Gefran GIT Inclinometer User Manual

CANopen GIT digital output Code 85203B Edition 03-2019 SUMMARY 1. INTRODUCTION��������������������������������������������������������������������������������������������������������������������������������������������������������������������2 2. ELECTRICAL CONNECTIONS����������������������������������������������������������������������������������������������������������������������������������������������3 3. NETWORK MANAGEMENT (NMT) ��������������������������������������������������������������������������������������������������������������������������������������5 4. BAUD RATE ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������6 5. NODE-ID �������������������������������������������������������������������������������������������������������������������������������������������������������������������������������6 6. PARAMETER SETTINGS ����������������������������������������������������������������������������������������������������������������������������������������������������6 7. RESTORE DEFAULT PARAMETERS ����������������������������������������������������������������������������������������������������������������������������������6 8. HEARTBEAT ������������������������������������������������������������������������������������������������������������������������������������������������������������������������7 9. ERROR HANDLING �������������������������������������������������������������������������������������������������������������������������������������������������������������7 10. SDO COMMUNICATION �����������������������������������������������������������������������������������������������������������������������������������������������������9 11. PDO COMMUNICATION AND ANGLE CALCULATION�����������������������������������������������������������������������������������������������������10 12. CANOPEN FEATURES SUMMARY����������������������������������������������������������������������������������������������������������������������������������21 13. STATUS LED ��������������������������������������������������������������������������������������������������������������������������������������������������������������������26 14. DIGITAL FILTER SETTING������������������������������������������������������������������������������������������������������������������������������������������������27 15. COMMUNICATION EXAMPLES����������������������������������������������������������������������������������������������������������������������������������������28 85203B_GIT-CANopen_Operative Manual_03-2019_ENG 1 1. INTRODUCTION The GITM12 or cable output 2-axis (from ±15° to ±90°) or 1-axis (-180°...+180° = 0°...360°) inclination sensor with CANopen interface enables angle levelling and position detection in many applications. The sensor is based on state-of-the-art MEMS capacitive technology implementing the functions of a CAN BUS network slave device conforming to standard CANopen protocol proposed by C.i.A. (Can in Automation) and described in the document entitled “CANOpen Application Layer and Communication Profile DS 301 v. 4.2” and in other documents mentioned below. Other reference documents used are C.i.A. DS-410 Device Profile for inclinometer and C.i.A. DSP-305 Layer Setting Services and Protocol V1.1.1. This document describes the standard CANopen implementations created. It is addressed to CANopen network system integrators and to CANopen device designers who already know the content of the above-mentioned standards defined by C.i.A... The details of aspects defined by CANopen do not pertain to the purpose of this text. For further information on the protocol you can also contact us via e-mail: at www.gefran.com or contact the GEFRAN office nearest to you. Definition and Shortening CAN: Controller Area Network. Describes a serial communication bus that implements the “physical” level 1 and the “data link” level 2 of the ISO/OSI reference model. CAL: CAN Application Layer. Describes implementation of the CAN in the level 7 “application” of the ISO/OSI reference model from which CANopen derives. CMS: CAN Message Specification. CAL service element. Defines the CAN Application Layer for the various industrial applications. COB: Communication Object. Unit of transport of data in a CAN network (a CAN message). A maximum of 2048 COBs may be present in a CAN network, each of which may transport from 0 to a maximum of 8 bytes. COB-ID: COB Identifier. Identifying element of a CAN message. The identifier determines the priority of a COB in case of multiple messages in the network. D1 – D8: Data from 1 to 8. Number of bytes in the data field of a CAN message. DLC: Data Length code. Number of data bytes transmitted in a single frame. ISO: International Standard Organization. International authority providing standards for various merchandise sectors. NMT: Network Management. CAL service element. Describes how to configure, initialize, manage errors in a CAN network. PDO: Process Data Object. Process data communication objects (with high priority). RXSDO: Receive SDO. SDO objects received from the remote device. SDO: Service Data Object. Service data communication objects (with low priority). The value of this data is contained in the “Objects Dictionary” of each device in the CAN network. TXPDO: Transmit PDO. PDO objects transmitted by the remote device. TXSDO: Transmit SDO. SDO objects transmitted by the remote device. N.B.: The numbers followed by the suffix “h” represent a hexadecimal value, with suffix “b” a binary value, and with suffix “d” a decimal value. The value is decimal unless specified otherwise 2 85203B_GIT-CANopen_Operative Manual_03-2019_ENG 2. ELECTRICAL CONNECTIONS For the connections refer to the table below: CONEC M12 x 1 5 poles 43-01090 Meaning 1 N.C. 2 +Vs (+10 … +36 Vdc) 3 GROUND 4 CAN H 5 CAN-L Note: please make sure that the CANbus is terminated. The impedance measured between CAN H and CAN L must be 60 ohm that means the cable must be connected to a 120 ohm resistor on each ends of the bus line. Internally the transducer is not terminated with the resistor of 120 ohm. Do not confuse the signal lines of the CAN bus, otherwise communication with the transducer is impossible. CONEC M12x1 5 pole 43-01090 85203B_GIT-CANopen_Operative Manual_03-2019_ENG 3 For the connections refer to the table below: 6 wires output 18 AWG 1.65mm OD Meaning WHITE +Vs (+10 … +36 Vdc) YELLOW GROUND GREY CAN H BLUE CAN-L PINK N.C. GREEN N.C. BROWN N.C. Note: please make sure that the CANbus is terminated. The impedance measured between CAN H and CAN L must be 60 ohm that means the cable must be connected to a 120 ohm resistor on each ends of the bus line. Internally the transducer is not terminated with the resistor of 120 ohm. Do not confuse the signal lines of the CAN bus, otherwise communication with the transducer is impossible. Cables output IEC 60332 Cable 7 pole 0.5 mm² OD 6.4 mm 4 85203B_GIT-CANopen_Operative Manual_03-2019_ENG 3. NETWORK MANAGEMENT (NMT) The device supports CANopen network management functionality NMT Slave (Minimum Boot Up): Every CANopen device contains an internal Network Management server that communicates with an external NMT master. One device in a network, generally the host, may act as the NMT master. Through NMT messages, each CANopen device’s network management server controls state changes within its built-in Communication State Machine. This is independent from each node’s operational state machine, which is device dependant and described in Control State Machine. It is important to distinguish a CANopen device’s operational state machine from its Communication State Machine. CANopen sensors and I/O modules, for example, have completely different operational state machines than servo drives. The “Communication State Machine” in all CANopen devices, however, is identical as specified by the DS301. NMT messages have the highest priority. The 5 NMT messages that control the Communication State Machine each contain 2 data bytes that identify the node number and a command to that node’s state machine. Table 1 shows the 5 NMT messages supported, and Table 2 shows the correct message construction for sending these messages. Table 1 NMT Message COB-ID Data Byte 1 Data Bytes 2 Start Remote Node 0 01h Node-ID* Stop Remote Node 0 02h Node-ID* Pre-operational State 0 80h Node-ID* Reset Node 0 81h Node-ID* Reset Communication 0 82h Node-ID* * Node-ID = Drive address ( from 1 to 7Fh) Table 2 Arbitration Field COB-ID 000h Data Field RTR Byte 1 Byte 2 0 See Table 1 See Table 2 85203B_GIT-CANopen_Operative Manual_03-2019_ENG Byte 3 Byte 4 Byte 5 Byte 6 Byte 7 Byte 8 These bytes not sent 5 4. BAUD RATE Node ID can be configurable via SDO communication object 0x20F2 and 0x20F3 (see communication examples at the end of this document). The default Baud rate is 250kbit/s. Important Note: Changing this parameter can disturb the network! Use this service only if one device is connected to the network! 5. NODE-ID Node ID can be configurable via SDO communication object 0x20F0 and 0x20F1 (see communication examples at the end of this document). The default Node-ID is 7F. Important Note: Changing this parameter can disturb the network! Use this service only if one device is connected to the network! 6. PARAMETER SETTINGS All object dictionary parameters (objects with marking PARA) can be saved in a special section of the internal EEPROM and secured by checksum calculation. The special LSS parameters (objects with marking LSS-PARA), also part of the object dictionary, will be also saved in a special section of the internal EEPROM and secured by checksum calculation. Due to the internal architecture of the microcontroller the parameter write cycles are limited to 100,000 cycles. 7. RESTORE DEFAULT PARAMETERS All object dictionary parameters (objects with marking PARA) can be restored to factory default values via SDO communication (index 0x1011). 6 85203B_GIT-CANopen_Operative Manual_03-2019_ENG 8. HEARTBEAT The heartbeat mechanism for this device is established through cyclic transmission of the heartbeat message done by the heartbeat producer. One or more devices in the network are aware of this heartbeat message. If the heartbeat cycle fails from the heartbeat producer the local application on the heartbeat consumer will be informed about that event. The implementation of either guarding or heartbeat is mandatory. The device supports Heartbeat Producer functionality. The producer heartbeat time is defined in object 0x1017. Heartbeat Message COB-ID Byte 0 700+Node-ID Content NMT State 9. ERROR HANDLING Principle Emergency messages (EMCY) shall be triggered by internal errors on device and they are assigned the highest possible priority to ensure that they get access to the bus without delay (EMCY Producer). By default, the EMCY contains the error field with pre-defined error numbers and additional information. Error Behavior (object 0x4000) If a serious device failure is detected the object 0x4000 specifies, to which state the module shall be set: 0: pre-operational 1: no state change (default) 2: stopped EMCY Message The EMCY COB-ID is defined in object 0x1014. The EMCY message consists of 8 bytes. It contains an emergency error code, the contents of object 0x1001 and 5 byte of manufacturer specific error code. This device uses only the 1st byte as manufacturer specific error code. Byte Byte1 Byte2 Byte3 Byte4 Byte5 Byte6 Byte7 Byte8 Description Emergency Error Code ¹⁾ Error Register (object 0x1001²⁾ ) Manufacturer specific error code (always 0x00) Manufacturer specific error code (object 0x4001) Manufacturer specific error code NOT IMPLEMENTED (always 0x00) ¹⁾ Error Code ²⁾ Always 0 0x0000 Error Reset or no Error (Error Register = 0 0x1000 Generic error 85203B_GIT-CANopen_Operative Manual_03-2019_ENG 7 Supported Manufacturer Specific Error Codes (object 0x4001) Manufacturer Specific Error Code (bit field) Description 0bxxxxxxx1(a) Sensor Error TYPE GIT-Z-360 (e.g. angle under/above limits, self-test failure, MEMS IC communication error) 0bxxxxxxx1(a) Sensor Error X-axis TYPE GIT-XY-0xx (e.g. angle under/above limits, self-test failure, MEMS IC communication error) 0bxxxxxx1x(a) Sensor Error Y-axis TYPE GIT-XY-0xx (e.g. angle under/above limits, self-test failure, MEMS IC communication error) 0bxxx1xxxx Program checksum error 0bxx1xxxxx Flash limit reached - error 0bx1xxxxxx LSS Parameter checksum error (a) 8 An angle error will be generated if the actual measured angle is under or above limits. Example of limits for different versions are reported below: GIT dual axis version ±10° Error limits are ± 11° (± 11° are also the FSO angles STOP) GIT dual axis version ±15° Error limits are ± 16.5° (± 16.5° are also the FSO angles STOP) GIT dual axis version ±20° Error limits are ± 22° (± 22° are also the FSO angles STOP) GIT dual axis version ±30° Error limits are ± 33° (± 33° are also the FSO angles STOP) GIT dual axis version ±45° Error limits are ± 49.5° (± 49.5° are also the FSO angles STOP) GIT dual axis version ±60° Error limits are ± 66° (± 66° are also the FSO angles STOP) GIT dual axis version ±90° Error limits are ± 87° (± 87° are also the FSO angles STOP) 85203B_GIT-CANopen_Operative Manual_03-2019_ENG 10. SDO COMMUNICATION The device fulfils the SDO Server functionality. With Service Data Object (S.D.O.) the access to entries of a device Object Dictionary is provided. As these entries may contain data of arbitrary size and data type SDOs can be used to transfer multiple data sets from a client to a server and vice versa. Structure of SDO-request by the Master COB-ID DLC Byte1 600+Node-ID 8 CMD Byte2 Byte3 Index Byte4 Byte5 Byte6 Byte7 Byte8 Sub-Index Data Data Data Data Byte4 Byte5 Byte6 Byte7 Byte8 Sub-Index Data Data Data Data Structure of SDO-answer by the Slave COB-ID DLC Byte1 580+Node-ID 8 RES Byte2 Byte3 Index Write Access, Data Transfer from Host to Slave Each access to the object dictionary is checked by the slave for validity. Any write access to nonexistent objects, to read-only objects or with a non-corresponding data format are rejected and answered with a corresponding error message. CMD determines the direction of data transfer and the size of the data object: 23 hex Sending of 4-byte data (bytes 5...8 contain a 32-bit value) 2B hex Sending of 2-byte data (bytes 5, 6 contain a 16-bit value) 2F hex Sending of 1-byte data (byte 5 contains an 8-bit value) The slave answers: RES Response of the slave: 60 hex Data sent successfully 80 hex Error, Read Access, Data Transfer from Slave to Host Any read access to non-existing objects is answered with an error message. CMD determines the direction of data transfer: 40 hex read access (in any case) The slave answers: RES Response of the slave: 42 hex Bytes used by node when replying to read command with 4 or less data 43 hex Bytes 5...8 contain a 32-bit value 4B hex Bytes 5, 6 contain a 16-bit value 4F hex Byte 5 contains an 8-bit value 80 hex Error, 85203B_GIT-CANopen_Operative Manual_03-2019_ENG 9 11. PDO COMMUNICATION AND ANGLE CALCULATION Transmit PDO #0 – Dual axis configuration X-Y (from ± 10° to ± 90°) model GIT-XY-xxx This PDO transmits asynchronously the position value of the angle sensor. The Tx PDO #0 shall be transmitted cyclically, if the cyclic timer (object 0x1800.5) is programmed > 0. Values between 4ms and 65535 ms shall be selectable by parameter settings. The Tx PDO #0 will be transmitted by entering the "Operational" state. Byte Byte1 Byte2 Byte3 Byte4 Byte5 Byte6 Byte7 Byte8 Description X Axis (object 0x6010) Low-Byte X Axis (object 0x6010) High-Byte Y Axis (object 0x6020) Low-Byte Y Axis (object 0x6020) High-Byte (0x00) In the following figures an example of PDO mapping is reported in the case of Angle X = 0.00° and Angle Y = 0.00° (Node-ID = 7Fh and resolution ± 0.01°) Angle X = 0.00° Angle Y = 0.00° 10 85203B_GIT-CANopen_Operative Manual_03-2019_ENG ID Byte1 Byte2 Byte3 Byte4 Byte5 Byte6 Byte7 Byte8 1FFh 00h 00h 00h 00h 00h 00h 00h 00h Angle X: Byte 2 MSB (00h) = 00h Byte 1 LSB (00h) = 00h Angle X = 0000h to decimal 0d (resolution ± 0.01°) = 0.00° Angle Y: Byte 4 MSB (00h) = 00h Byte 3 LSB (00h) = 00h Angle Y = 0000h to decimal 0d (resolution ± 0.01°) = 0.00° In the following figures an example of PDO mapping is reported in the case of Angle X = + 45.00° and Angle Y = 0.00° (Node-ID = 7Fh and resolution ± 0.01°) Angle X = +45.00° Angle Y = 0.00° 85203B_GIT-CANopen_Operative Manual_03-2019_ENG 11 ID Byte1 Byte2 Byte3 Byte4 Byte5 Byte6 Byte7 Byte8 1FFh 94h 11h 00h 00h 00h 00h 00h 00h Angle X: Byte 2 MSB (11h) = 11h Byte 1 LSB (94h) = 94h Angle X = 1194h to decimal 4500d (resolution ± 0.01°) = +45.00° Angle Y: Byte 4 MSB (00h) = 00h Byte 3 LSB (00h) = 00h Angle Y = 0000h to decimal 0d (resolution ± 0.01°) = 0.00° In the following figures an example of PDO mapping is reported in the case of Angle X = - 45.00° and Angle Y = + 0.00° (Node-ID = 7Fh and resolution ± 0.01°). Angle X = -45.00° Angle Y = 0.00° 12 85203B_GIT-CANopen_Operative Manual_03-2019_ENG ID Byte1 Byte2 Byte3 Byte4 Byte5 Byte6 Byte7 Byte8 1FFh 6Bh EEh 00h 00h 00h 00h 00h 00h Angle X: Byte 2 MSB (EEh) = EEh Byte 1 LSB (6Bh) = 6Bh Angle X = EE6Bh to decimal 61035d If the Angle X in decimal is greater than 32768, the Angle X is NEGATIVE and it must be computed as below (resolution ± 0.01°) Angle X = EE6Bh to decimal 61035d Angle X = Angle X (in decimal) - 65535d = 61035d - 65535d = -4500d (resolution ± 0.01°) = -45.00° Angle Y: Byte 4 MSB (00h) = 00h Byte 3 LSB (00h) = 00h Angle Y = 0000h to decimal 0d (resolution ± 0.01°) = 0.00° In the following figures an example of PDO mapping is reported in the case of Angle X = 0.00° and Angle Y = 0.00° (Node-ID = 7Fh and resolution ± 0.01°) Angle X = 0.00° Angle Y = 0.00° 85203B_GIT-CANopen_Operative Manual_03-2019_ENG 13 ID Byte1 Byte2 Byte3 Byte4 Byte5 Byte6 Byte7 Byte8 1FFh 00h 00h 00h 00h 00h 00h 00h 00h Angle X: Byte 2 MSB (00h) = 00h Byte 1 LSB (00h) = 00h Angle X = 0000h to decimal 0d (resolution ± 0.01°) = 0.00° Angle Y: Byte 4 MSB (00h) = 00h Byte 3 LSB (00h) = 00h Angle Y = 0000h to decimal 0d (resolution ± 0.01°) = 0.00° In the following figures an example of PDO mapping is reported in the case of Angle X = 0.00° and Angle Y = +45.00° (NodeID = 7Fh and resolution ± 0.01°) Angle X = 0.00° Angle Y = +45.00° 14 85203B_GIT-CANopen_Operative Manual_03-2019_ENG ID Byte1 Byte2 Byte3 Byte4 Byte5 Byte6 Byte7 Byte8 1FFh 00h 00h 94h 11h 00h 00h 00h 00h Angle X: Byte 2 MSB (00h) = 00h Byte 1 LSB (00h) = 00h Angle X = 0000h to decimal 0d (resolution ± 0.01°) = 0.00° Angle Y: Byte 4 MSB (11h) = 11h Byte 3 LSB (94h) = 94h Angle Y = 1194h to decimal 4500d (resolution ± 0.01°) = +45.00° In the following figures an example of PDO mapping is reported in the case of Angle X = 0.00° and Angle Y = -45.00° (NodeID = 7Fh and resolution ± 0.01°) Angle X = 0.00° Angle Y = -45.00° 85203B_GIT-CANopen_Operative Manual_03-2019_ENG 15 ID Byte1 Byte2 Byte3 Byte4 Byte5 Byte6 Byte7 Byte8 1FFh 00h 00h 6Bh EEh 00h 00h 00h 00h Angle X: Byte 2 MSB (00h) = 00h Byte 1 LSB (00h) = 00h Angle X = 0000h to decimal 0d (resolution ± 0.01°) = 0.00° Angle Y: Byte 4 MSB (EEh) = EEh Byte 3 LSB (6Bh) = 6Bh Angle Y = EE6Bh to decimal 61035d If the Angle Y in decimal is greater than 32768, the Angle Y is NEGATIVE and it must be computed as below (resolution ± 0.01°) Angle Y = EE6Bh to decimal 61035d Angle Y = Angle Y (in decimal) - 65535d = 61035d - 65535d = -4500d (resolution ± 0.01°) = -45.00° 16 85203B_GIT-CANopen_Operative Manual_03-2019_ENG Transmit PDO #0 – Single axis configuration Z (-180°...+180°) model GIT-Z-360 This PDO transmits synchronously the position value of the inclination sensor. The Tx PDO #0 shall be transmitted cyclically, if the cyclic timer (object 0x1800.5) is programmed > 0. Values between 4ms and 65535 ms shall be selectable by parameter settings. The Tx PDO #0 will be transmitted by entering the "Operational" state. Byte Byte1 Byte2 Byte3 Byte4 Byte5 Byte6 Byte7 Byte8 Description Z Axis (object 0x6010) Low-Byte Z Axis (object 0x6010) High-Byte 0x00 In the following figures an example of PDO mapping is reported in the case of Angle Z = -180.0° (in 0...360° configuration the equivalent angle is 0.00°). The Node-ID = 7Fh and resolution ± 0.01°. Angle Z = -180.00° 85203B_GIT-CANopen_Operative Manual_03-2019_ENG 17 ID Byte1 Byte2 Byte3 Byte4 Byte5 Byte6 Byte7 Byte8 1FFh AFh B9h 00h 00h 00h 00h 00h 00h Angle Z: Byte 2 MSB (B9h) = B9h Byte 1 LSB (AFh) = AFh Angle Z = B9AFh to decimal 47535d If the Angle Z in decimal is greater than 32768, the Angle Z is NEGATIVE and it must be computed as below (resolution ± 0.01°) Angle Z = B9AFh to decimal 47535d Angle Z = Angle Z (in decimal) - 65535d = 47535d - 65535d = -18000d (resolution ± 0.01°) = -180.00° In the following figures an example of PDO mapping is reported in the case of Angle Z = -90.0° (in 0...360° configuration the equivalent angle is +90.00°). The Node-ID = 7Fh and resolution ± 0.01°. Angle Z = -90.00° 18 85203B_GIT-CANopen_Operative Manual_03-2019_ENG ID Byte1 Byte2 Byte3 Byte4 Byte5 Byte6 Byte7 Byte8 1FFh D7h DCh 00h 00h 00h 00h 00h 00h Angle Z: Byte 2 MSB (DCh) = DCh Byte 1 LSB (D7h) = D7h Angle Z = DCD7h to decimal 56535d If the Angle Z in decimal is greater than 32768, the Angle Z is NEGATIVE and it must be computed as below (resolution ± 0.01°) Angle Z = B9AFh to decimal 56535d Angle Z = Angle Z (in decimal) - 65535d = 56535d - 65535d = -9000d (resolution ± 0.01°) = -90.00° In the following figures an example of PDO mapping is reported in the case of Angle Z = 0.0° (in 0...360° configuration the equivalent angle is +180.00°). The Node-ID = 7Fh and resolution ± 0.01°. Angle Z = 0.00° 85203B_GIT-CANopen_Operative Manual_03-2019_ENG 19 ID Byte1 Byte2 Byte3 Byte4 Byte5 Byte6 Byte7 Byte8 1FFh 00h 00h 00h 00h 00h 00h 00h 00h Angle Z: Byte 2 MSB (00h) = 00h Byte 1 LSB (00h) = 00h Angle Z = 0000h to decimal 0d = 0.00° In the following page an example of PDO mapping is reported in the case of Angle Z = + 90.00° (in 0...360° configuration the equivalent angle is +270.00°). The Node-ID = 7Fh and resolution ± 0.01°. Angle Z = +90.00° ID Byte1 Byte2 Byte3 Byte4 Byte5 Byte6 Byte7 Byte8 1FFh 28h 23h 00h 00h 00h 00h 00h 00h Angle Z: Byte 2 MSB (23h) = 23h Byte 1 LSB (28h) = 28h Angle Z = 2328h to decimal 9000d (resolution 0.01°) = +90.00 ° 20 85203B_GIT-CANopen_Operative Manual_03-2019_ENG 12. CANOPEN FEATURES SUMMARY Communication Profile The parameters which are critical for communication are determined in the Communication profile. This area is common for all CANopen devices. Index Sub Index Name Type Access Default value Comments 1000h Device Profile Unsigned 32 Ro 0x0008019A Profile 410: Device profile for inclinometer (not fully implemented). 1001h Error Register Unsigned 8 Ro 0x00 Always ZERO 1005h COB-ID SYNC Unsigned 32 Rw 0x00000080 1008h Manufacturer Device Name String Const “GIT” 1009h Manufacturer Hardware Version String Const “1.00” 100Ah Manufacturer Software Version String Const "1.24" 1 “save” (0x65766173) to store all parameters (objects with marking PARA) "1" "load" (0x64616F6C) to restore all parameters (objects with marking PARA and LSSPARA). 1010h 1011h 1014h 1017h 1018h 0 Number of Entries Unsigned 8 Ro 1 Save all Parameters Unsigned 32 Wo 0 Restore Default Parameters Unsigned 8 Ro 1 Restore all Parameters Unsigned 32 Rw 0 Emergency ID Unsigned 32 Ro 0 Producer Time / Heart Beat Unsigned 16 Rw 0x80 + Nodo-ID 0 0 Identity Object Unsigned 8 Ro 4 1 Vendor ID Unsigned 32 Ro 0x0000093 2 Product Code Unsigned 32 Ro 0x0000064 3 Revision Number Unsigned 32 Ro 0x0000001 Serial Number Unsigned 32 Ro 0x0000000 4 Refer to GEFRAN products catalogue: GIT: Dual-axis or single-axis inclinometer sensor Min= 0 & Max=65535 with unit = 1ms If 0: NOT USED From 1 to 19 NOT ACCEPTED From 20 to 65535 ACCEPTED Refer to “Gefran Product Overview CANopen” Gefran Vendor ID:0x0000093 SDO Server Parameter 1200h 1800h 0 Number of Entries Unsigned 8 Ro 2 1 COB-ID Client to Server (Rx) Unsigned 32 Ro 0x600+ Node-ID 2 COB-ID Server to Server (Tx) Unsigned 32 Ro 0x580+ Node-ID 0 1st Transmit PDO Parameter Unsigned 8 Ro 1 COB-ID Trans PDO Unsigned 32 Ro 180h + Node-ID 2 Transmission Type Trans PDO- PARA Unsigned 8 Rw 254 (0xFE) 0x01...0xF0 = synch cyclic Outputs are only updated after "n" synch objects. n = 0x01 (1) ... 0xF0 (240) 0xFC not implemented 0xFD not implemented 0xFE = asynchronous 0xFF = not implemented 5 Event timer Trans PDO- PARA Unsigned 16 Rw 100 (0x64) 0 = Inactive Min= 4 & Max=65535 with unit = 1ms Unsigned 8 Ro 2 Tx PDO #0 Mapping Parameter 0 1A00h Number of entries 1 1st Mapped Object Unsigned 32 Ro 0x60100010 2 2nd Mapped Object Unsigned 32 Ro 0x60200020 85203B_GIT-CANopen_Operative Manual_03-2019_ENG The inclination of longitudinal axis (long; X) is indicated in Idx 6010 in the case of dual axis sensor (±10°…±90°) The inclination of transverse axis (tran; Y) is indicated in Idx 6020 in the case of dual axis sensor (±10°…±90°) The inclination of Z axis is indicated in Idx 6010 in the case of single axis sensor (±180°) 21 Manufacturer Specific Profile Objects In this section you will find the manufacturer specific profile indices for the transducer. Setting the Node-ID Index Sub Index Name Type Access Default value Comments 20F0h 0 Setting of the Node ID Unsigned 8 Rw 0x7F (=127d) The node ID used to access thesensor in the CANopen network 20F1h 0 Setting of the Node ID Unsigned 8 Rw 0x7F (=127d) The node ID used to access thesensor in the CANopen network A change of the Node ID is only accepted if the entries 20F0 and 20F1 contain the same changed value. Values below 1 / above 127 are not accepted; the existing setting remains valid. After setting the new entries a reset must be made so that the new entries become valid (switch off the module for a short time). Setting the Baud Rate Index 20F2h 20F3h Sub Index 0 0 Name Setting of the Baud rate Setting of the Baud rate Type Unsigned 8 Unsigned 8 Access Rw Rw Default value Comments 0x03 (250 kBaud) Baud rate of the CAN network 0 = 1000 kBaud 1 = 800 kBaud 2 = 500 kBaud 3 = 250 kBaud (default) 4 = 125 kBaud 5 = 100 kBaud 6 = 50 kBaud 7 = 20 kBaud 0x03 (250 kBaud) Baud rate of the CAN network 0 = 1000 kBaud 1 = 800 kBaud 2 = 500 kBaud 3 = 250 kBaud (default) 4 = 125 kBaud 5 = 100 kBaud 6 = 50 kBaud 7 = 20 kBaud A change of the Baude rate is only accepted if the entries 20F2 and 20F3 contain the same changed value. Values above 7 are not accepted; the existing setting remains valid. After setting the new entries a reset must be made so that the new entries become valid (switch off the module for a short time). Setting the Digital Filter Index 2001h Sub Index Name 0 Filter Setting - PARA Type Unsigned 8 Access Rw Default value 0 Comments Filter = 0 Slow Filter = 1 Medium Filer = 2 Fast See Par. 14 and examples at the end of this manual A change of the Filter Setting is only accepted after a STORE command (see Store Parameters setting via SDO 0x1010 Sub 1 and examples of Filter setting at the end of this manual) 22 85203B_GIT-CANopen_Operative Manual_03-2019_ENG Manufacturer Specific Profile Objects In this section you will find the manufacturer specific profile indices for the transducer Index Sub Index Name Type Access Default value Comments Error Behavior - PARA Unsigned 8 Rw 1 0: Pre-operational 1: no state change 2: stopped Min=0 & Max="2" 4001h Error Code Unsigned 8 Ro 0 0: no error Min=0 & Max=255 5000h Automatic NMT Start after Power-On PARA Unsigned 8 Rw 0 0:not activated 1: activated Min=0 & Max=1 5001h PDO coding used-PARA Unsigned 8 Rw 1 0:Big Endian 1: Little Endian 4000h Ro = the parameter can be read only Rw = the parameter can be read and also written 85203B_GIT-CANopen_Operative Manual_03-2019_ENG 23 Manufacturer Specific Profile Objects (according to CiA DS-410) In this section you will find the manufacturer specific profile indices for the transducer. Index 6000h Sub Index 0 Name Resolution - PARA Type Unsigned 16 Access Rw Default value 0x32 (50d) Comments Display resolution of the inclination for both axes(1) 10d = Inclination is indicated as signed int in 0.01° 50d = Inclination is indicated as signed int in 0.05° 100d = Inclination is indicated as signed int in 0.1° 500d = Inclination is indicated as signed int in 0.5° 1000d = Inclination is indicated as signed int in 1.0° Note: If the display resolution is changed all offset values or zero point values which may have been entered are deleted. Therefore the sensor must be set before it is aligned! (1) A change of the display resolution in Idx 6000 is only accepted, if the scaling in Idx 6011 and Idx 6021 is activated. 6010h 0 Slope Longitudinal Signed 16 Ro - Inclination of the longitudinal axis X (long; X) in the case of dual axis sensor (±10°…±90°). Inclination of the longitudinal axis Z in the case of single axis sensor (±180°). Inverting the sign 0b 0000 00x0 deactivated 0b 0000 00x1 activated Scaling of the measured value 0b 0000 000x deactivated 0b 0000 001x activated(1) 6011h 0 Slope Longitudinal Operating Parameter - PARA Unsigned 8 Rw 0b000000xx Value output: Slope longitudinal = measured value in dependence of Resolution (Index 6000) + Slope Longitudinal Offset + Differential Slope Longitudinal Offset (1) A change of the display resolution in Idx 6000 is only accepted, if the scaling in Idx 6011 and Idx 6021 is activated. Note: see examples of this functionality at the end of this manual in Examples 5,6,7 and 8 6012h 0 Slope Longitudinal Preset Value - PARA Signed 16 Rw 0x0000 Corrects the measured sensor value. The displayed value Slop Longitudinal is set to the entered value. The offset is indicated in the index 0x6013 Note: see examples of this functionality at the end of this manual in Examples 5,6,7 and 8 Offset value calculated from the following objects: 6013h 0 Slope Longitudinal Offset- PARA Signed 16 Ro 0x0000 Slope Longitudinal Offset = Slope Longitudinal Preset Value tacc – measured value tacc (tacc : istant when the Slope Longitudinal Preset Value is set) 6014h 24 0 Slope Longitudinal Differential Offset - PARA Signed 16 Rw 0x0000 Shifts the displayed value by the entered value irrespective of "Slope Longitudinal Preset Value". 85203B_GIT-CANopen_Operative Manual_03-2019_ENG Index Sub Index Name Type Access Default value 6020h 0 Slope Lateral Signed 16 Ro - Comments Inclination of the Lateral axis Y (Later; X) Inverting the sign 0b 0000 00x0 deactivated 0b 0000 00x1 activated Scaling of the measured value 0b 0000 000x deactivated 0b 0000 001x activated(1) 6021h 0 Slope Lateral Operating Parameter - PARA Unsigned 8 Rw 0b000000xx Value output: Slope Lateral = measured value in dependence of Resolution (Index 6000) + Slope Lateral Offset + Differential Slope Lateral Offset (1) A change of the display resolution in Idx 6000 is only accepted, if the scaling in Idx 6011 and Idx 6021 is activated. Note: see examples of this functionality at the end of this manual in Examples 5,6,7 and 8 6022h 0 Slope Lateral Preset Value - PARA Signed 16 Rw 0x0000 Corrects the measured sensor value. The displayed value Slop Lateral is set to the entered value. The offset is indicated in the index 0x6023 Note: see examples of this functionality at the end of this manual in Examples 5,6,7 and 8 Offset value calculated from the following objects: Slope Lateral Offset = 6023h 0 Slope Lateral Offset - PARA Signed 16 Ro 0x0000 Slope Lateral Preset Value tacc – measured value tacc (tacc : istant when the Slope Lateral Preset Value is set) 6024h 0 Slope Lateral Differential Offset - PARA Signed 16 Rw 0x0000 Shifts the displayed value by the entered value irrespective of "Slope Laterall Preset Value". Ro = the parameter can be read only Rw = the parameter can be read and also written 85203B_GIT-CANopen_Operative Manual_03-2019_ENG 25 13. STATUS LED The integrated two color Status LED signals the recent device state (Run LED, green) as well as CAN communication errors that might have occurred (Error LED, red). The color and the flashing frequency of the LED distinguish the different device states as shown below. Status LED RUN LED LED State Description Off No power supply is connected Single Flash The device is in state Stopped Blinking On Error LED RUN LED The device is in state Pre-Operational The device is in state Operational LED State Description Off The device is in working condition On The device is in state Bus-Off Single Flash Red/Green On CAN Warning Limit reached Limit Angles reached (110% FS or ± 87°) Legend: = LED green OFF = LED green ON = LED Red OFF = LED Red ON = LEDs Red & Green ON together = LED Green Blinking (200 ms ON/OFF) = LEDs Green Single Flash (500 ms ON/OFF) Two color LED (Red & Green) (Status/Error check) 26 85203B_GIT-CANopen_Operative Manual_03-2019_ENG 14. DIGITAL FILTER SETTING The inclination sensor offers the possibility to suppress the influence of external disturbing vibrations. The internal low-pass digital filters (8th order) are programmable in 3 steps (more steps can be obtained on request and they can be adjusted for any kind of application). The sensor has digital filters that can be selected according to Table 2 below. The filter selection is configurable via SDO communication object 0x2001 Sub 0 (see the Manufacturer Specific Profile Objects and communication examples at the end of this document). Filter Selection (via SDO object 0x2106 Sub 6) Filter code SLOW Filter = 0 MEDIUM Filter = 1 FAST Filter = 2 Application Static inclination measurement with high damping to vibration Inclination measurement in applications that requires a certain dynamism, without overshoot at angle changes with good damping General application with medium-high dynamic Table 2 - Filter setting 85203B_GIT-CANopen_Operative Manual_03-2019_ENG 27 15. COMMUNICATION EXAMPLES Example 1) How to change the Baud Rate Setting from 250 kbaud to 500 kbaud With Service Data Object (S.D.O.) the access to entries of a device Object Dictionary is provided. As these entries may contain data of arbitrary size and data type SDOs can be used to transfer multiple data sets from a client to a server and vice versa. Structure of SDO-request by the Master COB-ID 600+Node-ID DLC Byte 1 8 CMD Byte 2 Byte 3 Index Byte 4 Byte 5 Sub-Index Data Byte 6 Byte 7 Byte 8 Byte 6 Byte 7 Byte 8 CMD determines the direction of data transfer and the size of the data object: 23 hex Sending of 4-byte data (bytes 5...5 contain a 32-bit value) 2B hex Sending of 2-byte data (bytes 5, 6 contain a 16-bit value) 2F hex Sending of 1-byte data (byte 5 contains an 8-bit value) Structure of SDO-answer by the Slave COB-ID 580+Node-ID DLC Byte 1 8 RES Byte 2 Byte 3 Index Byte 4 Byte 5 Sub-Index RES Response of the slave: 60 hex Data sent successfully 80 hex Error, A change of the Baud rate is only accepted if the entries 0x20F2 and 0x20F3 contain the same changed value. With the aim to change the baud rate from 250kBaud (0x03) to 500 kBaud (0x02) write a first SDO (in the example the Node-ID = 0x7F). ID 67Fh Byte 1 2Fh Byte 2 F2h Byte 3 20h Byte 4 00h Byte 5 02h Byte 6 00h Byte 7 00h Byte 8 00h A change of the Baud rate is only accepted if the entries 0x20F2 and 0x20F3 contain the same changed value. With the aim to change the baud rate from 250kBaud (0x03) to 500 kBaud (0x02) write a second SDO (in the example the Node-ID = 0x7F) ID 67Fh 28 Byte 1 2Fh Byte 2 F3h Byte 3 20h Byte 4 00h Byte 5 02h Byte 6 00h Byte 7 00h Byte 8 00h 85203B_GIT-CANopen_Operative Manual_03-2019_ENG Object: Baud rate del network CAN 0 = 1000 kBaud 1 = 800 kBaud 2 = 500 kBaud 20F2h 0 Setting of the Baude rate Unsigned 8 Rw 0x03 (250 kBaud) 3 = 250 kBaud (default) 4 = 125 kBaud 5 = 100 kBaud 6 = 50 kBaud 7 = 20 kBaud Baud rate del network CAN 0 = 1000 kBaud 1 = 800 kBaud 2 = 500 kBaud 20F3h 0 Setting of the Baude rate Unsigned 8 Rw 0x03 (250 kBaud) 3 = 250 kBaud (default) 4 = 125 kBaud 5 = 100 kBaud 6 = 50 kBaud 7 = 20 kBaud The supported baud rate are listed in the following table: Byte 5 07h 06h 05h 04h 03h 02h 01h 00h Baudrate 20 kBaud 50 kBaud 100 kBaud 125 kBaud 250 kBaud 500 kBaud 800 kBaud 1000 kBaud The answers after successful storing you will receive is: ID 5FFh Byte 1 60h Byte 2 F2h Byte 3 20h Byte 4 00h Byte 5 00h Byte 6 00h Byte 7 00h Byte 8 00h ID 5FFh Byte 1 60h Byte 2 F3h Byte 3 20h Byte 4 00h Byte 5 00h Byte 6 00h Byte 7 00h Byte 8 00h and IMPORTANT NOTE: A change of the Baud rate is only accepted if the entries 0x20F2 and 0x20F3 contain the same changed value. Values above 7 are not accepted; the existing setting remains valid. After setting the new entries a reset must be made so that the new entries become valid (switch off the module for a short time). 85203B_GIT-CANopen_Operative Manual_03-2019_ENG 29 Example 2) How to change the ID-Node from 0x7Fh (127d) to 0x06h (6d)) With Service Data Object (S.D.O.) the access to entries of a device Object Dictionary is provided. As these entries may contain data of arbitrary size and data type SDOs can be used to transfer multiple data sets from a client to a server and vice versa. Structure of SDO-request by the Master COB-ID 600+Node-ID DLC Byte 1 8 CMD Byte 2 Byte 3 Index Byte 4 Byte 5 Sub-Index Data Byte 6 Byte 7 Byte 8 Byte 6 Byte 7 Byte 8 CMD determines the direction of data transfer and the size of the data object: 23 hex Sending of 4-byte data (bytes 5...5 contain a 32-bit value) 2B hex Sending of 2-byte data (bytes 5, 6 contain a 16-bit value) 2F hex Sending of 1-byte data (byte 5 contains an 8-bit value) Structure of SDO-answer by the Slave COB-ID 580+Node-ID DLC Byte 1 8 RES Byte 2 Byte 3 Index Byte 4 Byte 5 Sub-Index RES Response of the slave: 60 hex Data sent successfully 80 hex Error, A change of the Node ID is only accepted if the entries 0x20F0 and 0x20F1 contain the same changed value. With the aim to change the Node ID from 127 (0x7F) to 6 (0x06) write a first SDO (in the example the Node-ID = 0x7F). ID 67Fh Byte 1 2Fh Byte 2 F0h Byte 3 20h Byte 4 00h Byte 5 06h Byte 6 00h Byte 7 00h Byte 8 00h A change of the Node ID is only accepted if the entries 0x20F0 and 0x20F1 contain the same changed value. With the aim to change the Node ID from 127 (0x7F) to 6 (0x06) write a second SDO (in the example the Node-ID = 0x7F). ID 67Fh Byte 1 2Fh Byte 2 F1h Byte 3 20h Byte 4 00h Byte 5 06h Byte 6 00h Byte 7 00h Byte 8 00h Object: 20F0h 20F1h 0 Setting of the Node ID Unsigned 8 Rw 0x7F ( = 127d) 0 Setting of the Node ID Unsigned 8 Rw 0x7F ( = 127d) The Node ID used to access the sensor in the CANopen The Node ID used to access the sensor in the CANopen I Nodi-ID supportati vanno da 0x01 a 0x7F 30 85203B_GIT-CANopen_Operative Manual_03-2019_ENG The answers after successful storing you will receive is: ID 5FFh Byte 1 60h Byte 2 F0h Byte 3 20h Byte 4 00h Byte 5 Byte 6 Byte 7 Byte 8 ID 5FFh Byte 1 60h Byte 2 F1h Byte 3 20h Byte 4 00h Byte 5 00h Byte 6 00h Byte 7 00h Byte 8 00h 00h 00h 00h 00h and IMPORTANT NOTE: A change of the Node ID is only accepted if the entries 0x20F0 and 0x20F1 contain the same changed value. Values below 1 / above 127 are not accepted; the existing setting remains valid. After setting the new entries a reset must be made so that the new entries become valid (switch off the module for a short time). 85203B_GIT-CANopen_Operative Manual_03-2019_ENG 31 Example 3) How to change the PDO rate (time interval) from 100 ms to 20 ms With Service Data Object (S.D.O.) the access to entries of a device Object Dictionary is provided. As these entries may contain data of arbitrary size and data type SDOs can be used to transfer multiple data sets from a client to a server and vice versa. Structure of SDO-request by the Master COB-ID 600+Node-ID DLC Byte 1 8 CMD Byte 2 Byte 3 Index Byte 4 Byte 5 Byte 6 Sub-Index Data Data Byte 7 Byte 8 Byte 7 Byte 8 CMD determines the direction of data transfer and the size of the data object: 23 hex Sending of 4-byte data (bytes 5...5 contain a 32-bit value) 2B hex Sending of 2-byte data (bytes 5, 6 contain a 16-bit value) 2F hex Sending of 1-byte data (byte 5 contains an 8-bit value) Structure of SDO-answer by the Slave COB-ID 580+Node-ID DLC Byte 1 8 RES Byte 2 Byte 3 Index Byte 4 Byte 5 Byte 6 Sub-Index RES Response of the slave: 60 hex Data sent successfully 80 hex Error, Per cambiare il PDO rate da 100 ms (0x64) a 20 ms (0x14) scrivere (nell’esempio il Node-ID = 0x7F). ID 67Fh Byte 1 2Bh Byte 2 00h Byte 3 18h Byte 4 05h Byte 5 14h Byte 6 00h Byte 7 00h Byte 8 00h Object: 1800h 0 1st Transmit PDO Parameter Unsigned 8 Ro 1 COB-ID Unsigned 32 Ro 180h + Node-ID 2 Tipo Trasmissione Unsigned 8 Rw 254 Asynchronous transmission. 3 Inhibit Time Unsigned 16 Ro 0 Min= 0 & Max=65535 with unit = 1ms 4 Reserved // // 5 Timer Unsigned 16 Rw 100 (64h) Min= 0 & Max=65535 with unit = 1ms The answer after successful storing you will receive is: ID 5FFh 32 Byte 1 60h Byte 2 00h Byte 3 18h Byte 4 05h Byte 5 00h Byte 6 00h Byte 7 00h Byte 8 00h 85203B_GIT-CANopen_Operative Manual_03-2019_ENG With the aim to save functionality write the “save” command as below: Write (in the example the Node-ID = 0x7F) ID 67Fh Byte 1 23h Byte 2 10h Byte 3 10h Byte 4 01h Byte 5 73h Byte 6 61h Byte 7 76h Byte 8 65h Byte 5 00h Byte 6 00h Byte 7 00h Byte 8 00h Note: save command is given by sending the code: 73h 61h 76h Where: 65h 73h = in ASCII code “s” 61h = in ASCII code “a” 76h = in ASCII code “v” 65h = in ASCII code “e” The answer after successful storing you will receive is: ID 5FFh Byte 1 60h Byte 2 10h Byte 3 10h Byte 4 01h IMPORTANT NOTE: After setting the new entries a reset must be made so that the new entries become valid (switch off the module for a short time). 85203B_GIT-CANopen_Operative Manual_03-2019_ENG 33 Example 4) How to activate an automatic NMT Start after Power ON (the PDO will be send automatically after power ON) With Service Data Object (S.D.O.) the access to entries of a device Object Dictionary is provided. As these entries may contain data of arbitrary size and data type SDOs can be used to transfer multiple data sets from a client to a server and vice versa. Structure of SDO-request by the Master COB-ID 600+Node-ID DLC Byte 1 8 CMD Byte 2 Byte 3 Index Byte 4 Byte 5 Sub-Index Data Byte 6 Byte 7 Byte 8 CMD determines the direction of data transfer and the size of the data object: 23 hex Sending of 4-byte data (bytes 5...5 contain a 32-bit value) 2B hex Sending of 2-byte data (bytes 5, 6 contain a 16-bit value) 2F hex Sending of 1-byte data (byte 5 contains an 8-bit value) Structure of SDO-answer by the Slave COB-ID 580+Node-ID DLC Byte 1 8 RES Byte 2 Byte 3 Index Byte 4 Byte 5 Byte 6 Byte 7 Byte 8 Sub-Index RES Response of the slave: 60 hex Data sent successfully 80 hex Error, With the aim to activate an automatic NMT Start after power ON write (in the example the Node-ID = 0x7F). ID 67Fh Byte 1 2Fh Byte 2 00h Byte 3 50h Byte 4 00h Byte 5 01h Byte 6 00h Byte 7 00h Byte 8 00h Object: 5000h 0 Automatic NMT Start after Power-On - PARA 0: not activated Unsigned 8 Rw 0 1: activated Min=0 & Max=1 The answer after successful storing you will receive is: ID 5FFh 34 Byte 1 60h Byte 2 00h Byte 3 50h Byte 4 00h Byte 5 00h Byte 6 00h Byte 7 00h Byte 8 00h 85203B_GIT-CANopen_Operative Manual_03-2019_ENG With the aim to save functionality write the “save” command as below: Write (in the example the Node-ID = 0x7F) ID 67Fh Byte 1 23h Byte 2 10h Byte 3 10h Byte 4 01h Byte 5 73h Byte 6 61h Byte 7 76h Byte 8 65h Byte 5 00h Byte 6 00h Byte 7 00h Byte 8 00h Note: save command is given by sending the code: 73h 61h 76h Where: 65h 73h = in ASCII code “s” 61h = in ASCII code “a” 76h = in ASCII code “v” 65h = in ASCII code “e” The answer after successful storing you will receive is: ID 5FFh Byte 1 60h Byte 2 10h Byte 3 10h Byte 4 01h IMPORTANT NOTE: After setting the new entries a reset must be made so that the new entries become valid (switch off the module for a short time). 85203B_GIT-CANopen_Operative Manual_03-2019_ENG 35 Example 5) How to Preset the angle X to 0.00° (in case of dual axis ±10°…±90°). The values "...Preset Value" (Idx 60x2) and "Differential ...Offset" (Idx 60x4) affects the display of the longitudinal and lateral axis. The value entered in "...Preset Value" immediately corrects the measured value of the sensor cell at the instant tacc. A typical application is the compensation of display errors due to mounting (e.g. sensor zeroing). The sensor must first be brought to a defined position. The value "Differential ...Offset" shifts the displayed value of the sensor by the entered value. A set "...Preset Value" does not affect shifting. Note that the resolution parameter must be set before aligning the sensor (resolution, Idx 6000)! With Service Data Object (S.D.O.) the access to entries of a device Object Dictionary is provided. As these entries may contain data of arbitrary size and data type SDOs can be used to transfer multiple data sets from a client to a server and vice versa. Structure of SDO-request by the Master COB-ID 600+Node-ID DLC Byte 1 8 CMD Byte 2 Byte 3 Index Byte 4 Byte 5 Byte 6 Sub-Index Data Data Byte 7 Byte 8 CMD determines the direction of data transfer and the size of the data object: 23 hex Sending of 4-byte data (bytes 5...5 contain a 32-bit value) 2B hex Sending of 2-byte data (bytes 5, 6 contain a 16-bit value) 2F hex Sending of 1-byte data (byte 5 contains an 8-bit value) Structure of SDO-answer by the Slave COB-ID 580+Node-ID DLC Byte 1 8 RES Byte 2 Byte 3 Index Byte 4 Byte 5 Byte 6 Byte 7 Byte 8 Byte 7 00h Byte 8 00h Sub-Index RES Response of the slave: 60 hex Data sent successfully 80 hex Error, With the aim to preset the X angle to 0.00° write (in the example the Node-ID = 0x7F). ID 67Fh Byte 1 2Bh Byte 2 12h Byte 3 60h Byte 4 00h Byte 5 00h Byte 6 00h Object: 6012h 0 Slop Longitudinal Preset Value Signed 16 Rw - Corrects the measured sensor value. The displayed value Slop Longitudinal is set to the entered value. The offset is indicated in the index 0x6013 The answer after successful storing you will receive is: ID 5FFh 36 Byte 1 60h Byte 2 12h Byte 3 60h Byte 4 00h Byte 5 00h Byte 6 00h Byte 7 00h Byte 8 00h 85203B_GIT-CANopen_Operative Manual_03-2019_ENG With the aim to save functionality write the “save” command as below: Write (in the example the Node-ID = 0x7F) ID 67Fh Byte 1 23h Byte 2 10h Byte 3 10h Byte 4 01h Byte 5 73h Byte 6 61h Byte 7 76h Byte 8 65h Byte 5 00h Byte 6 00h Byte 7 00h Byte 8 00h Note: save command is given by sending the code: 73h 61h 76h Where: 65h 73h = in ASCII code “s” 61h = in ASCII code “a” 76h = in ASCII code “v” 65h = in ASCII code “e” The answer after successful storing you will receive is: ID 5FFh Byte 1 60h Byte 2 10h Byte 3 10h Byte 4 01h IMPORTANT NOTE: After setting the new entries a reset must be made so that the new entries become valid (switch off the module for a short time). 85203B_GIT-CANopen_Operative Manual_03-2019_ENG 37 Example 6) How to set the angle Y to 0.00° (in case of dual axis ±10°…±90°). The values "...Preset Value" (Idx 60x2) and "Differential ...Offset" (Idx 60x4) affects the display of the longitudinal and lateral axis. The value entered in "...Preset Value" immediately corrects the measured value of the sensor cell at the instant tacc. A typical application is the compensation of display errors due to mounting (e.g. sensor zeroing). The sensor must first be brought to a defined position. The value "Differential ...Offset" shifts the displayed value of the sensor by the entered value. A set "...Preset Value" does not affect shifting. Note that the resolution parameter must be set before aligning the sensor (resolution, Idx 6000)! With Service Data Object (S.D.O.) the access to entries of a device Object Dictionary is provided. As these entries may contain data of arbitrary size and data type SDOs can be used to transfer multiple data sets from a client to a server and vice versa. Structure of SDO-request by the Master COB-ID 600+Node-ID DLC Byte 1 8 CMD Byte 2 Byte 3 Index Byte 4 Byte 5 Byte 6 Sub-Index Data Data Byte 7 Byte 8 CMD determines the direction of data transfer and the size of the data object: 23 hex Sending of 4-byte data (bytes 5...5 contain a 32-bit value) 2B hex Sending of 2-byte data (bytes 5, 6 contain a 16-bit value) 2F hex Sending of 1-byte data (byte 5 contains an 8-bit value) Structure of SDO-answer by the Slave COB-ID 580+Node-ID DLC Byte 1 8 RES Byte 2 Byte 3 Index Byte 4 Byte 5 Byte 6 Byte 7 Byte 8 Byte 7 00h Byte 8 00h Sub-Index RES Response of the slave: 60 hex Data sent successfully 80 hex Error, With the aim to preset the Y angle to 0.00° write (in the example the Node-ID = 0x7F). ID 67Fh Byte 1 2Bh Byte 2 22h Byte 3 60h Byte 4 00h Byte 5 00h Byte 6 00h Object: Slop Lateral 6022h 0 Preset Value Signed 16 Rw - Corrects the measured sensor value. The displayed value Slop Lateral is set to the entered value. The offset is indicated in the index 0x6023 The answer after successful storing you will receive is: ID 5FFh 38 Byte 1 60h Byte 2 22h Byte 3 60h Byte 4 00h Byte 5 00h Byte 6 00h Byte 7 00h Byte 8 00h 85203B_GIT-CANopen_Operative Manual_03-2019_ENG With the aim to save functionality write the “save” command as below: Write (in the example the Node-ID = 0x7F) ID Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7 Byte 8 67Fh 23h 10h 10h 01h 73h 61h 76h 65h Byte 5 00h Byte 6 00h Byte 7 00h Byte 8 00h Note: save command is given by sending the code: 73h 61h 76h Where: 65h 73h = in ASCII code “s” 61h = in ASCII code “a” 76h = in ASCII code “v” 65h = in ASCII code “e” The answer after successful storing you will receive is: ID 5FFh Byte 1 60h Byte 2 10h Byte 3 10h Byte 4 01h IMPORTANT NOTE: After setting the new entries a reset must be made so that the new entries become valid (switch off the module for a short time). 85203B_GIT-CANopen_Operative Manual_03-2019_ENG 39 Example 7) How to set the angle Z to 0.00° (in case of single axis ±180°). The values "...Preset Value" (Idx 60x2) and "Differential ...Offset" (Idx 60x4) affects the display of the longitudinal and lateral axis. The value entered in "...Preset Value" immediately corrects the measured value of the sensor cell at the instant tacc. A typical application is the compensation of display errors due to mounting (e.g. sensor zeroing). The sensor must first be brought to a defined position. The value "Differential ...Offset" shifts the displayed value of the sensor by the entered value. A set "...Preset Value" does not affect shifting. Note that the resolution parameter must be set before aligning the sensor (resolution, Idx 6000)! With Service Data Object (S.D.O.) the access to entries of a device Object Dictionary is provided. As these entries may contain data of arbitrary size and data type SDOs can be used to transfer multiple data sets from a client to a server and vice versa. Structure of SDO-request by the Master COB-ID 600+Node-ID DLC Byte 1 8 CMD Byte 2 Byte 3 Index Byte 4 Byte 5 Byte 6 Sub-Index Data Data Byte 7 Byte 8 Byte 7 Byte 8 Byte 7 00h Byte 8 00h CMD determines the direction of data transfer and the size of the data object: 23 hex Sending of 4-byte data (bytes 5...5 contain a 32-bit value) 2B hex Sending of 2-byte data (bytes 5, 6 contain a 16-bit value) 2F hex Sending of 1-byte data (byte 5 contains an 8-bit value) Structure of SDO-answer by the Slave COB-ID 580+Node-ID DLC Byte 1 8 RES Byte 2 Byte 3 Index Byte 4 Byte 5 Byte 6 Sub-Index RES Response of the slave: 60 hex Data sent successfully 80 hex Error, With the aim to preset the Z angle to 0.00° write (in the example the Node-ID = 0x7F). ID 67Fh Byte 1 2Bh Byte 2 12h Byte 3 60h Byte 4 00h Byte 5 00h Byte 6 00h Object: 6012h 0 Slop Lateral Preset Value Signed 16 Rw - Byte 4 00h Byte 5 00h Corrects the measured sensor value. The displayed value Slop Lateral is set to the entered value. The offset is indicated in the index 0x6013 The answer after successful storing you will receive is: ID 5FFh 40 Byte 1 60h Byte 2 12h Byte 3 60h Byte 6 00h Byte 7 00h Byte 8 00h 85203B_GIT-CANopen_Operative Manual_03-2019_ENG With the aim to save functionality write the “save” command as below: Write (in the example the Node-ID = 0x7F) ID Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7 Byte 8 67Fh 23h 10h 10h 01h 73h 61h 76h 65h Note: save command is given by sending the code: 73h 61h 76h Where: 65h 73h = in ASCII code “s” 61h = in ASCII code “a” 76h = in ASCII code “v” 65h = in ASCII code “e” The answer after successful storing you will receive is: ID Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7 Byte 8 5FFh 60h 10h 10h 01h 00h 00h 00h 00h IMPORTANT NOTE: After setting the new entries a reset must be made so that the new entries become valid (switch off the module for a short time). 85203B_GIT-CANopen_Operative Manual_03-2019_ENG 41 Example 8) How to invert the direction (from CW to CCW) in angle Z (in case of single axis ±180°) The values "...Preset Value" (Idx 60x2) and "Differential ...Offset" (Idx 60x4) affects the display of the longitudinal and lateral axis. The value entered in "...Preset Value" immediately corrects the measured value of the sensor cell at the instant tacc. A typical application is the compensation of display errors due to mounting (e.g. sensor zeroing). The sensor must first be brought to a defined position. The value "Differential ...Offset" shifts the displayed value of the sensor by the entered value. A set "...Preset Value" does not affect shifting. Note that the resolution parameter must be set before aligning the sensor (resolution, Idx 6000)! With Service Data Object (S.D.O.) the access to entries of a device Object Dictionary is provided. As these entries may contain data of arbitrary size and data type SDOs can be used to transfer multiple data sets from a client to a server and vice versa. Structure of SDO-request by the Master COB-ID 600+Node-ID DLC Byte 1 8 CMD Byte 2 Byte 3 Index Byte 4 Byte 5 Sub-Index Data Byte 6 Byte 7 Byte 8 Byte 6 Byte 7 Byte 8 CMD determines the direction of data transfer and the size of the data object: 23 hex Sending of 4-byte data (bytes 5...5 contain a 32-bit value) 2B hex Sending of 2-byte data (bytes 5, 6 contain a 16-bit value) 2F hex Sending of 1-byte data (byte 5 contains an 8-bit value) Structure of SDO-answer by the Slave COB-ID 580+Node-ID DLC Byte 1 8 RES Byte 2 Byte 3 Index Byte 4 Byte 5 Sub-Index RES Response of the slave: 60 hex Data sent successfully 80 hex Error, With the aim to invert the direction (from CW to CCW) in angle Z (in the example the Node-ID = 0x7F). ID 67Fh Byte 1 2Fh Byte 2 11h Byte 3 60h Byte 4 00h Byte 5 03h Byte 6 00h Byte 7 00h Byte 8 00h Object: Inverting the sign 6011h 0 Slop Lateral Preset Value Unsigned 8 Rw 0x02 (2d) 0b 0000 00x0 deactivated 0b 0000 00x1 activated The answer after successful storing you will receive is: ID 5FFh 42 Byte 1 60h Byte 2 11h Byte 3 60h Byte 4 00h Byte 5 00h Byte 6 00h Byte 7 00h Byte 8 00h 85203B_GIT-CANopen_Operative Manual_03-2019_ENG With the aim to save functionality write the “save” command as below: Write (in the example the Node-ID = 0x7F) ID 67Fh Byte 1 23h Byte 2 10h Byte 3 10h Byte 4 01h Byte 5 73h Byte 6 61h Byte 7 76h Byte 8 65h Note: save command is given by sending the code: 73h 61h 76h Where: 65h 73h = in ASCII code “s” 61h = in ASCII code “a” 76h = in ASCII code “v” 65h = in ASCII code “e” The answer after successful storing you will receive is: ID Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7 Byte 8 5FFh 60h 10h 10h 01h 00h 00h 00h 00h IMPORTANT NOTE: After setting the new entries a reset must be made so that the new entries become valid (switch off the module for a short time). 85203B_GIT-CANopen_Operative Manual_03-2019_ENG 43 Example 9) How to change the resolution from ±0.05° to ±0.01° With Service Data Object (S.D.O.) the access to entries of a device Object Dictionary is provided. As these entries may contain data of arbitrary size and data type SDOs can be used to transfer multiple data sets from a client to a server and vice versa. Structure of SDO-request by the Master COB-ID 600+Node-ID DLC Byte 1 8 CMD Byte 2 Byte 3 Index Byte 4 Byte 5 Byte 6 Sub-Index Data Data Byte 7 Byte 8 Byte 7 Byte 8 CMD determines the direction of data transfer and the size of the data object: 23 hex Sending of 4-byte data (bytes 5...5 contain a 32-bit value) 2B hex Sending of 2-byte data (bytes 5, 6 contain a 16-bit value) 2F hex Sending of 1-byte data (byte 5 contains an 8-bit value) Structure of SDO-answer by the Slave COB-ID 580+Node-ID DLC Byte 1 8 RES Byte 2 Byte 3 Index Byte 4 Byte 5 Byte 6 Sub-Index RES Response of the slave: 60 hex Data sent successfully 80 hex Error, With the aim to change the resolution from ± 0.05° (0x32) to ±0.01° (0x0A) write (in the example the Node-ID = 0x7F). ID Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7 Byte 8 67Fh 2Bh 00h 60h 00h 0Ah 00h 00h 00h Object: Display resolution of the inclination for both axes(1) 10d = Inclination is indicated as signed int in 0.01° 50d = Inclination is indicated as signed int in 0.05° 100d = Inclination is indicated as signed int in 0.1° 500d = Inclination is indicated as signed int in 0.5° 6000h 0 Resolution Unsigned 16 Rw 0x32 (50d) 1000d = Inclination is indicated as signed int in 1.0° Note: If the display resolution is changed all offset values or zero point values which may have been entered are deleted. Therefore the sensor must be set before it is aligned! (1) A change of the display resolution in Idx 6000 is only accepted, if the scaling in Idx 6011 and Idx 6021 is activated. The answer after successful storing you will receive is: 44 85203B_GIT-CANopen_Operative Manual_03-2019_ENG ID Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7 Byte 8 5FFh 60h 00h 60h 00h 00h 00h 00h 00h With the aim to save functionality write the “save” command as below: Write (in the example the Node-ID = 0x7F) ID Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7 Byte 8 67Fh 23h 10h 10h 01h 73h 61h 76h 65h Byte 5 Byte 6 Byte 7 Byte 8 Note: save command is given by sending the code: 73h 61h 76h Where: 65h 73h = in ASCII code “s” 61h = in ASCII code “a” 76h = in ASCII code “v” 65h = in ASCII code “e” The answer after successful storing you will receive is: ID 5FFh Byte 1 60h Byte 2 10h Byte 3 10h Byte 4 01h 00h 00h 00h 00h IMPORTANT NOTE: After setting the new entries a reset must be made so that the new entries become valid (switch off the module for a short time). 85203B_GIT-CANopen_Operative Manual_03-2019_ENG 45 Example 10) How to change the Filter Setting from FAST (Filter = 2) to SLOW (Filter = 0) With Service Data Object (S.D.O.) the access to entries of a device Object Dictionary is provided. As these entries may contain data of arbitrary size and data type SDOs can be used to transfer multiple data sets from a client to a server and vice versa. Structure of SDO-request by the Master COB-ID 600+Node-ID DLC Byte 1 8 CMD Byte 2 Byte 3 Index Byte 4 Byte 5 Sub-Index Data Byte 6 Byte 7 Byte 8 Byte 6 Byte 7 Byte 8 CMD determines the direction of data transfer and the size of the data object: 23 hex Sending of 4-byte data (bytes 5...5 contain a 32-bit value) 2B hex Sending of 2-byte data (bytes 5, 6 contain a 16-bit value) 2F hex Sending of 1-byte data (byte 5 contains an 8-bit value) Structure of SDO-answer by the Slave COB-ID 580+Node-ID DLC Byte 1 8 RES Byte 2 Byte 3 Index Byte 4 Byte 5 Sub-Index RES Response of the slave: 60 hex Data sent successfully 80 hex Error, With the aim to change the filter settings from FAST response (0x02) to SLOW response (0x00) write (in the example the Node-ID = 0x7F). ID 67Fh Byte 1 2Fh Byte 2 01h Byte 3 20h Byte 4 00h Byte 5 00h Byte 6 00h Byte 7 00h Byte 8 00h Object: Filter = 0 Slow 2001h 0 Filter Setting Unsigned 8 Rw 2 Filter = 1 Medium Filter = 2 Fast The answer after successful storing you will receive is: ID 5FFh 46 Byte 1 60h Byte 2 01h Byte 3 20h Byte 4 00h Byte 5 00h Byte 6 00h Byte 7 00h Byte 8 00h 85203B_GIT-CANopen_Operative Manual_03-2019_ENG The answer after successful storing you will receive is Write (in the example the Node-ID = 0x7F) ID 67Fh Byte 1 23h Byte 2 10h Byte 3 10h Byte 4 01h Byte 5 73h Byte 6 61h Byte 7 76h Byte 8 65h Byte 5 00h Byte 6 00h Byte 7 00h Byte 8 00h Note: save command is given by sending the code: 73h 61h 76h Where: 65h 73h = in ASCII code “s” 61h = in ASCII code “a” 76h = in ASCII code “v” 65h = in ASCII code “e” The answer after successful storing you will receive is: ID 5FFh Byte 1 60h Byte 2 10h Byte 3 10h Byte 4 01h IMPORTANT NOTE: After setting the new entries a reset must be made so that the new entries become valid (switch off the module for a short time). 85203B_GIT-CANopen_Operative Manual_03-2019_ENG 47 Example 11) How to send the command RESTORE With Service Data Object (S.D.O.) the access to entries of a device Object Dictionary is provided. As these entries may contain data of arbitrary size and data type SDOs can be used to transfer multiple data sets from a client to a server and vice versa. Structure of SDO-request by the Master COB-ID 600+Node-ID DLC Byte 1 8 CMD Byte 2 Byte 3 Index Byte 4 Byte 5 Byte 6 Byte 7 Byte 8 Sub-Index Data Data Data Data CMD determines the direction of data transfer and the size of the data object: 23 hex Sending of 4-byte data (bytes 5...5 contain a 32-bit value) 2B hex Sending of 2-byte data (bytes 5, 6 contain a 16-bit value) 2F hex Sending of 1-byte data (byte 5 contains an 8-bit value) Structure of SDO-answer by the Slave COB-ID 580+Node-ID DLC Byte 1 8 RES Byte 2 Byte 3 Index Byte 4 Byte 5 Byte 6 Byte 7 Byte 8 Sub-Index Data Data Data Data Byte 7 61h Byte 8 64h RES Response of the slave: 60 hex Data sent successfully 80 hex Error, With the aim to restore all parameters to default write (in the example the Node-ID = 0x7F) ID 67Fh Byte 1 23h Byte 2 11h Byte 3 10h Byte 4 01h Byte 5 6Ch Byte 6 6Fh Object: 1011h 1 Load all parameters Unsigned 8 "load" (0x64616F6C) to restore all parameters (objects with marking PARA and LSS-PARA). Wo The answer after successful storing you will receive is: ID 5FFh Byte 1 60h Byte 2 11h Byte 3 10h Byte 4 01h Byte 5 00h Byte 6 00h Byte 7 00h Byte 8 00h After setting the new entries a reset must be made so that the new entries become valid (switch off the module for a short time). 48 85203B_GIT-CANopen_Operative Manual_03-2019_ENG Example 12) How to disable the Asynchronous Transmission (Asynchronous TPDO inactive) With Service Data Object (S.D.O.) the access to entries of a device Object Dictionary is provided. As these entries may contain data of arbitrary size and data type SDOs can be used to transfer multiple data sets from a client to a server and vice versa. Structure of SDO-request by the Master COB-ID 600+Node-ID DLC Byte 1 8 CMD Byte 2 Byte 3 Index Byte 4 Byte 5 Byte 6 Sub-Index Data Data Byte 7 Byte 8 Byte 7 Byte 8 CMD determines the direction of data transfer and the size of the data object: 23 hex Sending of 4-byte data (bytes 5...5 contain a 32-bit value) 2B hex Sending of 2-byte data (bytes 5, 6 contain a 16-bit value) 2F hex Sending of 1-byte data (byte 5 contains an 8-bit value) Structure of SDO-answer by the Slave COB-ID 580+Node-ID DLC Byte 1 8 RES Byte 2 Byte 3 Index Byte 4 Byte 5 Byte 6 Sub-Index RES Response of the slave: 60 hex Data sent successfully 80 hex Error, With the aim to disable the asynchronous transmission write theSDO (in the example the Node-ID = 0x7F) ID 67Fh Byte 1 2Bh Byte 2 00h Byte 3 18h Byte 4 05h Byte 5 00h Byte 6 00h Byte 7 00h Byte 8 00h Object: 0 1 1800h 2 1st Transmit PDO Parameter COB-ID Trans PDO Transmission Type Trans PDO - PARA Unsigned 8 Unsigned 32 Ro Ro 180h + Node-ID Unsigned 8 Rw 254 (0xFE) 0x01...0xF0 = synch cyclic Outputs are only updated after "n" synch objects. n = 0x01 (1) ... 0xF0 (240) 0xFC not implemented 0xFD not implemented 0xFE = asynchronous 5 Event timer Trans PDO- PARA Unsigned 16 Rw 100 (0x64) 0xFF = not implemented 0 = inactive Min= 4 & Max=65535 with unit = 1ms The answers after successful storing you will receive is: ID 5FFh Byte 1 60h Byte 2 00h 85203B_GIT-CANopen_Operative Manual_03-2019_ENG Byte 3 18h Byte 4 05h Byte 5 00h Byte 6 00h Byte 7 00h Byte 8 00h 49 With the aim to save functionality write the “save” command as below: Write (in the example the Node-ID = 0x7F) ID 67Fh Byte 1 23h Byte 2 10h Byte 3 10h Byte 4 01h Byte 5 73h Byte 6 61h Byte 7 76h Byte 8 65h Note: save command is given by sending the code: 73h 61h 76h Where: 65h 73h = in ASCII code “s” 61h = in ASCII code “a” 76h = in ASCII code “v” 65h = in ASCII code “e” The answer after successful storing you will receive is: ID Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7 Byte 8 5FFh 60h 10h 10h 01h 00h 00h 00h 00h IMPORTANT NOTE: After setting the new entries a reset must be made so that the new entries become valid (switch off the module for a short time). 50 85203B_GIT-CANopen_Operative Manual_03-2019_ENG Example 13) How to enable the Synchronous Transmission (Synchronous TPDO active after 1st sync message)With Service Data Object (S.D.O.) the access to entries of a device Object Dictionary is provided. As these entries may contain data of arbitrary size and data type SDOs can be used to transfer multiple data sets from a client to a server and vice versa. Structure of SDO-request by the Master COB-ID 600+Node-ID DLC Byte 1 8 CMD Byte 2 Byte 3 Index Byte 4 Byte 5 Sub-Index Data Byte 6 Byte 7 Byte 8 Byte 6 Byte 7 Byte 8 CMD determines the direction of data transfer and the size of the data object: 23 hex Sending of 4-byte data (bytes 5...5 contain a 32-bit value) 2B hex Sending of 2-byte data (bytes 5, 6 contain a 16-bit value) 2F hex Sending of 1-byte data (byte 5 contains an 8-bit value) Structure of SDO-answer by the Slave COB-ID 580+Node-ID DLC Byte 1 8 RES Byte 2 Byte 3 Index Byte 4 Byte 5 Sub-Index RES Response of the slave: 60 hex Data sent successfully 80 hex Error, With the aim to enable the synchronous transmission with TPDO active after 1st sync message, write the SDO (in the example the Node-ID = 0x7F) ID 67Fh Byte 1 2Fh Byte 2 00h Byte 3 18h Byte 4 02h Byte 5 01h Byte 6 00h Byte 7 00h Byte 8 00h Object: 0 1 1800h 2 1st Transmit PDO Parameter COB-ID Trans PDO Transmission Type Trans PDO- PARA Unsigned 8 Unsigned 32 Ro Ro 180h + Node-ID Unsigned 8 Rw 254 (0xFE) 0x01...0xF0 = synch cyclic Outputs are only updated after "n" synch objects. n = 0x01 (1) ... 0xF0 (240) 0xFC not implemented 0xFD not implemented 0xFE = asynchronous 0xFF = not implemented 0 = inactive 5 Event timer Trans PDO- PARA Unsigned 16 Rw 100 (0x64) Min= 4 & Max=65535 with unit = 1ms The answers after successful storing you will receive is: ID 5FFh Byte 1 60h Byte 2 00h 85203B_GIT-CANopen_Operative Manual_03-2019_ENG Byte 3 18h Byte 4 02h Byte 5 00h Byte 6 00h Byte 7 00h Byte 8 00h 51 With the aim to save functionality write the “save” command as below: Write (in the example the Node-ID = 0x7F) ID 67Fh Byte 1 23h Byte 2 10h Byte 3 10h Byte 4 01h Byte 5 73h Byte 6 61h Byte 7 76h Byte 8 65h Note: save command is given by sending the code: 73h 61h 76h 65h Where: 73h = in ASCII code “s” 61h = in ASCII code “a” 76h = in ASCII code “v” 65h = in ASCII code “e” The answer after successful storing you will receive is: ID 5FFh Byte 1 60h Byte 2 10h Byte 3 10h Byte 4 01h Byte 5 00h Byte 6 00h Byte 7 00h Byte 8 00h IMPORTANT NOTE: After setting the new entries a reset must be made so that the new entries become valid (switch off the module for a short time). GEFRAN spa via Sebina, 74 - 25050 PROVAGLIO D’ISEO (BS) - ITALIA tel. 0309888.1 - fax. 0309839063 Internet: http://www.gefran.com
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Related manuals
Download PDF
advertisement