Epever Tracer A series User Manual
Epever Tracer A series is an advanced MPPT solar charge controller with a high efficiency of 98%. It features an ultra-fast tracking speed and guaranteed tracking efficiency, accurately recognizing and tracking multiple power points. The Tracer A series has a wide MPP operating voltage range and can automatically identify 12/24VDC system voltage.
Advertisement
Advertisement
Tracer- A Series
——MPPT Solar Charge Controller
User Manual
Models :
Tracer1206A /Tracer1210A
Tracer2210A/Tracer3210A/Tracer4210A
Important Safety Instructions
Please reserve this manual for future review. This manual contains all instructions of safety, installation and operation for Maximum Power Point
Tracking (MPPT) controller in Tracer-A series ("the controller" is referred in this manual).
General Safety Information
Read carefully all the instructions and warnings in the manual before installation.
No user serviceable component inside controller. DO NOT disassemble or attempt to repair the controller.
Mount the controller indoors. Prevent exposure to the elements and do not allow water to enter the controller.
Install the controller in well ventilated places, the controller’s heat sink may become very hot during operation.
Suggested to install appropriate external fuses/breakers.
Make sure switching off all connections with PV array and the fuse/breakers close to battery before controller installation and adjustment.
Power connections must remain tight to avoid excessive heating from a loose connection.
Information générales sur la sécurité
Lisez toutes les instructions et précautions dans le manuel avant l'installation.
Il n’y a aucune pièce utilisable pour l’utilisateur à l’intérieur du contrôleur. Ne démontez pas ou n'essayez pas de réparer le contrôleur.
Montez le contrôleur en intérieur. Évitez l'exposition des éléments et ne laissez pas d'eau entrer dans le contrôleur.
Installez le contrôleur Tracer dans un endroit bien ventilé, le dissipateur de chaleur de l'Tracer peut devenir très chaud pendant l'utilisation.
Installez les fusibles / coupecircuits comme indiqué.
Déconnectez le module solaire, le chargeur et le fusible / coupe-circuit proche de la batterie avant l'installation ou le réglage du contrôleur.
Les connexions d'alimentation doivent rester à proximité pour évier une chaleur excessive du fait d'une connexion trop lâche.
Contents
1 General Information
............................................................................. 1
1.1Overview
....................................................................................... 1
1.2 Characteristics
............................................................................ 2
1.3 Accessories Instructions
............................................................ 3
1.4 Maximum Power Point Tracking Technology
......................... 3
1.5 Battery Charging Stage
............................................................. 5
2 Installation Instructions
........................................................................ 8
2.1 General Installation Notes
......................................................... 8
2.2 PV Array Requirements
............................................................. 8
2.3 Wire Size
..................................................................................... 9
2.4 Mounting
.................................................................................... 10
3 Operation
............................................................................................. 12
3.1 Button Operation
...................................................................... 12
3.2 LCD Display
.............................................................................. 12
3.3 Parameters setting
................................................................... 14
3.4 Battery Type
.............................................................................. 15
4 Protections, Troubleshooting and Maintenance
............................. 18
4.1 Protection
.................................................................................. 18
4.2 Troubleshooting
........................................................................ 19
4.3 Maintenance
.............................................................................. 19
5 Technical Specifications
.................................................................... 21
Annex I Conversion Efficiency Curves
................................................ 23
Annex II Dimensions
............................................................................. 28
1 General Information
1.1 Overview
Appreciate you for choosing MPPT solar charge controller, Tracer-A series.
Based on common positive design and advanced MPPT control algorithm, with
LCD displaying running status, this product is artistic, economical and practical.
With MPPT control algorithm, in any situation, products of this series can fast and accurately track out the best maximum power point (MPP) of photovoltaic array, in order to obtain the maximum solar energy in time, which remarkably improves energy efficiency. There is dual display function: local LCD panel and remote meter. With Modbus communication protocol interface, it is convenient for customers to expand applications and monitor in various fields like telecommunication base station, household system, street lighting system, wilderness monitoring system, etc.
All-round electronic fault self-test function and enhanced electronic protection function could furthest avoid damages on system components resulting from installation errors or system failures.
Feature:
Advanced Maximum Power Point Tracking (MPPT) technology, with efficiency no less than 99.5%.
High quality components, perfecting system performance, with maximum conversion efficiency of 98%.
Ultra-fast tracking speed and guaranteed tracking efficiency.
Accurately recognizing and tracking of multiple power points.
Reliable automatic limit function of maximum PV input power, ensuring no overload under any circumstance.
Wide MPP operating voltage range.
12/24VDC automatically identifying system voltage.
LCD panel display design, dynamically displaying tool’s operating data and working condition.
Multiple load control modes: manual control, light ON/OFF, light On+Timer and test mode.
Support 3 charging preprogram options: Sealed, Gel, Flooded.
Battery temperature compensation function.
Real-time energy statistics function.
With RS-485 communication bus interface and Modbus communication protocol, it is available to meet various communication requirements in different situations.
Available for EPsolar network module (eBox--01)with protocol
1
TCP/UDP/SNMP, to realize connection to internet.
Available for PC monitoring and external display unit connecting like MT50 and so on, realizing real-time data checking and parameters setting.
Support software upgrade.
1.2 Characteristics
①
②
⑩
⑨
⑧
③
⑦
④ ⑤ ⑥
Figure 1-1 Tracer-A Series Characteristics
Item Name
① Mounting hole sizeΦ5
② Select Button
③
RTS Port
①
④
Solar Terminal
⑤
Battery Terminal
Item Name
⑥
Load Terminal
⑦ RS-485 port
②
⑧
Product shell
⑨
Enter Button
⑩ LCD
Explanation: battery temperature.
② Monitor controller by PC and update controller software via RS485 (RJ45 interface).
2
1.3 Accessories Instructions
1. Remote Temperature Sensor (Model: RTS300R47K3.81A)
Acquisition of battery temperature for undertaking temperature compensation of control parameters, the standard length of the cable is 3m (length can be customized). The RTS300R47K3.81A connects to the port (3 th ) on the controller.
Note: Unplug the RTS, the temperature of battery will be set to a fixed value
25ºC.
2. Remote Meter (Model : MT50)
The digital remote meter displays system operating information, error indications, parameters setting and self-diagnostics.
3. Super Parameter Programmer (Model: SPP-02)
The SPP-02 can realize one-key setting operation which is suitable for bulk quantity products setting in the projects.
4. USB To RS-485 converter (Model: CC-USB-RS485-150U)
USB To RS-485 converter is used to monitor each controller on the network using Solar Station PC software and update the firmware. The length of cable is
1.5m. The CC-USB-RS485-150U connects to the RS-485 Port on the controller.
1.4 Maximum Power Point Tracking Technology
Due to the nonlinear characteristics of solar array, there is a maximum energy output point (Max Power Point) on its curve. Traditional controllers, with switch charging technology and PWM charging technology, can
’t charge the battery at the maximum power point, so can ’t harvest the maximum energy available from
PV array, but the solar charge controller with Maximum Power Point Tracking
(MPPT) Technology can lock on the point to harvest the maximum energy and deliver it to the battery.
The MPPT algorithm of our company continuously compares and adjusts the operating points to attempt to locate the maximum power point of the array. The tracking process is fully automatic and does not need user adjustment.
As the Figure 1-2, the curve is also the characteristic curve of the array, the
MPPT technology will ‘boost’ the battery charge current through tracking the
MPP. Assuming 100% conversion efficiency of the solar system, in that way, the following formula is established:
Input power (P
PV
)= Output power (P
Bat
)
Input voltage (V
Mp
) *input current (I
PV
) =Battery voltage (V
Bat
) *battery current (I
Bat
)
3
Normally, the V
Mp is always higher than V
Bat
, Due to the principle of conservation of energy, the I
Bat
is always higher than I
PV
. The greater the discrepancy between V
Mp
&V
Bat,
the greater the discrepancy between I
PV
& I
Bat
. The greater the discrepancy between array and battery, the bigger reduction of the conversion efficiency of the system, thus the controller’s conversion efficiency is particularly important in the PV system.
Figure 1-2 is the maximum power point curve, the shaded area is charging range of traditional solar charge controller (PWM Charging Mode), it can obviously diagnose that the MPPT mode can improve the usage of the solar energy resource. According to our test, the MPPT controller can raise 20%-30% efficiency compared to the PWM controller. (Value may be fluctuant due to the influence of the ambient circumstance and energy loss.)
Figure 1-2 Maximum Power Point Curve
In actual application, as shading from cloud, tree and snow, the panel maybe appear Multi-MPP, but in actually there is only one real Maximum Power Point.
As the below Figure 1-3 shows:
Figure 1-3 Mutil-MPP Curve
4
If the program works improperly after appearing Multi-MPP, the system will not work on the real max power point, which may waste most solar energy resources and seriously affect the normal operation of the system. The typical
MPPT algorithm, designed by our company, can track the real MPP quickly and accurately, improve the utilization rate of the array and avoid the waste of resources.
1.5 Battery Charging Stage
The controller has a 3 stages battery charging algorithm (Bulk Charging,
Constant Charging and Float Charging) for rapid, efficient, and safe battery charging.
Figure 1-4 Battery changing stage Curve
A) Bulk Charging
In this stage, the battery voltage has not yet reached constant voltage (Equalize or Boost Voltage), the controller operates in constant current mode, delivering its maximum current to the batteries (MPPT Charging).
B) Constant Charging
When the battery voltage reaches the constant voltage setpoint, the controller will start to operate in constant charging mode, this process is no longer MPPT charging, and in the meantime the charging current will drop gradually, the process is not the MPPT charging. The Constant Charging has 2 stages, equalize and boost. These two stages are not carried out constantly in a full charge process to avoid too much gas precipitation or overheating of battery.
5
Boost Charging
The Boost stage maintain 2 hours in default, user can adjust the constant time and preset value of boost voltage according to demand.
The stage is used to prevent heating and excessive battery gassing.
Equalize Charging
WARNING: Explosive Risk!
Equalizing flooded battery would produce explosive gases, so well ventilation of battery box is recommended.
CAUTION: Equipment damage!
Equalization may increase battery voltage to the level that damages sensitive DC loads. Verify that all load allowable input voltages are 11% greater than the equalizing charging set point voltage.
CAUTION: Equipment damage!
Over-charging and excessive gas precipitation may damage the battery plates and activate material shedding on them. Too high an equalizing charge or for too long may cause damage.
Please carefully review the specific requirements of the battery used in the system.
AVERTISSEMENT: Risque d’explosion! l'égalisation de batteries noyées peut produire des gaz explosifs, donc il est recommandé de bien ventiler le boitier de la batterie.
ATTENTION: Dégât sur l'équipement!
L'égalisation peut augmenter la tension de la batterie jusqu'à un niveau nuisible pour les charges CC sensibles. Vérifiez que la tension d'entrée autorisées de toutes les charges disponibles sont supérieures à 11% à la tension du point d'installation de chargement d'égalisation.
ATTENTION: Dégât sur l'équipement!
Un chargement excessif et une précipitation de gaz peut endommager les plaques de la batterie et la formation de matières actives dessus. Un chargement trop fort ou une
égalisation prolongée peut causer des dégâts. Inspectez soigneusement les conditions spécifiques de la batterie utilisée dans le système.
6
Some types of batteries benefit from equalizing charge on a regular basis, which is able to stir electrolyte, balance battery voltage and accomplish chemical reaction. Equalizing charge increases battery voltage, higher than the standard complement voltage, which gasifies the battery electrolyte.
The controller will equalize the battery on 28th each month. The constant equalization period is 0~180 minutes. If the equalization isn’t accomplished in one-time, the equalization recharge time will be accumulated until the set time is finished. Equalize charge and boost charge are not carried out constantly in a full charge process to avoid too much gas precipitation or overheating of battery.
Note:
1) Due to the influence of ambient circumstance or load working, the battery voltage can’t be steady in constant voltage, controller will accumulate and calculate the time of constant voltage working. When the accumulated time reach to 3 hours, the charging mode will turn to Float
Charging.
2) If the controller time is not adjusted, the controller will equalize charge battery once every month following the inner time.
C) Float Charging
After the Constant voltage stage, the controller will reduce charging current to
Float Voltage setpoint. This stage will have no more chemical reactions and all the charge current transforms into heat and gas at this time. Then the controller reduces the voltage to the floating stage, charging with a smaller voltage and current. It will reduce the temperature of the battery and prevent the gassing and charging the battery slightly at the same time. The purpose of Float stage is to offset the power consumption caused by self consumption and small loads in the whole system, while maintaining full battery storage capacity.
In Float charging stage, loads are able to obtain almost all power from solar panel. If loads exceed the power, the controller will no longer be able to maintain battery voltage in Float charging stage. If the battery voltage remains below the
Recharge Voltage, the system will leave Float charging stage and return to Bulk charging stage.
7
2 Installation Instructions
2.1 General Installation Notes
Before installation, please read through the entire installation instructions to get familiar with the installation steps.
Be very careful when installing the batteries, especially flooded lead-acid battery. Please wear eye protection, and have fresh water available to wash and clean any contact with battery acid.
Keep the battery away from any metal objects, which may cause short circuit of the battery.
Explosive battery gases may come out from the battery during charging, so make sure ventilation condition is good.
Gel, Sealed or Flooded batteries are recommended, other kinds please refer to the battery manufacturer.
Ventilation is highly recommended if mounted in an enclosure. Never install the controller in a sealed enclosure with flooded batteries! Battery fumes from vented batteries will corrode and destroy the controller circuits.
Loose power connections and corroded wires may result in high heat that can melt wire insulation, burn surrounding materials, or even cause fire. Ensure tight connections and use cable clamps to secure cables and prevent them from swaying in mobile applications.
Battery connection may be wired to one battery or a bank of batteries. The following instructions refer to a singular battery, but it is implied that the battery connection can be made to either one battery or a group of batteries in a battery bank.
Multiple same models of controllers can be installed in parallel on the same battery bank to achieve higher charging current. Each controller must have its own solar module(s).
Select the system cables according to 5A/mm 2 or less current density in accordance with Article 690 of the National Electrical Code, NFPA 70.
2.2 PV Array Requirements
The MPPT controller will limit battery charging current to the Rated Charge
Current. Although the controller can harvest the rated power of controller, the
PV array size can be as high as P
Max
(P
Max
=I
Bat
*V
Mp
), assuming that the V
Mp
is
68V, the acceptable PV array size as below:
8
Model
Tracer1206A
Tracer1210A
Rated Charge
Current (I
Bat
)
10A
10A
Tracer2210A 20A
Rated Charge Power
130W/12V, 260W/24V
130W/12V, 260W/24V
260W/12V, 520W/24V
MAX. PV Power
(P
Max
)
340W(V
MP
=34V)
680W
1360W
Tracer3210A 30A 390W/12V, 780W/24V 2040W
Tracer4210A 40A 520W/12V,1040W/24V 2720W
Note:
1) The calculation formula for reference only, the PV array V oc
(Open Circuit
Voltage) must never exceed 100V under any conditions.
2) The array I sc
(Short Circuit Current) must not exceed the rated charge current of controller.
3) The Voc of photovoltaic array could be affected by ambient temperature, fluctuating a bit. Before connecting solar panel, please ensure the Voc at any temperature not exceeding the maximum open-circuit voltage of controller.
2.3 Wire Size
The wiring and installation methods must conform to all national and local electrical code requirements.
PV Wire Size
Since the PV outputs can vary due to the array connection method, the minimum wire size must according with maximum array short-circuit current.
For example,
The rated charge current of Tracer4210A is 40A, the PV maximum power is
1040W (24V system). If the V
Mp
is 34V, the I
SC
is 30A (I
SC
=1040W/34V), then the PV wire size must be not less than 10mm 2 (6AWG); If the V
Mp
is 68V, the I
SC is 5A (I
SC
=1040W/68V), then the PV wire size must be not less than 6mm 2
(10AWG).
Battery and Load Wire Size
The battery and load wire size must conform to the rated current, the reference size as below:
9
Model
Tracer1206A
Tracer1210A
Tracer2210A
Tracer3210A
Tracer4210A
Rated charge current
10A
20A
30A
40A
Rated discharge current
10A
20A
30A
40A
Battery wire size
(mm
2
/AWG)
4/10
6/8
10/6
16/4
Load wire size
(mm
2
/AWG)
4/10
6/8
10/6
16/4
Note: The wire size is only for reference. If there is a long distance between the
PV array and the controller or between the controller and the battery, larger wires can be used to reduce the voltage drop and improve performance.
2.4 Mounting
CAUTION: The controller requires at least 150mm of clearance above and below for proper air flow. Ventilation is highly recommended if mounted in an enclosure.
WARNING: Risk of explosion! Never install the controller in a sealed enclose with flooded batteries! Do not install in a confined area where battery gas can accumulate.
WARNING: Risk of electric shock!
Exercise caution when handling solar wiring. The solar PV array can produce open-circuit voltages in excess of 100 V when in sunlight. Pay more attention to it.
ATTENTION:
Le contrôleur Tracer nécessite au moins un espace libre de 150mm au dessus et en dessous pour une circulation correcte de l'air. Une ventilation est hautement recommandée en cas d'installation dans un boitier.
AVERTISSEMENT: Risque d’explosion ! N'installez jamais le
Tracer dans un boitier fermé avec des batteries noyées!
N'installez pas dans un espace confiné où des gaz de batterie peuvent s'accumuler.
AVERTISSEMENT:
Risque d'électrochoc!
Faites attention lors de la manipulation des connexions solaires.
La matrice PV solaire peut produire des tensions supérieures à
10
0V, à la lumière du soleil. Soyez particulièrement attentif à cela.
10
Figure 2-1 Mounting
1. Connect components to the charge controller in the sequence as shown above and pay much attention to the “+” and “-”.
Please don’t turn on the fuse during the installation. When disconnecting the system, the order will be reserved.
2. After installation, power the controller and check the LCD on
. If it’s not on, please refer to chapter 4. Always connect the battery first, in order to allow the controller to recognize the system voltage.
3. The battery fuse should be installed as close to battery as possible. The suggested distance is within 150mm.
4.
The Tracer-A series is a positive ground controller. Any positive connection of solar, load or battery can be earth grounded as required.
CAUTION: Unplug the RTS, the temperature of battery will be set to a fixed value 25 ºC.
CAUTION: Please connect the inverter to the battery rather than to the controller, if the inverter is necessary.
11
3 Operation
3.1 Button Operation
Mode
Browse Mode
Set Mode
Load Switch
Note
Short press SELECT
Long press ENTER to enter into Set Mode, short press SELECT to set the parameters. The LCD will leave SET Mode interface automatically when no operation for more than ten seconds
When the load mode is manual on/off, short press ENTER can turn on/off the load
3.2 LCD Display
Status Description
Item Icon
PV array
Battery
Load
Figure 3-1 LCD
Load ON
Load OFF
Status
Day
Night
No charging
Charging
PV Voltage, Current, Power
High volt disconnect , Low voltage disconnect, Battery over temperature ,
Charging , Power
Battery Voltage, Current, Temperature
Battery Type
Load Voltage, Current, Load mode
12
Fault Indication
Status
Battery over discharged
Battery over voltage
Battery over temperature
Load failure
Icon
Auto cycle interface
Description
Battery level shows empty, battery frame blink, fault icon blink
Battery level shows full, battery frame blink, fault icon blink
Battery level shows current value, battery frame blink, fault icon blink
Load overload ,Load short circuit
Browse interface
Note: 1) Accumulative power zero clearing: Under PV power interface, long press ENTER and
13
then the value blink, press ENTER again to clear the value.
2) Switching battery temperature unit: Under battery temperature interface, long press
ENTER to switch.
3.3 Parameters setting
Load mode setting
When the browsing interface shows the load setting interface as following, you can set the load modes.
From left to right, the fist number means Time 1 or Time 2, the second and third number means as following:
The 2 nd
, 3 rd number
Time 1 Time 2 n
0
1
2
3 ~ 13
Disable
Dusk to dawn
Load will be on for 1 hour since sunset
Load will be on for 2 hour since sunset
Load will be on for 3 ~ 13 hour
Disable
Display n
Load will be on for 1 hour before sunrise
Load will be on for 2 hour before sunrise
Load will be on for 3 ~ 13 hour
14
15
16
17 since sunset
Load will be on for 14 hour since sunset
Load will be on for 15 hour since sunset
Test mode
Manual ON/OFF before sunrise
Load will be on for 14 hour before sunrise
Load will be on for 15 hour before sunrise
Display n
Display n
Parameters setting
Figure 3-2 Setting operation
14
Three methods to configure the controller:
1
–Remote meter, MT50 (Use standard twisted net cable, model:
CC-RS485-RS485-200U-MT).
2 –Super parameter programmer, SPP-02(Use standard twisted net cable, model: CC-RS485-RS485-200U). One-key easily configure and apply to batch setting.
3 –PC monitoring setting software “Solar Station Monitor” ( Use USB to RS485 converter cable with model: CC-USB-RS485-150U.
The RJ45 interface pin define for Tracer-A series controller is shown below:
Pins
1
2
6
7
8
3
4
5
Define
Power supply output +7.5V
Power supply output +7.5V
RS-485-B
RS-485-B
RS-485-A
RS-485-A
Ground
Ground
3.4 Battery Type
Operating Steps
Under Battery Voltage interface, long press ENTER button enter into the interface of Battery type setting. After choosing the battery type by pressing
SELECT button, waiting for 5 seconds or pressing ENTER button again to modify successfully.
15
Battery Type
① Sealed (Default) ② Gel ③ Flooded
④ “MT50” and “PC software “Solar Station Monitor” )
Battery Voltage Parameters (parameters is in 12V system at 25 ℃ , please use double value in 24V.)
Sealed Gel Flooded User Battery charging setting
Over Voltage Disconnect
Voltage
16.0V 16.0V 16.0V 9~17V
Charging Limit Voltage
Over Voltage Reconnect
Voltage
Equalize Charging
Voltage
15.0V
15.0V
14.6V
15.0V
15.0V
——
15.0V
15.0V
14.8V
9~17V
9~17V
9~17V
Boost Charging Voltage 14.4V 14.2V 14.6V 9~17V
Float Charging Voltage 13.8V 13.8V 13.8V 9~17V
Boost Reconnect
Charging Voltage
13.2V
Low Voltage Reconnect
Voltage
Under Voltage Warning
Reconnect Voltage
12.6V
12.2V
Under Volt. Warning Volt. 12.0V
Low Volt. Disconnect Volt. 11.1V
Discharging Limit Voltage 10.6V
Equalize Duration (min.) 120
13.2V
12.6V
12.2V
12.0V
11.1V
10.6V
——
13.2V
12.6V
12.2V
12.0V
11.1V
10.6V
120
9~17V
9~17V
9~17V
9~17V
9~17V
9~17V
0~180
Boost Duration (min.) 120 120 120 10~180
Note:
1) When the battery type is sealed, gel, flooded, the adjusting range of equalize duration is 0 to180min and boost duration is 10 to180min.
2) The following rules must be observed when modifying the parameters value in user battery type (factory default value is the same as sealed type): a.
Over Voltage Disconnect Voltage > Charging Limit Voltage ≥ Equalize
16
Charging Voltage ≥ Boost Charging Voltage ≥ Float Charging Voltage >
Boost Reconnect Charging Voltage. b. Over Voltage Disconnect Voltage > Over Voltage Reconnect Voltage c. Low Voltage Reconnect Voltage > Low Voltage Disconnect Voltage ≥
Discharging Limit Voltage. d. Under Voltage Warning Reconnect Voltage > Under Voltage Warning
Voltage ≥ Discharging Limit Voltage. e. Boost Reconnect Charging voltage > Low Voltage Disconnect Voltage.
CAUTION: Please refer to user guide or contact with the sales for the detail of setting operation.
17
4 Protections, Troubleshooting and Maintenance
4.1 Protection
PV Over Current
The controller will limit battery charging current to the Maximum Battery Current rating. Therefore an over-sized solar array will not operate at peak power.
PV Short Circuit
When PV short circuit occurs, the controller will stop charging. Clear it to resume normal operation.
PV Reverse Polarity
Fully protection against PV reverse polarity, no damage to the controller will result. Correct the miswire to resume normal operation.
Battery Reverse Polarity
Fully protection against battery reverse polarity, no damage to the controller will result. Correct the miswire to resume normal operation.
Battery Over voltage
When battery voltage reach to the voltage set point of Over Voltage Disconnect, the controller will stop charging the battery to protect the battery overcharge to break down.
Battery Over discharge
When battery voltage reach to the voltage set point of Low Voltage
Disconnect , the controller will stop discharging the battery to protect the battery over discharged to break down.
Battery Overheating
The controller detect the battery temperature through the external temperature sensor. If the battery temperature exceeds 65ºC, the controller will automatically start the overheating protection to stop working and recover below 50 ºC.
Load Overload
If the load current exceeds the maximum load current rating 1.05 times, the controller will disconnect the load. Overloading must be cleared up through reducing the load and restarting controller.
Load Short Circuit
Fully protected against load wiring short-circuit. Once the load shorts (more than quadruple rate current), the load short protection will start automatically.
After five automatic load reconnect attempts, the fault must be cleared by restarting controller.
Damaged Remote Temperature Sensor
If the temperature sensor is short-circuited or damaged, the controller will be charging or discharging at the default temperature 25 ℃ to prevent the battery damaged from overcharging or over discharged.
Controller Overheating
If the temperature of the controller heat sinks exceeds 85 ℃ , the controller will
18
automatically start the overheating protection and recover below 75 ℃ .
High Voltage Transients
PV is protected against small high voltage surge. In lightning prone areas, additional external suppression is recommended.
4.2 Troubleshooting
Faults
The LCD is off during daytime when sunshine falls on PV modules properly
Wire connection is correct, LCD not display
Interface blink
Possible reasons
PV array disconnection
1. Battery voltage is lower than 9V
2. PV voltage is less than battery voltage
Battery voltage higher than over voltage disconnect voltage(OVD)
Interface blink
Battery under voltage
Interface blink
Interface blink
Battery low voltage disconnect
Over load or Short circuit
Troubleshooting
Confirm that PV and battery wire connections are correct and tight
1. Please check the voltage of battery. At least 9V voltage to activate the controller
2. Check the PV input voltage which should be higher than battery’s
Check if the battery voltage is too high, and disconnect the solar module
Load output is normal, charging LED indicator will return to green automatically when fully charged
The controller will cut off the output automatically, LED indicator will return to green automatically when fully charged
Remove or reduce the load and press the button, the controller will resume to work after 3 seconds
4.3 Maintenance
The following inspections and maintenance tasks are recommended at least two times per year for best performance.
Make sure controller firmly installed in a clean and dry ambient.
Make sure no block on air-flow around the controller. Clear up any dirt and fragments on radiator.
19
Check all the naked wires to make sure insulation is not damaged for serious solarization, frictional wear, dryness, insects or rats etc. Repair or replace some wires if necessary.
Tighten all the terminals. Inspect for loose, broken, or burnt wire connections.
Check and confirm that LED is consistent with required. Pay attention to any troubleshooting or error indication .Take corrective action if necessary.
Confirm that all the system components are ground connected tightly and correctly.
Confirm that all the terminals have no corrosion, insulation damaged, high temperature or burnt/discolored sign, tighten terminal screws to the suggested torque.
Check for dirt, nesting insects and corrosion. If so, clear up in time.
Check and confirm that lightning arrester is in good condition. Replace a new one in time to avoid damaging of the controller and even other equipments.
WARNING : Risk of electric shock!
Make sure that all the power is turned off before above operations, and then follow the corresponding inspections and operations.
20
5 Technical Specifications
Electrical Parameters
Item
Nominal system voltage
Rated charge current
Rated discharge current
Battery voltage range
Tracer
1206A
10A
10A
Max. PV V
OC 60V
MPP Voltage range V
BAT
①
+2V ~ 50V
②
Tracer
1210A
10A
10A
9V ~
Tracer
2210A
12/24VDC Auto
20A
20A
32V
100V
Tracer
3210A
30A
30A
V
BAT
+2V ~ 90V
③
Tracer
4210A
40A
40A
Max. PV input power
Self-consumption
Temperature compensate coefficient
Communication
① V
BAT
is Battery voltage.
② V oc less than 60V.
③ V oc less than 100V.
130W/12V
260W/24V
260W/12V 390W/12V 520W/12V
520W/24V 780W/24V 1040W/24V
<20mA(12V) <16mA(24V)
3mV/ºC/2V(Default)
RS485(RJ45 interface)
Environmental Parameters
Environmental
LCD temperature range
Ambient temperature range*
Storage temperature range
Humidity range
Parameter
-20 ℃~ +70 ℃
-25 ℃~ +45 ℃
-35 ℃~ +80 ℃
≤95% (N.C.)
Enclosure IP30
* Please operate controller at permitted ambient temperature. If over permissible range, please derate capacity in service.
21
Mechanical Parameters
Mechanical
Dimension
Tracer1206A
Tracer1210A
Tracer2210A
172mmx139mmx44mm 172mmx139mmx44mm
Mounting dimension
Mounting hole size
130mmx130mm
Φ5
Power cable
Weight
4mm 2
0.6kg
10mm 2
1.1kg
Mechanical Parameters
Mechanical
Dimension
Tracer3210A Tracer4210A
228mmx164mmx55mm 252mmx180mmx63mm
Mounting dimension
Mounting hole size
170mmx164mm
Φ5
210mmx171mm
Power cable
Weight
10mm 2
1.2kg
10mm 2
1.9kg
22
Annex I Conversion Efficiency Curves
Illumination Intensity: 1000W/m
2
Temp: 25ºC
Model: Tracer1206A
1. Solar Module MPP Voltage(17V, 34V) / Nominal System Voltage(12V)
12V Conversion Efficency Curves
100,00%
98,00%
96,00%
94,00%
92,00%
90,00%
88,00%
86,00%
84,00%
17V
34V
20W 50W 100W
Charging Power (W)
130W
2. Solar Module MPP Voltage(34V) / Nominal System Voltage(24V)
24V Conversion Efficency Curves
100,00%
98,00%
96,00%
94,00%
92,00%
90,00%
88,00%
86,00%
84,00%
20W 50W 100W 150W 200W
Charging Power (W)
250W 300W
34V
Model: Tracer1210A
Solar Module MPP Voltage(17V, 34V, 68V) / Nominal System Voltage(12V)
12V Conversion Efficency Curves
100,00%
98,00%
96,00%
94,00%
92,00%
90,00%
88,00%
86,00%
84,00%
17V
34V
68V
20W 50W 100W
Charging Power (W)
130W
1. Solar Module MPP Voltage(34V, 68V) / Nominal System Voltage(24V)
24V Conversion Efficency Curves
100,00%
98,00%
96,00%
94,00%
92,00%
90,00%
88,00%
86,00%
84,00%
20W 50W 100W 150W 200W
Charging Power (W)
250W 300W
34V
68V
Model: Tracer2210A
Solar Module MPP Voltage(17V, 34V, 68V) / Nominal System Voltage(12V)
12V Conversion Efficency Curves
1.
99,00%
97,00%
95,00%
93,00%
91,00%
89,00%
87,00%
85,00%
17
34V
68V
20W 50W 100W 150W
Charging Power (W)
200W 250W
Solar Module MPP Voltage(33V, 68) / Nominal System Voltage(24V)
24V Conversion Efficency Curves
99,00%
97,00%
95,00%
93,00%
91,00%
89,00%
87,00%
85,00%
34V
68V
Charging Power (W)
Model: Tracer3210A
Solar Module MPP Voltage(17V, 34V, 68V)/ Nominal System Voltage(12V)
12V Conversion Efficency Curves
100,00%
99,00%
98,00%
97,00%
96,00%
95,00%
94,00%
93,00%
92,00%
91,00%
90,00%
50W 100W 150W 200W 250W 300W 350W 400W
17V
34V
68V
Charging Power (W)
1. Solar Module MPP Voltage(34V, 68V) / Nominal System Voltage(24V)
24V Conversion Efficency Curves
100,00%
99,00%
98,00%
97,00%
96,00%
95,00%
94,00%
93,00%
92,00%
91,00%
90,00%
34V
68V
Charging Power (W)
Model: Tracer4210A
1. Solar Module MPP Voltage(17V, 34V, 68V) / Nominal System
Voltage(12V)
12V Conversion Efficency Curves
98,00%
97,00%
96,00%
95,00%
94,00%
93,00%
92,00%
91,00%
90,00%
89,00%
88,00%
87,00%
17V
34V
68V
Charging Power (W)
2. Solar Module MPP Voltage(34V, 68V) Nominal System Voltage(24V)
24V Conversion Efficency Curves
99,00%
98,00%
97,00%
96,00%
95,00%
94,00%
93,00%
92,00%
91,00%
90,00%
89,00%
88,00%
87,00%
34V
68V
Charging Power (W)
Annex II Dimensions
Tracer1206A/Tracer1210A Dimensions in Millimeters
Tracer2210A Dimensions in Millimeters
Tracer3210A Dimensions in Millimeters
Tracer4210A Dimensions in Millimeters
Final interpretation right of the manual belongs to EPsolar. Any changes without prior notice!
Version number: V1.0

Public link updated
The public link to your chat has been updated.
Advertisement
Key features
- Advanced Maximum Power Point Tracking (MPPT) technology
- Ultra-fast tracking speed and guaranteed tracking efficiency
- Accurately recognizing and tracking of multiple power points
- Reliable automatic limit function of maximum PV input power
- Wide MPP operating voltage range
- 12/24VDC automatically identifying system voltage
- LCD panel display design, dynamically displaying tool’s operating data and working condition
- Multiple load control modes: manual control, light ON/OFF, light On+Timer and test mode
- Support 3 charging preprogram