S-tec Basis Weight Sensor Service Manual

S-tec Basis Weight Sensor Service Manual

Below you will find brief information for Basis Weight Sensor. The Basis Weight Sensor utilizes radiation absorption to determine the weight of paper per unit area. It consists of a source assembly with radioactive material and a receiver assembly that includes an ion chamber and amplifier. This device plays a crucial role in quality control for paper manufacturing, ensuring consistent and accurate weight measurements.

advertisement

Assistant Bot

Need help? Our chatbot has already read the manual and is ready to assist you. Feel free to ask any questions about the device, but providing details will make the conversation more productive.

Basis Weight Sensor Service Manual | Manualzz

 

 

 

 

 

 

 

 

 

 

 

BASIS WEIGHT SENSOR

 

V5.0 October, 2010

 

 

 

 

Basis

 

Weight

 

Sensor

 

 

 

 

 

 

The   Leader   in   Measurement   &   Control  

 

 

 

TABLE   OF   CONTENTS  

 

CHAPTER   1   .................................................................................................................................................................................

  4  

1.0

      BASIS   WEIGHT   SENSOR   SOURCE   .............................................................................................................................

  4  

1.1

  PRINCIPLE   OF   OPERATION   ......................................................................................................................................

  4  

1.1.1

  RADIOACTIVE   MATERIAL   ...................................................................................................................................

  5  

1.1.2

  MEASUREMENT   OF   PAPER   ................................................................................................................................

  5  

1.2

  SOURCE   ASSEMBLY   .................................................................................................................................................

  5  

1.3

  SHUTTER   OPERATION   .............................................................................................................................................

  6  

1.4

  SAFETY   FEATURES   ...................................................................................................................................................

  6  

1.4.1

  LOCKING   MECHANISM   .......................................................................................................................................

  6  

1.4.2

  FIRE   SAFETY   .......................................................................................................................................................

  7  

1.4.3

  RADIATION   SHIELDING   ......................................................................................................................................

  7  

1.4.4

  ENCAPSULATION   ................................................................................................................................................

  7  

1.4.5

  RADIATION   WARNING   .......................................................................................................................................

  7  

1.4.6

  MAGNETIC   SWITCH   ...........................................................................................................................................

  7  

1.5

  FLAG   OPERATION   ...................................................................................................................................................

  8  

1.6

  AIR   CYLINDER   OPERATION   &   ADJUSTMENT   ...........................................................................................................

  8  

1.7

  WINDOW   REPLACEMENT   &   CLEANING   ..................................................................................................................

  8  

1.8

  TROUBLE   SHOOTING   ............................................................................................................................................

  10  

CHAPTER   2   ...............................................................................................................................................................................

  15  

2.0

  BASIS   WEIGHT   SENSOR   RECEIVER   ........................................................................................................................

  15  

2.1

  PRINCIPLE   OF   OPERATION   ....................................................................................................................................

  15  

2.2

  RECEIVER   ASSEMBLY   DESIGN   DETAIL   ...................................................................................................................

  16  

2.2.1

  ION   CHAMBER   .................................................................................................................................................

  16  

2.2.2

  SPECIAL   OPTICS   ................................................................................................................................................

  16  

2.2.3

  AMPLIFIER   ........................................................................................................................................................

  17  

2.2.4

  ALUMINIZED   MYLAR   WINDOW   .......................................................................................................................

  17  

2.3

  WINDOW   REPLACEMENT   AND   CLEANING   ............................................................................................................

  17  

2.3.1

  REPLACEMENT   OF   THE   BASIS   WEIGHT   WINDOW   ............................................................................................

  18  

2.4

  ION   CHAMBER   REPLACEMENT   .............................................................................................................................

  19  

2.5

  ELECTROMETER   AMPLIFIER   DETAILED   DESCRIPTION   ...........................................................................................

  19  

2.6

  POWER   SUPPLY   &   SIGNALS   ..................................................................................................................................

  20  

2.7

  TROUBLESHOOTING   .............................................................................................................................................

  21  

CHAPTER   3   ...............................................................................................................................................................................

  29  

3.0

  BASIS   WEIGHT   SENSOR   CALIBRATION   ..................................................................................................................

  29  

3.1

  CALIBRATION   OVERVIEW   .....................................................................................................................................

  29  

3.2

  CALIBRATION   ALGORITHMS   .................................................................................................................................

  29  

3.3

  STATIC   CALIBRATION   ............................................................................................................................................

  31  

3.3.1

  SENSOR   STABILITY   CHECK   ................................................................................................................................

  31  

3.3.2

  SAMPLING   ........................................................................................................................................................

  33  

3.4

  DYNAMIC   CALIBRATION   .......................................................................................................................................

  34  

CHAPTER   4   ...............................................................................................................................................................................

  39  

4.0

  RADIATION   SAFETY   ...............................................................................................................................................

  39  

4.1

  ABOUT   NUCLEAR   RADIATION   ...............................................................................................................................

  39  

4.2

  BIOLOGICAL   EFFECTS   OF   RADIATION   ...................................................................................................................

  40  

4.3

  RADIOACTIVE   MATERIALS   USED   IN   SSS   SYSTEMS   .................................................................................................

  40  

4.4

  LIMITS   FOR   EXPOSURE   ..........................................................................................................................................

  41  

4.5

  EMERGENCY   PROCEDURES   ...................................................................................................................................

  42  

4.6

  SAFETY   PRECAUTIONS   ..........................................................................................................................................

  42  

4.7

  WARNING   LIGHTS   .................................................................................................................................................

  43  

4.8

  TRANSPORTATION   OF   SOURCE   .............................................................................................................................

  43  

4.9

  CLEANING   AND   REPLACING   SENSOR   WINDOWS   ..................................................................................................

  43  

4.10

 

4.11

 

SOURCE   CAPSULE

INSTALLING   OR  

  INFORMATION

REMOVING   THE  

  ....................................................................................................................

SOURCE   CAPSULE   .........................................................................................

 

 

44

45

 

 

 

CHAPTER   5   ...............................................................................................................................................................................

  51  

5.0

    KEY   COMPONENTS   .....................................................................................................................................................

  51  

The   Leader   in   Measurement   &   Control                   Page   2   of     51  

 

 

 

 

 

 

 

 

 

CHAPTER

 

1:

 

 

 

 

 

 

BASIS

 

WEIGHT

 

SENSOR

 

SOURCE

 

The   Leader   in   Measurement   &   Control                   Page   3   of     51  

 

 

CHAPTER   1  

1.0

      BASIS   WEIGHT   SENSOR   SOURCE  

 

 

 

 

 

1.1

  PRINCIPLE   OF   OPERATION  

The   basis   Weight   Sensor   uses   the   principle   of   radiation   absorption   by   the   paper   in   order   to   measure   the   paper   weight   per   unit   area.

    The   sensor   is   divided   into   a   Source   Assembly   containing   the   Radioactive   Source,   and   a   Receiver   Assembly   containing   the   radiation   sensing  

Ion   Chamber   and   Amplifier.

    During   measurement,   radiation   is   emitted   from   the   source   and   some   passes   through   the   paper   to   the   Ion   Chamber.

    The   heavier   the   paper,   the   more   radiation   is   absorbed   by   the   paper,   and   the   less   is   measured   by   the   Ion   Chamber.

 

Calibration   formulas   convert   this   measured   signal   into   an   absolute   measurement   of   Basis  

Weight   in   engineering   units.

 

Kr-85

or

Pm-147

 

 

The   Leader   in   Measurement   &   Control                   Page   4   of     51  

 

 

 

 

 

 

 

 

 

 

 

1.1.1

  RADIOACTIVE   MATERIAL  

The   S ‐ tec   Basis   Weight   Sensor   for   Tissue   and   light   weight   applications   uses   a   500mCi   source   of   the   isotope   Promethium   147   (Pm ‐ 147)   as   the   emitter   material.

  The   promethium   material   is   solid   and   is   contained   in   a   22mm   diameter   x   6mm   deep   .

 

For   S ‐ tec   Basis   Weight   Sensor   for   heavier   weight   applications   uses   300mCi isotope   Kr ‐ 85.

  Krypton   is   a   noble   gas   and   is   contained   in   a   small   capsule.

   

  source   of   the  

Further   information   about   the   nature   of   radioactivity,   radioactive   isotopes,   kinds   of   radiation   and   radiation   safety,   and   capsule   specifications   can   be   found   later   in   this   manual   in   the  

Radiation   Safety   Section.

 

 

 

 

 

 

 

 

 

 

 

 

 

1.1.2

  MEASUREMENT   OF   PAPER  

The   signal   measured   by   the   Ion   Chamber   approximates   to   Beer’s   Law   as   follows:  

I     =     Io   *   exp( ‐

μ

*BW)  

 

 

Where:   I    

Io

μ

 

BW  

=     Intensity   of   the   signal   measuring   paper  

=     Intensity   of   the   signal   with   no   paper  

=

=

   

   

Absorption

Basis  

  Coefficient

Weight   of   the  

 

Paper  

The   SSS   Basis   Weight   Sensor   uses   this   principle   but   adds   corrections   for   Bremsstrahlang   effects   (gamma),   automatic   correction   of   dirt   build ‐ up,   source   decay   and   air   density   changes.

   

Most   of   these   are   corrected   during   the   sensor   standardisation   procedure.

 

 

 

 

 

 

 

1.2

  SOURCE   ASSEMBLY  

Drawings   of   the   Source   Assembly   are   in   the   appendix   to   this   section.

    The   Source   Assembly   consists   of   a   source   body   inside   which   can   rotate   the   source   holder.

    The   source   holder   houses   the   capsule   of   radioactive   material.

    When   the   source   is   rotated   at   90

°

  to   the   vertical,   no   radiation   can   exit   the   source   so   the   “shutter”   is   said   to   be   closed.

    When   the   source   holder   is   rotated   so   that   the   source   points   downwards   radiation   can   exit   the   source   assembly   through   a   10mm   diameter   aperture   in   the   Source   Body.

    The   shutter   is   then   said   to   be   “open”.

 

During   standardise   the   flag   solenoid   moves   a   20mm   diameter   piece   of   Mylar   plastic   into   the   beam   to   simulate   a   constant   Basis   Weight.

    This   is   used   to   correct   for   any   dirt   accumulation   since   calibration,   source   activity   decay   and   for   window   wear   or   air   density   effects.

 

 

The   Leader   in   Measurement   &   Control                   Page   5   of     51  

 

 

 

 

 

 

 

 

 

 

 

 

1.3

  SHUTTER   OPERATION  

Movement   of   the   shutter   is   controlled   by   the   air   pressure   in   the   pneumatic   cylinder.

   

Operation   of   the   cylinder   causes   the   source   holder   to   rotate   90

°

  to   the   open   position   by   pushing   on   the   coupling   leaver.

    When   air   pressure   is   taken   off   the   pneumatic   cylinder   the   source   holder   rotates   back   to   the   closed   position   under   the   action   of   the   cylinder   return   spring.

 

The   source   holder   rotates   on should   never   need   attention.

 

  two   bearings   fitted   into   the   bearing   holders.

    These   bearing  

As   the   source   holder   rotates   from   the   closed   position,   the   coupling   lever   releases   the   micro   switch   so   that   the   Green   Radiation   Warning   Lights   go   off   and   the   Red   Lights   come   on.

   

Unless   the   Green   lights   are   on,   the   shutter   is   not   fully   closed.

 

The   shutter   can   be   locked   into   the   closed   position   by   loosening   the   lock   nut   and   screwing   the  

M4   screw   in   the   centre   of   the   Source   Body   Lid   so   that   it   enters   the   hole   for   this   purpose   in   the   source   holder.

    For   shipping   purposes   ensure   that   the   screw   is   tight.

    In   normal   operation   the   screw   should   be   locked   off   with   the   lock   nut   so   that   the   shutter   is   free   to   move.

 

 

 

 

 

 

1.4

  SAFETY   FEATURES  

The   design   of   the features   below:  

  Source   Assembly   and   associated   equipment   includes   the   many   safety  

 

 

 

 

 

 

1.4.1

  LOCKING   MECHANISM  

 

When   working   on   the   source   assembly   or   in   the   area   of   the   source   assembly,   it   is   advisable   to   LOCK   the   source   in   the   CLOSED   position.

    Locking   the   source   closed   is   also   necessary   during   shipping   or   movement   of   the   source.

 

The   source   includes   a   simple   locking   mechanism.

    On   the   top   of   the   Source   Assembly   there   is   an   M4   screw   hole   in   the   top   of   the   Source   Body   Lid.

    Normally   an   M4   stainless   steel   screw   is   located   in   this   hole   with   a   locking   nut.

    The   nut   locks   the   screw   in   the   raised   position   where   it   does   not   obstruct   the   operation   of   the   shutter.

    To   lock   the   source   closed   simply   loosen   the   locking   nut   and   screw   the   M4   screw   as   far   as   it   will   go   with   the   shutter   in   the   fully   closed   position.

    The   screw   must   extend   into   the   Source   Holder   Body   where   a   hole   is   provided.

    Locking   the   nut   again   will   ensure   that   it   cannot   come   loose.

    With   the   screw   fully   in   place,   the   source   is   prevented   from   rotating   and   cannot   open.

 

The   Leader   in   Measurement   &   Control                   Page   6   of     51  

 

     

 

 

 

 

 

 

1.4.2

  FIRE   SAFETY  

In   the   event   of   a   fire   either   within   the   heads   or   outside,   the   plastic   compressed   air   tubes   feeding   compressed   air   to   the   heads   and   distributing   it   within   the   heads,   will   melt   or   rupture.

    When   the   compressed   air   pressure   fails,   for   any   reason,   the   shutter   will   return   to   the   closed   position   automatically.

    The   shutter   mechanism   is   therefore   fail ‐ safe   under   fire   conditions.

 

The   Source   Holder   is   made   from   stainless   steel,   as   are   the   bearing   holders.

    The   Source  

Body   is   made   from   a   solid   piece   of   brass.

    All   fasteners   are   stainless   steel.

    Therefore   in   the   event   of   a   fire,   or   even   mechanical   damage,   the   source   capsule   is   well   protected.

 

 

 

 

 

 

 

1.4.3

  RADIATION   SHIELDING  

More   than   adequate   radiation   shielding   in   the   closed steel   Source   Holder   and   solid   Brass   Source   Body.

       

  position   is   provided   by   the   stainless  

In   the   open   position   the   small   gap   size   (nominally   5 ‐ 6mm   on   tissue   applications)   and   the   structure   of   the   opposing   sensor   heads,   provide   excellent   shielding.

    Non ‐ the ‐ less   it   is   advisable   that   Operators   and   Engineers   ensure   that   the   shutter   is   properly   closed   before   working   on   the   heads   or   cleaning   the   sensor   windows.

 

 

 

 

 

1.4.4

  ENCAPSULATION  

The   Pm ‐ 147   material   is   housed   in   a   Brass   capsule   with   a   thin   Gold   window.

      The   capsule   is   leak   proof   and   is   designed   to   have   a   working   life   of   up   to   5   years.

     

 

 

 

 

 

 

 

 

 

 

1.4.5

  RADIATION   WARNING  

On   the   Source   Assembly   is   located   a   micro   switch   to   control   the   radiation   warning   lights.

   

Only   when   the   shutter   is   fully   in   the   closed   position   will   the   Red   lights   go   out   and   the   Green   lights   come   on.

    Radiation   warning   lights   are   located   on   each   side   of   both   the   upper   and   lower   heads.

    The   lights   are   LEDs   so   should   never   need   to   be   replaced.

  External   warning   lights   on   the   end   of   the   scanner   are   also   be   installed.

 

It   is   required   that   radiation   warning   labels   be   placed   on   the   scanner   outlining   the   type   of   radioactive   material   and   activity.

 

 

1.4.6

  MAGNETIC   SWITCH  

The   Leader   in   Measurement   &   Control                   Page   7   of     51  

 

 

 

For   additional   Operator   and   Engineer   safety,   a   magnetic   reed   switch   is   installed   in   the   circuit   of   the   shutter   solenoid.

    The   reed   switch   is   in   the   lower   head   and   closes   when   the   magnet   on   the   corresponding   upper   head   is   close.

    This   simple   device   ensures   that   the   shutter   cannot   open   unless   the   heads   are   very   close   together.

    Should   he   heads   separate,   for   any   reason,   then   a   potential   radiation   hazard   would   exist   if   the   shutter   should   open.

    This   is   because   the   lower   head   may   not   be   present   to   act   as   a   shield.

    When   the   heads   are   displaced   by   more   than   about   30mm,   the   reed   switch   opens   and   the   solenoid   valve   releases,   closing   the   shutter.

 

 

 

 

 

 

1 .5

  FLAG   OPERATION  

The   Flag   is   inserted   by   energising   the   24V   dc   solenoid   mounted   on   the   Source   Mounting  

Plate.

    The   solenoid   rotates   the   flag   assembly   so   that   the   Mylar   sample   is   centred   in   the   radiation   beam   when   the   shutter   is   open.

 

The   flag   should   normally   never   need   adjustment.

  The   clearance   between   the   flag   and   the  

Source   Body   and   to   the   Source   Front   Ring   is   very   tight.

    Should   it   be   necessary   to   adjust   the   flag,   care   should   be   taken   to   ensure   the   flag   does   not   bind   during   the   movement.

    Also   ensure   that   the   flag   Mylar   sample   is   exactly   centred   in   the   beam   when   the   solenoid   is   fully   energised.

 

 

 

 

 

 

1.6

  AIR   CYLINDER   OPERATION   &   ADJUSTMENT  

A   miniature   stainless   steel   air   cylinder   operates   the   shutter   mechanism.

    Compressed   air   to the   air   cylinder   is   switched   from   the   solenoid   valve.

    The   solenoid   valve   is   a   3 ‐ port   valve  

  which   either   supplies   compressed   air   to   the   cylinder   at   the   full   line   pressure   or   vents   the   cylinder   to   atmosphere.

    In   either   case   the   air   flows   to   the   cylinder   to   operate   it   or   from   the   cylinder   when   releasing.

  Flow   is   restricted   by   the   miniature   needle   valve.

  It   is   important   to   adjust   the   needle   valves   for   a   slope   operation   and   release   of   the   cylinder.

 

The   purpose   of   the   miniature   needle   valve,   located   on   the   cylinder   entry,   is   to   control   the   rate   of   operation   and   release.

    The   valve   is   adjusted   so   that   the   cylinder   operates   slowly   and   releases   slowly,   therefore   extending   the   life   of   the   cylinder   and   source   components.

    If   the   cylinder   releases   too   quickly   the   shutter   warning   lights   can   be   seen   to   flicker   as   the   shutter   “bounces”.

   

 

 

 

 

 

 

1.7

  WINDOW   REPLACEMENT   &   CLEANING  

The   Basis   Weight   Sensor   window   is   an   aluminized   Mylar   film   (Pm ‐ 147)   or   Antistatic   Heavy

Film   (Kr ‐ 85).

    The   window   provides   a   barrier   to   dirt,   dust   and   hot   or   humid   air   into   the  

  sensor.

    At   the   same   time   it   is   sufficiently   low   density   to   allow   most   of   the   beta   particles   from   the   source   to   pass   through.

    The   Source   window   and   the   Receiver   window   are   identical.

 

It   is   important   to   regularly   inspect   and   clean   the   window.

    Cleaning   of   the   window   should   be   done   on   a   daily   basis   by   the   Operator.

     

The   Leader   in   Measurement   &   Control                   Page   8   of     51  

 

 

 

 

1.7.1

  CLEANING   THE   BASIS   WEIGHT   WINDOWS  

 

The   procedure   for   cleaning   the   Basis   Weight   Mylar   windows   is   as   follows:  

1.

  Send   the   scanner   off   sheet   and   ensure   the   green   “shutter   closed”   lights   are   on.

   

This   ensures   there   is   no   radiation   hazard   to   the   operator.

 

 

2.

  Command   the   scanner   to   “Head   Separate”.

    The   scanner   heads   will   then   split   allowing   the   Operator   access   to   the   sensor   windows.

 

 

3.

  Using   water   or   alcohol,   very   gently   wipe   the   surface   of   the   Basis   Weight   window   to   remove   dirt   and   dust.

      Both   the   upper,   Receiver   side,   window   and   the   lower,  

Source   side,   window   should   be   cleaned.

    At   the   same   time   clean   the   Moisture  

Sensor   windows   and   the   edge   sensor   sapphire   windows.

 

 

4.

  Inspect   the   basis   weight   window   for   any   holes   or   cuts.

    Any   damage   to   the   window   might   result   in   dirt   entering   the   sensor.

    In   this   case   the   window   should   be   replaced   immediately .

 

 

5.

  After   all   cleaning   has   been   completed   make   sure   there   are   no   tools   or   materials   left   on   the   heads,   then   press   the   “Off   Sheet”   button   to   close   and   align   the   heads.

 

 

In   the   event   of   any   window   damage   the   window   should   replaced   be   immediately.

 

 

 

 

 

 

 

1.7.2

  REPLACEMENT   OF   THE   BASIS   WEIGHT   WINDOW  

When   it   is   necessary   to   replace   the   Basis   Weight   window,   use   the   following   procedure:  

1.

  Send   the   scanner   off   sheet   and   ensure   the   green   “shutter   closed”   lights   are   on.

   

This   ensures   there   is   no   radiation   hazard   to   the   operator.

 

 

2.

  Command   the   scanner   to   “Head   Separate”.

    The   scanner   heads   will   then   split   allowing   the   Operator   access   to   the   sensor   windows.

 

 

3.

  Remove   the   lower   head   cover   and   lock   the   basis   weight   source   in   the   closed   position.

    Check   again   to   ensure   the   Green   “shutter   closed”   lights   are   on.

 

 

4   Carefully   remove   each   of   the   16   countersunk   screws   holding   the   Ring,   Window  

Holder.

       

 

5.

  Remove   the   Ring,   Window   Holder,   by   inserting   a   small   screwdriver   into   one   of   the   screw   holes   and   levering   the   ring   loose   very   gently .

    DO   NOT   INSERT   ANY   OBJECT  

INTO   THE   BW   WINDOW   because   it   could   puncture   the   Ion   Chamber   Window   or   damage   the   source   capsule.

  Wear   safety   glasses   while   performing   this   procedure.

 

 

6.

  Remove   the   old   Basis   Weight   Mylar   Window   and   install   a   new   window,   if   necessary   cut   the   window   material   to   the   correct   size.

 

 

7.

  Fit   the   new   window.

 

The   Leader   in   Measurement   &   Control                   Page   9   of     51  

 

 

 

8.

 

9.

 

Replace   the   Ring,   Window   Holder,   and   align   the   screw   holes.

 

Insert   and   progressively   tighten   the   16   countersunk   screws   which   hold   the   Ring,  

Window   Holder   in   place.

    It   may   be   necessary   to   prick   holes   in   the   window   to   allow   the   screws   to   easily   penetrate.

 

 

 

10.

  When   all   the   screws   are   tight   the   window   should   be   as   flat   as   possible.

 

 

11.

  After   ensuring   that   all   tools   and   materials   are   clear   of   the   sensor   heads,   command   the   scanner   “off   sheet”   to   re ‐ align   the   heads.

 

 

 

 

 

 

 

 

1.8

  TROUBLE   SHOOTING  

The   source   assembly   is   very  

Possible   problems   might   be:   simple   and   fault   finding   is   normally   a   case   of   simple   observation.

   

 

1.

 

 

The   shutter   will   not   operate.

 

In   this   case   first   check   that   the   solenoid   valve   has   operated   and   there   is   compressed   air   supplied   to   the   solenoid   valve.

    Check   there   is   air   supplied   to   the   cylinder   and   that   the   miniature   needle   valve   is   not   fully   closed.

    Also   check   to   make   sure   the   shutter   is   not   locked   in   the   closed   position.

 

After   checking   all   of   the   above,   operate   the   shutter   mechanism   by   hand.

    If   it   is   clearly   binding   then   investigate   the   source   mechanism   itself.

    If   it   seems   necessary   to   dismantle   the   source   mechanism,   call   a   qualified   person.

    Do   not   attempt   any   dismantling   unless   qualified,   trained   and   knowledgeable.

 

 

 

ONLY   QUALIFIED   PERSONNEL   WITH   A   LICENSE   TO

DEVICES   MAY   DISMANTLE   THE   SOURCE   MECHANISM.

 

  WORK   ON   RADIOACTIVE    

 

2.

  Radiation

In   this  

  Lights case  

  check do

 

  not the  

  operate

Micro  

  or

Switch

 

  operate on   the  

  incorrectly source  

  mechanism.

    Operate   the   shutter by   hand  ‐  just   a   little.

    As   soon   as   the   shutter   moves   towards   the   open   position   the  

Micro   Switch   should   operate   to   turn   the   Green   Lights   off   and   the   Red   Lights   on.

 

 

 

 

3.

  Flag   will   not   insert  

First   check   that   a   full   24V   is   applied   to   the   flag   solenoid,   if   not   look   elsewhere   for   the   problem.

    If   the   solenoid   has   24V   applied   but   will   not   insert,   move   the   solenoid   by   hand   by   gently   rotating   the   solenoid.

    If   the   solenoid   operates   in   this   way   but   not   electrically   then   the   solenoid   coil   is   likely   to   be   open   circuit.

    If   the   solenoid   will   not   rotate   or   if   the   solenoid   binds,   then   either   the   flag   itself   is   binding   as   it   moves,   or   the   solenoid   itself   is   faulty   or   is   contaminated   with   dirt.

     

 

 

Changing   the   solenoid   or   adjusting   the   flag   involves   substantial   dismantling   of   the   source   assembly.

    THIS   MUST   ONLY   BE   ATTEMPTED   BY   QUALIFIED   PERSONNEL  

WITH   PROPER   TRAINING.

      RADIATION   HAZARD!

 

The   Leader   in   Measurement   &   Control                   Page   10   of     51  

 

The   Leader   in   Measurement   &   Control                   Page   11   of     51  

 

 

SOURCE

 

ASSEMBLY

 

 

The   Leader   in   Measurement   &   Control                   Page   12   of     51  

 

 

PICTURE   SHOWING   BASIS   WEIGHT   SOURCE   ASSEMBLY   INSTALLED   IN   HEAD  

 

The   Leader   in   Measurement   &   Control                   Page   13   of     51  

 

 

 

 

 

 

 

 

CHAPTER

 

2:

 

 

 

 

 

 

 

 

BASIS

 

WEIGHT

 

SENSOR

 

RECEIVER

 

The   Leader   in   Measurement   &   Control                   Page   14   of     51  

 

 

CHAPTER   2  

 

 

 

 

2.0

  BASIS   WEIGHT   SENSOR   RECEIVER  

 

 

 

 

2.1

  PRINCIPLE   OF   OPERATION  

 

 

The   Basis   Weight   Sensor   Receiver   is   the   active   part   of   the   Basis   Weight   Sensor.

    It   measures   the   amount   of   radiation   that   has   passed   through   the   paper   from   the   source.

    This   signal   is   then   used   to   compute   the   Basis   Weight   of   the   paper.

    The   receiver   assembly   is   normally   located   in   the   lower   enclosure   head,   the   source   is   normally   in   the   upper   head.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                      Amplifier  

PCB  

 

Amplifier   Shield  

 

 

Stainless   Steel   Window  

FIG 2.1 BASIS WEIGHT RECEIVER SCHEMATIC

 

Beta   particles   from   the   source   pass   through   the   source   Mylar   window,   where   some   are   absorbed.

    The   remainder   pass   through   the   paper   where   they   are   absorbed   at   a   rate   depending   primarily   on   the   sheet   mass,   then   through   the   receiver   Mylar   window,   optics   and   to   the   ion   chamber.

    Particles   are   also   absorbed   by   the   air   column   mass   that   the   particles   must   travel   through.

    Once   reaching   the   Ion   Chamber   the   particles   must   then   penetrate   the  

Ion   Chamber   titanium   steel   window.

    The   particles   that   succeed   in   entering   the   Ion  

Chamber   cause   the   argon   gas   inside   to   ionise.

    Ionisation   of   the   gas   will   result   in   a   minute   current   flow   to   the   operational   amplifier.

  This   current   flow   is   proportional   to   the   radiation   energy   received.

     

The   very   small   current   from   the   Ion   Chamber   is   amplified   by   the   Operational   Amplifier   circuit   on   the   PCB   and   converted   to   a   0   to   2mA   current   output   to   the   ADC.

 

The   Leader   in   Measurement   &   Control                   Page   15   of     51  

 

 

 

 

 

 

2.2

  RECEIVER   ASSEMBLY   DESIGN   DETAIL  

The   Basis   Weight   Sensor   is   designed   to   measure   the   basis   weight   of   the   paper   very   accurately.

    To   do   this   it   needs   to   be   very   stable,   rugged,   insensitive   to   flutter   &   ash,   and   be   able   to   be   re ‐ calibrated   on ‐ line   automatically   (standardisation),   to   correct   for   source   decay   and   environmental   changes.

    A   detailed   description   of   the   Basis   Weight   Sensor   Receiver   would   describe   the   following   components:  

 

 

 

 

 

 

 

 

2.2.1

  ION   CHAMBER  

The   Ion   Chamber   is   a   sealed   aluminium   cylinder   with   an   insulated   electrode   inside.

    Inside the   cylinder   is   Argon   gas   at   a   pressure   of   1520   Torr.

    A   window   of   25   micron   (0.001

  inch)  

  stainless   steel   allows   the   radiation   to   enter   the   chamber   while   retaining   the   pressurised  

Argon   gas.

    Beta   particles   entering   the   ion   chamber   collide   with   the   Argon   gas   molecules   causing   ionisation.

 

The   Ion   Chamber   is   mounted   inside   the   aluminium   sensor   enclosure   and   insulated   from   it   with   Delron   rings.

    The   body   of   the   Ion   Chamber   is   connected   to   the   ‐ 400V   dc   supply.

   

Positively   charged   ions   created   by   the   beta   particle   collisions   with   the   Argon   gas,   migrate   to   the   body   attracted   by   the  ‐ 400V   potential.

    The   Negatively   charged   ions   are   attracted   to   the  

Ion   Chamber   electrode,   which   is   at   virtual   ground   potential   (+400V   relative   to   the   body),   and   create   the   small   current   to   the   amplifier.

    The   current   is   proportional   to   the   beta   particle   energy   entering   the   ion   chamber.

 

The   Ion   Chamber   window   surface   should   be   tight   due   to   the   pressure   of   Argon   inside.

    If gas   leaks   from   the   chamber,   the   window   may   become   slack   and   crinkled   looking.

    The   Ion  

 

Chamber   cannot   be   repaired   and   must   be   replaced   if   damaged   or   if   the   gas   leaks.

    Avoid   touching   the   Ion   Chamber   window   because   a   rupturing   of   the   Ion   Chamber   Window   could   be   a   hazard   to   the   eyes   due   to   the   pressure   of   Argon   inside.

 

   

 

 

 

 

 

2.2.2

  SPECIAL   OPTICS  

The   purpose   of   the   optics   is   to   eliminate   the   sensitivity   of   the   sensor   to   sheet   flutter   and   to ash   content   in   the   paper.

    Flutter   sensitivity   means   the   sensitivity   to   the   position   of   the  

  sheet   in   the   gap.

    The   optic   parts   are   of   a   proprietary   nature   and   depend   on   the   application.

 

The   optics   is   located   beneath   the   sensor   Mylar   window   and   immediately   before   the   Ion

Chamber.

  The   optics   includes   the   source   window   material.

  All   beta   particles   must   pass  

  through   the   optics   before   they   can   enter   the   Ion   Chamber.

     

The   Leader   in   Measurement   &   Control                   Page   16   of     51  

 

 

 

 

 

 

2.2.3

  AMPLIFIER  

The   Amplifier   PCB   contains   a   high   gain   electrometer   amplifier.

    The   amplifier   circuit   has   a   very   high   impedance   and   10mS   time   constant.

    Gain   is   selected,   with   appropriate   choice   of   feedback   resistor,   to   achieve   an   output   signal   to   the   ADC   of   between   6  ‐  8V   at   the   ADC,   with   the   shutter   open   and   no   paper.

    Care   should   be   taken   if   changing   the   amplifier   gain   to   not   exceed   9V   output   for   a   clean   sensor   with   no   paper   in   the   gap.

    More   than   this   may   overload   the   input   of   the   ADC   and   result   in   a   non ‐ linear   output   signal.

  A   more   detailed   description   of   the   amplifier   circuit   is   given   later   in   this   section.

 

The   printed   circuit   board   is   made   of   2   separate   printed   circuit   boards.

    The   smaller,   inner,   board   is   mounted   directly   on   to   the   Ion   Chamber   electrode.

    The   larger,   outer,   board   is   mounted   on   the   top   of   the   receiver   assembly   body.

    A   stainless   plate   protects   the   amplifier   board   and   provides   a   shield   against   electrostatic   noise.

 

 

 

 

2.2.4

  ALUMINIZED   MYLAR   WINDOW  

The   Basis   Weight   Sensor   window   is   a   conductive   aluminized   mylar   film.

    The   window   provides   a   barrier   to   dirt,   dust   and   hot   or   humid   air   into   the   sensor.

    At   the   same   time   it   is   sufficiently   low   density   to   allow   most   of   the   beta   particles   from   the   source   to   pass   through.

   

The   Source   window   and   the   Receiver   window   are   identical.

    Cleaning   and   replacement   of   the   window   is   described   below.

 

 

 

 

 

 

2.3

  WINDOW   REPLACEMENT   AND   CLEANING  

It   is   important   to   regularly   inspect   and   clean   the   window.

    Cleaning   of   the   window   should be   done   on   a   daily   basis   by   the   Operator.

    The   procedure   for   cleaning   the   Basis   Weight  

 

Mylar   windows   is   as   follows:  

1.

  Send   the   scanner   off   sheet   and   ensure   the   green   “shutter   closed”   lights   are   on.

   

This   ensures   there   is   no   radiation   hazard   to   the   operator.

 

 

2.

  Command   the   scanner   to   “Head   Separate”.

    The allowing   the   Operator   access   to   the   sensor   windows.

 

  scanner   heads   will   then   split  

 

3.

  Using   water   or   alcohol,   very   gently   wipe   the   surface   of   the   Basis   Weight   window   to   remove   dirt   and   dust.

      Both   the   upper,   Source,   window   and   the   lower,   Receiver,   window   should   be   cleaned.

    At   the   same   time   clean   the   Moisture   Sensor   windows   and   the   edge   sensor   sapphire   windows.

 

 

4.

  Inspect   the   basis   weight   window   for   any   holes   or   cuts.

    Any   damage   to   the   window might   result   in   dirt   entering   the   sensor.

    In   this   case   the   window   should   be   replaced  

  as   soon   as   possible .

 

 

5.

  After   all   cleaning   has   been   completed   make   sure   there   are   no   tools   or   materials   left   on   the   heads,   then   press   the   “Off   Sheet”   button   to   close   and   align   the   heads.

 

 

In   the   event   of   the   window   being   damaged,   it   should   be   immediately   replaced.

 

The   Leader   in   Measurement   &   Control                   Page   17   of     51  

 

 

 

 

 

 

 

2.3.1

  REPLACEMENT   OF   THE   BASIS   WEIGHT   WINDOW  

When   it   is   necessary   to   replace   the   Basis   Weight   window,   use   the   following   procedure:  

1.

  Send   the   scanner   off   sheet   and   ensure   the   green   “shutter   closed”   lights   are   on.

   

This   ensures   there   is   no   radiation   hazard   to   the   operator.

 

 

2.

  Command   the   scanner   to   “Head   Separate”.

    The   scanner   heads   will   then   split   allowing   the   Operator   access   to   the   sensor   windows.

 

 

3.

  Remove   the   upper   head   cover   and   lock   the   basis   weight   source   in   the   closed   position.

    Check   again   to   ensure   the   Green   “shutter   closed”   lights   are   on.

 

 

4   Carefully   remove   each   of   the   16   countersunk   screws   holding   the   Ring,   Window  

Holder.

       

 

5.

  Remove   the   Ring,   Window   Holder,   by   inserting   a   small   screwdriver   into   one   of   the   screw   holes   and   levering   the   ring   loose   very   gently .

    DO   NOT   INSERT   ANY   OBJECT  

INTO   THE   BW   WINDOW   because   it   could   puncture   the   Ion   Chamber   Window.

   

Wear   eye   protection   during   this   procedure.

 

 

6.

  Remove   the   old   Basis   Weight   Mylar   Window   and   cut   the   window   material   to   the   same   size.

 

 

 

7.

 

 

8.

 

Fit   the   new

Replace   the

 

  window.

Ring,  

 

Window   Holder,   and   align   the   screw   holes.

 

9.

  Insert   and   progressively   tighten   the   16   countersunk   screws   which   hold   the   Ring,  

Window   Holder   in   place.

    It   may   be   necessary   to   prick   holes   in   the   window   to   allow   the   screws   to   penetrate.

 

 

10.

  When   all   the   screws   are   tight   the   window   should   be   as   flat   as   possible.

 

 

11.

  After   ensuring   that   all   tools   and   materials   are   clear   of   the   sensor   heads,   command   the   scanner   “off   sheet”   to   re ‐ align   the   heads.

 

The   Leader   in   Measurement   &   Control                   Page   18   of     51  

 

 

 

 

 

 

 

2.4

  ION   CHAMBER   REPLACEMENT  

 

Changing   the   Ion   Chamber   is   straight   forward.

    Proceed   as   follows:  

1.

  Remove area.

 

  the   Receiver   Assembly   from   the   heads   and   take   to   a   work   bench   in   a   clean  

 

2.

  Remove   the   PCB   assembly,   taking   great connection   to   the   ion   chamber   electrode.

 

  care   when   removing   the   centre   screw  

 

 

3.

 

 

4.

 

Remove

Lift   the  

  the

Ion  

  “Plate,  

Chamber

Retainer,

  out   of  

  Ion the  

  Chamber” assembly  

  cover and  

  plate.

replace  

  with   the   new   Ion   Chamber.

 

5.

  Reassemble   in   the   reverse   order   the   above.

    Take   care   not   to   over   tighten   the   screw   on   the   Ion   Chamber   electrode.

 

Care   should   be   used   when   handling   the   Ion   Chamber   to   ensure   that   the   thin   titanium   window   is   not   damaged.

    Avoid   touching   the   window   and   never   allow   any   tools   or   other   sharp   objects   to   go   near   to   the   window.

    Rupture   of   the   window   with   the   pressure   of   the  

Argon   gas,   could   present   a   danger   to   the   eyes.

 

 

 

 

 

 

 

 

 

 

2.5

  ELECTROMETER   AMPLIFIER   DETAILED   DESCRIPTION  

The   Electrometer   Amplifier   consists   of   2   printed   circuit   board,   one   inside   the   other.

    The   smaller   board   is   connected   directly   on   to   the   centre   electrode   of   the   Ion   Chamber.

    R2   resistor   (10M

Ω

)   on   this   board   along   with   C1   (100PF)   provides   the   10ms   time   constant   smoothing   for   the   signal.

 

The   main   board   contains   all   the   active   elements   of   the   amplifier.

    U1   is   the   electrometer   amplifier,   AD549,   which   amplifies   the   very   small   signal   from   the   Ion   Chamber.

    The   gain   of   this   amplifier   is   determined   by   the   feedback   resistor   R1.

    R1   is   selected   at   installation   in   order   to   make   the   output   current   to   the   ADC   about   1.6mA

  (approx.

  8V   across   the   ADC   input ).

  The   signal   will   fall   over   time   as   the   source   decays,   however   adjustment   of   the   feedback   resistor   is   not   usually   necessary.

   

A   null   adjustment     is   provided   so   that   when   the   shutter   is   closed   the   amplifier   signal   is   close   to   zero.

    Because   it   is   better   to   avoid   the   possibility   of   a   negative   voltage   to   the   ADC   the   null   potentiometer   should   be   adjusted   to   provide   a   slight   positive   signal   with   the   shutter   closed.

    When   measured   by   the   computer,   the   offset   voltage   should   be   between   20   and  

100mV.

    The   system   measures   these   “background   counts”   during   a   periodic   “background   count   check”   procedure   and   subtracts   them   from   all   open   shutter   measurements.

 

U2   is   a   dual   OP ‐ 270Z   Operational   Amplifier.

    The   first   half   of   the   IC,   U2 ‐ A,   acts   as   a   buffer   amplifier   of   unity   gain.

    This   feeds   the   second   half   of   the   IC   which   is   a   Voltage   to   Current   output   driver.

  The   input   voltage   to   the   driver,   U2 ‐ B,   is   a   0   to   4V   dc   signal.

    Output   is   a   0   to    

The   Leader   in   Measurement   &   Control                   Page   19   of     51  

 

 

 

  2mA   current   signal   to   the   ADC   channel.

    The   ADC   input   has   a   5K

Ω

  resistor   which   converts   the   0   to   2mA   signal   into   0   to   10V.

    Because   the   computer   calculates   the   Basis   Weight   of   the   paper   from   the   ratio   of   the   open   and   the   on ‐ sheet   signals,   the   absolute   value   of   the   signal   is   unimportant   provided   the   signals   never   saturate   and   are   in   reasonable   range.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.6

  POWER   SUPPLY   &   SIGNALS  

The   Receiver   Assembly   requires   +12V,   ‐ 12V   and   ‐ 400V   power   and   provides   a   0   to   2mA output   signal.

    Facility   exists   on   the   board   for   a   high   voltage   DC/DC   converter   to   provide   the  

 

‐ 400V   power,   this   is   only   used   for   a   fixed   point,   stand   alone,   Basis   Weight   Sensor   application.

   

The   pin   connections   for   the   power   and   signals   are:  

J1  ‐  1  

J1  ‐  2  

J1  ‐  3  

J1  ‐  4  

J1  ‐  5  

J1  ‐  6  

J1  ‐  7  

J1  ‐  8  

J1  ‐  9  

J1  ‐  10  

N/C  

N/C  

GND  

+12VDC  

‐ 12VDC  

GND  

GND  

N/C  

GND    

‐ 400VDC    

J2

J2

 ‐ 

 ‐ 

1

2

 

 

Signal

Signal

 

 

Output,

Return  

  0 to

 

  to   2mA

Ground

 

 

The   Leader   in   Measurement   &   Control                   Page   20   of     51  

 

 

 

 

 

 

 

 

2.7

  TROUBLESHOOTING  

Most   of   the   problems   with   Basis   Weight   Receiver   would   be:  

 

 

 

1.

  a)  

No   Signal  

If   there   is   no   Basis   Weight   signal   then   check   the   following:   b)   c)  

Is   the   shutter   open?

    The   signal   will   only   be   present   if   there   is   radiation   to   be   measured.

    Physically   check   the   source   assembly   to   make   sure   the   shutter   is   really   in   the   fully   open   position.

    Do   not   rely   just   on   the   shutter   lights.

 

Are   the   supply   voltages   correct   for   the   Basis   Weight   Sensor?

    The   sensor   needs  

+12V,  ‐ 12V,  ‐ 400V   &   Ground.

 

Are   the   connectors   properly   on?

 

  d)   Is   there   a   signal   to   the   ADC?

    If   yes,   then   the   problem   is   elsewhere.

 

The   above   are   the   most   likely   causes.

    Check   them   before   doing   anything   else.

    After   this   the   only   possible   causes   are   with   the   Ion   Chamber   itself   or   with   the   amplifier   PCB.

 

 

 

 

2.

  Too   Small   a   Signal   a) b)  

 

If   the   signal   is   too   small   and   the   problem   happened   suddenly   (i.e.

  not   due   to   normal   source   decay   over   years),   then   check   the   following:  

Is   the   shutter   opening   fully?

    Any   obstruction   in   the   radiation   path,   including   the   shutter   not   opening   fully,   will   cause   a   reduced   signal.

 

Is   there   anything   in   the   gap  ‐  such   as   a   piece   of   paper   or   excessive   dirt?

      Are   the   windows   damaged   allowing   dirt   or   water   to   get   into   the   sensor?

 

Check   the   supply   voltages,   especially   the  ‐ 400V   supply.

    Are   they   correct?

  c)   d) e)

 

3.

 

  a)  

 

  f)   g)  

 

 

Is   the   Flag   stuck   in   or   is   it   loose?

    Is   the   flag   operating   correctly?

 

Check   the   signal   at   the   ADC.

    If   OK   at   the   ADC,   (up   to   10V   with   no   paper)   then   the   problem   is   elsewhere.

 

Faulty

Faulty

Noise  

 

  Ion   Chamber.

amplifier  

  b)   c)  

A   noisy   signal   could   be:  

Some   object   in   the   paper   path   that   is   moving   e.g.

  paper,   loose   flag,   broken   window,   shutter   movement,   low   compressed   air   pressure   (shutter   moving).

 

Water   entering   the   sensor   or   on   the   window.

 

An   Ion   Chamber   that   has   leaked   gas   (is   the   window   still   "tight").

  d)   e)  

Loose   connections  ‐  check   all,   including   the   connections   to   the   Ion   Chamber  

Faulty   amplifier.

 

 

Check   if   the   noise   is   coming   from   the   sensor   or   elsewhere,   such   as   ADC   or   Computer.

 

The   Leader   in   Measurement   &   Control                   Page   21   of     51  

 

The   Leader   in   Measurement   &   Control                   Page   22   of     51  

 

 

PICTURE

 

SHOWING

 

BASIS

 

WEIGHT

 

RECEIVER

 

INSTALLED

 

 

 

 

 

The   Leader   in   Measurement   &   Control                   Page   23   of     51  

 

 

ION

 

CHAMBER

 

The   Leader   in   Measurement   &   Control                   Page   24   of     51  

 

 

BW

 

AMPLIFIER

 

SCHEMATIC

 

 

 

 

 

 

The   Leader   in   Measurement   &   Control                   Page   25   of     51  

 

VOLTAGE DIVIDER RESISTORS - GAIN MULTIPLIER

R7 R7-1 R7-2

R5

R5-1

R5-2

R5-3

R5-1/2

R5-1/3

R5-2/3

R5-1/2/3

10.00

15.00

20.00

6.00

6.67

8.57

4.62

1

10.00

15.00

20.00

6.00

6.67

8.57

4.62

2

5.00

7.50

10.00

3.00

3.33

4.29

2.31

R7-3

4

2.50

3.75

5.00

1.50

1.67

2.14

1.15

 

R7-1/2

0.67

15.00

22.50

30.00

9.00

10.00

12.86

6.92

R7-1/3

0.80

12.50

18.75

25.00

7.50

8.33

10.71

5.77

R7-2/3

1.33

7.50

11.25

15.00

4.50

5.00

6.43

3.46

R7-1/2/3

0.57

17.50

26.25

35.00

10.50

11.67

15.00

8.08

MAIN F/B RESISTORS - GAIN MULTIPLIER

RES K Ω GAIN

1

2

3

100

100

100

3.0

3.0

3.0

1+2

1+3

2+3

1+2+3

50

50

50

33

1.5

1.5

1.5

1.0

The   Leader   in   Measurement   &   Control                   Page   26   of     51  

 

 

 

BASIS   WEIGHT   SENSOR   AMPLIFIER   PCB  ‐  LAYOUT  

The   Leader   in   Measurement   &   Control                   Page   27   of     51  

 

 

 

 

 

 

 

CHAPTER

 

3:

 

 

 

 

 

 

BASIS

 

WEIGHT

 

SENSOR

 

CALIBRATION

 

 

 

 

The   Leader   in   Measurement   &   Control                   Page   28   of     51  

 

 

 

 

CHAPTER   3  

 

 

3.0

  BASIS   WEIGHT   SENSOR   CALIBRATION  

 

 

 

 

 

3.1

  CALIBRATION   OVERVIEW  

The   Basis   Weight   Sensor   is   capable   of   very   accurate   measurement   of   the   basis   weight   of   paper   as   it   is   being   made   on   a   paper   machine.

    The   Sensor   itself,   together   with   the  

ADC,   provides   an   input   to   the   computer.

  The   voltage   is   a   measurement   of   the   radiation   being   received.

    From   this   signal   the   computer   must   calculate   the   basis   weight   of   the   paper,   fully   compensating   for   dirt   build ‐ up,   air   density   changes,   radioactive   source   decay,   electronic   drift   etc..

    To   achieve   this,   the   computer   is   programmed   with   proprietary   calibration   algorithms.

     

 

 

 

3.2

  CALIBRATION   ALGORITHMS  

The   following   algorithms   are   proprietary   and   must

Algorithms   are   programmed   into   the   computer.

 

  not   be   disclosed   to   others.

    These  

I on-sheet signal (profile corrected)

Io

I1 clean gauge open signal (calculated) open gauge signal (actual)

I2 flag

I3 background aIo bremsstrahlang

BWo dirt

BW basis

FW flag

- dirt and flag readings can be modelled over narrow ranges:

(1) BWo = 1 ln Io

μ

1 I1

(2) BWo + FW = 1 ln Io - W

μ

2 I2

The   Leader   in   Measurement   &   Control                   Page   29   of     51  

 

 

 

 

 

Standardise   (Stdz):  

BWo & Io can be calculated from (1) and (2) at Stdz:

(3) BWo = 1 [ln (I1) -

μ

2(FW +W)]

-

μ

2-

μ

1 (I2)

Io = I1e

μ

1BWo

(4)

On Sheet:

(5)

(6)

X = Io - aIo - I3

I - aIo - I3 where a is a calibration parameter

BW = AlnX - BWo

1 + (B)

(X) where A and B are calibration parameters

Dynamic Standardisation:

Dynamic standardisation corrects for dirt build-up between full standardisations. This is done by assuming that Io stay unchanged between standardisation and by measuring I1

(profile corrected) while the scanner turns around outside the sheet.

(7) BWo = 1 ln(Io)

μ

1 (I1)

The   Leader   in   Measurement   &   Control                   Page   30   of     51  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.3

  STATIC   CALIBRATION  

Static   Calibration   of   the   sensor   is   normally   carried   out   using   Mylar   or   Aluminised   Mylar   samples   of   know   basis   weight.

    A   range   of   Mylar   samples   covering   the   total   basis   range   of   paper   is   required.

 

The   procedure   for   static   calibration   should   be   broken   down   into   the   following   steps:  

1.

 

2.

 

3.

 

4.

 

Sensor   stability   check.

 

Sampling.

 

Calculation   of   the   calibration   constants.

 

Recheck   of   calibration  

A   description   of   each   of   these   steps   is   below.

 

 

 

 

 

 

 

3.3.1

  SENSOR   STABILITY   CHECK  

Before   starting   the   calibration   procedure   it   is   important   to   ensure   that   the   sensor   is stable.

    Any   problems   with   stability   should   be   resolved   before   proceeding.

    Stability  

  of   the   sensor   means   that   the   sensor   gives   repeatable   and   consistent   readings   for   the   same   conditions.

 

The   stability   check   is   performed   by   doing   a   total   of   30   successive   standardise   checks.

   

The   standardization   is   commanded   from   the   video   screen.

    The   results   should   be   tabulated   in   the   form   below:  

The   variation   of   the   counts   above   should   not   change   by   more   than   about   10mV  

Standard   Deviation   (Sigma)   for   the   Open   and   Flag   signals.

    For   the   Closed   signal   this   should   not   have   varied   by   more   than   about   5mV.

 

The   Leader   in   Measurement   &   Control                   Page   31   of     51  

 

SENSOR   STABILITY   WORKSHEET  

 

 

 

 

 

   

STZ   #  

17  

18  

19  

20  

21  

22  

23  

12  

13  

14  

15  

16  

24  

25  

26  

27  

28  

29  

30  

5  

6  

7  

8  

9  

10  

11  

1  

2  

3  

4  

 

 

 

 

OPEN   VOLTAGE  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FLAG   VOLTAGE  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FLAG/AIR   RATIO   CLOSED   VOLTAGE  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The   Leader   in   Measurement   &   Control                   Page   32   of     51  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.3.2

  SAMPLING  

Insert   each   of   the   Mylar   samples   into   the   gap   using   the   sample   holder   to   ensure   exact   registration.

    For   each   sample   do   5   sample   checks   and   note   the   voltage   for   each   sample   check.

    The   sample   check   is   commanded   from   the   video   screen.

 

Record   the   results   of   the   sampling   as   shown   in   the   table   below:  

SAMPLE   #   SAMPLE   1  

VOLTAGE  

SAMPLE   2  

VOLTAGE  

SAMPLE   3    

VOLTAGE  

SAMPLE   4  

VOLTAGE  

SAMPLE   5  

VOLTAGE  

AVERAGE    

VOLTAGE  

Sample1  

GSM  

Sample   2  

GSM:  

Sample   3  

GSM  

Sample   4  

GSM  

Sample   5  

GSM  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Next   tape   a   fixed   piece   of   very   light   Mylar   or   other   film   material   of   accurately   known   basis   weight   over   the   sensor   lower   window.

    This   is   to   simulate   an   accumulated   amount   of   dirt   of   known   weight.

    The   sensor   Open   Voltage   and   Flag   Voltage   are   measured   with   the   “dirt”   in   place.

    These   voltages   will   therefore   be   lower   than   those  

  without   the   dirt.

 

 

STZ   with  

Dirt  

STZ  

1  

STZ  

2  

STZ  

3  

STZ  

4  

STDZ  

5  

AVERAGE    

VOLTAGE  

Open  

Volts  

Flag   Volts    

Actual    

 

Dirt   Wt  

Sample   4  

GSM  

Sample   5  

GSM  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

When   all   the   results   of   the   static   sampling   have   been   tabulated,   fax   these   and   the   stability   check   results   to   SSS.

    SSS   engineers   will   use   a   computer   program   to   fit   the   best   calibration   curve   through   the   data   and   calculate   the   optimum   calibration   constants.

   

This   same   procedure   is   used   in ‐ house   to   calibrate   the   Basis   Weight   Sensors   before   shipment.

 

The   Leader   in   Measurement   &   Control                   Page   33   of     51  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.4

  DYNAMIC   CALIBRATION  

Dynamic   calibration   is   needed   to   make   the   sensor   read   the   correct   value   of   real   paper on   a   real   paper   machine.

    Although   the   sensor   may   very   accurate   on   static   (non ‐

  moving)   samples,   machine   conditions   can   change   the   calibration   depending   on   such   things   as:     sheet   furnish;   sheet   temperature;   moisture   gain/loss;   sheet   stretch   under   tension,   environmental   effects   etc.

    Whatever   the   source   of   the   error   when   measuring   moving   paper   on   the   machine,   a   method   is   needed   to   check   the   calibration   of   the   sensor   and   make   suitable   corrections   to   the   calibration.

     

There   are   4   major   ways   to   calibrate   the   Basis   Weight   Sensor   on   the   paper   machine.

   

These   are:  

Calibrate   to   Mill   Laboratory  

This   method   simply   compares   the   sensor   end   of   reel   Basis   Weight   measurement   with   that   of   the   Mill   laboratory   result.

    To   do   this   well,   it   is   essential   that   a   large   number   of   comparisons   are   made   before   adjusting   the   sensor   calibration.

 

The   advantage   of   this   method,   which   is   useful   for   getting   the   sensor   to   correct   “ball   park”   reading,   is   that   it   is   simple   and   the   sensor   reads   similar   values   to   that   of     the   laboratory.

 

The   disadvantage   of   this   method   is   that   the   laboratory   result   is   often   noisy,   can   have   a   systematic   error,   often   changes   as   the   laboratory   person   changes   at   each   shift,   and   most   importantly,   proper   precautions   are   rarely   taken   by   laboratory   people   to   protect   the   samples   from   moisture   gain   or   loss.

 

This   method,   then,   is   recommended   only   to   get   the   sensor   reading   close   to   the   correct value   or   where   it   is   a   requirement   that   the   sensor   measure   the   same   as   the   laboratory.

 

 

Roll

The

 

 

Weight

SSS  

  Check system  

  measures   the   length   of   paper   made   during   a   reel   and   also   the   width.

From   this   data   and   from   the   measured   average   Basis   Weight,   the   computer   calculates   the   weight   of   the   paper   on   the   reel.

     

   

It   is   possible   to   accurately   weigh   the   roll   of   paper   after   the   change   of   reel.

    Subtracting   the   weight   of   the   steel   shell   from   this   will   give   the   weight   of   the   paper.

    This   can   be   compared   to   the   measured   weight   to   calculate   the   difference.

 

The   advantage available.

 

  of   this   method   is   that   it   is   relatively   easy   to   do   if   accurate   scales   are  

The   disadvantage   of   this   method   is   that   the   accuracy   of   the   scales   is   very   important   and   the   paper   weight   is   the   result   of   two   measurement  ‐  paper   +   steel   shell,   and   steel   shell   without   paper.

    The   overall   accuracy   also   depends   on   an   accurate   width   measurement   and   an   accurate   tachometer   measurement   of   the   reel   speed.

    Another   disadvantage   is   that   when   measuring   paper   grades   that   contract   when   no   longer   under   tension   (such   as   crepe   tissue),   the   weight   calculated   is   often   significantly   different   from   the   weight   measured   by   the   laboratory   of   a   relaxed,   and   so   contracted,   sheet   of   paper.

   

The   Leader   in   Measurement   &   Control                   Page   34   of     51  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Single   Point   Measurement(s)  

In   this   method   the   scanner   heads   are   put   in   single   point   (fixed   position   on   sheet)   to   continuously   measure   the   Basis   Weight   of   the   paper   in   that   position.

    Towards   the   end   of   the   reel,   a   card   is   placed   in   the   paper   to   indicate   the   start   of   measurement.

    At   the   same   time   the   single   point   readings   are   integrated   and   averaged   until   reel   turn ‐ up   occurs.

 

When   the   reel   is   out,   many   samples   are   cut   from   the   paper   in   the   position   of   the   sensor   during   single   point   measurement.

    The   average   Basis   Weight   reading   calculated   from   the   samples,   is   compared   to   the   average   sensor   measurement.

    If   3   or   more   such   samples   (on   different   reels)   show   a   consistent   error,   then   the   sensor   calibration   is   adjusted   by   this   amount.

 

The   advantage   of   this   method   is   that   it   is   reasonably   accurate   and   not   too   difficult   to   do.

   

It   does   use   laboratory   sampling   methods   but   precautions   should   be   taken   to   avoid   moisture   gain   or   loss  ‐  such   as   using   polythene   bags   to   hold   the   samples.

 

The   disadvantage   of   this   method   is   that   it   can   sample   only   one   spot   each   time   and   so   can   give   only   a   required   intercept   change   to   the   calibration.

    More   sampling   in   different   CD   positions   is   needed   to   determine   if   there   is   a   slope   error.

    If   the   paper   is   uneven   with   narrow   basis   weight   streaks,   then   it   is   difficult   to   align   the   measured   paper   with   the   sampled   paper.

    This   is   especially   so   given   the   narrow   measurement   beam  

(10mm   at   the   source   window)   of   the   sensor.

    The   manual   samples   taken   will   always   be   larger   than   10mm,   so   sensor   measured   paper   and   laboratory   sampled   paper   will   be   different.

 

CD   Sampling   Method  

With   this   method   the   trend   average   profile   at   the   reel   turn ‐ up   is   compared   to   multiple   samples   of   paper   taken   across   the   full   width   of   the   reel   after   turn ‐ up.

    One   way   to   do   this   is   to   slab   off   the   top   25mm   of   paper   onto   the   floor.

    With   a   template   of   know   area   and   sharp   knife,   samples   are   taken   across   the   full   width   of   paper.

    By   alternating   the   position   of   the   sample   in   the   MD   direction,   all   the   paper   can   be   sampled.

    By   cutting   into   the   paper   layers,   many   pieces   of   paper   can   be   averaged   in   each   sample.

    Proper   polythene   bagging   procedures   need   to   be   adhered   to   in   order   to   avoid   the   possibility   of   moisture   gain   or   loss   in   the   long   time   elapsed   from   the   reel   turn ‐ up   to   the   measuring   the   sample   weights   in   the   laboratory.

   

After   weighting   each   sample   and   calculating   the   Basis   Weight   from   the   sample   weight  

(less   bag)   and   the   paper   area,   the   results   of   each   sample   are   graphed.

    The   graph   of   sample   basis   weight   can   be   compared   to   the   graph   of   sensor   profile   to   show   any   differences.

 

The   advantage   of   this   method   is   that   the   full   CD   width   of   the   paper   is   measured   at   one   time   and   compared   with   the   CD   profile.

    From   this   result   both   intercept   (offset)   and   slope   (scale)   errors   can   be   determined   and   corrected.

 

The   disadvantage   of   this   method   is   that   it   is   very   time   consuming   (allow   one   hour).

    It   can   only   be   performed   during   stable   running   of   the   machine   when   the   end   of   reel   profile   can   be   taken   as   truly   representing   the   measurement   of   the   slabbed ‐ off   paper.

   

A   significant   error   can   be   introduced   if   the   sample   cutting   is   not   done   perfect,   or   is   done   inconsistently.

 

The   Leader   in   Measurement   &   Control                   Page   35   of     51  

 

 

 

 

Example   Calibration   Curve   for   Kr ‐ 85  

Kr-85 BW Calibration

10

9

5

4

3

2

8

7

6

1

0

0 20 40 60 80 g/m2

100 120 140 160

 

The   Leader   in   Measurement   &   Control                   Page   36   of     51  

 

 

 

Example   Calibration   Curve   for   Pm ‐ 147  

BW / VOLTS

4

3

2

6

5

1

0

0 10 20 30

BW GSM

 

After   Linearization  

BW / LN X

1.2

1

0.8

0.6

0.4

0.2

0

0 10 20 30

BW GSM

40

40

50

50

60

 

60

 

The   Leader   in   Measurement   &   Control                   Page   37   of     51  

 

 

 

 

CHAPTER

 

4:

 

 

 

 

 

 

 

 

 

 

RADIATION

 

SAFETY

 

The   Leader   in   Measurement   &   Control                   Page   38   of     51  

 

 

 

 

CHAPTER   4  

4.0

  RADIATION   SAFETY  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.1

  ABOUT   NUCLEAR   RADIATION  

Radioactive   atoms   give   off   ionising   radiation   in   the   form   of   fast ‐ flying   particles   or   as   rays.

   

Some   of   these   particles   are   called   Alpha  

Particles.

    They   travel   only   a   few   centimetres   in   air   and   have   little   or   no   penetrating   power.

   

Alpha   particles   are   fast   moving   Protons.

 

Other   particles   are   called   Beta   Particles.

    They   travel   about   one   meter   or   so   in   air   but   will   not   penetrate   much   beyond   the   depth   of   a   person’s   skin.

    Beta   particles   are   fast   moving   electrons.

 

Still   stronger   radiation,   in   the   form   of   electromagnetic   rays,   is   Gamma   Rays.

    They   travel   at   the   speed   of   light.

    An   only   dense   material   with   a   high   atomic   number   such   as   lead   is   effective   in   stopping   them.

  Gamma   rays   are   the   same   as   X ‐ rays   except   that   they   are   generated   in   the   atom   rather   than   in   an   X ‐ ray   tube.

 

Note:   The   SSS   Basis   Weight   Sensor   uses   Beta   radiation.

 

The   Leader   in   Measurement   &   Control                   Page   39   of     51  

 

 

 

 

 

 

 

 

 

 

 

 

4.2

  BIOLOGICAL   EFFECTS   OF   RADIATION  

All   radiation   exposure   is   of   concern.

    When   working   with   or   near   radiation   sources   of   any   kind,   you   should   be   aware   of   the   possible   risks.

    Allowable   levels   of   personal   exposure   will   depend   on   the   type   of   radioactive   material   and   the   situation.

 

Danger   to   the   human   body   of   Alpha   and   Beta   Particles   is   mostly   to   the   skin   and   the   eyes.

    This   is   because   these   particles   cannot   penetrate   very   far   into   the   body.

    Danger   from   Gamma   Rays   is   to   the   whole   body.

     

Over   exposure   of   radiation   may   damage   or   kill   the   tiny   living   cells   that   make   up   our   body.

  Large   amounts   of   radiation   or   repeated   high   exposures   may   increase   the   risk   of   serious   disease   such   as   cancer   or   leukaemia   later   in   life.

 

For   these   reasons   it   is   essential   that   proper   safety   precautions   are   adhered   to   and   that   only   properly   trained   personnel   work   on   or   near   radioactive   materials.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.3

  RADIOACTIVE   MATERIALS   USED   IN   SSS   SYSTEMS  

SSS   Basis   Weight   sensors   are   used   to   measure   paper   and   paper   board.

    The   principle   of measurement   is   that   radiation   is   absorbed   by   the   paper   or   board.

    Therefore   the   type  

  of   radiation   that   is   used   in   SSS   systems   MUST   be   easily   absorbed   by   paper   but   not   be   totally   absorbed.

    Only   Beta   particles   satisfy   this   need.

 

The   Basis   Weight   sensor   in   this   system   uses   Promethium   147   isotope   (Pm ‐ 147).

    This   material   is   one   of   the   safest   source   materials   available   since   the   beta   radiation   is   of   low   energy.

     

Pm ‐ 147   has   a   half   life   of   2.6

  years.

  This   means   that   the   source   activity   will   fall   to   half   after   this   time.

  Given   this   relatively   short   half   life,   the   source   will   need   to   be   replacing   at   least   every   5   years.

 

For   are:   comparison   purposes   below   are   the   source   materials   often   found   in   Paper   Sensors  

SOURCE

Krypton  

 

85  

Promethium  

Strontium   90  

Iron   55  

147  

RADIATION

Beta,

Beta,

Beta x ‐ ray

  ,

 

 

 

  some some some

 

 

 

   

Gamma

Gamma

Gamma

(Gamma)  

 

 

 

MATERIAL

Gas  

Solid

Solid

Solid  

 

 

  TYPE        

 

 

 

HALF

10.7

2.6

28

2.7

 

 

 

 

  LIFE years years years years

 

 

 

 

 

The   Leader   in   Measurement   &   Control                   Page   40   of     51  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.4

  LIMITS   FOR   EXPOSURE  

The   quantity   of   ionising   radiation   exposure   is   measured   in   terms   of   ionisation   called   roentgens   but   may   also   be   measured   in   terms   of   energy   absorbed   called   Rads   or   Rems.

     

R   =   Roentgen   This   the   special   unit   of   exposure.

    2.58

  x   10 ‐ 4   Coulomb   per   kilogram   of   air   under   standard   conditions.

 

 

Rad   Unit   of   absorbed   dose   is   the   energy   imparted   to   matter   (such   as   human tissue)   by   ionising   radiation   per   unit   mass   of   irradiated   material   at   the  

  place   of   interest.

    For   X ‐ rays   or   Gamma   Rays,   1   R   (Roentgen)   of   exposure   will   produce   about   1   Rad   of   absorbed   dose   in   soft   tissue.

 

 

Gy   =   (Gray)   The   SI   unit   of   absorbed   dose.

    1   Rad   =   0.01

  Gy  

 

Rem   Stands   for   “Roentgen   Equivalent   Man”.

    A   special   unit   of   dose   equivalent.

    The   dose   equivalent   in   Rems   is   numerically   equal   to   the   absorbed   dose   in   Rads   multiplied   by   a   factor   weighted   for   relative   biological   effect   on   the   tissue   being   exposed.

    For   routine   protection   calculations   of   exposure   to   x ‐ rays,   1R   =   1   Rad   =   1   Rem.

     

 

 

 

Sv   =   (Sievent)   The   SI   unit   dose   equivalent   to   1   Rm   =   0.01

  Sv  

 

DOSE   LIMITS  

All   radiation   is   of   concern.

    When   working   around   sources   of   radiation   you   should   be   aware   of   the   possible   risks.

    Allowable   levels   of   personal   exposure   will   vary   depending   on   the   situation.

    Limit   of   exposure   are   established   in   each   country.

    Typical   dose   limits   are:  

 

 

Maximum   Yearly   dose:  

Occupationally   exposed  ‐  whole   body  

Skin   or   any   extremities  

Eyes  

Dose   to   Embryo   /   Foetus  

 

Public   or   Non ‐ occupationally   Exposed  

REM  

5  

50  

15  

0.5

 

0.1

  mSv  

50  

500  

150  

    5  

    1  

The   Leader   in   Measurement   &   Control                   Page   41   of     51  

 

 

 

 

 

4.5

  EMERGENCY   PROCEDURES  

In   the   event   of   an   emergency   such   as   a   serious   fire   affecting   the   source   enclosure,   or   if   the   red   shutter   light   stays   on   and   cannot   be   made   to   go   off,   do   the   following:  

 

1.

 

2.

 

Send   the   scanner   off   sheet.

 

Keep   unauthorized   personnel   away   from   the   scanner   heads.

    Keep   a   distance   of   about   3   Metres   for   safety.

 

 

3.

  Immediately   inform   the   site   radiation   safety   officer   or   SSS   trained   engineer.

     

 

The   trained   engineer   or   safety   officer   will   investigate   the   problem   and   determine   if   any   risk   exists.

    In   the   case   of   a   shutter   not   closing   properly   he   may   be   able   to   rectify   the  

  problem   without   any   exposure   risk   to   himself   or   others.

     

If   there   is   evidence   of   possible   damage   to   the   source   capsule   then   the   action   taken   will   depend   on   the   type   of   source   material.

    For   Promethium   147   a   wipe   test   must   be   done  

  and   the   resulting   swab   tested   for   any   sign   of   radioactive   material   leakage   using   a   radiation   survey   meter.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.6

  SAFETY   PRECAUTIONS  

It   is   essential   that   all   personnel   who   work   on   or   near   a   safety   precautions   to   minimise   any   exposure   to   radiation.

  radiation   source   take   sensible  

Because   the   source   material   in   SSS   sensors   emits   mostly   Beta   radiation   which   cannot   penetrate   more   than   a   little   over   one   meter   of   air,   avoiding   risk   of   exposure   can   be   done   in   3   ways:  

Shielding  ‐  ensure   that   the the   heads   or   the   sensor.

 

  shutter   is   closed   and   the   green   light   is   on,   before   working   on  

Distance   ‐  keep   a   distance   from   the   source.

    Beta   radiation   cannot   penetrate   far   in

(about   1.5M)   so   maximise   the   distance   between   any   part   of   the   body   and   the   source.

 

  air  

Time  ‐  Minimise   the   time   near   to   the time   is   spent   in   an   exposed   condition.

 

  source.

    Any   exposure   is   halved   if   only   half   the  

Other   safety   precautions   are :  

Operators   and   Engineers   should   avoid   going   close   to   the   scanner   heads   when   the   red   radiation   warning   lights   are   on.

    Press   “Off   Sheet”   to   send   the   scanner   to   the   off   sheet   position   and   to   close   the   shutter.

    The   shutter   should   be   closed   whenever   cleaning   the   sensor   windows   or   otherwise   working   near   to   the   sensor   heads.

    The   shutter   is   confirmed   closed   when   the   green   shutter   close   lights   are   on.

    If   working   on   the   Basis  

Weight   sensor,   it   is   suggested   that   the   shutter   be   locked   in   the   closed   position.

    Details  

The   Leader   in   Measurement   &   Control                   Page   42   of     51  

  of   the   source   assembly   and   the   method   of   locking   the   source   in   the   closed   position   are   explained   in   an   earlier   section   of   this   manual.

 

 

 

 

 

 

 

 

4.7

  WARNING   LIGHTS  

Radiation   warning   lights   (large   LEDs)   are   located   on   both   sides   of   the   top   and   the   bottom   scanner   heads.

    The   Red   lights   indicate   that   the   shutter   is   open   or   not   closed.

     

The   Green   lights   indicate   that   the   shutter   is   in   the   fully   closed   position.

  The   lights   are   operated   by   a   micro   switch   on   the   source   assembly.

     

When   working   on   or   near   to   the   scanner   heads   ensure   that   the   shutter   is   fully   closed   and   observe   the   warning   lights.

 

 

 

 

 

 

 

 

 

4.8

  TRANSPORTATION   OF   SOURCE    

Should   the   source   have   to   be   moved   or   transported,   it   is   very   important   that   it   is   made   safe   for   the   journey.

    If   transporting   the   source   within   the   source   assembly,   then   lock   the   source   assembly   and   ensure   that   it   cannot   come   loose.

     

If   the   source   capsule   is   transported   outside   of   the   source   assembly   (not   advisable   except   by   specially   trained   personnel),   then   it   MUST   be   shipped   inside   the   original   lead   pouch   and   container.

    The   source   package   must   then   be   enclosed   in   the   original   box   with   radiation   label   on   the   outside   identifying   the   source   material   and   activity.

     

Whenever   a   radiation   source   is   moved,   the   proper   authorities   must   be   informed   and   permits   obtained.

    Because   regulations   vary   from   country   to   country   so   it   is   not   possible   to   outline   the   procedures   in   this   manual.

 

 

 

 

 

4.9

  CLEANING   AND   REPLACING   SENSOR   WINDOWS  

Cleaning   and   replacing   sensor   windows   risks   exposure   to   radiation   if   not   performed   correctly   or   with   safety   in   mind.

    Please   refer   to   earlier   sections   of   this   manual   (Basis  

Weight   Sensor   Source   &   Basis   Weight   Sensor   Receiver)   for   full   details   about   how   to   change   or   replace   sensor   windows   in   a   safe   manner.

 

The   Leader   in   Measurement   &   Control                   Page   43   of     51  

 

 

4.10

  SOURCE   CAPSULE   INFORMATION  

 

 

 

 

PROMETHIUM   SOURCE   CAPSULE  

Radioisotope:       Pm ‐ 147  

2.6234

  years  

 

Half   Life:    

 

Activity   (typical):    

 

500mCi   (22   GBq)  

Beta,   some   Gamma  

 

Radiation   Type:    

 

Capsule   Type:      

 

 

Window   Daimeter:   

 

Window:      

VZ ‐ 2824

15.6mm

 

 

Titanium,   5   micron  

Brass  

 

Source   Body:      

 

Rec.Working

  Life:    

 

Kr ‐ 85   SOURCE   CAPSULE  

 

Radioisotope:      

 

 

Half   Life:      

 

Activity   (typical):    

 

Radiation   Type:    

 

Capsule   Type:      

 

Window   Diameter:   

 

5  

Kr

Years

‐ 85

Beta,

 

10.756

300mCi

 

X.1088

6.3mm

 

 

   

   

    years

(11.1GBq) some  

 

Gamma  

 

 

Window   Material:    

 

Source   Body:      

 

Rec.Working

  Life:    

Titanium  

Titanium

10   Years  

 

The   Leader   in   Measurement   &   Control                   Page   44   of     51  

 

 

4.11

  INSTALLING   OR   REMOVING   THE   SOURCE   CAPSULE  

 

 

 

ONLY   QUALIFIED   PERSONS   ARE   ALLOWED   TO   INSTALL,   REMOVE   OR   DO   ANY   WORK   ON  

 

THE   RADIOACTIVE   SOURCE.

 

Should   it   be   necessary   to   remove,   install   or   work   with   the   radioactive   source,   then   the   following   provide   a   guide   regarding   the   safety   procedures   and   what   to   expect.

 

 

Safe   Working   Conditions  

Prepare   safe   working   conditions.

    Necessary   items   to   prepare   are:  

 

1.

Safety   glasses   to   protect   the   eyes.

 

2.

Rubber   gloves   to   protect   the   fingers   and   hands  

3.

A   thick   desk   located   against   a   solid   wall   to   absorb   any   radiation.

 

4.

A   sheet   of   glass   to   protect   the   body.

 

 

The   picture   below   shows   a   typical   set ‐ up.

  The   glass   (or   thick   Perspex)   shield   is   placed   against   the   wall   to   provide   a   protective   screed   to   work   behind.

  Gloves   and   Safety   glasses   are   also   used.

     

The   work   is   done   by   keeping   the   source   material   behind   the   glass   and   always   pointing   the  

 

 

 

  source   away   from   any   part   of   the   body.

   

The   Leader   in   Measurement   &   Control                   Page   45   of     51  

 

 

 

TYPICAL   SETUP   TO   REDUCE   THE   RISK   OF   RADIATION   EXPOSURE.

 

THICK   BRICK   WALL

GLASS   SCREEN  

HEAVY   TABLE  

RUBBER   GLOVES  

 

 

 

 

The   Leader   in   Measurement   &   Control                   Page   46   of     51  

 

REMOVING   THE   SOURCE   AND   PLACING   IN   THE   SOURCE   HOLDER  

REMOVE   THE   BRASS   CAP   ONLY   AT   THE   LAST   MOMENT  

 

 

HOLD   THE   SHUTTER   OPEN  

AND   INSERT   THE   SOUCE  

HOLDER   IN   HERE.

 

 

KR ‐ 85   SOURCE   PICTURES  

 

SOURCE   PACKAGING   WITH   LABEL  

 

SOURCE  

HOLDER  

SOURCE   BODY  

BRASS   SOURCE  

CAP  

The   Leader   in   Measurement   &   Control                   Page   47   of     51  

 

 

 

KR ‐ 85   SOURCE   CAPUSULE  

The   Leader   in   Measurement   &   Control                   Page   48   of     51  

 

 

The   Leader   in   Measurement   &   Control                   Page   49   of     51  

 

 

 

 

 

 

 

 

 

CHAPTER

 

5:

 

 

 

 

 

 

KEY

 

SENSOR

 

COMPONENTS

 

The   Leader   in   Measurement   &   Control                   Page   50   of     51  

 

 

 

CHAPTER   5  

 

5.0

    KEY   COMPONENTS  

COMPONENT  

Ion   Chamber  

Source  

Pneumatic   Cylinder  

Source   Shielding    

Metal   Parts  

Amplifier   IC  

MicroSwitch  

 

Flag   Solenoid  

MODEL  

52024   (Kr ‐ 85),   520121   (Pm ‐ 147)  

KAC10883 (Kr-85) or PHCB11998 (Pm-147)

USR-08-1 Cylinder, 1" stroke  

Brass  

Anodized   (or   Alodyne)   Aluminium  

AD549   /   OP ‐ 270  

 

Standard  

MANUFACTURER  

LND   Inc.

 

QCS   Global  

Clippard  

S ‐ tec  

S ‐ tec  

Analog   Devices  

 

Any   quality   supplier  

COUNTRY   OF   ORIGIN  

USA  

Germany  

USA  

China  

China  

USA  

 

China  

The   Leader   in   Measurement   &   Control                   Page   51   of     51  

advertisement

Key Features

  • Measures basis weight accurately.
  • Employs radiation absorption principle.
  • Includes source and receiver assemblies.
  • Provides consistent and accurate measurements.
  • Used in paper manufacturing for quality control.

Frequently Answers and Questions

How does the Basis Weight Sensor work?
The Basis Weight Sensor operates by measuring the amount of radiation that passes through the paper from the source. This signal is then used to compute the basis weight of the paper using Beer's Law and corrections for factors including Bremsstrahlung effects and dirt buildup.
What are the safety features of the Basis Weight Sensor?
The Basis Weight Sensor incorporates several safety features, including a locking mechanism, fire safety measures, radiation shielding, encapsulation of the radioactive material, and radiation warning lights. These features ensure the safe operation and handling of the device.
How is the Basis Weight Sensor calibrated?
The Basis Weight Sensor is calibrated using an algorithm that considers factors such as dirt buildup, air density changes, radioactive source decay, and electronic drift. The calibration procedure involves static and dynamic measurements to ensure accurate and reliable basis weight readings.

Related manuals

Download PDF

advertisement