PRASSI - Antincendio

PRASSI - Antincendio

1 introduzione

2 la combustione

3 l'incendio

4 le conseguenze dell'incendio sull'uomo e sull'ambiente

ANTINCENDIO

5 tecnica antincendio

6 impianti ed attrezzature antincendio

INTRODUZIONE

Gli incendi possono provocare ingenti danni sia alle persone che alle cose, direttamente per l'azione delle fiamme, dell'irraggiamento termico sviluppato (calore) e dei fumi di combustione prodotti, sia indirettamente a seguito di crolli, esplosioni e danneggiamenti strutturali.

Ogni incidente e quindi ogni incendio, ha una propria storia, legata ad un numero elevatissimo di fattori che ne determinano l'insorgere, lo sviluppo, l'intensit à, la durata, la pericolosità, quindi, le tecniche per combatterlo ed estinguerlo.

Non ultime fra le cause sono l'imprudenza, le dimenticanze o le negligenze del personale .

Un'efficace difesa contro gli incendi deve svilupparsi principalmente nelle seguenti direzioni: a) allestimento e tenuta in perfetta efficienza di adeguati mezzi fissi e mobili per combattere gli incidenti (idranti a muro e a colonna, estintori portatili e carrellati, ecc.); b) installazione e tenuta in efficienza di appositi sistemi di rilevamento e segnalazione di incendi; c) formazione ed addestramento di un certo numero di persone sull'uso corretto dei mezzi di estinzione incendi disponibili nell'azienda per un primo intervento in attesa dell'arrivo dei Vigili del Fuoco; d) allestimento di procedure di emergenze per gli operatori non coinvolti nell'intervento sul fuoco (piani di emergenza); e) educazione di tutto il personale in genere, sui comportamenti da seguire in caso di emergenza incendio, al fine di ridurre i rischi (modalità di allontanamento dal posto di lavoro).

E' necessario, quindi, che tutti coloro che prestano la loro opera in azienda siano a conoscenza dei principi di prevenzione e di estinzione degli incidenti e che, in relazione alle dimensioni ed alla pericolosità dell'azienda, vi siano degli operatori designati come "addetti antincendio", adeguatamente formati ed addestrati e quindi a perfetta conoscenza:

- degli impianti, apparecchiature e macchine;

- delle lavorazioni effettuate;

- della natura e delle caratteristiche, quindi della pericolosit à, delle sostanze in uso;

- dell'azione delle varie sostanze estinguenti;

- dell'esatta ubicazione dei mezzi antincendio disponibili;

- del funzionamento dei mezzi antincendio e del loro pratico e corretto impiego;

- delle modalità di intervento nelle varie situazioni di emergenza.

Se tutto ci ò sarà realizzato gli operatori preposti potranno intervenire immediatamente per arrestare perdite di sostanze infiammabili, rimuovere le sorgenti di accensione, intervenire nell'estinzione del fuoco, segnalare le condizioni di pericolo di incendio etc.; saranno inoltre ridotti i rischi per gli altri operatori dell'azienda non coinvolti direttamente nell'intervento antincendio. In conclusione si potrà contare su un patrimonio di sicurezza individuale e

collettiva di grande valore.

LA COMBUSTIONE

La combustione è una reazione chimica che avviene, con sviluppo di calore , tra un combustibile (solido, liquido, gassoso) ed un comburente (la sostanza che permette al combustibile di bruciare; generalmente si tratta dell'ossigeno contenuto nell'aria allo stato di gas).

In realtà, affinchè una combustione abbia luogo, è necessario che i fattori che la determinano, si realizzino in particolari condizioni.

a) Contatto tra l'aria e il combustibile

E' necessario che combustibile e comburente siano in contatto tra loro (miscelati). Ad esempio, idrocarburi gassosi o liquidi all'interno di un recipiente o di una tubazione, non possono dare luogo alla combustione perché sono isolati dall'aria.

b) Concentrazione definita tra combustibile ed aria comburente (campo e i limiti di infiammabilità)

Perché la miscela combustibile-comburente allo stato gassoso risulti infiammabile, il combustibile deve essere presente in determinate proporzioni rispetto al comburente.

Precisamente esiste per ogni sostanza combustibile un campo di valori, espressi in volume percentuale (volume di vapori combustibili x 100/volume della miscela), per i quali la miscela risulta infiammabile. Questo campo di valori è definito "campo di infiammabilità" ed i suoi limiti sono definiti "limiti d'infiammabilità" ( inferiore e superiore ).

Al di sotto o al di sopra di questi limiti la miscela risulta troppo povera rispettivamente di vapori combustibili o di comburente, per cui la combustione non può avvenire. Si riportano, ad esempio, i limiti inferiori e superiori di infiammabilit à di alcuni combustibili, espressi in percentuale in volume di aria:

- Benzina

- Metano

1.1 - 5

5.3 - 14

- Butano

- Kerosene

- Idrogeno

c) Innesco a temperatura superiore a quella di accensione

5.3 - 8.5

1.16 - 6

4.1 - 72 -2

L'innesco è l'elemento che, a contatto con la miscela infiammabile, avvia la reazione di combustione. Esso pu ò essere costituito da qualsiasi sorgente di calore (fiamme, scintille, materiali caldi). Per poter accendere una miscela aria combustibile, è necessario che l'innesco sviluppi una energia sufficiente ad una temperatura superiore a quella di accensione del combustibile.

E' detta temperatura di "accensione" o "ignizione" (da non confondere con temperatura di infiammabilità) la temperatura minima alla quale si ha l'accensione spontanea di una miscela infiammabile.

Ad esempio:

- legna secca

- oli combustibili

- alcool

- benzina

- metano

- gas di citt à

250°C

330°C

450°C

480°C

645°C

560°C

L'eliminazione delle sorgenti di innesco ("ignizione" o "accensione") è senz'altro il metodo più efficace di prevenzione, ma anche, a volte, il più difficile da mettere in pratica.

Comunque parecchie sorgenti di ignizione possono essere controllate stabilendo e facendo rispettare opportune norme di sicurezza di comportamento del personale.

Le principali fonti di innesco sono:

- FIAMME (Fiamme libere, Fiamme Fornelli, Saldatrici, Accendini, sigarette);

- SCINTILLE (Fulmini, Archi elettrici, Scintille, Scintille da urto, Elettricità statica, Scarichi di motore a scoppio);

- PUNTI CALDI (Motore a scoppio, Punti Caldi, Filamenti elettrici, Cavi elettrici, Pareti metalliche molto calde).

L'INCENDIO

L'incendio può essere definito come una combustione non controllata, ossia una combustione che avviene in un luogo non predisposto a contenerla, che comporta danni per l'uomo e per l'ambiente. Essendo l'incendio una particolare combustione con notevole sviluppo di calore, possiamo inanzitutto affermare che, affinchè esso si verifichi, devono essere presenti un combustibile ed un comburente ad una temperatura minima detta di "ignizione" o "accensione".

L'insieme di questi tre parametri costituisce il cosiddetto "Triangolo del Fuoco":

Se viene a mancare una sola delle tre condizioni suddette, l'incendio si spegne. Le tecniche di estinzione incendi si basano infatti sulla soppressione di uno o più lati del triangolo mediante:

- l'esaurimento o sottrazione del combustibile;

- il soffocamento o sottrazione del comburente;

- il raffreddamento o sottrazione del calore.

II comburente per eccellenza, nella quasi totalit à dei fuochi, è l'ossigeno contenuto nell'aria. Occorre tuttavia far presente che esistono sostanze come i perossidi e gli esplosivi, che di per se già contengono l'ossigeno sufficiente per dar luogo alla combustione anche in assenza di aria.

Ogni incendio inizia con una fase, detta di ignizione o accensione, durante la quale, per effetto di una sorgente di calore, un materiale combustibile assorbe energia e aumenta la temperatura fino a un determinato valore, oltre il quale la combustione, una volta iniziata, prosegue indipendentemente da apporti di energia dall'esterno.

Consideriamo adesso un locale contenente un oggetto incendiato.

Se l'oggetto acceso è distante da altro materiale combustibile, il fuoco non si propaga e, una volta esaurito il combustibile, la combustione cessa.

Se invece l'oggetto considerato è a contatto più o meno stretto con altri materiali combustibili, oppure questi, anche se posti a una certa distanza, rilasciano vapori e gas infiammabili per effetto di pirolisi, allora essi si accendono e le fiamme che ne conseguono possono propagare il fuoco agli altri elementi combustibili e quindi, per gradi, a tutto il locale. Per esempio, se l'oggetto considerato è costituito da materiale organico cellulosico (carta/legno), quando raggiunge una temperatura di circa

200 °C comincia a decomporsi per effetto del calore ricevuto ed emette vapori infiammabili, che si incendiano a loro volta per effetto delle fiamme vicine o anche spontaneamente, qualora la temperatura raggiunta sia maggiore di quella di autoignizione.

Spesso la temperatura degli elementi combustibili presenti nel locale non riesce a raggiungere il valore critico per dar luogo alla pirolisi e la combustione cessa, poich è il calore liberato dall'incendio dell'oggetto considerato è minore di quello dissipato e la temperatura scende al di sotto di quella che mantiene la combustione.

E' evidente che la continuazione del processo di combustione dipende dal bilancio termico che si instaura. Infatti il calore sviluppato in parte è disperso nell'atmosfera circostante e in parte riscalda i materiali non ancora coinvolti nell'incendio.

Per cui se il bilancio è positivo, cioè se prevale la quantità di calore sviluppata su quella dispersa, la combustione continua; se il bilancio è negativo, invece, diminuisce la velocità di decomposizione del materiale incendiato e inizia un processo di autoestinzione.

In tutto questo, ovviamente, gioca un ruolo determinante l'apporto di ossigeno dall'esterno, in quanto quello contenuto nel locale è sufficiente soltanto per far fronte alle reazioni iniziali.

Evoluzione dell'incendio nel tempo

Di solito l'incendio viene distinto in tre fasi schematiche:

- fase di accensione;

- fase di incendio vero e proprio;

- fase di raffreddamento ed estinzione.

La prima fase va dall'insorgere delle fiamme al cosiddetto "flashover" o infiammazione generalizzata.

La terza va dal punto di temperatura massima fino all'estinzione totale.

Per poter estinguere un fuoco all'interno di un locale è necessario intervenire al più presto, quando questo è ancora nella fase di accensione.

E' stato infatti dimostrato attraverso studi e prove sperimentali che, il tempo utile di intervento dall'inizio del fuoco affinchè l'intervento sia risolutivo (estinzione del fuoco), sia di circa 15 minuti, oltre tale tempo l'intervento è generalmente mirato al controllo dell'incendio.

Classificazione dei combustibili

Tutti i materiali possono essere suddivisi in tre grandi categorie:

- incombustibili (non possono bruciare);

- difficilmente combustibili (bruciano solo in costante presenza di un innesco);

- combustibili (una volta accesi bruciano per autocatalisi).

Le sostanze e/o materiali combustibili possono essere a loro volta suddivise in:

- Combustibili solidi , che si possono suddividere in sostanze "facilmente accendibili" (iniziano a bruciare anche con deboli energie di innesco) o "difficilmente accendibili" (richiedono inneschi di elevata energia di innesco).

- Combustibili gassosi.

- Combustibili liquidi, che si dividono in tre categorie sulla base del "punto di infiammabilità "( FP-Flash point), cio è della temperatura alla quale un liquido emette sufficienti vapori che se miscelati con aria e in presenza di energie di innesco, diano origine ad un fenomeno di combustione:

categoria A : quelli che hanno il punto di infiammabilità inferiore ai 21 °C;

categoria B: quelli che hanno il punto di infiammabilità compreso fra i 21 e 65°C;

categoria C : quelli che hanno il punto di infiammabilità compreso fra 66 e 125 °C.

Classificazione degli incendi

E' stata negli anni codificata la suddivisione dei vari tipi di incendi in cinque classi in relazione al tipo di combustibile che lo determina:

Gruppo A

Incendi alimentati da materiale combustibile solido organico comune quale il legno, la carta, le fibre tessili, la gomma etc. Tali incendi sono caratterizzati da una produzione di braci.

Per spegnere questo tipo di incendi, sono indicate sostanze liquide o "raffreddanti" come acqua e soluzioni schiumogene dove l'acqua predomini;

Gruppo B

Incendi alimentati da liquidi combustibili quali benzina, petrolio, olio, solventi, ecc.

Lo spegnimento di questo tipo di incendi deve essere effettuato secondo il metodo di soffocamento, a mezzo di coperture incombustibili (coperte, schiuma chimica, sabbia) o di sostanze soffocanti (polvere secca, CO

2

, vapore).

Sono perci ò indicati:

- estintori a schiuma o a polvere secca;

- estintori a CO

2

;

L'opera di spegnimento degli incendi del gruppo B, a causa del notevole calore prodotto, deve essere alle volte affiancata dall'opera di raffreddamento della zona interessata dall'incendio.

Gruppo C

Incendi o fuochi di gas combustibile (ad esempio metano, propano etc.).

Lo spegnimento di questo tipo di incendi deve essere effettuato secondo il metodo di soffocamento a mezzo di sostanze soffocanti (polvere secca, CO

2

, vapore).

Sono perci ò indicati:

- estintori a CO

2

;

- estintori a polvere

A incendio domato deve essere curata al massimo la dispersione del gas che ancora fluisce all'esterno, per evitare che esso si accumuli in quantit à e possa essere fonte di pericolo in caso di riaccensione. Per questa ragione pu ò essere conveniente spegnere la fiamma solo quando si giudichi che il gas stia per esaurirsi.

L'opera di spegnimento degli incendi del gruppo "C" a causa del notevole calore prodotto, deve essere alle volte affiancata dall'opera di raffreddamento della zona interessata dall'incendio.

Gruppo D

Incendi di sostanze chimiche particolari quali alcuni metalli (sodio, potassio etc.).

L'estinzione di tali fuochi è cosa assai delicata cos ì come i mezzi di intervento ed estinzione sono generalmente sostanze particolari, specifiche da caso a caso.

Gruppo E

Incendi su apparecchiature elettriche come motori, generatori, trasformatori, ecc.. Lo spegnimento di questi incendi deve essere effettuato secondo il metodo di soffocamento, con agenti che non siano

conduttori di elettricità.

Sono perci ò indicati gli estintori a polvere secca, a CO

2

che si possono usare in qualsiasi apparecchiatura senza che questa sia stata staccata dall'alimentazione; bisogna comunque restare a conveniente distanza dall'apparecchiatura per evitare di entrare in contatto con essa.

Nella seguente tabella sono riassunte le varie categorie di un fuoco:

CLASSE NATURA DEL FUOCO

A

Fuochi di materie solide, generalmente di natura organica, la cui combustione normalmente avviene con produzione di braci (esempio legno, carta, tessuto, gomma).

D

E

B

C

Fuochi di liquidi o di solidi che si possono liquefare (alcoli, benzine, vernici, petroli).

Fuochi di gas (esempio metano, propano, idrogeno, acetilene).

Fuochi di metalli (esempio potassio, sodio).

Fuochi su apparecchiature elettriche in tensione.

LE CONSEGUENZE DELL'INCENDIO

SULL'UOMO E SULL'AMBIENTE

I prodotti di un incendio sono costituiti principalmente da quattro categorie: l l l l gas di combustione; fumi; fiamme; calore.

Gas di combustione

Per gas di combustione si intendono i prodotti della combustione che rimangono allo stato gassoso anche se raffreddati a temperatura ambiente.

E' opinione comune che durante un incendio la morte delle persone coinvolte sopraggiunga per esposizione al calore e alle fiamme.

Contrariamente a questa convinzione, l'esperienza insegna che la maggior parte delle vittime in realtà muore per asfissia, inalazione di ossido di carbonio e di gas di combustione o aria caldi, molto prima di essere esposta alle fiamme.

La maggior parte dei combustibili contengono carbonio

(sostanze organiche) che brucia sviluppando anidride carbonica o monossido di carbonio, in relazione alla quantità di ossigeno disponibile (se l'ossigeno è abbondante si former à principalmente CO

2

, nel caso contrario la combustione produrr à CO).

Gli altri gas che si formano in un incendio dipendono da

molte variabili, ma principalmente dalla composizione chimica dei combustibili, dalla quantità di ossigeno disponibile e dalla temperatura che si raggiunge durante l'incendio.

Tra i gas di combustione si possono incontrare oltre l'anidride carbonica e l'ossido di carbonio, l'idrogeno solforato, l'anidride solforosa, l'acido cianidrico, l'acido cloridrico, vapori nitrosi (ossido e perossido di azoto), fosgene, ammoniaca, acroleina etc..

OSSIDO DI CARBONIO (CO)

L'ossido di carbonio è di gran lunga il pi ù pericoloso dei gas che si formano durante l'incendio; in effetti l'azione dell'ossido di carbonio è insidiosa perch è la vittima si accorge troppo tardi del pericolo. Esso è sempre presente in tutti quei casi in cui scarseggia l'ossigeno per la combustione. L'esposizione in ambiente con 1-

1,3% di ossido di carbonio produce incoscienza quasi istantaneamente (dopo due o tre inalazioni) e la morte dopo pochi minuti. La percentuale dello 0,15% per 1 ora o la percentuale dello 0,05% per 3 ore pu ò essere mortale. La percentuale dello

0,4% è fatale in meno di 1 ora. L'intossicazione grave da ossido di carbonio si manifesta inizialmente con vertigini e sonnolenza, successivamente sopraggiunge un'impotenza muscolare degli arti inferiori, che non consente alla vittima di sfuggire all'atmosfera in cui si trova, anche se si rende conto della situazione di pericolo. In queste situazioni la vittima entra in uno stato di coma che lo conduce rapidamente a morte. A rendere ancora più temibile questa sostanza c'è il fatto che essa è incolore, insapore e non irritante, per cui la sua presenza si rivela quando i danni già sono stati procurati.

ANIDRIDE CARBONICA (CO

2

)

E' il gas che principalmente si sviluppa durante gli incendi. E' un gas asfissiante che in forti concentrazioni provoca un'accelerazione del ritmo cardiaco.

L'aria che contiene una concentrazione del 3 % di CO

2

provoca il raddoppio del ritmo respiratorio, con la conseguenza che se sono presenti anche gas tossici, aumenta la quantità di sostanze dannose assorbite dall'organismo. Una concentrazione di CO

2 del 5% rende l'aria irrespirabile per lunghi periodi.

IDROGENO SOLFORATO (H

2

S)

Si sviluppa in tutti quegli incendi in cui bruciano materiali che contengono zolfo, come ad esempio, la lana, la gomma, le

pelli, la carne ed i capelli. L'idrogeno solforato ha un odore caratteristico di uova marce, ma tale sensazione, che si ha alle prime inalazioni, sparisce immediatamente.

Esposizioni ad aria che contiene percentuali fra lo 0,04 e lo 0,07% per più di mezz'ora possono essere pericolose in quanto provocano vertigini e vomito. In percentuali maggiori diviene molto tossico ed attacca il sistema nervoso e può provocare dapprima l'affanno e successivamente addirittura l'arresto della respirazione.

ANIDRIDE SOLFOROSA

Si può formare nella combustione di materiali che contengono zolfo, quando questa avviene

con abbondanza di aria. In genere se ne formano quantit à relativamente modeste, salvo che negli incendi che coinvolgono zolfo.

Percentuali dell'ordine dello 0,05% sono da considerare pericolose anche per esposizioni di breve durata. E un gas irritante delle mucose degli occhi e delle vie respiratorie.

ACIDO CIANIDRICO E CIANOGENO

Sono due composti altamente tossici, che si formano raramente e in quantità relativamente modeste nelle combustioni incomplete della lana, della seta e delle materie plastiche poliammidiche, poliuretaniche e acriliche. E' inoltre impiegato come fumigante per distruggere i parassiti. Si tratta di composti asfissianti che però agiscono in maniera differente dall'ossido di carbonio. Infatti essi intervengono durante il trasferimento dell'ossigeno al sangue, impedendo l'ossigenazione cellulare e il metabolismo. Occorre indossare l'autoprotettore quando si debba intervenire in locali ove sia impiegato o depositato l'acido cianidrico.

Ha odore caratteristico di mandorle amare ed una concentrazione dello 0,3% e già da considerare mortale.

OSSIDI DI AZOTO

Si formano nella combustione di materiali che contengono azoto (lana, seta, materiali

acrilici e fenolici e resine melamminiche).

A contatto con la mucosa polmonare questi vapori formano una miscela di acido nitrico che produce il soffocamento delle mucose stese, nel sangue poi trasformano l'emoglobina in altro composto che è incapace di fissare l'ossigeno. L'intossicazione acuta si presenta in tre fasi: la prima è una irritazione delle vie respiratorie che provoca soffocamento e un sentimento di angoscia. La vittima si allontana dall'ambiente tossico e inizia un periodo di remissione. Ma i polmoni sono lesionati e in una terza fase si manifesta un edema acuto. Se l'intossicazione è profonda la morte sopraggiunge per collasso cardiovascolare. I vapori nitrosi si formano raramente nella combustione. Sembra che soltanto i derivati nitrati possono produrli. Al di fuori degli esplosivi non si hanno d'altronde segnalazioni oltre la celluloide.

AMMONIACA

Si forma nella combustione di materiali che contengono azoto (lana, seta, materiali acrilici e

fenolici e resine melamminiche), in ambienti poveri di ossigeno.

L'ammoniaca è impiegata in alcuni impianti di refrigerazione e costituisce un notevole rischio di intossicazione in caso di fuga. Produce sensibile irritazione agli occhi, al naso, alla gola ed ai polmoni. L'esposizione per mezz'ora ad aria contenente percentuali dello 0,25-

0,65% può causare seri danni all'organismo umano, fino alla morte.

ACIDO CLORIDRICO

L'acido cloridrico è un prodotto della combustione di tutti quei materiali che contengono cloro come la grande maggioranza delle materie plastiche oggi così largamente impiegate. L'inalazione di acido cloridrico con concentrazioni del 1% provoca degli edemi polmonari che possono condurre rapidamente alla morte. Il rischio di intossicazione da acido cloridrico durante l'incendio è molto più basso di quello con ossido di carbonio, anche se le concentrazioni letali sono dello stesso ordine di grandezza. In effetti l'azione dell'ossido di carbonio è insidiosa perch è la vittima si accorge troppo tardi del pericolo. Al contrario, l'acido cloridrico è aggressivo e pungente, per cui tutte le persone esposte a questo gas si accorgono immediatamente del pericolo. L'acido cloridrico ha inoltre la proprietà di corrodere i metalli, cosa che si e verificata in non pochi incendi.

NOTA BENE

A tutti i fenomeni sinora esposti si può aggiungere talvolta la deficienza di ossigeno provocata nell'aria dall'incendio in atto. Se la percentuale di ossigeno nell'aria, che è di solito il 21%, scende al 15%, si possono avere fenomeni di spossatezza e mancanza di volont à per scarsa ossigenazione del sangue; per percentuali inferiori, 10-14%, le persone pur restando coscienti perdono le facoltà di controllo od addirittura i sensi, a percentuali dell'ordine del 6-

10%.

Il fumo

Il fumo è costituito da piccolissime particelle solide (aerosoli) o liquide, nebbie o vapori condensati. Le particelle solide sono costituite da catrami, particelle di carbonio ed altre sostanze incombuste presenti, specie quando la combustione avviene in mancanza di ossigeno e vengono trascinate dai gas caldi della combustione e costituiscono il fumo.

Salvo casi particolari, quali ad esempio la combustione del metano con adatte apparecchiature, il fumo accompagna sempre la combustione e spessissimo in quantità tale da impedire la visibilit à.

Le particelle liquide sono costituite essenzialmente da vapore d'acqua che si forma per evaporazione dell'umidità dei combustibili, ma soprattutto dalla combustione dell'idrogeno. Tale vapore d'acqua, quando i fumi si raffreddano al disotto dei 100°C, si condensa e da luogo a dei fumi bianchi. I residui solidi costituiti da incombusti e ceneri, hanno invece il colore nero.

E' a tutti noto l'effetto irritante del fumo alle mucose degli occhi ed alle vie respiratorie. Le quantità di fumi che si sviluppano negli incendi sono notevolissime ed è da ritenere che nella stragrande maggioranza dei casi il fumo invade i locali degli edifici in fiamme in tempi molto brevi, rendendo impossibile la presenza dell'uomo, molto prima che si raggiunga la temperatura di 150 °C, che è quella massima alla quale si può ancora respirare per un certo tempo. E' quindi il fumo il primo ostacolo che si deve evitare se si vuole consentire l'esodo delle persone e l'ingresso delle squadre di soccorso nei locali ove si è sviluppato un incendio.

Nei locali al chiuso il fumo si accumula inizialmente in alto e si estende poi alle parti basse in spessi strati opachi, costituendo con ciò il principale pericolo per gli occupanti, in quanto:

- maschera le indicazioni per le uscite e impedisce l'evacuazione;

- spaventa gli occupanti che, se numerosi, sono soggetti a panico;

- ritarda l'uscita e aumenta il rischio di asfissia;

- ostacola le azioni di salvataggio nascondendo le vittime;

- impedisce la precisa localizzazione dei focolai di incendio che diventano, in questo caso, difficili da combattere.

Il calore

Durante l'incendio si sviluppa sempre una grande quantit à di calore che è fonte di disagio per l'uomo e di danno per materiali e strutture, oltre ad essere la causa principale della propagazione dell'incendio. Il calore, oltre certi limiti è pero anche dannoso per l'uomo potendo causare la disidratazione dei tessuti, difficoltà o blocco della respirazione ed ustioni da caldo.

I danni all'ambiente esterno a quello direttamente investito dal fuoco dipendono dal flusso termico e dalla quantità di energia complessivamente ricevuta.

Effetti del calore sull'uomo

Oltre a certi limiti il calore può causare la disidratazione dei tessuti, difficolt à di respirazione ed ustioni.

A parte il contatto accidentale con le fiamme, il pericolo maggiore per l'uomo deriva dall'esposizione a radiazioni termiche, emesse con particolare intensità durante gli incendi di idrocarburi gassosi e liquidi.

Gli organi maggiormente esposti alle radiazioni termiche sono gli occhi e la pelle.

Una temperatura dell'aria di circa 150°C è da ritenere la massima sopportabile per brevissimo tempo, e sempre che l'aria sia sufficientemente secca.

Negli incendi purtroppo sono presenti notevoli quantità di vapore acqueo. Una temperatura di circa 50 °C è da ritenere la massima temperatura dell'aria sopportabile per un tempo limitato. Tale valore si abbassa se l'aria è umida.

Naturalmente il valore della temperatura dell'aria da misurare è quello all'altezza della bocca dell'uomo ossia a circa 1,70 m dal pavimento. Al soffitto la temperatura

può essere anche maggiore.

TECNICA ANTINCENDIO

Nel normale sviluppo di un progetto , il concetto di "difesa antincendio" o tecnica antincendio, viene erroneamente identificato con l'immagine stereotipa dell'idrante o dell'estintore, quali più comuni mezzi di estinzione.

La tecnica antincendio comprende invece un'ampia gamma di interventi mirati ad evitare le cause che portano all'incendio e, nel caso che questi avvengano, a controllarne e limitarne il più possibile gli effetti dannosi.

La funzione di questi interventi identifica le tre grandi linee in cui è solitamente articolato un sistema antincendio, ossia: l l l

PREVENZIONE

SISTEMI DI PROTEZIONE (CONTROLLO)

SOSTANZE ESTINGUENTI (ESTINZIONE).

Prevenzione

La "prevenzione incendi" può essere definita come l'insieme di azioni-interventi tendenti ad evitare le possibili cause che possano determinare situazioni di pericolo e dare origine ad incendio.

In sintesi le funzioni della prevenzione possono essere riassunte in: l l prevenire perdite e rilasci eliminare gli inneschi.

A titolo esemplificativo si riportano alcune azioni preventive di maggior spicco:

- mantenere in efficienza gli impianti elettrici, le reti dei gas, ecc.;

- mantenere in ordine e pulito il posto di lavoro, il reparto, i ripostigli, ecc.;

- curare che i materiali infiammabili siano depositati in luogo sicuro privo di inneschi; i contenitori debbono essere chiusi, metallici ed etichettati con il simbolo dell'infiammabilit à;

- occorre sapere arrestare le perdite di infiammabili e tamponare gli sversamenti;

- evitare che le sostanze chimiche incompatibili abbiano a mescolarsi tra loro;

- stabilire le aree in cui far osservare il divieto di fumo;

- mantenere in ordine e pronti all'uso tutti i mezzi antincendio disponibili;

- addestrare il personale all'uso dei mezzi antincendio disponibili;

- mantenere sgombre le vie di esodo dai luoghi di lavoro;

- predisporre permessi speciali per lavorazioni pericolose, come saldatura, smerigliatura, ecc.;

- curare l'ordine e la validità della segnaletica antincendio.

I sistemi di protezione (controllo)

I sistemi di protezione sono:

- sistemi di protezione PASSIVA.

- sistemi di protezione ATTIVA.

I sistemi di protezione "passiva" sono costituiti da quei sistemi, previsti sempre in funzione di un determinato evento, che ne limitano la probabilit à di accadimento ed eventualmente, l'estensione e la gravità delle conseguenze.

Esempi tipici di protezioni passive sono: l l l l l l l sistemi di rilevamento fughe di gas; sistemi di intercettazione automatici dei combustibili; pareti tagliafuoco; porte tagliafuoco; compartimentazioni; barriere di contenimento; rivestimenti e materiali antifiamma.

I sistemi di protezione "attiva" sono quei sistemi che hanno una funzione di controllo/estinzione

dell'incendio. Tali sistemi sono costituiti da apparecchiature/dispositivi, anch'essi dimensionati in funzione di un determinato evento che, intervengono manualmente od in modo automatico, direttamente sulla dinamica e la chimica della combustione, al fine di ottenerne lo spegnimento.

I sistemi di protezione attiva comprendono principalmente i sistemi e i dispositivi di estinzione.

Sostanze estinguenti (estinzione)

L'estinzione (spegnimento) si basa essenzialmente sull'impiego di una serie di sostanze capaci di bloccare la combustione.

La sostanza usata, il tipo di intervento e le modalit à d'impiego saranno commisurate alla natura dei prodotti che hanno preso fuoco e all'entità dell'incendio.

E' importante pertanto conoscere pregi e difetti delle sostanze estinguenti per ottenere dalla difesa attiva risultati sempre e comunque positivi, ricordando che scelte sbagliate possono portare ad amplificare paurosamente l'entità dell'incendio .

Di seguito è riportato un elenco delle sostanze estinguenti e le rispettive caratteristiche di azione che esercitano sul combustibile.

L'acqua

L'estinguente più antico è l'acqua, che è il naturale antidoto del fuoco ed è abbondante in natura.

L'acqua e l'agente estinguente più conosciuto ed usato per la facilità di reperimento, il basso costo e la non tossicit à.

L'estinzione del fuoco con acqua avviene principalmente per raffreddamento, grazie agli elevati valori del calore specifico (1,0 kcal/ kg) e del calore latente di vaporizzazione (539,0 kcal/kg). Infatti, per riscaldare un kg di acqua da 20 a 100°C occorrono 80 kcal, mentre per vaporizzarla ne occorrono 539, quindi, in totale, per ogni kg di acqua che passa allo stato di vapore si sottraggono circa 620 kcal all'incendio.

Contemporaneamente il suo volume specifico aumenta di circa 1600 volte, per cui si ha anche un'azione di soffocamento per effetto dello spostamento dell'aria ad opera del vapore.

Nel caso delle sostanze solide l'estinzione si realizza sia mediante la vaporizzazione diretta dell'acqua che attraversa fumi e fiamme, sia mediante un'azione di "bagnamento" che abbassa la temperatura superficiale dei materiali ed impedisce la distillazione di vapori infiammabili.

Nella pratica antincendio l'acqua viene utilizzata sotto forma di getto pieno o frazionato.

Sotto questa forma l'acqua pu ò essere utilizzata soltanto per spegnere sostanze solide (fuochi di classe A).

L'altro modo di utilizzare l'acqua consiste nel ridurla opportunamente in gocce, tramite apposite lance, in modo da sfruttare al massimo la capacità di raffreddamento e soffocamento.

II limite a questo sistema di spegnimento sta nel fatto che, per ottenere un certo effetto, bisogna portarsi a ridosso di fiamme e fumo, con più lance in funzione contemporaneamente, stante la modesta gittata dei getti frazionati. da più lati

A prescindere da ci ò, l'acqua ridotta in gocce, più o meno finemente, viene usata frequentemente in campo antincendio sia per la repressione degli incendi (es. impianti a pioggia) che per la protezione di apparecchiature dal calore (es. impianti di raffreddamento), inoltre con essa è possibile il controllo e, al limite, l'estinzione di incendi di liquidi infiammabili.

Anidride carbonica (CO

2

)

L'anidride carbonica è una sostanza composta da carbonio e ossigeno con formula chimica

CO

2

; a temperatura ambiente e pressione atmosferica e un gas incolore, insapore, con odore leggermente pungente, non combustibile n è comburente.

A seconda delle condizioni di temperatura e pressione alle quali e sottoposta, l'anidride carbonica può esistere allo stato solido (ghiaccio secco), liquido e gassoso.

In commercio viene stoccata generalmente liquida in recipienti in pressione (bombole).

Se si scarica anidride carbonica all'atmosfera, buona parte di essa vaporizza rapidamente mentre il resto solidifica sotto forma di neve carbonica, conferendo al getto quel

caratteristico aspetto fumoso e biancastro; contemporaneamente il raffreddamento dell'aria, provoca la condensazione dell'umidit à sotto forma di nebbia.

L'azione estinguente del CO

2

si esplica essenzialmente attraverso la capacit à di soffocamento: il gas inerte sposta l'ossigeno dell'aria, riducendone la concentrazione al disotto del limite oltre il quale la combustione non è più possibile.

Oltre all'azione suddetta l'anidride carbonica esercita anche una discreta azione di raffreddamento.

I principali vantaggi di questo agente estinguente sono da ascrivere alla capacità di diffondere in ogni punto dell'ambiente incendiato, alla assoluta pulizia (non corrode e non sporca) ed alla non conducibilità elettrica, che ne consente l'uso su apparecchiature sotto tensione. Grazie a queste sue propriet à il CO

2

è indicata particolarmente (in speciali impianti fissi) ogni qualvolta si rende necessario creare un ambiente inerte per proteggere:

- materiale elettrico vario (macchine, trasformatori, interruttori ecc.)

- cabine di verniciatura, forni di essiccazione ecc.

- centrali elettroniche e centri elaborazione dati

- magazzini chiusi, archivi, condotti e cunicoli per polveri ecc.

- macchine per filature di tipo chiuse.

Per quanto riguarda le limitazioni, si tenga presente che il CO

2

è un gas asfissiante: un contenuto in aria del 3-4% produce uno stato di malessere, mentre una concentrazione superiore al 15% produce asfissia.

Nelle zone protette con CO

2

si devono prevedere adeguate misure di sicurezza per le persone, in modo da evitare che il personale possa rimanere nel locale all'atto della scarica. A tal fine si devono installare adeguati impianti di allarme (acustici e luminosi) prima e durante la scarica, uscite di sicurezza e mezzi di protezione delle vie respiratorie

(autoprotettori).

Idrocarburi alogenati

Gli halon sono idrocarburi nei quali uno o più atomi di idrogeno sono stati sostituiti da atomi di alogeni (fluoro, cloro, bromo e iodio).

Quando gli atomi di idrogeno di un idrocarburo, come il metano (CH

4

) o l'etano (CH

3

-CH

3

), sono sostituiti con atomi di alogeni (cloro, fluoro, etc.), le propriet à chimiche e fisiche del composto che ne risulta sono notevolmente diverse.

Per quanto riguarda la capacità estinguente , esperienze condotte in altri paesi hanno portato alla conclusione che gli halon hanno efficacia di estinzione in ordine decrescente su incendi di classe C, B e A. Essi sono adatti particolarmente a spegnere incendi "di superficie" in liquidi infiammabili o in presenza di impianti elettrici sotto tensione. Tuttavia la loro azione si fa sentire anche su incendi "di volume" in materiali secchi.

Occorre ricordare come, tuttavia, gli halon sono stati posti al bando in tutta la CEE in quanto dannosi per lo strato protettivo di ozono in atmosfera.

Poichè la CE ed il mondo intero hanno posto fuorilegge i clorofluorocarburi in generale e l'halon, si è reso necessario sostituire il gas in oggetto con grande sconcerto negli addetti ai lavori, in quanto non sempre poteva essere sostituito dagli estinguenti quali la schiuma, la polvere, l'acqua per i motivi precedentemente descritti.

Di seguito si riporta una tabella di esemplificazione sull'utilizzo corretto delle sostanze antincendio.

Polvere chimica

Gli agenti estinguenti denominati "polveri antincendio" consistono in una miscela a base di bicarbonato di sodio o di potassio, solfato di ammonio o fosfato di ammonio, con additivi vari che ne migliorano l'attitudine all'immagazzinamento, la fluidit à, l'idrorepellenza e in alcuni casi la compatibilità con le schiume.

Le polveri chimiche sono stabili ad alte e basse temperature.

Per quanto riguarda la tossicità, i componenti usati nelle polveri sono presentati dai produttori come "non tossici" tuttavia, la scarica di grandi quantità pu ò causare difficoltà temporanee alla respirazione durante ed immediatamente dopo la scarica stessa.

L'effetto di catalisi negativa è, secondo vari studiosi, il pi ù importante fattore dell'azione estinguente delle polveri. In una reazione di combustione si giunge ai prodotti finali tramite reazioni intermedie, che, se sono inibite adeguatamente, interrompono la catena di reazioni e quindi la combustione stessa.

La dielettricità delle polveri consente il loro impiego in presenza di qualsiasi impianto o apparecchio elettrico o elettronico sotto tensione; tuttavia, esse sono sconsigliabili nel caso di elaboratori, rel è, centrali telefoniche o altre apparecchiature delicate, che possono essere messe fuori uso proprio per effetto del potere isolante delle polveri, e che richiedono, successivamente, complesse e costose operazioni di pulitura.

La schiuma

Le schiume sono aggregati complessi ed instabili costituiti da bolle di gas racchiuse in pellicole di liquido, che si ottengono dall'emulsione di arie con una miscela di acqua e liquido schiumogeno.

In linea di principio le schiume sono adatte allo spegnimento ed al controllo di qualsiasi tipo di incendio di classe A o

B, infatti esse, stendendosi sul pelo libero del liquido o sulle superfici dei solidi, impediscono il contatto fra aria

(comburente) e combustibile, esercitando quindi un'azione di "soffocamento".

Contemporaneamente le schiume esplicano una funzione di raffreddamento per effetto dell'evaporazione dell'acqua contenuta nelle bolle.

Esistono in commercio numerosi tipi di liquidi schiumogeni, in relazione al tipo di applicazione richiesta.

IMPIANTI ED ATTREZZATURE ANTINCENDIO

Estintori

In via generale un estintore è un apparecchio contenente un agente estinguente che viene proiettato e diretto su di un fuoco sotto l'azione di una pressione interna.

Sono piccoli mezzi di spegnimento distribuiti nei punti più importanti della fabbrica in modo che siano portata di mano e pronti all'uso in caso di principi di incendio.

Senza dubbio gli estintori (portatili e carrellati) costituiscono il mezzo antincendio di primo intervento più diffuso ed usato, grazie all'impiego facile, al basso costo ed alla grande versatilità di impiego.

L'ubicazione degli estintori deve essere tale da porli bene in evidenza e da renderli facilmente raggiungibili.

In generale è consigliabile che gli estintori vengano disposti nelle immediate vicinanze delle uscite dei locali, e in prossimit à delle zone in cui si ha rischio specifico di incendio.

Per definizione, quindi, agli estintori e affidato il compito, importantissimo, di contrastare un incendio quando si trova ancora nelle fase iniziale di sviluppo, dal cui esito dipende la possibilità di contenimento dei danni.

E' evidente che il successo di un siffatto intervento dipende sostanzialmente dai tipi di estintori disponibili e dalla loro dislocazione nell'ambito del reparto.

I parametri da considerare all'atto della scelta di un estintore sono la durata della scarica, la capacità estinguente e la gittata. Circa le prestazioni di ciascun apparecchio, occorre dire che, attualmente, in commercio è disponibile un'ampia gamma di prodotti per i più svariati impieghi, di cui molti di dubbia efficacia, pertanto all'atto dell'acquisto conviene richiedere i tipi "omologati" dal Ministero dell'Interno ai sensi del

D.M. 20/12/1982.

Nei capitoli precedenti abbiamo trattato diffusamente delle sostanze estinguenti e del loro impiego, pertanto di seguito ci si limita ad una semplice descrizione delle principali caratteristiche di questi attrezzi.

Descrizione e tipologie di estintori

Un estintore è generalmente costruito da un involucro cilindrico di lamiera, verniciata esternamente di rosso e su cui sono riportate le norme d'impiego.

Gli estintori sono essenzialmente di due tipi:

- PORTATILI, fino ad un peso dell'estinguente di 12 Kg;

- CARRELLATI, con peso dell'estinguente oltre i 12 Kg.

I più diffusi sono i portatili, più maneggevoli e di facile impiego.

L'agente estinguente è il complesso del o dei prodotti contenuti nell'estintore la cui azione provoca o dovrebbe provocare l'estinzione dell'incendio. La carica di un estintore è data dalla massa o dal volume dell'agente estinguente contenuto nell'estintore.

Dal punto di vista funzionale in un estintore si distinguono i seguenti componenti principali:

- un recipiente metallico, generalmente a forma cilindrica, contenente l'agente estinguente;

- un propellente per l'espulsione dell'estinguente, generalmente costituito da un gas sotto pressione (azoto o anidride carbonica), contenuto in una bombolina o anche direttamente nel recipiente;

- una manichetta o cono di erogazione;

- una valvola di sicurezza;

- una leva di comando con spina di sicurezza;

- eventuale carrello con ruote gommate.

L'estintore viene azionato tramite la leva di comando che, di solito è situata sulla parte superiore dell'estintore stesso.

Tale organo è munito di una "sicura" o spina di sicurezza per evitare qualsiasi azionamento accidentale. La sicura è sigillata (per es. a mezzo di filo metallico provvisto di piombino) per segnalare se l'estintore è stato usato in precedenza.

A seconda della natura della sostanza estinguenti gli estintori possono essere raggruppati in quattro tipi fondamentali: ad acqua, a schiuma, a polvere e a gas, di cui i primi due tipi sono quasi caduti in disuso.

Tutti gli estintori d'incendio portatili debbono essere di tipo approvato dal Ministero dell'Interno.

Gli estintori vanno tenuti in costante osservazione onde assicurarne la piena efficienza.

E' obbligatoria la verifica semestrale da parte di personale esperto.

L'uso degli estintori deve essere riservato a personale adeguatamente addestrato. a) estintori a polvere

Tra i diversi tipi quelli a polvere sono i più comuni, dato il basso costo e la versatilit à di impiego: sono utilizzabili per incendi di solidi, liquidi e gas infiammabili, metalli speciali ecc.

La sola controindicazione è che lascia residui di polvere i quali debbono essere rimossi con una accurata azione di pulizia.

Dal punto di vista costruttivo questi estintori si dividono in:

- estintori sotto pressione permanente e pressurizzati, nei quali la carica di pressione è all'interno del recipiente stesso, in questo caso lo stato di carica è indicato in un manometro. Il propellente maggiormente impiegato è l'azoto ma si adopera pure la CO

2

e l'aria compressa;

- estintori con cartuccia di gas propellente (CO

2

) esterna o interna.

In questo caso l'estintore viene messo in pressione al momento dell'utilizzo, da una carica propellente contenuta in apposita bomboletta collegata all'estintore.

Questo tipo è più affidabile in quanto impedisce l'impaccamento della polvere e la depressurizzazione dell'estintore nel tempo, ma ha un costo superiore.

Per quanto concerne la manutenzione degli estintori a polvere è richiesto un controllo dello stato di carica del propellente almeno ogni 6 mesi. b) estintori a gas

Anidride carbonica (CO

2

):

La CO

2

è un gas inerte che agisce per soffocamento e per raffreddamento. E' contenuta in una robusta bombola in grado di sopportare pressioni fino a 250 atm ma a temperatura ambiente la pressione è di circa 80 atm e il gas è allo stato liquido.

Liberandosi la CO

2

diventa un gas pi ù pesante dell'aria che produce un'intenso raffreddamento trasformandosi in ghiaccio secco.

Il CO

2

viene stoccato normalmente sotto pressione allo stato liquido (20°C - 50 bar) e fuoriesce attraverso il pescante all'azionamento di una valvola di comando e riduzione di pressione.

I recipienti di capacità superiore a 5 Kg, costruiti e collaudati appositamente per il CO

2

, devono essere ricollaudati ogni 5 anni.

Coinvolti in un incendio questi estintori rappresentano un pericolo di scoppio non indifferente per i soccorritori.

Nell'adoperare l'estintore a CO

2

occorre evitare di toccare la bombola con le mani perchè l'intenso raffreddamento potrebbe produrre ustioni da freddo alla pelle.

L'estintore va quindi manovrato sostenendolo dalla maniglia apposita e a distanza ravvicinata al fuoco.

L'estintore a CO

2

ha impiego poliedrico, ha il vantaggio di poter essere impiegato su apparati elettrici in tensione; è controindicato per lo spegnimento di metalli speciali (zinco, alluminio, sodio, magnesio, potassio) ossia per incendi in classe D.

La CO

2

non è tossica ma asfissiante nel caso raggiunga determinate concentrazioni in ambienti chiuso. Per ciò è

consigliabile di arieggiare dopo lo spegnimento.

Idrocarburi alogenati (halon)

Sono del tutto analoghi a quelli a CO

2

, rispetto ai quali questi hanno una capacità estinguente maggiore.

Quelli più comunemente utilizzati sono caricati con halon

2402 o 1211.

In entrambi i casi l'halon è pressurizzato con CO

2

o con azoto per migliorare la propellenza.

L'applicazione dell'halon è stata molto diffusa in una svariata casistica di tipi d'incendio. c)

Estintori a schiuma

Un tipo di estintore a schiuma, adesso in via di abbandono,

è quello costituito da un recipiente in cui sono conservate separate due soluzioni, a e b.

Al momento dell'impiego, capovolgendo l'estintore, le due soluzioni vengono a contatto formando la schiuma ed al tempo stesso una certa quantit à di gas che agisce come agente propulsore.

Verifiche e manutenzione degli estintori

Per avere la massima affidabilità di funzionamento all'atto di un focolaio di incendio e necessario sottoporre ciascun apparecchio ad una serie di verifiche periodiche, così come del resto è richiesto dalla legislazione vigente (art. 34

D.P.R 577 del 27/4/1955).

Le verifiche devono accertare che:

- l'estintore sia effettivamente nel punto in cui era destinato, ben visibile da tutti i lati e segnalato;

- accertarsi che l'estintore sia libero da intralci;

- verificare che, appesa all'estintore, esista la scheda che riporta le date dei controlli semestrali e che la stessa sia aggiornata;

- controllare che l'eventuale piombino di sicurezza ed il sistema di bloccaggio dell'organo di funzionamento dell'estintore siano intatti;

- controllare che le scritte, in particolare le istruzioni, sull'estintore siano ben leggibili e che la verniciatura in rosso sia in buono stato;

- controllare che l'estintore non abbia subito danneggiamenti ed in particolare tutti gli accessori siano in buone condizioni.

- il manometro sia funzionante e l'estintore sia carico;

- l'estintore non presenti tracce di corrosione, perdite ecc.

Le ispezioni devono essere effettuate con periodicit à almeno semestrale.

Nelle attività ad elevato rischio di incendio, ovvero in presenza di atmosfere corrosive, i controlli periodici devono essere naturalmente più frequenti.

La manutenzione vera e propria, invece, comporta l'esame approfondito di tutti i componenti dell'estintore e la sostituzione di quelli difettosi o non funzionanti, e va eseguita almeno una volta all'anno da parte di personale specializzato.

Ubicazione degli estintori portatili

Generalmente gli estintori vanno sistemati a muro, o su strutture fisse, con apposita staffa di sostegno e posti in posizione tale che l'impugnatura non risulti superiore a 1,5 metri.

In prossimità di ciascun estintore va esposto un cartello indicatore allo scopo di poter rilevare facilmente l'ubicazione, e loro eventuale mancanza onde prevedere alla loro rimessa in loco. Il cartello deve essere numerato, cos ì come l'estintore.

Tecnica di impiego degli estintori portatili

Qualunque sia l'estintore impiegato e contro qualunque fuoco è necessario:

- attenersi alle istruzioni d'uso dell'estintore;

- operare a giusta distanza per colpire il fuoco con un getto efficace: questa distanza varia, a seconda del tipo dell'estintore e della sua capacit à;

- dirigere il getto di sostanza estinguente alla base delle fiamme;

- non attraversare con il getto le fiamme, nell'intento di aggredire il focolaio pi ù grosso, ma agire con progressione, cercando di spegnere le fiamme più vicine per aprirsi cos ì la strada per una azione in profondità;

- non sprecare inutilmente sostanza estinguente, soprattutto con estintori di capacit à non molto elevata; adottare pertanto, se consentito dal tipo di estintore, una erogazione intermittente.

Rete distribuzione acqua antincendio

La rete di distribuzione acqua antincendio è un circuito, generalmente realizzato "a maglie", chiuse in un unico anello.

Esistono altre configurazioni, ad esempio quella a pettine, ma scarsamente impiegate.

La configurazione a maglie richiede senza dubbio un costo di realizzazione più elevato, ma, con tale configurazione e posizionando in maniera opportuna le valvole di sezionamento, l'acqua viene garantita agli utilizzi, anche in casi di

rottura di un tratto di rete; l'alimentazione idrica è garantita in tal modo anche in condizioni particolarmente critiche.

Le reti di distribuzione sono generalmente realizzate e posizionate attorno alle aree di impianto da proteggere.

Le tubazioni possono essere fuori terra o interrate (dove sussiste il pericolo del gelo o altri fattori quali il pericolo di caduta di parti di impianto).

La rete antincendio è alimentata e mantenuta in pressione mediate apposite pompe antincendio che pescano acqua da un serbatoio o da un bacino o da altre fonti di approvvigionamento.

In alcuni casi la pressione nella rete è garantita da un deposito in quota e quindi da un adeguato battente idrostatico.

Dispositivi di erogazione

Come abbiamo visto, l'acqua viene usata come estinguente sotto forma di getti più o meno nebulizzati in funzione delle necessità e del tipo di fuoco.

Per ottenere il getto più appropriato si usano dei dispositivi di erogazione di varia natura e funzione alimentati dalla rete acqua antincendio e collegati ad essa in maniera fissa o mobile.

In quest'ultimo caso sono necessari degli elementi di collegamento fra la rete acqua e l'erogatore: in pratica delle prese che, tramite tubazioni flessibili, permettono il collegamento fra i due elementi.

Gli elementi generali della rete

Idranti

Sono apparecchiature che svolgono la funzione di "presa acqua" per tutte le apparecchiature mobili. Gli idranti sono permanentemente collegati alla rete acqua e posizionati intorno a tutte le aree dell'impianto a distanze variabili in funzione alla pericolosit à dell'area stessa (50 m in aree pericolose, 80 m nelle aree di stoccaggio, 100 m nelle aree servizi). Il posizionamento degli idranti deve inoltre tener conto di particolari centri di pericolo garantendo per questi casi la disponibilit à della portata richiesta da almeno due punti planimetricamente diversi anche in funzione del vento prevalente. Gli idranti possono essere posizionati soprasuolo o sottosuolo; negli impianti industriali sono da preferire idranti soprasuolo per la più facile individuazione. Gli idranti usati in climi senza rischio di gelo sono dei tronchetti di tubo a cui sono collegate delle prese valvolate; questo tipo di idrante non ha valvola di base e l'intercettazione dell'acqua è fatta su ogni singola presa. Nel caso esista la possibilità di gelo gli idranti devono incorporare un particolare dispositivo che permetta il drenaggio dell'acqua dopo l'uso evitando eventuali rotture dovute al ghiaccio. Il dispositivo è una speciale valvola di base che provvede alla intercettazione drenando contemporaneamente l'acqua contenuta nella colonna; sulle bocche di mandata non sono solitamente previste valvole.

Cassette idranti

Sono delle prese idranti valvolate, solitamente 1 ½ ", installate principalmente negli edifici e collegate a diramazioni della rete acqua. Questi idranti vengono posizionati tenendo conto della geometria del fabbricato e della loro raggiungibilit à considerando una distanza massima di 20-25 m.

Solitamente le prese valvolate sono incluse in cassette di protezione di tipo da incasso nella parete o da esterno; tali cassette di comprendono anche i dispositivi per l'erogazione dell'acqua.

Manichette

Sono dei tubi flessibili che servono a collegare apparecchiature mobili agli idranti e conseguentemente alla rete acqua. Le manichette idranti hanno generalmente diametri di 2½" e 1 ½" (in Italia UNI 70 e UNI 45) e lunghezze di 20-25 m.

Data l'importanza di queste apparecchiature, è prevista l'installazione in tutti gli impianti

(industriali e non) di opportune cassette dove le manichette vengono stoccate insieme ad altre apparecchiature di primo intervento. Queste cassette possono essere ubicate sia in prossimit à degli idranti che, in minor numero, in luoghi strategicamente identificati.

Naspi rotanti

Una particolare esecuzione di cassetta idrante prevede che l'acqua venga erogata tramite un tubo di gomma avvolto su uno speciale tamburo (il naspo). Questa soluzione permette di intervenire entro brevi distanze anche senza svolgere tutto il tubo garantendo cos ì un intervento più rapido.

Lance idriche

Sono apparecchiature manuali più o meno sofisticate in grado di produrre getti d'acqua in diverse forme. Le lance idriche sono collegate alla rete per mezzo di manichette flessibili. La più semplice lancia (ormai in disuso), è costituita da un tubo rastremato dotato di ugello in grado di produrre solo un getto pieno. Le lance a più effetti (attualmente molto in uso) producono un getto pieno o frazionato senza possibilit à di regolazione; sono dotate di valvola

di intercettazione e di selezione del getto. Sono anche disponibili modelli che prevedono la formazione di una cortina di acqua nebulizzata per proteggere l'operatore dall'irraggiamento.

- ostacolo (sotto forma di barriera).

Cannoni monitori

Sono in pratica delle lance idriche in grado di erogare elevate portate: da 1.000 a 6.000 l/min. Il corpo dei cannoni monitori è costituito da due parti: una fissa per il collegamento alla rete e una mobile che permette la rotazione e l'alzo del dispositivo di erogazione.

I sistemi fissi di erogazione

Sono sistemi largamente diffusi in quanto permettono di erogare acqua sotto forma di getti dalle caratteristiche ben individuate, a brevi distanze dalla superficie di intervento e soprattutto senza richiedere la presenza dell'operatore.

I sistemi fissi ad acqua possono essere classificati in base alla funzione svolta:

- estinzione (comprende i sistemi ad acqua nebulizzata e i sistemi a pioggia);

- controllo (tramite raffreddamento);

Was this manual useful for you? yes no
Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Download PDF

advertisement