Additionally, all the digital inputs that are connected by default are also enabled with the setting. Default triggering settings are selected depending on the connected input signal type. Typically all protection START signals are selected to trigger the disturbance recorded by default.

Functional diagrams

The functional diagrams describe the default input, output, programmable LED, switch group and function-to-function connections. The default connections can be viewed and changed with switch groups in PCM600, LHMI and WHMI according to the application requirements.

REF611

Application Manual

1MRS757456 D

3.4.3.1

REF611

Application Manual

Section 3

REF611 standardized configurations

The analog channels have fixed connections towards the different function blocks inside the protection relay’s configuration. Exceptions from this rule are the eight analog channels available for the disturbance recorder function. These channels are freely selectable and a part of the disturbance recorder’s parameter settings.

The analog channels are assigned to different functions. The common signal marked with 3I represents the three phase currents. The signal marked with Io represents the measured residual current via a core balance current transformer. The signal marked with Uo represents the measured residual voltage via open-delta connected voltage transformers.

The EFHPTOC protection function block for double (cross-country) earth-faults uses the calculated residual current originating from the measured phase currents.

Functional diagrams for protection

The functional diagrams describe the protection functionality of the protection relay in detail and picture the factory default connections.

X120-BI1

Blocking 1

INRPHAR1

3I

2f

>(1)

3I

BLOCK

68(1)

BLK2H

OVERCURRENT PROTECTION AND INRUSH INDICATION

PHLPTOC1

3I>(1)

3I

BLOCK

51P-1(1)

OPERATE

START

ENA_MULT

PHHPTOC1

3I>>(1)

51P-2(1)

3I

BLOCK

ENA_MULT

OPERATE

START

PHHPTOC2

3I>>(2)

3I

BLOCK

51P-2(2)

OPERATE

START

ENA_MULT

IN_1

SELGAPC1

OUT_1 IN

ISWGAPC1

OUT_4

PHIPTOC1

3I>>>(1)

3I

BLOCK

50P/51P(1)

OPERATE

START

ENA_MULT

IN_1

OSWGAPC8

IN_2

IN_3

IN_4

OR

OUT

SELGAPC4

IN_10 OUT_1

LED 1

GUID-7490603E-FE2C-4241-A98B-2CE7C935C0FB V1 EN

Figure 16: Overcurrent protection

Four overcurrent stages are offered for overcurrent and short-circuit protection. The instantaneous stage PHIPTOC1 can be blocked by energizing the binary input

(X120:1-2). The inrush detection block’s INRPHAR1 output BLK2H enables either

37

Section 3

REF611 standardized configurations

1MRS757456 D blocking the function or multiplying the active settings for any of the described protection function blocks.

All operate signals are connected to the Master Trip and to the alarm LED 1.

38 REF611

Application Manual

1MRS757456 D

REF611

Application Manual

Section 3

REF611 standardized configurations

EARTH-FAULT PROTECTION

DOUBLE (CROSS-COUNTRY) EARTH-FAULT PROTECTION

EFHPTOC1

Io>>(1)

51N-2(1)

Io

BLOCK

ENA_MULT

Calculated lo

OPERATE

START

DIRECTIONAL EARTH-FAULT PROTECTION

DEFLPDEF1

Io>->(1)

Io

Uo

BLOCK

ENA_MULT

RCA_CTL

67N-1(1)

OPERATE

START

DEFLPDEF2

Io>->(2)

Io

Uo

BLOCK

ENA_MULT

RCA_CTL

67N-1(2)

OPERATE

START

IN_5

OSWGAPC9

IN_6

IN_7

IN_8

IN_12

OR

OUT

SELGAPC4

IN_11 OUT_2

DEFHPDEF1

Io>>->(1)

67N-2(1)

Io

Uo

BLOCK

ENA_MULT

RCA_CTL

OPERATE

START

INTERMITTENT EARTH-FAULT PROTECTION

INTRPTEF1

Io>->IEF(1)

Io

Uo

BLOCK

67NIEF(1)

OPERATE

START

BLK_EF

LED 2

GUID-7DA854F7-A732-46FD-A9D9-398B3E4150C8 V1 EN

Figure 17: Earth-fault protection

Three stages are offered for directional earth-fault protection. In addition, there is a dedicated protection stage INTRPTEF either for transient-based earth-fault protection or for cable intermittent earth-fault protection in compensated networks.

39

Section 3

REF611 standardized configurations

1MRS757456 D

A dedicated non-directional earth-fault protection block EFHPTOC is intended for protection against double earth-fault situations in isolated or compensated networks.

This protection function uses the calculated residual current originating from the phase currents.

All operate signals are connected to the Master Trip and to alarm LED 2.

RESIDUAL OVERVOLTAGE PROTECTION

U

0

BLOCK

ROVPTOV1

U

0

>(1)

59G(1)

OPERATE

START

U

0

BLOCK

ROVPTOV2

U

0

>(2)

59G(2)

OPERATE

START

IN_9

IN_10

IN_11

OSWGAPC9

OR

OUT

SELGAPC4

IN_11 OUT_2

LED 2

U

0

BLOCK

ROVPTOV3

U

0

>(3)

59G(3)

OPERATE

START

GUID-41F06B86-FFB5-4162-BF38-B85F43C88002 V1 EN

Figure 18: Residual overvoltage protection

The residual overvoltage protection ROVPTOV provides earth-fault protection by detecting abnormal level of residual voltage. It can be used, for example, as a nonselective backup protection for the selective directional earth-fault functionality. The operation signal is also connected to alarm LED 2.

40 REF611

Application Manual

1MRS757456 D

Section 3

REF611 standardized configurations

NSPTOC1

I

2

>(1)

3I

BLOCK

ENA_MULT

46(1)

OPERATE

START

UNBALANCE PROTECTION

NSPTOC2

3I

BLOCK

ENA_MULT

I

2

>(2)

46(2)

OPERATE

START

IN_13

OSWGAPC10

IN_14

IN_15

OR OUT

SELGAPC4

IN_12 OUT_3

LED 3

3I

BLOCK

PDNSPTOC1

I

2

/I

1

(1)

46PD(1)

OPERATE

START

GUID-A367FC04-F391-48E9-9CBF-599AC625C7FF V1 EN

Figure 19: Unbalance protection

Two negative-sequence overcurrent stages NSPTOC1 and NSPTOC2 and one phase discontinuity stage PDNPSTOC1 are offered for unbalance protection. The phase discontinuity protection PDNPSTOC1 provides protection for interruptions in the normal three-phase load supply, for example, in downed conductor situations.

The operate signals of these unbalance protections are connected to the Master Trip and to alarm LED 3.

REF611

Application Manual

41

Section 3

REF611 standardized configurations

1MRS757456 D

THERMAL OVERLOAD PROTECTION

T1PTTR1

3Ith>F(1)

49F(1)

3I

ENA_MULT

OPERATE

ALARM

BLK_OPR BLK_CLOSE

AMB_TEMP START

OSWGAPC11

IN_1 OUT

SELGAPC4

IN_13 OUT_4

LED 4

PHLPTOC1_OPERATE

PHHPTOC1_OPERATE

PHHPTOC2_OPERATE

PHIPTOC1_OPERATE

DEFLPTOC1_OPERATE

DEFLPTOC2_OPERATE

DEFHPTOC1_OPERATE

X120-BI2

CB Closed Position

OR

IN_2

SELGAPC1

OUT_2

CIRCUIT BREAKER FAILURE PROTECTION

CCBRBRF1

3I>/Io>BF(1)

SELGAPC3

IN_4 OUT_2

51BF/51NBF(1)

3I

Io

START

POSCLOSE

CB_FAULT

BLOCK

CB_FAULT_AL

TRBU

TRRET

OSWGAPC15

IN_5 OUT

X100 PO2

SELGAPC4

IN_17 OUT_8

LED 8

GUID-A046A312-1E3B-4186-BBEB-2AF8C2423C5F V1 EN

Figure 20: Thermal overload and circuit-breaker failure protection

The thermal overload protection T1PTTR1 provides indication on overload situations. LED 4 is used for the thermal overload protection alarm indication.

The circuit-breaker failure protection CCBRBRF1 is initiated via the start input by a number of different protection stages in the protection relay. The circuit-breaker failure protection function offers different operating modes associated with the circuit breaker position and the measured phase and residual currents. The breaker failure protection has two operating outputs: TRRET and TRBU . The TRRET operate output is used for retripping its own breaker through the Master Trip 2. TRBU output is used to give a backup trip to the circuit breaker feeding upstream. For this purpose, the

TRBU operate output signal is connected to the output PO2 (X100:8-9). LED 8 is used for backup ( TRBU ) operate indication.

42 REF611

Application Manual

1MRS757456 D

Section 3

REF611 standardized configurations

AUTORECLOSING (Optional)

DARREC1

O->I(1)

DEFLPDEF1_OPERATE

DEFLPDEF2_OPERATE

X120-BI3

CB Open Position

Always True

DEFLPDEF1_START

DEFLPDEF2_START

IN_3

SELGAPC1

OUT_3

IN_10 OUT_6

T1PTTR1_BLK_CLOSE

SELGAPC1_OUT_7

INT_1

INT_2

INT_3

INT_4

INT_5

INT_6

DEL_INT_2

DEL_INT_3

DEL_INT_4

BLK_RECL_T

BLK_RCLM_T

BLK_THERM

CB_POS

CB_READY

INC_SHOTP

INHIBIT_RECL

RECL_ON

SYNC

79(1)

OPEN CB

CLOSE CB

CMD_WAIT

INPRO

LOCKED

PROT_CRD

UNSUC_RECL

AR_ON

READY

CBXCBR1_SELECTED

NSPTOC1_OPERATE

NSPTOC2_OPERATE

PDNSPTOC1_OPERATE

INTRPTEF1_OPERATE

PHIPTOC1_OPERATE

OR

CBPSOF1_OPERATE

OR

PHHPTOC2_OPERATE

PHLPTOC1_OPERATE

EFHPTOC1_OPERATE

OR

OR

PHHPTOC1_OPERATE

DEFHPDEF1_OPERATE

PHLPTOC1_START

EFHPTOC1_START

OSWGAPC12

IN_7 OUT

SELGAPC4

IN_14 OUT_5

LED 5

GUID-3F551E60-55D5-4971-8CC8-E6742AF9CAAB V2 EN

Figure 21: Autoreclosing

Autoreclosing DARREC1 is included as an optional function.

The autoreclose function is configured to be initiated by operate signals from a number of protection stages through the INT_1 ...

INT_6 inputs and by start signals through the DEL_INT_2…4. It is possible to create individual autoreclose sequences for each input.

The autoreclose function can be blocked with the INHIBIT_RECL input. By default, the operations of selected protection functions are connected to this input. A control command to the circuit breaker, either local or remote, also blocks the autoreclose function via the CBXCBR_SELECTED signal.

The circuit breaker availability for the autoreclose sequence is expressed with the

CB_READY input in DARREC1. In the configuration, this signal is connected with an always true signal through the SELGAPC1. As a result, the function assumes that the circuit breaker is available all the time.

The autoreclose sequence in progress indication INPRO is connected to the alarm

LED 5.

REF611

Application Manual

43

Section 3

REF611 standardized configurations

3.4.3.2

44

1MRS757456 D

Functional diagrams for disturbance recorder and trip circuit supervision

PHLPTOC1_OPERATE

PHHPTOC1_OPERATE

PHHPTOC2_OPERATE

PHIPTOC1_OPERATE

DEFLPDEF1_OPERATE

DEFHPDEF1_OPERATE

DEFLPDEF2_OPERATE

ROVPTOV1_OPERATE

ROVPTOV2_OPERATE

ROVPTOV3_OPERATE

NSPTOC1_OPERATE

NSPTOC2_OPERATE

OR

OR

OR

OR

PHLPTOC1_START

PHHPTOC1_START

PHHPTOC2_START

PHIPTOC1_START

EFHPTOC1_START

DEFLPDEF1_START

DEFLPDEF2_START

DEFHPDEF1_START

ROVPTOV1_START

ROVPTOV2_START

ROVPTOV3_START

INTRPTEF1_START

NSPTOC1_START

NSPTOC2_START

PDNSPTOC1_START

T1PTTR1_START

EFHPTOC1_OPERATE

INTRPTEF1_OPERATE

PDNSPTOC1_OPERATE

T1PTTR1_OPERATE

SELGAPC1_ Blocking 1

SELGAPC1_ CB Closed Position

SELGAPC1_ CB Open Position

INRPHAR1_BLK2H

CCBRBRF1_TRRET

CCBRBRF1_TRBU

DARREC1_INPRO

DARREC1_CLOSE_CB

DARREC1_UNSUC_RECL

SELGAPC1_External Trip

SG_1_ACT

SG_2_ACT

SG_3_ACT

SG_4_ACT

SG_5_ACT

SG_6_ACT

DISTURBANCE RECORDER

C15

C16

C17

C18

C19

C20

C21

C22

C7

C8

C9

C10

C11

C12

C13

C14

C23

C24

C25

C1

C2

C3

C4

C5

C6

C34

C35

C36

C37

C38

C39

C40

C26

C27

C28

C29

C30

C31

C32

C33

RDRE1

TRIGGERED

OSWGAPC13

IN_2 OUT

SELGAPC4

IN_15 OUT_6

LED 6

GUID-C8E19D4D-9410-45B2-977A-4A56A0F41A48 V1 EN

Figure 22: Disturbance recorder

All start and operate signals from the protection stages are routed to trigger the disturbance recorder or alternatively only to be recorded by the disturbance recorder depending on the parameter settings. Additionally, the selected autoreclose output signals and the three binary inputs from X120 are also connected. The active setting group is also to be recorded via SG_1_ACT to SG_6_ACT. The disturbance recorder triggered signal indication is connected to LED 6.

Table 15:

Channel number

Binary channel 1

Binary channel 2

Disturbance recorder binary channel default value

Channel ID text

PHLPTOC1_START

PHHPTOC1_START

Binary channel 3

Binary channel 4

Binary channel 5

Binary channel 6

PHHPTOC2_START

PHIPTOC1_START

EFHPTOC1_START

DEFLPDEF1_START

Binary channel 7

Binary channel 8

DEFLPDEF2_START

DEFHPDEF1_START

Binary channel 9

Table continues on next page

ROVPTOV1_START

Level trigger mode

1=positive or rising

1=positive or rising

1=positive or rising

1=positive or rising

1=positive or rising

1=positive or rising

1=positive or rising

1=positive or rising

1=positive or rising

REF611

Application Manual

1MRS757456 D

Channel number

Binary channel 10

Binary channel 11

Binary channel 12

Binary channel 13

Binary channel 14

Binary channel 15

Binary channel 16

Binary channel 17

Binary channel 18

Binary channel 19

Binary channel 20

Binary channel 21

Binary channel 22

Binary channel 23

Binary channel 24

Binary channel 25

Binary channel 26

Binary channel 27

Binary channel 28

Binary channel 29

Binary channel 30

Binary channel 31

Binary channel 32

Binary channel 33

Binary channel 34

Binary channel 35

Binary channel 36

Binary channel 37

Binary channel 38

Binary channel 39

Binary channel 40

Channel ID text

ROVPTOV2_START

ROVPTOV3_START

INTRPTEF1_START

NSPTOC1_START

NSPTOC2_START

PDNSPTOC1_START

T1PTTR1_START

PHxPTOC_OPERATE

EFHPTOC1_OPERATE

DEFxPDEF_OPERATE

ROVPTOV_OPERATE

INTRPTEF1_OPERATE

NSPTOC1/2_OPERATE

PDNSPTOC1_OPERATE

T1PPTR1_OPERATE

SELGAPC1_Blocking 1

SELGAPC1_CB_Closed

SELGAPC1_CB_Open

INRPHAR1_BLK2H

CCBRBRF1_TRRET

CCBRBRF1_TRBU

DARREC1_INPRO

DARREC1_CLOSE_CB

DARREC1_UNSUC_RECL

SELGAPC1_External Trip

SG_1_ACT

SG_2_ACT

SG_3_ACT

SG_4_ACT

SG_5_ACT

SG_6_ACT

Section 3

REF611 standardized configurations

Level trigger mode

1=positive or rising

1=positive or rising

1=positive or rising

1=positive or rising

1=positive or rising

1=positive or rising

1=positive or rising

4=level trigger off

4=level trigger off

4=level trigger off

4=level trigger off

4=level trigger off

4=level trigger off

4=level trigger off

4=level trigger off

4=level trigger off

4=level trigger off

4=level trigger off

4=level trigger off

4=level trigger off

4=level trigger off

4=level trigger off

4=level trigger off

4=level trigger off

4=level trigger off

4=level trigger off

4=level trigger off

4=level trigger off

4=level trigger off

4=level trigger off

4=level trigger off

REF611

Application Manual

45

Section 3

REF611 standardized configurations

1MRS757456 D

TRIP CIRCUIT SUPERVISION

X120-BI3

CB Open Position

SELGAPC1

IN_3 OUT_3

TRPPTRC1_TRIP

TRPPTRC2_TRIP

OR

IN_2

SELGAPC2

OUT_1

OUT_2

TCSSCBR1

BLOCK ALARM

TCSSCBR2

BLOCK ALARM

IN_3

IN_4

OSWGAPC14

OR

OUT

SELGAPC4

IN_16 OUT_7

LED 7

GUID-50B079D8-AE34-4D47-BD5F-ACCBBEC0EC18 V2 EN

Figure 23: Trip circuit supervision

Two separate trip circuit supervision functions are included, TCSSCBR1 for PO3

(X100:15-19) and TCSSCBR2 for PO4 (X100:20-24). Both functions are blocked by the Master Trip (TRPPTRC1 and TRPPTRC2) and the circuit breaker open position.

The TCS alarm indication is connected to LED 7.

46 REF611

Application Manual

1MRS757456 D

3.4.3.3

REF611

Application Manual

Section 3

REF611 standardized configurations

Functional diagrams for control

MASTER TRIP #1

PHLPTOC1_OPERATE

PHHPTOC1_OPERATE

PHHPTOC2_OPERATE

PHIPTOC1_OPERATE

EFHPTOC1_OPETATE

DEFLPDEF1_OPERATE

DEFLPDEF2_OPERATE

DEFHPDEF1_OPERATE

ROVPTOV1_OPERTAE

ROVPTOV2_OPERTAE

ROVPTOV3_OPERTAE

INTRPTEF1_OPERATE

NSPTOC1_OPERATE

NSPTOC2_OPERATE

PDNSPTOC1_OPERATE

IN_1

IN_2

IN_3

IN_4

IN_5

IN_6

IN_7

IN_8

IN_9

IN_10

IN_11

IN_12

IN_13

IN_14

IN_15

OSWGAPC1

OR OUT

OR

TRPPTRC1

BLOCK TRIP

OPERATE CL_LKOUT

RST_LKOUT

OR

IN_1

SELGAPC3

OUT_5

X100 PO3

SELGAPC1_External Trip

GOOSERCV_BIN 2_OUT

OR

GOOSERCV_BIN 3_OUT

SELGAPC1_RST_LKOUT

CBXCBR1_EXE_OP

DARREC1_OPEN_CB

IN1

IN2

MVGAPC1

Q1

Q2

PHLPTOC1_OPERATE

PHHPTOC1_OPERATE

PHHPTOC2_OPERATE

PHIPTOC1_OPERATE

EFHPTOC1_OPETATE

DEFLPDEF1_OPERATE

DEFLPDEF2_OPERATE

DEFHPDEF1_OPERATE

ROVPTOV1_OPERTAE

ROVPTOV2_OPERTAE

ROVPTOV3_OPERTAE

INTRPTEF1_OPERATE

NSPTOC1_OPERATE

NSPTOC2_OPERATE

PDNSPTOC1_OPERATE

CCBRBRF1_TRRET

IN_1

IN_2

IN_3

IN_4

IN_5

IN_6

IN_7

IN_8

IN_9

IN_10

IN_11

IN_12

IN_13

IN_14

IN_15

IN_17

OSWGAPC2

OR

OUT

SELGAPC1_External Trip

GOOSERCV_BIN 2_OUT

GOOSERCV_BIN 3_OUT

SELGAPC1_RST_LKOUT

OR

IN1

IN2

MVGAPC1

Q1

Q2

OR

MASTER TRIP #2

TRPPTRC2

BLOCK TRIP

OPERATE

RST_LKOUT

CL_LKOUT

IN_2

SELGAPC3

OUT_6

X100 PO4

GUID-A4419861-FA17-4E12-8951-ABEB715AA740 V2 EN

Figure 24: Master trip

The operate signals from the protections and an external trip are connected to the two trip output contacts PO3 (X100:15-19) and PO4 (X100:20-24) via the corresponding

Master Trips TRPPTRC1 and TRPPTRC2. Open control commands to the circuit breaker from local or remote CBXCBR1_EXE_OP or from the autoreclosing

47

Section 3

REF611 standardized configurations

1MRS757456 D

DARREC1_OPEN_CB are connected directly to the output contact PO3

(X100:15-19).

TRPPTRC1 and 2 provide the lockout/latching function, event generation and the trip signal duration setting. One binary input through SELGAPC1 can be connected to the

RST_LKOUT input of the Master Trip. If the lockout operation mode is selected, it is used to enable external reset.

CIRCUIT BREAKER CONTROL

X120-BI2

CB Closed Position

X120-BI3

CB Open Posit ion

Always True

IN_2

IN_3

IN_10

SELGAPC1

OUT_2

OUT_3

OUT_5

TRPPTRC1_TRIP

TRPPTRC2_TRIP

T1PTTR1_BLK_CLOSE

DARREC1_CLOSE_CB

AND

CBXCBR1

POSOPEN

POSCLOSE

ENA_OPEN

ENA_CLOSE

BLK_OPEN

BLK_CLOSE

AU_OPEN

AU_CLOSE

TRIP

SYNC_OK

SYNC_ITL_BYP

SELECTED

EXE_OP

EXE_CL

OP_REQ

CL_REQ

OPENPOS

CLOSEPO S

OKPOS

OPEN_ENAD

CLOSE_ENAD

CBXCBR1_EXE_OP

OR

SELGAPC3

IN_3 OUT_1

X100 PO1

GUID-1093EFA7-FA5F-4711-BF03-2B30C553BD72 V2 EN

Figure 25: Circuit breaker control

The ENA_CLOSE input, which enables the closing of the circuit breaker, is interlocked by two master trip signals. Any one trip will block the breaker from closing. An always true signal is also connected to ENA_CLOSE via SELGAPC1 by default. The open operation is always enabled.

48 REF611

Application Manual

1MRS757456 D

REF611

Application Manual

Section 3

REF611 standardized configurations

PHLPTOC1_OPERATE

PHHPTOC1_OPERATE

PHHPTOC2_OPERATE

PHIPTOC1_OPERATE

EFHPTOC1_OPETATE

DEFLPDEF1_OPERATE

DEFLPDEF2_OPERATE

DEFHPDEF1_OPERATE

ROVPTOV1_OPERTAE

ROVPTOV2_OPERTAE

ROVPTOV3_OPERTAE

INTRPTEF1_OPERATE

NSPTOC1_OPERATE

NSPTOC2_OPERATE

PDNSPTOC1_OPERATE

PHLPTOC1_START

PHHPTOC1_START

PHHPTOC2_START

PHIPTOC1_START

EFHPTOC1_START

DEFLPDEF1_START

DEFLPDEF2_START

DEFHPDEF1_START

ROVPTOV1_START

ROVPTOV2_START

ROVPTOV3_START

INTRPTEF1_START

NSPTOC1_START

NSPTOC2_START

PDNSPTOC1_START

COMMON ALARM INDICATION 1 & 2

IN_1

IN_2

IN_3

IN_4

IN_5

IN_6

IN_7

IN_8

IN_9

IN_10

IN_11

IN_12

IN_13

IN_14

IN_15

OSWGAPC3

OR OUT

IN1

TPGAPC1

OUT1

SELGAPC3

IN_5 OUT_3

IN_9 OUT_4

IN_1

IN_2

IN_3

IN_4

IN_5

IN_6

IN_7

IN_8

IN_9

IN_10

IN_11

IN_12

IN_13

IN_14

IN_15

OSWGAPC7

OR OUT

IN1

TPGAPC3

OUT1

X100 SO1

X100 SO2

GUID-9AFB34C6-4203-47D4-B03D-F071504B50D3 V1 EN

Figure 26: Common alarm indication

The signal outputs from the protection relay are connected to give dedicated information.

• Start of any protection function SO1 (X100:10-12)

• Operation (trip) of any protection function SO2 (X100: 13-15)

TPGAPC are timers and they are used for setting the minimum pulse length for the outputs. There are seven generic timers (TPGAPC1…7) available in the protection relay.

49

Section 3

REF611 standardized configurations

1MRS757456 D

3.4.4 Switch groups

In configuration A, the switch group function blocks are organized in four groups: binary inputs, internal signal, GOOSE as well as binary outputs and LEDs.

Binary Inputs

(1...3, 4...9*)

Received GOOSE

(0...19)

GOOSE

GOOSE

GOOSE

SELGAPC1

Binary Inputs

ISWGAPC2

ISWGAPC1

Blocking

Binary Input s

ISWGAPC5

Basic

Angle Cont rol

GOOSE

ISWGAPC9

GOOSE Blocking

ISWGAPC10

GOO SE Block CB

Protection and Control

PHLPTOC1 PHHPTOC1

PHHPTOC2

EFHPTOC1

PHIPTOC1

DEFLPDEF1

DEFLPDEF2

NSPTOC1

INTRPTEF1

DEFHPDEF1

NSPTOC2

PDNSPTOC1

ROVPTOV1

ROVPTOV3

CCBRBRF1

CBXCBR1

TCSSCBR1

ROVPTOV2

T1PTTR1

INRPHAR1

DARREC1*

TCSSCBR2

Internal Signal

ISWGAPC3 ISWGAPC4

INRPHAR1_BLK2H

SELGAPC2

DARREC1_PROT_CRD

OSWGAPC17

TCS Blocking CBPSOF1_Init iation

* Optional Function

GUID-70D440AE-3136-411D-8A5C-56CABE711F69 V2 EN

Figure 27: Configuration A switch group overview

Binary Outputs and LEDs

OSWGAPC2

OSWGAPC1

SELGAPC3

SELGAPC4

Master trip

OSWGAPC6

OSWGAPC5

OSWGAPC4

OSWGAPC3

St art

OSWGAPC10

OSWGAPC9

OSWGAPC8

OSWGAPC7

OSWGAPC16

OSWGAPC15

OSWGAPC14

OSWGAPC13

OSWGAPC12

OSWGAPC11

Alarm

Trip

Binary Outputs

LEDs

Binary Outputs

(1...6, 7..9*)

LEDs

(1 …8)

3.4.4.1 Binary inputs

The binary inputs group includes one SELGAPC and three ISWGAPCs. SELGAPC1 is used to route binary inputs to ISWGAPC or directly to protection relay functions.

ISWGAPC1 and ISWGAPC2 are used to configure the signal to block the protection functions. ISWGAPC5 is used to control the characteristic angle of DEFxPDEF.

50 REF611

Application Manual

1MRS757456 D

Section 3

REF611 standardized configurations

X120-BI1

X120-BI2

X120-BI3

1 ) X130-BI1

X130-BI2

X130-BI3

X130-BI4

X130-BI5

X130-BI6

SELGAPC1

Blocking 1

ISWGAPC1

Blocking 2

ISWGAPC2

Basic Angle

Control ISWGAPC5

PHLPTOC1_BLOCK

PHHPTOC1_BLOCK

PHHPTOC2_BLOCK

PHIPTOC1_BLOCK

EFHPTOC1_BLOCK

DEFLPDEF1_BLOCK

DEFLPDEF2_BLOCK

DEFHPDEF1_BLOCK

ROVPTOV1_BLOCK

ROVPTOV2_BLOCK

ROVPTOV3_BLOCK

INTRPTEF1_BLOCK

NSPTOC1_BLOCK

NSPTOC2_BLOCK

PDNSPTOC1_BLOCK

T1PTTR1_BLOCK

CBPSOF1_BLOCK

PHLPTOC1_BLOCK

PHHPTOC1_BLOCK

PHHPTOC2_BLOCK

PHIPTOC1_BLOCK

EFHPTOC1_BLOCK

DEFLPDEF1_BLOCK

DEFLPDEF2_BLOCK

DEFHPDEF1_BLOCK

ROVPTOV1_BLOCK

ROVPTOV2_BLOCK

ROVPTOV3_BLOCK

INTRPTEF1_BLOCK

NSPTOC1_BLOCK

NSPTOC2_BLOCK

PDNSPTOC1_BLOCK

T1PTTR1_BLOCK

CBPSOF1_BLOCK

DEFLPDEF1_RCA_CTL

DEFLPDEF2_RCA_CTL

DEFHPDEF1_RCA_CTL 1 ) Optional binary inputs

GUID-B37E732A-4522-4B96-BA67-A7C7020B40D5 V2 EN

Figure 28: Binary inputs

SELGAPC1

SELGAPC1 has inputs from protection relay binary inputs. IN_1 ...

IN_3 are binary inputs from X120. IN_4 ...

IN_9 can be used while X130 optional card is taken into use. An always true signal is connected to IN_10 . SELGAPC1 outputs are used to route inputs to different functions. By setting SELGAPC1, binary inputs can be configured for different purposes.

REF611

Application Manual

51

Section 3

REF611 standardized configurations

1MRS757456 D

X120-BI1

X120-BI2

X120-BI3

1 ) X130-BI1

X130-BI2

X130-BI3

X130-BI4

X130-BI5

X130-BI6

Always True

X120/1-2 BI1

IN_1

X120/3-2 BI2

IN_2

X120/4-2 BI3

IN_3

X130/1-2 BI1

IN_4

SELGAPC1

OUT_1

Blocking 1

ISWGAPC1_IN

OUT_2

OUT_3

CB Closed Position

CB Open Position

CCBRBRF1_POSCLOSE

CBXCBR1_POSCLOSE

SELGAPC2_IN_1

DARREC1_CB_POS

CBXCBR1_POSOPEN

SELGAPC2_IN_2

OUT_4 Basic Angle Control

ISWGAPC5_IN

X130/3-2 BI2

IN_5

X130/4-5 BI3

IN_6

X130/6-5 BI4

IN_7

X130/7-8 BI5

IN_8

X130/9-8 BI6

IN_9

1 ) Optional binary inputs

IN_10

OUT_5 CB Close Enable

OUT_6

OUT_7

OUT_8

TRPTTRC1/2_

RST_LKOUT

OUT_9

External Trip

OUT_10

Setting Group 2

OUT_11

Setting Group 3

OUT_12

Setting Group 4

CBXCBR1_ENA_CLOSE

DARREC1_CB_READY

DARREC1_RECL_ON

TRPTTRC1_RST_LKOUT

TRPTTRC2_RST_LKOUT

TRPTTRC1_OPERATE

TRPTTRC2_OPERATE

PROTECTION_BI_SG_2

PROTECTION_BI_SG_3

PROTECTION_BI_SG_4

OUT_13 Blocking 2

ISWGAPC2_IN

GUID-A12A8C92-A8FA-46B1-A4C9-D1BAE4DE62DA V1 EN

Figure 29: SELGAPC1

ISWGAPC1

ISWGAPC1 is used to select which protection functions are to be blocked by changing

ISWGAPC1 parameters. ISWGAPC1 input is routed from SELGAPC1 output

OUT_1 Blocking 1 . ISWGAPC1 outputs are connected to the BLOCK inputs of the protection functions.

52 REF611

Application Manual

1MRS757456 D

Section 3

REF611 standardized configurations

SELGAPC1_OUT_1

Blocking 1

IN

ISWGAPC1

OUT_1

OUT_2

OUT_3

OUT_4

OUT_5

OUT_6

OUT_7

OUT_8

OUT_9

OUT_10

OUT_11

OUT_12

OUT_13

OUT_14

OUT_15

OUT_16

OUT_17

PHLPTOC1_BLOCK

PHHPTOC1_BLOCK

PHHPTOC2_BLOCK

PHIPTOC1_BLOCK

EFHPTOC1_BLOCK

DEFLPDEF1_BLOCK

DEFLPDEF2_BLOCK

DEFHPDEF1_BLOCK

ROVPTOV1_BLOCK

ROVPTOV2_BLOCK

ROVPTOV3_BLOCK

INTRPTEF1_BLOCK

NSPTOC1_BLOCK

NSPTOC2_BLOCK

PDNSPTOC1_BLOCK

T1PTTR1_BLOCK

CBPSOF1_BLOCK

GUID-BDC462BB-B635-4BE4-932D-68010331C92B V2 EN

Figure 30: ISWGAPC1

ISWGAPC2

ISWGAPC2 is used to select which protection functions are to be blocked by changing

ISWGAPC2 parameters. ISWGAPC2 input is routed from SELGAPC1 output

OUT_13 Blocking 2 . ISWGAPC2 outputs are connected to the BLOCK inputs of the protection functions.

REF611

Application Manual

53

Section 3

REF611 standardized configurations

3.4.4.2

54

1MRS757456 D

SELGAPC1_OUT_13

Blocking 2

IN

ISWGAPC2

OUT_7

OUT_8

OUT_9

OUT_10

OUT_11

OUT_12

OUT_13

OUT_14

OUT_15

OUT_16

OUT_17

OUT_1

OUT_2

OUT_3

OUT_4

OUT_5

OUT_6

GUID-56855209-1CDA-4B53-A920-3976BF96C636 V2 EN

Figure 31: ISWGAPC2

PHLPTOC1_BLOCK

PHHPTOC1_BLOCK

PHHPTOC2_BLOCK

PHIPTOC1_BLOCK

EFHPTOC1_BLOCK

DEFLPDEF1_BLOCK

DEFLPDEF2_BLOCK

DEFHPDEF1_BLOCK

ROVPTOV1_BLOCK

ROVPTOV2_BLOCK

ROVPTOV3_BLOCK

INTRPTEF1_BLOCK

NSPTOC1_BLOCK

NSPTOC2_BLOCK

PDNSPTOC1_BLOCK

T1PTTR1_BLOCK

CBPSOF1_BLOCK

ISWGAPC5

ISWGAPC5 input is used to select which directional earth-fault protection is controlled by ISWGAPC5 input by changing the ISWGAPC5 parameters.

ISWGAPC5 input is routed from SELGAPC1 output OUT_4 Basic Angle

Control . ISWGAPC5 outputs are connected to RCA_CTL inputs of directional earth-fault protection functions.

SELGAPC1_OUT_4

Basic Angle

Control IN

ISWGAPC5

OUT_1

OUT_2

OUT_3

DEFLPDEF1_RCA_CTL

DEFLPDEF2_RCA_CTL

DEFHPDEF1_RCA_CTL

GUID-47706B0D-5CB7-4D8D-8B07-846B87DDBDB4 V1 EN

Figure 32: ISWGAPC5

Internal signals

The internal signal group is used to configure logic connections between function blocks. There are two ISWGAPC instances, one SELGAPC and one OSWGAPC instance in the group.

REF611

Application Manual

1MRS757456 D

REF611

Application Manual

Section 3

REF611 standardized configurations

ISWGAPC3 is used to configure which protection function enables the current multiplier if the INRPHAR1 function detects inrush. ISWGAPC4 is used to configure the cooperation between the autoreclose function and the protection functions. The autoreclose function DARREC1 can block protection functions according to the application. SELGAPC2 is used to configure TCS blocking from the circuit breaker open or close position. OSWGAPC17 is used for connecting switch onto fault function CBPSOF. The inputs are start signals routed from the protection functions.

ISWGAPC3

PHLPTOC1_ENA_MULT

PHHPTOC1_ENA_MULT

PHHPTOC2_ENA_MULT

PHIPTOC1_ENA_MULT

EFHPTOC1_ENA_MULT

DEFLPDEF1_ENA_MULT

DEFLPDEF2_ENA_MULT

DEFHPDEF1_ENA_MULT

NSPTO C1_ENA_MULT

NSPTO C2_ENA_MULT

T1PTTR1_ENA_MULT

ISWGAPC4

PHLPTOC1_BLOCK

PHHPTOC1_BLOCK

PHHPTOC2_BLOCK

EFHPTOC1_BLOCK

DEFLPDEF1_BLOCK

DEFLPDEF2_BLOCK

DEFHPDEF1_BLOCK

SELGAPC1_OUT_2

SELGAPC1_OUT_3

CB Closed Position

CB Open Posit ion

SELGAPC2

PHLPTOC1_START

PHHPTOC1_START

PHHPTOC2_START

PHIPTOC1_START

EFHPTOC1_START

DEFLPDEF1_START

DEFLPDEF2_START

DEFHPDEF1_START

ROVPTOV1_START

ROVPTOV2_START

ROVPTOV3_START

INTRPTEF1_START

NSPTOC1_START

NSPTO C2_START

PDNSPTO C1_START

T1PTTR1_START

OSWGAPC17

TCSSCBR1_BLOCK

TCSSCBR2_BLOCK

St art

DLYD

CBPSOF1_INIT

GUID-A717CE52-5F4C-40C4-BF71-FBFCB900179B V2 EN

Figure 33: Internal signal

ISWGAPC3

ISWGAPC3 input is used to configure which protection function enables current multiplier while inrush is detected by INRPHAR1, by changing the ISWGAPC3 parameters. ISWGAPC3 input is routed from INRPHAR1 output BLK2H .

ISWGAPC3 outputs are connected to the ENA_MULT inputs of the protection functions.

55

Section 3

REF611 standardized configurations

56

1MRS757456 D

INRPHAR1_BLK2H IN

GUID-CC7AF316-6030-4959-B6EE-032E6415804C V1 EN

Figure 34: ISWGAPC3

ISWGAPC3

OUT_1

OUT_2

OUT_3

OUT_4

OUT_5

OUT_6

OUT_7

OUT_8

OUT_9

OUT_10

OUT_11

PHLPTOC1_ENA_MULT

PHHPTOC1_ENA_MULT

PHHPTOC2_ENA_MULT

PHIPTOC1_ENA_MULT

EFHPTOC1_ENA_MULT

DEFLPDEF1_ENA_MULT

DEFLPDEF2_ENA_MULT

DEFHPDEF1_ENA_MULT

NSPTOC1_ENA_MULT

NSPTOC2_ENA_MULT

T1PTTR1_ENA_MULT

ISWGAPC4

ISWGAPC4 input is used to configure which protection function is blocked by the autoreclosing function by changing the ISWGAPC4 parameters. ISWGAPC4 input is routed from DARREC1 output PROT_CRD . ISWGAPC4 outputs are connected to the

BLOCK inputs of some of the protection functions.

DARREC1_PROT_CRD IN

GUID-E0106013-2B27-4DED-81C7-40ED4F0A94F0 V1 EN

Figure 35: ISWGAPC4

ISWGAPC4

OUT_1

OUT_2

OUT_3

OUT_4

OUT_5

OUT_6

OUT_7

PHLPTOC1_BLOCK

PHHPTOC1_BLOCK

PHHPTOC2_BLOCK

EFHPTOC1_BLOCK

DEFLPDEF1_BLOCK

DEFLPDEF2_BLOCK

DEFHPDEF1_BLOCK

SELGAPC2

SELGAPC2 inputs represent the circuit breaker closed and open position from

SELGACP1. SELGAPC2 outputs are routed to the BLOCK input of the trip circuit supervision TCSSCBR1 and TCSSCBR2.

By default, X100 PO3 and PO4 are both used for the open circuit breaker. TCSSCBR1 and TCSSCBR2 are both blocked by the circuit breaker open position. If X100-PO3 is used for closing the circuit breaker, TCSSCBR1 needs to be blocked by circuit breaker close position (OUT_1 connection=IN_1). If X100-PO4 is used for closing

REF611

Application Manual

1MRS757456 D

REF611

Application Manual

Section 3

REF611 standardized configurations

PHLPTOC1_START

PHHPTOC1_START

PHHPTOC2_START

PHIPTOC1_START

EFHPTOC1_START

DEFLPDEF1_START

DEFLPDEF2_START

DEFHPDEF1_START

ROVPTOV1_START

ROVPTOV2_START

ROVPTOV3_START

INTRPTEF1_START

NSPTOC1_START

NSPTOC2_START

PDNSPTOC1_START

T1PTTR1_START the circuit breaker, TCSSCBR2 needs to be blocked by the circuit breaker close position (OUT_2 connection=IN_1).

SELGAPC1_OUT_2

SELGAPC1_OUT_3

CB Closed Position

IN_1

SELGAPC2

OUT_1

CB Open Position

IN_2 OUT_2

GUID-4E5F2683-ED84-45AB-8636-023584763783 V1 EN

Figure 36: SELGAPC2

TCSSCBR1_BLOCK

TCSSCBR2_BLOCK

OSWGAPC17

OSWGAPC17 is used to route the protection function start signals to the

StartDLYD input of the switch onto fault function CBPSOF. CBPSOF provides an instantaneous trip or a time delayed trip when closing the breaker while a fault exists.

OSWGAPC17 output is connected to CBPSOF function indicating the detected fault.

OSWGAPC17

IN_1

IN_2

IN_3

IN_4

IN_5

IN_6

IN_7

IN_8

IN_9

IN_10

IN_11

IN_12

IN_13

IN_14

IN_15

IN_16

OUT

St art DLYD

CBPSOF1_INIT

GUID-9E98F0EB-8467-4B5F-9755-78D2C0399F17 V1 EN

Figure 37: OSWGAPC17

57

Section 3

REF611 standardized configurations

3.4.4.3

1MRS757456 D

Binary outputs and LEDs

In configuration A, signals are routed to binary outputs and LEDs are configured by

OSWGAPC. The 16 OSWGAPC instances are categorized in four groups, including two master trip, four start, four trip and six alarm signals. The OSWGAPC output is connected with binary outputs and LEDs via SELGAPC3 and SELGAPC4.

• SELGAPC3 is used to configure OSWGAPC signals to the protection relay's binary outputs. SELGAPC4 is used to configure OSWGAPC signals to LEDs.

• OSWGAPC1 and OSWGAPC2 are used for the Master trip. The inputs are routed from the protection function's operate and the circuit breaker failure's re-trip.

• OSWGAPC3 to OSWGAPC6 are used for the start signal. The inputs are start signals routed from the protection functions.

• OSWGAPC7 to OSWGAPC10 are used for the trip signal. The inputs are operation signals routed from the protection functions.

• OSWGAPC11 to OSWGAPC16 are used for the alarm signal. The inputs are alarm signals routed from the protection and monitoring functions.

58 REF611

Application Manual

1MRS757456 D

Section 3

REF611 standardized configurations

PHLPTOC1_OPERATE

PHHPTOC1_OPERATE

PHHPTOC2_OPERATE

PHIPTOC1_OPERATE

EFHPTOC1_OPERATE

DEFLPDEF1_OPERATE

DEFLPDEF2_OPERATE

DEFHPDEF1_OPERATE

ROVPTOV1_OPERATE

ROVPTOV2_OPERATE

ROVPTOV3_OPERATE

INTRPTEF1_OPERATE

NSPTOC1_OPERATE

NSPTOC2_OPERATE

PDNSPTOC1_OPERATE

T1PTTR1_OPERATE

CCBRBRF1_TRRET

CBPSOF1_OPERATE

PHLPTOC1_START

PHHPTOC1_START

PHHPTOC2_START

PHIPTOC1_START

EFHPTOC1_START

DEFLPDEF1_START

DEFLPDEF2_START

DEFHPDEF1_START

ROVPTOV1_START

ROVPTOV2_START

ROVPTOV3_START

INTRPTEF1_START

NSPTOC1_START

NSPTOC2_START

PDNSPTOC1_START

T1PTTR1_START

OSWGAPC1

Master Trip 1

TRPPTRC1

OSWGAPC2

Master Trip 2

TRPPTRC2

OSWGAPC3

OSWGAPC4

OSWGAPC5

OSWGAPC6

Start 1

IN1

TPGAPC1

OUT1

Start 2

IN2 OUT2

Start 3

IN1

TPGAPC2

OUT1

Start 4

IN2

OUT2

PHLPTOC1_OPERATE

PHHPTOC1_OPERATE

PHHPTOC2_OPERATE

PHIPTOC1_OPERATE

EFHPTOC1_OPERATE

DEFLPDEF1_OPERATE

DEFLPDEF2_OPERATE

DEFHPDEF1_OPERATE

ROVPTOV1_OPERATE

ROVPTOV2_OPERATE

ROVPTOV3_OPERATE

INTRPTEF1_OPERATE

NSPTOC1_OPERATE

NSPTOC2_OPERATE

PDNSPTOC1_OPERATE

T1PTTR1_OPERATE

OSWGAPC7

OSWGAPC8

OSWGAPC9

OSWGAPC10

Trip 1

IN1

TPGAPC3

OUT1

Trip 2

IN2

Trip 3

OUT2

IN1

TPGAPC4

OUT1

Trip 4

IN2 OUT2

OSWGAPC11

T1PTTR1_ALARM

RDRE_TRIGGERED

TCSSCBR1_ALARM

TCSSCBR2_ALARM

CCBRBRF1_TRBU

CCBRBRF1_TRRET

DARREC1_INPRO

DARREC1_LOCKED

DARREC1_PROT_CRD

DARREC1_UNSUC_RECL

DARREC1_AR_ON

DARREC1_READY

SELGAPC1_OUT_9

TRPPTRC1_CL_LKOUT

TRPPTRC2_CL_LKOUT

OSWGAPC12

OSWGAPC13

OSWGAPC14

OSWGAPC15

OSWGAPC16

GUID-DC487FC1-179A-44D3-90EC-0B2AB809EB67 V2 EN

Figure 38: Binary outputs

Alarm 1

IN1

TPGAPC5

OUT1

Alarm 2

IN2 OUT2

Alarm 3

IN1

TPGAPC6

OUT1

Alarm 4

IN2 OUT2

Alarm 5

IN1

TPGAPC7

OUT1

Alarm 6

IN2 OUT2

SELGAPC3

X100 PO1

X100 PO2

X100 SO1

X100 SO2

X100 PO3

X100 PO4

X130 SO1

1 )

X130 SO2

X130 SO3

1 ) Optional binary outputs

REF611

Application Manual

59

Section 3

REF611 standardized configurations

60

1MRS757456 D

PHLPTOC1_OPERATE

PHHPTOC1_OPERATE

PHHPTOC2_OPERATE

PHIPTOC1_OPERATE

EFHPTOC1_OPERATE

DEFLPDEF1_OPERATE

DEFLPDEF2_OPERATE

DEFHPDEF1_OPERATE

ROVPTOV1_OPERATE

ROVPTOV2_OPERATE

ROVPTOV3_OPERATE

INTRPTEF1_OPERATE

NSPTOC1_OPERATE

NSPTOC2_OPERATE

PDNSPTOC1_OPERATE

T1PTTR1_OPERATE

CCBRBRF1_TRRET

CBPSOF1_OPERATE

PHLPTOC1_START

PHHPTOC1_START

PHHPTOC2_START

PHIPTOC1_START

EFHPTOC1_START

DEFLPDEF1_START

DEFLPDEF2_START

DEFHPDEF1_START

ROVPTOV1_START

ROVPTOV2_START

ROVPTOV3_START

INTRPTEF1_START

NSPTOC1_START

NSPTOC2_START

PDNSPTOC1_START

T1PTTR1_START

PHLPTOC1_OPERATE

PHHPTOC1_OPERATE

PHHPTOC2_OPERATE

PHIPTOC1_OPERATE

EFHPTOC1_OPERATE

DEFLPDEF1_OPERATE

DEFLPDEF2_OPERATE

DEFHPDEF1_OPERATE

ROVPTOV1_OPERATE

ROVPTOV2_OPERATE

ROVPTOV3_OPERATE

INTRPTEF1_OPERATE

NSPTOC1_OPERATE

NSPTOC2_OPERATE

PDNSPTOC1_OPERATE

T1PTTR1_OPERATE

OSWGAPC1

Master Trip 1

TRPPTRC1

OSWGAPC2

Master Trip 2

TRPPTRC2

OSWGAPC3

Start 1

OSWGAPC4

Start 2

OSWGAPC5 Start 3

OSWGAPC6 Start 4

OSWGAPC7 Trip 1

OSWGAPC8 Trip 2

OSWGAPC9 Trip 3

OSWGAPC10 Trip 4

SELGAPC4

T1PTTR1_ALARM

RDRE_TRIGGERED

TCSSCBR1_ALARM

TCSSCBR2_ALARM

CCBRBRF1_TRBU

CCBRBRF1_TRRET

DARREC1_INPRO

DARREC1_LOCKED

DARREC1_PROT_CRD

DARREC1_UNSUC_RECL

DARREC1_AR_ON

DARREC1_READY

SELGAPC1_OUT_9

TRPPTRC1_CL_LKOUT

TRPPTRC2_CL_LKOUT

OSWGAPC11

Alarm 1

OSWGAPC12

Alarm 2

OSWGAPC13

Alarm 3

OSWGAPC14

Alarm 4

OSWGAPC15

Alarm 5

OSWGAPC16

Alarm 6

GUID-A9F30F03-EB2B-487D-90D1-36E5CD493FF3 V2 EN

Figure 39: LEDs

SELGAPC3

SELGAPC3 is used to configure the OSWGAPC outputs to the protection relay binary outputs. Master trip signals are connected to SELGAPC3 via TRPPTRC. Start,

LED1

LED2

LED3

LED4

LED5

LED6

LED7

LED8

REF611

Application Manual

1MRS757456 D

REF611

Application Manual

Section 3

REF611 standardized configurations

CBXCBR_EXE_OP

DARREC_OPEN_CB

TRPPTRC1_TRIP

TRPPTRC2_TRIP

CBXCBR_EXE_CL

DARREC_CLOSE_CB

CCBRBRF1_TRBU

OSWGAPC3_OUT

OSWGAPC4_OUT

OSWGAPC5_OUT

OSWGAPC6_OUT

OSWGAPC7_OUT

OSWGAPC8_OUT

OSWGAPC9_OUT

OSWGAPC10_OUT

OSWGAPC11_OUT

OSWGAPC12_OUT

OSWGAPC13_OUT

OSWGAPC14_OUT

OSWGAPC15_OUT

OSWGAPC16_OUT trip and alarm signals are connected to SELGAPC3 via TPGAPC. TPGAPC are timers and used for setting the minimum pulse length for the outputs.

SELGAPC3 outputs are connected to X100 binary outputs. If X130 optional card is taken into use, SELGAPC3 outputs also connected to the X130 binary outputs.

CB Open 1

IN_1

CB Open 2

IN_2

SELGAPC3

OUT_1

OUT_2

CB Close

IN_3

Backup Trip

IN_4

IN1 OUT1

TPGAPC1

IN2 OUT2

Start 1

Start 2

IN_5

IN_6

OUT_3

OUT_4

OUT_5

OUT_6

IN1 OUT1

TPGAPC2

IN2 OUT2

Start 3

Start 4

IN_7

IN_8

OUT_7

OUT_8

IN1 OUT1

TPGAPC3

IN2 OUT2

Trip 1

Trip 2

IN1 OUT1

TPGAPC4

IN2 OUT2

Trip 3

Trip 4

IN1 OUT1

TPGAPC5

IN2 OUT2

Alarm 1

Alarm 2

IN_9

IN_10

IN_11

IN_12

IN_13

IN_14

OUT_9

X100 PO1

X100 PO2

X100 SO1

X100 SO2

X100 PO3

X100 PO4

X130 SO1

1 )

X130 SO2

X130 SO3

1 ) Optional binary outputs

IN1 OUT1

TPGAPC6

IN2 OUT2

Alarm 3

Alarm 4

IN1 OUT1

TPGAPC7

IN2 OUT2

Alarm 5

Alarm 6

IN_15

IN_16

IN_17

IN_18

GUID-3772666B-6FE9-48E5-91BF-9AA80BFD4B6E V1 EN

Figure 40: SELGAPC3

SELGAPC4

SELGAPC4 is used to configure the OSWGAPC outputs to LEDs. Master trip signals are connected to SELGAPC4 via TRPPTRC. Start, trip and alarm signals are connected to SELGAPC4 directly. SELGAPC4 outputs are connected to programmable LED1 to LED8.

61

Section 3

REF611 standardized configurations

1MRS757456 D

CBXCBR_EXE_OP

DARREC_OPEN_CB

TRPPTRC1_TRIP

TRPPTRC2_TRIP

CBXCBR_EXE_CL

DARREC_CLOSE_CB

CCBRBRF1_TRBU

OSWGAPC3_OUT

OSWGAPC4_OUT

OSWGAPC5_OUT

OSWGAPC6_OUT

OSWGAPC7_OUT

OSWGAPC8_OUT

OSWGAPC9_OUT

OSWGAPC10_OUT

OSWGAPC11_OUT

OSWGAPC12_OUT

OSWGAPC13_OUT

OSWGAPC14_OUT

OSWGAPC15_OUT

OSWGAPC16_OUT

CB Open 1

IN_1

CB Open 2

IN_2

SELGAPC4

CB Close

IN_3

Backup Trip

IN_4

Start 1

IN_5

Start 2

IN_6

Start 3

IN_7

Start 4

IN_8

Trip 1

IN_9

Trip 2

IN_10

Trip 3

IN_11

Trip 4

IN_12

Alarm 1

IN_13

Alarm 2

IN_14

OUT_1

OUT_2

OUT_3

OUT_4

OUT_5

OUT_6

OUT_7

OUT_8

Alarm 3

IN_15

Alarm 4

IN_16

Alarm 5

IN_17

Alarm 6

IN_18

LED1

LED2

LED3

LED4

LED5

LED6

LED7

LED8

GUID-B4946537-8289-4424-BE16-C9EDA774A4A4 V1 EN

Figure 41: SELGAPC4

Master trip OSWGAPCs

OSWGAPC1 and OSWGAPC2 are used to route the protection function operate signals to Master trip. OSWGAPC1 and OSWGAPC2 have the same inputs from the protection function's operate signals. The output is connected to TRPPTRC function.

The default connections for OSWGAPC1 and OSWGAPC2 are different.

62 REF611

Application Manual

1MRS757456 D

Section 3

REF611 standardized configurations

PHLPTOC1_OPERATE

PHHPTOC1_OPERATE

PHHPTOC2_OPERATE

PHIPTOC1_OPERATE

EFHPTOC1_OPERATE

DEFLPDEF1_OPERATE

DEFLPDEF2_OPERATE

DEFHPDEF1_OPERATE

ROVPTOV1_OPERATE

ROVPTOV2_OPERATE

ROVPTOV3_OPERATE

INTRPTEF1_OPERATE

NSPTOC1_OPERATE

NSPTOC2_OPERATE

PDNSPTOC1_OPERATE

T1PTTR1_OPERATE

CCBRBRF1_TRRET

CBPSOF1_OPERATE

GUID-1C2DBFDD-9F8B-4574-92C2-02A9D879FDA7 V2 EN

Figure 42: OSWGAPC1

IN_5

IN_6

IN_7

IN_13

IN_14

IN_15

IN_16

IN_17

IN_8

IN_9

IN_10

IN_11

IN_12

IN_18

IN_1

IN_2

IN_3

IN_4

OSWGAPC2

OUT

Master trip 2

TRPPTRC 2_OPERATE

REF611

Application Manual

63

Section 3

REF611 standardized configurations

1MRS757456 D

PHLPTOC1_OPERATE

PHHPTOC1_OPERATE

PHHPTOC2_OPERATE

PHIPTOC1_OPERATE

EFHPTOC1_OPERATE

DEFLPDEF1_OPERATE

DEFLPDEF2_OPERATE

DEFHPDEF1_OPERATE

ROVPTOV1_OPERATE

ROVPTOV2_OPERATE

ROVPTOV3_OPERATE

INTRPTEF1_OPERATE

NSPTOC1_OPERATE

NSPTOC2_OPERATE

PDNSPTOC1_OPERATE

T1PTTR1_OPERATE

CCBRBRF1_TRRET

CBPSOF1_OPERATE

IN_5

IN_6

IN_7

IN_13

IN_14

IN_15

IN_16

IN_17

IN_8

IN_9

IN_10

IN_11

IN_12

IN_18

IN_1

IN_2

IN_3

IN_4

OSWGAPC2

OUT

Master trip 2

TRPPTRC 2_OPERATE

GUID-1E93D270-E0CE-4861-A2B1-8E3974691618 V2 EN

Figure 43: OSWGAPC2

Start OSWGAPCs

OSWGAPC instances 3...6 are used to configure the protection start signals. These four OSWGAPCs have the same inputs from the protection function start signals. The output is routed to SELGAPC3 via TPGAPC timer, and routed to SELGAPC4 directly.

64 REF611

Application Manual

1MRS757456 D

Section 3

REF611 standardized configurations

PHLPTOC1_START

PHHPTOC1_START

PHHPTOC2_START

PHIPTOC1_START

EFHPTOC1_START

DEFLPDEF1_START

DEFLPDEF2_START

DEFHPDEF1_START

ROVPTOV1_START

ROVPTOV2_START

ROVPTOV3_START

INTRPTEF1_START

NSPTOC1_START

NSPTOC2_START

PDNSPTOC1_START

T1PTTR1_START

IN_1

IN_2

IN_3

IN_4

IN_5

IN_6

IN_7

IN_8

IN_9

IN_10

IN_11

IN_12

IN_13

IN_14

IN_15

IN_16

OSWGAPC3

OUT

Start 1 TPGAPC1_IN1

SELGAPC4_IN_5

GUID-51366927-F89E-4879-969F-B1023B540BD1 V1 EN

Figure 44: OSWGAPC3

REF611

Application Manual

65

Section 3

REF611 standardized configurations

PHLPTOC1_START

PHHPTOC1_START

PHHPTOC2_START

PHIPTOC1_START

EFHPTOC1_START

DEFLPDEF1_START

DEFLPDEF2_START

DEFHPDEF1_START

ROVPTOV1_START

ROVPTOV2_START

ROVPTOV3_START

INTRPTEF1_START

NSPTOC1_START

NSPTOC2_START

PDNSPTOC1_START

T1PTTR1_START

GUID-E9196ACF-BA9A-483C-8FF3-4D41574BCEDE V1 EN

Figure 45: OSWGAPC4

IN_1

IN_2

IN_3

IN_4

IN_5

IN_6

IN_7

IN_8

IN_9

IN_10

IN_11

IN_12

IN_13

IN_14

IN_15

IN_16

OSWGAPC4

OUT

Start 2 TPGAPC1_IN2

SELGAPC4_IN_6

1MRS757456 D

66 REF611

Application Manual

1MRS757456 D

Section 3

REF611 standardized configurations

PHLPTOC1_START

PHHPTOC1_START

PHHPTOC2_START

PHIPTOC1_START

EFHPTOC1_START

DEFLPDEF1_START

DEFLPDEF2_START

DEFHPDEF1_START

ROVPTOV1_START

ROVPTOV2_START

ROVPTOV3_START

INTRPTEF1_START

NSPTOC1_START

NSPTOC2_START

PDNSPTOC1_START

T1PTTR1_START

IN_1

IN_2

IN_3

IN_4

IN_5

IN_6

IN_7

IN_8

IN_9

IN_10

IN_11

IN_12

IN_13

IN_14

IN_15

IN_16

OSWGAPC5

OUT

Start 3 TPGAPC2_IN1

SELGAPC4_IN_7

GUID-FFA9885A-9816-4D9E-BF1F-C8204C73F32D V1 EN

Figure 46: OSWGAPC5

REF611

Application Manual

67

Section 3

REF611 standardized configurations

1MRS757456 D

PHLPTOC1_START

PHHPTOC1_START

PHHPTOC2_START

PHIPTOC1_START

EFHPTOC1_START

DEFLPDEF1_START

DEFLPDEF2_START

DEFHPDEF1_START

ROVPTOV1_START

ROVPTOV2_START

ROVPTOV3_START

INTRPTEF1_START

NSPTOC1_START

NSPTOC2_START

PDNSPTOC1_START

T1PTTR1_START

IN_1

IN_2

IN_3

IN_4

IN_5

IN_6

IN_7

IN_8

IN_9

IN_10

IN_11

IN_12

IN_13

IN_14

IN_15

IN_16

OSWGAPC6

OUT Start 4 TPGAPC2_IN2

SELGAPC4_IN_8

GUID-41D82F50-DC6D-47AD-84C4-8BB5CE7A396B V1 EN

Figure 47: OSWGAPC6

Trip OSWGAPCs

OSWGAPC instances 7...10 are used to configure the protection operate signals which belong to the trip group. These four OSWGAPCs have same inputs from the operate signals of the protection functions. The output is routed to SELGAPC3 via

TPGAPC timer, and routed to SELGAPC4 directly.

68 REF611

Application Manual

1MRS757456 D

Section 3

REF611 standardized configurations

OSWGAPC7

PHLPTOC1_OPERATE

PHHPTOC1_OPERATE

IN_1

IN_2

PHHPTOC2_OPERATE

PHIPTOC1_OPERATE

EFHPTOC1_OPERATE

DEFLPDEF1_OPERATE

DEFLPDEF2_OPERATE

DEFHPDEF1_OPERATE

ROVPTOV1_OPERATE

ROVPTOV2_OPERATE

ROVPTOV3_OPERATE

INTRPTEF1_OPERATE

NSPTOC1_OPERATE

NSPTOC2_OPERATE

PDNSPTOC1_OPERATE

T1PTTR1_OPERATE

CBPSOF1_OPERATE

IN_3

IN_4

GUID-AB81000E-01A7-40D2-8BD4-3EBB8B125903 V2 EN

Figure 48: OSWGAPC7

IN_5

IN_6

IN_7

IN_14

IN_15

IN_16

IN_17

IN_8

IN_9

IN_10

IN_11

IN_12

IN_13

OUT

Trip 1 TPGAPC3_IN1

SELGAPC4_IN_9

REF611

Application Manual

69

Section 3

REF611 standardized configurations

OSWGAPC8

PHLPTOC1_OPERATE

PHHPTOC1_OPERATE

PHHPTOC2_OPERATE

PHIPTOC1_OPERATE

IN_1

IN_2

IN_3

IN_4

EFHPTOC1_OPERATE

DEFLPDEF1_OPERATE

IN_5

IN_6

DEFLPDEF2_OPERATE

DEFHPDEF1_OPERATE

ROVPTOV1_OPERATE

ROVPTOV2_OPERATE

ROVPTOV3_OPERATE

INTRPTEF1_OPERATE

NSPTOC1_OPERATE

NSPTOC2_OPERATE

PDNSPTOC1_OPERATE

T1PTTR1_OPERATE

CBPSOF1_OPERATE

IN_7

IN_8

IN_9

IN_10

IN_11

IN_12

IN_13

IN_14

IN_15

IN_16

IN_17

GUID-03032E45-CF34-4D83-BFC4-02C07245E32E V2 EN

Figure 49: OSWGAPC8

OUT

Trip 2 TPGAPC3_IN2

SELGAPC4_IN_10

1MRS757456 D

70 REF611

Application Manual

1MRS757456 D

Section 3

REF611 standardized configurations

OSWGAPC9

PHLPTOC1_OPERATE

PHHPTOC1_OPERATE

PHHPTOC2_OPERATE

PHIPTOC1_OPERATE

IN_1

IN_2

IN_3

IN_4

EFHPTOC1_OPERATE

DEFLPDEF1_OPERATE

IN_5

IN_6

DEFLPDEF2_OPERATE IN_7

DEFHPDEF1_OPERATE IN_8

ROVPTOV1_OPERATE

ROVPTOV2_OPERATE

IN_9

IN_10

ROVPTOV3_OPERATE IN_11

IN_12 INTRPTEF1_OPERATE

NSPTOC1_OPERATE

NSPTOC2_OPERATE

IN_13

IN_14

PDNSPTOC1_OPERATE

T1PTTR1_OPERATE

IN_15

IN_16

CBPSOF1_OPERATE IN_17

GUID-F48933D5-43DE-43E1-9260-D10601DFA02F V2 EN

Figure 50: OSWGAPC9

OUT

Trip 3

TPGAPC4_IN1

SELGAPC4_IN_11

REF611

Application Manual

71

Section 3

REF611 standardized configurations

1MRS757456 D

OSWGAPC10

PHLPTOC1_OPERATE

PHHPTOC1_OPERATE

PHHPTOC2_OPERATE

PHIPTOC1_OPERATE

IN_1

IN_2

IN_3

IN_4

EFHPTOC1_OPERATE

DEFLPDEF1_OPERATE

IN_5

IN_6

DEFLPDEF2_OPERATE IN_7

DEFHPDEF1_OPERATE

ROVPTOV1_OPERATE

ROVPTOV2_OPERATE

ROVPTOV3_OPERATE

INTRPTEF1_OPERATE

NSPTOC1_OPERATE

NSPTOC2_OPERATE

PDNSPTOC1_OPERATE

T1PTTR1_OPERATE

CBPSOF1_OPERATE

IN_8

IN_9

IN_10

IN_11

IN_12

IN_13

IN_14

IN_15

IN_16

IN_17

GUID-F0AC6293-6959-465E-A233-1D947583A2E1 V2 EN

Figure 51: OSWGAPC10

OUT

Trip 4 TPGAPC4_IN2

SELGAPC4_IN_12

Alarm OSWGAPCs

OSWGAPC instances 11...16 are used to configure the alarm signals which belong to the alarm group. These six OSWGAPCs have same inputs from the alarm signals. The output is routed to SELGAPC3 via TPGAPC timer, and routed to SELGAPC4 directly.

72 REF611

Application Manual

1MRS757456 D

Section 3

REF611 standardized configurations

T1PTTR1_ALARM

RDRE_TRIGGERED

IN_1

IN_2

TCSSCBR1_ALARM

TCSSCBR2_ALARM

IN_3

IN_4

CCBRBRF1_TRBU

CCBRBRF1_TRRET

IN_5

IN_6

DARREC1_INPRO IN_7

DARREC1_LOCKED

DARREC1_PROT_CRD

DARREC1_UNSUC_RECL

DARREC1_AR_ON

DARREC1_READY

SELGAPC1_OUT_9

TRPPTRC1_CL_LKOUT

IN_8

IN_9

IN_10

IN_11

IN_12

External Trip

IN_13

TRPPTRC2_CL_LKOUT

IN_14

IN_15

OSWGAPC11

OUT

Alarm 1 TPGAPC5_IN1

SELGAPC4_IN_13

GUID-66274761-B6F9-409E-B0DE-9C0596ED4C71 V1 EN

Figure 52: OSWGAPC11

REF611

Application Manual

73

Section 3

REF611 standardized configurations

T1PTTR1_ALARM

RDRE_TRIGGERED

IN_1

IN_2

TCSSCBR1_ALARM

TCSSCBR2_ALARM

IN_3

IN_4

CCBRBRF1_TRBU

CCBRBRF1_TRRET

IN_5

IN_6

DARREC1_INPRO IN_7

DARREC1_LOCKED

DARREC1_PROT_CRD

DARREC1_UNSUC_RECL

DARREC1_AR_ON

DARREC1_READY

SELGAPC1_OUT_9

TRPPTRC1_CL_LKOUT

TRPPTRC2_CL_LKOUT

IN_8

IN_9

IN_10

IN_11

IN_12

External Trip

IN_13

IN_14

IN_15

OSWGAPC12

OUT

Alarm 2 TPGAPC5_IN2

SELGAPC4_IN_14

GUID-ED72F4ED-4DF4-4B13-AE0C-AAB6A03B69C7 V1 EN

Figure 53: OSWGAPC12

1MRS757456 D

74 REF611

Application Manual

1MRS757456 D

Section 3

REF611 standardized configurations

T1PTTR1_ALARM

RDRE_TRIGGERED

IN_1

IN_2

TCSSCBR1_ALARM

TCSSCBR2_ALARM

IN_3

IN_4

CCBRBRF1_TRBU

CCBRBRF1_TRRET

IN_5

IN_6

DARREC1_INPRO IN_7

DARREC1_LOCKED

DARREC1_PROT_CRD

DARREC1_UNSUC_RECL

DARREC1_AR_ON

DARREC1_READY

SELGAPC1_OUT_9

TRPPTRC1_CL_LKOUT

IN_8

IN_9

IN_10

IN_11

IN_12

External Trip

IN_13

TRPPTRC2_CL_LKOUT

IN_14

IN_15

OSWGAPC13

OUT

Alarm 3 TPGAPC6_IN1

SELGAPC4_IN_15

GUID-85F16B67-BE18-43A3-8637-FCF29DB2E8D6 V1 EN

Figure 54: OSWGAPC13

REF611

Application Manual

75

Section 3

REF611 standardized configurations

T1PTTR1_ALARM

RDRE_TRIGGERED

IN_1

IN_2

TCSSCBR1_ALARM

TCSSCBR2_ALARM

IN_3

IN_4

CCBRBRF1_TRBU

CCBRBRF1_TRRET

IN_5

IN_6

DARREC1_INPRO IN_7

DARREC1_LOCKED

DARREC1_PROT_CRD

DARREC1_UNSUC_RECL

DARREC1_AR_ON

DARREC1_READY

SELGAPC1_OUT_9

TRPPTRC1_CL_LKOUT

IN_8

IN_9

IN_10

IN_11

IN_12

External Trip

IN_13

TRPPTRC2_CL_LKOUT

IN_14

IN_15

OSWGAPC14

OUT

Alarm 4 TPGAPC6_IN2

SELGAPC4_IN_16

GUID-C9EC48EA-F53F-4009-9010-5652EE3A6C95 V1 EN

Figure 55: OSWGAPC14

1MRS757456 D

76 REF611

Application Manual

1MRS757456 D

Section 3

REF611 standardized configurations

T1PTTR1_ALARM

RDRE_TRIGGERED

IN_1

IN_2

TCSSCBR1_ALARM

TCSSCBR2_ALARM

IN_3

IN_4

CCBRBRF1_TRBU

CCBRBRF1_TRRET

IN_5

IN_6

DARREC1_INPRO IN_7

DARREC1_LOCKED

DARREC1_PROT_CRD

DARREC1_UNSUC_RECL

DARREC1_AR_ON

DARREC1_READY

SELGAPC1_OUT_9

TRPPTRC1_CL_LKOUT

IN_8

IN_9

IN_10

IN_11

IN_12

External Trip

IN_13

TRPPTRC2_CL_LKOUT

IN_14

IN_15

OSWGAPC15

OUT

Alarm 5 TPGAPC7_IN1

SELGAPC4_IN_17

GUID-CC49B32B-234A-43AB-86AF-B83FC2C10F51 V1 EN

Figure 56: OSWGAPC15

REF611

Application Manual

77

Section 3

REF611 standardized configurations

3.4.4.4

1MRS757456 D

T1PTTR1_ALARM

RDRE_TRIGGERED

IN_1

IN_2

TCSSCBR1_ALARM

TCSSCBR2_ALARM

IN_3

IN_4

CCBRBRF1_TRBU

CCBRBRF1_TRRET

IN_5

IN_6

DARREC1_INPRO IN_7

DARREC1_LOCKED

DARREC1_PROT_CRD

DARREC1_UNSUC_RECL

DARREC1_AR_ON

DARREC1_READY

SELGAPC1_OUT_9

TRPPTRC1_CL_LKOUT

IN_8

IN_9

IN_10

IN_11

IN_12

External Trip

IN_13

TRPPTRC2_CL_LKOUT

IN_14

IN_15

OSWGAPC16

OUT

Alarm 6 TPGAPC7_IN2

SELGAPC4_IN_18

GUID-053F0EAF-B3F1-474C-91E9-76E4DC91629F V1 EN

Figure 57: OSWGAPC16

GOOSE

In the configuration, there are 20 GOOSERCV_BIN functions. Each

GOOSERVC_BIN function can be connected to one received binary GOOSE signal.

The signal connection can be configured in PCM600.

• GOOSERCV_BIN instances 0 and 1 are used for blocking protection functions.

Signals from these two GOOSERCV_BINs are connected to ISWGAPC9.

ISWGAPC9 is used to configure which protection function block is blocked.

• GOOSERCV_BIN instances 2 and 3 are used for tripping from GOOSE. Signals from these two GOOSERCV_BINs are connected to TRPPTRC1 and

TRPPTRC2 trip.

• GOOSERCV_BIN instances 4 to 19 are used for blocking circuit breaker operation. Signals from these 16 GOOSERCV_BINs are connected to

ISWGAPC10. ISWGAPC10 is used to configure the GOOSE input signal to block the circuit breaker open or close operation.

78 REF611

Application Manual

1MRS757456 D

Section 3

REF611 standardized configurations

GOOSERCV_BIN:0

GOOSERCV_BIN:1

GOOSERCV_BIN:2

OR

GOOSE Blcoking

ISWGAPC9

PHLPTOC1_BLOCK

PHHPTOC1_BLOCK

PHHPTOC2_BLOCK

PHIPTOC1_BLOCK

EFHPTOC1_BLOCK

DEFLPDEF1_BLOCK

DEFLPDEF2_BLOCK

DEFHPDEF1_BLOCK

ROVPTOV1_BLOCK

ROVPTOV2_BLOCK

ROVPTOV3_BLOCK

INTRPTEF1_BLOCK

NSPTOC1_BLOCK

NSPTOC2_BLOCK

PDNSPTOC1_BLOCK

T1PTTR1_BLOCK

CBPSOF1_BLOCK

OR

GOOSE

External Trip TRPPTRC1_OPERATE

TRPPTRC2_OPERATE

GOOSERCV_BIN:3

GOOSERCV_BIN:4

GOOSERCV_BIN:5 OR

GOOSE Block CB

ISWGAPC10

CBXCBR1_BLK_CLOSE

CBXCBR1_BLK_OPEN

GOOSERCV_BIN:19

GUID-0B0FD851-2982-4097-B52D-ADC59E9AA638 V2 EN

Figure 58: GOOSE overview

ISWGAPC9

ISWGAPC9 is used to configure which protection functions can be blocked by the received GOOSE signals. ISWGAPC9 inputs are received GOOSE signals from

GOOSERCV_BIN:0 and GOOSERCV_BIN:1. The outputs are connected to block inputs of the protection functions.

REF611

Application Manual

79

Section 3

REF611 standardized configurations

1MRS757456 D

GOOSERCV_BIN:0_OUT

GOOSERCV_BIN:1_OUT

GOOSE Blocking

IN

ISWGAPC9

OUT_1

OUT_2

OUT_3

OUT_4

OUT_5

OUT_6

OUT_7

OUT_8

OUT_9

OUT_10

OUT_11

OUT_12

OUT_13

OUT_14

OUT_15

OUT_16

OUT_17

GUID-8189C6A6-FF9A-423C-B870-06A23A20E3B3 V2 EN

Figure 59: ISWGAPC9

PHLPTOC1_BLOCK

PHHPTOC1_BLOCK

PHHPTOC2_BLOCK

PHIPTOC1_BLOCK

EFHPTOC1_BLOCK

DEFLPDEF1_BLOCK

DEFLPDEF2_BLOCK

DEFHPDEF1_BLOCK

ROVPTOV1_BLOCK

ROVPTOV2_BLOCK

ROVPTOV3_BLOCK

INTRPTEF1_BLOCK

NSPTOC1_BLOCK

NSPTOC2_BLOCK

PDNSPTOC1_BLOCK

T1PTTR1_BLOCK

CBPSOF1_BLOCK

ISWGAPC10

ISWGAPC10 is used to block the circuit breaker operation from the received GOOSE signals. ISWGAPC10 inputs are received GOOSE signals from GOOSERCV_BIN:

4 to GOOSERCV_BIN:19. The outputs are connected to block the circuit breaker's close and open operation.

GOOSERCV_BIN:4_OUT

GOOSERCV_BIN:5_OUT

GOOSERCV_BIN:6_OUT

...

GOOSERCV_BIN:19_OUT

GOOSE Block CB IN

GUID-07F0B112-6C1B-452D-B2E0-BB8857AAF590 V1 EN

Figure 60: ISWGAPC10

ISWGAPC10

OUT_1

OUT_2

CBXCBR1_BLK_CLOSE

CBXCBR1_BLK_OPEN

80 REF611

Application Manual

1MRS757456 D

3.5

3.5.1

Section 3

REF611 standardized configurations

Configuration B

Applications

Configuration B for non-directional overcurrent and non-directional earth-fault protection is mainly intended for cable and overhead-line feeder applications in isolated and resonant-earthed distribution networks.

The protection relay with a standardized configuration is delivered from the factory with default settings and parameters. The end-user flexibility for incoming, outgoing and internal signal designation within the protection relay enables this configuration to be further adapted to different primary circuit layouts and the related functionality needs by modifying the internal functionality using PCM600.

REF611

Application Manual

81

Section 3

REF611 standardized configurations

3.5.2 Functions

1MRS757456 D

3I

Io

REF611 FEEDER PROTECTION RELAY

PROTECTION

Master Trip

Lockout relay

94/86

I2>

46

I2/I1>

46PD

3I>/Io>BF

51BF/51NBF

3Ith>F

49F

3I>>>

50P/51P

3I>

51P-1

3I>>

51P-2

3I2f>

68

Io>>>

50N/51N

Io>

51N-1

Io>>

51N-2

SOTF

SOTF

LOCAL HMI

I

ESC

O

Measurements

Disturbance records

A

R

L

STANDARD

CONFIGURATION

B

ALSO AVAILABLE

- Disturbance and fault recorders

- Event log and recorded data

- Local/Remote push button on LHMI

- Self-supervision

- Time synchronization: IEEE 1588 v2,

SNTP, IRIG-B

- User management

- Web-HMI

CONDITION MONITORING

AND SUPERVISION

TCS

TCM

CONTROL AND INDICATION 1)

Object

CB

DC

Ctrl 2)

1

-

Ind 3)

ES -

1) Check availability of binary inputs/outputs

from technical documentation

2) Control and indication function for

primary object

3) Status indication function for

primary object

-

-

O → I

79

COMMUNICATION

Protocols:

IEC 61850-8-1

Modbus®

Interfaces:

Ethernet: TX (RJ-45), FX (LC)

Serial: RS-485

Redundant protocols:

HSR

PRP

RSTP

MEASUREMENT

- I, Io

- Limit value supervision

- Symmetrical components

Analog interface types

Current transformer

Voltage transformer

1)

Conventional transformer inputs

REMARKS

Optional function

3× No. of instances

Io/Uo

Calculated value

OR Alternative function to be defined when ordering

1)

4

-

GUID-388F8DF3-75FC-4DAF-8640-10F7A52D60B5 V1 EN

Figure 61: Functionality overview for configuration B

3.5.2.1 Default I/O connections

Table 16:

Binary input

X120-BI1

X120-BI2

X120-BI3

X120-BI4

Default connections for binary inputs

Description

Blocking of overcurrent instantaneous stage

Circuit breaker closed position indication

Circuit breaker open position indication

Reset of master trip lockout

Connector pins

X120:1-2

X120:3,2

X120:4,2

X120:5-6

82 REF611

Application Manual

1MRS757456 D

3.5.2.2

3.5.3

REF611

Application Manual

Section 3

REF611 standardized configurations

Table 17:

Binary input

X100-PO1

X100-PO2

X100-PO3

X100-PO4

X100-SO1

X100-SO2

Default connections for binary outputs

Description

Close circuit breaker

Circuit breaker failure protection trip to upstream breaker

Open circuit breaker/trip coil 1

Open circuit breaker/trip coil 2

General start indication

General operate indication

Connector pins

X100:6-7

X100:8-9

X100:15-19

X100:20-24

X100:10-12

X100:13-15

5

6

3

4

7

8

Table 18:

LED

1

2

Default connections for LEDs

Description

Non-directional overcurrent operate

Earth fault operate

Negative-sequence overcurrent/phase discontinuity operate

Thermal overload alarm

Autoreclose in progress

Disturbance recorder triggered

Trip circuit supervision alarm

Circuit-breaker failure operate

Predefined disturbance recorder connections

Table 19:

2

3

Channel

1

4

Predefined analog channel setup

Description

IL1

IL2

IL3

Io

Additionally, all the digital inputs that are connected by default are also enabled with the setting. Default triggering settings are selected depending on the connected input signal type. Typically all protection START signals are selected to trigger the disturbance recorded by default.

Functional diagrams

The functional diagrams describe the default input, output, programmable LED, switch group and function-to-function connections. The default connections can be viewed and changed with switch groups in PCM600, LHMI and WHMI according to the application requirements.

83

Section 3

REF611 standardized configurations

3.5.3.1

1MRS757456 D

The analog channels have fixed connections towards the different function blocks inside the protection relay’s configuration. Exceptions from this rule are the seven analog channels available for the disturbance recorder function. These channels are freely selectable and a part of the disturbance recorder’s parameter settings.

The analog channels are assigned to different functions. The common signal marked with 3I represents the three phase currents. The signal marked with Io represents the measured residual current via a core balance current transformer.

Functional diagrams for protection

The functional diagrams describe the protection functionality of the protection relay in detail and picture the factory default connections.

X120-BI1

Blocking 1

3I

BLOCK

INRPHAR1

3I

2f

>(1)

68(1)

BLK2H

OVERCURRENT PROTECTION AND INRUSH INDICATION

PHLPTOC1

3I>(1)

3I

BLOCK

51P-1(1)

OPERATE

START

ENA_MULT

PHHPTOC1

3I>>(1)

51P-2(1)

3I

BLOCK

ENA_MULT

OPERATE

START

PHHPTOC2

3I>>(2)

3I

BLOCK

51P-2(2)

OPERATE

START

ENA_MULT

SELGAPC1

IN_1 OUT_1 IN

ISWGAPC1

OUT_4

PHIPTOC1

3I>>>(1)

3I

BLOCK

50P/51P(1)

OPERATE

START

ENA_MULT

IN_1

IN_2

IN_3

IN_4

OSWGAPC8

OR

OUT

SELGAPC4

IN_10 OUT_1

LED 1

GUID-DEF278A2-D120-437C-BC9A-180BD34C6962 V3 EN

Figure 62: Overcurrent protection

Four overcurrent stages are offered for overcurrent and short-circuit protection. The instantaneous stage PHIPTOC1 can be blocked by energizing the binary input

(X120:1-2). The inrush detection block’s INRPHAR1 output BLK2H enables either blocking the function or multiplying the active settings for any of the described protection function blocks.

All operate signals are connected to the Master Trip and to the alarm LED 1.

84 REF611

Application Manual

1MRS757456 D

Section 3

REF611 standardized configurations

EARTH-FAULT PROTECTION

EFLPTOC1

Io>(1)

51N-1(1)

Io

BLOCK

ENA_MULT

OPERATE

START

EFLPTOC2

Io>(2)

51N-1(2)

Io

BLOCK

ENA_MULT

OPERATE

START

IN_5

OSWGAPC9

IN_6

IN_7

IN_8

OR OUT

SELGAPC4

IN_11 OUT_2

LED 2

EFHPTOC1

Io>>(1)

51N-2(1)

Io

BLOCK

ENA_MULT

OPERATE

START

EFIPTOC1

Io>>>(1)

50N(1)

Io

BLOCK

ENA_MULT

OPERATE

START

GUID-A3A385B1-89E2-4E71-9C18-183C9A1F9660 V1 EN

Figure 63: Earth-fault protection

Four stages are offered for non-directional earth-fault protection.

All operate signals are connected to the Master Trip as well as to the alarm LED 2.

REF611

Application Manual

85

Section 3

REF611 standardized configurations

1MRS757456 D

NSPTOC1

I

2

>(1)

3I

BLOCK

ENA_MULT

46(1)

OPERATE

START

UNBALANCE PROTECTION

NSPTOC2

3I

BLOCK

ENA_MULT

I

2

>(2)

46(2)

OPERATE

START

IN_9

OSWGAPC10

IN_10

IN_11

OR OUT

SELGAPC4

IN_12 OUT_3

LED 3

3I

BLOCK

PDNSPTOC1

I

2

/I

1

(1)

46PD(1)

OPERATE

START

GUID-4CFBCA74-5D5E-4C39-87DE-18EE2BE86C19 V1 EN

Figure 64: Unbalance protection

Two negative-sequence overcurrent stages NSPTOC1 and NSPTOC2 and one phase discontinuity stage PDNPSTOC1 are offered for the unbalance protection. The phase discontinuity protection PDNPSTOC1 provides protection for interruptions in the normal three-phase load supply, for example, in downed conductor situations.

The operate signals of these unbalance protections are connected to the Master Trip and also to alarm LED 3.

86 REF611

Application Manual

1MRS757456 D

Section 3

REF611 standardized configurations

THERMAL OVERLOAD PROTECTION

T1PTTR1

3Ith>F(1)

49F(1)

3I

ENA_MULT

BLK_OPR

OPERATE

ALARM

BLK_CLOSE

AMB_TEMP START

OSWGAPC11

IN_1 OUT

SELGAPC4

IN_13 OUT_4

LED 4

PHLPTOC1_OPERATE

PHHPTOC1_OPERATE

PHHPTOC2_OPERATE

PHIPTOC1_OPERATE

EFLPTOC1_OPERATE

EFLPTOC2_OPERATE

EFHPTOC1_OPERATE

EFIPTOC1_OPERATE

X120-BI2

CB Closed Position

OR

SELGAPC1

IN_2 OUT_2

CIRCUIT BREAKER FAILURE PROTECTION

CCBRBRF1

3I>/I

0

>BF(1)

SELGAPC3

IN_4 OUT_2

51BF/51NBF(1)

3I

I

0

START

POSCLOSE

CB_FAULT

BLOCK

CB_FAULT_AL

TRBU

TRRET

OSWGAPC15

IN_5 OUT

X100 PO2

SELGAPC4

IN_17 OUT_8

LED 8

GUID-05F6D382-22E2-41D8-84A3-1EC01A52B6B1 V3 EN

Figure 65: Thermal overload and circuit-breaker failure protection

The thermal overload protection T1PTTR1 provides indication on overload situations. LED 4 is used for the thermal overload protection alarm indication.

The circuit-breaker failure protection CCBRBRF1 is initiated via the start input by a number of different protection stages in the protection relay. CCBRBRF1 offers different operating modes associated with the circuit-breaker position and the measured phase and residual currents. CCBRBRF1 has two operating outputs:

TRRET and TRBU . The TRRET operate output is used for retripping its own circuit breaker through Master Trip 2. The TRBU output is used to give a backup trip to the circuit-breaker feeding upstream. For this purpose, the TRBU operate output signal is connected to the output PO2 (X100:8-9). LED 8 is used for the backup ( TRBU ) operate indication.

REF611

Application Manual

87

Section 3

REF611 standardized configurations

1MRS757456 D

AUTORECLOSING (Optional)

X120-BI3

CB Open Position

Always True

SELGAPC1

IN_3 OUT_3

IN_11 OUT_6

PHHPTOC2_OPERATE

PHLPTOC1_OPERATE

EFLPTOC2_OPERATE

EFLPTOC1_OPERATE

PHHPTOC1_OPERATE

EFHPTOC1_OPERATE

PHLPTOC1_START

EFLPTOC2_START

EFLPTOC1_START

T1PTTR1_BLK_CLOSE

CBXCBR1_SELECTED

NSPTOC1_OPERATE

NSPTOC2_OPERATE

PDNSPTOC1_OPERATE

PHIPTOC1_OPERATE

EFIPTOC1_OPERATE

OR

CBPSOF1_OPERATE

SELGAPC1_OUT_ 7

OR

DARREC1

O->I(1)

INT_1

INT_2

INT_3

INT_4

INT_5

INT_6

DEL_INT_2

DEL_INT_3

DEL_INT_4

BLK_RECL_T

BLK_RCLM_T

BLK_THERM

CB_POS

CB_READY

INC_SHOTP

INHIBIT_RECL

RECL_ON

SYNC

79(1)

OPEN CB

CLOSE CB

CMD_WAIT

INPRO

LOCKED

PROT_CRD

UNSUC_RECL

AR_ON

READY

OSWGAPC12

IN_7 OUT

SELGAPC4

IN_14 OUT_5

LED 5

GUID-C14CE4DE-2849-40A9-87D4-F737031DE5BF V3 EN

Figure 66: Autoreclosing

Autoreclosing DARREC1 is included as an optional function.

The autoreclose function is configured to be initiated by operate signals from a number of protection stages through the INT_1...6

inputs and by start signals through the DEL_INT_2…4. It is possible to create individual autoreclose sequences for each input.

The autoreclose function can be blocked with the INHIBIT_RECL input. By default, the operations of selected protection functions are connected to this input. A control command to the circuit breaker, either local or remote, also blocks the autoreclose function via the CBXCBR_SELECTED signal.

The circuit breaker availability for the autoreclose sequence is expressed with the

CB_READY input in DARREC1. In the configuration, this signal is connected with an always true signal through SELGAPC1. As a result, the function assumes that the circuit breaker is available all the time.

The autoreclose sequence in progress indication INPRO is connected to the alarm

LED 5.

88 REF611

Application Manual

1MRS757456 D

3.5.3.2

REF611

Application Manual

Section 3

REF611 standardized configurations

Functional diagrams for disturbance recorder and trip circuit supervision

PHLPTOC1_OPERATE

PHHPTOC1_OPERATE

PHHPTOC2_OPERATE

PHIPTOC1_OPERATE

EFLPTOC1_OPERATE

EFLPTOC2_OPERATE

EFHPTOC1_OPERATE

EFIPTOC1_OPERATE

NSPTOC1_OPERATE

NSPTOC2_OPERATE

OR

PHLPTOC1_START

PHHPTOC1_START

PHHPTOC2_START

PHIPTOC1_START

EFLPTOC1_START

EFLPTOC2_START

EFHPTOC1_START

EFIPTOC1_START

NSPTOC1_START

NSPTOC2_START

PDNSPTOC1_START

T1PTTR1_START

O

R

O

R

PDNSPTOC1_OPERATE

T1PTTR1_OPERATE

SELGAPC1_ Blocking 1

SELGAPC1_ CB Closed Position

SELGAPC1_ CB Open Position

INRPHAR1_BLK2H

CCBRBRF1_TRRET

CCBRBRF1_TRBU

DARREC1_INPRO

DARREC1_CLOSE_CB

DARREC1_UNSUC_RECL

SELGAPC1_External Trip

SG_1_ACT

SG_2_ACT

SG_3_ACT

SG_4_ACT

SG_5_ACT

SG_6_ACT

DISTURBANCE RECORDER

C17

C18

C19

C20

C21

C22

C23

C24

C25

C7

C8

C9

C10

C11

C12

C13

C14

C15

C16

C1

C2

C3

C4

C5

C6

C26

C27

C28

C29

C30

C31

C32

C33

RDRE1

TRIGGERED

OSWGAPC13

IN_2 OUT

SELGAPC4

IN_15 OUT_6

LED 6

GUID-D5C64B52-5763-48FA-AC6A-14257698FEBC V3 EN

Figure 67: Disturbance recorder

All start and operate signals from the protection stages are routed to trigger the disturbance recorder or alternatively only to be recorded by the disturbance recorder depending on the parameter settings. Additionally, the selected autoreclose output signals and the three binary inputs from X120 are also connected. The active setting group is also to be recorded via SG_1_ACT to SG_6_ACT. The disturbance recorder triggered signal indication is connected to LED 6.

Table 20: Disturbance recorder binary channel default value

Channel number

Binary channel 1

Binary channel 2

Binary channel 3

Binary channel 4

Binary channel 5

Binary channel 6

Binary channel 7

Channel id text

PHLPTOC1_START

PHHPTOC1_START

PHHPTOC2_START

PHIPTOC1_START

EFLPTOC1_START

EFLPTOC2_START

EFHPTOC1_START

Binary channel 8

Binary channel 9

Binary channel 10

Binary channel 11

Table continues on next page

EFIPTOC1_START

NSPTOC1_START

NSPTOC2_START

PDNSPTOC1_START

Level trigger mode

1=positive or rising

1=positive or rising

1=positive or rising

1=positive or rising

1=positive or rising

1=positive or rising

1=positive or rising

1=positive or rising

1=positive or rising

1=positive or rising

1=positive or rising

89

Section 3

REF611 standardized configurations

Channel number

Binary channel 12

Binary channel 13

Binary channel 14

Binary channel 15

Binary channel 16

Binary channel 17

Binary channel 18

Binary channel 19

Binary channel 20

Binary channel 21

Binary channel 22

Binary channel 23

Binary channel 24

Binary channel 25

Binary channel 26

Binary channel 27

Binary channel 28

Binary channel 29

Binary channel 30

Binary channel 31

Binary channel 32

Binary channel 33

Channel id text

T1PTTR1_START

PHxPTOC_OPERATE

EFxPTOC_OPERATE

NSPTOC1/2_OPERATE

PDNSPTOC1_OPERATE

T1PPTR1_OPERATE

SELGAPC1_Blocking 1

SELGAPC1_CB_Closed

SELGAPC1_CB_Open

INRPHAR1_BLK2H

CCBRBRF1_TRRET

CCBRBRF1_TRBU

DARREC1_INPRO

DARREC1_CLOSE_CB

DARREC1_UNSUC_RECL

SELGAPC1_External Trip

SG_1_ACT

SG_2_ACT

SG_3_ACT

SG_4_ACT

SG_5_ACT

SG_6_ACT

1MRS757456 D

Level trigger mode

1=positive or rising

4=level trigger off

4=level trigger off

4=level trigger off

4=level trigger off

4=level trigger off

4=level trigger off

4=level trigger off

4=level trigger off

4=level trigger off

4=level trigger off

4=level trigger off

4=level trigger off

4=level trigger off

4=level trigger off

4=level trigger off

4=level trigger off

4=level trigger off

4=level trigger off

4=level trigger off

4=level trigger off

4=level trigger off

TRIP CIRCUIT SUPERVISION

X120-BI3

CB Open Position

SELGAPC1

IN_3 OUT_3

TRPPTRC1_TRIP

TRPPTRC2_TRIP

OR

IN_2

SELGAPC2

OUT_1

OUT_2

TCSSCBR1

BLOCK ALARM

TCSSCBR2

BLOCK ALARM

IN_3

IN_4

OSWGAPC14

OR

OUT

SELGAPC4

IN_16 OUT_7

LED 7

GUID-8D5B4458-2F48-4925-AEC1-F1C49AFBEE22 V2 EN

Figure 68: Trip circuit supervision

Two separate trip circuit supervision functions are included, TCSSCBR1 for PO3

(X100:15-19) and TCSSCBR2 for PO4 (X100:20-24). Both functions are blocked by

Master Trip (TRPPTRC1 and TRPPTRC2) and the circuit breaker open position. The

TCS alarm indication is connected to LED 7.

90 REF611

Application Manual

1MRS757456 D

3.5.3.3

REF611

Application Manual

Section 3

REF611 standardized configurations

Functional diagrams for control

MASTER TRIP #1

PHLPTOC1_OPERATE

PHHPTOC1_OPERATE

PHHPTOC2_OPERATE

PHIPTOC1_OPERATE

EFLPTOC1_OPETATE

EFLPTOC2_OPERATE

EFHPTOC1_OPERATE

EFIPOTC1_OPERATE

NSPTOC1_OPERATE

NSPTOC2_OPERATE

PDNSPTOC1_OPERATE

IN_1

IN_2

IN_3

IN_4

IN_5

IN_6

IN_7

IN_8

IN_9

IN_10

IN_11

OSWGAPC1

OR OUT

SELGAPC1_External Trip

GOOSERCV_BIN 2_OUT

OR

GOOSERCV_BIN 3_OUT

IN1

IN2

MVGAPC1

Q1

Q2

SELGAPC1

IN_4 OUT_4

X120-BI4

RST_LKOUT

CBXCBR1_EXE_OP

DARREC1_OPEN_CB

OR

TRPPTRC1

BLOCK TRIP

OPERATE

RST_LKOUT

CL_LKOUT OR

SELGAPC3

IN_1 OUT_5

X100 PO3

MASTER TRIP #2

PHLPTOC1_OPERATE

PHHPTOC1_OPERATE

PHHPTOC2_OPERATE

PHIPTOC1_OPERATE

EFLPTOC1_OPETATE

EFLPTOC2_OPERATE

EFHPTOC1_OPERATE

EFIPOTC1_OPERATE

NSPTOC1_OPERATE

NSPTOC2_OPERATE

PDNSPTOC1_OPERATE

CCBRBRF1_TRRET

IN_1

IN_2

IN_3

IN_4

IN_5

IN_6

IN_7

IN_8

IN_9

IN_10

IN_11

IN_12

OSWGAPC2

OR

OUT

OR

TRPPTRC2

BLOCK TRIP

OPERATE

RST_LKOUT

CL_LKOUT

SELGAPC3

IN_2 OUT_6

X100 PO4

SELGAPC1_External Trip

GOOSERCV_BIN 2_OUT

OR

GOOSERCV_BIN 3_OUT

RST_LKOUT

X120-BI4

IN1

IN2

MVGAPC1

Q1

Q2

SELGAPC1

IN_4 OUT_4

GUID-66E79F27-D704-4BD5-8778-5B1BB863D7D8 V4 EN

Figure 69: Master trip

The operate signals from the protections and an external trip are connected to the two trip output contacts PO3 (X100:15-19) and PO4 (X100:20-24) via the corresponding

Master Trips TRPPTRC1 and TRPPTRC2. Open control commands to the circuit breaker from local or remote CBXCBR1_EXE_OP or from the autoreclosing

DARREC1_OPEN_CB are connected directly to the output contact PO3

(X100:15-19).

91

Section 3

REF611 standardized configurations

1MRS757456 D

TRPPTRC1 and TRPPTRC2 provide the lockout/latching function, event generation and the trip signal duration setting. One binary input through SELGAPC1 can be connected to the RST_LKOUT input of Master Trip. If the lockout operation mode is selected, it is used to enable the external reset.

CIRCUIT BREAKER CONTROL

X120-BI2

CB Closed Position

X120-BI3

CB Open Posit ion

Always True

IN_2

SELGAPC1

OUT_2

IN_3

IN_11

OUT_3

OUT_5

TRPPTRC1_TRIP

TRPPTRC2_TRIP

T1PTTR1_BLK_CLOSE

DARREC1_CLOSE_CB

AND

CBXCBR1

PO SOPEN

POSCLOSE

ENA_OPEN

ENA_CLOSE

BLK_OPEN

BLK_CLOSE

AU_OPEN

AU_CLOSE

TRIP

SYNC_OK

SYNC_ITL_BYP

SELECTED

EXE_OP

EXE_CL

OP_REQ

CL_REQ

OPENPOS

CLOSEPO S

OKPOS

OPEN_ENAD

CLOSE_ENAD

CBXCBR1_EXE_OP

IN_3

SELGAPC3

OUT_1

OR

X100 PO1

GUID-04CDD1B0-F721-4CE4-A19D-B6BF96C0FB42 V2 EN

Figure 70: Circuit breaker control

The ENA_CLOSE input, which enables the closing of the circuit breaker, is interlocked by two master trip signals. Any one trip will block the breaker from closing. An always true signal is also connected to ENA_CLOSE via SELGAPC1 by default. The open operation is always enabled.

92 REF611

Application Manual

1MRS757456 D

3.5.4

REF611

Application Manual

Section 3

REF611 standardized configurations

COMMON ALARM INDICATION 1 & 2

PHLPTOC1_START

PHHPTOC1_START

PHHPTOC2_START

PHIPTOC1_START

EFLPTOC1_START

EFLPTOC2_START

EFHPTOC1_START

EFIPOTC1_START

NSPTOC1_START

NSPTOC2_START

PDNSPTOC1_START

IN_1

IN_2

IN_3

IN_4

IN_5

IN_6

IN_7

IN_8

IN_9

IN_10

IN_11

OSWGAPC3

OR OUT

IN1

TPGAPC1

OUT1

SELGAPC3

IN_5 OUT_3

IN_9 OUT_4

PHLPTOC1_OPERATE

PHHPTOC1_OPERATE

PHHPTOC2_OPERATE

PHIPTOC1_OPERATE

EFLPTOC1_OPETATE

EFLPTOC2_OPERATE

EFHPTOC1_OPERATE

EFIPOTC1_OPERATE

NSPTOC1_OPERATE

NSPTOC2_OPERATE

PDNSPTOC1_OPERATE

IN_1

IN_2

IN_3

IN_4

IN_5

IN_6

IN_7

IN_8

IN_9

IN_10

IN_11

OSWGAPC7

OR OUT

IN1

TPGAPC3

OUT1

X100 SO1

X100 SO2

GUID-A26141F0-6317-4DB1-BD64-BE704DF361AD V3 EN

Figure 71: Common alarm indication

The signal outputs from the protection relay are connected to give dedicated information.

• Start of any protection function SO1 (X100:10-12)

• Operation (trip) of any protection function SO2 (X100: 13-15)

TPGAPC are timers and used for setting the minimum pulse length for the outputs.

There are seven generic timers (TPGAPC1…7) available in the protection relay.

Switch groups

In configuration B, the switch group function blocks are organized in four groups: binary inputs, internal signal, GOOSE as well as binary outputs and LEDs.

93

Section 3

REF611 standardized configurations

1MRS757456 D

Binary Inputs

(1...4, 5...10*)

Received GOOSE

(0...19)

GOOSE

GOOSE

GOOSE

SELGAPC1

Binary Input s

Binary Inputs

GOOSE

ISWGAPC9

GOO SE Blocking

ISWGAPC10

GOO SE Block CB

ISWGAPC2

ISWGAPC1

Blocking

Protection and Control

PHLPTOC1

PHHPTOC2

EFLPTOC1

PHHPTOC1

PHIPTOC1

EFLPTOC2

EFHPTOC1

NSPTOC1

PDNSPTOC1

CCBRBRF1

CBXCBR1

EFIPTOC1

NSPTOC2

T1PTTR1

INRPHAR1

DARREC1*

TCSSCBR1 TCSSCBR2

Internal Signal

ISWGAPC3 ISWGAPC4

INRPHAR1_BLK2H

SELGAPC2

DARREC1_PROT_CRD

OSWGAPC17

TCS Blocking CBPSOF1_Init iation

* Optional Function

GUID-76F84BA2-5219-46EA-9A19-4B9A2D229A7D V2 EN

Figure 72: Configuration B switch group overview

3.5.4.1

Binary Outputs and LEDs

OSWGAPC2

OSWGAPC1

SELGAPC3

SELGAPC4

Master trip

OSWGAPC6

OSWGAPC5

OSWGAPC4

OSWGAPC3

St art

OSWGAPC10

OSWGAPC9

OSWGAPC8

OSWGAPC7

Trip

OSWGAPC16

OSWGAPC15

OSWGAPC14

OSWGAPC13

OSWGAPC12

OSWGAPC11

Alarm

Binary Outputs

LEDs

Binary Outputs

(1...6, 7..9*)

LEDs

(1 …8)

Binary inputs

Binary inputs group includes one SELGAPC and two ISWGAPCs. SELGAPC1 is used to route binary inputs to ISWGAPC or directly to protection relay functions.

ISWGAPC1 and ISWGAPC2 are used to configure the signal to block the protection functions.

X120-BI1

X120-BI2

X120-BI3

X120-BI4

1 ) X130-BI1

X130-BI2

X130-BI3

X130-BI4

X130-BI5

SELGAPC1

X130-BI6

1 ) Optional binary inputs

GUID-ED968721-94B7-4280-A984-ADD75D5182BF V1 EN

Figure 73: Binary inputs

Blocking 1

Blocking 2

ISWGAPC1

ISWGAPC2

PHLPTOC1_BLOCK

PHHPTOC1_BLOCK

PHHPTOC2_BLOCK

PHIPTOC1_BLOCK

EFLPTOC1_BLOCK

EFLPTOC2_BLOCK

EFHPTOC1_BLOCK

EFIPTOC1_BLOCK

NSPTOC1_BLOCK

NSPTOC2_BLOCK

PDNSPTOC1_BLOCK

T1PTTR1_BLOCK

PHLPTOC1_BLOCK

PHHPTOC1_BLOCK

PHHPTOC2_BLOCK

PHIPTOC1_BLOCK

EFLPTOC1_BLOCK

EFLPTOC2_BLOCK

EFHPTOC1_BLOCK

EFIPTOC1_BLOCK

NSPTOC1_BLOCK

NSPTOC2_BLOCK

PDNSPTOC1_BLOCK

T1PTTR1_BLOCK

94 REF611

Application Manual

1MRS757456 D

Section 3

REF611 standardized configurations

SELGAPC1

SELGAPC1 has inputs from protection relay binary inputs. IN_1 ...

IN_4 are binary inputs from X100. IN_5 ...

IN_10 can be used while X130 optional card is taken into use. An always true signal is connected to IN_11 . SELGAPC1 outputs are used to route inputs to different functions. By setting SELGAPC1, binary inputs can be configured for different purposes.

X120-BI1

X120-BI2

X120-BI3

X120-BI4

1

) X130-BI1

X130-BI2

X130-BI3

X130-BI4

X130-BI5

X130-BI6

X120/1-2 BI1

IN_1

X120/3-2 BI2

IN_2

X120/4-2 BI3

IN_3

X120/5-6 BI4

IN_4

X130/1-2 BI1

IN_5

X130/3-2 BI2

IN_6

X130/4-5 BI3

IN_7

X130/6-5 BI4

IN_8

X130/7-8 BI5

IN_9

X130/9-8 BI6

IN_10

Always True

1 ) Optional binary inputs

GUID-12D6969A-A486-41A3-853C-534194AD4FA9 V1 EN

IN_11

SELGAPC1

OUT_1

OUT_2

CB Closed Position

OUT_3

OUT_4

OUT_5

Blocking 1

CB Open Position

TRPTTRC1/2_

RST_LKOUT

CB Close Enable

ISWGAPC1_IN

CCBRBRF1_POSCLOSE

CBXCBR1_POSCLOSE

SELGAPC2_IN_1

DARREC1_CB_POS

CBXCBR1_POSOPEN

SELGAPC2_IN_2

TRPTTRC1_RST_LKOUT

TRPTTRC2_RST_LKOUT

CBXCBR1_ENA_CLOSE

OUT_6

OUT_7

OUT_8

External Trip

DARREC1_CB_READY

DARREC1_RECL_ON

TRPTTRC1_OPERATE

TRPTTRC2_OPERATE

OUT_9

Setting Group 2

PROTECTION_BI_SG_2

OUT_10

Setting Group 3

OUT_11

Setting Group 4

OUT_12

Blocking 2

PROTECTION_BI_SG_3

PROTECTION_BI_SG_4

ISWGAPC2_IN

Figure 74: SELGAPC1

ISWGAPC1

ISWGAPC1 is used to select which protection functions are to be blocked by changing

ISWGAPC1 parameters. ISWGAPC1 input is routed from SELGAPC1 output

OUT_1 Blocking 1 . ISWGAPC1 outputs are connected to the BLOCK inputs of the protection functions.

REF611

Application Manual

95

Section 3

REF611 standardized configurations

1MRS757456 D

SELGAPC1_OUT_1

Blocking 1

IN

ISWGAPC1

OUT_1

OUT_2

OUT_3

OUT_4

OUT_5

OUT_6

OUT_7

OUT_8

OUT_9

OUT_10

OUT_11

OUT_12

OUT_13

PHLPTOC1_BLOCK

PHHPTOC1_BLOCK

PHHPTOC2_BLOCK

PHIPTOC1_BLOCK

EFLPTOC1_BLOCK

EFLPTOC2_BLOCK

EFHPTOC1_BLOCK

EFIPTOC1_BLOCK

NSPTOC1_BLOCK

NSPTOC2_BLOCK

PDNSPTOC1_BLOCK

T1PTTR1_BLOCK

CBPSOF1_BLOCK

GUID-0D6CBA57-F1A5-4BBE-BF1F-34F79E876171 V2 EN

Figure 75: ISWGAPC1

ISWGAPC2

ISWGAPC2 is used to select which protection functions are to be blocked by changing

ISWGAPC2 parameters. ISWGAPC2 input is routed from SELGAPC1 output

OUT_12 Blocking 2 . ISWGAPC2 outputs are connected to the BLOCK inputs of the protection functions.

96 REF611

Application Manual

1MRS757456 D

3.5.4.2

Section 3

REF611 standardized configurations

SELGAPC1_OUT_12

Blocking 2

IN

ISWGAPC2

OUT_1

OUT_2

OUT_3

OUT_4

OUT_5

OUT_6

OUT_7

OUT_8

OUT_9

OUT_10

OUT_11

OUT_12

OUT_13

GUID-4E83752D-09FE-46D7-AA9F-82C9609C59E8 V2 EN

Figure 76: ISWGAPC2

PHLPTOC1_BLOCK

PHHPTOC1_BLOCK

PHHPTOC2_BLOCK

PHIPTOC1_BLOCK

EFLPTOC1_BLOCK

EFLPTOC2_BLOCK

EFHPTOC1_BLOCK

EFIPTOC1_BLOCK

NSPTOC1_BLOCK

NSPTOC2_BLOCK

PDNSPTOC1_BLOCK

T1PTTR1_BLOCK

CBPSOF1_BLOCK

Internal signals

The internal signal group is used to configure logic connections between function blocks. There are two ISWGAPC instances, one SELGAPC and one OSWGAPC instance in this group.

ISWGAPC3 is used to configure which protection function enables current multiplier if inrush is detected by the INRPHAR1 function. ISWGAPC4 is used to configure the cooperation between the autoreclose function and protection functions. Autoreclose function DARREC1 can block protection functions according to the application.

SELGAPC2 is used to configure TCS blocking from the circuit breaker open or close position. OSWGAPC17 is used for connecting switch onto fault function CBPSOF.

The inputs are start signals routed from the protection functions.

REF611

Application Manual

97

Section 3

REF611 standardized configurations

ISWGAPC3

PHLPTOC1_ENA_MULT

PHHPTOC1_ENA_MULT

PHHPTOC2_ENA_MULT

PHIPTOC1_ENA_MULT

EFLPTOC1_ENA_MULT

EFLPTOC2_ENA_MULT

EFHPTOC1_ENA_MULT

EFIPTOC1_ENA_MULT

NSPTOC1_ENA_MULT

NSPTO C2_ENA_MULT

T1PTTR1_ENA_MULT

ISWGAPC4

PHLPTOC1_BLOCK

PHHPTOC1_BLOCK

PHHPTOC2_BLOCK

EFLPTOC1_BLOCK

EFLPTOC2_BLOCK

EFHPTOC1_BLOCK

SELGAPC1_OUT_2

SELGAPC1_OUT_3

CB Closed Position

CB Open Posit ion

SELGAPC2

TCSSCBR1_BLOCK

TCSSCBR2_BLOCK

PHLPTOC1_START

PHHPTOC1_START

PHHPTOC2_START

PHIPTOC1_START

EFLPTOC1_START

EFLPTOC2_START

EFHPTOC1_START

EFIPTOC1_START

NSPTO C1_START

NSPTOC2_START

PDNSPTO C1_START

T1PTTR1_START

OSWGAPC17

St art

DLYD

CBPSOF1_INIT

1MRS757456 D

GUID-4571B98B-EB9A-45A4-A4B4-6AC63C16D01C V2 EN

Figure 77: Internal signal

ISWGAPC3

ISWGAPC3 input is used to configure which protection function enables current multiplier while inrush is detected by INRPHAR1 by changing the ISWGAPC3 parameters. ISWGAPC3 input is routed from INRPHAR1 output BLK2H .

ISWGAPC3 outputs are connected to the ENA_MULT inputs of the protection functions.

98 REF611

Application Manual

1MRS757456 D

REF611

Application Manual

Section 3

REF611 standardized configurations

INRPHAR1_BLK2H IN

GUID-0FB9BAD2-E624-4310-A267-6E71E936A803 V1 EN

Figure 78: ISWGAPC3

ISWGAPC3

OUT_1

OUT_2

OUT_3

OUT_4

OUT_5

OUT_6

OUT_7

OUT_8

OUT_9

OUT_10

OUT_11

PHLPTOC1_ENA_MULT

PHHPTOC1_ENA_MULT

PHHPTOC2_ENA_MULT

PHIPTOC1_ENA_MULT

EFLPTOC1_ENA_MULT

EFLPTOC2_ENA_MULT

EFHPTOC1_ENA_MULT

EFIPTOC1_ENA_MULT

NSPTOC1_ENA_MULT

NSPTOC2_ENA_MULT

T1PTTR1_ENA_MULT

ISWGAPC4

ISWGAPC4 input is used to configure which protection function is blocked by the autoreclosing function by changing the ISWGAPC4 parameters. ISWGAPC4 input is routed from DARREC1 output PROT_CRD . ISWGAPC4 outputs are connected to the

BLOCK inputs of some of the protection functions.

DARREC1_PROT_CRD IN

ISWGAPC4

OUT_1

OUT_2

OUT_3

OUT_4

OUT_5

OUT_6

PHLPTOC1_BLOCK

PHHPTOC1_BLOCK

PHHPTOC2_BLOCK

EFLPTOC1_BLOCK

EFLPTOC2_BLOCK

EFHPTOC1_BLOCK

GUID-C935C34F-80CD-4A23-99BC-D997FC45B22F V1 EN

Figure 79: ISWGAPC4

SELGAPC2

SELGAPC2 inputs are the circuit breaker closed and open positions routed from

SELGACP1. SELGAPC2 outputs are routed to the BLOCK input of the trip circuit supervision functions TCSSCBR1 and TCSSCBR2.

By default, X100-PO3 and PO4 are both used for the open circuit breaker.

TCSSCBR1 and TCSSCBR2 are both blocked by the circuit breaker open position. If

X100-PO3 is used for closing the circuit breaker, TCSSCBR1 need to be blocked by the circuit breaker close position (OUT_1 connection=IN_1). If X100-PO4 is used for

99

Section 3

REF611 standardized configurations

1MRS757456 D closing the circuit breaker, TCSSCBR2 needs to be blocked by the circuit breaker close position (OUT_2 connection=IN_1).

SELGAPC1_OUT_2

SELGAPC1_OUT_3

CB Closed Position

IN_1

CB Open Position

IN_2

SELGAPC2

OUT_1

OUT_2

GUID-D390241C-1F0F-4AE7-A803-86931E1E0BEF V1 EN

Figure 80: SELGAPC2

TCSSCBR1_BLOCK

TCSSCBR2_BLOCK

OSWGAPC17

OSWGAPC17 is used to route the protection function start signals to the

StartDLYD input of the switch onto fault function CBPSOF. CBPSOF provides an instantaneous trip or a time delayed trip when closing the breaker while a fault exists.

OSWGAPC17 output is connected to CBPSOF function indicating the detected fault.

OSWGAPC17

PHLPTOC1_START

PHHPTOC1_START

PHHPTOC2_START

PHIPTOC1_START

EFHPTOC1_START

EFLPTOC2_START

EFHPTOC1_START

EFIPTOC1_START

NSPPTOC1_START

NSPPTOC2_START

PDNSPTO C1_START

T1PTTR1_START

IN_1

IN_2

IN_3

IN_4

IN_5

IN_6

IN_7

IN_8

IN_9

IN_10

IN_11

IN_12

OUT

St art DLYD

CBPSOF1_INIT

GUID-702BA11C-5E0A-4247-942E-76CC27063BB2 V1 EN

Figure 81: OSWGAPC17

100 REF611

Application Manual

1MRS757456 D

3.5.4.3

Section 3

REF611 standardized configurations

Binary outputs and LEDs

In configuration B, signals are routed to binary outputs and LEDs are configured by

OSWGAPC. The 16 OSWGAPC instances are categorized in four groups, including two master trip, four start, four trip and six alarm signals. The OSWGAPC output is connected to binary outputs and LEDs via SELGAPC3 and SELGAPC4.

• SELGAPC3 is used to configure the OSWGAPC signals to protection relay binary outputs. SELGAPC4 is used to configure the OSWGAPC signals to

LEDs.

• OSWGAPC1 and OSWGAPC2 are used for Master trip. The inputs are from the protection functions operate and breaker failures retrip.

• OSWGAPC3 to OSWGAPC6 are used for the start signal. The inputs are start signals from the protection functions.

• OSWGAPC7 to OSWGAPC10 are used for the trip signal. The inputs are operation signals from the protection functions.

• OSWGAPC11 to OSWGAPC16 are used for the alarm signal. The inputs are alarm signals from the protection and monitoring functions.

REF611

Application Manual

101

Section 3

REF611 standardized configurations

1MRS757456 D

PHLPTOC1_OPERATE

PHHPTOC1_OPERATE

PHHPTOC2_OPERATE

PHIPTOC1_OPERATE

EFLPTOC1_OPERATE

EFLPTOC2_OPERATE

EFHPTOC1_OPERATE

EFIPTOC1_OPERATE

NSPTOC1_OPERATE

NSPTOC2_OPERATE

PDNSPTOC1_OPERATE

T1PTTR1_OPERATE

CCBRBRF1_TRRET

CBPSOF1_OPERATE

OSWGAPC1

Master Trip 1

TRPPTRC1

OSWGAPC2

Master Trip 2

TRPPTRC2

PHLPTOC1_START

PHHPTOC1_START

PHHPTOC2_START

PHIPTOC1_START

EFLPTOC1_START

EFLPTOC2_START

EFHPTOC1_START

EFIPTOC1_START

NSPTOC1_START

NSPTOC2_START

PDNSPTOC1_START

T1PTTR1_START

PHLPTOC1_OPERATE

PHHPTOC1_OPERATE

PHHPTOC2_OPERATE

PHIPTOC1_OPERATE

EFLPTOC1_OPERATE

EFLPTOC2_OPERATE

EFHPTOC1_OPERATE

EFIPTOC1_OPERATE

NSPTOC1_OPERATE

NSPTOC2_OPERATE

PDNSPTOC1_OPERATE

T1PTTR1_OPERATE

T1PTTR1_ALARM

RDRE_TRIGGERED

TCSSCBR1_ALARM

TCSSCBR2_ALARM

CCBRBRF1_TRBU

CCBRBRF1_TRRET

DARREC1_INPRO

DARREC1_LOCKED

DARREC1_PROT_CRD

DARREC1_UNSUC_RECL

DARREC1_AR_ON

DARREC1_READY

SELGAPC1_OUT_8

TRPPTRC1_CL_LKOUT

TRPPTRC2_CL_LKOUT

OSWGAPC3

OSWGAPC4

OSWGAPC5

OSWGAPC6

OSWGAPC7

OSWGAPC8

OSWGAPC9

OSWGAPC10

Start 1

IN1

TPGAPC1

OUT1

Start 2 IN2 OUT2

Start 3

IN1

TPGAPC2

OUT1

Start 4 IN2

OUT2

Trip 1

IN1

TPGAPC3

OUT1

Trip 2

Trip 3

IN2 OUT2

IN1

TPGAPC4

OUT1

Trip 4

IN2 OUT2

OSWGAPC11 Alarm 1

IN1

TPGAPC5

OUT1

OSWGAPC12 Alarm 2

IN2 OUT2

Alarm 3

IN1

TPGAPC6

OUT1

OSWGAPC13

OSWGAPC14 Alarm 4

IN2 OUT2

Alarm 5

IN1

TPGAPC7

OUT1 OSWGAPC15

OSWGAPC16 Alarm 6

IN2 OUT2

GUID-3F9B4020-ABC3-4C04-8260-C5900074AA6A V2 EN

Figure 82: Binary outputs

SELGAPC3

X100 PO1

X100 PO2

X100 SO1

X100 SO2

X100 PO3

X100 PO4

X130 SO1

1 )

X130 SO2

X130 SO3

1 ) Optional binary outputs

102 REF611

Application Manual

1MRS757456 D

REF611

Application Manual

Section 3

REF611 standardized configurations

PHLPTOC1_OPERATE

PHHPTOC1_OPERATE

PHHPTOC2_OPERATE

PHIPTOC1_OPERATE

EFLPTOC1_OPERATE

EFLPTOC2_OPERATE

EFHPTOC1_OPERATE

EFIPTOC1_OPERATE

NSPTOC1_OPERATE

NSPTOC2_OPERATE

PDNSPTOC1_OPERATE

T1PTTR1_OPERATE

CCBRBRF1_TRRET

CBPSOF1_OPERATE

OSWGAPC1

Master Trip 1

TRPPTRC1

OSWGAPC2

Master Trip 2

TRPPTRC2

PHLPTOC1_START

PHHPTOC1_START

PHHPTOC2_START

PHIPTOC1_START

EFLPTOC1_START

EFLPTOC2_START

EFHPTOC1_START

EFIPTOC1_START

NSPTOC1_START

NSPTOC2_START

PDNSPTOC1_START

T1PTTR1_START

OSWGAPC3 Start 1

OSWGAPC4 Start 2

OSWGAPC5 Start 3

OSWGAPC6 Start 4

PHLPTOC1_OPERATE

PHHPTOC1_OPERATE

PHHPTOC2_OPERATE

PHIPTOC1_OPERATE

EFLPTOC1_OPERATE

EFLPTOC2_OPERATE

EFHPTOC1_OPERATE

EFIPTOC1_OPERATE

NSPTOC1_OPERATE

NSPTOC2_OPERATE

PDNSPTOC1_OPERATE

T1PTTR1_OPERATE

T1PTTR1_ALARM

RDRE_TRIGGERED

TCSSCBR1_ALARM

TCSSCBR2_ALARM

CCBRBRF1_TRBU

CCBRBRF1_TRRET

DARREC1_INPRO

DARREC1_LOCKED

DARREC1_PROT_CRD

DARREC1_UNSUC_RECL

DARREC1_AR_ON

DARREC1_READY

SELGAPC1_OUT_8

TRPPTRC1_CL_LKOUT

TRPPTRC2_CL_LKOUT

OSWGAPC7

Trip 1

OSWGAPC8

Trip 2

OSWGAPC9

Trip 3

OSWGAPC10

Trip 4

OSWGAPC11 Alarm 1

OSWGAPC12

Alarm 2

OSWGAPC13 Alarm 3

OSWGAPC14 Alarm 4

OSWGAPC15

Alarm 5

OSWGAPC16 Alarm 6

SELGAPC4

GUID-1938DEEA-E94A-4741-AB88-051B077CEFD7 V2 EN

Figure 83: LEDs

SELGAPC3

SELGAPC3 is used to configure the OSWGAPC outputs to the protection relay binary outputs. Master trip signals are connected to SELGAPC3 via TRPPTRC. Start, trip and alarm signals are connected to SELGAPC3 via TPGAPC. TPGAPC are timers and used for setting the minimum pulse length for the outputs.

LED1

LED2

LED3

LED4

LED5

LED6

LED7

LED8

103

Section 3

REF611 standardized configurations

1MRS757456 D

CBXCBR_EXE_OP

DARREC_OPEN_CB

TRPPTRC1_TRIP

TRPPTRC2_TRIP

CBXCBR_EXE_CL

DARREC_CLOSE_CB

CCBRBRF1_TRBU

OSWGAPC3_OUT

OSWGAPC4_OUT

OSWGAPC5_OUT

OSWGAPC6_OUT

OSWGAPC7_OUT

OSWGAPC8_OUT

OSWGAPC9_OUT

OSWGAPC10_OUT

OSWGAPC11_OUT

OSWGAPC12_OUT

OSWGAPC13_OUT

OSWGAPC14_OUT

OSWGAPC15_OUT

OSWGAPC16_OUT

SELGAPC3 outputs are connected with the X100 binary outputs. If the X130 optional card is taken into use, SELGAPC3 outputs are also connected to the X130 binary outputs.

CB Open 1

IN_1

CB Open 2

IN_2

SELGAPC3

OUT_1

OUT_2

CB Close

IN_3

Backup Trip

IN_4

OUT_3

OUT_4

IN1 OUT1

TPGAPC1

IN2 OUT2

Start 1

Start 2

IN_5

IN_6

OUT_5

OUT_6

IN1 OUT1

TPGAPC2

IN2 OUT2

Start 3

Start 4

IN_7

IN_8

OUT_7

OUT_8

IN1 OUT1

TPGAPC3

IN2 OUT2

Trip 1

Trip 2

IN_9

IN_10

OUT_9

IN1 OUT1

TPGAPC4

IN2 OUT2

Trip 3

Trip 4

IN1 OUT1

TPGAPC5

IN2 OUT2

Alarm 1

Alarm 2

IN_11

IN_12

IN_13

IN_14

IN1 OUT1

TPGAPC6

IN2 OUT2

Alarm 3

Alarm 4

IN_15

IN_16

IN1 OUT1

TPGAPC7

IN2 OUT2

Alarm 5

Alarm 6

IN_17

IN_18

X100 PO1

X100 PO2

X100 SO1

X100 SO2

X100 PO3

X100 PO4

X130 SO1

1 )

X130 SO2

X130 SO3

1

Optional binary outputs

GUID-FF6B7926-5581-42ED-B604-4C05AB11C971 V1 EN

Figure 84: SELGAPC3

SELGAPC4

SELGAPC4 is used to configure OSWGAPC outputs to LEDs. Master trip signals are connected to SELGAPC4 via TRPPTRC. Start, trip and alarm signals are connected to SELGAPC4 directly. SELGAPC4 outputs are connected with programmable

LED1 to LED8.

104 REF611

Application Manual

1MRS757456 D

Section 3

REF611 standardized configurations

CBXCBR_EXE_OP

DARREC_OPEN_CB

TRPPTRC1_TRIP

TRPPTRC2_TRIP

CBXCBR_EXE_CL

DARREC_CLOSE_CB

CCBRBRF1_TRBU

OSWGAPC3_OUT

OSWGAPC4_OUT

OSWGAPC5_OUT

OSWGAPC6_OUT

OSWGAPC7_OUT

OSWGAPC8_OUT

OSWGAPC9_OUT

OSWGAPC10_OUT

OSWGAPC11_OUT

OSWGAPC12_OUT

OSWGAPC13_OUT

OSWGAPC14_OUT

OSWGAPC15_OUT

OSWGAPC16_OUT

CB Open 1

IN_1

CB Open 2

IN_2

SELGAPC4

CB Close

IN_3

Backup Trip

IN_4

Start 1

IN_5

Start 2

IN_6

Start 3

IN_7

Start 4

IN_8

Trip 1

IN_9

Trip 2

IN_10

Trip 3

IN_11

Trip 4

IN_12

Alarm 1

IN_13

Alarm 2

IN_14

OUT_1

OUT_2

OUT_3

OUT_4

OUT_5

OUT_6

OUT_7

OUT_8

Alarm 3

IN_15

Alarm 4

IN_16

Alarm 5

IN_17

Alarm 6

IN_18

LED1

LED2

LED3

LED4

LED5

LED6

LED7

LED8

GUID-D815D8AC-340D-4FB8-A971-0CE6CDE5AD1F V1 EN

Figure 85: SELGAPC4

Master trip OSWGAPCs

OSWGAPC1 and OSWGAPC2 are used to route the protection function operate signals to Master trip. OSWGAPC1 and OSWGAPC2 have the same inputs from the protection function operates. The output is connected to the TRPPTRC function. The default connections for OSWGAPC1 and OSWGAPC2 are different.

REF611

Application Manual

105

Section 3

REF611 standardized configurations

PHLPTOC1_OPERATE

PHHPTOC1_OPERATE

PHHPTOC2_OPERATE

PHIPTOC1_OPERATE

EFLPTOC1_OPERATE

EFLPTOC2_OPERATE

EFHPTOC1_OPERATE

EFIPTOC1_OPERATE

NSPTOC1_OPERATE

NSPTOC2_OPERATE

PDNSPTOC1_OPERATE

T1PTTR1_OPERATE

CCBRBRF1_TRRET

CBPSOF1_OPERATE

GUID-55CE95A2-E61E-4DA1-A888-F595AE088178 V2 EN

Figure 86: OSWGAPC1

IN_5

IN_6

IN_7

IN_8

IN_9

IN_10

IN_11

IN_12

IN_13

IN_14

IN_1

IN_2

IN_3

IN_4

OSWGAPC1

OUT

Master trip 1

TRPPTRC 1_OPERATE

1MRS757456 D

106 REF611

Application Manual

1MRS757456 D

Section 3

REF611 standardized configurations

PHLPTOC1_OPERATE

PHHPTOC1_OPERATE

PHHPTOC2_OPERATE

PHIPTOC1_OPERATE

EFLPTOC1_OPERATE

EFLPTOC2_OPERATE

EFHPTOC1_OPERATE

EFIPTOC1_OPERATE

NSPTOC1_OPERATE

NSPTOC2_OPERATE

PDNSPTOC1_OPERATE

T1PTTR1_OPERATE

CCBRBRF1_TRRET

CBPSOF1_OPERATE

IN_5

IN_6

IN_7

IN_8

IN_9

IN_10

IN_11

IN_12

IN_13

IN_14

IN_1

IN_2

IN_3

IN_4

OSWGAPC2

OUT

Master trip 2

TRPPTRC 2_OPERATE

GUID-239E2970-724D-47ED-9C11-8F00BB329EEB V2 EN

Figure 87: OSWGAPC2

Start OSWGAPCs

OSWGAPC instances 3...6 are used to configure the protection start signals. These four OSWGAPCs have the same inputs from the protection function start signals. The output is routed to SELGAPC3 via the TPGAPC timer and to SELGAPC4 directly.

REF611

Application Manual

107

Section 3

REF611 standardized configurations

PHLPTOC1_START

PHHPTOC1_START

PHHPTOC2_START

PHIPTOC1_START

EFLPTOC1_START

EFLPTOC2_START

EFHPTOC1_START

EFIPTOC1_START

NSPTOC1_START

NSPTOC2_START

PDNSPTOC1_START

T1PTTR1_START

IN_5

IN_6

IN_7

IN_8

IN_9

IN_10

IN_11

IN_12

IN_1

IN_2

IN_3

IN_4

OSWGAPC3

OUT

Start 1 TPGAPC1_IN1

SELGAPC4_IN_5

PHLPTOC1_START

PHHPTOC1_START

PHHPTOC2_START

PHIPTOC1_START

EFLPTOC1_START

EFLPTOC2_START

EFHPTOC1_START

EFIPTOC1_START

NSPTOC1_START

NSPTOC2_START

PDNSPTOC1_START

T1PTTR1_START

GUID-37ADCAC6-7D63-4AC8-8CAA-B6D4573123FE V1 EN

Figure 88: OSWGAPC3

IN_5

IN_6

IN_7

IN_8

IN_9

IN_10

IN_11

IN_12

IN_1

IN_2

IN_3

IN_4

OSWGAPC4

OUT

Start 2 TPGAPC1_IN2

SELGAPC4_IN_6

GUID-C6DF86BC-DDC4-4680-94F1-667864F9570C V1 EN

Figure 89: OSWGAPC4

1MRS757456 D

108 REF611

Application Manual

1MRS757456 D

REF611

Application Manual

Section 3

REF611 standardized configurations

PHLPTOC1_START

PHHPTOC1_START

PHHPTOC2_START

PHIPTOC1_START

EFLPTOC1_START

EFLPTOC2_START

EFHPTOC1_START

EFIPTOC1_START

NSPTOC1_START

NSPTOC2_START

PDNSPTOC1_START

T1PTTR1_START

IN_5

IN_6

IN_7

IN_8

IN_9

IN_10

IN_11

IN_12

IN_1

IN_2

IN_3

IN_4

OSWGAPC5

OUT

Start 3 TPGAPC2_IN1

SELGAPC4_IN_7

PHLPTOC1_START

PHHPTOC1_START

PHHPTOC2_START

PHIPTOC1_START

EFLPTOC1_START

EFLPTOC2_START

EFHPTOC1_START

EFIPTOC1_START

NSPTOC1_START

NSPTOC2_START

PDNSPTOC1_START

T1PTTR1_START

GUID-DC9B1877-7BC1-45C6-8E61-85750AE9B22D V1 EN

Figure 90: OSWGAPC5

IN_5

IN_6

IN_7

IN_8

IN_9

IN_10

IN_11

IN_12

IN_1

IN_2

IN_3

IN_4

OSWGAPC6

OUT

Start 4 TPGAPC2_IN2

SELGAPC4_IN_8

GUID-EBDD8FE5-50C7-4097-A48D-E5314E4F968C V1 EN

Figure 91: OSWGAPC6

109

Section 3

REF611 standardized configurations

1MRS757456 D

Trip OSWGAPCs

OSWGAPC instances 7...10 are used to configure the protection operate signals which belong to the trip group. These four OSWGAPCs have the same inputs from the operate signals of the protection functions. The output is routed to SELGAPC3 via the

TPGAPC timer and to SELGAPC4 directly.

PHLPTOC1_OPERATE

PHHPTOC1_OPERATE

PHHPTOC2_OPERATE

PHIPTOC1_OPERATE

EFLPTOC1_OPERATE

EFLPTOC2_OPERATE

EFHPTOC1_OPERATE

EFIPTOC1_OPERATE

NSPTOC1_OPERATE

NSPTOC2_OPERATE

PDNSPTOC1_OPERATE

T1PTTR1_OPERATE

CBPSOF1_OPERATE

IN_5

IN_6

IN_7

IN_8

IN_9

IN_10

IN_11

IN_12

IN_1

IN_2

IN_3

IN_4

IN_13

OSWGAPC7

OUT

Trip 1 TPGAPC3_IN1

SELGAPC4_IN_9

GUID-1DCBC895-AD32-4C02-983B-AB81D46FC2DE V2 EN

Figure 92: OSWGAPC7

110 REF611

Application Manual

1MRS757456 D

Section 3

REF611 standardized configurations

PHLPTOC1_OPERATE

PHHPTOC1_OPERATE

PHHPTOC2_OPERATE

PHIPTOC1_OPERATE

EFLPTOC1_OPERATE

EFLPTOC2_OPERATE

EFHPTOC1_OPERATE

EFIPTOC1_OPERATE

NSPTOC1_OPERATE

NSPTOC2_OPERATE

PDNSPTOC1_OPERATE

T1PTTR1_OPERATE

CBPSOF1_OPERATE

GUID-122AD794-D4C7-4E43-B8AE-0786F41437FF V2 EN

Figure 93: OSWGAPC8

IN_5

IN_6

IN_7

IN_8

IN_9

IN_10

IN_11

IN_12

IN_13

IN_1

IN_2

IN_3

IN_4

OSWGAPC8

OUT

Trip 2 TPGAPC3_IN2

SELGAPC4_IN_10

REF611

Application Manual

111

Section 3

REF611 standardized configurations

PHLPTOC1_OPERATE

PHHPTOC1_OPERATE

PHHPTOC2_OPERATE

PHIPTOC1_OPERATE

EFLPTOC1_OPERATE

EFLPTOC2_OPERATE

EFHPTOC1_OPERATE

EFIPTOC1_OPERATE

NSPTOC1_OPERATE

NSPTOC2_OPERATE

PDNSPTOC1_OPERATE

T1PTTR1_OPERATE

CBPSOF1_OPERATE

GUID-93D4C888-0438-4009-97DC-CDF241694E4D V2 EN

Figure 94: OSWGAPC9

IN_5

IN_6

IN_7

IN_8

IN_9

IN_10

IN_11

IN_12

IN_13

IN_1

IN_2

IN_3

IN_4

OSWGAPC9

OUT

Trip 3 TPGAPC4_IN1

SELGAPC4_IN_11

1MRS757456 D

112 REF611

Application Manual

1MRS757456 D

Section 3

REF611 standardized configurations

PHLPTOC1_OPERATE

PHHPTOC1_OPERATE

PHHPTOC2_OPERATE

PHIPTOC1_OPERATE

EFLPTOC1_OPERATE

EFLPTOC2_OPERATE

EFHPTOC1_OPERATE

EFIPTOC1_OPERATE

NSPTOC1_OPERATE

NSPTOC2_OPERATE

PDNSPTOC1_OPERATE

T1PTTR1_OPERATE

CBPSOF1_OPERATE

IN_5

IN_6

IN_7

IN_8

IN_9

IN_10

IN_11

IN_12

IN_13

IN_1

IN_2

IN_3

IN_4

OSWGAPC10

OUT

Trip 4 TPGAPC4_IN2

SELGAPC4_IN_12

GUID-A4DED42E-2140-4D06-83E6-A23979821AB2 V2 EN

Figure 95: OSWGAPC10

Alarm OSWGAPCs

OSWGAPC instances 11...16 are used to configure the alarm signals which belong to the alarm group. These six OSWGAPCs have the same inputs from the alarm signals.

The output is routed to SELGAPC3 via TPGAPC timer and to SELGAPC4 directly.

REF611

Application Manual

113

Section 3

REF611 standardized configurations

T1PTTR1_ALARM

RDRE_TRIGGERED

IN_1

IN_2

TCSSCBR1_ALARM

TCSSCBR2_ALARM

IN_3

IN_4

CCBRBRF1_TRBU

CCBRBRF1_TRRET

IN_5

IN_6

DARREC1_INPRO IN_7

DARREC1_LOCKED

DARREC1_PROT_CRD

DARREC1_UNSUC_RECL

DARREC1_AR_ON

DARREC1_READY

SELGAPC1_OUT_8

TRPPTRC1_CL_LKOUT

IN_8

IN_9

IN_10

IN_11

IN_12

External Trip

IN_13

TRPPTRC2_CL_LKOUT

IN_14

IN_15

OSWGAPC11

OUT

Alarm 1 TPGAPC5_IN1

SELGAPC4_IN_13

GUID-8A337ED0-85C0-404C-BE93-C8F77FDB2928 V1 EN

Figure 96: OSWGAPC11

1MRS757456 D

114 REF611

Application Manual

1MRS757456 D

Section 3

REF611 standardized configurations

T1PTTR1_ALARM

RDRE_TRIGGERED

IN_1

IN_2

TCSSCBR1_ALARM

TCSSCBR2_ALARM

IN_3

IN_4

CCBRBRF1_TRBU

CCBRBRF1_TRRET

IN_5

IN_6

DARREC1_INPRO IN_7

DARREC1_LOCKED

DARREC1_PROT_CRD

DARREC1_UNSUC_RECL

DARREC1_AR_ON

DARREC1_READY

SELGAPC1_OUT_8

TRPPTRC1_CL_LKOUT

TRPPTRC2_CL_LKOUT

IN_8

IN_9

IN_10

IN_11

IN_12

External Trip

IN_13

IN_14

IN_15

OSWGAPC12

OUT

Alarm 2 TPGAPC5_IN2

SELGAPC4_IN_14

GUID-B43B138E-F672-41BF-B9DA-AAD80C516D14 V1 EN

Figure 97: OSWGAPC12

REF611

Application Manual

115

Section 3

REF611 standardized configurations

T1PTTR1_ALARM

RDRE_TRIGGERED

IN_1

IN_2

TCSSCBR1_ALARM

TCSSCBR2_ALARM

IN_3

IN_4

CCBRBRF1_TRBU

CCBRBRF1_TRRET

IN_5

IN_6

DARREC1_INPRO IN_7

DARREC1_LOCKED

DARREC1_PROT_CRD

DARREC1_UNSUC_RECL

DARREC1_AR_ON

DARREC1_READY

SELGAPC1_OUT_8

TRPPTRC1_CL_LKOUT

IN_8

IN_9

IN_10

IN_11

IN_12

External Trip

IN_13

TRPPTRC2_CL_LKOUT

IN_14

IN_15

OSWGAPC13

OUT

Alarm 3 TPGAPC6_IN1

SELGAPC4_IN_15

GUID-CE98DECE-330C-45E7-B834-0906072EE83B V1 EN

Figure 98: OSWGAPC13

1MRS757456 D

116 REF611

Application Manual

1MRS757456 D

Section 3

REF611 standardized configurations

T1PTTR1_ALARM

RDRE_TRIGGERED

IN_1

IN_2

TCSSCBR1_ALARM

TCSSCBR2_ALARM

IN_3

IN_4

CCBRBRF1_TRBU

CCBRBRF1_TRRET

IN_5

IN_6

DARREC1_INPRO IN_7

DARREC1_LOCKED

DARREC1_PROT_CRD

DARREC1_UNSUC_RECL

DARREC1_AR_ON

DARREC1_READY

SELGAPC1_OUT_8

TRPPTRC1_CL_LKOUT

IN_8

IN_9

IN_10

IN_11

IN_12

External Trip

IN_13

TRPPTRC2_CL_LKOUT

IN_14

IN_15

OSWGAPC14

OUT

Alarm 4 TPGAPC6_IN2

SELGAPC4_IN_16

GUID-E92BEBCD-0151-41E9-BBAD-BADC4B774605 V1 EN

Figure 99: OSWGAPC14

REF611

Application Manual

117

Section 3

REF611 standardized configurations

T1PTTR1_ALARM

RDRE_TRIGGERED

IN_1

IN_2

TCSSCBR1_ALARM

TCSSCBR2_ALARM

IN_3

IN_4

CCBRBRF1_TRBU

CCBRBRF1_TRRET

IN_5

IN_6

DARREC1_INPRO IN_7

DARREC1_LOCKED

DARREC1_PROT_CRD

DARREC1_UNSUC_RECL

DARREC1_AR_ON

DARREC1_READY

SELGAPC1_OUT_8

TRPPTRC1_CL_LKOUT

IN_8

IN_9

IN_10

IN_11

IN_12

External Trip

IN_13

TRPPTRC2_CL_LKOUT

IN_14

IN_15

OSWGAPC15

OUT

Alarm 5 TPGAPC7_IN1

SELGAPC4_IN_17

GUID-258C10A2-665D-4BFA-8D20-059586803C6C V1 EN

Figure 100: OSWGAPC15

1MRS757456 D

118 REF611

Application Manual

1MRS757456 D

3.5.4.4

Section 3

REF611 standardized configurations

T1PTTR1_ALARM

RDRE_TRIGGERED

IN_1

IN_2

TCSSCBR1_ALARM

TCSSCBR2_ALARM

IN_3

IN_4

CCBRBRF1_TRBU

CCBRBRF1_TRRET

IN_5

IN_6

DARREC1_INPRO IN_7

DARREC1_LOCKED

DARREC1_PROT_CRD

DARREC1_UNSUC_RECL

DARREC1_AR_ON

DARREC1_READY

SELGAPC1_OUT_8

TRPPTRC1_CL_LKOUT

IN_8

IN_9

IN_10

IN_11

IN_12

External Trip

IN_13

TRPPTRC2_CL_LKOUT

IN_14

IN_15

OSWGAPC16

OUT

Alarm 6 TPGAPC7_IN2

SELGAPC4_IN_18

GUID-7CFDD919-7415-4AFC-B970-84688BEFD70A V1 EN

Figure 101: OSWGAPC16

GOOSE

In the configuration, there are twenty GOOSERCV_BIN functions. Each

GOOSERVC_BIN function can be connected to one received binary GOOSE signal.

The signal connection can be configured in PCM600.

GOOSERCV_BIN instances 0 and 1 are used for blocking the protection functions.

Signals from these two GOOSERCV_BINs are connected to ISWGAPC9.

ISWGAPC9 is used to configure which protection function is blocked.

GOOSERCV_BIN instances 2 and 3 are used for tripping from GOOSE. Signals from these two GOOSERCV_BINs are connected to TRPPTRC1 and TRPPTRC2 trip.

GOOSERCV_BIN instances 4 to 19 are used for blocking the circuit breaker operation. Signals from these 16 GOOSERCV_BINs are connected to ISWGAPC10.

ISWGAPC10 is used to configure GOOSE input signal to block the circuit breaker open or close operation.

REF611

Application Manual

119

Section 3

REF611 standardized configurations

1MRS757456 D

GOOSERCV_BIN:0

GOOSERCV_BIN:1

GOOSERCV_BIN:2

OR

GOOSE Blcoking

ISWGAPC9

PHLPTOC1_BLOCK

PHHPTOC1_BLOCK

PHHPTOC2_BLOCK

PHIPTOC1_BLOCK

EFLPTOC1_BLOCK

EFLPTOC2_BLOCK

EFHPTOC1_BLOCK

EFIPTOC1_BLOCK

NSPTOC1_BLOCK

NSPTOC2_BLOCK

PDNSPTOC1_BLOCK

T1PTTR1_BLOCK

CBPSOF1_BLOCK

OR

GOOSE

External Trip TRPPTRC1_OPERATE

TRPPTRC2_OPERATE

GOOSERCV_BIN:3

GOOSERCV_BIN:4

GOOSERCV_BIN:5 OR GOOSE Block CB ISWGAPC10

CBXCBR1_BLK_CLOSE

CBXCBR1_BLK_OPEN

GOOSERCV_BIN:19

GUID-344C14FB-6F56-4A40-ADA5-639B82C77501 V2 EN

Figure 102: GOOSE overview

ISWGAPC9

ISWGAPC9 is used to configure which protection functions can be blocked by the received GOOSE signals. ISWGAPC9 inputs are received GOOSE signals from

GOOSERCV_BIN:0 and GOOSERCV_BIN:1. The outputs are connected to block inputs of the protection functions.

120 REF611

Application Manual

1MRS757456 D

3.6

3.6.1

REF611

Application Manual

Section 3

REF611 standardized configurations

GOOSERCV_BIN:0_OUT

GOOSERCV_BIN:1_OUT

GOOSE Blocking

IN

ISWGAPC9

OUT_1

OUT_2

OUT_3

OUT_4

OUT_5

OUT_6

OUT_7

OUT_8

OUT_9

OUT_10

OUT_11

OUT_12

OUT_13

PHLPTOC1_BLOCK

PHHPTOC1_BLOCK

PHHPTOC2_BLOCK

PHIPTOC1_BLOCK

EFLPTOC1_BLOCK

EFLPTOC2_BLOCK

EFHPTOC2_BLOCK

EFIPTOC1_BLOCK

NSPTOC1_BLOCK

NSPTOC1_BLOCK

PDNSPTOC1_BLOCK

T1PTTR1_BLOCK

CBPSOF1_BLOCK

GUID-12868AC3-B5C0-4AA9-B0C7-4E89BD5BAFE1 V2 EN

Figure 103: ISWGAPC9

ISWGAPC10

ISWGAPC10 is used to block the circuit breaker operation from the received GOOSE signals. ISWGAPC10 inputs are received GOOSE signals from GOOSERCV_BIN:

4 to GOOSERCV_BIN:19. The outputs are connected to block the circuit breaker close and open operation.

GOOSERCV_BIN:4_OUT

GOOSERCV_BIN:5_OUT

GOOSERCV_BIN:6_OUT

...

GOOSERCV_BIN:19_OUT

GOOSE Block CB

IN

GUID-C0024745-DFB7-4849-9F43-44159D9736B9 V1 EN

Figure 104: ISWGAPC10

ISWGAPC10

OUT_1

OUT_2

CBXCBR1_BLK_CLOSE

CBXCBR1_BLK_OPEN

Configuration C

Applications

Configuration C for directional overcurrent and earth-fault protection is mainly intended for cable and overhead-line feeder applications in isolated and resonantearthed distribution networks.

121

Section 3

REF611 standardized configurations

3.6.2

1MRS757456 D

The protection relay with a standardized configuration is delivered from the factory with default settings and parameters. The end-user flexibility for incoming, outgoing and internal signal designation within the protection relay enables this configuration to be further adapted to different primary circuit layouts and the related functionality needs by modifying the internal functionality using PCM600.

Functions

Uo

U

L1

U

L2

U

L3

3I

Io

REF611 FEEDER PROTECTION RELAY

PROTECTION

Master Trip

Lockout relay

94/86

I2>

46

I2/I1>

46PD

3I>/Io>BF

51BF/51NBF

3Ith>F

49F

3I> →

67-1

3I>>>

50P/51P

3I>> →

67-2

3I2f>

68

Io

Io>>

51N-2

Io> →

67N-1

Io>> →

67N-2

Io>IEF →

67NIEF

Uo>

59G

SOTF

SOTF

LOCAL HMI

I

ESC

O

Events

Disturbance records

A

R

L

STANDARD

CONFIGURATION

C

ALSO AVAILABLE

- Disturbance and fault recorders

- Event log and recorded data

- Local/Remote push button on LHMI

- Self-supervision

- Time synchronization: IEEE 1588 v2,

SNTP, IRIG-B

- User management

- Web-HMI

CONDITION MONITORING

AND SUPERVISION

TCS

TCM

CONTROL AND INDICATION 1)

Object

CB

DC

Ctrl 2)

1

-

Ind 3)

ES -

1) Check availability of binary inputs/outputs

from technical documentation

2) Control and indication function for

primary object

3) Status indication function for

primary object

-

-

O → I

79

COMMUNICATION

Protocols:

IEC 61850-8-1

Modbus®

Interfaces:

Ethernet: TX (RJ-45), FX (LC)

Serial: RS-485

Redundant protocols:

HSR

PRP

RSTP

MEASUREMENT

- I, U, Io, Uo, P, E, f

- Limit value supervision

- Symmetrical components

Analog interface types

Current transformer

Voltage transformer

1)

Conventional transformer inputs

REMARKS

Optional function

3× No. of instances

Io/Uo

Calculated value

OR Alternative function to be defined when ordering

1)

4

4

GUID-F966F334-E227-496D-9566-CF55952CC985 V1 EN

Figure 105: Functionality overview for configuration C

122 REF611

Application Manual

1MRS757456 D

3.6.2.1

Section 3

REF611 standardized configurations

Default I/O connections

7

8

5

6

Table 23:

2

3

LED

1

4

Table 21:

Binary input

X120-BI1

X120-BI2

X120-BI3

X120-BI4

X130-BI1

X130-BI2

X130-BI3

X130-BI4 -

-

-

-

Default connections for binary inputs

Description

Blocking of overcurrent instantaneous stage

-

Circuit breaker closed position indication

Circuit breaker open position indication

Connector pins

X120:1-2

X120:3,2

X120:4,2

X120:5-6

X130:1-2

X130:3,2

X130:4-5

X130:6,5

Table 22:

Binary input

X100-PO1

X100-PO2

X100-PO3

X100-PO4

X100-SO1

X100-SO2

Default connections for binary outputs

Description

Close circuit breaker

Circuit breaker failure protection trip to upstream breaker

Open circuit breaker/trip coil 1

Open circuit breaker/trip coil 2

General start indication

General operate indication

Connector pins

X100:6-7

X100:8-9

X100:15-19

X100:20-24

X100:10-12

X100:13-15

Default connections for LEDs

Description

Overcurrent operate

Earth fault protection operate

Negative-sequence overcurrent/phase discontinuity operate

Thermal overload alarm

Autoreclose in progress

Disturbance recorder triggered

Trip circuit supervision alarm

Circuit-breaker failure operate

REF611

Application Manual

123

Section 3

REF611 standardized configurations

3.6.2.2

3.6.3

3.6.3.1

1MRS757456 D

Predefined disturbance recorder connections

7

8

5

6

Table 24:

2

3

Channel

1

4

Uo

U1

U2

U3

Predefined analog channel setup

Description

IL1

IL2

IL3

Io

Additionally, all the digital inputs that are connected by default are also enabled with the setting. Default triggering settings are selected depending on the connected input signal type. Typically all protection START signals are selected to trigger the disturbance recorded by default.

Functional diagrams

The functional diagrams describe the default input, output, programmable LED, switch group and function-to-function connections. The default connections can be viewed and changed with switch groups in PCM600, LHMI and WHMI according to the application requirements.

The analog channels have fixed connections towards the different function blocks inside the protection relay’s configuration. Exceptions from this rule are the eight analog channels available for the disturbance recorder function. These channels are freely selectable and a part of the disturbance recorder’s parameter settings.

The analog channels are assigned to different functions. The common signal marked with 3I represents the three phase currents. The signal marked with Io represents the measured residual current via a core balance current transformer. The signal marked with Uo represents the measured residual voltage via open-delta connected voltage transformers.

The EFHPTOC protection function block for double (cross-country) earth-faults uses the calculated residual current originating from the measured phase currents.

Functional diagrams for protection

The functional diagrams describe the protection functionality of the protection relay in detail and picture the factory default connections.

124 REF611

Application Manual

1MRS757456 D

Section 3

REF611 standardized configurations

X120-BI1

Blocking 1

3I

BLOCK

INRPHAR1

3I

2f

>(1)

68(1)

BLK2H

OVERCURRENT PROTECTION AND INRUSH INDICATION

DPHLPDOC1

3I>(1)

3I

BLOCK

51P-1(1)

OPERATE

START

ENA_MULT

DPHLPDOC2

3I>(2)

51P-1(2)

3I

BLOCK

ENA_MULT

OPERATE

START

DPHHPDOC1

3I>>(1)

3I

BLOCK

51P-2(1)

OPERATE

START

ENA_MULT

SELGAPC1

IN_1 OUT_1 IN

ISWGAPC1

OUT_4

PHIPTOC1

3I>>>(1)

3I

BLOCK

50P/51P(1)

OPERATE

START

ENA_MULT

IN_1

OSWGAPC8

IN_2

IN_3

IN_4

OR

OUT

SELGAPC4

IN_10 OUT_1

LED 1

GUID-FB8E7A93-E98A-4968-B8C6-FBD091F5E635 V2 EN

Figure 106: Overcurrent protection

Four overcurrent stages are offered for overcurrent and short-circuit protection. The instantaneous stage PHIPTOC1 can be blocked by energizing the binary input

(X120:1-2). The inrush detection block’s INRPHAR1 output BLK2H enables either blocking the function or multiplying the active settings for any of the described protection function blocks.

All operate signals are connected to the Master Trip and to the alarm LED 1.

REF611

Application Manual

125

Section 3

REF611 standardized configurations

126

1MRS757456 D

EARTH-FAULT PROTECTION

DOUBLE (CROSS-COUNTRY) EARTH-FAULT PROTECTION

EFHPTOC1

Io>>(1)

51N-2(1)

Io

BLOCK

ENA_MULT

Calculated lo

OPERATE

START

DIRECTIONAL EARTH-FAULT PROTECTION

DEFLPDEF1

Io>->(1)

Io

Uo

BLOCK

ENA_MULT

RCA_CTL

67N-1(1)

OPERATE

START

DEFLPDEF2

Io>->(2)

Io

Uo

BLOCK

ENA_MULT

RCA_CTL

67N-1(2)

OPERATE

START

IN_5

OSWGAPC9

IN_6

IN_7

IN_8

IN_12

OR

OUT

SELGAPC4

IN_11 OUT_2

DEFHPDEF1

Io>>->(1)

67N-2(1)

Io

Uo

BLOCK

ENA_MULT

RCA_CTL

OPERATE

START

INTERMITTENT EARTH-FAULT PROTECTION

INTRPTEF1

Io>->IEF(1)

Io

Uo

BLOCK

67NIEF(1)

OPERATE

START

BLK_EF

LED 2

GUID-F1E996CA-9C33-4AFF-B7F2-6ABEF716A57B V1 EN

Figure 107: Earth-fault protection

Three stages are offered for directional earth-fault protection. In addition, there is a dedicated protection stage INTRPTEF either for transient-based earth-fault protection or for cable intermittent earth-fault protection in compensated networks.

REF611

Application Manual

1MRS757456 D

Section 3

REF611 standardized configurations

A dedicated non-directional earth-fault protection block EFHPTOC is intended for protection against double earth-fault situations in isolated or compensated networks.

This protection function uses the calculated residual current originating from the phase currents.

All operate signals are connected to the Master Trip and to alarm LED 2.

RESIDUAL OVERVOLTAGE PROTECTION

U

0

BLOCK

ROVPTOV1

U

0

>(1)

59G(1)

OPERATE

START

U

0

BLOCK

ROVPTOV2

U

0

>(2)

59G(2)

OPERATE

START

IN_9

IN_10

IN_11

OSWGAPC9

OR

OUT

SELGAPC4

IN_11 OUT_2

LED 2

U

0

BLOCK

ROVPTOV3

U

0

>(3)

59G(3)

OPERATE

START

GUID-DAC9D1F8-DB13-4A23-807F-EABE477407DC V1 EN

Figure 108: Residual overvoltage protection

The residual overvoltage protection ROVPTOV provides earth-fault protection by detecting abnormal level of residual voltage. It can be used, for example, as a nonselective backup protection for the selective directional earth-fault functionality. The operation signal is also connected to alarm LED 2.

REF611

Application Manual

127

Section 3

REF611 standardized configurations

1MRS757456 D

NSPTOC1

I

2

>(1)

3I

BLOCK

ENA_MULT

46(1)

OPERATE

START

UNBALANCE PROTECTION

NSPTOC2

3I

BLOCK

ENA_MULT

I

2

>(2)

46(2)

OPERATE

START

IN_13

OSWGAPC10

IN_14

IN_15

OR OUT

SELGAPC4

IN_12 OUT_3

LED 3

3I

BLOCK

PDNSPTOC1

I

2

/I

1

(1)

46PD(1)

OPERATE

START

GUID-33B6922D-228D-4D26-98AF-6043981814C0 V1 EN

Figure 109: Unbalance protection

Two negative-sequence overcurrent stages NSPTOC1 and NSPTOC2 and one phase discontinuity stage PDNPSTOC1 are offered for unbalance protection. The phase discontinuity protection PDNPSTOC1 provides protection for interruptions in the normal three-phase load supply, for example, in downed conductor situations.

The operate signals of these unbalance protections are connected to the Master Trip and to alarm LED 3.

128 REF611

Application Manual

1MRS757456 D

Section 3

REF611 standardized configurations

THERMAL OVERLOAD PROTECTION

T1PTTR1

3Ith>F(1)

49F(1)

3I

ENA_MULT

BLK_OPR

OPERATE

ALARM

BLK_CLOSE

AMB_TEMP START

OSWGAPC11

IN_1 OUT

SELGAPC4

IN_13 OUT_4

LED 4

DPHLPDOC1_OPERATE

DPHLPDOC2_OPERATE

DPHHPDOC1_OPERATE

PHIPTOC1_OPERATE

DEFLPDEF1_OPERATE

DEFLPDEF2_OPERATE

DEFHPDEF1_OPERATE

X120-BI2

CB Closed Position

OR

IN_2

SELGAPC1

OUT_2

CIRCUIT BREAKER FAILURE PROTECTION

CCBRBRF1

3I>/I

0

>BF(1)

SELGAPC3

IN_4 OUT_2

51BF/51NBF(1)

3I

I

0

START

POSCLOSE

CB_FAULT

BLOCK

CB_FAULT_AL

TRBU

TRRET

OSWGAPC15

IN_5 OUT

X100 PO2

SELGAPC4

IN_17 OUT_8

LED 8

GUID-7E8B4813-B13B-4372-A1CD-3ACCFAE3E9BF V2 EN

Figure 110: Thermal overload and circuit-breaker failure protection

The thermal overload protection T1PTTR1 provides indication on overload situations. LED 4 is used for the thermal overload protection alarm indication.

The circuit-breaker failure protection CCBRBRF1 is initiated via the start input by a number of different protection stages in the protection relay. The circuit-breaker failure protection function offers different operating modes associated with the circuit breaker position and the measured phase and residual currents. The breaker failure protection has two operating outputs: TRRET and TRBU . The TRRET operate output is used for retripping its own breaker through the Master Trip 2. The TRBU output is used to give a backup trip to the circuit breaker feeding upstream. For this purpose, the

TRBU operate output signal is connected to the output PO2 (X100:8-9). LED 8 is used for backup (TRBU) operate indication.

REF611

Application Manual

129

Section 3

REF611 standardized configurations

1MRS757456 D

AUTORECLOSING (Optional)

DARREC1

O->I(1)

DEFLPDEF1_OPERATE

DEFLPDEF2_OPERATE

X120-BI3

CB Open Position

Always True

DEFLPDEF1_START

DEFLPDEF2_START

CBXCBR1_SELECTED

NSPTOC1_OPERATE

NSPTOC2_OPERATE

PDNSPTOC1_OPERATE

INTRPTEF1_OPERATE

PHIPTOC1_OPERATE

OR

OR

OR

DPHHPDOC1_OPERATE

DEFHPDEF1_OPERATE

DPHLPDOC1_START

EFHPTOC1_START

IN_3

SELGAPC1

OUT_3

IN_10 OUT_6

DPHLPDOC2_OPERATE

DPHLPDOC1_OPERATE

EFHPTOC1_OPERATE

T1PTTR1_BLK_CLOSE

SELGAPC1_OUT_7

INT_1

INT_2

INT_3

INT_4

INT_5

INT_6

DEL_INT_2

DEL_INT_3

DEL_INT_4

BLK_RECL_T

BLK_RCLM_T

BLK_THERM

CB_POS

CB_READY

INC_SHOTP

INHIBIT_RECL

RECL_ON

SYNC

OR

CBPSOF1_OPERATE

79(1)

OPEN CB

CLOSE CB

CMD_WAIT

INPRO

LOCKED

PROT_CRD

UNSUC_RECL

AR_ON

READY

OSWGAPC12

IN_7 OUT

SELGAPC4

IN_14 OUT_5

LED 5

GUID-0FFA67F5-DA64-40C1-A8F9-C3C74DC7DE06 V2 EN

Figure 111: Autoreclosing

Autoreclosing DARREC1 is included as an optional function.

The autoreclose function is configured to be initiated by operate signals from a number of protection stages through the INT_1...6

inputs and by start signals through the DEL_INT_2…4. It is possible to create individual autoreclose sequences for each input.

The autoreclose function can be blocked with the INHIBIT_RECL input. By default, the operations of selected protection functions are connected to this input. A control command to the circuit breaker, either local or remote, also blocks the autoreclose function via the CBXCBR_SELECTED signal.

The circuit breaker availability for the autoreclose sequence is expressed with the

CB_READY input in DARREC1. In the configuration, this signal is connected with an always true signal through the SELGAPC1. As a result, the function assumes that the circuit breaker is available all the time.

The autoreclose sequence in progress indication INPRO is connected to the alarm

LED 5.

130 REF611

Application Manual

1MRS757456 D

3.6.3.2

REF611

Application Manual

Section 3

REF611 standardized configurations

Functional diagrams for disturbance recorder and trip circuit supervision

DPHLPDOC1_OPERATE

DPHLPDOC2_OPERATE

DPHHPDOC1_OPERATE

PHIPTOC1_OPERATE

DEFLPDEF1_OPERATE

DEFLPDEF2_OPERATE

DEFHPDEF1_OPERATE

ROVPTOV1_OPERATE

ROVPTOV2_OPERATE

ROVPTOV3_OPERATE

NSPTOC1_OPERATE

NSPTOC2_OPERATE

OR

OR

OR

OR

DPHLPDOC1_START

DPHLPDOC2_START

DPHHPDOC1_START

PHIPTOC1_START

EFHPTOC1_START

DEFLPDEF1_START

DEFLPDEF2_START

DEFHPDEF1_START

ROVPTOV1_START

ROVPTOV2_START

ROVPTOV3_START

INTRPTEF1_START

NSPTOC1_START

NSPTOC2_START

PDNSPTOC1_START

T1PTTR1_START

EFHPTOC1_OPERATE

INTRPTEF1_OPERATE

PDNSPTOC1_OPERATE

T1PTTR1_OPERATE

SELGAPC1_ Blocking 1

SELGAPC1_ CB Closed Position

SELGAPC1_ CB Open Position

INRPHAR1_BLK2H

CCBRBRF1_TRRET

CCBRBRF1_TRBU

DARREC1_INPRO

DARREC1_CLOSE_CB

DARREC1_UNSUC_RECL

SELGAPC1_External Trip

SG_1_ACT

SG_2_ACT

SG_3_ACT

SG_4_ACT

SG_5_ACT

SG_6_ACT

DISTURBANCE RECORDER

C17

C18

C19

C20

C21

C22

C23

C24

C25

C7

C8

C9

C10

C11

C12

C13

C14

C15

C16

C1

C2

C3

C4

C5

C6

C34

C35

C36

C37

C38

C39

C40

C26

C27

C28

C29

C30

C31

C32

C33

RDRE1

TRIGGERED

OSWGAPC13

IN_2 OUT

SELGAPC4

IN_15 OUT_6

LED 6

GUID-2EA9013B-69BD-4B63-AB6A-76088CEC2EEB V2 EN

Figure 112: Disturbance recorder

All start and operate signals from the protection stages are routed to trigger the disturbance recorder or alternatively only to be recorded by the disturbance recorder depending on the parameter settings. Additionally, the selected autoreclose output signals and the three binary inputs from X120 are also connected. The active setting group is also to be recorded via SG_1_ACT to SG_6_ACT. The disturbance recorder triggered signal indication is connected to LED 6.

Table 25:

Channel number

Binary channel 1

Disturbance recorder binary channel default value

Channel ID text

DPHLPDOC1_START

Binary channel 2

Binary channel 3

Binary channel 4

Binary channel 5

Binary channel 6

Binary channel 7

Binary channel 8

Binary channel 9

Table continues on next page

DPHLPDOC2_START

DPHHPDOC1_START

PHIPTOC1_START

EFHPTOC1_START

DEFLPDEF1_START

DEFLPDEF2_START

DEFHPDEF1_START

ROVPTOV1_START

Level trigger mode

1=positive or rising

1=positive or rising

1=positive or rising

1=positive or rising

1=positive or rising

1=positive or rising

1=positive or rising

1=positive or rising

1=positive or rising

131

Section 3

REF611 standardized configurations

Channel number

Binary channel 10

Binary channel 11

Binary channel 12

Binary channel 13

Binary channel 14

Binary channel 15

Binary channel 16

Binary channel 17

Binary channel 18

Binary channel 19

Binary channel 20

Binary channel 21

Binary channel 22

Binary channel 23

Binary channel 24

Binary channel 25

Binary channel 26

Binary channel 27

Binary channel 28

Binary channel 29

Binary channel 30

Binary channel 31

Binary channel 32

Binary channel 33

Binary channel 34

Binary channel 35

Binary channel 36

Binary channel 37

Binary channel 38

Binary channel 39

Binary channel 40

Channel ID text

ROVPTOV2_START

ROVPTOV3_START

INTRPTEF1_START

NSPTOC1_START

NSPTOC2_START

PDNSPTOC1_START

T1PTTR1_START

DPHxPDOC_OPERATE

EFHPTOC1_OPERATE

DEFxPDEF_OPERATE

ROVPTOV_OPERATE

INTRPTEF1_OPERATE

NSPTOC1/2_OPERATE

PDNSPTOC1_OPERATE

T1PPTR1_OPERATE

SELGAPC1_Blocking 1

SELGAPC1_CB_Closed

SELGAPC1_CB_Open

INRPHAR1_BLK2H

CCBRBRF1_TRRET

CCBRBRF1_TRBU

DARREC1_INPRO

DARREC1_CLOSE_CB

DARREC1_UNSUC_RECL

SELGAPC1_External Trip

SG_1_ACT

SG_2_ACT

SG_3_ACT

SG_4_ACT

SG_5_ACT

SG_6_ACT

1MRS757456 D

Level trigger mode

1=positive or rising

1=positive or rising

1=positive or rising

1=positive or rising

1=positive or rising

1=positive or rising

1=positive or rising

4=level trigger off

4=level trigger off

4=level trigger off

4=level trigger off

4=level trigger off

4=level trigger off

4=level trigger off

4=level trigger off

4=level trigger off

4=level trigger off

4=level trigger off

4=level trigger off

4=level trigger off

4=level trigger off

4=level trigger off

4=level trigger off

4=level trigger off

4=level trigger off

4=level trigger off

4=level trigger off

4=level trigger off

4=level trigger off

4=level trigger off

4=level trigger off

132 REF611

Application Manual

1MRS757456 D

Section 3

REF611 standardized configurations

TRIP CIRCUIT SUPERVISION

X120-BI3

CB Open Position

SELGAPC1

IN_3 OUT_3

TRPPTRC1_TRIP

TRPPTRC2_TRIP

OR

IN_2

SELGAPC2

OUT_1

OUT_2

TCSSCBR1

BLOCK ALARM

TCSSCBR2

BLOCK ALARM

IN_3

IN_4

OSWGAPC14

OR

OUT

SELGAPC4

IN_16 OUT_7

LED 7

GUID-4B00F529-72F7-418F-B0EB-D3DCC80007F9 V2 EN

Figure 113: Trip circuit supervision

Two separate trip circuit supervision functions are included, TCSSCBR1 for PO3

(X100:15-19) and TCSSCBR2 for PO4 (X100:20-24). Both functions are blocked by the Master Trip (TRPPTRC1 and TRPPTRC2) and the circuit breaker open position.

The TCS alarm indication is connected to LED 7.

REF611

Application Manual

133

Section 3

REF611 standardized configurations

3.6.3.3

1MRS757456 D

Functional diagrams for control

MASTER TRIP #1

DPHLPDOC1_OPERATE

DPHLPDOC2_OPERATE

DPHHPDOC1_OPERATE

PHIPTOC1_OPERATE

EFHPTOC1_OPETATE

DEFLPDEF1_OPERATE

DEFLPDEF2_OPERATE

DEFHPDEF1_OPERATE

ROVPTOV1_OPERTAE

ROVPTOV2_OPERTAE

ROVPTOV3_OPERTAE

INTRPTEF1_OPERATE

NSPTOC1_OPERATE

NSPTOC2_OPERATE

PDNSPTOC1_OPERATE

IN_1

IN_2

IN_3

IN_4

IN_5

IN_6

IN_7

IN_8

IN_9

IN_10

IN_11

IN_12

IN_13

IN_14

IN_15

OSWGAPC1

OR

OUT

OR

TRPPTRC1

BLOCK

OPERATE

TRIP

CL_LKOUT

RST_LKOUT

OR

IN_1

SELGAPC3

OUT_5

X100 PO3

134

SELGAPC1_External Trip

GOOSERCV_BIN 2_OUT

OR

GOOSERCV_BIN 3_OUT

SELGAPC1_RST_LKOUT

CBXCBR1_EXE_OP

DARREC1_OPEN_CB

IN1

IN2

MVGAPC1

Q1

Q2

DPHLPDOC1_OPERATE

DPHLPDOC2_OPERATE

DPHHPDOC1_OPERATE

PHIPTOC1_OPERATE

EFHPTOC1_OPETATE

DEFLPDEF1_OPERATE

DEFLPDEF2_OPERATE

DEFHPDEF1_OPERATE

ROVPTOV1_OPERTAE

ROVPTOV2_OPERTAE

ROVPTOV3_OPERTAE

INTRPTEF1_OPERATE

NSPTOC1_OPERATE

NSPTOC2_OPERATE

PDNSPTOC1_OPERATE

CCBRBRF1_TRRET

IN_1

IN_2

IN_3

IN_4

IN_5

IN_6

IN_7

IN_8

IN_9

IN_10

IN_11

IN_12

IN_13

IN_14

IN_15

OSWGAPC2

OR

OUT

IN_17

MASTER TRIP #2

OR

TRPPTRC2

BLOCK

OPERATE

TRIP

CL_LKOUT

RST_LKOUT

SELGAPC1_External Trip

GOOSERCV_BIN 2_OUT

OR

GOOSERCV_BIN 3_OUT

SELGAPC1_RST_LKOUT

IN1

IN2

MVGAPC1

Q1

Q2

GUID-2EEBAE55-D2E5-4EED-BCAA-BA87F36D4537 V3 EN

Figure 114: Master trip

IN_2

SELGAPC3

OUT_6

X100 PO4

REF611

Application Manual

1MRS757456 D

Section 3

REF611 standardized configurations

The operate signals from the protections and an external trip are connected to the two trip output contacts PO3 (X100:15-19) and PO4 (X100:20-24) via the corresponding

Master Trips TRPPTRC1 and TRPPTRC2. Open control commands to the circuit breaker from local or remote CBXCBR1_EXE_OP or from the autoreclosing

DARREC1_OPEN_CB are connected directly to the output contact PO3

(X100:15-19).

TRPPTRC1 and 2 provide the lockout/latching function, event generation and the trip signal duration setting. One binary input through SELGAPC1 can be connected to the

RST_LKOUT input of the Master Trip. If the lockout operation mode is selected, it is used to enable external reset.

CIRCUIT BREAKER CONTROL

X120-BI2

CB Closed Position

X120-BI3

CB Open Position

Always True

IN_2

SELGAPC1

OUT_2

IN_3

IN_9

OUT_3

OUT_5

TRPPTRC1_TRIP

TRPPTRC2_TRIP

T1PTTR1_BLK_CLOSE

DARREC1_CLOSE_CB

AND

CBXCBR1

POSOPEN

POSCLOSE

ENA_OPEN

ENA_CLOSE

BLK_OPEN

BLK_CLOSE

AU_OPEN

AU_CLOSE

TRIP

SYNC_OK

SYNC_ITL_BYP

SELECTED

EXE_OP

EXE_CL

OP_REQ

CL_REQ

OPENPOS

CLOSEPOS

OKPOS

OPEN_ENAD

CLOSE_ENAD

CBXCBR1_EXE_OP

OR

IN_3

SELGAPC3

OUT_1

X100 PO1

GUID-60351D18-FD31-462E-8116-6A90D95006C5 V2 EN

Figure 115: Circuit breaker control

The ENA_CLOSE input, which enables the closing of the circuit breaker, is interlocked by two master trip signals. Any one trip will block the breaker from closing. An always true signal is also connected to ENA_CLOSE via SELGAPC1 by default. The open operation is always enabled.

REF611

Application Manual

135

Section 3

REF611 standardized configurations

1MRS757456 D

COMMON ALARM INDICATION 1 & 2

DPHLPDOC1_START

DPHLPDOC2_START

DPHHPDOC1_START

PHIPTOC1_START

EFHPTOC1_START

DEFLPDEF1_START

DEFLPDEF2_START

DEFHPDEF1_START

ROVPTOV1_START

ROVPTOV2_START

ROVPTOV3_START

INTRPTEF1_START

NSPTOC1_START

NSPTOC2_START

PDNSPTOC1_START

IN_1

IN_2

IN_3

IN_4

IN_5

IN_6

IN_7

IN_8

IN_9

IN_10

IN_11

IN_12

IN_13

IN_14

IN_15

OSWGAPC3

OR

OUT

IN1

TPGAPC1

OUT1

SELGAPC3

IN_5 OUT_3

IN_9 OUT_4

DPHLPDOC1_OPERATE

DPHLPDOC2_OPERATE

DPHHPDOC1_OPERATE

PHIPTOC1_OPERATE

EFHPTOC1_OPETATE

DEFLPDEF1_OPERATE

DEFLPDEF2_OPERATE

DEFHPDEF1_OPERATE

ROVPTOV1_OPERTAE

ROVPTOV2_OPERTAE

ROVPTOV3_OPERTAE

INTRPTEF1_OPERATE

NSPTOC1_OPERATE

NSPTOC2_OPERATE

PDNSPTOC1_OPERATE

IN_1

IN_2

IN_3

IN_4

IN_5

IN_6

IN_7

IN_8

IN_9

IN_10

IN_11

IN_12

IN_13

IN_14

IN_15

OSWGAPC7

OR

OUT

IN1

TPGAPC3

OUT1

X100 SO1

X100 SO2

136

GUID-30C0F21B-A880-469F-9B00-D8D00A752A20 V2 EN

Figure 116: Common alarm indication

The signal outputs from the protection relay are connected to give dedicated information.

• Start of any protection function SO1 (X100:10-12)

• Operation (trip) of any protection function SO2 (X100: 13-15)

TPGAPC functions are timers and they are used for setting the minimum pulse length for the outputs. There are seven generic timers (TPGAPC1…7) available in the protection relay.

REF611

Application Manual

1MRS757456 D

Section 3

REF611 standardized configurations

3.6.4 Switch groups

In configuration C, the switch group function blocks are organized in four groups: binary inputs, internal signal, GOOSE as well as binary outputs and LEDs.

Binary Inputs

(1...3, 4...9*)

Received GOOSE

(0...19)

GOOSE

GOOSE

GOOSE

SELGAPC1

Binary Inputs

ISWGAPC2

ISWGAPC1

Blocking

Binary Inputs

ISWGAPC5

Basic

Angle Control

GOOSE

ISWGAPC9

GOOSE Blocking

ISWGAPC10

GOOSE Block CB

Protection and Control

DPHLPDOC1 DPHLPDOC2

DPHHPDOC1 PHIPTOC1

EFHPTOC1

DEFLPDEF2

NSPTOC1

INTRPTEF1

DEFLPDEF1

DEFHPDEF1

NSPTOC2

PDNSPTOC1

ROVPTOV1

ROVPTOV3

ROVPTOV2

T1PTTR1

CCBRBRF1 INRPHAR1

DARREC1* CBXCBR1

TCSSCBR1 TCSSCBR2

CBPSOF1

Internal Signal

ISWGAPC3 ISWGAPC4

INRPHAR1_BLK2H

SELGAPC2

DARREC1_PROT_CRD

OSWGAPC17

TCS Blocking CBPSOF1_Initiation

* Optional Function

GUID-EB1D6B16-8E51-4EF4-B6FF-47FCDF6ABF3D V2 EN

Figure 117: Configuration C switch group overview

Binary Outputs and LEDs

OSWGAPC2

OSWGAPC1

Master trip

SELGAPC3

SELGAPC4

OSWGAPC6

OSWGAPC5

OSWGAPC4

OSWGAPC3

Start

OSWGAPC10

OSWGAPC9

OSWGAPC8

OSWGAPC7

Trip

OSWGAPC16

OSWGAPC15

OSWGAPC14

OSWGAPC13

OSWGAPC12

OSWGAPC11

Alarm

Binary Outputs

LEDs

Binary Outputs

(1...6, 7..9*)

LEDs

(1…8)

3.6.4.1 Binary inputs

The binary inputs group includes one SELGAPC and three ISWGAPCs. SELGAPC1 is used to route binary inputs to ISWGAPC or directly to protection relay functions.

ISWGAPC1 and ISWGAPC2 are used to configure the signal to block the protection functions. ISWGAPC5 is used to control the characteristic angle of DEFxPDEF.

REF611

Application Manual

137

Section 3

REF611 standardized configurations

1MRS757456 D

X120-BI1

X120-BI2

X120-BI3

Blocking 1

ISWGAPC1

DPHLPDOC1_BLOCK

DPHLPDOC2_BLOCK

DPHHPDOC1_BLOCK

PHIPTOC1_BLOCK

EFHPTOC1_BLOCK

DEFLPDEF1_BLOCK

DEFLPDEF2_BLOCK

DEFHPDEF1_BLOCK

ROVPTOV1_BLOCK

ROVPTOV2_BLOCK

ROVPTOV3_BLOCK

INTRPTEF1_BLOCK

NSPTOC1_BLOCK

NSPTOC2_BLOCK

PDNSPTOC1_BLOCK

T1PTTR1_BLOCK

CBPSOF1_BLOCK

X120-BI4

X130-BI1

X130-BI2

X130-BI3

X130-BI4

SELGAPC1

Blocking 2

ISWGAPC2

DPHLPDOC1_BLOCK

DPHLPDOC2_BLOCK

DPHHPDOC1_BLOCK

PHIPTOC1_BLOCK

EFHPTOC1_BLOCK

DEFLPDEF1_BLOCK

DEFLPDEF2_BLOCK

DEFHPDEF1_BLOCK

ROVPTOV1_BLOCK

ROVPTOV2_BLOCK

ROVPTOV3_BLOCK

INTRPTEF1_BLOCK

NSPTOC1_BLOCK

NSPTOC2_BLOCK

PDNSPTOC1_BLOCK

T1PTTR1_BLOCK

CBPSOF1_BLOCK

Basic Angle

Control ISWGAPC5

DEFLPDEF1_RCA_CTL

DEFLPDEF2_RCA_CTL

DEFHPDEF1_RCA_CTL

GUID-AF76144B-F5EE-4DA8-8943-D25CCFC389D3 V2 EN

Figure 118: Binary inputs

SELGAPC1

SELGAPC1 has inputs from protection relay binary inputs. IN_1 ...

IN_4 are binary inputs from X120. IN_5 ...

IN_8 are used from four inputs of X130. An always true signal is connected to IN_9 . SELGAPC1 outputs are used to route inputs to different functions. By setting SELGAPC1, binary inputs can be configured for different purposes.

138 REF611

Application Manual

1MRS757456 D

Section 3

REF611 standardized configurations

X120-BI1

X120-BI2

X120-BI3

X120-BI4

X130-BI1

X130-BI2

X130-BI3

X130-BI4

Always True

X120/1-2 BI1

IN_1

X120/3-2 BI2

IN_2

X120/4-2 BI3

IN_3

X120/5-6 BI4

IN_4

SELGAPC1

OUT_1

Blocking 1

ISWGAPC1_IN

OUT_2

OUT_3

CB Closed Position

CB O pen Position

CCBRBRF1_PO SCLOSE

CBXCBR1_POSCLOSE

SELGAPC2_IN_1

DARREC1_CB_PO S

CBXCBR1_PO SOPEN

SELGAPC2_IN_2

OUT_4 Basic Angle Control

ISWGAPC5_IN

X130/1-2 BI1

IN_5

X130/3-2 BI2

IN_6

OUT_5 CB Close Enable

OUT_6

CBXCBR1_ENA_CLOSE

DARREC1_CB_READY

X130/4-5 BI3

IN_7

X130/6-5 BI4

IN_8

IN_9

OUT_7

OUT_8

TRPTTRC1/2_

RST_LKOUT

OUT_9

External Trip

OUT_10

Setting Group 2

OUT_11

Setting Group 3

OUT_12

Setting Group 4

DARREC1_RECL_ON

TRPTTRC1_RST_LKOUT

TRPTTRC2_RST_LKOUT

TRPTTRC1_OPERATE

TRPTTRC2_OPERATE

PROTECTION_BI_SG_2

PROTECTION_BI_SG_3

PROTECTIO N_BI_SG_4

OUT_13

Blocking 2

ISWGAPC2_IN

GUID-E54640C9-1F74-420E-9486-E88430C753DA V1 EN

Figure 119: SELGAPC1

ISWGAPC1

ISWGAPC1 is used to select which protection functions are to be blocked by changing

ISWGAPC1 parameters. ISWGAPC1 input is routed from SELGAPC1 output

OUT_1 Blocking 1 . ISWGAPC1 outputs are connected to the BLOCK inputs of the protection functions.

REF611

Application Manual

139

Section 3

REF611 standardized configurations

1MRS757456 D

SELGAPC1_OUT_1

Blocking 1

IN

ISWGAPC1

OUT_1

OUT_2

OUT_3

OUT_4

OUT_5

OUT_6

OUT_7

OUT_8

OUT_9

OUT_10

OUT_11

OUT_12

OUT_13

OUT_14

OUT_15

OUT_16

OUT_17

GUID-93D6BEDE-B4E1-4107-BE60-A88811AE8D4A V2 EN

Figure 120: ISWGAPC1

DPHLPDOC1_BLOCK

DPHLPDOC2_BLOCK

DPHHPDOC1_BLOCK

PHIPTOC1_BLOCK

EFHPTOC1_BLOCK

DEFLPDEF1_BLOCK

DEFLPDEF2_BLOCK

DEFHPDEF1_BLOCK

ROVPTOV1_BLOCK

ROVPTOV2_BLOCK

ROVPTOV3_BLOCK

INTRPTEF1_BLOCK

NSPTOC1_BLOCK

NSPTOC2_BLOCK

PDNSPTOC1_BLOCK

T1PTTR1_BLOCK

CBPSOF1_BLOCK

ISWGAPC2

ISWGAPC2 is used to select which protection functions are to be blocked by changing

ISWGAPC2 parameters. ISWGAPC2 input is routed from SELGAPC1 output

OUT_13 Blocking 2 . ISWGAPC2 outputs are connected to the BLOCK inputs of the protection functions.

140 REF611

Application Manual

1MRS757456 D

3.6.4.2

REF611

Application Manual

Section 3

REF611 standardized configurations

SELGAPC1_OUT_13

Blocking 2

IN

ISWGAPC2

OUT_7

OUT_8

OUT_9

OUT_10

OUT_11

OUT_12

OUT_13

OUT_14

OUT_15

OUT_16

OUT_17

OUT_1

OUT_2

OUT_3

OUT_4

OUT_5

OUT_6

GUID-D280DB0F-C718-46A8-8FCF-0B3BF489E2D6 V2 EN

Figure 121: ISWGAPC2

DPHLPDOC1_BLOCK

DPHLPDOC2_BLOCK

DPHHPDOC1_BLOCK

PHIPTOC1_BLOCK

EFHPTOC1_BLOCK

DEFLPDEF1_BLOCK

DEFLPDEF2_BLOCK

DEFHPDEF1_BLOCK

ROVPTOV1_BLOCK

ROVPTOV2_BLOCK

ROVPTOV3_BLOCK

INTRPTEF1_BLOCK

NSPTOC1_BLOCK

NSPTOC2_BLOCK

PDNSPTOC1_BLOCK

T1PTTR1_BLOCK

CBPSOF1_BLOCK

ISWGAPC5

ISWGAPC5 input is used to select which directional earth-fault protection is controlled by ISWGAPC5 input by changing the ISWGAPC5 parameters.

ISWGAPC5 input is routed from SELGAPC1 output OUT_4 Basic Angle

Control . ISWGAPC5 outputs are connected to RCA_CTL inputs of directional earth-fault protection functions.

Basic Angle

Control

IN

ISWGAPC5

OUT_1

OUT_2

OUT_3

GUID-81124E0B-65EC-46EC-A9E4-7646B3A84FE4 V1 EN

Figure 122: ISWGAPC5

DEFLPDEF1_RCA_CTL

DEFLPDEF2_RCA_CTL

DEFHPDEF1_RCA_CTL

Internal signals

The internal signal group is used to configure logic connections between function blocks. There are two ISWGAPC instances, one SELGAPC and one OSWGAPC instance in this group.

ISWGAPC3 is used to configure which protection function enables the current multiplier if the INRPHAR1 function detects inrush. ISWGAPC4 is used to configure the cooperation between the autoreclose function and the protection functions. The

141

Section 3

REF611 standardized configurations

1MRS757456 D autoreclose function DARREC1 can block protection functions according to the application. SELGAPC2 is used to configure TCS blocking from the circuit breaker open or close position. OSWGAPC17 is used for connecting switch onto fault function CBPSOF. The inputs are start signals routed from the protection functions.

INRPHAR1_BLK2H ISWGAPC3

DPHLPDOC1_ENA_MULT

DPHLPDOC2_ENA_MULT

DPHHPDOC1_ENA_MULT

PHIPTOC1_ENA_MULT

EFHPTOC1_ENA_MULT

DEFLPDEF1_ENA_MULT

DEFLPDEF2_ENA_MULT

DEFHPDEF1_ENA_MULT

NSPTOC1_ENA_MULT

NSPTOC2_ENA_MULT

T1PTTR1_ENA_MULT

DARREC1_PROT_CRD

ISWGAPC4

DPHLPDOC1_BLOCK

DPHLPDOC2_BLOCK

DPHHPDOC1_BLOCK

EFHPTOC1_BLOCK

DEFLPDEF1_BLOCK

DEFLPDEF2_BLOCK

DEFHPDEF1_BLOCK

SELGAPC1_OUT_2

SELGAPC1_OUT_3

CB Closed Position

CB Open Position

SELGAPC2

TCSSCBR1_BLOCK

TCSSCBR2_BLOCK

DPHLPDOC1_START

DPHLPDOC2_START

DPHHPDOC1_START

PHIPTOC1_START

EFHPTOC1_START

DEFLPDEF1_START

DEFLPDEF2_START

DEFHPDEF1_START

ROVPTOV1_START

ROVPTOV2_START

ROVPTOV3_START

INTRPTEF1_START

NSPTOC1_START

NSPTOC2_START

PTNSPTOC1_SRART

T1PTTR1_START

GUID-895B4A93-7066-45C6-9EB1-680320A07FC6 V2 EN

Figure 123: Internal signal

OSWGAPC17

Start

DLYD

CBPSOF1_INIT

ISWGAPC3

ISWGAPC3 input is used to configure which protection function enables current multiplier while inrush is detected by INRPHAR1 by changing the ISWGAPC3 parameters. ISWGAPC3 input is routed from INRPHAR1 output BLK2H .

ISWGAPC3 outputs are connected to ENA_MULT of the protection functions.

142 REF611

Application Manual

1MRS757456 D

REF611

Application Manual

Section 3

REF611 standardized configurations

INRPHAR1_BLK2H IN

ISWGAPC3

OUT_1

OUT_2

OUT_3

OUT_4

OUT_5

OUT_6

OUT_7

OUT_8

OUT_9

OUT_10

OUT_11

GUID-A90438F3-E9D8-459C-8FCD-1DE592BE0B23 V2 EN

Figure 124: ISWGAPC3

DPHLPDOC1_ENA_MULT

DPHLPDOC2_ENA_MULT

DPHHPDOC1_ENA_MULT

PHIPTOC1_ENA_MULT

EFHPTOC1_ENA_MULT

DEFLPDEF1_ENA_MULT

DEFLPDEF2_ENA_MULT

DEFHPDEF1_ENA_MULT

NSPTOC1_ENA_MULT

NSPTOC2_ENA_MULT

T1PTTR1_ENA_MULT

ISWGAPC4

ISWGAPC4 input is used to configure which protection function is blocked by the autoreclosing function by changing the ISWGAPC4 parameters. ISWGAPC4 input is routed from DARREC1 output PROT_CRD . ISWGAPC4 outputs are connected to the

BLOCK inputs of some of the protection functions.

DARREC1_PROT_CRD IN

ISWGAPC4

OUT_1

OUT_2

OUT_3

OUT_4

OUT_5

OUT_6

OUT_7

DPHLPDOC1_BLOCK

DPHLPDOC2_BLOCK

DPHHPDOC1_BLOCK

EFHPTOC1_BLOCK

DEFLPDEF1_BLOCK

DEFLPDEF2_BLOCK

DEFHPDEF1_BLOCK

GUID-16F966A2-E7CA-492E-A6A4-6B5BBC9F5D84 V2 EN

Figure 125: ISWGAPC4

SELGAPC2

SELGAPC2 inputs represent the circuit breaker closed and open position from

SELGACP1. SELGAPC2 outputs are routed to the BLOCK input of the trip circuit supervision TCSSCBR1 and TCSSCBR2.

By default, X100 PO3 and PO4 are both used for the open circuit breaker. TCSSCBR1 and TCSSCBR2 are both blocked by the circuit breaker open position. If X100-PO3 is used for closing the circuit breaker, TCSSCBR1 needs to be blocked by circuit

143

Section 3

REF611 standardized configurations

3.6.4.3

1MRS757456 D breaker close position (OUT_1 connection=IN_1). If X100-PO4 is used for closing the circuit breaker, TCSSCBR2 needs to be blocked by the circuit breaker close position (OUT_2 connection=IN_1).

SELGAPC1_OUT_2

SELGAPC1_OUT_3

CB Closed Position

IN_1

SELGAPC2

OUT_1

CB Open Position

IN_2 OUT_2

GUID-A7E79381-BE10-41E9-BCBC-AC27E8E64CBB V1 EN

Figure 126: SELGAPC2

TCSSCBR1_BLOCK

TCSSCBR2_BLOCK

DPHLPDOC1_START

DPHLPDOC2_START

DPHHPDOC1_START

PHIPTOC1_START

EFHPTOC1_START

DEFLPDEF1_START

DEFLPDEF2_START

DEFHPDEF1_START

ROVPTOV1_START

ROVPTOV2_START

ROVPTOV3_START

INTRPTEF1_START

NSPTOC1_START

NSPTOC2_START

PDNSPTOC1_START

T1PTTR1_START

OSWGAPC17

OSWGAPC17 is used to route the protection function start signals to the

StartDLYD input of the switch onto fault function CBPSOF. CBPSOF provides an instantaneous trip or a time delayed trip when closing the breaker while a fault exists.

OSWGAPC17 output is connected to CBPSOF function indicating the detected fault.

IN_1

IN_2

IN_3

IN_4

IN_5

IN_6

IN_7

IN_13

IN_14

IN_15

IN_16

IN_8

IN_9

IN_10

IN_11

IN_12

OSWGAPC17

OUT

Start DLYD

CBPSOF1_INIT

GUID-1C9AD42F-21FA-4539-93EE-CF0EFA4EB4B0 V2 EN

Figure 127: OSWGAPC17

Binary outputs and LEDs

In configuration C, signals are routed to binary outputs and LEDs are configured by

OSWGAPC. The 16 OSWGAPC instances are categorized in four groups, including

144 REF611

Application Manual

1MRS757456 D

Section 3

REF611 standardized configurations two master trip, four start, four trip and six alarm signals. The OSWGAPC output is connected with binary outputs and LEDs via SELGAPC3 and SELGAPC4.

• SELGAPC3 is used to configure OSWGAPC signals to the protection relay's binary outputs. SELGAPC4 is used to configure OSWGAPC signals to LEDs.

• OSWGAPC1 and OSWGAPC2 are used for the Master trip. The inputs are routed from the protection function's operate and the circuit breaker failure's re-trip.

• OSWGAPC3 to OSWGAPC6 are used for the start signal. The inputs are start signals routed from the protection functions.

• OSWGAPC7 to OSWGAPC10 are used for the trip signal. The inputs are operation signals routed from the protection functions.

• OSWGAPC11 to OSWGAPC16 are used for the alarm signal. The inputs are alarm signals routed from the protection and monitoring functions.

REF611

Application Manual

145

Section 3

REF611 standardized configurations

1MRS757456 D

DPHLPDOC1_OPERATE

DPHLPDOC2_OPERATE

DPHHPDOC1_OPERATE

PHIPTOC1_OPERATE

EFHPTOC1_OPERATE

DEFLPDEF1_OPERATE

DEFLPDEF2_OPERATE

DEFHPDEF1_OPERATE

ROVPTOV1_OPERATE

ROVPTOV2_OPERATE

ROVPTOV3_OPERATE

INTRPTEF1_OPERATE

NSPTOC1_OPERATE

NSPTOC2_OPERATE

PDNSPTOC1_OPERATE

T1PTTR1_OPERATE

CCBRBRF1_TRRET

CBPSOF1_OPERATE

DPHLPDOC1_START

DPHLPDOC2_START

DPHHPDOC1_START

PHIPTOC1_START

EFHPTOC1_START

DEFLPDEF1_START

DEFLPDEF2_START

DEFHPDEF1_START

ROVPTOV1_START

ROVPTOV2_START

ROVPTOV3_START

INTRPTEF1_START

NSPTOC1_START

NSPTOC2_START

PDNSPTOC1_START

T1PTTR1_START

OSWGAPC1

Master Trip 1

TRPPTRC1

OSWGAPC2

Master Trip 2

TRPPTRC2

OSWGAPC3

OSWGAPC4

OSWGAPC5

OSWGAPC6

Start 1

IN1

TPGAPC1

OUT1

Start 2 IN2 OUT2

Start 3

IN1

TPGAPC2

OUT1

Start 4

IN2

OUT2

DPHLPDOC1_OPERATE

DPHLPDOC2_OPERATE

DPHHPDOC1_OPERATE

PHIPTOC1_OPERATE

EFHPTOC1_OPERATE

DEFLPDEF1_OPERATE

DEFLPDEF2_OPERATE

DEFHPDEF1_OPERATE

ROVPTOV1_OPERATE

ROVPTOV2_OPERATE

ROVPTOV3_OPERATE

INTRPTEF1_OPERATE

NSPTOC1_OPERATE

NSPTOC2_OPERATE

PDNSPTOC1_OPERATE

T1PTTR1_OPERATE

OSWGAPC7

OSWGAPC8

OSWGAPC9

OSWGAPC10

Trip 1

IN1

TPGAPC3

OUT1

Trip 2

IN2

Trip 3

OUT2

IN1

TPGAPC4

OUT1

Trip 4

IN2 OUT2

OSWGAPC11

T1PTTR1_ALARM

RDRE_TRIGGERED

TCSSCBR1_ALARM

TCSSCBR2_ALARM

CCBRBRF1_TRBU

CCBRBRF1_TRRET

DARREC1_INPRO

DARREC1_LOCKED

DARREC1_PROT_CRD

DARREC1_UNSUC_RECL

DARREC1_AR_ON

DARREC1_READY

SELGAPC1_OUT_9

TRPPTRC1_CL_LKOUT

TRPPTRC2_CL_LKOUT

OSWGAPC12

OSWGAPC13

OSWGAPC14

OSWGAPC15

OSWGAPC16

GUID-35DDDC63-355E-436A-AF9A-9D05D017083E V2 EN

Figure 128: Binary outputs

Alarm 1

IN1

TPGAPC5

OUT1

Alarm 2

IN2 OUT2

Alarm 3

IN1

TPGAPC6

OUT1

Alarm 4

IN2 OUT2

Alarm 5 IN1

TPGAPC7

OUT1

Alarm 6

IN2 OUT2

SELGAPC3

X100 PO1

X100 PO2

X100 SO1

X100 SO2

X100 PO3

X100 PO4

146 REF611

Application Manual

1MRS757456 D

REF611

Application Manual

Section 3

REF611 standardized configurations

DPHLPDOC1_OPERATE

DPHLPDOC2_OPERATE

DPHHPDOC1_OPERATE

PHIPTOC1_OPERATE

EFHPTOC1_OPERATE

DEFLPDEF1_OPERATE

DEFLPDEF2_OPERATE

DEFHPDEF1_OPERATE

ROVPTOV1_OPERATE

ROVPTOV2_OPERATE

ROVPTOV3_OPERATE

INTRPTEF1_OPERATE

NSPTOC1_OPERATE

NSPTOC2_OPERATE

PDNSPTOC1_OPERATE

T1PTTR1_OPERATE

CCBRBRF1_TRRET

CBPSOF1_OPERATE

DPHLPDOC1_START

DPHLPDOC2_START

DPHHPDOC1_START

PHIPTOC1_START

EFHPTOC1_START

DEFLPDEF1_START

DEFLPDEF2_START

DEFHPDEF1_START

ROVPTOV1_START

ROVPTOV2_START

ROVPTOV3_START

INTRPTEF1_START

NSPTOC1_START

NSPTOC2_START

PDNSPTOC1_START

T1PTTR1_START

DPHLPDOC1_OPERATE

DPHLPDOC2_OPERATE

DPHHPDOC1_OPERATE

PHIPTOC1_OPERATE

EFHPTOC1_OPERATE

DEFLPDEF1_OPERATE

DEFLPDEF2_OPERATE

DEFHPDEF1_OPERATE

ROVPTOV1_OPERATE

ROVPTOV2_OPERATE

ROVPTOV3_OPERATE

INTRPTEF1_OPERATE

NSPTOC1_OPERATE

NSPTOC2_OPERATE

PDNSPTOC1_OPERATE

T1PTTR1_OPERATE

OSWGAPC1

Master Trip 1

TRPPTRC1

OSWGAPC2

Master Trip 2

TRPPTRC2

OSWGAPC3

Start 1

OSWGAPC4

Start 2

OSWGAPC5

Start 3

OSWGAPC6

Start 4

OSWGAPC7

Trip 1

OSWGAPC8

Trip 2

OSWGAPC9

Trip 3

OSWGAPC10

Trip 4

SELGAPC4

T1PTTR1_ALARM

RDRE_TRIGGERED

TCSSCBR1_ALARM

TCSSCBR2_ALARM

CCBRBRF1_TRBU

CCBRBRF1_TRRET

DARREC1_INPRO

DARREC1_LOCKED

DARREC1_PROT_CRD

DARREC1_UNSUC_RECL

DARREC1_AR_ON

DARREC1_READY

SELGAPC1_OUT_9

TRPPTRC1_CL_LKOUT

TRPPTRC2_CL_LKOUT

OSWGAPC11

Alarm 1

OSWGAPC12

Alarm 2

OSWGAPC13

Alarm 3

OSWGAPC14

Alarm 4

OSWGAPC15

Alarm 5

OSWGAPC16

Alarm 6

GUID-1F4CCBC9-4EAC-4E46-92DD-4A1DB0D5AACF V2 EN

Figure 129: LEDs

SELGAPC3

SELGAPC3 is used to configure the OSWGAPC outputs to the protection relay binary outputs. Master trip signals are connected to SELGAPC3 via TRPPTRC. Start, trip and alarm signals are connected to SELGAPC3 via TPGAPC. TPGAPC are timers and used for setting the minimum pulse length for the outputs.

LED1

LED2

LED3

LED4

LED5

LED6

LED7

LED8

147

Section 3

REF611 standardized configurations

1MRS757456 D

SELGAPC3 outputs are connected to X100 binary outputs.

CBXCBR_EXE_OP

DARREC_OPEN_CB

TRPPTRC1_TRIP

CBXCBR_EXE_CL

DARREC_CLOSE_CB

CB Open 1

IN_1

SELGAPC3

OUT_1

CB Open 2

IN_2 OUT_2

CB Close

IN_3

OUT_3

Backup Trip

IN_4 OUT_4

IN1 OUT1

TPGAPC1

IN2 OUT2

St art 1

St art 2

IN_5

IN_6

OUT_5

OUT_6

IN1 OUT1

TPGAPC2

IN2 OUT2

St art 3

St art 4

IN_7

IN_8

IN1 OUT1

TPGAPC3

IN2 OUT2

Trip 1

Trip 2

IN_9

IN_10

IN1 OUT1

TPGAPC4

IN2 OUT2

Trip 3

Trip 4

IN1 OUT1

TPGAPC5

IN2 OUT2

Alarm 1

Alarm 2

IN_11

IN_12

IN_13

IN_14

IN1 OUT1

TPGAPC6

IN2 OUT2

Alarm 3

Alarm 4

IN_15

IN_16

IN1 OUT1

TPGAPC7

IN2 OUT2

Alarm 5

Alarm 6

IN_17

IN_18

X100 PO1

X100 PO2

X100 SO1

X100 SO2

X100 PO3

X100 PO4

GUID-39EB9D37-37DB-4DFF-ADFE-6E6B04AD0C97 V1 EN

Figure 130: SELGAPC3

SELGAPC4

SELGAPC4 is used to configure the OSWGAPC outputs to LEDs. Master trip signals are connected to SELGAPC4 via TRPPTRC. Start, trip and alarm signals are connected to SELGAPC4 directly. SELGAPC4 outputs are connected to programmable LED1 to LED8.

148 REF611

Application Manual

1MRS757456 D

Section 3

REF611 standardized configurations

CBXCBR_EXE_OP

DARREC_OPEN_CB

TRPPTRC1_TRIP

TRPPTRC2_TRIP

CBXCBR_EXE_CL

DARREC_CLOSE_CB

CCBRBRF1_TRBU

OSWGAPC3_OUT

OSWGAPC4_OUT

OSWGAPC5_OUT

OSWGAPC6_OUT

OSWGAPC7_OUT

OSWGAPC8_OUT

OSWGAPC9_OUT

OSWGAPC10_OUT

OSWGAPC11_OUT

OSWGAPC12_OUT

OSWGAPC13_OUT

OSWGAPC14_OUT

OSWGAPC15_OUT

OSWGAPC16_OUT

CB Open 1

IN_1

CB Open 2

IN_2

SELGAPC4

CB Close

IN_3

Backup Trip

IN_4

Start 1

IN_5

Start 2

IN_6

Start 3

IN_7

Start 4

IN_8

Trip 1

IN_9

Trip 2

IN_10

Trip 3

IN_11

Trip 4

IN_12

Alarm 1

IN_13

Alarm 2

IN_14

OUT_1

OUT_2

OUT_3

OUT_4

OUT_5

OUT_6

OUT_7

OUT_8

Alarm 3

IN_15

Alarm 4

IN_16

Alarm 5

IN_17

Alarm 6

IN_18

LED1

LED2

LED3

LED4

LED5

LED6

LED7

LED8

GUID-73BAED6A-3D38-4C94-AC80-4CBCECF1AD10 V1 EN

Figure 131: SELGAPC4

Master trip OSWGAPCs

OSWGAPC1 and OSWGAPC2 are used to route the protection function operate signals to Master trip. OSWGAPC1 and OSWGAPC2 have the same inputs from the protection function's operate signals. The output is connected to TRPPTRC function.

The default connections for OSWGAPC1 and OSWGAPC2 are different.

REF611

Application Manual

149

Section 3

REF611 standardized configurations

DPHLPDOC1_OPERATE

DPHLPDOC2_OPERATE

DPHHPDOC1_OPERATE

PHIPTOC1_OPERATE

EFHPTOC1_OPERATE

DEFLPDEF1_OPERATE

DEFLPDEF2_OPERATE

DEFHPDEF1_OPERATE

ROVPTOV1_OPERATE

ROVPTOV2_OPERATE

ROVPTOV3_OPERATE

INTRPTEF1_OPERATE

NSPTOC1_OPERATE

NSPTOC2_OPERATE

PDNSPTOC1_OPERATE

T1PTTR1_OPERATE

CCBRBRF1_TRRET

CBPSOF1_OPERATE

IN_6

IN_7

IN_8

IN_9

IN_10

IN_11

IN_12

IN_13

IN_14

IN_15

IN_16

IN_17

IN_18

IN_1

IN_2

IN_3

IN_4

IN_5

OSWGAPC1

OUT

Master trip 1

TRPPTRC 1_OPERATE

GUID-5B52C72B-F4DE-4C22-8445-9814790EDCC5 V2 EN

Figure 132: OSWGAPC1

1MRS757456 D

150 REF611

Application Manual

1MRS757456 D

Section 3

REF611 standardized configurations

DPHLPDOC1_OPERATE

DPHLPDOC2_OPERATE

DPHHPDOC1_OPERATE

PHIPTOC1_OPERATE

EFHPTOC1_OPERATE

DEFLPDEF1_OPERATE

DEFLPDEF2_OPERATE

DEFHPDEF1_OPERATE

ROVPTOV1_OPERATE

ROVPTOV2_OPERATE

ROVPTOV3_OPERATE

INTRPTEF1_OPERATE

NSPTOC1_OPERATE

NSPTOC2_OPERATE

PDNSPTOC1_OPERATE

T1PTTR1_OPERATE

CCBRBRF1_TRRET

CBPSOF1_OPERATE

IN_6

IN_7

IN_8

IN_9

IN_10

IN_11

IN_12

IN_13

IN_14

IN_15

IN_16

IN_17

IN_18

IN_1

IN_2

IN_3

IN_4

IN_5

OSWGAPC2

OUT

Master trip 1

TRPPTRC2_OPERATE

GUID-DB9586F1-284E-449B-8D3F-BD6EFD237C81 V2 EN

Figure 133: OSWGAPC2

Start OSWGAPCs

OSWGAPC instances 3...6 are used to configure the protection start signals. These four OSWGAPCs have the same inputs from the protection function start signals. The output is routed to SELGAPC3 via TPGAPC timer, and routed to SELGAPC4 directly.

REF611

Application Manual

151

Section 3

REF611 standardized configurations

DPHLPDOC1_START

DPHLPDOC2_START

DPHHPDOC1_START

PHIPTOC1_START

EFHPTOC1_START

DEFLPDEF1_START

DEFLPDEF2_START

DEFHPDEF1_START

ROVPTOV1_START

ROVPTOV2_START

ROVPTOV3_START

INTRPTEF1_START

NSPTOC1_START

NSPTOC2_START

PDNSPTOC1_START

T1PTTR1_START

IN_1

IN_2

IN_3

IN_4

IN_5

IN_6

IN_7

IN_8

IN_9

IN_10

IN_11

IN_12

IN_13

IN_14

IN_15

IN_16

OSWGAPC3

OUT

Start 1 TPGAPC1_IN1

SELGAPC4_IN_5

GUID-673E6174-04C6-48C9-A90D-43DBF1F6DC22 V2 EN

Figure 134: OSWGAPC3

1MRS757456 D

152 REF611

Application Manual

1MRS757456 D

Section 3

REF611 standardized configurations

DPHLPDOC1_START

DPHLPDOC2_START

DPHHPDOC1_START

PHIPTOC1_START

EFHPTOC1_START

DEFLPDEF1_START

DEFLPDEF2_START

DEFHPDEF1_START

ROVPTOV1_START

ROVPTOV2_START

ROVPTOV3_START

INTRPTEF1_START

NSPTOC1_START

NSPTOC2_START

PDNSPTOC1_START

T1PTTR1_START

IN_1

IN_2

IN_3

IN_4

IN_5

IN_6

IN_7

IN_8

IN_9

IN_10

IN_11

IN_12

IN_13

IN_14

IN_15

IN_16

OSWGAPC4

OUT

Start 2 TPGAPC1_IN2

SELGAPC4_IN_6

GUID-D80D1396-CBC2-401A-B867-4B3FE5B242A4 V2 EN

Figure 135: OSWGAPC4

REF611

Application Manual

153

Section 3

REF611 standardized configurations

DPHLPDOC1_START

DPHLPDOC2_START

DPHHPDOC1_START

PHIPTOC1_START

EFHPTOC1_START

DEFLPDEF1_START

DEFLPDEF2_START

DEFHPDEF1_START

ROVPTOV1_START

ROVPTOV2_START

ROVPTOV3_START

INTRPTEF1_START

NSPTOC1_START

NSPTOC2_START

PDNSPTOC1_START

T1PTTR1_START

IN_1

IN_2

IN_3

IN_4

IN_5

IN_6

IN_7

IN_8

IN_9

IN_10

IN_11

IN_12

IN_13

IN_14

IN_15

IN_16

OSWGAPC5

OUT

Start 3 TPGAPC2_IN1

SELGAPC4_IN_7

GUID-FFACAC81-A738-4E88-86D9-B4886C0ADD25 V2 EN

Figure 136: OSWGAPC5

1MRS757456 D

154 REF611

Application Manual

1MRS757456 D

Section 3

REF611 standardized configurations

DPHLPDOC1_START

DPHLPDOC2_START

DPHHPDOC1_START

PHIPTOC1_START

EFHPTOC1_START

DEFLPDEF1_START

DEFLPDEF2_START

DEFHPDEF1_START

ROVPTOV1_START

ROVPTOV2_START

ROVPTOV3_START

INTRPTEF1_START

NSPTOC1_START

NSPTOC2_START

PDNSPTOC1_START

T1PTTR1_START

IN_1

IN_2

IN_3

IN_4

IN_5

IN_6

IN_7

IN_8

IN_9

IN_10

IN_11

IN_12

IN_13

IN_14

IN_15

IN_16

OSWGAPC6

OUT

Start 4

TPGAPC2_IN2

SELGAPC4_IN_8

GUID-8AA508D7-A5A3-40FA-9C32-A6701986BFB2 V2 EN

Figure 137: OSWGAPC6

Trip OSWGAPCs

OSWGAPC instances 7...10 are used to configure the protection operate signals which belong to the trip group. These four OSWGAPCs have same inputs from the operate signals of the protection functions. The output is routed to SELGAPC3 via

TPGAPC timer, and routed to SELGAPC4 directly.

REF611

Application Manual

155

Section 3

REF611 standardized configurations

DPHLPDOC1_OPERATE

DPHLPDOC2_OPERATE

DPHHPDOC1_OPERATE

PHIPTOC1_OPERATE

EFHPTOC1_OPERATE

DEFLPDEF1_OPERATE

DEFLPDEF2_OPERATE

DEFHPDEF1_OPERATE

ROVPTOV1_OPERATE

ROVPTOV2_OPERATE

ROVPTOV3_OPERATE

INTRPTEF1_OPERATE

NSPTOC1_OPERATE

NSPTOC2_OPERATE

PDNSPTOC1_OPERATE

T1PTTR1_OPERATE

CBPSOF1_OPERATE

IN_1

IN_2

IN_3

IN_4

IN_5

IN_6

IN_7

IN_14

IN_15

IN_16

IN_17

IN_8

IN_9

IN_10

IN_11

IN_12

IN_13

OSWGAPC7

OUT

Trip 1 TPGAPC3_IN1

SELGAPC4_IN_9

GUID-BC917C5B-E13C-4BCC-B13B-8BD390F6258A V2 EN

Figure 138: OSWGAPC7

1MRS757456 D

156 REF611

Application Manual

1MRS757456 D

Section 3

REF611 standardized configurations

DPHLPDOC1_OPERATE

DPHLPDOC2_OPERATE

DPHHPDOC1_OPERATE

PHIPTOC1_OPERATE

EFHPTOC1_OPERATE

DEFLPDEF1_OPERATE

DEFLPDEF2_OPERATE

DEFHPDEF1_OPERATE

ROVPTOV1_OPERATE

ROVPTOV2_OPERATE

ROVPTOV3_OPERATE

INTRPTEF1_OPERATE

NSPTOC1_OPERATE

NSPTOC2_OPERATE

PDNSPTOC1_OPERATE

T1PTTR1_OPERATE

CBPSOF1_OPERATE

GUID-31BE770B-EC69-47CC-A3EC-F477B3C8558F V2 EN

Figure 139: OSWGAPC8

IN_1

IN_2

IN_3

IN_4

IN_5

IN_6

IN_7

IN_14

IN_15

IN_16

IN_17

IN_8

IN_9

IN_10

IN_11

IN_12

IN_13

OSWGAPC8

OUT

Trip 2 TPGAPC3_IN2

SELGAPC4_IN_10

REF611

Application Manual

157

Section 3

REF611 standardized configurations

DPHLPDOC1_OPERATE

DPHLPDOC2_OPERATE

IN_1

IN_2

DPHHPDOC1_OPERATE

PHIPTOC1_OPERATE

EFHPTOC1_OPERATE

DEFLPDEF1_OPERATE

DEFLPDEF2_OPERATE

DEFHPDEF1_OPERATE

ROVPTOV1_OPERATE

ROVPTOV2_OPERATE

ROVPTOV3_OPERATE

INTRPTEF1_OPERATE

NSPTOC1_OPERATE

NSPTOC2_OPERATE

PDNSPTOC1_OPERATE

T1PTTR1_OPERATE

CBPSOF1_OPERATE

IN_3

IN_4

IN_5

IN_6

IN_7

IN_8

IN_9

IN_10

IN_11

IN_12

IN_13

IN_14

IN_15

IN_16

IN_17

GUID-9F8ACEBF-BF13-4C3D-8671-1465613ABE28 V2 EN

Figure 140: OSWGAPC9

OSWGAPC9

OUT

Trip 3 TPGAPC4_IN1

SELGAPC4_IN_11

1MRS757456 D

158 REF611

Application Manual

1MRS757456 D

Section 3

REF611 standardized configurations

DPHLPDOC1_OPERATE

DPHLPDOC2_OPERATE

DPHHPDOC1_OPERATE

PHIPTOC1_OPERATE

EFHPTOC1_OPERATE

DEFLPDEF1_OPERATE

DEFLPDEF2_OPERATE

DEFHPDEF1_OPERATE

ROVPTOV1_OPERATE

ROVPTOV2_OPERATE

ROVPTOV3_OPERATE

INTRPTEF1_OPERATE

NSPTOC1_OPERATE

NSPTOC2_OPERATE

PDNSPTOC1_OPERATE

T1PTTR1_OPERATE

CBPSOF1_OPERATE

IN_1

IN_2

IN_3

IN_4

IN_5

IN_6

IN_7

IN_14

IN_15

IN_16

IN_17

IN_8

IN_9

IN_10

IN_11

IN_12

IN_13

OSWGAPC10

OUT

Trip 4 TPGAPC4_IN2

SELGAPC4_IN_12

GUID-94A627E8-AF2B-412F-BFA8-8A20E76C8250 V2 EN

Figure 141: OSWGAPC10

Alarm OSWGAPC11...16

OSWGAPC instances 11...16 are used to configure the alarm signals which belong to the alarm group. These six OSWGAPCs have same inputs from the alarm signals. The output is routed to SELGAPC3 via TPGAPC timer, and routed to SELGAPC4 directly.

REF611

Application Manual

159

Section 3

REF611 standardized configurations

T1PTTR1_ALARM

RDRE_TRIGGERED

IN_1

IN_2

TCSSCBR1_ALARM

TCSSCBR2_ALARM

IN_3

IN_4

CCBRBRF1_TRBU

CCBRBRF1_TRRET

IN_5

IN_6

DARREC1_INPRO IN_7

DARREC1_LOCKED

DARREC1_PROT_CRD

DARREC1_UNSUC_RECL

DARREC1_AR_ON

DARREC1_READY

SELGAPC1_OUT_9

TRPPTRC1_CL_LKOUT

IN_8

IN_9

IN_10

IN_11

IN_12

External Trip

IN_13

TRPPTRC2_CL_LKOUT

IN_14

IN_15

OSWGAPC11

OUT

Alarm 1 TPGAPC5_IN1

SELGAPC4_IN_13

GUID-0A739088-11AB-486F-83D9-A42FFFAD9AD2 V1 EN

Figure 142: OSWGAPC11

1MRS757456 D

160 REF611

Application Manual

1MRS757456 D

Section 3

REF611 standardized configurations

T1PTTR1_ALARM

RDRE_TRIGGERED

IN_1

IN_2

TCSSCBR1_ALARM

TCSSCBR2_ALARM

IN_3

IN_4

CCBRBRF1_TRBU

CCBRBRF1_TRRET

IN_5

IN_6

DARREC1_INPRO IN_7

DARREC1_LOCKED

DARREC1_PROT_CRD

DARREC1_UNSUC_RECL

DARREC1_AR_ON

DARREC1_READY

SELGAPC1_OUT_9

TRPPTRC1_CL_LKOUT

TRPPTRC2_CL_LKOUT

IN_8

IN_9

IN_10

IN_11

IN_12

External Trip

IN_13

IN_14

IN_15

OSWGAPC12

OUT

Alarm 2 TPGAPC5_IN2

SELGAPC4_IN_14

GUID-5ADDAA87-90E6-4E5C-96E5-BF9AF4351CDB V1 EN

Figure 143: OSWGAPC12

REF611

Application Manual

161

Section 3

REF611 standardized configurations

T1PTTR1_ALARM

RDRE_TRIGGERED

IN_1

IN_2

TCSSCBR1_ALARM

TCSSCBR2_ALARM

IN_3

IN_4

CCBRBRF1_TRBU

CCBRBRF1_TRRET

IN_5

IN_6

DARREC1_INPRO IN_7

DARREC1_LOCKED

DARREC1_PROT_CRD

DARREC1_UNSUC_RECL

DARREC1_AR_ON

DARREC1_READY

SELGAPC1_OUT_9

TRPPTRC1_CL_LKOUT

IN_8

IN_9

IN_10

IN_11

IN_12

External Trip

IN_13

TRPPTRC2_CL_LKOUT

IN_14

IN_15

OSWGAPC13

OUT

Alarm 3 TPGAPC6_IN1

SELGAPC4_IN_15

GUID-918198BA-427F-4187-90DD-1C4B2A029ED1 V1 EN

Figure 144: OSWGAPC13

1MRS757456 D

162 REF611

Application Manual

1MRS757456 D

Section 3

REF611 standardized configurations

T1PTTR1_ALARM

RDRE_TRIGGERED

IN_1

IN_2

TCSSCBR1_ALARM

TCSSCBR2_ALARM

IN_3

IN_4

CCBRBRF1_TRBU

CCBRBRF1_TRRET

IN_5

IN_6

DARREC1_INPRO IN_7

DARREC1_LOCKED

DARREC1_PROT_CRD

DARREC1_UNSUC_RECL

DARREC1_AR_ON

DARREC1_READY

SELGAPC1_OUT_9

TRPPTRC1_CL_LKOUT

IN_8

IN_9

IN_10

IN_11

IN_12

External Trip

IN_13

TRPPTRC2_CL_LKOUT

IN_14

IN_15

OSWGAPC14

OUT

Alarm 4 TPGAPC6_IN2

SELGAPC4_IN_16

GUID-84DCF27F-CB37-4AE1-B05B-C476C5B25F31 V1 EN

Figure 145: OSWGAPC14

REF611

Application Manual

163

Section 3

REF611 standardized configurations

T1PTTR1_ALARM

RDRE_TRIGGERED

IN_1

IN_2

TCSSCBR1_ALARM

TCSSCBR2_ALARM

IN_3

IN_4

CCBRBRF1_TRBU

CCBRBRF1_TRRET

IN_5

IN_6

DARREC1_INPRO IN_7

DARREC1_LOCKED

DARREC1_PROT_CRD

DARREC1_UNSUC_RECL

DARREC1_AR_ON

DARREC1_READY

SELGAPC1_OUT_9

TRPPTRC1_CL_LKOUT

IN_8

IN_9

IN_10

IN_11

IN_12

External Trip

IN_13

TRPPTRC2_CL_LKOUT

IN_14

IN_15

OSWGAPC15

OUT

Alarm 5 TPGAPC7_IN1

SELGAPC4_IN_17

GUID-09F139B5-AE68-43DB-8419-7C13BDDCD500 V1 EN

Figure 146: OSWGAPC15

1MRS757456 D

164 REF611

Application Manual

1MRS757456 D

3.6.4.4

Section 3

REF611 standardized configurations

T1PTTR1_ALARM

RDRE_TRIGGERED

IN_1

IN_2

TCSSCBR1_ALARM

TCSSCBR2_ALARM

IN_3

IN_4

CCBRBRF1_TRBU

CCBRBRF1_TRRET

IN_5

IN_6

DARREC1_INPRO IN_7

DARREC1_LOCKED

DARREC1_PROT_CRD

DARREC1_UNSUC_RECL

DARREC1_AR_ON

DARREC1_READY

SELGAPC1_OUT_9

TRPPTRC1_CL_LKOUT

IN_8

IN_9

IN_10

IN_11

IN_12

External Trip

IN_13

TRPPTRC2_CL_LKOUT

IN_14

IN_15

OSWGAPC16

OUT

Alarm 6 TPGAPC7_IN2

SELGAPC4_IN_18

GUID-85582396-2EEA-4A14-AAD2-1965D3CFFCAF V1 EN

Figure 147: OSWGAPC16

GOOSE

In the configuration, there are 20 GOOSERCV_BIN functions. Each

GOOSERVC_BIN function can be connected to one received binary GOOSE signal.

The signal connection can be configured in PCM600.

• GOOSERCV_BIN instances 0 and 1 are used for blocking protection functions.

Signals from these two GOOSERCV_BINs are connected to ISWGAPC9.

ISWGAPC9 is used to configure which protection function block is blocked.

• GOOSERCV_BIN instances 2 and 3 are used for tripping from GOOSE. Signals from these two GOOSERCV_BINs are connected to TRPPTRC1 and

TRPPTRC2 trip.

• GOOSERCV_BIN instances 4 to 19 are used for blocking circuit breaker operation. Signals from these 16 GOOSERCV_BINs are connected to

ISWGAPC10. ISWGAPC10 is used to configure the GOOSE input signal to block the circuit breaker open or close operation.

REF611

Application Manual

165

Section 3

REF611 standardized configurations

1MRS757456 D

GOOSERCV_BIN:0

GOOSERCV_BIN:1

GOOSERCV_BIN:2

OR

GOOSE Blcoking

ISWGAPC9

DPHLPDOC1_BLOCK

DPHLPDOC2_BLOCK

DPHHPDOC1_BLOCK

PHIPTOC1_BLOCK

EFHPTOC1_BLOCK

DEFLPDEF1_BLOCK

DEFLPDEF2_BLOCK

DEFHPDEF1_BLOCK

ROVPTOV1_BLOCK

ROVPTOV2_BLOCK

ROVPTOV3_BLOCK

INTRPTEF1_BLOCK

NSPTOC1_BLOCK

NSPTOC2_BLOCK

PDNSPTOC1_BLOCK

T1PTTR1_BLOCK

CBPSOF1_BLOCK

OR

GOOSE

External Trip TRPPTRC1_OPERATE

TRPPTRC2_OPERATE

GOOSERCV_BIN:3

GOOSERCV_BIN:4

GOOSERCV_BIN:5 OR

GOOSE Block CB

ISWGAPC10

CBXCBR1_BLK_CLOSE

CBXCBR1_BLK_OPEN

GOOSERCV_BIN:19

GUID-D433642C-DAC3-4B3F-9076-87393BD13B27 V2 EN

Figure 148: GOOSE overview

ISWGAPC9

ISWGAPC9 is used to configure which protection functions can be blocked by the received GOOSE signals. ISWGAPC9 inputs are received GOOSE signals from

GOOSERCV_BIN:0 and GOOSERCV_BIN:1. The outputs are connected to block inputs of the protection functions.

166 REF611

Application Manual

1MRS757456 D

Section 3

REF611 standardized configurations

GOOSERCV_BIN:0_OUT

GOOSERCV_BIN:1_OUT

GOOSE Blocking

IN

ISWGAPC9

OUT_1

OUT_2

OUT_3

OUT_4

OUT_5

OUT_6

OUT_7

OUT_8

OUT_9

OUT_10

OUT_11

OUT_12

OUT_13

OUT_14

OUT_15

OUT_16

OUT_17

GUID-8C895BF3-069C-40A3-A0F9-22AF387D07D7 V2 EN

Figure 149: ISWGAPC9

DPHLPDOC1_BLOCK

DPHLPDOC2_BLOCK

DPHHPDOC1_BLOCK

PHIPTOC1_BLOCK

EFHPTOC1_BLOCK

DEFLPDEF1_BLOCK

DEFLPDEF2_BLOCK

DEFHPDEF1_BLOCK

ROVPTOV1_BLOCK

ROVPTOV2_BLOCK

ROVPTOV3_BLOCK

INTRPTEF1_BLOCK

NSPTOC1_BLOCK

NSPTOC2_BLOCK

PDNSPTOC1_BLOCK

T1PTTR1_BLOCK

CBPSOF1_BLOCK

ISWGAPC10

ISWGAPC10 is used to block the circuit breaker operation from the received GOOSE signals. ISWGAPC10 inputs are received GOOSE signals from GOOSERCV_BIN:

4 to GOOSERCV_BIN:19. The outputs are connected to block the circuit breaker's close and open operation.

GOOSERCV_BIN:4_OUT

GOOSERCV_BIN:5_OUT

GOOSERCV_BIN:6_OUT

...

GOOSERCV_BIN:19_OUT

GOOSE Block CB IN

GUID-4A456CEE-F585-4BAA-BB5A-81347A59F5A8 V1 EN

Figure 150: ISWGAPC10

ISWGAPC10

OUT_1

OUT_2

CBXCBR1_BLK_CLOSE

CBXCBR1_BLK_OPEN

REF611

Application Manual

167

168

1MRS757456 D

Section 4

Requirements for measurement transformers

Section 4 Requirements for measurement transformers

4.1

4.1.1

4.1.1.1

REF611

Application Manual

Current transformers

Current transformer requirements for non-directional overcurrent protection

For reliable and correct operation of the overcurrent protection, the CT has to be chosen carefully. The distortion of the secondary current of a saturated CT may endanger the operation, selectivity, and co-ordination of protection. However, when the CT is correctly selected, a fast and reliable short circuit protection can be enabled.

The selection of a CT depends not only on the CT specifications but also on the network fault current magnitude, desired protection objectives, and the actual CT burden. The protection settings of the protection relay should be defined in accordance with the CT performance as well as other factors.

Current transformer accuracy class and accuracy limit factor

The rated accuracy limit factor (F n

) is the ratio of the rated accuracy limit primary current to the rated primary current. For example, a protective current transformer of type 5P10 has the accuracy class 5P and the accuracy limit factor 10. For protective current transformers, the accuracy class is designed by the highest permissible percentage composite error at the rated accuracy limit primary current prescribed for the accuracy class concerned, followed by the letter "P" (meaning protection).

Table 26:

Accuracy class

5P

10P

Limits of errors according to IEC 60044-1 for protective current transformers

Current error at rated primary current (%)

±1

±3

Phase displacement at rated primary current minutes centiradians

±60 ±1.8

-

Composite error at rated accuracy limit primary current (%)

5

10

The accuracy classes 5P and 10P are both suitable for non-directional overcurrent protection. The 5P class provides a better accuracy. This should be noted also if there are accuracy requirements for the metering functions (current metering, power metering, and so on) of the protection relay.

The CT accuracy primary limit current describes the highest fault current magnitude at which the CT fulfils the specified accuracy. Beyond this level, the secondary current

169

Section 4

Requirements for measurement transformers

1MRS757456 D of the CT is distorted and it might have severe effects on the performance of the protection relay.

In practise, the actual accuracy limit factor (F a

) differs from the rated accuracy limit factor (F n

) and is proportional to the ratio of the rated CT burden and the actual CT burden.

The actual accuracy limit factor is calculated using the formula:

F a

≈ F n

×

S in

+ S n

S in

+ S

A071141 V1 EN

F n

S in

S the accuracy limit factor with the nominal external burden S n the internal secondary burden of the CT the actual external burden

4.1.1.2

170

Non-directional overcurrent protection

The current transformer selection

Non-directional overcurrent protection does not set high requirements on the accuracy class or on the actual accuracy limit factor (F a

) of the CTs. It is, however, recommended to select a CT with F a

of at least 20.

The nominal primary current I

1n

should be chosen in such a way that the thermal and dynamic strength of the current measuring input of the protection relay is not exceeded. This is always fulfilled when

I

1n

> I kmax

/ 100,

I kmax

is the highest fault current.

The saturation of the CT protects the measuring circuit and the current input of the protection relay. For that reason, in practice, even a few times smaller nominal primary current can be used than given by the formula.

Recommended start current settings

If I kmin

is the lowest primary current at which the highest set overcurrent stage is to operate, the start current should be set using the formula:

Current start value < 0.7 × (I kmin

/ I

1n

)

I

1n

is the nominal primary current of the CT.

The factor 0.7 takes into account the protection relay inaccuracy, current transformer errors, and imperfections of the short circuit calculations.

REF611

Application Manual

1MRS757456 D

4.1.1.3

Section 4

Requirements for measurement transformers

The adequate performance of the CT should be checked when the setting of the high set stage overcurrent protection is defined. The operate time delay caused by the CT saturation is typically small enough when the overcurrent setting is noticeably lower than F a

.

When defining the setting values for the low set stages, the saturation of the CT does not need to be taken into account and the start current setting is simply according to the formula.

Delay in operation caused by saturation of current transformers

The saturation of CT may cause a delayed protection relay operation. To ensure the time selectivity, the delay must be taken into account when setting the operate times of successive protection relays.

With definite time mode of operation, the saturation of CT may cause a delay that is as long as the time the constant of the DC component of the fault current, when the current is only slightly higher than the starting current. This depends on the accuracy limit factor of the CT, on the remanence flux of the core of the CT, and on the operate time setting.

With inverse time mode of operation, the delay should always be considered as being as long as the time constant of the DC component.

With inverse time mode of operation and when the high-set stages are not used, the AC component of the fault current should not saturate the CT less than 20 times the starting current. Otherwise, the inverse operation time can be further prolonged.

Therefore, the accuracy limit factor F a

should be chosen using the formula:

F a

> 20 × Current start value / I

1n

The Current start value is the primary start current setting of the protection relay.

Example for non-directional overcurrent protection

The following figure describes a typical medium voltage feeder. The protection is implemented as three-stage definite time non-directional overcurrent protection.

REF611

Application Manual

171

Section 4

Requirements for measurement transformers

1MRS757456 D

172

A071142 V1 EN

Figure 151: Example of three-stage overcurrent protection

The maximum three-phase fault current is 41.7 kA and the minimum three-phase short circuit current is 22.8 kA. The actual accuracy limit factor of the CT is calculated to be 59.

The start current setting for low-set stage (3I>) is selected to be about twice the nominal current of the cable. The operate time is selected so that it is selective with the next protection relay (not visible in Figure 151 ). The settings for the high-set stage and instantaneous stage are defined also so that grading is ensured with the downstream protection. In addition, the start current settings have to be defined so that the protection relay operates with the minimum fault current and it does not operate with the maximum load current. The settings for all three stages are as in Figure 151 .

For the application point of view, the suitable setting for instantaneous stage (I>>>) in this example is 3 500 A (5.83 × I

2n

). For the CT characteristics point of view, the criteria given by the current transformer selection formula is fulfilled and also the protection relay setting is considerably below the F a

. In this application, the CT rated burden could have been selected much lower than 10 VA for economical reasons.

REF611

Application Manual

1MRS757456 D

Section 5

Protection relay's physical connections

Section 5 Protection relay's physical connections

5.1

5.1.1

5.1.1.1

5.1.1.2

5.1.1.3

Inputs

Energizing inputs

Phase currents

The protection relay can also be used in single or two-phase applications by leaving one or two energizing inputs unoccupied.

However, at least terminals X120:7-8 must be connected.

Table 27:

Terminal

X120:7-8

X120:9-10

X120:11-12

Phase current inputs included in configurations A, B and C

Description

IL1

IL2

IL3

Residual current

Table 28:

Terminal

X120:13-14

Residual current input included in configurations A, B and C

Description

Io

Residual voltage

Table 29:

Terminal

X120:5-6

Additional residual voltage input included in configuration A

Description

Uo

Table 30:

Terminal

X130:17-18

Additional residual voltage input included in configuration C

Description

Uo

REF611

Application Manual

173

Section 5

Protection relay's physical connections

5.1.1.4

5.1.2

5.1.3

1MRS757456 D

Phase voltage

Table 31:

Terminal

X130:11-12

X130:13-14

X130:15-16

Phase voltage inputs included in configuration C

Description

U1

U2

U3

Auxiliary supply voltage input

The auxiliary voltage of the protection relay is connected to terminals X100:1-2. At

DC supply, the positive lead is connected to terminal X100:1. The permitted auxiliary voltage range (AC/DC or DC) is marked on the top of the LHMI of the protection relay.

Auxiliary voltage supply Table 32:

Terminal

X100:1

X100:2

Description

+ Input

- Input

Binary inputs

The binary inputs can be used, for example, to generate a blocking signal, to unlatch output contacts, to trigger the disturbance recorder or for remote control of protection relay settings.

Terminals X120:1-4 are binary input terminals. In the protection relay variant B, there are additional binary inputs X120:5-6 included. Optional BIO-module BIO0006 for slot X130 can be included at the time of order.

Binary inputs of slot X120 are available with configurations A and B.

Table 33:

Terminal

X120:1

X120:2

X120:3

X120:2

X120:4

X120:2

X120:5

X120:6

Binary input terminals X120-1...6

Description

BI1, +

BI1, -

BI2, +

BI2, -

BI3, +

BI3, -

BI4, +

BI4, -

174 REF611

Application Manual

1MRS757456 D

5.2

5.2.1

Section 5

Protection relay's physical connections

Binary inputs of slot X130 are optional for configurations A and B.

Table 34:

Terminal

X130:1

X130:2

X130:2

X130:3

X130:4

X130:5

X130:5

X130:6

X130:7

X130:8

X130:8

X130:9

Binary input terminals X130-1...9

BI4, -

BI4, +

BI5, +

BI5, -

BI6, -

BI6, +

Description

BI1, +

BI1, -

BI2, -

BI2, +

BI3, +

BI3, -

Binary inputs of slot X130 are available with configuration C.

Table 35:

Terminal

X130:1

X130:2

X130:3

X130:4

X130:5

X130:6

X130:7

X130:8

Binary input terminals X130:1-8 with AIM0006 module

Description

BI1, +

BI1, -

BI2, +

BI2, -

BI3, +

BI3, -

BI4, +

BI4, -

Outputs

Outputs for tripping and controlling

Output contacts PO1, PO2, PO3 and PO4 are heavy-duty trip contacts capable of controlling most circuit breakers. On delivery from the factory, the trip signals from all the protection stages are routed to PO3 and PO4.

REF611

Application Manual

175

Section 5

Protection relay's physical connections

5.2.2

176

1MRS757456 D

Table 36:

Terminal

X100:6

X100:7

X100:8

X100:9

X100:15

X100:16

X100:17

X100:18

X100:19

X100:20

X100:21

X100:22

X100:23

X100:24

Output contacts

Description

PO1, NO

PO1, NO

PO2, NO

PO2, NO

PO3, NO (TCS resistor)

PO3, NO

PO3, NO

PO3 (TCS1 input), NO

PO3 (TCS1 input), NO

PO4, NO (TCS resistor)

PO4, NO

PO4, NO

PO4 (TCS2 input), NO

PO4 (TCS2 input), NO

Outputs for signalling

Output contacts SO1 and SO2 in slot X100 or SO1, SO2 and SO3 in slot X130

(optional) can be used for signalling on start and tripping of the protection relay. On delivery from the factory, the start and alarm signals from all the protection stages are routed to signalling outputs.

Output contacts X100:10...14

Table 37:

Terminal

X100:10

X100:11

X100:12

X100:13

X100:14

Description

SO1, common

SO1, NC

SO1, NO

SO2, NO

SO2, NO

Output contacts of slot X130 are available in the optional BIO module (BIO0006).

Output contacts of slot X130 are optional for configurations A and B.

Table 38:

Terminal

X130:10

X130:11

X130:12

Output contacts X130:10...18

X130:13

Table continues on next page

Description

SO1, common

SO1, NO

SO1, NC

SO2, common

REF611

Application Manual

1MRS757456 D

5.2.3

Section 5

Protection relay's physical connections

Terminal

X130:14

X130:15

X130:16

X130:17

X130:18

Description

SO2, NO

SO2, NC

SO3, common

SO3, NO

SO3, NC

IRF

The IRF contact functions as an output contact for the self-supervision system of the protection relay. Under normal operating conditions, the protection relay is energized and the contact is closed (X100:3-5). When a fault is detected by the self-supervision system or the auxiliary voltage is disconnected, the output contact drops off and the contact closes (X100:3-4).

IRF contact Table 39:

Terminal

X100:3

X100:4

X100:5

Description

IRF, common

Closed; IRF, or U aux

disconnected

Closed; no IRF, and U aux

connected

REF611

Application Manual

177

178

1MRS757456 D

Section 6 Glossary

REF611

Application Manual

Section 6

Glossary

CB

CSV

CT

DAN

DC

611 series

DPC

EMC

Ethernet

FIFO

FTP

FTPS

GOOSE

HMI

HSR

HTTPS

Series of numerical protection and control relays for low-end protection and supervision applications of utility substations, and industrial switchgear and equipment

Circuit breaker

Comma-separated values

Current transformer

Doubly attached node

1. Direct current

2. Disconnector

3. Double command

Double-point control

Electromagnetic compatibility

A standard for connecting a family of frame-based computer networking technologies into a LAN

First in, first out

File transfer protocol

FTP Secure

Generic Object-Oriented Substation Event

Human-machine interface

High-availability seamless redundancy

Hypertext Transfer Protocol Secure

IEC

IEC 61850

International Electrotechnical Commission

International standard for substation communication and modeling

IEC 61850-8-1 A communication protocol based on the IEC 61850 standard series

IED Intelligent electronic device (protection and control relay)

IEEE 1588 v2 Standard for a Precision Clock Synchronization Protocol for networked measurement and control systems

IEEE 1686

IP address

Standard for Substation Intelligent Electronic Devices'

(IEDs') Cyber Security Capabilities

A set of four numbers between 0 and 255, separated by periods. Each server connected to the Internet is assigned a

179

Section 6

Glossary

1MRS757456 D

IRIG-B

LAN

LC

LCD

LED

LHMI

MAC

MMS

Modbus

RSTP

SAN

SNTP

SO

WAN

WHMI

PCM600

PO

PRP

REF611

RJ-45

RS-485 unique IP address that specifies the location for the TCP/IP protocol.

Inter-Range Instrumentation Group's time code format B

Local area network

Connector type for glass fiber cable, IEC 61754-20

Liquid crystal display

Light-emitting diode

Local human-machine interface

Media access control

1. Manufacturing message specification

2. Metering management system

A serial communication protocol developed by the Modicon company in 1979. Originally used for communication in PLCs and RTU devices.

Protection and Control IED Manager

Power output

Parallel redundancy protocol

Feeder protection and control relay

Galvanic connector type

Serial link according to EIA standard RS485

Rapid spanning tree protocol

Single attached node

Simple Network Time Protocol

Signal output

Wide area network

Web human-machine interface

180 REF611

Application Manual

181

Contact us

ABB Oy

Medium Voltage Products,

Distribution Automation

P.O. Box 699

FI-65101 VAASA, Finland

Phone

Fax

+358 10 22 11

+358 10 22 41094 www.abb.com/mediumvoltage www.abb.com/substationautomation

advertisement

Related manuals

Download PDF

advertisement

Table of contents