ABB REF611 Applications Manual 188 Pages
ABB REF611 Applications Manual
advertisement
Relion ® 611 series
Feeder Protection and Control
REF611
Application Manual
Document ID: 1MRS757456
Issued: 2017-10-31
Revision: D
Product version: 2.0
© Copyright 2017 ABB. All rights reserved
Copyright
This document and parts thereof must not be reproduced or copied without written permission from ABB, and the contents thereof must not be imparted to a third party, nor used for any unauthorized purpose.
The software or hardware described in this document is furnished under a license and may be used, copied, or disclosed only in accordance with the terms of such license.
Trademarks
ABB and Relion are registered trademarks of the ABB Group. All other brand or product names mentioned in this document may be trademarks or registered trademarks of their respective holders.
Warranty
Please inquire about the terms of warranty from your nearest ABB representative.
www.abb.com/substationautomation
Disclaimer
The data, examples and diagrams in this manual are included solely for the concept or product description and are not to be deemed as a statement of guaranteed properties.
All persons responsible for applying the equipment addressed in this manual must satisfy themselves that each intended application is suitable and acceptable, including that any applicable safety or other operational requirements are complied with. In particular, any risks in applications where a system failure and/or product failure would create a risk for harm to property or persons (including but not limited to personal injuries or death) shall be the sole responsibility of the person or entity applying the equipment, and those so responsible are hereby requested to ensure that all measures are taken to exclude or mitigate such risks.
This product has been designed to be connected and communicate data and information via a network interface which should be connected to a secure network.
It is the sole responsibility of the person or entity responsible for network administration to ensure a secure connection to the network and to take the necessary measures (such as, but not limited to, installation of firewalls, application of authentication measures, encryption of data, installation of anti virus programs, etc.) to protect the product and the network, its system and interface included, against any kind of security breaches, unauthorized access, interference, intrusion, leakage and/or theft of data or information. ABB is not liable for any such damages and/or losses.
This document has been carefully checked by ABB but deviations cannot be completely ruled out. In case any errors are detected, the reader is kindly requested to notify the manufacturer. Other than under explicit contractual commitments, in no event shall ABB be responsible or liable for any loss or damage resulting from the use of this manual or the application of the equipment.
Conformity
This product complies with the directive of the Council of the European Communities on the approximation of the laws of the Member States relating to electromagnetic compatibility (EMC Directive 2004/108/EC) and concerning electrical equipment for use within specified voltage limits (Low-voltage directive 2006/95/EC). This conformity is the result of tests conducted by ABB in accordance with the product standard EN 60255-26 for the EMC directive, and with the product standards EN
60255-1 and EN 60255-27 for the low voltage directive. The product is designed in accordance with the international standards of the IEC 60255 series.
Table of contents
REF611
Application Manual
Table of contents
Section 1 Introduction.......................................................................5
This manual........................................................................................ 5
Intended audience.............................................................................. 5
Product documentation.......................................................................6
Product documentation set............................................................6
Document revision history............................................................. 6
Related documentation..................................................................7
Symbols and conventions...................................................................7
Symbols.........................................................................................7
Document conventions..................................................................8
Functions, codes and symbols...................................................... 8
Section 2 REF611 overview...........................................................11
Overview...........................................................................................11
Product version history................................................................12
PCM600 and relay connectivity package version........................12
Operation functionality......................................................................13
Optional functions........................................................................13
Physical hardware............................................................................ 13
Local HMI......................................................................................... 14
Display.........................................................................................15
LEDs............................................................................................16
Keypad........................................................................................ 16
Web HMI...........................................................................................17
Command buttons....................................................................... 18
Authorization.....................................................................................19
Audit trail......................................................................................20
Communication.................................................................................22
Self-healing Ethernet ring............................................................23
Ethernet redundancy................................................................... 24
Secure communication................................................................26
Section 3 REF611 standardized configurations ............................ 27
Standardized configurations............................................................. 27
Switch groups................................................................................... 28
Input switch group ISWGAPC..................................................... 29
Output switch group OSWGAPC.................................................29
Selector switch group SELGAPC................................................ 30
Connection diagrams........................................................................31
Configuration A.................................................................................34
1
2
Table of contents
Applications................................................................................. 34
Functions.....................................................................................35
Default I/O connections.......................................................... 35
Predefined disturbance recorder connections........................36
Functional diagrams.................................................................... 36
Functional diagrams for protection......................................... 37
Functional diagrams for disturbance recorder and trip circuit supervision...................................................................44
Functional diagrams for control.............................................. 47
Switch groups..............................................................................50
Binary inputs...........................................................................50
Internal signals....................................................................... 54
Binary outputs and LEDs........................................................58
GOOSE.................................................................................. 78
Configuration B.................................................................................81
Applications................................................................................. 81
Functions.....................................................................................82
Default I/O connections.......................................................... 82
Predefined disturbance recorder connections........................83
Functional diagrams.................................................................... 83
Functional diagrams for protection......................................... 84
Functional diagrams for disturbance recorder and trip circuit supervision...................................................................89
Functional diagrams for control.............................................. 91
Switch groups..............................................................................93
Binary inputs...........................................................................94
Internal signals....................................................................... 97
Binary outputs and LEDs......................................................101
GOOSE................................................................................ 119
Configuration C...............................................................................121
Applications............................................................................... 121
Functions...................................................................................122
Default I/O connections........................................................ 123
Predefined disturbance recorder connections......................124
Functional diagrams.................................................................. 124
Functional diagrams for protection....................................... 124
Functional diagrams for disturbance recorder and trip circuit supervision.................................................................131
Functional diagrams for control............................................ 134
Switch groups............................................................................137
Binary inputs.........................................................................137
Internal signals..................................................................... 141
Binary outputs and LEDs......................................................144
GOOSE................................................................................ 165
REF611
Application Manual
REF611
Application Manual
Table of contents
Section 4 Requirements for measurement transformers..............169
Current transformers...................................................................... 169
Current transformer requirements for non-directional overcurrent protection................................................................169
Current transformer accuracy class and accuracy limit factor.................................................................................... 169
Non-directional overcurrent protection................................. 170
Example for non-directional overcurrent protection..............171
Section 5 Protection relay's physical connections........................173
Inputs..............................................................................................173
Energizing inputs.......................................................................173
Phase currents..................................................................... 173
Residual current................................................................... 173
Residual voltage...................................................................173
Phase voltage.......................................................................174
Auxiliary supply voltage input.................................................... 174
Binary inputs..............................................................................174
Outputs........................................................................................... 175
Outputs for tripping and controlling............................................175
Outputs for signalling.................................................................176
IRF.............................................................................................177
Section 6 Glossary....................................................................... 179
3
4
1MRS757456 D
Section 1 Introduction
1.1
1.2
Section 1
Introduction
This manual
The application manual contains application descriptions and setting guidelines sorted per function. The manual can be used to find out when and for what purpose a typical protection function can be used. The manual can also be used when calculating settings.
Intended audience
This manual addresses the protection and control engineer responsible for planning, pre-engineering and engineering.
The protection and control engineer must be experienced in electrical power engineering and have knowledge of related technology, such as protection schemes and principles.
REF611
Application Manual
5
Section 1
Introduction
1.3
1.3.1
Product documentation
Product documentation set
1MRS757456 D
6
1.3.2
Quick start guide
Quick installation guide
Brochure
Product guide
Operation manual
Installation manual
Connection diagram
Engineering manual
Technical manual
Application manual
Communication protocol manual
IEC 61850 engineering guide
Point list manual
Cyber security deployment guideline
GUID-0777AFDA-CADF-4AA9-946E-F6A856BDF75E V1 EN
Figure 1: The intended use of manuals in different lifecycles
Product series- and product-specific manuals can be downloaded from the ABB Web site http://www.abb.com/relion .
Document revision history
Document revision/date
A/2011-11-18
B/2016-02-22
C/2016-10-11
D/2017-10-31
Product version
1.0
2.0
2.0
2.0
History
First release
Content updated to correspond to the product version
Content updated
Content updated
Download the latest documents from the ABB Web site http://www.abb.com/substationautomation .
REF611
Application Manual
1MRS757456 D
1.3.3
1.4
1.4.1
REF611
Application Manual
Section 1
Introduction
Related documentation
Name of the document
Modbus Communication Protocol Manual
IEC 61850 Engineering Guide
Engineering Manual
Installation Manual
Operation Manual
Technical Manual
Cyber Security Deployment Guideline
Document ID
1MRS757461
1MRS757465
1MRS241255
1MRS757452
1MRS757453
1MRS757454
1MRS758337
Symbols and conventions
Symbols
The electrical warning icon indicates the presence of a hazard which could result in electrical shock.
The warning icon indicates the presence of a hazard which could result in personal injury.
The caution icon indicates important information or warning related to the concept discussed in the text. It might indicate the presence of a hazard which could result in corruption of software or damage to equipment or property.
The information icon alerts the reader of important facts and conditions.
The tip icon indicates advice on, for example, how to design your project or how to use a certain function.
Although warning hazards are related to personal injury, it is necessary to understand that under certain operational conditions, operation of damaged equipment may result in degraded process performance leading to personal injury or death. Therefore, comply fully with all warning and caution notices.
7
8
Section 1
Introduction
1.4.2
1.4.3
1MRS757456 D
Document conventions
A particular convention may not be used in this manual.
• Abbreviations and acronyms are spelled out in the glossary. The glossary also contains definitions of important terms.
• Push button navigation in the LHMI menu structure is presented by using the push button icons.
To navigate between the options, use and .
• Menu paths are presented in bold.
Select Main menu/Settings .
• LHMI messages are shown in Courier font.
To save the changes in nonvolatile memory, select Yes and press .
• Parameter names are shown in italics.
The function can be enabled and disabled with the Operation setting.
• Parameter values are indicated with quotation marks.
The corresponding parameter values are "On" and "Off".
• Input/output messages and monitored data names are shown in Courier font.
When the function starts, the START output is set to TRUE.
• This document assumes that the parameter setting visibility is "Advanced".
Functions, codes and symbols
Table 1:
Function
Protection
Functions included in the relay
IEC 61850
Three-phase non-directional overcurrent protection, low stage, instance 1
Three-phase non-directional overcurrent protection, high stage, instance 1
Three-phase non-directional overcurrent protection, high stage, instance 2
Three-phase non-directional overcurrent protection, instantaneous stage, instance 1
Non-directional earth-fault protection, low stage, instance 1
Non-directional earth-fault protection, low stage, instance 2
Non-directional earth-fault protection, high stage, instance 1
Non-directional earth-fault protection, instantaneous stage
Three-phase directional overcurrent protection, low stage, instance 1
Table continues on next page
PHLPTOC1
PHHPTOC1
PHHPTOC2
PHIPTOC1
EFLPTOC1
EFLPTOC2
EFHPTOC1
EFIPTOC1
DPHLPDOC1
IEC 60617 IEC-ANSI
3I> (1)
3I>> (1)
3I>> (2)
3I>>> (1)
Io> (1)
Io> (2)
Io>> (1)
Io>>>
3I> -> (1)
51P-1 (1)
51P-2 (1)
51P-2 (2)
50P/51P (1)
51N-1 (1)
51N-1 (2)
51N-2 (1)
50N/51N
67-1(1)
REF611
Application Manual
1MRS757456 D
REF611
Application Manual
Section 1
Introduction
Function
Three-phase directional overcurrent protection, low stage, instance 2
Three-phase directional overcurrent protection, high stage, instance 1
Directional earth-fault protection, low stage, instance 1
Directional earth-fault protection, low stage, instance 2
Directional earth-fault protection, high stage
Transient/intermittent earth-fault protection
Non-directional (cross-country) earth fault protection, using calculated Io
Negative-sequence overcurrent protection, instance 1
Negative-sequence overcurrent protection, instance 2
Phase discontinuity protection
Residual overvoltage protection, instance 1
Residual overvoltage protection, instance 2
Residual overvoltage protection, instance 3
Three-phase thermal protection for feeders, cables and distribution transformers
Circuit breaker failure protection
Three-phase inrush detector
Master trip, instance 1
Master trip, instance 2
Switch onto fault
Other
Input switch group 1)
Output switch group 2)
Selector 3)
Minimum pulse timer (2 pcs) 4)
Move (8 pcs), instance 1
Control
Circuit-breaker control
Autoreclosing
Condition monitoring and supervision
Trip circuit supervision, instance 1
Trip circuit supervision, instance 2
Table continues on next page
IEC 61850
DPHLPDOC2
DPHHPDOC1
DEFLPDEF1
DEFLPDEF2
DEFHPDEF1
INTRPTEF1
EFHPTOC1
NSPTOC1
NSPTOC2
PDNSPTOC1
ROVPTOV1
ROVPTOV2
ROVPTOV3
T1PTTR1
CCBRBRF1
INRPHAR1
TRPPTRC1
TRPPTRC2
CBPSOF1
ISWGAPC
OSWGAPC
SELGAPC
TPGAPC
MVGAPC
CBXCBR1
DARREC1
TCSSCBR1
TCSSCBR2
Io> -> IEF
Io>> (1)
I2> (1)
I2> (2)
I2/I1>
Uo> (1)
Uo> (2)
Uo> (3)
IEC 60617
3I> -> (2)
3I>> -> (1)
Io> -> (1)
Io> -> (2)
Io>> ->
3Ith>F 49F
3I>/Io>BF
3I2f>
51BF/51NBF
68
Master Trip (1) 94/86 (1)
Master Trip (2) 94/86 (2)
SOTF SOTF
67NIEF
51N-2 (1)
46 (1)
46 (2)
46PD
59G (1)
59G (2)
59G (3)
IEC-ANSI
67-1(2)
67-2(1)
67N-1 (1)
67N-1 (2)
67N-2
ISWGAPC
OSWGAPC
SELGAPC
TP
MV (1)
ISWGAPC
OSWGAPC
SELGAPC
TP
MV (1)
I <-> O CB
O -> I
I <-> O CB
79
TCS (1)
TCS (2)
TCM (1)
TCM (2)
9
Section 1
Introduction
1MRS757456 D
Function
Logging
Disturbance recorder
Fault recorder
Measurement
Three-phase current measurement, instance 1
Sequence current measurement
IEC 61850
RDRE1
FLTRFRC1
CMMXU1
CSMSQI1
Residual current measurement, instance 1
Three-phase voltage measurement, instance 1
RESCMMXU1
VMMXU1
Sequence voltage measurement, instance 1
Three-phase power and energy measurement, instance 1
VSMSQI1
Residual voltage measurement RESVMMXU1
Frequency measurement, instance 1 FMMXU1
PEMMXU1
1) 10 instances
2) 20 instances
3) 6 instances
4) 10 instances
IEC 60617
-
DR (1)
IEC-ANSI
DFR(1)
FR
3I
I1, I2, I0
Io
3U
U1, U2, U0 f
Uo
P, E
3I
I1, I2, I0
In
3U
U1, U2, U0 f
Vn
P, E
10 REF611
Application Manual
1MRS757456 D
Section 2 REF611 overview
2.1
Section 2
REF611 overview
Overview
REF611 is a dedicated feeder relay for the protection, control, measurement and supervision of utility substations and industrial power systems including radial, looped and meshed distribution networks with or without distributed power generation.
REF611 is a member of ABB’s Relion ® product family and part of the 611 protection and control product series. The 611 series relays are characterized by their compactness and withdrawable-unit design.
The 611 series offers simplified yet powerful functionality for most applications.
Once the application-specific parameter set has been entered, the installed protection relay is ready to be put into service. The further addition of communication functionality and interoperability between substation automation devices offered by the IEC 61850 standard adds flexibility and value to end users as well as electrical system manufacturers.
The 611 series relays fully support the IEC 61850 standard for communication and interoperability of substation automation devices, including fast GOOSE (Generic
Object Oriented Substation Event) messaging, and can now also benefit from the extended interoperability provided by Edition 2 of the standard. The relays further support the parallel redundancy protocol (PRP) and the high-availability seamless redundancy (HSR) protocol. The 611 series relays are able to use IEC 61850 and
Modbus® communication protocols simultaneously.
REF611
Application Manual
11
Section 2
REF611 overview
2.1.1
1MRS757456 D
Product version history
Product version
1.0
2.0
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
Product history
Product released
New configuration C
Additions/changes for configuration A and B
High-availablity seamless redundancy (HSR) protocol
Parallel redundancy protocol (PRP-1)
Two selectable indication colors for LEDs (red or green)
Online binary signal monitoring with PCM600
IEEE 1588 v2 time synchronization
Profibus adapter support
Import/export of settings via WHMI
Setting usability improvements
HMI event filtering tool
IEC 61850 Edition 2
Support for configuration migration (starting from Ver.1.0 to Ver.2.0)
Software closable Ethernet ports
Report summary via WHMI
Switch onto fault
2.1.2 PCM600 and relay connectivity package version
• Protection and Control IED Manager PCM600 Ver.2.7 or later
• REF611 Connectivity Package Ver.2.0 or later
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
• Communication Management
Configuration Wizard
Disturbance Handling
Event Viewer
Fault Record tool
Firmware Update
HMI Event Filtering
IEC 61850 Configuration
IED Compare
IED Configuration Migration
IED User Management
Label Printing
Lifecycle Traceability
Parameter Setting
Signal Matrix
Signal Monitoring
Download connectivity packages from the ABB Web site http://www.abb.com/substationautomation or directly with the
Update Manager in PCM600.
12 REF611
Application Manual
1MRS757456 D
2.2
2.2.1
2.3
Section 2
REF611 overview
Operation functionality
Optional functions
• Autoreclosing
• Modbus TCP/IP or RTU/ASCII
• IEEE 1588 time v2 synchronization
• High-availability seamless redundancy protocol (HSR)
• Parallel redundancy protocol (PRP)
Physical hardware
The protection relay consists of two main parts: plug-in unit and case. The content depends on the ordered functionality.
Table 2:
Main unit Slot ID
Plug-in unit
-
X100
Case
X120
X130
X000
Plug-in unit and case
Content options
HMI
Auxiliary power/BO module
AI/BI module
Optional BI/O module
AI/BI module
Optional communication module
Small (4 lines, 16 characters)
48...250 V DC/100...240 V AC; or 24...60 V DC
2 normally-open PO contacts
1 change-over SO contact
1 normally-open SO contact
2 double-pole PO contacts with TCS
1 dedicated internal fault output contact
Only with configuration A:
3 phase current inputs (1/5 A)
1 residual current input (1/5 A or 0.2/1 A) 1)
1 residual voltage input (60...120 V)
3 binary inputs
Only with configurations B and C:
3 phase current inputs (1/5 A)
1 residual current input (1/5 A or 0.2/1 A) 1)
4 binary inputs
Optional for configurations B and C:
6 binary inputs 3 SO contacts
Only with configuration C:
3 phase voltage inputs (60...210 V)
1 residual voltage input (60...210 V)
4 binary inputs
See technical manual for details about different type of communication modules.
1) The 0.2/1 A input is normally used in applications requiring sensitive earth-fault protection and featuring core-balance current transformers.
REF611
Application Manual
13
Section 2
REF611 overview
2.4
1MRS757456 D
Rated values of the current and voltage inputs are basic setting parameters of the protection relay. The binary input thresholds are selectable within the range 16…176
V DC by adjusting the binary input setting parameters.
See the installation manual for more information about the case and the plug-in unit.
The connection diagrams of different hardware modules are presented in this manual.
Table 3:
Conf.
A
B
C
Number of physical connections in configurations
CT
Analog channels
VT
4 1
4
4
-
4
BI
3(9) 1)
Binary channels
BO
6(9) 1)
4(10) 1)
8
6(9)
6
1)
1) With optional BIO module
Local HMI
The LHMI is used for setting, monitoring and controlling the protection relay. The
LHMI comprises the display, buttons, LED indicators and communication port.
14 REF611
Application Manual
1MRS757456 D
Section 2
REF611 overview
REF611
Overcurrent
Earth-fault
Phase unbalance
Thermal overload
AR sequence in progress
Disturb.rec.trigged
Trip circuit failure
Breaker failure
2.4.1
REF611
Application Manual
GUID-E15422BF-B3E6-4D02-8D43-D912D5EF0360 V1 EN
Figure 2: Example of the LHMI
Display
The LHMI includes a graphical display that supports two character sizes. The character size depends on the selected language. The amount of characters and rows fitting the view depends on the character size.
Table 4: Small display
Character size 1)
Small, mono-spaced (6 × 12 pixels)
Large, variable width (13 × 14 pixels)
1) Depending on the selected language
Rows in the view
5
3
Characters per row
20
8 or more
The display view is divided into four basic areas.
15
Section 2
REF611 overview
1 2
1MRS757456 D
2.4.2
2.4.3
3
GUID-24ADB995-439A-4563-AACE-1FAA193A8EF9 V1 EN
Figure 3: Display layout
1 Header
2 Icon
3 Content
4 Scroll bar (displayed when needed)
4
LEDs
The LHMI includes three protection indicators above the display: Ready, Start and
Trip.
There are also 8 programmable LEDs on front of the LHMI. The LEDs can be configured with the LHMI, WHMI or PCM600.
Keypad
The LHMI keypad contains push buttons which are used to navigate in different views or menus. With the push buttons you can give open or close commands to one object in the primary circuit, for example, a circuit breaker, a contactor or a disconnector. The push buttons are also used to acknowledge alarms, reset indications, provide help and switch between local and remote control mode.
16 REF611
Application Manual
1MRS757456 D
Section 2
REF611 overview
2.5
GUID-B681763E-EC56-4515-AC57-1FD5349715F7 V1 EN
Figure 4: LHMI keypad with object control, navigation and command push buttons and RJ-45 communication port
Web HMI
The WHMI allows secure access to the protection relay via a Web browser. When the
Secure Communication parameter in the protection relay is activated, the Web server is forced to take a secured (HTTPS) connection to WHMI using TLS encryption.The
WHMI is verified with Internet Explorer 8.0, 9.0, 10.0 and 11.0.
WHMI is enabled by default.
WHMI offers several functions.
• Programmable LEDs and event lists
• System supervision
• Parameter settings
• Measurement display
• Disturbance records
• Fault records
• Phasor diagram
• Signal configuration
• Importing/Exporting parameters
• Report summary
The menu tree structure on the WHMI is almost identical to the one on the LHMI.
REF611
Application Manual
17
Section 2
REF611 overview
1MRS757456 D
2.5.1
18
GUID-CD531B61-6866-44E9-B0C1-925B48140F3F V2 EN
Figure 5: Example view of the WHMI
The WHMI can be accessed locally and remotely.
• Locally by connecting the laptop to the protection relay via the front communication port.
• Remotely over LAN/WAN.
Command buttons
Command buttons can be used to edit parameters and control information via the
WHMI.
Table 5:
Name
Command buttons
Description
Enabling parameter editing
Disabling parameter editing
Writing parameters to the protection relay
Refreshing parameter values
Printing out parameters
Committing changes to protection relay's non-volatile flash memory
Table continues on next page
REF611
Application Manual
1MRS757456 D
2.6
REF611
Application Manual
Name
Section 2
REF611 overview
Description
Rejecting changes
Showing context sensitive help messages
Error icon
Clearing events
Triggering the disturbance recorder manually
Saving values to TXT or CSV file format
Freezing the values so that updates are not displayed
Receiving continuous updates to the monitoring view
Deleting the disturbance record
Deleting all disturbance records
Saving the disturbance record files
Viewing all fault records
Clearing all fault records
Importing settings
Exporting settings
Selecting all
Clearing all selections
Refreshing the parameter list view
Authorization
Four user categories have been predefined for the LHMI and the WHMI, each with different rights and default passwords.
The default passwords in the protection relay delivered from the factory can be changed with Administrator user rights.
User authorization is disabled by default for LHMI but WHMI always uses authorization.
19
Section 2
REF611 overview
2.6.1
1MRS757456 D
Table 6:
Username
VIEWER
OPERATOR
ENGINEER
ADMINISTRATOR
Predefined user categories
User rights
Read only access
•
•
•
•
Selecting remote or local state with
Changing setting groups
Controlling
Clearing indications
(only locally)
•
•
•
•
•
•
Changing settings
Clearing event list
Clearing disturbance records
Changing system settings such as IP address, serial baud rate or disturbance recorder settings
Setting the protection relay to test mode
Selecting language
•
•
•
All listed above
Changing password
Factory default activation
For user authorization for PCM600, see PCM600 documentation.
Audit trail
The protection relay offers a large set of event-logging functions. Critical system and protection relay security-related events are logged to a separate nonvolatile audit trail for the administrator.
Audit trail is a chronological record of system activities that allows the reconstruction and examination of the sequence of system and security-related events and changes in the protection relay. Both audit trail events and process related events can be examined and analyzed in a consistent method with the help of Event List in LHMI and WHMI and Event Viewer in PCM600.
The protection relay stores 2048 audit trail events to the nonvolatile audit trail.
Additionally, 1024 process events are stored in a nonvolatile event list. Both the audit trail and event list work according to the FIFO principle. Nonvolatile memory is based on a memory type which does not need battery backup nor regular component change to maintain the memory storage.
Audit trail events related to user authorization (login, logout, violation remote and violation local) are defined according to the selected set of requirements from IEEE
1686. The logging is based on predefined user names or user categories. The user audit trail events are accessible with IEC 61850-8-1, PCM600, LHMI and WHMI.
20 REF611
Application Manual
1MRS757456 D
REF611
Application Manual
Section 2
REF611 overview
Table 7: Audit trail events
Audit trail event
Configuration change
Firmware change
Firmware change fail
Attached to retrofit test case
Removed from retrofit test case
Setting group remote
Setting group local
Control remote
Control local
Test on
Test off
Reset trips
Setting commit
Time change
View audit log
Login
Logout
Password change
Firmware reset
Audit overflow
Violation remote
Violation local
Description
Configuration files changed
Firmware changed
Firmware change failed
Unit has been attached to retrofit case
Removed from retrofit test case
User changed setting group remotely
User changed setting group locally
DPC object control remote
DPC object control local
Test mode on
Test mode off
Reset latched trips (TRPPTRC*)
Settings have been changed
Time changed directly by the user. Note that this is not used when the protection relay is synchronised properly by the appropriate protocol (SNTP, IRIG-B, IEEE 1588 v2).
Administrator accessed audit trail
Successful login from IEC 61850-8-1 (MMS), WHMI, FTP or
LHMI.
Successful logout from IEC 61850-8-1 (MMS), WHMI, FTP or
LHMI.
Password changed
Reset issued by user or tool
Too many audit events in the time period
Unsuccessful login attempt from IEC 61850-8-1 (MMS),
WHMI, FTP or LHMI.
Unsuccessful login attempt from IEC 61850-8-1 (MMS),
WHMI, FTP or LHMI.
PCM600 Event Viewer can be used to view the audit trail events and process related events. Audit trail events are visible through dedicated Security events view. Since only the administrator has the right to read audit trail, authorization must be used in
PCM600. The audit trail cannot be reset, but PCM600 Event Viewer can filter data.
Audit trail events can be configured to be visible also in LHMI/WHMI Event list together with process related events.
To expose the audit trail events through Event list, define the
Authority logging level parameter via Configuration/
Authorization/Security . This exposes audit trail events to all users.
21
Section 2
REF611 overview
2.7
22
1MRS757456 D
Table 8:
Audit trail event
Configuration change
Firmware change
Firmware change fail
Attached to retrofit test case
Removed from retrofit test case
Setting group remote
Setting group local
Comparison of authority logging levels
None
Configurati on change
Authority logging level
Setting group
Setting group, control
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
Control remote
Control local
Test on
Test off
Reset trips
Setting commit
Time change
View audit log
●
●
●
●
●
●
●
●
●
Login
Logout
Password change
Firmware reset
Violation local
Violation remote
Settings edit
●
●
●
●
●
●
●
●
●
●
●
●
●
All
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
Communication
The protection relay supports a range of communication protocols including IEC
61850 and Modbus ® . Operational information and controls are available through these protocols. However, some communication functionality, for example, horizontal communication between the protection relays, is only enabled by the IEC
61850 communication protocol.
The IEC 61850 communication implementation supports all monitoring and control functions. Additionally, parameter settings, disturbance recordings and fault records can be accessed using the IEC 61850 protocol. Disturbance recordings are available to any Ethernet-based application in the IEC 60255-24 standard COMTRADE file format. The protection relay can send and receive binary signals from other devices
(so-called horizontal communication) using the IEC 61850-8-1 GOOSE profile,
REF611
Application Manual
1MRS757456 D
2.7.1
Section 2
REF611 overview where the highest performance class with a total transmission time of 3 ms is supported. The protection relay meets the GOOSE performance requirements for tripping applications in distribution substations, as defined by the IEC 61850 standard.
The protection relay can support five simultaneous clients. If PCM600 reserves one client connection, only four client connections are left, for example, for IEC 61850 and Modbus.
All communication connectors, except for the front port connector, are placed on integrated optional communication modules. The protection relay can be connected to
Ethernet-based communication systems via the RJ-45 connector (100Base-TX) or the fiber-optic LC connector (100Base-FX). An optional serial interface is available for
RS-485 communication.
Self-healing Ethernet ring
For the correct operation of self-healing loop topology, it is essential that the external switches in the network support the RSTP protocol and that it is enabled in the switches. Otherwise, connecting the loop topology can cause problems to the network. The protection relay itself does not support link-down detection or RSTP.
The ring recovery process is based on the aging of the MAC addresses, and the linkup/link-down events can cause temporary breaks in communication. For a better performance of the self-healing loop, it is recommended that the external switch furthest from the protection relay loop is assigned as the root switch (bridge priority
= 0) and the bridge priority increases towards the protection relay loop. The end links of the protection relay loop can be attached to the same external switch or to two adjacent external switches. A self-healing Ethernet ring requires a communication module with at least two Ethernet interfaces for all protection relays.
REF611
Application Manual
23
Section 2
REF611 overview
Client A
Manag ed Eth ernet switch with RSTP su pport
1MRS757456 D
Client B
Manag ed Eth ernet switch with RSTP su pport
Network
Network
2.7.2
24
GUID-A19C6CFB-EEFD-4FB2-9671-E4C4137550A1 V2 EN
Figure 6: Self-healing Ethernet ring solution
The Ethernet ring solution supports the connection of up to 30 protection relays. If more than 30 protection relays are to be connected, it is recommended that the network is split into several rings with no more than 30 protection relays per ring. Each protection relay has a 50-μs store-and-forward delay, and to fulfil the performance requirements for fast horizontal communication, the ring size is limited to 30 protection relays.
Ethernet redundancy
IEC 61850 specifies a network redundancy scheme that improves the system availability for substation communication. It is based on two complementary protocols defined in the IEC 62439-3:2012 standard: parallel redundancy protocol
PRP-1 and high-availability seamless redundancy HSR protocol. Both protocols rely on the duplication of all transmitted information via two Ethernet ports for one logical network connection. Therefore, both are able to overcome the failure of a link or switch with a zero-switchover time, thus fulfilling the stringent real-time requirements for the substation automation horizontal communication and time synchronization.
PRP specifies that each device is connected in parallel to two local area networks.
HSR applies the PRP principle to rings and to the rings of rings to achieve costeffective redundancy. Thus, each device incorporates a switch element that forwards frames from port to port. The HSR/PRP option is available for all 611 series protection relays.
REF611
Application Manual
1MRS757456 D
Section 2
REF611 overview
IEC 62439-3:2012 cancels and replaces the first edition published in
2010. These standard versions are also referred to as IEC 62439-3
Edition 1 and IEC 62439-3 Edition 2. The protection relay supports
IEC 62439-3:2012 and it is not compatible with IEC 62439-3:2010.
PRP
Each PRP node, called a doubly attached node with PRP (DAN), is attached to two independent LANs operated in parallel. These parallel networks in PRP are called
LAN A and LAN B. The networks are completely separated to ensure failure independence, and they can have different topologies. Both networks operate in parallel, thus providing zero-time recovery and continuous checking of redundancy to avoid communication failures. Non-PRP nodes, called single attached nodes (SANs), are either attached to one network only (and can therefore communicate only with
DANs and SANs attached to the same network), or are attached through a redundancy box, a device that behaves like a DAN.
Managed
Ethernet switch
IEC 61850 PRP
Managed
Ethernet switch
REF611
Application Manual
GUID-AA005F1B-A30B-48F6-84F4-A108F58615A2 V1 EN
Figure 7: PRP solution
In case a laptop or a PC workstation is connected as a non-PRP node to one of the PRP networks, LAN A or LAN B, it is recommended to use a redundancy box device or an
Ethernet switch with similar functionality between the PRP network and SAN to remove additional PRP information from the Ethernet frames. In some cases, default
PC workstation adapters are not able to handle the maximum-length Ethernet frames with the PRP trailer.
There are different alternative ways to connect a laptop or a workstation as SAN to a
PRP network.
25
Section 2
REF611 overview
1MRS757456 D
• Via an external redundancy box (RedBox) or a switch capable of connecting to
PRP and normal networks
• By connecting the node directly to LAN A or LAN B as SAN
• By connecting the node to the protection relay's interlink port
HSR
HSR applies the PRP principle of parallel operation to a single ring, treating the two directions as two virtual LANs. For each frame sent, a node, DAN, sends two frames, one over each port. Both frames circulate in opposite directions over the ring and each node forwards the frames it receives, from one port to the other. When the originating node receives a frame sent to itself, it discards that to avoid loops; therefore, no ring protocol is needed. Individually attached nodes, SANs, such as laptops and printers, must be attached through a “redundancy box” that acts as a ring element. For example, a 615 or 620 series protection relay with HSR support can be used as a redundancy box.
Devices not supporting HSR
Ethernet switch
Redundancy box
Redundancy box
Redundancy box
X
X
IEC 61850 HSR
X
Unicast traffic
Message is recognized as a duplicat e and is immediately forwarded
Sending device removes the message from t he ri ng
2.7.3
26
GUID-B24F8609-0E74-4318-8168-A6E7FCD0B313 V1 EN
Figure 8: HSR solution
Secure communication
The protection relay supports secure communication for WHMI and file transfer protocol. If the Secure Communication parameter is activated, protocols require TLS based encryption method support from the clients. In this case WHMI must be connected from a Web browser using the HTTPS protocol and in case of file transfer the client must use FTPS.
As a factory default, Secure Communication is “ON”.
REF611
Application Manual
1MRS757456 D
Section 3
REF611 standardized configurations
Section 3 REF611 standardized configurations
3.1 Standardized configurations
REF611 is available in three alternative configurations.
To increase the user-friendliness of the configurations and to emphasize the relay's simplicity of usage, only the application-specific parameters need setting within the relay's intended area of application.
The standard signal configuration can be altered by local HMI, Web HMI or optional application functionality of Protection and Control IED Manager PCM600.
Table 9: Standardized configurations
Description
Non-directional overcurrent and directional earth-fault protection
Non-directional overcurrent and earth-fault protection
Directional overcurrent and earth-fault protection
Conf.
A
B
C
Table 10:
Function
Protection
Supported functions
IEC 61850
Three-phase non-directional overcurrent protection, low stage
Three-phase non-directional overcurrent protection, high stage
PHLPTOC
PHHPTOC
Three-phase non-directional overcurrent protection, instantaneous stage PHIPTOC
Non-directional earth-fault protection, low stage EFLPTOC
Non-directional earth-fault protection, high stage
Non-directional earth-fault protection, instantaneous stage
EFHPTOC
EFIPTOC
Three-phase directional overcurrent protection, low stage
Three-phase directional overcurrent protection, high stage
Directional earth-fault protection, low stage
Directional earth-fault protection, high stage
Transient/intermittent earth-fault protection INTRPTEF
Non-directional (cross-country) earth fault protection, using calculated Io EFHPTOC
Negative-sequence overcurrent protection
Phase discontinuity protection
Residual overvoltage protection
NSPTOC
PDNSPTOC
ROVPTOV
Table continues on next page
DPHLPDOC
DPHHPDOC
DEFLPDEF
DEFHPDEF
REF611
Application Manual
A
1
1
2
2 1)2)
1 1)2)
1
1 3)
2
1
3 2)
B
1
2
1
2 1)
1 1)
1 1)
2
1
C
1
2
1
2 1)2)
1 1)2)
1
1 3)
2
1
3 2)
27
Section 3
REF611 standardized configurations
1MRS757456 D
Function
Three-phase thermal protection for feeders, cables and distribution transformers
Circuit breaker failure protection
Three-phase inrush detector
Master trip
Switch onto fault
Control
Circuit-breaker control
Autoreclosing
Condition monitoring and supervision
Trip circuit supervision
Logging
Disturbance recorder
Fault recorder
Measurement
IEC 61850
T1PTTR
CCBRBRF
INRPHAR
TRPPTRC
CBPSOF
CBXCBR
DARREC
TCSSCBR
RDRE
FLTRFRC
A
1
1
1
2
1
1
(1)
2
1
1
B
1
1
1
2
1
1
(1)
2
1
1
C
1
1
1
2
1
1
(1)
2
1
1
Three-phase current measurement
Sequence current measurement
Residual current measurement
Three-phase voltage measurement
Sequence voltage measurement
Residual voltage measurement
Frequency measurement
Three-phase power and energy measurement
CMMXU
CSMSQI
RESCMMXU
VMMXU
VSMSQI
RESVMMXU
FMMXU
PEMMXU
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Other
Input switch group
Output switch group
Selector
ISWGAPC
OSWGAPC
SELGAPC
10
21
6
10
21
6
10
21
6
Minimum pulse timer (2 pcs)
Move (8 pcs)
TPGAPC
MVGAPC
10
1
10
1
10
1
1, 2, ... = Number of included instances. The instances of a protection function represent the number of identical protection function blocks available in the standardized configuration.
() = optional
1) Io selectable by parameter and default value is "Io measured"
2) "Uo measured" is always used
3) Io selectable by parameter and default value is "Io calculated"
3.2
28
Switch groups
The default application configurations cover the most common application cases, however, changes can be made according to specific needs through LHMI, WHMI and PCM600.
REF611
Application Manual
1MRS757456 D
3.2.1
Section 3
REF611 standardized configurations
Programming is easily implemented with three switch group functions including input switch group ISWGAPC, output switch group OSWGAPC and selector switch group
SELGAPC. Each switch group has several instances.
Connections of binary inputs to functions, GOOSE signals to functions, functions to functions, functions to binary outputs and functions to LEDs have been preconnected through corresponding switch groups.
The real connection logic and the application configuration can be modified by changing the parameter values of the switch groups. It is also possible to modify the real connection logic and the application configuration through the matrix view in the signal configuration menu in the WHMI.
Input switch group ISWGAPC
The input switch group ISWGAPC has one input and a number of outputs. Every input and output has a read-only description. ISWGAPC is used for connecting the input signal to one or several outputs of the switch group. Each output can be set to be connected or not connected with the input separately via the “OUT_x connection” setting.
3.2.2
GUID-2D549B56-6CF7-4DCB-ACDE-E9EF601868A8 V1 EN
Figure 9: Input switch group ISWGAPC
Output switch group OSWGAPC
The output switch group OSWGAPC has a number of inputs and one output. Every input and output has a read-only description. OSWGAPC is used for connecting one or several inputs to the output of the switch group via OR logic. Each input can be set to be connected or not connected with the OR logic via the “IN_x connection” settings. The output of OR logic is routed to switch group output.
REF611
Application Manual
29
Section 3
REF611 standardized configurations
1MRS757456 D
3.2.3
GUID-1EFA82D5-F9E7-4322-87C2-CDADD29823BD V1 EN
Figure 10: Output switch group OSWGAPC
Selector switch group SELGAPC
The selector switch group SELGAPC has a number of inputs and outputs. Every input and output has a read-only description. Each output can be set to be connected with one of the inputs via the OUT_x connection setting. An output can also be set to be not connected with any of the inputs. In SELGAPC, one output signal can only be connected to one input signal but the same input signal can be routed to several output signals.
30
GUID-E3AEC7AB-2978-402D-8A80-C5DE9FED67DF V1 EN
Figure 11: Selector switch group SELGAPC
REF611
Application Manual
1MRS757456 D
3.3
Section 3
REF611 standardized configurations
Connection diagrams
L1
L2
L3
A
N
REF611
Positive
Current
Direction
P1
P2
P1 S1
P2
S2
S1
S2 da dn
X120
1
2
3
4
5
6
7
8
9
12
13
14
60 -
210V
N
1/5A
N
1/5A
N
1/5A
N
1/5A
N
BI 1
BI 2
BI 3
Uo
IL1
2)
IL2
IL3
Io
SO1
PO3
TCS1
PO4
TCS2
IRF
PO1
PO2
SO2
U
+ aux
-
X100
1
2
3
4
5
6
7
X130
1
2
3
4
5
BI 1
1)
BI 2
BI 3
1)
SO1
SO2
6
7
8
BI 4
BI 5
SO3
9
BI 6
1) Optional
2) The IED features an automatic short-circuit
mechanism in the CT connector when plug-in
unit is detached
GUID-EAC6CB29-0D2C-4714-9273-72694FB77E90 V1 EN
Figure 12: Connection diagram for configuration A
X130
10
12
11
13
15
14
16
18
17
14
16
17
15
19
18
20
22
21
23
24
8
10
11
12
13
REF611
Application Manual
31
Section 3
REF611 standardized configurations
L1
L2
L3
1MRS757456 D
REF611
Positive
Current
Direction
P1 S1
P2
S2
P1
S1
S2
P2
X120
1
2
3
4
8
9
10
11
5
6
7
12
13
14
1/5A
N
1/5A
N
1/5A
N
1/5A
N
BI 1
BI 2
BI 3
BI 4
IL1
2)
IL2
IL3
Io
SO1
PO3
TCS1
PO4
TCS2
IRF
PO1
PO2
SO2
+
U aux
-
X100
1
2
3
4
5
X130
1
2
BI 1
1) 1)
SO1
3
4
5
BI 2
BI 3
SO2
SO3
6
7
8
BI 4
BI 5
BI 6
9
GUID-6692D10C-76A4-475F-AFD9-E8CD93973428 V1 EN
Figure 13: Connection diagram for configuration B
1) Optional
2) The IED features an automatic short-circuit
mechanism in the CT connector when plug-in
unit is detached
X130
10
12
11
13
15
14
16
18
17
6
7
14
16
21
23
24
17
15
19
18
20
22
8
9
10
11
12
13
32 REF611
Application Manual
1MRS757456 D
Section 3
REF611 standardized configurations n a
L1
L2
L3
A
N da dn
Positive
Current
Direction
P1 S1
P2
S2
P1
S1
S2
P2
X120
1
2
3
4
X130
1
2
5
6
3
4
16
17
18
13
14
15
9
10
11
12
7
8
60 -
210V
N
60 -
210V
N
60 -
210V
N
60 -
210V
N
60 -
210V
N
8
9
10
11
12
5
6
7
14
1/5A
N
1/5A
N
1/5A
N
1/5A
N
BI 1
BI 2
BI 3
BI 4 not in use
U1
U2
U3
Uo
BI 1
BI 2
BI 3
BI 4
IL1
1)
IL2
IL3
Io
REF611
SO1
PO3
TCS1
PO4
TCS2
SO2
IRF
PO1
PO2
+
U aux
-
X100
1
2
3
4
5
6
7
14
16
17
15
19
18
20
22
21
23
24
8
9
10
11
12
13
1) The IED features an automatic short-circuit
mechanism in the CT connector when plug-in
unit is detached
GUID-60AF0CAB-1B4F-4749-A79F-3C04B1503077 V1 EN
Figure 14: Connection diagram for configuration C
REF611
Application Manual
33
Section 3
REF611 standardized configurations
3.4
3.4.1
Configuration A
1MRS757456 D
Applications
Configuration A for non-directional overcurrent and directional earth-fault protection is mainly intended for cable and overhead-line feeder applications in isolated and resonant-earthed distribution networks.
The protection relay with a standardized configuration is delivered from the factory with default settings and parameters. The end-user flexibility for incoming, outgoing and internal signal designation within the protection relay enables this configuration to be further adapted to different primary circuit layouts and the related functionality needs by modifying the internal functionality using PCM600.
34 REF611
Application Manual
1MRS757456 D
Section 3
REF611 standardized configurations
3.4.2 Functions
Uo
3I
Io
REF611 FEEDER PROTECTION RELAY
PROTECTION
2×
Master Trip
Lockout relay
94/86
2×
I2>
46
I2/I1>
46PD
3I>/Io>BF
51BF/51NBF
3Ith>F
49F
3I>>>
50P/51P
3I>
51P-1
2×
3I>>
51P-2
3I2f>
68
Io
Io>>
51N-2
2×
Io> →
67N-1
Io>> →
67N-2
Io>IEF →
67NIEF
3×
Uo>
59G
SOTF
SOTF
LOCAL HMI
I
ESC
O
Measurements
Disturbance records
A
R
L
STANDARD
CONFIGURATION
A
ALSO AVAILABLE
- Disturbance and fault recorders
- Event log and recorded data
- Local/Remote push button on LHMI
- Self-supervision
- Time synchronization: IEEE 1588 v2,
SNTP, IRIG-B
- User management
- Web-HMI
CONDITION MONITORING
AND SUPERVISION
2×
TCS
TCM
CONTROL AND INDICATION 1)
Object
CB
DC
Ctrl 2)
1
-
Ind 3)
ES -
1) Check availability of binary inputs/outputs
from technical documentation
2) Control and indication function for
primary object
3) Status indication function for
primary object
-
-
O → I
79
COMMUNICATION
Protocols:
IEC 61850-8-1
Modbus®
Interfaces:
Ethernet: TX (RJ-45), FX (LC)
Serial: RS-485
Redundant protocols:
HSR
PRP
RSTP
MEASUREMENT
- I, Io, Uo
- Limit value supervision
- Symmetrical components
Analog interface types
Current transformer
Voltage transformer
1)
Conventional transformer inputs
REMARKS
Optional function
3× No. of instances
Io/Uo
Calculated value
OR Alternative function to be defined when ordering
1)
4
1
GUID-22599DC2-ADFC-482B-BB9A-985109CE4F9D V1 EN
Figure 15: Functionality overview for configuration A
3.4.2.1 Default I/O connections
Table 11:
Binary input
X120-BI1
X120-BI2
X120-BI3
Default connections for binary inputs
Description
Blocking of overcurrent instantaneous stage
Circuit breaker closed position indication
Circuit breaker open position indication
Connector pins
X120:1-2
X120:3,2
X120:4,2
REF611
Application Manual
35
Section 3
REF611 standardized configurations
3.4.2.2
3.4.3
36
1MRS757456 D
Table 12:
Binary input
X100-PO1
X100-PO2
X100-PO3
X100-PO4
X100-SO1
X100-SO2
Default connections for binary outputs
Description
Close circuit breaker
Circuit breaker failure protection trip to upstream breaker
Open circuit breaker/trip coil 1
Open circuit breaker/trip coil 2
General start indication
General operate indication
Connector pins
X100:6-7
X100:8-9
X100:15-19
X100:20-24
X100:10-12
X100:13-15
5
6
3
4
7
8
Table 13:
LED
1
2
Default connections for LEDs
Description
Non-directional overcurrent operate
Earth fault protection operate
Negative-sequence overcurrent/phase discontinuity operate
Thermal overload alarm
Autoreclose in progress
Disturbance recorder triggered
Trip circuit supervision alarm
Circuit-breaker failure operate
Predefined disturbance recorder connections
Table 14:
2
3
Channel
1
4
5
Predefined analog channel setup
Description
IL1
IL2
IL3
Io
Uo
Additionally, all the digital inputs that are connected by default are also enabled with the setting. Default triggering settings are selected depending on the connected input signal type. Typically all protection START signals are selected to trigger the disturbance recorded by default.
Functional diagrams
The functional diagrams describe the default input, output, programmable LED, switch group and function-to-function connections. The default connections can be viewed and changed with switch groups in PCM600, LHMI and WHMI according to the application requirements.
REF611
Application Manual
1MRS757456 D
3.4.3.1
REF611
Application Manual
Section 3
REF611 standardized configurations
The analog channels have fixed connections towards the different function blocks inside the protection relay’s configuration. Exceptions from this rule are the eight analog channels available for the disturbance recorder function. These channels are freely selectable and a part of the disturbance recorder’s parameter settings.
The analog channels are assigned to different functions. The common signal marked with 3I represents the three phase currents. The signal marked with Io represents the measured residual current via a core balance current transformer. The signal marked with Uo represents the measured residual voltage via open-delta connected voltage transformers.
The EFHPTOC protection function block for double (cross-country) earth-faults uses the calculated residual current originating from the measured phase currents.
Functional diagrams for protection
The functional diagrams describe the protection functionality of the protection relay in detail and picture the factory default connections.
X120-BI1
Blocking 1
INRPHAR1
3I
2f
>(1)
3I
BLOCK
68(1)
BLK2H
OVERCURRENT PROTECTION AND INRUSH INDICATION
PHLPTOC1
3I>(1)
3I
BLOCK
51P-1(1)
OPERATE
START
ENA_MULT
PHHPTOC1
3I>>(1)
51P-2(1)
3I
BLOCK
ENA_MULT
OPERATE
START
PHHPTOC2
3I>>(2)
3I
BLOCK
51P-2(2)
OPERATE
START
ENA_MULT
IN_1
SELGAPC1
OUT_1 IN
ISWGAPC1
OUT_4
PHIPTOC1
3I>>>(1)
3I
BLOCK
50P/51P(1)
OPERATE
START
ENA_MULT
IN_1
OSWGAPC8
IN_2
IN_3
IN_4
OR
OUT
SELGAPC4
IN_10 OUT_1
LED 1
GUID-7490603E-FE2C-4241-A98B-2CE7C935C0FB V1 EN
Figure 16: Overcurrent protection
Four overcurrent stages are offered for overcurrent and short-circuit protection. The instantaneous stage PHIPTOC1 can be blocked by energizing the binary input
(X120:1-2). The inrush detection block’s INRPHAR1 output BLK2H enables either
37
Section 3
REF611 standardized configurations
1MRS757456 D blocking the function or multiplying the active settings for any of the described protection function blocks.
All operate signals are connected to the Master Trip and to the alarm LED 1.
38 REF611
Application Manual
1MRS757456 D
REF611
Application Manual
Section 3
REF611 standardized configurations
EARTH-FAULT PROTECTION
DOUBLE (CROSS-COUNTRY) EARTH-FAULT PROTECTION
EFHPTOC1
Io>>(1)
51N-2(1)
Io
BLOCK
ENA_MULT
Calculated lo
OPERATE
START
DIRECTIONAL EARTH-FAULT PROTECTION
DEFLPDEF1
Io>->(1)
Io
Uo
BLOCK
ENA_MULT
RCA_CTL
67N-1(1)
OPERATE
START
DEFLPDEF2
Io>->(2)
Io
Uo
BLOCK
ENA_MULT
RCA_CTL
67N-1(2)
OPERATE
START
IN_5
OSWGAPC9
IN_6
IN_7
IN_8
IN_12
OR
OUT
SELGAPC4
IN_11 OUT_2
DEFHPDEF1
Io>>->(1)
67N-2(1)
Io
Uo
BLOCK
ENA_MULT
RCA_CTL
OPERATE
START
INTERMITTENT EARTH-FAULT PROTECTION
INTRPTEF1
Io>->IEF(1)
Io
Uo
BLOCK
67NIEF(1)
OPERATE
START
BLK_EF
LED 2
GUID-7DA854F7-A732-46FD-A9D9-398B3E4150C8 V1 EN
Figure 17: Earth-fault protection
Three stages are offered for directional earth-fault protection. In addition, there is a dedicated protection stage INTRPTEF either for transient-based earth-fault protection or for cable intermittent earth-fault protection in compensated networks.
39
Section 3
REF611 standardized configurations
1MRS757456 D
A dedicated non-directional earth-fault protection block EFHPTOC is intended for protection against double earth-fault situations in isolated or compensated networks.
This protection function uses the calculated residual current originating from the phase currents.
All operate signals are connected to the Master Trip and to alarm LED 2.
RESIDUAL OVERVOLTAGE PROTECTION
U
0
BLOCK
ROVPTOV1
U
0
>(1)
59G(1)
OPERATE
START
U
0
BLOCK
ROVPTOV2
U
0
>(2)
59G(2)
OPERATE
START
IN_9
IN_10
IN_11
OSWGAPC9
OR
OUT
SELGAPC4
IN_11 OUT_2
LED 2
U
0
BLOCK
ROVPTOV3
U
0
>(3)
59G(3)
OPERATE
START
GUID-41F06B86-FFB5-4162-BF38-B85F43C88002 V1 EN
Figure 18: Residual overvoltage protection
The residual overvoltage protection ROVPTOV provides earth-fault protection by detecting abnormal level of residual voltage. It can be used, for example, as a nonselective backup protection for the selective directional earth-fault functionality. The operation signal is also connected to alarm LED 2.
40 REF611
Application Manual
1MRS757456 D
Section 3
REF611 standardized configurations
NSPTOC1
I
2
>(1)
3I
BLOCK
ENA_MULT
46(1)
OPERATE
START
UNBALANCE PROTECTION
NSPTOC2
3I
BLOCK
ENA_MULT
I
2
>(2)
46(2)
OPERATE
START
IN_13
OSWGAPC10
IN_14
IN_15
OR OUT
SELGAPC4
IN_12 OUT_3
LED 3
3I
BLOCK
PDNSPTOC1
I
2
/I
1
(1)
46PD(1)
OPERATE
START
GUID-A367FC04-F391-48E9-9CBF-599AC625C7FF V1 EN
Figure 19: Unbalance protection
Two negative-sequence overcurrent stages NSPTOC1 and NSPTOC2 and one phase discontinuity stage PDNPSTOC1 are offered for unbalance protection. The phase discontinuity protection PDNPSTOC1 provides protection for interruptions in the normal three-phase load supply, for example, in downed conductor situations.
The operate signals of these unbalance protections are connected to the Master Trip and to alarm LED 3.
REF611
Application Manual
41
Section 3
REF611 standardized configurations
1MRS757456 D
THERMAL OVERLOAD PROTECTION
T1PTTR1
3Ith>F(1)
49F(1)
3I
ENA_MULT
OPERATE
ALARM
BLK_OPR BLK_CLOSE
AMB_TEMP START
OSWGAPC11
IN_1 OUT
SELGAPC4
IN_13 OUT_4
LED 4
PHLPTOC1_OPERATE
PHHPTOC1_OPERATE
PHHPTOC2_OPERATE
PHIPTOC1_OPERATE
DEFLPTOC1_OPERATE
DEFLPTOC2_OPERATE
DEFHPTOC1_OPERATE
X120-BI2
CB Closed Position
OR
IN_2
SELGAPC1
OUT_2
CIRCUIT BREAKER FAILURE PROTECTION
CCBRBRF1
3I>/Io>BF(1)
SELGAPC3
IN_4 OUT_2
51BF/51NBF(1)
3I
Io
START
POSCLOSE
CB_FAULT
BLOCK
CB_FAULT_AL
TRBU
TRRET
OSWGAPC15
IN_5 OUT
X100 PO2
SELGAPC4
IN_17 OUT_8
LED 8
GUID-A046A312-1E3B-4186-BBEB-2AF8C2423C5F V1 EN
Figure 20: Thermal overload and circuit-breaker failure protection
The thermal overload protection T1PTTR1 provides indication on overload situations. LED 4 is used for the thermal overload protection alarm indication.
The circuit-breaker failure protection CCBRBRF1 is initiated via the start input by a number of different protection stages in the protection relay. The circuit-breaker failure protection function offers different operating modes associated with the circuit breaker position and the measured phase and residual currents. The breaker failure protection has two operating outputs: TRRET and TRBU . The TRRET operate output is used for retripping its own breaker through the Master Trip 2. TRBU output is used to give a backup trip to the circuit breaker feeding upstream. For this purpose, the
TRBU operate output signal is connected to the output PO2 (X100:8-9). LED 8 is used for backup ( TRBU ) operate indication.
42 REF611
Application Manual
1MRS757456 D
Section 3
REF611 standardized configurations
AUTORECLOSING (Optional)
DARREC1
O->I(1)
DEFLPDEF1_OPERATE
DEFLPDEF2_OPERATE
X120-BI3
CB Open Position
Always True
DEFLPDEF1_START
DEFLPDEF2_START
IN_3
SELGAPC1
OUT_3
IN_10 OUT_6
T1PTTR1_BLK_CLOSE
SELGAPC1_OUT_7
INT_1
INT_2
INT_3
INT_4
INT_5
INT_6
DEL_INT_2
DEL_INT_3
DEL_INT_4
BLK_RECL_T
BLK_RCLM_T
BLK_THERM
CB_POS
CB_READY
INC_SHOTP
INHIBIT_RECL
RECL_ON
SYNC
79(1)
OPEN CB
CLOSE CB
CMD_WAIT
INPRO
LOCKED
PROT_CRD
UNSUC_RECL
AR_ON
READY
CBXCBR1_SELECTED
NSPTOC1_OPERATE
NSPTOC2_OPERATE
PDNSPTOC1_OPERATE
INTRPTEF1_OPERATE
PHIPTOC1_OPERATE
OR
CBPSOF1_OPERATE
OR
PHHPTOC2_OPERATE
PHLPTOC1_OPERATE
EFHPTOC1_OPERATE
OR
OR
PHHPTOC1_OPERATE
DEFHPDEF1_OPERATE
PHLPTOC1_START
EFHPTOC1_START
OSWGAPC12
IN_7 OUT
SELGAPC4
IN_14 OUT_5
LED 5
GUID-3F551E60-55D5-4971-8CC8-E6742AF9CAAB V2 EN
Figure 21: Autoreclosing
Autoreclosing DARREC1 is included as an optional function.
The autoreclose function is configured to be initiated by operate signals from a number of protection stages through the INT_1 ...
INT_6 inputs and by start signals through the DEL_INT_2…4. It is possible to create individual autoreclose sequences for each input.
The autoreclose function can be blocked with the INHIBIT_RECL input. By default, the operations of selected protection functions are connected to this input. A control command to the circuit breaker, either local or remote, also blocks the autoreclose function via the CBXCBR_SELECTED signal.
The circuit breaker availability for the autoreclose sequence is expressed with the
CB_READY input in DARREC1. In the configuration, this signal is connected with an always true signal through the SELGAPC1. As a result, the function assumes that the circuit breaker is available all the time.
The autoreclose sequence in progress indication INPRO is connected to the alarm
LED 5.
REF611
Application Manual
43
Section 3
REF611 standardized configurations
3.4.3.2
44
1MRS757456 D
Functional diagrams for disturbance recorder and trip circuit supervision
PHLPTOC1_OPERATE
PHHPTOC1_OPERATE
PHHPTOC2_OPERATE
PHIPTOC1_OPERATE
DEFLPDEF1_OPERATE
DEFHPDEF1_OPERATE
DEFLPDEF2_OPERATE
ROVPTOV1_OPERATE
ROVPTOV2_OPERATE
ROVPTOV3_OPERATE
NSPTOC1_OPERATE
NSPTOC2_OPERATE
OR
OR
OR
OR
PHLPTOC1_START
PHHPTOC1_START
PHHPTOC2_START
PHIPTOC1_START
EFHPTOC1_START
DEFLPDEF1_START
DEFLPDEF2_START
DEFHPDEF1_START
ROVPTOV1_START
ROVPTOV2_START
ROVPTOV3_START
INTRPTEF1_START
NSPTOC1_START
NSPTOC2_START
PDNSPTOC1_START
T1PTTR1_START
EFHPTOC1_OPERATE
INTRPTEF1_OPERATE
PDNSPTOC1_OPERATE
T1PTTR1_OPERATE
SELGAPC1_ Blocking 1
SELGAPC1_ CB Closed Position
SELGAPC1_ CB Open Position
INRPHAR1_BLK2H
CCBRBRF1_TRRET
CCBRBRF1_TRBU
DARREC1_INPRO
DARREC1_CLOSE_CB
DARREC1_UNSUC_RECL
SELGAPC1_External Trip
SG_1_ACT
SG_2_ACT
SG_3_ACT
SG_4_ACT
SG_5_ACT
SG_6_ACT
DISTURBANCE RECORDER
C15
C16
C17
C18
C19
C20
C21
C22
C7
C8
C9
C10
C11
C12
C13
C14
C23
C24
C25
C1
C2
C3
C4
C5
C6
C34
C35
C36
C37
C38
C39
C40
C26
C27
C28
C29
C30
C31
C32
C33
RDRE1
TRIGGERED
OSWGAPC13
IN_2 OUT
SELGAPC4
IN_15 OUT_6
LED 6
GUID-C8E19D4D-9410-45B2-977A-4A56A0F41A48 V1 EN
Figure 22: Disturbance recorder
All start and operate signals from the protection stages are routed to trigger the disturbance recorder or alternatively only to be recorded by the disturbance recorder depending on the parameter settings. Additionally, the selected autoreclose output signals and the three binary inputs from X120 are also connected. The active setting group is also to be recorded via SG_1_ACT to SG_6_ACT. The disturbance recorder triggered signal indication is connected to LED 6.
Table 15:
Channel number
Binary channel 1
Binary channel 2
Disturbance recorder binary channel default value
Channel ID text
PHLPTOC1_START
PHHPTOC1_START
Binary channel 3
Binary channel 4
Binary channel 5
Binary channel 6
PHHPTOC2_START
PHIPTOC1_START
EFHPTOC1_START
DEFLPDEF1_START
Binary channel 7
Binary channel 8
DEFLPDEF2_START
DEFHPDEF1_START
Binary channel 9
Table continues on next page
ROVPTOV1_START
Level trigger mode
1=positive or rising
1=positive or rising
1=positive or rising
1=positive or rising
1=positive or rising
1=positive or rising
1=positive or rising
1=positive or rising
1=positive or rising
REF611
Application Manual
1MRS757456 D
Channel number
Binary channel 10
Binary channel 11
Binary channel 12
Binary channel 13
Binary channel 14
Binary channel 15
Binary channel 16
Binary channel 17
Binary channel 18
Binary channel 19
Binary channel 20
Binary channel 21
Binary channel 22
Binary channel 23
Binary channel 24
Binary channel 25
Binary channel 26
Binary channel 27
Binary channel 28
Binary channel 29
Binary channel 30
Binary channel 31
Binary channel 32
Binary channel 33
Binary channel 34
Binary channel 35
Binary channel 36
Binary channel 37
Binary channel 38
Binary channel 39
Binary channel 40
Channel ID text
ROVPTOV2_START
ROVPTOV3_START
INTRPTEF1_START
NSPTOC1_START
NSPTOC2_START
PDNSPTOC1_START
T1PTTR1_START
PHxPTOC_OPERATE
EFHPTOC1_OPERATE
DEFxPDEF_OPERATE
ROVPTOV_OPERATE
INTRPTEF1_OPERATE
NSPTOC1/2_OPERATE
PDNSPTOC1_OPERATE
T1PPTR1_OPERATE
SELGAPC1_Blocking 1
SELGAPC1_CB_Closed
SELGAPC1_CB_Open
INRPHAR1_BLK2H
CCBRBRF1_TRRET
CCBRBRF1_TRBU
DARREC1_INPRO
DARREC1_CLOSE_CB
DARREC1_UNSUC_RECL
SELGAPC1_External Trip
SG_1_ACT
SG_2_ACT
SG_3_ACT
SG_4_ACT
SG_5_ACT
SG_6_ACT
Section 3
REF611 standardized configurations
Level trigger mode
1=positive or rising
1=positive or rising
1=positive or rising
1=positive or rising
1=positive or rising
1=positive or rising
1=positive or rising
4=level trigger off
4=level trigger off
4=level trigger off
4=level trigger off
4=level trigger off
4=level trigger off
4=level trigger off
4=level trigger off
4=level trigger off
4=level trigger off
4=level trigger off
4=level trigger off
4=level trigger off
4=level trigger off
4=level trigger off
4=level trigger off
4=level trigger off
4=level trigger off
4=level trigger off
4=level trigger off
4=level trigger off
4=level trigger off
4=level trigger off
4=level trigger off
REF611
Application Manual
45
Section 3
REF611 standardized configurations
1MRS757456 D
TRIP CIRCUIT SUPERVISION
X120-BI3
CB Open Position
SELGAPC1
IN_3 OUT_3
TRPPTRC1_TRIP
TRPPTRC2_TRIP
OR
IN_2
SELGAPC2
OUT_1
OUT_2
TCSSCBR1
BLOCK ALARM
TCSSCBR2
BLOCK ALARM
IN_3
IN_4
OSWGAPC14
OR
OUT
SELGAPC4
IN_16 OUT_7
LED 7
GUID-50B079D8-AE34-4D47-BD5F-ACCBBEC0EC18 V2 EN
Figure 23: Trip circuit supervision
Two separate trip circuit supervision functions are included, TCSSCBR1 for PO3
(X100:15-19) and TCSSCBR2 for PO4 (X100:20-24). Both functions are blocked by the Master Trip (TRPPTRC1 and TRPPTRC2) and the circuit breaker open position.
The TCS alarm indication is connected to LED 7.
46 REF611
Application Manual
1MRS757456 D
3.4.3.3
REF611
Application Manual
Section 3
REF611 standardized configurations
Functional diagrams for control
MASTER TRIP #1
PHLPTOC1_OPERATE
PHHPTOC1_OPERATE
PHHPTOC2_OPERATE
PHIPTOC1_OPERATE
EFHPTOC1_OPETATE
DEFLPDEF1_OPERATE
DEFLPDEF2_OPERATE
DEFHPDEF1_OPERATE
ROVPTOV1_OPERTAE
ROVPTOV2_OPERTAE
ROVPTOV3_OPERTAE
INTRPTEF1_OPERATE
NSPTOC1_OPERATE
NSPTOC2_OPERATE
PDNSPTOC1_OPERATE
IN_1
IN_2
IN_3
IN_4
IN_5
IN_6
IN_7
IN_8
IN_9
IN_10
IN_11
IN_12
IN_13
IN_14
IN_15
OSWGAPC1
OR OUT
OR
TRPPTRC1
BLOCK TRIP
OPERATE CL_LKOUT
RST_LKOUT
OR
IN_1
SELGAPC3
OUT_5
X100 PO3
SELGAPC1_External Trip
GOOSERCV_BIN 2_OUT
OR
GOOSERCV_BIN 3_OUT
SELGAPC1_RST_LKOUT
CBXCBR1_EXE_OP
DARREC1_OPEN_CB
IN1
IN2
MVGAPC1
Q1
Q2
PHLPTOC1_OPERATE
PHHPTOC1_OPERATE
PHHPTOC2_OPERATE
PHIPTOC1_OPERATE
EFHPTOC1_OPETATE
DEFLPDEF1_OPERATE
DEFLPDEF2_OPERATE
DEFHPDEF1_OPERATE
ROVPTOV1_OPERTAE
ROVPTOV2_OPERTAE
ROVPTOV3_OPERTAE
INTRPTEF1_OPERATE
NSPTOC1_OPERATE
NSPTOC2_OPERATE
PDNSPTOC1_OPERATE
CCBRBRF1_TRRET
IN_1
IN_2
IN_3
IN_4
IN_5
IN_6
IN_7
IN_8
IN_9
IN_10
IN_11
IN_12
IN_13
IN_14
IN_15
IN_17
OSWGAPC2
OR
OUT
SELGAPC1_External Trip
GOOSERCV_BIN 2_OUT
GOOSERCV_BIN 3_OUT
SELGAPC1_RST_LKOUT
OR
IN1
IN2
MVGAPC1
Q1
Q2
OR
MASTER TRIP #2
TRPPTRC2
BLOCK TRIP
OPERATE
RST_LKOUT
CL_LKOUT
IN_2
SELGAPC3
OUT_6
X100 PO4
GUID-A4419861-FA17-4E12-8951-ABEB715AA740 V2 EN
Figure 24: Master trip
The operate signals from the protections and an external trip are connected to the two trip output contacts PO3 (X100:15-19) and PO4 (X100:20-24) via the corresponding
Master Trips TRPPTRC1 and TRPPTRC2. Open control commands to the circuit breaker from local or remote CBXCBR1_EXE_OP or from the autoreclosing
47
Section 3
REF611 standardized configurations
1MRS757456 D
DARREC1_OPEN_CB are connected directly to the output contact PO3
(X100:15-19).
TRPPTRC1 and 2 provide the lockout/latching function, event generation and the trip signal duration setting. One binary input through SELGAPC1 can be connected to the
RST_LKOUT input of the Master Trip. If the lockout operation mode is selected, it is used to enable external reset.
CIRCUIT BREAKER CONTROL
X120-BI2
CB Closed Position
X120-BI3
CB Open Posit ion
Always True
IN_2
IN_3
IN_10
SELGAPC1
OUT_2
OUT_3
OUT_5
TRPPTRC1_TRIP
TRPPTRC2_TRIP
T1PTTR1_BLK_CLOSE
DARREC1_CLOSE_CB
AND
CBXCBR1
POSOPEN
POSCLOSE
ENA_OPEN
ENA_CLOSE
BLK_OPEN
BLK_CLOSE
AU_OPEN
AU_CLOSE
TRIP
SYNC_OK
SYNC_ITL_BYP
SELECTED
EXE_OP
EXE_CL
OP_REQ
CL_REQ
OPENPOS
CLOSEPO S
OKPOS
OPEN_ENAD
CLOSE_ENAD
CBXCBR1_EXE_OP
OR
SELGAPC3
IN_3 OUT_1
X100 PO1
GUID-1093EFA7-FA5F-4711-BF03-2B30C553BD72 V2 EN
Figure 25: Circuit breaker control
The ENA_CLOSE input, which enables the closing of the circuit breaker, is interlocked by two master trip signals. Any one trip will block the breaker from closing. An always true signal is also connected to ENA_CLOSE via SELGAPC1 by default. The open operation is always enabled.
48 REF611
Application Manual
1MRS757456 D
REF611
Application Manual
Section 3
REF611 standardized configurations
PHLPTOC1_OPERATE
PHHPTOC1_OPERATE
PHHPTOC2_OPERATE
PHIPTOC1_OPERATE
EFHPTOC1_OPETATE
DEFLPDEF1_OPERATE
DEFLPDEF2_OPERATE
DEFHPDEF1_OPERATE
ROVPTOV1_OPERTAE
ROVPTOV2_OPERTAE
ROVPTOV3_OPERTAE
INTRPTEF1_OPERATE
NSPTOC1_OPERATE
NSPTOC2_OPERATE
PDNSPTOC1_OPERATE
PHLPTOC1_START
PHHPTOC1_START
PHHPTOC2_START
PHIPTOC1_START
EFHPTOC1_START
DEFLPDEF1_START
DEFLPDEF2_START
DEFHPDEF1_START
ROVPTOV1_START
ROVPTOV2_START
ROVPTOV3_START
INTRPTEF1_START
NSPTOC1_START
NSPTOC2_START
PDNSPTOC1_START
COMMON ALARM INDICATION 1 & 2
IN_1
IN_2
IN_3
IN_4
IN_5
IN_6
IN_7
IN_8
IN_9
IN_10
IN_11
IN_12
IN_13
IN_14
IN_15
OSWGAPC3
OR OUT
IN1
TPGAPC1
OUT1
SELGAPC3
IN_5 OUT_3
IN_9 OUT_4
IN_1
IN_2
IN_3
IN_4
IN_5
IN_6
IN_7
IN_8
IN_9
IN_10
IN_11
IN_12
IN_13
IN_14
IN_15
OSWGAPC7
OR OUT
IN1
TPGAPC3
OUT1
X100 SO1
X100 SO2
GUID-9AFB34C6-4203-47D4-B03D-F071504B50D3 V1 EN
Figure 26: Common alarm indication
The signal outputs from the protection relay are connected to give dedicated information.
• Start of any protection function SO1 (X100:10-12)
• Operation (trip) of any protection function SO2 (X100: 13-15)
TPGAPC are timers and they are used for setting the minimum pulse length for the outputs. There are seven generic timers (TPGAPC1…7) available in the protection relay.
49
Section 3
REF611 standardized configurations
1MRS757456 D
3.4.4 Switch groups
In configuration A, the switch group function blocks are organized in four groups: binary inputs, internal signal, GOOSE as well as binary outputs and LEDs.
Binary Inputs
(1...3, 4...9*)
Received GOOSE
(0...19)
GOOSE
GOOSE
GOOSE
SELGAPC1
Binary Inputs
ISWGAPC2
ISWGAPC1
Blocking
Binary Input s
ISWGAPC5
Basic
Angle Cont rol
GOOSE
ISWGAPC9
GOOSE Blocking
ISWGAPC10
GOO SE Block CB
Protection and Control
PHLPTOC1 PHHPTOC1
PHHPTOC2
EFHPTOC1
PHIPTOC1
DEFLPDEF1
DEFLPDEF2
NSPTOC1
INTRPTEF1
DEFHPDEF1
NSPTOC2
PDNSPTOC1
ROVPTOV1
ROVPTOV3
CCBRBRF1
CBXCBR1
TCSSCBR1
ROVPTOV2
T1PTTR1
INRPHAR1
DARREC1*
TCSSCBR2
Internal Signal
ISWGAPC3 ISWGAPC4
INRPHAR1_BLK2H
SELGAPC2
DARREC1_PROT_CRD
OSWGAPC17
TCS Blocking CBPSOF1_Init iation
* Optional Function
GUID-70D440AE-3136-411D-8A5C-56CABE711F69 V2 EN
Figure 27: Configuration A switch group overview
Binary Outputs and LEDs
OSWGAPC2
OSWGAPC1
SELGAPC3
SELGAPC4
Master trip
OSWGAPC6
OSWGAPC5
OSWGAPC4
OSWGAPC3
St art
OSWGAPC10
OSWGAPC9
OSWGAPC8
OSWGAPC7
OSWGAPC16
OSWGAPC15
OSWGAPC14
OSWGAPC13
OSWGAPC12
OSWGAPC11
Alarm
Trip
Binary Outputs
LEDs
Binary Outputs
(1...6, 7..9*)
LEDs
(1 …8)
3.4.4.1 Binary inputs
The binary inputs group includes one SELGAPC and three ISWGAPCs. SELGAPC1 is used to route binary inputs to ISWGAPC or directly to protection relay functions.
ISWGAPC1 and ISWGAPC2 are used to configure the signal to block the protection functions. ISWGAPC5 is used to control the characteristic angle of DEFxPDEF.
50 REF611
Application Manual
1MRS757456 D
Section 3
REF611 standardized configurations
X120-BI1
X120-BI2
X120-BI3
1 ) X130-BI1
X130-BI2
X130-BI3
X130-BI4
X130-BI5
X130-BI6
SELGAPC1
Blocking 1
ISWGAPC1
Blocking 2
ISWGAPC2
Basic Angle
Control ISWGAPC5
PHLPTOC1_BLOCK
PHHPTOC1_BLOCK
PHHPTOC2_BLOCK
PHIPTOC1_BLOCK
EFHPTOC1_BLOCK
DEFLPDEF1_BLOCK
DEFLPDEF2_BLOCK
DEFHPDEF1_BLOCK
ROVPTOV1_BLOCK
ROVPTOV2_BLOCK
ROVPTOV3_BLOCK
INTRPTEF1_BLOCK
NSPTOC1_BLOCK
NSPTOC2_BLOCK
PDNSPTOC1_BLOCK
T1PTTR1_BLOCK
CBPSOF1_BLOCK
PHLPTOC1_BLOCK
PHHPTOC1_BLOCK
PHHPTOC2_BLOCK
PHIPTOC1_BLOCK
EFHPTOC1_BLOCK
DEFLPDEF1_BLOCK
DEFLPDEF2_BLOCK
DEFHPDEF1_BLOCK
ROVPTOV1_BLOCK
ROVPTOV2_BLOCK
ROVPTOV3_BLOCK
INTRPTEF1_BLOCK
NSPTOC1_BLOCK
NSPTOC2_BLOCK
PDNSPTOC1_BLOCK
T1PTTR1_BLOCK
CBPSOF1_BLOCK
DEFLPDEF1_RCA_CTL
DEFLPDEF2_RCA_CTL
DEFHPDEF1_RCA_CTL 1 ) Optional binary inputs
GUID-B37E732A-4522-4B96-BA67-A7C7020B40D5 V2 EN
Figure 28: Binary inputs
SELGAPC1
SELGAPC1 has inputs from protection relay binary inputs. IN_1 ...
IN_3 are binary inputs from X120. IN_4 ...
IN_9 can be used while X130 optional card is taken into use. An always true signal is connected to IN_10 . SELGAPC1 outputs are used to route inputs to different functions. By setting SELGAPC1, binary inputs can be configured for different purposes.
REF611
Application Manual
51
Section 3
REF611 standardized configurations
1MRS757456 D
X120-BI1
X120-BI2
X120-BI3
1 ) X130-BI1
X130-BI2
X130-BI3
X130-BI4
X130-BI5
X130-BI6
Always True
X120/1-2 BI1
IN_1
X120/3-2 BI2
IN_2
X120/4-2 BI3
IN_3
X130/1-2 BI1
IN_4
SELGAPC1
OUT_1
Blocking 1
ISWGAPC1_IN
OUT_2
OUT_3
CB Closed Position
CB Open Position
CCBRBRF1_POSCLOSE
CBXCBR1_POSCLOSE
SELGAPC2_IN_1
DARREC1_CB_POS
CBXCBR1_POSOPEN
SELGAPC2_IN_2
OUT_4 Basic Angle Control
ISWGAPC5_IN
X130/3-2 BI2
IN_5
X130/4-5 BI3
IN_6
X130/6-5 BI4
IN_7
X130/7-8 BI5
IN_8
X130/9-8 BI6
IN_9
1 ) Optional binary inputs
IN_10
OUT_5 CB Close Enable
OUT_6
OUT_7
OUT_8
TRPTTRC1/2_
RST_LKOUT
OUT_9
External Trip
OUT_10
Setting Group 2
OUT_11
Setting Group 3
OUT_12
Setting Group 4
CBXCBR1_ENA_CLOSE
DARREC1_CB_READY
DARREC1_RECL_ON
TRPTTRC1_RST_LKOUT
TRPTTRC2_RST_LKOUT
TRPTTRC1_OPERATE
TRPTTRC2_OPERATE
PROTECTION_BI_SG_2
PROTECTION_BI_SG_3
PROTECTION_BI_SG_4
OUT_13 Blocking 2
ISWGAPC2_IN
GUID-A12A8C92-A8FA-46B1-A4C9-D1BAE4DE62DA V1 EN
Figure 29: SELGAPC1
ISWGAPC1
ISWGAPC1 is used to select which protection functions are to be blocked by changing
ISWGAPC1 parameters. ISWGAPC1 input is routed from SELGAPC1 output
OUT_1 Blocking 1 . ISWGAPC1 outputs are connected to the BLOCK inputs of the protection functions.
52 REF611
Application Manual
1MRS757456 D
Section 3
REF611 standardized configurations
SELGAPC1_OUT_1
Blocking 1
IN
ISWGAPC1
OUT_1
OUT_2
OUT_3
OUT_4
OUT_5
OUT_6
OUT_7
OUT_8
OUT_9
OUT_10
OUT_11
OUT_12
OUT_13
OUT_14
OUT_15
OUT_16
OUT_17
PHLPTOC1_BLOCK
PHHPTOC1_BLOCK
PHHPTOC2_BLOCK
PHIPTOC1_BLOCK
EFHPTOC1_BLOCK
DEFLPDEF1_BLOCK
DEFLPDEF2_BLOCK
DEFHPDEF1_BLOCK
ROVPTOV1_BLOCK
ROVPTOV2_BLOCK
ROVPTOV3_BLOCK
INTRPTEF1_BLOCK
NSPTOC1_BLOCK
NSPTOC2_BLOCK
PDNSPTOC1_BLOCK
T1PTTR1_BLOCK
CBPSOF1_BLOCK
GUID-BDC462BB-B635-4BE4-932D-68010331C92B V2 EN
Figure 30: ISWGAPC1
ISWGAPC2
ISWGAPC2 is used to select which protection functions are to be blocked by changing
ISWGAPC2 parameters. ISWGAPC2 input is routed from SELGAPC1 output
OUT_13 Blocking 2 . ISWGAPC2 outputs are connected to the BLOCK inputs of the protection functions.
REF611
Application Manual
53
Section 3
REF611 standardized configurations
3.4.4.2
54
1MRS757456 D
SELGAPC1_OUT_13
Blocking 2
IN
ISWGAPC2
OUT_7
OUT_8
OUT_9
OUT_10
OUT_11
OUT_12
OUT_13
OUT_14
OUT_15
OUT_16
OUT_17
OUT_1
OUT_2
OUT_3
OUT_4
OUT_5
OUT_6
GUID-56855209-1CDA-4B53-A920-3976BF96C636 V2 EN
Figure 31: ISWGAPC2
PHLPTOC1_BLOCK
PHHPTOC1_BLOCK
PHHPTOC2_BLOCK
PHIPTOC1_BLOCK
EFHPTOC1_BLOCK
DEFLPDEF1_BLOCK
DEFLPDEF2_BLOCK
DEFHPDEF1_BLOCK
ROVPTOV1_BLOCK
ROVPTOV2_BLOCK
ROVPTOV3_BLOCK
INTRPTEF1_BLOCK
NSPTOC1_BLOCK
NSPTOC2_BLOCK
PDNSPTOC1_BLOCK
T1PTTR1_BLOCK
CBPSOF1_BLOCK
ISWGAPC5
ISWGAPC5 input is used to select which directional earth-fault protection is controlled by ISWGAPC5 input by changing the ISWGAPC5 parameters.
ISWGAPC5 input is routed from SELGAPC1 output OUT_4 Basic Angle
Control . ISWGAPC5 outputs are connected to RCA_CTL inputs of directional earth-fault protection functions.
SELGAPC1_OUT_4
Basic Angle
Control IN
ISWGAPC5
OUT_1
OUT_2
OUT_3
DEFLPDEF1_RCA_CTL
DEFLPDEF2_RCA_CTL
DEFHPDEF1_RCA_CTL
GUID-47706B0D-5CB7-4D8D-8B07-846B87DDBDB4 V1 EN
Figure 32: ISWGAPC5
Internal signals
The internal signal group is used to configure logic connections between function blocks. There are two ISWGAPC instances, one SELGAPC and one OSWGAPC instance in the group.
REF611
Application Manual
1MRS757456 D
REF611
Application Manual
Section 3
REF611 standardized configurations
ISWGAPC3 is used to configure which protection function enables the current multiplier if the INRPHAR1 function detects inrush. ISWGAPC4 is used to configure the cooperation between the autoreclose function and the protection functions. The autoreclose function DARREC1 can block protection functions according to the application. SELGAPC2 is used to configure TCS blocking from the circuit breaker open or close position. OSWGAPC17 is used for connecting switch onto fault function CBPSOF. The inputs are start signals routed from the protection functions.
ISWGAPC3
PHLPTOC1_ENA_MULT
PHHPTOC1_ENA_MULT
PHHPTOC2_ENA_MULT
PHIPTOC1_ENA_MULT
EFHPTOC1_ENA_MULT
DEFLPDEF1_ENA_MULT
DEFLPDEF2_ENA_MULT
DEFHPDEF1_ENA_MULT
NSPTO C1_ENA_MULT
NSPTO C2_ENA_MULT
T1PTTR1_ENA_MULT
ISWGAPC4
PHLPTOC1_BLOCK
PHHPTOC1_BLOCK
PHHPTOC2_BLOCK
EFHPTOC1_BLOCK
DEFLPDEF1_BLOCK
DEFLPDEF2_BLOCK
DEFHPDEF1_BLOCK
SELGAPC1_OUT_2
SELGAPC1_OUT_3
CB Closed Position
CB Open Posit ion
SELGAPC2
PHLPTOC1_START
PHHPTOC1_START
PHHPTOC2_START
PHIPTOC1_START
EFHPTOC1_START
DEFLPDEF1_START
DEFLPDEF2_START
DEFHPDEF1_START
ROVPTOV1_START
ROVPTOV2_START
ROVPTOV3_START
INTRPTEF1_START
NSPTOC1_START
NSPTO C2_START
PDNSPTO C1_START
T1PTTR1_START
OSWGAPC17
TCSSCBR1_BLOCK
TCSSCBR2_BLOCK
St art
DLYD
CBPSOF1_INIT
GUID-A717CE52-5F4C-40C4-BF71-FBFCB900179B V2 EN
Figure 33: Internal signal
ISWGAPC3
ISWGAPC3 input is used to configure which protection function enables current multiplier while inrush is detected by INRPHAR1, by changing the ISWGAPC3 parameters. ISWGAPC3 input is routed from INRPHAR1 output BLK2H .
ISWGAPC3 outputs are connected to the ENA_MULT inputs of the protection functions.
55
Section 3
REF611 standardized configurations
56
1MRS757456 D
INRPHAR1_BLK2H IN
GUID-CC7AF316-6030-4959-B6EE-032E6415804C V1 EN
Figure 34: ISWGAPC3
ISWGAPC3
OUT_1
OUT_2
OUT_3
OUT_4
OUT_5
OUT_6
OUT_7
OUT_8
OUT_9
OUT_10
OUT_11
PHLPTOC1_ENA_MULT
PHHPTOC1_ENA_MULT
PHHPTOC2_ENA_MULT
PHIPTOC1_ENA_MULT
EFHPTOC1_ENA_MULT
DEFLPDEF1_ENA_MULT
DEFLPDEF2_ENA_MULT
DEFHPDEF1_ENA_MULT
NSPTOC1_ENA_MULT
NSPTOC2_ENA_MULT
T1PTTR1_ENA_MULT
ISWGAPC4
ISWGAPC4 input is used to configure which protection function is blocked by the autoreclosing function by changing the ISWGAPC4 parameters. ISWGAPC4 input is routed from DARREC1 output PROT_CRD . ISWGAPC4 outputs are connected to the
BLOCK inputs of some of the protection functions.
DARREC1_PROT_CRD IN
GUID-E0106013-2B27-4DED-81C7-40ED4F0A94F0 V1 EN
Figure 35: ISWGAPC4
ISWGAPC4
OUT_1
OUT_2
OUT_3
OUT_4
OUT_5
OUT_6
OUT_7
PHLPTOC1_BLOCK
PHHPTOC1_BLOCK
PHHPTOC2_BLOCK
EFHPTOC1_BLOCK
DEFLPDEF1_BLOCK
DEFLPDEF2_BLOCK
DEFHPDEF1_BLOCK
SELGAPC2
SELGAPC2 inputs represent the circuit breaker closed and open position from
SELGACP1. SELGAPC2 outputs are routed to the BLOCK input of the trip circuit supervision TCSSCBR1 and TCSSCBR2.
By default, X100 PO3 and PO4 are both used for the open circuit breaker. TCSSCBR1 and TCSSCBR2 are both blocked by the circuit breaker open position. If X100-PO3 is used for closing the circuit breaker, TCSSCBR1 needs to be blocked by circuit breaker close position (OUT_1 connection=IN_1). If X100-PO4 is used for closing
REF611
Application Manual
1MRS757456 D
REF611
Application Manual
Section 3
REF611 standardized configurations
PHLPTOC1_START
PHHPTOC1_START
PHHPTOC2_START
PHIPTOC1_START
EFHPTOC1_START
DEFLPDEF1_START
DEFLPDEF2_START
DEFHPDEF1_START
ROVPTOV1_START
ROVPTOV2_START
ROVPTOV3_START
INTRPTEF1_START
NSPTOC1_START
NSPTOC2_START
PDNSPTOC1_START
T1PTTR1_START the circuit breaker, TCSSCBR2 needs to be blocked by the circuit breaker close position (OUT_2 connection=IN_1).
SELGAPC1_OUT_2
SELGAPC1_OUT_3
CB Closed Position
IN_1
SELGAPC2
OUT_1
CB Open Position
IN_2 OUT_2
GUID-4E5F2683-ED84-45AB-8636-023584763783 V1 EN
Figure 36: SELGAPC2
TCSSCBR1_BLOCK
TCSSCBR2_BLOCK
OSWGAPC17
OSWGAPC17 is used to route the protection function start signals to the
StartDLYD input of the switch onto fault function CBPSOF. CBPSOF provides an instantaneous trip or a time delayed trip when closing the breaker while a fault exists.
OSWGAPC17 output is connected to CBPSOF function indicating the detected fault.
OSWGAPC17
IN_1
IN_2
IN_3
IN_4
IN_5
IN_6
IN_7
IN_8
IN_9
IN_10
IN_11
IN_12
IN_13
IN_14
IN_15
IN_16
OUT
St art DLYD
CBPSOF1_INIT
GUID-9E98F0EB-8467-4B5F-9755-78D2C0399F17 V1 EN
Figure 37: OSWGAPC17
57
Section 3
REF611 standardized configurations
3.4.4.3
1MRS757456 D
Binary outputs and LEDs
In configuration A, signals are routed to binary outputs and LEDs are configured by
OSWGAPC. The 16 OSWGAPC instances are categorized in four groups, including two master trip, four start, four trip and six alarm signals. The OSWGAPC output is connected with binary outputs and LEDs via SELGAPC3 and SELGAPC4.
• SELGAPC3 is used to configure OSWGAPC signals to the protection relay's binary outputs. SELGAPC4 is used to configure OSWGAPC signals to LEDs.
• OSWGAPC1 and OSWGAPC2 are used for the Master trip. The inputs are routed from the protection function's operate and the circuit breaker failure's re-trip.
• OSWGAPC3 to OSWGAPC6 are used for the start signal. The inputs are start signals routed from the protection functions.
• OSWGAPC7 to OSWGAPC10 are used for the trip signal. The inputs are operation signals routed from the protection functions.
• OSWGAPC11 to OSWGAPC16 are used for the alarm signal. The inputs are alarm signals routed from the protection and monitoring functions.
58 REF611
Application Manual
1MRS757456 D
Section 3
REF611 standardized configurations
PHLPTOC1_OPERATE
PHHPTOC1_OPERATE
PHHPTOC2_OPERATE
PHIPTOC1_OPERATE
EFHPTOC1_OPERATE
DEFLPDEF1_OPERATE
DEFLPDEF2_OPERATE
DEFHPDEF1_OPERATE
ROVPTOV1_OPERATE
ROVPTOV2_OPERATE
ROVPTOV3_OPERATE
INTRPTEF1_OPERATE
NSPTOC1_OPERATE
NSPTOC2_OPERATE
PDNSPTOC1_OPERATE
T1PTTR1_OPERATE
CCBRBRF1_TRRET
CBPSOF1_OPERATE
PHLPTOC1_START
PHHPTOC1_START
PHHPTOC2_START
PHIPTOC1_START
EFHPTOC1_START
DEFLPDEF1_START
DEFLPDEF2_START
DEFHPDEF1_START
ROVPTOV1_START
ROVPTOV2_START
ROVPTOV3_START
INTRPTEF1_START
NSPTOC1_START
NSPTOC2_START
PDNSPTOC1_START
T1PTTR1_START
OSWGAPC1
Master Trip 1
TRPPTRC1
OSWGAPC2
Master Trip 2
TRPPTRC2
OSWGAPC3
OSWGAPC4
OSWGAPC5
OSWGAPC6
Start 1
IN1
TPGAPC1
OUT1
Start 2
IN2 OUT2
Start 3
IN1
TPGAPC2
OUT1
Start 4
IN2
OUT2
PHLPTOC1_OPERATE
PHHPTOC1_OPERATE
PHHPTOC2_OPERATE
PHIPTOC1_OPERATE
EFHPTOC1_OPERATE
DEFLPDEF1_OPERATE
DEFLPDEF2_OPERATE
DEFHPDEF1_OPERATE
ROVPTOV1_OPERATE
ROVPTOV2_OPERATE
ROVPTOV3_OPERATE
INTRPTEF1_OPERATE
NSPTOC1_OPERATE
NSPTOC2_OPERATE
PDNSPTOC1_OPERATE
T1PTTR1_OPERATE
OSWGAPC7
OSWGAPC8
OSWGAPC9
OSWGAPC10
Trip 1
IN1
TPGAPC3
OUT1
Trip 2
IN2
Trip 3
OUT2
IN1
TPGAPC4
OUT1
Trip 4
IN2 OUT2
OSWGAPC11
T1PTTR1_ALARM
RDRE_TRIGGERED
TCSSCBR1_ALARM
TCSSCBR2_ALARM
CCBRBRF1_TRBU
CCBRBRF1_TRRET
DARREC1_INPRO
DARREC1_LOCKED
DARREC1_PROT_CRD
DARREC1_UNSUC_RECL
DARREC1_AR_ON
DARREC1_READY
SELGAPC1_OUT_9
TRPPTRC1_CL_LKOUT
TRPPTRC2_CL_LKOUT
OSWGAPC12
OSWGAPC13
OSWGAPC14
OSWGAPC15
OSWGAPC16
GUID-DC487FC1-179A-44D3-90EC-0B2AB809EB67 V2 EN
Figure 38: Binary outputs
Alarm 1
IN1
TPGAPC5
OUT1
Alarm 2
IN2 OUT2
Alarm 3
IN1
TPGAPC6
OUT1
Alarm 4
IN2 OUT2
Alarm 5
IN1
TPGAPC7
OUT1
Alarm 6
IN2 OUT2
SELGAPC3
X100 PO1
X100 PO2
X100 SO1
X100 SO2
X100 PO3
X100 PO4
X130 SO1
1 )
X130 SO2
X130 SO3
1 ) Optional binary outputs
REF611
Application Manual
59
Section 3
REF611 standardized configurations
60
1MRS757456 D
PHLPTOC1_OPERATE
PHHPTOC1_OPERATE
PHHPTOC2_OPERATE
PHIPTOC1_OPERATE
EFHPTOC1_OPERATE
DEFLPDEF1_OPERATE
DEFLPDEF2_OPERATE
DEFHPDEF1_OPERATE
ROVPTOV1_OPERATE
ROVPTOV2_OPERATE
ROVPTOV3_OPERATE
INTRPTEF1_OPERATE
NSPTOC1_OPERATE
NSPTOC2_OPERATE
PDNSPTOC1_OPERATE
T1PTTR1_OPERATE
CCBRBRF1_TRRET
CBPSOF1_OPERATE
PHLPTOC1_START
PHHPTOC1_START
PHHPTOC2_START
PHIPTOC1_START
EFHPTOC1_START
DEFLPDEF1_START
DEFLPDEF2_START
DEFHPDEF1_START
ROVPTOV1_START
ROVPTOV2_START
ROVPTOV3_START
INTRPTEF1_START
NSPTOC1_START
NSPTOC2_START
PDNSPTOC1_START
T1PTTR1_START
PHLPTOC1_OPERATE
PHHPTOC1_OPERATE
PHHPTOC2_OPERATE
PHIPTOC1_OPERATE
EFHPTOC1_OPERATE
DEFLPDEF1_OPERATE
DEFLPDEF2_OPERATE
DEFHPDEF1_OPERATE
ROVPTOV1_OPERATE
ROVPTOV2_OPERATE
ROVPTOV3_OPERATE
INTRPTEF1_OPERATE
NSPTOC1_OPERATE
NSPTOC2_OPERATE
PDNSPTOC1_OPERATE
T1PTTR1_OPERATE
OSWGAPC1
Master Trip 1
TRPPTRC1
OSWGAPC2
Master Trip 2
TRPPTRC2
OSWGAPC3
Start 1
OSWGAPC4
Start 2
OSWGAPC5 Start 3
OSWGAPC6 Start 4
OSWGAPC7 Trip 1
OSWGAPC8 Trip 2
OSWGAPC9 Trip 3
OSWGAPC10 Trip 4
SELGAPC4
T1PTTR1_ALARM
RDRE_TRIGGERED
TCSSCBR1_ALARM
TCSSCBR2_ALARM
CCBRBRF1_TRBU
CCBRBRF1_TRRET
DARREC1_INPRO
DARREC1_LOCKED
DARREC1_PROT_CRD
DARREC1_UNSUC_RECL
DARREC1_AR_ON
DARREC1_READY
SELGAPC1_OUT_9
TRPPTRC1_CL_LKOUT
TRPPTRC2_CL_LKOUT
OSWGAPC11
Alarm 1
OSWGAPC12
Alarm 2
OSWGAPC13
Alarm 3
OSWGAPC14
Alarm 4
OSWGAPC15
Alarm 5
OSWGAPC16
Alarm 6
GUID-A9F30F03-EB2B-487D-90D1-36E5CD493FF3 V2 EN
Figure 39: LEDs
SELGAPC3
SELGAPC3 is used to configure the OSWGAPC outputs to the protection relay binary outputs. Master trip signals are connected to SELGAPC3 via TRPPTRC. Start,
LED1
LED2
LED3
LED4
LED5
LED6
LED7
LED8
REF611
Application Manual
1MRS757456 D
REF611
Application Manual
Section 3
REF611 standardized configurations
CBXCBR_EXE_OP
DARREC_OPEN_CB
TRPPTRC1_TRIP
TRPPTRC2_TRIP
CBXCBR_EXE_CL
DARREC_CLOSE_CB
CCBRBRF1_TRBU
OSWGAPC3_OUT
OSWGAPC4_OUT
OSWGAPC5_OUT
OSWGAPC6_OUT
OSWGAPC7_OUT
OSWGAPC8_OUT
OSWGAPC9_OUT
OSWGAPC10_OUT
OSWGAPC11_OUT
OSWGAPC12_OUT
OSWGAPC13_OUT
OSWGAPC14_OUT
OSWGAPC15_OUT
OSWGAPC16_OUT trip and alarm signals are connected to SELGAPC3 via TPGAPC. TPGAPC are timers and used for setting the minimum pulse length for the outputs.
SELGAPC3 outputs are connected to X100 binary outputs. If X130 optional card is taken into use, SELGAPC3 outputs also connected to the X130 binary outputs.
CB Open 1
IN_1
CB Open 2
IN_2
SELGAPC3
OUT_1
OUT_2
CB Close
IN_3
Backup Trip
IN_4
IN1 OUT1
TPGAPC1
IN2 OUT2
Start 1
Start 2
IN_5
IN_6
OUT_3
OUT_4
OUT_5
OUT_6
IN1 OUT1
TPGAPC2
IN2 OUT2
Start 3
Start 4
IN_7
IN_8
OUT_7
OUT_8
IN1 OUT1
TPGAPC3
IN2 OUT2
Trip 1
Trip 2
IN1 OUT1
TPGAPC4
IN2 OUT2
Trip 3
Trip 4
IN1 OUT1
TPGAPC5
IN2 OUT2
Alarm 1
Alarm 2
IN_9
IN_10
IN_11
IN_12
IN_13
IN_14
OUT_9
X100 PO1
X100 PO2
X100 SO1
X100 SO2
X100 PO3
X100 PO4
X130 SO1
1 )
X130 SO2
X130 SO3
1 ) Optional binary outputs
IN1 OUT1
TPGAPC6
IN2 OUT2
Alarm 3
Alarm 4
IN1 OUT1
TPGAPC7
IN2 OUT2
Alarm 5
Alarm 6
IN_15
IN_16
IN_17
IN_18
GUID-3772666B-6FE9-48E5-91BF-9AA80BFD4B6E V1 EN
Figure 40: SELGAPC3
SELGAPC4
SELGAPC4 is used to configure the OSWGAPC outputs to LEDs. Master trip signals are connected to SELGAPC4 via TRPPTRC. Start, trip and alarm signals are connected to SELGAPC4 directly. SELGAPC4 outputs are connected to programmable LED1 to LED8.
61
Section 3
REF611 standardized configurations
1MRS757456 D
CBXCBR_EXE_OP
DARREC_OPEN_CB
TRPPTRC1_TRIP
TRPPTRC2_TRIP
CBXCBR_EXE_CL
DARREC_CLOSE_CB
CCBRBRF1_TRBU
OSWGAPC3_OUT
OSWGAPC4_OUT
OSWGAPC5_OUT
OSWGAPC6_OUT
OSWGAPC7_OUT
OSWGAPC8_OUT
OSWGAPC9_OUT
OSWGAPC10_OUT
OSWGAPC11_OUT
OSWGAPC12_OUT
OSWGAPC13_OUT
OSWGAPC14_OUT
OSWGAPC15_OUT
OSWGAPC16_OUT
CB Open 1
IN_1
CB Open 2
IN_2
SELGAPC4
CB Close
IN_3
Backup Trip
IN_4
Start 1
IN_5
Start 2
IN_6
Start 3
IN_7
Start 4
IN_8
Trip 1
IN_9
Trip 2
IN_10
Trip 3
IN_11
Trip 4
IN_12
Alarm 1
IN_13
Alarm 2
IN_14
OUT_1
OUT_2
OUT_3
OUT_4
OUT_5
OUT_6
OUT_7
OUT_8
Alarm 3
IN_15
Alarm 4
IN_16
Alarm 5
IN_17
Alarm 6
IN_18
LED1
LED2
LED3
LED4
LED5
LED6
LED7
LED8
GUID-B4946537-8289-4424-BE16-C9EDA774A4A4 V1 EN
Figure 41: SELGAPC4
Master trip OSWGAPCs
OSWGAPC1 and OSWGAPC2 are used to route the protection function operate signals to Master trip. OSWGAPC1 and OSWGAPC2 have the same inputs from the protection function's operate signals. The output is connected to TRPPTRC function.
The default connections for OSWGAPC1 and OSWGAPC2 are different.
62 REF611
Application Manual
1MRS757456 D
Section 3
REF611 standardized configurations
PHLPTOC1_OPERATE
PHHPTOC1_OPERATE
PHHPTOC2_OPERATE
PHIPTOC1_OPERATE
EFHPTOC1_OPERATE
DEFLPDEF1_OPERATE
DEFLPDEF2_OPERATE
DEFHPDEF1_OPERATE
ROVPTOV1_OPERATE
ROVPTOV2_OPERATE
ROVPTOV3_OPERATE
INTRPTEF1_OPERATE
NSPTOC1_OPERATE
NSPTOC2_OPERATE
PDNSPTOC1_OPERATE
T1PTTR1_OPERATE
CCBRBRF1_TRRET
CBPSOF1_OPERATE
GUID-1C2DBFDD-9F8B-4574-92C2-02A9D879FDA7 V2 EN
Figure 42: OSWGAPC1
IN_5
IN_6
IN_7
IN_13
IN_14
IN_15
IN_16
IN_17
IN_8
IN_9
IN_10
IN_11
IN_12
IN_18
IN_1
IN_2
IN_3
IN_4
OSWGAPC2
OUT
Master trip 2
TRPPTRC 2_OPERATE
REF611
Application Manual
63
Section 3
REF611 standardized configurations
1MRS757456 D
PHLPTOC1_OPERATE
PHHPTOC1_OPERATE
PHHPTOC2_OPERATE
PHIPTOC1_OPERATE
EFHPTOC1_OPERATE
DEFLPDEF1_OPERATE
DEFLPDEF2_OPERATE
DEFHPDEF1_OPERATE
ROVPTOV1_OPERATE
ROVPTOV2_OPERATE
ROVPTOV3_OPERATE
INTRPTEF1_OPERATE
NSPTOC1_OPERATE
NSPTOC2_OPERATE
PDNSPTOC1_OPERATE
T1PTTR1_OPERATE
CCBRBRF1_TRRET
CBPSOF1_OPERATE
IN_5
IN_6
IN_7
IN_13
IN_14
IN_15
IN_16
IN_17
IN_8
IN_9
IN_10
IN_11
IN_12
IN_18
IN_1
IN_2
IN_3
IN_4
OSWGAPC2
OUT
Master trip 2
TRPPTRC 2_OPERATE
GUID-1E93D270-E0CE-4861-A2B1-8E3974691618 V2 EN
Figure 43: OSWGAPC2
Start OSWGAPCs
OSWGAPC instances 3...6 are used to configure the protection start signals. These four OSWGAPCs have the same inputs from the protection function start signals. The output is routed to SELGAPC3 via TPGAPC timer, and routed to SELGAPC4 directly.
64 REF611
Application Manual
1MRS757456 D
Section 3
REF611 standardized configurations
PHLPTOC1_START
PHHPTOC1_START
PHHPTOC2_START
PHIPTOC1_START
EFHPTOC1_START
DEFLPDEF1_START
DEFLPDEF2_START
DEFHPDEF1_START
ROVPTOV1_START
ROVPTOV2_START
ROVPTOV3_START
INTRPTEF1_START
NSPTOC1_START
NSPTOC2_START
PDNSPTOC1_START
T1PTTR1_START
IN_1
IN_2
IN_3
IN_4
IN_5
IN_6
IN_7
IN_8
IN_9
IN_10
IN_11
IN_12
IN_13
IN_14
IN_15
IN_16
OSWGAPC3
OUT
Start 1 TPGAPC1_IN1
SELGAPC4_IN_5
GUID-51366927-F89E-4879-969F-B1023B540BD1 V1 EN
Figure 44: OSWGAPC3
REF611
Application Manual
65
Section 3
REF611 standardized configurations
PHLPTOC1_START
PHHPTOC1_START
PHHPTOC2_START
PHIPTOC1_START
EFHPTOC1_START
DEFLPDEF1_START
DEFLPDEF2_START
DEFHPDEF1_START
ROVPTOV1_START
ROVPTOV2_START
ROVPTOV3_START
INTRPTEF1_START
NSPTOC1_START
NSPTOC2_START
PDNSPTOC1_START
T1PTTR1_START
GUID-E9196ACF-BA9A-483C-8FF3-4D41574BCEDE V1 EN
Figure 45: OSWGAPC4
IN_1
IN_2
IN_3
IN_4
IN_5
IN_6
IN_7
IN_8
IN_9
IN_10
IN_11
IN_12
IN_13
IN_14
IN_15
IN_16
OSWGAPC4
OUT
Start 2 TPGAPC1_IN2
SELGAPC4_IN_6
1MRS757456 D
66 REF611
Application Manual
1MRS757456 D
Section 3
REF611 standardized configurations
PHLPTOC1_START
PHHPTOC1_START
PHHPTOC2_START
PHIPTOC1_START
EFHPTOC1_START
DEFLPDEF1_START
DEFLPDEF2_START
DEFHPDEF1_START
ROVPTOV1_START
ROVPTOV2_START
ROVPTOV3_START
INTRPTEF1_START
NSPTOC1_START
NSPTOC2_START
PDNSPTOC1_START
T1PTTR1_START
IN_1
IN_2
IN_3
IN_4
IN_5
IN_6
IN_7
IN_8
IN_9
IN_10
IN_11
IN_12
IN_13
IN_14
IN_15
IN_16
OSWGAPC5
OUT
Start 3 TPGAPC2_IN1
SELGAPC4_IN_7
GUID-FFA9885A-9816-4D9E-BF1F-C8204C73F32D V1 EN
Figure 46: OSWGAPC5
REF611
Application Manual
67
Section 3
REF611 standardized configurations
1MRS757456 D
PHLPTOC1_START
PHHPTOC1_START
PHHPTOC2_START
PHIPTOC1_START
EFHPTOC1_START
DEFLPDEF1_START
DEFLPDEF2_START
DEFHPDEF1_START
ROVPTOV1_START
ROVPTOV2_START
ROVPTOV3_START
INTRPTEF1_START
NSPTOC1_START
NSPTOC2_START
PDNSPTOC1_START
T1PTTR1_START
IN_1
IN_2
IN_3
IN_4
IN_5
IN_6
IN_7
IN_8
IN_9
IN_10
IN_11
IN_12
IN_13
IN_14
IN_15
IN_16
OSWGAPC6
OUT Start 4 TPGAPC2_IN2
SELGAPC4_IN_8
GUID-41D82F50-DC6D-47AD-84C4-8BB5CE7A396B V1 EN
Figure 47: OSWGAPC6
Trip OSWGAPCs
OSWGAPC instances 7...10 are used to configure the protection operate signals which belong to the trip group. These four OSWGAPCs have same inputs from the operate signals of the protection functions. The output is routed to SELGAPC3 via
TPGAPC timer, and routed to SELGAPC4 directly.
68 REF611
Application Manual
1MRS757456 D
Section 3
REF611 standardized configurations
OSWGAPC7
PHLPTOC1_OPERATE
PHHPTOC1_OPERATE
IN_1
IN_2
PHHPTOC2_OPERATE
PHIPTOC1_OPERATE
EFHPTOC1_OPERATE
DEFLPDEF1_OPERATE
DEFLPDEF2_OPERATE
DEFHPDEF1_OPERATE
ROVPTOV1_OPERATE
ROVPTOV2_OPERATE
ROVPTOV3_OPERATE
INTRPTEF1_OPERATE
NSPTOC1_OPERATE
NSPTOC2_OPERATE
PDNSPTOC1_OPERATE
T1PTTR1_OPERATE
CBPSOF1_OPERATE
IN_3
IN_4
GUID-AB81000E-01A7-40D2-8BD4-3EBB8B125903 V2 EN
Figure 48: OSWGAPC7
IN_5
IN_6
IN_7
IN_14
IN_15
IN_16
IN_17
IN_8
IN_9
IN_10
IN_11
IN_12
IN_13
OUT
Trip 1 TPGAPC3_IN1
SELGAPC4_IN_9
REF611
Application Manual
69
Section 3
REF611 standardized configurations
OSWGAPC8
PHLPTOC1_OPERATE
PHHPTOC1_OPERATE
PHHPTOC2_OPERATE
PHIPTOC1_OPERATE
IN_1
IN_2
IN_3
IN_4
EFHPTOC1_OPERATE
DEFLPDEF1_OPERATE
IN_5
IN_6
DEFLPDEF2_OPERATE
DEFHPDEF1_OPERATE
ROVPTOV1_OPERATE
ROVPTOV2_OPERATE
ROVPTOV3_OPERATE
INTRPTEF1_OPERATE
NSPTOC1_OPERATE
NSPTOC2_OPERATE
PDNSPTOC1_OPERATE
T1PTTR1_OPERATE
CBPSOF1_OPERATE
IN_7
IN_8
IN_9
IN_10
IN_11
IN_12
IN_13
IN_14
IN_15
IN_16
IN_17
GUID-03032E45-CF34-4D83-BFC4-02C07245E32E V2 EN
Figure 49: OSWGAPC8
OUT
Trip 2 TPGAPC3_IN2
SELGAPC4_IN_10
1MRS757456 D
70 REF611
Application Manual
1MRS757456 D
Section 3
REF611 standardized configurations
OSWGAPC9
PHLPTOC1_OPERATE
PHHPTOC1_OPERATE
PHHPTOC2_OPERATE
PHIPTOC1_OPERATE
IN_1
IN_2
IN_3
IN_4
EFHPTOC1_OPERATE
DEFLPDEF1_OPERATE
IN_5
IN_6
DEFLPDEF2_OPERATE IN_7
DEFHPDEF1_OPERATE IN_8
ROVPTOV1_OPERATE
ROVPTOV2_OPERATE
IN_9
IN_10
ROVPTOV3_OPERATE IN_11
IN_12 INTRPTEF1_OPERATE
NSPTOC1_OPERATE
NSPTOC2_OPERATE
IN_13
IN_14
PDNSPTOC1_OPERATE
T1PTTR1_OPERATE
IN_15
IN_16
CBPSOF1_OPERATE IN_17
GUID-F48933D5-43DE-43E1-9260-D10601DFA02F V2 EN
Figure 50: OSWGAPC9
OUT
Trip 3
TPGAPC4_IN1
SELGAPC4_IN_11
REF611
Application Manual
71
Section 3
REF611 standardized configurations
1MRS757456 D
OSWGAPC10
PHLPTOC1_OPERATE
PHHPTOC1_OPERATE
PHHPTOC2_OPERATE
PHIPTOC1_OPERATE
IN_1
IN_2
IN_3
IN_4
EFHPTOC1_OPERATE
DEFLPDEF1_OPERATE
IN_5
IN_6
DEFLPDEF2_OPERATE IN_7
DEFHPDEF1_OPERATE
ROVPTOV1_OPERATE
ROVPTOV2_OPERATE
ROVPTOV3_OPERATE
INTRPTEF1_OPERATE
NSPTOC1_OPERATE
NSPTOC2_OPERATE
PDNSPTOC1_OPERATE
T1PTTR1_OPERATE
CBPSOF1_OPERATE
IN_8
IN_9
IN_10
IN_11
IN_12
IN_13
IN_14
IN_15
IN_16
IN_17
GUID-F0AC6293-6959-465E-A233-1D947583A2E1 V2 EN
Figure 51: OSWGAPC10
OUT
Trip 4 TPGAPC4_IN2
SELGAPC4_IN_12
Alarm OSWGAPCs
OSWGAPC instances 11...16 are used to configure the alarm signals which belong to the alarm group. These six OSWGAPCs have same inputs from the alarm signals. The output is routed to SELGAPC3 via TPGAPC timer, and routed to SELGAPC4 directly.
72 REF611
Application Manual
1MRS757456 D
Section 3
REF611 standardized configurations
T1PTTR1_ALARM
RDRE_TRIGGERED
IN_1
IN_2
TCSSCBR1_ALARM
TCSSCBR2_ALARM
IN_3
IN_4
CCBRBRF1_TRBU
CCBRBRF1_TRRET
IN_5
IN_6
DARREC1_INPRO IN_7
DARREC1_LOCKED
DARREC1_PROT_CRD
DARREC1_UNSUC_RECL
DARREC1_AR_ON
DARREC1_READY
SELGAPC1_OUT_9
TRPPTRC1_CL_LKOUT
IN_8
IN_9
IN_10
IN_11
IN_12
External Trip
IN_13
TRPPTRC2_CL_LKOUT
IN_14
IN_15
OSWGAPC11
OUT
Alarm 1 TPGAPC5_IN1
SELGAPC4_IN_13
GUID-66274761-B6F9-409E-B0DE-9C0596ED4C71 V1 EN
Figure 52: OSWGAPC11
REF611
Application Manual
73
Section 3
REF611 standardized configurations
T1PTTR1_ALARM
RDRE_TRIGGERED
IN_1
IN_2
TCSSCBR1_ALARM
TCSSCBR2_ALARM
IN_3
IN_4
CCBRBRF1_TRBU
CCBRBRF1_TRRET
IN_5
IN_6
DARREC1_INPRO IN_7
DARREC1_LOCKED
DARREC1_PROT_CRD
DARREC1_UNSUC_RECL
DARREC1_AR_ON
DARREC1_READY
SELGAPC1_OUT_9
TRPPTRC1_CL_LKOUT
TRPPTRC2_CL_LKOUT
IN_8
IN_9
IN_10
IN_11
IN_12
External Trip
IN_13
IN_14
IN_15
OSWGAPC12
OUT
Alarm 2 TPGAPC5_IN2
SELGAPC4_IN_14
GUID-ED72F4ED-4DF4-4B13-AE0C-AAB6A03B69C7 V1 EN
Figure 53: OSWGAPC12
1MRS757456 D
74 REF611
Application Manual
1MRS757456 D
Section 3
REF611 standardized configurations
T1PTTR1_ALARM
RDRE_TRIGGERED
IN_1
IN_2
TCSSCBR1_ALARM
TCSSCBR2_ALARM
IN_3
IN_4
CCBRBRF1_TRBU
CCBRBRF1_TRRET
IN_5
IN_6
DARREC1_INPRO IN_7
DARREC1_LOCKED
DARREC1_PROT_CRD
DARREC1_UNSUC_RECL
DARREC1_AR_ON
DARREC1_READY
SELGAPC1_OUT_9
TRPPTRC1_CL_LKOUT
IN_8
IN_9
IN_10
IN_11
IN_12
External Trip
IN_13
TRPPTRC2_CL_LKOUT
IN_14
IN_15
OSWGAPC13
OUT
Alarm 3 TPGAPC6_IN1
SELGAPC4_IN_15
GUID-85F16B67-BE18-43A3-8637-FCF29DB2E8D6 V1 EN
Figure 54: OSWGAPC13
REF611
Application Manual
75
Section 3
REF611 standardized configurations
T1PTTR1_ALARM
RDRE_TRIGGERED
IN_1
IN_2
TCSSCBR1_ALARM
TCSSCBR2_ALARM
IN_3
IN_4
CCBRBRF1_TRBU
CCBRBRF1_TRRET
IN_5
IN_6
DARREC1_INPRO IN_7
DARREC1_LOCKED
DARREC1_PROT_CRD
DARREC1_UNSUC_RECL
DARREC1_AR_ON
DARREC1_READY
SELGAPC1_OUT_9
TRPPTRC1_CL_LKOUT
IN_8
IN_9
IN_10
IN_11
IN_12
External Trip
IN_13
TRPPTRC2_CL_LKOUT
IN_14
IN_15
OSWGAPC14
OUT
Alarm 4 TPGAPC6_IN2
SELGAPC4_IN_16
GUID-C9EC48EA-F53F-4009-9010-5652EE3A6C95 V1 EN
Figure 55: OSWGAPC14
1MRS757456 D
76 REF611
Application Manual
1MRS757456 D
Section 3
REF611 standardized configurations
T1PTTR1_ALARM
RDRE_TRIGGERED
IN_1
IN_2
TCSSCBR1_ALARM
TCSSCBR2_ALARM
IN_3
IN_4
CCBRBRF1_TRBU
CCBRBRF1_TRRET
IN_5
IN_6
DARREC1_INPRO IN_7
DARREC1_LOCKED
DARREC1_PROT_CRD
DARREC1_UNSUC_RECL
DARREC1_AR_ON
DARREC1_READY
SELGAPC1_OUT_9
TRPPTRC1_CL_LKOUT
IN_8
IN_9
IN_10
IN_11
IN_12
External Trip
IN_13
TRPPTRC2_CL_LKOUT
IN_14
IN_15
OSWGAPC15
OUT
Alarm 5 TPGAPC7_IN1
SELGAPC4_IN_17
GUID-CC49B32B-234A-43AB-86AF-B83FC2C10F51 V1 EN
Figure 56: OSWGAPC15
REF611
Application Manual
77
Section 3
REF611 standardized configurations
3.4.4.4
1MRS757456 D
T1PTTR1_ALARM
RDRE_TRIGGERED
IN_1
IN_2
TCSSCBR1_ALARM
TCSSCBR2_ALARM
IN_3
IN_4
CCBRBRF1_TRBU
CCBRBRF1_TRRET
IN_5
IN_6
DARREC1_INPRO IN_7
DARREC1_LOCKED
DARREC1_PROT_CRD
DARREC1_UNSUC_RECL
DARREC1_AR_ON
DARREC1_READY
SELGAPC1_OUT_9
TRPPTRC1_CL_LKOUT
IN_8
IN_9
IN_10
IN_11
IN_12
External Trip
IN_13
TRPPTRC2_CL_LKOUT
IN_14
IN_15
OSWGAPC16
OUT
Alarm 6 TPGAPC7_IN2
SELGAPC4_IN_18
GUID-053F0EAF-B3F1-474C-91E9-76E4DC91629F V1 EN
Figure 57: OSWGAPC16
GOOSE
In the configuration, there are 20 GOOSERCV_BIN functions. Each
GOOSERVC_BIN function can be connected to one received binary GOOSE signal.
The signal connection can be configured in PCM600.
• GOOSERCV_BIN instances 0 and 1 are used for blocking protection functions.
Signals from these two GOOSERCV_BINs are connected to ISWGAPC9.
ISWGAPC9 is used to configure which protection function block is blocked.
• GOOSERCV_BIN instances 2 and 3 are used for tripping from GOOSE. Signals from these two GOOSERCV_BINs are connected to TRPPTRC1 and
TRPPTRC2 trip.
• GOOSERCV_BIN instances 4 to 19 are used for blocking circuit breaker operation. Signals from these 16 GOOSERCV_BINs are connected to
ISWGAPC10. ISWGAPC10 is used to configure the GOOSE input signal to block the circuit breaker open or close operation.
78 REF611
Application Manual
1MRS757456 D
Section 3
REF611 standardized configurations
GOOSERCV_BIN:0
GOOSERCV_BIN:1
GOOSERCV_BIN:2
OR
GOOSE Blcoking
ISWGAPC9
PHLPTOC1_BLOCK
PHHPTOC1_BLOCK
PHHPTOC2_BLOCK
PHIPTOC1_BLOCK
EFHPTOC1_BLOCK
DEFLPDEF1_BLOCK
DEFLPDEF2_BLOCK
DEFHPDEF1_BLOCK
ROVPTOV1_BLOCK
ROVPTOV2_BLOCK
ROVPTOV3_BLOCK
INTRPTEF1_BLOCK
NSPTOC1_BLOCK
NSPTOC2_BLOCK
PDNSPTOC1_BLOCK
T1PTTR1_BLOCK
CBPSOF1_BLOCK
OR
GOOSE
External Trip TRPPTRC1_OPERATE
TRPPTRC2_OPERATE
GOOSERCV_BIN:3
GOOSERCV_BIN:4
GOOSERCV_BIN:5 OR
GOOSE Block CB
ISWGAPC10
CBXCBR1_BLK_CLOSE
CBXCBR1_BLK_OPEN
GOOSERCV_BIN:19
GUID-0B0FD851-2982-4097-B52D-ADC59E9AA638 V2 EN
Figure 58: GOOSE overview
ISWGAPC9
ISWGAPC9 is used to configure which protection functions can be blocked by the received GOOSE signals. ISWGAPC9 inputs are received GOOSE signals from
GOOSERCV_BIN:0 and GOOSERCV_BIN:1. The outputs are connected to block inputs of the protection functions.
REF611
Application Manual
79
Section 3
REF611 standardized configurations
1MRS757456 D
GOOSERCV_BIN:0_OUT
GOOSERCV_BIN:1_OUT
GOOSE Blocking
IN
ISWGAPC9
OUT_1
OUT_2
OUT_3
OUT_4
OUT_5
OUT_6
OUT_7
OUT_8
OUT_9
OUT_10
OUT_11
OUT_12
OUT_13
OUT_14
OUT_15
OUT_16
OUT_17
GUID-8189C6A6-FF9A-423C-B870-06A23A20E3B3 V2 EN
Figure 59: ISWGAPC9
PHLPTOC1_BLOCK
PHHPTOC1_BLOCK
PHHPTOC2_BLOCK
PHIPTOC1_BLOCK
EFHPTOC1_BLOCK
DEFLPDEF1_BLOCK
DEFLPDEF2_BLOCK
DEFHPDEF1_BLOCK
ROVPTOV1_BLOCK
ROVPTOV2_BLOCK
ROVPTOV3_BLOCK
INTRPTEF1_BLOCK
NSPTOC1_BLOCK
NSPTOC2_BLOCK
PDNSPTOC1_BLOCK
T1PTTR1_BLOCK
CBPSOF1_BLOCK
ISWGAPC10
ISWGAPC10 is used to block the circuit breaker operation from the received GOOSE signals. ISWGAPC10 inputs are received GOOSE signals from GOOSERCV_BIN:
4 to GOOSERCV_BIN:19. The outputs are connected to block the circuit breaker's close and open operation.
GOOSERCV_BIN:4_OUT
GOOSERCV_BIN:5_OUT
GOOSERCV_BIN:6_OUT
...
GOOSERCV_BIN:19_OUT
GOOSE Block CB IN
GUID-07F0B112-6C1B-452D-B2E0-BB8857AAF590 V1 EN
Figure 60: ISWGAPC10
ISWGAPC10
OUT_1
OUT_2
CBXCBR1_BLK_CLOSE
CBXCBR1_BLK_OPEN
80 REF611
Application Manual
1MRS757456 D
3.5
3.5.1
Section 3
REF611 standardized configurations
Configuration B
Applications
Configuration B for non-directional overcurrent and non-directional earth-fault protection is mainly intended for cable and overhead-line feeder applications in isolated and resonant-earthed distribution networks.
The protection relay with a standardized configuration is delivered from the factory with default settings and parameters. The end-user flexibility for incoming, outgoing and internal signal designation within the protection relay enables this configuration to be further adapted to different primary circuit layouts and the related functionality needs by modifying the internal functionality using PCM600.
REF611
Application Manual
81
Section 3
REF611 standardized configurations
3.5.2 Functions
1MRS757456 D
3I
Io
REF611 FEEDER PROTECTION RELAY
PROTECTION
2×
Master Trip
Lockout relay
94/86
2×
I2>
46
I2/I1>
46PD
3I>/Io>BF
51BF/51NBF
3Ith>F
49F
3I>>>
50P/51P
3I>
51P-1
2×
3I>>
51P-2
3I2f>
68
Io>>>
50N/51N
2×
Io>
51N-1
Io>>
51N-2
SOTF
SOTF
LOCAL HMI
I
ESC
O
Measurements
Disturbance records
A
R
L
STANDARD
CONFIGURATION
B
ALSO AVAILABLE
- Disturbance and fault recorders
- Event log and recorded data
- Local/Remote push button on LHMI
- Self-supervision
- Time synchronization: IEEE 1588 v2,
SNTP, IRIG-B
- User management
- Web-HMI
CONDITION MONITORING
AND SUPERVISION
2×
TCS
TCM
CONTROL AND INDICATION 1)
Object
CB
DC
Ctrl 2)
1
-
Ind 3)
ES -
1) Check availability of binary inputs/outputs
from technical documentation
2) Control and indication function for
primary object
3) Status indication function for
primary object
-
-
O → I
79
COMMUNICATION
Protocols:
IEC 61850-8-1
Modbus®
Interfaces:
Ethernet: TX (RJ-45), FX (LC)
Serial: RS-485
Redundant protocols:
HSR
PRP
RSTP
MEASUREMENT
- I, Io
- Limit value supervision
- Symmetrical components
Analog interface types
Current transformer
Voltage transformer
1)
Conventional transformer inputs
REMARKS
Optional function
3× No. of instances
Io/Uo
Calculated value
OR Alternative function to be defined when ordering
1)
4
-
GUID-388F8DF3-75FC-4DAF-8640-10F7A52D60B5 V1 EN
Figure 61: Functionality overview for configuration B
3.5.2.1 Default I/O connections
Table 16:
Binary input
X120-BI1
X120-BI2
X120-BI3
X120-BI4
Default connections for binary inputs
Description
Blocking of overcurrent instantaneous stage
Circuit breaker closed position indication
Circuit breaker open position indication
Reset of master trip lockout
Connector pins
X120:1-2
X120:3,2
X120:4,2
X120:5-6
82 REF611
Application Manual
1MRS757456 D
3.5.2.2
3.5.3
REF611
Application Manual
Section 3
REF611 standardized configurations
Table 17:
Binary input
X100-PO1
X100-PO2
X100-PO3
X100-PO4
X100-SO1
X100-SO2
Default connections for binary outputs
Description
Close circuit breaker
Circuit breaker failure protection trip to upstream breaker
Open circuit breaker/trip coil 1
Open circuit breaker/trip coil 2
General start indication
General operate indication
Connector pins
X100:6-7
X100:8-9
X100:15-19
X100:20-24
X100:10-12
X100:13-15
5
6
3
4
7
8
Table 18:
LED
1
2
Default connections for LEDs
Description
Non-directional overcurrent operate
Earth fault operate
Negative-sequence overcurrent/phase discontinuity operate
Thermal overload alarm
Autoreclose in progress
Disturbance recorder triggered
Trip circuit supervision alarm
Circuit-breaker failure operate
Predefined disturbance recorder connections
Table 19:
2
3
Channel
1
4
Predefined analog channel setup
Description
IL1
IL2
IL3
Io
Additionally, all the digital inputs that are connected by default are also enabled with the setting. Default triggering settings are selected depending on the connected input signal type. Typically all protection START signals are selected to trigger the disturbance recorded by default.
Functional diagrams
The functional diagrams describe the default input, output, programmable LED, switch group and function-to-function connections. The default connections can be viewed and changed with switch groups in PCM600, LHMI and WHMI according to the application requirements.
83
Section 3
REF611 standardized configurations
3.5.3.1
1MRS757456 D
The analog channels have fixed connections towards the different function blocks inside the protection relay’s configuration. Exceptions from this rule are the seven analog channels available for the disturbance recorder function. These channels are freely selectable and a part of the disturbance recorder’s parameter settings.
The analog channels are assigned to different functions. The common signal marked with 3I represents the three phase currents. The signal marked with Io represents the measured residual current via a core balance current transformer.
Functional diagrams for protection
The functional diagrams describe the protection functionality of the protection relay in detail and picture the factory default connections.
X120-BI1
Blocking 1
3I
BLOCK
INRPHAR1
3I
2f
>(1)
68(1)
BLK2H
OVERCURRENT PROTECTION AND INRUSH INDICATION
PHLPTOC1
3I>(1)
3I
BLOCK
51P-1(1)
OPERATE
START
ENA_MULT
PHHPTOC1
3I>>(1)
51P-2(1)
3I
BLOCK
ENA_MULT
OPERATE
START
PHHPTOC2
3I>>(2)
3I
BLOCK
51P-2(2)
OPERATE
START
ENA_MULT
SELGAPC1
IN_1 OUT_1 IN
ISWGAPC1
OUT_4
PHIPTOC1
3I>>>(1)
3I
BLOCK
50P/51P(1)
OPERATE
START
ENA_MULT
IN_1
IN_2
IN_3
IN_4
OSWGAPC8
OR
OUT
SELGAPC4
IN_10 OUT_1
LED 1
GUID-DEF278A2-D120-437C-BC9A-180BD34C6962 V3 EN
Figure 62: Overcurrent protection
Four overcurrent stages are offered for overcurrent and short-circuit protection. The instantaneous stage PHIPTOC1 can be blocked by energizing the binary input
(X120:1-2). The inrush detection block’s INRPHAR1 output BLK2H enables either blocking the function or multiplying the active settings for any of the described protection function blocks.
All operate signals are connected to the Master Trip and to the alarm LED 1.
84 REF611
Application Manual
1MRS757456 D
Section 3
REF611 standardized configurations
EARTH-FAULT PROTECTION
EFLPTOC1
Io>(1)
51N-1(1)
Io
BLOCK
ENA_MULT
OPERATE
START
EFLPTOC2
Io>(2)
51N-1(2)
Io
BLOCK
ENA_MULT
OPERATE
START
IN_5
OSWGAPC9
IN_6
IN_7
IN_8
OR OUT
SELGAPC4
IN_11 OUT_2
LED 2
EFHPTOC1
Io>>(1)
51N-2(1)
Io
BLOCK
ENA_MULT
OPERATE
START
EFIPTOC1
Io>>>(1)
50N(1)
Io
BLOCK
ENA_MULT
OPERATE
START
GUID-A3A385B1-89E2-4E71-9C18-183C9A1F9660 V1 EN
Figure 63: Earth-fault protection
Four stages are offered for non-directional earth-fault protection.
All operate signals are connected to the Master Trip as well as to the alarm LED 2.
REF611
Application Manual
85
Section 3
REF611 standardized configurations
1MRS757456 D
NSPTOC1
I
2
>(1)
3I
BLOCK
ENA_MULT
46(1)
OPERATE
START
UNBALANCE PROTECTION
NSPTOC2
3I
BLOCK
ENA_MULT
I
2
>(2)
46(2)
OPERATE
START
IN_9
OSWGAPC10
IN_10
IN_11
OR OUT
SELGAPC4
IN_12 OUT_3
LED 3
3I
BLOCK
PDNSPTOC1
I
2
/I
1
(1)
46PD(1)
OPERATE
START
GUID-4CFBCA74-5D5E-4C39-87DE-18EE2BE86C19 V1 EN
Figure 64: Unbalance protection
Two negative-sequence overcurrent stages NSPTOC1 and NSPTOC2 and one phase discontinuity stage PDNPSTOC1 are offered for the unbalance protection. The phase discontinuity protection PDNPSTOC1 provides protection for interruptions in the normal three-phase load supply, for example, in downed conductor situations.
The operate signals of these unbalance protections are connected to the Master Trip and also to alarm LED 3.
86 REF611
Application Manual
1MRS757456 D
Section 3
REF611 standardized configurations
THERMAL OVERLOAD PROTECTION
T1PTTR1
3Ith>F(1)
49F(1)
3I
ENA_MULT
BLK_OPR
OPERATE
ALARM
BLK_CLOSE
AMB_TEMP START
OSWGAPC11
IN_1 OUT
SELGAPC4
IN_13 OUT_4
LED 4
PHLPTOC1_OPERATE
PHHPTOC1_OPERATE
PHHPTOC2_OPERATE
PHIPTOC1_OPERATE
EFLPTOC1_OPERATE
EFLPTOC2_OPERATE
EFHPTOC1_OPERATE
EFIPTOC1_OPERATE
X120-BI2
CB Closed Position
OR
SELGAPC1
IN_2 OUT_2
CIRCUIT BREAKER FAILURE PROTECTION
CCBRBRF1
3I>/I
0
>BF(1)
SELGAPC3
IN_4 OUT_2
51BF/51NBF(1)
3I
I
0
START
POSCLOSE
CB_FAULT
BLOCK
CB_FAULT_AL
TRBU
TRRET
OSWGAPC15
IN_5 OUT
X100 PO2
SELGAPC4
IN_17 OUT_8
LED 8
GUID-05F6D382-22E2-41D8-84A3-1EC01A52B6B1 V3 EN
Figure 65: Thermal overload and circuit-breaker failure protection
The thermal overload protection T1PTTR1 provides indication on overload situations. LED 4 is used for the thermal overload protection alarm indication.
The circuit-breaker failure protection CCBRBRF1 is initiated via the start input by a number of different protection stages in the protection relay. CCBRBRF1 offers different operating modes associated with the circuit-breaker position and the measured phase and residual currents. CCBRBRF1 has two operating outputs:
TRRET and TRBU . The TRRET operate output is used for retripping its own circuit breaker through Master Trip 2. The TRBU output is used to give a backup trip to the circuit-breaker feeding upstream. For this purpose, the TRBU operate output signal is connected to the output PO2 (X100:8-9). LED 8 is used for the backup ( TRBU ) operate indication.
REF611
Application Manual
87
Section 3
REF611 standardized configurations
1MRS757456 D
AUTORECLOSING (Optional)
X120-BI3
CB Open Position
Always True
SELGAPC1
IN_3 OUT_3
IN_11 OUT_6
PHHPTOC2_OPERATE
PHLPTOC1_OPERATE
EFLPTOC2_OPERATE
EFLPTOC1_OPERATE
PHHPTOC1_OPERATE
EFHPTOC1_OPERATE
PHLPTOC1_START
EFLPTOC2_START
EFLPTOC1_START
T1PTTR1_BLK_CLOSE
CBXCBR1_SELECTED
NSPTOC1_OPERATE
NSPTOC2_OPERATE
PDNSPTOC1_OPERATE
PHIPTOC1_OPERATE
EFIPTOC1_OPERATE
OR
CBPSOF1_OPERATE
SELGAPC1_OUT_ 7
OR
DARREC1
O->I(1)
INT_1
INT_2
INT_3
INT_4
INT_5
INT_6
DEL_INT_2
DEL_INT_3
DEL_INT_4
BLK_RECL_T
BLK_RCLM_T
BLK_THERM
CB_POS
CB_READY
INC_SHOTP
INHIBIT_RECL
RECL_ON
SYNC
79(1)
OPEN CB
CLOSE CB
CMD_WAIT
INPRO
LOCKED
PROT_CRD
UNSUC_RECL
AR_ON
READY
OSWGAPC12
IN_7 OUT
SELGAPC4
IN_14 OUT_5
LED 5
GUID-C14CE4DE-2849-40A9-87D4-F737031DE5BF V3 EN
Figure 66: Autoreclosing
Autoreclosing DARREC1 is included as an optional function.
The autoreclose function is configured to be initiated by operate signals from a number of protection stages through the INT_1...6
inputs and by start signals through the DEL_INT_2…4. It is possible to create individual autoreclose sequences for each input.
The autoreclose function can be blocked with the INHIBIT_RECL input. By default, the operations of selected protection functions are connected to this input. A control command to the circuit breaker, either local or remote, also blocks the autoreclose function via the CBXCBR_SELECTED signal.
The circuit breaker availability for the autoreclose sequence is expressed with the
CB_READY input in DARREC1. In the configuration, this signal is connected with an always true signal through SELGAPC1. As a result, the function assumes that the circuit breaker is available all the time.
The autoreclose sequence in progress indication INPRO is connected to the alarm
LED 5.
88 REF611
Application Manual
1MRS757456 D
3.5.3.2
REF611
Application Manual
Section 3
REF611 standardized configurations
Functional diagrams for disturbance recorder and trip circuit supervision
PHLPTOC1_OPERATE
PHHPTOC1_OPERATE
PHHPTOC2_OPERATE
PHIPTOC1_OPERATE
EFLPTOC1_OPERATE
EFLPTOC2_OPERATE
EFHPTOC1_OPERATE
EFIPTOC1_OPERATE
NSPTOC1_OPERATE
NSPTOC2_OPERATE
OR
PHLPTOC1_START
PHHPTOC1_START
PHHPTOC2_START
PHIPTOC1_START
EFLPTOC1_START
EFLPTOC2_START
EFHPTOC1_START
EFIPTOC1_START
NSPTOC1_START
NSPTOC2_START
PDNSPTOC1_START
T1PTTR1_START
O
R
O
R
PDNSPTOC1_OPERATE
T1PTTR1_OPERATE
SELGAPC1_ Blocking 1
SELGAPC1_ CB Closed Position
SELGAPC1_ CB Open Position
INRPHAR1_BLK2H
CCBRBRF1_TRRET
CCBRBRF1_TRBU
DARREC1_INPRO
DARREC1_CLOSE_CB
DARREC1_UNSUC_RECL
SELGAPC1_External Trip
SG_1_ACT
SG_2_ACT
SG_3_ACT
SG_4_ACT
SG_5_ACT
SG_6_ACT
DISTURBANCE RECORDER
C17
C18
C19
C20
C21
C22
C23
C24
C25
C7
C8
C9
C10
C11
C12
C13
C14
C15
C16
C1
C2
C3
C4
C5
C6
C26
C27
C28
C29
C30
C31
C32
C33
RDRE1
TRIGGERED
OSWGAPC13
IN_2 OUT
SELGAPC4
IN_15 OUT_6
LED 6
GUID-D5C64B52-5763-48FA-AC6A-14257698FEBC V3 EN
Figure 67: Disturbance recorder
All start and operate signals from the protection stages are routed to trigger the disturbance recorder or alternatively only to be recorded by the disturbance recorder depending on the parameter settings. Additionally, the selected autoreclose output signals and the three binary inputs from X120 are also connected. The active setting group is also to be recorded via SG_1_ACT to SG_6_ACT. The disturbance recorder triggered signal indication is connected to LED 6.
Table 20: Disturbance recorder binary channel default value
Channel number
Binary channel 1
Binary channel 2
Binary channel 3
Binary channel 4
Binary channel 5
Binary channel 6
Binary channel 7
Channel id text
PHLPTOC1_START
PHHPTOC1_START
PHHPTOC2_START
PHIPTOC1_START
EFLPTOC1_START
EFLPTOC2_START
EFHPTOC1_START
Binary channel 8
Binary channel 9
Binary channel 10
Binary channel 11
Table continues on next page
EFIPTOC1_START
NSPTOC1_START
NSPTOC2_START
PDNSPTOC1_START
Level trigger mode
1=positive or rising
1=positive or rising
1=positive or rising
1=positive or rising
1=positive or rising
1=positive or rising
1=positive or rising
1=positive or rising
1=positive or rising
1=positive or rising
1=positive or rising
89
Section 3
REF611 standardized configurations
Channel number
Binary channel 12
Binary channel 13
Binary channel 14
Binary channel 15
Binary channel 16
Binary channel 17
Binary channel 18
Binary channel 19
Binary channel 20
Binary channel 21
Binary channel 22
Binary channel 23
Binary channel 24
Binary channel 25
Binary channel 26
Binary channel 27
Binary channel 28
Binary channel 29
Binary channel 30
Binary channel 31
Binary channel 32
Binary channel 33
Channel id text
T1PTTR1_START
PHxPTOC_OPERATE
EFxPTOC_OPERATE
NSPTOC1/2_OPERATE
PDNSPTOC1_OPERATE
T1PPTR1_OPERATE
SELGAPC1_Blocking 1
SELGAPC1_CB_Closed
SELGAPC1_CB_Open
INRPHAR1_BLK2H
CCBRBRF1_TRRET
CCBRBRF1_TRBU
DARREC1_INPRO
DARREC1_CLOSE_CB
DARREC1_UNSUC_RECL
SELGAPC1_External Trip
SG_1_ACT
SG_2_ACT
SG_3_ACT
SG_4_ACT
SG_5_ACT
SG_6_ACT
1MRS757456 D
Level trigger mode
1=positive or rising
4=level trigger off
4=level trigger off
4=level trigger off
4=level trigger off
4=level trigger off
4=level trigger off
4=level trigger off
4=level trigger off
4=level trigger off
4=level trigger off
4=level trigger off
4=level trigger off
4=level trigger off
4=level trigger off
4=level trigger off
4=level trigger off
4=level trigger off
4=level trigger off
4=level trigger off
4=level trigger off
4=level trigger off
TRIP CIRCUIT SUPERVISION
X120-BI3
CB Open Position
SELGAPC1
IN_3 OUT_3
TRPPTRC1_TRIP
TRPPTRC2_TRIP
OR
IN_2
SELGAPC2
OUT_1
OUT_2
TCSSCBR1
BLOCK ALARM
TCSSCBR2
BLOCK ALARM
IN_3
IN_4
OSWGAPC14
OR
OUT
SELGAPC4
IN_16 OUT_7
LED 7
GUID-8D5B4458-2F48-4925-AEC1-F1C49AFBEE22 V2 EN
Figure 68: Trip circuit supervision
Two separate trip circuit supervision functions are included, TCSSCBR1 for PO3
(X100:15-19) and TCSSCBR2 for PO4 (X100:20-24). Both functions are blocked by
Master Trip (TRPPTRC1 and TRPPTRC2) and the circuit breaker open position. The
TCS alarm indication is connected to LED 7.
90 REF611
Application Manual
1MRS757456 D
3.5.3.3
REF611
Application Manual
Section 3
REF611 standardized configurations
Functional diagrams for control
MASTER TRIP #1
PHLPTOC1_OPERATE
PHHPTOC1_OPERATE
PHHPTOC2_OPERATE
PHIPTOC1_OPERATE
EFLPTOC1_OPETATE
EFLPTOC2_OPERATE
EFHPTOC1_OPERATE
EFIPOTC1_OPERATE
NSPTOC1_OPERATE
NSPTOC2_OPERATE
PDNSPTOC1_OPERATE
IN_1
IN_2
IN_3
IN_4
IN_5
IN_6
IN_7
IN_8
IN_9
IN_10
IN_11
OSWGAPC1
OR OUT
SELGAPC1_External Trip
GOOSERCV_BIN 2_OUT
OR
GOOSERCV_BIN 3_OUT
IN1
IN2
MVGAPC1
Q1
Q2
SELGAPC1
IN_4 OUT_4
X120-BI4
RST_LKOUT
CBXCBR1_EXE_OP
DARREC1_OPEN_CB
OR
TRPPTRC1
BLOCK TRIP
OPERATE
RST_LKOUT
CL_LKOUT OR
SELGAPC3
IN_1 OUT_5
X100 PO3
MASTER TRIP #2
PHLPTOC1_OPERATE
PHHPTOC1_OPERATE
PHHPTOC2_OPERATE
PHIPTOC1_OPERATE
EFLPTOC1_OPETATE
EFLPTOC2_OPERATE
EFHPTOC1_OPERATE
EFIPOTC1_OPERATE
NSPTOC1_OPERATE
NSPTOC2_OPERATE
PDNSPTOC1_OPERATE
CCBRBRF1_TRRET
IN_1
IN_2
IN_3
IN_4
IN_5
IN_6
IN_7
IN_8
IN_9
IN_10
IN_11
IN_12
OSWGAPC2
OR
OUT
OR
TRPPTRC2
BLOCK TRIP
OPERATE
RST_LKOUT
CL_LKOUT
SELGAPC3
IN_2 OUT_6
X100 PO4
SELGAPC1_External Trip
GOOSERCV_BIN 2_OUT
OR
GOOSERCV_BIN 3_OUT
RST_LKOUT
X120-BI4
IN1
IN2
MVGAPC1
Q1
Q2
SELGAPC1
IN_4 OUT_4
GUID-66E79F27-D704-4BD5-8778-5B1BB863D7D8 V4 EN
Figure 69: Master trip
The operate signals from the protections and an external trip are connected to the two trip output contacts PO3 (X100:15-19) and PO4 (X100:20-24) via the corresponding
Master Trips TRPPTRC1 and TRPPTRC2. Open control commands to the circuit breaker from local or remote CBXCBR1_EXE_OP or from the autoreclosing
DARREC1_OPEN_CB are connected directly to the output contact PO3
(X100:15-19).
91
Section 3
REF611 standardized configurations
1MRS757456 D
TRPPTRC1 and TRPPTRC2 provide the lockout/latching function, event generation and the trip signal duration setting. One binary input through SELGAPC1 can be connected to the RST_LKOUT input of Master Trip. If the lockout operation mode is selected, it is used to enable the external reset.
CIRCUIT BREAKER CONTROL
X120-BI2
CB Closed Position
X120-BI3
CB Open Posit ion
Always True
IN_2
SELGAPC1
OUT_2
IN_3
IN_11
OUT_3
OUT_5
TRPPTRC1_TRIP
TRPPTRC2_TRIP
T1PTTR1_BLK_CLOSE
DARREC1_CLOSE_CB
AND
CBXCBR1
PO SOPEN
POSCLOSE
ENA_OPEN
ENA_CLOSE
BLK_OPEN
BLK_CLOSE
AU_OPEN
AU_CLOSE
TRIP
SYNC_OK
SYNC_ITL_BYP
SELECTED
EXE_OP
EXE_CL
OP_REQ
CL_REQ
OPENPOS
CLOSEPO S
OKPOS
OPEN_ENAD
CLOSE_ENAD
CBXCBR1_EXE_OP
IN_3
SELGAPC3
OUT_1
OR
X100 PO1
GUID-04CDD1B0-F721-4CE4-A19D-B6BF96C0FB42 V2 EN
Figure 70: Circuit breaker control
The ENA_CLOSE input, which enables the closing of the circuit breaker, is interlocked by two master trip signals. Any one trip will block the breaker from closing. An always true signal is also connected to ENA_CLOSE via SELGAPC1 by default. The open operation is always enabled.
92 REF611
Application Manual
1MRS757456 D
3.5.4
REF611
Application Manual
Section 3
REF611 standardized configurations
COMMON ALARM INDICATION 1 & 2
PHLPTOC1_START
PHHPTOC1_START
PHHPTOC2_START
PHIPTOC1_START
EFLPTOC1_START
EFLPTOC2_START
EFHPTOC1_START
EFIPOTC1_START
NSPTOC1_START
NSPTOC2_START
PDNSPTOC1_START
IN_1
IN_2
IN_3
IN_4
IN_5
IN_6
IN_7
IN_8
IN_9
IN_10
IN_11
OSWGAPC3
OR OUT
IN1
TPGAPC1
OUT1
SELGAPC3
IN_5 OUT_3
IN_9 OUT_4
PHLPTOC1_OPERATE
PHHPTOC1_OPERATE
PHHPTOC2_OPERATE
PHIPTOC1_OPERATE
EFLPTOC1_OPETATE
EFLPTOC2_OPERATE
EFHPTOC1_OPERATE
EFIPOTC1_OPERATE
NSPTOC1_OPERATE
NSPTOC2_OPERATE
PDNSPTOC1_OPERATE
IN_1
IN_2
IN_3
IN_4
IN_5
IN_6
IN_7
IN_8
IN_9
IN_10
IN_11
OSWGAPC7
OR OUT
IN1
TPGAPC3
OUT1
X100 SO1
X100 SO2
GUID-A26141F0-6317-4DB1-BD64-BE704DF361AD V3 EN
Figure 71: Common alarm indication
The signal outputs from the protection relay are connected to give dedicated information.
• Start of any protection function SO1 (X100:10-12)
• Operation (trip) of any protection function SO2 (X100: 13-15)
TPGAPC are timers and used for setting the minimum pulse length for the outputs.
There are seven generic timers (TPGAPC1…7) available in the protection relay.
Switch groups
In configuration B, the switch group function blocks are organized in four groups: binary inputs, internal signal, GOOSE as well as binary outputs and LEDs.
93
Section 3
REF611 standardized configurations
1MRS757456 D
Binary Inputs
(1...4, 5...10*)
Received GOOSE
(0...19)
GOOSE
GOOSE
GOOSE
SELGAPC1
Binary Input s
Binary Inputs
GOOSE
ISWGAPC9
GOO SE Blocking
ISWGAPC10
GOO SE Block CB
ISWGAPC2
ISWGAPC1
Blocking
Protection and Control
PHLPTOC1
PHHPTOC2
EFLPTOC1
PHHPTOC1
PHIPTOC1
EFLPTOC2
EFHPTOC1
NSPTOC1
PDNSPTOC1
CCBRBRF1
CBXCBR1
EFIPTOC1
NSPTOC2
T1PTTR1
INRPHAR1
DARREC1*
TCSSCBR1 TCSSCBR2
Internal Signal
ISWGAPC3 ISWGAPC4
INRPHAR1_BLK2H
SELGAPC2
DARREC1_PROT_CRD
OSWGAPC17
TCS Blocking CBPSOF1_Init iation
* Optional Function
GUID-76F84BA2-5219-46EA-9A19-4B9A2D229A7D V2 EN
Figure 72: Configuration B switch group overview
3.5.4.1
Binary Outputs and LEDs
OSWGAPC2
OSWGAPC1
SELGAPC3
SELGAPC4
Master trip
OSWGAPC6
OSWGAPC5
OSWGAPC4
OSWGAPC3
St art
OSWGAPC10
OSWGAPC9
OSWGAPC8
OSWGAPC7
Trip
OSWGAPC16
OSWGAPC15
OSWGAPC14
OSWGAPC13
OSWGAPC12
OSWGAPC11
Alarm
Binary Outputs
LEDs
Binary Outputs
(1...6, 7..9*)
LEDs
(1 …8)
Binary inputs
Binary inputs group includes one SELGAPC and two ISWGAPCs. SELGAPC1 is used to route binary inputs to ISWGAPC or directly to protection relay functions.
ISWGAPC1 and ISWGAPC2 are used to configure the signal to block the protection functions.
X120-BI1
X120-BI2
X120-BI3
X120-BI4
1 ) X130-BI1
X130-BI2
X130-BI3
X130-BI4
X130-BI5
SELGAPC1
X130-BI6
1 ) Optional binary inputs
GUID-ED968721-94B7-4280-A984-ADD75D5182BF V1 EN
Figure 73: Binary inputs
Blocking 1
Blocking 2
ISWGAPC1
ISWGAPC2
PHLPTOC1_BLOCK
PHHPTOC1_BLOCK
PHHPTOC2_BLOCK
PHIPTOC1_BLOCK
EFLPTOC1_BLOCK
EFLPTOC2_BLOCK
EFHPTOC1_BLOCK
EFIPTOC1_BLOCK
NSPTOC1_BLOCK
NSPTOC2_BLOCK
PDNSPTOC1_BLOCK
T1PTTR1_BLOCK
PHLPTOC1_BLOCK
PHHPTOC1_BLOCK
PHHPTOC2_BLOCK
PHIPTOC1_BLOCK
EFLPTOC1_BLOCK
EFLPTOC2_BLOCK
EFHPTOC1_BLOCK
EFIPTOC1_BLOCK
NSPTOC1_BLOCK
NSPTOC2_BLOCK
PDNSPTOC1_BLOCK
T1PTTR1_BLOCK
94 REF611
Application Manual
1MRS757456 D
Section 3
REF611 standardized configurations
SELGAPC1
SELGAPC1 has inputs from protection relay binary inputs. IN_1 ...
IN_4 are binary inputs from X100. IN_5 ...
IN_10 can be used while X130 optional card is taken into use. An always true signal is connected to IN_11 . SELGAPC1 outputs are used to route inputs to different functions. By setting SELGAPC1, binary inputs can be configured for different purposes.
X120-BI1
X120-BI2
X120-BI3
X120-BI4
1
) X130-BI1
X130-BI2
X130-BI3
X130-BI4
X130-BI5
X130-BI6
X120/1-2 BI1
IN_1
X120/3-2 BI2
IN_2
X120/4-2 BI3
IN_3
X120/5-6 BI4
IN_4
X130/1-2 BI1
IN_5
X130/3-2 BI2
IN_6
X130/4-5 BI3
IN_7
X130/6-5 BI4
IN_8
X130/7-8 BI5
IN_9
X130/9-8 BI6
IN_10
Always True
1 ) Optional binary inputs
GUID-12D6969A-A486-41A3-853C-534194AD4FA9 V1 EN
IN_11
SELGAPC1
OUT_1
OUT_2
CB Closed Position
OUT_3
OUT_4
OUT_5
Blocking 1
CB Open Position
TRPTTRC1/2_
RST_LKOUT
CB Close Enable
ISWGAPC1_IN
CCBRBRF1_POSCLOSE
CBXCBR1_POSCLOSE
SELGAPC2_IN_1
DARREC1_CB_POS
CBXCBR1_POSOPEN
SELGAPC2_IN_2
TRPTTRC1_RST_LKOUT
TRPTTRC2_RST_LKOUT
CBXCBR1_ENA_CLOSE
OUT_6
OUT_7
OUT_8
External Trip
DARREC1_CB_READY
DARREC1_RECL_ON
TRPTTRC1_OPERATE
TRPTTRC2_OPERATE
OUT_9
Setting Group 2
PROTECTION_BI_SG_2
OUT_10
Setting Group 3
OUT_11
Setting Group 4
OUT_12
Blocking 2
PROTECTION_BI_SG_3
PROTECTION_BI_SG_4
ISWGAPC2_IN
Figure 74: SELGAPC1
ISWGAPC1
ISWGAPC1 is used to select which protection functions are to be blocked by changing
ISWGAPC1 parameters. ISWGAPC1 input is routed from SELGAPC1 output
OUT_1 Blocking 1 . ISWGAPC1 outputs are connected to the BLOCK inputs of the protection functions.
REF611
Application Manual
95
Section 3
REF611 standardized configurations
1MRS757456 D
SELGAPC1_OUT_1
Blocking 1
IN
ISWGAPC1
OUT_1
OUT_2
OUT_3
OUT_4
OUT_5
OUT_6
OUT_7
OUT_8
OUT_9
OUT_10
OUT_11
OUT_12
OUT_13
PHLPTOC1_BLOCK
PHHPTOC1_BLOCK
PHHPTOC2_BLOCK
PHIPTOC1_BLOCK
EFLPTOC1_BLOCK
EFLPTOC2_BLOCK
EFHPTOC1_BLOCK
EFIPTOC1_BLOCK
NSPTOC1_BLOCK
NSPTOC2_BLOCK
PDNSPTOC1_BLOCK
T1PTTR1_BLOCK
CBPSOF1_BLOCK
GUID-0D6CBA57-F1A5-4BBE-BF1F-34F79E876171 V2 EN
Figure 75: ISWGAPC1
ISWGAPC2
ISWGAPC2 is used to select which protection functions are to be blocked by changing
ISWGAPC2 parameters. ISWGAPC2 input is routed from SELGAPC1 output
OUT_12 Blocking 2 . ISWGAPC2 outputs are connected to the BLOCK inputs of the protection functions.
96 REF611
Application Manual
1MRS757456 D
3.5.4.2
Section 3
REF611 standardized configurations
SELGAPC1_OUT_12
Blocking 2
IN
ISWGAPC2
OUT_1
OUT_2
OUT_3
OUT_4
OUT_5
OUT_6
OUT_7
OUT_8
OUT_9
OUT_10
OUT_11
OUT_12
OUT_13
GUID-4E83752D-09FE-46D7-AA9F-82C9609C59E8 V2 EN
Figure 76: ISWGAPC2
PHLPTOC1_BLOCK
PHHPTOC1_BLOCK
PHHPTOC2_BLOCK
PHIPTOC1_BLOCK
EFLPTOC1_BLOCK
EFLPTOC2_BLOCK
EFHPTOC1_BLOCK
EFIPTOC1_BLOCK
NSPTOC1_BLOCK
NSPTOC2_BLOCK
PDNSPTOC1_BLOCK
T1PTTR1_BLOCK
CBPSOF1_BLOCK
Internal signals
The internal signal group is used to configure logic connections between function blocks. There are two ISWGAPC instances, one SELGAPC and one OSWGAPC instance in this group.
ISWGAPC3 is used to configure which protection function enables current multiplier if inrush is detected by the INRPHAR1 function. ISWGAPC4 is used to configure the cooperation between the autoreclose function and protection functions. Autoreclose function DARREC1 can block protection functions according to the application.
SELGAPC2 is used to configure TCS blocking from the circuit breaker open or close position. OSWGAPC17 is used for connecting switch onto fault function CBPSOF.
The inputs are start signals routed from the protection functions.
REF611
Application Manual
97
Section 3
REF611 standardized configurations
ISWGAPC3
PHLPTOC1_ENA_MULT
PHHPTOC1_ENA_MULT
PHHPTOC2_ENA_MULT
PHIPTOC1_ENA_MULT
EFLPTOC1_ENA_MULT
EFLPTOC2_ENA_MULT
EFHPTOC1_ENA_MULT
EFIPTOC1_ENA_MULT
NSPTOC1_ENA_MULT
NSPTO C2_ENA_MULT
T1PTTR1_ENA_MULT
ISWGAPC4
PHLPTOC1_BLOCK
PHHPTOC1_BLOCK
PHHPTOC2_BLOCK
EFLPTOC1_BLOCK
EFLPTOC2_BLOCK
EFHPTOC1_BLOCK
SELGAPC1_OUT_2
SELGAPC1_OUT_3
CB Closed Position
CB Open Posit ion
SELGAPC2
TCSSCBR1_BLOCK
TCSSCBR2_BLOCK
PHLPTOC1_START
PHHPTOC1_START
PHHPTOC2_START
PHIPTOC1_START
EFLPTOC1_START
EFLPTOC2_START
EFHPTOC1_START
EFIPTOC1_START
NSPTO C1_START
NSPTOC2_START
PDNSPTO C1_START
T1PTTR1_START
OSWGAPC17
St art
DLYD
CBPSOF1_INIT
1MRS757456 D
GUID-4571B98B-EB9A-45A4-A4B4-6AC63C16D01C V2 EN
Figure 77: Internal signal
ISWGAPC3
ISWGAPC3 input is used to configure which protection function enables current multiplier while inrush is detected by INRPHAR1 by changing the ISWGAPC3 parameters. ISWGAPC3 input is routed from INRPHAR1 output BLK2H .
ISWGAPC3 outputs are connected to the ENA_MULT inputs of the protection functions.
98 REF611
Application Manual
1MRS757456 D
REF611
Application Manual
Section 3
REF611 standardized configurations
INRPHAR1_BLK2H IN
GUID-0FB9BAD2-E624-4310-A267-6E71E936A803 V1 EN
Figure 78: ISWGAPC3
ISWGAPC3
OUT_1
OUT_2
OUT_3
OUT_4
OUT_5
OUT_6
OUT_7
OUT_8
OUT_9
OUT_10
OUT_11
PHLPTOC1_ENA_MULT
PHHPTOC1_ENA_MULT
PHHPTOC2_ENA_MULT
PHIPTOC1_ENA_MULT
EFLPTOC1_ENA_MULT
EFLPTOC2_ENA_MULT
EFHPTOC1_ENA_MULT
EFIPTOC1_ENA_MULT
NSPTOC1_ENA_MULT
NSPTOC2_ENA_MULT
T1PTTR1_ENA_MULT
ISWGAPC4
ISWGAPC4 input is used to configure which protection function is blocked by the autoreclosing function by changing the ISWGAPC4 parameters. ISWGAPC4 input is routed from DARREC1 output PROT_CRD . ISWGAPC4 outputs are connected to the
BLOCK inputs of some of the protection functions.
DARREC1_PROT_CRD IN
ISWGAPC4
OUT_1
OUT_2
OUT_3
OUT_4
OUT_5
OUT_6
PHLPTOC1_BLOCK
PHHPTOC1_BLOCK
PHHPTOC2_BLOCK
EFLPTOC1_BLOCK
EFLPTOC2_BLOCK
EFHPTOC1_BLOCK
GUID-C935C34F-80CD-4A23-99BC-D997FC45B22F V1 EN
Figure 79: ISWGAPC4
SELGAPC2
SELGAPC2 inputs are the circuit breaker closed and open positions routed from
SELGACP1. SELGAPC2 outputs are routed to the BLOCK input of the trip circuit supervision functions TCSSCBR1 and TCSSCBR2.
By default, X100-PO3 and PO4 are both used for the open circuit breaker.
TCSSCBR1 and TCSSCBR2 are both blocked by the circuit breaker open position. If
X100-PO3 is used for closing the circuit breaker, TCSSCBR1 need to be blocked by the circuit breaker close position (OUT_1 connection=IN_1). If X100-PO4 is used for
99
Section 3
REF611 standardized configurations
1MRS757456 D closing the circuit breaker, TCSSCBR2 needs to be blocked by the circuit breaker close position (OUT_2 connection=IN_1).
SELGAPC1_OUT_2
SELGAPC1_OUT_3
CB Closed Position
IN_1
CB Open Position
IN_2
SELGAPC2
OUT_1
OUT_2
GUID-D390241C-1F0F-4AE7-A803-86931E1E0BEF V1 EN
Figure 80: SELGAPC2
TCSSCBR1_BLOCK
TCSSCBR2_BLOCK
OSWGAPC17
OSWGAPC17 is used to route the protection function start signals to the
StartDLYD input of the switch onto fault function CBPSOF. CBPSOF provides an instantaneous trip or a time delayed trip when closing the breaker while a fault exists.
OSWGAPC17 output is connected to CBPSOF function indicating the detected fault.
OSWGAPC17
PHLPTOC1_START
PHHPTOC1_START
PHHPTOC2_START
PHIPTOC1_START
EFHPTOC1_START
EFLPTOC2_START
EFHPTOC1_START
EFIPTOC1_START
NSPPTOC1_START
NSPPTOC2_START
PDNSPTO C1_START
T1PTTR1_START
IN_1
IN_2
IN_3
IN_4
IN_5
IN_6
IN_7
IN_8
IN_9
IN_10
IN_11
IN_12
OUT
St art DLYD
CBPSOF1_INIT
GUID-702BA11C-5E0A-4247-942E-76CC27063BB2 V1 EN
Figure 81: OSWGAPC17
100 REF611
Application Manual
1MRS757456 D
3.5.4.3
Section 3
REF611 standardized configurations
Binary outputs and LEDs
In configuration B, signals are routed to binary outputs and LEDs are configured by
OSWGAPC. The 16 OSWGAPC instances are categorized in four groups, including two master trip, four start, four trip and six alarm signals. The OSWGAPC output is connected to binary outputs and LEDs via SELGAPC3 and SELGAPC4.
• SELGAPC3 is used to configure the OSWGAPC signals to protection relay binary outputs. SELGAPC4 is used to configure the OSWGAPC signals to
LEDs.
• OSWGAPC1 and OSWGAPC2 are used for Master trip. The inputs are from the protection functions operate and breaker failures retrip.
• OSWGAPC3 to OSWGAPC6 are used for the start signal. The inputs are start signals from the protection functions.
• OSWGAPC7 to OSWGAPC10 are used for the trip signal. The inputs are operation signals from the protection functions.
• OSWGAPC11 to OSWGAPC16 are used for the alarm signal. The inputs are alarm signals from the protection and monitoring functions.
REF611
Application Manual
101
Section 3
REF611 standardized configurations
1MRS757456 D
PHLPTOC1_OPERATE
PHHPTOC1_OPERATE
PHHPTOC2_OPERATE
PHIPTOC1_OPERATE
EFLPTOC1_OPERATE
EFLPTOC2_OPERATE
EFHPTOC1_OPERATE
EFIPTOC1_OPERATE
NSPTOC1_OPERATE
NSPTOC2_OPERATE
PDNSPTOC1_OPERATE
T1PTTR1_OPERATE
CCBRBRF1_TRRET
CBPSOF1_OPERATE
OSWGAPC1
Master Trip 1
TRPPTRC1
OSWGAPC2
Master Trip 2
TRPPTRC2
PHLPTOC1_START
PHHPTOC1_START
PHHPTOC2_START
PHIPTOC1_START
EFLPTOC1_START
EFLPTOC2_START
EFHPTOC1_START
EFIPTOC1_START
NSPTOC1_START
NSPTOC2_START
PDNSPTOC1_START
T1PTTR1_START
PHLPTOC1_OPERATE
PHHPTOC1_OPERATE
PHHPTOC2_OPERATE
PHIPTOC1_OPERATE
EFLPTOC1_OPERATE
EFLPTOC2_OPERATE
EFHPTOC1_OPERATE
EFIPTOC1_OPERATE
NSPTOC1_OPERATE
NSPTOC2_OPERATE
PDNSPTOC1_OPERATE
T1PTTR1_OPERATE
T1PTTR1_ALARM
RDRE_TRIGGERED
TCSSCBR1_ALARM
TCSSCBR2_ALARM
CCBRBRF1_TRBU
CCBRBRF1_TRRET
DARREC1_INPRO
DARREC1_LOCKED
DARREC1_PROT_CRD
DARREC1_UNSUC_RECL
DARREC1_AR_ON
DARREC1_READY
SELGAPC1_OUT_8
TRPPTRC1_CL_LKOUT
TRPPTRC2_CL_LKOUT
OSWGAPC3
OSWGAPC4
OSWGAPC5
OSWGAPC6
OSWGAPC7
OSWGAPC8
OSWGAPC9
OSWGAPC10
Start 1
IN1
TPGAPC1
OUT1
Start 2 IN2 OUT2
Start 3
IN1
TPGAPC2
OUT1
Start 4 IN2
OUT2
Trip 1
IN1
TPGAPC3
OUT1
Trip 2
Trip 3
IN2 OUT2
IN1
TPGAPC4
OUT1
Trip 4
IN2 OUT2
OSWGAPC11 Alarm 1
IN1
TPGAPC5
OUT1
OSWGAPC12 Alarm 2
IN2 OUT2
Alarm 3
IN1
TPGAPC6
OUT1
OSWGAPC13
OSWGAPC14 Alarm 4
IN2 OUT2
Alarm 5
IN1
TPGAPC7
OUT1 OSWGAPC15
OSWGAPC16 Alarm 6
IN2 OUT2
GUID-3F9B4020-ABC3-4C04-8260-C5900074AA6A V2 EN
Figure 82: Binary outputs
SELGAPC3
X100 PO1
X100 PO2
X100 SO1
X100 SO2
X100 PO3
X100 PO4
X130 SO1
1 )
X130 SO2
X130 SO3
1 ) Optional binary outputs
102 REF611
Application Manual
1MRS757456 D
REF611
Application Manual
Section 3
REF611 standardized configurations
PHLPTOC1_OPERATE
PHHPTOC1_OPERATE
PHHPTOC2_OPERATE
PHIPTOC1_OPERATE
EFLPTOC1_OPERATE
EFLPTOC2_OPERATE
EFHPTOC1_OPERATE
EFIPTOC1_OPERATE
NSPTOC1_OPERATE
NSPTOC2_OPERATE
PDNSPTOC1_OPERATE
T1PTTR1_OPERATE
CCBRBRF1_TRRET
CBPSOF1_OPERATE
OSWGAPC1
Master Trip 1
TRPPTRC1
OSWGAPC2
Master Trip 2
TRPPTRC2
PHLPTOC1_START
PHHPTOC1_START
PHHPTOC2_START
PHIPTOC1_START
EFLPTOC1_START
EFLPTOC2_START
EFHPTOC1_START
EFIPTOC1_START
NSPTOC1_START
NSPTOC2_START
PDNSPTOC1_START
T1PTTR1_START
OSWGAPC3 Start 1
OSWGAPC4 Start 2
OSWGAPC5 Start 3
OSWGAPC6 Start 4
PHLPTOC1_OPERATE
PHHPTOC1_OPERATE
PHHPTOC2_OPERATE
PHIPTOC1_OPERATE
EFLPTOC1_OPERATE
EFLPTOC2_OPERATE
EFHPTOC1_OPERATE
EFIPTOC1_OPERATE
NSPTOC1_OPERATE
NSPTOC2_OPERATE
PDNSPTOC1_OPERATE
T1PTTR1_OPERATE
T1PTTR1_ALARM
RDRE_TRIGGERED
TCSSCBR1_ALARM
TCSSCBR2_ALARM
CCBRBRF1_TRBU
CCBRBRF1_TRRET
DARREC1_INPRO
DARREC1_LOCKED
DARREC1_PROT_CRD
DARREC1_UNSUC_RECL
DARREC1_AR_ON
DARREC1_READY
SELGAPC1_OUT_8
TRPPTRC1_CL_LKOUT
TRPPTRC2_CL_LKOUT
OSWGAPC7
Trip 1
OSWGAPC8
Trip 2
OSWGAPC9
Trip 3
OSWGAPC10
Trip 4
OSWGAPC11 Alarm 1
OSWGAPC12
Alarm 2
OSWGAPC13 Alarm 3
OSWGAPC14 Alarm 4
OSWGAPC15
Alarm 5
OSWGAPC16 Alarm 6
SELGAPC4
GUID-1938DEEA-E94A-4741-AB88-051B077CEFD7 V2 EN
Figure 83: LEDs
SELGAPC3
SELGAPC3 is used to configure the OSWGAPC outputs to the protection relay binary outputs. Master trip signals are connected to SELGAPC3 via TRPPTRC. Start, trip and alarm signals are connected to SELGAPC3 via TPGAPC. TPGAPC are timers and used for setting the minimum pulse length for the outputs.
LED1
LED2
LED3
LED4
LED5
LED6
LED7
LED8
103
Section 3
REF611 standardized configurations
1MRS757456 D
CBXCBR_EXE_OP
DARREC_OPEN_CB
TRPPTRC1_TRIP
TRPPTRC2_TRIP
CBXCBR_EXE_CL
DARREC_CLOSE_CB
CCBRBRF1_TRBU
OSWGAPC3_OUT
OSWGAPC4_OUT
OSWGAPC5_OUT
OSWGAPC6_OUT
OSWGAPC7_OUT
OSWGAPC8_OUT
OSWGAPC9_OUT
OSWGAPC10_OUT
OSWGAPC11_OUT
OSWGAPC12_OUT
OSWGAPC13_OUT
OSWGAPC14_OUT
OSWGAPC15_OUT
OSWGAPC16_OUT
SELGAPC3 outputs are connected with the X100 binary outputs. If the X130 optional card is taken into use, SELGAPC3 outputs are also connected to the X130 binary outputs.
CB Open 1
IN_1
CB Open 2
IN_2
SELGAPC3
OUT_1
OUT_2
CB Close
IN_3
Backup Trip
IN_4
OUT_3
OUT_4
IN1 OUT1
TPGAPC1
IN2 OUT2
Start 1
Start 2
IN_5
IN_6
OUT_5
OUT_6
IN1 OUT1
TPGAPC2
IN2 OUT2
Start 3
Start 4
IN_7
IN_8
OUT_7
OUT_8
IN1 OUT1
TPGAPC3
IN2 OUT2
Trip 1
Trip 2
IN_9
IN_10
OUT_9
IN1 OUT1
TPGAPC4
IN2 OUT2
Trip 3
Trip 4
IN1 OUT1
TPGAPC5
IN2 OUT2
Alarm 1
Alarm 2
IN_11
IN_12
IN_13
IN_14
IN1 OUT1
TPGAPC6
IN2 OUT2
Alarm 3
Alarm 4
IN_15
IN_16
IN1 OUT1
TPGAPC7
IN2 OUT2
Alarm 5
Alarm 6
IN_17
IN_18
X100 PO1
X100 PO2
X100 SO1
X100 SO2
X100 PO3
X100 PO4
X130 SO1
1 )
X130 SO2
X130 SO3
1
)
Optional binary outputs
GUID-FF6B7926-5581-42ED-B604-4C05AB11C971 V1 EN
Figure 84: SELGAPC3
SELGAPC4
SELGAPC4 is used to configure OSWGAPC outputs to LEDs. Master trip signals are connected to SELGAPC4 via TRPPTRC. Start, trip and alarm signals are connected to SELGAPC4 directly. SELGAPC4 outputs are connected with programmable
LED1 to LED8.
104 REF611
Application Manual
1MRS757456 D
Section 3
REF611 standardized configurations
CBXCBR_EXE_OP
DARREC_OPEN_CB
TRPPTRC1_TRIP
TRPPTRC2_TRIP
CBXCBR_EXE_CL
DARREC_CLOSE_CB
CCBRBRF1_TRBU
OSWGAPC3_OUT
OSWGAPC4_OUT
OSWGAPC5_OUT
OSWGAPC6_OUT
OSWGAPC7_OUT
OSWGAPC8_OUT
OSWGAPC9_OUT
OSWGAPC10_OUT
OSWGAPC11_OUT
OSWGAPC12_OUT
OSWGAPC13_OUT
OSWGAPC14_OUT
OSWGAPC15_OUT
OSWGAPC16_OUT
CB Open 1
IN_1
CB Open 2
IN_2
SELGAPC4
CB Close
IN_3
Backup Trip
IN_4
Start 1
IN_5
Start 2
IN_6
Start 3
IN_7
Start 4
IN_8
Trip 1
IN_9
Trip 2
IN_10
Trip 3
IN_11
Trip 4
IN_12
Alarm 1
IN_13
Alarm 2
IN_14
OUT_1
OUT_2
OUT_3
OUT_4
OUT_5
OUT_6
OUT_7
OUT_8
Alarm 3
IN_15
Alarm 4
IN_16
Alarm 5
IN_17
Alarm 6
IN_18
LED1
LED2
LED3
LED4
LED5
LED6
LED7
LED8
GUID-D815D8AC-340D-4FB8-A971-0CE6CDE5AD1F V1 EN
Figure 85: SELGAPC4
Master trip OSWGAPCs
OSWGAPC1 and OSWGAPC2 are used to route the protection function operate signals to Master trip. OSWGAPC1 and OSWGAPC2 have the same inputs from the protection function operates. The output is connected to the TRPPTRC function. The default connections for OSWGAPC1 and OSWGAPC2 are different.
REF611
Application Manual
105
Section 3
REF611 standardized configurations
PHLPTOC1_OPERATE
PHHPTOC1_OPERATE
PHHPTOC2_OPERATE
PHIPTOC1_OPERATE
EFLPTOC1_OPERATE
EFLPTOC2_OPERATE
EFHPTOC1_OPERATE
EFIPTOC1_OPERATE
NSPTOC1_OPERATE
NSPTOC2_OPERATE
PDNSPTOC1_OPERATE
T1PTTR1_OPERATE
CCBRBRF1_TRRET
CBPSOF1_OPERATE
GUID-55CE95A2-E61E-4DA1-A888-F595AE088178 V2 EN
Figure 86: OSWGAPC1
IN_5
IN_6
IN_7
IN_8
IN_9
IN_10
IN_11
IN_12
IN_13
IN_14
IN_1
IN_2
IN_3
IN_4
OSWGAPC1
OUT
Master trip 1
TRPPTRC 1_OPERATE
1MRS757456 D
106 REF611
Application Manual
1MRS757456 D
Section 3
REF611 standardized configurations
PHLPTOC1_OPERATE
PHHPTOC1_OPERATE
PHHPTOC2_OPERATE
PHIPTOC1_OPERATE
EFLPTOC1_OPERATE
EFLPTOC2_OPERATE
EFHPTOC1_OPERATE
EFIPTOC1_OPERATE
NSPTOC1_OPERATE
NSPTOC2_OPERATE
PDNSPTOC1_OPERATE
T1PTTR1_OPERATE
CCBRBRF1_TRRET
CBPSOF1_OPERATE
IN_5
IN_6
IN_7
IN_8
IN_9
IN_10
IN_11
IN_12
IN_13
IN_14
IN_1
IN_2
IN_3
IN_4
OSWGAPC2
OUT
Master trip 2
TRPPTRC 2_OPERATE
GUID-239E2970-724D-47ED-9C11-8F00BB329EEB V2 EN
Figure 87: OSWGAPC2
Start OSWGAPCs
OSWGAPC instances 3...6 are used to configure the protection start signals. These four OSWGAPCs have the same inputs from the protection function start signals. The output is routed to SELGAPC3 via the TPGAPC timer and to SELGAPC4 directly.
REF611
Application Manual
107
Section 3
REF611 standardized configurations
PHLPTOC1_START
PHHPTOC1_START
PHHPTOC2_START
PHIPTOC1_START
EFLPTOC1_START
EFLPTOC2_START
EFHPTOC1_START
EFIPTOC1_START
NSPTOC1_START
NSPTOC2_START
PDNSPTOC1_START
T1PTTR1_START
IN_5
IN_6
IN_7
IN_8
IN_9
IN_10
IN_11
IN_12
IN_1
IN_2
IN_3
IN_4
OSWGAPC3
OUT
Start 1 TPGAPC1_IN1
SELGAPC4_IN_5
PHLPTOC1_START
PHHPTOC1_START
PHHPTOC2_START
PHIPTOC1_START
EFLPTOC1_START
EFLPTOC2_START
EFHPTOC1_START
EFIPTOC1_START
NSPTOC1_START
NSPTOC2_START
PDNSPTOC1_START
T1PTTR1_START
GUID-37ADCAC6-7D63-4AC8-8CAA-B6D4573123FE V1 EN
Figure 88: OSWGAPC3
IN_5
IN_6
IN_7
IN_8
IN_9
IN_10
IN_11
IN_12
IN_1
IN_2
IN_3
IN_4
OSWGAPC4
OUT
Start 2 TPGAPC1_IN2
SELGAPC4_IN_6
GUID-C6DF86BC-DDC4-4680-94F1-667864F9570C V1 EN
Figure 89: OSWGAPC4
1MRS757456 D
108 REF611
Application Manual
1MRS757456 D
REF611
Application Manual
Section 3
REF611 standardized configurations
PHLPTOC1_START
PHHPTOC1_START
PHHPTOC2_START
PHIPTOC1_START
EFLPTOC1_START
EFLPTOC2_START
EFHPTOC1_START
EFIPTOC1_START
NSPTOC1_START
NSPTOC2_START
PDNSPTOC1_START
T1PTTR1_START
IN_5
IN_6
IN_7
IN_8
IN_9
IN_10
IN_11
IN_12
IN_1
IN_2
IN_3
IN_4
OSWGAPC5
OUT
Start 3 TPGAPC2_IN1
SELGAPC4_IN_7
PHLPTOC1_START
PHHPTOC1_START
PHHPTOC2_START
PHIPTOC1_START
EFLPTOC1_START
EFLPTOC2_START
EFHPTOC1_START
EFIPTOC1_START
NSPTOC1_START
NSPTOC2_START
PDNSPTOC1_START
T1PTTR1_START
GUID-DC9B1877-7BC1-45C6-8E61-85750AE9B22D V1 EN
Figure 90: OSWGAPC5
IN_5
IN_6
IN_7
IN_8
IN_9
IN_10
IN_11
IN_12
IN_1
IN_2
IN_3
IN_4
OSWGAPC6
OUT
Start 4 TPGAPC2_IN2
SELGAPC4_IN_8
GUID-EBDD8FE5-50C7-4097-A48D-E5314E4F968C V1 EN
Figure 91: OSWGAPC6
109
Section 3
REF611 standardized configurations
1MRS757456 D
Trip OSWGAPCs
OSWGAPC instances 7...10 are used to configure the protection operate signals which belong to the trip group. These four OSWGAPCs have the same inputs from the operate signals of the protection functions. The output is routed to SELGAPC3 via the
TPGAPC timer and to SELGAPC4 directly.
PHLPTOC1_OPERATE
PHHPTOC1_OPERATE
PHHPTOC2_OPERATE
PHIPTOC1_OPERATE
EFLPTOC1_OPERATE
EFLPTOC2_OPERATE
EFHPTOC1_OPERATE
EFIPTOC1_OPERATE
NSPTOC1_OPERATE
NSPTOC2_OPERATE
PDNSPTOC1_OPERATE
T1PTTR1_OPERATE
CBPSOF1_OPERATE
IN_5
IN_6
IN_7
IN_8
IN_9
IN_10
IN_11
IN_12
IN_1
IN_2
IN_3
IN_4
IN_13
OSWGAPC7
OUT
Trip 1 TPGAPC3_IN1
SELGAPC4_IN_9
GUID-1DCBC895-AD32-4C02-983B-AB81D46FC2DE V2 EN
Figure 92: OSWGAPC7
110 REF611
Application Manual
1MRS757456 D
Section 3
REF611 standardized configurations
PHLPTOC1_OPERATE
PHHPTOC1_OPERATE
PHHPTOC2_OPERATE
PHIPTOC1_OPERATE
EFLPTOC1_OPERATE
EFLPTOC2_OPERATE
EFHPTOC1_OPERATE
EFIPTOC1_OPERATE
NSPTOC1_OPERATE
NSPTOC2_OPERATE
PDNSPTOC1_OPERATE
T1PTTR1_OPERATE
CBPSOF1_OPERATE
GUID-122AD794-D4C7-4E43-B8AE-0786F41437FF V2 EN
Figure 93: OSWGAPC8
IN_5
IN_6
IN_7
IN_8
IN_9
IN_10
IN_11
IN_12
IN_13
IN_1
IN_2
IN_3
IN_4
OSWGAPC8
OUT
Trip 2 TPGAPC3_IN2
SELGAPC4_IN_10
REF611
Application Manual
111
Section 3
REF611 standardized configurations
PHLPTOC1_OPERATE
PHHPTOC1_OPERATE
PHHPTOC2_OPERATE
PHIPTOC1_OPERATE
EFLPTOC1_OPERATE
EFLPTOC2_OPERATE
EFHPTOC1_OPERATE
EFIPTOC1_OPERATE
NSPTOC1_OPERATE
NSPTOC2_OPERATE
PDNSPTOC1_OPERATE
T1PTTR1_OPERATE
CBPSOF1_OPERATE
GUID-93D4C888-0438-4009-97DC-CDF241694E4D V2 EN
Figure 94: OSWGAPC9
IN_5
IN_6
IN_7
IN_8
IN_9
IN_10
IN_11
IN_12
IN_13
IN_1
IN_2
IN_3
IN_4
OSWGAPC9
OUT
Trip 3 TPGAPC4_IN1
SELGAPC4_IN_11
1MRS757456 D
112 REF611
Application Manual
1MRS757456 D
Section 3
REF611 standardized configurations
PHLPTOC1_OPERATE
PHHPTOC1_OPERATE
PHHPTOC2_OPERATE
PHIPTOC1_OPERATE
EFLPTOC1_OPERATE
EFLPTOC2_OPERATE
EFHPTOC1_OPERATE
EFIPTOC1_OPERATE
NSPTOC1_OPERATE
NSPTOC2_OPERATE
PDNSPTOC1_OPERATE
T1PTTR1_OPERATE
CBPSOF1_OPERATE
IN_5
IN_6
IN_7
IN_8
IN_9
IN_10
IN_11
IN_12
IN_13
IN_1
IN_2
IN_3
IN_4
OSWGAPC10
OUT
Trip 4 TPGAPC4_IN2
SELGAPC4_IN_12
GUID-A4DED42E-2140-4D06-83E6-A23979821AB2 V2 EN
Figure 95: OSWGAPC10
Alarm OSWGAPCs
OSWGAPC instances 11...16 are used to configure the alarm signals which belong to the alarm group. These six OSWGAPCs have the same inputs from the alarm signals.
The output is routed to SELGAPC3 via TPGAPC timer and to SELGAPC4 directly.
REF611
Application Manual
113
Section 3
REF611 standardized configurations
T1PTTR1_ALARM
RDRE_TRIGGERED
IN_1
IN_2
TCSSCBR1_ALARM
TCSSCBR2_ALARM
IN_3
IN_4
CCBRBRF1_TRBU
CCBRBRF1_TRRET
IN_5
IN_6
DARREC1_INPRO IN_7
DARREC1_LOCKED
DARREC1_PROT_CRD
DARREC1_UNSUC_RECL
DARREC1_AR_ON
DARREC1_READY
SELGAPC1_OUT_8
TRPPTRC1_CL_LKOUT
IN_8
IN_9
IN_10
IN_11
IN_12
External Trip
IN_13
TRPPTRC2_CL_LKOUT
IN_14
IN_15
OSWGAPC11
OUT
Alarm 1 TPGAPC5_IN1
SELGAPC4_IN_13
GUID-8A337ED0-85C0-404C-BE93-C8F77FDB2928 V1 EN
Figure 96: OSWGAPC11
1MRS757456 D
114 REF611
Application Manual
1MRS757456 D
Section 3
REF611 standardized configurations
T1PTTR1_ALARM
RDRE_TRIGGERED
IN_1
IN_2
TCSSCBR1_ALARM
TCSSCBR2_ALARM
IN_3
IN_4
CCBRBRF1_TRBU
CCBRBRF1_TRRET
IN_5
IN_6
DARREC1_INPRO IN_7
DARREC1_LOCKED
DARREC1_PROT_CRD
DARREC1_UNSUC_RECL
DARREC1_AR_ON
DARREC1_READY
SELGAPC1_OUT_8
TRPPTRC1_CL_LKOUT
TRPPTRC2_CL_LKOUT
IN_8
IN_9
IN_10
IN_11
IN_12
External Trip
IN_13
IN_14
IN_15
OSWGAPC12
OUT
Alarm 2 TPGAPC5_IN2
SELGAPC4_IN_14
GUID-B43B138E-F672-41BF-B9DA-AAD80C516D14 V1 EN
Figure 97: OSWGAPC12
REF611
Application Manual
115
Section 3
REF611 standardized configurations
T1PTTR1_ALARM
RDRE_TRIGGERED
IN_1
IN_2
TCSSCBR1_ALARM
TCSSCBR2_ALARM
IN_3
IN_4
CCBRBRF1_TRBU
CCBRBRF1_TRRET
IN_5
IN_6
DARREC1_INPRO IN_7
DARREC1_LOCKED
DARREC1_PROT_CRD
DARREC1_UNSUC_RECL
DARREC1_AR_ON
DARREC1_READY
SELGAPC1_OUT_8
TRPPTRC1_CL_LKOUT
IN_8
IN_9
IN_10
IN_11
IN_12
External Trip
IN_13
TRPPTRC2_CL_LKOUT
IN_14
IN_15
OSWGAPC13
OUT
Alarm 3 TPGAPC6_IN1
SELGAPC4_IN_15
GUID-CE98DECE-330C-45E7-B834-0906072EE83B V1 EN
Figure 98: OSWGAPC13
1MRS757456 D
116 REF611
Application Manual
1MRS757456 D
Section 3
REF611 standardized configurations
T1PTTR1_ALARM
RDRE_TRIGGERED
IN_1
IN_2
TCSSCBR1_ALARM
TCSSCBR2_ALARM
IN_3
IN_4
CCBRBRF1_TRBU
CCBRBRF1_TRRET
IN_5
IN_6
DARREC1_INPRO IN_7
DARREC1_LOCKED
DARREC1_PROT_CRD
DARREC1_UNSUC_RECL
DARREC1_AR_ON
DARREC1_READY
SELGAPC1_OUT_8
TRPPTRC1_CL_LKOUT
IN_8
IN_9
IN_10
IN_11
IN_12
External Trip
IN_13
TRPPTRC2_CL_LKOUT
IN_14
IN_15
OSWGAPC14
OUT
Alarm 4 TPGAPC6_IN2
SELGAPC4_IN_16
GUID-E92BEBCD-0151-41E9-BBAD-BADC4B774605 V1 EN
Figure 99: OSWGAPC14
REF611
Application Manual
117
Section 3
REF611 standardized configurations
T1PTTR1_ALARM
RDRE_TRIGGERED
IN_1
IN_2
TCSSCBR1_ALARM
TCSSCBR2_ALARM
IN_3
IN_4
CCBRBRF1_TRBU
CCBRBRF1_TRRET
IN_5
IN_6
DARREC1_INPRO IN_7
DARREC1_LOCKED
DARREC1_PROT_CRD
DARREC1_UNSUC_RECL
DARREC1_AR_ON
DARREC1_READY
SELGAPC1_OUT_8
TRPPTRC1_CL_LKOUT
IN_8
IN_9
IN_10
IN_11
IN_12
External Trip
IN_13
TRPPTRC2_CL_LKOUT
IN_14
IN_15
OSWGAPC15
OUT
Alarm 5 TPGAPC7_IN1
SELGAPC4_IN_17
GUID-258C10A2-665D-4BFA-8D20-059586803C6C V1 EN
Figure 100: OSWGAPC15
1MRS757456 D
118 REF611
Application Manual
1MRS757456 D
3.5.4.4
Section 3
REF611 standardized configurations
T1PTTR1_ALARM
RDRE_TRIGGERED
IN_1
IN_2
TCSSCBR1_ALARM
TCSSCBR2_ALARM
IN_3
IN_4
CCBRBRF1_TRBU
CCBRBRF1_TRRET
IN_5
IN_6
DARREC1_INPRO IN_7
DARREC1_LOCKED
DARREC1_PROT_CRD
DARREC1_UNSUC_RECL
DARREC1_AR_ON
DARREC1_READY
SELGAPC1_OUT_8
TRPPTRC1_CL_LKOUT
IN_8
IN_9
IN_10
IN_11
IN_12
External Trip
IN_13
TRPPTRC2_CL_LKOUT
IN_14
IN_15
OSWGAPC16
OUT
Alarm 6 TPGAPC7_IN2
SELGAPC4_IN_18
GUID-7CFDD919-7415-4AFC-B970-84688BEFD70A V1 EN
Figure 101: OSWGAPC16
GOOSE
In the configuration, there are twenty GOOSERCV_BIN functions. Each
GOOSERVC_BIN function can be connected to one received binary GOOSE signal.
The signal connection can be configured in PCM600.
GOOSERCV_BIN instances 0 and 1 are used for blocking the protection functions.
Signals from these two GOOSERCV_BINs are connected to ISWGAPC9.
ISWGAPC9 is used to configure which protection function is blocked.
GOOSERCV_BIN instances 2 and 3 are used for tripping from GOOSE. Signals from these two GOOSERCV_BINs are connected to TRPPTRC1 and TRPPTRC2 trip.
GOOSERCV_BIN instances 4 to 19 are used for blocking the circuit breaker operation. Signals from these 16 GOOSERCV_BINs are connected to ISWGAPC10.
ISWGAPC10 is used to configure GOOSE input signal to block the circuit breaker open or close operation.
REF611
Application Manual
119
Section 3
REF611 standardized configurations
1MRS757456 D
GOOSERCV_BIN:0
GOOSERCV_BIN:1
GOOSERCV_BIN:2
OR
GOOSE Blcoking
ISWGAPC9
PHLPTOC1_BLOCK
PHHPTOC1_BLOCK
PHHPTOC2_BLOCK
PHIPTOC1_BLOCK
EFLPTOC1_BLOCK
EFLPTOC2_BLOCK
EFHPTOC1_BLOCK
EFIPTOC1_BLOCK
NSPTOC1_BLOCK
NSPTOC2_BLOCK
PDNSPTOC1_BLOCK
T1PTTR1_BLOCK
CBPSOF1_BLOCK
OR
GOOSE
External Trip TRPPTRC1_OPERATE
TRPPTRC2_OPERATE
GOOSERCV_BIN:3
GOOSERCV_BIN:4
GOOSERCV_BIN:5 OR GOOSE Block CB ISWGAPC10
CBXCBR1_BLK_CLOSE
CBXCBR1_BLK_OPEN
GOOSERCV_BIN:19
GUID-344C14FB-6F56-4A40-ADA5-639B82C77501 V2 EN
Figure 102: GOOSE overview
ISWGAPC9
ISWGAPC9 is used to configure which protection functions can be blocked by the received GOOSE signals. ISWGAPC9 inputs are received GOOSE signals from
GOOSERCV_BIN:0 and GOOSERCV_BIN:1. The outputs are connected to block inputs of the protection functions.
120 REF611
Application Manual
1MRS757456 D
3.6
3.6.1
REF611
Application Manual
Section 3
REF611 standardized configurations
GOOSERCV_BIN:0_OUT
GOOSERCV_BIN:1_OUT
GOOSE Blocking
IN
ISWGAPC9
OUT_1
OUT_2
OUT_3
OUT_4
OUT_5
OUT_6
OUT_7
OUT_8
OUT_9
OUT_10
OUT_11
OUT_12
OUT_13
PHLPTOC1_BLOCK
PHHPTOC1_BLOCK
PHHPTOC2_BLOCK
PHIPTOC1_BLOCK
EFLPTOC1_BLOCK
EFLPTOC2_BLOCK
EFHPTOC2_BLOCK
EFIPTOC1_BLOCK
NSPTOC1_BLOCK
NSPTOC1_BLOCK
PDNSPTOC1_BLOCK
T1PTTR1_BLOCK
CBPSOF1_BLOCK
GUID-12868AC3-B5C0-4AA9-B0C7-4E89BD5BAFE1 V2 EN
Figure 103: ISWGAPC9
ISWGAPC10
ISWGAPC10 is used to block the circuit breaker operation from the received GOOSE signals. ISWGAPC10 inputs are received GOOSE signals from GOOSERCV_BIN:
4 to GOOSERCV_BIN:19. The outputs are connected to block the circuit breaker close and open operation.
GOOSERCV_BIN:4_OUT
GOOSERCV_BIN:5_OUT
GOOSERCV_BIN:6_OUT
...
GOOSERCV_BIN:19_OUT
GOOSE Block CB
IN
GUID-C0024745-DFB7-4849-9F43-44159D9736B9 V1 EN
Figure 104: ISWGAPC10
ISWGAPC10
OUT_1
OUT_2
CBXCBR1_BLK_CLOSE
CBXCBR1_BLK_OPEN
Configuration C
Applications
Configuration C for directional overcurrent and earth-fault protection is mainly intended for cable and overhead-line feeder applications in isolated and resonantearthed distribution networks.
121
Section 3
REF611 standardized configurations
3.6.2
1MRS757456 D
The protection relay with a standardized configuration is delivered from the factory with default settings and parameters. The end-user flexibility for incoming, outgoing and internal signal designation within the protection relay enables this configuration to be further adapted to different primary circuit layouts and the related functionality needs by modifying the internal functionality using PCM600.
Functions
Uo
U
L1
U
L2
U
L3
3I
Io
REF611 FEEDER PROTECTION RELAY
PROTECTION
2×
Master Trip
Lockout relay
94/86
2×
I2>
46
I2/I1>
46PD
3I>/Io>BF
51BF/51NBF
3Ith>F
49F
2×
3I> →
67-1
3I>>>
50P/51P
3I>> →
67-2
3I2f>
68
Io
Io>>
51N-2
2×
Io> →
67N-1
Io>> →
67N-2
Io>IEF →
67NIEF
3×
Uo>
59G
SOTF
SOTF
LOCAL HMI
I
ESC
O
Events
Disturbance records
A
R
L
STANDARD
CONFIGURATION
C
ALSO AVAILABLE
- Disturbance and fault recorders
- Event log and recorded data
- Local/Remote push button on LHMI
- Self-supervision
- Time synchronization: IEEE 1588 v2,
SNTP, IRIG-B
- User management
- Web-HMI
CONDITION MONITORING
AND SUPERVISION
2×
TCS
TCM
CONTROL AND INDICATION 1)
Object
CB
DC
Ctrl 2)
1
-
Ind 3)
ES -
1) Check availability of binary inputs/outputs
from technical documentation
2) Control and indication function for
primary object
3) Status indication function for
primary object
-
-
O → I
79
COMMUNICATION
Protocols:
IEC 61850-8-1
Modbus®
Interfaces:
Ethernet: TX (RJ-45), FX (LC)
Serial: RS-485
Redundant protocols:
HSR
PRP
RSTP
MEASUREMENT
- I, U, Io, Uo, P, E, f
- Limit value supervision
- Symmetrical components
Analog interface types
Current transformer
Voltage transformer
1)
Conventional transformer inputs
REMARKS
Optional function
3× No. of instances
Io/Uo
Calculated value
OR Alternative function to be defined when ordering
1)
4
4
GUID-F966F334-E227-496D-9566-CF55952CC985 V1 EN
Figure 105: Functionality overview for configuration C
122 REF611
Application Manual
1MRS757456 D
3.6.2.1
Section 3
REF611 standardized configurations
Default I/O connections
7
8
5
6
Table 23:
2
3
LED
1
4
Table 21:
Binary input
X120-BI1
X120-BI2
X120-BI3
X120-BI4
X130-BI1
X130-BI2
X130-BI3
X130-BI4 -
-
-
-
Default connections for binary inputs
Description
Blocking of overcurrent instantaneous stage
-
Circuit breaker closed position indication
Circuit breaker open position indication
Connector pins
X120:1-2
X120:3,2
X120:4,2
X120:5-6
X130:1-2
X130:3,2
X130:4-5
X130:6,5
Table 22:
Binary input
X100-PO1
X100-PO2
X100-PO3
X100-PO4
X100-SO1
X100-SO2
Default connections for binary outputs
Description
Close circuit breaker
Circuit breaker failure protection trip to upstream breaker
Open circuit breaker/trip coil 1
Open circuit breaker/trip coil 2
General start indication
General operate indication
Connector pins
X100:6-7
X100:8-9
X100:15-19
X100:20-24
X100:10-12
X100:13-15
Default connections for LEDs
Description
Overcurrent operate
Earth fault protection operate
Negative-sequence overcurrent/phase discontinuity operate
Thermal overload alarm
Autoreclose in progress
Disturbance recorder triggered
Trip circuit supervision alarm
Circuit-breaker failure operate
REF611
Application Manual
123
Section 3
REF611 standardized configurations
3.6.2.2
3.6.3
3.6.3.1
1MRS757456 D
Predefined disturbance recorder connections
7
8
5
6
Table 24:
2
3
Channel
1
4
Uo
U1
U2
U3
Predefined analog channel setup
Description
IL1
IL2
IL3
Io
Additionally, all the digital inputs that are connected by default are also enabled with the setting. Default triggering settings are selected depending on the connected input signal type. Typically all protection START signals are selected to trigger the disturbance recorded by default.
Functional diagrams
The functional diagrams describe the default input, output, programmable LED, switch group and function-to-function connections. The default connections can be viewed and changed with switch groups in PCM600, LHMI and WHMI according to the application requirements.
The analog channels have fixed connections towards the different function blocks inside the protection relay’s configuration. Exceptions from this rule are the eight analog channels available for the disturbance recorder function. These channels are freely selectable and a part of the disturbance recorder’s parameter settings.
The analog channels are assigned to different functions. The common signal marked with 3I represents the three phase currents. The signal marked with Io represents the measured residual current via a core balance current transformer. The signal marked with Uo represents the measured residual voltage via open-delta connected voltage transformers.
The EFHPTOC protection function block for double (cross-country) earth-faults uses the calculated residual current originating from the measured phase currents.
Functional diagrams for protection
The functional diagrams describe the protection functionality of the protection relay in detail and picture the factory default connections.
124 REF611
Application Manual
1MRS757456 D
Section 3
REF611 standardized configurations
X120-BI1
Blocking 1
3I
BLOCK
INRPHAR1
3I
2f
>(1)
68(1)
BLK2H
OVERCURRENT PROTECTION AND INRUSH INDICATION
DPHLPDOC1
3I>(1)
3I
BLOCK
51P-1(1)
OPERATE
START
ENA_MULT
DPHLPDOC2
3I>(2)
51P-1(2)
3I
BLOCK
ENA_MULT
OPERATE
START
DPHHPDOC1
3I>>(1)
3I
BLOCK
51P-2(1)
OPERATE
START
ENA_MULT
SELGAPC1
IN_1 OUT_1 IN
ISWGAPC1
OUT_4
PHIPTOC1
3I>>>(1)
3I
BLOCK
50P/51P(1)
OPERATE
START
ENA_MULT
IN_1
OSWGAPC8
IN_2
IN_3
IN_4
OR
OUT
SELGAPC4
IN_10 OUT_1
LED 1
GUID-FB8E7A93-E98A-4968-B8C6-FBD091F5E635 V2 EN
Figure 106: Overcurrent protection
Four overcurrent stages are offered for overcurrent and short-circuit protection. The instantaneous stage PHIPTOC1 can be blocked by energizing the binary input
(X120:1-2). The inrush detection block’s INRPHAR1 output BLK2H enables either blocking the function or multiplying the active settings for any of the described protection function blocks.
All operate signals are connected to the Master Trip and to the alarm LED 1.
REF611
Application Manual
125
Section 3
REF611 standardized configurations
126
1MRS757456 D
EARTH-FAULT PROTECTION
DOUBLE (CROSS-COUNTRY) EARTH-FAULT PROTECTION
EFHPTOC1
Io>>(1)
51N-2(1)
Io
BLOCK
ENA_MULT
Calculated lo
OPERATE
START
DIRECTIONAL EARTH-FAULT PROTECTION
DEFLPDEF1
Io>->(1)
Io
Uo
BLOCK
ENA_MULT
RCA_CTL
67N-1(1)
OPERATE
START
DEFLPDEF2
Io>->(2)
Io
Uo
BLOCK
ENA_MULT
RCA_CTL
67N-1(2)
OPERATE
START
IN_5
OSWGAPC9
IN_6
IN_7
IN_8
IN_12
OR
OUT
SELGAPC4
IN_11 OUT_2
DEFHPDEF1
Io>>->(1)
67N-2(1)
Io
Uo
BLOCK
ENA_MULT
RCA_CTL
OPERATE
START
INTERMITTENT EARTH-FAULT PROTECTION
INTRPTEF1
Io>->IEF(1)
Io
Uo
BLOCK
67NIEF(1)
OPERATE
START
BLK_EF
LED 2
GUID-F1E996CA-9C33-4AFF-B7F2-6ABEF716A57B V1 EN
Figure 107: Earth-fault protection
Three stages are offered for directional earth-fault protection. In addition, there is a dedicated protection stage INTRPTEF either for transient-based earth-fault protection or for cable intermittent earth-fault protection in compensated networks.
REF611
Application Manual
1MRS757456 D
Section 3
REF611 standardized configurations
A dedicated non-directional earth-fault protection block EFHPTOC is intended for protection against double earth-fault situations in isolated or compensated networks.
This protection function uses the calculated residual current originating from the phase currents.
All operate signals are connected to the Master Trip and to alarm LED 2.
RESIDUAL OVERVOLTAGE PROTECTION
U
0
BLOCK
ROVPTOV1
U
0
>(1)
59G(1)
OPERATE
START
U
0
BLOCK
ROVPTOV2
U
0
>(2)
59G(2)
OPERATE
START
IN_9
IN_10
IN_11
OSWGAPC9
OR
OUT
SELGAPC4
IN_11 OUT_2
LED 2
U
0
BLOCK
ROVPTOV3
U
0
>(3)
59G(3)
OPERATE
START
GUID-DAC9D1F8-DB13-4A23-807F-EABE477407DC V1 EN
Figure 108: Residual overvoltage protection
The residual overvoltage protection ROVPTOV provides earth-fault protection by detecting abnormal level of residual voltage. It can be used, for example, as a nonselective backup protection for the selective directional earth-fault functionality. The operation signal is also connected to alarm LED 2.
REF611
Application Manual
127
Section 3
REF611 standardized configurations
1MRS757456 D
NSPTOC1
I
2
>(1)
3I
BLOCK
ENA_MULT
46(1)
OPERATE
START
UNBALANCE PROTECTION
NSPTOC2
3I
BLOCK
ENA_MULT
I
2
>(2)
46(2)
OPERATE
START
IN_13
OSWGAPC10
IN_14
IN_15
OR OUT
SELGAPC4
IN_12 OUT_3
LED 3
3I
BLOCK
PDNSPTOC1
I
2
/I
1
(1)
46PD(1)
OPERATE
START
GUID-33B6922D-228D-4D26-98AF-6043981814C0 V1 EN
Figure 109: Unbalance protection
Two negative-sequence overcurrent stages NSPTOC1 and NSPTOC2 and one phase discontinuity stage PDNPSTOC1 are offered for unbalance protection. The phase discontinuity protection PDNPSTOC1 provides protection for interruptions in the normal three-phase load supply, for example, in downed conductor situations.
The operate signals of these unbalance protections are connected to the Master Trip and to alarm LED 3.
128 REF611
Application Manual
1MRS757456 D
Section 3
REF611 standardized configurations
THERMAL OVERLOAD PROTECTION
T1PTTR1
3Ith>F(1)
49F(1)
3I
ENA_MULT
BLK_OPR
OPERATE
ALARM
BLK_CLOSE
AMB_TEMP START
OSWGAPC11
IN_1 OUT
SELGAPC4
IN_13 OUT_4
LED 4
DPHLPDOC1_OPERATE
DPHLPDOC2_OPERATE
DPHHPDOC1_OPERATE
PHIPTOC1_OPERATE
DEFLPDEF1_OPERATE
DEFLPDEF2_OPERATE
DEFHPDEF1_OPERATE
X120-BI2
CB Closed Position
OR
IN_2
SELGAPC1
OUT_2
CIRCUIT BREAKER FAILURE PROTECTION
CCBRBRF1
3I>/I
0
>BF(1)
SELGAPC3
IN_4 OUT_2
51BF/51NBF(1)
3I
I
0
START
POSCLOSE
CB_FAULT
BLOCK
CB_FAULT_AL
TRBU
TRRET
OSWGAPC15
IN_5 OUT
X100 PO2
SELGAPC4
IN_17 OUT_8
LED 8
GUID-7E8B4813-B13B-4372-A1CD-3ACCFAE3E9BF V2 EN
Figure 110: Thermal overload and circuit-breaker failure protection
The thermal overload protection T1PTTR1 provides indication on overload situations. LED 4 is used for the thermal overload protection alarm indication.
The circuit-breaker failure protection CCBRBRF1 is initiated via the start input by a number of different protection stages in the protection relay. The circuit-breaker failure protection function offers different operating modes associated with the circuit breaker position and the measured phase and residual currents. The breaker failure protection has two operating outputs: TRRET and TRBU . The TRRET operate output is used for retripping its own breaker through the Master Trip 2. The TRBU output is used to give a backup trip to the circuit breaker feeding upstream. For this purpose, the
TRBU operate output signal is connected to the output PO2 (X100:8-9). LED 8 is used for backup (TRBU) operate indication.
REF611
Application Manual
129
Section 3
REF611 standardized configurations
1MRS757456 D
AUTORECLOSING (Optional)
DARREC1
O->I(1)
DEFLPDEF1_OPERATE
DEFLPDEF2_OPERATE
X120-BI3
CB Open Position
Always True
DEFLPDEF1_START
DEFLPDEF2_START
CBXCBR1_SELECTED
NSPTOC1_OPERATE
NSPTOC2_OPERATE
PDNSPTOC1_OPERATE
INTRPTEF1_OPERATE
PHIPTOC1_OPERATE
OR
OR
OR
DPHHPDOC1_OPERATE
DEFHPDEF1_OPERATE
DPHLPDOC1_START
EFHPTOC1_START
IN_3
SELGAPC1
OUT_3
IN_10 OUT_6
DPHLPDOC2_OPERATE
DPHLPDOC1_OPERATE
EFHPTOC1_OPERATE
T1PTTR1_BLK_CLOSE
SELGAPC1_OUT_7
INT_1
INT_2
INT_3
INT_4
INT_5
INT_6
DEL_INT_2
DEL_INT_3
DEL_INT_4
BLK_RECL_T
BLK_RCLM_T
BLK_THERM
CB_POS
CB_READY
INC_SHOTP
INHIBIT_RECL
RECL_ON
SYNC
OR
CBPSOF1_OPERATE
79(1)
OPEN CB
CLOSE CB
CMD_WAIT
INPRO
LOCKED
PROT_CRD
UNSUC_RECL
AR_ON
READY
OSWGAPC12
IN_7 OUT
SELGAPC4
IN_14 OUT_5
LED 5
GUID-0FFA67F5-DA64-40C1-A8F9-C3C74DC7DE06 V2 EN
Figure 111: Autoreclosing
Autoreclosing DARREC1 is included as an optional function.
The autoreclose function is configured to be initiated by operate signals from a number of protection stages through the INT_1...6
inputs and by start signals through the DEL_INT_2…4. It is possible to create individual autoreclose sequences for each input.
The autoreclose function can be blocked with the INHIBIT_RECL input. By default, the operations of selected protection functions are connected to this input. A control command to the circuit breaker, either local or remote, also blocks the autoreclose function via the CBXCBR_SELECTED signal.
The circuit breaker availability for the autoreclose sequence is expressed with the
CB_READY input in DARREC1. In the configuration, this signal is connected with an always true signal through the SELGAPC1. As a result, the function assumes that the circuit breaker is available all the time.
The autoreclose sequence in progress indication INPRO is connected to the alarm
LED 5.
130 REF611
Application Manual
1MRS757456 D
3.6.3.2
REF611
Application Manual
Section 3
REF611 standardized configurations
Functional diagrams for disturbance recorder and trip circuit supervision
DPHLPDOC1_OPERATE
DPHLPDOC2_OPERATE
DPHHPDOC1_OPERATE
PHIPTOC1_OPERATE
DEFLPDEF1_OPERATE
DEFLPDEF2_OPERATE
DEFHPDEF1_OPERATE
ROVPTOV1_OPERATE
ROVPTOV2_OPERATE
ROVPTOV3_OPERATE
NSPTOC1_OPERATE
NSPTOC2_OPERATE
OR
OR
OR
OR
DPHLPDOC1_START
DPHLPDOC2_START
DPHHPDOC1_START
PHIPTOC1_START
EFHPTOC1_START
DEFLPDEF1_START
DEFLPDEF2_START
DEFHPDEF1_START
ROVPTOV1_START
ROVPTOV2_START
ROVPTOV3_START
INTRPTEF1_START
NSPTOC1_START
NSPTOC2_START
PDNSPTOC1_START
T1PTTR1_START
EFHPTOC1_OPERATE
INTRPTEF1_OPERATE
PDNSPTOC1_OPERATE
T1PTTR1_OPERATE
SELGAPC1_ Blocking 1
SELGAPC1_ CB Closed Position
SELGAPC1_ CB Open Position
INRPHAR1_BLK2H
CCBRBRF1_TRRET
CCBRBRF1_TRBU
DARREC1_INPRO
DARREC1_CLOSE_CB
DARREC1_UNSUC_RECL
SELGAPC1_External Trip
SG_1_ACT
SG_2_ACT
SG_3_ACT
SG_4_ACT
SG_5_ACT
SG_6_ACT
DISTURBANCE RECORDER
C17
C18
C19
C20
C21
C22
C23
C24
C25
C7
C8
C9
C10
C11
C12
C13
C14
C15
C16
C1
C2
C3
C4
C5
C6
C34
C35
C36
C37
C38
C39
C40
C26
C27
C28
C29
C30
C31
C32
C33
RDRE1
TRIGGERED
OSWGAPC13
IN_2 OUT
SELGAPC4
IN_15 OUT_6
LED 6
GUID-2EA9013B-69BD-4B63-AB6A-76088CEC2EEB V2 EN
Figure 112: Disturbance recorder
All start and operate signals from the protection stages are routed to trigger the disturbance recorder or alternatively only to be recorded by the disturbance recorder depending on the parameter settings. Additionally, the selected autoreclose output signals and the three binary inputs from X120 are also connected. The active setting group is also to be recorded via SG_1_ACT to SG_6_ACT. The disturbance recorder triggered signal indication is connected to LED 6.
Table 25:
Channel number
Binary channel 1
Disturbance recorder binary channel default value
Channel ID text
DPHLPDOC1_START
Binary channel 2
Binary channel 3
Binary channel 4
Binary channel 5
Binary channel 6
Binary channel 7
Binary channel 8
Binary channel 9
Table continues on next page
DPHLPDOC2_START
DPHHPDOC1_START
PHIPTOC1_START
EFHPTOC1_START
DEFLPDEF1_START
DEFLPDEF2_START
DEFHPDEF1_START
ROVPTOV1_START
Level trigger mode
1=positive or rising
1=positive or rising
1=positive or rising
1=positive or rising
1=positive or rising
1=positive or rising
1=positive or rising
1=positive or rising
1=positive or rising
131
Section 3
REF611 standardized configurations
Channel number
Binary channel 10
Binary channel 11
Binary channel 12
Binary channel 13
Binary channel 14
Binary channel 15
Binary channel 16
Binary channel 17
Binary channel 18
Binary channel 19
Binary channel 20
Binary channel 21
Binary channel 22
Binary channel 23
Binary channel 24
Binary channel 25
Binary channel 26
Binary channel 27
Binary channel 28
Binary channel 29
Binary channel 30
Binary channel 31
Binary channel 32
Binary channel 33
Binary channel 34
Binary channel 35
Binary channel 36
Binary channel 37
Binary channel 38
Binary channel 39
Binary channel 40
Channel ID text
ROVPTOV2_START
ROVPTOV3_START
INTRPTEF1_START
NSPTOC1_START
NSPTOC2_START
PDNSPTOC1_START
T1PTTR1_START
DPHxPDOC_OPERATE
EFHPTOC1_OPERATE
DEFxPDEF_OPERATE
ROVPTOV_OPERATE
INTRPTEF1_OPERATE
NSPTOC1/2_OPERATE
PDNSPTOC1_OPERATE
T1PPTR1_OPERATE
SELGAPC1_Blocking 1
SELGAPC1_CB_Closed
SELGAPC1_CB_Open
INRPHAR1_BLK2H
CCBRBRF1_TRRET
CCBRBRF1_TRBU
DARREC1_INPRO
DARREC1_CLOSE_CB
DARREC1_UNSUC_RECL
SELGAPC1_External Trip
SG_1_ACT
SG_2_ACT
SG_3_ACT
SG_4_ACT
SG_5_ACT
SG_6_ACT
1MRS757456 D
Level trigger mode
1=positive or rising
1=positive or rising
1=positive or rising
1=positive or rising
1=positive or rising
1=positive or rising
1=positive or rising
4=level trigger off
4=level trigger off
4=level trigger off
4=level trigger off
4=level trigger off
4=level trigger off
4=level trigger off
4=level trigger off
4=level trigger off
4=level trigger off
4=level trigger off
4=level trigger off
4=level trigger off
4=level trigger off
4=level trigger off
4=level trigger off
4=level trigger off
4=level trigger off
4=level trigger off
4=level trigger off
4=level trigger off
4=level trigger off
4=level trigger off
4=level trigger off
132 REF611
Application Manual
1MRS757456 D
Section 3
REF611 standardized configurations
TRIP CIRCUIT SUPERVISION
X120-BI3
CB Open Position
SELGAPC1
IN_3 OUT_3
TRPPTRC1_TRIP
TRPPTRC2_TRIP
OR
IN_2
SELGAPC2
OUT_1
OUT_2
TCSSCBR1
BLOCK ALARM
TCSSCBR2
BLOCK ALARM
IN_3
IN_4
OSWGAPC14
OR
OUT
SELGAPC4
IN_16 OUT_7
LED 7
GUID-4B00F529-72F7-418F-B0EB-D3DCC80007F9 V2 EN
Figure 113: Trip circuit supervision
Two separate trip circuit supervision functions are included, TCSSCBR1 for PO3
(X100:15-19) and TCSSCBR2 for PO4 (X100:20-24). Both functions are blocked by the Master Trip (TRPPTRC1 and TRPPTRC2) and the circuit breaker open position.
The TCS alarm indication is connected to LED 7.
REF611
Application Manual
133
Section 3
REF611 standardized configurations
3.6.3.3
1MRS757456 D
Functional diagrams for control
MASTER TRIP #1
DPHLPDOC1_OPERATE
DPHLPDOC2_OPERATE
DPHHPDOC1_OPERATE
PHIPTOC1_OPERATE
EFHPTOC1_OPETATE
DEFLPDEF1_OPERATE
DEFLPDEF2_OPERATE
DEFHPDEF1_OPERATE
ROVPTOV1_OPERTAE
ROVPTOV2_OPERTAE
ROVPTOV3_OPERTAE
INTRPTEF1_OPERATE
NSPTOC1_OPERATE
NSPTOC2_OPERATE
PDNSPTOC1_OPERATE
IN_1
IN_2
IN_3
IN_4
IN_5
IN_6
IN_7
IN_8
IN_9
IN_10
IN_11
IN_12
IN_13
IN_14
IN_15
OSWGAPC1
OR
OUT
OR
TRPPTRC1
BLOCK
OPERATE
TRIP
CL_LKOUT
RST_LKOUT
OR
IN_1
SELGAPC3
OUT_5
X100 PO3
134
SELGAPC1_External Trip
GOOSERCV_BIN 2_OUT
OR
GOOSERCV_BIN 3_OUT
SELGAPC1_RST_LKOUT
CBXCBR1_EXE_OP
DARREC1_OPEN_CB
IN1
IN2
MVGAPC1
Q1
Q2
DPHLPDOC1_OPERATE
DPHLPDOC2_OPERATE
DPHHPDOC1_OPERATE
PHIPTOC1_OPERATE
EFHPTOC1_OPETATE
DEFLPDEF1_OPERATE
DEFLPDEF2_OPERATE
DEFHPDEF1_OPERATE
ROVPTOV1_OPERTAE
ROVPTOV2_OPERTAE
ROVPTOV3_OPERTAE
INTRPTEF1_OPERATE
NSPTOC1_OPERATE
NSPTOC2_OPERATE
PDNSPTOC1_OPERATE
CCBRBRF1_TRRET
IN_1
IN_2
IN_3
IN_4
IN_5
IN_6
IN_7
IN_8
IN_9
IN_10
IN_11
IN_12
IN_13
IN_14
IN_15
OSWGAPC2
OR
OUT
IN_17
MASTER TRIP #2
OR
TRPPTRC2
BLOCK
OPERATE
TRIP
CL_LKOUT
RST_LKOUT
SELGAPC1_External Trip
GOOSERCV_BIN 2_OUT
OR
GOOSERCV_BIN 3_OUT
SELGAPC1_RST_LKOUT
IN1
IN2
MVGAPC1
Q1
Q2
GUID-2EEBAE55-D2E5-4EED-BCAA-BA87F36D4537 V3 EN
Figure 114: Master trip
IN_2
SELGAPC3
OUT_6
X100 PO4
REF611
Application Manual
1MRS757456 D
Section 3
REF611 standardized configurations
The operate signals from the protections and an external trip are connected to the two trip output contacts PO3 (X100:15-19) and PO4 (X100:20-24) via the corresponding
Master Trips TRPPTRC1 and TRPPTRC2. Open control commands to the circuit breaker from local or remote CBXCBR1_EXE_OP or from the autoreclosing
DARREC1_OPEN_CB are connected directly to the output contact PO3
(X100:15-19).
TRPPTRC1 and 2 provide the lockout/latching function, event generation and the trip signal duration setting. One binary input through SELGAPC1 can be connected to the
RST_LKOUT input of the Master Trip. If the lockout operation mode is selected, it is used to enable external reset.
CIRCUIT BREAKER CONTROL
X120-BI2
CB Closed Position
X120-BI3
CB Open Position
Always True
IN_2
SELGAPC1
OUT_2
IN_3
IN_9
OUT_3
OUT_5
TRPPTRC1_TRIP
TRPPTRC2_TRIP
T1PTTR1_BLK_CLOSE
DARREC1_CLOSE_CB
AND
CBXCBR1
POSOPEN
POSCLOSE
ENA_OPEN
ENA_CLOSE
BLK_OPEN
BLK_CLOSE
AU_OPEN
AU_CLOSE
TRIP
SYNC_OK
SYNC_ITL_BYP
SELECTED
EXE_OP
EXE_CL
OP_REQ
CL_REQ
OPENPOS
CLOSEPOS
OKPOS
OPEN_ENAD
CLOSE_ENAD
CBXCBR1_EXE_OP
OR
IN_3
SELGAPC3
OUT_1
X100 PO1
GUID-60351D18-FD31-462E-8116-6A90D95006C5 V2 EN
Figure 115: Circuit breaker control
The ENA_CLOSE input, which enables the closing of the circuit breaker, is interlocked by two master trip signals. Any one trip will block the breaker from closing. An always true signal is also connected to ENA_CLOSE via SELGAPC1 by default. The open operation is always enabled.
REF611
Application Manual
135
Section 3
REF611 standardized configurations
1MRS757456 D
COMMON ALARM INDICATION 1 & 2
DPHLPDOC1_START
DPHLPDOC2_START
DPHHPDOC1_START
PHIPTOC1_START
EFHPTOC1_START
DEFLPDEF1_START
DEFLPDEF2_START
DEFHPDEF1_START
ROVPTOV1_START
ROVPTOV2_START
ROVPTOV3_START
INTRPTEF1_START
NSPTOC1_START
NSPTOC2_START
PDNSPTOC1_START
IN_1
IN_2
IN_3
IN_4
IN_5
IN_6
IN_7
IN_8
IN_9
IN_10
IN_11
IN_12
IN_13
IN_14
IN_15
OSWGAPC3
OR
OUT
IN1
TPGAPC1
OUT1
SELGAPC3
IN_5 OUT_3
IN_9 OUT_4
DPHLPDOC1_OPERATE
DPHLPDOC2_OPERATE
DPHHPDOC1_OPERATE
PHIPTOC1_OPERATE
EFHPTOC1_OPETATE
DEFLPDEF1_OPERATE
DEFLPDEF2_OPERATE
DEFHPDEF1_OPERATE
ROVPTOV1_OPERTAE
ROVPTOV2_OPERTAE
ROVPTOV3_OPERTAE
INTRPTEF1_OPERATE
NSPTOC1_OPERATE
NSPTOC2_OPERATE
PDNSPTOC1_OPERATE
IN_1
IN_2
IN_3
IN_4
IN_5
IN_6
IN_7
IN_8
IN_9
IN_10
IN_11
IN_12
IN_13
IN_14
IN_15
OSWGAPC7
OR
OUT
IN1
TPGAPC3
OUT1
X100 SO1
X100 SO2
136
GUID-30C0F21B-A880-469F-9B00-D8D00A752A20 V2 EN
Figure 116: Common alarm indication
The signal outputs from the protection relay are connected to give dedicated information.
• Start of any protection function SO1 (X100:10-12)
• Operation (trip) of any protection function SO2 (X100: 13-15)
TPGAPC functions are timers and they are used for setting the minimum pulse length for the outputs. There are seven generic timers (TPGAPC1…7) available in the protection relay.
REF611
Application Manual
1MRS757456 D
Section 3
REF611 standardized configurations
3.6.4 Switch groups
In configuration C, the switch group function blocks are organized in four groups: binary inputs, internal signal, GOOSE as well as binary outputs and LEDs.
Binary Inputs
(1...3, 4...9*)
Received GOOSE
(0...19)
GOOSE
GOOSE
GOOSE
SELGAPC1
Binary Inputs
ISWGAPC2
ISWGAPC1
Blocking
Binary Inputs
ISWGAPC5
Basic
Angle Control
GOOSE
ISWGAPC9
GOOSE Blocking
ISWGAPC10
GOOSE Block CB
Protection and Control
DPHLPDOC1 DPHLPDOC2
DPHHPDOC1 PHIPTOC1
EFHPTOC1
DEFLPDEF2
NSPTOC1
INTRPTEF1
DEFLPDEF1
DEFHPDEF1
NSPTOC2
PDNSPTOC1
ROVPTOV1
ROVPTOV3
ROVPTOV2
T1PTTR1
CCBRBRF1 INRPHAR1
DARREC1* CBXCBR1
TCSSCBR1 TCSSCBR2
CBPSOF1
Internal Signal
ISWGAPC3 ISWGAPC4
INRPHAR1_BLK2H
SELGAPC2
DARREC1_PROT_CRD
OSWGAPC17
TCS Blocking CBPSOF1_Initiation
* Optional Function
GUID-EB1D6B16-8E51-4EF4-B6FF-47FCDF6ABF3D V2 EN
Figure 117: Configuration C switch group overview
Binary Outputs and LEDs
OSWGAPC2
OSWGAPC1
Master trip
SELGAPC3
SELGAPC4
OSWGAPC6
OSWGAPC5
OSWGAPC4
OSWGAPC3
Start
OSWGAPC10
OSWGAPC9
OSWGAPC8
OSWGAPC7
Trip
OSWGAPC16
OSWGAPC15
OSWGAPC14
OSWGAPC13
OSWGAPC12
OSWGAPC11
Alarm
Binary Outputs
LEDs
Binary Outputs
(1...6, 7..9*)
LEDs
(1…8)
3.6.4.1 Binary inputs
The binary inputs group includes one SELGAPC and three ISWGAPCs. SELGAPC1 is used to route binary inputs to ISWGAPC or directly to protection relay functions.
ISWGAPC1 and ISWGAPC2 are used to configure the signal to block the protection functions. ISWGAPC5 is used to control the characteristic angle of DEFxPDEF.
REF611
Application Manual
137
Section 3
REF611 standardized configurations
1MRS757456 D
X120-BI1
X120-BI2
X120-BI3
Blocking 1
ISWGAPC1
DPHLPDOC1_BLOCK
DPHLPDOC2_BLOCK
DPHHPDOC1_BLOCK
PHIPTOC1_BLOCK
EFHPTOC1_BLOCK
DEFLPDEF1_BLOCK
DEFLPDEF2_BLOCK
DEFHPDEF1_BLOCK
ROVPTOV1_BLOCK
ROVPTOV2_BLOCK
ROVPTOV3_BLOCK
INTRPTEF1_BLOCK
NSPTOC1_BLOCK
NSPTOC2_BLOCK
PDNSPTOC1_BLOCK
T1PTTR1_BLOCK
CBPSOF1_BLOCK
X120-BI4
X130-BI1
X130-BI2
X130-BI3
X130-BI4
SELGAPC1
Blocking 2
ISWGAPC2
DPHLPDOC1_BLOCK
DPHLPDOC2_BLOCK
DPHHPDOC1_BLOCK
PHIPTOC1_BLOCK
EFHPTOC1_BLOCK
DEFLPDEF1_BLOCK
DEFLPDEF2_BLOCK
DEFHPDEF1_BLOCK
ROVPTOV1_BLOCK
ROVPTOV2_BLOCK
ROVPTOV3_BLOCK
INTRPTEF1_BLOCK
NSPTOC1_BLOCK
NSPTOC2_BLOCK
PDNSPTOC1_BLOCK
T1PTTR1_BLOCK
CBPSOF1_BLOCK
Basic Angle
Control ISWGAPC5
DEFLPDEF1_RCA_CTL
DEFLPDEF2_RCA_CTL
DEFHPDEF1_RCA_CTL
GUID-AF76144B-F5EE-4DA8-8943-D25CCFC389D3 V2 EN
Figure 118: Binary inputs
SELGAPC1
SELGAPC1 has inputs from protection relay binary inputs. IN_1 ...
IN_4 are binary inputs from X120. IN_5 ...
IN_8 are used from four inputs of X130. An always true signal is connected to IN_9 . SELGAPC1 outputs are used to route inputs to different functions. By setting SELGAPC1, binary inputs can be configured for different purposes.
138 REF611
Application Manual
1MRS757456 D
Section 3
REF611 standardized configurations
X120-BI1
X120-BI2
X120-BI3
X120-BI4
X130-BI1
X130-BI2
X130-BI3
X130-BI4
Always True
X120/1-2 BI1
IN_1
X120/3-2 BI2
IN_2
X120/4-2 BI3
IN_3
X120/5-6 BI4
IN_4
SELGAPC1
OUT_1
Blocking 1
ISWGAPC1_IN
OUT_2
OUT_3
CB Closed Position
CB O pen Position
CCBRBRF1_PO SCLOSE
CBXCBR1_POSCLOSE
SELGAPC2_IN_1
DARREC1_CB_PO S
CBXCBR1_PO SOPEN
SELGAPC2_IN_2
OUT_4 Basic Angle Control
ISWGAPC5_IN
X130/1-2 BI1
IN_5
X130/3-2 BI2
IN_6
OUT_5 CB Close Enable
OUT_6
CBXCBR1_ENA_CLOSE
DARREC1_CB_READY
X130/4-5 BI3
IN_7
X130/6-5 BI4
IN_8
IN_9
OUT_7
OUT_8
TRPTTRC1/2_
RST_LKOUT
OUT_9
External Trip
OUT_10
Setting Group 2
OUT_11
Setting Group 3
OUT_12
Setting Group 4
DARREC1_RECL_ON
TRPTTRC1_RST_LKOUT
TRPTTRC2_RST_LKOUT
TRPTTRC1_OPERATE
TRPTTRC2_OPERATE
PROTECTION_BI_SG_2
PROTECTION_BI_SG_3
PROTECTIO N_BI_SG_4
OUT_13
Blocking 2
ISWGAPC2_IN
GUID-E54640C9-1F74-420E-9486-E88430C753DA V1 EN
Figure 119: SELGAPC1
ISWGAPC1
ISWGAPC1 is used to select which protection functions are to be blocked by changing
ISWGAPC1 parameters. ISWGAPC1 input is routed from SELGAPC1 output
OUT_1 Blocking 1 . ISWGAPC1 outputs are connected to the BLOCK inputs of the protection functions.
REF611
Application Manual
139
Section 3
REF611 standardized configurations
1MRS757456 D
SELGAPC1_OUT_1
Blocking 1
IN
ISWGAPC1
OUT_1
OUT_2
OUT_3
OUT_4
OUT_5
OUT_6
OUT_7
OUT_8
OUT_9
OUT_10
OUT_11
OUT_12
OUT_13
OUT_14
OUT_15
OUT_16
OUT_17
GUID-93D6BEDE-B4E1-4107-BE60-A88811AE8D4A V2 EN
Figure 120: ISWGAPC1
DPHLPDOC1_BLOCK
DPHLPDOC2_BLOCK
DPHHPDOC1_BLOCK
PHIPTOC1_BLOCK
EFHPTOC1_BLOCK
DEFLPDEF1_BLOCK
DEFLPDEF2_BLOCK
DEFHPDEF1_BLOCK
ROVPTOV1_BLOCK
ROVPTOV2_BLOCK
ROVPTOV3_BLOCK
INTRPTEF1_BLOCK
NSPTOC1_BLOCK
NSPTOC2_BLOCK
PDNSPTOC1_BLOCK
T1PTTR1_BLOCK
CBPSOF1_BLOCK
ISWGAPC2
ISWGAPC2 is used to select which protection functions are to be blocked by changing
ISWGAPC2 parameters. ISWGAPC2 input is routed from SELGAPC1 output
OUT_13 Blocking 2 . ISWGAPC2 outputs are connected to the BLOCK inputs of the protection functions.
140 REF611
Application Manual
1MRS757456 D
3.6.4.2
REF611
Application Manual
Section 3
REF611 standardized configurations
SELGAPC1_OUT_13
Blocking 2
IN
ISWGAPC2
OUT_7
OUT_8
OUT_9
OUT_10
OUT_11
OUT_12
OUT_13
OUT_14
OUT_15
OUT_16
OUT_17
OUT_1
OUT_2
OUT_3
OUT_4
OUT_5
OUT_6
GUID-D280DB0F-C718-46A8-8FCF-0B3BF489E2D6 V2 EN
Figure 121: ISWGAPC2
DPHLPDOC1_BLOCK
DPHLPDOC2_BLOCK
DPHHPDOC1_BLOCK
PHIPTOC1_BLOCK
EFHPTOC1_BLOCK
DEFLPDEF1_BLOCK
DEFLPDEF2_BLOCK
DEFHPDEF1_BLOCK
ROVPTOV1_BLOCK
ROVPTOV2_BLOCK
ROVPTOV3_BLOCK
INTRPTEF1_BLOCK
NSPTOC1_BLOCK
NSPTOC2_BLOCK
PDNSPTOC1_BLOCK
T1PTTR1_BLOCK
CBPSOF1_BLOCK
ISWGAPC5
ISWGAPC5 input is used to select which directional earth-fault protection is controlled by ISWGAPC5 input by changing the ISWGAPC5 parameters.
ISWGAPC5 input is routed from SELGAPC1 output OUT_4 Basic Angle
Control . ISWGAPC5 outputs are connected to RCA_CTL inputs of directional earth-fault protection functions.
Basic Angle
Control
IN
ISWGAPC5
OUT_1
OUT_2
OUT_3
GUID-81124E0B-65EC-46EC-A9E4-7646B3A84FE4 V1 EN
Figure 122: ISWGAPC5
DEFLPDEF1_RCA_CTL
DEFLPDEF2_RCA_CTL
DEFHPDEF1_RCA_CTL
Internal signals
The internal signal group is used to configure logic connections between function blocks. There are two ISWGAPC instances, one SELGAPC and one OSWGAPC instance in this group.
ISWGAPC3 is used to configure which protection function enables the current multiplier if the INRPHAR1 function detects inrush. ISWGAPC4 is used to configure the cooperation between the autoreclose function and the protection functions. The
141
Section 3
REF611 standardized configurations
1MRS757456 D autoreclose function DARREC1 can block protection functions according to the application. SELGAPC2 is used to configure TCS blocking from the circuit breaker open or close position. OSWGAPC17 is used for connecting switch onto fault function CBPSOF. The inputs are start signals routed from the protection functions.
INRPHAR1_BLK2H ISWGAPC3
DPHLPDOC1_ENA_MULT
DPHLPDOC2_ENA_MULT
DPHHPDOC1_ENA_MULT
PHIPTOC1_ENA_MULT
EFHPTOC1_ENA_MULT
DEFLPDEF1_ENA_MULT
DEFLPDEF2_ENA_MULT
DEFHPDEF1_ENA_MULT
NSPTOC1_ENA_MULT
NSPTOC2_ENA_MULT
T1PTTR1_ENA_MULT
DARREC1_PROT_CRD
ISWGAPC4
DPHLPDOC1_BLOCK
DPHLPDOC2_BLOCK
DPHHPDOC1_BLOCK
EFHPTOC1_BLOCK
DEFLPDEF1_BLOCK
DEFLPDEF2_BLOCK
DEFHPDEF1_BLOCK
SELGAPC1_OUT_2
SELGAPC1_OUT_3
CB Closed Position
CB Open Position
SELGAPC2
TCSSCBR1_BLOCK
TCSSCBR2_BLOCK
DPHLPDOC1_START
DPHLPDOC2_START
DPHHPDOC1_START
PHIPTOC1_START
EFHPTOC1_START
DEFLPDEF1_START
DEFLPDEF2_START
DEFHPDEF1_START
ROVPTOV1_START
ROVPTOV2_START
ROVPTOV3_START
INTRPTEF1_START
NSPTOC1_START
NSPTOC2_START
PTNSPTOC1_SRART
T1PTTR1_START
GUID-895B4A93-7066-45C6-9EB1-680320A07FC6 V2 EN
Figure 123: Internal signal
OSWGAPC17
Start
DLYD
CBPSOF1_INIT
ISWGAPC3
ISWGAPC3 input is used to configure which protection function enables current multiplier while inrush is detected by INRPHAR1 by changing the ISWGAPC3 parameters. ISWGAPC3 input is routed from INRPHAR1 output BLK2H .
ISWGAPC3 outputs are connected to ENA_MULT of the protection functions.
142 REF611
Application Manual
1MRS757456 D
REF611
Application Manual
Section 3
REF611 standardized configurations
INRPHAR1_BLK2H IN
ISWGAPC3
OUT_1
OUT_2
OUT_3
OUT_4
OUT_5
OUT_6
OUT_7
OUT_8
OUT_9
OUT_10
OUT_11
GUID-A90438F3-E9D8-459C-8FCD-1DE592BE0B23 V2 EN
Figure 124: ISWGAPC3
DPHLPDOC1_ENA_MULT
DPHLPDOC2_ENA_MULT
DPHHPDOC1_ENA_MULT
PHIPTOC1_ENA_MULT
EFHPTOC1_ENA_MULT
DEFLPDEF1_ENA_MULT
DEFLPDEF2_ENA_MULT
DEFHPDEF1_ENA_MULT
NSPTOC1_ENA_MULT
NSPTOC2_ENA_MULT
T1PTTR1_ENA_MULT
ISWGAPC4
ISWGAPC4 input is used to configure which protection function is blocked by the autoreclosing function by changing the ISWGAPC4 parameters. ISWGAPC4 input is routed from DARREC1 output PROT_CRD . ISWGAPC4 outputs are connected to the
BLOCK inputs of some of the protection functions.
DARREC1_PROT_CRD IN
ISWGAPC4
OUT_1
OUT_2
OUT_3
OUT_4
OUT_5
OUT_6
OUT_7
DPHLPDOC1_BLOCK
DPHLPDOC2_BLOCK
DPHHPDOC1_BLOCK
EFHPTOC1_BLOCK
DEFLPDEF1_BLOCK
DEFLPDEF2_BLOCK
DEFHPDEF1_BLOCK
GUID-16F966A2-E7CA-492E-A6A4-6B5BBC9F5D84 V2 EN
Figure 125: ISWGAPC4
SELGAPC2
SELGAPC2 inputs represent the circuit breaker closed and open position from
SELGACP1. SELGAPC2 outputs are routed to the BLOCK input of the trip circuit supervision TCSSCBR1 and TCSSCBR2.
By default, X100 PO3 and PO4 are both used for the open circuit breaker. TCSSCBR1 and TCSSCBR2 are both blocked by the circuit breaker open position. If X100-PO3 is used for closing the circuit breaker, TCSSCBR1 needs to be blocked by circuit
143
Section 3
REF611 standardized configurations
3.6.4.3
1MRS757456 D breaker close position (OUT_1 connection=IN_1). If X100-PO4 is used for closing the circuit breaker, TCSSCBR2 needs to be blocked by the circuit breaker close position (OUT_2 connection=IN_1).
SELGAPC1_OUT_2
SELGAPC1_OUT_3
CB Closed Position
IN_1
SELGAPC2
OUT_1
CB Open Position
IN_2 OUT_2
GUID-A7E79381-BE10-41E9-BCBC-AC27E8E64CBB V1 EN
Figure 126: SELGAPC2
TCSSCBR1_BLOCK
TCSSCBR2_BLOCK
DPHLPDOC1_START
DPHLPDOC2_START
DPHHPDOC1_START
PHIPTOC1_START
EFHPTOC1_START
DEFLPDEF1_START
DEFLPDEF2_START
DEFHPDEF1_START
ROVPTOV1_START
ROVPTOV2_START
ROVPTOV3_START
INTRPTEF1_START
NSPTOC1_START
NSPTOC2_START
PDNSPTOC1_START
T1PTTR1_START
OSWGAPC17
OSWGAPC17 is used to route the protection function start signals to the
StartDLYD input of the switch onto fault function CBPSOF. CBPSOF provides an instantaneous trip or a time delayed trip when closing the breaker while a fault exists.
OSWGAPC17 output is connected to CBPSOF function indicating the detected fault.
IN_1
IN_2
IN_3
IN_4
IN_5
IN_6
IN_7
IN_13
IN_14
IN_15
IN_16
IN_8
IN_9
IN_10
IN_11
IN_12
OSWGAPC17
OUT
Start DLYD
CBPSOF1_INIT
GUID-1C9AD42F-21FA-4539-93EE-CF0EFA4EB4B0 V2 EN
Figure 127: OSWGAPC17
Binary outputs and LEDs
In configuration C, signals are routed to binary outputs and LEDs are configured by
OSWGAPC. The 16 OSWGAPC instances are categorized in four groups, including
144 REF611
Application Manual
1MRS757456 D
Section 3
REF611 standardized configurations two master trip, four start, four trip and six alarm signals. The OSWGAPC output is connected with binary outputs and LEDs via SELGAPC3 and SELGAPC4.
• SELGAPC3 is used to configure OSWGAPC signals to the protection relay's binary outputs. SELGAPC4 is used to configure OSWGAPC signals to LEDs.
• OSWGAPC1 and OSWGAPC2 are used for the Master trip. The inputs are routed from the protection function's operate and the circuit breaker failure's re-trip.
• OSWGAPC3 to OSWGAPC6 are used for the start signal. The inputs are start signals routed from the protection functions.
• OSWGAPC7 to OSWGAPC10 are used for the trip signal. The inputs are operation signals routed from the protection functions.
• OSWGAPC11 to OSWGAPC16 are used for the alarm signal. The inputs are alarm signals routed from the protection and monitoring functions.
REF611
Application Manual
145
Section 3
REF611 standardized configurations
1MRS757456 D
DPHLPDOC1_OPERATE
DPHLPDOC2_OPERATE
DPHHPDOC1_OPERATE
PHIPTOC1_OPERATE
EFHPTOC1_OPERATE
DEFLPDEF1_OPERATE
DEFLPDEF2_OPERATE
DEFHPDEF1_OPERATE
ROVPTOV1_OPERATE
ROVPTOV2_OPERATE
ROVPTOV3_OPERATE
INTRPTEF1_OPERATE
NSPTOC1_OPERATE
NSPTOC2_OPERATE
PDNSPTOC1_OPERATE
T1PTTR1_OPERATE
CCBRBRF1_TRRET
CBPSOF1_OPERATE
DPHLPDOC1_START
DPHLPDOC2_START
DPHHPDOC1_START
PHIPTOC1_START
EFHPTOC1_START
DEFLPDEF1_START
DEFLPDEF2_START
DEFHPDEF1_START
ROVPTOV1_START
ROVPTOV2_START
ROVPTOV3_START
INTRPTEF1_START
NSPTOC1_START
NSPTOC2_START
PDNSPTOC1_START
T1PTTR1_START
OSWGAPC1
Master Trip 1
TRPPTRC1
OSWGAPC2
Master Trip 2
TRPPTRC2
OSWGAPC3
OSWGAPC4
OSWGAPC5
OSWGAPC6
Start 1
IN1
TPGAPC1
OUT1
Start 2 IN2 OUT2
Start 3
IN1
TPGAPC2
OUT1
Start 4
IN2
OUT2
DPHLPDOC1_OPERATE
DPHLPDOC2_OPERATE
DPHHPDOC1_OPERATE
PHIPTOC1_OPERATE
EFHPTOC1_OPERATE
DEFLPDEF1_OPERATE
DEFLPDEF2_OPERATE
DEFHPDEF1_OPERATE
ROVPTOV1_OPERATE
ROVPTOV2_OPERATE
ROVPTOV3_OPERATE
INTRPTEF1_OPERATE
NSPTOC1_OPERATE
NSPTOC2_OPERATE
PDNSPTOC1_OPERATE
T1PTTR1_OPERATE
OSWGAPC7
OSWGAPC8
OSWGAPC9
OSWGAPC10
Trip 1
IN1
TPGAPC3
OUT1
Trip 2
IN2
Trip 3
OUT2
IN1
TPGAPC4
OUT1
Trip 4
IN2 OUT2
OSWGAPC11
T1PTTR1_ALARM
RDRE_TRIGGERED
TCSSCBR1_ALARM
TCSSCBR2_ALARM
CCBRBRF1_TRBU
CCBRBRF1_TRRET
DARREC1_INPRO
DARREC1_LOCKED
DARREC1_PROT_CRD
DARREC1_UNSUC_RECL
DARREC1_AR_ON
DARREC1_READY
SELGAPC1_OUT_9
TRPPTRC1_CL_LKOUT
TRPPTRC2_CL_LKOUT
OSWGAPC12
OSWGAPC13
OSWGAPC14
OSWGAPC15
OSWGAPC16
GUID-35DDDC63-355E-436A-AF9A-9D05D017083E V2 EN
Figure 128: Binary outputs
Alarm 1
IN1
TPGAPC5
OUT1
Alarm 2
IN2 OUT2
Alarm 3
IN1
TPGAPC6
OUT1
Alarm 4
IN2 OUT2
Alarm 5 IN1
TPGAPC7
OUT1
Alarm 6
IN2 OUT2
SELGAPC3
X100 PO1
X100 PO2
X100 SO1
X100 SO2
X100 PO3
X100 PO4
146 REF611
Application Manual
1MRS757456 D
REF611
Application Manual
Section 3
REF611 standardized configurations
DPHLPDOC1_OPERATE
DPHLPDOC2_OPERATE
DPHHPDOC1_OPERATE
PHIPTOC1_OPERATE
EFHPTOC1_OPERATE
DEFLPDEF1_OPERATE
DEFLPDEF2_OPERATE
DEFHPDEF1_OPERATE
ROVPTOV1_OPERATE
ROVPTOV2_OPERATE
ROVPTOV3_OPERATE
INTRPTEF1_OPERATE
NSPTOC1_OPERATE
NSPTOC2_OPERATE
PDNSPTOC1_OPERATE
T1PTTR1_OPERATE
CCBRBRF1_TRRET
CBPSOF1_OPERATE
DPHLPDOC1_START
DPHLPDOC2_START
DPHHPDOC1_START
PHIPTOC1_START
EFHPTOC1_START
DEFLPDEF1_START
DEFLPDEF2_START
DEFHPDEF1_START
ROVPTOV1_START
ROVPTOV2_START
ROVPTOV3_START
INTRPTEF1_START
NSPTOC1_START
NSPTOC2_START
PDNSPTOC1_START
T1PTTR1_START
DPHLPDOC1_OPERATE
DPHLPDOC2_OPERATE
DPHHPDOC1_OPERATE
PHIPTOC1_OPERATE
EFHPTOC1_OPERATE
DEFLPDEF1_OPERATE
DEFLPDEF2_OPERATE
DEFHPDEF1_OPERATE
ROVPTOV1_OPERATE
ROVPTOV2_OPERATE
ROVPTOV3_OPERATE
INTRPTEF1_OPERATE
NSPTOC1_OPERATE
NSPTOC2_OPERATE
PDNSPTOC1_OPERATE
T1PTTR1_OPERATE
OSWGAPC1
Master Trip 1
TRPPTRC1
OSWGAPC2
Master Trip 2
TRPPTRC2
OSWGAPC3
Start 1
OSWGAPC4
Start 2
OSWGAPC5
Start 3
OSWGAPC6
Start 4
OSWGAPC7
Trip 1
OSWGAPC8
Trip 2
OSWGAPC9
Trip 3
OSWGAPC10
Trip 4
SELGAPC4
T1PTTR1_ALARM
RDRE_TRIGGERED
TCSSCBR1_ALARM
TCSSCBR2_ALARM
CCBRBRF1_TRBU
CCBRBRF1_TRRET
DARREC1_INPRO
DARREC1_LOCKED
DARREC1_PROT_CRD
DARREC1_UNSUC_RECL
DARREC1_AR_ON
DARREC1_READY
SELGAPC1_OUT_9
TRPPTRC1_CL_LKOUT
TRPPTRC2_CL_LKOUT
OSWGAPC11
Alarm 1
OSWGAPC12
Alarm 2
OSWGAPC13
Alarm 3
OSWGAPC14
Alarm 4
OSWGAPC15
Alarm 5
OSWGAPC16
Alarm 6
GUID-1F4CCBC9-4EAC-4E46-92DD-4A1DB0D5AACF V2 EN
Figure 129: LEDs
SELGAPC3
SELGAPC3 is used to configure the OSWGAPC outputs to the protection relay binary outputs. Master trip signals are connected to SELGAPC3 via TRPPTRC. Start, trip and alarm signals are connected to SELGAPC3 via TPGAPC. TPGAPC are timers and used for setting the minimum pulse length for the outputs.
LED1
LED2
LED3
LED4
LED5
LED6
LED7
LED8
147
Section 3
REF611 standardized configurations
1MRS757456 D
SELGAPC3 outputs are connected to X100 binary outputs.
CBXCBR_EXE_OP
DARREC_OPEN_CB
TRPPTRC1_TRIP
CBXCBR_EXE_CL
DARREC_CLOSE_CB
CB Open 1
IN_1
SELGAPC3
OUT_1
CB Open 2
IN_2 OUT_2
CB Close
IN_3
OUT_3
Backup Trip
IN_4 OUT_4
IN1 OUT1
TPGAPC1
IN2 OUT2
St art 1
St art 2
IN_5
IN_6
OUT_5
OUT_6
IN1 OUT1
TPGAPC2
IN2 OUT2
St art 3
St art 4
IN_7
IN_8
IN1 OUT1
TPGAPC3
IN2 OUT2
Trip 1
Trip 2
IN_9
IN_10
IN1 OUT1
TPGAPC4
IN2 OUT2
Trip 3
Trip 4
IN1 OUT1
TPGAPC5
IN2 OUT2
Alarm 1
Alarm 2
IN_11
IN_12
IN_13
IN_14
IN1 OUT1
TPGAPC6
IN2 OUT2
Alarm 3
Alarm 4
IN_15
IN_16
IN1 OUT1
TPGAPC7
IN2 OUT2
Alarm 5
Alarm 6
IN_17
IN_18
X100 PO1
X100 PO2
X100 SO1
X100 SO2
X100 PO3
X100 PO4
GUID-39EB9D37-37DB-4DFF-ADFE-6E6B04AD0C97 V1 EN
Figure 130: SELGAPC3
SELGAPC4
SELGAPC4 is used to configure the OSWGAPC outputs to LEDs. Master trip signals are connected to SELGAPC4 via TRPPTRC. Start, trip and alarm signals are connected to SELGAPC4 directly. SELGAPC4 outputs are connected to programmable LED1 to LED8.
148 REF611
Application Manual
1MRS757456 D
Section 3
REF611 standardized configurations
CBXCBR_EXE_OP
DARREC_OPEN_CB
TRPPTRC1_TRIP
TRPPTRC2_TRIP
CBXCBR_EXE_CL
DARREC_CLOSE_CB
CCBRBRF1_TRBU
OSWGAPC3_OUT
OSWGAPC4_OUT
OSWGAPC5_OUT
OSWGAPC6_OUT
OSWGAPC7_OUT
OSWGAPC8_OUT
OSWGAPC9_OUT
OSWGAPC10_OUT
OSWGAPC11_OUT
OSWGAPC12_OUT
OSWGAPC13_OUT
OSWGAPC14_OUT
OSWGAPC15_OUT
OSWGAPC16_OUT
CB Open 1
IN_1
CB Open 2
IN_2
SELGAPC4
CB Close
IN_3
Backup Trip
IN_4
Start 1
IN_5
Start 2
IN_6
Start 3
IN_7
Start 4
IN_8
Trip 1
IN_9
Trip 2
IN_10
Trip 3
IN_11
Trip 4
IN_12
Alarm 1
IN_13
Alarm 2
IN_14
OUT_1
OUT_2
OUT_3
OUT_4
OUT_5
OUT_6
OUT_7
OUT_8
Alarm 3
IN_15
Alarm 4
IN_16
Alarm 5
IN_17
Alarm 6
IN_18
LED1
LED2
LED3
LED4
LED5
LED6
LED7
LED8
GUID-73BAED6A-3D38-4C94-AC80-4CBCECF1AD10 V1 EN
Figure 131: SELGAPC4
Master trip OSWGAPCs
OSWGAPC1 and OSWGAPC2 are used to route the protection function operate signals to Master trip. OSWGAPC1 and OSWGAPC2 have the same inputs from the protection function's operate signals. The output is connected to TRPPTRC function.
The default connections for OSWGAPC1 and OSWGAPC2 are different.
REF611
Application Manual
149
Section 3
REF611 standardized configurations
DPHLPDOC1_OPERATE
DPHLPDOC2_OPERATE
DPHHPDOC1_OPERATE
PHIPTOC1_OPERATE
EFHPTOC1_OPERATE
DEFLPDEF1_OPERATE
DEFLPDEF2_OPERATE
DEFHPDEF1_OPERATE
ROVPTOV1_OPERATE
ROVPTOV2_OPERATE
ROVPTOV3_OPERATE
INTRPTEF1_OPERATE
NSPTOC1_OPERATE
NSPTOC2_OPERATE
PDNSPTOC1_OPERATE
T1PTTR1_OPERATE
CCBRBRF1_TRRET
CBPSOF1_OPERATE
IN_6
IN_7
IN_8
IN_9
IN_10
IN_11
IN_12
IN_13
IN_14
IN_15
IN_16
IN_17
IN_18
IN_1
IN_2
IN_3
IN_4
IN_5
OSWGAPC1
OUT
Master trip 1
TRPPTRC 1_OPERATE
GUID-5B52C72B-F4DE-4C22-8445-9814790EDCC5 V2 EN
Figure 132: OSWGAPC1
1MRS757456 D
150 REF611
Application Manual
1MRS757456 D
Section 3
REF611 standardized configurations
DPHLPDOC1_OPERATE
DPHLPDOC2_OPERATE
DPHHPDOC1_OPERATE
PHIPTOC1_OPERATE
EFHPTOC1_OPERATE
DEFLPDEF1_OPERATE
DEFLPDEF2_OPERATE
DEFHPDEF1_OPERATE
ROVPTOV1_OPERATE
ROVPTOV2_OPERATE
ROVPTOV3_OPERATE
INTRPTEF1_OPERATE
NSPTOC1_OPERATE
NSPTOC2_OPERATE
PDNSPTOC1_OPERATE
T1PTTR1_OPERATE
CCBRBRF1_TRRET
CBPSOF1_OPERATE
IN_6
IN_7
IN_8
IN_9
IN_10
IN_11
IN_12
IN_13
IN_14
IN_15
IN_16
IN_17
IN_18
IN_1
IN_2
IN_3
IN_4
IN_5
OSWGAPC2
OUT
Master trip 1
TRPPTRC2_OPERATE
GUID-DB9586F1-284E-449B-8D3F-BD6EFD237C81 V2 EN
Figure 133: OSWGAPC2
Start OSWGAPCs
OSWGAPC instances 3...6 are used to configure the protection start signals. These four OSWGAPCs have the same inputs from the protection function start signals. The output is routed to SELGAPC3 via TPGAPC timer, and routed to SELGAPC4 directly.
REF611
Application Manual
151
Section 3
REF611 standardized configurations
DPHLPDOC1_START
DPHLPDOC2_START
DPHHPDOC1_START
PHIPTOC1_START
EFHPTOC1_START
DEFLPDEF1_START
DEFLPDEF2_START
DEFHPDEF1_START
ROVPTOV1_START
ROVPTOV2_START
ROVPTOV3_START
INTRPTEF1_START
NSPTOC1_START
NSPTOC2_START
PDNSPTOC1_START
T1PTTR1_START
IN_1
IN_2
IN_3
IN_4
IN_5
IN_6
IN_7
IN_8
IN_9
IN_10
IN_11
IN_12
IN_13
IN_14
IN_15
IN_16
OSWGAPC3
OUT
Start 1 TPGAPC1_IN1
SELGAPC4_IN_5
GUID-673E6174-04C6-48C9-A90D-43DBF1F6DC22 V2 EN
Figure 134: OSWGAPC3
1MRS757456 D
152 REF611
Application Manual
1MRS757456 D
Section 3
REF611 standardized configurations
DPHLPDOC1_START
DPHLPDOC2_START
DPHHPDOC1_START
PHIPTOC1_START
EFHPTOC1_START
DEFLPDEF1_START
DEFLPDEF2_START
DEFHPDEF1_START
ROVPTOV1_START
ROVPTOV2_START
ROVPTOV3_START
INTRPTEF1_START
NSPTOC1_START
NSPTOC2_START
PDNSPTOC1_START
T1PTTR1_START
IN_1
IN_2
IN_3
IN_4
IN_5
IN_6
IN_7
IN_8
IN_9
IN_10
IN_11
IN_12
IN_13
IN_14
IN_15
IN_16
OSWGAPC4
OUT
Start 2 TPGAPC1_IN2
SELGAPC4_IN_6
GUID-D80D1396-CBC2-401A-B867-4B3FE5B242A4 V2 EN
Figure 135: OSWGAPC4
REF611
Application Manual
153
Section 3
REF611 standardized configurations
DPHLPDOC1_START
DPHLPDOC2_START
DPHHPDOC1_START
PHIPTOC1_START
EFHPTOC1_START
DEFLPDEF1_START
DEFLPDEF2_START
DEFHPDEF1_START
ROVPTOV1_START
ROVPTOV2_START
ROVPTOV3_START
INTRPTEF1_START
NSPTOC1_START
NSPTOC2_START
PDNSPTOC1_START
T1PTTR1_START
IN_1
IN_2
IN_3
IN_4
IN_5
IN_6
IN_7
IN_8
IN_9
IN_10
IN_11
IN_12
IN_13
IN_14
IN_15
IN_16
OSWGAPC5
OUT
Start 3 TPGAPC2_IN1
SELGAPC4_IN_7
GUID-FFACAC81-A738-4E88-86D9-B4886C0ADD25 V2 EN
Figure 136: OSWGAPC5
1MRS757456 D
154 REF611
Application Manual
1MRS757456 D
Section 3
REF611 standardized configurations
DPHLPDOC1_START
DPHLPDOC2_START
DPHHPDOC1_START
PHIPTOC1_START
EFHPTOC1_START
DEFLPDEF1_START
DEFLPDEF2_START
DEFHPDEF1_START
ROVPTOV1_START
ROVPTOV2_START
ROVPTOV3_START
INTRPTEF1_START
NSPTOC1_START
NSPTOC2_START
PDNSPTOC1_START
T1PTTR1_START
IN_1
IN_2
IN_3
IN_4
IN_5
IN_6
IN_7
IN_8
IN_9
IN_10
IN_11
IN_12
IN_13
IN_14
IN_15
IN_16
OSWGAPC6
OUT
Start 4
TPGAPC2_IN2
SELGAPC4_IN_8
GUID-8AA508D7-A5A3-40FA-9C32-A6701986BFB2 V2 EN
Figure 137: OSWGAPC6
Trip OSWGAPCs
OSWGAPC instances 7...10 are used to configure the protection operate signals which belong to the trip group. These four OSWGAPCs have same inputs from the operate signals of the protection functions. The output is routed to SELGAPC3 via
TPGAPC timer, and routed to SELGAPC4 directly.
REF611
Application Manual
155
Section 3
REF611 standardized configurations
DPHLPDOC1_OPERATE
DPHLPDOC2_OPERATE
DPHHPDOC1_OPERATE
PHIPTOC1_OPERATE
EFHPTOC1_OPERATE
DEFLPDEF1_OPERATE
DEFLPDEF2_OPERATE
DEFHPDEF1_OPERATE
ROVPTOV1_OPERATE
ROVPTOV2_OPERATE
ROVPTOV3_OPERATE
INTRPTEF1_OPERATE
NSPTOC1_OPERATE
NSPTOC2_OPERATE
PDNSPTOC1_OPERATE
T1PTTR1_OPERATE
CBPSOF1_OPERATE
IN_1
IN_2
IN_3
IN_4
IN_5
IN_6
IN_7
IN_14
IN_15
IN_16
IN_17
IN_8
IN_9
IN_10
IN_11
IN_12
IN_13
OSWGAPC7
OUT
Trip 1 TPGAPC3_IN1
SELGAPC4_IN_9
GUID-BC917C5B-E13C-4BCC-B13B-8BD390F6258A V2 EN
Figure 138: OSWGAPC7
1MRS757456 D
156 REF611
Application Manual
1MRS757456 D
Section 3
REF611 standardized configurations
DPHLPDOC1_OPERATE
DPHLPDOC2_OPERATE
DPHHPDOC1_OPERATE
PHIPTOC1_OPERATE
EFHPTOC1_OPERATE
DEFLPDEF1_OPERATE
DEFLPDEF2_OPERATE
DEFHPDEF1_OPERATE
ROVPTOV1_OPERATE
ROVPTOV2_OPERATE
ROVPTOV3_OPERATE
INTRPTEF1_OPERATE
NSPTOC1_OPERATE
NSPTOC2_OPERATE
PDNSPTOC1_OPERATE
T1PTTR1_OPERATE
CBPSOF1_OPERATE
GUID-31BE770B-EC69-47CC-A3EC-F477B3C8558F V2 EN
Figure 139: OSWGAPC8
IN_1
IN_2
IN_3
IN_4
IN_5
IN_6
IN_7
IN_14
IN_15
IN_16
IN_17
IN_8
IN_9
IN_10
IN_11
IN_12
IN_13
OSWGAPC8
OUT
Trip 2 TPGAPC3_IN2
SELGAPC4_IN_10
REF611
Application Manual
157
Section 3
REF611 standardized configurations
DPHLPDOC1_OPERATE
DPHLPDOC2_OPERATE
IN_1
IN_2
DPHHPDOC1_OPERATE
PHIPTOC1_OPERATE
EFHPTOC1_OPERATE
DEFLPDEF1_OPERATE
DEFLPDEF2_OPERATE
DEFHPDEF1_OPERATE
ROVPTOV1_OPERATE
ROVPTOV2_OPERATE
ROVPTOV3_OPERATE
INTRPTEF1_OPERATE
NSPTOC1_OPERATE
NSPTOC2_OPERATE
PDNSPTOC1_OPERATE
T1PTTR1_OPERATE
CBPSOF1_OPERATE
IN_3
IN_4
IN_5
IN_6
IN_7
IN_8
IN_9
IN_10
IN_11
IN_12
IN_13
IN_14
IN_15
IN_16
IN_17
GUID-9F8ACEBF-BF13-4C3D-8671-1465613ABE28 V2 EN
Figure 140: OSWGAPC9
OSWGAPC9
OUT
Trip 3 TPGAPC4_IN1
SELGAPC4_IN_11
1MRS757456 D
158 REF611
Application Manual
1MRS757456 D
Section 3
REF611 standardized configurations
DPHLPDOC1_OPERATE
DPHLPDOC2_OPERATE
DPHHPDOC1_OPERATE
PHIPTOC1_OPERATE
EFHPTOC1_OPERATE
DEFLPDEF1_OPERATE
DEFLPDEF2_OPERATE
DEFHPDEF1_OPERATE
ROVPTOV1_OPERATE
ROVPTOV2_OPERATE
ROVPTOV3_OPERATE
INTRPTEF1_OPERATE
NSPTOC1_OPERATE
NSPTOC2_OPERATE
PDNSPTOC1_OPERATE
T1PTTR1_OPERATE
CBPSOF1_OPERATE
IN_1
IN_2
IN_3
IN_4
IN_5
IN_6
IN_7
IN_14
IN_15
IN_16
IN_17
IN_8
IN_9
IN_10
IN_11
IN_12
IN_13
OSWGAPC10
OUT
Trip 4 TPGAPC4_IN2
SELGAPC4_IN_12
GUID-94A627E8-AF2B-412F-BFA8-8A20E76C8250 V2 EN
Figure 141: OSWGAPC10
Alarm OSWGAPC11...16
OSWGAPC instances 11...16 are used to configure the alarm signals which belong to the alarm group. These six OSWGAPCs have same inputs from the alarm signals. The output is routed to SELGAPC3 via TPGAPC timer, and routed to SELGAPC4 directly.
REF611
Application Manual
159
Section 3
REF611 standardized configurations
T1PTTR1_ALARM
RDRE_TRIGGERED
IN_1
IN_2
TCSSCBR1_ALARM
TCSSCBR2_ALARM
IN_3
IN_4
CCBRBRF1_TRBU
CCBRBRF1_TRRET
IN_5
IN_6
DARREC1_INPRO IN_7
DARREC1_LOCKED
DARREC1_PROT_CRD
DARREC1_UNSUC_RECL
DARREC1_AR_ON
DARREC1_READY
SELGAPC1_OUT_9
TRPPTRC1_CL_LKOUT
IN_8
IN_9
IN_10
IN_11
IN_12
External Trip
IN_13
TRPPTRC2_CL_LKOUT
IN_14
IN_15
OSWGAPC11
OUT
Alarm 1 TPGAPC5_IN1
SELGAPC4_IN_13
GUID-0A739088-11AB-486F-83D9-A42FFFAD9AD2 V1 EN
Figure 142: OSWGAPC11
1MRS757456 D
160 REF611
Application Manual
1MRS757456 D
Section 3
REF611 standardized configurations
T1PTTR1_ALARM
RDRE_TRIGGERED
IN_1
IN_2
TCSSCBR1_ALARM
TCSSCBR2_ALARM
IN_3
IN_4
CCBRBRF1_TRBU
CCBRBRF1_TRRET
IN_5
IN_6
DARREC1_INPRO IN_7
DARREC1_LOCKED
DARREC1_PROT_CRD
DARREC1_UNSUC_RECL
DARREC1_AR_ON
DARREC1_READY
SELGAPC1_OUT_9
TRPPTRC1_CL_LKOUT
TRPPTRC2_CL_LKOUT
IN_8
IN_9
IN_10
IN_11
IN_12
External Trip
IN_13
IN_14
IN_15
OSWGAPC12
OUT
Alarm 2 TPGAPC5_IN2
SELGAPC4_IN_14
GUID-5ADDAA87-90E6-4E5C-96E5-BF9AF4351CDB V1 EN
Figure 143: OSWGAPC12
REF611
Application Manual
161
Section 3
REF611 standardized configurations
T1PTTR1_ALARM
RDRE_TRIGGERED
IN_1
IN_2
TCSSCBR1_ALARM
TCSSCBR2_ALARM
IN_3
IN_4
CCBRBRF1_TRBU
CCBRBRF1_TRRET
IN_5
IN_6
DARREC1_INPRO IN_7
DARREC1_LOCKED
DARREC1_PROT_CRD
DARREC1_UNSUC_RECL
DARREC1_AR_ON
DARREC1_READY
SELGAPC1_OUT_9
TRPPTRC1_CL_LKOUT
IN_8
IN_9
IN_10
IN_11
IN_12
External Trip
IN_13
TRPPTRC2_CL_LKOUT
IN_14
IN_15
OSWGAPC13
OUT
Alarm 3 TPGAPC6_IN1
SELGAPC4_IN_15
GUID-918198BA-427F-4187-90DD-1C4B2A029ED1 V1 EN
Figure 144: OSWGAPC13
1MRS757456 D
162 REF611
Application Manual
1MRS757456 D
Section 3
REF611 standardized configurations
T1PTTR1_ALARM
RDRE_TRIGGERED
IN_1
IN_2
TCSSCBR1_ALARM
TCSSCBR2_ALARM
IN_3
IN_4
CCBRBRF1_TRBU
CCBRBRF1_TRRET
IN_5
IN_6
DARREC1_INPRO IN_7
DARREC1_LOCKED
DARREC1_PROT_CRD
DARREC1_UNSUC_RECL
DARREC1_AR_ON
DARREC1_READY
SELGAPC1_OUT_9
TRPPTRC1_CL_LKOUT
IN_8
IN_9
IN_10
IN_11
IN_12
External Trip
IN_13
TRPPTRC2_CL_LKOUT
IN_14
IN_15
OSWGAPC14
OUT
Alarm 4 TPGAPC6_IN2
SELGAPC4_IN_16
GUID-84DCF27F-CB37-4AE1-B05B-C476C5B25F31 V1 EN
Figure 145: OSWGAPC14
REF611
Application Manual
163
Section 3
REF611 standardized configurations
T1PTTR1_ALARM
RDRE_TRIGGERED
IN_1
IN_2
TCSSCBR1_ALARM
TCSSCBR2_ALARM
IN_3
IN_4
CCBRBRF1_TRBU
CCBRBRF1_TRRET
IN_5
IN_6
DARREC1_INPRO IN_7
DARREC1_LOCKED
DARREC1_PROT_CRD
DARREC1_UNSUC_RECL
DARREC1_AR_ON
DARREC1_READY
SELGAPC1_OUT_9
TRPPTRC1_CL_LKOUT
IN_8
IN_9
IN_10
IN_11
IN_12
External Trip
IN_13
TRPPTRC2_CL_LKOUT
IN_14
IN_15
OSWGAPC15
OUT
Alarm 5 TPGAPC7_IN1
SELGAPC4_IN_17
GUID-09F139B5-AE68-43DB-8419-7C13BDDCD500 V1 EN
Figure 146: OSWGAPC15
1MRS757456 D
164 REF611
Application Manual
1MRS757456 D
3.6.4.4
Section 3
REF611 standardized configurations
T1PTTR1_ALARM
RDRE_TRIGGERED
IN_1
IN_2
TCSSCBR1_ALARM
TCSSCBR2_ALARM
IN_3
IN_4
CCBRBRF1_TRBU
CCBRBRF1_TRRET
IN_5
IN_6
DARREC1_INPRO IN_7
DARREC1_LOCKED
DARREC1_PROT_CRD
DARREC1_UNSUC_RECL
DARREC1_AR_ON
DARREC1_READY
SELGAPC1_OUT_9
TRPPTRC1_CL_LKOUT
IN_8
IN_9
IN_10
IN_11
IN_12
External Trip
IN_13
TRPPTRC2_CL_LKOUT
IN_14
IN_15
OSWGAPC16
OUT
Alarm 6 TPGAPC7_IN2
SELGAPC4_IN_18
GUID-85582396-2EEA-4A14-AAD2-1965D3CFFCAF V1 EN
Figure 147: OSWGAPC16
GOOSE
In the configuration, there are 20 GOOSERCV_BIN functions. Each
GOOSERVC_BIN function can be connected to one received binary GOOSE signal.
The signal connection can be configured in PCM600.
• GOOSERCV_BIN instances 0 and 1 are used for blocking protection functions.
Signals from these two GOOSERCV_BINs are connected to ISWGAPC9.
ISWGAPC9 is used to configure which protection function block is blocked.
• GOOSERCV_BIN instances 2 and 3 are used for tripping from GOOSE. Signals from these two GOOSERCV_BINs are connected to TRPPTRC1 and
TRPPTRC2 trip.
• GOOSERCV_BIN instances 4 to 19 are used for blocking circuit breaker operation. Signals from these 16 GOOSERCV_BINs are connected to
ISWGAPC10. ISWGAPC10 is used to configure the GOOSE input signal to block the circuit breaker open or close operation.
REF611
Application Manual
165
Section 3
REF611 standardized configurations
1MRS757456 D
GOOSERCV_BIN:0
GOOSERCV_BIN:1
GOOSERCV_BIN:2
OR
GOOSE Blcoking
ISWGAPC9
DPHLPDOC1_BLOCK
DPHLPDOC2_BLOCK
DPHHPDOC1_BLOCK
PHIPTOC1_BLOCK
EFHPTOC1_BLOCK
DEFLPDEF1_BLOCK
DEFLPDEF2_BLOCK
DEFHPDEF1_BLOCK
ROVPTOV1_BLOCK
ROVPTOV2_BLOCK
ROVPTOV3_BLOCK
INTRPTEF1_BLOCK
NSPTOC1_BLOCK
NSPTOC2_BLOCK
PDNSPTOC1_BLOCK
T1PTTR1_BLOCK
CBPSOF1_BLOCK
OR
GOOSE
External Trip TRPPTRC1_OPERATE
TRPPTRC2_OPERATE
GOOSERCV_BIN:3
GOOSERCV_BIN:4
GOOSERCV_BIN:5 OR
GOOSE Block CB
ISWGAPC10
CBXCBR1_BLK_CLOSE
CBXCBR1_BLK_OPEN
GOOSERCV_BIN:19
GUID-D433642C-DAC3-4B3F-9076-87393BD13B27 V2 EN
Figure 148: GOOSE overview
ISWGAPC9
ISWGAPC9 is used to configure which protection functions can be blocked by the received GOOSE signals. ISWGAPC9 inputs are received GOOSE signals from
GOOSERCV_BIN:0 and GOOSERCV_BIN:1. The outputs are connected to block inputs of the protection functions.
166 REF611
Application Manual
1MRS757456 D
Section 3
REF611 standardized configurations
GOOSERCV_BIN:0_OUT
GOOSERCV_BIN:1_OUT
GOOSE Blocking
IN
ISWGAPC9
OUT_1
OUT_2
OUT_3
OUT_4
OUT_5
OUT_6
OUT_7
OUT_8
OUT_9
OUT_10
OUT_11
OUT_12
OUT_13
OUT_14
OUT_15
OUT_16
OUT_17
GUID-8C895BF3-069C-40A3-A0F9-22AF387D07D7 V2 EN
Figure 149: ISWGAPC9
DPHLPDOC1_BLOCK
DPHLPDOC2_BLOCK
DPHHPDOC1_BLOCK
PHIPTOC1_BLOCK
EFHPTOC1_BLOCK
DEFLPDEF1_BLOCK
DEFLPDEF2_BLOCK
DEFHPDEF1_BLOCK
ROVPTOV1_BLOCK
ROVPTOV2_BLOCK
ROVPTOV3_BLOCK
INTRPTEF1_BLOCK
NSPTOC1_BLOCK
NSPTOC2_BLOCK
PDNSPTOC1_BLOCK
T1PTTR1_BLOCK
CBPSOF1_BLOCK
ISWGAPC10
ISWGAPC10 is used to block the circuit breaker operation from the received GOOSE signals. ISWGAPC10 inputs are received GOOSE signals from GOOSERCV_BIN:
4 to GOOSERCV_BIN:19. The outputs are connected to block the circuit breaker's close and open operation.
GOOSERCV_BIN:4_OUT
GOOSERCV_BIN:5_OUT
GOOSERCV_BIN:6_OUT
...
GOOSERCV_BIN:19_OUT
GOOSE Block CB IN
GUID-4A456CEE-F585-4BAA-BB5A-81347A59F5A8 V1 EN
Figure 150: ISWGAPC10
ISWGAPC10
OUT_1
OUT_2
CBXCBR1_BLK_CLOSE
CBXCBR1_BLK_OPEN
REF611
Application Manual
167
168
1MRS757456 D
Section 4
Requirements for measurement transformers
Section 4 Requirements for measurement transformers
4.1
4.1.1
4.1.1.1
REF611
Application Manual
Current transformers
Current transformer requirements for non-directional overcurrent protection
For reliable and correct operation of the overcurrent protection, the CT has to be chosen carefully. The distortion of the secondary current of a saturated CT may endanger the operation, selectivity, and co-ordination of protection. However, when the CT is correctly selected, a fast and reliable short circuit protection can be enabled.
The selection of a CT depends not only on the CT specifications but also on the network fault current magnitude, desired protection objectives, and the actual CT burden. The protection settings of the protection relay should be defined in accordance with the CT performance as well as other factors.
Current transformer accuracy class and accuracy limit factor
The rated accuracy limit factor (F n
) is the ratio of the rated accuracy limit primary current to the rated primary current. For example, a protective current transformer of type 5P10 has the accuracy class 5P and the accuracy limit factor 10. For protective current transformers, the accuracy class is designed by the highest permissible percentage composite error at the rated accuracy limit primary current prescribed for the accuracy class concerned, followed by the letter "P" (meaning protection).
Table 26:
Accuracy class
5P
10P
Limits of errors according to IEC 60044-1 for protective current transformers
Current error at rated primary current (%)
±1
±3
Phase displacement at rated primary current minutes centiradians
±60 ±1.8
-
Composite error at rated accuracy limit primary current (%)
5
10
The accuracy classes 5P and 10P are both suitable for non-directional overcurrent protection. The 5P class provides a better accuracy. This should be noted also if there are accuracy requirements for the metering functions (current metering, power metering, and so on) of the protection relay.
The CT accuracy primary limit current describes the highest fault current magnitude at which the CT fulfils the specified accuracy. Beyond this level, the secondary current
169
Section 4
Requirements for measurement transformers
1MRS757456 D of the CT is distorted and it might have severe effects on the performance of the protection relay.
In practise, the actual accuracy limit factor (F a
) differs from the rated accuracy limit factor (F n
) and is proportional to the ratio of the rated CT burden and the actual CT burden.
The actual accuracy limit factor is calculated using the formula:
F a
≈ F n
×
S in
+ S n
S in
+ S
A071141 V1 EN
F n
S in
S the accuracy limit factor with the nominal external burden S n the internal secondary burden of the CT the actual external burden
4.1.1.2
170
Non-directional overcurrent protection
The current transformer selection
Non-directional overcurrent protection does not set high requirements on the accuracy class or on the actual accuracy limit factor (F a
) of the CTs. It is, however, recommended to select a CT with F a
of at least 20.
The nominal primary current I
1n
should be chosen in such a way that the thermal and dynamic strength of the current measuring input of the protection relay is not exceeded. This is always fulfilled when
I
1n
> I kmax
/ 100,
I kmax
is the highest fault current.
The saturation of the CT protects the measuring circuit and the current input of the protection relay. For that reason, in practice, even a few times smaller nominal primary current can be used than given by the formula.
Recommended start current settings
If I kmin
is the lowest primary current at which the highest set overcurrent stage is to operate, the start current should be set using the formula:
Current start value < 0.7 × (I kmin
/ I
1n
)
I
1n
is the nominal primary current of the CT.
The factor 0.7 takes into account the protection relay inaccuracy, current transformer errors, and imperfections of the short circuit calculations.
REF611
Application Manual
1MRS757456 D
4.1.1.3
Section 4
Requirements for measurement transformers
The adequate performance of the CT should be checked when the setting of the high set stage overcurrent protection is defined. The operate time delay caused by the CT saturation is typically small enough when the overcurrent setting is noticeably lower than F a
.
When defining the setting values for the low set stages, the saturation of the CT does not need to be taken into account and the start current setting is simply according to the formula.
Delay in operation caused by saturation of current transformers
The saturation of CT may cause a delayed protection relay operation. To ensure the time selectivity, the delay must be taken into account when setting the operate times of successive protection relays.
With definite time mode of operation, the saturation of CT may cause a delay that is as long as the time the constant of the DC component of the fault current, when the current is only slightly higher than the starting current. This depends on the accuracy limit factor of the CT, on the remanence flux of the core of the CT, and on the operate time setting.
With inverse time mode of operation, the delay should always be considered as being as long as the time constant of the DC component.
With inverse time mode of operation and when the high-set stages are not used, the AC component of the fault current should not saturate the CT less than 20 times the starting current. Otherwise, the inverse operation time can be further prolonged.
Therefore, the accuracy limit factor F a
should be chosen using the formula:
F a
> 20 × Current start value / I
1n
The Current start value is the primary start current setting of the protection relay.
Example for non-directional overcurrent protection
The following figure describes a typical medium voltage feeder. The protection is implemented as three-stage definite time non-directional overcurrent protection.
REF611
Application Manual
171
Section 4
Requirements for measurement transformers
1MRS757456 D
172
A071142 V1 EN
Figure 151: Example of three-stage overcurrent protection
The maximum three-phase fault current is 41.7 kA and the minimum three-phase short circuit current is 22.8 kA. The actual accuracy limit factor of the CT is calculated to be 59.
The start current setting for low-set stage (3I>) is selected to be about twice the nominal current of the cable. The operate time is selected so that it is selective with the next protection relay (not visible in Figure 151 ). The settings for the high-set stage and instantaneous stage are defined also so that grading is ensured with the downstream protection. In addition, the start current settings have to be defined so that the protection relay operates with the minimum fault current and it does not operate with the maximum load current. The settings for all three stages are as in Figure 151 .
For the application point of view, the suitable setting for instantaneous stage (I>>>) in this example is 3 500 A (5.83 × I
2n
). For the CT characteristics point of view, the criteria given by the current transformer selection formula is fulfilled and also the protection relay setting is considerably below the F a
. In this application, the CT rated burden could have been selected much lower than 10 VA for economical reasons.
REF611
Application Manual
1MRS757456 D
Section 5
Protection relay's physical connections
Section 5 Protection relay's physical connections
5.1
5.1.1
5.1.1.1
5.1.1.2
5.1.1.3
Inputs
Energizing inputs
Phase currents
The protection relay can also be used in single or two-phase applications by leaving one or two energizing inputs unoccupied.
However, at least terminals X120:7-8 must be connected.
Table 27:
Terminal
X120:7-8
X120:9-10
X120:11-12
Phase current inputs included in configurations A, B and C
Description
IL1
IL2
IL3
Residual current
Table 28:
Terminal
X120:13-14
Residual current input included in configurations A, B and C
Description
Io
Residual voltage
Table 29:
Terminal
X120:5-6
Additional residual voltage input included in configuration A
Description
Uo
Table 30:
Terminal
X130:17-18
Additional residual voltage input included in configuration C
Description
Uo
REF611
Application Manual
173
Section 5
Protection relay's physical connections
5.1.1.4
5.1.2
5.1.3
1MRS757456 D
Phase voltage
Table 31:
Terminal
X130:11-12
X130:13-14
X130:15-16
Phase voltage inputs included in configuration C
Description
U1
U2
U3
Auxiliary supply voltage input
The auxiliary voltage of the protection relay is connected to terminals X100:1-2. At
DC supply, the positive lead is connected to terminal X100:1. The permitted auxiliary voltage range (AC/DC or DC) is marked on the top of the LHMI of the protection relay.
Auxiliary voltage supply Table 32:
Terminal
X100:1
X100:2
Description
+ Input
- Input
Binary inputs
The binary inputs can be used, for example, to generate a blocking signal, to unlatch output contacts, to trigger the disturbance recorder or for remote control of protection relay settings.
Terminals X120:1-4 are binary input terminals. In the protection relay variant B, there are additional binary inputs X120:5-6 included. Optional BIO-module BIO0006 for slot X130 can be included at the time of order.
Binary inputs of slot X120 are available with configurations A and B.
Table 33:
Terminal
X120:1
X120:2
X120:3
X120:2
X120:4
X120:2
X120:5
X120:6
Binary input terminals X120-1...6
Description
BI1, +
BI1, -
BI2, +
BI2, -
BI3, +
BI3, -
BI4, +
BI4, -
174 REF611
Application Manual
1MRS757456 D
5.2
5.2.1
Section 5
Protection relay's physical connections
Binary inputs of slot X130 are optional for configurations A and B.
Table 34:
Terminal
X130:1
X130:2
X130:2
X130:3
X130:4
X130:5
X130:5
X130:6
X130:7
X130:8
X130:8
X130:9
Binary input terminals X130-1...9
BI4, -
BI4, +
BI5, +
BI5, -
BI6, -
BI6, +
Description
BI1, +
BI1, -
BI2, -
BI2, +
BI3, +
BI3, -
Binary inputs of slot X130 are available with configuration C.
Table 35:
Terminal
X130:1
X130:2
X130:3
X130:4
X130:5
X130:6
X130:7
X130:8
Binary input terminals X130:1-8 with AIM0006 module
Description
BI1, +
BI1, -
BI2, +
BI2, -
BI3, +
BI3, -
BI4, +
BI4, -
Outputs
Outputs for tripping and controlling
Output contacts PO1, PO2, PO3 and PO4 are heavy-duty trip contacts capable of controlling most circuit breakers. On delivery from the factory, the trip signals from all the protection stages are routed to PO3 and PO4.
REF611
Application Manual
175
Section 5
Protection relay's physical connections
5.2.2
176
1MRS757456 D
Table 36:
Terminal
X100:6
X100:7
X100:8
X100:9
X100:15
X100:16
X100:17
X100:18
X100:19
X100:20
X100:21
X100:22
X100:23
X100:24
Output contacts
Description
PO1, NO
PO1, NO
PO2, NO
PO2, NO
PO3, NO (TCS resistor)
PO3, NO
PO3, NO
PO3 (TCS1 input), NO
PO3 (TCS1 input), NO
PO4, NO (TCS resistor)
PO4, NO
PO4, NO
PO4 (TCS2 input), NO
PO4 (TCS2 input), NO
Outputs for signalling
Output contacts SO1 and SO2 in slot X100 or SO1, SO2 and SO3 in slot X130
(optional) can be used for signalling on start and tripping of the protection relay. On delivery from the factory, the start and alarm signals from all the protection stages are routed to signalling outputs.
Output contacts X100:10...14
Table 37:
Terminal
X100:10
X100:11
X100:12
X100:13
X100:14
Description
SO1, common
SO1, NC
SO1, NO
SO2, NO
SO2, NO
Output contacts of slot X130 are available in the optional BIO module (BIO0006).
Output contacts of slot X130 are optional for configurations A and B.
Table 38:
Terminal
X130:10
X130:11
X130:12
Output contacts X130:10...18
X130:13
Table continues on next page
Description
SO1, common
SO1, NO
SO1, NC
SO2, common
REF611
Application Manual
1MRS757456 D
5.2.3
Section 5
Protection relay's physical connections
Terminal
X130:14
X130:15
X130:16
X130:17
X130:18
Description
SO2, NO
SO2, NC
SO3, common
SO3, NO
SO3, NC
IRF
The IRF contact functions as an output contact for the self-supervision system of the protection relay. Under normal operating conditions, the protection relay is energized and the contact is closed (X100:3-5). When a fault is detected by the self-supervision system or the auxiliary voltage is disconnected, the output contact drops off and the contact closes (X100:3-4).
IRF contact Table 39:
Terminal
X100:3
X100:4
X100:5
Description
IRF, common
Closed; IRF, or U aux
disconnected
Closed; no IRF, and U aux
connected
REF611
Application Manual
177
178
1MRS757456 D
Section 6 Glossary
REF611
Application Manual
Section 6
Glossary
CB
CSV
CT
DAN
DC
611 series
DPC
EMC
Ethernet
FIFO
FTP
FTPS
GOOSE
HMI
HSR
HTTPS
Series of numerical protection and control relays for low-end protection and supervision applications of utility substations, and industrial switchgear and equipment
Circuit breaker
Comma-separated values
Current transformer
Doubly attached node
1. Direct current
2. Disconnector
3. Double command
Double-point control
Electromagnetic compatibility
A standard for connecting a family of frame-based computer networking technologies into a LAN
First in, first out
File transfer protocol
FTP Secure
Generic Object-Oriented Substation Event
Human-machine interface
High-availability seamless redundancy
Hypertext Transfer Protocol Secure
IEC
IEC 61850
International Electrotechnical Commission
International standard for substation communication and modeling
IEC 61850-8-1 A communication protocol based on the IEC 61850 standard series
IED Intelligent electronic device (protection and control relay)
IEEE 1588 v2 Standard for a Precision Clock Synchronization Protocol for networked measurement and control systems
IEEE 1686
IP address
Standard for Substation Intelligent Electronic Devices'
(IEDs') Cyber Security Capabilities
A set of four numbers between 0 and 255, separated by periods. Each server connected to the Internet is assigned a
179
Section 6
Glossary
1MRS757456 D
IRIG-B
LAN
LC
LCD
LED
LHMI
MAC
MMS
Modbus
RSTP
SAN
SNTP
SO
WAN
WHMI
PCM600
PO
PRP
REF611
RJ-45
RS-485 unique IP address that specifies the location for the TCP/IP protocol.
Inter-Range Instrumentation Group's time code format B
Local area network
Connector type for glass fiber cable, IEC 61754-20
Liquid crystal display
Light-emitting diode
Local human-machine interface
Media access control
1. Manufacturing message specification
2. Metering management system
A serial communication protocol developed by the Modicon company in 1979. Originally used for communication in PLCs and RTU devices.
Protection and Control IED Manager
Power output
Parallel redundancy protocol
Feeder protection and control relay
Galvanic connector type
Serial link according to EIA standard RS485
Rapid spanning tree protocol
Single attached node
Simple Network Time Protocol
Signal output
Wide area network
Web human-machine interface
180 REF611
Application Manual
181
Contact us
ABB Oy
Medium Voltage Products,
Distribution Automation
P.O. Box 699
FI-65101 VAASA, Finland
Phone
Fax
+358 10 22 11
+358 10 22 41094 www.abb.com/mediumvoltage www.abb.com/substationautomation
advertisement
Related manuals
advertisement
Table of contents
- 11 Section 1 Introduction
- 11 This manual
- 11 Intended audience
- 12 Product documentation
- 12 Product documentation set
- 12 Document revision history
- 13 Related documentation
- 13 Symbols and conventions
- 13 Symbols
- 14 Document conventions
- 14 Functions, codes and symbols
- 17 Section 2 REF611 overview
- 17 Overview
- 18 Product version history
- 18 PCM600 and relay connectivity package version
- 19 Operation functionality
- 19 Optional functions
- 19 Physical hardware
- 20 Local HMI
- 21 Display
- 22 Keypad
- 23 Web HMI
- 24 Command buttons
- 25 Authorization
- 26 Audit trail
- 28 Communication
- 29 Self-healing Ethernet ring
- 30 Ethernet redundancy
- 32 Secure communication
- 33 Section 3 REF611 standardized configurations
- 33 Standardized configurations
- 34 Switch groups
- 35 Input switch group ISWGAPC
- 35 Output switch group OSWGAPC
- 36 Selector switch group SELGAPC
- 37 Connection diagrams
- 40 Configuration A
- 40 Applications
- 41 Functions
- 41 Default I/O connections
- 42 Predefined disturbance recorder connections
- 42 Functional diagrams
- 43 Functional diagrams for protection
- 50 circuit supervision
- 53 Functional diagrams for control
- 56 Switch groups
- 56 Binary inputs
- 60 Internal signals
- 64 Binary outputs and LEDs
- 84 GOOSE
- 87 Configuration B
- 87 Applications
- 88 Functions
- 88 Default I/O connections
- 89 Predefined disturbance recorder connections
- 89 Functional diagrams
- 90 Functional diagrams for protection
- 95 circuit supervision
- 97 Functional diagrams for control
- 99 Switch groups
- 100 Binary inputs
- 103 Internal signals
- 107 Binary outputs and LEDs
- 125 GOOSE
- 127 Configuration C
- 127 Applications
- 128 Functions
- 129 Default I/O connections
- 130 Predefined disturbance recorder connections
- 130 Functional diagrams
- 130 Functional diagrams for protection
- 137 circuit supervision
- 140 Functional diagrams for control
- 143 Switch groups
- 143 Binary inputs
- 147 Internal signals
- 150 Binary outputs and LEDs
- 171 GOOSE
- 175 Section 4 Requirements for measurement transformers
- 175 Current transformers
- 175 overcurrent protection
- 175 factor
- 176 Non-directional overcurrent protection
- 177 Example for non-directional overcurrent protection
- 179 Section 5 Protection relay's physical connections
- 179 Inputs
- 179 Energizing inputs
- 179 Phase currents
- 179 Residual current
- 179 Residual voltage
- 180 Phase voltage
- 180 Auxiliary supply voltage input
- 180 Binary inputs
- 181 Outputs
- 181 Outputs for tripping and controlling
- 182 Outputs for signalling
- 185 Section 6 Glossary