Here

Test and Measurement

Division

Operating Manual

SPECTRUM ANALYZER

R&S FSP3

1093.4495.03

R&S FSP7

1093.4495.07

R&S FSP13

1093.4495.13

R&S FSP30

1093.4495.30/.39

Volume 1

This Operating Manual consists of 2 volumes

Printed in the Federal

Republic of Germany

1093.4820.12-03- I

Dear Customer, throughout this operating manual, the abbreviation FSP is used for your Spectrum Analyzer R&S FSP.

FSP Tabbed Divider Overview

Tabbed Divider Overview

Volume 1

Data Sheet

Safety Instructions

Certificate of Quality

EU Certificate of Conformity

List of R&S Representatives

Manuals for Spectrum Analyzer FSP

Tabbed Divider

4

10

1

2

3

Chapter 1: Putting into Operation

Chapter 2: Getting Started

Chapter 3: Operation

Chapter 4: Functional Description

Chapter 10: Index

Volume 2

Data Sheet

Safety Instructions

Manuals for Spectrum Analyzer FSP

Tabbed Divider

7

8

5

6

9

10

Chapter 5: Remote Control – Basics

Chapter 6: Remote Control – Commands

Chapter 7: Remote Control – Program Examples

Chapter 8: Maintenance and Hardware Interfaces

Chapter 9: Error Messages

Chapter 10: Index

1093.4820.12

RE E-2

EC Certificate of Conformity

Certificate No.: 99049

This is to certify that:

Equipment type

FSP3

FSP7

FSP13

FSP30

Stock No.

1093.4495.03

1093.4495.07

1093.4495.13

1093.4495.30/.39

Designation

Spectrumanalyzer

FSP-B3

FSP-B4

FSP-B6

FSP-B9

FSP-B10

FSP-B16

FSP-B17

FSP-B25

1129.6491.02

1129.6740.02

1129.8594.02

1129.6991.02

1129.7246.02

1129.8042.02

1129.8794.02

1129.7746.02

Audio Modulator AM/FM

OCXO 10 MHz

TV-Trigger

Tracking Generator

External Generator Control

Lan Interface 10/1000 Base T

On-Line IQ Interface

Electronic Attenuator complies with the provisions of the Directive of the Council of the European Union on the approximation of the laws of the Member States

relating to electrical equipment for use within defined voltage limits

(73/23/EEC revised by 93/68/EEC)

relating to electromagnetic compatibility

(89/336/EEC revised by 91/263/EEC, 92/31/EEC, 93/68/EEC)

Conformity is proven by compliance with the following standards:

EN61010-1 : 1993 + A2 : 1995

EN55011 : 1998 + A1 : 1999

EN61326-1 : 1997 + A1 : 1998

For the assessment of electromagnetic compatibility, the limits of radio interference for Class

B equipment as well as the immunity to interference for operation in industry have been used as a basis.

Affixing the EC conformity mark as from 1999

Munich, 2002-01-31

ROHDE & SCHWARZ GmbH & Co. KG

Mühldorfstr. 15, D-81671 München

Central Quality Management FS-QZ / Becker

1093.4495.01

CE E-6

Safety Instructions

This unit has been designed and tested in accordance with the EC Certificate of Conformity and has left the manufacturer’s plant in a condition fully complying with safety standards.

To maintain this condition and to ensure safe operation, the user must observe all instructions and warnings given in this operating manual.

Safety-related symbols used on equipment and documentation from R&S:

Observe operating instructions

Weight indication for units >18 kg

PE terminal Ground terminal

Danger!

Shock hazard

Warning!

Hot surfaces

Ground

Attention!

Electrostatic sensitive devices require special care

1.

The unit may be used only in the operating conditions and positions specified by the manufacturer. Unless otherwise agreed, the following applies to R&S products:

IP degree of protection 2X, pollution severity 2 overvoltage category 2, only for indoor use, altitude max. 2000 m.

The unit may be operated only from supply networks fused with max. 16 A.

Unless specified otherwise in the data sheet, a tolerance of

±

10% shall apply to the nominal voltage and of

±

5% to the nominal frequency.

2.

For measurements in circuits with voltages V rms

> 30 V, suitable measures should be taken to avoid any hazards.

(using, for example, appropriate measuring equipment, fusing, current limiting, electrical separation, insulation).

3.

If the unit is to be permanently wired, the PE terminal of the unit must first be connected to the PE conductor on site before any other connections are made. Installation and cabling of the unit to be performed only by qualified technical personnel.

4.

For permanently installed units without built-in fuses, circuit breakers or similar protective devices, the supply circuit must be fused such as to provide suitable protection for the users and equipment.

5.

Prior to switching on the unit, it must be ensured that the nominal voltage set on the unit matches the nominal voltage of the AC supply network.

If a different voltage is to be set, the power fuse of the unit may have to be changed accordingly.

6.

Units of protection class I with disconnectible

AC supply cable and appliance connector may be operated only from a power socket with earthing contact and with the PE conductor connected.

7.

It is not permissible to interrupt the PE conductor intentionally, neither in the incoming cable nor on the unit itself as this may cause the unit to become electrically hazardous.

Any extension lines or multiple socket outlets used must be checked for compliance with relevant safety standards at regular intervals.

8.

If the unit has no power switch for disconnection from the AC supply, the plug of the connecting cable is regarded as the disconnecting device.

In such cases it must be ensured that the power plug is easily reachable and accessible at all times (length of connecting cable approx. 2 m).

Functional or electronic switches are not suitable for providing disconnection from the AC supply.

If units without power switches are integrated in racks or systems, a disconnecting device must be provided at system level.

9.

Applicable local or national safety regulations and rules for the prevention of accidents must be observed in all work performed.

Prior to performing any work on the unit or opening the unit, the latter must be disconnected from the supply network.

Any adjustments, replacements of parts, maintenance or repair may be carried out only by authorized R&S technical personnel.

Only original parts may be used for replacing parts relevant to safety (eg power switches, power transformers, fuses). A safety test must be performed after each replacement of parts relevant to safety.

(visual inspection, PE conductor test, insulationresistance, leakage-current measurement, functional test).

continued overleaf

095.1000 Sheet 17

Safety Instructions

10. Ensure that the connections with information technology equipment comply with IEC950 /

EN60950.

11. Lithium batteries must not be exposed to high temperatures or fire.

Keep batteries away from children.

If the battery is replaced improperly, there is danger of explosion. Only replace the battery by

R&S type (see spare part list).

Lithium batteries are suitable for environmentally-friendly disposal or specialized recycling.

Dispose them into appropriate containers, only.

Do not short-circuit the battery.

12. Equipment returned or sent in for repair must be packed in the original packing or in packing with electrostatic and mechanical protection.

13.

Electrostatics via the connectors may damage the equipment. For the safe handling and operation of the equipment, appropriate measures against electrostatics should be implemented.

14. The outside of the instrument is suitably cleaned using a soft, lint-free dustcloth. Never use solvents such as thinners, acetone and similar things, as they may damage the front panel labeling or plastic parts.

15. Any additional safety instructions given in this manual are also to be observed.

095.1000 Sheet 18

FSP Manuals

Contents of Manuals for Spectrum Analyzer FSP

Operating Manual FSP

The operating manual describes the following models and options of spectrum analyzer FSP:

FSP3 9 kHz to 3 GHz

FSP7 9 kHz to 7 GHz

FSP13 9 kHz to 13.6 GHz

FSP30 9 kHz to 30 GHz

Option FSP B3

Option FSP-B4 audio demodulator

OCXO - reference oscillator

Option FSP-B9 tracking generator

Option FSP-B10 external generator control

Option FSP-B16 LAN interface

Option FSP-B25 electronic attenuator

This operating manual contains information about the technical data of the instrument, the setup functions and about how to put the instrument into operation. It informs about the operating concept and controls as well as about the operation of the FSP via the menus and via remote control. Typical measurement tasks for the FSP are explained using the functions offered by the menus and a selection of program examples.

Additionally the operating manual includes information about maintenance of the instrument and about error detection listing the error messages which may be output by the instrument. It is subdivided into 9 chapters:

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Chapter 8

Chapter 9

Chapter 10

describes the control elements and connectors on the front and rear panel as well as all procedures required for putting the FSP into operation and integration into a test system.

gives an introduction to typical measurement tasks of the FSP which are explained step by step.

describes the operating principles, the structure of the graphical interface and offers a menu overview.

forms a reference for manual control of the FSP and contains a detailed description of all instrument functions and their application. The chapter also lists the remote control command corresponding to each instrument function.

describes the basics for programming the FSP, command processing and the status reporting system.

lists all the remote-control commands defined for the instrument. At the end of the chapter a alphabetical list of commands and a table of softkeys with command assignment is given.

contains program examples for a number of typical applications of the FSP.

describes preventive maintenance and the characteristics of the instrument’s interfaces.

gives a list of error messages that the FSP may generate.

contains a list of error messages.

contains an index for the operating manual.

1093.4820.12

0.1

E-2

Manuals FSP

Service Manual - Instrument

The service manual - instrument informs on how to check compliance with rated specifications, on instrument function, repair, troubleshooting and fault elimination. It contains all information required for the maintenance of FSP by exchanging modules.

1093.4820.12

0.2

E-2

FSP Contents - Preparing for Operation

Contents - Chapter 1 " Preparing for Operation "

1 Preparing for Operation ...................................................................................... 1.1

Description of Front and Rear Panel Views .................................................................................. 1.1

Front View................................................................................................................................ 1.1

Rear View ................................................................................................................................ 1.9

Getting Started with the Instrument............................................................................................. 1.14

Preparing the Instrument for Operation ................................................................................. 1.14

Setting Up the Instrument ...................................................................................................... 1.14

Standalone Operation.................................................................................................. 1.14

Safety Instruction for Instruments with Tiltable Feet ................................................... 1.15

Rackmounting ............................................................................................................. 1.15

EMI Protection Measures ...................................................................................................... 1.16

Connecting the Instrument to the AC Supply......................................................................... 1.16

Switching the Instrument On/Off............................................................................................ 1.16

Switching On the Instrument ....................................................................................... 1.17

Startup Menu and Booting........................................................................................... 1.17

Switching Off the FSP ................................................................................................. 1.17

Power-Save Mode ....................................................................................................... 1.18

Recalling the Most Recent Instrument Settings..................................................................... 1.18

Functional Test .............................................................................................................................. 1.18

Windows NT ................................................................................................................................... 1.19

Connecting an External Keyboard ............................................................................................... 1.20

Connecting a Mouse...................................................................................................................... 1.21

Connecting an External Monitor .................................................................................................. 1.22

Connecting a Printing Device ....................................................................................................... 1.23

Installation of a Network Printer (with Option FSP-B16 only) ................................................ 1.29

Installing Windows NT Software .................................................................................................. 1.32

Authorized Windows NT Software for the Instrument ........................................................... 1.32

Reinstallation of Service Pack 5 ............................................................................................ 1.32

1093.4820.12

I-1.1

E-1

Contents - Preparing for Operation

W

W

FSP

Fig. 1-1 Front View

1093.4820.12 I-1.2 E-2

FSP

1 Preparing for Operation

Front View

Chapter 1 describes the controls and connectors of the Spectrum Analyzer FSP by means of the front and rear view. Then follows all the information that is necessary to put the instrument into operation and connect it to the AC supply and to external devices.

A more detailed description of the hardware connectors and interfaces can be found in chapter 8.

Chapter 2 provides an introduction into the operation of the FSP by means of typical examples of configuration and measurement; for the description of the concept for manual operation and an overview of menus refer to chapter 3.

For a systematic explanation of all menus, functions and parameters and background information refer to the reference part in chapter 4.

For remote control of the FSP refer to the general description of the SCPI commands, the instrument model, the status reporting system, and command description in chapter 5 and 6.

Description of Front and Rear Panel Views

Front View

1

Display Screen see Chapter 3

2

Softkeys see Chapter 3

3

7

4

1

8

5

2

9

6

3

GHz

-dBm s

V

MHz dBm ms kHz dB

µs

µV

Hz dB..

ns nV

0

ESC

CANCEL

.

-

ENTER BACK

data input

.

0...9

input numbers input decimal point change sign

ESC

CANCEL

– close input field (for uncompleted or already closed inputs, the original entry is kept)

– erase the current entry in input field

(beginning of an input)

– close message window (status, error and warning messages)

ENTER close the data input.

BACK – erase last character input for uncompleted input

– restore previous input (undo) see Chapter 3

1093.4820.12

1.1

E-2

Front View

W

W

FSP

Fig. 1-1 Front View

1093.4820.12

1.2

E-2

FSP Front View

4

7

4

1

8

5

2

9

6

3

GHz

-dBm s

V

MHz dBm ms kHz dB

µs

µV

Hz dB..

ns nV

0

ESC

CANCEL

.

-

ENTER BACK

data input

GHz s The units keys close the data

-dBm V input and define the multiplication factor for each basic unit.

MHz ms For dimension-less or dBm mV alphanumeric inputs, the units keys have weight 1.

kHz

µ s They behave, in this case, like the dB

µ

V ENTER key.

Hz ns dB.. nV

FREQ

MKR

SPAN

AMPT

MKR

MKR

FCTN

FREQ Set frequency axis

SPAN Set span

AMPT Set level indication and configure

RF input.

MKR Select and set standard marker and delta marker functions.

MKR-> Change instrument settings via markers

MKR

FCTN

Select further marker and delta marker functions

5

BW SWEEP

MEAS TRIG

BW – Set resolution bandwidth, video bandwidth and sweep time,

– Set coupling of these parameters

Select sweep SWEEP

MEAS Select and set power measurements

TRIG Set trigger sources see Chapter 3 see Chapter 4 see Chapter 4

1093.4820.12

1.3

E-2

Front View

W

W

FSP

Fig. 1-1 Front View

1093.4820.12

1.4

E-2

FSP Front View

6

Key group for entering data and for cursor movement

Cursor keys – Move the cursor within the input fields and tables.

– Vary the input value.

Define the direction of movement for the roll-key.

Roll-key – Vary input values.

– Move markers and limits.

– Select letters in the help line editor.

Move cursor in the tables

Close data input (ENTER) see Chapter 3

7

3 1/2" diskette drive; 1.44 MByte

8

AF OUTPUT

GEN OUTPUT 50

W

MAX 0V DC

PROBE POWER KEYBOARD

RF INPUT 50

W

MAX +30 dBm /50V DC

MADE IN GERMANY

AF OUTPUT (only with option FSP-B3)

Volume control

PROBE POWER Power supply and coded socket

(+15 V/ -12 V) for accessories

KEYBOARD

Head phone connector

Connector for an external keyboard see Chapter 8

RF INPUT

Caution:

RF input

The maximum DC voltage is

50 V, the maximum power is

10 dB attenuation.

see Chapter 8

9

TRACE

LINES

DISP

FILE

TRACE Select and activate traces and detectors

LINES Set limit lines

DISP Configure display

FILE –

Save and recall instrument data

Configuration of memory media and data see Chapter 4

1093.4820.12

1.5

E-2

Front View

W

W

FSP

Fig. 1-1 Front View

1093.4820.12

1.6

E-2

14

SETUP

15

CAL

16

PRESET

FSP

10

PREV NEXT

Menu-change keys

NEXT Change to side menu

PREV Call main menu

11

Hotkeys

12

ON/STANDBY switch

13

Configure and start a print job

Define general configuration

Record correction data

Call default settings

Front View

see Chapter 3 see Chapter 3 see Chapter 1 see Chapters 1 and 4 see Chapter 4 see Chapter 4 see Chapter 4

1093.4820.12

1.7

E-2

Rear View FSP

Fig. 1-1 Rear View

1093.4820.12

1.8

E-2

FSP

Rear View

17

18

100 - 240 VAC

3.1 - 1.3 A

I 0

19

625

SCPI

20

LPT

21

COM

22

MONITOR

Reserved for options

Power switch and AC power connector

IEC/IEEE bus-connector

Parallel interface connector

(printer connector)

Connector for a serial interface

(9-pin socket; COM)

Connector for an external monitor

23

NOISE

SOURCE

see Chapter 8 see Chapter 1 see Chapter 8 see Chapter 8 see Chapter 8 see Chapter 8

Output connector for an external noise source see Chapter 8

Rear View

1093.4820.12

1.9

E-2

Rear View FSP

Fig. 1-2 Rear View

1093.4820.12

1.10

E-2

FSP

24

EXT TRIG /

GATE IN

Input connector for an external trigger or an external gate signal see Chapter 8

Rear View

25

MOUSE

Connector for a PS/2 mouse see Chapter 8

26

Reserved for options

27

AUX CONTROL

Connector to control an external generator ((only with option FSP-B10)

28

REF IN REF OUT

REF IN Input connector for an external reference (10 MHz)

REF OUT Output connector for an internal reference (10 MHz) see Chapter 4

1093.4820.12

1.11

E-2

Rear View FSP

Bild 1-2 Rear View

1093.4820.12

1.12

E-2

FSP

29

TG I IN TG Q IN

TG IN Signal input connector for external modulation of Tracking Generator

(option FSP-B9)

TG Q IN Signal input connector for external modulation of Tracking Generator

(option FSP-B9)

30

20.4 - MHz OUT

CVS IN/OUT

Rear View

Output connector for 20.4 MHz IF

(replaced by CCVS IN OUT if option FSP-B6 is built in)

Selectable CCVS input/output

(only if option FSP-B6 is built in) see Chapter 8 see Chapter 4 and 8

31

LAN

LAN Interface (option FSP-B16) see Chapter 4

32

Reserved for options

1093.4820.12

1.13

E-2

Getting Started with the Instrument FSP

Getting Started with the Instrument

The following section describes how to activate the instrument and how to connect external devices like e.g. printer and monitor.

Chapter 2 explains the operation of the instrument using simple measurement examples.

Important note:

Before turning the instrument on, care should be taken that the following conditions are fulfilled:

instrument cover is in place and tightened by the corresponding screws,

fan openings are free from obstructions,

signal levels at the input connectors are all within specified limits,

signal outputs are connected correctly and not overloaded.

Ignoring these conditions may cause damage to the instrument

.

Preparing the Instrument for Operation

remove protective caps

Ø

Take the instrument out of the shipping box and check whether the items listed in the packing list and in the lists of accessories are all included.

Ø

Remove the two protective caps from the front and rear of the FSP and carefully check the instrument for damage.

Ø

Should the instrument be damaged, immediately notify the transportation company that shipped the instrument to you and keep the box and packing material.

Ø

For further transport or shipment of the FSP the original packing should also be used. It is recommended to keep at least the two protective caps for front and rear side in order to prevent damage to the controls and connectors.

Setting Up the Instrument

Standalone Operation

The instrument is designed for use under general laboratory conditions. The ambient conditions required at the operational site are as follows:

Wrist strap with cord

Building ground

Ground connection of operational site

Heel strap

Floor mat

The ambient temperature must be in the range indicated in the data sheet.

All fan openings must be unobstructed and the air flow at the rear panel and at the side-panel perforations must not be obstructed. The distance to the wall should be at least

10 cm.

The mounting surface should be flat.

In order to avoid damage of electronic components of the device under test due to electrostatic discharge on manual touch, protection of the operational site against electrostatic discharge is recommended.

1093.4820.12

1.14

E-3

FSP Getting Started with the Instrument

Safety Instruction for Instruments with Tiltable Feet

Warning

The feet must be fully folded in or out. Only in this way can the stability of the instrument be guaranteed and reliable operation be ensured. With the feet out, the total load for the feet must not exceed 500 N (own weight and additional units put onto the instrument). These units must be secured against slipping (e.g. by locking the feet of the unit at the top side of the enclosure).

<500N

When shifting the instrument with the feet out, the feet might collapse and fold in. To avoid injuries, the instrument must therefore not be shifted with the feet out.

The instrument can be operated in any position.

Rackmounting

Important Note:

For rack installation, ensure that the air flow at the side-panel perforations and the air exhaust at the rear panel are not obstructed.

The instrument may be mounted in a 19" rack by using a rack adapter kit (Order No. see data sheet).

The installation instructions are included in the adapter kit.

1093.4820.12

1.15

E-3

Getting Started with the Instrument FSP

EMI Protection Measures

In order to avoid electromagnetic interference (EMI), the instrument may be operated only when all covers are correctly in place. Only adequately shielded signal and control cables may be used (see recommended accessories).

Connecting the Instrument to the AC Supply

The FSP is equipped with an AC voltage selection feature and will automatically adapt itself to the applied AC voltage (range: 100 to 240 V AC, 40 to 400 Hz). External voltage selection or adaptation of the fuses are not necessary. The AC power connector is located on the rear panel (see below).

Power connector

Ø

Connect the instrument to the AC power source using the AC power cable delivered with the instrument.

As the instrument is designed according to the regulations for safety class EN61010, it must be connected to a power outlet with earthing contact.

Switching the Instrument On/Off

Caution:

Do not power down during booting.

Such a switch-off may lead to corruption of the hard disk files.

AC power switch on the rear panel

Power switch Power connector

I 0

Power switch

Position I = ON

In the I position, the instrument is in standby mode or in operation, depending on the position of the

ON/STANDBY key at the front of the instrument

.

Note:

The AC power switc

h

may remain ON continuously.

Switching to OFF is only required when the instrument must be completely removed from the AC power source.

Position O = OFF

The 0 position implies an all-pole disconnection of the instrument from the AC power source.

1093.4820.12

1.16

E-3

FSP Getting Started with the Instrument

ON/STANDBY switch on the front panel

ON STANDBY

Caution:

In standby mode, the AC power voltage is present within the instrument

Standby switch

The ON/STANDBY switch activates two different operating modes indicated by coloured LEDs:

Operation ON -

ON/STANDBY is depressed

The green LED (ON) is illuminated. The instrument is ready for operation. All modules within the instrument are supplied with power.

STANDBY -

ON/STANDBY switch is not pressed.

The yellow LED (STANDBY) is illuminated. Only the power supply is supplied with power and the quartz oven is maintained at normal operating temperature.

Switching On the Instrument

Ø

In order to switch on the FSP, set the power switch on the rear panel to position I.

Ø

Set the FSP to operating mode by pressing the

ON/STANDBY

key on the front panel. The green

LED must be illuminated.

Startup Menu and Booting

After switching on the instrument, a message indicating the installed BIOS version (e.g. Analyzer BIOS

Rev. 1.2) appears on the screen for a few seconds.

Subsequently Windows NT is booted first and after that the instrument firmware will boot. As soon as the boot process is finished the instrument will start measuring. The settings used will be the one that was active when the instrument was previously switched off, provided no other device configuration than

FACTORY

had been selected with

STARTUP RECALL

in the

FILE

menu.

Switching Off the FSP

Ø

Switch the ON/STANDBY key on the front panel to standby mode by pressing it once.

The FSP will write the current instrument settings to disk before performing a Windows NT shutdown. At the end of the shutdown procedure the power supply will be switched to STANDBY mode.

The yellow LED must be illuminated.

Only when removing the FSP completely from the AC power source:

Ø

Set the power switch at the rear panel to position 0.

1093.4820.12

1.17

E-3

Functional Test FSP

Power-Save Mode

Display:

The FSP offers the possibility of switching on a power-save mode for the screen display. The screen is blanked out if no entry is made on the front panel (key, softkey or hotkey and rollkey) during the selected response time.

In order to switch on the power-save mode:

1. Call the

DISPLAY - CONFIG DISPLAY

submenu to configure the screen display:

Ø

Press

DISP

key

Ø

Press

CONFIG DISPLAY

softkey

2. Activate the save mode

Ø

Press

DISPLAY PWR SAVE

softkey.

The softkey is highlighted in colour, thus indicating that the power-save mode is on. At the same time the data entry for the delay time is opened.

3. Define the delay time

Ø

Enter the required response time in minutes and confirm the entry using the

ENTER

key.

The screen will be blanked out after the selected time period has elapsed.

Hard disk:

A power-save mode is preset for the built-in hard disk which is automatically closed down 15 minutes after the last access.

Recalling the Most Recent Instrument Settings

The FSP is equipped with a battery-powered read/write memory (CMOS-RAM) where instrument settings are saved at power-off. After each power-on, the FSP is reloaded with the operational parameters which were active just prior to the last power-off (STANDBY or AC power OFF) or were set with STARTUP RECALL (see Chapter 4 "Saving and Recalling Data Sets").

A lithium battery is used to supply power to the CMOS-RAM. As soon as the battery is discharged

(expected life time is approx. 5 years), any data stored in CMOS-RAM will be lost. In this case, the factory standard setup is loaded at power-on. For changing batteries please contact your local service representative.

Functional Test

After turning on the AC power, the FSP will display the following message on the display screen:

Rohde & Schwarz GmbH & Co. KG

Analyzer BIOS Vx.y

After appearance of the above message, a selftest of the digital hardware is performed. Subsequently, the Windows NT controller boots and the measurement screen will appear.

The system self-alignment is activated via

CAL

key,

CAL TOTAL

softkey. The individual results of the self-alignment (PASSED / FAILED) can be displayed in the

CAL

menu (

CAL RESULTS)

.

With the aid of the built-in selftest functions (

SETUP

key,

SERVICE, SELFTEST

soft keys), the functional integrity of the instrument can be verified and/or defective modules can be localized.

1093.4820.12

1.18

E-3

FSP

Windows NT

Windows NT

Caution:

The drivers and programs used under Windows NT are adapted to the measuring instrument. In order to prevent the instrument functions from damage, the settings should only be modified as described below. Existing software may only be modified using update software released by Rohde&Schwarz. Additionally only programs authorized by Rohde&Schwarz for use on the

FSP

may be run on the instrument.

Do not power down during booting.

Such a switch-off may lead to corruption of the hard disk files.

The instrument runs under the operating system Windows NT. The computer can be used to install and configure device drivers that were authorized by Rohde&Schwarz. Any further use of the computer function is only allowed under the conditions described in this operating manual.

Login

Windows NT requires a login process, during which the user is asked for identification by entering his name and password. As a factory default the instrument is configured for

Auto Login

, i.e. the login is performed automatically and in the background. The user name used for this is "instrument" and the password is also "instrument" (in small letters).

Administrator level

The NT user account used for the autologin function has administrator access rights.

After a software installation that requires administrator rights (e.g. the installation of new printer drivers),

Service Pack 5 of Windows NT has to be re-installed. The necessity to re-install the service pack is indicated in the corresponding operating manual chapters. The installation of the Service Pack is described in the section "Installing Windows NT Software".

Calling the Windows NT start menu

The Windows NT start menu is called using the key combination <CTRL> <ESC>. It is possible to access the required submenus from the start menu by means of the mouse or the cursor keys. In order to return to the measurement screen the button "R&S Analyzer Interface" in the Windows NT task bar can be used.

1093.4820.12

1.19

E-3

Connecting an External Keyboard

Connecting an External Keyboard

FSP

Caution:

The keyboard may only be connected when the instrument is switched off

(STANDBY). Otherwise, correct operation of the keyboard cannot be guaranteed.

The FSP offers a 6-contact PS/2-connector KEYBOARD on the instrument's front panel for the connection of an external PC. It is recommended to use the PSP-Z2 keyboard (Order No.

1091.4100.02, English). This keyboard is equipped with a trackball for mouse control.

KEYBOARD

During measurement operations, the keyboard simplifies the input of commentary text, file names, etc.

The section "Instrument Interfaces" in Chapter 8 contains the interface description of the connector.

After connection of the keyboard and subsequent power-on, the keyboard will be automatically recognized. The default language used is "US keyboard". Special settings such as repetition rate etc can be performed in the Windows NT menu START - SETTINGS - CONTROL PANEL - KEYBOARD.

1093.4820.12

1.20

E-3

FSP

Connecting a Mouse

Connecting a Mouse

Caution:

The mouse may only be connected when the instrument is switched off

(STANDBY). Otherwise, correct operation of the mouse and instrument cannot be guaranteed.

In order to ease up operation of Windows NT, the FSP provides an option for connecting a mouse to the

PS/2 mouse connector (MOUSE) at the rear panel of the instrument.

The mouse type supported is "Microsoft mouse". It is available as option PS-B1 (Order No.

1006.6359.02).

Note.

The recommended keyboard PSP-Z2 is equipped with a trackball for mouse control. Connecting an additional mouse will cause interface conflicts and lead to malfunctions of the instrument.

MOUSE

The section "Instrument Interfaces" in Chapter 8 contains the interface description of the connector.

After connection and subsequent power-on the mouse is automatically recognized. Special settings such as mouse cursor speed etc, can be performed in the Windows NT menu START - SETTINGS -

CONTROL PANEL - MOUSE.

1093.4820.12

1.21

E-3

Connecting an External Monitor

Connecting an External Monitor

FSP

Caution:

The monitor may only be connected when the instrument is switched off (STANDBY).

Otherwise, the monitor may be damaged.

Do not modify the screen driver (display type) and display configuration since this will severely affect instrument operation.

The instrument is equipped with a rear-panel connector MONITOR for the connection of an external monitor.

MONITOR

After connecting the external monitor the instrument needs to be rebooted in order to recognize the monitor. After that the measurement screen is displayed on both the external monitor and the instrument. Further settings are not necessary.

1093.4820.12

1.22

E-3

FSP

Connecting a Printing Device

Connecting an Output Device

Caution:

The printing device may be connected only when the instrument is switched off

(STANDBY)

Note:

When installing printer drivers that are not pre-installed on the instrument, the operator is requested to insert the disk with the new driver into drive A.

After installation the Service Pack needs to be re-installed (see section "Installing Windows

NT Software")

The instrument is prepared for connecting printing devices to two different interfaces in order to create hard copies of the display screen. The

DEVICE

table in menu

HCOPY – DEVICE1/2

indicates the available selection of installed printing devices (see also Chapter 4, section "Documentation of Test

Results").

The interface connectors are located on the rear panel:

LPT

COM

Chapter 8 contains the interface descriptions of the connectors.

After connection of the printing device to the appropriate interface connector, the interface needs to be configured, the printer driver has to be installed and assigned to an interface.

1. Connecting keyboard and mouse

For the installation and configuration of printer drivers on the FSP, it is necessary to connect a keyboard to the front panel and a PS/2 mouse to the rear panel (only in case of using a keyboard without trackball, see sections "Connecting a Mouse" and "Connecting a Keyboard").

2. Switching to Windows NT start menu and opening the system control

The combination of keys <CTRL><ESC> is used to switch to the Windows NT start menu. The system control panel is then opened in the NT start menu using the sequence SETTINGS - CONTROL PANEL.

3. Configuration of the interface

LPT Interface LPT needs no configuration.

COM The COM interface must first be assigned to the operating system (owner = OS) in menu SETUP - GENERAL SETUP. The configuration of the serial interface can then be performed either in the Windows NT menu START - SETTINGS -

CONTROL PANEL - PORTS or in the FSP SETUP - GENERAL SETUP menu.

The parameters

Baud Rate

,

Data Bits

,

Parity, Stop Bits, Flow Control

determine the transmission parameters of the interface. They must correspond to the specifications of the printing device (see the operating manual for the printer).

1093.4820.12

1.23

E-3

Connecting an Output Device

Note:

FSP

The settings made for the serial interface in the menu SETUP -

GENERAL SETUP overwrite the settings in the NT menu.

However, settings in the Windows NT menu do not overwrite those of the SETUP menu. This means that the settings are only valid as long as the interface is assigned to the operating system.

4. Selection and installation of the printer driver

The selection and installation of the printer driver, the assignment to the interface and the setting of most of the printer-specific parameters (e.g. paper size) is performed under Windows NT in the

START - SETTINGS - PRINTER menu.

5. Configuration of the connected output device

The configuration of the connected output device and the assignment to the interface takes place in the

HCOPY DEVICE1/2

menu (see in Chapter 4, the section "Measurement Documentation"). The instrument supports the configuration of up to two output devices (DEVICE1 and DEVICE2), one of which must be activated for printing.

Ÿ

The parameter

DEVICE

determines which output device is to be used.

Ÿ

The parameter

PRINT TO FILE

determines if the output is in the form of a file.

Ÿ

The parameter

ORIENTATION

sets the page format to horizontal or vertical (portrait).

Selecting the type of printer automatically sets the parameters

PRINT TO FILE

and

ORIENTATION

to values which correspond to a standard operating mode with this output device. Other printerdependent parameters such as

FORMFEED

,

PAPERFEED

etc, can be modified under Windows NT in the printer properties window (START/SETTINGS/PRINTER/SETTINGS/....).

Table 1-1 shows the standard factory settings for the two output devices.

The factory settings for DEVICE 1 correspond to output format "WMF" (Windows Metafile); printing is performed in a file. WMF is a common format which is used for the import of hardcopies (e.g.

measurement windows) in other Windows applications that support this format (e.g. WinWord).

The factory settings for DEVICE 2 are "Clipboard". In this setting the printout is copied to the

Windows NT clipboard. Most of Windows applications support the clipboard. The clipboard contents can be directly inserted into a document via EDIT - PASTE.

Table 1-1 Factory settings for

DEVICE 1 a

nd

DEVICE 2

in the

HCOPY

menu.

Setting

DEVICE 1

Settings

Output Device

Output

Page Orientation

Selection in the configuration table

DEVICE/LANGUAGE

PRINT TO FILE

ORIENTATION

WINDOWS METAFILE

YES

---

DEVICE 2

Settings

CLIPBOARD

---

---

1093.4820.12

1.24

E-3

FSP Connecting an Output Device

In the following example, a HP DeskJet 660C printer is connected to the LPT interface and configured as

DEVICE2

for hardcopies of the screen contents.

Switch off the FSP.

Connect the printer to interface LPT.

Switch on both FSP and printer.

Select the printer driver under Windows

NT

Ø

Press key combination <CTRL> <ESC>

The Windows NT start menu is displayed.

Ø

In the Start menu press "Setting" and then

"Printers".

The printer window is opened.

Ø

Double-click symbol "Add Printer".

The "Add Printer Wizard" window is opened. This window leads through the following printer driver installation.

Ø

Click "My computer" and then "Next".

The available printer ports are displayed.

1093.4820.12

1.25

E-3

Connecting an Output Device FSP

Ø

Select LPT1.

The selection is marked by a tick.

Ø

Click "Next".

The available printer drivers are displayed.

The left-hand selection table indicates the manufacturers and the right-hand one the available printer drivers.

Ø

Mark "HP" in selection table

"Manufacturers" and "HP DeskJet 660C" in selection table "Printers".

Note:

If the required type of output device is not included in the list, the driver has not yet been installed. In this case click on button

"HAVE DISK". A message box requesting to insert a disk with the corresponding printer driver will be displayed. Insert the disk, press

OK and select the required printer driver.

After installation, Service Pack 5 must be reinstalled (see section "Installing Windows NT

Software").

Ø

Click "Next".

The entry field for the printer name is displayed.

Ø

The printer name can be modified in the entry field "Printer name" (max. 60 characters).

If one or more printers are already installed, a query is displayed in this window to ask if the printer last installed as default printer should be selected for the

Windows NT applications (Do you want your Windows-based programs to use this printer as default printer?). The default selection is "No".

1093.4820.12

1.26

E-3

FSP

1093.4820.12

1.27

Connecting an Output Device

Ø

Click "Next".

A query is displayed for providing the printer in the network. This query is irrelevant when installing a local printer.

The default selection is "Not shared".

Ø

Click "Next".

The window for starting a test page print is displayed. The test page is helpful for checking if the installation was successful.

Ø

Click "Yes" (recommended).

Ø

Click "Finish".

A test page is printed if the installation was successful.

If the test page is not printed or not printed completely, the Windows NT online help offers troubleshooting instructions under the topic "Printer Troubleshooting".

Note:

If a prompt for the printer driver path appears after pressing "Finish", the Service Pack must be re-installed after this printer installation (see Chapter 1, section "Installing

Windows NT Software").

Now the instrument needs to be configured for creating hardcopies of the measurement screen using this printer.

Configuring HP DeskJet 660C.

Ø

Click button "R&S Analyzer Interface".

The measurement screen is displayed.

E-3

Connecting an Output Device FSP

Ø

Press the

HCOPY

key.

The

HCOPY

menu is opened.

HCOPY

DEVICE 1

DEVICE 2

COLOR

ON OFF

DEVICE2

DATA

ENTER

VARIATION

HARDCOPY DEVICE SETTINGS

Device1

Print to File

Orientation

WINDOWS METAFILE

YES

---

Device2

Print to File

Orientation

CLIPBOARD

---

---

Ø

Press softkey

DEVICE2

.

DEVICE 2 is activated as printing device.

The

HARDCOPY DEVICE SETTINGS-

table is opened and the current settings of the two output devices are displayed. The current selection in line DEVICE2 is highlighted by the selection bar.

Device1

Print to File

Orientation

Device2

HARDCOPY DEVICE SETTINGS

Print to File

Orientation

WINDOWS METAFILE

YES

---

CLIPBOARD

---

---

DEVICE

CLIPBOARD

WINDOWS METAFILE

ENHANCED METAFILE

BITMAP FILE

HP DeskJet 660C

Ø

Press the

ENTER

key.

The selection box

DEVICE

is displayed on the screen. The current selection is marked by a tick.

Ø

Press cursor key

Þ

until the entry

HP

DeskJet 660C

is highlighted by the selection bar.

DATA

ENTER

HARDCOPY DEVICE SETTINGS

Device1

Print to File

Orientation

WINDOWS METAFILE

YES

---

Device2

Print to File

Orientation

HP Deskjet 660C

NO

PORTRAIT

Ø

Press the

ENTER

key.

The selection box

DEVICE

is closed and

HP DeskJet 660C

is entered in line

DEVICE2

.

Note:

The selection of the printer type automatically sets the parameters PRINT TO FILE and

ORIENTATION to values which correspond to a standard mode with this output device.

Other printer-dependent parameters such as

PAPERSIZE, can be modified under

Windows NT in the printer properties window

(START / SETTINGS / PRINTER /

SETTINGS).

1093.4820.12

1.28

E-3

FSP

PRINT

SCREEN

Connecting an Output Device

Start print of measurement results

Ø

Press Softkey

PRINT SCREEN

to start the print job.

Installation of a Network Printer (with Option FSP-B16 only)

After opening the "Printers" dialog window proceed with the installation as follows:

Ø

Double-click the "Add Printer" line.

The "Add Printer Wizard" window is opened. This window guides the user through the printer driver installation.

Ø

Click "Network printer server" and then

"Next".

A list of selectable printers is displayed.

1093.4820.12

1.29

E-3

Connecting an Output Device FSP

Ø

Mark the desired printer and select it with

OK.

Ø

Confirm the following request for the installation of a suitable printer driver with

OK.

The list of printer drivers is displayed.

The manufacturers are listed in the window at the left, the available printer drivers at the right.

Ø

Select the manufacturer in the

"Manufacturers" window and then the printer driver in the "Printers" window.

Note:

If the required type of output device is not included in the list, the driver has not yet been installed. In this case click on button

"HAVE DISK". A message box requesting to insert a disk with the corresponding printer driver will be displayed. Insert the disk, press

OK and select the required printer driver.

After installation, Service Pack 5 must be reinstalled (see section "Installing Windows NT

Software").

Ø

Click "Next"

If one or more printers are already installed, a prompt is displayed in this window to ask if the printer last installed as default printer should be selected for the

Windows NT applications ("Do you want your Windows-based programs to use this printer as default printer?"). The default selection is "No".

1093.4820.12

1.30

E-3

FSP Connecting an Output Device

Ø

Start the printer driver installation with

"Finish".

Note:

If a prompt for the printer driver path appears after pressing "Finish", the

Service Pack must be re-installed after this printer installation (see Chapter 1, section

"Installing Windows NT Software").

Finally, the instrument has to be configured for printout with this printer using the DEVICE 1 and

DEVICE 2 softkeys in the hardcopy menu.

1093.4820.12

1.31

E-3

Installing Windows NT Software

Installing Windows NT Software

FSP

Authorized Windows NT Software for the Instrument

The driver software and the system settings of Windows NT are adapted to the measurement functions of the instrument. Correct operation of the instrument can therefore only be guaranteed if the software and hardware used is authorized or supplied by Rohde & Schwarz.

The following program packages have been successfully tested for compatibility with the instrument's software:

Ø

FS-K3 – software for measuring the noise factor and gain

Ø

FS-K4 – software for measuring the phase noise

Ø

Symantec PCAnywhere – for remote control via soft front panel

Ø

VNC – for remote control via soft front panel

Ø

FileShredder – for deleting files from the hard disk

Ø

Symantec Norton AntiVirus – software for protection against viruses

The use of other software or hardware may cause failures in the functions of the FSP.

A current list of the software authorized for use on the FSP can be obtained from your nearest

Rohde&Schwarz agency (see list of addresses).

After installing software of other manufacturers from a disk, it is necessary to reinstall the Windows NT

Service Pack 5, unless the instrument is equipped with the B20 option.

Reinstallation of Service Pack 5

Notes:

Ø

It is not necessary to install the Service Pack 5 if the instrument is equipped with the B20 option, since in this case the service pack files are installed automatically.

Ø

If the service pack is not installed although there is no B20 option, the following error message will be displayed: "At least one service or driver failed during system startup..."

In this case, the network installation is not fully operational.

To prevent faults, it is therefore indispensable to reinstall the service pack (see chapter 1, section

"Computer Function – Installing the Windows NT Software").

1093.4820.12

1.32

E-3

FSP Installing Windows NT Software

Ø

Open

Windows NT

start menu by pressing <CTRL><ESC>.

Ø

Select

Ø

Enter the command: c:\sp\sp5i386 <ENTER>

The installation of the service pack begins, the archive file being unpacked.

Ø

Check the box "Accept the License

Agreement...".

Ø

Uncheck the box "Backup files necessary..." and then click "Install".

The service pack files are installed.

Installation takes approx. 5 minutes.

After installation has been completed, you are requested to restart the instrument.

Ø

Click the "Restart" button.

The instrument restarts.

1093.4820.12

1.33

E-3

FSP Contents– Getting Started

Contents - Chapter 2 "Getting Started"

2 Getting Started..................................................................................................... 2.1

Level and Frequency Measurements .......................................................................................... 2.1

Measurement Example 1 - Measuring Frequency and Level using Markers ............................ 2.1

Measurement Example 2 - Measuring Frequency with the Frequency Counter ...................... 2.3

Measurement of Harmonics ......................................................................................................... 2.5

Measuring Harmonics with Frequency Sweeps ......................................................................... 2.7

Measurement Example - Measuring the distance between fundamental wave and the 2 nd

and 3 rd harmonics of the internal reference signal ........... 2.7

High-Sensitivity Harmonics Measurements ............................................................................. 2.10

Measurement Example ................................................................................................... 2.10

Measuring the Spectra of complex Signals.............................................................................. 2.13

Separating Signals by Selecting an Appropriate Resolution Bandwidth ........................................ 2.13

Measurement Example - Resolving two signals with a level of –30 dBm each and a frequency difference of 30 kHz .................................................. 2.14

Intermodulation Measurements................................................................................................ 2.17

Measurement Example - Measuring the FSP’s intrinsic intermodulation distance ............. 2.19

Measuring Signals in the Vicinity of Noise............................................................................... 2.23

Measurement example - Measuring the level of the internal reference generator at low S/N ratios ......................................................................... 2.25

Noise Measurements .................................................................................................................. 2.28

Measuring noise power density................................................................................................ 2.28

Measurement example - Measuring the intrinsic noise power density of the

FSP at 1 GHz and calculating the FSP’s noise figure............... 2.28

Measurement of Noise Power within a Transmission Channel................................................ 2.31

Measurement Example - Measuring the intrinsic noise of the FSP at 1 GHz in a

1.23 MHz channel bandwidth with the channel power function . 2.31

Measuring Phase Noise .......................................................................................................... 2.35

Measurement Example - Measuring the phase noise of a signal generator at a carrier offset of 10 kHz. .................................................................................... 2.35

Measurements on Modulated Signals....................................................................................... 2.37

Measurements on AM signals.................................................................................................. 2.37

Measurement Example 1 - Displaying the AF of an AM signal in the time domain. ........... 2.37

Measurement Example 2 - Measuring the modulation depth of an AM carrier in the frequency domain. ................................................................... 2.39

Measurements on FM Signals ................................................................................................. 2.40

Measurement Example - Displaying the AF of an FM carrier ............................................. 2.40

Measuring Channel Power and Adjacent Channel Power ....................................................... 2.43

Measurement Example 1 - ACPR measurement on an IS95 CDMA Signal....................... 2.44

Measurement Example 2 - Measuring the adjacent channel power of an

IS136 TDMA signal.................................................................. 2.48

Measurement Example 3 - Measuring the Modulation Spectrum in Burst Mode with the Gated Sweep Function ....................... 2.51

Measurement Example 4 - Measuring the Transient Spectrum in Burst Mode with the Fast ACP function ...................................................... 2.53

Measurement Example 5 - Measuring adjacent channel power of a

W-CDMA uplink signal ............................................................ 2.55

1093.4820.12

I-2.1

E-2

Contents – Getting Started FSP

Amplitude distribution measurements ...................................................................................... 2.58

Measurement Example - Measuring the APD and CCDF of white noise generated by the FSP ...................................................................................... 2.58

Time Domain Measurements ..................................................................................................... 2.61

Power measurements .............................................................................................................. 2.61

Measurement Example - Measuring the power of a GSM burst during the switch-on phase ........................................................ 2.61

Power Ramping Measurement for Burst Signals ..................................................................... 2.63

Measurement Example - Measurements on GSM burst edges using a high time resolution .. 2.63

Measuring the S/N Ratio of Burst Signals ................................................................................ 2.65

Measurement Example - S/N ratio of a GSM signal ........................................................... 2.65

1093.4820.11

I-2.2

E-1

FSP

2 Getting Started

Level and Frequency Measurements

Chapter 2 explains how to operate the FSP using typical measurements as examples. Chapter 3 describes the basic operating steps such as selecting the menus and setting parameters, and explains the screen structure and displayed function indicators.

Chapter 4 describes all the menus and FSP functions.

All of the following examples are based on the standard settings of the analyzer. These are set with the

PRESET

key. A complete listing of the standard settings can be found in chapter 4, section "Preset settings of the FSP –

PRESET key"

.

Level and Frequency Measurements

Measuring the frequency and level of a signal is one of the most common purposes for the use of a spectrum analyzer. For unknown signals, the spectrum analyzer default settings (PRESET) are a good starting point for the measurement.

If signal levels at the RF input are expected to be above 30 dBm (= 1 W), a power attenuator must be connected to the RF input of the spectrum analyzer. Please note that the total powar of all applied signals must be taken into account concerning this limit. If a power attenuator is not used, signal levels above 30 dBm can destroy the RF attenuator or the input mixer.

Measurement Example 1 – Measuring Frequency and Level using

Markers

It is easy to measure the level and frequency of a sinewave carrier with the marker function. At the marker position, the FSP indicates the signal’s amplitude and frequency. The accuracy of the frequency measurement is determined by the FSP reference frequency, the resolution of the marker frequency display and the resolution of the screen.

In the example, the frequency of the 128-MHz internal reference generator is displayed using the marker.

1. Set the spectrum analyzer to its default settings.

½

Press the

PRESET

key.

2. Connect the test signal to the RF INPUT on the instrument front panel.

3. Switch on the internal reference generator.

½

Press the

SETUP

key.

The

SETUP

menu opens.

½

Press the

SERVICE soft

key.

The

SETUP - SERVICE

menu opens.

½

Press the

INPUT CAL soft

key.

The internal reference generator is turned on.

The FSP’s RF input is turned off.

4. Set the center frequency to 128 MHz.

½

Press the

FREQ

key.

½

The entry field for the center frequency is displayed on the screen.

½

Enter

128

from the numeric keypad and terminate the entry with the

MHz

key.

1093.4820.12

2.1

E-2

Level and Frequency Measurements FSP

5. Reduce the measurement frequency range (SPAN) to 1 MHz.

½

Press the

SPAN

key.

½

Enter

1

from the numeric keypad and terminate the entry with the

MHz

key.

Note:

If the SPAN is changed, the resolution bandwidth (RES BW), the video bandwidth

(VIDEO BW) and the sweep time (SWEEP TIME) are also set to new values because they are defined as coupled functions in the standard PRESET settings.

6. Measure the level and frequency using the marker and read off the results from the screen.

½

Press the MKR key.

The marker is switched on and automatically jumps to the trace peak.

Note:

When a marker is switched on for the first time, it automatically performs the PEAK

SEARCH function (as in this example).

If a marker is already active, the PEAK softkey in the MKR-> menu must be pressed in order to set the currently active marker onto the displayed signal maximum.

The level and frequency indicated by the marker are displayed in the marker info field at the upper edge of the screen. These are the measurement results.

The info-field header indicates the number of the marker (

MARKER 1

) and the number of the trace on which the marker is positioned

([T1]

= Trace 1).

Increasing the Frequency Resolution During a Frequency Measurement with a Marker

The frequency resolution of the marker is determined by the pixel resolution of the trace. The FSP uses

501 pixels for a trace, i.e. at a frequency span of 1 MHz each pixel corresponds to a frequency range of approx. 2 kHz. This gives a maximum error of 1 kHz.

To increase the pixel resolution of the trace, the frequency span has to be reduced.

7. Reduce the frequency span to 10 kHz.

½

Press the

SPAN

key.

½

Enter

10

from the numeric keypad and terminate the entry with the

kHz

key.

Note:

If the SPAN is changed, the resolution bandwidth (RES BW), the video bandwidth

(VIDEO BW) and the sweep time (SWEEP TIME) are also set to new values because they are defined as coupled functions in the standard PRESET settings.

The internal reference signal is measured with a span of 10 kHz. The pixel resolution of the trace is now approx. 20 Hz (10 kHz span / 501 pixel), i.e. the accuracy of the marker frequency display is increased to approx. 10 Hz.

8. Switch on the RF input again for normal operation of the analyzer.

½

Press the

PRESET

key

or

press the

SETUP

key and the

SERVICE

softkey.

½

Press the

INPUT RF

softkey.

The internal signal path of the FSP is switched back to the RF input in order to resume normal operation.

1093.4820.12

2.2

E-2

FSP Level and Frequency Measurements

Measurement Example 2 – Measuring Frequency with the Frequency

Counter

With the internal frequency counter, frequencies can be measured more accurately than with the marker. The frequency sweep is stopped at the marker position and the FSP measures the frequency of the corresponding signal. If an analog bandwidth (

300 kHz) is used, the frequency is measured by counting the zero-crossings of the last IF. With digital resolution bandwidths (10 Hz to 100 kHz), the frequency measurement is performed in the IQ baseband by a special approximation algorithm.

The resolution range for the frequency measurement is 0.1 Hz to 10 kHz. At bandwidths

300 kHz, the time required for the FSP to perform the frequency measurement is dependent on the selected counter resolution (1/(frequency resolution in Hz)). The digital frequency approximation takes about 30 ms to perform a frequency measurement irrespective of the selected resolution.

The frequency measurement accuracy is determined by the reference frequency of the FSP and the selected counter resolution.

In the example, the frequency of the 128-MHz internal reference generator is displayed with the marker.

1. Set the spectrum analyzer to the default settings.

½

Press the

PRESET

key.

The FSP is in its default state.

2. Switch on internal reference generator

½

Press the

SETUP

key.

½

Press the softkeys

SERVICE - INPUT CAL

.

The internal 128 MHz reference generator is now on. The FSP’s RF input is turned off.

3. Set the center frequency and the frequency span

½

Press the

FREQ

key and enter

128 MHz

.

The FSP center frequency is set to 128 MHz.

½

Press the

SPAN

softkey and enter

1 MHz

.

The FSP frequency span is set to 1 MHz.

4. Switch on the marker

½

Press the

MKR

key.

The marker is switched on and set to the signal maximum. The level and the frequency at the marker are displayed in the marker-info field.

5. Switch on the frequency counter.

½

Press the

SIGNAL COUNT

softkey in the marker menu.

The frequency count is displayed in the marker field at the top of the screen along with the set resolution (1 kHz is the default setting ).

The sweep stops at the marker position and the FSP measures the frequency of the corresponding signal. The frequency is output in the marker info field. To distinguish the signal count result from the normal marker frequency display, the marker is labeled with CNT.

1093.4820.12

2.3

E-2

Level and Frequency Measurements

6. Set the resolution of the frequency counter to 1 Hz.

½

Press the

NEXT

key.

½

Press the

CNT RESOL 1 Hz

softkey.

FSP

Fig. 2-1

Note:

Frequency measurement with a frequency counter

The frequency measurement with the integral frequency counter only gives correct results for RF sinewaves or discrete spectral lines. To meet the specified measurement accuracy, the marker should be more than 25 dB above noise.

7. Switch on the RF input again for normal operation of the analyzer.

½

Press the

PRESET

key

or

press the

SETUP

key and the

SERVICE

softkey.

½

Press the

INPUT RF

softkey.

The internal signal path of the FSP is switched back to the RF input in order to resume normal operation.

Hint: For bandwidths between 300 kHz and 10 MHz, the FSP uses a frequency counter at an IF of 20.4 MHz. The time for measuring the frequency is, therefore, inversely proportional to the selected resolution, i.e. at a resolution of 1 Hz a gate time of 1 second is required for the counter. For digital bandwidths below 300 kHz, the frequency is measured in the baseband by digital frequency approximation. The time required for measuring the frequency is approx. 30 ms irrespective of the selected resolution.

When measuring the frequency of a sinewave carrier at a high resolution it is, therefore, best to set a resolution bandwidth of 100 kHz or less. The measurement time will then be reduced to a minimum.

1093.4820.12

2.4

E-2

FSP Measurement of Harmonics

Measurement of Harmonics

Measuring the harmonics of a signal is a frequent problem which can be solved best by means of a spectrum analyzer. In general, every signal contains harmonics which are larger than others. Harmonics are particularly critical regarding high-power transmitters such as transceivers because large harmonics can interfere with other radio services.

Harmonics are produced by nonlinear characteristics. They can often be reduced by lowpass filters.

Since the spectrum analyzer has a nonlinear characteristic, e.g. in its first mixer, measures must be taken to ensure that harmonics produced in the analyzer do not cause spurious results. If necessary, the fundamental wave must be selectively attenuated with respect to the other harmonics with a highpass filter.

When harmonics are being measured, the obtainable dynamic range depends on the K2 intercept of the spectrum analyzer. The K2 intercept is the virtual input level at the RF input mixer at which the level of the 2nd harmonic becomes equal to the level of the fundamental wave. In practice, however, applying a level of this magnitude would damage the mixer. Nevertheless the available dynamic range for measuring the harmonic distance of a DUT can be calculated relatively easily using the second harmonic intercept.

As shown in Fig. 2-2, the level of the 2 nd

harmonic is reduced by 20 dB if the level of the fundamental wave is reduced by 10 dB.

Level display

/ dBm

50

40

30

Second intercept point

/dBm

1st harmonic

10

0

-10

-20

-30

-40

-50

-60

-70

-80

1

1

1

2

2nd harmonic

-30 -20 -10 0 10 20 30 40 50

RF level

/ dBm

Fig. 2-2 Extrapolation of the 1 st

and 2 nd

harmonics to the second harmonic intercept at 40 dBm

The following formula for the obtainable harmonic distortion d

2 in dB is derived from the straight-line equations and the given intercept point:

(1) d

2

= S.H.I – P

I d2

PI

S.H.I.

= harmonic distortion

= mixer level/dBm

= second harmonic intercept

Note:

The mixer level is the applied RF level minus the set RF attenuation.

The formula for the internally generated level P1 at the 2 nd

harmonic in dBm is:

P

1

= 2

…

P

I

– S.H.I.

(2)

The lower measurement limit for the harmonic is the noise floor of the spectrum analyzer. The harmonic of the measured DUT should – if sufficiently averaged by means of a video filter – be at least 4 dB above the noise floor so that the measurement error due to the input noise is less than 1 dB.

1093.4820.12

2.5

E-2

Measurement of Harmonics FSP

The following rules for measuring high harmonic ratios can be derived:

1. Select the smallest possible IF bandwidth for a minimal noise floor.

2. Select an RF attenuation which is high enough to just measure the harmonic ratio.

The maximum harmonic distortion is obtained if the level of the harmonic equals the intrinsic noise level of the receiver. The level applied to the mixer, according to (2), is:

P

I

=

P

noise

/ dBm

+

IP

2

2

At a resolution bandwidth of 10 Hz (noise level -143 dBm, S.H.I. = 40 dBm), this level is –51.5 dBm.

According to (1) a maximum measurable harmonic distortion of 91.5 dB minus a minimum S/N ratio of 4 dB is obtained.

Hint:

If the harmonic emerges from noise sufficiently (approx. >15 dB), it is easy to check (by changing the RF attenuation) whether the harmonics originate from the DUT or are generated internally by the spectrum analyzer. If a harmonic originates from the DUT , its level remains constant if the RF attenuation is increased by 10 dB. Only the displayed noise is increased by 10 dB due to the additional attenuation. If the harmonic is exclusively generated by the spectrum analyzer, the level of the harmonic is reduced by 20 dB or is lost in noise. If both – the DUT and the spectrum analyzer – contribute to the harmonic, the reduction in the harmonic level is correspondingly smaller.

1093.4820.12

2.6

E-2

FSP Measurement of Harmonics

Measuring Harmonics with Frequency Sweeps

There are advantages in performing harmonic measurements with a single frequency sweep, provided that the harmonic distance is in a way that a resolution bandwidth can be selected which is wide enough to give an acceptably short sweep time.

Measurement Example – Measuring the distance between fundamental wave and the 2 nd

and 3 rd harmonics of the internal reference signal

1. Set the spectrum analyzer to the default settings.

½

Press the

PRESET

key.

The FSP is in its default state.

2. Switch on the internal reference generator

½

Press the

SETUP

key.

Press the softkeys

SERVICE - INPUT CAL

.

The internal 128 MHz reference generator is now on. The FSP’s RF input is switched off.

3. Set the start frequency to 100 MHz and the stop frequency to 400 MHz

½

Press the

FREQ

key.

½

Press the

START

softkey and enter

100 MHz

.

½

Press the

STOP

softkey and enter

400 MHz

.

The FSP displays the fundamental and the 2 nd

and 3 rd

harmonics of the input signal.

4. Set the RF attenuation to 0 dB to obtain maximum sensitivity

½

Press the

AMPT

key.

½

Press the

RF ATTEN MANUAL

softkey and enter

0 dB

.

5. Reduce the video bandwidth to average (suppress) noise.

½

Press the

BW

key.

½

Press the

COUPLING RATIO

softkey.

½

Select

RBW/VBW NOISE [10

] using the cursor keys.

The video bandwidth (VBW) will now always be set to a value which is 10 times smaller than the resolution bandwidth (RBW).

6. Switch on the marker

½

Press the

MKR

key.

Marker 1 is switched on and is positioned on the signal maximum (fundamental wave at 128

MHz). The level and the frequency of the marker are displayed in the marker info field.

1093.4820.12

2.7

E-2

Measurement of Harmonics FSP

7. Switch on the delta marker and measure the harmonic distance

½

Press the

MARKER 2

softkey in the marker menu.

Marker 2 is activated as a delta marker (Delta 2 [T1]). It appears automatically on the largest harmonic of the signal. The frequency and level, related to marker 1, are indicated in the marker field at the top of the screen.

½

Press the

MARKER 3

softkey in the marker menu.

Marker 3 is activated as a delta marker (Delta 3 [T1]). It appears automatically on the next largest harmonic of the signal. The frequency and level, related to marker 1 on the fundamental wave, are displayed in the marker info field at the top of the screen (see Fig. 2-3).

Fig. 2-3 Measuring the harmonic distance of the internal reference generator. Delta marker 2

[T1] and Delta marker 3 [T1] indicate the distance between the fundamental wave and the 2 nd

and 3 rd

harmonics.

In order to make the harmonics grow out of the noise, the following things can be done:

Reducing the video bandwidth

Averaging the trace

Reducing the resolution bandwidth

The noise of the analyzer or the DUT (depending on which one is higher) is suppressed by reducing the video bandwidth and by averaging the trace. Especially for low S/N ratios, the measurement uncertainty is reduced using the two averaging methods since the signal under test is also freed from noise.

8. Reduce noise by reducing the video bandwidth

½

Press the

BW

key.

½

Press the

VIDEO BW MANUAL

softkey.

½

Reduce the video bandwidth, e.g. to 10 kHz, using the spinwheel (turn knob counterclockwise), or enter

10 kHz.

1093.4820.12

2.8

E-2

FSP Measurement of Harmonics

The noise is clearly smoothed and the sweep time is increased to 25 ms, i.e. the measurement lasts longer. The displayed video bandwidth is marked with an asterisk (*VBW) to indicate that it is no longer coupled to the resolution bandwidth (see Fig. 2-4).

Fig. 2-4 Suppression of noise during harmonic measurement by reducing video bandwidth

9. Coupling the video bandwidth to the resolution bandwidth again.

½

Press the

VIDEO BW AUTO

softkey.

10. Reduce noise by averaging the trace

½

Press the

TRACE

key.

½

Press the

AVERAGE

softkey.

The noise component of the trace is smoothed by averaging 10 consecutive traces.

Fig. 2-5 Suppression of noise during harmonic measurements by averaging the trace

11. Switch off trace averaging again.

½

Press the

CLEAR/WRITE

softkey.

1093.4820.12

2.9

E-2

Measurement of Harmonics FSP

12. Reduce noise by reducing the measurement bandwidth.

If the resolution bandwidth is decreased, noise is reduced proportionally, i.e. if the resolution bandwidth is reduced by a factor of 10, the noise is also reduced by the same factor (corresponds to

10 dB). The amplitude of a sinusoidal signal is not changed by reducing the resolution bandwidth.

13. Set the resolution bandwidth to 10 kHz.

½

Press the

BW

key.

½

Press the

RES BW MANUAL

softkey and enter

10 kHz

.

The noise is reduced by approx. 25 dB compared to the previous setting. Since the video bandwidth is coupled to the resolution bandwidth, it is reduced to 1 kHz – the same proportional reduction as the resolution bandwidth. The sweep time is therefore increased to 60 seconds.

14. Reset the resolution bandwidth again (coupling to span).

½

Press the

RES BW AUTO

softkey.

If you want to stop the harmonics measurement on the internal reference generator at this point, switch the FSP’s RF input on again with the following key sequence.

½

Press the

SETUP

key and the softkey sequence

SERVICE - INPUT RF

or press the

PRESET

key.

High-Sensitivity Harmonics Measurements

If harmonics have very small levels, the resolution bandwidth required to measure them must be reduced considerably. The sweep time is, therefore, also increased considerably. In this case, the measurement of individual harmonics is carried out with the spectrum analyzer set to a small span. Only the frequency range around the harmonics will then be measured with a small resolution bandwidth.

Measurement Example

1. Set the spectrum analyzer to its default settings.

½

Press the

PRESET

key.

The FSP is in its default state.

2. Switch on the internal reference generator.

½

Press the

SETUP

key.

½

Press the softkeys

SERVICE - INPUT CAL

.

The internal 128 MHz reference generator is now on. The FSP’s RF input is switched off.

3. Set the center frequency to 128 MHz and the span to 100 kHz.

½

Press the

FREQ

key.

The frequency menu opens.

½

Enter

128

in the entry field from the numeric keypad and terminate with the

MHz

key.

½

Press the

SPAN

key.

½

Enter

100

in the entry filed from the numeric keypad and terminate with the

kHz

key.

The FSP displays the reference signal with a span of 100 kHz and resolution bandwidth of 3 kHz.

1093.4820.12

2.10

E-2

FSP Measurement of Harmonics

4. Switching on the marker.

½

Press the

MKR

key.

The marker is positioned on the trace maximum.

5. Set the measured signal frequency and the measured level as reference values

½

Press the

REFERENCE FIXED

softkey.

½

The position of the marker becomes the reference point. The reference point level is indicated by a horizontal line, the reference point frequency with a vertical line. At the same time, the delta 2 marker is switched on at the marker position.

Fig. 2-6 Fundamental wave and the frequency and level reference point

6. Make the step size for the center frequency equal to the signal frequency

½

Press the

FREQ

key.

The frequency menu opens.

½

Press the

CF STEPSIZE

softkey and press the =

MARKER

softkey in the submenu.

The step size for the center frequency is now equal to the marker frequency.

7. Set the center frequency to the 2

nd

harmonic of the signal

½

Press the

FREQ

key.

The frequency menu open. s

½

Press the up cursor key (below the spinwheel) once.

The FSP’s center frequency is set to the 2 nd

harmonic.

8. Place the delta marker on the 2nd harmonic.

½

Press the

MKR

key.

½

Press the

PEAK

softkey.

The delta marker jumps to the maximum of the 2 nd

harmonic. The displayed level result is relative to the reference point level (= fundamental wave level).

1093.4820.12

2.11

E-2

Measurement of Harmonics FSP

Fig. 2-7 Measuring the level difference between the fundamental wave (= reference point level) and the 2 nd

harmonic

The other harmonics are measured with steps 6 and 7, the center frequency being incremented or decremented in steps of 128 MHz using the up or down cursor key.

1093.4820.12

2.12

E-2

FSP Measuring the Spectra of complex Signals

Measuring the Spectra of complex Signals

Separating Signals by Selecting an Appropriate Resolution Bandwidth

One basic characteristics of the spectrum analyzer is that it can separate the spectral components of a composite signal. The resolution with which the individual components are separated is determined by the resolution bandwidth. If the resolution bandwidth is too large, spectral components may no longer be distinct, i.e. they are displayed as a single component.

An RF sinewave signal is displayed on the screen of the spectrum analyzer with the passband characteristics of the set resolution filter (RBW). It is the 3 dB bandwidth of the filter that is displayed.

Two signals with the same amplitude can be resolved if the resolution bandwidth is less than or equal to the signals’ frequency difference. If the resolution bandwidth and the frequency difference are equal, a 3 dB level dip can be seen in the middle between the two signals. The smaller the resolution bandwidth, the deeper the level dip and the better the signal resolution.

If there are large level differences between signals, the resolution is determined by selectivity as well as by the resolution bandwidth that has been selected. The measure of selectivity used for spectrum analyzers is the ratio of the 60 dB bandwidth to the 3 dB bandwidth (= shape factor).

For the FSP, the shape factor for bandwidths up to 100 kHz is < 5 and for larger bandwidths < 15, i.e.

the 60 dB bandwidth of the 30 kHz filter is < 150 kHz and that of the 300 kHz filter is < 4.5 MHz.

Although the 3 dB bandwidths only differ by a factor of 10, the 60 dB bandwidths differ by a factor of 30.

The higher spectral resolution with smaller bandwidths has to be traded off against longer sweep times for the same span. The sweep time required to allow the resolution filters to settle during a sweep at all signal levels and frequencies to be displayed is given by the following formula.

SWT

=

k

Span/RBW

2

(1)

SWT = max. sweep time for correct measurement k = factor depending on type of resolution filter

= 2.5 for analog IF filter (

300 kHz)

= 1 for digital IF filters (

100 kHz)

Span = frequency display range

RBW = resolution bandwidth

If the resolution bandwidth is reduced by a factor of 3, the sweep time is increased by a factor of 9.

Note:

The impact of the video bandwidth on the sweep time is not taken into account in (1). For the formula to be valid, the video bandwidth must be

3 x the resolution bandwidth.

For bandwidths > 300 kHz, the FSP uses 4pole, single-section filters. They require a k factor of 2.5 to settle during the frequency sweep. Digital filters with a Gaussian characteristic are used below a bandwidth of 300 kHz (up to 100 kHz). These filters settle at a k factor of 1, i.e. the sweep time is 2.5

times shorter than with conventional 4 or 5 pole, single-section filters.

FFT filters can be used for resolution bandwidths up to 30 kHz. Like digital filters, they have a shape factor of less than 5 up to 30 kHz. For FFT filters, however, the sweep time is given by the following formula:

SWT = k

…

span/RBW (2) i.e. if the resolution bandwidth is reduced by a factor of 3, the sweep time is increased by a factor of 3 only

1093.4820.12

2.13

E-2

Measuring the Spectra of complex Signals FSP

Measurement Example - Resolving two signals with a level of –30 dBm each and a frequency difference of 30 kHz

Example:

Signal generator 1

Combiner FSP

Signal generator 2

Fig. 2-8 Test setup for generating two signals

Signal generator settings ( e.g. SMIQ):

Signal generator 1

Signal generator 2

Level

-30 dBm

-30 dBm

Frequency

100.00 MHz

100.03 MHz

FSP measurement sequence:

1. Set the spectrum analyzer to its default settings.

½

Press the

PRESET

key.

The FSP is in its default state.

2. Set the center frequency to 100.015 MHz and the frequency span to 300 kHz.

½

Press the

FREQ

key and enter

100.015 MHz

.

½

Press the

SPAN

key and enter

300 kHz

.

3. Set the resolution bandwidth is to 30 kHz and the video bandwidth to 1 kHz.

½

Press the

BW

key.

½

Press the

RES BW MANUAL

softkey and enter

30 kHz

.

½

Press the

VIDEO BW MANUAL

softkey and enter

1 kHz

.

½

The two signals are clearly separated by a 3 dB level dip in the middle of the screen.

Note:

The video bandwidth is set to 1 kHz to clearly display the level dip in the middle between the two signals. At larger video bandwidths, the video voltage which arises from envelope detection is not sufficiently suppressed. Therefore, additional voltages occur between the two signals and can be seen on the trace

.

1093.4820.12

2.14

E-2

FSP Measuring the Spectra of complex Signals

Fig. 2-9

Note:

Measurement of two RF sinewave signals with the same level using a resolution bandwidth which corresponds to the frequency difference of the signals.

The level dip is only exactly in the middle of the screen if the generator frequencies exactly correspond with the frequency display of FSP. To ensure this, the generators and the FSP must have their frequencies synchronized.

4. Set the resolution bandwidth to 100 kHz.

½

Press the

RES BW MANUAL

softkey and enter

100 kHz

.

The two generator signals can no longer be clearly distinguished.

Fig. 2-10 Measurement on two RF sinewave signals with the same level using a resolution bandwidth which is greater than their frequency difference.

The resolution bandwidth (RBW) can be reduced again by turning the spinwheel counterclockwise to obtain a higher frequency resolution.

1093.4820.12

2.15

E-2

Measuring the Spectra of complex Signals FSP

5. Set the resolution bandwidth to 1 kHz.

½

Turn the spinwheel counterclockwise until a bandwidth of 1 kHz is displayed.

The two generator signals are displayed at high resolution. The sweep time increases considerably (600 ms) because it increases by 1/ RBW

2.

The noise floor also goes down at small resolution bandwidths (10 dB per bandwidth factor of 10).

Fig. 2-11 Measurement on two RF sinewave signals with the same level using a resolution bandwidth (1 kHz) which is far below their frequency difference.

6. Switch on the FFT bandwidths.

½

Set the

FILTER

softkey to

FFT

.

IF filtering is now carried out with the FFT algorithm. The sweep time is considerably reduced from 600 ms to 15 ms (factor of 40). The update rate of the display is increased in almost the same proportion.

Fig. 2-12 Measurement with FFT filters gives a considerably shorter sweep time and a higher refresh rate.

1093.4820.12

2.16

E-2

FSP Measuring the Spectra of complex Signals

Intermodulation Measurements

If several signals are applied to a DUT with non-linear characteristics, unwanted mixing products are generated – mostly by active components such as amplifiers or mixers. The products created by 3 rd order intermodulation are particularly troublesome as they have frequencies close to the useful signals and, compared with other products, are closest in level to the useful signals. The fundamental wave of one signal is mixed with the 2 nd

harmonic of the other signal.

f s1

= 2

…

f u1

– f u

2

(1) f s2

= 2

…

f u

2

- f u

1

(2) where f s1

and f s2

are the frequencies of the intermodulation products and fu

1

and fu

2

the frequencies of the useful signals.

The following diagram shows the position of the intermodulation products in the frequency domain.

Level

P u1

P u2 a

D3

P s1

P s2

∆ f

∆ f

∆ f f s1 f u1 f u2 f s2

Frequency

Fig. 2-13 3 rd

order intermodulation products

Example:

f u

1

= 100 MHz, f u

2

= 100.03 MHz f s1

= 2

…

f u

1

- f u

2

= 2

…

100 MHz – 100.03 MHz = 99.97 MHz

f s2

= 2

…

f u

2

- f u

1

= 2

…

100.03 MHz – 100 MHz = 100.06 MHz

The level of the intermodulation products depends on the level of the useful signals. If the level of the two useful signals is increased by 1 dB, the level of the intermodulation products is increased by 3 dB.

The intermodulation distance d

3

is, therefore, reduced by 2 dB. Fig. 2-14 shows how the levels of the useful signals and the 3rd order intermodulation products are related.

1093.4820.12

2.17

E-2

Measuring the Spectra of complex Signals

Output level

Carrier level

Intercept point

Compression

Intermodulation products

FSP

1

1 a

D3

1

3

Input level

Fig. 2-14 Level of the 3 rd

order intermodulation products as a function of the level of the useful signals

The behavior of the signals can explained using an amplifier as an example. The change in the level of the useful signals at the output of the amplifier is proportional to the level change at the input of the amplifier as long as the amplifier is operating in linear range. If the level at the amplifier input is changed by 1 dB, there is a 1 dB level change at the amplifier output. At a certain input level, the amplifier enters saturation. The level at the amplifier output does not increase with increasing input level.

The level of the 3 rd

order intermodulation products increases 3 times faster than the level of the useful signals. The 3 rd

order intercept is the virtual level at which the level of the useful signals and the level of the spurious products are identical, i.e. the intersection of the two straight lines. This level cannot be measured directly as the amplifier goes into saturation or is damaged before this level is reached.

The 3 rd

order intercept can be calculated from the known slopes of the lines, the intermodulation distance d

2 and the level of the useful signals.

TOI = a

D3

/ 2 + P n

(3) with TOI (Third Order Intercept) being the 3rd order intercept in dBm and P n

the level of a carrier in dBm.

With an intermodulation distance of 60 dB and an input level, P w,

of –20 dBm, the following 3 rd

order intercept is obtained:

TOI = 60 dBm / 2 + (-20 dBm) = 10 dBm.

1093.4820.12

2.18

E-2

FSP Measuring the Spectra of complex Signals

Measurement Example – Measuring the FSP’s intrinsic intermodulation distance

To measure the intrinsic intermodulation distance, use the test setup in Fig. 2-8.

Signal generator settings (e.g. SMIQ):

Signal generator 1

Signal generator 2

Level

-10 dBm

-10 dBm

Frequency

999.9 MHz

1000.1 MHz

Measurement using the FSP:

1. Set the spectrum analyzer to its default settings.

½

Press the PRESET key.

The FSP is in its default state.

2. Set center frequency to 1 GHz and the frequency span to 1 MHz.

½

Press the FREQ key and enter 1 GHz.

½

Press the SPAN key and enter 1 MHz.

3. Set the reference level to –10 dBm and RF attenuation to 0 dB.

½

Press the AMPT key and enter -10 dBm.

½

Press the RF ATTEN MANUAL softkey and enter 0 dB.

By reducing the RF attenuation to 0 dB, the level to the FSP input mixer is increased. Therefore,

3 rd

order intermodulation products are displayed.

4. Set the resolution bandwidth to 10 kHz.

½

Press the BW key.

½

Press the RES BW MANUAL softkey and enter 10 kHz.

By reducing the bandwidth, the noise is further reduced and the intermodulation products can be clearly seen.

5. Measuring intermodulation by means of the 3 rd

order intercept measurement function

½

Press the MEAS key.

½

Press the TOI softkey.

The FSP activates four markers for measuring the intermodulation distance. Two markers are positioned on the useful signals and two on the intermodulation products. The 3 rd

order intercept is calculated from the level difference between the useful signals and the intermodulation products. It is then displayed on the screen:

1093.4820.12

2.19

E-2

Measuring the Spectra of complex Signals FSP

Fig. 2-15 Result of intrinsic intermodulation measurement on the FSP. The 3 rd

order intercept

(TOI) is displayed at the top right corner of the grid

The level of a spectrum analyzer’s intrinsic intermodulation products depends on the RF level of the useful signals at the input mixer. When the RF attenuation is added, the mixer level is reduced and the intermodulation distance is increased. With an additional RF attenuation of 10 dB, the levels of the intermodulation products are reduced by 20 dB. The noise level is, however, increased by 10 dB.

6. Increasing RF attenuation to 10 dB to reduce intermodulation products.

½

Press the

AMPT

key.

½

Press the

RF ATTEN MANUAL

softkey and enter

10 dB

.

The FSP’s intrinsic intermodulation products disappear below the noise floor.

Fig. 2-16 If the RF attenuation is increased, the FSP’s intrinsic intermodulation products disappear below the noise floor.

1093.4820.12

2.20

E-2

FSP Measuring the Spectra of complex Signals

Calculation method:

The method used by the FSP to calculate the intercept point takes the average useful signal level P u

in dBm and calculates the intermodulation d

3

in dB as a function of the average value of the levels of the two intermodulation products. The third order intercept (TOI) is then calculated as follows:

TOI/dBm = ½ d

3

+ Pu

Intermodulation- free dynamic range

The Intermodulation – free dynamic range , i.e. the level range in which no internal intermodulation products are generated if two-tone signals are measured, is determined by the 3 rd

order intercept point, the phase noise and the thermal noise of the spectrum analyzer. At high signal levels, the range is determined by intermodulation products. At low signal levels, intermodulation products disappear below the noise floor, i.e. the noise floor and the phase noise of the spectrum analyzer determine the range.

The noise floor and the phase noise depend on the resolution bandwidth that has been selected. At the smallest resolution bandwidth, the noise floor and phase noise are at a minimum and so the maximum range is obtained. However, a large increase in sweep time is required for small resolution bandwidths.

It is, therefore, best to select the largest resolution bandwidth possible to obtain the range that is required. Since phase noise decreases as the carrier-offset increases, its influence decreases with increasing frequency offset from the useful signals.

The following diagrams illustrate the intermodulation-free dynamic range as a function of the selected bandwidth and of the level at the input mixer (= signal level – set RF attenuation) at different useful signal offsets.

Dyn range /dB

-40

-50

-60

-70

-80

-90

RBW = 10 kHz

RBW = 1 kHz

RBW = 100

Hz

RBW = 10

Hz

Distortion free Dynamic Range

(1 MHz carrier offset

)

-100

-110

-120

-60 -50 -40 -30

T.O.I.

Thermal Noise

-20 -10

Mixer level /dBm

Fig. 2-17 Intermodulation-free range of the FSP3 as a function of level at the input mixer and the set resolution bandwidth (useful signal offset = 1 MHz, DANL = -155 dBm /Hz, TOI = 12 dBm; typ. values at 2 GHz)

The optimum mixer level, i.e. the level at which the intermodulation distance is at its maximum, depends on the bandwidth. At a resolution bandwidth of 10 Hz, it is approx. –42 dBm and at 10 kHz increases to approx. -32 dBm.

1093.4820.12

2.21

E-2

Measuring the Spectra of complex Signals FSP

Phase noise has a considerable influence on the intermodulation-free range at carrier offsets between

10 and 100 kHz (Fig. 2-18). At greater bandwidths, the influence of the phase noise is greater than it would be with small bandwidths. The optimum mixer level at the bandwidths under consideration becomes almost independent of bandwidth and is approx. –40 dBm.

Distortion free Dynamic Range

Dyn. range /dB

-40

-50

-60

-70

-80

-90

-100

-110

-120

-60

RBW = 10 kHz

RBW = 1 kHz

RBW = 100

Hz

RBW = 10

Hz

-50

(10 to 100 kHz carrier offset

)

-40 -30 -20 -10

Mixer level /dBm

Fig. 2-18 Intermodulation-free dynamic range of the FSP3 as a function of level at the input mixer and of the selected resolution bandwidth (useful signal offset = 10 to 100 kHz, DANL = -155 dBm /Hz, TOI = 12 dBm; typ. values at 2 GHz).

Hint:

If the intermodulation products of a DUT with a very high dynamic range are to be measured and the resolution bandwidth to be used is therefore very small, it is best to measure the levels of the useful signals and those of the intermodulation products separately using a small span.

The measurement time will be reduced– in particular if the offset of the useful signals is large.

To find signals reliably when frequency span is small, it is best to synchronize the signal sources and the FSP.

1093.4820.12

2.22

E-2

FSP Measuring Signals in the Vicinity of Noise

Measuring Signals in the Vicinity of Noise

The minimum signal level a spectrum analyzer can measure is limited by its intrinsic noise. Small signals can be swamped by noise and therefore cannot be measured. For signals that are just above the intrinsic noise, the accuracy of the level measurement is influenced by the intrinsic noise of the spectrum analyzer.

The displayed noise level of a spectrum analyzer depends on its noise figure, the selected RF attenuation, the selected reference level, the selected resolution and video bandwidth and the detector.

The effect of the different parameters is explained in the following.

Impact of the RF attenuation setting

The sensitivity of a spectrum analyzer is directly influenced by the selected RF attenuation. The highest sensitivity is obtained at a RF attenuation of 0 dB. The FSP’s RF attenuation can be set in 10 dB steps up to 70 dB (5 dB steps up to 75 dB with option

Electronic Attenuator

FSP-B25. Each additional 10 dB step reduces the FSP’s sensitivity by 10 dB, i.e. the displayed noise is increased by 10 dB.

Impact of the reference level setting

If the reference level is changed, the FSP changes the gain on the last IF so that the voltage at the logarithmic amplifier and the A/D converter is always the same for signal levels corresponding to the reference level. This ensures that the dynamic range of the log amp or the A/D converter is fully utilized.

Therefore, the total gain of the signal path is low at high reference levels and the noise figure of the IF amplifier makes a substantial contribution to the total noise figure of the FSP. Fig. 2-(21) below shows the change in the displayed noise depending on the set reference level at 10 kHz and 300 kHz resolution bandwidth. With digital bandwidths (

100 kHz) the noise increases sharply at high reference levels because of the dynamic range of the A/D converter.

14

12

10

8

6

4

2

0

-2

-70

RBW = 10 kHz

RBW = 300 kHz

-60 -50 -40 -30 -20

Reference level /dBm

-10

Fig. 2-19 Change in displayed noise as a function of the selected reference level at bandwidths of

10 kHz and 300 kHz (-30 dBm reference level)

Impact of the resolution bandwidth

The sensitivity of a spectrum analyzer also directly depends on the selected bandwidth. The highest sensitivity is obtained at the smallest bandwidth (for the FSP: 10 Hz, for FFT filtering: 1 Hz). If the bandwidth is increased, the reduction in sensitivity is proportional to the change in bandwidth. The FSP has bandwidth settings in 1, 3, 10 sequence. Increasing the bandwidth by a factor of 3 increases the displayed noise by approx. 5 dB (4.77 dB precisely). If the bandwidth is increased by a factor of 10, the displayed noise increases by a factor of 10, i.e. 10 dB. Because of the way the resolution filters are

1093.4820.12

2.23

E-2

Measuring Signals in the Vicinity of Noise FSP

designed, the sensitivity of spectrum analyzers often depends on the selected resolution bandwidth. In data sheets, the displayed average noise level is often indicated for the smallest available bandwidth (for the FSP: 10 Hz). The extra sensitivity obtained if the bandwidth is reduced may therefore deviate from the values indicated above. The following table illustrates typical deviations from the noise figure for a resolution bandwidth of 10 kHz which is used as a reference value (= 0 dB).

Noise figure offset /dB

3 digital RBW analog RBW

2

1

0

-1

0,01 0,1 1 10 100 1000 10000

RBW /kHz

Fig. 2-20 Change in FSP noise figure at various bandwidths. The reference bandwidth is 10 kHz

Impact of the video bandwidth

The displayed noise of a spectrum analyzer is also influenced by the selected video bandwidth. If the video bandwidth is considerably smaller than the resolution bandwidth, noise spikes are suppressed, i.e.

the trace becomes much smoother. The level of a sinewave signal is not influenced by the video bandwidth. A sinewave signal can therefore be freed from noise by using a video bandwidth that is small compared with the resolution bandwidth, and thus be measured more accurately.

Impact of the detector

Noise is evaluated differently by the different detectors. The noise display is therefore influenced by the choice of detector. Sinewave signals are weighted in the same way by all detectors, i.e. the level display for a sinewave RF signal does not depend on the selected detector, provided that the signal-to-noise ratio is high enough. The measurement accuracy for signals in the vicinity of intrinsic spectrum analyzer noise is also influenced by the detector which has been selected. The FSP has the following detectors:

Maximum peak detector

If the max. peak detector s selected, the largest noise display is obtained, since the spectrum analyzer displays the highest value of the IF envelope in the frequency range assigned to a pixel at each pixel in the trace. With longer sweep times, the trace indicates higher noise levels since the probability of obtaining a high noise amplitude increases with the dwell time on a pixel. For short sweep times, the display approaches that of the sample detector since the dwell time on a pixel is only sufficient to obtain an instantaneous value.

Minimum peak detector

The min. peak detector indicates the minimum voltage of the IF envelope in the frequency range assigned to a pixel at each pixel in the trace. The noise is strongly suppressed by the minimum peak detector since the lowest noise amplitude that occurs is displayed for each test point. If the signal-tonoise ratio is low, the minimum of the noise overlaying the signal is displayed too low.

At longer sweep times, the trace shows smaller noise levels since the probability of obtaining a low noise amplitude increases with the dwell time on a pixel. For short sweep times, the display approaches that of the sample detector since the dwell time on a pixel is only sufficient to obtain an instantaneous value.

1093.4820.12

2.24

E-2

FSP Measuring Signals in the Vicinity of Noise

Autopeak detector

The Autopeak detector displays the maximum and minimum peak value at the same time. Both values are measured and their levels are displayed on the screen joint by a vertical line.

Sample detector

The sample detector samples the logarithm of the IF envelope for each pixel of the trace only once and displays the resulting value. If the frequency span of the spectrum analyzer is considerably higher than the resolution bandwidth (span/RBW >500), there is no guarantee that useful signals will be detected.

They are lost due to undersampling. This does not happen with noise because in this case it is not the instantaneous amplitude that is relevant but only the probability distribution.

RMS detector

For each pixel of the trace, the RMS detector outputs the RMS value of the IF envelope for the frequency range assigned to each test point. It therefore measures noise power. The display for small signals is, however, the sum of signal power and noise power. For short sweep times, i.e. if only one uncorrelated sample value contributes to the RMS value measurement, the RMS detector is equivalent to the sample detector. If the sweep time is longer, more and more uncorrelated RMS values contribute to the RMS value measurement. The trace is, therefore, smoothed. The level of sinewave signals is only displayed correctly if the selected resolution bandwidth (RBW) is at least as wide as the frequency range which corresponds to a pixel in the trace. At a resolution bandwidth of 1 MHz, this means that the maximum frequency display range is 501 MHz.

Average detector

For each pixel of the trace, the average detector outputs the average value of the linear IF envelope for the frequency range assigned to each test point. It therefore measures the linear average noise. The level of sinewave signals is only displayed correctly if the selected resolution bandwidth (RBW) is at least as wide as the frequency range which corresponds to a pixel in the trace. At a resolution bandwidth of 1 MHz, this means the maximum frequency display range is 501 MHz.

Quasi peak detector

The quasi peak detector is a peak detector for EMI measurements with defined charge and discharge times. These times are defined in CISPR 16, the standard for equipment used to measure EMI emissions.

Measurement example – Measuring the level of the internal reference generator at low S/N ratios

The example shows the different factors influencing the S/N ratio.

1. Set the spectrum analyzer to its default state.

½

Press the

PRESET

key.

The FSP is in its default state.

2. Switch on the internal reference generator

½

Press the

SETUP

key.

½

Press the softkeys

SERVICE - INPUT CAL

.

The internal 128 MHz reference generator is on.

The FSP’s RF input is off.

3. Set the center frequency to 128 MHz and the frequency span to 100 MHz.

½

Press the

FREQ

key and enter

128 MHz

.

½

Press the

SPAN

key and enter

100

MHz.

1093.4820.12

2.25

E-2

Measuring Signals in the Vicinity of Noise FSP

4. Set the RF attenuation to 60 dB to attenuate the input signal or to increase the intrinsic noise.

½

Press the

AMPT

key.

½

Press the

RF ATTEN MANUAL

softkey and enter

60 dB

.

The RF attenuation indicator is marked with an asterisk (*Att 60 dB) to show that it is no longer coupled to the reference level. The high input attenuation reduces the reference signal which can no longer be detected in noise.

Fig. 2-21 Sinewave signal with low S/N ratio. The signal is measured with the autopeak detector and is completely swamped by the intrinsic noise of the spectrum analyzer.

5. To suppress noise spikes the trace can be averaged.

½

Press the

TRACE

key.

½

Press the

AVERAGE

softkey.

The traces of consecutive sweeps are averaged. To perform averaging, the FSP automatically switches on the sample detector. The RF signal, therefore, can be more clearly distinguished from noise.

Fig. 2-22 RF sinewave signal with low S/N ratio if the trace is averaged.

1093.4820.12

2.26

E-2

FSP Measuring Signals in the Vicinity of Noise

6. Instead of trace averaging, a video filter that is narrower than the resolution bandwidth can be selected.

½

Press the

CLEAR/WRITE

softkey in the trace menu.

½

Press the

BW

key.

½

Press the

VIDEO BW MANUAL

softkey and enter

10 kHz

.

The RF signal can be more clearly distinguished from noise.

Fig. 2-23 RF sinewave signal with low S/N ratio if a smaller video bandwidth is selected.

7. By reducing the resolution bandwidth by a factor of 10, the noise is reduced by 10 dB.

½

Press the

RES BW MANUAL

softkey and enter

300 kHz

.

The displayed noise is reduced by approx. 10 dB. The signal, therefore, emerges from noise by about 10 dB. Compared to the previous setting, the video bandwidth has remained the same, i.e.

it has increased relative to the smaller resolution bandwidth. The averaging effect is, therefore, reduced by the video bandwidth. The trace will be noisier.

Fig. 2-24 Reference signal at a smaller resolution bandwidth

1093.4820.12

2.27

E-2

Noise Measurements FSP

Noise Measurements

Noise measurements play an important role in spectrum analysis. Noise e.g. affects the sensitivity of radiocommunication systems and their components.

Noise power is specified either as the total power in the transmission channel or as the power referred to a bandwidth of 1 Hz. The sources of noise are, for example, amplifier noise or noise generated by oscillators used for the frequency conversion of useful signals in receivers or transmitters. The noise at the output of an amplifier is determined by its noise figure and gain.

The noise of an oscillator is determined by phase noise near the oscillator frequency and by thermal noise of the active elements far from the oscillator frequency. Phase noise can mask weak signals near the oscillator frequency and make them impossible to detect.

Measuring noise power density

To measure noise power referred to a bandwidth of 1 Hz at a certain frequency, the FSP has an easyto-use marker function. This marker function calculates the noise power density from the measured marker level.

Measurement example – Measuring the intrinsic noise power density of the FSP at 1 GHz and calculating the FSP’s noise figure.

1. Set the spectrum analyzer to its default state.

½

Press the

PRESET

key.

The FSP is in its default state.

2. Set the center frequency to 1 GHz and the span to 1 MHz.

½

Press the

FREQ

key and enter

1 GHz

.

½

Press the

SPAN

key and enter

1 MHz

.

3. Switch on the marker and set the marker frequency to 1 GHz.

½

Press the

MKR

key and enter

1 GHz

.

4. Switch on the noise marker function.

½

Press the

NOISE MARKER

softkey.

The FSP displays the noise power at 1 GHz in dBm (1Hz).

Since noise is random, a sufficiently long measurement time has to be selected to obtain stable measurement results. This can be achieved by averaging the trace or by selecting a very small video bandwidth relative to the resolution bandwidth.

5. The measurement result is stabilized by averaging the trace

½

Press the

TRACE

key.

½

Press the

AVERAGE

softkey.

The FSP performs sliding averaging over 10 traces from consecutive sweeps. The measurement result becomes more stable.

1093.4820.12

2.28

E-2

FSP Noise Measurements

Conversion to other reference bandwidths

The result of the noise measurement can be referred to other bandwidths by simple conversion. This is done by adding 10

ë

log (BW) to the measurement result, BW being the new reference bandwidth.

Example:

A noise power of –150 dBm (1 Hz) is to be referred to a bandwidth of 1 kHz.

P

[1kHz]

= -150 + 10 * log (1000) = -150 +30 = -120 dBm(1 kHz)

Calculation method:

The following method is used to calculate the noise power:

If the noise marker is switched on, the FSP automatically activates the sample detector. The video bandwidth is set to 1/10 of the selected resolution bandwidth (RBW).

To calculate the noise, the FSP takes an average over 17 adjacent pixels (the pixel on which the marker is positioned and 8 pixels to the left, 8 pixels to the right of the marker). The measurement result is stabilized by video filtering and averaging over 17 pixels.

Since both video filtering and averaging over 17 trace points is performed in the log display mode, the result would be 2.51 dB too low (difference between logarithmic noise average and noise power). The

FSP, therefore, corrects the noise figure by 2.51 dB.

To standardize the measurement result to a bandwidth of 1 Hz, the result is also corrected by –10 * log

(RBW noise

), with RBW noise

being the power bandwidth of the selected resolution filter (RBW).

Detector selection

The noise power density is measured in the default setting with the sample detector and using averaging. Other detectors that can be used to perform a measurement giving true results are the average detector or the RMS detector. If the average detector is used, the linear video voltage is averaged and displayed as a pixel. If the RMS detector is used, the squared video voltage is averaged and displayed as a pixel. The averaging time depends on the selected sweep time (=SWT/501). An increase in the sweep time gives a longer averaging time per pixel and thus stabilizes the measurement result. The FSP automatically corrects the measurement result of the noise marker display depending on the selected detector (+1.05 dB for the average detector, 0 d

Β

for the RMS detector). It is assumed that the video bandwidth is set to at least three times the resolution bandwidth. While the average or

RMS detector is being switched on, the FSP sets the video bandwidth to a suitable value.

The Pos Peak, Neg Peak, Auto Peak and Quasi Peak detectors are not suitable for measuring noise power density.

1093.4820.12

2.29

E-2

Noise Measurements FSP

Determining the noise figure:

The noise figure of amplifiers or of the FSP alone can be obtained from the noise power display. Based on the known thermal noise power of a 50

resistor at room temperature (-174 dBm (1Hz)) and the measured noise power P noise

the noise figure (NF) is obtained as follows:

NF = P noise

+ 174 – g, where g = gain of DUT in dB

Example: The measured internal noise power of the FSP at an attenuation of 0 dB is found to be –153 dBm/1 Hz. The noise figure of the FSP is obtained as follows

NF = -153 + 174 = 19 dB

Note:

If noise power is measured at the output of an amplifier, for example, the sum of the internal noise power and the noise power at the output of the DUT is measured. The noise power of the DUT can be obtained by subtracting the internal noise power from the total power (subtraction of linear noise powers). By means of the following diagram, the noise level of the DUT can be estimated from the level difference between the total and the internal noise level.

0

Correction factor in dB

-1

-2

-3

-4

-5

-6

-7

-8

-9

-10

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Total power/intrinsic noise power in dB

Fig. 2-25 Correction factor for measured noise power as a function of the ratio of total power to the intrinsic noise power of the spectrum analyzer.

1093.4820.12

2.30

E-2

FSP Noise Measurements

Measurement of Noise Power within a Transmission Channel

Noise in any bandwidth can be measured with the channel power measurement functions. Thus the noise power in a communication channel can be determined, for example. If the noise spectrum within the channel bandwidth is flat, the noise marker from the previous example can be used to determine the noise power in the channel by considering the channel bandwidth. If, however, phase noise and noise that normally increases towards the carrier is dominant in the channel to be measured, or if there are discrete spurious signals in the channel, the channel power measurement method must be used to obtain correct measurement results.

Measurement Example – Measuring the intrinsic noise of the FSP at 1 GHz in a

1.23 MHz channel bandwidth with the channel power function

Test setup:

The RF input of the FSP remains open-circuited or is terminated with 50

.

Measurement with the FSP:

1. Set the spectrum analyzer to its default state.

½

Press the

PRESET

key.

The FSP is in its default state.

2. Set the center frequency to 1 GHz and the span to 1 MHz.

½

Press the

FREQ

key and enter

1 GHz.

½

Press the

SPAN

key and enter

2 MHz

.

3. To obtain maximum sensitivity, set RF attenuation on the FSP to 0 dB.

½

Press the

AMPT

key.

½

Press the

RF ATTEN MANUAL

softkey and enter

0 dB

.

4. Switch on and configure the channel power measurement.

½

Press the

MEAS

key.

½

Press the

CHAN POWER / ACP

softkey.

The FSP activates the channel or adjacent channel power measurement according to the currently set configuration.

½

Press the

CP/ACP CONFIG

×

softkey.

The FSP enters the submenu for configuring the channel.

½

Press the

CHANNEL BANDWIDTH

softkey and enter

1.23 MHz

.

The FSP displays the 1.23 MHz channel as two vertical lines which are symmetrical to the center frequency.

½

Press the

PREV

key.

The FSP returns to the main menu for channel and adjacent channel power measurement.

½

Press the

ADJUST SETTINGS

softkey.

The settings for the frequency span, the bandwidth (RBW and VBW) and the detector are automatically set to the optimum values required for the measurement.

1093.4820.12

2.31

E-2

Noise Measurements FSP

Fig. 2-26 Measurement of the FSP’s intrinsic noise power in a 1.23 MHz channel bandwidth.

5. Stabilizing the measurement result by increasing the sweep time

½

Press the

SWEEP TIME

softkey and enter

1 s

.

By increasing the sweep time to 1 s, the trace becomes much smoother thanks to the RMS detector and the channel power measurement display is much more stable.

6. Referring the measured channel power to a bandwidth of 1 Hz

½

Press the

CHAN PWR / Hz

softkey.

The channel power is referred to a bandwidth of 1 Hz. The measurement is corrected by -10 * log

(ChanBW), with ChanBW being the channel bandwidth that was selected.

Method of calculating the channel power

When measuring the channel power, the FSP integrates the linear power which corresponds to the levels of the pixels within the selected channel. The analyzer uses a resolution bandwidth which is far smaller than the channel bandwidth. When sweeping over the channel, the channel filter is formed by the passband characteristics of the resolution bandwidth (see Fig. 2-27).

-3 dB

Resolution filter

Sweep

Channel bandwith

Fig. 2-27 Approximating the channel filter by sweeping with a small resolution bandwidth

1093.4820.12

2.32

E-2

FSP Noise Measurements

The following steps are performed:

The linear power of all the trace pixels within the channel is calculated.

P i

= 10

(L i

/10) where P i

= power of the trace pixel i

L i

= displayed level of trace point i

The powers of all trace pixels within the channel are summed up and the sum is divided by the number of trace pixels in the channel.

The result is multiplied by the quotient of the selected channel bandwidth and the noise bandwidth of the resolution filter (RBW).

Since the power calculation is performed by integrating the trace within the channel bandwidth, this method is also called the IBW method (Integration Bandwidth method).

Bandwidth selection (RBW)

For channel power measurements, the resolution bandwidth (RBW) must be small compared to the channel bandwidth, so that the channel bandwidth can be defined precisely. If the resolution bandwidth which has been selected is too wide, this may have a negative effect on the selectivity of the simulated channel filter and result in the power in the adjacent channel being added to the power in the transmit channel. A resolution bandwidth equal to 1% to 3% of the channel bandwidth should, therefore, be selected. If the resolution bandwidth is too small, the required sweep time becomes too long and the measurement time increases considerably.

Detector selection

Since the power of the trace is measured within the channel bandwidth, only the sample detector and

RMS detector can be used. These detectors provide measured values that make it possible to calculate the real power. The peak detectors (Pos Peak, Neg Peak and Auto Peak) are not suitable for noise power measurements as no correlation can be established between the peak value of the video voltage and power.

With the sample detector, a value (sample) of the IF envelope voltage is displayed at each trace pixel.

Since the frequency spans are very large compared with the resolution bandwidth (span/RBW >501), sinewave signals present in the noise might be lost, i.e. they are not displayed. This is not important for pure noise signals, however, since a single sample in itself is not important - it is the probability distribution of all measured values that counts. The number of samples for power calculation is limited to the number of trace pixels (501 for the FSP).

Note:

To increase the repeatability of measurements, averaging is often carried out over several traces (AVERAGE softkey in the TRACE menu). This gives spurious results for channel power measurements (max. –2.51 dB for ideal averaging). Trace averaging should, therefore, be avoided.

With the RMS detector, the whole IF envelope is used to calculate the power for each trace pixel. The

IF envelope is digitized using a sampling frequency which is at least five times the resolution bandwidth which has been selected. Based on the sample values, the power is calculated for each trace pixel using the following formula:

P

RMS

=

1

N

N

i

=

1 s i

2 si = linear digitized video voltage at the output of the A/D converter

N = number of A/D converter values per pixel of the trace

PRMS = power represented by a trace pixel

1093.4820.12

2.33

E-2

Noise Measurements FSP

When the power has been calculated, the power units are converted into decibels and the value is displayed as a trace pixel.

The number of A/D converter values, N, used to calculate the power, is defined by the sweep time. The time per trace pixel for power measurements is directly proportional to the selected sweep time. The

RMS detector uses far more samples for power measurement than the sample detector, especially if the sweep time is increased. The measurement uncertainty can be reduced considerably. In the default setting, the FSP therefore uses the RMS detector to measure the channel power.

For both detectors (sample and RMS), the video bandwidth (VBW) must at least be three times the resolution bandwidth, so that the peak values of the video voltage are not cut off by the video filter. At smaller video bandwidths, the video signal is averaged and the power readout will be too small.

Sweep time selection

If the sample detector is used, it is best to select the smallest sweep time possible for a given span and resolution bandwidth. The minimum time is obtained if the setting is coupled. This means that the time per measurement is minimal. Extending the measurement time does not have any advantages as the number of samples for calculating the power is defined by the number of trace pixels in the channel.

When using the RMS detector, the repeatability of the measurement results can be influenced by the selection of sweep times. Repeatability is increased at longer sweep times.

Repeatability can be estimated from the following diagram:

0 max. error/dB

0.5

95 % Confidence level

1

1.5

99 % Confidence level

2

2.5

3

10 100

1000 10000

100000

Number of samples

Fig. 2-28 Repeatability of channel power measurements as a function of the number of samples used for power calculation

The curves in Fig. 2-28 indicates the repeatability obtained with a probability of 95% and 99% depending on the number of samples used.

The repeatability with 600 samples is

±

0.5 dB. This means that – if the sample detector and a channel bandwidth over the whole diagram (channel bandwidth = span) is used - the measured value lies within

±

0.5 dB of the true value with a probability of 99%.

If the RMS detector is used, the number of samples can be estimated as follows:

1093.4820.12

2.34

E-2

FSP Noise Measurements

Since only uncorrelated samples contribute to the RMS value, the number of samples can be calculated from the sweep time and the resolution bandwidth.

Samples can be assumed to be uncorrelated if sampling is performed at intervals of 1/RBW. The number of uncorrelated samples (N decorr

) is calculated as follows:

N decorr

= SWT

…

RBW

The number of uncorrelated samples per trace pixel is obtained by dividing N decorr by 501 (= pixels per trace).

Example:

At a resolution bandwidth of 30 kHz and a sweep time of 100 ms, 3000 uncorrelated samples are obtained. If the channel bandwidth is equal to the frequency display range, i.e. all trace pixels are used for the channel power measurement, a repeatability of 0.2 dB with a confidence level of 99% is the estimate that can be derived from Fig. 2-28.

Measuring Phase Noise

The FSP has an easy-to-use marker function for phase noise measurements. This marker function indicates the phase noise of an RF oscillator at any carrier in dBc in a bandwidth of 1 Hz.

Measurement Example - Measuring the phase noise of a signal generator at a carrier offset of 10 kHz.

Test setup:

Signal generator

FSP

Settings on the signal generator (e.g. R&S SMIQ):

Frequency: 100 MHz

Level: 0 dBm

Measurement using FSP:

1. Set the spectrum analyzer to its default state

½

Press the

PRESET

key.

FSP is in its default state.

2. Set the center frequency to 100 MHz and the span to 50 kHz

½

Press the

FREQ

key and enter

100 MHz

.

½

Press the

SPAN

key and enter

50 kHz

.

3. Set the FSP’s reference level to 0 dBm (=signal generator level)

½

Press the

AMPT

key and enter

0 dBm

.

1093.4820.12

2.35

E-2

Noise Measurements FSP

4. Enable phase noise measurement

½

Press the

MKR FCTN

key.

½

Press the

PHASE NOISE

×

softkey.

The FSP activates phase noise measurement. Marker 1 (=main marker) and marker 2 (= delta marker) are positioned on the signal maximum. The position of the marker is the reference (level and frequency) for the phase noise measurement. A horizontal line represents the level of the reference point and a vertical line the frequency of the reference point. Data entry for the delta marker is activated so that the frequency offset at which the phase noise is to be measured can be entered directly.

5. 10 kHz frequency offset for determining phase noise.

½

Enter

10 kHz

.

The FSP displays the phase noise at a frequency offset of 10 kHz . The magnitude of the phase noise in dBc/Hz is displayed in the delta marker output field at the top right of the screen (delta 2

[T1 PHN]).

6. Stabilize the measurement result by activating trace averaging.

½

Press the

TRACE

key.

½

Press the

AVERAGE

softkey.

Fig. 2-29 Measuring phase noise with the phase-noise marker function

The frequency offset can be varied by moving the marker with the spinwheel or by entering a new frequency offset as a number.

1093.4820.12

2.36

E-2

FSP Measurements on Modulated Signals

Measurements on Modulated Signals

If RF signals are used to transmit information, an RF carrier is modulated. Analog modulation methods such as amplitude modulation, frequency modulation and phase modulation have a long history and digital modulation methods are now used for modern systems. Measuring the power and the spectrum of modulated signals is an important task to assure transmission quality and to ensure the integrity of other radio services. This task can be performed easily with a spectrum analyzer. Modern spectrum analyzers also provide the test routines that are essential to simplify complex measurements.

Measurements on AM signals

The spectrum analyzer detects the RF input signal and displays the magnitudes of its components as a spectrum. AM modulated signals are also demodulated by this process. The AF voltage can be displayed in the time domain if the modulation sidebands are within the resolution bandwidth. In the frequency domain, the AM sidebands can be resolved with a small bandwidth and can be measured separately. This means that the modulation depth of a carrier modulated with a sinewave signal can be measured. Since the dynamic range of a spectrum analyzer is very wide, even extremely small modulation depths can be measured accurately. The FSP has a test routine which measures the modulation depth in %.

Measurement Example 1 – Displaying the AF of an AM signal in the time domain.

Test setup:

Signal generator

FSP

Settings on the signal generator (e.g. R&S SMIQ):

Frequency: 100 MHz

Level:

Modulation:

0 dBm

50 % AM, 1 kHz AF

Measurement with the FSP:

1. Set the spectrum analyzer to its default state

½

Press the

PRESET

key.

The FSP is in its default state.

2. Set the center frequency to 100 MHz and the span to 0 kHz

½

Press the

FREQ

key and enter

100 MHz

.

½

Press the

SPAN

key and enter

0 Hz

.

3. Set the reference level to +6 dBm and the display range to linear

½

Press the

AMPT

key and enter

6 dBm

.

½

Press the

RANGE LINEAR

softkey.

1093.4820.12

2.37

E-2

Measurements on Modulated Signals FSP

4. Use the video trigger to trigger on the AF signal in order to obtain a stationary display

½

Press the

TRIG

key.

½

Press the

VIDEO

softkey.

The video trigger level is set to 50% if the instrument is switched on for the first time. The trigger level is displayed as a horizontal line across the graph. The FSP displays the 1 kHz AF signal stably in the time domain.

Fig. 2-30 Measuring the AF signal from a 1 kHz AM carrier

If the FSP is equipped with the AM/FM Demodulator option (FSP-B3), the AF can be monitored on the built-in loudspeaker.

5. Switch on the internal AM demodulator

½

Press the

MKR FCTN

key.

½

Press the

MKR DEMOD

softkey.

The FSP switches the AM demodulator on automatically.

½

Turn up volume control.

A 1 kHz tone is output by the built-in loudspeaker.

1093.4820.12

2.38

E-2

FSP Measurements on Modulated Signals

Measurement Example 2 -Measuring the modulation depth of an AM carrier in the frequency domain.

Test setup:

Signal generator

FSP

Settings on the signal generator (e.g. R&S SMIQ):

Frequency: 100 MHz

Level:

Modulation:

-30 dBm

50 % AM, 1 kHz AF

Measurement with the FSP:

1. Set the spectrum analyzer to its default state

½

Press the PRESET key.

The FSP is in its default state.

2. Set the center frequency to 100 MHz and the span to 0 kHz

½

Press the FREQ key and enter 100 MHz.

½

Press the SPAN key and enter 5 kHz.

3. Activate the marker function for AM depth measurement

½

Press the MEAS key.

½

Press the MODULATION DEPTH softkey.

The FSP automatically positions a marker on the carrier signal in the middle of the graph and one delta marker on each of the lower and upper AM sidebands. The FSP calculates the AM modulation depth from the ratios of the delta marker levels to the main marker level and outputs the numerical value in the marker info field

Fig. 2-31 Measurement of AM modulation depth. The modulation depth is indicated by

MDEPTH. The frequency of the AF signal is indicated by the delta markers

1093.4820.12

2.39

E-2

Measurements on Modulated Signals FSP

Measurements on FM Signals

Since spectrum analyzers only display the magnitude of signals by means of the envelope detector, the modulation of FM signals cannot be directly measured as is the case with AM signals. With FM signals, the voltage at the output of the envelope detector is constant as long as the frequency deviation of the signal is within the flat part of the passband characteristic of the resolution filter which has been selected. Amplitude variations can only occur if the current frequency lies on the falling edge of the filter characteristic. This effect can be used to demodulate FM signals. The center frequency of the analyzer is set in a way that the nominal frequency of the test signal is on the filter edge (below or above the center frequency). The resolution bandwidth and the frequency offset are selected in a way that the current frequency is on the linear part of the filter slope. The frequency variation of the FM signal is then transformed into an amplitude variation which can be displayed in the time domain.

The FSP’s analog 4 th

order filters with frequencies from 300 kHz to 3 MHz have a good filter-slope linearity, if the frequency of the FSP is set to 1.2 times the filter bandwidth below or above the frequency of the transmit signal. The useful range for FM demodulation is then almost equal to the resolution bandwidth.

Measurement Example - Displaying the AF of an FM carrier

Test setup:

Signal generator

FSP

Settings on the signal generator (e.g. R&S SMIQ):

Frequency: 100 MHz

Level:

Modulation:

-30 dBm

FM 0 kHz deviation (i.e., FM = off), 1 kHz AF

Measurement with the FSP:

1. Set the spectrum analyzer to its default state

½

Press the

PRESET

key.

The FSP is in its default state.

2. Set the center frequency to 99.64 MHz and the span to 300 kHz.

½

Press the

FREQ

key and enter

99.64 MHz.

½

Press the

SPAN

key and enter

300 kHz

.

3. Set a resolution bandwidth of 300 kHz.

½

Press the

BW

key.

½

Press the

RES BW MANUAL

softkey and enter

300 kHz

.

4. Set a display range of 20 dB and shift the filter characteristics to the middle of the display.

½

Press the

AMPT

key.

½

Press the

RANGE LOG MANUAL

softkey and enter

20 dB

.

½

Press the

NEXT

key.

½

Set the

GRID

softkey to

REL

.

1093.4820.12

2.40

E-2

FSP Measurements on Modulated Signals

½

Press the

PREV

softkey.

½

Using the spinwheel, shift the reference level so that the filter edge intersects the - 10 dB level line at the center frequency.

The slope of the 300 kHz filter is displayed. This corresponds to the demodulator characteristics for FM signals with a slope of approx. 5 dB/100 kHz.

Fig. 2-32 Filter edge of a 300 kHz filter used as an FM-discriminator characteristic

5. Set an FM deviation of 100 kHz and an AF of 1 kHz on the signal generator

6. Set a frequency deviation of 0 Hz on the FSP

½

Press the SPAN key.

½

Press the ZERO SPAN.

The demodulated FM signal is displayed. The signal moves across the screen.

7. Creating a stable display by video triggering

½

Press the TRIG key.

½

Press the VIDEO softkey.

A stationary display is obtained for the FM AF signal

Result (-10

±

5) dB; this means that a deviation of 100 kHz is obtained if the demodulator characteristic slope is 5 dB/100 kHz

1093.4820.12

2.41

E-2

Measurements on Modulated Signals

Fig. 2-33 Demodulated FM signal

FSP

1093.4820.12

2.42

E-2

FSP Measurements on Modulated Signals

Measuring Channel Power and Adjacent Channel Power

Measuring channel power and adjacent channel power is one of the most important tasks in the field of digital transmission for a spectrum analyzer with the necessary test routines. While, theoretically, channel power could be measured at highest accuracy with a power meter, its low selectivity means that it is not suitable for measuring adjacent channel power as an absolute value or relative to the transmit channel power. The power in the adjacent channels can only be measured with a selective power meter.

A spectrum analyzer cannot be classified as a true power meter, because it displays the IF envelope voltage. However, it is calibrated such as to correctly display the power of a pure sinewave signal irrespective of the selected detector. This calibration is not valid for non-sinusoidal signals. Assuming that the digitally modulated signal has a Gaussian amplitude distribution, the signal power within the selected resolution bandwidth can be obtained using correction factors. These correction factors are normally used by the spectrum analyzer’s internal power measurement routines in order to determine the signal power from IF envelope measurements. These factors are valid if and only if the assumption of a Gaussian amplitude distribution is correct.

Apart from this common method, the FSP also has a true power detector, i.e. an RMS detector. It correctly displays the power of the test signal within the selected resolution bandwidth irrespective of the amplitude distribution, without additional correction factors being required. With an absolute measurement uncertainty of < 0.5 dB and a relative measurement uncertainty of < 0.2 dB (each with a confidence level of 95%), the FSP comes close to being a true power meter.

There are two possible methods for measuring channel and adjacent channel power with a spectrum analyzer:

The IBW method (Integration Bandwidth Method) in which the spectrum analyzer measures with a resolution bandwidth that is less than the channel bandwidth and integrates the level values of the trace versus the channel bandwidth. This method is described in the section on noise measurements.

Measurement using a channel filter.

In this case, the spectrum analyzer makes measurements in the time domain using an IF filter that corresponds to the channel bandwidth. The power is measured at the output of the IF filter. Until now, this method has not been used for spectrum analyzers, because channel filters were not available and the resolution bandwidths, optimized for the sweep, did not have a sufficient selectivity. The method was reserved for special receivers optimized for a particular transmission method.

The FSP has test routines for simple channel and adjacent channel power measurements. These routines give quick results without any complex or tedious setting procedures.

1093.4820.12

2.43

E-2

Measurements on Modulated Signals

Measurement Example 1 - ACPR measurement on an IS95 CDMA Signal

Test setup:

FSP

Signal generator

FSP

Settings on the signal generator (e.g. R&S SMIQ):

Frequency: 850 MHz

Level:

Modulation:

0 dBm

CDMA IS 95

Measurement with the FSP:

1. Set the spectrum analyzer to its default state.

½

Press the

PRESET

key.

The FSP is in its default state.

2. Set the center frequency to 850 MHz and frequency deviation to 4 MHz.

½

Press the

FREQ

key and enter

850 MHz

.

3. Set the reference level to +10 dBm.

½

Press the

AMPT

key and enter

10 dBm

.

4. Configuring the adjacent channel power for the CDMA IS95 reverse link.

½

Press the

MEAS

key.

½

Press the

CHAN PWR ACP

×

softkey.

½

Press the

CP/ACP STANDARD

softkey.

From the list of standards, select

CDMA IS95A REV

using the spinwheel or the cursor down key below the spinwheel and press

ENTER

.

The FSP sets the channel configuration according to the IS95 standard for mobile stations with 2 adjacent channels above and below the transmit channel. The spectrum is displayed in the upper part of the screen, the numeric values of the results and the channel configuration in the lower part of the screen. The various channels are represented by vertical lines on the graph.

The frequency span, resolution bandwidth, video bandwidth and detector are selected automatically to give correct results. To obtain stable results - especially in the adjacent channels

(30 kHz bandwidth) which are narrow in comparison with the transmission channel bandwidth

(1.23 MHz) - the RMS detector is used.

1093.4820.12

2.44

E-2

FSP Measurements on Modulated Signals

5. Set the optimal reference level and RF attenuation for the applied signal level.

½

Press the

ADJUST REF LVL

softkey.

The FSP sets the optimal RF attenuation and the reference level based on the transmission channel power to obtain the maximum dynamic range. The following figure shows the result of the measurement.

Fig. 2-34 Adjacent channel power measurement on a CDMA IS95 signal

The repeatability of the results, especially in the narrow adjacent channels, strongly depends on the measurement time since the dwell time within the 30 kHz channels is only a fraction of the complete sweep time. A longer sweep time may increase the probability that the measured value converges to the true value of the adjacent channel power, but this increases measurement time.

To avoid long measurement times, the FSP measures the adjacent channel power in the time domain (FAST ACP). In the FAST ACP mode, the FSP measures the power of each channel at the defined channel bandwidth, while being tuned to the center frequency of the channel in question. The digital implementation of the resolution bandwidths makes it possible to select a filter characteristics that is precisely tailored to the signal. In case of CDMA IS95, the power in the useful channel is measured with a bandwidth of 1.23 MHz and that of the adjacent channels with a bandwidth of 30 kHz. Therefore the FSP jumps from one channel to the other and measures the power at a bandwidth of 1.23 MHz or 30 kHz using the RMS detector. The measurement time per channel is set with the sweep time. It is equal to the selected measurement time divided by the selected number of channels. The five channels from the above example and the sweep time of 100 ms give a measurement time per channel of 20 ms.

Compared to the measurement time per channel given by the span ( = 5 MHz) and sweep time (

= 100 ms, equal to 1.66 ms per 30 kHz channel) used in the example, this is a far longer dwell time on the adjacent channels (factor of 12). In terms of the number of uncorrelated samples this means 20000/33 µs = 606 samples per channel measurement compared to 1667/33µs = 50.5

samples per channel measurement.

Repeatability with a confidence level of 95% is increased from

±

1.4 dB to

±

0.38 dB as shown in

Fig. 2-28. For the same repeatability, the sweep time would have to be set to 1.2 s with the integration method. The following figure shows the standard deviation of the results as a function of the sweep time.

1093.4820.12

2.45

E-2

Measurements on Modulated Signals FSP

ACPR Repeatability IS95

IBW Method

1,4

1,2

1

0,8

0,6

0,4

0,2

0

10

Alternate channels

Adjacent channels

Tx channel

100

Sweep time/ms

1000

Fig. 2-35 Repeatability of adjacent channel power measurement on IS95-standard signals if the integration bandwidth method is used

6. Switch to Fast ACP to increase the repeatability of results.

½

Press the

CP/ACP CONFIG

×

softkey.

½

Set the

FAST ACP

softkey to

ON

.

The FSP measures the power of each channel in the time domain. The trace represents power as a function of time for each channel (see Fig. 2-36). The numerical results over consecutive measurements become much more stable.

Fig. 2-36 Measuring the channel power and adjacent channel power ratio for IS95 signals in the time domain (Fast ACP)

The following figure shows the repeatability of power measurements in the transmit channel and of relative power measurements in the adjacent channels as a function of sweep time. The standard deviation of measurement results is calculated from 100 consecutive measurements as shown in Fig. 2-35. Take scaling into account if comparing power values.

1093.4820.12

2.46

E-2

FSP Measurements on Modulated Signals

ACPR IS95 Repeatability

0,35

0,3

0,25

0,2

0,15

0,1

0,05

0

10

Tx channel

Alternate channels

Adjacent channels

100

Sweep time/ms

1000

Fig. 2-37 Repeatability of adjacent channel power measurements on IS95 signals in the Fast

ACP mode

Note on adjacent channel power measurements on IS95 base-station signals:

When measuring the adjacent channel power of IS95 base-station signals, the frequency spacing of the adjacent channel to the nominal transmit channel is specified as ±750 kHz. The adjacent channels are, therefore, so close to the transmit channel that the power of the transmit signal leaks across and is also measured in the adjacent channel if the usual method using the 30 kHz resolution bandwidth is applied.

The reason is the low selectivity of the 30 kHz resolution filter. The resolution bandwidth, therefore, must be reduced considerably, e.g. to 3 kHz to avoid this. This causes very long measurement times (factor of 100 between a 30 kHz and 3 kHz resolution bandwidth).

This effect is avoided with the time domain method which uses steep IF filters. The 30 kHz channel filter implemented in the FSP has a very high selectivity so that even with a ± 750 kHz spacing to the transmit channel the power of the useful modulation spectrum is not measured.

The following figure shows the passband characteristics of the 30 kHz channel filter in the FSP.

Fig. 2-38 Frequency response of the 30 kHz channel filter for measuring the power in the IS 95 adjacent channel

1093.4820.12

2.47

E-2

Measurements on Modulated Signals FSP

Measurement Example 2 – Measuring the adjacent channel power of an IS136

TDMA signal

Test setup:

Signal generator

Ext Ref Out

RF Inp

FSP

Ext Ref IN

Note:

As the modulation spectrum of the IS136 signal leaks into the adjacent channel, it makes a contribution to the power in the adjacent channel. Exact tuning of the spectrum analyzer to the transmit frequency is therefore critical. If tuning is not precise, the adjacent channel power ratios in the lower and upper adjacent channels become asymmetrical. The FSP’s frequency and the generator frequency are therefore synchronized.

Settings on the signal generator (e.g. R&S SMIQ):

Frequency: 850 MHz

Level: -20 dBm

Modulation: IS136/NADC

Measurement with the FSP

1. Set the spectrum analyzer to its default state.

½

Press the

PRESET

key.

The FSP is in its default state.

2. Set up the FSP for synchronization to an external reference frequency.

½

Press the

SETUP

key.

½

Set the

REFERENCE

softkey to

EXT

.

3. Set the center frequency to 850 MHz-

Press the FREQ key and enter

850 MHz

.

4. Configure adjacent channel power measurement for IS136 signals.

½

Press the

MEAS

key.

½

Press the

CHAN PWR ACP

×

softkey.

½

Press the

CP/ACP STANDARD

softkey.

½

Select

NADC IS136

from the list of standards and press

ENTER

.

The FSP performs the power measurement in 5 channels (in the useful channel and in the two upper and two lower adjacent channels).

1093.4820.12

2.48

E-2

FSP Measurements on Modulated Signals

5. Setting the optimum reference level and RF attenuation for the measurement

½

Press the

ADJUST REF LEVEL

softkey.

The FSP sets the optimum RF attenuation and the optimum reference level on the basis of the measured channel power.

Fig. 2-39 Measuring the relative adjacent channel power of an NADC signal in each of the two adjacent channels below and above the transmit channel.

To increase repeatability - especially in the adjacent channels - the FSP’s Fast ACP routine is recommended.

6. Switching on the Fast ACP routine.

½

Press the

CP/ACP CONFIG

×

softkey

½

Set the

FAST ACP

softkey to

ON.

The FSP makes consecutive measurements on the 5 channels in the Zero Span mode using the receive filter specified in IS 136 to define the resolution bandwidth. The power in each channel is displayed on the graph as a function of time

Fig. 2-40 Measuring adjacent channel power in time domain (Fast ACP)

1093.4820.12

2.49

E-2

Measurements on Modulated Signals FSP

As the resolution bandwidth is much wider than the one used for the integration method, the results are much more stable when compared at the same sweep time.

Repeatability can be influenced by the selected sweep time. The results become much more stable if long sweep times are selected. Since the amplitude distribution is different in different channels (part of the modulation spectrum falls within the first adjacent channel), the repeatability depends on the spacing of the measured channel from the transmit channel.

Fig. 2-41 below shows the standard deviation of results in the different channels as a function of the selected sweep time. The standard deviation for the various sweep times was recorded using a signal generator as a source. With real DUTs the amplitude distributions in adjacent channels may be different so that the standard deviation could differ from that shown in Fig. 2-41. To evaluate the correct measuring time for time-critical measurements at a given standard deviation, the standard deviation of the ACP values at the output of the real DUT must be determined.

NADC Repeatability

1.4

1.2

1

0.8

0.6

0.4

0.2

0

10

Alt1 Channels

Tx Channel

Adj Channels

100 1000

Sweep Time / ms

Fig. 2-41 Standard deviation of the results of Fast ACP measurement as a function of selected sweep time evaluated from 100 measurements per sweep time

1093.4820.12

2.50

E-2

FSP Measurements on Modulated Signals

Measurement Example 3 - Measuring the Modulation Spectrum in Burst Mode with the Gated Sweep Function

Since transmission systems compliant to IS136 use a TDMA method, the adjacent channel power must also be measured in burst mode. An IS136 TDMA frame is divided into 6 time slots. Two of these slots are assigned to a subscriber. This means that the ratio of transmit time to off-time for IS136 mobile phones is only 1:3 (e.g. time slots 1 and 4)

The FSP supports the measurement of the adjacent channel power in the TDMA mode with the Gated Sweep function.

Test setup with the R&S Signal Generator SMIQ:

SMIQ-Z5

Trigger1

Par Data Output

Signal generator

SMIQ

RF Inp

Ext Ref Out

Ext Gate/Trig IN

FSP

Ext Ref IN

The SMIQ has to be equipped with options SMIQ-B10 or SMIQ-B20 (modulation coder) and SMIQ-B11 (data generator).

Option SMIQ-Z5 is required to trigger the FSP. This option is connected to the SMIQ’s parallel output port. The BNC output Trigger 1 of the SMIQ-Z5 provides a TTL trigger signal on the rising edge of the

IS136 burst, which is used to start the FSP sweep in the Gated Sweep mode.

Note: The FSP’s IF power trigger is not suitable for IS136. It triggers on every level edge of the input signal. Since the modulation of the IS136 signal causes level dips even during the transmit burst, there is no way of ensuring that the FSP is only triggered on the burst edge.

Settings on signal generator SMIQ:

Switch the signal generator to the IS136 burst mode (time slots 1 and 4 are switched on, the other time slots are switched off).

The SMIQ is set as follows to generate the signal :

½

Press

PRESET

key.

½

Press

FREQ

key and enter 850 MHz.

½

Press

LEVE

L key and enter -20 dBm.

½

Press

RETURN

key.

½

DIGITAL STANDARD

using the spinwheel and press the

SELECT

key.

½

NADC

using the spinwheel and press the

SELECT

key.

½

Press

SELECT

key.

½

ON

using the spinwheel and press the

SELECT

key.

½

Press

RETURN

key.

½

Keep turning the spinwheel until

SAVE/RECALL FRAME

appears in the list and select the menu item

SAVE/RECALL FRAME

using the

SELECT

key.

½

The cursor is set to

GET PREDEFINED FRAME

.

½

Press

SELECT

key.

1093.4820.12

2.51

E-2

Measurements on Modulated Signals FSP

½

UP1TCH

using the spinwheel and press the

SELECT

key.

In the following operating sequence for the FSP, it is assumed that steps 1 to 6 of the previous example

(example no. 2) have already been performed.

1. Configuring the Gated Sweep function on the FSP.

½

Press the

TRIG

key.

½

Press the

GATED TRIGGER

softkey.

½

Press the

EXTERN

softkey.

½

Press the

GATE SETTINGS

×

softkey.

The FSP switches to time domain measurement so that the setting of the Gated Sweep parameters can be checked visually.

½

Press the

ZOOM X-AXIS

softkey and enter

10 ms

.

Exactly one TDMA burst will be displayed.

½

Press the

GATE DELAY

softkey and enter

2 ms

or set the Gate Delay using the spinwheel so that the burst is reliably detected.

½

Press the

GATE LENGTH

softkey and enter

5 ms

or set the vertical line for the gate length using the spinwheel so that the burst is reliably detected.

Fig. 2-42 Setting the parameters Gate Delay and Gate Length in time domain. The time interval required to measure the spectrum is indicated by two vertical lines.

½

Press the

PREV

key.

The FSP now performs the ACP measurement only during the switch-on phase of the TDMA burst. The measurement is stopped during the switch-off phase.

Note: The selected sweep time is the net sweep time, i.e. the time during which the FSP is actually measuring. The complete frame of an IS136 signal takes 40 ms. In the above example, measurement only takes place for 2x5 ms within a frame. The FSP is therefore only measuring for 25 % of the frame duration. The total measuring time is therefore four times that for the CW mode.

1093.4820.12

2.52

E-2

FSP Measurements on Modulated Signals

Measurement Example 4 - Measuring the Transient Spectrum in Burst Mode with the Fast ACP function

In addition to the modulation spectrum or adjacent channel power from the modulation of the RF carrier, the spectrum or adjacent channel power generated by burst edges is also to be measured in TDMA systems. The spectrum is a pulse spectrum and must be measured with the peak detector. With the usual IBW method, only the power of the continuously modulated signal can be measured properly.

Even if the modulation spectrum is transmitted in the TDMA mode, the measurement of the modulation spectrum will work because the burst edges are blanked out for the measurement by means of the

Gated Sweep function. The spectrum analyzer performs measurements only if the modulation spectrum is continuous when the burst is on.

However, the IBW method fails for the spectrum created by the burst edges. As the measurement is carried out with resolution bandwidths that are very small compared to the signal bandwidth, a spurious amplitude distribution is obtained in the defined measurement channel because of the resolution bandwidth. The small resolution bandwidth cannot settle to the peak amplitudes of the test signal. This problem is avoided in the FSP by performing time domain measurements with the root raised cosine filter specified in the IS136 standard.

If the peak detector is used instead of the default RMS detector (which is selected when the standard is selected), the true adjacent channel power generated by the burst edges can also be measured.

Test setup:

The test setup for this example and the settings for SMIQ are identical to those in the previous example.

Measurement with the FSP:

1. Set the spectrum analyzer to its default state.

½

Press the

PRESET

key.

The FSP is in its default state.

2. Synchronize the FSP to an external reference frequency.

½

Press the

SETUP

key.

½

Set the

REFERENCE

softkey to

EXT

.

3. Set the center frequency to 850 MHz

½

Press the

FREQ

key and enter

850 MHz

.

4. Configure the adjacent channel power measurement for IS136 signals in Fast ACP mode.

½

Press the

MEAS

key.

½

Press the

CHAN PWR ACP

×

softkey.

½

Press the

CP/ACP STANDARD

softkey.

½

Select

NADC IS136

from the list of standards and press

ENTER

.

½

Press the

CP/ACP CONFIG

×

softkey.

½

Set the

FAST ACP

softkey to

ON

.

The FSP performs the power measurement in 5 channels (in the useful channel and in the two upper and lower adjacent channels).

5. Set the optimum reference level and RF attenuation for the measurement.

½

Press the

ADJUST REF LEVEL

softkey.

The FSP sets the optimum RF attenuation and the optimum reference level on the basis of the measured channel power.

1093.4820.12

2.53

E-2

Measurements on Modulated Signals

6. Select the peak detector and increase the sweep time to 10 s.

½

Press the

TRACE

key.

½

Press the

DETECTOR

softkey.

½

Press the

PEAK

softkey.

½

Press the

SWEEP

key.

½

Press the

SWEEP TIME

softkey and enter

10 s

.

The FSP measures the adjacent channel power generated by the burst edges and the modulation.

FSP

Note:

Fig. 2-43 Adjacent channel power due to modulation spectrum and transient spectrum

The peak power display depends on the selected sweep time. The longer the sweep time, the higher the probability of measuring the highest peak amplitude of the signal.

With shorter sweep times, level dips can be seen in the time domain traces. These level dips come from the burst characterics of the signal. The numerical results, however, indicate the peak amplitudes during the measurement in the corresponding channel.

1093.4820.12

2.54

E-2

FSP Measurements on Modulated Signals

Measurement Example 5 - Measuring adjacent channel power of a W-CDMA uplink signal

Test setup:

Signal generator

FSP

Settings on the signal generator (e.g. R&S SMIQ):

Frequency: 1950 MHz

Level:

Modulation:

4 dBm

W-CDMA Reverse Link (NTT-DoCoMo, 4.096 Mcps)

Measurement with the FSP:

1. Set the spectrum analyzer to its default state.

½

Press the

PRESET

key.

The FSP is in its default state.

2. Set the center frequency to 1950 MHz.

½

Press the

FREQ

key and enter

1950 MHz

.

3. Switch on the ACP measurement for W-CDMA.

½

Press the

MEAS

key.

½

Press the

CHAN PWR ACP

×

softkey.

½

Press the

CP/ACP STANDARD

softkey.

½

From the list of standards, select

W-CDMA 4.096 REV

using the spinwheel or the cursor down key below the spinwheel and press

ENTER

.

The FSP sets the channel configuration to the W-CDMA standard (NTT-DoCoMo and ARIB,

4.096 Mcps) for mobiles with two adjacent channels above and below the transmit channel. The frequency span, the resolution and video bandwidth and the detector are automatically set to the correct values. The spectrum is displayed in the upper part of the screen and the channel power, the level ratios of the adjacent channel powers and the channel configuration in the lower part of the screen. The individual channels are displayed as vertical lines on the graph.

4. Set the optimum reference level and the RF attenuation for the applied signal level.

½

Press the

ADJUST REF LEVEL

softkey.

The FSP sets the optimum RF attenuation and the reference level for the power in the transmission channel to obtain the maximum dynamic range. The following figure shows the result of the measurement:

1093.4820.12

2.55

E-2

Measurements on Modulated Signals FSP

Fig. 2-44 Measuring the relative adjacent channel power on a W-CDMA uplink signal

5. Measuring adjacent channel power with the Fast ACP method.

½

Press the

CP/ACP CONFIG

×

softkey.

½

Set

FAST ACP

softkey to

ON

.

½

Press the ADJUST REF LVL softkey.

The FSP measures the power of the individual channels in the time domain. A root raised cosine filter with the parameters

α

= 0.22 and chip rate 4.096 Mcps (= receive filter for W-CDMA) is used as the channel filter.

Note:

Fig. 2-45 Measuring the adjacent channel power of a W-CDMA signal with the Fast ACP method

With W-CDMA, the FSP’s dynamic range for adjacent channel measurements is limited by the 12-bit A/D converter. The greatest dynamic range is, therefore, obtained with the IBW method.

1093.4820.12

2.56

E-2

FSP Measurements on Modulated Signals

Optimum Level Setting for ACP Measurements on W-CDMA Signals

The dynamic range for ACPR measurements is limited by the thermal noise floor, the phase noise and the intermodulation (spectral regrowth) of the spectrum analyzer. The power values produced by the

FSP due to these factors accumulate linearly. They depend on the applied level at the input mixer. The three factors are shown in the figure below for the adjacent channel (5 MHz carrier offset)

-30

ACPR/dBc

-35

-40

-45

-50

-55

-60

Total ACPR

-65

-70

-75

-80

Phase noise

-25 -23

Thermal noise floor

-21

Optimum 10-dB range

-19 -17 -15 -13 -11

Spectral regrowth intercept

-9 -7

Mixer level/dBm

-5

Fig. 2-46 The FSP’s dynamic range for adjacent channel power measurements on W-CDMA uplink signals is a function of the mixer level.

The level of the W-CDMA signal at the input mixer is shown on the horizontal axis, i.e. the measured signal level minus the selected RF attenuation. The individual components which contribute to the power in the adjacent channel and the resulting relative level (total ACPR) in the adjacent channel are displayed on the vertical axis. The optimum mixer level is –16 dBm. The relative adjacent channel power

(ACPR) at an optimum mixer level is –64 dBc. Since, at a given signal level, the mixer level is set in 10 dB steps with the 10 dB RF attenuator, the optimum 10 dB range is shown in the figure: it spreads from

–11 dBm to –21 dBm. The obtainable dynamic range in this range is 60 dB.

To set the attenuation parameter manually, the following method is recommended:

Set the RF attenuation so that the mixer level (= measured channel power – RF attenuation) is between -11 dBm and -21 dBm.

Set the reference level so that it is 20 dB less than the RF attenuation which has been set.

This method is automated with the FSP’s ADJUST REF LEVEL function. Especially in remote control mode, e.g. in production environments, it is best to correctly set the attenuation parameters prior to the measurement, as the time required for automatic setting can be saved.

Note: To measure the FSP’s intrinsic dynamic range for W-CDMA adjacent channel power measurements, a filter which suppresses the adjacent channel power is required at the output of the transmitter. A SAW filter with a bandwidth of 4 MHz, for example, can be used.

1093.4820.12

2.57

E-2

Measurements on Modulated Signals FSP

Amplitude distribution measurements

If modulation types that do not have a constant envelope in the time domain are used, the transmitter has to handle peak amplitudes that are greater than the average power. This includes all modulation types that involve amplitude modulation -QPSK for example. CDMA transmission modes in particular may have power peaks that are large compared to the average power.

For signals of this kind, the transmitter must provide large reserves for the peak power to prevent signal compression and thus an increase of the bit error rate at the receiver.

The peak power, or the crest factor of a signal is therefore an important transmitter design criterion. The crest factor is defined as the peak power / mean power ratio or, logarithmically, as the peak level minus the average level of the signal.

To reduce power consumption and cut costs, transmitters are not designed for the largest power that could ever occur, but for a power that has a specified probability of being exceeded (e.g. 0.01%). .

To measure the amplitude distribution, the FSP has simple measurement functions to determine both the APD 1 = Amplitude Probability Distribution and CCDF = Complementary Cumulative Distribution

Function.

In the APD display mode, the probability of occurrence of a certain level is plotted against the level.

In the CCDF display mode, the probability that the mean signal power will be exceeded is shown in percent.

Measurement Example – Measuring the APD and CCDF of white noise generated by the FSP

1. Set the spectrum analyzer to its default state.

½

Press the

PRESET

key.

The FSP is in its default state.

2. Configure the FSP for APD measurement

½

Press the

AMPT

key and enter -

60 dBm

.

The FSP’s intrinsic noise is displayed at the top of the screen.

½

Press the

MEAS

key.

½

Press the

SIGNAL STATISTIC

×

softkey.

½

Set the

APD

softkey to

ON

.

The FSP sets the frequency span to 0 Hz and measures the amplitude probability distribution

(APD). The number of uncorrelated level measurements used for the measurement is 100000.

The mean power and the peak power are displayed in dBm. The crest factor (peak power – mean power) is output as well (see Fig. 2-47).

1

In the literature, APD is also used for the probability of amplitude violation. This is the complimentary function to the APD function of FSP. The term PDF (=Probability

Density Function) which is frequently used in the literature corresponds to the APD function of FSP.

1093.4820.12

2.58

E-2

FSP Measurements on Modulated Signals

Fig. 2-47 Amplitude probability distribution of white noise

3. Switch to the CCDF display mode.

½

Set the

CCDF

softkey to

ON

The APD measurement is switched off and the CCDF display mode is switched on.

Fig. 2-48 The CCDF of white noise

The CCDF trace indicates the probability that a level will exceed the mean power. The level above the mean power is plotted along the X axis of the graph.The origin of the axis corresponds to the mean power level. The probability that a level will be exceeded is plotted along the Y axis.

1093.4820.12

2.59

E-2

Measurements on Modulated Signals FSP

4. Bandwidth selection

If the amplitude distribution is measured, the resolution bandwidth must be set in a way that the complete spectrum of the signal to be measured falls within the bandwidth. This is the only way of ensuring that all the amplitudes will pass through the IF filter without being distorted. If the selected resolution bandwidth is too small for a digitally modulated signal, the amplitude distribution at the output of the IF filter becomes a Gaussian distribution according to the central limit theorem and so corresponds to a white noise signal. The true amplitude distribution of the signal therefore cannot be determined.

A video bandwidth which is large in comparison to the resolution bandwidth (

3 x RBW) must be selected. This ensures that the amplitude peaks of the signal are not smoothed by the lowpass effect of the video filter. The video bandwidth is set automatically during statistics measurements.

Since the video bandwidth of the FSP is limited to 10 MHz, lowpass filtering occurs during measurements with a resolution bandwidth of 10 MHz. Additional band-limiting occurs at a resolution bandwidth of 10 MHz due to the lowpass filtering at the output of the log amplifier. The latter limits the video signal to a bandwidth of 8 MHz in order to obtain sufficient suppression of the 20.4 MHz IF.

The level range of the signal amplitudes, e.g. during APD white-noise measurements, is smaller. For broadband-modulated signals such as W-CDMA signals, the effect depends on the bandwidth occupied by the signal. At a signal bandwidth of 4 MHz, the amplitude distribution can be measured correctly with the effective video bandwidth.

5. Selecting the number of samples

For statistics measurements with the FSP, the number of samples N

Samples is entered for statistical evaluation instead of the sweep time. Since only statistically independent samples contribute to statistics, the measurement or sweep time is calculated automatically. It is indicated on the FSP display. The samples are statistically independent if the time difference is at least 1/RBW. The sweep time SWT is, therefore, expressed as follows:

SWT = N

Samples

/RBW

1093.4820.12

2.60

E-2

FSP Time Domain Measurements

Time Domain Measurements

With TDMA radiocommunication systems (e.g. GSM or IS136), the transmission quality is determined not only by the spectral characteristics, but also by the time domain characteristics. Since several users share the same frequency, a time slot is assigned to the each user. Unimpaired operation can only be ensured if each user adheres to his assigned time slot.

In this case, both the power during the transmit phase and the time characteristics such as duration of the TDMA burst as well as rise and fall time of the burst are relevant.

Power measurements

The FSP has easy-to-operate functions for measuring power during a given time interval.

Measurement Example – Measuring the power of a GSM burst during the switch-on phase

Test setup:

Signal

Generator

FSP

Settings on the signal generator (e.g. R&S SMIQ):

Frequency: 100 MHz

Level:

Modulation:

0 dBm

GSM, one time slot is switched on

Measurement using the FSP:

1. Set the spectrum analyzer to its default state.

½

Press the

PRESET

key.

The FSP is in its default state.

2. Set the center frequency to 100 MHz, the span to 0 Hz and the resolution bandwidth to

1 MHz.

½

Press the

FREQ

key and enter

100 MHz

.

½

Press the

SPAN

key and enter

0 Hz

or press the

ZEROSPAN

softkey.

3. Set the FSP reference level to 10 dBm (= signal generator level +10 dB).

½

Press the

AMPT

key and enter

10 dBm

.

4. Set the sweep time to 1 ms

½

Press the

SWEEP

key and enter 1 ms.

The FSP shows the GSM burst running across the display.

1093.4820.12

2.61

E-2

Time Domain Measurements FSP

5. Trigger on the rising edge of the burst using the video trigger.

½

Press the

TRIG

key.

½

Press the

VIDEO

softkey and enter

70%

.

The FSP displays a stable curve with the GSM burst at the beginning of the trace. The trigger level is shown as a horizontal line labeled with the absolute level for the trigger threshold.

6. Configure the power measurement in the time domain.

½

Press the

MEAS

key.

½

Press the

TIME DOM POWER

×

softkey.

½

Set the

LIMITS

softkey to

ON

.

½

Press the

START LIMIT

softkey.

½

Place the vertical line on the start of the burst by turning the spinwheel clockwise.

½

Press the

STOP LIMIT

softkey.

½

Place the second vertical line on the end of the burst by turning the spinwheel counterclockwise.

The FSP displays the mean power during the switch-on phase of the burst (see Fig. 2-49).

Fig. 2-49 Measuring mean power during the switch-on phase of a GSM burst

1093.4820.12

2.62

E-2

FSP Time Domain Measurements

Power Ramping Measurement for Burst Signals

Since the FSP has a high time resolution at 0 Hz span, the edges of the TDMA burst can be measured accurately. The use of the trigger offset makes it possible to shift the edges onto the screen.

Measurement Example – Measurements on GSM burst edges using a high time resolution

Test setup:

Signal

Generator

FSP

Settings on the signal generator (e.g. R&S SMIQ):

Frequency: 100 MHz

Level:

Modulation:

0 dBm

GSM, one time slot is switched on

Measurement using the FSP

The settings of the example above are used to measure GSM burst power during the switch-on phase.

1. Switch off power measurement.

½

Press the

MEAS

key.

½

Press the

TIME DOM POWER

×

softkey.

½

In the submenu, set the

POWER

softkey to

OFF

.

2. Increase the time resolution to 100 µs.

½

Press the

SWEEP

key and enter

100 µs

.

3. Shift the rising edge of the GSM burst to the middle of the screen using the trigger offset.

½

Press the

TRIG

key.

½

Press the

TRIGGER OFFSET

softkey.

½

Set the trigger offset by turning the spinwheel (counterclockwise) until the burst edge is in the middle of the screen or enter -

50 µs

.

The FSP displays the rising edge of the GSM burst (see Fig. 2-50)

1093.4820.12

2.63

E-2

Time Domain Measurements FSP

Fig. 2-50 Rising edge of GSM burst at high time-resolution.

4. Shift the falling edge of burst to the middle of the screen using the trigger offset.

½

Set the

POLARITY

softkey to

NEG

.

The FSP displays the falling edge of the GSM burst (see Fig. 2-51)

Fig. 2-51 Falling edge of GSM burst at high time resolution

1093.4820.12

2.64

E-2

FSP Time Domain Measurements

Measuring the S/N Ratio of Burst Signals

For TDMA transmission methods, the S/N ratio or the switch-off range can be measured by comparing the powers during the switch-on and switch-off phase of the transmission burst. The FSP, therefore, has a function to perform absolute and relative power measurements in the time domain. The measurement is carried out as follows, using a GSM burst as an example.

Measurement Example - S/N ratio of a GSM signal

Test setup:

Signal generator

FSP

Settings on the signal generator (e.g. R&S SMIQ):

Frequency: 100 MHz

Level:

Modulation:

0 dBm

GSM, one time slot is switched on

Measurement using the FSP

1. Set the spectrum analyzer to its default state.

½

Press the

PRESET

key.

The FSP is in its default state.

2. Set the center frequency to 100 MHz, the span to 0 Hz and the resolution bandwidth to 1

MHz.

½

Press the

FREQ

key and enter

100 MHz

.

½

Press the

SPAN

key and enter

0 Hz

or

½

press the

ZEROSPAN

softkey.

½

Press the

BW

key and enter

1 MHz

.

3. Set the reference level of the FSP to 0 dBm (= signal generator level) and the RF attenuation to 10 dB for maximum sensitivity.

½

Press the AMPT key and enter 0 dBm.

½

Press the

RF ATTEN MANUAL

softkey and enter

10 dB

.

4. Set the sweep time to 2 ms.

½

Press the

SWEEP

key and enter

2 ms

.

The FSP displays the GSM burst running across the display.

1093.4820.12

2.65

E-2

Time Domain Measurements FSP

5. Trigger on the rising edge of the burst using the video trigger and shift beginning of burst to the middle of the screen.

½

Press the TRIG key.

½

Press the VIDEO softkey and enter 70%.

The FSP displays a stable image with the GSM burst at the start of the trace.

½

Press the TRIGGER OFFSET softkey and enter -1 ms.

The FSP displays the GSM burst in the right half of the graph.

6. Configure the power measurement in the time domain.

½

Press the MEAS key.

½

Press the TIME DOM POWER

×

softkey.

½

Set the LIMITS softkey to ON.

½

Press the

START LIMIT

softkey.

½

Place the vertical line on the start of the burst using the spinwheel.

½

Press the

STOP LIMIT

softkey.

½

Place the second vertical line on the end of the burst using the spinwheel. .

The FSP displays the power during the switch-on phase of the burst.

Fig. 2-52 Measuring power during the switch-on phase of the burst

7. Define the measured power as the reference and switch on relative power measurement.

½

Press the

NEXT

key.

The side menu for setting the power measurement is opened.

½

Set the

POWER ABS/REL

softkey to

REL

.

½

The power relative to the power during the switch-on phase of the burst is displayed.

½

Press the

SET REFERENCE

softkey.

The measured power of the GSM burst is defined as the reference.

1093.4820.12

2.66

E-2

FSP Time Domain Measurements

8. Measure the power during the switch-off phase of the burst.

½

Press the

TRIG

key.

½

Set the

POLARITY POS/NEG

softkey to

NEG

.

The FSP triggers on the falling edge of the burst. The burst is then shifted to the left half of the screen. The power is measured in the switch-off phase. The start of the burst is shifted to the middle of the screen and the power is measured during the switch-off phase relative to the reference power (= burst power).

Fig. 2-53 Measuring the S/N ratio of the GSM burst signal in the time domain

1093.4820.12

2.67

E-2

FSP Contents - Manual Operation

Contents - Chapter 3 "Manual Operation"

3 Manual Operation ................................................................................................ 3.1

The Screen........................................................................................................................................ 3.1

Diagram Area .......................................................................................................................... 3.2

Indications in the Diagram Area .................................................................................... 3.3

Full Screen .................................................................................................................... 3.8

Split Screen ................................................................................................................... 3.8

Softkey Area ............................................................................................................................ 3.9

Hotkey Area ........................................................................................................................... 3.10

Calling and Changing the Menus ................................................................................................. 3.10

Setting Parameters ........................................................................................................................ 3.11

Numeric Keypad .................................................................................................................... 3.11

Roll-key and Cursor Keys ...................................................................................................... 3.12

Selection and Setting of Parameters via Keys or Softkeys.................................................... 3.13

Editing of Numeric Parameters.............................................................................................. 3.16

Entry of Alphanumeric Parameter ......................................................................................... 3.19

Editing with External Keyboard.................................................................................... 3.19

Editing with Help Line Editor........................................................................................ 3.20

Selection and Setting of Parameters via Tables.................................................................... 3.21

Menu Overview .............................................................................................................................. 3.24

FREQUENCY Key ................................................................................................................. 3.24

SPAN Key.............................................................................................................................. 3.25

AMPT Key.............................................................................................................................. 3.26

MKR Key................................................................................................................................ 3.27

MKR-> Key ............................................................................................................................ 3.28

MKR FCTN Key ..................................................................................................................... 3.29

BW Key.................................................................................................................................. 3.30

SWEEP Key........................................................................................................................... 3.31

MEAS Key.............................................................................................................................. 3.32

TRIG Key ............................................................................................................................... 3.33

TRACE Key ........................................................................................................................... 3.34

LINES Key ............................................................................................................................. 3.35

DISP Key ............................................................................................................................... 3.36

FILE Key ................................................................................................................................ 3.37

CAL Key................................................................................................................................. 3.38

SETUP Key............................................................................................................................ 3.39

HCOPY Key........................................................................................................................... 3.40

Hotkey Menu.......................................................................................................................... 3.41

LOCAL Menu ......................................................................................................................... 3.41

Menu Overview Network Mode..................................................................................................... 3.42

Menu Overview Option Ext. Generator Control .......................................................................... 3.43

1093.4820.12

I-3.1

E-1

FSP

3 Manual Operation

The Screen

Chapter 3 provides an overview of the operating concept and the basic steps of manual operation of the

FSP. This includes a description of the screen, of the control of menus and of the setting of parameters.

An overview of the menus will be listed at the end of this chapter.

The functions of the menus are described in dtail in Chapter 4. Chapter 2 contains a short introduction on step-by-step simple measurements. The remote control of the instrument is described in Chapters 5,

6 and 7.

The operation of the FSP is menu-controlled via keys, hotkeys and softkeys. The setting of the instrument and test parameters in the menus is made either directly via softkeys or by entry of values in entry fields and by selection in tables. The operating mode and the screen mode is selected via the hotkeys.

If required, data entry windows and tables are superimposed on the screen.

The Screen

The screen informs continuously on the results and parameters of the selected measuring functions. It shows the assignment of the softkeys and menus, which are required for setting the measuring parameters. The display of test results, the softkey labeling and the type of menu depend on the selected measuring function.

The screen is subdivided into three areas:

Diagramm area

| hotkey area

| softkey area

|

Fig. 3-1 Subdivision of screen

1093.4820.12

3.1

E-2

The Screen

Diagram area

Softkey area

Hotkey area

FSP

This area contains the measuring diagrams and other measured-value information as well as the parameters and status information which are important for analysis of the results.

In addition, message fields, entry windows and tables may be shown in this area.

This area contains the instrument functions which can be selected via the softkeys. The softkey area is not superimposed by other graphics.

This area contains the available operating modes and screen modes. The hotkey area is not superimposed by other graphics.

Diagram Area

Logo Title/date Hardwaresettings Marker/deltamarker

Reference/ level

Status

Information

Trace-info

Enhancement label

Measurement window

Level axislabelling

Frequency axis labelling

Fig. 3-2 Subdivision of the FSP screen in analyzer mode (without measuring diagram)

1093.4820.12

3.2

E-2

FSP The Screen

Marker

Limit line Limit line

Deltamarker

Fig.3-3 Measuring diagram

Indications in the Diagram Area

The following graphic elements are displayed in the diagram area:

General indications

Indication of the logo

Logo

Screen title

Date / time

Hardware settings

Indication of selected screen title

Indication of date and time

Ref

Offset

Att

EATT

RBW

VBW

SWT

Indication of the reference level

Indication of the offset of reference level.

Indication of the set RF attenuation.

Indication of the set RF attenuation with electronic attenation (only with option Electronic Attenuaror, FSP-B25).

Indication of the set resolution bandwidth.

If the bandwidth does not correspond to the value of the automatic coupling, a green asterisk "*" is prefixed to the field.

Indication of the set video bandwidth.

If the bandwidth does not correspond to the value of the automatic coupling, a green asterisk "*" is prefixed to the field.

Indication of the set sweep time.

If the sweep time does not correspond to the value of the automatic coupling an asterisk "*" is prefixed to the field. The colour of the asterisk turns red as soon as the sweep time falls below the value of the automatic coupling.

1093.4820.12

3.3

E-2

The Screen

Marker/deltamarker

FSP

This label displays the position of the last selected marker or deltamarker in the x and y-directions and the marker/deltamarker index.

The square brackets contain the curve which the marker is assigned to and the active measuring function of the marker indicated. The measuring function of the markers in the second field is indicated by the following abbreviations:

FXD reference fixed active

PHN phase noise measurement active

CNT frequency counter active

TRK signal track active

NOI noise measurement active

MOD measurement of AM modulation depth active

TOI TOI measurement active (3 rd

order intercept)

Indication of the result of the limit check.

Limit check

X-axis labelling

Display of the x-scaling.

10 MHz/DIV

Center 1.2345678901234 GHz

Start 1.2345678901234 GHz

Span 1.2345678901234 GHz

Stop 1.2345678901234 GHz

Trigger 1.234 ms

The distance between two grid lines is displayed in this label.

The set center frequency or start frequency is displayed in this label depending on whether the keys FREQ/SPAN or the softkeys

START/STOP were last pressed.

If span = 0 Hz, the center frequency is always displayed.

The set frequency range (

SPAN

) or the stop frequency is displayed, depending on whether the keys FREQ/SPAN or the softkeys

START/STOP were last pressed.

If span = 0 Hz, the trigger moment (

PRETRIGGER

) is displayed.

Status information

UNCAL

The status information on the left side of the diagram hint at irregularity

(e.g. UNCAL)

"UNCAL" is indicated under the following circumstances:

• correction data are switched off (menu CAL, CAL CORR OFF).

Þ switch on CAL CORR ON or PRESET

• no valid correction data. This may occur after a cold start of the instrument following a firmware update.

Þ record correction data

1093.4820.12

3.4

E-2

FSP

OVLD / IFOVL

MSG / LOUNL

Trace info:

OVEN

<n> <detector> <*>

<mode>

<trace math>

Example:

1 PK *

CLRWR

1-2

Instrument settings

(Enhancement Labels)

The Screen

OVLD is indicated when the input mixer is overloaded.

Þ

Increase input attenuation

IFOVL is indicated when overload occurs in the IF signal path after the input mixer.

Þ

Increase reference level

MSG is indicated if a failure has occurred which impair correct measurement. The exact error message can be queried in the menu

SETUP SERVICE INFO

. The display disappears after the cause for the error has been eliminated.

LOUNL is indicated when an error occurs in the frequency processing of the instrument.

OVEN is indicated when the crystal oscillator (option FSP-B4) has not yet reached its operating temperature. This indication vanishes after a few minutes after switch on.

Every active measurement curve (trace

BLANK) is allocated a trace info of two or three lines at the left of the diagram. The trace info has the same colour as the measurement curve.

n = trace number (

1 ... 3

)

AP:

AUTOPEAK detector

PK:

MAX PEAK detector

MI:

MIN PEAK detector

SA:

SAMPLE detector

AV:

AVERAGE detector

RM:

RMS detector

QP:

QUASIPEAK detector

* mode

= indicates that the selected detector does not correspond to that of the automatic coupling.

= indication of sweep mode

CLRWR:

MAXH:

CLEAR/WRITE

MAX HOLD

MINH:

AVG:

VIEW:

MIN HOLD

AVERAGE

VIEW

Trace math = trace math active

1 - 2

trace 1 - trace 2

1 - 3:

trace 1 - trace 3

Indication of user instrument settings which influence the measuring result and which are not immediately obvious when viewing the measured values.

1093.4820.12

3.5

E-2

The Screen

Entry fields:

Entry window

Tables

The data entry window is superimposed in the left upper corner of the diagram area, if required. It covers the display of the title and the time.

The field is used to enter numeric or alphanumeric device parameters.

The tables are superimposed in the diagram area, if required. Sie dienen der Anzeige und Konfiguration von Geräteparametern.

1093.4820.12

3.6

E-2

FSP

Message windows:

Message field

System messages

Traces:

1 to 3

Limit lines

The Screen

Message fields provide notes on measurements, e.g. results of the limit check (PASS/ FAIL).

These notes are no error messages, which are indicated as system messages.

They can be masked out by pressing the

ESC

key.

System messages indicate warnings and error messages.

Message without action field:

These system messages contain only arbitrary information. They hint at events which are of interest for the user but do not affect the measurement or functioning of the instrument.

They are deleted either automatically after a predefined time has passed (3 seconds) or upon any keystroke or mouse click.

Message with action field:

These system messages require a decision to be taken by the user.

They are not deleted until any action has been selected. Deletion of the message initiates the action selected and appropriate measures to be taken. The action field consists of one (OK), two (OK/ CANCEL) or three (arbitrary) buttons.

The user may select one of the buttons using the cursor keys and initiate the associated action by means of the unit keys. The ESC key is used to acknowledge the message without releasing any action.

Up to 3 traces in each measurement diagram can be displayed simultaneously.

Limit lines are used to mark level curves or spectral distributions which must not be exceeded or dropped below.

The FSP provides two display modes:

Full Screen:

Split Screen:

1 window, the measurement is performed in the active diagram.

2 windows, the measurements are performed in both diagrams.

1093.4820.12

3.7

E-2

The Screen FSP

Full Screen

In the full-screen mode, the settings and measurements are performed in the active visible window. All indications on the screen refer to this window. The designation (SCREEN A or SCREEN B) is inserted as enhancement label A or B on the right diagram margin.

Switching between the windows is by means of

SCREEN A/B

hotkey. The current measurement is terminated when its window is blanked out.

Switching from split-screen to full-screen mode is performed in menu

DISP

.

Split Screen

In Split Screen mode, the screen is divided into two halves.

Fig.3-4 Subdivision of the screen in Split Screen mode

The upper half is assigned Screen A, the lower one Screen B. The settings for measurement can be selected independently for both screens. E.g., a spectrum may be displayed in Screen A and a time amplitude in the time range is displayed in Screen B.

The indications which are valid only for one window appear in the margin of the associated diagram.

Indications which are valid for the two windows are displayed between the diagrams.

The window for entry of the measuring parameters or the marker operation is selected using the

SCREEN A/B

hotkey. The measurements are simultaneously performed in the two windows irrespective of the currently active one.

Switching from full-screen to split-screen mode is performed in menu

DISP

.

1093.4820.12

3.8

E-2

FSP The Screen

Softkey Area

The softkeys are assigned to the nine keys on the right side of the display

The setup of the softkey area is independent of the operating mode. It consists of the following graphic elements:

Softkey menu:

Fig.3-5

SOFTKEY

LABEL 1

SOFTKEY

LABEL 2

SOFTKEY

LABEL 3

SOFTKEY

LABEL 4

SOFTKEY

LABEL 5

SOFTKEY

LABEL 6

SOFTKEY

LABEL 7 indication of submenu (arrow) softkey active (green) softkey function not available

(without 3D frame) softkey active, opens a data entry field (red)

SOFTKEY

LABEL 8

SOFTKEY

LABEL 9

Þ indication of side menu

Setup of the softkey area

The softkeys have different functions depending on the instrument state. Therefore, their labeling can be varied. The labeling of all softkeys which call a submenu includes a

ß

arrow.

The function and current state of the softkeys is indicated in the label by different texts and colors. The color assignment is factory-set as follows:

Table 3-1 Factory-set color assignment of soft keys

Softkey color Meaning

gray green red

Softkey switched off

Softkey switched on

Softkey switched on and data entry active

These colors can be changed by the user as desired in the

DISP

-

CONFIG DISPLAY

menu.

A softkey is switched on or off by pressing the respective hardkey (see following section "Setting the

Parameters").

Softkeys are masked out, too, if the functionality which they represent is not available. A distinction has to be made between two cases:

If an instrument function depends on an option, and if this option is not fitted, the associated softkey is masked out,.

If the instrument function is not available temporarily due to specific settings, the softkey is displayed without the 3D frame.

The label " " on the right lower corner of the softkey area indicates that a side menu is available. The side menu is called by pressing the

NEXT

key.

1093.4820.12

3.9

E-2

Calling and Changing the Menus FSP

Hotkey Area

Hotkeys are allocated to the eight keys on the bottom margin of the screen. They change between modes and the active diagrams.

The menu only shows the hotkeys which are actually used:

SPECTRUM

SCREEN B

A keystroke activates the associated hotkey. An activated hotkey changes its frame:

SPECTRUM

Calling and Changing the Menus

The operation of the FSP is menu-controlled via keys and softkeys. Various softkey menus are displayed depending on the instrument status. The individual menus constitute the so-called menu tree.

The top menu (the root of the menu tree) is always called by means of a keystroke. Arrows at the lower edge of the softkey area indicate whether a supplementary menu can be entered or not.

Softkeys with an arrow allow for branching into further menus (so-called submenus): The field " " at the lower right side of the softkey area indicates that this menu has a side menu.

The menu change keys on the front panel below the softkey area allow for switching between the main menu and the side menus and submenus.

NEXT

The

NEXT

key calls the side menu.

PREV

The

PREVIOUS

key returns to the next higher menu.

Several menus provide for automatic change, i.e., return to the next higher menu is caused automatically after pressing a softkey.

Selection of a submenu is always effected via a softkey.

SOFTKEY

The labeling of all softkeys which call a submenu includes a

ß

arrow.

1093.4820.12

3.10

E-2

FSP Setting Parameters

Setting Parameters

Parameters are set either by simple selection (selection parameters) or by (alpha)numeric entries in data entry windows or tables.

The numeric keypad on the front panel, an external keyboard (optional), a roll-key and the cursor keys are provided for the entry of instrument parameters in an entry window or in a table.

The external keyboard is optional. If it is not fitted, the help line editor is called automatically for entry of alphanumeric parameters. The help line editor provides for selection of individual letters and a number of special characters which are copied into the actual entry window.

Numeric Keypad

7

4

1

0

BACK

8

5

2

.

-

9

6

3

ESC

CANCEL

GHz

-dBm s

V

MHz dBm ms kHz dB

µs

µV

Hz dB..

ns nV

ENTER

The numeric keypad is provided for entry of numeric parameters. It contains the following keys:

Number keys 0 to 9

Decimal point

Inserts a decimal point "." at the cursor position.

Sign key

Changes the sign of the mantissa or exponent of a numeric parameter.

A "-" is inserted at the cursor position in case of an alphanumeric parameter.

Unit keys (

GHz/-dBm

,

MHz/dBm

,

kHz/dB

and

Hz/dB

)

Provide the numeric value entered with the selected unit and terminate the entry.

The unit keys are all assigned the value "1" for dimensionless quantities or for level entries (e.g., in dB).

The unit keys thus assume the function of an

ENTER

key. The same applies for an alphanumeric entry.

Open and close the selection windows of tables.

BACK

key

Deletes the character left to the cursor with numeric entry.

– Allows for toggling between the current and the previous values subsequent or prior to entry (UNDO function).

ESC/CANCEL

key

– Aborts the entry before it has been terminated. The previous value is restored.

– Closes the entry field after termination of input.

– Closes system messages.

ENTER

key

– Terminates the input of dimensionless quantities. The new value is set.

Note:

The ENTER keys assumes the function of the

Hz key for frequency input, and the function of the

µ

s(kHz) key for time input.

1093.4820.12

3.11

E-2

Setting Parameters FSP

Roll-key and Cursor Keys

The roll-key and the cursor keys are arranged besides the numeric keypad.

The roll-key has various functions:

With numeric entry, the instrument parameter is incremented (turning clockwise) or decremented (turning counterclockwise) at a defined step size.

In tables, the roll-key can be used to shift the cursor horizontally or vertically when no entry window is open. The direction (horizontal/ vertical) is switched over using the cursor keys.

The roll-key is used with the help-line editor to select the individual letters.

It can be used to shift markers, display lines, limit lines etc.

Pressing the roll-key terminates the input of parameters.

In tables, the cursor keys are used to shift the cursor between the lines and columns of the table.

The keys

and

are used to shift the cursor inside the entry window to reach a particular position in the string.

The keys and

– increase or decrease the value of a parameter for numeric input .

– switch between editing line and help line editor for alphanumeric input.

1093.4820.12

3.12

E-2

FSP Setting Parameters

Selection and Setting of Parameters via Keys or Softkeys

The selection of parameters and their settings is effected by means of a key, a softkey or in a table depending on the hierarchical level of the menu they are assigned to. Selection and setting of parameters in tables is described in section "Selection and Setting of Parameters in Tables" .

Selection via key

Most keys of the FSP are used to enter menus where the selection and the settings are made. Few settings can be made directly by means of a keystroke, only.

Example: Call up of preset settings

Ø

Press

PRESET

key

The FSP is brought into a predefined initial state.

PRESET

Selection via softkey

1. The softkey is active or inactive.

In most cases the selection is made by pressing the respective softkey. There are various alternatives of making the selection:

Example: Switching on/off the frequency counter

Ø

Press

MKR

key.

Ø

Press

SIGNAL COUNT

softkey.

Each time the softkey is pressed, the marker info list is switched on or off. If the softkey is active (= marker info list on), it is illuminated.

SIGNAL

COUNT

SIGNAL

COUNT

2. The softkey acts like a toggle switch, each pressing changes the active selection.

Example: Selection of the reference (internal or external)

Ø

Press

SETUP

key.

Ø

Press

GENERAL SETUP

softkey, the

GENERAL

SETUP

submenu is opened.

Ø

Press

REFERENCE INT/EXT

softkey.

With each pressing, the checkmark on the softkey changes from INT (internal reference) to EXT

(external reference) and vice versa. When in the active setting the softkey menu item is illuminated.

REFERENCE

INT EXT

REFERENCE

INT EXT

1093.4820.12

3.13

E-2

Setting Parameters FSP

3. Various softkeys act like selection switches. Only one softkey may be active at a time.

Example: sweep setting

Ø

Press

SWEEP

key.

Ø

Press

CONTINOUS SWEEP

softkey.

The continuous sweep is thus set. The

CONTINOUS

SWEEP

softkey is colored (factory-set: green). The second alternative, a series of n sweeps according to the trigger definition, can be selected via the

SINGLE

SWEEP

softkey in the same menu. Only one of the two softkeys can be active at a time, the softkeys thus act like selection switches.

CONTINUOUS

SWEEP

SINGLE

SWEEP

CONTINUOUS

SWEEP

SINGLE

SWEEP

4. The softkey is used to select the parameter, the setting is made in an alphanumeric data entry window.

Example: SWEEP COUNT parameter

Ø

Press

SWEEP

key

Ø

Press

SWEEP COUNT

softkey.

The window for entering the number of sweeps for the

SINGLE SWEEP mode is opened. The softkey is colored (factory-set: red). (Data entry is described in the next section).

SWEEP

COUNT

100

1093.4820.12

3.14

E-2

FSP Setting Parameters

4. The softkey is used to select the parameter, the setting is made in an (alpha)numeric data entry window. The softkey function is switched on. To switch off the function, the softkey has to be pressed again.

Example: parameter MARKER

Ø

Press

MRK

key.

Ø

Press

MARKER 1

softkey.

The window for entering the marker frequency is opened. The softkey is colored (factory set: red).

Marker1 is switched on and the peak search is started.

MARKER 1

42.03456788 MHz

Ø

Press

MARKER 2

softkey.

The entry window for the marker frequency of marker 2 is opened. The softkey is colored (red), marker 2 is switched on, and the

MARKER 1

softkey turns green.

MARKER 1

MARKER 2

1.746729018 GHz

Ø

Press

MARKER 1

softkey again.

Marker 1 is switched off.

5. The softkey selects the parameter, the setting is made in a selection table.

Example: Selection of the sorting criteria of a file list

Ø

Press

FILE

key.

Ø

Press

FILE MANAGER

softkey.

Ø

Press

SORT MODE

softkey.

A selection table is displayed. The softkey is colored

(factory-set: red). (operation see below).

SORT

MODE

SORT MODE by NAME by DATE/TIME by EXTENSION

1093.4820.12

3.15

E-2

Setting Parameters FSP

Editing of Numeric Parameters

The entry of numeric values is always made in a data entry window, which is displayed automatically after selection of the parameter.

Head line with parameter name

START FREQUENCY

10.2457535 GHz

Editing line with parameter value and unit

START FREQUENCY OUT OF RANGE

Status and message line

The headline indicates the name of the instrument parameter, which has been selected. The entry is made in the editing line. Subsequent to calling the entry window, the current parameter value including the unit is displayed left-justified in the editing line. Status and error messages which refer to the current entry are displayed in the third and (optionally) fourth line.

Note:

Entry windows may be represented transparent (cf. DISPLAY - CONFIG DISPLAY menu)

Entry of a numeric value

Ø

Call data entry window (cf. selection of parameters)

The editing line indicates the current value

Example: center frequency (frequency-sweep mode)

FREQ

CENT ER FRE QUENC Y

1.5 GHz

Entry via number keys

Ø

Enter required value via number keys.

Example:

2

0

0

MHz dBm

ms

mV

CENT ER FRE QUENC Y

200 MHz

Entry via cursor keys Ø

Cursor or until obtaining the required value.

Example:

CENT ER FRE QUENC Y

200 MHz

1093.4820.12

3.16

E-2

FSP Setting Parameters

Entry via roll-key

Ø

Rotate the roll-key until reaching the required value.

The variation step size increases with increasing rotational speed.

Turning the roll-key clockwise increases the value, turning it counterclockwise decreases the value.

Example:

Terminating the entry

CENT ER FRE QUENC Y

1.75 GHz

Note:

When the value is modified by means of the roll-key or the cursor keys the new value is immediately set.

Ø

Press one of the unit keys

The unit is entered in the entry window and the new setting is accepted by the instrument.

For dimensionless quantities:

Ø

Press the ENTER key or the roll-key

The new setting is accepted by the instrument.

A few data entry windows close automatically whereas others like the entry window for the start frequency remain open even after termination of the entry. They can be closed by pressing the

ESC

key.

If an error occurs, a corresponding error message is displayed in the status line of the entry window, e.g.,

"Out of range", "Value adjusted", etc. In this case, the new value is not accepted for the instrument setting.

Example:

0

Hz dB.

ns

nV

CENT ER FRE QUENC Y

0 Hz out of range

Correcting the entry

Deleting an entry

Ø

Position the cursor beside the digit which is to be deleted using the cursor keys or

.

Ø

Press the

BACK

key. The entry left to the cursor is deleted.

Ø

Enter new numbers. The number is inserted to the left of the cursor, the other numbers are shifted right.

1093.4820.12

3.17

E-2

Setting Parameters FSP

Restoring the original value

Ø

Press the

BACK

key

For numerous parameters, the data administration of the instrument stores the previously valid parameter value in addition to the current value. The BACK key can be used to toggle between these two values. This applies for terminated entries as long as the data entry window is displayed.

Aborting the entry

Ø

Press

ESC

key

The original parameter value is restored. The new entry is deleted.

Ø

Press

ESC

key again

The entry window is closed, the original value remains active.

or

Ø

Press any key or any softkey (even the softkey which has opened the entry window).

The entry is aborted and the entry window is closed.

The original value remains active.

1093.4820.12

3.18

E-2

FSP Setting Parameters

Entry of Alphanumeric Parameter

A help-line editor or an external keyboard (optional) are provided for the entry of alphanumeric instrument parameters.

The roll-key and the exponent key have no function with alphanumeric entry. All unit keys assume the function of an ENTER key.

The entry is always made in a data entry window which is displayed automatically upon selection of the parameter. The editing line comprises 60 characters. Up to 256 characters may be entered. If a text exceeds 60 characters the contents is shifted automatically 20 characters left or right when the left or right margin of the editing line is touched by the cursor.

Editing with External Keyboard

COMMENT CHANNEL

Entry of text

Correcting the entry

Terminating the entry

Aborting the entry

input lin message line

Ø

Select parameter.

The data entry is active automatically upon calling the data entry window. The cursor is positioned at the beginning of the previous entry.

Ø

Press the required character on the keyboard.

The character is inserted prior to the cursor.

Ø

Enter further characters

Ø

Delete the entry using the

DELETE

key or

BACKSPACE

key.

Ø

Press the

ENTER

key of the external keyboard

The data entry window is closed and the new value is accepted for the instrument.

Ø

Press the

ESC

key on the front panel or

Ø any softkey.

The data entry window is closed, the original value is retained.

1093.4820.12

3.19

E-2

Setting Parameters FSP

Editing with Help Line Editor

If the external keyboard is not fitted, the help line editor is called automatically with entry of alphanumeric parameters. The help line editor is an extension of the alphanumeric entry window. It contains the complete alphabet with uppercase and lowercase letters as well as special characters in two lines of 52 characters, each. Individual letters and a series of special characters can be selected in the help line editor and copied into the entry line.

CALIBRATION FILE

C:\MEASDATA\STANDARD.CAL

input line message line

A BCDEFGHIJKLMNOPQRSTUVWXYZÄÖÜ!?"$%/(){[]}\+*#~'-_=.: abcdefghijklmnopqrstuvwxyzäöüß,;<>|@µ²³^°1234567890

help line editor

The cursor keys or toggle between entry in the editing line and selection in the help line editor.

Entry of text

Ø

Select parameter.

The data entry is active automatically upon calling the data entry window. The cursor is positioned on the left in the editing line.

Ø

Position the cursor in the help line editor using the cursor key.

The cursor marks the first letter of the editor.

Ø

Locate the cursor on the character which is to be entered into the editing line using the cursor keys or or the roll-key.

Ø

Press the

ENTER

key or the roll-key

The character is entered in the editing line.

Correcting the entry

Ø

Locate the cursor in the editing line using the cursor key .

Ø

Position the cursor after the character which is to be deleted using the cursor keys and .

Ø

Press the

BACK

key.

The entry left to the cursor is deleted.

Terminating the entry

Aborting the entry

Ø

Locate the cursor in the editing line using the cursor key .

Ø

Press any unit key or the roll-key.

The data entry window is closed, the new entry is accepted by the instrument.

Ø

Press the

CLR

key.

The data entry window is closed, the previous entry is retained.

1093.4820.12

3.20

E-2

FSP Setting Parameters

Selection and Setting of Parameters via Tables

The FSP uses numerous tables for display and configuration of instrument parameters.

The tables differ considerably in the number of lines, columns and inscriptions. The basic steps of operation for the selection and setting of parameters are, however, the same for all tables. Shown below is the typical entry of parameters into a table.

Note:

Most of the tables are coupled to a softkey menu which provides further functions for editing table entries such as deletion of tables, copying of lines or columns, marking of table elements, restoring default states.

The definition of individual tables and the operation of particular editing functions can be looked up in the description of the corresponding softkey menu.

1. Activating the table

If the menu has only one table, the latter is activated automatically subsequent to calling this menu in most cases and the marking cursor is positioned to the top field of the left column.

If the menu contains various tables, the table of interest must be selected using the softkey which is labeled with the title of the table.

2. Selection of the parameter

NAME

GSM22UP

LP1GHz

LP1GHz

MIL461A

LIMIT LINES

COMPATIBLE LIMIT CHECK TRACE off on off off

1

2

1

2 marking cursor

MARGIN

0 dB

0 dB

0 dB

-10 dB

Selection of the parameter (or the setting) is made using the marking cursor.

Ø

Press the cursor keys to move to the wanted field.

or

Ø

Rotate the roll-key until the wanted field is marked. The cursor keys are used to specify the direction of the roll-key movement

(horizontal or vertical)

When shifting the cursor, elements may be skipped which can not be edited. Table elements, which can not be selected are indicated by a different color.

1093.4820.12

3.21

E-2

Setting Parameters FSP

Ø

Press the

ENTER

key or the roll-key.

The parameter / the setting has been selected.

The selected parameter can be edited the way described below:

3. Editing the marked parameter

NAME

GSM22UP

LP1GHz

LP1GHz

MIL461A

LIMIT LINES

COMPATIBLE LIMIT CHECK TRACE off on off off

1

2

1

2

MARGIN

0 dB

0 dB

0 dB

-10 dB checkmark

TRACE

1

2

3

MARGIN

-10 dB

a) Toggling between two states

If an element of a table can be switched on and off only, the unit keys are used to toggle between these two states.

Ø

Press one of the unit keys.

The table element is switched on and provided with a checkmark. (

).

Ø

Press one of the unit keys once more.

The table element is switched off.

or

Ø

Press one of the unit keys.

The table element is switched on, "on" is displayed.

Ø

Press one of the unit keys once more.

The table element is switched off, "off" is displayed

1093.4820.12

3.22

E-2

FSP

b) Opening a data entry window c) Opening a selection table

Abortion of entry

Setting Parameters

If a table entry consists of an (alpha-) numeric value, selection of the latter causes the corresponding entry window to be opened.

Note:

For numeric or alphanumeric instrument parameters, the editing operation may be started by entering any number or letter on the front panel or on the external keyboard. In this case, the data entry window is opened automatically.

If a table entry may have various states (e.g., colors from a color pallet, fixed filter bandwidths, etc.), a table indicating all possible states is displayed with selection. The current state is and marked by a checkmark and by the cursor.

Ø

Set the cursor to the desired setting.

Ø

Press one of the unit keys.

The setting is switched on and marked (

). The selection table closes and the value is transferred to the original table. The cursor is positioned automatically on the next table element.

Ø

Press the

ESC

key.

The current entry/ selection is aborted and the original setting is restored.

Scrolling

Some tables contain more entries than can be displayed on one screen page. In this case, a

scrollbar

is displayed at the right margin of the table, whose slider shows the current position in the text.

Ø

Actuate the

PAGE UP

or

PAGE DOWN

softkeys.

The table is paged forward or back by one page.

Ø

Press cursor key or .

The table is scrolled up or down by one line.

1093.4820.12

3.23

E-2

Menu Overview FSP

Menu Overview

The following section gives a graphical overview of the FSP menus. Side menus are marked by an arrow directed to the left/right, submenus by an arrow showing upwards.

The menus appear in the order corresponding to the arrangement of keys on the front panel. The available hotkeys and the LOCAL menu appearing during the remote control of the instrument are also displayed.

The functions of menus are described in detail in Chapter 4. The IEC/IEEE-bus command associated with each softkey is indicated. In addition, the softkey list at the of Chapter 6 gives the assignment of

IEC/IEEE-bus commands to softkeys.

FREQUENCY Key

FREQ

CENTER

CF-

STEPSIZE

START

STOP

Span <> 0

0.1*SPAN

0.5*SPAN x * SPAN

= CENTER

= MARKER

MANUAL

Span = 0

0.1 * RBW

0.5 * RBW x * RBW

= CENTER

= MARKER

MANUAL

FREQUENCY

OFFSET

SIGNAL

TRACK

TRACK

ON OFF

TRACK

BW

TRACK

THRESHOLD

SELECT

TRACE

1093.4820.12

3.24

E-3

FSP

SPAN Key

SPAN

SPAN

MANUAL

SWEEPTIME

MANUAL

FULL SPAN

ZERO SPAN

LAST SPAN

Menu Overview

1093.4820.12

3.25

E-3

Menu Overview

AMPT Key

AMPT

REF LEVEL

RANGE

LOG 100 dB

RANGE

LOG MANUAL

RANGE

LINEAR

UNIT

RF ATTEN

MANUAL

RF ATTEN

AUTO

MIXER

LEVEL

REF LEVEL

POSITION

REF LEVEL

OFFSET

GRID

ABS REL

EL ATTEN

AUTO

EL ATTEN

MANUAL

EL ATTEN

OFF

RF INPUT

50Ω 75Ω

Option FSP-B25

Option FSP-B25

Option FSP-B25 dBm dBmV dBµV dBµA

dBpW

VOLT

AMPERE

WATT

FSP

1093.4820.12

3.26

E-3

FSP

MKR Key

MKR MARKER 1

MARKER 2

MARKER 3

MARKER 4

MARKER

NORM DELTA

SIGNAL

COUNT

REFERENCE

FIXED

MARKER

ZOOM

ALL MARKER

OFF

MKR->TRACE

CNT RESOL

10 kHz

CNT RESOL

1 kHz

CNT RESOL

100 Hz

CNT RESOL

10 Hz

CNT RESOL

1 Hz

CNT RESOL

0.1 Hz

REF FXD

ON OFF

REF POINT

LEVEL

REF POINT

LVL OFFSET

REF POINT

FREQUENCY

REF POINT

TIME

PEAK

SEARCH

Menu Overview

1093.4820.12

3.27

E-3

Menu Overview

MKR-> Key

MKR

SELECT

MARKER

PEAK

CENTER

=MKR FREQ

REF LEVEL

=MKR LVL

NEXT PEAK

NEXT MODE

SEARCH

LIMITS

PEAK

EXCURSION

MRK->TRACE

LEFT

LIMIT

RIGHT

LIMIT

THRESHOLD

MKR -> CF

STEPSIZE

MIN

NEXT MIN

NEXT MODE

EXCLUDE

LO

ABSOLUTE

PEAK/MIN

SEARCH

NEXT LEFT

SEARCH

NEXT RIGHT

FSP

1093.4820.12

SEARCH LIM

OFF

3.28

E-3

FSP

MKR FCTN Key

MKR

FCTN

SELECT

MARKER

PEAK

NOISE MEAS

PHASE

NOISE

N DB DOWN

MARKER

DEMOD

MRK->TRACE

Menu Overview

MKR DEMOD

ON OFF

AM

FM

MKR

STOP TIME

CONT

DEMOD

NEW

SEARCH

SORT MODE

FREQ LEVEL

PEAK

EXCURSION

PH NOISE

ON OFF

REF POINT

LEVEL

REF POINT

LVL OFFSET

REF POINT

FREQUENCY

PEAK

SEARCH

LEFT

LIMIT

RIGHT

LIMIT

THRESHOLD

PEAK LIST

OFF

SIGNAL ID

1093.4820.12

3.29

E-3

Menu Overview

MEAS Key

MEAS

TIME DOM

POWER

CHAN PWR

ACP

OCCUPIED

BANDWIDTH

SIGNAL

C/N

MODULATION

DEPTH

TOI

SELECT

MARKER

CP / ACP

ON OFF

CP / ACP

STANDARD

CP/ACP

CONFIG

SET CP

REFERENCE

SWEEP

NADC

TETRA

PDC

PHS

CDMA

OFF

FAST ACP

ON OFF

DIAGRAM

ADJUST

REF LVL

ON

POWER

OFF

PEAK

SET

REFERENCE

POWER

ABS REL

RMS

MEAN

STANDARD

DEVIATION

LIMITS

ON OFF

START

LIMIT

STOP

LIMIT

ON

MAX HOLD

OFF

ON

AVERAGE

OFF

NUMBER OF

SWEEPS

FSP

APD

ON OFF

CCDF

ON OFF

PERCENT

MARKER

RES BW

NO OF

SAMPLES

SCALING

ADJUST

SETTINGS

CONT

MEAS

SINGLE

MEAS

X-AXIS

REF LEVEL

X-AXIS

RANGE

Y-AXIS

MAX VALUE

Y-AXIS

MIN VALUE

ADJUST

SETTINGS

DEFAULT

SETTINGS

C/N

C/No

CHANNEL

BANDWIDTH

ADJUST

SETTINGS

OCCUP BW

ON OFF

% POWER

BANDWIDTH

CHANNEL

BANDWIDTH

NOISE CORR

ON OFF

ADJUST

REF LVL

ADJUST

SETTINGS

NO. OF

ADJ CHAN

CHANNEL

BANDWIDTH

ADJ CHAN

BANDWIDTH

ADJ CHAN

SPACING

CP/ACP

ABS REL

ACP LIMIT

CHECK

EDIT

ACP LIMIT

CHAN PWR

/ HZ

SELECT

TRACE

ADJUST

SETTINGS

1093.4820.12

3.30

E-3

FSP

BW Key

BW

RES BW

MANUAL

VIDEO BW

MANUAL

SWEEPTIME

MANUAL

RES BW

AUTO

VIDEO BW

AUTO

SWEEPTIME

AUTO

COUPLING

RATIO

DEFAULT

COUPLING

FILTER

TYPE

VBW MODE

LIN LOG

RBW/VBW

SINE [1/3]

RBW/VBW

PULSE [.1]

RBW/VBW

NOISE [10]

RBW/VBW

MANUAL

SPAN/RBW

AUTO [50]

SPAN/RBW

MANUAL

Menu Overview

1093.4820.12

3.31

E-3

Menu Overview

SWEEP Key

SWEEP

CONTINUOUS

SWEEP

SINGLE

SWEEP

CONTINUE

SGL SWEEP

SWEEPTIME

MANUAL

SWEEPTIME

AUTO

SWEEP

COUNT

SWEEP

POINTS

SGL SWEEP

DISP OFF

FSP

1093.4820.12

3.32

E-3

FSP

TRIG Key

TRIG

FREE RUN

VIDEO

EXTERN

IF POWER

Option FSP-B6

RF POWER

TRIGGER

OFFSET

POLARITY

POS NEG

GATED

TRIGGER

GATE

SETTINGS

Option FSP-B6

TV TRIG

SETTINGS

Option FSP-B6

TV TRIGGER

ON OFF

VERT SYNC

VERT SYNC

ODD FIELD

VERT SYNC

EVEN FIELD

HOR SYNC

VIDEO POL

POS NEG

LINES

625 525

CCVS

INT EXT

Menu Overview

GATE MODE

LEVEL EDGE

POLARITY

POS NEG

GATE

DELAY

GATE

LENGTH

SWEEPTIME

PRINT

SCREEN

1093.4820.12

3.33

E-3

Menu Overview

TRACE Key

TRACE

SELECT

TRACE

CLEAR/

WRITE

MAX HOLD

AVERAGE

VIEW

BLANK

SWEEP

COUNT

DETECTOR

TRACE

MATH

MIN HOLD

T1-T2->T1

T1-T3->T1

TRACE

POSITION

AVG MODE

LOG LIN

ASCII FILE

EXPORT

DECIM SEP

. ,

COPY

TRACE

AUTO

SELECT

DETECTOR

AUTOPEAK

DETECTOR

MAX PEAK

DETECTOR

MIN PEAK

DETECTOR

SAMPLE

DETECTOR

RMS

DETECTOR

AVERAGE

DETECTOR

QPK

TRACE

MATH OFF

1093.4820.12

3.34

FSP

E-3

FSP

LINES Key

LINES

SELECT

LIMIT LINE

NEW LIMIT

LINE

EDIT LIMIT

LINE

DELETE

LIMIT LINE

X OFFSET

Y OFFSET

DISPLAY

LINES

NAME

VALUES

INSERT

VALUE

SHIFT X

LIMIT LINE

SHIFT Y

LIMIT LINE

SAVE

LIMIT LINE

DISPLAY

LINE 1

DISPLAY

LINE 2

FREQUENCY

LINE 1

FREQUENCY

LINE 2

TIME

LINE 1

TIME

LINE 2

Menu Overview

1093.4820.12

3.35

E-3

Menu Overview

DISP Key

DISP

FULL

SCREEN

SPLIT

SCREEN

REF LEVEL

COUPLED

CENTER B

= MARKER A

CENTER A

= MARKER B

CONFIG

DISPLAY

SCREEN

TITLE

TIME+DATE

ON OFF

LOGO

ON OFF

ANNOTATION

ON OFF

DATA ENTRY

OPAQUE

DEFAULT

COLORS 1

DEFAULT

COLORS 2

SELECT

OBJECT

BRIGHTNESS

TINT

SATURATION

PREDEFINED

COLORS

DISPLAY

PWR SAVE

FSP

1093.4820.12

3.36

E-3

FSP

FILE Key

FILE

SAVE

RECALL

EDIT

COMMENT

ITEMS TO

SAVE/RCL

DATA SET

LIST

DATA SET

CLEAR

DATA SET

CLEAR ALL

STARTUP

RECALL

FILE

MANAGER

EDIT

PATH

MAKE

DIRECTORY

FORMAT

DISK

RENAME

SORT

MODE

COPY

DELETE

SELECT

ITEMS

ENABLE

ALL ITEMS

DISABLE

ALL ITEMS

DEFAULT

CONFIG

Menu Overview

1093.4820.12

3.37

E-3

Menu Overview

CAL Key

CAL TOTAL

CAL

CAL ABORT

CAL CORR

ON OFF

CAL

RESULTS

PAGE UP

PAGE DOWN

FSP

1093.4820.12

3.38

E-3

FSP

SETUP Key

SETUP

REFERENCE

INT EXT

NOISE SRC

ON OFF

Option

FSP-B25

PREAMP

TRANSDUCER

GENERAL

SETUP

SYSTEM

INFO

SERVICE

INPUT

RF

INPUT

CAL

SELFTEST

SELFTEST

RESULTS

Menu Overview

FIRMWARE

UPDATE

RESTORE

FIRMWARE

TRANSDUCER

FACTOR

INSERT

LINE

DELETE

LINE

NEW

EDIT

DELETE

VIEW

TRANSDUCER

SAVE TRD

FACTOR

PAGE

UP

PAGE

DOWN

HARDWARE

INFO

STATISTICS

SYSTEM

MESSAGES

CLEAR ALL

MESSAGES

GPIB

ADDRESS

SOFT

FRONTPANEL

COM

INTERFACE

TIME +

DATE

CONFIGURE

NETWORK

NETWORK

LOGIN

FSP-

B16

FSP-

B16

ENTER

PASSWORD

OPTIONS

1093.4820.12

3.39

E-3

Menu Overview

HCOPY Key

HCOPY

PRINT

SCREEN

PRINT

TRACE

PRINT

TABLE

HARDCOPY

ABORT

DEVICE 1

DEVICE 2

COLORS

COMMENT

SCREEN A

COMMENT

SCREEN B

INSTALL

PRINTER

Option

FSP-B16

COLOR

ON OFF

SCREEN

COLORS

OPTIMIZED

COLORS

USER

DEFINED

SELECT

OBJECT

BRIGHTNESS

TINT

SATURATION

PREDEFINED

COLORS

SET TO

DEFAULT

FSP

1093.4820.12

3.40

E-3

FSP

Hotkey Menu

SPECTRUM

LOCAL Menu

Menu Overview

SCREEN B

LOCAL

1093.4820.12

3.41

E-3

Menu Overview

Menu Overview Network Mode

NETWORK

SOURCE

ON OFF

SOURCE

POWER

POWER

OFFSET

SOURCE

CAL

FREQUENCY

OFFSET

MODULATION

CAL

TRANS

CAL REFL

SHORT

CAL REFL

OPEN

NORMALIZE

REF VALUE

POSITION

REF VALUE

RECALL

EXT AM

EXT FM

EXT I/Q

MODULATION

OFF

FSP

1093.4820.12

3.42

E-3

FSP Menu Overview

Menu Overview Option Ext. Generator Control

NETWORK

SOURCE

CAL

CAL

TRANS

CAL REFL

SHORT

CAL REFL

OPEN

NORMALIZE

REF VALUE

POSITION

REF VALUE

RECALL

EXT SRC

ON OFF

SELECT

GENERATOR

FREQUENCY

SWEEP

EXT

SOURCE

1093.4820.12

3.43

E-3

FSP Contents - "Instrument Functions"

Contents - Chapter 4 "Instrument Functions"

4 Instrument Functions.......................................................................................... 4.1

FSP Initial Configuration –

PRESET

Key ....................................................................................... 4.2

Mode Selection –

HOTKEY

Bar ...................................................................................................... 4.3

Return to manual control –

LOCAL

Menu ..................................................................................... 4.4

Spectrum Analyzer Mode ................................................................................................................ 4.5

Frequency and Span Selection –

FREQ

Key........................................................................... 4.5

Setting the Frequency Span –

SPAN Key

............................................................................. 4.10

Level Display Setting and RF Input Configuration –

AMPT Key

............................................ 4.13

Electronic Attenuator ................................................................................................... 4.17

Setting the Bandwidths and Sweep Time –

BW

Key ............................................................. 4.18

List of available channel filters .................................................................................... 4.26

Sweep Settings –

SWEEP

Key.............................................................................................. 4.28

Triggering the Sweep–

TRIG

Key.......................................................................................... 4.31

Option FSP-B6 – TV and RF Trigger .......................................................................... 4.38

Selection and Setting of Traces –

TRACE

Key ..................................................................... 4.41

Selection of Trace Function......................................................................................... 4.41

Selection of Detector ................................................................................................... 4.49

Mathematical Functions for Traces ............................................................................. 4.54

Recording the Correction Data of FSP –

CAL

Key................................................................ 4.55

Markers and Delta Markers –

MKR

Key ................................................................................ 4.57

Frequency Measurement with the Frequency Counter ............................................... 4.59

Marker Functions –

MKR FCTN

Key ..................................................................................... 4.64

Activating the Markers................................................................................................. 4.65

Measurement of Noise Density ................................................................................... 4.65

Phase Noise Measurement ......................................................................................... 4.67

Measurement of the Filter or Signal Bandwidth .......................................................... 4.69

Measurement of a Peak List ....................................................................................... 4.70

AF Demodulation......................................................................................................... 4.72

Selecting the Trace ..................................................................................................... 4.73

Change of Settings via Markers –

MKR

Þ

Key.................................................................... 4.74

Power Measurements – Hardkey

MEAS

............................................................................... 4.82

Power Measurement in Time Domain......................................................................... 4.83

Channel and Adjacent-Channel Power Measurements .............................................. 4.88

Setting the Channel Configuration............................................................................... 4.95

Measurement of Signal Amplitude Statistics ............................................................. 4.106

Measurement of Carrier/Noise Ratio C/N and C/N o

.................................................. 4.112

Measurement of the AM Modulation Depth............................................................... 4.114

Measurement of the Third Order Intercept (TOI) ...................................................... 4.115

Setup of Limit Lines and Display Lines –

LINES

Key............................................................... 4.118

Selection of Limit Lines ............................................................................................. 4.119

Entry and Editing of Limit Lines ........................................................................................... 4.123

Display Lines ............................................................................................................. 4.128

Configuration of Screen Display –

DISP

Key ............................................................................ 4.131

Instrument Setup and Interface Configuration –

SETUP

Key.................................................. 4.137

External Reference Oscillator.............................................................................................. 4.138

External Noise Source ......................................................................................................... 4.138

1093.4820.12

I-4.1

E-3

Contents - "Instrument Functions" FSP

RF Preamplifier.................................................................................................................... 4.139

Transducer .......................................................................................................................... 4.139

Activating Transducer Factors and Transducer Sets ................................................ 4.139

Entry and Editing of Transducer Factors................................................................... 4.142

Programming the Interface Configuration and Time Setup ................................................. 4.146

Selecting the IEC/IEEE-Bus Address ........................................................................ 4.146

Serial Interface Configuration.................................................................................... 4.147

Setting Date and Time............................................................................................... 4.150

Configuration of Network Settings (with Option FSP-B16 only) ................................ 4.151

Enabling Firmware Options ....................................................................................... 4.153

Emulation of the Instrument Front Panel................................................................... 4.154

System Information.............................................................................................................. 4.155

Display of Module Data ............................................................................................. 4.156

Display of Device Statistics ....................................................................................... 4.157

Display of System Messages .................................................................................... 4.158

Service Menu....................................................................................................................... 4.159

General Service Functions ........................................................................................ 4.160

Selftest ...................................................................................................................... 4.160

Hardware Adjustment................................................................................................ 4.162

Firmware Update ................................................................................................................. 4.162

Saving and Recalling Data Sets –

FILE

Key .............................................................................. 4.163

Saving a Data Set................................................................................................................ 4.164

Recalling a Data Set: ........................................................................................................... 4.164

FILE Menu ........................................................................................................................... 4.165

Measurement Documentation –

HCOPY

Key .............................................................................. 4.172

HCOPY menu: ..................................................................................................................... 4.173

Selection of Printer Colors ................................................................................................... 4.178

Installation of a Local Printer ............................................................................................... 4.180

Installation of a Network Printer (with Option FSP-B16 only) .............................................. 4.183

Tracking Generator - Option FSP-B9 ......................................................................................... 4.187

Tracking Generator Settings................................................................................................ 4.188

Transmission Measurement ................................................................................................ 4.190

Calibration of Transmission Measurement................................................................ 4.190

Normalization............................................................................................................. 4.192

Reflection Measurement...................................................................................................... 4.196

Calibration of Reflection Measurement ..................................................................... 4.196

Calibration mechanism ........................................................................................................ 4.197

Frequency-Converting Measurements ................................................................................ 4.198

External Modulation of the Tracking Generator................................................................... 4.199

Option External Generator Control - FSP-B10 .......................................................................... 4.203

External Generator Settings ................................................................................................ 4.204

Transmission Measurement ................................................................................................ 4.205

Calibration of Transmission Measurement................................................................ 4.205

Normalization:............................................................................................................ 4.207

Reflection Measurement...................................................................................................... 4.211

Calibration of Reflection Measurement ..................................................................... 4.211

Calibration mechanism ........................................................................................................ 4.212

Frequency-converting Measurements ................................................................................. 4.213

Configuration of an External Generator............................................................................... 4.214

List of Generator Types Supported by the FSP................................................................... 4.216

1093.4820.12

I-4.2

E-3

FSP Contents - "Instrument Functions"

Option LAN Interface – FSP-B16 ................................................................................................ 4.219

Connecting the Instrument to the Network .......................................................................... 4.219

Installing the Software ......................................................................................................... 4.219

Installation and Configuration of the Driver for the Network Card ............................. 4.219

Selection of the Network Protocols ........................................................................... 4.222

Selection of the Network Services............................................................................. 4.222

Completion of the Installation .................................................................................... 4.223

Examples of Configurations ...................................................................................... 4.227

Subsequent Changing of the Network Configuration (Computer Name etc) ............ 4.227

Disabling the Autologin Mechanism .......................................................................... 4.227

Reenabling the Autologin Mechanism ....................................................................... 4.228

Deinstallation of the Network Driver – Installation of the MS Loopback Adapter ...... 4.228

Operating the Instrument on the Network............................................................................ 4.232

NOVELL Networks .................................................................................................... 4.232

MICROSOFT Network............................................................................................... 4.232

Defining Users........................................................................................................... 4.233

Login in the Network.................................................................................................. 4.234

Disabling the Autologin Mechanism .......................................................................... 4.234

Reenabling the Autologin Mechanism ....................................................................... 4.234

Using Network Drives................................................................................................ 4.235

Printing on a Network Printer .................................................................................... 4.237

Remote Data Transfer with TCP/IP Services............................................................ 4.239

File Transfer via FTP .................................................................................... 4.239

RSIB Interface .............................................................................................................................. 4.241

Remote Control via RSIB Interface ..................................................................................... 4.241

Windows Environment .............................................................................................. 4.241

Unix Environment ...................................................................................................... 4.242

RSIB Interface Functions..................................................................................................... 4.243

Overview of Interface Functions................................................................................ 4.243

Variables ibsta, iberr, ibcntl ....................................................................................... 4.244

Description of Interface Functions............................................................................. 4.245

Programming via the RSIB Interface ................................................................................... 4.251

Visual Basic ............................................................................................................... 4.251

Visual Basic for Applications (Winword and Excel)................................................... 4.254

C / C++ ...................................................................................................................... 4.255

1093.4820.12

I-4.3

E-3

FSP

4 Instrument Functions

Instrument Functions

All functions of the spectrum analyzer and their application are explained in detail in this chapter. The sequence of the described menu groups depends on the procedure selected for the configuration and start of a measurement:

1. Resetting the instrument -

PRESET

key

2. Setting the mode – hotkey bar and

LOCAL

key

3. Setting the measurement parameters - keys

FREQ

,

SPAN

,

AMPT

,

BW

,

SWEEP

,

TRIG

,

TRACE

,

CAL

4. Selecting and configuring the measurement function - keys

MKR

,

MKR->

,

MKR FCTN

,

MEAS

,

LINES

The instrument functions for general settings, printout and data management are described at the end of this chapter – keys

DISP

,

SETUP

,

FILE

and

HCOPY

.

The different softkeys of a menu are described from top to bottom and from the left to the right side menu. The submenus are marked by an indentation or displayed in a separate section. The whole path

(key - softkey - ...) is indicated in the line above the menu display.

An overview of the menus is given in chapter 3 which also contains the description of the operating concept.

The IEC/IEEE-bus commands (if any) are indicated for each softkey. For a fast overview a list of softkeys with the associated IEC/IEEE-bus commands is given at the end of Chapter 6.

An index at the end of the handbook serves as further help for the user.

1093.4820.12

4.1

E-2

FSP Initial Configuration FSP

FSP Initial Configuration – PRESET Key

PRESET

CAL

Using the

PRESET

key, the FSP can be set to a predefined initial state.

Notes:

The settings are selected in a way that the RF input is always protected against overload, provided that the applied signal levels are in the allowed range for the instrument.

The initial instrument state set by the PRESET key can be adapted to arbitrary applications using the STARTUP RECALL function. With this function the STARTUP RECALL dataset is loaded upon pressing the PRESET key. For further information refer to section "Saving and Recalling Data Sets".

Pressing the

PRESET

key causes the FSP to enter its initial state according to the following table:

Table 4-1 Initial State of FSP

Parameter

Mode

Center frequency

Center frequency step size

Span

RF attenuation

Reference level

Level range

Level unit

Sweep time

Resolution bandwidth

Video bandwidth

FFT filters

Span / RBW

RBW / VBW

Sweep

Trigger

Trace 1

Trace 2/3

Detector

Trace math

Frequency offset

Reference level offset

Reference level position

Grid

Cal correction

Noise source

Input

Display

Tracking Generator (only with option FSP-B9)

External Generator 1/2 (only with option FSP-B10)

Preamplifier (only with option FSP-B25)

El. Attenuator (only with option FSP-B25)

Settings

Spectrum

1.5 GHz / 3.5 GHz / 6.8 GHz / 15 GHz (FSP3/7/13/30)

0.1 * center frequency

3 GHz / 7 GHz / 13.6 GHz / 30 GHz auto (10 dB)

-20 dBm

(FSP3/7/13/30)

100 dB log dBm auto auto (3 MHz) auto (10 MHz) off

50

0.33

cont free run clr write blank auto peak off

0 Hz

0 dB

100 % abs on off

RF

Full screen, active screen A off off off off

1093.4820.12

4.2

E-2

FSP Mode Selection

Mode Selection – HOTKEY Bar

For fast mode selection FSP has seven keys (the so-called

HOTKEY

s) which can be allocated depending on the options installed on the instrument.

SPECTRUM

SCREEN B

Two keys are reserved for the basic model:

SPECTRUM

The

SPECTRUM

hotkey sets FSP to spectrum analysis mode.

The spectrum analysis mode is the basic setting of FSP.

IEC/IEEE-bus command:

INST:SEL SAN

SCREEN A

With the

SCREEN A / SCREEN B

hotkey two different settings can be selected on the FSP in the FULL SCREEN mode.

In the SPLIT SCREEN mode the key switches between active diagram A and B.

The key designation indicates the diagram which has been activated by means of the key.

The currently active window is marked by diagram.

A

or

B

on the right of the

IEC/IEEE-bus command:

DISP:WIND<1|2>:SEL

The meaning of the other keys is described in the operating manuals of the various options.

1093.4820.12

4.3

E-1

Return to manual control FSP

Return to Manual Control – LOCAL Menu

LOCAL

The menu LOCAL is displayed on switching the instrument to remote control mode.

At the same time, the

HOTKEY

bar is blanked out and all keys are disabled except the

PRESET

key. The diagram, traces and display fields are then blanked out (they can be activated using the remote control command

SYSTem:DISPlay:UPDate ON

).

The menu contains only one softkey, the

LOCAL

key. The

LOCAL

key switches the instrument from remote to manual control, with the assumption that the remote controller has not previously set the LOCAL LOCKOUT function.

A change in the control mode consists of:

- Enabling the Front Panel Keys

Returning to manual mode enables all inactive keys and turns on the hotkey menu. The soft key menu which is displayed is the main menu of the current mode.

Inserting the measurement diagrams

The blanked diagrams, traces and display fields are inserted.

- Generating the message OPERATION COMPLETE

If, at the time of pressing the

LOCAL

softkey, the synchronisation mechanism via *OPC, *OPC? or *WAI is active, the currently running measurement procedure is aborted and synchronisation is achieved by setting the corresponding bits in the registers of the status reporting system.

- Setting Bit 6 (User Request) of the Event Status Register

With a corresponding configuration of the status reporting system, this bit immediately causes the generation of a service request (

SRQ

) which is used to inform the control software that the user wishes to return to front-panel control. This information can be used, e.g., to interrupt the control program so that the user can make necessary manual corrections to instrument settings. This bit is set each time the

LOCAL

softkey is pressed.

Note:

If the LOCAL LOCKOUT function is active in the remote control mode, the front-panel PRESET key is also disabled. The LOCAL

LOCKOUT state is left as soon as the process controller deactivates the REN line or the IEC/IEEE-bus cable is disconnected from the instrument.

1093.4820.12 4.4 E-1

FSP Spectrum Analyzer Mode

Spectrum Analyzer Mode

The analyzer mode is activated by pressing hotkey

SPECTRUM

(see also Section ’Mode Selection’)

SPECTRUM

The

SPECTRUM

hotkey selects the

ANALYZER

mode.

This mode is the default setting of the FSP.

The functions provided correspond to those of a conventional spectrum analyzer. The analyzer measures the frequency spectrum of the test signal over the selected frequency range with the selected resolution and sweep time, or, for a fixed frequency, displays the waveform of the video signal.

Note:

If two displays (screen A and screen B) are opened after switch-on of signal analysis, the analyzer mode is only set for the display activated for entry (marked at the top right corner of diagram). For the other display, the previous settings remain valid.

Data acquisition and display of measured values is sequential: first in the upper and then in the lower display.

1093.4820.12

4.5

E-1

Frequency and Span - Analyzer FSP

Frequency and Span Selection – FREQ Key

The

FREQ

key is used to specify the frequency axis of the active display window. The frequency axis can be defined either by the start and stop frequency or by the center frequency and the span (

SPAN

key). With two windows (

SPLIT SCREEN)

displayed at the same time, the input data always refer to the window selected in the

SYSTEM-DISPLAY

menu.

After pressing one of the

CENTER

,

START

or

STOP

softkeys

,

the value of the corresponding parameter can be defined in an input window.

FREQ

menu:

Span <> 0 Sp an = 0

FRE Q CENTER

CF-

STEPSIZE

START

STOP

0 .1 * SPAN

0 .5 * SPAN

0 .1 * RBW

0 .5 * RBW x * SPAN

= CEN TER

= MARKER

MANUA L x * RBW

= CEN TER

= MA RKER

MANUA L

TRACK

ON OFF

TRACK

BW

TRA CK

THRESHOLD

SELECT

TRACE

FREQUENCY

OFFSET

SIGNA L

TRACK

CENTER

1093.4820.12

The

CENTER

softkey opens the window for manually entering the center frequency.

The allowed range of values for the center frequency is: for the frequency domain (span >0): minspan / 2

f center

f max

– minspan / 2 and for the time domain (span = 0):

0 Hz

f center

f max f center minspan f max center frequency smallest selectable span > 0 Hz (10 Hz) max. frequency

IEC/IEEE-bus command:

FREQ:CENT 100MHz

4.6

E-1

FSP

CF

STEPSIZE

1093.4820.12

Analyzer - Frequency and Span

The CF

STEPSIZE

softkey opens a submenu for setting the step size of the center frequency. The step size can be coupled to the span (frequency domain) or the resolution bandwidth (time domain) or it can be manually set to a fixed value. The softkeys are mutually exclusive selection keys.

The softkeys are presented according to the selected domain (frequency or time).

Softkeys in frequency domain:

AUTO

0.1 * SPAN

The

0.1 * SPAN

softkey sets the step size for the center frequency entry to 10% of the span.

IEC/IEEE-bus command:

FREQ:CENT:STEP:LINK SPAN

FREQ:CENT:STEP:LINK:FACT 10PCT

AUTO

0.5 * SPAN

The

0.5 * SPAN

softkey sets the step size for the center frequency entry to 50% of the span.

IEC/IEEE-bus command:

FREQ:CENT:STEP:LINK SPAN

FREQ:CENT:STEP:LINK:FACT 50PCT

AUTO

X * SPAN

= CENTER

= MARKER

MANUAL

The

X * SPAN

softkey allows the factor defining the center frequency step size to be entered as % of the span.

IEC/IEEE-bus command:

FREQ:CENT:STEP:LINK SPAN

FREQ:CENT:STEP:LINK:FACT 20PCT

The

= CENTER

softkey sets the step size coupling to

MANUAL

and the step size to the value of the center frequency. This function is especially useful during measurements of the signal harmonic content because by entering the center frequency each stroke of the

STEP

key selects the center frequency of another harmonic.

IEC/IEEE-bus command:

--

The

= MARKER

softkey sets the step size coupling to

MANUAL

and the step size to the value of the marker.

This function is especially useful during measurements of the signal harmonic content at the marker position because by entering the center frequency each stroke of the

STEP

key selects the center frequency of another harmonic.

IEC/IEEE-bus command:

--

The

MANUAL

softkey activates the window for entering a fixed step size.

IEC/IEEE-bus command:

FREQ:CENT:STEP 120MHz

4.7

E-1

Frequency and Span - Analyzer FSP

Softkeys in time domain:

AUTO

0.1 * RBW

The

0.1 * RBW

softkey sets the step size for the center frequency entry to 10% of the resolution bandwidth.

AUTO 0.1 * RBW

corresponds to the default setting.

IEC/IEEE-bus command:

FREQ:CENT:STEP:LINK RBW

FREQ:CENT:STEP:LINK:FACT 10PCT

AUTO

0.5 * RBW

AUTO

X * RBW

= CENTER

= MARKER

MANUAL

The

0.5 * RBW

softkey sets the step size for the center frequency entry to 50% of the resolution bandwidth.

IEC/IEEE-bus command:

FREQ:CENT:STEP:LINK RBW

FREQ:CENT:STEP:LINK:FACT 50PCT

The

X * RBW

softkey allows the factor defining the center frequency step size to be entered as % of the resolution bandwidth.

Values between 1 and 100% in steps of 1% are allowed.

The default setting is 10%.

IEC/IEEE-bus command:

FREQ:CENT:STEP:LINK RBW

FREQ:CENT:STEP:LINK:FACT 20PCT

The

= CENTER

softkey sets the step size coupling to

MANUAL

and the step size to the value of the center frequency. This function is especially useful during measurements of the signal harmonic content because by entering the center frequency each stroke of the

STEP

key selects the center frequency of another harmonic.

IEC/IEEE-bus command:

--

The

= MARKER

softkey sets the step size coupling to

MANUAL

and the step size to the value of the marker.

This function is especially useful during measurements of the signal harmonic content at the marker position because by entering the center frequency each stroke of the

STEP

key selects the center frequency of another harmonic.

IEC/IEEE-bus command:

--

The

MANUAL

softkey activates the window for entering a fixed step size.

IEC/IEEE-bus command:

FREQ:CENT:STEP 120MHz

1093.4820.12

4.8

E-1

FSP

START

STOP

Analyzer - Frequency and Span

The

START

frequency.

softkey activates the window for manually entering the start

The allowed range of values for the start frequency is:

0 Hz

≤ fstart

≤ fmax - minspan fstart start frequency minspan smallest selectable span (10 Hz) fmax max. frequency

IEC/IEEE-bus command:

FREQ:STAR 20MHz

The

STOP

softkey activates the window for entering the .

The allowed range of values for the stop frequency is: minspan

≤ fstop

≤ fmax fstop stop frequency minspan smallest selectable span (10 Hz) fmax max. frequency

IEC/IEEE-bus command:

FREQ:STOP 2000MHz

FREQUENCY

OFFSET

The

FREQUENCY OFFSET

softkey activates the window for entering an arithmetical frequency offset which is added to the frequency axis labelling.

The allowed range of values for the offset is -100 GHz to 100 GHz. The default setting is 0 Hz.

IEC/IEEE-bus command:

FREQ:OFFS 10 MHz

1093.4820.12

4.9

E-1

Frequency and Span - Analyzer

SIGNA L

TRA CK

FSP

The

SIGNAL TRACK

softkey switches on the tracking of a signal near the center frequency. The signal is tracked as long it is in the search bandwidth around the center frequency defined with

TRACK BW

and above the level threshold defined with

TRACK THRESHOLD

.

For that purpose, the maximum signal is searched (

PEAK SEARCH)

on the screen and the center frequency set to this signal (

MARKER

->

CENTER)

after each frequency sweep within the search bandwidth.

If the signal falls below the level threshold or jumps out of the search bandwidth around the center frequency, the center frequency is not varied until a signal is in the search bandwidth above the level threshold. This can be achieved by manually modifying the center frequency, for example.

On switching on, the softkey is highlighted and the search bandwidth and the threshold value are marked on the diagram by two vertical lines and one horizontal line. All these lines are allocated the designation TRK.

At the same time a submenu is opened in which the search bandwidth, the threshold value and the trace can be modified for the maximum search.

The softkey is only available in the frequency domain (span

>

0).

IEC/IEEE-bus command:

CALC:MARK:FUNC:STR OFF

TRACK

ON OFF

The

TRACK ON/OFF

softkey switches on and off signal tracking.

IEC/IEEE-bus command:

CALC:MARK:FUNC:STR OFF

TRACK

BW

The

TRACK BW

softkey defines the search bandwidth for signal tracking. The frequency range is symmetrical with respect to the center frequency.

IEC/IEEE-bus command:

CALC:MARK:FUNC:STR:BAND 10KHZ

TRACK

THRESHOLD

The

TRACK THRESHOLD

softkey defines the threshold value for signal detection. The value is always entered as an absolute level value.

IEC/IEEE-bus command:

CALC:MARK:FUNC:STR:THR -70DBM

SELECT

TRACE

The

SELECT TRACE

softkey selects the trace on which signal tracking is to be performed.

IEC/IEEE-bus command:

CALC:MARK:FUNC:STR:TRAC 1

1093.4820.12

4.10

E-1

FSP Analyzer - Frequency and Span

Setting the Frequency Span – SPAN Key

SPAN

menu

FREQ SPAN

MKR MKR

SPAN

MANUAL

SWEEPTIME

MANUAL

FULL SPAN

ZERO SPAN

The

SPAN

key opens a menu which offers various options for setting the span.

The entry of the span (

SPAN MANUAL

softkey) is automatically active for span > 0 Hz.

For span = 0 Hz the entry for sweep time (

SWEEPTIME

MANUAL

) is automatically active.

With two windows (

SPLIT SCREEN)

displayed at the same time, the input data always refer to the window selected with hotkey

SCREEN A/B

.

LAST SPAN

SPAN

MANUAL

SWEEPTIME

MANUAL

The

SPAN MANUAL

softkey activates the window for manually entering the frequency span. The center frequency is kept constant.

The allowed range of span values is: for the time domain (span = 0): 0 Hz and for the frequency domain (span >0): minspan

≤ fspan

≤ fmax fspan frequency span minspan smallest selectable span (10 Hz) fmax max. frequency

IEC/IEEE-bus command

FREQ:SPAN 2GHz

The

SWEEPTIME MANUAL

softkey activates the window for entering the sweep time manually with Span = 0 Hz. The softkey is not available for Span

> 0 Hz.

IEC/IEEE-bus command:

SWE:TIME 10s

1093.4820.12 4.11 E-1

Frequency and Span - Analyzer

FULL SPAN

FSP

The

FULL SPAN

softkey sets the span to the full frequency range of FSP.

IEC/IEEE-bus command

FREQ:SPAN:FULL

ZERO SPAN

The

ZERO SPAN

softkey sets the span to 0 Hz. The x axis becomes the time axis with the grid lines corresponding to 1/10 of the current sweep time

(SWT).

IEC/IEEE-bus command

FREQ:SPAN 0Hz

LAST SPAN

After changing the span setting the

LAST SPAN

softkey activates the previous setting. With this function a fast change between overview measurement (

FULL SPAN

) and detailed measurement (manually set center frequency and span) is possible.

Note:

Only values > 0 Hz are restored, i.e. a transition between time and frequency domain is not possible.

IEC/IEEE-bus command

---

1093.4820.12 4.12 E-1

FSP Analyzer - Level Display/RF Input

Level Display Setting and RF Input Configuration –

AMPT Key

The

AMPT

key is used to set the reference level, the maximum level and the display range of the active window as well as the input impedance and the input attenuation of the RF input.

The

AMPT

key opens a menu for setting the reference level and the input attenuation of the active window. The data entry for the reference level (

REF LEVEL

softkey) is opened automatically.

Further settings regarding level display and attenuation can be made in this menu.

AMPT

REF LEVEL

RANGE

LOG 100 dB

RANGE

LOG MANUAL

RANGE

LINEAR

UNIT

REF LEVEL

POSITION

REF LEVEL

OFFSET

ABS

GRID

REL dBm dBmV dBµV dBµA dBpW

RF ATTEN

MANUAL

RF ATTEN

AUTO

EL ATTEN

AUTO

Option

FSP-B25

EL ATTEN

MANUAL

Option

FSP-B25

EL ATTEN

OFF

RF INPUT

50Ω 75Ω

Option

FSP-B25

VOLT

AMPERE

WATT

REF LEVEL

The

REF LEVEL

softkey allows the reference level to be input in the currently active unit (dBm, dBµV, etc).

IEC/IEEE-bus command:

DISP:WIND:TRAC:Y:RLEV -60dBm

RANGE

LOG 100 dB

The

RANGE LOG 100 dB

softkey sets the level display range to 100 dB.

IEC/IEEE-bus command:

DISP:WIND:TRAC:Y:SPAC LOG

DISP:WIND:TRAC:Y 100DB

1093.4820.12

4.13

E-3

Level Display / RF Input - Analyzer

C

FSP

The

RANGE LOG MANUAL

softkey activates the manual entry of the level display range. Display ranges from 10 to 200 dB are allowed in 10 dB steps.

Inputs which are not allowed are rounded to the next valid value.

The default setting is 100 dB.

IEC/IEEE-bus command:

DISP:WIND:TRAC:Y:SPAC LOG

DISP:WIND:TRAC:Y 120DB

RANGE

LINEAR

UNIT

dBm dBmV dBµV dBµA dBpW

The

RANGE LINEAR

softkey switches the display range of the analyzer to linear scaling. The horizontal lines are labelled in %. The grid has a decadic scaling.

IEC/IEEE-bus command:

DISP:WIND:TRAC:Y:SPAC LIN

The

UNIT

softkey opens a sub menu allowing to select the unit for the level axis.

The default setting is dBm.

In general, the spectrum analyzer measures the signal voltage at the RF input. The level display is calibrated in rms values of an unmodulated sinewave signal. In the default state, the level is displayed at a power of 1 mW (= dBm). Via the known input resistance of 50

or 75

, conversion to other units is possible. The units dBm, dBmV, dB

µ

V, dB

µ

A, dBpW, V, A and W are directly convertible.

IEC/IEEE-bus command:

CALC:UNIT:POW DBM

VOLT

AMPERE

WATT

1093.4820.12

4.14

E-3

FSP

RF ATTEN

MANUAL

RF ATTEN

AUTO

Analyzer - Level Display/RF Input

The

RF ATTEN MANUAL

softkey allows the attenuation to be entered irrespective of the reference level.

The attenuation can be set in 10 dB steps between 0 and 70 dB (in 5 dB steps between 0 and 75 dB if option FSP-B25,

Electronic Attenuator

, is fitted).

Other entries will be rounded to the next lower integer value..

If the defined reference level cannot be set for the given RF attenuation, the reference level will be adjusted accordingly and the warning "Limit reached" will be output.

Note:

The 0-dB value can be entered only via the numeric keypad in order to protect the input mixer against occasional overload.

IEC/IEEE-bus command:

INP:ATT 40 DB

The

RF ATTEN AUTO

softkey sets the RF attenuation automatically as a function of the selected reference level.

This ensures that the optimum RF attenuation desired by the user is always used.

RF ATTEN AUTO

is the default setting.

IEC/IEEE-bus command:

INP:ATT:AUTO ON

1093.4820.12

4.15

E-3

Level Display / RF Input - Analyzer

AMPT

– NEXT menu:

REF LEVEL

POSITION

FSP

The

REF LEVEL POSITION

softkey allows the reference level position to be entered.

The setting range is from -200 to +200%, 0% corresponding to the lower and

100% to the upper limit of the diagram.

IEC/IEEE-bus command:

DISP:WIND:TRAC:Y:RPOS 100PCT

REF LEVEL

OFFSET

ABS

GRID

REL

RF INPUT

50

75

The

REF LEVEL OFFSET

softkey allows the arithmetic level offset to be entered. This offset is added to the measured level irrespective of the selected unit. The scaling of the Y axis is changed accordingly.

The setting range is ±200 dB in 0.1 dB steps.

IEC/IEEE-bus command:

DISP:WIND:TRAC:Y:RLEV:OFFS -10dB

The

GRID ABS/REL

softkey switches between absolute and relative scaling of the level axis.

G

RID ABS

is the default setting.

ABS

The labelling of the level lines refers to the absolute value of the reference level.

REL

The upper line of the grid is always at 0 dB.

The scaling is in dB whereas the reference level is always in the set unit (dBm, dB

µ

V,..).

For setting

RANGE LINEAR

(linear scaling, labelling of axes in %) the softkey is not displayed since the unit % itself implies a relative scale.

IEC/IEEE-bus command:

DISP:WIND:TRAC:Y:MODE ABS

The

RF INPUT 50

/ 75

softkey switches the input impedance of the instrument between 50

(= default setting) and 75

.

The setting 75

should be used if the input impedance (50

Ω)

is transformed to 75

using the corresponding adapter unit of type RAZ (= 25

in series to the input impedance of the analyzer). The correction value used for the adaption is 1.76 dB = 10 log ( 75

/ 50

).

All levels specified in this operating manual refer to the default setting of the instrument (50

Ω)

.

IEC/IEEE-bus command:

INP:IMP 50OHM

1093.4820.12

4.16

E-3

FSP Analyzer - Level Display/RF Input

Electronic Attenuator

Besides the mechanical attenuator at the RF input, the FSP also offers an electronic attenuation setting

(option

ELECTRONIC ATTENUATOR

FSP

-B25

). The attenuation range is 0 to 30 dB, with the default attenuation being preset by the mechanical attenuator.

EL ATTEN

MANUAL

The

EL ATTEN MANUAL

softkey switches the electronic attenuator on and allows the attenuation of the electronic attenuator to be set.

The attenuation can be varied in 5 dB steps from 0 to 30 dB. Other entries are rounded to the next lower integer value

If the defined reference level cannot be set for the given RF attenuation, the reference level will be adjusted accordingly and the warning "Limit reached" will be output.

IEC/IEEE-bus command:

INP:EATT:AUTO OFF

INP:EATT 10 DB

EL ATTEN

AUTO

This function is only available with option

ELECTRONIC ATTENUATOR

FSP-B25

.

The

EL ATTEN AUTO

softkey switches the electronic attenuator on and automatically sets its attenuation to 0 dB.

The allowed setting range of the reference level ranges from the current reference level on switching on the electronic attenuator to over 30 dB. If a reference level is set outside the allowed 30-dB range, setting is performed by means of the mechanical attenuator. From this new reference level to over

30 dB the setting is again performed with the electronic attenuator.

EL ATTEN

OFF

IEC/IEEE-bus command:

INP:EATT:AUTO ON

This function is only available with option

ELECTRONIC ATTENUATOR FSP-B25

.

The

EL ATTEN OFF

softkey switches the electronic attenuator off.

IEC/IEEE-bus command:

INP:EATT:STAT OFF

This function is only available with option

ELECTRONIC ATTENUATOR FSP-B25

.

1093.4820.12

4.17

E-3

Analyzer - Bandwidths and Sweep Time FSP

Setting the Bandwidths and Sweep Time –

BW

Key

The

BW

key calls a menu for setting the resolution bandwidth (

RBW

), video bandwidth (

VBW

) and sweep time (

SWT

) for the frequency sweep. The parameters may be coupled dependent on the span

(stop minus start frequency) or freely set by the user. When working with a split screen display, the settings always refer to the active window.

The FSP offers resolution bandwidths from 10 Hz to 10 MHz in 1, 3, 10 steps:

Resolution bandwidths up to 100 kHz are realized using digital bandpasses with Gaussian characteristics. As far as the attenuation characteristic is concerned they behave like analog filters but have a much higher measurement speed than comparable analog filters. This is due to the fact that the transient response can be compensated as a result of an accurately defined filter behaviour.

Bandwidths above 100 kHz are realized using decoupled 4-circuit LC filters.

As an alternative to the analog filters, FFT filters are available for the bandwidths between 1 Hz and

30 kHz. When working with bandwidths up to 30 kHz, the FFT algorithm offers considerably higher measurement speeds with all the other settings remaining the same. The reason is that with analog filters the sweep time required for a particular span is proportional to (Span/RBW

2

). When using the FFT algorithm, however, the sweep time is proportional to (Span/RBW).

The video bandwidths are available in 1, 3, 10 steps between 1 Hz and 10 MHz. They can be set in accordance with the resolution bandwidth.

The video filters serve for smoothing the displayed trace. Video bandwidths that are small compared to the resolution bandwidth average out noise peaks and pulsed signals, so that only the signal average is displayed. If pulsed signals are to be measured, it is recommended to use a video bandwidth that is large compared to the resolution bandwidth (VBW

10 x RBW) for the amplitudes of pulses to be measured correctly.

Note:

For analog and digital filters, the FSP has overload reserves of different magnitude above the reference level. Due to the LO breakthrough the overload display OVLD responds with digital filters with RBW < 100 kHz, as soon as the start frequency is selected <6 * resolution bandwidth, for RBW = 100 kHz, as soon as the start frequency is below 3 MHz.

1093.4820.12

4.18

E-3

FSP

BW menu:

Analyzer - Bandwidths and Sweep Time

BW SWEEP

MEAS

TRIG

RES BW

MANUAL

VIDEO BW

MANUAL

SWEEPTIME

MANUAL

RES BW

AUTO

VIDEO BW

AUTO

SWEEPTIME

AUTO

COUPLING

RATIO

DEFAULT

COUPLING

FILTER

TYPE

VBW MODE

LIN LOG

RBW / VBW

SINE [1/3]

RBW / VBW

PULSE[0.1]

RBW / VBW

NOISE [10]

RBW / VBW

MANUAL

SPAN /RBW

AUTO [50]

SPAN /RBW

MANUAL

T he

BW

key opens a menu for setting the resolution bandwidth, the video bandwidth, the sweep time and their couplings.

The ..

BW AUTO

softkeys are used to couple the functions. The coupling ratios are selected by means of the

COUPLING RATIO

softkey.

The ..

BW MANUAL

softkeys allow a parameter to be entered. This parameter is not coupled to the other parameters.

Note:

With the ... BW AUTO softkeys the resolution bandwidth, the video bandwidth and the sweep time can be entered separately for the frequency domain (span > 0 Hz) and the time domain (span = 0 Hz).

But with ...BW MANUAL softkeys the selected values apply to both the frequency and time domain.

1093.4820.12

4.19

E-3

Analyzer - Bandwidths and Sweep Time

RES BW

MANUAL

FSP

The

RES BW MANUAL

softkey activates the manual data entry for the resolution bandwidth.

The resolution bandwidth can be selected in 1/3/10 steps in the range between

10 Hz and 10 MHz. The nominal resolution bandwidth is the 3 dB bandwidth.

When FFT filters are used, the lower limit of the bandwidth is 1 Hz. FFT filters may be used with bandwidths up to 30 kHz.

For numeric inputs, the values are always rounded to the nearest possible bandwidth. For rollkey or UP/DOWN key inputs, the bandwidth is adjusted in steps either upwards or downwards.

For filter type CHANNEL or RRC the bandwidth is selected from the list of available channel filters given at the end of this chapter. For data entry, the cursor keys

and

scroll through this list.

The manual input mode of the resolution bandwidth is indicated by a green terisk (*) on the display.

IEC/IEEE-bus command:

BAND:AUTO OFF;

BAND 1MHz

VIDEO BW

MANUAL

The

VIDEO BW MANUAL

softkey activates the manual data entry for the video bandwidth.

The video bandwidth can be selected in 1/3/10 steps in the range between 1

Hz and 10 MHz.

For numeric inputs, the values are always rounded to the nearest possible allowed bandwidth. For rollkey or UP/DOWN key inputs, the bandwidth is adjusted in steps either downwards or upwards.

The manual input mode of the video bandwidth is indicated by a green terisk (*) on the display.

IEC/IEEE-bus command:

BAND:VID:AUTO OFF;

BAND:VID 10 kHz

1093.4820.12

4.20

E-3

FSP

SWEEP TIME

MANUAL

RES BW

AUTO

VIDEO BW

AUTO

Analyzer - Bandwidths and Sweep Time

The

SWEEPTIME MANUAL

softkey activates the manual data entry for the sweep time. At the same time, the coupling of the sweep time is cancelled.

Other couplings (

VIDEO BW, RES BW

) remain effective.

In the frequency domain (span > 0 Hz) and for resolution bandwidths above 1 kHz, the allowed sweep times for spans > 3.2 kHz range from 2.5 ms through to 16000 s. With spans below 3.2 kHz, the maximum allowed sweep time is reduced to 5 s * span/Hz.

If FFT filters are used, the sweep time is fixed by the span and the bandwidth and therefore cannot be set.

In time domain (span = 0 Hz), the range of sweep times is 1 µs to 16000 s is selectable in steps of max. 5% of the sweep time. For numeric inputs, rounding is made to the nearest possible sweep time. For rollkey or UP/DOWN key inputs, the sweep time is adjusted in steps either downwards or upwards.

The manual input mode of the sweep time is indicated by a green asterisk (*) on the display. If the selected sweep time is too short for the selected bandwidth and span, level measurement errors will occur. This happens because the available settling time for the resolution or video filters is too short.

In this case, the FSP outputs

UNCAL

on the display and marks the indicated sweep time with a red asterisk (*).

IEC/IEEE-bus command:

SWE:TIME:AUTO OFF;

SWE:TIME 10s

The

RES BW AUTO

softkey couples the resolution bandwidth to the selected span. Changing the span causes automatic adjustment of the resolution bandwidth.

Automatic coupling of resolution bandwidth to span is always recommended when a favourable setting of the resolution bandwidth in relation to the selected span is desired for the measurement under request.

The coupling ratio is set in the

COUPLING RATIO

submenu.

The

RES BW AUTO

softkey is only available in the frequency domain (span >

0 Hz). The softkey is blanked in the time domain.

IEC/IEEE-bus command:

BAND:AUTO ON

The

VIDEO BW AUTO

softkey couples the video bandwidth to the resolution bandwidth. If the resolution bandwidth is changed, the video bandwidth is automatically adjusted.

The coupling of the video bandwidth is always recommended when the minimum sweep time is required for a selected resolution bandwidth. Narrower video bandwidths require longer sweep times due to the longer settling time.

Wider bandwidths reduce the signal/noise ratio.

The coupling ratio is set in the

COUPLING RATIO

submenu.

The coupling of the video bandwidth to the resolution filter is also permitted for the time domain display (span = 0).

IEC/IEEE-bus command:

BAND:VID:AUTO ON

1093.4820.12

4.21

E-3

Analyzer - Bandwidths and Sweep Time

SWEEPTIME

AUTO

FSP

The

SWEEPTIME AUTO

softkey couples the sweep time to the span, video bandwidth (VBW) and resolution bandwidth (RBW) .

The sweep time is automatically adjusted on any change in span, resolution bandwidth or video bandwidth.

The softkey is only available in the frequency domain (span >0 Hz). It is blanked in the time domain.

The FSP always selects the shortest sweep time possible without falsifying the signal. The maximum level error compared to using a longer sweep time is <

0.1 dB. If additional bandwidth and level errors are to be avoided, the sweep time is to be set to three times the time offered in coupled mode.

IEC/IEEE-bus command:

SWE:TIME:AUTO ON

COUPLING

RATIO

RBW / VBW

SINE [1/3]

RBW / VBW

PULSE [.1]

RBW / VBW

NOISE [10]

RBW / VBW

MANUAL

SPAN / RBW

AUTO [50]

SPAN / RBW

MANUAL

The

COUPLING RATIO

softkey opens a sub menu for selection of the coupling ratios.

When the default setting is active, i.e. the

COUPLING RATIO

softkey is deactivated (not highlighted), the ratio span/resolution bandwidth (SPAN/RBW) is 50 (this corresponds to SPAN / RBW

AUTO [50]) and the ratio resolution bandwidth/video bandwidth

(RBW/VBW) is 0.33 (this corresponds to RBW / VBW SINE

[1/3]).

If the ratio RBW/VBW or SPAN/RBW is different from the default setting, the

COUPLING RATIO

softkey is highlighted.

The softkeys RBW/VBW... are selection keys. Only one softkey can be enabled at any one time. The softkeys are only effective for the

VBW AUTO

selection in the main menu.

The softkeys SPAN/RBW... are also selection keys. They are only effective for the

RBW AUTO

selection in the main menu.

RBW / VBW

SINE [1/3]

The

RBW/VBW SINE [1/3]

softkey sets the following coupling ratio: video bandwidth = 3 x resolution bandwidth.

This is the default setting for the coupling ratio resolution bandwidth/video bandwidth.

This is the coupling ratio recommended if sinusoidal signals are to be measured.

IEC/IEEE-bus command

BAND:VID:RAT 3

This setting is only effective for the

VBW AUTO

selection in the main menu.

1093.4820.12

4.22

E-3

FSP Analyzer - Bandwidths and Sweep Time

RBW / VBW

PULSE [.1]

RBW / VBW

NOISE [10]

The

RBW/VBW PULSE [.1]

softkey sets the following coupling ratio: video bandwidth = 10 x resolution bandwidth or video bandwidth = 10 MHz (= max. VBW).

This coupling ratio is recommended whenever the amplitudes of pulsed signals are to be measured correctly. The IF filter is exclusively responsible for pulse shaping. No additional evaluation is performed by the video filter.

IEC/IEEE-bus command

BAND:VID:RAT 10

This setting is only effective for the

VBW AUTO

selection in the main menu.

The

RBW/VBW NOISE [10]

softkey sets the following coupling ratio: video bandwidth = resolution bandwidth/10

At this coupling ratio, noise and pulsed signals are suppressed in the video domain. For noise signals, the average value is displayed.

IEC/IEEE-bus command

BAND:VID:RAT 0.1

This setting is only effective for the

VBW AUTO

selection in the main menu.

RBW / VBW

MANUAL

The

RBW/VBW MANUAL

softkey activates the manual input of the coupling ratio.

The resolution bandwidth/video bandwidth ratio can be set in the range 0.001 to 1000.

IEC/IEEE-bus command

BAND:VID:RAT 10

This setting is only effective for the

VBW AUTO

selection in the main menu.

SPAN /RBW

AUTO [50]

The

SPAN/RBW AUTO [50]

softkey sets the following coupling ratio: resolution bandwidth = span/50

This coupling ratio is the default setting of the FSP

IEC/IEEE-bus command

BAND:RAT 0.02

This setting is only effective for the

RBW AUTO

selection in the main menu.

1093.4820.12

4.23

E-3

Analyzer - Bandwidths and Sweep Time

SPAN /RBW

MANUAL

FSP

The SPAN/RBW MANUAL softkey activates the manual input of the coupling ratio.

The span / resolution bandwidth ratio can be set in the range

1 to 10000.

IEC/IEEE-bus command

BAND:RAT 0.1

This setting is only effective for the RBW AUTO selection in the main menu.

DEFAULT

COUPLING

FILTER

TYPE

The DEFAULT COUPLING softkey sets all coupled functions to the default state

(AUTO). In addition, the ratio RBW/VBW is set to SINE [1/3] and the ratio

SPAN/RBW to 50 in the COUPLING RATIO submenu (default setting, COUPLING

RATIO softkey not highlighted).

IEC/IEEE-bus command

BAND:AUTO ON

BAND:VID:AUTO ON

SWE:TIME:AUTO ON

The FILTER TYPE softkey opens the selection list for different filter types. In the range up to 30 kHz digital band filters with Gaussian characteristic and filtering with

FFT algorithm can be selected.

FILTER TYPE

NORMAL

FFT

CHANNEL

RRC

NORMAL For resolution bandwidths up to 100 kHz digital bandpasses are used.

FFT An FFT is performed. For that purpose, the filtered IF signal is digitized and then transformed into the spectral domain via FFT. The transformation range depends on the selected filter bandwidths and can be set between 4 kHz to 50 kHz. If the span is larger than the transformation range, several transformations are performed and the results are appended to each other in the spectral domain.

If the span is smaller than the transformation range, the measurement results are interpolated when the number of measurement points provided by the FFT is smaller than the number of display points in xdirection (501). A flattop window serves as a window in the time domain so that high amplitude precision with good selection is achieved.

A flat-top window serves as a window in the time domain so that high amplitude accuracy as well as good selection are achieved.

1093.4820.12

4.24

E-3

FSP Analyzer - Bandwidths and Sweep Time

Sweep time

Detector

Video bandwidth

Defined by the selected bandwidth and span

(reason: FFT filtering is a block transformation).

It cannot be changed (softkey deactivated).

Sample detector and peak detector are available. Peak detector is active when AUTO

SELECT is selected.

Not defined in case of FFT; therefore cannot be set (softkeys deactivated).

Compared to bandpasses, FFT filters lead to significantly reduced sweep times. For a span of 50 kHz and a bandwidth of 100 Hz, for instance, the sweep time is reduced from 5 s to 40 ms. FFT filters are particularly suitable for stationary signals (sinusoidal signals or signals that are continuously modulated in time). For burst signals (TDMA) or pulsed signals, normal filters are preferable.

Note:

As soon as the FFT filters are active (RBW

30 kHz) the sweep time display field (SWT) is replaced by the acquisition time (AQT) display field.

FFT is a block transformation so the result depends on the time relation between the data set to be transformed and the burst or pulsed signal.

A gated sweep measurement for TDMA signals is therefore not provided if FFT filters are used.

When the tracking generator (option FSP-B9) is used as signal source for the DUT, filtering with the FFT algorithm is not useful. The selection

FFT is thus not available if the tracking generator is switched on..

Additionally, a number of especially steep-edged channel filters are available for power measurement since firmware version 1.10.

A distinction is made between the following filter types:

CHANNEL = general, steep-edged channel filters

RRC = filters with root-raised cosine characteristic

(RRC = Root Raised Cosine)

When selecting these filter types, the automatic coupling of the resolution bandwidth to the span is not available. The filters are selected via the

RES BW

softkey.

A list of all available channel filters with their associated applications can be found at the end of this chapter.

IEC/IEEE-bus command:

BAND:TYPE NORM

1093.4820.12

4.25

E-3

Analyzer - Bandwidths and Sweep Time FSP

List of available channel filters

The channel filters included in the following table are can be activated via the

FILTER TYPE

softkey and are then available as resolution filters (softkey

RES

available for firmware version 1.10 or higher. They

BW

).

Note:

For filters of type RRC (Root Raised Cosine), the filter bandwidth indicated describes the sampling rate of the filter.

For all other filters (CFILter) the filter bandwidth is the 3 dB bandwidth.

Filter Bandwidth Filter Type Application

100

200

300

500

3

3.4

4

4.5

5

6

8.5

9

1

1.5

2

2.4

2.7

Hz

Hz

Hz

Hz kHz kHz kHz kHz kHz kHz kHz kHz kHz kHz kHz kHz kHz

100

150

192

200

300

500

10 kHz

12.5 kHz

14

15

16

18

20

21

24.3

kHz kHz kHz kHz,

α

=0.35

kHz kHz kHz,

α

=0.35

kHz 25

30

50 kHz kHz kHz kHz kHz kHz kHz kHz

1.0

MHz

1.2288 MHz

1.5

MHz

2.0

MHz *)

3.0

3.84

MHz *)

MHz,

α

=0.22 *)

4.096

MHz,

α

=0.22 *)

5.0

MHz *)

CFILter

CFILter

CFILter

CFILter

CFILter

RRC

RRC

CFILter

CFILter

CFILter

CFILter

CFILter

CFILter

CFILter

CFILter

CFILter

CFILter

CFILter

CFILter

CFILter

CFILter

CFILter

CFILter

CFILter

CFILter

CFILter

CFILter

CFILter

CFILter

CFILter

RRC

CFILter

CFILter

RRC

CFILter

CFILter

CFILter

CFILter

CFILter

CFILter

CFILter

CFILter

CFILter

A0

SSB

DAB, Satellite

ETS300 113 (12.5 kHz channels)

AM Radio

CDMAone

ETS300 113 (20 kHz channels)

ETS300 113 (25 kHz channels)

TETRA

PDC

IS 136

CDPD, CDMAone

FM Radio

PHS

J.83 (8-VSB DVB, USA )

CDMAone

CDMAone

DAB

W-CDMA 3GPP

W-CDMA NTT DOCoMo

*) This filter is avaible with modification index > 2 of the IF filter module (see softkey SETUP - SYSTEM INFO - HARDWARE

INFO).

1093.4820.12

4.26

E-3

FSP

VBW MODE

LIN LOG

Analyzer - Bandwidths and Sweep Time

The

VBW MODE LIN/LOG

softkey determines the position of the video filter in the signal path for resolution bandwidths

100 kHz:

Ø

If LINear is selected, the video filter will be in front of the logarithmic amplifier (default).

Ø

If LOGarithmic is selected, the video filter will be behind the logarithmic amplifier.

The essential difference between the two operating modes relates to the settling in the case of falling signal edges:

With LINear, the falling signal edge will be "flatter" than with LOGarithmic.

This is due to the conversion from linear power to logarithmic level units: a reduction of the linear power by 50% reduces the logarithmic signal level by only 3 dB.

IEC/IEEE-bus-command:

BAND:VID:TYPE LIN

1093.4820.12

4.27

E-3

Analyzer - Sweep FSP

Sweep Settings –

SWEEP

Key

The SWEEP key serves for configuring the sweep mode.

SWEEP

menu

BW

MEAS

SWEEP

TRIG

CONTINUOUS

SWEEP

SINGLE

SWEEP

CONTINUE

SGL SWEEP

SWEEPTIME

MANUAL

SWEEPTIME

AUTO

SWEEP

COUNT

SWEEP

POINTS

The

SWEEP

key calls a menu in which the sweep mode is defined. In split-screen mode, the entries made are valid for the active window only.

The

CONTINUOUS SWEEP, SINGLE SWEEP

and

SGL SWEEP DISP OFF

softkeys are mutually exclusive selection keys.

CONTINUOUS

SWEEP

SINGLE

SWEEP

SGL SWEEP

DISP OFF

The

CONTINUOUS SWEEP

softkey activates the continuous sweep mode, which means that the sweep takes place continuously according to the trigger mode set.

When working in the split-screen mode and with different settings in the two windows, screen A is swept first, followed by screen B. When the softkey is pressed, the sweep is restarted.

CONTINUOUS SWEEP

is the default setting of FSP

.

IEC/IEEE-bus command:

INIT:CONT ON

The

SINGLE SWEEP

softkey starts n sweeps after triggering. The number of sweeps is determined by the

SWEEP COUNT

softkey.

When working in the split-screen mode, the frequency ranges of the two windows are swept one after the other.

If a trace is swept using

TRACE AVERAGE

or

MAXHOLD,

the value set via the SWEEP COUNT softkey determines the number of sweeps. If 0 has been entered, one sweep is performed.

IEC/IEEE-bus command:

INIT:CONT OFF

1093.4820.12

4.28

E-3

FSP

CONTINUE

SGL SWEEP

SWEEPTIME

MANUAL

SWEEPTIME

AUTO

SWEEP

COUNT

Analyzer - Sweep

The

CONTINUE SGL SWEEP

softkey repeats the number of sweeps set under

SWEEP COUNT,

however without first deleting the trace.

This is particularly of interest when using the functions

TRACE AVERAGE

and

MAXHOLD

, if previously recorded measurement results are to be taken into consideration for averaging / maximum search.

If

SGL SWEEP DISP OFF

is active, the screen is switched off also during repeated sweeps.

IEC/IEEE-bus command:

INIT:CONM

The

SWEEPTIME MANUAL

softkey activates the window for entering the sweep time manually (see also BW menu).

IEC/IEEE-bus command:

SWE:TIME 10s

The

SWEEPTIME AUTO

softkey activates the automatic selection of the sweep time as a function of the bandwidth of the resolution and video filters

(see also BW menu).

IEC/IEEE-bus command:

SWE:TIME:AUTO ON

The

SWEEP COUNT

softkey activates the window for the entry of the number of sweeps to be performed by FSP after a single sweep has been started. If Trace Average, Max Hold or Min Hold is activated, this also determines the number of averaging or maximum search procedures.

Example:

[

TRACE1

:

MAX HOLD

]

[

SWEEP

:

SWEEP COUNT

: {10}

ENTER

]

[

SINGLE SWEEP

]

FSP performs the Max Hold function over 10 sweeps.

The permissible range for the sweep count is 0 to 32767. For sweep count =

0 or 1, one sweep is performed. For trace averaging in the continuous-sweep mode, FSP performs running averaging over 10 sweeps if sweep count = 0; if sweep count = 1, no averaging is performed.

The sweep count is valid for all the traces in a diagram.

Note:

The number of sweeps set in the TRACE menu is the same as that in the SWEEP menu.

If SINGLE SWEEP is selected, the measurement stops after the selected number of sweeps has been performed.

IEC/IEEE-bus command:

SWE:COUN 64

1093.4820.12

4.29

E-3

Analyzer - Sweep

SWEEP

POINTS

FSP

The

SWEEP POINTS

softkey selects the number of measurement samples acquired during a sweep.

The following numbers of points per sweep are available:

125, 251, 501 (default), 1001, 2001, 4001, 8001

Note:

The autopeak detector will be disabled while the number of points per sweep is

501.

IEC/IEEE-bus command:

SWE:POIN 501

SGL SWEEP

DISP OFF

The

SGL SWEEP DISP OFF

softkey deactivates the display while a single sweep is being performed. Once the sweep has been completed, the trace is shown.

IEC/IEEE-bus command:

INIT:DISP OFF;:INIT

1093.4820.12

4.30

E-3

FSP Analyzer - Triggering the Sweep

Triggering the Sweep–

TRIG

Key

The

TRIG

key opens a menu for selection of the various trigger sources, trigger polarity and external gate function. The active trigger mode is indicated by highlighting the corresponding softkey.

For video trigger, a trigger threshold can be entered, which is represented in the diagram as a horizontal line.

To indicate that a trigger mode other than

FREE RUN

has been set, the enhancement label

TRG

is displayed on the screen. If two windows are displayed, TRG appears next to the appropriate window.

The option

TV and RF Trigger

(FSP-B6) adds a number of trigger functions for the analysis of TV

signals to this menu (see section Option FSP-B6

TV and RF Trigger, page 4.38).

TRIGGER

menu

TRIG

FREE RUN

VIDEO

EXTERN

IF POWER

Option FSP-B6

TV TRIG

SETTINGS

Option FSP-B6

TV TRIGGER

ON OFF

VERT SYNC

VERT SYNC

ODD FIELD

VERT SYNC

EVEN FIELD

GATE MODE

LEVEL EDGE

POLARITY

POS NEG

GATE

DELAY

GATE

LENGTH

Option FSP-B6

RF POWER

HOR SYNC

TRIGGER

OFFSET

POLARITY

POS NEG

GATED

TRIGGER

GATE

SETTINGS

VIDEO POL

POS NEG

LINES

625 525

CCVS

INT EXT

SWEEP

TIME

FREE RUN

VIDEO

The

FREE RUN

softkey activates the free-run sweep mode, i.e. start of a sweep is not triggered. Once a measurement is completed, another is started immediately.

FREE RUN

is the default setting of FSP.

IEC/IEEE-bus command:

TRIG:SOUR IMM

The

VIDEO

softkey activates triggering through the displayed voltage.

For the video triggering mode, a horizontal trigger line is shown in the diagram.

It may be used to set the trigger threshold between 0% and 100% of the overall diagram height.

IEC/IEEE-bus command:

TRIG:SOUR VID

TRIG:LEV:VID 50 PCT

1093.4820.12

4.31

E-3

Triggering the Sweep - Analyzer

EXTERN

IF POWER

FSP

The

EXTERN

softkey activates triggering via a TTL signal at the input connector

EXT TRIGGER/GATE

on the rear panel.

IEC/IEEE-bus command:

TRIG:SOUR EXT

SWE:EGAT:SOUR EXT

The

IF POWER

softkey activates triggering of the measurement via signals which are outside the measurement channel.

For this purpose, the FSP uses a level detector at the second intermediate frequency. can be selected in a range between –30 dBm and -10 dBm at the input mixer. The resulting trigger level at the RF input is calculated via the following formula:

Mixerlevel

min

+

RFAtt

Pr

eampGain

Input Signal

Mixerlevel

max

+

RFAtt

Pr

eampGain

The bandwidth at the intermediate frequency is 10 MHz. The FSP is triggered as soon as the trigger threshold is exceeded within a 5 MHz range around the selected frequency (= start frequency in the frequency sweep).

Thus, the measurement of spurious emissions, e.g. for pulsed carriers, is possible even when the carrier lies outside the selected frequency span.

IEC/IEEE-bus command:

TRIG:SOUR IFP

SWE:EGAT:SOUR IFP

See following section Option FSP-B6

TV and RF Trigger, page 4.38.

RF POWER

TRIGGER

OFFSET

POLARITY

POS NEG

The

TRIGGER OFFSET

softkey activates the window for entering the time offset between the trigger signal and the start of the sweep.

Triggering is delayed by the entered time with respect to the trigger signal (time entered > 0) or is started earlier (time entered < 0). The time may be entered in multiples of 125 ns in the range -100 s to 100 s (default 0 s).

Note:

A negative offset (pretrigger) can be set in the time domain only (SPAN

= 0 Hz) provided GATED TRIGGER is not active in that domain.

The maximum allowed range and the maximum resolution of the pretrigger is limited by the set sweep time: max. range = - 499/500 x sweep time max. resolution = sweep time/500.

Pretriggering is not possible when the rms or the average detector is activated

As a common input signal is used for both trigger and gate when selecting

EXTERN

and

IF POWER,

changes to the gate delay will affect the trigger delay

(TRIGGER OFFSET)

as well.

IEC/IEEE-bus command:

TRIG:HOLD 10US

The

POLARITY POS/NEG

softkey selects the polarity of the trigger source.

The sweep starts after a positive or negative edge of the trigger signal. The selected setting is highlighted.

The selection is valid for all trigger modes with the exception of

FREE RUN

; in the gate mode, it also applies to the gate polarity.

The default setting is

POLARITY POS.

IEC/IEEE-bus command:

TRIG:SLOP POS

1093.4820.12

4.32

E-3

FSP Analyzer - Triggering the Sweep

By using a gate in sweep mode and stopping the measurement while the gate signal is inactive, the spectrum for pulsed RF carriers can be displayed without the superposition of frequency components generated during switching. Similarly, the spectrum can also be examined for an inactive carrier. The sweep can be controlled by an external gate or by the internal power trigger.

Fig. 4-1 Pulsed signal GATE OFF

Fig. 4-2 TDMA signal with GATE ON

1093.4820.12

4.33

E-3

Triggering the Sweep - Analyzer FSP

The gated-sweep mode is activated by the

GATED TRIGGER

softkey. The setting of the mode takes place in the

GATE SETTINGS

submenu

.

GATED

TRIGGER

The

GATED TRIGGER

softkey switches the sweep mode with gate on and off.

When gate is switched on, a gate signal applied to the rear panel connector

EXT TRIGGER/GATE

or the internal IF power detector controls the sweep of the analyzer. This selection is made via the

EXTERN

and

IF POWER

softkeys for trigger and gate.

The length of the gate signal defines when the sweep is to be interrupted.

Here a differentiation is made between edge-triggered and level-triggered modes: in case of edge triggering the gate length can be set via the

GATE

LENGTH

softkey, while in case of level triggering the gate length depends on the length of the gate signal.

Gate Mode LEVEL Gate Mode EDGE

RF

Ext. Gate

Meas. active

Fig.4-3

Delay

Delay

Length

Timing diagram for GATE, GATE DELAY and GATE LENGTH

This softkey requires the

EXTERN

or

IF POWER

trigger mode

.

If a different mode is active, IF POWER is automatically selected.

Gated-sweep operation is also possible in the time domain. This enables e.g. in burst signals - level variations of individual slots to be displayed versus time.

To indicate that a gate is used for the sweep, the enhancement label

GAT

is displayed on the screen. This label appears to the right of the window for which the gate is configured.

IEC/IEEE-bus command:

SWE:EGAT ON

SWE:EGAT:SOUR IFP or:

SWE:EGAT:SOUR EXT

1093.4820.12

4.34

E-3

FSP

GATE

SETTINGS

GATE MODE

LEVEL EDGE

POLARITY

POS NEG

GATE

DELAY

GATE

LENGTH

SWEEPTIME

PRINT

SCREEN

Analyzer - Triggering the Sweep

The

GATE SETTINGS

softkey calls a submenu for making all the settings required for gated-sweep operation.

At the same time, a transition is made to the time domain

(span = 0) and the time parameters

GATE DELAY

and

GATE

LENGTH

are represented as vertical lines. This allows the required gate time parameters to be set easily.

For highly accurate setting of gate delay and gate length, the x axis can be altered using the

ZOOM x-AXIS

softkey in a way that the signal range concerned (e.g. one full burst) is displayed.

Then the sampling time and duration can be set by

GATE

DELAY

and

GATE LENGTH

in a way that the desired portion of the signal is shown.

When quitting the submenu, the program will return to the frequency domain provided it was active before. The original span is restored so the desired measurement can now be performed with the accurately set gate.

IEC/IEEE-bus command:

--

GATE MODE

LEVEL EDGE

POLARITY

POS NEG

The

GATE MODE LEVEL/EDGE

softkey selects the trigger mode. Gated sweep is possible in the level-triggered as well as in the edge-triggered mode.

If level triggering is selected, the

GATE LENGTH

softkey becomes inactive and cannot be operated.

IEC/IEEE-bus command:

SWE:EGAT:TYPE EDGE

The

POLARITY POS/NEG

softkey controls the polarity of the

EXT TRIGGER/GATE

control line.

In case of level triggering the sweep is stopped by

POLARITY POS

and a logic ´0´ signal; the signal ´1´ will restart the sweep after the

GATE DELAY

time has elapsed.

In case of edge triggering the sweep is continued on a ´0´ to

´1´ transition for the duration of

GATE LENGTH

after a delay

(

GATE DELAY)

has elapsed.

Changing the polarity automatically implies a transition of the trigger-edge polarity (

POLARITY

softkey in the higher menu).

IEC/IEEE-bus command:

SWE:EGAT:POL POS

1093.4820.12

4.35

E-3

Triggering the Sweep - Analyzer

GATE

DELAY

GATE

LENGTH

SWEEPTIME

PRINT

SCREEN

FSP

The

GATE DELAY

softkey activates the window for setting the delay time between the gate signal and the continuation of the sweep.

This may be useful for taking into account a delay between the gate signal and the stabilization of an RF carrier for example.

As gate delay, values between 125 ns and 100 s may be set.

The position of the delay on the time axis in relation to the sweep is indicated by the line labelled

GD

.

As there is a common input signal for trigger and gate if

EXTERN

or

IF POWER

is selected, changes to the gate delay will affect the trigger delay (

TRIGGER OFFSET

) as well.

IEC/IEEE-bus command:

SWE:EGAT:HOLD 1US

The

GATE LENGTH

softkey activates the window for setting the sweep duration of FSP in the edge-triggered mode.

Values between 125 ns and 100 s may be set for the gate length. The length of the gate in relation to the sweep is indicated by the line labelled

GL.

This softkey is only available if

GATE MODE EDGE

(edge triggering) has been selected.

IEC/IEEE-bus command:

SWE:EGAT:LENG 100US

The

SWEEP TIME

softkey enables the user to change the time axis to obtain a higher resolution for positioning gate delay and gate length.

When this is to be done, the sweep time temporarily changes; the original value is restored when the menu is quit.

IEC/IEEE-bus command:

--

The

PRINT SCREEN

softkey allows the gate settings to be output on a printer.

IEC/IEEE-bus command:

--

Measurement example:

The modulation spectrum of a GSM or PCS1900 signal is to be measured using the gated-sweep function. The signal is generated by a Signal Generator SME03 whose RF output is directly connected to the RF input of FSP.

Settings on SME03:

Level: 0 dBm: Return

Digital Mod:

Source:

Select: GMSK: Select

Select: PRBS: Select: Return

Level Attenuation: Select: 60 dB: Return

The SME03 supplies a GMSK-modulated TDMA signal (GSM).

1093.4820.12

4.36

E-3

FSP Analyzer - Triggering the Sweep

Settings on

FSP

:

Conventions:

[KEY]

Menu called by this key. All information between the brackets refers to this menu.

{Number} Numeric value to be entered for the parameter on hand.

SOFTKEY

Softkey to be used for making a selection or entering a value.

[PRESET]

[FREQ

[SPAN

[AMPT

[BW

:

[TRIG:

:

:

[TRACE :

[SWEEP

:

CENTER

{802}

MHz]

{3.6}

MHz]

REF LEVEL

{0}

dBm

:

RF ATTEN MANUAL

: {10}

dB]

RES BW MANUAL

: {30}

kHz]

TRACE 1 DETECTOR

:

RMS

]

SWEEPTIME MANUAL

: {50}

ms]

EXTERN

GATED TRIGGER;

GATE SETTINGS

:

GATE MODE EDGE; POLARITY POS

SWEEPTIME MANUAL

{1}

ms

:

GATE DELAY

{300}

µs

:

GATE LENGTH

: {250}

µs]

The following figure shows the screen display for setting gate parameters. The vertical lines for gate delay (GD) and gate length (GL) can be adjusted to the burst signal by entering numeric values or by means of the rollkey.

Fig.4-4 Setting GATE DELAY and GATE LENGTH in time domain by means of lines GD and GL

On quitting the

GATE SETTINGS

menu, FSP returns to the previous screen.

1093.4820.12

4.37

E-3

Triggering the Sweep - Analyzer FSP

Option FSP-B6

TV and RF Trigger

The option TV and RF Trigger, FSP-B6, enables the FSP to trigger on TV signals or on the presence of a RF carrier outside the resolution bandwidth.

For this purpose, the hardware board is equipped with a TV demodulator, which produces the trigger signals necessary for the analysis of TV signals. In addition to the pure trigger function, the board also creates a demodulated CCVS video signal for operation of external TV monitors. Apart from using the internal IF for creating the trigger signals, the FSP can also make use of an externally supplied CCVS signal; the corresponding connector is placed at the rear panel of the instrument.

In order to display different sections of a TV video signal, the FSP derives several trigger signals from the video signals. This allows triggering as well on the frame repetition as on each line of the TV video signal.

Additionally, the option includes a broadband RF detector (bandwidth = 80 MHz), which allows triggering within a 40 MHz range around the selected frequency (= start frequency in the frequency sweep). Thus, the measurement of spurious emissions, e.g. for pulsed carriers, is possible even when the carrier lies outside the selected frequency span. This RF power trigger can be used as long as the RF signal at the input mixer is in the range of -10 dBm to –50 dBm. The resulting range for the input signal at the RF input connector can be calculated using the following formula:

Mixerlevel

min

+

RFAtt

Pr

eampGain

Input Signal

Mixerlevel

max

+

RFAtt

Pr

eampGain

The RF Power Trigger can be selected and configured in the trigger menu (

TRIG)

using the softkey

RF

POWER

::

RF POWER

The

RF POWER

softkey activates triggering of the measurement via signals which are outside the measurement channel.

The FSP uses a level detector at the first IF. The detector's threshold can be selected from values between –50 dBm and -10 dBm at the input mixer. The range of the input signal to which the trigger responds is calculated using the following formula.

Mixerlevel

min

+

RFAtt

Pr

eampGain

Input Signal

Mixerlevel

max

+

RFAtt

Pr

eampGain

The bandwidth at the IF is 80 MHz. Triggering starts when the trigger threshold is exceeded in a range of 40 MHz around the frequency selected (= start frequency for frequency sweep). This allows spurious emissions, e.g.

with pulsed carriers, to be measured, even if the carrier itself is outside the frequency display range.

IEC/IEEE-bus command:

TRIG:SOUR RFP

SWE:EGAT:SOUR RFP

1093.4820.12

4.38

E-3

FSP Analyzer - Triggering the Sweep

The configuration menu for TV trigger settings can be reached with key sequence

TRIG – NEXT – TV TRIG SETTINGS:

TV TRIG

SETTINGS

The

TV TRIG SETTINGS

softkey switches the TV trigger on and opens a submenu for configuration of the TV signal parameters.

Note:

Triggering on TV signals is only possible in time domain (span = 0

Hz). Therefore the softkey TV TRIG SETTINGS is without function in frequency domain.

IEC/IEEE-bus command:

TRIG:SOUR TV

TV TRIGGER

ON OFF

VERT SYNC

VERT SYNC

ODD FIELD

VERT SYNC

EVEN FIELD

The

TV TRIGGER ON/OFF

softkey switches the TV

Trigger on or off. When switching off the TV trigger the selected trigger source will be

FREE RUN.

IEC/IEEE-bus command:

SENS:TV ON | OFF

The

VERT SYNC

softkey configures the trigger for the vertical sync signal. The FSP triggers on the frame repetition without distinction between the two fields.

IEC/IEEE-bus command:

TRIG:VID:FIEL:SEL ALL

The softkeys

VERT SYNC ODD FIELD

and

VERT

SYNC EVEN FIELD

configure the trigger for the vertical sync signal of the first or second field.

IEC/IEEE-bus command:

TRIG:VID:FIEL:SEL EVEN | ODD

HOR SYNC

The

HOR SYNC

softkey configures the trigger for the horizontal sync signal and opens the data entry field for selection of the corresponding line.

The trigger can be set on any line number, which can be in the range of 1 to 525 or 1 to 625, depending on the line system. The maximum possible line number will be selected if the active range is exceeded.

In order to trigger on test line 17 according to CCIR 473-

4, for example, the line value has to be set to 17. This is the default setting after switching on the TV trigger.

IEC/IEEE-bus command:

TRIG:VID:LINE:NUM 17

1093.4820.12

4.39

E-3

Triggering the Sweep - Analyzer

VIDEO POL

POS NEG

LINES

625 525

CCVS

INT EXT

FSP

The

VIDEO POL POS / NEG

softkey selects the polarity of the video signal.

Positive video polarity is to be selected e.g. for standard

L signals, negative video polarity for signals according to the standards B/G/I/M (colour standard

PAL or NTSC). Default setting is

VIDEO POL NEG

.

IEC/IEEE-bus command:

TRIG:VID:SSIG:POL NEG

The

LINES 625 / 525

softkey selects the line system currently in use.

Default setting is

625 LINES

.

IEC/IEEE-bus command:

TRIG:VID:FORM:LPFR 625

The

CCVS INT / EXT

softkey selects the input channel for the TV trigger input signal. An external CCVS signal can be supplied via the corresponding connector at the rear panel of the instrument.

IEC/IEEE-bus command:

SENS:TV:CCVS INT

1093.4820.12

4.40

E-3

FSP Analyzer - Traces

Selection and Setting of Traces –

TRACE

Key

The FSP is capable of displaying up to three different traces at a time in a diagram. A trace consists of a maximum of 501 pixels on the horizontal axis (frequency or time). If more measured values than pixels are available, several measured values are combined in one pixel.

The traces are selected using the

SELECT TRACE

softkey in the menu of the

TRACE

key

.

The traces can individually be activated for a measurement or frozen after completion of a measurement. Traces that are not activated are blanked.

The display mode can be selected for each trace. Traces can be overwritten in each measurement

(CLEAR/WRITE mode), averaged over several measurements (AVERAGE mode), or a maximum or minimum value can be determined from several measurements and displayed (MAX HOLD or MIN

HOLD).

Individual detectors can be selected for the various traces. The autopeak detector displays maximum and minimum values connected by a vertical line. The max peak detector and min peak detector display the maximum and minimum value of the level within a pixel. The sample detector displays the instantaneous value of the level at a pixel. The rms detector displays the power (rms value) of the measured values within a pixel, the average detector the average value.

Selection of Trace Function

The trace functions are subdivided as follows:

Display mode of trace (CLEAR/WRITE, VIEW and BLANK)

Evaluation of the trace as a whole (AVERAGE, MAX HOLD and MIN HOLD)

Evaluation of individual pixels of a trace (AUTOPEAK, MAX PEAK, MIN PEAK, SAMPLE, RMS,

AVERAGE and QUASIPEAK)

TRACE

menu

AUTO

SELECT

TRACE

SELECT

TRACE

MIN HOLD

DETECTOR

AUTOPEAK

T1-T2->T1

CLEAR/

WRITE

DETECTOR

MAX PEAK

T1-T3->T1

MAX HOLD

ANALOG TR

ON

OFF

AVERAGE

DETECTOR

MIN PEAK

DETECTOR

SAMPLE

TRACE

POSITION

VIEW

AVG MODE

LOG LIN

DETECTOR

RMS

BLANK

SWEEP

COUNT

DETECTOR

TRACE

MATH

ASCII FILE

EXPORT

DECIM SEP

.

,

COPY

TRACE

DETECTOR

AVERAGE

DETECTOR

QPK

TRACE MATH

OFF

1093.4820.12

4.41

E-3

Traces - Analyzer FSP

The

TRACE

key opens a menu offering the setting options for the selected trace.

In this menu, the mode of representing the measured data in the frequency or time domain in the 501 pixels of the display is determined. Upon start of the measurement, each trace can be displayed either completely new or based on the previous results.

In this menu, the mode of representing the measured data in the frequency or time domain in the 501 pixels of the display is determined. Upon start of the measurement, each trace can be displayed either completely new or based on the previous results.

Traces can be displayed, blanked and copied. Traces can also be corrected with the aid of mathematical functions.

The measurement detector for the individual display modes can be selected directly by the user or set automatically by FSP.

The default setting is trace 1 in the overwrite mode (

CLEAR / WRITE)

, the other traces 2 and 3 are switched off (

BLANK

).

The

CLEAR/WRITE, MAX HOLD, MIN HOLD, AVERAGE, VIEW

and

BLANK

softkeys are mutually exclusive selection keys.

SELECT

TRACE

The

SELECT TRACE

softkey activates the entry for the active trace (1, 2, 3).

IEC/IEEE-bus command -- (selected via numeric suffix of

:TRACe

)

CLEAR/

WRITE

MAX HOLD

The

CLEAR/WRITE

softkey activates the overwrite mode for the collected measured values, ie the trace is overwritten by each sweep.

In the

CLEAR/WRITE

display mode all the available detectors can be selected. In the default mode the autopeak detector (setting

AUTO

) is selected.

Each time the

CLEAR/WRITE

softkey is actuated, FSP clears the selected trace memory and starts the measurement anew.

IEC/IEEE-bus command

DISP:WIND:TRAC:MODE WRIT

The

MAX HOLD

softkey activates the max peak detector.

FSP saves the sweep result in the trace memory only if the new value is greater than the previous one.

The detector is automatically set to

MAX PEAK

. The maximum value of a signal can thus be determined over several sweeps.

This is especially useful with modulated or impulsive signals. The signal spectrum is filled up upon each sweep until all signal components are detected in a kind of envelope.

Pressing the

MAX HOLD

softkey again clears the trace memory and restarts the max hold mode.

IEC/IEEE-bus command

DISP:WIND:TRAC:MODE MAXH

1093.4820.12

4.42

E-3

FSP

AVERAGE

Analyzer - Traces

The

AVERAGE

softkey activates the trace averaging function. The average is formed over several sweeps. Averaging can be performed with any of the detectors available. If the detector is automatically selected by FSP, the sample detector is used.

Depending on the setting of AVG MODE LOG / LIN, the logarithmic level values or the measured power/voltage values are averaged.

Averaging is restarted every time the

AVERAGE

softkey is pressed. The trace memory is always cleared.

IEC/IEEE-bus command

DISP:WIND:TRAC:MODE AVER

Description of averaging

Averaging is carried out over the pixels derived from the measurement samples. Several measured values may be combined in a pixel. This means that with linear level display the average is formed over linear amplitude values and with logarithmic level display over levels. For this reason the trace must be measured again when changing between

LIN

and

LOG

display mode. The settings

CONT/SINGLE

SWEEP

and running averaging apply to the average display analogously.

There are two methods for calculating the average. For a sweep count = 0 , a running average is calculated according to the following formula:

TRACE

=

9 * TRACE

+

meas. value

10

Due to the weighting between the new measured value and the trace average, past values have practically no influence on the displayed trace after about ten sweeps. With this setting, signal noise is effectively reduced without need for restarting the averaging process after a change of the signal.

If the sweep count is >1, averaging takes place over the selected number of sweeps. In this case the displayed trace is determined during averaging according to the following formula:

Trace

n

=

1 n

é

ë

å

(T )

+

meas . value

n

ù

û

where n is the number of the current sweep (n = 2 ... SWEEP COUNT). No averaging is carried out for the first sweep but the measured value is stored in the trace memory. With increasing n, the displayed trace is increasingly smoothed since there are more single sweeps for averaging.

After the selected number of sweeps the average trace is saved in the trace memory. Until this number of sweeps is reached, a preliminary average is displayed.

After completion of averaging, ie when the averaging length defined by

SWEEP COUNT

is attained, a running averaging is continued with

CONTINUOUS SWEEP

according to the following formula:

Trace

= old

+ meas . value

N where Trace = new trace

Traceold = old trace

N = SWEEP COUNT

The display "Sweep N of N" does not change any more until a new start is triggered.

In the

SINGLE SWEEP

mode, the number of sweeps is triggered with

SWEEP START

. The sweeps are stopped when the selected number of sweeps is attained. The number of the current sweep and the total number of sweeps are shown on the display: "Sweep 3 of 200".

1093.4820.12

4.43

E-3

Traces - Analyzer

VIEW

FSP

The

VIEW

softkey freezes the current contents of the trace memory and displays it.

If a trace is frozen by

VIEW

, the instrument settings can be changed without the displayed trace being modified (exception: level display range and reference level, see below). The fact that the trace and the current instrument setting do not agree any more is indicated by an enhancement label "*" at the right edge of the grid.

If in the

VIEW

display mode the level display range (

RANGE

) or the reference level (

REF LEVEL

) are changed, FSP automatically adapts the measured data to the changed display range. This allows an amplitude zoom to be made after the measurement in order to show details of the trace.

IEC/IEEE-bus command

DISP:WIND:TRAC:MODE VIEW

BLANK

The

BLANK

softkey activates the blanking of the trace on the screen.

IEC/IEEE-bus command

DISP:WIND:TRAC OFF

SWEEP

COUNT

DETECTOR

The

SWEEP COUNT

softkey activates the entry of the number of sweeps used for averaging. The allowed range of values is 0 to 30000 and the following should be observed:

Sweep Count = 0 means running averaging

Sweep Count = 1 means no averaging being carried out

Sweep Count > 1 means averaging over the selected number of sweeps; in the continuous sweep mode averaging is performed until the set number of sweeps is attained and is then continued as running averaging.

The default setting is running averaging (Sweep Count = 0). The number of sweeps used for averaging is the same for all active traces in the selected diagram.

Note:

The setting of the sweep count in the trace menu is equivalent to the setting in the sweep menu.

IEC/IEEE-bus command

SWE:COUN 64

See following Section "Selection of Detector"

TRACE

MATH

See following Section "Mathematical Functions for Traces"

1093.4820.12

4.44

E-3

FSP Analyzer - Traces

TRACE - NEXT

menu

MIN HOLD

The

MIN HOLD softkey

activates the min peak detector. FSP saves for each sweep the smallest of the previously stored/currently measured values in the trace memory. The detector is automatically set to

MIN PEAK

. In this way, the minimum value of a signal can be determined over several sweeps.

This function is useful eg for making an unmodulated carrier in a composite signal visible. Noise, interference signals or modulated signals are suppressed by the min hold function whereas a CW signal is recognized by its constant level.

Pressing the

MIN HOLD

softkey again clears the trace memory and restarts the min hold function.

IEC/IEEE-bus command

DISP:WIND:TRAC:MODE MINH

AVG MODE

LOG LIN

The

AVG MODE LOG/LIN

softkey selects logarithmic or linear averaging for the logarithmic level display mode.

At the same time the difference calculation is switched between linear and logarithmic in submenu

TRACE MATH

.

IEC/IEEE-bus command

CALC:MATH:AVER:MODE LIN

With logarithmic averaging, the dB values of the display voltage are averaged or substracted from each other with trace mathematical functions. With linear averaging the level values in dB are converted into linear voltages or powers prior to averaging. Voltage or power values are averaged or offset against each other and reconverted into level values.

For stationary signals the two methods yield the same result.

Logarithmic averaging or difference calculation is recommended if sinewave signals are to be clearly visible against noise since with this type of averaging noise suppression is improved while the sinewave signals remain unchanged.

For noise or pseudo-noise signals the positive peak amplitudes are decreased in logarithmic averaging due the characteristic involved and the negative peak values are increased relative to the average value. If the distorted amplitude distribution is averaged, a value is obtained that is smaller than the actual average value. The difference is -2.5 dB.

1093.4820.12

4.45

E-3

Traces - Analyzer

Amplitude

Amplitude distribution

(without averaging)

2.5 dB

Amplitude distribution

(after averaging)

FSP

Probability distribution

This low average value is usually corrected in noise power measurements by a 2.5 dB factor. Therefore the FSP offers the selection of linear averaging.

The trace data are delogarithmized prior to averaging, then averaged and logarithmized again for display on the screen. The average value is always correctly displayed irrespective of the signal characteristic.

ASCII FILE

EXPORT

The

ASCII FILE EXPORT

softkey stores the active trace in ASCII format on a floppy disk.

IEC/IEEE command

FORM ASC;

MMEM:STOR:TRAC 1,'TRACE.DAT'

The file consists of the header containing important scaling parameters and a data section containing the trace data.

The data of the file header consist of three columns, each separated by a semicolon: parameter name; numeric value; basic unit

The data section starts with the keyword " Trace <n> " (<n> = number of stored trace), followed by the measured data in one or several columns

(depending on measurement) which are also separated by a semicolon.

This format can be read in from spreadsheet calculation programs, eg MS-

Excel. It is necessary to define ';' as a separator.

Note:

Different language versions of evaluation programs may require a different handling of the decimal point. It is therefore possible to select between separators '.' (decimal point) and ',' (comma) using softkey DECIM SEP.

Example:

1093.4820.12

4.46

E-3

FSP

File header

Data section of the file

File contents

Type;FSP3;

Version;1.00;

Date;01.Jul 1999;

Mode;Spectrum;

Center Freq;55000;Hz

Freq Offset;0;Hz

Span;90000;Hz x-Axis;LIN;

Start;10000;Hz

Stop;100000;Hz

Ref.Level;-30;dBm

Level Offset;0;dB

Ref Position;75;% y-Axis;LOG;

Level Range;100;dB

RF Att;20;dB

El Att;0;dB

RBW;100000;Hz

VBW;30000;Hz

SWT;0.005;s

Trace Mode;AVERAGE;

Detector;SAMPLE;

Sweep Count;20;

Trace 1:;; x-Unit;Hz; y-Unit;dBm;

Values;501;

10000;-10.3;-15.7

10180;-11.5;-16.9

10360;-12.0;-17.4

...;...;

Analyzer - Traces

Description

Instrument model

Firmware version

Date of data set storage

Instrument mode

Center frequency

Frequency offset

Frequency range (0 Hz with zero span and statistics measurements)

Scaling of x axis linear (LIN) or logarithmic (LOG)

Start/stop of the display range.

Unit:

Hz for span > 0, s for span = 0, dBm/dB for statistics measurements

Reference level

Level offset

Position of reference level referred to diagram limits

(0% = lower edge)

Scaling of y axis linear (LIN) or logarithmic (LOG)

Display range in in y direction. Unit: dB with x axis LOG,

% with x axis LIN

Input attenuation

Input attenuation of el. attenuator (only with Option

FSP-B25)

Resolution bandwidth

Video bandwidth

Sweep time

Display mode of trace:

CLR/WRITE,AVERAGE,MAXHOLD,MINHOLD

Detector set:

AUTOPEAK,MAXPEAK,MINPEAK,AVERAGE,

RMS,SAMPLE,QUASIPEAK

Number of sweeps set

Selected trace

Unit of x values:

Hz with span > 0; s with span = 0; dBm/dB with statistics measurements

Unit of y values: dB*/V/A/W depending on the selected unit with y axis

LOG or % with y axis LIN

Number of test points

Measured values:

<x value>, <y1>, <y2>

<y2> being available only with detector AUTOPEAK and containing in this case the smallest of the two measured values for a test point.

1093.4820.12

4.47

E-3

Traces - Analyzer

DECIM SEP

.

,

FSP

The

DECIM SEP

softkey selects the decimal separator between '.' (decimal point) and ',' (comma) with floating-point numerals for the function ASCII FILE

EXPORT.

With the selection of the decimal separator different language versions of evaluation programs (eg MS-Excel) can be supported.

IEC/IEEE-bus command

FORM:DEXP:DSEP POIN

COPY

TRACE

The

COPY TRACE

softkey copies the screen contents of the current trace into another trace memory. The desired memory is selected by entering the number

1, 2 or 3.

Upon copying, the contents of the selected memory is overwritten and the new contents displayed in view mode.

IEC/IEEE-bus command

TRAC:COPY TRACE1,TRACE2

1093.4820.12

4.48

E-3

FSP Analyzer - Traces

Selection of Detector

The detectors of the FSP are implemented as pure digital devices. The detectors available are the peak detectors which determine the maximum and/or the minimum value from a number of samples, the rms detector which measures the power within a pixel, the average, the quasipeak and the sample detector.

The sample detector routes through the sampled data without any modification or performs a data reduction by suppressing measured values that cannot be displayed.

The peak detectors compare the current level value with the maximum or minimum level from the previously sampled data. When the number of samples defined by the instrument setting is reached, the samples are combined in displayable pixels. Each of the 501 pixels of the display thus represents 1/501 of the sweep range and contains all single measurements (frequency samples) in this subrange in compressed form. For each trace display mode an optimized detector is selected automatically. Since peak detectors and sample detector are connected in parallel, a single sweep is sufficient for collecting all detector values for 3 traces.

Peak detectors

(

MAX PEAK

and

MIN PEAK

)

Autopeak detector

Sample detector

Peak detectors are implemented by digital comparators. They determine the largest of all positive (max peak) or the smallest of all negative (min peak) peak values of the levels measured at the individual frequencies which are displayed in one of the 501 pixels. This procedure is repeated for each pixel so that for wide frequency spans and despite the limited resolution of the display a large number of measurements can be taken into consideration for the display of the spectrum..

The

AUTOPEAK

detector combines the two peak detectors. The max peak detector and the min peak detector simultaneously determine the maximum and the minimum level within a displayed testpoint and display it as a single measured value. The maximum and minimum levels within a frequency point are connected by a vertical line.

The

SAMPLE

detector routes through the sampled data without any further evaluation and either displays them directly or, for reasons of speed in case of short sweep times, first writes them into a memory and processes them subsequently.

There is no data reduction, ie no summing up of measured values of neighbouring frequencies or time samples. If during a frequency sweep more measured values are obtained than can be displayed, measured values will be lost. This means that discrete signals might be lost.

The sample detector therefore can only be recommended for a span-to-resolution bandwidth ratio of up to approx. 250 in order to ensure that no signal will be suppressed (example: span 1 MHz, -

> min. bandwidth 5 kHz).

1093.4820.12

4.49

E-3

Traces - Analyzer

RMS detector

Average detector

FSP

The RMS detector forms the rms value of the measured values within a pixel.

To this effect, FSP uses the linear voltage after envelope detection. The sampled linear values are squared, summed and the sum is divided by the number of samples (= root mean square). For logarithmic display the logarithm is formed from the square sum. For linear display the root mean square value is displayed. Each pixel thus corresponds to the power of the measured values summed up in the pixel.

The rms detector supplies the power of the signal irrespective of the waveform (CW carrier, modulated carrier, white noise or impulsive signal). Correction factors as needed for other detectors for measuring the power of the different signal classes are not required.

The average detector forms the average value of the measured values within a pixel.

To this effect, FSP uses the linear voltage after envelope detection. The sampled linear values are summed up and the sum is divided by the number of samples (= linear average value).

For logarithmic display the logarithm is formed from the average value. For linear display the average value is displayed. Each pixel thus corresponds to the average of the measured values summed up in the pixel.

The average detector supplies the average value of the signal irrespective of the waveform (CW carrier, modulated carrier, white noise or impulsive signal).

Quasipeak detector

Note

:

The quasipeak detector similates the behaviour of an analog voltmeter by evaluating the measured values in a pixel.

The quasipeak detector is especially designed for the requirements of EMC measurements and is used for evaluating pulse-shaped spurious.

During a frequency sweep, FSP increments the 1st local oscillator in steps that are smaller than approximately 1/10 of the bandwidth. This is to ensure that the signal level is correctly measured. For narrow bandwidths and wide frequency spans a very large number of measured values is thus obtained. The number of frequency steps, however, always is a multiple of 501 (= number of pixels that can be displayed). With the sample detector selected, only every n th

value is displayed. The value of n depends on the number of measured values, ie on the frequency span, the resolution bandwidth and the measurement rate.

1093.4820.12

4.50

E-3

FSP

TRACE-DETECTOR

submenu

DETECTOR

AUTO

SELECT

DETECTOR

AUTOPEAK

DETECTOR

MAX PEAK

DETECTOR

MIN PEAK

DETECTOR

SAMPLE

DETECTOR

RMS

DETECTOR

AVERAGE

DETECTOR

QPK

Analyzer - Traces

The

DETECTOR

softkey opens a submenu for selecting the detector for the selected trace. The softkey is highlighted if the detector is not selected with

AUTO SELECT

.

The detector can be selected independently for each trace.

The

AUTO SELECT

mode selects the optimum detector for each display mode of the trace (Clear/Write, Max Hold or Min

Hold).

The softkeys for the detectors are mutually exclusive selection keys.

AUTO

SELECT

DETECTOR

AUTO PEAK

The

AUTO SELECT

softkey (= default setting) selects the optimum detector for the set display mode of the trace

(Clear/Write, Max Hold and Min Hold) and the selected filter mode (bandpass/FFT).

Trace display Detector (bandpass) Detector (FFT)

Clear/Write Auto Peak Max Peak

Average

Max Hold

Min Hold

Sample

Max Peak

Min Peak

Sample

Max Peak

Max Peak

The detector activated for the specific trace is identified in the respective trace display field as follows:

Detector

Auto Peak

Max Peak

Min Peak

Average

RMS

Sample

Quasipeak

IEC/IEEE-bus command

AP

PK

MI

AV

RM

SA

QP

DET:AUTO ON

The

DETECTOR AUTOPEAK

softkey activates the autopeak detector.

IEC/IEEE-bus command

DET APE

1093.4820.12

4.51

E-3

Traces - Analyzer

DETECTOR

MAX PEAK

FSP

The

DETECTOR MAX PEAK softkey

activates the max peak detector. It is recommended for measurement of impulsive signals.

IEC/IEEE-bus command

DET POS

DETECTOR

MIN PEAK

The

DETECTOR MIN PEAK

softkey activates the min peak detector. Weak sinewave signals become clearly visible in noise using this detector. In case of a composite signal made up of sinewave and impulsive signals, the impulsive signals are suppressed.

IEC/IEEE-bus command

DET NEG

DETECTOR

SAMPLE

The

DETECTOR SAMPLE

softkey activates the sample detector.

It is used for measuring uncorrelated signals such as noise.

The power can be determined with the aid of fixed correction factors for evaluation and the logarithmic function.

IEC/IEEE-bus command

DET SAMP

DETECTOR

RMS

The

DETECTOR RMS

softkey activates the rms detector.

The rms detector supplies the power of the signal independent of the waveform. For this effect the root mean square of all sampled level values is formed during the sweep of a pixel. The sweep time thus determines the number of averaged values and with increasing sweep time better averaging is obtained. The rms detector is thus an alternative for averaging over several sweeps (see TRACE

AVERAGE).

Since the video bandwidth must be at least 10 times the resolution bandwidth (RBW) to ensure that video filtering does not invalidate the rms values of the signal, this ratio is set automatically upon activating the detector.

IEC/IEEE-bus command

DET RMS

1093.4820.12

4.52

E-3

FSP

DETECTOR

AVERAGE

Analyzer - Traces

The

DETECTOR AVERAGE

softkey activates the average detector.

In contrast to the rms detector, the average detector supplies the linear average of all sampled level values during the sweep of a pixel.

The same relations as for the rms detector apply (see above).

IEC/IEEE-bus command

DET AVER

DETECTOR

QPK

The

DETECTOR QPK

softkey activates the quasipeak detector.

This detector evaluates the sampled level values during the sweep of a pixel like an analog voltmeter.

On switching the quasipeak detector on the video bandwidth is automatically set to 10 MHz so as to exclude the influence of the video filter on the signal evaluation.

IEC/IEEE-bus command

DET QPE

1093.4820.12

4.53

E-3

Traces - Analyzer FSP

Mathematical Functions for Traces

TRACE 1-TRACE MATH

submenu:

TRACE MATH

T1-T2->T1

TRACE

MATH

T1-T3->T1

The

TRACE MATH

softkey opens a submenu in which the difference between the selected trace to trace 1 is calculated.

The softkey is highlighted if a math function is activated.

TRACE

POSITION

REF-T1

->T1

1093.4820.12

TRACE MATH

OFF

TRACE MATH

T1-T2->T1

T1-T3->T1

TRACE

POSITION

TRACE MATH

OFF

The

T1-T2

and

T1-T3

softkeys subtract the corresponding traces. The result displayed is referred to the zero point defined by

TRACE POSITION

.

To indicate that the trace has been obtained by subtraction, the difference "1 - 2" or "1 - 3" is indicated on the trace info of trace 1 and in the

TRACE

main menu the

TRACE MATH

softkey is highlighted.

IEC/IEEE-bus command

CALC:MATH (TRACE1–TRACE2)

CALC:MATH (TRACE1–TRACE3)

The

TRACE POSITION

softkey activates the entry of the trace position for 0 difference. The position is stated in % of the diagram height.

The range of values extends from -100% to +200%

IEC/IEEE-bus command

DISP:MATH:POS 50PCT

The

TRACE MATH OFF

softkey switches the math function off.

IEC/IEEE-bus command

CALC:MATH:STAT OFF

4.54

E-3

FSP Calibration

Recording the Correction Data of FSP –

CAL

Key

The FSP obtains its high measurement accuracy through its inbuitl self-alignment method.

The correction data and characteristics required for the alignment are determined by comparison of the results at different settings with the known characteristics of the high-precision calibration signal source of FSP at 128 MHz. The correction data are then available in the instrument as a file and can be displayed by means of the

CAL RESULTS

softkey.

For service purposes the use of correction data can be deactivated by means of the

CAL CORR

ON/OFF

softkey. If the correction data recording is aborted, the last complete correction data set is restored.

Note

: The term "Calibration" formerly used for the integrated self alignment was often mistaken for the "true" calibration of the instrument at the test set in production and in service. It is therefore no longer used although it appears in the abbreviated form in the name of keys

("CAL...").

CAL

menu:

CAL

CAL TOTAL

The

CAL

key opens a menu with the available functions for recording, displaying and activating the data for self alignment.

SETUP

CAL ABORT

CAL CORR

ON OFF

CAL

TOTAL

CAL ABORT

CAL

RESULTS

PAGE UP

PAGE DOWN

The

CAL TOTAL

softkey starts the recording of correction data of the instrument.

If the correction data recording has failed or if the correction values are deactivated (

CAL CORR = OFF

softkey), the status field indicates

UNCAL

.

IEC/IEEE-bus command:

*CAL?

The

CAL ABORT

softkey interrupts the recording of correction data and restores the last complete correction data set.

IEC/IEEE-bus command:

CAL:ABOR

1093.4820.12

4.55

E-3

Calibration

CAL CORR

ON OFF

CAL

RESULTS

PAGE UP

PAGE DOWN

FSP

The

CAL CORR ON/OFF

softkey switches the calibration data on/off.

ON The status message depends upon the results of the total calibration.

OFF The message

UNCAL

appears in the status line.

IEC/IEEE-bus command:

CAL:STAT ON

The

CAL RESULTS

softkey calls the

CALIBRATION RESULTS

table, which shows the correction data found during calibration.

The

CALIBRATION RESULTS

table contains the following information:

– date and time of last record of correction valuesKorrekturwertaufnahme

– overall results of correction value record

– list of found correction values according to function/module

The results have the following meaning:

PASSED

CHECK

FAILED calibration successful without any restrictions deviation of correction value larger than expected, correction could however be performed deviations of correction value too large, no correction was possible. The found correction data are not valid.

ABORTED calibration aborted

CALIBRATION RESULTS

Calibration: PASSED

Date: 05.Jun 1999 16:24:54

Total GAIN Adjust

Calibration of IF Filters

PASSED

PASSED

Bandwidth:

Filter Cal Val [Hz] DAC Val State

100kHz

300kHz

1MHz

3MHz

10MHz

1.804e+03

8.417e+03

2.806e+04

1.804e+03

8.417e+03

3698

3516

2881

3698

3516

PASSED

PASSED

PASSED

PASSED

PASSED

IEC/IEEE-bus command:

CAL:RES?

The softkeys

PAGE UP

and

PAGE DOWN

scroll one page forward or backward in the

CALIBRATION RESULTS

table. They have no function when the table is closed.

IEC/IEEE-bus command:

--

1093.4820.12

4.56

E-3

FSP MKR – Analyzer

Markers and Delta Markers –

MKR

Key

The markers are used for marking points on traces, reading out measurement results and for quickly selecting a display section. FSP provides four markers per display window. All markers can be used either as markers or delta markers. The availability of marker functions depends on whether the measurement is performed in the frequency, time or level domain.

The marker that can be moved by the user is defined in the following as the

active marker

.

Examples of marker display:

Marker

1

Active marker

3

Temporary marker

T1

2

Delta marker

Temporary markers are used in addition to the markers and delta markers to evaluate the measurement results. They disappear when the associated function is deactivated.

The measurement results of the active marker (also called

marker values

) are displayed in the marker field. The marker info field at the upper right of the display shows the marker location (here, frequency), the level and the currently selected trace [T1].

MARKER 1 [T1]

-27.5 dBm

123.4567 MHz

The

MKR

key calls a menu that contains all marker and delta marker standard functions. If no marker is active,

MARKER 1

will be enabled and a peak search on the trace carried out. Otherwise, the data entry for the marker activated last is opened.

MKR

menu:

FREQ

MKR

SPAN

MKR

MARKER

MARKER 1

MARKER 2

MARKER 3

MARKER 4

MARKER

NORM DELTA

SIGNAL

COUNT

REFERENCE

FIXED

MARKER

ZOOM

ALL MARKER

OFF

MARKER

MKR->TRACE

CNT RESOL

10 kHz

CNT RESOL

1 kHz

CNT RESOL

100 Hz

CNT RESOL

10 Hz

CNT RESOL

1 Hz

CNT RESOL

0.1 Hz

REF FIXED

REF FXD

ON OFF

REF POINT

LEVEL

REF POINT

LVL OFFSET

REF POINT

FREQUENCY

REF POINT

TIME

PEAK

SEARCH

SIGNAL ID

1093.4820.12

4.57

E-3

MKR – Analyzer

MARKER 1

MARKER 4

MA RKER

NO RM DE LTA

FSP

The

MARKER 1/2/3/4

.softkey selects the corresponding marker and activates it.

MARKER 1

is always the normal marker. After they have been switched on,

MARKERS 2 to 4

are delta markers that refer to

MARKER 1

. These markers can be converted into markers with absolute value display by means of the

MARKER NORM DELTA

softkey. When

MARKER 1

is the active marker, pressing the M

ARKER NORM DELTA

softkey switches on an additional delta marker.

Pressing the

MARKER 1 to 4

softkey again switches off the selected marker.

Example:

[

PRESET

] FSP is set to the default setting.

[

[

MKR

]

MARKER 2

]

On calling the menu,

MARKER 1

is switched on ('1' highlighted in the softkey) and positioned on the maximum value of the trace. It is a normal marker and the

MARKER NORMAL

softkey is highlighted.

MARKER 2

is switched on ('2' highlighted in the softkey).

It is automatically defined as a delta marker on switching on so the

DELTA

is is highlighted on softkey

MARKER NORM DELTA

. The frequency and level of

MARKER 2

with reference to

MARKER 1

are output in the marker info field.

[MARKER

NORM DELTA]

The

MARKER NORM DELTA

softkey is highlighted.

MARKER 2

becomes a normal marker. The frequency and level of

MARKER 2

are output as absolute values in the marker info field.

[MARKER 2] MARKER 2

is switched off.

MARKER 1

is the active marker for entry. The frequency and level of

MARKER 1

are output in the marker info field.

IEC/IEEE-bus command:

CALC:MARK ON;

CALC:MARK:X <value>;

CALC:MARK:Y?

CALC:DELT ON;

CALC:DELT:MODE ABS|REL

CALC:DELT:X <value>;

CALC:DELT:X:REL?

CALC:DELT:Y?

When several traces are being displayed, the marker is set to the maximum value (peak) of the active trace which has the lowest number (1 to 3). In case a marker is already located there, it will be set to the frequency of the next lowest level (next peak).

When the split-screen display mode is active, the marker will be placed in the active window. A marker can only be enabled when at least one trace in the corresponding window is visible.

1093.4820.12

4.58

E-3

FSP MKR – Analyzer

If a trace is turned off, the corresponding markers and marker functions are also deactivated. If the trace is switched on again (

VIEW

,

CLR/WRITE

;..), the markers along with coupled functions will be restored to their original positions provided the markers have not been used on another trace.

MRK TRACE

The

MKR

TRACE

softkey places the marker on a new trace. The trace is selected via a data entry field. Only those traces can be selected which are visible on the screen in the same window.

Example:

Three traces are presented on the screen. The marker is always on Trace 1 on switching on.

[

MKR ->TRACE]

"2"<ENTER>

The marker jumps to Trace 2 but remains on the previous frequency or time.

[

MKR ->TRACE]

"3"<ENTER>

The marker jumps to Trace 3. '

IEC/IEEE-bus command:

CALC:MARK1:TRAC 1

CALC:DELT:TRAC 1

Frequency Measurement with the Frequency Counter

In order to accurately determine the frequency of a signal, FSP is equipped with a frequency counter which measures the frequency of the RF signal at the intermediate frequency. Using the measured IF,

FSP calculates the frequency of the RF input signal by applying the known frequency conversion factors.

The frequency measurement error depends only upon the accuracy of the frequency standard used

(external or internal reference). Although FSP always operates synchronously irrespective of the set span, the frequency counter delivers a more exact result than a measurement performed with a marker.

This is due to the following:

The marker measures only the position of the pixel on the trace and infers the frequency of the signal from this value. The trace, however, contains only a limited number of pixels. Depending upon the selected span, each pixel may contain many measurement values, which therefore limits the frequency resolution.

The resolution with which the frequency can be measured is proportional to the measurement time.

For this reason, the bandwidth is normally made as wide as possible and the sweep time as short as possible. This results in a loss of frequency resolution.

For the measurement with the frequency counter, the sweep is stopped at the reference marker, the frequency is counted with the desired resolution and then the sweep is allowed to continue.

1093.4820.12

4.59

E-3

MKR – Analyzer FSP

SIGNAL

COUNT

The

SIGNAL COUNT

softkey switches the frequency counter on/off.

The frequency is counted at the position of the reference marker (

MARKER

1). The sweep stops at the reference marker until the frequency counter has delivered a result. The time required for a frequency measurement depends on the selected frequency resolution. The resolution is set in the side menu.

If no marker is enabled when the

SIGNAL COUNT

softkey is pressed,

MARKER 1

is switched on and set at the largest signal.

In addition, the

SIGNAL COUNT

function is displayed in the marker info field on the screen with [Tx CNT].

MARKER 1 [T1 CNT]

-27.5 dBm

23.4567891 MHz

Switching the

SIGNAL COUNT

function off is accomplished by pressing the softkey again.

IEC/IEEE-bus command:

CALC:MARK1:COUN ON;

CALC:MARK:COUN:FREQ?

MARKER NEXT

menu

The resolution of the frequency counter is set in the

NEXT

menu of the MARKER menu. FSP offers counter resolutions between 0.1 Hz and 10 kHz.

MARKER

CNT RESOL

10 kHz

CNT RESOL

1 kHz

CNT RESOL

100 Hz

The

CNT RESOL ...

softkeys select the counter resolution. They are selection switches, i.e. only one of the can be active at any one time.

The marker stop time, ie the frequency measurement time, depends on the selected resolution.

IEC/IEEE-bus command:

CALC:MARK1:COUN:RES <value>

CNT RESOL

10 Hz

CNT RESOL

1 Hz

CNT RESOL

0.1 Hz

[

[

Measurement example:

The frequency of a CW signal is to be determined by means of the frequency counter with a resolution of 10 Hz.

PRESET

]

MARKER

[

SIGNAL

COUNT

]

]

[

NEXT

]

[

CNT RESOL

10 Hz

]

FSP is set to the default setting.

MARKER 1

is switched on and set to the maximum value of the displayed spectrum.

The frequency counter is switched on. FSP counts the frequency of the signal at the marker position with a resolution of 1 kHz. The counted frequency is indicated in the marker info field.

Changes to the submenu for setting the counter resolution.

The frequency counter resolution is increased to 10 Hz.

1093.4820.12

4.60

E-3

FSP

REFERENCE

FIXED

MKR – Analyzer

REF FIXED

REF FIXED

ON OFF

REF POINT

LEVEL

REF POINT

LVL OFFSET

REF POINT

FREQUENCY

REF POINT

TIME

PEAK

SEARCH

The

REFERENCE FIXED

softkey defines the level and the frequency or time of

MARKER 1

as a reference for one or several delta markers. The measured values for one or several markers displayed in the marker info field are derived from this reference point instead of the current values of the reference marker (

MARKER

1).

On actuating the softkey, reference fixed is switched on and thus, the level value and the frequency, time or x-level value of

MARKER 1

immediately become the reference point.

Additionally, the

REFERENCE FIXED

softkey opens the submenu where it is possible to determine manually a reference point with level and frequency, time or x-axis level, to define a level offset or deactivate the reference point.

The

REFERENCE FIXED

function is useful for the measurement of the harmonic suppression at small span (fundamental not represented).

OFF

REF FIXED

ON OFF

REF POINT

LEVEL

REF POINT

LVL OFFSET

REF POINT

FREQUENCY

The

REF FXD ON/OFF

softkey switches on or off the relative measurement to a fixed reference value (

REFERENCE POINT

) independent of the trace.

IEC/IEEE-bus command:

CALC:DELT2:FUNC:FIX ON

The

REF POINT LEVEL

softkey enters a reference level independent of the reference marker level. All relative level values of the delta markers refer to this reference level.

IEC/IEEE-bus command:

CALC:DELT2:FUNC:FIX:RPO:Y -10dBm

The

REF POINT LVL OFFSET

softkey specifies a level offset relevant to the reference level. The relative level values of the delta markers refer to the reference point level plus the level offset.

The level offset is set to 0 dB on enabling the

REFERENCE

FIXED

or

PHASE NOISE

function.

IEC/IEEE-bus command:

CALC:DELT2:FUNC:FIX:RPO:Y:OFFS 0dB

With the

REF POINT FREQUENCY

softkey a reference frequency can be manually activated for the delta markers when the

REFERENCE FIXED

or

PHASE NOISE

function is used.

IEC/IEEE-bus command:

CALC:DELT2:FUNC:FIX:RPO:X 10.7MHz

1093.4820.12

4.61

E-3

MKR – Analyzer

REF POINT x-LEVEL

PEAK

SEARCH

FSP

The

REF POINT x-LEVEL

softkey activates the entry box for the input of a reference level on the x-axis for the

REFERENCE

FIXED

function when the power sweep is active.

IEC/IEEE-bus command:

CALC:DELT2:FUNC:FIX:RPO:X -5DBM

The

PEAK SEARCH

sets the reference point level for all delta markers to the peak of the selected trace when the

REFERENCE FIXED

function is used.

IEC/IEEE-bus command:

CALC:DELT:FUNC:FIX:RPO:MAX

[

[

[

[

Measurement example:

Small-span harmonics measurement to increase sensitivity

CW signal (eg 100 MHz, 0 dBm) with harmonics at the RF input of FSP.

[

PRESET

] FSP is set to the default setting.

[

CENTER

: 100

MHz

]

[

SPAN

: 1

MHz

]

[

AMPL

: 3

dBm

]

The center frequency of FSP is set to 100 MHz.

The span is set to 1 MHz.

MKR

]

MARKER 2

]

The reference level is set to 3 dBm (3 dB above the expected RF level).

MARKER

1 is switched on ('1' highlighted in the softkey) and set to the signal peak.

MARKER 2

is switched on and automatically defined as the delta marker (

DELTA

is highlighted on

MARKER

NORM DELTA

softkey).

[

REFERENCE

FIXED

]

CENTER

MKR->

:

: 200

PEAK

]

MHz

]

The frequency and level of

MARKER 1

are a reference for the delta marker.

The center frequency is set to 200 MHz (= frequency of the

2nd harmonic). The reference level may have to be reduced to see the 2nd harmonic from the noise. This does not affect the reference level set with

REFERENCE

FIXED

.

The delta marker jumps to the 2nd harmonic of the signal.

The level spacing of the harmonic to the fundamental is displayed in the marker info field.

1093.4820.12

4.62

E-3

FSP

MARKER

ZOOM

ALL MARKER

OFF

MKR – Analyzer

The

MARKER ZOOM

softkey expands the area around MARKER 1. With the zoom function, more details of the spectrum can be seen. The desired display range can be defined in an entry window.

The following sweep is stopped at the position of the reference marker. The frequency of the signal is counted and the measured frequency becomes the new center frequency. The zoomed display range is then configured and the new settings are used by FSP for further measurements.

As long as switching to the new frequency display range has not yet taken place, pressing the softkey will abort the procedure.

If

MARKER 1

is not active when the softkey is pressed, it is automatically activated and set to the highest peak in the window.

If an instrument setting is changed after selection of

MARKER ZOOM

, the function is aborted.

The

MARKER ZOOM

softkey is only available in the frequency domain

(span

>

0).

IEC/IEEE-bus command:

CALC:MARK1:FUNC:ZOOM 1kHz

The

ALL MARKER OFF

softkey switches off all markers (reference and delta markers). It also switches off all functions and displays associated with the markers/delta markers.

IEC/IEEE-bus command:

CALC:MARK:AOFF

1093.4820.12

4.63

E-3

MKR FCTN - Analyzer

Marker Functions –

MKR FCTN

Key

The MKR FCTN menu offers further measurements with the markers:

-

Measurement of noise density (

NOISE MEAS

softkey)

-

Measurement of phase noise (

PHASE NOISE

softkey)

Measurement of filter or signal bandwidth (

N DB DOWN

softkey)

Activating of AF demodulation (

MARKER DEMOD

softkey)

FSP

On calling the menu, the entry for the last active marker is activated (

SELECT MARKER

softkey); if no marker is activated, marker 1 is activated and a maximum search (

PEAK

softkey) is performed. The marker can be set to the desired trace by means of

MKR -> TRACE

softkey.

Menu

MKR FCTN

:

SPAN

MKR

AMPT

MKR

FCTN

SELECT

MARKER

PEAK

NOISE MEAS

PHASE

NOISE

N DB DOWN

60:3 60:6

MARKER

DEMOD

MRK->TRACE

MKR DEMOD

ON OFF

AM

FM

MKR

STOP TIME

CONT

DEMOD

NEW

SEARCH

SORT MODE

FREQ LEVEL

PEAK

EXCURSION

PH NOISE

ON OFF

REF POINT

LEVEL

REF POINT

LVL OFFSET

REF POINT

FREQUENCY

PEAK

SEARCH

LEFT

LIMIT

RIGHT

LIMIT

THRESHOLD

PEAK LIST

OFF

SIGNAL ID

1093.4820.12

4.64

E-3

FSP Analyzer - MKR FCTN

Activating the Markers

Menu

MKR FCTN

:

SELECT

MARKER

The

SELECT MARKER

softkey activates the numerical selection of the marker in the data entry field. Delta marker 1 is selected by input of ' 0 '.

If the marker is switched off, then it is switched on and can be moved later on.

IEC/IEEE-bus command:

CALC:MARK1 ON;

CALC:MARK1:X <value>;

CALC:MARK1:Y?

PEAK

The

PEAK

softkey sets the active marker/delta marker to the peak of the trace.

IEC/IEEE-bus command:

CALC:MARK1:MAX

CALC:DELT1:MAX

Measurement of Noise Density

NOISE MEAS

The

NOISE MEAS

softkey switches the noise measurement for the active marker on or off. The corresponding marker becomes the

NORMAL

marker.

During noise measurement, the noise power density is measured at the position of the marker. In the time domain mode, all points of the trace are used to determine the noise power density. When measurements are performed in the frequency domain, two points to the right and left of the marker are used for the measurement to obtain a stable result.

The noise power density is indicated in the marker field. With a logarithmic amplitude units (dBm, dBmV, dBmµV, dBµA) the noise power density is output in dBm/Hz i.e. as level in 1 Hz bandwidth with reference to 1 mW.

With linear amplitude units (V, A, W) the noise voltage density is evaluated in µV/

Hz, the noise current density in µA/

Hz or the noise power density in µW/Hz.

The following settings have to be made to ensure that the power density measurement yields correct values:

Detector: Sample or RMS

Video bandwidth:

0.1 x resolution bandwidth with sample detector

(corresponds to RBW / VBW NOISE)

3 x resolution bandwidth with RMS detector

(corresponds to RBW / VBW SINE)

In the default setting, the FSP uses the sample detector for the noise function.

With the sample detector, the trace can additionally be set to AVERAGE to stabilize the measured values. With RMS detector used, trace averaging must not be used since in this case it produces too low noise levels which cannot be corrected. Instead, the sweep time can be increased to obtain stable measurement results.

1093.4820.12

4.65

E-3

MKR FCTN - Analyzer FSP

The FSP uses the following correction factors to evaluate the noise density from the marker level:

Since the noise power is indicated with reference to 1 Hz bandwidth, the bandwidth correction value is deducted from the marker level. It is

10 x lg (1 Hz/BW

Noise

), where BW

Noise

is the noise or power bandwidth of the set resolution filter (RBW).

Sample detector:

As a result of video filter averaging and trace averaging, 1.05 dB is added to the marker level. This is the difference between the average value and the RMS value of white noise.

With a logarithmic level axis, 1.45 dB is added additionally. Logarithmic averaging is thus fully taken into account which yields a value that is

1.45 dB lower than that of linear averaging.

RMS detector:

With the exception of bandwidth correction, no further corrections are required for the RMS detector since it already indicates the power with every point of the trace.

To allow a more stable noise display the adjacent (symmetric to the measurement frequency) points of the trace are averaged.

In time domain mode, the measured values are averaged versus time

(after a sweep).

IEC/IEEE-bus command:

CALC:MARK:FUNC:NOIS ON;

CALC:MARK:FUNC:NOIS:RES?

Example

: Measurement of inherent FSP noise

[

PRESET

]

[

MARKER

]

[

NOISE

]

The FSP is set to default setting.

Marker 1 is switched on and set to the maximum value of the displayed spectrum. Set marker to desired frequency using the rotary knob.

The FSP switches the sample detector on and sets the video bandwidth to 300 kHz (0.1 x RBW). The power density level of inherent noise is displayed in dBm/Hz in the marker info field.

Note

: The FSP noise figure can be calculated from the measured power density level. It is calculated by deducting the set RF attenuation (RF Att) from the displayed noise level. 174 is to be added to the result to obtain the FSP noise figure.

1093.4820.12

4.66

E-3

FSP

Phase Noise Measurement

Menu MKR FCTN

:

PHASE

NOISE

PHASE NOISE

ON OFF

REF POINT

LEVEL

REF POINT

LVL OFFSET

REF POINT

FREQUENCY

PEAK

SEARCH

OFF

Analyzer - MKR FCTN

The

PHASE NOISE

softkey switches the

PHASE NOISE

function on/off. Additionally, the softkey opens the submenu for manually setting the reference point. The phase noise measurement can be switched off in the submenu.

MARKER 1

(= reference marker) is used as a reference for the phase noise measurement. The frequency and level of the reference marker are used as fixed reference values, i.e. the

REFERENCE FIXED

function is activated. After switching on the phase noise measurement the reference level or the center frequency can thus be set in a way that the carrier is outside the displayed frequency range, or, for example, a notch filter is switched on to suppress the carrier.

A noise power density measurement is carried out with the delta marker or delta markers. This measurement corresponds to the NOISE function in the

MARKER

menu (MKR). The result of the phase noise measurement is the difference in level between the reference point and the noise power density.

The following possibilities can be selected on switching on

PHASE NOISE

:

1. No marker enabled:

[

MKR FCTN

]

MARKER 1

is enabled and set to peak.

[

PHASE NOISE

]

MARKER 1

becomes the reference marker,

MARKER 2

the delta marker; frequency = frequency of the reference marker. The delta marker is the active marker, i.e. it can be moved with the rollkey or adjusted by entering numerals.

The

PHASE NOISE

function is switched on and the measured value is output.

2. Markers are enabled:

[

MKR FCTN

] The previous marker configuration remains unchanged.

[

PHASE NOISE

]

MARKER

1 becomes the reference marker. If other markers are enabled, they become delta markers and measure the phase noise at their respective positions.

If further markers are enabled during the phase noise measurement, they automatically become delta markers and measure the phase noise at their respective positions.

When the phase noise measurement is switched off, the marker configuration remains unchanged and the delta markers measure the relative level to the reference marker

(

MARKER 1

).

1093.4820.12

4.67

E-3

MKR FCTN - Analyzer

PH NOISE

ON OFF

REF POINT

LEVEL

REF POINT

LVL OFFSET

FSP

The

PHASE NOISE

function measures the noise power at the delta markers referred to 1 Hz bandwidth. The sample detector is automatically used and the video bandwidth set to 0.1 times the resolution bandwidth (RBW). The two settings are taken into account in the correction values used for the noise power measurement.

To obtain stable results, two pixels on the right and the left of the respective delta marker position are taken for the measurement. The procedure for determining the noise power is identical to the method used for the noise power measurement (see NOISE softkey). The measured noise level referred to 1 Hz bandwidth is subtracted from the carrier level at the reference marker (

MARKER 1

). The measured values are displayed in the delta marker field in dBc/Hz (= spacing in dB of the noise power from the carrier level in 1 Hz bandwidth).

If several delta markers are enabled, only the value read by the active marker is shown in the marker field. If several delta markers are active, their measurement results are shown in the marker info field.

The reference value for the phase noise measurement can be defined with

REF POINT LEVEL

,

REF POINT FREQUENCY

and

REF POINT LVL OFFSET

to differ from that of the reference marker.

IEC/IEEE-bus command:

--

The

PH NOISE ON/OFF

softkey switches on/off the phase noise measurement. Switching on is performed by means of the

PHASE NOISE

softkey and is only necessary when the phase noise measurement has been switched off in the submenu.

IEC/IEEE-bus command:

CALC:DELT1:FUNC:PNO ON

CALC:DELT1:FUNC:PNO:RES?

The

REF POINT LEVEL

softkey activates an entry box for the input of a reference level other than the reference marker level. The function is identical to that of the softkey with the same name in the marker menu (MKR).

IEC/IEEE-bus command:

CALC:DELT1:FUNC:FIX:RPO:Y -10d

Β

The

REF POINT LVL OFFSET

softkey activates an entry box for the input of an additional level offset for the phase noise calculation.

This level offset is set to 0 dB on when the

REFERENCE

FIXED

or

PHASE NOISE

function is enabled.

IEC/IEEE-bus command:

CALC:DELT:FUNC:FIX:RPO:Y:OFFS 10dB

1093.4820.12

4.68

E-3

FSP

REF POINT

FREQUENCY

Analyzer - MKR FCTN

The

REF POINT FREQUENCY

softkey activates an entry box for the manual input of a reference frequency for the

REFERENCE FIXED

or

PHASE NOISE

function.

IEC/IEEE-bus command:

CALC:DELT1:FUNC:FIX:RPO:X 10.7MHz

PEAK

SEARCH

The

PEAK SEARCH

sets the reference point level for delta marker 2 in the selected measurement window to the peak of the selected trace.

IEC/IEEE-bus command:

CALC:DELT:FUNC:FIX:RPO:MAX

[

Measurement example:

The phase noise of a CW signal at 100 MHz with 0 dBm level is to be measured at 800 kHz from the carrier

[

PRESET

]

[

CENTER

: 100

MHz

]

[

SPAN

: 2

MHz

]

[

AMPT

: 0

dBm

]

The FSP is set to the default setting.

The center frequency is set to 100 MHz.

The span is set to 2 MHz.

The reference level is set to 0 dBm.

[

MKR FCTN

]

PHASE NOISE

800

kHz

]

:

MARKER 1

is switched on and positioned at the maximum of the displayed trace.

The phase noise measurement is switched on. The delta marker is positioned on the main marker and the measured phase noise value is displayed in the marker info field. The sample detector is used and the video bandwidth is set to 3 x RBW. When the phase noise measurement function is enabled, the entry of the delta marker frequency is activated. It can be entered directly.

Measurement of the Filter or Signal Bandwidth

Menu

MKR FCTN

:

N dB DOWN

The

N dB DOWN

softkey activates the temporary markers T1 and T2 which are n dB below the active reference marker. Marker T1 is placed to the left and marker T2 at the right of the reference marker. The value n can be input in a window.

The default setting is 3 dB.

The frequency spacing of the two temporary markers is indicated in the marker info field.

If, for example, it is not possible to form the frequency spacing for the n dB value because of the noise display, dashes are indicated instead of a measured value.

IEC/IEEE-bus command:

CALC:MARK1:FUNC:NDBD:STAT ON

CALC:MARK1:FUNC:NDBD 3dB

CALC:MARK1:FUNC:NDBD:RES?

CALC:MARK1:FUNC:NDBD:FREQ?

1093.4820.12

4.69

E-3

MKR FCTN - Analyzer FSP

Measurement of a Peak List

Menu

MKR FCTN

:

PEAK

LIST

NEW

SEARCH

SORT MODE

FREQ LEVEL

The

PEAK LIST

softkey allows the peak values of the trace to be determined and entered in a list with 50 entries max. The order of the entries is defined by the

SORT MODE

:

FREQ

LEVEL sorting in ascending order of frequency values

(see screenshot); if span = 0, the entries are sorted in ascending order of time values sorting according to level

PEAK

EXCURSION

LEFT

LIMIT

RIGHT

LIMIT

THRESHOLD

PEAK LIST

OFF

The search range can be restricted by means of the

LEFT LIMIT,

RIGHT LIMIT

and

THRESHOLD

softkeys. The definition of the peak values can be modified using the

PEAK EXCURSION

softkey.

The

MKR->TRACE

softkey in the main menu is used to select the trace for searching peak values.

Opening the list performs a single search at the end of the sweep.

The

NEW SEARCH

softkey triggers a new sweep, determines the peak values of the trace at the end of the sweep and enters them in the list.

Use the

PEAK LIST OFF

key to delete the list from the screen

.

IEC/IEEE-bus commands:

INIT:CONT OFF;

CALC:MARK:TRAC 1;

CALC:MARK:FUNC:FPE:SORT X;

INIT;*WAI;

CALC:MARK:FUNC:FPE 10;

CALC:MARK:FUNC:FPE:COUN?;

CALC:MARK:FUNC:FPE:Y?;

CALC:MARK:FUNC:FPE:X?

1093.4820.12

4.70

E-3

FSP

NEW

SEARCH

Analyzer - MKR FCTN

The NEW SEARCH softkey starts a new peak search and enters the results in the peak list.

IEC/IEEE-bus commands:

INIT;*WAI;

CALC:MARK:FUNC:FPE 10;

CALC:MARK:FUNC:FPE:COUN?;

CALC:MARK:FUNC:FPE:Y?;

CALC:MARK:FUNC:FPE:X?

SORT MODE

FREQ LEVEL

The SORT MODE FREQ/LEVEL softkey defines the position of the peak values in the list:

FREQ sorting in ascending order of frequency values (time values if span = 0)

LEVEL sorting according to level

IEC/IEEE-bus command:

CALC:MARK:FUNC:FPE:SORT X;

PEAK

EXCURS ION

LEFT

LIMIT

RIGHT

LIMIT

With level measurements, the PEAK EXCURSION softkey allows the minimum amount to be entered by which a signal must decrease or increase in order to be recognized as a maximum by the peak search function.

Values between 0 dB and 80 dB may be entered, the resolution being 0.1 dB

IEC/IEEE-bus command:

CALC:MARK:PEXC 6dB

The LEFT LIMIT and RIGHT LIMIT softkeys define the vertical lines F1/F2 in the frequency domain (span > 0) and T1/T2 in the time domain (span = 0) between which the search is carried out.

If only one line is active, the F1/T1 line is used as the lower limit; the upper limit is the stop frequency. If F2/T2 is also active, it defines the upper limit.

IEC/IEEE-bus commands:

CALC:MARK:X:SLIM:LEFT 1MHZ

CALC:MARK:X:SLIM:RIGH 10MHZ

CALC:MARK:X:SLIM ON

THRESHOLD

The THRESHOLD softkey defines a horizontal threshold line which represents the lower limit of the peak search level range.

IEC/IEEE-bus command:

CALC:THR -20dBm

CALC:THR ON

PEAK LIST

OFF

The PEAK LIST OFF softkey switches off the table with the search results.

IEC/IEEE-bus command:

-

1093.4820.12

4.71

E-3

MKR FCTN - Analyzer FSP

AF Demodulation

The FSP provides demodulators for AM and FM signals when equipped with the AF demodulator option

(FSP-B3). With these demodulators, a displayed signal can be identified acoustically through the use of the internal loudspeaker or with headphones. The frequency at which the demodulation is enabled is coupled to the markers. The sweep stops at the frequency determined by the active marker for the selected time and the RF signal is demodulated. During a measurement in the time domain (span = 0

Hz) the demodulation is continuously on.

The threshold line (

MKR->SEARCH LIMITS:THRESHOLD

) performs a squelch function in the demodulator. If the threshold is set, the FSP LF demodulation is switched on only when the signal to be demodulated exceeds the set threshold.

Menu

MKR FCTN

:

MARKER

DEMOD

MARKER

DEMOD

MKR DEMOD

ON OFF

The

MARKER DEMOD

softkey switches on the audio demodulator and calls a submenu in which the demodulation mode and the duration of the demodulation can be selected.

IEC/IEEE-bus command:

CALC:MARK1:FUNC:DEM ON

AM

FM

MKR

STOP TIME

CONT

DEMOD

OFF

1093.4820.12

MKR DEMOD

ON OFF

The

MKR DEMOD ON/OFF

softkey switches the demodulation on/off.

In the frequency range (span >0), the frequency scan is stopped at the frequency of the active marker with demodulation switched on – provided that the level is above the threshold line - and the signal is demodulated during the given stop time.

In the time domain (span = 0) demodulation is continuous, i.e. not only active at the marker position.

IEC/IEEE-bus command:

CALC:MARK1:FUNC:DEM ON

4.72

E-3

FSP

AM

FM

MKR

STOP TIME

CONT DEMOD

Analyzer - MKR FCTN

The softkeys

AM and FM

are selector switches one of which only may be active at a time. They set the desired demodulation mode

FM or AM. Default setting is AM.

IEC/IEEE-bus command:

CALC:MARK1:FUNC:DEM:SEL AM

CALC:MARK1:FUNC:DEM:SEL FM

The

MKR STOP TIME

softkey defines the stop time for demodulation at the marker(s).

The FSP interrupts the frequency sweep at the marker position and activates the demodulation for the duration of the stop time (see also

MKR DEMOD ON/OFF

).

In the time domain (span = 0) the demodulation is continuously active irrespective of the stop time set.

IEC/IEEE-bus command:

CALC:MARK1:FUNC:DEM:HOLD 3s

The

CONT DEMOD

softkey switches on the continuous demodulation in the frequency domain. If the sweep time is long enough, the set frequency range can be monitored acoustically.

IEC/IEEE-bus command:

CALC:MARK1:FUNC:DEM:CONT ON

Selecting the Trace

Menu

MKR FCTN

:

MRK TRACE

The

MKR

TRACE

softkey sets the active marker to different traces. Only those traces can be selected which are visible on the screen in the same window.

The function of the softkey is identical to that of the softkey with the same name in the MKR-> menu.

Example:

Three traces are displayed on the screen. The marker is always on Trace 1 on switching on.

[

MKR ->TRACE

]

"1"<ENTER> The marker jumps to Trace 2, but remains at the previous frequency or time.

[

MKR ->TRACE

]

"3"<ENTER> The marker jumps to Trace 3.

IEC/IEEE-bus command:

CALC:MARK:TRAC 2

1093.4820.12

4.73

E-3

MKR -> - Analyzer FSP

Change of Settings via Markers –

MKR

Þ

Key

The

MKR

menu offers functions through which instrument parameters can be changed with the aid of the currently active marker. The functions can be used on markers and delta markers.

On opening the menu, the entry for the last active marker is activated; if no marker was enabled,

MARKER 1

is activated and a peak search is performed.

MKR

→ menu

S P A N

MKR

AMPL

MKR

F C T N

LEFT

LIMIT

RIGHT

LIMIT

THRESHOLD

SELECT

MARKER

PEAK

CENTER

=MKR FREQ

REF LEVEL

=MKR LVL

NEXT PEAK

NEXT MODE

SEARCH

LIMITS

PEAK

EXCURSION

MRK->TRACE

MKR -> CF

STEPSIZE

MIN

NEXT MIN

NEXT MODE

EXCLUDE

LO

ABSOLUTE

PEAK/MIN

SEARCH

NEXT LEFT

SEARCH

NEXT RIGHT

SEARCH LIM

OFF

SELECT

MARKER

The

SELECT MARKER

softkey activates the numerical selection of the marker in the data entry field. Delta marker 1 is selected by input of ' 0 '.

IEC/IEEE-bus command:

CALC:MARK1 ON;

CALC:MARK1:X <value>;

CALC:MARK1:Y?

1093.4820.12

4.74

E-3

FSP

PEAK

CENTER

=MKR FREQ

REF LEVEL

=MKR LVL

NEXT PEAK

1093.4820.12

Analyzer - MKR ->

The

PEAK

softkey sets the active marker or delta marker to the peak of the trace.

If no marker is active when

MKR->

menu is called,

MARKER 1

is automatically switched on and the peak search is performed.

IEC/IEEE-bus command:

CALC:MARK:MAX

CALC:DELT:MAX

[

The

CENTER = MKR FREQ

softkey sets the center frequency to the current marker or delta marker frequency.

A signal can thus be set to the center of the frequency display range, for example, so that it can then be examined in detail with a smaller span.

The softkey is not available in the time domain (zero span).

IEC/IEEE-bus command:

CALC:MARK:FUNC:CENT

Example

:

A spectrum is displayed with a large span after PRESET. A signal off the center is to be examined in detail:

[

PRESET

] FSP is set to the default setting.

[

MKR->

]

MARKER 1

is switched on and automatically jumps to the largest signal of the trace.

[

CENTER

=MKR FREQ

]

SPAN

]

The center frequency is set to the marker frequency. The span is adapted in such a way that the minimum frequency

(= 0 Hz) or the maximum frequency is not exceeded.

The span can, for example, be reduced using the rollkey.

The

REF LEVEL = MKR LVL

softkey sets the reference level to the current marker level.

IEC/IEEE-bus command:

CALC:MARK:FUNC:REF

Example:

A spectrum is displayed with a large span after PRESET. A signal off the center is to be examined in detail:

[

PRESET

]

[

MKR->

]

FSP is set to the default setting.

MARKER 1

is switched on and automatically jumps to the largest signal of the trace.

[

CENTER

=MKR FREQ

] The center frequency is set to the marker frequency. The span is adapted in such a way that the minimum frequency

(= 0 Hz) or the maximum frequency is not exceeded.

[

REF LEVEL

= MKR LVL

]

[

SPAN

]

The reference level is set to the measured marker level.

The span can, for example, be reduced using the rollkey.

The

NEXT PEAK

softkey sets the active marker/delta marker to the next lower peak value on the trace. The search direction is defined in the

NEXT

MODE

submenu (see below).

IEC/IEEE-bus command:

CALC:MARK:MAX:NEXT

CALC:DELT:MAX:NEXT

4.75

E-3

MKR -> - Analyzer

NEXT MODE

ABSOLUTE

PEAK/MIN

SEARCH

NEXT LEFT

SEARCH

NEXT RIGHT

FSP

The

NEXT MODE

softkey opens a sub menu for definition of the search direction for

NEXT PEAK and NEXT MIN.

The softkeys are selection switches, ie only one of them can be active at any one time.

1093.4820.12

ABSOLUTE

PEAK/MIN

SEARCH

NEXT LEFT

SEARCH

NEXT RIGHT

The

ABSOLUTE PEAK/MIN

softkey defines that the next higher maximum or minimum is searched for on the whole trace.

IEC-Bus-Befehle:

CALC:MARK:MAX:NEXT

CALC:DELT:MAX:NEXT

CALC:MARK:MIN:NEXT

CALC:DELT:MIN:NEXT

The

SEARCH NEXT LEFT

softkey defines that the next higher maximum or minimum on the left of the active marker is searched for, ie only frequencies or time values smaller than the current marker frequency or time are taken into account.

IEC-Bus-Befehle:

CALC:MARK:MAX:LEFT

CALC:DELT:MAX:LEFT

CALC:MARK:MIN:LEFT

CALC:DELT:MIN:LEFT

The

SEARCH NEXT RIGHT

softkey defines that the the next higher maximum or minimum on the right of the active marker is searched for, ie only frequencies or time values higher than the current marker frequency or time are taken into account.

IEC-Bus-Befehle:

CALC:MARK:MAX:RIGH

CALC:DELT:MAX:RIGH

CALC:MARK:MIN:RIGH

CALC:DELT:MIN:RIGH

4.76

E-3

FSP

SEARCH

LIMITS

Analyzer - MKR ->

LEFT

LIMIT

RIGHT

LIMIT

THRESHOLD

The

SEARCH LIMITS

softkey limits the search range for maximum or minimum search. The softkey switches to a submenu in which the search range limits can be set in the x and y direction.

1093.4820.12

SEARCH LIM

OFF

LEFT

LIMIT

RIGHT

LIMIT

The

LEFT LIMIT

und

RIGHT LIMIT

softkeys define the two vertical lines F1 and F2 in the frequency domain (span > 0) and

T1 / T2 in the time domain (span = 0). The search is performed between these lines in the frequency and time domain

If only one line is enabled, line F1/T1 is the lower limit and the upper limit corresponds to the stop frequency. If F2/T2 is also enabled, it determines the upper limit.

IEC/IEEE-bus command:

CALC:MARK:X:SLIM:LEFT 1MHZ

CALC:MARK:X:SLIM:RIGH 10MHZ

CALC:MARK:X:SLIM ON

THRESHOLD

The

THRESHOLD

softkey defines the threshold line.

The threshold line represents a limit for the level range of the max. search at the lower end and that of the min. search at the upper end.

IEC/IEEE-bus command:

CALC:THR -20dBm

CALC:THR ON

SEARCH

LIMIT OFF

The

SEARCH LIMIT OFF

softkey disables all limits of the search range.

IEC/IEEE-bus command:

CALC:MARK:X:SLIM OFF

CALC:THR OFF

4.77

E-3

MKR -> - Analyzer

PEAK

EXCURSION

FSP

The

PEAK EXCURSION

softkey activates an entry box for selecting the minimum amount by which a signal level must decrease/increase before it is recognized by the

NEXT PEAK

and

NEXT MIN

search functions as a maximum or minimum.

Input values from 0 to 80 dB are allowed, the resolution being 0.1 dB.

IEC/IEEE-bus command:

CALC:MARK:PEXC 10dB

The peak excursion is preset to 6 dB. This is sufficient for the

NEXT PEAK

(or

NEXT MIN

) functions in the

NEXT MODE ABS

setting as always the next smaller (or larger) signal is searched for.

In the

SEARCH NEXT LEFT

or

SEARCH NEXT RIGHT

setting, functions

NEXT PEAK

and

NEXT MIN

search for the next relative maximum or minimum on the right or left of the current marker position irrespective of the instantaneous signal amplitude. A relative maximum is given when the signal amplitude on both sides of the maximum is reduced by a certain amount, ie the peak excursion.

The preset 6 dB level change can already be reached by the noise indication of the FSP. Noise maxima are identified as peaks. In this case,

PEAK

EXCURSION

has to be selected with a higher value than the difference between the highest and lowest noise indication values.

The following example shows the effect of different

PEAK EXCURSION

settings.

1093.4820.12

Fig. 4-5 Example for level measurements at different peak excursion settings

4.78

E-3

FSP Analyzer - MKR ->

Maximum relative level change of the measured signals:

Signal 2: 42 dB

Signal 3

Signal 4:

30 dB

46 dB

The setting

Peak Excursion 40 dB

causes signals 2 and 4 to be detected with

NEXT PEAK

or

NEXT PEAK RIGHT

. Signal 3 is not detected since it only decreases by 30 dB before the level rises again.

Order of signals found:

PEAK:

NEXT PEAK:

NEXT PEAK: or

Signal 1

Signal 2

Signal 4

PEAK: Signal 1

NEXT PEAK RIGHT: Signal 2

NEXT PEAK RIGHT: Signal 4

The setting

Peak Excursion 20 dB

causes signal 3 to be detected as well since its highest level change of 30 dB is now higher than the set peak excursion.

Order of signals found:

PEAK:

NEXT PEAK:

NEXT PEAK:

NEXT PEAK: or

Signal 1

Signal 2

Signal 4

Signal 3

PEAK: Signal 1

NEXT PEAK RIGHT: Signal 2

NEXT PEAK RIGHT: Signal 3

NEXT PEAK RIGHT: Signal 4

The setting

Peak Excursion 6 dB

detects all the signals,

NEXT PEAK RIGHT

does not work as required.

Order of signals found:

PEAK:

NEXT PEAK:

NEXT PEAK:

NEXT PEAK: or

Signal 1

Signal 2

Signal 4

Signal 3

PEAK: Signal 1

NEXT PEAK RIGHT: Marker in noise between signal 1 and signal 2

NEXT PEAK RIGHT: Marker in noise between signal 1 and signal 2

1093.4820.12

4.79

E-3

MKR -> - Analyzer

MKR TRACE

FSP

The

MKR

TRACE

softkey sets the active marker to a new trace. If only one trace is available on the screen, the softkey does not appear. If several traces are available on the screen, only these are offered.

IEC/IEEE-bus command:

CALC:MARK:TRAC 2

Example:

Three traces are displayed on the screen. The marker is always on Trace 1 after switching on.

[

MKR ->TRACE ] "2" <ENTER>

The marker jumps to Trace 2 but remains at the previous frequency or time.

[

MKR ->TRACE

] "3"

<ENTER>

The marker jumps to Trace 3.

MKR->CF

STEPSIZE

The

MKR

CF STEPSIZE

softkey sets the step size for the center frequency variation to the current marker frequency, and also sets step size adaptation to

MANUAL

.

CF STEPSIZE

remains at this value until the center frequency entry mode in the STEP menu is switched from

MANUAL

to

AUTO

again.

The

MKR

CF STEPSIZE

function is, above all, useful in the measurement of harmonics with large dynamic range (narrow bandwidth and narrow span).

The softkey is not available in the time domain (span = 0 Hz).

IEC/IEEE-bus command:

CALC:MARK:FUNC:CST

[

Example:

The harmonics levels of a CW carrier are to be measured at 100 MHz.

[

PRESET

] FSP is set to the default setting.

[

CENTER

: 100

MHz

] FSP sets the center frequency to 100 MHz. The span is set to 200 MHz.

[

SPAN

: 1

MHz

] The span is set to 100 MHz.

[

MKR->

]

MARKER 1

is switched on and set to the maximum value of the signal.

FSP switches to the submenu.

[

NEXT

]

[

MKR->CF

STEPSIZE

] The step size of the center frequency setting equals the marker frequency (100 MHz).

[

CENTER

]

[

Right key

]

MKR->:

PEAK

]

The center frequency entry mode is activated.

The center frequency is set to 200 MHz. The first harmonic of the test signal is displayed.

The marker is set to the harmonic and the level of the latter is output in the marker info field.

1093.4820.12

4.80

E-3

FSP

MIN

NEXT MIN

EXCLUDE

LO

Analyzer - MKR ->

The

MIN

softkey sets the active marker to the minimum value on the corresponding trace.

IEC/IEEE-bus command:

CALC:MARK:MIN

CALC:DELT:MIN

The

NEXT MIN

softkey sets the active marker to the next higher minimum value on the corresponding trace. The search direction is defined in the

NEXT MODE

submenu (see above).

IEC/IEEE-bus command:

CALC:MARK:MIN:NEXT

CALC:DELT:MIN:NEXT

The

EXCLUDE LO s

oftkey limits the frequency range for the marker search functions or disables the limit.

activated Because of the feedthrough of the first local oscillator to the first intermediate frequency at the input mixer, the LO is represented as a signal at 0 Hz. To avoid the marker jumping to the LO at 0

Hz with the peak function when setting the display range, this frequency is excluded. The minimum frequency to which the marker jumps, is

6

×

resolution bandwidth (RBW).

deactivated No restriction to the search range. The frequency 0 Hz is included in the marker search functions.

IEC/IEEE-bus command:

CALC:MARK:LOEX ON

1093.4820.12

4.81

E-3

MEAS - Analyzer FSP

Power Measurements – Hardkey

MEAS

With its power measurement functions the FSP is able to measure all the necessary parameters with high accuracy in a wide dynamic range.

A modulated carrier is almost always used (except e.g. SSB-AM) for high-frequency transmission of information. Due to the information modulated upon the carrier, the latter covers a spectrum which is defined by the modulation, the transmission data rate and the signal filtering. Within a transmission band each carrier is assigned a channel taking into account these parameters. In order to ensure errorfree transmission, each transmitter must be conforming to the specified parameters. These include among others:

• the output power,

• the occupied bandwidth, i.e. the bandwidth which must contain a defined percentage of the power and

• the power dissipation allowed in the adjacent channels.

Additionally the menu contains functions to determine the modulation depth of AM modulated signals and to measure the 3 rd

order intercept point.

The measurements and the corresponding settings are selected in the

MEAS

menu.

MEAS

menu:

BW

MEAS

SWEEP

TRIG

TIME DOM

POWER

CHAN PWR

ACP

OCCUPIED

BANDWIDTH

SIGNAL

STATISTIC

C/N

C/No

The

MEAS

key opens the menu to select and set the power measurement.

The following measurements can be selected:

Power in time domain (

TIME DOM POWER

)

Channel power and adjacent-channel power in frequency domain (

CHAN PWR /ACP

)

Occupied bandwidth (

OCCUPIED BANDWIDTH

)

Carrier/noise ratio (

C/N, C/No

)

Amplitude probability distribution (

SIGNAL STATISTICS

)

Modulation depth (

MODULATION DEPTH

)

3 rd

order intercept (

TOI

)

MODULATION

DEPTH

TOI

SELECT

MARKER

The above measurements are carried out alternatively.

1093.4820.12

4.82

E-3

FSP Analyzer - MEAS

Power Measurement in Time Domain

With the aid of the power measurement function the FSP determines the power of the signal in the time domain (SPAN = 0 Hz) by summing up the power at the individual pixels and dividing the result by the number of pixels. In this way it is possible to measure for example the power of TDMA signals during transmission or during the muting phase. Both the mean power and the rms power can be measured by means of the individual power values.

The result is displayed in the marker info field.

The measured values are updated after each sweep or averaged over a user-defined number of sweeps (

AVERAGE ON/OFF

and

NUMBER OF SWEEPS

) in order to determine e.g. the mean power over several bursts. For determination of the peak value (

MAX HOLD ON

) the maximum value from several sweeps is displayed.

Example:

Marker info field for:

MEAN

selected,

AVERAGE ON

and

MAX HOLD ON

:

MEAN HOLD

MEAN AV

-2.33 dBm

-2.39 dBm

If both the on and off phase of a burst signal are displayed, the measurement range can be limited to the transmission or to the muting phase with the aid of vertical lines. The ratio between signal and noise power of a TDMA signal for instance can be measured by using a measurement as a reference value and after that varying the measurement range.

Upon switching on power measurement the sample detector is activated (

TRACE-DETECTOR-

SAMPLE)

.

Submenu

MEAS - TIME DOM POWER

:

TIME DOM

POWER

ON

POWER

OFF

PEAK

RMS

MEAN

SET

REFERENCE

POWER

ABS REL

MAX HOLD

ON OFF

The

TIME DOM POWER

softkey activates the power measurement in the time domain and opens a submenu for configuration of the power measurement.

The submenu allows selection of the type of power measurement (rms or mean power), the settings for max hold and averaging as well as the definition of limits.

STANDARD

DEVIATION

AVERAGE

ON OFF

The power evaluation range can be limited by input of limit values.

LIMITS

ON OFF

NUMBER OF

SWEEPS

Note:

This softkey is only available in time domain (SPAN = 0).

START

LIMIT

STOP

O

1093.4820.12

4.83

E-3

MEAS - Analyzer

ON

POWER

OFF

FSP

The

POWER ON/OFF

softkey switches the power measurement on and off.

When entering the submenu it is

ON

since the power measurement is already switched on with the

TIME DOM POWER

softkey in the main menu.

Note:

The measurement is performed on the trace on which marker 1 is placed. To evaluate another trace, marker 1 should be set on another trace using the SELECT TRACE softkey in menu MKR.

IEC/IEEE-bus command:

CALC:MARK:FUNC:SUMM:PPE ON

CALC:MARK:FUNC:SUMM:PPE:RES?

CALC:MARK:FUNC:SUMM:RMS ON

CALC:MARK:FUNC:SUMM:RMS:RES?

CALC:MARK:FUNC:SUMM:MEAN ON

CALC:MARK:FUNC:SUMM:MEAN:RES?

CALC:MARK:FUNC:SUMM:SDEV ON

CALC:MARK:FUNC:SUMM:SDEV:RES?

PEAK

RMS

The

PEAK

softkey switches on the calculation of the peak value from the points of the displayed trace or a segment thereof.

For the maximum peak, the largest peak value obtained since the activation of

MAX HOLD ON

is displayed.

With

AVERAGE ON

, the peak values of a trace are averaged over several sweeps and displayed.

The number of sweeps over which the average or the maximum value is calculated is set with the

NUMBER OF SWEEPS

softkey.

IEC/IEEE-bus command:

CALC:MARK:FUNC:SUMM:PPE ON

CALC:MARK:FUNC:SUMM:PPE:RES?

The

RMS

softkey switches on the calculation of the rms value from the points of the displayed trace or a segment of it.

For the maximum peak, the largest rms value obtained since the activation of

MAX HOLD ON

is displayed.

With

AVERAGE ON

, the rms values of a trace are averaged over several sweeps and displayed.

The number of sweeps over which the average or the maximum value is calculated is set with the

NUMBER OF SWEEPS

softkey.

IEC/IEEE-bus command:

CALC:MARK:FUNC:SUMM:RMS

CALC:MARK:FUNC:SUMM:RMS:RES?

ON

1093.4820.12

4.84

E-3

FSP

MEAN

STANDARD

DEVIATION

ON

LIMIT

OFF

START

LIMIT

Analyzer - MEAS

The

MEAN

softkey switches on the calculation of the mean value from the points of the displayed trace or a segment of it. The linear mean value of the equivalent voltages is calculated.

This can be used for instance to measure the mean power during a GSM burst.

For the maximum peak, the largest mean value obtained since the activation of

MAX HOLD ON

is displayed.

With

AVERAGE ON

, the mean values of a trace are averaged over several sweeps and displayed.

The number of sweeps over which the average or the maximum value is calculated is set with the

NUMBER OF SWEEPS

softkey.

IEC/IEEE-bus command:

CALC:MARK:FUNC:SUMM:MEAN ON

CALC:MARK:FUNC:SUMM:MEAN:RES?

The

STANDARD DEVIATION

softkey switches on the calculation of the standard deviation of trace points from the mean value and outputs them as measured value. The measurement of the mean power is automatically switched on at the same time.

For the maximum peak, the largest standard deviation obtained since the activation of

MAX HOLD ON

is displayed.

With

AVERAGE ON

, the standard deviations of a trace are averaged over several sweeps and displayed.

The number of sweeps over which the average or the maximum value is calculated is set with the

NUMBER OF SWEEPS

softkey.

IEC/IEEE-bus command:

CALC:MARK:FUNC:SUMM:SDEV ON

CALC:MARK:FUNC:SUMM:SDEV:RES?

The

LIMIT ON/OFF

softkey selects the limited (

ON

) or non-limited (

OFF

) evaluation range.

The evaluation range is defined by the

START LIMIT

and

STOP LIMIT

softkeys. If

LIMIT = ON

, signals are only searched between the two lines.

If only one limit line is switched on, time line 1 is the lower limit and the upper limit corresponds to the stop frequency. If time line 2 is also switched on, it defines the upper limit.

If no limit line is switched on, the evaluation range is not limited.

The default setting is

LIMIT = OFF

.

IEC/IEEE-bus command:

CALC:MARK:X:SLIM OFF

The

START LIMIT

softkey activates the entry of the lower limit of the evaluation range.

IEC/IEEE-bus command:

CALC:MARK:X:SLIM:LEFT <value>

1093.4820.12

4.85

E-3

MEAS - Analyzer

STOP

LIMIT

SET

REFERENCE

FSP

The

STOP LIMIT

softkey activates the entry of the upper limit of the evaluation range.

IEC/IEEE-bus command:

CALC:MARK:X:SLIM:RIGH <value>

The

SET REFERENCE

softkey sets the power values currently measured as reference values for the calculation of the mean value (

MEAN)

and the rms value

(

RMS)

. The reference values are used to perform relative measurements.

If the calculation of the mean value (

MEAN)

and rms value (

RMS)

is not switched on, 0 dBm is used as a reference value.

If the average value (

AVERAGE)

or maximum value (

MAX HOLD

) is calculated over several sweeps, the current value is the measured value summed up at the actual time.

IEC/IEEE-bus command:

CALC:MARK:FUNC:SUMM:REF:AUTO ONCE

ABS

POWER

REL

MAX HOLD

ON OFF

The

POWER ABS/REL

softkey selects the absolute power measurement (default setting) or relative power measurement. The reference value for the relative power is defined by

SET REFERENCE

.

The value 0 dBm is used if the reference value is not defined.

IEC/IEEE-bus command:

CALC:MARK:FUNC:SUMM:MODE ABS

The

MAX HOLD ON/OFF

softkey switches the display of the maximum peak obtained from measurements at successive sweeps on and off.

The displayed maximum peak is only updated at the end of a sweep if a higher value has occurred.

The maximum value can be reset by switching the

MAX HOLD ON / OFF

softkey off and on again.

IEC/IEEE-bus command:

CALC:MARK:FUNC:SUMM:PHOL ON

CALC:MARK:FUNC:SUMM:PPE:PHOL:RES?

CALC:MARK:FUNC:SUMM:RMS:PHOL:RES?

CALC:MARK:FUNC:SUMM:MEAN:PHOL:RES?

CALC:MARK:FUNC:SUMM:SDEV:PHOL:RES?

AVERAGE

ON

OFF

The

AVERAGE ON/OFF

softkey switches averaging over successive sweep measurements on and off.

The measured values can be reset by switching the

AVERAGE ON / OFF

softkey off and on again.

IEC/IEEE-bus command:

CALC:MARK:FUNC:SUMM:AVER ON

CALC:MARK:FUNC:SUMM:PPE:AVER:RES?

CALC:MARK:FUNC:SUMM:RMS:AVER:RES?

CALC:MARK:FUNC:SUMM:MEAN:AVER:RES?

CALC:MARK:FUNC:SUMM:SDEV:AVER:RES?

1093.4820.12

4.86

E-3

FSP

NUMBER OF

SWEEPS

Analyzer - MEAS

The

NUMBER OF SWEEPS

softkey activates the entry of the number of sweeps for maximum or average value calculation.

SINGLE SWEEP

mode The FSP performs sweeps until the selected number of sweeps is reached and stops then.

CONTINUOUS SWEEP

mode Averaging is carried out until the selected number of sweeps is reached. After that, averaging is performed in continuous mode.

and is then continued as running averaging.

Calculation of the maximum peak (

MAX HOLD

) is performed continuously irrespective of the selected number of sweeps.

The valid range values is 0 to 32767.

Depending on the specified number of sweeps, averaging is carried out according to the following rules:

NUMBER OF SWEEPS

= 0 Continuous averaging is carried out over 10 measured values.

NUMBER OF SWEEPS

= 1 No averaging is carried out.

NUMBER OF SWEEPS

> 1 Averaging is carried out over the set number of measured values.

Note:

This setting is equivalent to the setting of the sweep count in the

TRACE menu.

IEC/IEEE-bus command:

SWE:COUN <value>

[

[

Example:

The mean power of a GSM burst with 0 dBm nominal power at 800 MHz is to be measured.

[

PRESET

] Set the FSP to the default setting.

[

FREQ:

CENTER

: 800

MHz

]

[

SPAN

:

ZERO SPAN

]

[

AMPT

: 0

dBm

]

[

BW

:

RES BW MANUAL

:

30

kHz

]

Set the center frequency to 800 MHz.

Select time domain display (span = 0 Hz).

Set the reference level to 0 dBm.

Set the resolution bandwidth to 30 kHz in line with the requirements of the GSM standard.

[

SWEEP

:

SWEEPTIME MANUAL

Set the sweep time to 600 µs.

600 µs]

[

TRIG

:

VIDEO

: 50

%

] Use the video signal as trigger source.

[

MEAS

]

[

TIME DOM POWER

]

LIMITS ON

]

START LIMIT

: 250

µs

[

STOP LIMIT

: 500

µs

]

]

Call the menu for the measurement functions.

Select power measurement in the time domain. The FSP calculates the mean power from the points of the whole trace.

The submenu for configuration of the power measurement is opened.

MEAN

is already switched on.

Activate the limitation of the time domain of the power measurement .

Set the start of the power measurement at 250 µs.

Set the end of the power measurement at 500 µs.

Note:

The GSM specifications require the power to be measured between 50% and 90% of the TDMA burst. The time limits set above approximately correspond to the required time domain.

1093.4820.12

4.87

E-3

MEAS - Analyzer FSP

Channel and Adjacent-Channel Power Measurements

For all channel and adjacent-channel power measurements a specified channel configuration is assumed which is for instance based on a specific radiocommunication system.

This configuration is defined by the nominal channel frequency (= center frequency of the FSP), channel bandwidth, adjacent-channel bandwidth and adjacent-channel spacing. The FSP is able to simultaneously measure the power in up to three adjacent channels (7 channels: transmission channel,

3 lower and 3 upper adjacent channels).

It offers two methods for channel and adjacent-channel power measurement:

The integrated bandwidth method (IBW method), i.e. the integration of trace pixels within the bandwidth of the channel to be measured to the total power of the channel,

The measurement in time domain (Fast ACP) by means of steep resolution filters simulating the channel.

The two measurements yield the same results. The measurement in time domain can be performed much faster since the complete signal is measured within a channel at the same time. With the IBW method, the channel is divided into subspectra. This is done by means of a bandwidth which is small compared to the channel bandwidth. These subspectra are then combined by integration of the trace pixels.

With the IBW method, the transmission channel or adjacent channels are marked by vertical lines at a distance of half the channel bandwidth to the left and to the right of the corresponding channel center frequency. (see Fig. 4-6).

In the time-domain method, the power trace in the different channels is shown. (see Fig. 4-7).

For both methods, the results are listed in tables in the lower half of the screen.

The FSP offers predefined standard settings which can be selected from a table for the common mobile radio standards. Thus, channel configuration is performed automatically without the need to enter the corresponding parameters manually.

For some standards, the channel power and the adjacent-channel power are to be weighted by means of a root-raised cosine filter corresponding to a receive filter. This type of filtering is switched on automatically for both methods on selecting the standard (e.g. NADC, TETRA or 3GPP W-CDMA).

Fig. 4-6

1093.4820.12

Screen display of adjacent-channel power measurement using the IBW method

4.88

E-3

FSP Analyzer - MEAS

Fig. 4-7 Screen display of adjacent-channel power measurement using the time-domain method

Limit values for the adjacent-channel power can be defined for the measurement. If limit checking is switched on, a pass/fail information indicating that the power has been exceeded is displayed during the measurement in the table in the lower half of the screen.

Note:

With the CP/ACP measurement switched on the functions SPLIT SCREEN and FULL

SCREEN are inhibited.

1093.4820.12

4.89

E-3

MEAS - Analyzer FSP

The channel configuration is defined in the

MEAS CHAN POWER/ACP

menu

.

CHAN POWER

/ACP

CP/ACP

ON OFF

CP/ACP

STANDARD

CP/ACP

CONFIG

SET CP

REFERENCE

SWEEP

TIME

FAST ACP

ON OFF

FULL SIZE

DIAGRAM

ADJUST

REF LVL

NO. OF

ADJ CHAN

CHANNEL

BANDWIDTH

ADJ CHAN

BANDWIDTH

ACP LIMIT

CHECK

EDIT

ACP LIMIT

ADJ CHAN

SPACING

CP/ACP

ABS REL

CHAN PWR

/ HZ

SELECT

TRACE

ADJUST

SETTINGS

The

CHAN POWER /ACP

softkey switches on the channel power measurement or adjacent-channel power measurement according to the current configuration. At the same time it opens the submenu for defining the channel power measurement. The softkey is highlighted to show that channel or adjacent-channel power measurement is on.

Note:

This softkey can only be operated in frequency domain (SPAN > 0).

ON

CP/ACP

OFF

The

CP/ACP ON/OFF

softkey switches the calculation of the channel power or adjacent-channel power on or off.

With default settings the measurement is performed by integrating the powers at the display points within the specified channels (IBW method).

The adjacent-channel power can be either absolute or relative related to the transmission channel power. The default setting is relative measurement (see softkey

CP/ACP ABS/ REL

).

IEC/IEEE-bus command:

CALC:MARK:FUNC:POW:SEL CPOW|ACP

CALC:MARK:FUNC:POW:RES? CPOW|ACP

CALC:MARK:FUNC:POW OFF

1093.4820.12

4.90

E-3

FSP

CP/ACP

STANDARD

1093.4820.12

Analyzer - MEAS

The

CP

/

ACP STANDARD

softkey opens a table for the selection of the settings according to predefined standards. The test parameters for the channel and adjacent-channel measurements are set according to the mobile radio standard.

The standards available are listed in the table on the left.

ACP STANDARD

NONE

NADC IS136

TETRA

PDC

PHS

CDPD

CDMA IS95A FWD

CDMA IS95A REV

CDMA IS95C Class 0 FWD

CDMA IS95C Class 0 REV

CDMA J-STD008 FWD

CDMA J-STD008 REV

CDMA IS95C Class 1 FWD

CDMA IS95C Class 1 REV

W-CDMA 4.096 FWD

W-CDMA 4.096 REV

W-CDMA 3GPP FWD

W-CDMA 3GPP REV

CDMA 2000 DS

CDMA 2000 MC1

CDMA 2000 MC3

TD-SCDMA

Note:

For the FSP, the channel spacing is defined as the distance between the center frequency of the adjacent channel and the center frequency of the transmission channel. The definition of the adjacent-channel spacing in standards IS95 B and C, IS97 B and C and IS98 B and C is different. These standards define the adjacent-channel spacing from the center of the transmission channel to the closest border of the adjacent channel. This definition is also used for the FSP when the following standard settings are selected:

CDMA IS95 Class 0 FWD

CDMA IS95 Class 0 REV

CDMA IS95 Class 1 FWD

CDMA IS95 Class 1 REV

The selection of the standard influences the following parameters:

channel

channel bandwidth and type of filtering

resolution

video

detector

# of adjacent channels

Trace mathematics and trace averaging are switched off.

The reference level is not influenced by the selection of a standard.

To achieve an optimum dynamic range, the reference level has to be set in a way that places the signal maximum close to the reference level without forcing an overload message.

The default setting is CP/

ACP STANDARD NONE

.

IEC/IEEE-bus command:

CALC:MARK:FUNC:POW:PRES <standard>

4.91

E-3

MEAS - Analyzer

CP/ACP

CONFIG

See following section "Setting the Channel Configuration"

FSP

SET CP

REFERENCE

SWEEP

TIME

NOISE CORR

ON OFF

With channel power measurement activated, the SET CP REFERENCE softkey defines the currently measured channel power as the reference value. The reference value is displayed in the CH PWR REF field; the default value is 0 dBm.

During the adjacent-channel power measurement the power in the transmission channel becomes the reference value. The display CH PWR REF is not required.

IEC/IEEE-bus command:

POW:ACH:REF:AUTO ONCE

The SWEEP TIME softkey activates the entry of the sweep time. With the RMS detector, a longer sweep time increases the stability of the measurement results.

The function of the softkey is identical to the softkey SWEEP TIME MANUAL in the menu BW.

IEC/IEEE-bus command:

SWE:TIM <value>

If the NOISE CORR ON/OFF softkey is activated, the results will be corrected by the instrument’s inherent noise, which increases the dynamic range.

When the function is switched on, a reference measurement of the instrument’s inherent noise is carried out. The noise power measured is then subtracted from the power in the channel that is being examined.

The inherent noise of the instrument depends on the selected center frequency, resolution bandwidth and level setting. Therefore, the correction function is disabled whenever one of these parameters is changed. A disable message is displayed on the screen.

To enable the correction function in conjunction with the changed setting, press the softkey once more. A new reference measurement is carried out.

IEC/IEEE-bus command:

SENS:POW:NCOR ON

1093.4820.12

4.92

E-3

FSP

FAST ACP

ON OFF

FULL SIZE

DIAGRAM

Analyzer - MEAS

The FAST ACP softkey switches between the IBW method (FAST ACP OFF) and the time domain method (FAST ACP ON).

With FAST ACP ON the power measurement is performed in the different channels in time domain. The FSP sets the center frequency consecutively to the different channel center frequencies and measures the power with the selected measurement time (= sweep time/number of channels). The RBW filter suitable for the selected standard and frequency offset are automatically used (e.g. root raised cos with IS 136). The list of available channel filters is included in section "Setting of

Bandwidths and Sweep Time – BW key".

The RMS detector is used for obtaining correct power measurement results.

Therefore this requires no software correction factors.

The measured values are displayed in a table, the power in the useful channel being displayed in dBm and the power in the adjacent channels in dBm

(CP/ACP ABS) or dB (CP/ACP REL).

The sweep time is selected depending on the desired reproducibility of results.

Reproducibility increases with sweep time since power measurement is then performed over a longer time period.

As a general approach, it can be assumed that approx. 500 non-correlated measured values are required for a reproducibility of 0.5 dB (99% of the measurements are within 0.5 dB of the true measured value). This holds true for white noise. The measured values are considered as non-correlated when their time interval corresponds to the reciprocal of the measured bandwidth.

With IS 136 the measurement bandwidth is approx. 25 kHz, i.e. measured values at an interval of 40 µs are considered as noncorrelated. A measurement time of 20 ms is thus required per channel for 1000 measured values. This is the default sweep time which the FSP sets in coupled mode. Approx. 5000 measured values are required for a reproducibility of 0.1 dB (99%), i.e. the measurement time is to be increased to 200 ms.

IEC/IEEE-bus command

SENS:POW:HSP ON

The FULL SIZE DIAGRAM softkey switches the diagram to full screen size.

IEC-Bus-Befehl:

-

ADJUST

REF LVL

The ADJUST REF LVL softkey adjusts the reference level of the FSP to the measured channel power. This ensures that the settings of the RF attenuation and the reference level are optimally adjusted to the signal level without overloading the FSP or limiting the dynamic range by a too small S/N ratio.

Since the measurement bandwidth for channel power measurements is significantly lower than the signal bandwidth, the signal path may be overloaded although the trace is still significantly below the reference level.

IEC/IEEE-bus command:

SENS:POW:ACH:PRES:RLEV

For manual setting of the test parameters different from the settings made with ADJUST SETTINGS the following should be observed:

Frequency span The frequency span must at least cover the channels to be measured plus a measurement margin of 10%.

For channel power measurement, the span is 1.1 x channel bandwidth.

Note:

If the frequency span is large in comparison with the channel bandwidth

(or the adjacent-channel bandwidths) being examined, only a few points on the trace are available per channel. This reduces the accuracy of the

1093.4820.12

4.93

E-3

MEAS - Analyzer FSP

waveform calculation for the channel filter used, which has a negative effect on the measurement accuracy.

We therefore strongly recommend that the formulas mentioned be taken into consideration when selecting the frequency span.

Resolution bandwidth (RBW)

To ensure both an acceptable measurement speed and the required selection (to suppress spectral components outside the channel to be measured, especially of the adjacent channels), the resolution bandwidth must not be selected too small or too large. As a general approach, the resolution bandwidth is to be set to values between 1% and 4% of the channel bandwidth.

A larger resolution bandwidth can be selected if the spectrum within the channel to be measured and around it has a flat characteristic. In the standard setting, e.g. for standard IS95A REV at an adjacent channel bandwidth of 30 kHz, a resolution bandwidth of 30 kHz is used. This yields correct results since the spectrum in the neighbourhood of the adjacent channels normally has a constant level. For standard NADC/IS136 this is not possible for example, since the spectrum of the transmit signal penetrates into the adjacent channels and a too large resolution bandwidth causes a too low selection of the channel filter. The adjacent-channel power would thus be measured too high.

Video bandwidth (VBW)

With the exception of the IS95 CDMA standards, the ADJUST SETTINGS softkey sets the resolution bandwidth (RBW) as a function of the channel bandwidth:

RBW

1/40 of channel bandwidth.

The maximum possible resolution bandwidth (with respect to the requirement RBW

1/40) resulting from the available RBW steps (1, 3) is selected .

For a correct power measurement, the video signal must not be limited in bandwidth. A restricted bandwidth of the logarithmic video signal would cause signal averaging and thus result in a too low indication of the power

(-2.51 dB at very low video bandwidths). The video bandwidth should therefore be selected at least three times the resolution bandwidth.

The ADJUST SETTINGS softkey sets the video bandwidth (VBW) as a function of the channel bandwidth as follows:

VBW

3

×

RBW.

The smallest possible VBW with regard to the available step size will be selected.

Detector The ADJUST SETTINGS softkey selects the RMS detector.

The RMS detector is selected since it correctly indicates the power irrespective of the characteristics of the signal to be measured. In principle, the sample detector would be possible as well. Due to the limited number of trace pixels used to calculate the power in the channel, the sample detector would yield less stable results. Averaging, which is often performed to stabilize the measurement results, leads to a too low level indication and should therefore be avoided. The reduction in the displayed power depends on the number of averages and the signal characteristics in the channel to be measured.

1093.4820.12

4.94

E-3

FSP

Setting the Channel Configuration

MEAS - CP/ACP CONFIG

submenu:

CP/ACP

CONFIG

NO. OF

ADJ CHAN

CHANNEL

BANDWIDTH

ADJ CHAN

BANDWIDTH

ACP LIMIT

CHECK

EDIT

ACP LIMIT

ADJ CHAN

SPACING

CP/ACP

ABS REL

CHAN PWR

/ HZ

SELECT

TRACE

ADJUST

SETTINGS

Analyzer - MEAS

The

CP/ACP CONFIG

softkey opens a submenu for configuration of the channel power and adjacent channel power measurement independent from the offered standards.

The channel configuration consists of the number of adjacent channels to be measured, the channel bandwidth (

CHANNEL BANDWIDTH

), the bandwidth of the adjacent channels (

ADJ

CHANNEL BANDWIDTH

) and the distance of the adjacent channels from the center frequency of the transmission channel (

ADJ CHANNEL SPACING

).

Limit values can additionally be specified for the adjacent-channel power (

ACP LIMIT CHECK

and

EDIT ACP LIMITS

) which are checked for compliance during the measurement.

NO. OF

ADJ CHAN

The

NO. OF ADJ CHAN

softkey activates the entry of the number ±n of adjacent channels to be considered in the adjacent-channel power measurement.

Numbers from 0 to 3 can be entered.

The following measurements are performed depending on the number of the channels.

0 Only the channel power is measured.

1

2

3

The channel power and the power of the upper and lower adjacent channel are measured.

The channel power, the power of the upper and lower adjacent channel and of the next higher and lower channel

(alternate channel 1) are measured.

The channel power, the power of the upper and lower adjacent channel, the power of the next higher and lower channel (alternate channel 1) and of the next but one higher and lower adjacent channel (alternate channel 2) are measured.

IEC/IEEE-bus command:

POW:ACH:ACP 1

1093.4820.12

4.95

E-3

MEAS - Analyzer

CHANNEL

BANDWIDTH

FSP

The

CHANNEL BANDWIDTH

softkey activates the entry of the channel bandwidth for the transmission channel.

The useful channel bandwidth is generally defined by the transmission method. It is automatically adjusted correctly on measurements according to a given standard (see

CP/ACP

STANDARD

softkey).

When measuring according to the IBW method (

FAST ACP

OFF)

the channel bandwidth is displayed by two vertical lines to the left and right of the screen center. It can thus be visually checked whether the whole power of the signal to be measured is within the selected channel bandwidth.

With the time domain method (

FAST ACP ON)

the measurement is performed in zero span

.

The channel limits are not marked in this case. The FSP offers all available channel filters for selection of the channel bandwidth. Deviating channel bandwidths cannot be set. If deviating channel bandwidths are required, the IBW method should be used.

The list of available channel filters is included in section "Setting of Bandwidths and Sweep Time –

BW key"

.

The default setting is 14 kHz.

IEC/IEEE-bus command:

SENS:POW:ACH:BWID 14kHz

1093.4820.12

ADJ CHAN

BANDWIDTH

The ADJ

CHAN BANDWIDTH

softkey opens a table for defining the channel bandwidths for the adjacent channels.

ACP CHANNEL BW

CHAN BANDWIDTH

ADJ 14 kHz

ALT1

ALT2

14 kHz

14 kHz

When measuring according to the IBW method (FAST ACP

OFF) the bandwidths of the different adjacent channels are to be entered numerically. Since all adjacent channels often have the same bandwidth, the other channels Alt1 and Alt2 are set to the bandwidth of the adjacent channel on entering the adjacentchannel bandwidth (ADJ). Thus only one value needs to be entered in case of equal adjacent channel bandwidths. The same holds true for the ALT2 channels (alternate channels 2) when the bandwidth of the ALT1 channel (alternate channel 1) is entered.

Note:

The bandwidths can be selected independent from each other by overwriting the table from top to bottom.

With the time domain method (FAST ACP ON), the adjacentchannel bandwidths are selected from the list of available channel filters. For deviating adjacent-channel bandwidths the

IBW method should be used.

IEC/IEEE-bus command:

SENS:POW:ACH:BWID:ACH 1kHz

SENS:POW:ACH:BWID:ALT1 14kHz

SENS:POW:ACH:BWID:ALT2 14kHz

4.96

E-3

FSP

1093.4820.12

ADJ CHAN

SPACING

CP/ACP

ABS REL

Analyzer - MEAS

The ADJ

CHAN SPACING

softkey opens a table for defining the channel spacings.

ACP CHANNEL SPACING

CHAN

ADJ

ALT1

ALT2

SPACING

20 kHz

40 kHz

60 kHz

Since all the adjacent channels often have the same distance to each other, the entry of the adjacent-channel spacing (ADJ) causes channel spacing ALT1 to be set to twice and channel spacing ALT2 to three times the adjacent-channel spacing. Thus only one value needs to be entered in case of equal channel spacing. The same holds true for the ALT2 channels when the bandwidth of the ALT1 channel is entered.

Note:

The channel spacings can be set separately by overwriting the table from top to bottom.

IEC/IEEE-bus command:

SENS:POW:ACH:SPAC:ACH 20kHz

SENS:POW:ACH:SPAC:ALT1 40kHz

SENS:POW:ACH:SPAC:ALT2 60kHz

The

CP/ACP ABS/REL

softkey (channel power absolute/relative) switches between absolute and relative power measurement in the channel.

CP/ACP ABS

The absolute power in the transmission channel and in the adjacent channels is displayed in the unit of the Y axis, e.g. in dBm, dB

µ

V.

CP/ACP REL

In case of adjacent-channel power measurement

(

NO. OF ADJ CHAN

> 0) the level of the adjacent channels is displayed relative to the level of the transmission channel in dBc.

In case of channel power measurement (

NO. OF

ADJ CHAN

= 0) the power of a transmission channel is displayed relative to the power of a reference channel defined by

SET CP

REFERENCE

. This means:

1. Declare the power of the currently measured channel as the reference value, using the

SET CP REFERENCE

softkey.

2. Select the channel of interest by varying the channel frequency (FSP center frequency).

With linear scaling of the Y axis, the power of the new channel relative to the reference channel

(CP/CP ref

) is displayed. With dB scaling, the logarithmic ratio 10lg (CP/CP ref

) is displayed.

The relative channel power measurement can thus also be used for universal adjacent-channel power measurements. Each channel can be measured individually.

IEC/IEEE-bus command:

SENS:POW:ACH:MODE ABS

4.97

E-3

MEAS - Analyzer

CHAN PWR

/ HZ

SELECT

TRACE

ADJUST

SETTINGS

FSP

The

CHAN PWR / HZ

softkey toggles between the measurement of the total channel power and the measurement of the channel power referenced to a 1-Hz bandwidth.

1

The conversion factor is

.

By means of this function it is possible e.g. to measure the signal/noise power density or use the additional functions

CP/ACP REL

and

SET CP REFERENCE

to obtain the signal to noise ratio.

IEC/IEEE-bus command:

CALC:MARK:FUNC:POW:RES:PHZ ON|OFF

The

SELECT TRACE

softkey selects the trace, on which the

CP/ACP measurement is performed. Only traces can be selected, which are switched on (= not set to BLANK).

IEC/IEEE-bus command:

SENS:POW:TRAC 1

The

ADJUST SETTINGS

softkey automatically optimizes the instrument settings for the selected power measurement (see below).

All instrument settings relevant for a power measurement within a specific frequency range (channel bandwidth) are optimized for the selected channel configuration (channel bandwidth, channel spacing):

Frequency span:

The frequency span has to cover at least all channels to be considered.

When measuring the channel power,

2 x channel bandwidth + measurement margin is set as span.

The setting of the span during adjacent-channel power measurement is dependent on the channel spacing and channel bandwidth of the adjacent channel ADJ, ALT1 or

ALT2 with the largest distance from the transmission channel.

2

× (

channel spacing + channel bandwidth) + measurement margin

The measurement margin is approx. 10% of the value obtained by adding channel spacing and channel bandwidth.

Resolution bandwidth RBW

1/40 of channel bandwidth

Video bandwidth VBW

3

×

RBW

Detector RMS

Trace math and trace averaging functions are switched off.

The reference level is not influenced by

ADJUST SETTINGS

. It can be separately adjusted with

ADJUST REF LVL.

The adjustment is carried out only once; if necessary, the instrument settings can be changed later.

IEC/IEEE-bus command:

SENS:POW:ACH:PRES ACP|CPOW|OBW

1093.4820.12

4.98

E-3

FSP

ACP LIMIT

CHECK

Analyzer - MEAS

The

ACP LIMIT CHECK

softkey switches the limit check for the

ACP measurement on and off.

IEC/IEEE-bus command:

CALC:LIM:ACP ON

CALC:LIM:ACP:ACH:RES?

CALC:LIM:ACP:ALT:RES?

EDIT

ACP LIMITS

The

EDIT ACP LIMITS

softkey opens a table for defining the limits for the ACP measurement.

The following rules apply for the limits:

A separate limit can be defined for each adjacent channel.

The limit applies to both the upper and the lower adjacent channel.

A relative and/or absolute limit can be defined. The check of both limit values can be activated independently.

The FSP checks adherence to the limits irrespective of whether the limits are absolute or relative or whether the measurement is carried out with absolute or relative levels. If both limits are active and if the higher of both limit values is exceeded, the measured value is marked accordingly.

Note:

Measured values exceeding the limit are marked by a preceding asterisk.

IEC/IEEE-bus command:

CALC:LIM:ACP ON

CALC:LIM:ACP:ACH 0dB,0dB

CALC:LIM:ACP:ACH:STAT ON

CALC:LIM:ACP:ACH:ABS –10dBm,-10dBm

CALC:LIM:ACP:ACH:ABS:STAT ON

CALC:LIM:ACP:ALT1 0dB,0dB

CALC:LIM:ACP:ALT1:STAT ON

CALC:LIM:ACP:ALT1:ABS –10dBm,-10dBm

CALC:LIM:ACP:ALT1:ABS:STAT ON

CALC:LIM:ACP:ALT2 0dB,0dB

CALC:LIM:ACP:ALT2:STAT ON

CALC:LIM:ACP:ALT2:ABS –10dBm,-10dBm

CALC:LIM:ACP:ALT2:ABS:STAT ON

1093.4820.12

4.99

E-3

MEAS - Analyzer FSP

[

Examples:

1. Measurement of adjacent-channel power for a specific standard:

The adjacent-channel power is to be measured for a signal at 800 MHz with 0 dBm level in line with

IS136.

[

PRESET

] Set the FSP to the default setting.

[

FREQ

:

CENTER

: 800

MHz

] Set the center frequency to 800 MHz.

[

AMPT

: 0

dBm

]

[

MEAS

]

Set the reference level to 0 dBm.

Call the menu for the measurement functions.

[

CHAN PWR / ACP

] Select the channel and adjacent-channel power measurement function.

The measurement is performed with the default settings or a previously defined setting. The submenu for setting the desired new configuration is opened.

[

CP/ACP STANDARD

: select IS136:

ENTER

]

[

CP/ACP CONFIG

]

Select the NADC (IS136) standard.

Call the submenu for configuration of the adjacent-channel power measurement.

[

NO. OF ADJ CHAN

:

2

ENTER

] Select two adjacent channels for the measurement, i.e. the adjacent channel and the alternate channel are measured.

PREV

[

ADJUST SETTINGS

]

ADJUST REF LVL

]

Change to the main menu for channel power measurement.

Set the optimum span, resolution bandwidth (RBW), video bandwidth

(VBW) and detector automatically for the measurement. The absolute channel power and the relative power of the adjacent channels are displayed on the screen.

Set the reference level equal to the channel power measured.

1093.4820.12

4.100

E-3

FSP Analyzer - MEAS

[

2. Measurement with user-specific channel configuration

:

Measurement of the adjacent-channel power ratio (ACPR) of an IS95 CDMA signal at 800 MHz, level

0 dBm. Similar to example 1, the setting can be simplified by using

CP/ACP STANDARD

.

[

PRESET

] Set the FSP to the default setting.

[

FREQ:

CENTER

: 800

MHz

] Set the center frequency to 800 MHz.

[

AMPT

: 0

dBm

]

[

MEAS

]

[

CHAN PWR / ACP

]

Set the reference level to 0 dBm.

Call the menu for the measurement functions.

Select the channel and adjacent-channel power measurement function.

The measurement is carried out with the default settings or a previously defined setting. The submenu for setting the desired new configuration is opened.

[

CP/ACP CONFIG

]

[

NO. OF ADJ CHAN

:

2

ENTER

]

Call the submenu for defining the channel configuration.

Select two adjacent channels for the measurement, i.e. the adjacent channel and the alternate channel are measured.

[

CHANNEL BANDWIDTH

:

1.23

MHz

]

[

ADJ CHAN BANDWIDTH:

30

kHz

]

Set the channel bandwidth to 1.23 MHz according to IS95.

Open the list for setting the bandwidth of the adjacent channels.

ACP CHANNEL BW

CHAN BANDWIDTH

ADJ

ALT1

ALT2

30 kHz

30 kHz

30 kHz

Upon entry of 30 kHz for the adjacent channel the alternate channels are also set to 30 kHz.

[

ADJ CHAN SPACING

:

885

kHz:

: 1.98

MHz

] Open the list for entering the adjacent-channel spacings.

ACP CHANNEL SPACING

CHAN

ADJ

ALT1

ALT2

SPACING

885 kHz

1.98 MHz

2.97 MHz

Upon entry of 885 kHz for the adjacent channel the channels ALT1 and

ALT2 are set to 1770 kHz and 2655 kHz. Upon entry of 1.98 MHz for the alternate channel 1 the alternate channel 2 is set to 2.97 MHz.

PREV

[

ADJUST SETTINGS

]

ADJUST REF LVL

]

Go to the main menu for channel power measurement.

Automatically set the optimum span (= 5 MHz), resolution bandwidth

(RBW = 30 kHz), video bandwidth (VBW = 300 kHz) and detector

(RMS) for the measurement. The absolute channel power and the relative power of the adjacent channels and alternate channels are displayed on the screen.

Set the reference level equal to the channel power measured.

1093.4820.12

4.101

E-3

MEAS - Analyzer FSP

3. Measurement of signal/noise power density (C/No) of an IS95 CDMA signal

(frequency 800 MHz, level 0 dBm)

[

[

[

PRESET

] Set the FSP to the default setting.

[

FREQ:

CENTER

: 800

MHz

] Set the center frequency to 800 MHz.

AMPT

MEAS

]

: 0

dBm

]

[

CHAN PWR / ACP

]

Set the reference level to 0 dBm.

Call the menu for the measurement functions.

CP/ACP CONFIG

]

Select the channel and adjacent-channel power measurement. The measurement is performed with the default setting or a previously defined setting. The submenu for setting the desired new configuration is opened.

Call the submenu for defining the channel configuration.

[

NO. OF ADJ CHAN

:

0

ENTER

] Do not select an adjacent channel for the measurement, i.e. the measurement is carried out in one channel only.

[

CHANNEL BANDWIDTH

:

1.23

MHz

] Set the channel bandwidth to 1.23 MHz in line with IS95.

[

PREV

ADJUST SETTINGS

]

Go to the main menu for channel power measurement

Set the optimum span (= 5 MHz), resolution bandwidth (RBW = 30 kHz), video bandwidth (VBW = 300 kHz) and detector (RMS) for the measurement automatically. The absolute channel power and the relative power of the adjacent channels and alternate channels are displayed on the screen.

[

[

ADJUST REF LVL

]

SET CP REFERENCE

]

Set the reference level equal to the channel power measured.

Set the measured channel power as a reference for the subsequent measurements.

[

CP/ACP ABS / REL

] Select relative measurement related to the reference power set with

SET REFERENCE

(result 0 dB).

Select power measurement related to 1 Hz bandwidth (result -60.9 dB).

[

CHAN PWR / HZ

]

[

FREQ:

CENTER

: 805

MHz

] Set the center frequency to 805 MHz. The FSP measures the channel power at 1.23 MHz bandwidth and outputs the result in dB relative to the reference power and 1 Hz bandwidth.

1093.4820.12

4.102

E-3

FSP Analyzer - MEAS

Measurement of Occupied Bandwidth

An important characteristics of a modulated signal is its occupied bandwidth. In a radio communications system for instance the occupied bandwidth must be limited to enable distortion-free transmission in adjacent channels. The occupied bandwidth is defined as the bandwidth containing a defined percentage of the total transmitted power. A percentage between 10% and 99.9% can be set on the

FSP.

MEAS OCCUPIED BANDWIDTH

menu:

OCCUPIED

BANDWIDTH

OCCUP BW

ON

OFF

% POWER

BANDWIDTH

CHANNEL

BANDWIDTH

NOISE CORR

ON

OFF

The

OCCUPIED BANDWIDTH

softkey activates measurement of the occupied bandwidth according to the current configuration and opens the submenu for configuring the measurement. The softkey is available only in frequency domain (span > 0) and is highlighted when the measurement is switched on.

In the spectrum display mode, this measurement determines the bandwidth that contains a predefined percentage of the power of the displayed frequency range (

% POWER

BANDWIDTH

softkey

)

. The occupied bandwidth is output in the marker display field and marked on the trace by temporary markers.

ADJUST

REF LVL

ADJUST

SETTINGS

Note:

- The softkey is only available in frequency domain (span > 0).

- The measurement is performed on the trace with marker 1. In order to evaluate another trace, marker 1 must be placed on another trace by means of SELECT TRACE in the MKR menu

OCCUP BW

ON OFF

% POWER

BANDWIDTH

CHANNEL

BANDWIDTH

The

OCCUP BW ON/OFF

softkey switches measurement of the occupied bandwidth on or off.

IEC/IEEE-bus command:

CALC:MARK:FUNC:POW:SEL OBW

CALC:MARK:FUNC:POW:RES? OBW

CALC:MARK:FUNC:POW OFF

The

% POWER BANDWIDTH

softkey opens the entry of the percentage of power related to the total power in the displayed frequency range which defines the occupied bandwidth (percentage of total power).

The valid range of values is 10% to 99.9%.

IEC/IEEE-bus command:

SENS:POW:BWID 99PCT

The

CHANNEL BANDWIDTH

softkey opens an input window for defining the channel bandwidth for the transmission channel. For measurements in line with a specific transmission standard, the bandwidth specified by the standard for the transmission channel must be entered.

The default setting is 14 kHz.

The specified channel bandwidth is used for optimization of the test parameters of the FSP with

ADJUST SETTINGS

.

IEC/IEEE-bus command:

SENS:POW:ACH:BWID 14kHz

1093.4820.12

4.103

E-3

MEAS - Analyzer

ADJUST

REF LVL

FSP

The

ADJUST REF LVL

softkey adjusts the reference level of the FSP to the measured total power of the signal. The softkey is activated after the first sweep with the measurement of the occupied bandwidth has been completed and the total power of the signal is thus known.

Adjusting the reference level ensures that the signal path of the FSP will not be overloaded and the dynamic range not limited by too low a reference level.

Since the measurement bandwidth for channel power measurements is significantly lower than the signal bandwidth, the signal path may be overloaded although the trace is distinctly below the reference level. If the measured channel power is equal to the reference level, the signal path cannot be overloaded.

IEC/IEEE-bus command:

SENS:POW:ACH:PRES:RLEV

ADJUST

SETTINGS

The

ADJUST SETTINGS

softkey optimizes the instrument settings for the measurement of the occupied bandwidth according to the specified channel bandwidth.

All instrument settings relevant for power measurement within a specific frequency range, such as

frequency span

resolution bandwidth

3 x channel bandwidth

RBW

1/40 of channel bandwidth

video bandwidth VBW

3

×

RBW

detector RMS are optimized.

The reference level is not influenced by

ADJUST SETTINGS

.

For an optimum dynamic range it should be selected in a way that the signal maximum is close to the reference level.

The adjustment is carried out only once; if necessary, the instrument settings may be changed later.

IEC/IEEE-bus command:

SENS:POW:PRES OBW

1093.4820.12

4.104

E-3

FSP Analyzer - MEAS

Measurement principle:

For example, the bandwidth containing 99% of the signal power is to be determined. The routine first calculates the total power of all displayed points of the trace. In the next step, the points from the right edge of the trace are summed up until 0.5% of the total power is reached. Auxiliary marker 1 is positioned at the corresponding frequency. Then the FSP sums up the points from the left edge of the trace until 0.5% of the power is reached. Auxiliary marker 2 is positioned at this point. 99% of the power is now between the two markers. The distance between the two frequency markers is the occupied bandwidth which is displayed in the marker info field.

A prerequisite for correct measurement is that only the signal to be measured is visible on the screen of the FSP. An additional signal would invalidate the measurement.

To ensure correct power measurement especially for noise signals and to obtain the correct occupied bandwidth, the following settings should be selected:

RBW

VBW

Detector

Span

<< occupied bandwidth (approx. 1/20 of occupied bandwidth, for voice communication type. 300 Hz or 1 kHz)

3 x RBW

RMS or sample

2 to 3 x occupied bandwidth

Some of the measurement specifications (e.g. PDC, RCR STD-27B) require measurement of the occupied bandwidth using a peak detector. The detector setting of the FSP has to be changed accordingly then.

[

Example

:

Measurement of occupied bandwidth of a PDC signal at 800 MHz, level 0 dBm

[

PRESET

] Set the FSP to the default setting.

[

FREQ

:

CENTER

: 800 MHz] Set the center frequency to 800 MHz.

[

AMPT

: 0 dBm]

[

MEAS

]

[

OCCUPIED BANDWIDTH

]

Set the reference level to 0 dBm.

Call the menu for the measurement functions.

Select measurement of the occupied bandwidth and open the submenu for configuring the measurement.

Select 99% for the bandwidth to be measured.

[% POWER BANDWIDTH

:

99

%

]

[

CHANNEL BANDWIDTH

:

21

kHz

]

[

ADJUST SETTINGS

]

Enter the channel bandwidth of 21 kHz specified by PDC.

ADJUST REF LVL

]

[

TRACE

:

DETECTOR

:

DETECTOR MAX PEAK

]

Optimize the measurement parameters for the specified channel bandwidth.

Allow for a complete frequency sweep so that the FSP can determine the total signal power.

Adjust the reference level to the measured signal power.

PDC requires measurement of the occupied bandwidth using a peak detector. Therefore, switch on the peak detector instead of the

RMS detector selected by

ADJUST SETTINGS

.

1093.4820.12

4.105

E-3

MEAS - Analyzer FSP

Measurement of Signal Amplitude Statistics

Digital modulated signals are similar to white noise within the transmit channel, but are different in their amplitude distribution. In order to transmit the modulated signal without distortion all amplitudes of the signal have to be transmitted linearly, e. g. from the output power amplifier. Most critical are the peak amplitude values, of course.

Degradation in transmit quality caused by a transmitter two port network is dependent on the amplitude of the peak values as well as on their probability.

The probability of amplitude values can be measured with the APD function (Amplitude Probability

Distribution). During a selectable measurement time all occurring amplitude values are assigned to an amplitude range. The number of amplitude values in the specific ranges is counted and the result is displayed as a histogram. Each bar of the histogram represents the percentage of measured amplitudes within the specific amplitude range.

video voltage

ADC address

RAM write read

Fig. 4-8

logic CPU display clock

Simplified block diagram for APD measurement

Fig. 4-9 Display of the amplitude probability distribution

1093.4820.12

4.106

E-3

FSP Analyzer - MEAS

Fig. 4-10 Display of the complementary cumulative distribution function (CCDF)

Alternate to the histogram display of the APD the Complementary Cumulative Distribution Function

(CCDF) can be displayed. It shows the probability of an amplitude exceeding a specific value.

For the APD function the x-axis is scaled in absolute values in dBm, whereas for the CCDF function the x-axis is scaled relative to the MEAN POWER measured.

Definitions:

Crest factor = peak voltage to rms

CCDF = complementary cumulative distribution function

Note:

During an active statistic measurement the functions FULL SCREEN, SPLIT SCREEN and selection of the active diagram via SCREEN A / SCREEN B are disabled.

1093.4820.12

4.107

E-3

MEAS - Analyzer

MEAS SIGNAL STATISTIC submenu

:

SIGNAL

STATISTIC

ON

APD

OFF

ON

CCDF

OFF

X-AXIS

REF LEVEL

X-AXIS

RANGE

ON

CCPDF

OFF

RES BW

NO OF

SAMPLES

SCALING

ADJUST

SETTINGS

CONT

MEAS

SINGLE

MEAS

Y-AXIS

MAX VALUE

Y-AXIS

MIN VALUE

ADJUST

SETTINGS

DEFAULT

SETTINGS

FSP

The

SIGNAL STATISTIC

softkey opens a submenu for measurement of signal statistics.

In the submenu measurement of amplitude probability density (

APD

) and complementary cumulative distribution (

CCDF

) can be selected alternately. Only one of the signal statistic functions can be switched on at a time.

In default mode all statistic functions are switched off.

With a statistic function switched on the FSP is set into zero span mode automatically.

The FSP measures the statistics of the signal applied to the RF input with the resolution bandwidth set.

In order not to influence the peak amplitudes the video bandwidth is automatically set to 10 times the resolution bandwidth. The sample detector is used for detecting the video voltage.

ON

APD

OFF

The

APD ON/OFF

softkey switches on or off the amplitude probability distribution function.

When the APD function is switched on, the CCDF function is switched off automatically.

IEC/IEEE-bus command:

CALC:STAT:APD ON

ON

CCDF

OFF

PERCENT

MARKER

The

CCDF ON/OFF

softkey switches on or off the complementary cumulative distribution function.

When the CCDF function is switched on, the APD function is switched off automatically.

IEC/IEEE-bus command:

CALC:STAT:CCDF ON

If the CCDF function is active, the

PERCENT MARKER

softkey allows to position marker 1 by entering a probability value. Thus, the power which is exceeded with a given probability can be determined very easily.

If marker 1 is in the switched-off state, it will be switched on automatically.

IEC/IEEE-bus command:

CALC:MARK:Y:PERC 0...100%

1093.4820.12

4.108

E-3

FSP

RES BW

NO OF

SAMPLES

SCALING

Analyzer - MEAS

The

RES BW

softkey sets the resolution bandwidth in the menu

STATISTIC

FUNCTION

directly without switching to the corresponding menu (BW). The function of the softkey is identical to the softkey

RES BW MANUAL

in the menu

BW

.

For correct measurement of the signal statistics the resolution bandwidth has to be wider than the signal bandwidth in order to transmit the actual peaks of the signal amplitude correctly. Video bandwidth is set to 10 MHz automatically with a statistic function switched on.

IEC/IEEE-bus command:

BAND 3 MHz

The

NO OF SAMPLES

softkey sets the number of power measurements taken into account for the statistics.

Please note that the overall measurement time is influenced by the number of samples selected as well as by the resolution bandwidth set up for the measurement as the resolution bandwidth directly influences the sampling rate.

IEC/IEEE-bus command:

CALC:STAT:NSAM <value>

X-AXIS

REF LEVEL

X-AXIS

RANGE

The

SCALING

softkey opens a sub menu that allows changing the scaling parameters for both the x- and the y-axis.

Y-AXIS

MAX VALUE

Y-AXIS

MIN VALUE

ADJUST

SETTINGS

DEFAULT

SETTINGS

X-AXIS

REF LEVEL

The

X-AXIS REF LEVEL

softkey changes the level settings of the instrument and sets the maximum power to be measured.

The function is identical to softkey

REF LEVEL

in menu

AMPT

.

For the

APD

function this value is mapped to the right diagram border. For the

CCDF

function there is no direct representation of this value on the diagram as the x-axis is scaled relatively to the

MEAN POWER

measured.

IEC/IEEE command:

CALC:STAT:SCAL:X:RLEV <value>

1093.4820.12

4.109

E-3

MEAS - Analyzer

X-AXIS

RANGE

FSP

The

X-AXIS RANGE

softkey changes the level range to be covered by the statistics measurement selected.

The function is identical to softkey

RANGE LOG MANUAL

in menu

AMPT

.

IEC/IEEE command:

CALC:STAT:SCAL:X:RANG <value>

Y -AXIS

MAX VALUE

The

Y-AXIS MAX VALUE

softkey defines the upper limit of the displayed probability range.

Values on the y-axis are normalized which means that the maximum value is 1.0. As the y-axis scaling has a logarithmic axis the distance between max and min value must be at least one decade.

IEC/IEEE command:

CALC:STAT:SCAL:Y:UPP <value>

Y -AXIS

M IN VALUE

The

Y-AXIS MIN VALUE

softkey defines the lower limit of the displayed probability range.

As the y-axis scaling has a logarithmic axis the distance between max and min value must be at least one decade. Valid values are in the range 0 < value < 1.

IEC/IEEE command:

CALC:STAT:SCAL:Y:LOW <value>

ADJUST

SETTINGS

see below

ADJUST

SETTINGS

DEFAULT

SETTINGS

The

DEFAULT SETTINGS

softkey resets the x- and y-axis scalings to their PRESET values.

x-axis ref level: x-axis range APD:

-20 dBm

100 dB x-axis range CCDF: 20 dB y-axis upper limit: y-axis lower limit:

IEC/IEEE-bus command:

1.0

1E-6

CALC:STAT:PRES

The

ADJUST SETTINGS

softkey optimizes the level settings of the FSP according to the measured peak power in order to gain maximum sensitivity of the instrument.

The level range is adjusted according to the measured difference between peak and minimum power for APD measurement and peak and mean power for CCDF measurement in order to obtain maximum power resolution.

Additionally the probability scale is adapted to the selected number of samples.

IEC/IEEE-bus command:

CALC:STAT:SCAL:AUTO ONCE

1093.4820.12

4.110

E-3

FSP

CONT

MEA S

SINGLE

MEAS

Analyzer - MEAS

The

CONT MEAS

softkey starts collecting a new sequence of sample data and calculating the APD or CCDF curve depending on the selected measurement. The next measurement is started automatically as soon as the indicated number of samples has been reached ("CONTinuous

MEASurement").

IEC/IEEE-bus command:

INIT:CONT

INIT:IMM

ON;

The

SINGLE MEAS

softkey starts collecting a new sequence of sample data and calculating the APD or CCDF curve depending on the selected measurement. At the beginning of the measurement previously obtained measurement results are discarded.

IEC/IEEE-bus command:

INIT:CONT

INIT:IMM

OFF;

Hint for usage of the marker functions with measurement of signal statistics:

With the signal statistic measurement level always is displayed on x-axis. Y-axis always is a normalized value between 0 and 1. In contrary to use of marker in frequency or time domain marker is input in level values and the output is in percentage values.

Example:

Measurement of CCDF of a IS95 BTS signal, level 0 dBm, frequency 800 MHz

[

PRESET

] Switch on preset settings.

[

FREQ

:

CENTER

: 800 MHz] Set center frequency to 800 MHz.

[

AMPT

: 10 dBm] Set reference level to 10 dBm.

[

BW

: 3 MHz] Set resolution bandwidth to 3 MHz (resolution bandwidth shall be wider then signal bandwidth (1.25 MHz) in order to have the complete signal within the resolution bandwidth).

[

MEAS

]

[

SIGNAL STATISTIC

]

Call the menu for measurement functions.

Call the menu for signal statistics measurement.

[

CCDF ON /OFF

]

[NO OF SAMPLES: 10000]

[SINGLE MEAS]

Switch on measurement of the complementary cumulative distribution function. The FSP switches to zero span mode. The power of the signal and the CCDF is calculated for the number of samples selected. With the CCDF function sample detector and video bandwidth are set automatically.

Set the number of measurement samples to 10000.

Start the measurement sequence. At the end the resulting trace will display the CCDF for the measured 10000 samples.

1093.4820.12

4.111

E-3

MEAS - Analyzer FSP

Measurement of Carrier/Noise Ratio C/N and C/N

o

Using the carrier/noise measurement function, the FSP determines the C/N ratio which can also be shown normalized to a 1 Hz bandwidth (function

C/N o

).

To determine the noise power, a channel at the set center frequency is examined. The bandwidth of the channel is fixed by means of the

CHANNEL BANDWIDTH

function.

The largest signal in the frequency span is the carrier. It is searched when the function is activated and is marked by means of the

REFERENCE FIXED

marker. The noise power of the channel is subtracted from the signal level obtained (

C/N

), and in the case of a

C/N o

measurement it is referred to a 1 Hz bandwidth.

There are two methods for measuring the carrier/noise ratio:

1. The carrier is outside the channel examined:

In this case, it is sufficient to switch on the desired measurement function and to set the channel bandwidth. The carrier/noise ratio is displayed on the screen.

2. The carrier is inside the channel examined:

In this case, the measurement must be performed in two steps. First, the reference measurement is performed with the carrier being active. This is done by switching on either the C/N or the C/N

o

measurement and waiting for the end of the next measurement run . Then, the carrier is switched off so that only the noise of the test setup is active in the channel. The carrier/noise ratio is displayed after the subsequent measurement has been completed.

The

ADJUST SETTINGS

function facilitates the selection of the frequency span appropriate for the channel bandwidth: it automatically sets the

SPAN

to approx. 4 x channel bandwidth.

The RMS detector is enabled when the power measurement is switched on (

TRACE-DETECTOR-

RMS)

.

Submenu

MEAS – C/N, C/N o

:

C/N

C/No

C/N

C/No

CHANNEL

BANDWIDTH

The

C/N, C/No

softkey opens the submenu for configuring the carrier/noise ratio measurement.

The user can choose between measurement without (C/N) and measurement with reference to the bandwidth (C/No). In addition, it is possible to select the bandwidth of the channel and to adapt the span.

Note:

The measurements are only available in the frequency domain

(span >0)

.

ADJUST

SETTINGS

F

1093.4820.12

4.112

E-3

FSP

C/N

C/No

Analyzer - MEAS

The

C/N

and

C/No

softkeys enable and disable the measurement of the carrier/noise ratio, the

C/No

measurement also being referred to a 1 Hz bandwidth.

The maximum value of the current trace is determined when the function is activated and is marked by means of the

REFERENCE FIXED

marker.

Note:

The measurement is performed on the trace where MARKER 1 is located. To measure another trace, MARKER 1 has to be shifted to the trace in question using the SELECT TRACE softkey in the MKR menu.

If no marker is active, MARKER 1 is activated when the function is switched on.

IEC/IEEE-bus command:

CALC:MARK:FUNC:POW:SEL CN

CALC:MARK:FUNC:POW:RES? CN

CALC:MARK:FUNC:POW:SEL CN0

CALC:MARK:FUNC:POW:RES? CN0

CALC:MARK:FUNC:POW OFF

CHANNEL

BANDWIDTH

ADJUST

SETTINGS

The

CHANNEL BANDWIDTH

softkey opens a window for selecting the measurement channel bandwidth.

The default setting is 14 kHz.

The specified channel bandwidth allows the optimal setting of the measurement parameters of the FSP using

ADJUST SETTINGS

.

IEC/IEEE-bus command:

SENS:POW:ACH:BWID 14kHz

The

ADJUST SETTINGS

softkey adapts the span to the channel bandwidth selected.

For the carrier/noise ratio measurement, the span is set to:

4 x channel bandwidth + measurement margin

The adjustment is performed once; if necessary, the setting can be changed later on.

IEC/IEEE-bus command:

SENS:POW:ACH:PRES CN | CN0

1093.4820.12

4.113

E-3

MEAS - Analyzer

Measurement of the AM Modulation Depth

MODULATION

DEPTH

FSP

The

MODULATION DEPTH

softkey switches on the measurement of the AM modulation depth. An AM-modulated carrier is required on the screen for ensuring correct operation.

The level value of

MARKER 1

is taken as the carrier level. When this function is activated,

MARKER 2

and

MARKER 3

are automatically set symmetrically to the carrier on the adjacent peak values of the trace as delta markers and

MARKER 2

is activated for the entry.

When the position of

MARKER 2

(delta) is changed,

MARKER 3

(delta) is moved symmetrically with respect to the reference marker (

MARKER 1

).

If the data entry is activated for

MARKER 3

(

MARKER 1 2 3 4

softkey), the latter can be moved for fine adjustment irrespective of

MARKER 2

.

The FSP calculates the power at the marker positions from the measured levels. The AM modulation depth is calculated from the ratio between the power values at the reference marker and at the delta markers. When the powers of the two AM side bands are unequal, the mean value of the two power values is used for AM modulation depth calculation.

[

Measurement example

:

The AM modulation depth of a carrier modulated with 1 kHz is to be measured at 100 MHz.

[

PRESET

] The FSP is set to the default setting.

[

CENTER

: 100

MHz

] The center frequency is set to 100 MHz.

[

SPAN

: 5

kHz

] The span is set to 5 kHz.

[

AMPT

: 0

dBm

]

[

MKR FCTN

]

MODULATION

DEPTH

: 1

kHz

]

The reference level is set to 0 dBm.

MARKER 1

is switched on and positioned at the maximum of the displayed trace.

The measurement of the AM modulation depth is switched on.

MARKERS 2

and

3

(delta markers) are set to the adjacent peak values of the trace and are activated for the frequency entry.

The AM modulation depth is output in % in the marker info field.

When 1 kHz is entered,

MARKER 2

can be exactly positioned on 1 kHz and

MARKER 3

at -1 kHz from the reference marker.

IEC/IEEE-bus command:

CALC:MARK:FUNC:MDEP

CALC:MARK:FUNC:MDEP:RES?

ON;

1093.4820.12

4.114

E-3

FSP Analyzer - MEAS

Measurement of the Third Order Intercept (TOI)

If several signals are applied to a transmission twoport with nonlinear characteristic, intermodulation products appear at its output by the sums and differences of the signals. The nonlinear characteristic produces harmonics of the useful signals which intermodulate at the characteristic. The intermodulation products of lower order have a special effect since their level is largest and they are near the useful signals. The intermodulation product of third order causes the highest interference. It is the intermodulation product generated from one of the useful signals and the 2nd harmonic of the second useful signal in case of two-tone modulation.

The frequencies of the intermodulation products are above and below the useful signals. Fig. 4-11 shows intermodulation products P

I1

and P

I2

generated by the two useful signals P

U1

and P

U2

.

Level

P

U1

P

U2 aD3

PI1

∆ f

∆ f

∆ f

PI2

Fig. 4-11

f

I1 f

U1 f

U2 f

I2

Intermodulation products P

U1

and P

U2

Frequency

The intermodulation product at

f

I2

is generated by mixing the 2nd harmonic of useful signal

P

U2

and signal

P

U1

, the intermodulation product at f

I1

by mixing the 2nd harmonic of useful signal

P

U1

and signal

P

U2

.

f

i1

= 2 x

f

u1

-

f

u2

f

i2

= 2 x

f

u2

-

f

u1

(1)

(2)

The level of the intermodulation products depends on the level of the useful signals. If the two useful signals are increased by 1 dB, the level of the intermodulation products increases by 3 dB, which means that spacing

a

D3

between intermodulation signals and useful signals is reduced by 2 dB. This is illustrated in Fig. 4-12.

1093.4820.12

4.115

E-3

MEAS - Analyzer

Output level

Compression

Intercept point

FSP

1

1

Useful signal

3

Intermodulation product

1

Fig. 4-12

Input level

Dependence of intermodulation level on useful signal level

The useful signals at the twoport output increase proportionally with the input level as long as the twoport is in the linear range. A level change of 1 dB at the input causes a level change of 1 dB at the output. Beyond a certain input level, the twoport goes into compression and the output level stops increasing. The intermodulation products of the third order increase three times as much as the useful signals. The intercept point is the fictitious level where the two lines intersect. It cannot be measured directly since the useful level is previously limited by the maximum twoport output power.

It can be calculated from the known line slopes and the measured spacing a

D3

at a given level according to the following formula.

IP

3

=

a

D

3

2

+

P

N

(3)

The 3 rd

order intercept point (TOI), for example, is calculated for an intermodulation of 60 dB and an input level P

U

of -20 dBm according to the following formula:

IP

3

=

60

2

20

dBm

)

=

10

dBm

.

(4)

TOI

The

TOI

softkey enables the measurement of the 3 rd

order intercept point.

A two-tone signal with equal carrier levels is expected at the FSP input.

MARKER 1

and

MARKER 2

(both normal markers) are set to the maximum of the two signals.

MARKER 3

and

MARKER 4

(both delta markers) are placed on the intermodulation products. When the function is enabled, the frequency entry is activated for the delta markers. They can be set manually.

The FSP calculates the third order intercept from the level spacing between normal markers and delta markers and outputs it in the marker info field.

IEC/IEEE-bus command:

CALC:MARK:FUNC:TOI

CALC:MARK:FUNC:TOI:RES?

ON;

1093.4820.12

4.116

E-3

FSP

SELECT

MARKER

Analyzer - MEAS

[

Example:

A two-tone signal with frequencies of 100 MHz and 101 MHz is applied to the

RF input of the FSP. The level of the two signals is -10 dBm.

[

PRESET

] The FSP is set to the default setting.

[

CENTER

: 100.5

MHz

] The center frequency is set to 100.5 MHz.

[

SPAN

: 3

MHz

] The span is set to 3 MHz.

[

AMPT

: -10

dBm

] The reference level is set to -10 dBm.

[

MKR FCTN

]

TOI

]

MARKER 1

is switched on and set to the signal peak.

The FSP sets the 4 markers to the useful signals and the intermodulation products and calculates the third order intercept. The result is output in the marker info field.

The

SELECT MARKER

softkey activates the selection of a marker for functions

MODULATION DEPTH

and

TOI

. Thus, the markers can be fineadjusted for these functions.

The markers are numerically selected in a data entry field. Delta marker 1 is selected by entering '0'.

If the marker is in the switch-off state, it will be switched on and can thus be shifted.

IEC/IEEE-bus command:

CALC:MARK1 ON;

CALC:MARK1:X <value>;

CALC:MARK1:Y?

1093.4820.12

4.117

E-3

Limit Lines FSP

Setup of Limit Lines and Display Lines –

LINES

Key

Limit lines are used to define amplitude curves or spectral distribution boundaries on the display screen which are not to be exceeded. They indicate, for example, the upper limits for interference radiation or spurious waves which are allowed from a unit under test (UUT). For transmission of information in

TDMA (e.g. GSM), the amplitude of the bursts in a timeslot must adhere to a curve which must fall within a specified tolerance band. The lower and upper limits may each be specified by a limit line. Then, the amplitude curve can be controlled either visually or automatically for any violations of the upper or lower limits (GO/NOGO test).

The instrument supports limit lines with a maximum of 50 data points. 8 of the limit lines stored in the instrument can be used simultaneously and activated in the split-screen mode either in Screen A,

Screen B or in the two windows. The number of limit lines stored in the instrument is only limited by the capacity of the flashdisk used.

For each limit line, the following characteristics must be defined:

The name of the limit line. The limit line data are stored under this name and can be examined in the table

LIMIT LINES.

The domain in which the limit line is to be used. Here, a distinction is made between the time domain

(span = 0 Hz) and the frequency domain (span > 0 Hz).

The reference of the interpolation points to the X axis. The limit line may be specified either for absolute frequencies or times or for frequencies which are related to the set center frequency and times related to the time on the left edge of the diagram.

The reference of the interpolation points to the Y axis. The limit line can be selected either for absolute levels or voltages or referred to the set maximum level (Ref Lvl). The position on the display depends on the

REF LEVEL POSITION

.

With relative reference values for the Y axis, it is possible to enter an absolute threshold

(THRESHOLD) which lowers the relative limit values (see below).

The type of limit line (upper or lower limit). With this information and the active limit checking function

(Table

LIMIT LINES

,

LIMIT CHECK ON

, the FSP checks for compliance with each limit.

The limit line units to be used. The units of the limit line must be compatible with the level axis in the active measurement window.

The measurement curve (trace) to which the limit line is assigned. For the FSP, this defines the curve to which the limit is to be applied when several traces are simultaneously displayed.

For each limit line, a margin can be defined which serves as a threshold for automatic evaluation.

In addition, commentary can be written for each limit line, e.g. a description of the application.

Display lines are exclusively used to optically mark relevant frequencies or points in time (span = 0) as well as constant level values. It is not possible to check automatically whether the marked level values have been underranged or exceeded.

1093.4820.12

4.118

E-3

FSP

Selection of Limit Lines

The

LINES

key opens the menu for fixing the limit lines and the display lines.

LINES menu

LINES

Limit Lines

The

SELECTED LIMIT LINE

display field provides information concerning the characteristics of the marked limit lines.

In the

LIMIT LINES

table, the limit lines compatible to the settings of the active screen can be enabled.

New limit lines can be specified and edited in the

NEW LIMIT LINE and EDIT LIMIT LINE

sub-menus, respectively.

The horizontal and vertical lines of the

DISPLAY LINES

submenu mark individual levels or frequencies

(span > 0) or times (span = 0) in the diagram.

1093.4820.12

4.119

E-3

Limit Lines

SELECT

LIMIT LINE

FSP

The

SELECTED LIMIT LINE

table provides information about the characteristics of the marked limit line :

Name

Domain

Unit

X-Axis

Limit

X-Scaling

Y-Scaling

Threshold

Comment

name frequency or time vertical scale interpolation upper/lower limit absolute or relative frequencies/times absolute or relative Y units absolute limit with relative Y units commentary

The characteristics of the limit line are set in the

EDIT LIMIT LINE (=NEW

LIMIT LINE)

sub-menu.

The

SELECT LIMIT LINE

softkey activates the

LIMIT LINES

table and the selection bar jumps to the uppermost name in the table.

The following information is offered in the columns of the table:

Name

Compatible

Limit Check

Trace

Margin

Enable the limit line.

Indicates if the limit line is compatible with the measurement window of the given trace.

Activate automatic violation check for upper/lower limits.

Select the measurement curve to which the limit is assigned.

Define margin.

Name and Compatible

- Enabling limit lines

A maximum of 8 limit lines can be enabled at any one time. In split screen mode, they may be assigned to screen A, screen B or to both screens. A check mark at the left edge of a cell indicates that this limit line is enabled.

A limit line can only be enabled when it has a check mark in the

Compatible

column, i.e. only when the horizontal display (time or frequency) and vertical scales are

identical

to those of the display in the measurement window.

Lines with the unit dB are compatible to all dB(..) settings of the Y axis.

If the scale of the y axis or the domain (frequency or time axis) are changed, all non-compatible limit lines are automatically switched off in order to avoid misinterpretation. The limit lines must be enabled anew when the original display is re-displayed.

IEC/IEEE-bus command:

CALC:LIM3:NAME "GSM1"

CALC:LIM3:UPP:STAT ON

CALC:LIM4:LOW:STAT ON

1093.4820.12

4.120

E-3

FSP Limit Lines

Limit Check

- Activate automatic limit violation check

When

LIMIT CHECK ON

is activated, a GO/NOGO test is performed in the active screen. In the center of the diagram, a display window appears which indicates the results of the limit check test:

LIMIT CHECK: PASSED No violations of active limits.

LIMIT CHECK: FAILED One or more active limit lines were violated. The message contains the names of the limit lines which were violated or whose margins were not complied with.

LIMIT CHECK: MARGIN The margin of at least one active limit lines was not complied with, however, no limit line was violated. The message contains the names of the limit lines whose margins were not complied with.

The following example shows two active limit lines:

LIMIT CHECK: FAILED

LINE VHF_MASK: Failed

LINE UHF2MASK: Margin

A check for violations of limit lines takes place only if the limit line of the assigned measurement curve (trace) is enabled.

If

LIM CHECK

is set to

OFF

for all active limit lines, then the limit line check is not executed and the display window is activated.

IEC/IEEE-bus command:

CALC:LIM:STAT ON

INIT;*WAI

CALC:LIM:FAIL?

Trace

- Select the measurement curve to which the limit line is assigned.

The selection of the measurement curve (trace) takes place in an entry window. Allowed are the integer entries 1, 2 or 3. The default setting is trace

1. If the selected limit line is not compatible with the assigned measurement curve, then the limit line is disabled (display and limit check).

IEC/IEEE-bus command:

CALC:LIM:TRAC 1

1093.4820.12

4.121

E-3

Limit Lines

NEW LIMIT

LINE

EDIT LIMIT

LINE

See following Section "Entry and Editing of Limit Lines".

FSP

COPY

LIMIT LINE

The

COPY LIMIT LINE

softkey copies the data file describing the marked limit line and saves it under a new name. In this way, a new limit line can be easily generated by parallel translation or editing of an existing limit line. The name can be arbitrarily chosen and input via an entry window (max. of 8 characters).

IEC/IEEE-bus command:

CALC:LIM3:COPY 2

CALC:LIM3:COPY "GSM2" or

DELETE

LIMIT LINE

X OFFSET

Y OFFSET

The

DELETE LIMIT LINE

softkey erases the selected limit line. Before deletion, a message appears requesting confirmation.

IEC/IEEE-bus command:

CALC:LIM3:DEL

The

X OFFSET

softkey horizontally shifts a limit line, which has been specified for relative frequencies or times (X axis). The softkey opens an entry window, where the value for shifting may be entered numerically or via the rollkey.

Note:

This softkey does not have any effect on limit lines that represent absolute values for the X axis.

IEC/IEEE-bus command:

CALC:LIM3:CONT:OFFS 10kHz

The

Y OFFSET

softkey vertically shifts a limit line, which has relative values for the Y axis (levels or linear units such as volt). The softkey opens an entry window where the value for shifting may be entered numerically or via the rollkey.

Note:

This softkey does not have any effect on limit lines that represent absolute values for the Y axis.

IEC/IEEE-bus command:

CALC:LIM3:LOW:OFFS 3dB

CALC:LIM3:UPP:OFFS 3dB

1093.4820.12

4.122

E-3

FSP

Entry and Editing of Limit Lines

Limit Lines

A limit line is characterized by

• its name

• the assignment of domain (frequency or time)

• the scaling in absolute or relative times or frequencies

• the vertical unit

• the interpolation

• the vertical scaling

• the vertical threshold (only with relative vertical scaling)

• the margin

• the definition of the limit line as either upper or lower limit.

• the data points for frequency/time and level

At the time of entry, the FSP immediately checks that all limit lines are in accordance with certain guidelines. These guidelines must be observed if specified operation is to be guaranteed.

The frequencies/times for each data point must be entered in ascending order, however, for any single frequency/time, two data points may be input (vertical segment of a limit line).

The data points are allocated in order of ascending frequency/time. Gaps are not allowed. If gaps are desired, two separate limit lines must be defined and then both enabled.

The entered frequencies/times need not necessarily be selectable in FSP. A limit line may also exceed the specified frequency or time domains. The minimum frequency for a data point is

-200 GHz, the maximum frequency is 200 GHz. For the time domain representation, negative times may also be entered. The valid range is -1000 s to +1000 s.

The minimum/maximum value for a limit line is -200 dB to +200 dB for the logarithmic or 10

-20

to

10

+20

or -99.9% to + 999.9% for the linear amplitude scales.

1093.4820.12

4.123

E-3

Limit Lines FSP

LINES - EDIT LIMIT LINE menu

EDIT LIMIT

LINE

NEW LIMIT

LINE

The

EDIT LIMIT LINE

and

NEW LIMIT LINE

softkeys both call the

EDIT

LIMIT LINE

sub-menu used for editing limit lines. In the table heading, the characteristics of the limit line can be entered. The data points for frequency/time and level values are entered in the columns.

Name

Domain

Unit

X-Axis

Limit

X-Scaling

Y-Scaling

Enter name.

Select domain.

Select units.

Select interpolation

Select upper and lower limit value.

Entry of absolute or relative values for the X axis

Entry of absolute or relative values for the Y axis

Margin

Threshold

Entry of margin.

Entry of vertical threshold (only with relative vertical scaling)

Enter comments.

Comment

Time/Frequency

Enter time/frequency for the data points.

Limit/dBm

Enter magnitudes for the data points.

Note:

Domain, unit, X scaling and Y scaling cannot be modified as soon as reference values have been entered in the data section of the table.

NAME

The

NAME

softkey enables the entry of characteristics in the table heading.

Name

- Enter name

A maximum of 8 characters is permitted for each name. All names must be compatible with the MS DOS conventions for file names. The instrument stores all limit lines with the .LIM extension.

IEC/IEEE-bus command:

CALC:LIM3:NAME "GSM1"

Domain

- Select time or frequency domain

The default setting is frequency.

Note:

A change in domain (frequency/time) is only permitted when the data point table is empty.

IEC/IEEE-bus command:

CALC:LIM3:CONT:DOM FREQ

1093.4820.12

4.124

E-3

FSP

1093.4820.12

Limit Lines

X Axis

- Select interpolation

Linear or logarithmic interpolation can be carried out between the frequency reference points of the table. The ENTER key toggles between LIN and LOG selection.

IEC/IEEE-bus commands

CALC:LIM3:CONT:SPAC LIN

CALC:LIM3:UPP:SPAC LIN

CALC:LIM3:LOW:SPAC LIN

Scaling -

selection of absolute or relative scaling

The limit line can either be scaled in absolute (frequency or time) or relative units.

Any of the unit keys may be used to toggle between

ABSOLUTE

and

RELATIVE

, the cursor must be positioned in the X

Scaling

or the

Y Scaling

line.

X-Scaling ABSOLUTE

The frequencies or times are interpreted as absolute physical units.

X-Scaling RELATIVE

In the data point table, the frequencies are referred to the currently set center frequency. In time domain mode, the left boundary of the diagram constitutes the reference.

Y-Scaling ABSOLUTE

The limit values refer to absolute levels or voltages.

Y-Scaling RELATIVE

The limit values refer to the reference level (Ref

Level) or, in case a reference line is set, to the reference line.

Limit values with the unit dB are always relative values.

The

RELATIVE

scaling is always suitable, if masks for bursts are to be defined in the time domain, or if masks for modulated signals are required in the frequency domain.

An X offset with half the sweep time may be entered in order to shift the mask in the time domain into the center of screen.

IEC/IEEE-bus command:

CALC:LIM3:CONT:MODE ABS

CALC:LIM3:UPP:MODE ABS

CALC:LIM3:LOW:MODE ABS

Unit

- Select the vertical scale units for the limit line

The selection of units takes place in a selection box. The default setting is dBm

.

UNITS

VERTICAL SCALE

dB

dBm

% dBuV dBmV dBuA dBpW

V

A

W dBuV/MHz dBmV/MHz dBuA/MHz

IEC/IEEE-bus command:

CALC:LIM3:UNIT DBM

4.125

E-3

Limit Lines FSP

Limit

- Select upper/lower limit

A limit line can be defined as either an upper or lower limit.

IEC/IEEE-bus command: --

(defined by key words :UPPer or :LOWer)

Margin

- Setting a margin.

The margin is defined as the signal-level distance to the limit line . When the limit line is defined as an upper limit, the margin means that the level is below the limit line. When the limit line is defined as a lower limit, the margin means that the level is above the limit line. The default setting is 0 dB (i.e. no margin).

IEC/IEEE-bus command:

CALC:LIM3:UPP:MARG 10dB

CALC:LIM3:LOW:MARG 10dB

Threshold

– Selection of the threshold value with relative Y scaling

With relative Y scaling, an absolute threshold value can be defined which lowers the relative limit values. The function is useful especially for mobile radio applications provided the limit values are defined in relation to the carrier power as long as they are above an absolute limit value.

Example:

Ref -20 dBm

Att 10 dB

RBW 300 Hz

VBW 3 kHz

SWT 100 ms

Marker [T1]

-28.4 dBm

200.0100 MHz resulting limit absolute threshold relative limit line

Center 200 MHz

10 kHz/

Span 100 kHz

The preset value is at -200 dBm. The field is displayed if the value

RELATIVE is entered in the field Y-SCALING.

IEC/IEEE-bus command:

CALC:LIM3:UPP:THR -30 dBm or

CALC:LIM3:LOW:THR -30 dBm

Comment

- Enter comments

Comments are arbitrary, however, they must be less than 41 characters long.

IEC/IEEE-bus command:

CALC:LIM3:COMM "Upper limit"

1093.4820.12

4.126

E-3

FSP

VALUES

INSERT

VALUE

DELETE

VALUE

SHIFT X

LIMIT LINE

SHIFT Y

LIMIT LINE

SAVE

LIMIT LINE

1093.4820.12

Limit Lines

The

VALUES

softkey activates the entry of the data points in the table columns

Time

/

Frequency

and

Limit/dB

. Which table columns appear depends upon the

Domain

selection in the table heading.

The desired frequency/time data points are entered in ascending order (two repeated frequencies/time values are permitted).

IEC/IEEE-bus command:

CALC:LIM3:CONT:DATA 1MHz,3MHz,30MHz

CALC:LIM3:UPP:DATA -10,0,0

CALC:LIM3:LOW:DATA -30,-40,-40

The

INSERT VALUE

softkey creates an empty line above the current cursor position where a new data point may be entered. However, during the entry of new values, it is necessary to observe an ascending order for frequency/time.

IEC/IEEE-bus command:

--

The

DELETE VALUE

softkey erases the data point (complete line) at the cursor position. All succeeding data points are shifted down accordingly.

IEC/IEEE-bus command:

--

The

SHIFT X LIMIT LINE

softkey calls an entry window where the complete limit line may be shifted parallel in the horizontal direction.

The shift takes place according to the horizontal scale:

– in the frequency domain in Hz, kHz, MHz or GHz

– in the time domain in ns, µs, ms or s

In this manner, a new limit line can be easily generated based upon an existing limit line which has been shifted horizontally and stored (

SAVE LIMIT

LINE

softkey) under a new name (

NAME

softkey).

IEC/IEEE-bus command:

CALC:LIM3:CONT:SHIF 50KHz

The

SHIFT Y LIMIT LINE

softkey calls an entry window where the complete limit line may be shifted parallel in the vertical direction.

The shift takes place according to the vertical scale:

– for logarithmic units, relative, in dB

– for linear units, as a factor

In this manner, a new limit line can be easily generated based upon an existing limit line which has been shifted vertically and stored (

SAVE LIMIT

LINE

softkey) under a new name (

NAME

softkey).

IEC/IEEE-bus command:

CALC:LIM3:CONT:UPP:SHIF 20dB

CALC:LIM3:CONT:LOW:SHIF 20dB

The

SAVE LIMIT LINE

softkey stores the currently edited limit line . The name can be entered in an input window (max. 8 characters)

IEC/IEEE-bus command:

--

4.127

E-3

Limit Lines FSP

Display Lines

Display lines help to evaluate a trace – as do markers. The function of a display line is comparable to that of a ruler that can be shifted on the trace in order to mark absolute values.

The FSP provides two different types of display lines :

• two horizontal level lines for marking levels – Display Line 1/2,

• two vertical frequency or time lines for marking frequencies or points in time – Frequency/Time Line

1/2.

Each line is identified by one of the following abbreviations at the right edge of the diagram:

D1 Display Line 1

D2

F1

Display Line 2

Frequency Line 1

F2

T1

T2

Frequency Line 2

Time Line 1

Time Line 2

The level lines are continuous horizontal lines across the entire width of a diagram and can be shifted in y direction.

The frequency or time lines are continuous vertical lines across the entire height of the diagram and can be shifted in x direction.

The DISPLAY LINES submenu for activating and setting the display lines appears different depending on the display mode set in the active measurement window (frequency or time domain).

If the spectrum is shown (span

0) the TIME LINE 1 and TIME LINE 2 softkeys are disabled, whereas in the time domain (span = 0) the FREQUENCY LINE 1 and FREQUENCY LINE 2 softkeys are not available.

Note:

The softkeys for setting and switching the display lines on/off work like triple switches:

Initial situation: The line is off (softkey with gray background)

1st press: The line is switched on (softkey with red background) and the data input function is activated. The position of the display line can be selected by means of the rollkey, the step keys or a numerical entry in the appropriate field. The data input function is disabled if another function is activated. The line, however, remains switched on (softkey with green background).

2nd press.

The line is switched off (softkey with gray background).

Initial situation: The line is on (softkey with green background)

1st press: The data input function is activated (softkey with red background). The position of the display line can be selected by means of the rollkey, the step keys or a numerical entry in the appropriate field. The data input function is disabled if another function is activated. The line, however, remains switched on (softkey with green background).

2nd press.

The line is switched off (softkey with gray background).

1093.4820.12

4.128

E-3

FSP

LINES menu

DISPLAY

LINES

DISPLAY

LINE 1

DISPLAY

LINE 2

FREQUENCY

LINE 1

FREQUENCY

LINE 2

TIME

LINE 1

TIME

LINE 2

Frequency Domain

(Span > 0 Hz)

Time Domain

(Span = 0 Hz)

Limit Lines

DISPLAY

LINE 1

DISPLAY

LINE 2

FREQUENCY

LINE 1

FREQUENCY

LINE 2

The DISPLAY LINE 1/2 softkeys enable or disable the level lines and allow the user to enter the position of the lines.

The level lines mark the selected level in the measurement window.

IEC/IEEE-bus command:

CALC:DLIN:STAT ON

CALC:DLIN -20dBm

The FREQUENCY LINE 1/2 softkeys enable or disable the frequency lines

1/2 and allow the user to enter the position of the lines.

The frequency lines mark the selected frequencies in the measurement window.

Note:

The two softkeys cannot be used in the time domain (span = 0).

IEC/IEEE-bus command:

CALC:FLIN:STAT ON

CALC:FLIN 120MHz

1093.4820.12

4.129

E-3

Limit Lines

TIME

LINE 1

TIME

LINE 2

FSP

The

TIME LINE 1/2

softkeys enable or disable the time lines 1/ and allow the user to enter the position of the lines.

The time lines mark the selected times or define search ranges (see section

"Marker Functions ").

Note:

The two softkeys cannot be used in the frequency domain (span >

0).

IEC/IEEE-bus command:

CALC:TLIN:STAT ON

CALC:TLIN 10ms

1093.4820.12

4.130

E-3

FSP Display

Configuration of Screen Display –

DISP

Key

The

DISPLAY

menu allows the configuration of the diagram display on the screen and also the selection of the display elements and colors. The

POWER SAVE

mode is also configured in this menu for the display.

The test results are displayed on the screen of the FSP either in a full-screen window or in two overlapping windows. The two windows are called diagram A and diagram B.

In the default setting, the two windows are completely decoupled from each other, ie they behave like two separate instruments. This is very useful, for example with harmonics measurements or measurements on frequency-converting DUTs, since the input signal and the output signal lie in different frequency ranges.

However, specific settings of the two windows (reference level, center frequency) can be coupled, if required, so that with

CENTER B = MARKER A

for example, the shift of the marker in diagram A causes the frequency range (zoomed in some cases) to be shifted along diagram B.

New setttings are performed in the diagram selected via hotkey SCREEN A or SCREEN B. If only one window is displayed, it is the diagram in which the measurements are performed; the diagram not displayed is not active for measurements.

Fig. 4-15 Typical split-screen display, settings are uncoupled

1093.4820.12

4.131

E-3

Display FSP

The

DISP

key opens the menu for configuring the screen display and selecting the active diagram in

SPLIT SCREEN mode.

LINE S

DISP

FILE

FULL

SCREEN

SPLIT

SCREEN

REF LEVEL

COUPLED

CENTER B

= MARKER A

CENTER A

= MARKER B

SCREEN

TITLE

TIME+DATE

ON OFF

LOGO

ON OFF

ANNOTATION

ON OFF

DATA ENTRY

OPAQUE

DEFAULT

COLORS 1

DEFAULT

COLORS 2

SELECT

OBJECT

BRIGHTNESS

TINT

SATURATION

PREDEFINED

COLORS

FULL

SCREEN

CONFIG

DISPLAY

DISPLAY

PWR SAVE

The

FULL SCREEN

softkey selects the display of one diagram. This corresponds to the default setting of FSP.

In the

FULL SCREEN

mode it is possible to switch between two different device settings by selecting the active window (screen A or screen B).

Switching between

SCREEN A

and

SCREEN B

is performed by means of the corresponding key in the

HOTKEY bar

:

SPECTRUM

SCREEN B

It should be noted that the measurements in the FULL SCREEN mode are performed only in the visible (active) window.

The active window is marked by

A

or

B

on the right of the diagram.

IEC/IEEE-bus command:

DISP:FORM SING

DISP:WIND<1|2>:SEL

1093.4820.12

4.132

E-3

FSP

SPLIT

SCREEN

REF LEVEl

COUPLED

CENTER B

=MARKER A

CENTER A

=MARKER B

CONFIG

DISPLAY

Display

The

SPLIT SCREEN

softkey selects the display of two diagrams. The upper diagram is designated

SCREEN A

, the lower diagram

SCREEN B

.

Switching between

SCREEN A

and

SCREEN B

is performed via the corresponding key in the

HOTKEY

bar. The active window is marked by highlighting fields

A

and

B

on the right of the diagram.

IEC/IEEE-bus command:

DISP:FORM SPL

The

REF LEVEL COUPLED

softkey switches the coupling of the reference level on and off. In addition to the reference level, the mixer level and input attenuation are coupled with one another.

For the level measurement, the same reference level and input attenuation must be set for the two diagrams.

IEC/IEEE-bus command

INST:COUP RLEV

The

CENTER B = MARKER A and CENTER A = MARKER B

softkeys couple the center frequency in diagram B with the frequency of marker 1 in diagram

A and the center frequency in diagram B with the frequency of marker 1 in diagram B. The two softkeys are mutually exclusive.

This coupling is useful, eg for viewing the signal at the marker position in diagram A with higher frequency resolution or in the time domain in diagram

B.

If marker 1 is off, it is switched on and set to the maximum of the trace in the active diagram.

IEC/IEEE-bus command:

INST:COUP CF_B

INST:COUP CF_A

SCREEN

TITLE

TIME+DATE

ON OFF

ON

LOGO

OFF

ANNOTATION

ON OFF

DATA ENTRY

OPAQUE

DEFAULT

COLORS 1

DEFAULT

COLORS 2

SELECT

OBJECT

BRIGHTNESS

TINT

SATURATION

PREDEFINED

COLORS

The

CONFIG DISPLAY

softkey opens a submenu allowing additional display items to be added to the screen. In addition, the display power-save mode

(

DISPLAY PWR SAVE

) and the colors of the display elements can be set here.

DISPLAY

PWR SAVE

1093.4820.12

4.133

E-3

Display

SCREEN

TITLE

FSP

The

SCREEN TITLE

softkey activates the entry of a title for the active diagram A or B. It switches on or off a title that is already input. The length of the title is limited to max. 20 characters.

IEC/IEEE-bus command:

DISP:WIND1:TEXT 'Noise Meas'

DISP:WIND1:TEXT:STATe ON

T IM E+DATE

ON OFF

The

TIME+DATE ON/OFF

softkey switches on or off the display of date and time above the diagram.

IEC/IEEE-bus command:

DISP:TIME OFF

ON

LOGO

OFF

The

LOGO ON/OFF

softkey switches the Rohde & Schwarz company logo displayed in the upper left corner of the display screen on or off.

IEC/IEEE-bus command:

DISP:LOGO ON

ANNOTATION

ON OFF

The

ANNOTATION ON/OFF

softkey switches the displaying of frequency information on the screen on and off.

ON Frequency information is displayed.

OFF Frequency information is not outputted to the display. This can be used for example to protect confidential data.

IEC/IEEE-bus command:

DISP:ANN:FREQ ON

DATAENTRY

OPAQUE

The

DATAENTRY OPAQUE

opaque. This means that entry windows are underlayed with the background color for tables.

IEC/IEEE-bus command:

softkey sets the data entry windows to

--

DEFAULT

COLORS 1

DEFAULT

COLORS 2

The

DEFAULT COLORS 1 and 2

softkey restores the default settings for brightness, color tint and color saturation for all display screen elements.

The color schemes have been selected to give optimum visibility of all picture elements at an angle of vision from above or below.

DEFAULT COLORS 1

is active in the default setting of the instrument.

IEC/IEEE-bus command:

DISP:CMAP:DEF1

DISP:CMAP:DEF2

1093.4820.12

4.134

E-3

FSP

DISPLAY

PWR SAVE

SELECT

OBJECT

Display

The

DISPLAY PWR SAVE

softkey is used to switch on/off the power-save mode for the display and to enter the time for the power-save fuction to respond. After the elapse of this time the display is completely switched off, ie including backlighting.

Note:

This mode is recommended for saving the TFT display especially when the instrument is exclusively operated in remote control.

The power-save mode is configured as follows:

The first keystroke activates the power-save mode and opens the editor for the response time (

POWER SAVE TIMEOUT

).

The response time is entered in minutes between 1 and 6 minutes and is confirmed by

ENTER

.

The power-save mode is deactivated by pressing the key again.

On leaving the menu with the power-save mode in the activated state, the softkey is highlighted in color on returning to the menu and opens again the editor for the response time. Pressing again the key switches off the power-save mode.

IEC/IEEE-bus command:

DISP:PSAV ON

DISP:PSAV:HOLD 15

The

SELECT OBJECT

softkey activates the

SELECT DISPLAY

OBJECT table, with which a graphics element can be selected.

After selection, the brightness, tint and saturation of the selected element can be changed using the softkeys of the same name. The color changes by means of the

PREDEFINED COLORS

softkey can be seen immediately on the display screen.

SE LECT D ISP LA Y O BJ EC T

Background

Grid

Function field + status field + data entry text

Function field LED on

Function field LED warn

Enhancement label text

Status field background

Trace 1

Trace 2

Trace 3

Marker

Lines

Measurement status + limit check pass

Limit check fail

Table + softkey text

Table + softkey background

Table selected field text

Table selected field background

Table + data entry field opaq titlebar

Data entry field opaq text

Data entry field opaq background

3D shade bright part

3D shade dark part

Softkey state on

Softkey state data entry

Logo

1093.4820.12

4.135

E-3

Display

BRIGHTNESS

FSP

The

BRIGHTNESS

softkey activates entry of the brightness of the selected graphics element.

Values between 0 and 100% can be entered.

IEC/IEEE-bus:

DISP:CMAP3:HSL< hue>,<sat>,<lum>

TINT

The

TINT

softkey activates the entry of the color tint of the selected element. The entered value is related to a continuous color spectrum ranging from red (0%) to blue (100%).

IEC/IEEE-bus:

DISP:CMAP3:HSL <hue>,<sat>,<lum>

SATURATION

The

SATURATION

softkey activates the entry of the color saturation for the selected element.

The range of inputs is from 0 to 100%.

IEC/IEEE-bus:

DISP:CMAP3:HSL <hue>,<sat>,<lum>

PREDEFINED

COLORS

The

PREDEFINED COLORS

softkey activates a table, with which the predefined colors for the diplay screen elements can be selected.

COLOR

BLACK

BLUE

BROWN

GREEN

CYAN

RED

MAGENTA

YELLOW

WHITE

GRAY

LIGHT GRAY

LIGHT BLUE

LIGHT GREEN

LIGHT CYAN

LIGHT RED

LIGHT MAGENTA

IEC/IEEE-bus command:

DISP:CMAP 1 to 26:PDEF <color>

1093.4820.12

4.136

E-3

FSP Configuration/Setup

Instrument Setup and Interface Configuration –

SETUP

Key

The

SETUP

key opens the menu for configuration of the FSP:

TRANSDUCER

FACTOR

INSERT

LINE

DELETE

LINE

NEW

EDIT

DELETE

VIEW

TRANSDUCER

SAVE TRD

FACTOR

PAGE

UP

PAGE

DOWN

SETUP

REFERENCE

INT EXT

NOISE SRC

ON OFF

FIRMWARE

UPDATE

RESTORE

FIRMWARE

INPUT

RF

INPUT

CAL

SELFTEST

SELFTEST

RESULTS

CAL GEN

128 MHZ

CAL GEN

COMB

GPIB

ADDRESS

SOFT

FRONTPANEL

HARDWARE

INFO

STATISTICS

SYSTEM

MESSAGES

CLEAR ALL

MESSAGES

COM

INTERFACE

TIME +

DATE

CONFIGURE

NETWORK

NETWORK

LOGIN

FSP-

B16

FSP-

B16

PREAMP

ON OFF

TRANSDUCER

GENERAL

SETUP

SYSTEM

INFO

SERVICE

ENTER

PASSWORD

The following settings can be modified here:

The softkey determines the source of the reference

The softkey switches on and off the voltage supply for an external noise source.

The softkey switches on the RF preamplifier gain.

The softkey switches on the RF preamplifier gain. This softkey is only available with option

EL. ATTENUATOR (FSP-B25).

The softkey opens a submenu for entering the correction characteristics for transducers.

The softkey opens a submenu for all the general settings such as IEC/IEEE-bus address, date and time as well as the configuration of the device interfaces.

FIRMWARE OPTIONS

can be installed under this menu item.

The softkey opens a submenu for displaying the hardware configuration of the instrument, the switching cycle statistics and system messages.

1093.4820.12

4.137

E-3

Configuration/Setup FSP

The softkey opens a submenu in which special device functions and system information can be selected for servicing. The password required for service functions can be entered in this submenu.

The

SERVICE FUNCTIONS

softkey enables additional special settings for servicing and troubleshooting. It is available after entering the corresponding password under the

SERVICE

softkey.

External Reference Oscillator

The FSP can use the internal reference source or an external reference source as frequency standard from which all internal oscillators are derived. A 10 MHz crystal oscillator is used as internal reference source. In the default setting (internal reference), this frequency is available as output signal at rearpanel connector REF OUT, e.g. to synchronize other instruments to the reference of the FSP.

In the setting

REFERENCE EXT

, the connector REF IN is used as input connector for an external frequency standard. In this case all internal oscillators of the FSP are synchronized to the external reference frequency (also 10 MHz).

SETUP

menu:

REFERENCE

INT EXT

The

REFERENCE INT / EXT

softkey switches between the internal and external reference.

Note:

If the reference signal is missing when switching to external reference, the message "EXREF" appears after a while to indicate that there is no synchronization.

On switching to internal reference please ensure that the external reference signal is de-activated to avoid interactions with the internal reference signal.

IEC/IEEE-bus command:

ROSC:SOUR INT

External Noise Source

SETUP

menu:

NOISE SRC

ON OFF

The

NOISE SRC ON/OFF

softkey switches on or off the supply voltage for an external noise source which is connected to the

NOISE SOURCE

connector on the rear panel of the instrument.

IEC/IEEE-bus command:

DIAG:SERV:NSO ON

1093.4820.12

4.138

E-3

FSP Configuration/Setup

RF Preamplifier

To improve the noise figure, a low-noise preamplifier with variable gain at the RF input can be switched into the signal path.

SETUP menu:

PREAMP

The

PREAMP

softkey switches the preamplifier on and activates the entry of the preamplifier gain. The preamplifier is switched off by pressing the softkey again.

The only possible value with option el. attenuator is 20 dB.

IEC/IEEE-bus command:

Note:

INP:GAIN 0DB

The PREAMP softkey is only available with option EL.

ATTENUATOR (

FSP

-B25)

.

Transducer

Activating Transducer Factors and Transducer Sets

The

TRANSDUCER

softkey opens a submenu enabling the user to activate or deactivate defined transducer factors, to generate new transducer factors or to edit existing ones. A table with the transducer factors defined is displayed.

As soon as a transducer is activated, the unit of the transducer is automatically used for all the level settings and outputs. The unit cannot be changed in the

AMPT

menu since the FSP and the transducer used are regarded as one measuring instrument. Only if the transducer has the unit dB, will the unit originally set on the FSP be maintained and can be changed.

If a transducer factor is active, the remark TDF appears in the Enhancement Labels column.

After all transducers have been switched off, the FSP returns to the unit that was used before a transducer was activated.

In the analyzer mode, an active transducer for a sweep is calculated once in advance for every point displayed and is added to the result of the level measurement during the sweep. If the sweep range changes, the correction values are calculated again. If several measured values are combined, only one value is taken into consideration.

If the active transducer factor is not defined for the entire sweep range, the values missing are replaced by zeroes.

1093.4820.12

4.139

E-3

Configuration/Setup

SETUP menu:

TRANSDUCER

TRANSDUCER

FACTOR

FSP

The TRANSDUCER softkey opens a submenu where defined transducer factors can be edited or new transducer factors can be entered. A table with the available factors is displayed, and the active transducer can be selected from this list.

NEW

EDIT

DELETE

VIEW

TRANSDUCER

PAGE

UP

PAGE

DOWN

TRANSDUCER FACTOR

Name Unit

Cable_1

HK116

HL223 dB dBuV/m dBuV/m

The TRANSDUCER FACTOR table contains all the defined factors with name and unit. If the number of transducer factors defined exceeds the number of lines available in the table, the user has to scroll through the table.

Only one factor at a time can be activated. A tick next to the name indicates that the transducer is active.

TRANSDUCER

FACTOR

The TRANSDUCER FACTOR softkey places the scrollbar on the position of the active transducer factor.

If a transducer factor is not active, the scrollbar is placed on the first line of the table.

IEC/IEEE-bus command:

CORR:TRAN:SEL <name>

CORR:TRAN ON | OFF

1093.4820.12

4.140

E-3

FSP

NEW

Configuration/Setup

The NEW and EDIT softkeys give access to the submenu for editing and generating transducer factors.

EDIT

DELETE

PAGE UP

The DELETE softkey deletes the factor that is marked. To prevent inadvertent deleting, the instrument outputs a confirmation query.

MESSAGE

Do you really want to delete the factor?

YES

NO

IEC/IEEE-bus command

: CORR:TRAN DEL

The PAGE UP and PAGE DOWN softkeys are used to scroll through large tables that cannot completely be displayed on the screen.

PAGE DOWN

1093.4820.12

4.141

E-3

Configuration/Setup FSP

Entry and Editing of Transducer Factors

A transducer factor is characterized by the following:

Reference values with frequency and factor (

Values

)

Unit of the factor (

Unit

) and

Name (

Name

) to distinguish the various factors.

During entry the FSP checks the transducer factor for compliance with specific rules that must be met to ensure correct operation.

The frequencies for the reference values must always be entered in ascending order. Otherwise the entry will not be accepted and the following message will appear.

Frequency Sequence!

The frequencies entered may exceed the frequency range of the FSP since only the set frequency range is taken into account for measurements. The minimum frequency of a reference value is

0 Hz, the maximum frequency 200 GHz.

The value range for the transducer factor is ±200 dB. If the minimum or maximum value is exceeded, the FSP outputs the following message:

Min Level -200 dB

or

Max Level 200 dB

.

Gain has to be entered as a negative value, and attenuation as a positive value.

Note:

NEW

The softkeys in the "UNIT" submenu of the AMPT key cannot be operated if the transducer is on.

INSERT

LINE

DELETE

LINE

The

NEW

and

EDIT

softkeys give access to the submenu for editing and generating transducer factors.

EDIT

SAVE TRD

FACTOR

1093.4820.12

4.142

E-3

FSP

EDIT TRANSDUCER FACTOR

Name/Unit/Interpolation: Cable dB

Comment:

FREQUENCY

1.0000000 MHz

1.0000000 GHz

TDF/dB..

1.000

5.500

FREQUENCY

LIN

TDF/dB..

Configuration/Setup

Depending on the softkey selected, either the table with the data of the factor marked (softkey

EDIT

) or an empty table (softkey

NEW

) appears. This table is empty except for the following entries:

Unit: dB

Interpolation: LIN for linear frequency scaling

LOG for logarithmic frequency scaling

The features of the factor are entered in the header of the table, and the frequency and the transducer factor are entered in the columns.

Name

Unit

Entry of name

Selection of unit

Interpolation

Comment

FREQUENCY

TDF/dB

Selection of interpolation

Entry of comment

Entry of frequency of reference values

Entry of transducer factor.

During editing, a transducer factor remains stored in the background until the factor edited is saved with the

SAVE TRD FACTOR

softkey or until the table is closed. A factor that was edited by mistake can be restored by leaving the entry function.

Name

– Entry of name

The name may consist of a maximum of 8 characters that have to comply with the conventions for DOS file names. The instrument automatically adds the extension .TDF to all transducer factors that are saved.

If an existing name is changed, the factor stored under the previous name is maintained and is not automatically overwritten by the new version. The old factor can be deleted later on using the

DELETE

function. This makes it possible to copy factors.

IEC/IEEE-bus command

CORR:TRAN:SEL <name>

1093.4820.12

4.143

E-3

Configuration/Setup FSP

Unit

- Selection of unit

The unit of the transducer factor is selected from a box that is activated by pressing ENTER.

FACTOR UNIT dB dBm dBµV dBµV/m dBµA dBµA/m dBpW dBpT

The default setting is dB.

IEC/IEEE-bus command

CORR:TRAN:UNIT <string>

Interpolation

- Selection of interpolation

Linear or logarithmic interpolation can be performed between the frequency reference values of the table. The ENTER key allows the user to select LIN or LOG (toggle function).

IEC/IEEE-bus command

CORR:TRAN:SCAL LIN|LOG

The following diagrams show the effect that interpolation has on the calculated trace:

Fig. 4-1 Linear frequency axis and linear interpolation

1093.4820.12

Fig. 4-2 Logarithmic frequency axis and interpolation

Comment -

Entry of comment

Any comment with a maximum length of 50 characters can be entered.

IEC/IEEE-bus command

CORR:TRAN:COMM <string>

4.144

E-3

FSP Configuration/Setup

FREQUENCY, TDF/dB

– Entry of values

The scrollbar marks the first reference value. The desired reference values must be entered in ascending order of frequencies. After the frequency has been entered, the scrollbar automatically goes to the associated level value.

The table can be edited after entry of the first value using the

INSERT LINE

and

DELETE LINE

softkeys. To change individual values later on, the value has to be selected and a new one entered.

IEC/IEEE-bus command

CORR:TRAN:DATA <freq>,<level>.

INSERT

LINE

The

INSERT LINE

softkey inserts an empty line above the marked reference value. When entering a new reference value in the line, the ascending order of frequencies must be taken into consideration, however.

DELETE

LINE

The

DELETE LINE

softkey deletes the marked reference value (complete line). The reference values that follow move one line up.

IEC/IEEE-bus command

--

SAVE TRD

FACTOR

The

SAVE TRD FACTOR

softkey saves the changed table in a file on the internal hard disk.

If there is already a transducer factor that has the same name, a confirmation query is output.

If the new factor is active, the new values become immediately valid.

IEC/IEEE-bus command (With IEC/IEEE bus operation, the save operation is performed automatically after the definition of the reference values)

1093.4820.12

4.145

E-3

Configuration/Setup FSP

Programming the Interface Configuration and Time Setup

The

GENERAL SETUP

softkey opens a sub-menu in which the general instrument parameters can be set up. In addition to the configuration of the digital interfaces (

IECBUS, COM

), the date and time may be entered.

The current settings are displayed in tabular form on the display screen where they may be edited.

SETUP - GENERAL SETUP submenu:

GENERAL

SETUP

PRESET

FIRMWARE OPTIONS

GPIB

ADDRESS

CAL

SETUP

HCOPY

20

GPIB ADDRESS

TIME & DATE

TIME 14:38

DATE 23.JUN 1999

COM

INTERFACE

TIME +

DATE

CONFIGURE

NETWORK

NETWORK

LOGIN

COM INTERFACE

Baud

Bits

Parity

Stopbits

9600

8

None

1

HW-Handshake

SW-Handshake

Owner

None

XON/XOFF

Instrument

SPECTRUM

ON STBY

SCREEN B

PREV NEXT

Selecting the IEC/IEEE-Bus Address

SETUP - GENERAL SETUP submenu

:

GPIB

ADDRESS

The

GPIB ADDRESS

softkey activates the entry of the IEC Bus address.

Valid addresses are 0 through 30. The default setting is address 20.

IEC/IEEE-bus command:

SYST:COMM:GPIB:ADDR 20

1093.4820.12

4.146

E-3

FSP Configuration/Setup

Serial Interface Configuration

SETUP-GENERAL SETUP submenu

:

COM

INTERFACE

The

COM INTERFACE

softkey activates the entry of the serial interface parameters.

COM INTERFACE

table for

The following parameters can be configured in the table:

Baud rate

data transmission rate

Bits

Parity

Stop bits

HW-Handshake

number of data bits bit parity check number of stop bits hardware handshake protocol

SW-Handshake

Owner

software handshake protocol assignment to the measuring instrument or computer

Baud

Bits

Parity

Stopbits

HW-Handshake

SW-Handshake

Owner

COM INTERFACE

9600

8

None

1

None

XON/XOFF

Instrument

Baud

– Data transmission rate

The FSP supports baud rates between 110 and 19200 baud. The default setting is 9600 baud.

BAUD RATE

19200

9600

4800

1200

600

300

110

IEC/IEEE-bus command:

SYST:COMM:SER:BAUD 9600

Bits –

Number of data bits per word

For the transmission of text without special characters, 7 bits are adequate.

For binary data as well as for text with special characters, 8 bits must be selected (default setting).

BITS

7

8

IEC/IEEE-bus command:

SYST:COMM:SER:BITS 7

1093.4820.12

4.147

E-3

Configuration/Setup

Parity –

Bit parity check

NONE

no parity check (default setting)

EVEN

ODD

even parity check odd parity check

PARITY

NONE

EVEN

ODD

IEC/IEEE-bus command:

SYST:COMM:SER:PAR NONE

Stop bits

– Number of stop bits

Available are 1 and 2. The default setting is 1 stop bit.

STOPBITS

1

2

IEC/IEEE-bus command:

SYST:COMM:SER:SBIT 1

FSP

HW-Handshake

– Hardware handshake protocol

The integrity of data transmission can be improved by the use of a hardware handshake mechanism, which effectively prevents uncontrolled transmission of data and the resulting loss of data bytes. For hardware handshake additional interface lines are used to transmit acknowledge signals with which the data transmission can be controlled and, if necessary, stopped until the receiver is ready to receive data again.

A prerequisite for using hardware handshaking is, however, that the interface lines (DTR and RTS) are connected on both transmitter and receiver. For a simple 3-wire connection, this is not the case and hardware handshake cannot be used here.

Default setting is

NONE

.

HW-HANDSHAKE

None

DTR/RTS

IEC/IEEE-bus command:

SYST:COMM:SER:CONT:DTR OFF

SYST:COMM:SER:CONT:RTS OFF

1093.4820.12

4.148

E-3

FSP Configuration/Setup

SW-Handshake

– Software handshake protocol

Besides the hardware handshake mechanism using interface lines, it is also possible to achieve the same effect by using a software handshake protocol.

Here, control bytes are transmitted in addition to the normal data bytes.

These control bytes can be used, as necessary, to stop data transmission until the receiver is ready to receive data again.

In contrast to hardware handshaking, software handshaking can be realized even for a simple 3-wire connection.

One limitation is, however, that software handshaking cannot be used for the transmission of binary data, since the control characters XON and XOFF require bit combinations that are also used for binary data transmission.

Default setting is

NONE

.

SW-HANDSHAKE

None

XON/XOFF

IEC/IEEE-bus command:

SYST:COMM:SER:PACE NONE

Owner

– Assignment of the interface

The serial interface can be assigned alternatively to the measuring instrument section or to the computer section

If the interface is assigned to one section of the instrument, it is not available to the other section.

INSTRUMENT

OS

The interface is assigned to the measuring instrument section. Outputs to the interface from the computer section are not possible will get lost.

The interface is assigned to the computer section. It cannot be used by the measuring instrument section. This means that remote control of the instrument via the interface is not possible.

OWNER

INSTRUMENT

OS

IEC/IEEE-bus command:

--

1093.4820.12

4.149

E-3

Configuration/Setup FSP

Setting Date and Time

SETUP-GENERAL SETUP submenu

:

TIME+DATE

The

TIME+DATE

softkey activates the entry of time and date for the internal realtime clock.

TIME AND DATE

Time

Date

21:59

01 Oct 1997

Time - Input of time

In the corresponding dialog box, the time is partitioned into two input fields so that hours and minutes can be entered independently.

TIME

TIME 21 : 59

IEC/IEEE-bus command:

SYST:TIME 21,59

Date - Input of Date

In the corresponding dialog box, the date is partitioned into 3 input fields so that day, month and year can be input separately.

DATE

DATE 01

Oct

1999

For the selection of the month, pressing a unit key opens a list of abbreviations wherein the desired month can be selected.

MONTH

JAN

FEB

MAR

APR

MAY

JUN

JUL

AUG

SEP

OCT

NOV

DEC

IEC/IEEE-bus command:

SYST:DATE 1999,10,01

1093.4820.12

4.150

E-3

FSP Configuration/Setup

Configuration of Network Settings (with Option FSP-B16 only)

The instrument can be connected to an Ethernet LAN (local area network) by means of the LAN

Interface Option FSP-B16. This allows data transmission via the network and the use of network printers. The network card is able to handle both 10 MHz Ethernet IEEE 802.3 and 100 MHz Ethernet

IEEE 802.3u.

For more details see section 'LAN Interface - Option FSP-B16'.

SETUP - GENERAL SETUP -

menu:

CONFIGURE

NETWORK

The

CONFIGURE NETWORK

softkey opens the dialog box with the network settings.

1093.4820.12

Pressing the key for the first time installs the Windows NT network support

(see section 'Installation and Configuration of the Driver for the Network

Card' in the manual for LAN Interface FSP-B16) .

If the softkey is pressed again later, the existing network configuration can be changed after selecting the corresponding configuration folder. After pressing the 'Change' button the computer name and the work group on the

'Identification' folder can be adapted to network requirements.

Notes: -

A PC keyboard with trackball (or mouse instead) is required for the installation/configuration of the network support.

- The softkey is only available with built-in LAN interface option

(FSP-B16).

IEC/IEEE-bus command:

-

4.151

E-3

Configuration/Setup

NETWORK

LOGIN

FSP

The

NETWORK LOGIN

softkey opens the dialog box with the auto login settings.

When a network is installed, the preset user name 'Instrument' and the password 'instrument' can be adapted to a new user (see section 'Defining

Users' in the LAN interface manual).

With the 'Auto Login' option active, an automatic registration is performed during booting with the specified user name and password. Otherwise the

Windows NT login request is displayed during booting.

Notes: -

A PC keyboard with trackball (or additional mouse instead) is required for the installation/configuration of the network support.

-

The softkey is only available with built-in LAN interface option

(FSP-B16).

IEC/IEEE-bus command:

-

1093.4820.12

4.152

E-3

FSP Configuration/Setup

Enabling Firmware Options

The

OPTIONS

softkey opens a submenu that allows license keys for firmware options to be entered.

Previously installed options are displayed in a table that opens automatically.

OPTIONS

PRESET

DESCRIPTION

FIRMWARE OPTIONS

TYPE CODE

INSTALL

OPTION

REMOVE

OPTION

CAL

SETUP

HCOP

Y

CONFIGURE

HOTKEY

INSTALL

OPTION

REMOVE

OPTION

ON STBY

SPECTRUM DIAG B

PREV

NEXT

Softkey

INSTALL OPTION

opens the data entry for the license keycode of a firmware option.

On entry of a valid license key the message

OPTION KEY OK

is displayed in the status line and the firmware option appears in table

FIRMWARE

OPTIONS

.

On entry of an invalid license key the message

OPTION KEY INVALID

is displayed in the status line.

IEC/IEEE-bus command:

--

Softkey

REMOVE OPTION

removes all firmware options from the instruments. Execution of this function must be confirmed in a message box in order to avoid removal of the firmware options by mistake.

IEC/IEEE-bus command:

--

1093.4820.12

4.153

E-3

Configuration/Setup FSP

Emulation of the Instrument Front Panel

SETUP - GENERAL SETUP – NEXT

menu:

SOFT

FRONTPANEL

The

SOFT FRONTPANEL

softkey switches the display of the front-panel keys on and off.

When the front-panel keys are displayed on the screen, the instrument can be controlled by clicking the respective button with the mouse. This is especially useful when the instrument in a different site is controlled via a remote-control program, like for instance PCANYWHERE, and the screen contents are transferred to the controller via remote link.

1093.4820.12

Note:

Display resolution:

When the display of the front-panel keys is switched on, the screen resolution of the instrument changes to 1024x768 pixels. Only a section of the total screen is then displayed on the LC display, which will automatically be shifted on mouse moves.

In order to obtain a complete display of the user interface, an external monitor is to be plugged into the corresponding connector at the rear panel. Prior to performing the resolution change the user is prompted for confirmation whether the required monitor is connected.

Switching off the front-panel display restores the original screen resolution.

Key assignment:

Button labels largely correspond to those of the front-panel keys. The rotation function of the rotary knob is assigned to the

'KNOB LEFT' and 'KNOB RIGHT' buttons, the press function

(<ENTER>) to 'KNOB PRESS'.

The labels of the softkey buttons (F1 to F9) and of the hotkey buttons (C-F1 to C-F7) indicate that the keys can be operated directly by means of the corresponding function keys F1 to F9 or <CTRL>F1 to <CTRL>F7 of a PS/2 keyboard.

IEC/IEEE-bus command:

SYST:DISP:FPAN ON

4.154

E-3

FSP Configuration/Setup

System Information

The

SYSTEM INFO

softkey opens a submenu in which detailed information on module data, device statistics and system messages is displayed.

SETUP menu

:

SYSTEM

INFO

HARDWARE

INFO

STATISTICS

SYSTEM

MESSAGES

CLEAR ALL

MESSAGES

1093.4820.12

4.155

E-3

Configuration/Setup FSP

Display of Module Data

SETUP SYSTEM INFO submenu

:

HA RDWARE

INFO

The

HARDWARE INFO

softkey opens a table in which the modules

(INSTALLED COMPONENTS) installed in the instrument are listed together with the corresponding hardware revisions.

Table

HARDWARE INFO

consists of six columns:

SERIAL #

COMPONENT serial number name of module

ORDER #

MODEL

REV

SUB REV order number model number of the module main modification index of the module secondary modification index of the module

Note:

The screenshot lists the components of an FSP 7 with options FSP-B3

(AF demodulator) and FSP-B16 (LAN interface).

1093.4820.12

4.156

E-3

FSP

--

Configuration/Setup

Display of Device Statistics

SETUP SYSTEM INFO submenu

:

STAT IST ICS

The

STATISTICS

softkey opens the table

STATISTICS

. This table contains the model information, serial number and firmware version, and a list in which the operating time of the instrument, the power-on cycles as well as attenuator switching cycles are displayed.

STATISTICS

Model

Serial #

FSP3

123456/789

Firmware Rev

BIOS Rev.

1.23

1.00

Operating time (hours) 375

Power On Cycles 786

Attenuator Cycles

Input RF/Cal

10dB

20dB

40dB

57

1786

1473

675

IEC/IEEE-bus command:

1093.4820.12

4.157

E-3

Configuration/Setup FSP

Display of System Messages

SETUP SYSTEM INFO submenu

:

SYSTEM

MESSAGES

The

SYSTEM MESSAGES

softkey opens a submenu including a table in which the generated system messages are displayed in the order of their occurrence. The most recent messages are placed at the top of the list.

The following information is available:

No

MESSAGE

COMPONENT

DATE/TIME

Device-specific error code

Brief description of the message

On hardware messages: name of the affected module

On software messages: if needed, the name of the affected software components

Date and time of the occurrence of the message

Messages that have occurred since the last call to the

SYSTEM MESSAGES

menu are marked with an asterisk '*'.

The CLEAR ALL MESSAGES softkey is activated and allows clearing of the error buffer.

If the number of error messages exceeds the capacity of the error buffer, the message appearing first is "Message buffer overflow".

No

MESSAGE

02

03

04

05

01 No of cycles

VCO unlock

Calamp range

3.3V: Voltage

I2C-Bus failed

SYSTEM INFO

COMPONENT

Attenuator

Frontend

IF Filter

Detector

CPU

DATE/TIME

05.Jan.99 10:02:00

05.Jan.99 10:01:30

05.Jan.99 10:00:50

04.Jan.99 15:58:10

04.Jan.99 15:58:05

IEC/IEEE-bus command:

SYST:ERR?

CLEAR ALL

MESSAGES

The

CLEAR ALL MESSAGES

softkey deletes all messages in the table.

The softkey is only available when table

SYSTEM INFO

is active.

IEC/IEEE-bus command:

SYST:ERR?

1093.4820.12

4.158

E-3

FSP Configuration/Setup

Service Menu

The service menu offers a variety of additional functions which are used for maintenance and/or trouble shooting.

Caution:

The service functions are not necessary for normal measurement operation. However, incorrect use can affect correct operation and/or data integrity of the FSP.

Therefore, many of the functions can only be used after entering a password. They are described in the instrument service manual.

SETUP

menu:

SERVICE

INPUT

RF

INPUT

CAL

SELFTEST

SELFTEST

RESULTS

CAL GEN

128 MHZ

CAL GEN

COMB

The

SERVICE

softkey opens a submenu for selection of the service function.

The

INPUT RF

and

INPUT CAL

softkeys are mutually exclusive selection switches. Only one switch can be active at any one time.

ENTER

PASSWORD

1093.4820.12

4.159

E-3

Configuration/Setup FSP

General Service Functions

SETUP SERVICE submenu:

INPUT

RF

The INPUT RF softkey switches the input of the FSP to the input connector

(normal position).

After PRESET, RECALL or FSP power on, the INPUT RF is always selected.

IEC/IEEE-bus command:

DIAG:SERV:INP RF

INPUT

CAL

ENTER

PA SSWORD

The INPUT CAL softkey switches the RF input of the FSP to the internal calibration source (128 MHz) and activates the data entry of the output level of the calibration source. Possible values are 0 dB and –30 dB.

IEC/IEEE-bus command:

DIAG:SERV:INP CAL;

DIAG:SERV:INP:CSO 0 DBM

The ENTER PASSWORD softkey allows the entry of a password.

The FSP contains a variety of service functions which, if incorrectly used, can affect correct operation of the analyzer. These functions are normally not accessible and are only usable after the entry of a password (see instrument service manual).

IEC/IEEE-bus command:

SYST:PASS "Password"

SETUP SERVICE NEXT submenu:

CAL GEN

The CAL GEN 128 MHZ softkey selects a sinusoidal signal at 128 MHz as

128 MHZ

output signal for the internal calibration source. The internal pulse generator will be switched off.

CAL GEN

COMB

Note:

The softkey is only available if the optional Broadband Calibration Source

FSP-B15 is fitted.

IEC/IEEE-bus command:

DIAG:SERV:INP:PULS OFF

The CAL GEN COMB softkey switches the internal pulse generator on and allows the pulse frequency to be entered.

The selectable pulse frequencies are 10 kHz and 62.5 kHz.

Note:

The softkey is only available if the optional Broadband Calibration Source

FSP-B15 is fitted.

IEC/IEEE-bus command

1093.4820.12

4.160

E-3

FSP Configuration/Setup

Selftest

SETUP SERVICE submenu:

SELFTEST

The SELFTEST softkey initiates the selftest of the instrument modules.

With this function the instrument is capable of identifying a defective module in case of failure.

During the selftest a message box appears in which the current test and its result is shown. The test sequence can be aborted by pressing ENTER

ABORT.

All modules are checked consecutively and the test result (selftest

PASSED or FAILED) is output in the message box.

IEC/IEEE-bus command:

*TST?

SELFTEST

RESULTS

The SELFTEST RESULTS softkey calls the SELFTEST table in which the results of the module test are displayed.

In case of failure a short description of the failed test, the defective module, the associated value range and the corresponding test results are indicated.

SELFTEST

SELFTEST: FAILED

24.APR.1999 14:25

Service level: 0

VALID RANGE

VALUE TEST

Voltages

Pretune DAC

Synthesizer

Frontend2 128MHz Ref unlock

Frontend1 384MHz Ref Input

Signal Path

RESULT

OK

OK

FAIL

FAIL

OK

OK

1.25V...3.5V

0.5...0.6V

1.14V

0V

IEC/IEEE-bus command:

DIAG:SERV:STE:RES?

PAGE UP

PAGE DOWN

The PAGE UP or PAGE DOWN softkey sets the

SELFTEST RESULTS table to the next or previous page.

IEC/IEEE-bus command

--

1093.4820.12

4.161

E-3

Configuration/Setup FSP

Hardware Adjustment

Some of the FSP modules can be realigned. This realignment can become necessary after calibration due to temperature drift or aging of components (see service manual instrument).

Caution:

The realignment should be carried out by qualified personnel since the changes considerably influence the measurement accuracy of the instrument. This is the reason why the softkeys REF FREQUENCY, CAL SIGNAL POWER and SAVE

CHANGES can only be accessed after entering a password.

Firmware Update

The installation of a new firmware version can be performed using the built-in diskette drive. The firmware update kit contains several diskettes.

The installation program is called in the

SETUP

menu.

SETUP

side menu:

FIRMWARE

UPDATE

The

FIRMWARE UPDATE

installation program and leads the user through the remaining steps of the update

IEC/IEEE-bus command:

softkey starts the

--

The firmware update is started as follows:

Insert disk 1 into the floppy drive.

Call

SETUP

side menu via

[

SETUP

][

NEXT

]

Start the update via

[FIRMWARE UPDATE]

RESTORE

FIRMWARE

The

RESTORE FIRMWARE

softkey restores the previous firmware version

IEC/IEEE-bus command: --

1093.4820.12

4.162

E-3

FSP Recalling Data Sets

Saving and Recalling Data Sets –

FILE

Key

The

FILE

key calls the following functions:

Storage/loading functions for storing (

SAVE

) instrument settings such as instrument configurations

(measurement/display settings, etc.) and measurement results from working memory to permanent storage media, or to load (

RECALL

) stored data into working memory.

Functions for management of storage media (

FILE MANAGER

). Included are among others functions for listing files, formatting storage media, copying, and deleting/renaming files.

The FSP is capable of internally storing complete instrument settings with instrument configurations and measurement data in the form of data sets. The respective data are stored on the internal hard disk or, if selected, on a floppy. The hard-disk and floppy-disk drives have the following names: floppy disk hard disk

A:

D: (hard disk C: is reserved for instrument software)

In addition to the saving and recalling of complete instrument settings, it is also possible to save/recall subsets of settings. Configuration data and measurement values are stored in separate files. These files have the same name as the data set but however have a different extension. A data set thus consists of

several files which have the same name but different extensions (see Table 4-2). Default setting for

storing the data sets is directory D:\USER\CONFIG.

When saving or loading a data set, the subsets which are to be saved or loaded can be selected in the corresponding tables. This makes it easy to reconstruct specific instrument settings beside the default setting of the instrument. When saving and loading data, data subsets are selected in table

SEL ITEMS

TO SAVE/RECALL.

The saved files of the data sets can be copied from one storage medium (e.g. drive C:) to another storage medium (e.g. drive A:) or to another directory using the functions found in the

FILE MANAGER

sub menu. File names and extensions must however not be changed. The relationship between the data

subsets and the extensions is shown in Table 4-2.

Table 4-2 Relationship between extensions, contents and designations of data subsets

Configuration data:

Designation in the table SEL ITEMS TO

SAVE/RECALL

CURRENTSETTINGS

Contents Extension

current settings of the measurement hardware and the related title, if present active limit lines current configuration of general instrument parameters configuration for hardcopy output tracking generator settings (only with option tracking generator) all limit lines

.SET

.LIN

.CFG

.HCS

.TCI

.LIA

Additional configuration data

ALL LIMIT LINES

SOURCE CAL DATA

Measurement results:

ALL TRACES

Settings for source calibration

(only with option tracking generator)

Correction data for source calibration

(only with option tracking generator) measurement data trace 1 to trace 3, screen A

.TS1

.TS2

.TC1

.TC2

.TR1 to TR3 measurement data trace 1 to trace 3, screen B .TR4 to TR6

1093.4820.12

4.163

E-3

Recalling Data Sets FSP

Saving a Data Set

Ø

Select the data subsets to be saved (sub-menu

ITEMS TO SAVE

/

RCL

(configurations, measurement and calibration data) (softkey

ITEMS TO SAVE/RCL)

.

Ø

Possibly enter a comment (softkey

EDIT COMMENT

)

Ø

Enter the directory in which the data set should be saved in table

SAVE DATA SET

(softkey

SAVE

).

Ø

Enter the name of the data set which should be saved (softkey

SAVE

) and save the data set by pressing the

ENTER

key.

Data set names may contain both letters and numbers, in the simplest case only numbers.

If required, the desired directory can be given a prefix to the data set name (the directory is then automatically set for further SAVE and RECALL operations).

The simplest example for the input of a data set name is illustrated by the following key strokes:

<SAVE> <1> <units key>

Note:

If the current instrument configuration is to be stored under an existing name, a selection list is available via the DATA SET LIST softkey. The storage is performed as follows.

Ø

Press a units key after selecting a data set in table DATA SET LIST

The name and the selection of the data subsets for the currently selected data set will be placed in the SAVE DATA SET table.

Ø

Press the SAVE softkey.

The entry field EDIT NAME with the name of the selected data set is opened.

Ø

Press a units key.

The current instrument configuration is saved as a data set under this name.

Recalling a Data Set:

The data set can be loaded in two ways:

1.

Direct entry of the data name:

Ø

Select data subsets which should be loaded (configurations, measurement and calibration data) with softkey

ITEMS TO SAVE/RCL

in sub menu

ITEMS TO SAVE/RCL)

.

Ø

Enter the name of the data set to be saved (softkey

RECALL

) and recall the data set by pressing the

ENTER

key

)

.

Data set names may contain both letters and numbers, in the simplest case only numbers.

If required, the desired directory can be prefixed to the data set name (the directory is then automatically set for further SAVE and RECALL operations).

The simplest example for the input of a data set name is illustrated by the following key strokes: <RECALL> <1> <units key>

2. Selecting the data set from a selection list:

Ø

Select from submenu

ITEMS TO SAVE/RCL

the data subsets which should be loaded

(configurations, measurement and calibration data) (softkey

ITEMS TO SAVE/RCL)

.

Ø

Select the data set which should be loaded (Softkey

DATA SET LIST

) and confirm with

ENTER

. The data set is taken over in the

RECALL DATA SET

table.

Ø

Press the RECALL softkey. The entry field for the data set name is opened and contains the desired data set.

Ø

Initiate the loading of the selected data set by pressing the

ENTER

key.

1093.4820.12

4.164

E-3

FSP Recalling Data Sets

Note:

If the set directory does not correspond to the required directory for loading, it can be changed as follows:

Ø

Press the RECALL softkey.

Ø

Close the entry field for the data set name with ESC.

Ø

Select the PATH filed with the cursor keys.

Ø

Open the entry field for the directory name with ENTER.

Ø

Enter the directory name and confirm with ENTER.

Then proceed with the selection list as described above.

Any settings not restored when data subsets are loaded will remain unchanged in the instrument. During recall operations, the FSP recognises which subsets are present in the recalled data set and ignores selected data subsets that are not available.

FILE Menu

FILE

menu

FILE

SAVE

RECALL

EDIT

COMMENT

ITEMS TO

SAVE/RCL

DATA SET

LIST

DATA SET

CLEAR

DATA SET

CLEAR ALL

STARTUP

RECALL

FILE

MANAGER

EDIT

PATH

MAKE

DIRECTORY

FORMAT

DISK

RENAME

SORT MODE

COPY

DELETE

SELECT

ITEMS

ENABLE

ALL ITEMS

DISABLE

ALL ITEMS

DEFAULT

CONFIG

1093.4820.12

4.165

E-3

Recalling Data Sets

SAVE

FSP

The

SAVE

softkey activates table

SAVE DATA SET

. The data set is stored by pressing the

ENTER

key.

SAVE DATA SET

NAME: DATASET1

COMMENT:

PATH:D:\USER\CONFIG

Radio Monitoring

EDIT NAME

DATASET1_

ITEMS: DEFAULT

The

SAVE DATA SET

table contains the entry fields for editing the data set:

Name

name of data set

The name can be entered with or without drive name and directory; the drive name and directory, if available, are then taken over in the PATH field. The extension of the data name is ignored.

Path

Items

Comment

directory in which the data set will be saved indicates whether the default selection of the data subset (DEFAULT) or a user-defined selection

(SELECTED) will be saved

Commentary regarding the data set

IEC/IEEE command:

MMEM:STOR:STAT 1,"a:\test02"

RECALL

EDIT

COMMENT

The

RECALL

softkey activates the entry of the path in which the data set is located. The data set is recalled by pressing the

ENTER

key.

RECALL DATA SET

NAME: DATASET1

COMMENT:

PATH:D:\USER\CONFIG

Radio Monitoring

EDIT NAME

DATASET1_

ITEMS: DEFAULT

The

RECALL DATA SET

table shows the current settings regarding the data set:

Name

name of data set

Path

Items

Comment

directory in which the data set is located indicates whether the default selection of the data subset (DEFAULT) or a user-defined selection

(SELECTED) will be recalled

Commentary regarding the data set

IEC/IEEE command:

MMEM:LOAD:STAT 1,"a:\test02"

The

EDIT COMMENT

softkey activates the entry of commentary concerning the current data set. A total of 60 characters are available for this purpose.

IEC/IEEE command:

MMEM:COMM "Setup fuer GSM Messung"

1093.4820.12

4.166

E-3

FSP Recalling Data Sets

The

SEL ITEMS TO SAVE/RCL

softkey opens a sub-menu for selection of the data subsets.

FILE - ITEMS TO SAVE/RCL

sub-menu:

ITEM S TO

SAVE/RCL

P RES ET

CAL

NAM E : DA TA SET1

COMMEN T : GSM_MA SK

SAV E/R ECA LL DATA SET

PA TH : C :\U SER\CONFIG

ITEM S :

SELECTED

SELECT

ITEMS

ENABLE

ALL ITEMS

SETUP

HCOPY

ITEM S TO SAVE /RECALL

CURRENT SETTINGS

ALL LIMIT LINES

ALL TRANSDUCERS

ALL TRACE

O

N

STB

Y

SPECTRUM

SCREEN B

DEFAULT

CONFIG

PREV

NEXT

The

ITEMS TO SAVE/RECALL

table offers the following selectable data subsets:

Current Settings

these settings include:

current configuration of general instrument parameters

current measurement hardware settings

active limit lines:

A data set may contain maximum 8 limit lines for each

All Limit Lines

window. It always contain the activated limit lines and the de-activated limit lines used last, if any.

Consequently, the combination of the restored de-activated limit lines depends on the sequence of use with command

MMEM:LOAD

.

user-defined color settings

configuration for hardcopy output

Settings of tracking generator (only with option tracking generator)

Settings of tracking generator (only with option) all limit lines

All Traces

Source Cal Data

all traces which are not blanked correction data for tracking generator (only with option tracking generator)

1093.4820.12

4.167

E-3

Recalling Data Sets

SELECT

ITEMS

FSP

The

SELECT ITEMS

softkey moves the selection bar to the first line, left column of the table. An entry is selected by pressing the

ENTER

key in the desired line. The selection is cleared by pressing the key again.

IEC/IEEE command:

Current Settings:

All Limit Lines:

All Traces:

Source Cal Data:

MMEM:SEL:HWS ON

MMEM:SEL:LIN:ALL ON

MMEM:SEL:TRAC ON

MMEM:SEL:SCD ON

ENABLE

ALL ITEMS

The

ENABLE ALL ITEMS

softkey marks all entries in the table.

IEC/IEEE command:

MMEM:SEL:ALL

DEFAULT

CONFIG

DATA SET

LIST

The

DEFAULT CONFIG

softkey establishes the default selection of the data subset to be saved and outputs

DEFAULT

in the

ITEMS

field of the

SAVE/RECALL DATA SET

table.

IEC/IEEE command:

MMEM:SEL:DEF

The

DATA SET LIST

softkey opens the

DATA SET LIST/CONTENTS

table.

In addition, the

DATA SET CLEAR

and

DATA SET CLEAR ALL

softkeys are displayed.

DAT A SET L IST

DAT A SET 1

DAT A SET 2

DAT A SET 3

DA TA SET C ONTENT S

CON TENT S

CURRENT SETTINGS

ALL LIMIT LINES

ALL TRACES

SOURCE CAL DATA

COMM E NT

G SM _M A SK

The

DATA SET LIST

column lists all of the data sets which are stored in the selected directory.

The

CONTENTS

and

COMMENT

lines in the

DATA SET CONTENTS

column indicate the saved data subsets and the comment for the currently selected data set. A '-' prefixed to a data subset means that the latter is available in the instrument but that it has not been selected (see

SELECT

ITEMS

softkey).

IEC/IEEE command:

---

1093.4820.12

4.168

E-3

FSP

DATA SET

CLEAR

DATA SET

CLEAR ALL

STARTUP

RECALL

Recalling Data Sets

The

DATA SET CLEAR

softkey deletes the selected data set

IEC/IEEE command:

MMEM:CLE:STAT 1, "test03"

The

DATA SET CLEAR ALL

softkey deletes all data sets in the current directory.

Since, in this case, all available data sets are lost, confirmation by the user is required.

IEC/IEEE command:

MMEM:CLE:ALL

The

STARTUP RECALL

softkey activates the selection of a data set which is automatically loaded when the instrument is powered on. For that purpose the table

DATA SET LIST/CONTENT

is opened (analog to

DATA SET LIST).

DAT A SET L IST

DAT A SET 1

DAT A SET 2

DAT A SET 3

DA TA SET C ONTENT S

CON TENT S

CURRENT SETTINGS

ALL LIMIT LINES

ALL TRACES

SOURCE CAL DATA

COMM E NT

G SM _M A SK

The

DATA SET LIST

column displays all data sets present in the selected directory.

The

CONTENTS

and

COMMENT

lines in the

STARTUP RECALL

column indicate the saved data subsets and the commentary for the currently selected data set.

In addition to the data sets stored by the user, the data set

FACTORY

, which specifies the settings of the instrument before it was last switched off

(Standby), is always present.

If a data set other than

FACTORY

is chosen then, at the time of instrument power on, the available data subsets of the selected data set are recalled.

The data subsets which are not present in this data set are taken from the

FACTORY

data set.

Note:

The specified data set is also loaded upon PRESET if STARTUP

RECALL is active. The preset settiongs can thus be arbitrarily modified.

IEC/IEEE command:

MMEM:LOAD:AUTO 1,"D:\user\config\test02"

1093.4820.12

4.169

E-3

Recalling Data Sets

The

FILE MANAGER

softkey opens a menu for managing storage media and files.

FILE - FILE MANAGER

sub-menu:

FILE

MANA GER

PRES ET

CAL

SETUP

HCOPY

DR IVE MANAGEMEN T

D riv e : HA RDD ISK D : Lab el : Free M em : 394 :510 .336

PA TH : D :\USER \CONFIG

FILE NAM E

..

SE TTIN G 1 .DRW

SE TTIN G2 .DRW

SE TTIN G3 .DRW

SE TTIN G 4 .DRW

FILE MANA GEMEN T

DA TE

10 .MA Y .98

15 .MA Y .98

17 .MA Y .98

28 .MA Y .98

TIME

10 :25 :10

13 :08 :27

08 :15 :2 1

17 :05 :42

SIZE

68 .175 kB

73 .2 83 kB

174 .315 kB

1 .2 36812 MB

EDIT

PATH

MAKE

DIRECTORY

FORMA T

DISK

RENAM E

SORT MODE

COPY

DELETE

FSP

EDIT

PATH

ON

STBY

SPECTRUM

SCREEN A

1of2

PREV

NEXT

Table

Drive Management

displays the name and label of the storage medium as well as the available storage area.

Table

File Management

displays the files of the current directory and indicates if any subdirectories are present.

If a directory name is selected, the FSP automatically changes to this directory. Selection of the entry '..' moves the FSP to the next higher directory level.

Note:

It is not possible to change menus as long as a file operation is running.

The

EDIT PATH

softkey activates the input of the directory which will be used in subsequent file operations.

The new path is included in the

FILE MANAGEMENT

table.

IEC/IEEE command:

MMEM:MSIS "a:"

MMEM:CDIR "D:\user "

1093.4820.12

4.170

E-3

FSP

MAKE

DIRECTORY

FORMAT

DISK

RENAME

SORT MODE

COPY

DELETE

Recalling Data Sets

The

MAKE DIRECTORY

softkey creates directories/sub-directories. Subdirectories are recommended for sorting files on the storage medium so that the structure is easier to comprehend.

The entry of an absolute path name (e.g.; "\USER\MEAS") as well as the path relative to the current directory (e.g., "..\MEAS") is possible.

IEC/IEEE command:

MMEM:MDIR "D:\user\test"

The

FORMAT DISK

softkey formats diskettes located in drive A:.

To prevent accidental destruction of diskette data, confirmation by the user is requested.

IEC/IEEE command:

MMEM:INIT "a:"

The

RENAME

softkey activates the entry of a new name for the selected file or directory.

IEC/IEEE command:

MMEM:MOVE "test02.cfg","set2.cfg"

The

SORT MODE

softkey activates the selection of the criteria according to which the files listed in the

FILE MANAGEMENT

table may be sorted.

SORT MODE by NAME by DATE/TIME by EXTENSION

Directory names are located at the top of the list after the entry for the next higher directory level ("..").

IEC/IEEE command:

--

The

COPY

softkey activates the input of the destination of the copy operation.

By entering a predefined disk drive (e.g. C:), a file can also be copied to another storage medium. The files/directories selected by the cursor are copied after the input is confirmed by pressing the

ENTER

key.

IEC/IEEE command:

MMEM:COPY "D:\user\set.cfg","a:"

The

DELETE

softkey deletes the selected files.

To prevent accidental deletion of data, confirmation by the user is requested.

IEC/IEEE command:

MMEM:DEL "test01.hcp"

MMEM:RDIR "D:\user\test"

1093.4820.12

4.171

E-3

Measurement Documentation FSP

Measurement Documentation –

HCOPY

Key

Note:

The installation of additional printers is described in chapter 1, section "Installation and

Configuration of Printers".

Pressing one of the softkeys

PRINT...

in the

HCOPY

menu initiates the print job. The printer parameters defined in the

DEVICE SETTINGS

menu are used for setting up the printer configuration. All of the display items to be printed are written to the printer buffer. Since the printer runs in the background, the instrument may be operated immediately after pressing the

PRINT...

softkey.

With

PRINT SCREEN

selected, all the diagrams with traces and status displays are printed as they occur on the screen. Softkeys, open tables and data entry fields are not printed out. Function

PRINT

TRACE

allows printing out individual traces. With

PRINT TABLE

tables can be printed out.

If the

PRINT TO FILE

option in the

DEVICE SETTINGS

table is selected the printout is directed to a file.

Upon pressing one of the softkeys

PRINT...

, the file name to which the output data are to be written is requested. For this an entry field is opened for entering the file name.

While a print job is in progress, problems may occur in the output device. If, while printing, the output device issues a PAPER OUT message, i.e., no more paper is available, the user will be prompted by the following message

WARNING

Paper out on device LPT

ABORT CONTINUE

to load paper into the output device. The print job will then be either continued (CONTINUE selected) or aborted (ABORT selected).

Similar

SYSTEM MESSAGES

appear if the printer is offline, etc.

The

HARDCOPY ABORT

softkey aborts a print job in progress.

1093.4820.12

4.172

E-3

FSP

HCOPY menu:

HCOPY

PRINT

SCREEN

PRINT

TRACE

PRINT

TABLE

HARDCOPY

ABORT

DEVICE 1

DEVICE 2

COLORS

COMMENT

SCREEN A

COMMENT

SCREEN B

INSTALL

PRINTER

Option

FSP-B16

Measurement Documentation

COLOR

ON OFF

SCREEN

COLORS

OPTIMIZED

COLORS

USER

DEFINED

SELECT

OBJECT

BRIGHTNESS

TINT

SATURATION

PREDEFINED

COLORS

SET TO

DEFAULT

The

HCOPY

key opens the

HARDCOPY

menu for starting and configuring the printout.

The

PRINT SCREEN, PRINT TRACE and PRINT TABLE

softkeys start the desired printout. Printing can be stopped by means of HARDCOPY ABORT.

The DEVICE 1 and 2 softkeys are used for selecting and configuring the output interface.

The

COLORS

submenu allows the switchover between black-and-white and color printouts (default), provided that the printer connected can produce color printouts. In addition, the colors are set in this submenu.

SCREEN Output in screen colors.

OPTIMIZED (default) Instead of light colors, dark colors are used for traces and markers: trace 1 blue, trace 1 black, trace 3 green, markers turquoise.

USER DEFINED This option enables the user to change the colors at will. It provides the same setting functions as the

DISPLAY – CONFIG

DISPLAY – NEXT

menu

.

Notes:

1. With SCREEN and OPTIMIZED selected, the background will always be white and the grid black.

With USER DEFINED, these colors can be selected, too.

2. Upon activation of the submenu, the color display is switched over to the selected printout colors.

When the menu is quit, the original color setting is restored.

The

COMMENT SCREEN A

and

COMMENT SCREEN B

softkeys allow text to be added to the printout

(date and time are inserted automatically).

Use the

INSTALL PRINTER

softkey to install additional printer drivers.

1093.4820.12

4.173

E-3

Measurement Documentation

PRINT

SCREEN

FSP

The

PRINT SCREEN

softkey starts the output of test results.

All the diagrams, traces, markers, marker lists, limit lines etc are printed out as long as they are displayed on the screen. All the softkeys, tables and open data entry fields are not printed out. Moreover, comments, title, date, and time are output at the bottom margin of the printout .

IEC/IEEE-bus command:

HCOP:ITEM:ALL

HCOP:IMM

PRINT

TRACE

The

PRINT TRACE

softkey starts the output of all curves visible on the display screen without auxiliary information. Specifically, no markers or display lines are printed.

IEC/IEEE-bus command:

HCOP:ITEM:WIND:TRAC:STAT ON

HCOP:IMM

PRINT

TABLE

The

PRINT TABLE

softkey starts the output of all tables and info lists visible on the display screen without the measurement diagrams and other information lying behind.

IEC/IEEE-bus command:

HCOP:ITEM:WIND:TABL:STAT ON

HCOP:IMM

1093.4820.12

4.174

E-3

FSP

HARDCOPY

ABORT

DEVICE 1

DEVICE 2

Measurement Documentation

The

HARDCOPY ABORT

softkey aborts the printout.

IEC/IEEE-bus command:

ABOR

The

DEVICE 1/DEVICE 2

softkey determines the active output device.

Table

HARDCOPY DEVICE SETTINGS

is simultaneously opened for the configuration of the two possible devices. The selection bar marks the selected line of the table.

HARDCOPY DEVICE SETTINGS

Device1

Print to File

WINDOWS METAFILE

Orientation ---

YES

Device2

Print to File ---

Orientation ---

CLIPBOARD

Device 1/2

Print to File

Orientation

In this lines, the selection of the output device/language for Device1 or Device2 is made.

selects printout to file or printer selects the print format of the output page

1093.4820.12

4.175

E-3

Measurement Documentation FSP

Device 1/ Device 2

The selection of the output device/language for

Device 1

and

Device 2

is made in this line.

After pressing the

ENTER

key, the list of all installed printers is displayed.

Three file formats and the Windows NT clipboard are also available:

CLIPBOARD

WINDOWS METAFILE or

BITMAP FILE

ENHANCED METAFILE output in Windows NT clipboard.

output in file output in file or Windows NT clipboard.

HARDCOPY DEVICE SETTINGS

Device1

Print to File

WINDOWS METAFILE

YES

DEVICE

Orientation ---

Device2 CLIPBOARD

CLIPBOARD

WINDOWS METAFILE

ENHANCED METAFILE

Print to File ---

Orientation --BITMAP FILE

HP DeskJet 660C

The installation of additional printers is described in chapter 1, section

"Installation and Configuration of Printers".

Notes:

Selecting the type of printer automatically sets the parameters

PRINT TO FILE and ORIENTATION to values which correspond to a standard mode with this output device. Other printer-dependent parameters, such as PAPERSIZE, can be modified under Windows

NT in the printer properties window (START/SETTINGS/PRINTER/

SETTINGS). For operation of Windows NT, a mouse and an external keyboard have to be connected to instrument (see also

Section "Installation and Configuration of Printers")

IEC/IEEE-bus command:

HCOP:DEV:LANG GDI;

SYST:COMM:PRIN:ENUM:FIRS?;

SYST:COMM:PRIN:ENUM:NEXT?;

SYST:COMM:PRIN:SEL ‘HP Deskjet 660 on LPT1’;

HCOP:DEST "SYST:COMM:PRIN"

1093.4820.12

4.176

E-3

FSP Measurement Documentation

Print to File

In this line, directing the printout to the printer (OFF) or to a file (ON) is selected. For printout to a file, the user is prompted to enter a file name on starting the print.

Selecting the type of printer automatically sets this parameter to the value which corresponds to a standard mode with this output device.

IEC/IEEE-bus command:

HCOP:DEST "SYST:COMM:PRIN" or

HCOP:DEST "SYST:COMM:MMEM"

Orientation

In this line, the print format of the output page is set to either vertical (=

PORTRAIT) or horizontal (= LANDSCAPE).

IEC/IEEE-bus command:

HCOP:PAGE:ORI PORT

COLORS

COMMENT

SCREEN A

COMMENT

SCREEN B

The

COLORS

softkey gives access to the submenu where the colors for the printout can be selected (see section

"Selection of Printer Colors")

.

IEC/IEEE-bus command:

-

The

COMMENT SCREEN A

or

B

softkey opens an entry field in which a comment of two lines (60 characters per line) can be entered for screen A or

B.

If the user enters more than 60 characters, the excess characters appear on the second line on the print-out. At any point, a manual line-feed can be forced by entering the @ character.

The comment is printed below the corresponding diagram. The comment text appears on the print-out, but does not appear on the display screen.

If a comment is not to appear on the printout, it has to be deleted.

By pressing

PRESET,

all comments will be deleted.

IEC/IEEE-bus command:

HCOP:ITEM:WIND2:TEXT 'Comment'

HCOPY

side menu:

INSTALL

PRINTER

A certain number of printer drivers is already installed on the FSP.

The

INSTALL PRINTER

softkey opens the "Printers" window where further printer drivers can be installed (see section "Installation of a Local Printer" and "Installation of Network Printer").

IEC/IEC-bus command:

-

1093.4820.12

4.177

E-3

Measurement Documentation FSP

Selection of Printer Colors

COLORS

The

COLORS

softkey gives access to the submenu where the colors for the printout can be selected. To facilitate color selection, the color combination selected is displayed when the menu is entered. The previous colors are restored when the menu is exited.

IEC/IEEE-bus command:

-

COLOR

ON OFF

SCREEN

COLORS

OPTIMIZED

COLORS

USER

DEFINED

The

COLOR ON OFF

softkey switches over from color output to black-and-white output. All color-highlighted areas are printed in white and all color lines in black. This improves the contrast on the printout. The default setting is COLOR ON.

IEC/IEEE-bus command:

HCOP:DEV:COL ON

The

SCREEN COLORS

softkey selects the current screen colors for the printout.

Note:

The background is always printed in white and the grid in black.

IEC/IEEE-bus command:

HCOP:CMAP:DEF1

The

OPTIMIZED COLORS

softkey selects an optimized color setting for the printout to improve the visibility of the colors on the hardcopy.

Trace 1 is blue, trace 2 black, trace 3 green, and the markers are turquoise.

The other colors correspond to the display colors of the

DISP

– CONFIG DISPLAY -DEFAULT COLORS 1

softkey

.

Note:

The background is always printed in white and the grid in black.

IEC/IEEE-bus command:

HCOP:CMAP:DEF2

The

USER DEFINED

softkey opens a submenu for userdefined color selection (see submenu

USER DEFINED

COLORS

).

IEC/IEEE-bus command:

HCOP:CMAP:DEF3

1093.4820.12

4.178

E-3

FSP

SELECT

OBJECT

BRIGHTNESS

Measurement Documentation

The

SELECT OBJECT

softkey allows picture elements to be selected to change their color setting.

After selection the

PREDEFINED COLORS

,

BRIGHTNESS

,

TINT

and

SATURATION

softkeys enable the user to change the colors or the brightness, the hue and the color saturation of the element selected.

SE LECT D ISP LA Y O BJ EC T

Background

Grid

Function field + status field + data entry text

Function field LED on

Function field LED warn

Enhancement label text

Status field background

Trace 1

Trace 2

Trace 3

Marker

Lines

Measurement status + limit check pass

Limit check fail

Table + softkey text

Table + softkey background

Table selected field text

Table selected field background

Table + data entry field opaq titlebar

Data entry field opaq text

Data entry field opaq background

3D shade bright part

3D shade dark part

Softkey state on

Softkey state data entry

Logo

IEC/IEEE-bus command:

-

The

BRIGHTNESS

softkey serves for determining the brightness of the graphic element selected.

A value between 0 and 100% can be entered.

IEC/IEEE-bus command:

HCOP:CMAP5:HSL <hue>,<sat>,<lum>

TINT

The

TINT

softkey serves for determining the hue of the element selected. The percentage entered refers to a continuous color spectrum from red (0%) to blue

(100%).

IEC/IEEE-bus command:

HCOP:CMAP5:HSL <hue>,<sat>,<lum>

1093.4820.12

4.179

E-3

Measurement Documentation

SATURATION

FSP

The

SATURATION

softkey serves for determining the saturation of the element selected.

A value between 0 and 100% can be entered.

IEC/IEEE-bus command:

HCOP:CMAP5:HSL <hue>,<sat>,<lum>

PREDEFINED

COLORS

The

PREDEFINED COLORS

softkey opens a list from which predefined colors for the elements displayed can be selected:

COLOR

BLACK

BLUE

BROWN

GREEN

CYAN

RED

MAGENTA

YELLOW

WHITE

GRAY

LIGHT GRAY

LIGHT BLUE

LIGHT GREEN

LIGHT CYAN

LIGHT RED

LIGHT MAGENTA

IEC/IEEE-bus command:

HCOP:CMAP1 ... 26:PDEF <color>

SET TO

DEFAULT

The

SET TO DEFAULT

softkey reactivates the default color setting (=

OPTIMIZED COLORS)

.

IEC/IEEE-bus command:

-

Installation of a Local Printer

Note:

For an easy operation of the subsequent dialogs, connection of a PS/2 keyboard including trackball to the front panel is recommended. If no trackball is available, a PS/2 mouse should be connected additionally to the rear panel (see section "Connecting a Mouse" and

"Connecting a Keyboard").

1093.4820.12

4.180

E-3

FSP Measurement Documentation

Ø

Click on "My Computer" and then "Next".

The selection of printer ports appears.

1093.4820.12

Ø

Select port LPT1.

The selection will be marked with a tick.

Ø

Click on "Next".

The selection of the printer drivers appears. The left table contains the manufacturers, the right on the available printer drivers.

4.181

Ø

Select the desired manufacturer and the corresponding printer driver.

Note:

If the desired printer type does not appear in the list, then the corresponding driver has not been installed on the instrument so far. In this case click on button "HAVE DISK". This will open a prompt for inserting a disk with the corresponding driver into the floppy drive.

Press "OK" and select the desired printer driver.

After the installation the "Service Pack 5" must be reinstalled (see section "Installing

Windows-NT software").

Ø

Click on "Next".

The data entry field for the printer name appears.

E-3

Measurement Documentation FSP

Ø

The name of the printer can be modified in the edit field "Printer name" (max. 60 characters).

If there are already installed printers in the system, there will be a prompt for whether the new printer should be used as the standard printer for Windows NT applications (Do you want your Windowsbased programs to use this printer as default printer?). The preselection is "No".

Ø

Click on "Next".

A prompt will appear querying the availability of the printer in a network. This query is irrelevant for the installation of a local printer. The answer "Not shared" is preselected.

Ø

Click on "Next".

The window for printing a test page appears. This allows testing whether the installation was successful.

Ø

Click on "Yes (recommended)".

Ø

Click on "Finish".

If the installation was successful, a test page will be printed.

If the test page is not printed or printed incorrectly, the Windows NT online help will supply additional support in chapter

"Printer - Trouble Shooting".

Note:

If you are prompted to indicate the printer driver path after clicking on "Finish", the

Service Pack must be reinstalled after this printer installation (see chapter 1, section

"Installing Windows NT software").

Finally the instrument must be configured for printouts of the measurement screen with this printer. For details please refer to softkey

DEVICE 1

and

DEVICE 2

in the hardcopy menu.

1093.4820.12

4.182

E-3

FSP Measurement Documentation

Installation of a Network Printer (with Option FSP-B16 only)

After opening the "Printer" dialog window proceed with the installation as follows:

Ø

Double-click "Add Printer" line.

The "Add Printer Wizard" window is opened. This window guides the user through the printer driver installation.

Ø

Click "Network printer server" and then

"Next".

A list of selectable printers is displayed.

1093.4820.12

4.183

E-3

Measurement Documentation FSP

Ø

Mark printer and select it with OK.

Ø

Confirm the following request for the installation of a suitable printer driver with

OK.

The list of printer drivers is displayed.

The manufacturers are listed in the window at the left, the available printer drivers at the right.

Ø

Select the manufacturer in the

"Manufacturers" window and then the printer driver in the "Printers" window.

Note:

If the desired printer type is not listed, the driver has not been installed. In this case click HAVE DISK. You are requested to insert a floppy with the respective printer driver. Subsequently press OK and select the desired driver. After this the "Service Pack 5" has to be newly installed (see chapter "Install

Windows-NT Software)

Ø

Click "Next"

If one or more printers have been installed, a query is displayed in this window, whether the printer you have just installed should be used as the standard printer for

Windows NT applications. (Do you want your Windows-based programs to use this printer as default printer?). Default setting is "No".

1093.4820.12

4.184

E-3

FSP Measurement Documentation

Ø

Start the printer driver installation with

"Finish".

Note:

If after clicking on "Finish" you are requested to enter the printer driver path, the Service Pack has to be reinstalled after the printer installation (see chapter 1,

Installing Windows NT Software).

Finally the instrument must be configured for printouts of the measurement screen with this printer. For details please refer to softkey

DEVICE 1

and

DEVICE 2

in the hardcopy menu.

1093.4820.12

4.185

E-3

FSP Tracking Generator - Option FSP-B9

Tracking Generator - Option FSP-B9

During normal operation (without a frequency offset), the tracking generator emits a signal exactly at the input frequency of the FSP.

For frequency-converting measurements it is possible to set a constant frequency offset of ±150 MHz between the receive frequency of the FSP and the output signal of the tracking generator.

Moreover, an I/Q modulation or AM and FM modulation of the output signal can be provided using two analog input signals.

The output power is level-controlled and can be set in 0.1 dB steps in a range from -30 dBm to 0 dBm.

The tracking generator can be used in all operating modes. Acquisition of test setup calibration values

(SOURCE CAL) and normalization using these correction values (

NORMALIZE

) is only possible in the

NETWORK

operating mode.

Note:

The RF characteristics of some DUTs is especially sensitive concerning the input VSWR. In such cases insertion of 20 dB attenuation between the DUT and the tracking generator output is highly recommended.

The tracking generator is activated by means of the NETWORK hotkey in the hotkey bar at the bottom of the screen:

1093.4820.12

4.187

E-3

Tracking Generator - Option FSP-B9

Tracking Generator Settings

The

NETWORK

hotkey opens a menu for selecting the functions of the tracking generator.

NETWORK

ON

SOURCE

OFF

SOURCE

POWER

POWER

OFFSET

SOURCE

CAL

FREQUENCY

OFFSET

MODULATION

CAL

TRANS

CAL REFL

SHORT

CAL REFL

OPEN

NORMALIZE

REF VALUE

POSITION

REF VALUE

EXT AM

EXT FM

EXT I/Q

RECALL

FSP

MODULATION

OFF

Note:

Additional softkeys are available in the displayed menus for controlling an external generator if option External Generator Control FSP-B10 is fitted. For detailed information see section 'External Generator Control Option FSP-B10'.

ON

SOURCE

OFF

The

SOURCE ON/OFF

softkey switches the tracking generator on or off.

Default setting is

OFF

Note:

When the tracking generator is switched on the maximum stop frequency is limited to 3 GHz. This upper limit is automatically reduced by a frequency offset set up for the tracking generator.

In order to meet the data sheet accuracy for measurements with active tracing generetor the start frequency must be set to

3 x Resolution

Bandwidth.

The minimum sweeptime for measurements with data sheet accuracy is

100 ms in frequency domain (span > 0 Hz). Selecting a sweeptime below this limit will result in the sweeptime indicator field SWT being supplied with a red asterisc and the message UNCAL being displayed.

FFT filters (FILTER TYPE FFT in BW menu) are not available when the tracking generator is active.

IEC/IEEE-bus command:

OUTP:STAT ON

1093.4820.12

4.188

E-3

FSP

SOURCE

POWER

POWER

OFFSET

Tracking Generator - Option FSP-B9

The

SOURCE POWER

softkey allows the tracking generator output power to be selected.

The output level can be set in 0.1 dB steps from -30 dBm to 0 dBm.

If the tracking generator is off, it is automatically switched on when an output power value is entered.

The default output power is -20 dBm.

IEC/IEEE-bus command:

SOUR:POW -20dBm

The

POWER OFFSET

softkey allows selection of a constant level offset for the tracking generator.

With this offset for example attenuators or amplifiers at the output connector of the tracking generator can be taken into account for the displayed output power values on screen or during data entry.

The valid range is -200 dB to +200 dB in 0.1 dB steps. Positive offsets apply to an amplifier and negative offsets to an attenuator subsequent to the tracking generator.

The default setting is 0 dB. Offsets <> 0 will display the enhancement label

LVL

.

IEC/IEEE-bus command:

SOUR:POW:OFFS -10dB

1093.4820.12

4.189

E-3

Tracking Generator - Option FSP-B9 FSP

Transmission Measurement

This measurement will yield the transmission characteristics of a two-port network. The built-in tracking generator serves as a signal source. It is connected to the input connector of the DUT. The input of the

FSP is fed from the output of the DUT.

PRESET

CAL

SETUP

HCOPY

.

FSP

PREV NEXT

1093.4495.03

BW SWEEP FREQ SPAN

MKR MKR

AMPT

MKR

FCTN

7

4

1

8

5

2

0

ESC

CANCEL

.

-

ENTER

9

6

3

GHz

-dBm s

V

MHz dBm m s mV kHz dB

µ

V

µ s

Hz dB..

n nV

BACK

AF OUTPUT

TRACE

MEAS TRIG

PROBEPOWER KEYBOARD

LINES

DISP

FILE

GEN OUTPUT 50

EXT MIXER RF INPUT 50

GEN

OUTPUT

MAX 0V DC

MA

X

+30 dBm / 50V DC

MADE IN GERMANY

RF

INPUT

DUT

Fig. 4-16 Test setup for transmission measurement

A calibration can be carried out to compensate for the effects of the test setup (eg frequency response of connecting cables).

Calibration of Transmission Measurement

NETWORK

menu:

SOURCE

CAL

CAL

TRANS

CAL REFL

SHORT

CAL REFL

OPEN

NORMALIZE

The

SOURCE CAL

softkey opens a submenu comprising of the calibration functions for the transmission and reflection measurement.

The calibration of the reflection measurement (

CAL

REFL...

) and its mechanisms are described in separate sections.

To carry out a calibration for transmission measurements the whole test setup is through-connected (THRU).

REF VALUE

POSITION

REF VALUE

RECALL

1093.4820.12

4.190

E-3

FSP

CAL

TRANS

Tracking Generator - Option FSP-B9

The

CAL TRANS

softkey triggers the calibration of the transmission measurement.

It starts a sweep that records a reference trace. This trace is then used to calculate the difference for the normalized values.

1093.4820.12

Fig.: 4-17 Calibration curve for transmission measurement

During the calibration the following message is displayed:

After the calibration the following message is displayed:

This message will be cleared automatically after approx. 3 seconds.

IEC/IEEE-bus command:

CORR:METH TRAN

4.191

E-3

Tracking Generator - Option FSP-B9 FSP

Normalization

NETWORK-SOURCE CAL

menu:

The

NORMALIZE

softkey switches the normalization on or off. The softkey is only available if the memory contains a correction trace.

NORMALIZE

It is possible to shift the relative reference point within the grid using the

REF VALUE POSITION

softkey. Thus, the trace can be shifted from the upper border of the grid to the vertical center of the grid:

1093.4820.12

Fig.: 4-18 Normalized display

In

SPLIT SCREEN

operation, the normalization is switched on in the currently active window. Different types of normalization can be active in the two windows.

Normalization is aborted when the

NETWORK

operating mode is quit.

IEC/IEEE-bus command:

CORR ON

4.192

E-3

FSP

REF VALUE

POSITION

Tracking Generator - Option FSP-B9

The REF VALUE POSITION softkey marks a reference position in the active window at which the normalization result (calculated difference with a reference trace) is displayed.

If no reference line is active, the softkey switches on a reference line and activates the input of its position. The line can be moved within the grid boundaries.

The reference line is switched off by pressing the softkey again.

The function of the reference line is explained in the section "Calibration mechanisms".

Fig.: 4-19 Normalized measurement, shifted with REF VALUE

POSITION 50 %

IEC/IEEE-bus command:

DISP:WIND:TRAC:Y:RPOS 10PCT

1093.4820.12

4.193

E-3

Tracking Generator - Option FSP-B9

REF VALUE

FSP

The

REF VALUE

softkey activates the input of a value which is assigned to the reference line.

With default settings the reference line corresponds to a difference of 0 dB between the currently measured trace and the reference trace. Setting the

REF VALUE

to a different value helps to compensate for changes to the level conditions in the signal path after the calibration data have been recorded. If eg after a source calibration a 10 dB attenuation is inserted into the signal path between DUT and FSP input, the measurement trace will be moved by 10 dB down. Entering a

REF VALUE

of –10 dB will then result in the reference line for difference calculation being moved by 10 dB down as well. This means that the measured trace will be placed on it, as displayed in figure 4-17.

REF VALUE

always refers to the active window.

Fig.: 4-20 Measurement with REF VALUE -10 dB and REF VALUE

POSITION 50%

1093.4820.12

4.194

E-3

FSP Tracking Generator - Option FSP-B9

After the reference line has been moved by entering a

REF VALUE

of –10 dB the deviation from the nominal power level can be displayed with high resolution (eg 1 dB/div). The power is still displayed in absolute values, which means that in the above example 1 dB below the nominal power

(reference line) = 11 dB attenuation.

Fig.: 4-21 Measurement of a 10dB attenuator pad with 1dB/DIV

IEC/IEEE-bus command:

DISP:WIND:TRAC:Y:RVAL -10dB

RECALL

The

RECALL

softkey restores the FSP settings that were used during source calibration.

This can be useful if device settings were changed after calibration (eg center frequency, frequency deviation, reference level, etc).

The softkey is only available if:

• the NETWORK mode has been selected

• the memory contains a calibration dataset.

IEC/IEEE-bus command:

CORR:REC

1093.4820.12

4.195

E-3

Tracking Generator - Option FSP-B9 FSP

Reflection Measurement

Scalar reflection measurements can be carried out by means of a reflection-coefficient measurement bridge.

PRESET

CAL

SETUP

HCOPY

.

FSP

PREV NEXT

1093.4495.03

FREQ

MKR

7

4

1

8

5

2

SPAN

MKR

9

6

3

0

ESC

CANCEL

.

-

ENTER

AMPT

MKR

FCTN

GHz

-dBm s

V

MHz dBm ms mV kHz dB

µs

µV

Hz dB..

ns nV

BACK

TRACE

AF OUTPUT

BW

MEAS

SWEEP

TRIG

PROBEPOWER

LINES

DISP

FILE

GEN OUTPUT 50

EXT MIXER

MAX 0V DC

KEYBOARD

MAX +30 dBm / 50V DC

MADE IN GERMANY

GEN OUTPUT RF INPUT

Messbrücke

DUT

Fig.: 4-22 Test Setup for Reflection Measurement

Calibration of Reflection Measurement

The calibration mechanism for reflection measurement is basically the same as the one used for transmission measurement.

NETWORK-SOURCE CAL

submenu

CAL REFL

OPEN

The

CAL REFL OPEN

softkey starts the open-circuit calibration. During calibration the following message is displayed:

CAL REFL

SHORT

IEC/IEEE-bus command:

CORR:METH REFL

CORR:COLL OPEN

The

CAL REFL SHORT

softkey starts the short-circuit calibration.

If both calibrations (open circuit, short circuit) are carried out, the calibration curve is calculated by averaging the two measurements and stored in the memory. The order of the two calibration measurements is free.

After the calibration the following message is displayed:

1093.4820.12

The message is cleared after approx. 3 seconds.

IEC/IEEE-bus command:

CORR:METH REFL

4.196

E-3

FSP Tracking Generator - Option FSP-B9

Calibration mechanism

Calibration means a calculation of the difference between the currently measured power and a reference curve, independent of the selected type of measurement (transmission/reflection). The hardware settings used for measuring the reference curve are included in the reference dataset.

Even with normalization switched on, the device settings can be changed in a wide area without stopping the normalization. This reduces the necessity to carry out a new normalization to a minimum.

For this purpose the reference dataset (trace with 501 measured values) is stored internally as a table of

501 points (frequency/level).

Differences in level settings between the reference curve and the current device settings are taken into account automatically. If the span is reduced, a linear interpolation of the intermediate values is applied.

If the span increases, the values at the left or right border of the reference dataset are extrapolated to the current start or stop frequency, ie the reference dataset is extended by constant values.

An enhancement label is used to mark the different levels of measurement accuracy. This enhancement label is displayed at the right diagram border when normalization is switched on and a deviation from the reference setting occurs. Three accuracy levels are defined:

Table 4-3 Measurement accuracy levels

Accuracy

-

High

Medium

Enhancement label

NOR

APX

(approximation)

Aborted normalization

Reason/Limitation

No difference between reference setting and measurement

Change of the following settings:

• coupling (RBW, VBW, SWT) reference level, RF attenuation

• start or stop frequency

• output level of tracking generator

• frequency offset of tracking generator

• detector (max. peak, min. peak, sample, etc.)

Change of frequency:

• max. 501 points within the set sweep limits (corresponds to a doubling of the span)

• more than 500 extrapolated points within the current sweep limits (in case of span doubling)

Note:

At a reference level (REF LEVEL) of -10 dBm and at a tracking generator output level of the same value the FSP operates without overrange reserve, ie the FSP is in danger of being overloaded if a signal is applied whose amplitude is higher than the reference line. In this case, either the message "OVLD" for overload is displayed in the status line or the display range is exceeded (clipping of the trace at the upper diagram border = Overrange).

Overloading can be avoided as follows:

Reducing the output level of the tracking generator (SOURCE POWER, NETWORK menu)

Increasing the reference level (REF LEVEL, AMPT menu)

1093.4820.12

4.197

E-3

Tracking Generator - Option FSP-B9 FSP

Frequency-Converting Measurements

For frequency-converting measurements (eg on converter units) the tracking generator is able to set a constant frequency offset between the output frequency of the tracking generator and the receive frequency of the FSP. Up to an output frequency of 150 MHz the measurement can be carried out in both inverted and normal positions.

PRESET

CAL

SETUP

HCOPY

.

FSP

PREV NEXT

1093.4495.03

BW SWEEP FREQ SPAN

MKR MKR

AMPT

MKR

FCTN

7 8 9

4 5

1 2

0

ESC

CANCEL

.

-

ENTER

6

3

BACK

AF OUTPUT

TRACE

GHz

-dBm s

V

MHz dBm m s mV kHz dB

µ

µ

V

Hz dB..

n s nV

MEAS TRIG

PROBEPOWER KEYBOARD

LINES

DISP

FILE

GEN OUTPUT 50

EXT MIXER RF INPUT 50

GEN

OUTPUT

MAX 0V DC

MA

X

+30 dBm / 50V DC

MADE IN GERMANY

RF

INPUT

DUT

Fig.: 4-23 Test setup for frequency converting measurements

NETWORK

menu

FREQUENCY

OFFSET

The

FREQUENCY OFFSET

softkey activates the input of the frequency offset between the output signal of the tracking generator and the input frequency of the FSP. Possible offsets are in a range of ±150 MHz in

0.1 Hz steps.

The default setting is 0 Hz. Offsets <> 0 Hz are marked with the enhancement label

FRQ

.

If a positive frequency offset is entered, the tracking generator generates an output signal above the receive frequency of the FSP. In case of a negative frequency offset it generates a signal below the receive frequency of the FSP. The output frequency of the tracking generator is calculated as follows:

Tracking generator frequency = receive frequency + frequency offset.

IEC/IEEE-bus command:

SOUR:FREQ:OFFS 50MHz

1093.4820.12

4.198

E-3

FSP Tracking Generator - Option FSP-B9

External Modulation of the Tracking Generator

NETWORK

menu:

M O D U L A T I O N

M O D U L A T I O N

E X T A M

E X T F M

E X T I / Q

P O W E R

S W E E P

The

MODULATION

softkey opens a submenu for selecting different modulation modes.

The time characteristics of the tracking generator output signal can be influenced by means of external signals

(input voltage range -1 V to +1 V).

Two BNC connectors at the rear panel are available as signal inputs. Their function changes depending on the selected modulation:

TG IN I / AM

and

TG IN Q / FM

M O D U L A T I O N

O F F

The modulation modes can be combined with each other and with the frequency offset function up to a certain degree. The following table shows which modulation modes are possible at the same time and which ones can be combined with the frequency offset function.

Table 4-4 Simultaneous modes of modulation (tracking generator)

Modulation

Frequency offset

EXT AM

EXT FM

EXT I/Q

Frequency offset

EXT AM EXT FM EXT I/Q

• •

= can be combined

1093.4820.12

4.199

E-3

Tracking Generator - Option FSP-B9

EXT AM

FSP

The

EXT AM

softkey activates an AM modulation of the tracking generator output signal.

The modulation signal is applied to the

TG IN I / AM

connector. An input voltage of 1 V corresponds to 100% amplitude modulation.

Switching on an external AM disables the following function:

– active I/Q modulation.

IEC/IEEE-bus command:

SOUR:AM:STAT ON

EXT FM

The

EXT FM

softkey activates the FM modulation of the tracking generator output signal.

The modulation frequency range is 1 kHz to 100 kHz, the deviation can be set in 1-decade steps in the range of 100 Hz to 10 MHz at an input voltage of 1 V. The phase deviation

η

should not exceed the value 100.

Phase deviation

η

= deviation / modulation frequency

The modulation signal is applied to the TG IN Q / FM connector.

Switching on an external FM disables the following function:

– active I/Q modulation.

IEC/IEEE-bus command:

SOUR:FM:STAT ON

SOUR:FM:DEV 10MHz

1093.4820.12

4.200

E-3

FSP

EXT I/Q

Tracking Generator - Option FSP-B9

The

EXT I/Q

softkey activates the external I/Q modulation of the tracking generator.

The signals for modulation are applied to the two input connectors

TG

IN I

and

TG IN Q

at the rear panel of the unit. The input voltage range is ±1 V into 50

.

Switching on an external I/Q modulation disables the following functions:

– active external AM

– active external FM

Functional description of the quadrature modulator:

I channel

RF IN

90°

I mod

Q channel

RF OUT

MODULATION

OFF

Q mod

Fig.: 4-24 I/Q modulation

I/Q modulation is performed by means of the built-in quadrature modulator.

The RF signal is divided into two orthogonal I and Q components (inphase and quadrature phase). Amplitude and phase are controlled in each path by the I and Q modulation signal. By adding the two components an RF output signal is generated that can be controlled in amplitude and phase.

IEC/IEEE-bus command:

SOUR:DM:STAT ON

The

MODULATION OFF

softkey switches off the modulation of the tracking generator.

IEC/IEEE-bus command:

SOUR:AM:STAT OFF

SOUR:FM:STAT OFF

SOUR:DM:STAT OFF

1093.4820.12

4.201

E-3

FSP External Generator Control - Configuration

Option External Generator Control - FSP-B10

The external generator control option permits to operate a number of commercially available generators as tracking generator on the FSP. Thus, scalar network analysis with the FSP is also possible outside the frequency range of the internal tracking generator when the appropriate generators are used.

The FSP also permits to set a frequency offset for frequency-converting measurements when external generators are used. For harmonics measurements or frequency-converting measurements, it is also possible to enter a factor, by which the generator frequency is increased or reduced compared with the receive frequency of the FSP. Only make sure that the resulting generator frequencies do not exceed the allowed setting range of the generator.

The settable level range also depends on the generator used.

The generator is controlled via the – optional – second IECBUS interface of the FSP (= IEC2, supplied with the option) and, with some Rohde & Schwarz generators, additionally via the TTL synchronization interface included in the AUX interface of the FSP.

Note:

The use of the TTL interface enables considerably higher measurement rates as pure

IECBUS control, because the frequency stepping of the FSP is directly coupled with the frequency stepping of the generator.

Therefore, the frequency sweep differs according to the capabilities of the generator used:

In the case of generators without TTL interface, the generator frequency is first set for each frequency point via IECBUS, then the setting procedure has to be completed before recording of measured values is possible.

In the case of generators with TTL interface, a list of the frequencies to be set is entered into the generator before the beginning of the first sweep. Then the sweep is started and the next frequency point selected by means of the TTL handshake line TRIGGER. The recording of measured values is only enabled when the generator signals the end of the setting procedure via the BLANK signal. This method is considerably faster than pure IECBUS control.

With the "SELECT GENERATOR" softkey, a list of the supported generators with the frequency and level range as well as the capabilities used is included.

The external generator can be used in all operating modes. Recording of test setup calibration values

(

SOURCE CAL

) and normalization with the correction values (

NORMALIZE

) are only possible in the

NETWORK

mode.

Note:

In order to enhance measurement accuracy a common reference frequency should be used for both the FSP and the generator. If no independent 10 MHz reference frequency is available, it is recommended to connect the reference output of the generator with the reference input of the FSP and to enable usage of the external Reference on the FSP via SETUP – REFERENCE EXT.

Like the internal tracking generator, the external generator is activated by means of the

NETWORK

hotkey in the hotkey bar at the screen bottom:

1093.4820.12

4.203

E-3

Configuration – External Generator Control

External Generator Settings

The

NETWORK

hotkey opens the menu for setting the functions of the external generator.

NETWORK

CAL

TRANS

CAL REFL

SHORT

CAL REFL

OPEN

EXT SRC

ON OFF

SELECT

GENERATOR

FREQUENCY

SWEEP

SOURCE

CAL

NORMALIZE

REF VALUE

POSITION

REF VALUE

RECALL

EXT

SOURCE

FSP

Note:

SOURCE

POWER

Other softkeys are available in the displayed menus for controlling the internal tracking generator when option Tracking Generator FSP-B9 is fitted. For detailed information see section "Option Tracking Generator FSP-B9".

The

SOURCE POWER

softkey activates the input of the generator output level. The value range depends on the selected generator (See table of chapter "Configuration of the External Generator").

Ist neben der Option

Externe Generatorsteuerung FSP-B10

auch die Option

Mitlaufgenerator FSP-B9

installiert, so verändert der Softkey wahlweise den

Ausgangspegel des internen Mitlaufgenerators oder des externen

Generators, je nachdem, welcher Generator gerade eingeschaltet ist.

Die Grundeinstellung des Ausgangspegels ist -20 dBm.

IEC/IEEE-bus command:

SOUR:EXT:POW –20dBm

1093.4820.12

4.204

E-3

FSP External Generator Control - Configuration

Transmission Measurement

The transmission characteristic of a two-port network is measured . The external generator serves as a signal source. It is connected to the input connector of the DUT. The input of the analyser is fed from the output of the DUT.

GEN OUTPUT

PRESET

CAL

SETUP

HCOPY

.

FSP

PREV NEXT

1093.4495.03

FREQ

MKR

SPAN

MKR

AMPT

MKR

FCTN

7 8 9

GHz

-dBm s

V

MHz dBm ms mV

4

1

5

2

6

3 kHz dB

µs

µV

Hz dB..

ns nV

0

ESC

CANCEL

.

-

ENTER BACK

AF OUTPUT

TRACE

BW

MEAS

SWEEP

TRIG

PROBEPOWER KEYBOARD

LINES

DISP

FILE

EXT MIXER

MAX 0V DC MAX +30 dBm / 50V DC

MADE IN GERMANY

RF INPUT

DUT

Fig. 4-27 Test setup for transmission measurement

A calibration can be carried out to compensate for the effects of the test setup (eg frequency response of connecting cables).

Calibration of Transmission Measurement

NETWORK

menu:

SOURCE

CAL

CAL

TRANS

CAL REFL

SHORT

CAL REFL

OPEN

NORMALIZE

The

SOURCE CAL

softkey opens a submenu comprising the calibration functions for the transmission and reflection measurement.

The calibration of the reflection measurement (

CAL

REFL...

) and its functioning are described in separate sections.

To carry out a calibration for transmission measurements the whole test setup is through-connected (THRU).

REF VALUE

POSITION

REF VALUE

RECALL

1093.4820.12

4.205

E-3

Configuration – External Generator Control

CAL

TRANS

FSP

The

CAL TRANS

softkey triggers the calibration of the transmission measurement.

It starts a sweep that records a reference trace. This trace is then used to obtain the differences to the normalized values.

Fig. 4-28 Calibration curve for transmission measurement

During the calibration the following message is displayed:

After the calibration sweep the following message is displayed:

This message is cleared after approx. 3 seconds.

IEC-bus command

CORR:METH TRAN

1093.4820.12

4.206

E-3

FSP External Generator Control - Configuration

Normalization:

NETWORK

-

SOURCE CAL

menu:

NORMALIZE

The

NORMALIZE

softkey switches normalization on or off. The softkey is only available if the memory contains a correction trace.

It is possible to shift the relative reference point within the grid using the

REF VALUE POSITION

softkey. Thus, the trace can be shifted from the top grid margin to the middle of the grid:

1093.4820.12

Fig. 4-29 Normalized display

In the

SPLIT SCREEN

setting, the normalization is switched on in the current window. Different normalizations can be active in the two windows.

Normalization is aborted when the

NETWORK

mode is quit.

IEC/IEEE-bus command:

CORR ON

4.207

E-3

Configuration – External Generator Control

REF VALUE

POSITION

FSP

The

REF VALUE POSITION

softkey (reference position) marks a reference position in the active window on which the normalization (difference formation with a reference curve) is performed.

When pressed for the first time, the softkey switches on the reference line and activates the input of its position. The line can be shifted within the grid limits.

The reference line is switched off by pressing the softkey again.

The function of the reference line is explained in the section "Functioning of

Calibration".

Normalized measurement, shifted with

REF VALUE

POSITION

50

%

IEC-bus command

DISP:WIND:TRAC:Y:RPOS 10PCT

1093.4820.12

4.208

E-3

FSP

REF VALUE

External Generator Control - Configuration

The

REF VALUE

softkey activates the input of a level difference which is assigned to the reference line.

In the default setting, the reference line corresponds to a level difference of

0 dB. If e.g. a 10-dB attenuator pad is inserted between DUT and analyzer input between recording of the calibration data and normalization, the trace will be shifted down by 10 dB. By entering a

REF VALUE

of –10 dB the reference line for difference formation can also be shifted down by 10 dB so that it will again coincide with the trace (see Fig. 4-31).

Fig. 4-31 Measurement with REF VALUE -10dB and REF VALUE POSITION

50%

1093.4820.12

4.209

E-3

Configuration – External Generator Control FSP

After the reference line has been shifted by entering

REF VALUE

–10 dB, departures from the nominal value can be displayed with high resolution

(e.g. 1 dB / Div.). The absolute measured values are still displayed, in the above example, 1 dB below nominal value (reference line) = 11 dB attenuation.

RECALL

Fig. 4-32 Measurement of a 10-dB attenuator pad with 1dB/DIV

IEC-bus command

DISP:WIND:TRAC:Y:RVAL -10dB

The

RECALL

softkey restores the instrument setting with which the calibration was carried out.

This can be useful if the device setting was changed after calibration (eg center frequency setting, frequency deviation, reference level, etc).

The softkey is only available if:

• the

NETWORK

mode has been selected

• the memory contains a calibration data set.

IEC/IEEE-bus command

CORR:REC

1093.4820.12

4.210

E-3

FSP External Generator Control - Configuration

Reflection Measurement

Scalar reflection measurements can be carried out by means of a reflection-coefficient bridge.

.

FSP

PREV NEXT

1093.4495.03

FREQ

MKR

SPAN

MKR

AMPT

MKR

FCTN

BW

MEAS

SWEEP

TRIG

7

4

1

8

5

2

0

ESC

CANCEL

.

-

ENTER

6

3

9

GHz

-dBm s

V

MHz dBm ms mV kHz dB

µs

µV

Hz dB..

ns nV

BACK

AF OUTPUT

TRACE

LINES

DISP

FILE

GEN OUTPUT 50

PROBEPOWER

EXT MIXER

KEYBOARD

RF INPUT50 Ω

MAX 0V DC MAX +30 dBm / 50V DC

MADE IN GERMANY

RF INPUT

GEN OUTPUT

PRESET

CAL

SETUP

HCOPY

Messbrücke

DUT

Fig. 4-33 Test setup for reflection measurement

Calibration of Reflection Measurement

The calibration mechanism essentially corresponds to that of the transmission measurement.

NETWORK-SOURCE CAL

submenu

CAL REFL

OPEN

The

CAL REFL OPEN

softkey starts the open-circuit calibration. During calibration the following message is displayed:

CAL REFL

SHORT

IEC-bus command

CORR:METH REFL

CORR:COLL OPEN

The

CAL REFL SHORT

softkey starts the short-circuit calibration.

If both calibrations (open circuit, short circuit) are carried out, the calibration curve is formed by averaging the two measurements and stored in the memory. The order of measurements is optional.

After the calibration the following message is displayed:

1093.4820.12

The display is cleared after approx. 3 seconds.

IEC-bus command

CORR:METH REFL

CORR:COLL THR

4.211

E-3

Configuration – External Generator Control FSP

Calibration mechanism

Calibration means a calculation of the difference between the currently measured power and a reference curve, independent of the selected type of measurement (transmission/reflection). The hardware settings used for measuring the reference curve are included in the reference dataset.

Even with normalization switched on, the device settings can be changed in a wide area without stopping the normalization. This reduces the necessity to carry out a new normalization to a minimum.

For this purpose the reference dataset (trace with 501 measured values) is stored internally as a table of

501 points (frequency/level).

Differences in level settings between the reference curve and the current device settings are taken into account automatically. If the span is reduced, a linear interpolation of the intermediate values is applied.

If the span increases, the values at the left or right border of the reference dataset are extrapolated to the current start or stop frequency, ie the reference dataset is extended by constant values.

An enhancement label is used to mark the different levels of measurement accuracy. This enhancement label is displayed at the right diagram border when normalization is switched on and a deviation from the reference setting occurs. Three accuracy levels are defined:

Table 4-5 Measurement accuracy levels

Accuracy Reason/Limitation

High

Medium

Enhancement label

NOR

APX

(approximation)

Aborted normalization

No difference between reference setting and measurement

Change of the following settings:

• coupling (RBW, VBW, SWT) reference level, RF attenuation

• start or stop frequency

• output level of tracking generator

• frequency offset of tracking generator

• detector (max. peak, min. peak, sample, etc.)

Change of frequency:

• max. 501 points within the set sweep limits (corresponds to a doubling of the span)

• more than 500 extrapolated points within the current sweep limits (in case of span doubling)

Note:

At a reference level (REF LEVEL) of -10 dBm and at a tracking generator output level of the same value the analyzer operates without overrange reserve, ie the analyzer is in danger of being overloaded if a signal is applied whose amplitude is higher than the reference line. In this case, either the message "OVLD" for overload is displayed in the status line or the display range is exceeded (clipping of the trace at the upper diagram border = Overrange).

Overloading can be avoided as follows:

Reducing the output level of the tracking generator (SOURCE POWER, NETWORK menu)

Increasing the reference level (REF LEVEL, AMPT menu)

1093.4820.12

4.212

E-3

FSP External Generator Control - Configuration

Frequency-converting Measurements

For frequency-converting measurements (e.g. on converters) the external generator is able to set a constant frequency offset between the output frequency of the generator and the receive frequency of the analyzer and, in addition, the generator frequency as a multiple of the analyzer.

.

FSP

PREV NEXT

LINES

DISP

FILE

1093.4495.03

FREQ

MKR

SPAN

MKR

AMPT

MKR

FCTN

7

4

1

8

5

2

9

6

3

0

ESC

CANCEL

.

-

ENTER

GHz

-dBm s

V

MHz dBm ms mV kHz dB

µs

µV

Hz dB..

ns nV

BACK

AF OUTPUT

TRACE

BW SWEEP

MEAS TRIG

PROBEPOWER KEYBOARD

GEN OUTPUT 50

EXT MIXER

MAX 0V DC MAX +30 dBm / 50V DC

MADE IN GERMANY

RF INPUT GEN OUTPUT

PRESET

CAL

SETUP

HCOPY

DUT

Fig. 4-34 Test setup for frequency-converting measurements

NETWORK

Menü

FREQUENCY

OFFSET

The

FREQUENCY OFFSET

softkey activates the input of the frequency offset between the output signal of the generator and the input frequency of the analyzer. The value range depends on the selected generator.

The default setting is 0 Hz. Offsets <> 0 Hz are marked with the enhancement label

FRQ

.

If a positive frequency offset is entered, the tracking generator generates an output signal above the receive frequency of the "analyzer. In case of a negative frequency offset it generates a signal below the receive frequency of the analyzer. The output frequency of the generator is calculated as follows:

Generator frequency = receive frequency + frequency offset

IEC/IEEE-bus command:

SOUR:EXT:FREQ:OFFS 1GHZ

1093.4820.12

4.213

E-3

Configuration – External Generator Control

Configuration of an External Generator

NETWORK

menu:

EXT

SOURCE

EXT SRC

ON OFF

SELECT

GENERATOR

FREQUENCY

SWEEP

FSP

EXT SRC

ON OFF

The

EXT SOURCE

softkey opens a submenu for configuration of the external generator.

The FSP is able to manage two generators, one of which can be active at the time.

The

EXT SRC ON / OFF

softkey switches the external generator on or off.

It can only be switched on successfully if the generator has been selected by means of

SELECT GENERATOR

and configured correctly by means of

FREQUENCY SWEEP

.

If one of these conditions is not fulfilled, an error message will be output.

Notes:

When switching on the external generator, the

FSP

switches off the internal tracking generator and starts programming the generator settings via the

IECBUS.

At the same time, the maximum stop frequency is limited to the maximum generator frequency. This upper limit is automatically reduced by the set frequency offset of the generator and a set multiplication factor.

With the external generator switched on, the FFT filters (FILTER TYPE FFT in the menu BW) are not available.

If there is an error on the IECBUS during programming of the external generator, the generator is automatically switched off and the following error message output:

SELECT

GENERATOR

IEC-bus command

SOUR:EXT ON

The

SELECT GENERATOR

softkey opens a table for selection of the generator and definition of IECBUS address and control interface.

The table permits configuration of two generators so that switching between two different configurations is easily possible.

1093.4820.12

4.214

E-3

FSP External Generator Control - Configuration

The individual fields contain the following settings:

SRC Index of generator selected

TYPE The field opens the list with the available generators:

1093.4820.12

IFC

After completion of the selection, the remaining fields of the table are filled with the generator characteristics.

A list of generator types supported by the FSP is to be found at the end of section "Softkey

SELECT GENERATOR

".

This field selects the interface type of external generator 1or 2. The following types are available:

GPIB IECBUS only, suitable for all generators of other manufacturers and some Rohde & Schwarz instruments or

TTL IECBUS and TTL interface for synchronization, for most of the Rohde & Schwarz generators, see table above.

The two operating modes differ in the speed of the control: Whereas, with pure IECBUS operation, each frequency to be set must be individually transferred to the generator, additional use of the TTL interface permits to program a total frequency list at once and subsequently perform the frequency stepping via TTL handshake, which is a big advantage in terms of speed.

Note:

Generators equipped with the TTL interface can also be operated with

IECBUS (= GPIB) only.

Only one of the two generators can be operated with TTL interface at a time. The other generator must be configured for IECBUS (GPIB).

GPIB

ADDR

IECBUS address of the respective generator. Addresses from 0 to 30 are possible.

MODE Operating mode of generator. The generator activated using the

FREQUENCY SWEEP softkey is automatically set to remote mode

F MIN

F MAX

(REMOTE), the other to manual mode (LOCAL).

Frequency range of generator. Select the start and stop frequency of the

FSP in a way that the specified range is not exceeded.

If the start frequency lies below F MIN, the generator is only switched on when F MIN is reached.

If the stop frequency lies above F MAX, it is limited to F MAX when the generator is switched on using the EXT SRC ON/OFF softkey.

P MIN

P MAX

Level range of generator. This field defines the allowed input range for the

POWER

column in the

FREQUENCY SWEEP

table.

IEC-bus commands SYST:COMM:RDEV:GEN2:TYPE 'SME02'

SYST:COMM:RDEV:GEN:LINK TTL

SYST:COMM:GPIB:RDEV:GEN1:ADDR 28

4.215

E-3

Configuration – External Generator Control

List of Generator Types Supported by the FSP

Generator Interface

Type

Generator

Min Freq

Generator

Max Freq

Generator

Min Power dBm

Generator

Max Power dBm

TTL

GPIB

TTL

GPIB

TTL

TTL

GPIB

GPIB

GPIB

TTL

TTL

TTL

GPIB

GPIB

GPIB

GPIB

GPIB

TTL

TTL

TTL

TTL

GPIB

GPIB

GPIB

TTL

TTL

TTL

TTL

TTL

TTL

TTL

TTL

TTL

TTL

GPIB

GPIB

GPIB

GPIB

GPIB

GPIB

SME02

SME03

SME06

SMG

SMGL

SMGU

SMH

SMHU

SMP02

SMP03

SMP04

SMP22

SMT02

SMT03

SMT06

SMV03

SMX

SMY01

SMY02

SMIQ02B

SMIQ02E

SMIQ03B

SMIQ03E

SMIQ04B

SMIQ06B

SML01

SML02

SML03

SMR20

SMR20B11

1)

SMR27

SMR27B11

1)

SMR30

SMR30B11

1)

SMR40

SMR40B11

1)

SMR60

SMR60B11

1)

HP8340A

HP ESG-A

Series 1000A,

2000A, 3000A,

4000A

HP ESG-D

SERIES

E4432B

GPIB

5 kHz

5 kHz

5 kHz

100 kHz

9 kHz

100 kHz

100 kHz

100 kHz

300 kHz

300 kHz

300 kHz

300 kHz

300 kHz

300 kHz

9 kHz

9 kHz

9 kHz

1 GHz

10 MHz

1 GHz

10 MHz

1 GHz

10 MHz

1 GHz

10 MHz

1 GHz

10 MHz

10 MHz

10 MHz

10 MHz

10 MHz

5.0 kHz

5.0 kHz

5.0 kHz

9 kHz

100 kHz

9 kHz

9 kHz

10 MHz

250 kHz

250 kHz

1.5 GHz

3.0 GHz

6.0 GHz

1.0 GHz

1.0 GHz

2.16 GHz

2.0 GHz

4.32 GHz

2.2 GHz

2.2 GHz

3.3 GHz

3.3 GHz

4.4 GHz

6.4 GHz

1.1 GHz

2.2 GHz

3.3 GHz

20 GHz

20 GHz

27 GHz

27 GHz

30 GHz

30 GHz

40 GHz

40 GHz

60 GHz

60 GHz

20 GHz

27 GHz

40 GHz

20 GHz

1.5 GHz

3.0 GHz

6.0 GHz

3.3 GHz

1.0 GHz

1.04 GHz

2.08 GHz

26.5 GHz

4 GHz

3 GHz

-144

-144

-144

-144

-144

-144

-140

-140

-140

-130

2)

-130

2)

-130

2)

-130

2)

-130

2)

-130

2)

-130

2)

-130

2)

-130

2)

-130

2)

-130

3)

-130

3)

-130

3)

-130

3)

-144

-144

-144

-140

-137

-140

-140

-144

-144

-144

-137

-118

-140

-140

-140

-110

-136

-136

+13

+13

+13

+13

+10

+10

+13

+13

+13

+11

2)

+13

2)

+11

2)

+12

2)

+11

2)

+12

2)

+9

2)

+12

2)

+9

2)

+12

2)

+17

3)

+13

3)

+12

3)

+20

3)

+13

+13

+13

+13

+13

+13

+13

+16

+16

+16

+13

+30

+13

+13

+13

10

20

+10

1)

2)

3)

Requires the option SMR-B11 to be fitted.

Maximum/minimum power depends on presence of Option SMR-B15/-B17 and set frequency range.

For more details see SMR data sheet.

Maximum/minimum power depends on presence of Option SMP-B15/-B17 and set frequency range.

For more details see SMP data sheet.

1093.4820.12

4.216

FSP

E-3

FSP

FREQUENCY

SWEEP

External Generator Control - Configuration

The

FREQUENCY SWEEP

softkey opens a table for setting the generator level as well as the multiplier and the offset used to derive the generator frequency from the analyzer frequency.

This table also permits configuration of two generators so that switching between two different configurations is easily possible.

SRC Index of selected generator

STATE Selects the active generator. Only one generator can be active at a time. The operating mode of the active generator is set to remote control in the SELECT GENERATOR table.

POWER Permits to enter the generator level within the limits P MIN to P MAX of the

SELECT GENERATOR

table

.

NUM

DEN

Numerator,

Denominator,

OFFSET Offset, used to derive the generator frequency from the current frequency of the FSP according to the following formula:

F

Generator

=

F

Analyzer

Numerator

*

Denom inator

+

F

Offset

Note that the frequencies resulting from start and stop frequency of the FSP do not exceed the allowed generator range:

Ø

If the start frequency lies below F MIN, the generator is only switched on when F MIN is reached.

Ø

If the stop frequency lies above F MAX, the generator is switched off. When the generator is subsequently switched on using the

EXT SRC ON/OFF

softkey, the stop frequency is limited to F

MAX.

Ø

If the stop frequency lies below F MIN, the generator is switched off and the following error message output:

Ø

In the time domain (Span = 0 Hz) the generator frequency is derived from the set receive frequency of the FSP using the calculation formula.

For the sake of clarity, the formula is also displayed in the table.

1093.4820.12

4.217

E-3

Configuration – External Generator Control FSP

RESULT The frequency range of the generator resulting from the calculation formula. An asterisk (*) after the upper limit indicates that the stop frequency of the FSP must be adapted when the generator is switched on in order not to exceed its maximum frequency. In the following illustration, this is true for the upper generator at a stop frequency of 3.2 GHz of the FSP, whereas the lower generator does not yet require an adaptation:

IEC-bus commands

SOUR:EXT:POW –30dBm

SOUR:EXT:FREQ:NUM 4

SOUR:EXT:FREQ:DEN 3

SOUR:EXT:FREQ:OFFS 100MHZ

1093.4820.12

4.218

E-3

FSP

Option LAN Interface – FSP-B16

LAN Interface

Using the option FSP-B16 LAN Interface, the instrument can be connected to an Ethernet LAN (Local

Area Network). Thus it is possible to transfer data via the network and use network printers. In addition, the instrument can be remote-controlled via network. The network card allows both for a 10 MHz

Ethernet IEEE 802.3 and a 100 MHz Ethernet IEEE 802.3u. The selection between 10 Mbit/s and 100

Mbit/s can take place either automatically or via manual setting.

Connecting the Instrument to the Network

Caution:

Before connecting the instrument to the network it is recommended to contact the network administrator, in particular larger LAN installations are affected. Faults in the connection may have a negative effect on the entire network.

The instrument is connected to a network hub of the desired LAN segment via a commercially-available

RJ45 cable (not supplied with the instrument) at the instrument rear panel. Since RJ45 provides no bus but a star network topology, no other precautions need to be taken for the connection.

The connection procedure does not produce any disturbances in the network traffic. Disconnection from the network is easily possible provided that there is no more data traffic from and to the instrument.

Installing the Software

The data transfer in the network takes place in data blocks, called packets. In addition to the useful data, further information on the operation, i.e. protocol data (transmitter, receiver, type of data, sequence), is transferred in the packets. For processing the protocol information, suitable drivers must be installed. For the network services (file transfer, directory services, printing in the network) a network operating system needs to be installed.

Installation and Configuration of the Driver for the Network Card

Notes:

••••

The WINDOWS NT files required for the installation of network drivers, protocols or services are included in the directory "C:\I386".

••••

For the installation, a PC keyboard with trackball (or an additional mouse instead) is required.

1093.4820.12

4.219

E-3

LAN Interface FSP

Ø

Press the

SETUP

key.

The

SETUP

menu opens.

Ø

Press the

GENERAL SETUP

key.

The

GENERAL SETUP

menu opens.

Ø

Press the CONFIGURE NETWORK softkey.

Ø

Answer the prompt "Do you want to install it now?" with "Yes".

Ø

Leave the default setting "Wired to the network" unchanged and confirm by means of "NEXT".

Ø

To select the appropriate network card click on "Select from list".

1093.4820.12

4.220

E-3

FSP LAN Interface

Ø

Click on "Have Disk".

A prompt to enter a path name will appear.

Ø

Enter the following path name:

'C:\WINNT\R&S_drivers\Etherexp' and click on 'OK'.

Note:

If this path does not exist, enter "A:" as a path name. Insert the driver disk and click on "OK".

Ø

Confirm 'Intel EtherExpress PRO Adapter' with 'OK'.

Ø

Close the dialog by means of 'NEXT' after selecting 'Intel EtherExpress PRO Adapter' once again

1093.4820.12

4.221

E-3

LAN Interface FSP

Selection of the Network Protocols

Note:

The network administrator knows the protocols to be used. For the RSIB interface, the

TCP/IP protocol must be installed in any case.

Ø

Select the desired protocols and confirm using "NEXT”.

Selection of the Network Services

To be able to utilize the resources in the network, it is necessary to install the respective services.

Note:

The network administrator knows the services to be used.

Ø

During the first installation, the selected services cannot be changed.

Further services can be added after completion of the installation.

1093.4820.12

4.222

E-3

FSP

Completion of the Installation

LAN Interface

Ø

Start the installation by clicking on "NEXT" .

Ø

Enter drive "C:\I386" and click on

"Continue".

Note:

If the instrument is equipped with the B20 option, enter "D:\I386".

After a couple of files have been copied, there is a message indicating that the driver for the network card has been installed.

Ø

If required, the network speed and the duplex mode can be set manually using the "Settings" button.

Ø

Click on "OK".

The settings are checked and processed.

Missing information on the installed network protocols (e.g. the TCP/IP address) is queried.

1093.4820.12

4.223

E-3

LAN Interface FSP

Ø

The answer is "Yes" if the network comprises a DHCP server. In this case, you do not have to enter an IP address.

Ø

The answer is "No" if there is no DHCP server in the network. In this case, enter the IP address assigned to the instrument. The IP address and the subnet mask are available from the network administrator.

Ask the network administrator whether a

DHCP server is used.

Manual entry of an IP address (not if a DHCP server is used):

Ø

Do not change the "Adapter" setting.

Ø

Click on "Specify an IP address".

Ø

Enter the IP address and the subnet mask assigned to the instrument. These addresses are assigned by your network administrator.

Note:

If the network card has been installed in the factory, the default settings are:

IP Address 10.0.0.10

and

Subnet Mask 255,255,255,0

.

Ø

Click on OK to leave the dialog.

The network bindings display opens next.

Ø

Do change the settings and click on

"Next".

1093.4820.12

4.224

E-3

FSP LAN Interface

Ø

The preselected computer and workgroup names "ANALYZER" and

"WORKGROUP" can be confirmed using

"NEXT".

Note:

In Windows networks, the computer name must be unique.

1093.4820.12

4.225

E-3

LAN Interface FSP

Ø

Terminate the installation by clicking on

"Finish".

Ø

Answer the prompt "You must shutdown..." with "No", since the "Service

Pack 5" of Windows NT must be reinstalled after the installation of the driver software. (see chapter 1, section

"Computer Function - "Installing the

Windows NT Software ")

Notes:

Ø

It is not necessary to install the Service

Pack 5 if the instrument is equipped with the B20 option.

Ø

If the service pack is not installed although there is no B20 option, the following error message will be displayed: "At least one service or driver failed during system startup..."

In this case, the network installation is not fully operational.

To prevent faults, it is therefore indispensable to reinstall the service pack (see chapter 1, section "Computer

Function – Installing the Windows NT

Software").

1093.4820.12

4.226

E-3

FSP

Examples of Configurations

LAN Interface

Network Protocols

NOVELL Netware

IP Networks

(FTP, TELNET, WWW,

GOPHER, etc)

TCP/IP Protocol

MICROSOFT Network

NWLink IPX/SPX

Compatible

Transport

NetBEUI Protocol or

TCP/IP Protocol

Services

Client Service for

NetWare

Simple TCP/IP

Services

Workstation

Server

Notes

In folder "Protocols - Properties", the frame type used in the network is to be set.

In folder "Protocols - Properties", an IP address that is unique in the network is to be set.

In folder "Identification - Computer Name", a name that is unique in the network is to be entered.

Subsequent Changing of the Network Configuration (Computer Name etc)

After completion of the installation, the computer name can be adapted as follows:

Ø

Press the

SETUP

key.

The

SETUP

menu opens.

Ø

Press softkey

GENERAL SETUP

.

The

GENERAL SETUP

menu opens.

Ø

Press softkey

CONFIGURE NETWORK

.

The configuration menu "Network" for the network settings opens.

Ø

Select folder "Identification".

Both entries can be changed in the submenu "Change".

The other settings can be changed after selecting the other folders. However, it is recommended to contact the network administrator before any changes.

Disabling the Autologin Mechanism

Upon delivery, the instrument is configured for automatic login into Windows NT. This mechanism must be disabled if the instrument is operated in a network, since the default user name ("instrument") and the password normally are not identical to those of the network account.

To disable the autologin mechanism, proceed as follows:

Ø

Open the NT start menu by means of <CTRL><ESC>.

Ø

Select the menu item "RUN". A dialog box opens.

Ø

Enter the command "D:\USER\NO_AUTOLOGIN.REG" into the dialog box and confirm with

<ENTER>.

1093.4820.12

4.227

E-3

LAN Interface FSP

The autologin mechanism is disabled. When the instrument is rebooted, a prompt for user name and password will appear before the instrument firmware is started.

Reenabling the Autologin Mechanism

To enable the autologin mechanism again, proceed as follows:

Ø

Open the NT start menu by means of <CTRL><ESC>.

Ø

Select the menu item "RUN". A dialog box opens.

Ø

Enter the command "D:\USER\AUTOLOGIN.REG" into the dialog box and confirm with <ENTER>.

The autologin mechanism is reenabled and is active when the instrument is rebooted the next time.

Deinstallation of the Network Driver – Installation of the MS Loopback Adapter

If the instrument is to be operated without network connection for a limited or an unlimited period of time, the network card driver must be uninstalled or at least deactivated. It is not possible to uninstall the driver without installing another network driver on the analyzer, since this would impair the performance of the instrument.

For this reason, the network card driver is replaced by the "MS Loopback Adapter" (supplied with the instrument). This pseudo network driver simulates a network including network card and can, therefore, also be installed if the system does not contain a network card or if an existing network card is to be removed from the instrument.

Note:

T

he "MS Loopback Adapter" must be installed prior to removing the network card from the instrument.

Otherwise there will be driver conflicts when the instrument is started the next time.

To install the MS Loopback Adapter, proceed as follows:

Ø

Press the

SETUP

key.

The

SETUP

menu opens.

Ø

Press the

GENERAL SETUP

key.

The

GENERAL SETUP

menu opens.

Ø

Press the

CONFIGURE NETWORK

softkey.

The configuration menu for the network settings ("Network") opens.

Ø

Select the "Adapters" tab.

1093.4820.12

4.228

E-3

FSP

1093.4820.12

4.229

LAN Interface

The active network driver is displayed.

Ø

Click on

Add

.

The list indicating the available network drivers opens.

Ø

Click on "MS Loopback Adapter" and confirm with "OK".

The OEM options selection appears.

Ø

Confirm "Frame Type 802.3" with "OK".

Ø

Enter "C:\I386" as the drive and click on

"Continue".

E-3

LAN Interface FSP

Afterwards the network drivers installed are displayed. You now have to uninstall the network driver for the network card:

Ø

Select the Intel EtherExpress network driver.

Ø

Click

Remove

.

Ø

Answer the confirmation query

"This action will permanently remove the component from the system...

Do you still wish to continue?" with "

YES

".

The network driver for the network card is removed.

Ø

Use "Close" to leave the dialog.

You are then requested to enter an IP address:

Ø

Do not change the "Adapter" setting.

Ø

Click on "Specify an IP address".

Ø

Enter the following IP address and subnet mask:

IP address:

10.0.0.10

Subnet mask:

255.255.255.0

Ø

Click on OK to leave the dialog.

The restart request is displayed.

Ø

Answer "You must shutdown..." with

"No".

Afterwards the following steps have to be performed:

Ø

To disable the start request for user and password, the autologin mechanism has to be enabled

(see section "Reenabling the Autologin Mechanism")

before

the service pack is installed.

1093.4820.12

4.230

E-3

FSP LAN Interface

Ø

The of Windows NT must be reinstalled afterwards (see chapter 1, section

"Computer Function – Installing the Windows NT Software").

Ø

If the instrument is equipped with the firmware application FS-K3 (noise measurement software) or

FS-K4 (phase measurement software), the modified IP address must also be entered in the configuration of these programs. See the relevant documentation for details.

Notes:

Ø

It is not necessary to install the Service Pack 5 if the instrument is equipped with the B20 option.

Ø

If the service pack is not installed although there is no B20 option, the following error message will be displayed: "At least one service or driver failed during system startup..."

In this case, the network installation is not fully operational.

To prevent faults, it is therefore indispensable to reinstall the service pack (see chapter 1, section "

Computer Function – Installing the Windows NT Software ").

1093.4820.12

4.231

E-3

LAN Interface FSP

Operating the Instrument on the Network

After the network support has been installed, it is possible to exchange data between the instrument and other computers and to use printers in the network.

A prerequisite to the network operation is the appropriate access rights for the required network resources. Resources may be file directories of other computers or also central printers.

Access rights can be obtained from the network or server administrator. In that respect it is necessary to obtain the network name of the resource as well as the corresponding access rights.

In order to avoid misuse, the resources are protected by passwords. Normally, every entitled user of the resources is assigned a user name that is also protected by a password. Resources can then be assigned to this user. It is possible to determine the type of data access, i.e. whether data can only be read or also written, as well as shared data access. Depending on the network operating system, different types of usage are possible.

NOVELL Networks

The operating system NETWARE from NOVELL is a server based system. Data cannot be exchanged between individual workstations; the data transfer takes place between the PC and a server. This server provides memory space and the connection to network printers. On a server, data are organized in directories as under DOS and mapped to the workstation as virtual drives. A virtual drive behaves like an additional hard disk on the workstation, and the data can be edited accordingly. Network printers can also be addressed like normal printers.

There are two versions of the NOVELL network operating system: bindary-based (NETWARE 3) and

NDS-based (more recent versions of NETWARE). With the older version (NETWARE 3), each server manages its resources on its own and is independent. A user must be managed on each server separately. In the case of NDS-based versions, all resources in the network are managed together in the NDS (NOVELL DIRECTORY SERVICE). The user must log into the network only once and is given access to the resources according to his/her access rights. The individual resources and users are managed as objects in a hierarchical tree (NDS TREE). The position of the object in the tree is referred to as "CONTEXT" with NETWARE and must be known for access to the resources.

MICROSOFT Network

In case of a MICROSOFT network, data can be exchanged both between workstations (peer to peer) and between workstations and servers. The latter can supply access to files and connection to the printers. On a server, data are organized in directories as under DOS and mapped to the workstation as virtual drives. A virtual drive behaves like an additional hard disk on the workstation, and the data can be edited accordingly. Network printers can also be addressed like normal printers. A connection is possible to DOS, WINDOWS FOR WORKGROUPS, WINDOWS95, WINDOWS NT.

1093.4820.12

4.232

E-3

FSP LAN Interface

Defining Users

After the network driver software has been installed, the instrument will output an error message on the next power-on, as there is no user called "Instrument" (= user name for NT autologin) in the network. It is therefore necessary to define a common user for Windows NT and the network and to disable the autologin-mechanism subsequently.

The definition of new users in the network is done by the network administrator. For definition of a new user on the instrument, the User Manager is required:

Ø

Use the key combination <CTRL>

<ESC> to call the Windows NT start menu.

Ø

Click on "Programs", "Administrative

Tools (Common)" and "User Manager" one after the other.

The "User Manager" menu opens.

Ø

Select User "instrument".

Ø

Click on the "User" menu and select

"Copy...".

The menu for entering the user data will appear.

Ø

Fill in the lines

- "Username"

- "Password and

- "Confirm Password" and terminate the data entry with "OK".

The user data must comply with the settings on the network.

Only NOVELL network:

Configure NOVELL Client

1093.4820.12

4.233

Ø

Use the key combination <CTRL> <ESC> to call the Windows NT start menu.

Ø

Click on "Settings", "Control Panel" and

"CSNW" one after the other.

Bindary login (NOVELL 3.x)

Ø

Click on "Preferred Server".

Ø

Select the NOVELL server where the user is configured using "Select Preferred

Server".

E-3

LAN Interface FSP

NDS login (more recent NOVELL versions)

Ø

Click on “Default Tree and Context".

Ø

Enter the NDS Tree under "Tree" and the hierarchical path where the user is defined under "Context".

Note:

This data can be obtained from the network administrator.

Login in the Network

The user automatically logs into the network with the registration in the operating system. As a prerequisite, the user name and the password must be identical under Windows NT and on the network.

Disabling the Autologin Mechanism

Upon delivery, the instrument is configured for automatic login into Windows NT. This mechanism must be disabled if the instrument is operated in a network, since the default user name ("instrument") and the password normally are not identical to those of the network account.

To disable the autologin mechanism, proceed as follows:

Ø

Open the NT start menu by means of <CTRL><ESC>.

Ø

Select the menu item "RUN". A dialog box opens.

Ø

Enter the command "D:\USER\NO_AUTOLOGIN.REG" into the dialog box and confirm with

<ENTER>.

The autologin mechanism is disabled. When the instrument is rebooted, a prompt for user name and password will appear before the instrument firmware is started.

Reenabling the Autologin Mechanism

To enable the autologin mechanism again, proceed as follows:

Ø

Open the NT start menu by means of <CTRL><ESC>.

Ø

Select the menu item "RUN". A dialog box opens.

Ø

Enter the command "D:\USER\AUTOLOGIN.REG" into the dialog box and confirm with <ENTER>.

The autologin mechanism is reenabled and is active when the instrument is rebooted the next time.

1093.4820.12

4.234

E-3

FSP

Using Network Drives

LAN Interface

Mapping a network drive:

Ø

Use the key combination <CTRL> <ESC> to call the Windows NT start menu.

Ø

Click on "Programs", "Windows NT

Explorer" one after the other.

Ø

Click on the line "Network Neighborhood" in the overview "All Directories".

An overview of the available network drives is displayed.

Ø

Click on "Tools" and then "Map Network

Drive".

The network paths available in the network are displayed in the overview "Shared

Directories

:

".

Ø

Mark the desired network path.

1093.4820.12

4.235

E-3

LAN Interface FSP

Ø

Select the appropriate drive under "Drive:".

Ø

Activate "Reconnect at Logon:" if the connection is to be set up automatically each time the instrument is started.

Ø

Use "OK" to connect the network path with the selected drive.

The user name and the password are queried. Then the drive will appear in the overview "All Directories" of the explorer.

Note:

Only drives in the network can be connected that the user has the appropriate access rights for.

Disconnecting a network drive:

Ø

Click on "Tools" in the Explorer and then

"Disconnect Network Drive".

Ø

Select the drive to be disconnected under

"Network Drive:".

Ø

Disconnect the drive using "OK". The security prompt must be answered with

"Yes".

1093.4820.12

4.236

E-3

FSP

Printing on a Network Printer

LAN Interface

Ø

Press the

HCOPY

key.

The

HCOPY

menu opens.

Ø

Press the

NEXT

key.

The

HCOPY

submenu opens.

Ø

Press the

INSTALL PRINTER

softkey.

The printer window opens.

Ø

Double-click on the line "Add Printer".

The "Add Printer Wizard" window opens. It guides through the following printer driver installation.

Ø

Click on "Network Printer server" first and then on "Next".

The choice of enabled printers appears.

Ø

Mark the printer and select using "OK".

Ø

Confirm the following prompt to install a suitable printer driver using "OK".

The choice of printer drivers appears. The left table shows the manufacturers, the right one the available printer drivers.

1093.4820.12

4.237

E-3

LAN Interface FSP

Ø

Mark the manufacturer in the

"Manufacturers" table and then the printer driver in the "Printers" table.

Note:

If the desired type of the output device does not appear in the list, the driver has not yet been installed on the instrument. In this case, click on the "HAVE DISK" button. A prompt appears, requesting the user to insert a disk with the respective printer driver. Then press

"OK" and select the desired printer driver.

After the installation, "Service Pack 5" must be reinstalled (see section "Installing the

Windows NT Software")

Ø

Click on "Next".

If one or more printers are already installed, this window will ask whether the just installed printer is to be selected as standard printer for the Windows NT applications (Do you want your Windowsbased programs to use this printer as default printer?). "No" is set as default.

Ø

Complete the installation of the printer driver by means of "Finish".

Note:

If the prompt to specify the path to the printer driver appears after clicking on

“Finish”, the Service Pack must be reinstalled after this printer installation (see

Chapter 1, section "Computer Function -

Installing the Windows NT Software").

Finally the instrument needs to be configured for use of the installed network printer using softkeys

DEVICE 1 and DEVICE 2 in the Hardcopy Main Menu.

1093.4820.12

4.238

E-3

FSP LAN Interface

Remote Data Transfer with TCP/IP Services

The protocol TCP/IP allows the transfer of files between different computer systems. This requires a program running on the two computers that controls this data transfer. It is not necessary that the same operating or file system is used by both computers. For example, a file transfer between

DOS/WINDOWS and UNIX is possible. One of the two partners must be configured as Host and the other one as Client. However, they may as well change their roles. Usually, the system which is able to perform several processes at the same time will play the host role. The file transfer program usually used under TCP/IP is FTP (File Transfer Protocol). An FTP host is installed as standard on the majority of UNIX systems.

If the TCP/IP services are installed, a terminal connection is possible using "Start" - "Programs" -

"Accessories" - "Telnet" or a data transfer via FTP by means of "Start" - "Run" "ftp" - "OK". Thus all computer systems supporting these universal protocols can be addressed (UNIX, VMS, ...).

For further information please refer to the corresponding NT literature.

File Transfer via FTP

The total scope of functions and commands is described in the FTP literature. The following table therefore only contains the major functions:

Setting up the connection

Click on "Start" and then "Run" in the task bar

The DOS command

FTP starts the program.

The command

OPEN <xx.xx.xx.xx> sets up the connection.

xx.xx.xx.xx = IP address e.g. 89.0.0.13

Data transfer

The command

PUT <dateiname> transfers the data to the target system.

The command

GET <dateiname> transfers the data from the target system.

The command

TYPE B transfers the data in BINARY format, no conversion takes place.

The command

TYPE A transfers the data in ASCII format, converting control characters so that text files can also be read on the target system.

Examples:

PUT C:\AUTOEXEC.BAT

sends the file

AUTOEXEC.BAT

to the target system.

LCD DATA changes the current directory on the local machine to subdirectory

DATA

CD SETTING changes to the subdirectory

SETTING on the target system dateiname= File name e.g. DATA.TXT

1093.4820.12

4.239

E-3

LAN Interface

Changing the directories

FSP

The command

LCD <path> changes the directory on the local machine as with

DOS

.

The command

LDIR shows the directory contents on the local machine.

These commands refer to the file system of the FSP. If the

L

is omitted ahead of the commands, they apply to the target system.

1093.4820.12

4.240

E-3

FSP

RSIB Interface

RSIB Interface

The instrument is equipped with an RSIB interface as standard, which allows the instrument to be controlled by means of Visual C++ and Visual Basic programs, but also by means of the Windows applications WinWord and Excel as well as National Instruments LabView, LabWindows/CVI and

Agilent VEE . The control applications run on an external computer in the network.

A Unix operating system can be installed on an external computer in addition to a Windows operating system. In this case, the control applications are created either in C or C++. The supported Unix operating systems include:

••••

Sun Solaris 2.6 Sparc Station

••••

Sun Solaris 2.6 Intel Platform

••••

Red Hat Linux 6.2 x86 Processors

Remote Control via RSIB Interface

Windows Environment

In order to be able to access the measuring instruments via the RSIB interface, the file

RSIB32.DLL

must be copied into the Windows system32

directory or into the directory of the control applications.

For 16-bit applications, the file

RSIB.DLL

must be additionally copied into the directories mentioned.

The files RSIB.DLL and RSIB32.DLL are included on the instrument in directory D:\R_S\Instr\RSIB.

For the different programming languages there are files available that contain the declarations of the

DLL functions and the definition of the error codes.

Visual Basic (16 bit):

Visual Basic (32 bit):

C:/C++:

'RSIB.BAS'

'RSIB32.BAS'

'RSIB.H'

(D:\R_S\Instr\RSIB)

(D:\R_S\Instr\RSIB)

(D:\R_S\Instr\RSIB)

For C/C++: programs, import libraries are additionally available.

Import library for RSIB.DLL:

Import library for RSIB32.DLL:

RSIB.LIB'

RSIB32.LIB'

(D:\R_S\Instr\RSIB)

(D:\R_S\Instr\RSIB)

.

The control is performed using the Visual C++ or Visual Basic programs WinWord, Excel, LabView,

LabWindows/CVI or Agilent VEE. Every application that can load a DLL is able to use the RSIB interface. The programs use the IP address of the instrument or its

host name

to set up the connection.

Via VisualBasic:

ud = RSDLLibfind ("82.1.1.200", ibsta, iberr, ibcntl)

Return to manual operation is possible via the front panel (

LOCAL

key) or via the RSIB interface:

Via RSIB:

ud = RSDLLibloc (ud, ibsta, iberr, ibcntl)

;

or ud = RSDLLibonl (ud, 0, ibsta, iberr, ibcntl)

;

1093.4820.12

4.241

E-3

RSIB Interface FSP

Unix Environment

In order to access the measuring equipment via the RSIB interface, copy the librsib.so.X.Y

file to a directory for which the control application has read rights.

X.Y

in the file name indicates the version number of the library, for example

1.0

.

The librsib.so.X.Y

library is created as a shared library. The applications using the library need not consider its version. They simply link the library with the lrsib

option. The following instructions have to be observed so that linking can be successfully performed and the library can be found during program execution:

File link:

Use the operating system command In to create a file with the link name librsib.so

and pointing to librsib.so.X.Y

in a directory for which the control application has read rights. Example:

$ ln –s /usr/lib/librsib.so.1.0 /usr/lib/librsib.so

Linker options for creating applications:

-lrsib

: import library

-

Lxxx

: path information where the import library can be found. This is where the above file link has been created. Example:

-L/usr/lib

.

Additional linker options for creating applications (only under Solaris):

-Rxxx

: path information where the library is searched for during the program run:

-R/usr/lib

.

Run-time environment:

Set environment variable

LD_RUN_PATH

to the directory in which the file link has been created. This is necessary only if librsib.so

cannot be found in the standard search path of the operating system and the

-R

linker option (only Solaris) was not specified.

For C/C++ programming, the declarations of the library functions and the definition of error codes are contained in:

C/C++:

'RSIB.H' (D:\R_S\Instr\RSIB)

1093.4820.12

4.242

E-3

FSP RSIB Interface

RSIB Interface Functions

This chapter lists all functions of the DLL

"RSIB.DLL" or "RSIB32.DLL" or

"librsib.so"

, which allow to produce control applications.

Overview of Interface Functions

The library functions are adapted to the interface functions of National Instruments for GPIB programming. The functions supported by the libraries are listed in the following table.

Function

RSDLLibfind()

RSDLLibwrt()

RSDLLilwrt()

RSDLLibwrtf()

RSDLLibrd()

RSDLLilrd()

RSDLLibrdf()

RSDLLibtmo()

RSDLLibsre()

RSDLLibloc()

RSDLLibeot()

RSDLLibrsp()

RSDLLibonl()

RSDLLTestSrq()

RSDLLWaitSrq()

RSDLLSwapBytes

Description

Provides a handle for access to a device.

Sends a zero-terminated string to a device.

Sends a certain number of bytes to a device.

Sends the contents of a file to a device.

Reads data from a device into a string.

Reads a certain number of bytes from a device.

Reads data from a device into a file.

Sets timeout for RSIB functions

Switches a device into the local or remote state

Temporarily switches a device into the local state

Enables/disables the END message for write operations.

Performs a serial poll and provides the status byte.

Sets the device online/offline.

Checks whether a device has generated an SRQ.

Waits until a device generates an SRQ.

Swaps the byte sequence for binary numeric display (only required for non-Intel platforms)

1093.4820.12

4.243

E-3

RSIB Interface FSP

Variables ibsta, iberr, ibcntl

As with the National Instrument interface, the successful execution of a command can be checked by means of the variables ibsta

, iberr

and ibcntl

. For this purpose, all RSIB functions are assigned references to these three variables.

Status word - ibsta

The status word ibsta provides information on the status of the RSIB interface. The following bits are defined:

Bit designation

ERR

TIMO

CMPL

Bit

15

14

8

Hex code

8000

4000

0100

Description

Is set when an error has occurred on calling a function. If this bit is set, iberr contains an error code which specifies the error in greater detail.

Is set when a timeout has occurred on calling a function.

Is set if the response of the GPIB parser has been read out completely. If a parser response is read out with the function

RSDLLilrd() and the length of the buffer is insufficient for the answer, the bit will be cleared.

Error variable - iberr

If the ERR bit (8000h) is set in the status word, iberr

contains an error code which allows to specify the error in greater detail. Extra error codes are defined for the RSIB interface, independent of the

National Instruments interface.

Error

IBERR_CONNECT

IBERR_NO_DEVICE

IBERR_MEM

IBERR_TIMEOUT

IBERR_BUSY

IBERR_FILE

IBERR_SEMA

Error code

7

8

5

6

2

3

4

Description

Setup of the connection to the measuring instrument has failed.

A function of the interface has been called with an illegal device handle.

No empty memory available

Timeout has occurred.

The RSIB interface is blocked by a still running function.

Error when reading or writing to a file.

Error upon creating or assigning a semaphore (only under Unix)

Count variable - ibcntl

The variable ibcntl is updated with the number of transferred bytes each time a read or write function is called.

1093.4820.12

4.244

E-3

FSP RSIB Interface

Description of Interface Functions

RSDLLibfind()

The function provides a handle for access to the device with the name udName

.

VB format:

Function RSDLLibfind (ByVal udName$, ibsta%, iberr%, ibcntl&)

As Integer

C-format:

short WINAPI RSDLLibfind( char far *udName, short far *ibsta, short far *iberr, unsigned long far *ibcntl)

C format (Unix):

short RSDLLibfind( char *udName, short *ibsta, short *iberr, unsigned long *ibcntl)

Parameter:

udName

IP address of device

Example:

ud = RSDLLibfind ("89.10.38.97", ibsta, iberr, ibcntl)

The function must be called prior to all other functions of the interface.

As return value, the function provides a handle that must be indicated in all functions for access to the device. If the device with the name udName

is not found, the handle has a negative value.

RSDLLibwrt

This function sends data to the device with the handle ud

.

VB format:

C format:

Function RSDLLibwrt (ByVal ud%, ByVal Wrt$, ibsta%, iberr%, ibcntl&) As Integer short WINAPI RSDLLibwrt( short ud, char far *Wrt, short far

*ibsta, short far *iberr, unsigned long far *ibcntl )

C format (Unix):

short RSDLLibwrt( short ud, char *Wrt, short *ibsta, short

*iberr, unsigned long *ibcntl )

Parameter:

ud

Wrt

Device handle

String sent to the device.

RSDLLibwrt(ud, "SENS:FREQ:STAR?", ibsta, iberr, ibcntl)

Example:

This function allows to send setting and query commands to the measuring instruments. Whether the data is interpreted as a complete command can be set using the function

RSDLLibeot()

.

RSDLLilwrt

This function sends

Cnt

bytes to a device with the handle ud

.

VB format:

C format:

Function RSDLLilwrt (ByVal ud%, ByVal Wrt$, ByVal Cnt&, ibsta%, iberr%, ibcntl&) As Integer short WINAPI RSDLLilwrt( short ud, char far *Wrt, unsigned long Cnt, short far *ibsta, short far *iberr, unsigned long far *ibcntl)

C format (Unix):

short RSDLLilwrt( short ud, char *Wrt, unsigned long Cnt, short *ibsta, short *iberr, unsigned long *ibcntl)

Parameter:

ud

Wrt

Cnt

Device handle

String sent to the GPIB parser.

Number of bytes sent to the device.

Example:

RSDLLilwrt (ud, '......', 100, ibsta, iberr, ibcntl)

Like

RSDLLibwrt()

this function sends data to a device. The only difference is that binary data can be sent as well. The length of the data is not determined by a zero-terminated string, but by the indication of

Cnt

bytes. If the data is to be terminated with EOS (0Ah), the EOS byte must be appended to the string.

1093.4820.12

4.245

E-3

RSIB Interface FSP

RSDLLibwrtf

This function sends the contents of a file file$

to the device with the handle ud

.

VB format:

Function RSDLLibwrtf (ByVal ud%, ByVal file$, ibsta%, iberr%, ibcntl&) As Integer

C format:

short WINAPI RSDLLibwrt( short ud, char far *Wrt, short far

*ibsta, short far *iberr, unsigned long far *ibcntl )

C format (Unix):

short RSDLLibwrt( short ud, char *Wrt, short *ibsta, short

*iberr, unsigned long *ibcntl )

Parameter:

ud file

Device handle

File the contents of which are sent to the device.

Example:

RSDLLibwrtf(ud, "C:\db.sav", ibsta, iberr, ibcntl)

This function allows to send setting and query commands to the measuring instruments. Whether the data is interpreted as complete command can be set using the function

RSDLLibeot()

.

RSDLLibrd()

The function reads data from the device with the handle ud

into the string

Rd

.

VB format:

Function RSDLLibrd (ByVal ud%, ByVal Rd$, ibsta%, iberr%, ibcntl&) As Integer

C format:

short WINAPI RSDLLibrd( short ud, char far *Rd, short far

*ibsta, short far *iberr, unsigned long far *ibcntl )

C format (Unix):

short RSDLLibrd( short ud, char *Rd, short *ibsta, short

*iberr, unsigned long *ibcntl )

Parameter:

Example:

ud

Rd

Device handle

String into which the read data is copied.

RSDLLibrd (ud, Rd, ibsta, iberr, ibcntl)

This function fetches the responses of the GPIB parser to a query.

In the case of Visual Basic programming, a string of sufficient length must be generated before. This can be done during the definition of the string or using the command

Space$()

.

Generation of a string of the length 100:

Dim Rd as String * 100

Dim Rd as String

Rd = Space$(100)

RSDLLilrd

This function reads

Cnt

bytes from the device with the handle ud

.

VB format:

Function RSDLLilrd (ByVal ud%, ByVal Rd$, ByVal Cnt&, ibsta%, iberr%, ibcntl&) As Integer

C format:

short WINAPI RSDLLilrd( short ud, char far *Rd, unsigned long

Cnt, short far *ibsta, short far *iberr, unsigned long far

*ibcntl )

C format (Unix):

short RSDLLilrd( short ud, char *Rd, unsigned long Cnt, short

*ibsta, short *iberr, unsigned long *ibcntl )

Parameter:

Example:

ud cnt

Device handle

Maximum number of bytes copied from the DLL into the target string

Rd

.

RSDLLilrd (ud, RD, 100, ibsta, iberr, ibcntl)

Like the function

RSDLLibrd()

, this function reads data from a device. The only difference is that in this case the maximum number of bytes to be copied into the target string

Rd can be indicated by means of

Cnt

. This function prevents writing beyond the end of the string.

1093.4820.12

4.246

E-3

FSP RSIB Interface

RSDLLibrdf()

Reads data from the device with the handle ud

into the file file

.

VB format:

Function RSDLLibrdf (ByVal ud%, ByVal file$, ibsta%, iberr%, ibcntl&) As Integer

C format:

short WINAPI RSDLLibrd( short ud, char far *file, short far

*ibsta, short far *iberr, unsigned long far *ibcntl )

C format (Unix):

short RSDLLibrd( short ud, char *file, short *ibsta, short

*iberr, unsigned long *ibcntl )

Parameter:

Example:

ud file

Device handle

File into which the read data is written.

RSDLLibrdf (ud, "c:\db.sav", ibsta, iberr, ibcntl)

The file name may as well include a drive or path specification.

RSDLLibtmo

This function defines the timeout for a device. The default value for the timeout is set to 5 seconds.

VB format:

Function RSDLLibtmo (ByVal ud%, ByVal tmo%, ibsta%, iberr%, ibcntl&) As Integer

C format:

void WINAPI RSDLLibtmo( short ud, short tmo, short far *ibsta, short far *iberr, unsigned long far *ibcntl )

C format (Unix):

short RSDLLibtmo( short ud, short tmo, short *ibsta, short

*iberr, unsigned long *ibcntl )

Parameter:

Example:

ud tmo

Device handle

Timeout in seconds

RSDLLibtmo (ud, 10, ibsta, iberr, ibcntl)

RSDLLibsre

This function sets the device to the 'LOCAL' or 'REMOTE' state.

VB format:

Function RSDLLibsre (ByVal ud%, ByVal v%, ibsta%, iberr%, ibcntl&) As Integer

C format:

void WINAPI RSDLLibsre( short ud, short v, short far *ibsta, short far *iberr, unsigned long far *ibcntl)

C format (Unix):

short RSDLLibsre( short ud, short v, short *ibsta, short

*iberr, unsigned long *ibcntl)

Parameter:

ud v

Device handle

State of device

0 - local

1 - remote

Example:

RSDLLibsre (ud, 0, ibsta, iberr, ibcntl)

1093.4820.12

4.247

E-3

RSIB Interface FSP

RSDLLibloc

This function temporarily switches the device to the 'LOCAL' state.

VB format:

Function RSDLLibloc (ByVal ud%, ibsta%, iberr%, ibcntl&) As

Integer

C format:

void WINAPI RSDLLibloc( short ud, short far *ibsta, short far

*iberr, unsigned long far *ibcntl)

C format (Unix):

short RSDLLibloc( short ud, short *ibsta, short *iberr, unsigned long *ibcntl)

Parameter:

Example:

ud

Device handle

RSDLLibloc (ud, ibsta, iberr, ibcntl)

After switchover to LOCAL state, the instrument can be manually operated via the front panel. On the next access to the instrument by means of one of the functions of the library the instrument is switched again to the REMOTE state.

RSDLLibeot

This function enables or disables the END message after write operations.

VB format:

Function RSDLLibeot (ByVal ud%, ByVal v%, ibsta%, iberr%, ibcntl&) As Integer

C format:

void WINAPI RSDLLibsre( short ud, short v, short far *ibsta, short far *iberr, unsigned long far *ibcntl)

C format (Unix):

short RSDLLibsre( short ud, short v, short *ibsta, short

*iberr, unsigned long *ibcntl)

Parameter:

ud v

Device handle.

0 - no END message

1 – send END message

Example:

RSDLLibeot (ud, 1, ibsta, iberr, ibcntl)

If the END message is disabled, the data of a command can be sent with several successive calls of write functions. The END message must be enabled again before sending the last data block.

RSDLLibrsp

This function performs a serial poll and provides the status byte of the device.

VB format:

Function RSDLLibrsp(ByVal ud%, spr%, ibsta%, iberr%, ibcntl&)

As Integer

C format:

void WINAPI RSDLLibrsp( short ud, char far* spr, short far

*ibsta, short far *iberr, unsigned long far *ibcntl)

C format (Unix):

short RSDLLibrsp( short ud, char *spr, short *ibsta, short

*iberr, unsigned long *ibcntl)

Parameter:

ud spr

Device handle

Pointer to status byte

Example:

RSDLLibrsp(ud, spr, ibsta, iberr, ibcntl)

1093.4820.12

4.248

E-3

FSP RSIB Interface

RSDLLibonl

This function switches the device to 'online' or 'offline' mode. When it is switched to ‘offline’ mode, the interface is released and the device handle becomes invalid. By calling RSDLLibfind again, the communication is set up again.

VB format:

C format:

C format:

Parameter:

Function RSDLLibonl (ByVal ud%, ByVal v%, ibsta%, iberr%, ibcntl&) As Integer void WINAPI RSDLLibonl( short ud, short v, short far *ibsta, short far *iberr, unsigned long far *ibcntl) short RSDLLibonl( short ud, short v, short *ibsta, short

*iberr, unsigned long *ibcntl) ud v

Device handle

Device state

0 - local

1 - remote

Example:

RSDLLibonl(ud, 0, ibsta, iberr, ibcntl)

RSDLLTestSRQ

This function checks the status of the SRQ bit.

VB format:

Function RSDLLTestSrq (ByVal ud%, Result%, ibsta%, iberr%, ibcntl&) As Integer

C format:

C format (Unix):

short RSDLLTestSrq( short ud, short *result, short *ibsta, short *iberr, unsigned long *ibcntl)

Parameter:

void WINAPI RSDLLTestSrq( short ud, short far *result, short far *ibsta, short far *iberr, unsigned long far *ibcntl)

Example:

ud result

Device handle

Reference to an integer value in which the library returns the status of the SRQ bit.

0 - no SRQ

1 - SRQ active, device requests service

RSDLLTestSrq (ud, result%, ibsta, iberr, ibcntl)

This function corresponds to the function

RSDLLWaitSrq

. The only difference is that

RSDLLTestSRQ immediately returns the current status of the SRQ bit, whereas

RSDLLWaitSrq

waits for an SRQ to occur.

1093.4820.12

4.249

E-3

RSIB Interface FSP

RSDLLWaitSrq

This function waits until the device triggers an SRQ with the handle ud

.

VB format:

Function RSDLLWaitSrq (ByVal ud%, Result%, ibsta%, iberr%, ibcntl&) As Integer

C format:

void WINAPI RSDLLWaitSrq( short ud, short far *result, short far *ibsta, short far *iberr, unsigned long far *ibcntl)

C format (Unix):

short RSDLLWaitSrq( short ud, short *result, short *ibsta, short *iberr, unsigned long *ibcntl)

Parameter:

ud result

Device handle

Reference to an integer value in which the library returns the status of the SRQ bit.

0 - No SRQ has occurred during the timeout

1 - SRQ has occurred during the timeout

Example:

RSDLLWaitSrq( ud, result, ibsta, iberr, ibcntl );

The function waits until one of the following two events occurs.

••••

The measuring instrument triggers an SRQ

••••

No SRQ occurs during the timeout defined with

RSDLLibtmo()

RSDLLSwapBytes

This function changes the display of binary numbers on non-Intel platforms.

VB format:

C format:

Not provided at present since it is required only on non-Intel platforms.

void WINAPI RSDLLSwapBytes( void far *pArray, const long size, const long count)

C format (Unix):

void RSDLLSwapBytes( void *pArray, const long size, const long count)

Parameter:

Example:

pArray size count

Array in which modifications are made

Size of a single element in pArray

Number of elements in pArray

RSDLLSwapBytes( Buffer, sizeof(float), ibcntl/sizeof(float))

This function swaps the display of various elements from

Big Endian

to

Little Endian

and vice versa. It is expected that a coherent storage area of elements of the same file type ( size

byte) is transferred to pArray

. This function has no effect on Intel platforms.

Different types of processor architecture store data in different byte sequences. For example, Intel processors store data in the reverse order of Motorola processors. Comparison of byte sequences:

Byte sequence

Big Endian

Little Endian

Use in

Motorola processors, network standard

Intel processors

Display in memory

Most significant byte at least significant address

Least significant byte at least significant address

Description

The

most significant

byte is at the left end of the word.

The

most significant

byte is at the right end of the word.

1093.4820.12

4.250

E-3

FSP RSIB Interface

Programming via the RSIB Interface

Visual Basic

Programming hints:

Access to the functions of the RSIB.DLL

To create Visual Basic control applications, the file RSIB.BAS must be added to a project for 16-bit

Basic programs and the file RSIB32.BAS for 32-bit Basic programs (D:\R_S\INSTR\RSIB) so that the functions of the RSIB.DLL or RSIB32.DLL can be accessed.

Generating a response buffer

Prior to calling the functions

RSDLLibrd() and

RSDLLilrd(),

a string of sufficient length must be generated. This is possible either by defining the string or using the command

Space$()

.

Generating a string of the length 100:

Dim Response as String * 100

Dim Response as String

Response = Space$(100)

If a response is to be output as a string from the measuring instrument, the appended blanks can be removed using the Visual Basic Function RTrim().

Example:

Response = Space$(100)

Call RSDLLibrd(ud, Response, ibsta, iberr, ibcntl)

Response = RTrim(Response)

' Output of Response

Reading out trace data in real format

Using the function declarations in the file RSIB.BAS or RSIB32.BAS the responses of the device can be assigned to one string only. If the data are to be read into an array with float values, the header and the useful data must be read out with separate function calls.

Example of a header

# 4 2004

Prefix for binary data

Number of digits of the following length indication

Length of data, e.g.

501 pixels

4 bytes/pixel

In order to enable the trace data to be directly read into a float array, a special function declaration must be created.

Declare Function RSDLLilrdTraceReal Lib "rsib32.dll" Alias "RSDLLilrd"

(ByVal ud%, Rd As Single, ByVal Cnt&, ibsta%, iberr%, ibcntl&) As Integer

1093.4820.12

4.251

E-3

RSIB Interface FSP

Example:

Dim ibsta As Integer

Dim iberr As Integer

Dim ibcntl As Long

Dim ud As Integer

Dim Result As String

Dim Digits As Byte

Dim TraceBytes As Long

Dim TraceData(501) As Single

' Status variable

' Error variable

' Count variable

' Handle for measuring instrument

' Buffer for simple results

' Number of digits of length indication

' Length of trace data in bytes

' Buffer for floating point

' Binary data

' Set up connection to instrument ud = RSDLLibfind("89.10.38.97", ibsta, iberr, ibcntl)

' Query trace data in real format

Call RSDLLibwrt(ud, "FORM:DATA REAL,32", ibsta, iberr, ibcntl)

Call RSDLLibwrt(ud, "TRACE? TRACE1", ibsta, iberr, ibcntl)

'Read number of digits of length indication

Result = Space$(20)

Call RSDLLilrd(ud, Result, 2, ibsta, iberr, ibcntl)

Digits = Val(Mid$(Result, 2, 1))

'Read length indication

Result = Space$(20)

Call RSDLLilrd(ud, Result, Digits, ibsta, iberr, ibcntl)

TraceBytes = Val(Left$(Result, Digits)) 'and store

' Read out trace data

Call RSDLLilrdTraceReal(ud, TraceData(0), TraceBytes, ibsta, iberr,ibcntl)

Programming examples:

In this example, the start frequency of the instrument is queried.

Dim ibsta As Integer

Dim iberr As Integer

' Status variable

' Error variable

Dim ibcntl As Long

Dim ud As Integer

' Count variable

' Handle for measuring instrument

Dim Response As String ' Response string

' Set up connection to measuring instrument ud = RSDLLibfind("89.10.38.97", ibsta, iberr, ibcntl)

If (ud < 0) Then

' Error treatment

End If

' Send query command

Call RSDLLibwrt(ud, "FREQ:START?", ibsta, iberr, ibcntl)

' Provide space for response

Response = Space$(100)

' Read response from measuring instrument

Call RSDLLibrd(ud, Response, ibsta, iberr, ibcntl)

1093.4820.12

4.252

E-3

FSP

In this example, a Save/Recall of the instrument setups is performed.

Dim ibsta As Integer

Dim iberr As Integer

Dim ibcntl As Long

Dim ud As Integer

Dim Cmd As String

' Status variable

' Error variable

' Count variable

' Handle for measuring instrument

' Command string

RSIB Interface

' Set up connection to measuring instrument ud = RSDLLibfind("89.10.38.97", ibsta, iberr, ibcntl)

If (ud < 0) Then

' Error treatment

End If

' Request instrument settings

Cmd = "SYST:SET?"

Call RSDLLibwrt(ud, Cmd, ibsta, iberr, ibcntl)

' Store instrument response in file

Call RSDLLibrdf(ud, "C:\db.sav", ibsta, iberr, ibcntl)

' Reset instrument

Call RSDLLibwrt(ud, "*RST", ibsta, iberr, ibcntl)

' and restore the previous settings

' to this end disable the END message

Call RSDLLibeot(ud, 0, ibsta, iberr, ibcntl)

' first send off command

Call RSDLLibwrt(ud, "SYST:SET ", ibsta, iberr, ibcntl)

' enable the END message again

Call RSDLLibeot(ud, 1, ibsta, iberr, ibcntl)

' and send the data

Call RSDLLibwrtf(ud, "C:\db.sav", ibsta, iberr, ibcntl)

1093.4820.12

4.253

E-3

RSIB Interface FSP

Visual Basic for Applications (Winword and Excel)

Programming hints:

The programming language Visual Basic for Applications (VBA) is supported as a macro language by various manufacturers. The programs Winword and Excel use this language for the versions Winword

97 or Excel 5.0 and higher.

For macros created with Visual Basic for Applications, the same hints are valid as for Visual Basic

Applications.

Programming example:

Using the macro

QueryMaxPeak

a single sweep with subsequent query of the maximum peak is performed. The result is entered in a Winword or Excel document.

Sub QueryMaxPeak()

Dim ibsta As Integer

Dim iberr As Integer

' Status variable

' Error variable

Dim ibcntl As Long

Dim ud As Integer

' transferred characters

' Unit Descriptor (handle)for instrument

Dim Response As String ' Response string

' Set up connection to measuring instrument ud = RSDLLibfind("89.10.38.97", ibsta, iberr, ibcntl)

If (ud < 0) Then

Call MsgBox("Device with address 89.10.38.97 could" & _

"not be found", vbExclamation)

End

End If

' Determine maximum peak in the range 1-2MHZ

Call RSDLLibwrt(ud, "*RST", ibsta, iberr, ibcntl)

Call RSDLLibwrt(ud, "INIT:CONT OFF", ibsta, iberr, ibcntl)

Call RSDLLibwrt(ud, "FREQ:START 1MHZ", ibsta, iberr, ibcntl)

Call RSDLLibwrt(ud, "FREQ:STOP 2MHZ", ibsta, iberr, ibcntl)

Call RSDLLibwrt(ud, "INIT:IMM;*WAI", ibsta, iberr, ibcntl)

Call RSDLLibwrt(ud, "CALC:MARK:MAX;Y?", ibsta, iberr, ibcntl)

Response = Space$(100)

Call RSDLLibrd(ud, Response, ibsta, iberr, ibcntl)

Response = RTrim(Response) ' Cut off space

' Insert value in current document (Winword)

Selection.InsertBefore (Response)

Selection.Collapse (wdCollapseEnd)

' Terminate connection to measuring instrument

Call RSDLLibonl(ud, 0, ibsta, iberr, ibcntl)

End Sub

The entry of the peak value in the Winword document can be replaced as follows for Excel:

' Insert value in current document (Excel)

ActiveCell.FormulaR1C1 = Response

1093.4820.12

4.254

E-3

FSP RSIB Interface

C / C++

Programming hints:

Access to the functions of the RSIB32.DLL (Windows platforms)

The functions of the

RSIB32.DLL

are declared in the header file

RSIB.H

. The DLL functions can be linked to a C/C++ program in different ways.

1. Enter one of the supplied import libraries (

RSIB.LIB or RSIB32.LIB

) into the linker options.

2. Load the library using the function

LoadLibrary() during runtime and determine the function pointers of the DLL functions using

GetProcAddress()

. Before the end of the program, the

RSIB.DLL

must be unloaded again using the function

FreeLibrary()

.

When import libraries are used, the DLL is automatically loaded immediately before the application is started. At the end of the program, the DLL is unloaded again unless it is still used by other applications.

Access to librsib.so functions (Unix platforms)

The functions of librsib.so

are declared in the header file

RSIB.H

. Upper/lower case characters for file names are typically observed under Unix. The library functions are linked to a C/C++ program by entering the

-lrsib

linker option.

The

shared library

librsib.so

is automatically loaded on starting the application. The accessibility

(for example via standard path) of the library must be ensured. Refer to the beginning of this main chapter under „Unix Environment“.

Query of strings

If instrument responses are to be further processed as strings, a zero termination must be appended.

Example: char buffer[100];

...

RSDLLibrd( ud, buffer, &ibsta, &iberr, &ibcntl ); buffer[ibcntl] = 0;

1093.4820.12

4.255

E-3

RSIB Interface FSP

Programming example:

In the following C program example, a single sweep is started on the device with the IP address

89.10.38.97 and subsequently a marker is set to maximum level. Prior to the search for maximum, a synchronization to the end of the sweep is performed. For this purpose the command

"*OPC"

(Operation complete) is used to create a service request at the end of the sweep, for which the control program waits with the function

RSDLLWaitSrq()

. Then the maximum is determined

(

"CALC:MARK:MAX"

) and the level read out (

"Y?"

).

#define MAX_RESP_LEN 100 short ibsta, iberr; unsigned long ibcntl; short short char char ud; srq;

MaxPegel[MAX_RESP_LEN]; spr;

// Determine handle for instrument ud = RSDLLibfind( "89.10.38.97", &ibsta, &iberr, &ibcntl );

// if instrument exists if ( ud >= 0 )

{

// Set timeout for RSDLLWaitSrq() to 10 seconds

RSDLLibtmo( ud, 10, &ibsta, &iberr, &ibcntl );

// Activate SRQ generation via event status register (ESR)

// and enable ESB bit in SRE register

RSDLLibwrt( ud, "*ESE 1;*SRE 32", &ibsta, &iberr, &ibcntl );

// Set single sweep, trigger sweep and use "*OPC" to cause

// the generation of a service request at the end of the sweep

RSDLLibwrt( ud, "INIT:CONT off;INIT;*OPC", &ibsta, &iberr, &ibcntl );

// Wait for SRQ (end of sweep)

RSDLLWaitSrq( ud, &srq, &ibsta, &iberr, &ibcntl );

// Clear RQS/MSS bit

RSDLLibrsp( ud, &spr, &ibsta, &iberr, &ibcntl );

// if sweep is terminated if (srq)

{

// then set marker to first maximum and query the level

RSDLLibwrt( ud, "CALC:MARK:MAX;Y?", &ibsta, &iberr, &ibcntl );

RSDLLilrd( ud, MaxPegel, MAX_RESP_LEN, &ibsta, &iberr, &ibcntl );

MaxPegel[ibcntl] = 0;

}

// End connection to instrument

RSDLLibonl (ud, 0, &ibsta, &iberr, &ibcntl ) ;

} else

{

; // Error Instrument not found

}

1093.4820.12

4.256

E-3

FSP

10 Index

Index

Note:

*

All softkeys are listed alphabetically under keyword "Softkey" with their names. The page numbers 4.xxx refer to the detailed description of the softkeys in chapter 4. Generally, the number of the page in chapter 6 containing the equivalent remote control command is given in addition.

A list of softkeys and equivalent remote control commands or command sequences is given in chapter 6, section "Table of Softkeys with IEC/IEEE-Bus Command Assignment".

Chapter 6 also contains an alphabetical list of all remote control commands.

* (enhancement lable)............................................ 3.6, 4.44

0

0 to 9 (key) ................................................................... 3.11

1

1 - 2 (trace info) ............................................................ 4.54

1 - 3 (trace info) ............................................................ 4.54

AP (trace info) .................................................................3.5

APD function ............................................................... 4.108

Ascii # ...........................................................................5.14

Attenuation....................................................................4.15

Autopeak detector .........................................................4.51

AUX CONTROL interface ..................................................................8.13

AUX CONTROL connector............................................8.13

AV (trace info) .................................................................3.5

Average detector.................................................. 4.50, 4.53

Averaging............................................................. 4.43, 4.86

continuous sweep ...................................................4.43

lin/log ......................................................................4.45

single sweep ...........................................................4.43

sweep count............................................................4.43

AVG (trace info) ..............................................................3.5

2

20.4 MHz Out ............................................................... 8.12

7

75

(enhancement lable) .............................................. 3.6

8

8PSK

Midamble.............................................................. 6.100

selection ............................................................... 6.101

B

BACK (key) ...................................................................3.11

Band filter, digital...........................................................4.24

Bandpass ......................................................................4.24

Bandwidth occupied ............................................................... 4.103

resolution ................................................................4.20

video .......................................................................4.20

Baud rate .................................................................... 4.147

Befehl alph. Liste ............................................................. 6.329

Zuordnung Softkey................................................ 6.344

Block data .....................................................................5.14

Boolean parameter........................................................5.13

Brightness ................................................................... 4.136

Brightness, Screen...................................................... 4.179

A

Abort print ...................................................................... 4.175

recording of correction data .................................... 4.55

AC supply connection ................................................... 1.16

ACP measurement ....................................................... 4.88

Addressed command ...................................................... 8.5

Adjacent-channel power measurement ......................... 4.90

Administrator function ................................................... 1.19

AF demodulation........................................................... 4.72

AF OUTPUT ................................................................... 8.2

AM demodulation.......................................................... 4.73

AM modulation............................................................ 4.200

AM modulation depth.................................................. 4.114

Amplitude ..................................................................... 4.13

Amplitude probability distribution function ................... 4.108

Amplitude statistics..................................................... 4.106

Analyzer mode................................................................ 4.5

Annotation .................................................................. 4.134

C

Calibration functioning ................................................. 4.197, 4.212

reflection measurement......................................... 4.211

reflexion measurement.......................................... 4.196

transmission measurement ........................ 4.190, 4.205

Calibration results .........................................................4.56

CANCEL (key)...............................................................3.11

CCDF function............................................................. 4.108

CCIR 473-4 ...................................................................4.39

CCVS signal..................................................................4.40

Center frequency.............................................................4.6

Step size ...................................................................4.6

Channel power ......................................................................4.97

bandwidth ......................................... 4.96, 4.103, 4.113

number....................................................................4.95

1093.4820.12

10.1

E-3

Index

spacing................................................................... 4.97

Channel filters............................................................... 4.26

Channel power measurement ....................................... 4.90

Characters, special

.......................................................

6.2

Clear/Write mode.......................................................... 4.42

CLWR (trace info) ........................................................... 3.5

Colon ............................................................................ 5.14

Color.................................................................4.136, 4.178

Color printout .............................................................. 4.178

COM interface ......................................................4.147, 8.7

Comma ......................................................................... 5.14

Command

# ............................................................................. 5.14

addressed ................................................................ 8.5

colon ...................................................................... 5.14

comma ................................................................... 5.14

description................................................................ 6.1

header .................................................................... 5.10

line ......................................................................... 5.12

long form ................................................................ 5.11

overlapping execution............................................. 5.17

programming examples ............................................ 7.1

query ...................................................................... 5.12

question mark.................................................5.12, 5.14

quotation mark........................................................ 5.14

recognition.............................................................. 5.16

sequence................................................................ 5.17

short form ............................................................... 5.11

structure ................................................................... 5.9

suffix....................................................................... 5.11

syntax elements ..................................................... 5.14

univeral..................................................................... 8.5

white space ............................................................ 5.14

Common commands....................................................... 6.4

CONDition register part................................................. 5.19

Configuration .............................................................. 4.137

save ..................................................................... 4.163

Continue single sweep.................................................. 4.29

Continuous sweep ........................................................ 4.28

Control output level........................................................... 4.189

Control characters .......................................................... 8.9

Copy file ........................................................................ 4.171

limit line ................................................................ 4.122

trace ....................................................................... 4.48

Correction data ............................................................. 4.55

Correction of entry ........................................................ 3.17

Correction values normalization ..............................................4.187, 4.203

Counter resolution ........................................................ 4.60

Coupling bandwidths ............................................................. 4.18

default settings ...............................................4.22, 4.24

frequency of diagrams .......................................... 4.133

reference level of diagramms................................ 4.133

resolution bandwidth............................................... 4.21

sweep time ............................................................. 4.22

video bandwidth ..................................................... 4.21

CP measurement.......................................................... 4.90

Cumulative distribution function .................................. 4.108

D

Date............................................................................ 4.134

input ..................................................................... 4.150

DCL .............................................................................. 5.16

Decimal point................................................................ 3.11

Default coupling ratios ........................................................ 4.22

FSP

display settings ..................................................... 4.134

scalings of x- and y-axis........................................ 4.110

Delay, gate signal..........................................................4.36

Delete file ......................................................................... 4.171

limit line................................................................. 4.122

Demodulation ................................................................4.72

Detector autopeak .................................................................4.49

average...................................................................4.50

max peak ................................................................4.49

min peak .................................................................4.49

quasipeak ...............................................................4.50

RMS........................................................................4.50

sample ....................................................................4.49

Device reset (overall) ......................................................4.2

Directory create.................................................................... 4.171

rename.................................................................. 4.171

Diskette, format ........................................................... 4.171

Display brightness ............................................................. 4.136

color...................................................................... 4.136

date....................................................................... 4.134

deactivation during single sweep ............................4.30

power-save mode......................................... 1.18, 4.135

saturation .............................................................. 4.136

time....................................................................... 4.134

tint......................................................................... 4.136

title ........................................................................ 4.134

Display line.................................................................. 4.128

Display mode full screen ...................................................... 3.8, 4.132

split screen..................................................... 3.8, 4.133

Display range frequency ..................................................................4.6

level ........................................................................4.13

span........................................................................4.10

Distribution function..................................................... 4.108

Double dagger...............................................................5.14

E

EDGE

Midamble .............................................................. 6.100

selection................................................................ 6.101

Editing limit line................................................................. 4.123

parameter................................................................3.16

table........................................................................3.21

Electrostatic discharge ..................................................1.14

EMI Protection ..............................................................1.16

ENABle register part......................................................5.19

Enabling the front panel keys ..........................................4.4

Enhancement labels........................................................3.5

ENTER (key) .................................................................3.11

Entry abort .......................................................................3.11

activate .......................................................... 3.14, 3.23

correct.....................................................................3.17

terminate.................................................................3.11

Error messages .................................................... 4.158, 9.1

Error variable - iberr .................................................... 4.244

Error-queue query .........................................................5.32

ESC (key)......................................................................3.11

ESE (event status enable register) ................................5.22

ESR (event status register) ...........................................5.22

EVENt register part .......................................................5.19

Event status enable register (ESE) ...............................5.22

Event status register (ESR)...........................................5.22

1093.4820.12

10.2

E-3

FSP

EXT (enhancement lable) ............................................... 3.6

EXT TRIGGER/GATE input ..................................4.32, 8.12

External generator ...................................................... 4.203

External noise source ................................................. 4.138

Index

Horizontal sync signal ...................................................4.39

Hotkey

NETWORK ........................................................... 4.187

RECEIVER ...............................................................4.3

SCREEN A/B ................................................. 4.3, 6.120

SPECTRUM............................................ 4.3, 4.5, 6.155

Hue, Screen ................................................................ 4.179

Hz/dB. (key) ..................................................................3.11

F

Fast power measurement.................................................4.92

FFT filter ....................................................................... 4.24

Field, first or second ..................................................... 4.39

File copy ..................................................................... 4.171

delete ................................................................... 4.171

rename ................................................................. 4.171

sort ....................................................................... 4.171

Filter band filter ............................................................... 4.24

FFT ........................................................................ 4.24

Firmware update......................................................... 4.162

Firmware version ........................................................ 4.157

Fixed filter..................................................................... 4.24

FM demodulation .......................................................... 4.73

FM modulation............................................................ 4.200

Free-run sweep ............................................................ 4.31

Frequency ...................................................................... 4.5

axis labelling............................................................. 3.4

center ....................................................................... 4.6

counter ................................................................... 4.60

coupling of diagrams ............................................ 4.133

display window ................................................ 4.5, 4.10

Line ...................................................................... 4.129

offset ........................................................................ 4.9

Offset (ext. generator) .......................................... 4.213

offset (tracking generator)..................................... 4.198

span ....................................................................... 4.10

start .......................................................................... 4.8

stop .......................................................................... 4.8

switching off display ............................................. 4.134

Frequency-converting measurements ...............4.198, 4.213

FRQ (enhancement lable)............................................... 3.6

Full screen............................................................3.8, 4.132

Full span....................................................................... 4.10

G

GAT (enhancement lable)............................................... 3.6

Gate delay ...................................................................... 4.36

external/internal...................................................... 4.34

length ..................................................................... 4.36

GET (Group Execute Trigger) ....................................... 5.16

Getting Started with the Instrument............................... 1.14

GHz/-dBm (key) ............................................................ 3.11

GMSK

Midamble.............................................................. 6.100

selection ............................................................... 6.101

H

Hardcopy format ................................................................... 4.177

orientation ............................................................ 4.177

screen .................................................................. 4.174

Hardware Adjustment ................................................. 4.162

Hardware settings, indication.......................................... 3.3

Header.......................................................................... 5.10

Help line editor.............................................................. 3.20

1093.4820.12

I

I/Q modulation............................................................. 4.201

IEC Bus

Interface..................................................................8.13

IEC/IEEE bus address ................................................................. 4.146

command description ................................................6.1

interface ....................................................................8.3

interface functions.....................................................8.4

programming examples .............................................7.1

IFOVL .............................................................................3.5

Impedance of input........................................................4.16

Indication hardware settings......................................................3.3

instrument settings ....................................................3.5

marker information ....................................................3.4

Initial configuration ..........................................................4.2

Input

EXT TRIGGER/GATE .................................... 4.32, 8.12

REF IN ....................................................................8.12

Input impedance............................................................4.16

Instrument functions ........................................................4.1

Interface functions

IEC/IEEE bus............................................................8.4

Interfaces ........................................................................8.2

Intermodulation product............................................... 4.115

Interrupt.........................................................................5.31

IST flag .........................................................................5.22

10.3

K

Key

0 to 9.......................................................................3.11

AMPT......................................................................4.13

BACK ......................................................................3.11

BW..........................................................................4.19

CAL.........................................................................4.55

CANCEL .................................................................3.11

DISP ..................................................................... 4.131

ENTER....................................................................3.11

ESC ............................................................... 3.11, 6.22

FILE ...................................................................... 4.163

FREQ........................................................................4.5

GHz/-dBm ...............................................................3.11

Hz/dB. .....................................................................3.11

kHz/dB ....................................................................3.11

LINES ........................................................ 4.119, 4.128

MEAS .....................................................................4.82

MHz/dBm ................................................................3.11

MKR........................................................................4.57

MKR FCTN .............................................................4.64

MKR to....................................................................4.74

PRESET ................................................. 4.2, 6.7, 6.272

roll-key ....................................................................3.12

SETUP.................................................................. 4.137

SPAN......................................................................4.10

SWEEP...................................................................4.28

TRACE....................................................................4.41

TRIG .......................................................................4.31

E-3

Index

Keyboard connection.............................................................. 1.20

connector ................................................................. 8.2

kHz/dB (key) ................................................................. 3.11

L

LAN

Interface ................................................................. 8.13

LAN-Interface ............................................................. 4.219

Level............................................................................. 4.13

display range .......................................................... 4.13

line ....................................................................... 4.129

offset (phase noise) ................................................ 4.68

offset (tracking generator)..................................... 4.189

range ...................................................................... 4.13

Limit reference ................................................................ 4.13

ACP measurement ................................................. 4.99

evaluation range ..................................................... 4.85

probability range ................................................... 4.110

Limit check ................................................................. 4.121

ACP measurement ................................................. 4.99

Limit Check................................................................. 4.121

Limit line copy ..................................................................... 4.122

delete ................................................................... 4.122

domain ................................................................. 4.124

edit ....................................................................... 4.123

limit check ............................................................ 4.121

offset .................................................................... 4.122

save ..................................................................... 4.127

scaling.................................................................... 4.125

select.................................................................... 4.120

shift ...................................................................... 4.127

unit......................................................................... 4.125

Line value .................................................................... 4.127

Frequency (Frequency Line 1, 2).......................... 4.129

level (Display Line 1,2) ......................................... 4.129

limit....................................................................... 4.120

reference (tracking generator) ....................4.193, 4.208

threshold ................................................................ 4.77

Time (Time Line 1, 2) ........................................... 4.130

Line system .................................................................. 4.40

Lines........................................................................... 4.129

LO exclude ................................................................... 4.81

Login/out (NT controller) ............................................... 1.19

Logo ........................................................................... 4.134

Lower case ..................................................................... 6.2

LPT interface .................................................................. 8.6

FSP

zoom .......................................................................4.63

Max hold .......................................................................4.42

Max peak detector.........................................................4.52

MAXH (trace info)............................................................3.5

Maximum peak value ....................................................4.86

Maximum search ...........................................................4.75

Maximum value .............................................................4.84

Mean power (GSM burst) ..............................................4.85

Mean value ...................................................................4.85

Measurement frequency-converting.................................. 4.198, 4.213

reflection ............................................................... 4.211

reflexion ................................................................ 4.196

transmission............................................... 4.190, 4.205

Measurement example

ACP with user-specific channel configuration........ 4.101

adjacent-channel power for a specific standard..... 4.100

CCDF of a IS95 BTS signal .................................. 4.111

occupied bandwidth of a PDC signal..................... 4.105

signal/noise power density (C/No) of an IS95 CDMA signal .................................................................... 4.102

Measurement Example

Harmonic ..................................................................2.5

Measurement of Carrier/Noise Ratio C/N and C/N o

.......

4.112

Measurement, save..................................................... 4.163

Memory, battery-powered..............................................1.18

Menu call ..........................................................................3.10

change keys............................................................3.10

Messages.................................................................... 4.158

acknowledgement .....................................................3.7

MHz/dBm (key)..............................................................3.11

MI (trace info) ..................................................................3.5

Min hold ........................................................................4.45

Min peak detector..........................................................4.52

MINH (trace info).............................................................3.5

Minimum search ............................................................4.81

Mobile radio standard....................................................4.91

Mode analyzer ....................................................................4.5

Modulation external (tracking generator) ................................. 4.199

Modulation depth......................................................... 4.114

Monitor connection ..............................................................1.22

connector ................................................................8.10

Mouse connection ..............................................................1.21

connector ................................................................8.12

Mouse connector.............................................................8.2

MSG................................................................................3.5

M

Maintenance ................................................................... 8.1

Manual operation return to............................................................. 5.4, 5.6

switch to ................................................................... 4.4

Marker .......................................................................... 4.57

center frequency to................................................. 4.75

CF stepsize to ........................................................ 4.80

indication .................................................................. 3.4

N dB Down ............................................................. 4.69

normal .................................................................... 4.57

peak ...............................................................4.65, 4.75

reference level to.................................................... 4.75

search limit ............................................................. 4.77

signal track ............................................................... 4.9

to trace ...........................................................4.59, 4.73

1093.4820.12

N

Network....................................................................... 4.187

Noise source, external .................................................... 4.138

Noise measurement ......................................................4.65

NOISE SOURCE...........................................................8.10

Normalization ................................................... 4.192, 4.207

NT computer .................................................................1.19

NTRansition register part...............................................5.19

Numerical values (command) ........................................5.13

10.4

O

Occupied bandwidth.................................................... 4.103

Offset frequency ..................................................................4.9

E-3

FSP

frequency (ext. generator) .................................... 4.213

gate signal.............................................................. 4.36

level (tracking generator) ...................................... 4.189

limit line ................................................................ 4.122

phase noise ............................................................ 4.68

reference level........................................................ 4.16

trigger ..................................................................... 4.32

Operating mode analyzer.................................................................... 4.5

Operating time ............................................................ 4.157

Option

FSP-B10 – External Generator ............................. 4.203

FSP-B16 – LAN Interface ..................................... 4.219

FSP-B6 – TV and RF Trigger ................................. 4.38

FSP-B9 – Tracking Generator .............................. 4.187

Order number ............................................................. 4.156

Orientation .................................................................. 4.177

Output

AF OUTPUT ............................................................. 8.2

IF 20.4 MHz Out ..................................................... 8.12

noise source control ............................................... 8.10

REF OUT ............................................................... 8.12

Output level control .................................................................. 4.189

OVEN ............................................................................. 3.5

Overwrite mode ............................................................ 4.42

OVLD.........................................................3.5, 4.197, 4.212

Index

Print abort ..................................................................... 4.175

start....................................................................... 4.174

PRINT SCREEN (Gate Signal)......................................4.36

Printer configuration ......................................................... 4.172

connection ....................................................... 1.23, 8.6

interface ....................................................................8.6

PRN (enhancement lable) ...............................................3.6

Probe Power connector...................................................8.2

PTRansition register part...............................................5.19

Putting into operation

AC supply connection .............................................1.16

Q

QP (trace info).................................................................3.5

Quasipeak detector .......................................................4.50

Query ................................................................... 5.12, 5.32

Question mark...................................................... 5.12, 5.14

Quotation mark..............................................................5.14

P

Packing........................................................................... 8.1

Parallel poll ................................................................... 5.32

Parallel poll enable register (PPE) ................................ 5.22

Parameter block data............................................................... 5.14

boolean .................................................................. 5.13

editing..................................................................... 3.16

numerical values .................................................... 5.13

selection ................................................................. 3.13

string ...................................................................... 5.14

text ......................................................................... 5.14

Password service functions................................................... 4.160

Windows NT........................................................... 1.19

Path............................................................................ 4.170

Peak excursion ............................................................. 4.78

Peak search .........................................................4.65, 4.75

Phase noise measurement ........................................... 4.67

PK (trace info)................................................................. 3.5

Polarity external trigger/gate................................................ 4.35

trigger edge ............................................................ 4.32

video ...................................................................... 4.40

Power bandwidth percentage ..................................... 4.103

Power cables .................................................................. 8.1

Power measurement..................................................... 4.82

CP/ACP.................................................................. 4.88

Fast .........................................................................4.92

occupied bandwidth.............................................. 4.103

signal amplitude statistics..................................... 4.106

Time Domain .......................................................... 4.83

Power, mean ................................................................ 4.85

Power-save mode display .................................................................... 1.18

hard disk................................................................. 1.18

PPE (parallel poll enable register)................................. 5.22

Preamplifier ................................................................ 4.139

Preparing the Instrument for Operation......................... 1.14

Preset instrument ........................................................... 4.2

Pretrigger...................................................................... 4.32

1093.4820.12

10.5

R

Rackmounting ...............................................................1.15

Recording the correction data .......................................4.55

Reference dataset (tracking generator) ....................... 4.197, 4.212

external ................................................................. 4.138

fixed ........................................................................4.61

frequency ................................................................4.61

level to marker level ................................................4.75

line (tracking generator) ............................. 4.193, 4.208

position for normalization ...................................... 4.208

Reference level .............................................................4.13

channel power.........................................................4.93

coupling of diagrams ............................................. 4.133

offset.......................................................................4.16

position ...................................................................4.16

to marker level ........................................................4.75

Reference point frequency ................................................................4.61

frequency (phase noise)..........................................4.69

level ........................................................................4.61

offset.................................................................4.61

level (phase noise) ..................................................4.68

offset.................................................................4.68

x axis ......................................................................4.62

Reference value channel power.......................................................... 4.92

time domain power..................................................4.86

Reflection measurement................................... 4.196, 4.211

Remote control basics .......................................................................5.1

IEC/IEEE bus............................................................5.4

RS-232-C ..................................................................5.5

switch over................................................................5.3

Remote Control

RSIB ..................................................................... 4.241

Rename directory ................................................................ 4.171

file ......................................................................... 4.171

Reset device .......................................................................4.2

status reporting system ...........................................5.33

Resolution bandwidth ....................................................4.20

Resolution counter ........................................................4.60

RF ATTEN MANUAL.....................................................4.17

RF attenuation...............................................................4.15

E-3

Index

RM (trace info)................................................................ 3.5

RMS detector........................................................4.50, 4.52

RMS value.................................................................... 4.84

Roll-key ........................................................................ 3.12

RS-232-C configuration......................................................... 4.147

interface ................................................................... 8.7

transmission parameters .......................................... 8.8

S

SA (trace info)................................................................. 3.5

Sample detector ........................................................... 4.52

Sample number .......................................................... 4.109

Saturation ................................................................... 4.136

Saturation, Screen ...................................................... 4.180

Save configuration......................................................... 4.163

limit line ................................................................ 4.127

measurement ....................................................... 4.163

Scalar reflection measurement .........................4.196, 4.211

Scaling level axis ................................................................ 4.16

level display range.................................................. 4.14

limit line .................................................................. 4.125

x- and y-axis (signal statistic) ............................... 4.109

SCPI conformity information .............................................. 6.1

introduction............................................................... 5.9

SCPI version .................................................................. 5.1

Screen ............................................................................ 3.1

brightness............................................................. 4.179

Colors................................................................... 4.180

full screen............................................................. 4.132

hue ....................................................................... 4.179

Saturation............................................................. 4.180

split screen .....................................................3.8, 4.133

subdivision ............................................................... 3.2

Screen, Colors............................................................ 4.180

Search bandwidth................................................................. 4.9

direction.................................................................. 4.76

minimum................................................................. 4.81

peak ...............................................................4.65, 4.75

peak excursion ....................................................... 4.78

PEAK EXCURSION ............................................... 4.71

range ...................................................................... 4.77

Selftest ....................................................................... 4.161

Sensitivity

APD measurement ............................................... 4.110

CCDF measurement............................................. 4.110

Serial interface................................................................ 8.7

configuration......................................................... 4.147

Serial number ............................................................. 4.156

Serial poll...................................................................... 5.31

Service functions ........................................................ 4.159

Service request (SRQ)..........................................5.21, 5.31

Service request enable register (SRE).......................... 5.21

Setting Up the Instrument ............................................. 1.14

Settings, indication ......................................................... 3.5

Setup .......................................................................... 4.137

general ................................................................. 4.146

SGL (enhancement lable) ............................................... 3.6

Sign (key) ..................................................................... 3.11

Signal amplitude statistics .......................................... 4.106

Signal count.................................................................. 4.60

Signal tracking ................................................................ 4.9

search bandwidth ..................................................... 4.9

Signal/noise ratio ........................................................ 6.212

Single sweep ................................................................ 4.28

1093.4820.12

10.6

FSP

Softkey

% POWER BANDWIDTH........................... 4.103, 6.238

= CENTER ......................................................... 4.7, 4.8

= MARKER ........................................................ 4.7, 4.8

0.1 * RBW ........................................... 4.7, 6.221, 6.222

0.1 * SPAN.......................................... 4.6, 6.221, 6.222

0.5 * RBW ........................................... 4.7, 6.221, 6.222

0.5 * SPAN.......................................... 4.6, 6.221, 6.222

1 MHzESPI ........................................................... 6.206

10 DB MIN ON/OFF .............................................. 6.152

120 kHzESPI......................................................... 6.206

200 HzESPI .......................................................... 6.206

9 kHzESPI ............................................................ 6.206

ABSOLUTE PEAK/MIN......................... 4.76, 6.12, 6.13

ACP LIMIT CHECK ........................................ 4.99, 6.26

ADJ CHAN BANDWIDTH ............................ 4.96, 6.236

ADJ CHAN SPACING ....................... 4.97, 6.234, 6.235

ADJUST REF LVL ............................ 4.93, 4.104, 6.237

ADJUST SETTINGS .............. 4.110, 4.113, 6.90, 6.237

ADJUST SETTINGS (occupied bandwidth)........... 4.104

ADJUST SETTINGS (power measurements) ..........4.98

ALL MARKER OFF ............................... 4.63, 6.10, 6.46

AM ...................................................... 4.73, 6.60, 6.291

AMPERE............................................. 4.14, 6.95, 6.297

ANNOTATION ON/OFF ............................. 4.134, 6.118

APD ON/OFF ...................................... 4.108, 6.89, 6.92

area ..........................................................................3.9

ASCII FILE EXPORT ............. 4.46, 6.143, 6.165, 6.166

AUTO RANGE ON/OFFESPI................................ 6.152

AUTO SELECT ............................................ 4.51, 6.220

AUTOPREAMP ON/OFFESPI .............................. 6.154

AVERAGE ............................. 4.43, 6.124, 6.204, 6.220

AVERAGE ON/OFF ....4.86, 6.74, 6.75, 6.77, 6.79, 6.81

AVERAGEESPI .................................................... 6.220

AVG MODE LOG/LIN.......................... 4.45, 6.88, 6.205

BLANK ......................................................... 4.44, 6.124

BRIGHTNESS...................... 4.136, 4.179, 6.119, 6.145

C/N ....................................................................... 4.113

C/N, C/N0 ............................................................. 4.112

C/No ..................................................................... 4.113

CAL ABORT .................................................. 4.55, 6.96

CAL CORR ON/OFF ...................................... 4.56, 6.97

CAL GEN 128 MHZ.................................... 4.160, 6.114

CAL GEN COMB ....................................... 4.160, 6.115

CAL REFL OPEN................. 4.196, 4.211, 6.216, 6.217

CAL REFL SHORT .............. 4.196, 4.211, 6.216, 6.217

CAL RESULTS .............................................. 4.56, 6.97

CAL TOTAL ................................................... 4.55, 6.96

CAL TRANS.................................... 4.191, 4.206, 6.216

CCDF ON/OFF ................................... 4.108, 6.89, 6.92

CCVS INT / EXT .......................................... 4.40, 6.245

CENTER ........................................................ 4.6, 6.221

CENTER = MKR FREQ ................................. 4.75, 6.64

CENTER A = MARKER B .......................... 4.133, 6.156

CENTER B = MARKER A .......................... 4.133, 6.156

CENTER FREQUENCYESPI................................ 6.221

CF STEPSIZE....................................................... 6.221

CHAN PWR / HZ.....................................................4.98

CHAN PWR /ACP .......................................... 4.90, 6.65

CHAN PWR /HZ......................................................6.68

CHAN TABLE HEADER............................. 6.109, 6.112

CHAN TABLE VALUES ............................. 6.108, 6.111

CHANNEL BANDWIDTH ....... 4.96, 4.103, 4.113, 6.235

CLEAR ALL MESSAGES................ 4.158, 6.270, 6.271

CLEAR/WRITE ............................................ 4.42, 6.124

CNT RESOL to ......................................................6.48

CNT RESOL ... .......................................................4.60

CODE CHAN AUTOSEARCH .................... 6.108, 6.111

CODE CHAN PREDEFINED...................... 6.108, 6.111

COLOR ON/ OFF.................................................. 6.147

COLOR ON/OFF................................................... 4.178

COLORS.................................................... 4.177, 4.178

E-3

FSP

COM INTERFACE......................................4.147, 6.267

COMMENT SCREEN A/B ..........................4.177, 6.148

CONFIG DISPLAY .....................................4.133, 6.118

CONFIGURE NETWORK..................................... 4.151

CONT AT REC FREQ .......................................... 6.150

CONT DEMOD...............................................4.73, 6.61

CONT MEAS ................................... 4.111, 6.150, 6.151

CONTINUE SGL SWEEP..................4.29, 6.150, 6.151

CONTINUOUS SCAN .......................................... 6.150

CONTINUOUS SWEEP ........... 4.27, 4.28, 6.150, 6.151

COPY .........................................................4.171, 6.159

COPY CHAN CONF TABLE.......................6.109, 6.112

COPY LIMIT LINE ........................................4.122, 6.22

COPY TRACE ..............................................4.48, 6.280

COUPLING DEFAULT ......................4.24, 6.207, 6.241

COUPLING RATIO.......................................4.22, 6.207

CP/ACP ABS/REL.......................................4.97, 6.236

CP/ACP CONFIG ................................4.95, 6.26, 6.234

CP/ACP ON/OFF ......................... 4.90, 6.65, 6.66, 6.69

CP/ACP STANDARD .....................................4.91, 6.69

DATA SET CLEAR.....................................4.169, 6.166

DATA SET CLEAR ALL..............................4.169, 6.166

DATA SET LIST ................................................... 4.168

DATAENTRY OPAQUE ....................................... 4.134

dBm.....................................................4.14, 6.95, 6.297

dBmV ..................................................4.14, 6.95, 6.297

dBpT ...................................................................... 6.95

dBpTESPI ....................................................6.95, 6.297

dBpW ..................................................4.14, 6.95, 6.297

dBx / MHz............................................................... 6.95

dB

µ

A ...................................................4.14, 6.95, 6.297

dB

µ

V ...................................................4.14, 6.95, 6.297

DECIM SEP .................................................4.48, 6.143

DEFAULT COLORS ........................ 4.134, 6.119, 6.144

DEFAULT CONFIG ....................................4.168, 6.168

DEFAULT SETTINGS ..................................4.110, 6.91

DEL CHAN CONF TABLE ..........................6.110, 6.112

DELETE .................... 4.141, 4.171, 6.161, 6.165, 6.219

DELETE LIMIT LINE ....................................4.122, 6.23

DELETE LINE ...................................................... 4.145

DELETE VALUE................................................... 4.127

DETECTOR..................................................4.51, 6.220

DETECTOR AUTOPEAK .............................4.51, 6.220

DETECTOR AVERAGE ...............................4.53, 6.220

DETECTOR MAX PEAK ..............................4.52, 6.220

DETECTOR MIN PEAK................................4.52, 6.220

DETECTOR QPK .........................................4.53, 6.220

DETECTOR RMS.........................................4.52, 6.220

DETECTOR SAMPLE ..................................4.52, 6.220

DEVICE 1/2.... 4.175, 6.146, 6.147, 6.149, 6.164, 6.269

DISPLAY LINE 1 .................................................. 4.129

DISPLAY PWR SAVE ................................4.135, 6.118

EDIT................................................ 4.141, 4.142, 6.218

EDIT ACP LIMITS4.99, 6.26, 6.27, 6.28, 6.29, 6.30, 6.31,

6.32, 6.33, 6.34, 6.35

EDIT CHAN CONF TAB .............................6.108, 6.111

EDIT COMMENT........................................4.166, 6.169

EDIT LIMIT LINE4.124, 6.21, 6.37, 6.40, 6.42, 6.43, 6.44

EDIT PATH ..................................... 4.170, 6.159, 6.164

ENABLE ALL ITEMS ..................................4.168, 6.168

ENTER PASSWORD .................................4.160, 6.272

ESH2-Z5/ENV 4200 ............................................. 6.153

ESH3-Z5 .............................................................. 6.153

EXCLUDE LO.................................................4.81, 6.49

EXT AM......................................................4.200, 6.246

EXT FM ......................................................4.200, 6.247

EXT I/Q ......................................................4.201, 6.246

EXT SOURCE ...................................................... 4.214

EXT SRC ON/OFF....................................... 4.214, 6.249

EXTERN............................................4.32, 6.244, 6.291

FAST ACP ON/OFF....................................... 4.92, 6.238

1093.4820.12

10.7

Index

FILE MANAGER ........................................ 4.170, 6.159

FILTER TYPE .............................................. 4.24, 6.208

FINAL AVERAGE ................................................. 6.220

FINAL MAX PEAK ................................................ 6.220

FINAL MEAS TIME ............................................... 6.241

FINAL MIN PEAK.................................................. 6.220

FINAL PHASES .................................................... 6.153

FINAL QUASIPEAK .............................................. 6.220

FINAL RMS........................................................... 6.220

FIRMWARE UPDATE ................................ 4.162, 6.271

FM ...................................................... 4.73, 6.60, 6.291

FORMAT DISK .......................................... 4.171, 6.161

FREE RUN .................................................. 4.31, 6.291

FREQ AXIS LIN/LOG............................................ 6.121

FREQUENCY LINE 1/2......................................... 4.129

FREQUENCY OFFSET .4.9, 4.198, 4.213, 6.223, 6.247

FREQUENCY SWEEP.................... 4.217, 6.250, 6.251

FULL SCREEN .......................................... 4.132, 6.118

FULL SIZE DIAGRAM.............................................4.93

FULL SPAN ................................................. 4.10, 6.222

GATE DELAY .............................................. 4.36, 6.243

GATE LENGTH............................................ 4.36, 6.243

GATE MODE LEVEL/EDGE ........................ 4.35, 6.243

GATE SETTINGS ........................................ 4.35, 6.242

GATED TRIGGER ............................ 4.34, 6.242, 6.244

GENERAL SETUP ................................................ 4.146

GPIB ADDRESS ........................................ 4.146, 6.264

GRID ABS/REL............................................ 4.16, 6.121

GRID RANGE LOG 100 dBESPI .......................... 6.121

GRID RANGE LOG MANUALESPI ....................... 6.121

HARDCOPY ABORT ................................. 4.175, 6.144

HARDWARE INFO ............................. 4.156, 6.6, 6.116

HOLD SCANESPI .....................................................6.8

HOR SYNC .................................................. 4.39, 6.294

IF POWER ............................. 4.32, 6.244, 6.291, 6.293

INACT CHAN THRES ........................................... 6.212

INPUT CAL .......................... 4.159, 4.160, 6.114, 6.115

INPUT RF ....................................... 4.159, 4.160, 6.114

INSERT VALUE .................................................... 4.127

INSTALL OPTION................................................. 4.153

INSTALL PRINTER............................................... 4.177

INVERT Q............................................................. 6.214

ITEMS TO SAVE/RECALL......................... 4.167, 6.166

LAST SPAN ............................................................4.10

LEFT LIMIT.................................. 4.71, 4.77, 6.46, 6.47

LEVEL AUTO ADJUST ......................................... 6.212

LIMIT LINE AUTO...................................................6.24

LIMIT LINE MANUAL ..............................................6.24

LIMIT LINE USER...................................................6.24

LIMIT ON/OFF ............................................... 4.85, 6.46

LINES 625 / 525........................................... 4.40, 6.294

LOCAL ............................................................... 4.4, 5.6

LOGO ON/OFF .......................................... 4.134, 6.118

MAIN PLL BANDWIDTH .........................................4.26

MAKE DIRECTORY................................... 4.171, 6.163

MANUAL...................................................................4.7

MARGIN .................................................................6.88

MARKER 1 to 4...........4.58, 6.11, 6.12, 6.45, 6.46, 6.49

MARKER DEMOD ......................................... 4.72, 6.60

MARKER NORM/DELTA ................................. 4.58, 6.9

MARKER TRACK ...................................................6.49

MARKER ZOOM............................................ 4.63, 6.59

MARKER->CPICH ..................................................6.84

MARKER->DPCCH.................................................6.85

MARKER->PCCPCH ..............................................6.84

MAX HOLD .................................................. 4.42, 6.124

MAX HOLD ON/OFF........... 4.86, 6.74, 6.76, 6.78, 6.80

MAX PEAK ........................................................... 6.220

MAX PEAKESPI ................................................... 6.220

MEAN ................................................... 4.85, 6.76, 6.77

MEASPERIOD [CHIPS] ............................. 6.211, 6.212

MIN ....................................................... 4.81, 6.13, 6.51

E-3

Index

MIN HOLD....................................................4.45, 6.124

MIN PEAK ............................................................ 6.220

MIN PEAKESPI .................................................... 6.220

MKR -> CF STEPSIZE ...................................4.80, 6.64

MKR -> STEPSIZE................................................. 6.64

MKR -> TRACE ................... 4.59, 4.73, 4.80, 6.10, 6.46

MKR DEMOD ON/OFF...................................4.72, 6.61

MKR STOP TIME ...........................................4.73, 6.61

MODULATION ..................................................... 4.199

MODULATION DEPTH ................................4.114, 6.62

MODULATION OFF ........................ 4.201, 6.246, 6.247

N dB DOWN ................................. 4.69, 6.57, 6.58, 6.59

NAME.............. 4.124, 6.21, 6.22, 6.37, 6.38, 6.41, 6.43

NETWORK ........................................................... 4.203

NETWORK ........................................................... 4.204

NETWORK LOGIN ............................................... 4.152

NEW...........................................................4.141, 4.142

NEW CHAN TABLE ............................................. 6.108

NEW LIMIT LINE4.124, 6.21, 6.22, 6.37, 6.38, 6.40, 6.42

NEXT MIN .................................... 4.81, 6.13, 6.51, 6.52

NEXT MODE .......................................................... 4.76

NEXT PEAK ........................ 4.75, 6.12, 6.13, 6.14, 6.50

NO OF PEAKS ....................................................... 6.88

NO OF SAMPLES ........................................4.109, 6.90

NO. OF ADJ CHAN ......................................4.95, 6.235

NOISE CORR ON/OFF ........................................ 6.238

NOISE MEAS .................................................4.65, 6.60

NOISE SRC ON/OFF .................................4.138, 6.115

NORMALIZE ................................... 4.192, 4.207, 6.216

NORMALIZE ON/OFF .......................................... 6.214

NUMBER OF SWEEPS................................4.87, 6.242

OCCUP BW ON/OFF ................. 4.103, 6.65, 6.66, 6.69

OCCUPIED BANDWIDTH ............................4.103, 6.65

OPTIMIZED COLORS.......................................... 4.178

OPTIONS ............................................................. 4.153

PE FLOATING...................................................... 6.153

PE GROUNDED................................................... 6.153

PEAK ......................... 4.65, 4.75, 4.84, 6.12, 6.50, 6.73

PEAK EXCURSION ..............................4.71, 4.78, 6.52

PEAK LIST ............................................................. 4.70

PEAK LIST OFF ..................................................... 4.71

PEAK LIST ON/OFFESPI..................................... 6.124

PEAK SEARCH............................ 4.62, 4.69, 4.71, 6.88

PEAKS/SUBRANGES ............................................ 6.88

PERCENT MARKER ....................................4.108, 6.49

PH NOISE ON/OFF........................................4.68, 6.16

PHASE L1/L2/L3 .................................................. 6.153

PHASE N ............................................................. 6.153

PHASE NOISE ...............................................4.67, 6.16

PN OFFSET [CHIPS] ........................................... 6.212

POLARITY POS/NEG .............. 4.32, 4.35, 6.243, 6.294

PORT x 0/1ESPI .................................................. 6.170

POWER ABS/REL..........................................4.86, 6.81

POWER OFFSET................................................. 6.248

POWER ON/OFF ....... 4.84, 6.73, 6.75, 6.76, 6.78, 6.82

POWER REF ....................................................... 6.214

PREAMP .............................................................. 4.139

PREAMP ON/OFFESPI........................................ 6.154

PREDEFINED COLORS ...... 4.136, 4.180, 6.120, 6.146

PRESCAN PHASES ............................................ 6.153

PRESELECT ON/OFFESPI ................................. 6.154

PRINT SCREEN.......... 4.36, 4.174, 6.147, 6.148, 6.164

PRINT TABLE ...................... 4.174, 6.147, 6.148, 6.164

PRINT TRACE ..................... 4.174, 6.147, 6.148, 6.164

PULSE xx............................................................. 6.115

PWR OFFSET...................................................... 4.189

QP RBW UNCOUPLED ....................................... 6.207

QUASIPEAK ........................................................ 6.220

QUASIPEAKESPI ................................................ 6.220

RANGE LINEAR...........................................4.14, 6.123

RANGE LOG 100 dB.........................4.13, 6.121, 6.123

RANGE LOG MANUAL .....................4.14, 6.121, 6.123

1093.4820.12

10.8

FSP

RBW / VBW MANUAL ................................. 4.23, 6.209

RBW / VBW NOISE [10] .............................. 4.23, 6.209

RBW / VBW PULSE [.1]............................... 4.23, 6.209

RBW / VBW SINE [1/3] ................................ 4.22, 6.209

RECALL............................... 4.166, 4.210, 6.162, 6.217

RECEIVER FREQUENCYESPI ............................ 6.221

REF FXD ON/OFF ......................................... 4.61, 6.14

REF LEVEL ................................................. 4.13, 6.122

REF LEVEL = MKR LVL ................................ 4.75, 6.64

REF LEVEL COUPLED ............................. 4.133, 6.156

REF LEVEL OFFSET .................................. 4.16, 6.122

REF LEVEL POSITION................................ 4.16, 6.123

REF POINT FREQUENCY.................... 4.61, 4.69, 6.16

REF POINT LEVEL............................... 4.61, 4.68, 6.15

REF POINT LVL OFFSET .................... 4.61, 4.68, 6.15

REF POINT TIME ...................................................6.16

REF POINT x-LEVEL..................................... 4.62, 6.16

REF VALUE .................................... 4.194, 4.209, 6.122

REF VALUE POSITION .................. 4.193, 4.208, 6.123

REFERENCE FIXED ..................................... 4.61, 6.14

REFERENCE INT/EXT .............................. 4.138, 6.240

REMOVE OPTION................................................ 4.153

RENAME ................................................... 4.171, 6.164

RES BW .................................................... 4.109, 6.206

RES BW AUTO............................................ 4.21, 6.207

RES BW MANUAL....................................... 4.20, 6.206

RESTORE FIRMWARE ........................................ 4.162

RF ATTEN AUTO ........................................ 4.15, 6.152

RF ATTEN MANUAL........................... 4.15, 4.17, 6.152

RF INPUT 50

/ 75

..................................

4.16

, 6.154

RF INPUT AC/DC ...................................................4.14

RF POWER ...................................... 4.38, 6.291, 6.293

RIGHT LIMIT ............................... 4.71, 4.77, 6.46, 6.47

RMS.................................................... 4.84, 6.75, 6.220

RMSESPI.............................................................. 6.220

RUN SCAN ........................................................... 6.151

SATURATION...................... 4.136, 4.180, 6.119, 6.145

SAVE ......................................................... 4.166, 6.165

SAVE LIMIT LINE ................................................. 4.127

SAVE TRD FACTOR ............................................ 4.145

SCALING ..................................................... 4.109, 6.90

SCAN COUNT ........................................... 6.241, 6.242

SCR TYPE............................................................ 6.213

SCRAMBLING CODE ........................................... 6.213

SCREEN COLORS ............................................... 4.178

SCREEN TITLE .............................. 4.134, 6.120, 6.121

SEARCH LIMIT OFF...................................... 4.77, 6.46

SEARCH LIMITS ........................................... 4.77, 6.46

SEARCH NEXT LEFT.................. 4.76, 6.13, 6.14, 6.52

SEARCH NEXT RIGHT ...... 4.76, 6.13, 6.14, 6.50, 6.52

SELECT GENERATOR ....... 4.214, 6.264, 6.265, 6.266

SELECT ITEMS .............................. 4.168, 6.166, 6.167

SELECT LIMIT LINE ......... 4.120, 6.20, 6.21, 6.40, 6.43

SELECT MARKER..................... 4.65, 4.74, 4.117, 6.45

SELECT OBJECT...................................... 4.135, 4.179

SELECT TRACE................. 4.9, 4.42, 4.98, 6.71, 6.239

SELFTEST..................................................... 4.161, 6.7

SELFTEST RESULTS ............................... 4.161, 6.116

SERVICE ................................................... 4.159, 6.114

SET CP REFERENCE................................... 4.92, 6.237

SET REFERENCE ......................................... 4.86, 6.82

SET TO DEFAULT................................................ 4.180

SET TO STANDARD ............................................ 6.211

SETTINGS COUPLED............................................6.49

SGL SWEEP DISP OFF .............................. 4.30, 6.151

SHIFT X LIMIT LINE .................................... 4.127, 6.38

SHIFT Y LIMIT LINE .................................... 4.127, 6.44

SIGNAL COUNT ............................................ 4.60, 6.48

SIGNAL STATISTIC ............................................. 4.108

SIGNAL TRACK............................................... 4.9, 6.70

SINGLE MEAS ............................... 4.111, 6.150, 6.151

SINGLE SCAN...................................................... 6.150

E-3

FSP

SINGLE SWEEP ...............................4.28, 6.150, 6.151

SOFT FRONTPANEL........................................... 4.154

SORT MODE........................................................ 4.171

SORT MODE FREQ/LEVEL................................... 4.71

SOURCE CAL ............................................4.190, 4.205

SOURCE ON/OFF......................................4.188, 6.170

SOURCE POWER ............... 4.189, 4.204, 6.248, 6.251

SPAN MANUAL............................................4.10, 6.222

SPAN/RBW AUTO [50] ................................4.23, 6.207

SPAN/RBW MANUAL ..................................4.24, 6.207

SPLIT SCREEN .........................................4.133, 6.118

STANDARD DEVIATION ......................4.85, 6.78, 6.79

START ...........................................................4.8, 6.222

START LIMIT ........................................4.85, 4.86, 6.47

STARTUP RECALL....................................4.169, 6.163

STATISTICS ..................................................4.157, 6.5

STEPSIZE............................................................ 6.221

STEPSIZE MANUAL ................................................ 4.8

STOP .............................................................4.8, 6.223

STOP LIMIT ..........................................4.85, 4.86, 6.47

STOP SCAN ............................................................ 6.8

SWEEP COUNT..................................4.29, 4.44, 6.242

SWEEP POINTS ..........................................4.30, 6.244

SWEEPTIME AUTO............................4.22, 4.29, 6.241

SWEEPTIME MANUAL .............. 4.10, 4.21, 4.29, 6.241

SYSTEM INFO ..................................................... 4.155

SYSTEM MESSAGES .................... 4.158, 6.270, 6.271

T1-T2..............................................................4.54, 6.87

T1-T3..............................................................4.54, 6.87

THRESHOLD ............................... 4.71, 4.77, 6.93, 6.94

TIME DOM POWER............ 4.83, 6.73, 6.75, 6.76, 6.78

TIME LINE 1/2...................................................... 4.130

TIME+DATE .................................... 4.150, 6.270, 6.273

TIME+DATE ON/OFF.................................4.134, 6.121

TINT ..................................... 4.136, 4.179, 6.119, 6.145

TOI ...............................................................4.116, 6.63

TRACE MATH ................................................4.54, 6.87

TRACE MATH OFF ........................................4.54, 6.88

TRACE POSITION .........................................4.54, 6.87

TRACK BW ..................................................... 4.9, 6.70

TRACK ON/OFF.............................................. 4.9, 6.70

TRACK THRESHOLD ..................................... 4.9, 6.71

TRACKING........................................................... 4.188

TRANSDUCER .................................................... 4.140

TRANSDUCER .................................................... 6.217

TRANSDUCER FACTOR ................ 4.140, 6.217, 6.219

TRANSDUCER SET............................................. 6.217

TRIGGER OFFSET ......................................4.32, 6.294

TUNE TO MARKER ............................................... 6.64

TV TRIG SETTINGS .............................................. 4.39

TV TRIGGER ON/OFF .................................4.39, 6.245

UNIT....................................................4.14, 6.95, 6.297

USE SCAN TABLEESPI....................................... 6.240

USER DEFINED................................................... 4.178

USER PORT IN/OUTESPI ................................... 6.153

USER PORTESPI ................................................ 6.153

VALUES ..................................... 4.127, 6.37, 6.39, 6.42

VBW LIN LOG ..............................................4.27, 6.209

VERT SYNC.................................................4.39, 6.295

VERT SYNC EVEN FIELD ...........................4.39, 6.295

VERT SYNC ODD FIELD .............................4.39, 6.295

VIDEO ...............................................4.31, 6.291, 6.293

VIDEO BW AUTO ........................................4.21, 6.208

VIDEO BW MANUAL ...................................4.20, 6.208

VIDEO POL POS / NEG...............................4.40, 6.295

VIEW............................................................4.44, 6.124

VIEW TRANSDUCER .......................................... 4.141

VOLT...................................................4.14, 6.95, 6.297

WATT..................................................4.14, 6.95, 6.297

X * RBW ..............................................4.7, 6.221, 6.222

X * SPAN.............................................4.6, 6.221, 6.222

X OFFSET....................................................4.122, 6.38

1093.4820.12

10.9

Index

X-AXIS RANGE ........................................... 4.110, 6.91

X-AXIS REF LEVEL..................................... 4.109, 6.90

Y AXIS MAX VALUE...............................................6.91

Y OFFSET .......................................... 4.122, 6.40, 6.43

Y-AXIS MAX VALUE............................................. 4.110

Y-AXIS MIN VALUE..................................... 4.110, 6.91

ZERO SPAN ................................................ 4.10, 6.222

ZOOM x-AXIS .........................................................4.36

Zuordnung Befehl.................................................. 6.344

SoftkeyGRID MIN LEVEL............................................ 6.123

Span .............................................................................4.10

Special characters...........................................................6.2

Spectrum analyzer mode.................................................4.5

Split screen .......................................................... 3.8, 4.133

Squelch .........................................................................4.72

SRE (service request enable register) ...........................5.21

SRQ (service request).......................................... 5.21, 5.31

Standard deviation ........................................................4.85

Standard, mobile radio ..................................................4.91

Start frequency................................................................4.8

Statistics ..................................................................... 4.106

Status byte (STB)..........................................................5.21

Status information ...........................................................3.4

IFOVL .......................................................................3.5

MSG .........................................................................3.5

OVEN .......................................................................3.5

OVLD ........................................................................3.5

UNCAL......................................................................3.4

Status Questionable

TRANsducer register...............................................5.30

Status register

CONDition part........................................................5.19

ENABle part ............................................................5.19

ESE ........................................................................5.22

ESR ........................................................................5.22

EVENt part..............................................................5.19

NTRansition part .....................................................5.19

overview..................................................................5.20

PPE ........................................................................5.22

PTRansition part .....................................................5.19

SRE ........................................................................5.21

STATus QUEStionable

TRANsducer .....................................................5.30

STATus\:OPERation ...............................................5.23

STATus\:QUEStionable

ACPLimit...........................................................5.25

FREQuency ......................................................5.26

LIMit..................................................................5.27

LMARgin...........................................................5.28

POWer..............................................................5.29

STATus-QUEStionable

SYNC ...............................................................5.30

STB.........................................................................5.21

structure..................................................................5.18

sum bit ....................................................................5.19

Status reporting system.................................................5.18

resetting values.......................................................5.33

STATus\:OPERation register.........................................5.23

STATus\:QUEStionable register....................................5.24

ACPLimit register ....................................................5.25

FREQuency register................................................5.26

LIMit register ...........................................................5.27

LMARgin register ....................................................5.28

POWer register .......................................................5.29

SYNC......................................................................5.30

STB (status byte) ..........................................................5.21

Stepsize ..........................................................................4.8

center frequency .......................................................4.6

coupling ....................................................................4.8

Stop frequency ................................................................4.8

Storing.............................................................................8.1

String ............................................................................5.14

E-3

Index

Suffix ............................................................................ 5.11

Sum bit ......................................................................... 5.19

Supply voltage, external noise source ........................ 4.138

Sweep continue single sweep ............................................ 4.29

continuous .............................................................. 4.28

count ...................................................................... 4.29

coupling.................................................................. 4.18

free run................................................................... 4.31

gated ..............................................................4.33, 4.34

settings................................................................... 4.28

single...................................................................... 4.28

time ................................................................4.10, 4.29

coupling............................................................ 4.22

Switching cycles ......................................................... 4.157

Switching on/off ............................................................ 1.16

Sync signal ................................................................... 4.39

Syntax elements of commands ..................................... 5.14

System messages ...................................................... 4.158

FSP

free run ...................................................................4.31

gated sweep ...........................................................4.35

IF power..................................................................4.32

offset.......................................................................4.32

RF power ................................................................4.38

slope .......................................................................4.32

sweep .....................................................................4.31

video .......................................................................4.31

TV trigger ......................................................................4.39

U

UNCAL............................................................................3.4

Unit level axis .................................................................4.14

limit line.................................................................. 4.125

Unit (key).......................................................................3.11

Universal command.........................................................8.5

Upper case......................................................................6.2

User Interface................................................................8.10

T

T1-T2 (trace info) ............................................................ 3.5

T1-T3 (trace info) ............................................................ 3.5

Table operation ................................................................ 3.21

scrolling .................................................................. 3.23

TDF (enhancement lable) ............................................... 3.6

TDS (enhancement lable) ............................................... 3.6

Test functional................................................................ 1.18

selftest.................................................................. 4.161

Text parameter ............................................................. 5.14

TG I /AM IN .................................................................. 8.13

TG Q /FM IN................................................................. 8.13

Third Order Intercept .................................................. 4.115

Threshold line ......................................................................... 4.77

signal tracking .......................................................... 4.9

Time ........................................................................... 4.134

input ..................................................................... 4.150

Line ...................................................................... 4.130

Time axis ...................................................................... 4.10

Tint ............................................................................. 4.136

Title for the active diagram.......................................... 4.134

TOI ............................................................................. 4.115

Trace ....................................................................4.41, 4.42

average .................................................................. 4.43

averaging ............................................................... 4.45

blank ...................................................................... 4.44

Clear/Write ............................................................. 4.42

copy ....................................................................... 4.48

freeze ..................................................................... 4.44

math ....................................................................... 4.54

max hold................................................................. 4.42

min hold.................................................................. 4.45

position for 0 difference .......................................... 4.54

select...................................................................... 4.41

signal tracking .......................................................... 4.9

Trace info ....................................................................... 3.5

Tracking generator...................................................... 4.187

Transducer

Activating.............................................................. 4.139

Entry..................................................................... 4.142

Transmission measurement..............................4.190, 4.205

Transmission parameters RS-232-C/COM...................... 8.8

TRG (enhancement lable)............................................... 3.6

Trigger external .................................................................. 4.32

external gate........................................................... 4.34

V

Vertical sync signal .......................................................4.39

Video bandwidth............................................................4.20

Video polarity ................................................................4.40

Video triggering .............................................................4.31

VIEW (trace info).............................................................3.5

View trace .....................................................................4.44

W

White space ..................................................................5.14

Windows NT..................................................................1.19

administrator ...........................................................1.19

login ........................................................................1.19

password ................................................................1.19

Z

Zero span......................................................................4.10

Zoom.............................................................................4.63

amplitude ................................................................4.44

x-AXIS (gate signal) ................................................4.36

1093.4820.12

10.10

E-3

Was this manual useful for you? yes no
Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Download PDF

advertisement

Table of contents