Innova 3150d Owner's manual

Innova 3150d Owner's manual

Table of Contents

INTRODUCTION

WHAT IS OBD? ........................................................................................... 1

YOU CAN DO IT! .................................................................................................. 2

SAFETY PRECAUTIONS

SAFETY FIRST! ..........................................................................................

ABOUT THE DIAGNOSTIC TOOL

VEHICLES COVERED ................................................................................

BATTERY REPLACEMENT ........................................................................

3

5

6

DIAGNOSTIC TOOL CONTROLS

CONTROLS AND INDICATORS .................................................................

DISPLAY FUNCTIONS ................................................................................

7

9

ONBOARD DIAGNOSTICS

COMPUTER ENGINE CONTROLS ............................................................. 11

DIAGNOSTIC TROUBLE CODES (DTCs).................................................... 16

OBD2 MONITORS ....................................................................................... 19

PREPARATION FOR TESTING

PRELIMINARY VEHICLE DIAGNOSTIC WORKSHEET .............................. 28

BEFORE YOU BEGIN ................................................................................. 31

VEHICLE SERVICE MANUALS .................................................................. 32

USING THE DIAGNOSTIC TOOL

CODE RETRIEVAL PROCEDURE .............................................................. 33

THE SYSTEM MENU ................................................................................... 38

VIEWING OEM ENHANCED DTCs ............................................................. 40

VIEWING ABS DTCs ................................................................................... 50

VIEWING SRS DTCs ................................................................................... 51

ERASING DIAGNOSTIC TROUBLE CODES (DTCs)................................... 53

I/M READINESS TESTING .......................................................................... 54

ABOUT REPAIRSOLUTIONS® ................................................................... 59

ADDITIONAL TESTS

VIEWING FREEZE FRAME DATA .............................................................. 61

VIEWING VEHICLE INFORMATION ........................................................... 61

SEARCHING FOR A DTC DEFINITION USING THE DTC LIBRARY (OBD1) ... 64

SEARCHING FOR A DTC DEFINITION USING THE DTC LIBRARY (OBD2) .... 65

VIEWING THE FIRMWARE VERSION .............................................................. 67

ADJUSTMENTS AND SETTINGS ................................................................ 67

USING DIAGNOSTIC TOOL MEMORY

VIEWING DATA IN MEMORY ..................................................................... 71

GENERIC (GLOBAL) OBD2 PID LIST .................................................................. 72

VEHICLE APPLICATIONS - ABS

VEHICLE APPLICATIONS – MAKES COVERED ........................................ 77

VEHICLE APPLICATIONS - SRS

VEHICLE APPLICATIONS – MAKES COVERED ........................................ 78

GLOSSARY

GLOSSARY OF TERMS AND ABBREVIATIONS ........................................ 79

WARRANTY AND SERVICING

LIMITED ONE YEAR WARRANTY .............................................................. 81

SERVICE PROCEDURES ........................................................................... 81

i 3150d

Introduction

WHAT IS OBD?

WHAT IS OBD?

The Diagnostic Tool is designed to work on all OBD2 compliant vehicles. All 1996 and newer vehicles (cars, light trucks and SUVs) sold in the United States are OBD2 compliant.

One of the most exciting improvements in the automobile industry was the addition of onboard diagnostics (OBD) on vehicles, or in more basic terms, the computer that activates the vehicle’s “CHECK ENGINE” light. OBD1 was designed to monitor manufacturer-specific systems on vehicles built from 1981 to 1995.

Then came the development of OBD2, which is on all 1996 cars and light trucks sold in the U.S. Like its predecessor,

OBD2 was adopted as part of a government mandate to lower vehicle emissions. But what makes OBD2 unique is its universal application for all late model cars and trucks - domestic and import. This sophisticated program in the vehicle’s main computer system is designed to detect failures in a range of systems, and can be accessed through a universal

OBD2 port, which is usually found under the dashboard. For all OBD systems, if a problem is found, the computer turns on the “CHECK

ENGINE” light to warn the driver, and sets a Diagnostic Trouble Code

(DTC) to identify where the problem occurred. A special tool, such as the Diagnostic Tool, is required to retrieve these codes, which consumers and professionals use as a starting point for repairs.

The Diagnostic Tool provides the additional ability to retrieve enhanced

DTCs from most Chrysler/Jeep, Ford/Mazda, GM/Izusu, Honda/Acura and Toyota/Lexus vehicles, as well as ABS and SRS DTCs, and vehicle information. The types of enhanced data available depends on the vehicle make.

3150d 1

You Can Do It!

EASY TO USE - EASY TO VIEW - EASY TO DEFINE

Easy To Use . . . .

„

„

„

Connect the Diagnostic Tool to the vehicle’s test connector.

Turn the ignition key "On.”

The Diagnostic Tool will automatically link to the vehicle’s computer.

Easy To View . . . .

„

„

The Diagnostic Tool retrieves stored codes, Freeze Frame data and I/M

Readiness Status.

Codes, I/M Readiness Status and

Freeze Frame data are displayed on the

Tool’s display screen. System Status is indicated by LED indicators.

Easy To Define . . . .

„

„

„

„

Read code definitions from the

Diagnostic Tool’s display.

View Freeze Frame data.

View Anti-Lock Brake System (ABS) codes.

View Supplemental Restraint System

(SRS) codes.

2 3150d

SAFETY FIRST!

Safety Precautions

SAFETY FIRST!

To avoid personal injury, instrument damage and/or damage to your vehicle; do not use the Diagnostic Tool

before reading this manual.

This manual describes common test procedures used by experienced service technicians. Many test procedures require precautions to avoid accidents that can result in personal injury, and/or damage to your vehicle or test equipment. Always read your vehicle's service manual and follow its safety precautions before and during any test or service procedure. ALWAYS observe the following general safety precautions:

When an engine is running, it produces carbon monoxide, a toxic and poisonous gas. To prevent serious injury or death from carbon monoxide poisoning, operate the vehicle ONLY in a well-ventilated area.

P

R

To protect your eyes from propelled objects as well as hot or caustic liquids, always wear approved safety eye protection.

When an engine is running, many parts (such as the coolant fan, pulleys, fan belt etc.) turn at high speed. To avoid serious injury, always be aware of moving parts.

Keep a safe distance from these parts as well as other potentially moving objects.

Engine parts become very hot when the engine is running.

To prevent severe burns, avoid contact with hot engine parts.

Before starting an engine for testing or troubleshooting, make sure the parking brake is engaged. Put the transmission in park (for automatic transmission) or

neutral (for manual transmission). Block the drive wheels with suitable blocks.

Connecting or disconnecting test equipment when the ignition is ON can damage test equipment and the vehicle's electronic components. Turn the ignition OFF before connecting the Scan Tool to or disconnecting the

Scan Tool from the vehicle’s Data Link Connector (DLC).

3150d 3

Safety Precautions

SAFETY FIRST!

To prevent damage to the on-board computer when taking vehicle electrical measurements, always use a digital multimeter with at least 10 megOhms of impedance.

Fuel and battery vapors are highly flammable. To prevent an explosion, keep all sparks, heated items and open flames away from the battery and fuel / fuel vapors. DO

NOT SMOKE NEAR THE VEHICLE DURING TESTING.

Don't wear loose clothing or jewelry when working on an engine. Loose clothing can become caught in the fan, pulleys, belts, etc. Jewelry is highly conductive, and can cause a severe burn if it makes contact between a power source and ground.

4 3150d

About the Diagnostic Tool

VEHICLES COVERED

VEHICLES COVERED

The Diagnostic Tool is designed to work on all OBD2 compliant vehicles.

All 1996 and newer vehicles (cars and light trucks) sold in the United

States are OBD2 compliant.

Federal law requires that all 1996 and newer cars and light trucks sold in the United States must be OBD2 compliant; this includes all Domestic, Asian and European vehicles.

Some 1994 and 1995 vehicles are OBD2 compliant. To find out if a

1994 or 1995 vehicle is OBD2 compliant, check the following:

1.

The Vehicle Emissions Control Information (VECI) Label. This label is located under the hood or by the radiator of most vehicles. If the vehicle is OBD2 compliant, the label will state “OBD II

Certified.”

VEHICLE EMISSION CONTROL INFORMATION

VEHICLE

MANUFACTURER

ENGINE FAMILY EFN2.6YBT2BA

DISPLACEMENT 2.6L

OBD II

CERTIFIED

THIS VEHICLE CONFORMS TO U.S. EPA AND STATE

OF CALIFORNIA REGULATIONS APPLICABLE TO

1999 MODEL YEAR NEW TLEV PASSENGER CARS.

REFER TO SERVICE MANUAL FOR ADDITIONAL INFORMATION

TUNE-UP CONDITIONS: NORMAL OPERATING ENGINE TEMPERATURE,

ACCESSORIES OFF, COOLING FAN OFF, TRANSMISSION IN NEUTRAL

EXHAUST EMISSIONS STANDARDS STANDARD CATEGORY

CERTIFICATION

IN-USE

TLEV

TLEV INTERMEDIATE

SPARK PLUG

TYPE NGK BPRE-11

GAP: 1.1MM

CATALYST

OBD II

CERTIFIED

2.

Government Regulations require that all

OBD2 compliant vehicles must have a

“common” sixteen-pin Data Link

Connector (DLC).

1 2 3 4 5 6 7 8

9 10111213141516

Some 1994 and 1995 vehicles have 16-pin connectors but are not OBD2 compliant. Only those vehicles with a Vehicle

Emissions Control Label stating “OBD II Certified” are OBD2 compliant.

Data Link Connector (DLC) Location

The 16-pin DLC is usually located under the instrument panel (dash), within 12 inches

(300 mm) of center of the panel, on the driver’s side of most vehicles. It should be easily accessible and visible from a kneeling position outside the vehicle with the door open.

LEFT CORNER

OF DASH

NEAR

CENTER

OF DASH

BEHIND

ASHTRAY

3150d 5

About the Diagnostic Tool

BATTERY REPLACEMENT

On some Asian and European vehicles the DLC is located behind the “ashtray” (the ashtray must be removed to access it) or on the far left corner of the dash. If the DLC cannot be located, consult the vehicle’s service manual for the location.

BATTERY REPLACEMENT

Replace batteries when the battery symbol is visible on display and/or the 3 LEDS are all lit and no other data is visible on screen.

1.

Locate the battery cover on the back of the Diagnostic Tool.

2.

Slide the battery cover off (use your fingers).

3.

Replace batteries with three AA-size batteries (for longer life, use

Alkaline-type batteries).

4.

Reinstall the battery cover on the back of the Diagnostic Tool.

Adjustments After Battery Installation

The first time the Diagnostic Tool is turned on, you must select the desired display language (English, French or Spanish) and unit of measurement (USA or metric) as follows:

1.

Press the POWER/LINK to turn the Diagnostic Tool “ON.”

button

„ The Select Language screen displays.

2.

Use the UP

and DOWN buttons, as necessary, to highlight the desired display language.

3.

When the desired display language is selected, press the ENTER button to confirm your selection.

„

The Select Unit screen displays.

4.

Use the UP

and DOWN buttons, as necessary, to highlight the desired unit of measurement.

5.

When the desired unit of measurement is selected, press the

ENTER button to confirm your selection.

After the initial language and unit of measurement selections are performed, these, as well as other settings, can be changed as desired. Proceed to “ADJUSTMENTS AND

SETTINGS” on page 67 for further instructions.

6 3150d

Diagnostic Tool Controls

CONTROLS AND INDICATORS

CONTROLS AND INDICATORS

10

7

1

2

3

8

14

13

11

12

4

5

6

9

Figure 1. Controls and Indicators

See Figure 1 for the locations of items 1 through 14, below.

1.

ERASE button - Erases Diagnostic Trouble Codes (DTCs), and “Freeze Frame” data from your vehicle’s computer, and resets

Monitor status.

2.

SYSTEM MENU button – When pressed, displays the System

Menu.

3.

DTC button - Displays the DTC View screen and/or scrolls the LCD display to view DTCs.

3150d 7

Diagnostic Tool Controls

CONTROLS AND INDICATORS

4.

POWER/LINK button - When the Diagnostic Tool IS NOT connected to a vehicle, turns the Diagnostic Tool “On” and “Off”.

When the Diagnostic Tool is connected to a vehicle, links the

Diagnostic Tool to the vehicle’s PCM to retrieve diagnostic data from the computer’s memory.

5.

M button – When pressed, displays the Main Menu.

6.

FF button – When pressed while linked to a vehicle, displays

Freeze Frame data for the priority DTC.

7.

UP button – When in MENU mode, scrolls UP through the menu and submenu selection options. When LINKED to a vehicle, scrolls

UP through the current display screen to display any additional data.

8.

ENTER button - When in MENU mode, confirms the selected option or value.

9.

DOWN button - When in MENU mode, scrolls DOWN through the menu and submenu selection options. When LINKED to a vehicle, scrolls DOWN through the current display screen to display any additional data.

10.

GREEN LED - Indicates that all engine systems are running normally (all Monitors on the vehicle are active and performing their diagnostic testing, and no DTCs are present).

11.

YELLOW LED - Indicates there is a possible problem. A “Pending”

DTC is present and/or some of the vehicle’s emission monitors have not run their diagnostic testing.

12.

RED LED - Indicates there is a problem in one or more of the vehicle’s systems. The red LED is also used to show that DTC(s) are present. DTCs are shown on the Diagnostic Tool’s display. In this case, the Malfunction Indicator (“Check Engine”) lamp on the vehicle’s instrument panel will light steady on.

13.

Display - Displays settings Menu and submenus, test results,

Diagnostic Tool functions and Monitor status information. See

DISPLAY FUNCTIONS, following, for more details.

14.

CABLE - Connects the Diagnostic Tool to the vehicle’s Data Link

Connector (DLC).

8 3150d

DISPLAY FUNCTIONS

2 1

3

4

5

6

7

8

Diagnostic Tool Controls

DISPLAY FUNCTIONS

11 12 13

14

10

9

Figure 2. Display Functions

See Figure 2 for the locations of items 1 through 14, following.

1.

I/M MONITOR STATUS field - Identifies the I/M Monitor status area.

2.

Monitor icons - Indicate which Monitors are supported by the vehicle under test, and whether or not the associated Monitor has run its diagnostic testing (Monitor status). When a Monitor icon is solid, it indicates that the associated Monitor has completed its diagnostic testing. When a Monitor icon is flashing, it indicates that the vehicle supports the associated Monitor, but the Monitor has not yet run its diagnostic testing.

3.

Vehicle icon - Indicates whether or not the Diagnostic Tool is being properly powered through the vehicle’s Data Link Connector

(DLC). A visible icon indicates that the Diagnostic Tool is being powered through the vehicle’s DLC connector.

4.

Link icon - Indicates whether or not the Diagnostic Tool is communicating (linked) with the vehicle’s on-board computer. When visible, the Diagnostic Tool is communicating with the computer. If the Link icon is not visible, the Diagnostic Tool is not communicating with the computer.

5.

Computer icon - When this icon is visible it indicates that the

Diagnostic Tool is linked to a personal computer. Optional software is available that makes it possible to upload retrieved data to a personal computer.

6.

Diagnostic Tool Internal Battery icon - When visible, indicates the Diagnostic Tool batteries are “low” and should be replaced. If the batteries are not replaced when the battery symbol is "on", all 3

LEDs will light up as a last resort indicator to warn you that the batteries need replacement. No data will be displayed on screen when all 3 LEDs are lit.

3150d 9

Diagnostic Tool Controls

DISPLAY FUNCTIONS

7.

DTC Display Area - Displays the Diagnostic Trouble Code (DTC) number. Each fault is assigned a code number that is specific to that fault.

8.

Test Data Display Area - Displays DTC definitions, Freeze Frame data and other pertinent test information messages.

9.

FREEZE FRAME icon - Indicates that there is Freeze Frame data from “Priority Code” (Code #1) stored in the vehicle’s computer memory.

10.

PERMANENT icon - Indicates the currently displayed DTC is a

“Permanent” code.

11.

PENDING icon - Indicates the currently displayed DTC is a

“Pending” code.

12.

MIL icon - Indicates the status of the Malfunction Indicator Lamp

(MIL). The MIL icon is visible only when a DTC has commanded the

MIL on the vehicle’s dashboard to light.

13.

Code Number Sequence - The Diagnostic Tool assigns a sequence number to each DTC that is present in the computer’s memory, starting with “01.” This number indicates which code is currently displayed. Code number “01” is always the highest priority code, and the one for which “Freeze Frame” data has been stored.

If “01” is a “Pending” code, there may or may not be “Freeze

Frame” data stored in memory.

14.

Code Enumerator - Indicates the total number of codes retrieved from the vehicle’s computer.

10 3150d

Onboard Diagnostics

COMPUTER ENGINE CONTROLS

COMPUTER ENGINE CONTROLS

The Introduction of Electronic Engine Controls

Electronic Computer Control Systems make it possible for vehicle manufacturers to comply with the tougher emissions and fuel efficiency standards mandated by

State and Federal Governments.

As a result of increased air pollution (smog) in large cities, such as Los Angeles, the California Air Resources Board

(CARB) and the Environmental Protection Agency (EPA) set new regulations and air pollution standards to deal with the problem. To further complicate matters, the energy crisis of the early 1970s caused a sharp increase in fuel prices over a short period. As a result, vehicle manufacturers were not only required to comply with the new emissions standards, they also had to make their vehicles more fuel-efficient. Most vehicles were required to meet a miles-per-gallon (MPG) standard set by the U.S.

Federal Government.

Precise fuel delivery and spark timing are needed to reduce vehicle emissions. Mechanical engine controls in use at the time (such as ignition points, mechanical spark advance and the carburetor) responded too slowly to driving conditions to properly control fuel delivery and spark timing. This made it difficult for vehicle manufacturers to meet the new standards.

A new Engine Control System had to be designed and integrated with the engine controls to meet the stricter standards. The new system had to:

„ Respond instantly to supply the proper mixture of air and fuel for any driving condition (idle, cruising, low-speed driving, high-speed driving, etc.).

„ Calculate instantly the best time to “ignite” the air/fuel mixture for maximum engine efficiency.

„

Perform both these tasks without affecting vehicle performance or fuel economy.

Vehicle Computer Control Systems can perform millions of calculations each second. This makes them an ideal substitute for the slower mechanical engine controls. By switching from mechanical to electronic engine controls, vehicle manufacturers are able to control fuel delivery and spark timing more precisely. Some newer Computer Control

Systems also provide control over other vehicle functions, such as transmission, brakes, charging, body, and suspension systems.

3150d 11

Onboard Diagnostics

COMPUTER ENGINE CONTROLS

The Basic Engine Computer Control System

The Computer Control System consists of an on-board computer and several related control devices (sensors,

switches, and actuators).

The on-board computer is the heart of the Computer

Control System. The computer contains several programs with preset reference values for air/fuel ratio, spark or ignition timing, injector pulse width, engine speed, etc.

Separate values are provided for various driving conditions, such as idle, low speed driving, high-speed driving, low load, or high load. The preset reference values represent the ideal air/fuel mixture, spark timing, transmission gear selection, etc., for any driving condition. These values are programmed by the vehicle manufacturer, and are specific to each vehicle model.

Most on-board computers are located inside the vehicle behind the dashboard, under the passenger’s or driver’s seat, or behind the right kick panel. However, some manufacturers may still position it in the engine compartment.

Vehicle sensors, switches, and actuators are located throughout the engine, and are connected by electrical wiring to the on-board computer.

These devices include oxygen sensors, coolant temperature sensors, throttle position sensors, fuel injectors, etc. Sensors and switches are

input devices. They provide signals representing current engine operating conditions to the computer. Actuators are output devices. They perform actions in response to commands received from the computer.

The on-board computer receives information inputs from sensors and switches located throughout the engine. These devices monitor critical engine conditions such as coolant temperature, engine speed, engine load, throttle position, air/fuel ratio etc.

The computer compares the values received from these sensors with its preset reference values, and makes corrective actions as needed so that the sensor values always match the preset reference values for the current driving condition. The computer makes adjustments by commanding other devices such as the fuel injectors, idle air control,

EGR valve or Ignition Module to perform these actions.

TYPICAL COMPUTER

CONTROL SYSTEM

OUTPUT DEVICES

Fuel Injectors

Idle Air Control

EGR Valve

Ignition Module

On-Board

Computer

INPUT DEVICES

Coolant Temperature Sensor

Throttle Position Sensor

Fuel Injectors

INPUT DEVICES

Oxygen Sensors

12 3150d

Onboard Diagnostics

COMPUTER ENGINE CONTROLS

Vehicle operating conditions are constantly changing. The computer continuously makes adjustments or corrections (especially to the air/fuel mixture and spark timing) to keep all the engine systems operating within the preset reference values.

On-Board Diagnostics - First Generation (OBD1)

With the exception of some 1994 and 1995 vehicles, most vehicles from 1982 to 1995 are equipped with

some type of first generation On-Board Diagnostics.

Beginning in 1988, California’s Air Resources Board

(CARB), and later the Environmental Protection Agency (EPA) required vehicle manufacturers to include a self-diagnostic program in their on-board computers. The program would be capable of identifying emissions-related faults in a system. The first generation of Onboard Diagnostics came to be known as

OBD1.

OBD1 is a set of self-testing and diagnostic instructions programmed into the vehicle’s on-board computer. The programs are specifically designed to detect failures in the sensors, actuators, switches and wiring of the various vehicle emissions-related systems. If the computer detects a failure in any of these components or systems, it lights an indicator on the dashboard to alert the driver. The indicator lights only when an emissions-related problem is detected.

The computer also assigns a numeric code for each specific problem that it detects, and stores these codes in its memory for later retrieval.

These codes can be retrieved from the computer’s memory with the use of a “Diagnostic Tool” or a “Scan Tool.”

On-Board Diagnostics - Second Generation (OBD2)

In addition to performing all the functions of the OBD1 System, the

OBD2 System has been enhanced with new Diagnostic Programs. These

The OBD2 System is an enhancement of the

programs closely monitor the functions of various emissions-related compo-

OBD1 System. nents and systems (as well as other systems) and make this information readily available (with the proper equipment) to the technician for evaluation.

The California Air Resources Board (CARB) conducted studies on OBD1 equipped vehicles. The information that was gathered from these studies showed the following:

„

A large number of vehicles had deteriorating or degraded emissions-related components. These components were causing an increase in emissions.

3150d 13

Onboard Diagnostics

COMPUTER ENGINE CONTROLS

„

„

Because OBD1 systems only detect failed components, the degraded components were not setting codes.

Some emissions problems related to degraded components only occur when the vehicle is being driven under a load. The emission checks being conducted at the time were not performed under simulated driving conditions. As a result, a significant number of vehicles with degraded components were passing Emissions Tests.

„

Codes, code definitions, diagnostic connectors, communication protocols and emissions terminology were different for each manufacturer. This caused confusion for the technicians working on different make and model vehicles.

To address the problems made evident by this study, CARB and the

EPA passed new laws and standardization requirements. These laws required that vehicle manufacturers to equip their new vehicles with devices capable of meeting all of the new emissions standards and regulations. It was also decided that an enhanced on-board diagnostic system, capable of addressing all of these problems, was needed. This new system is known as “On-Board Diagnostics Generation Two

(OBD2).” The primary objective of the OBD2 system is to comply with the latest regulations and emissions standards established by CARB and the EPA.

The Main Objectives of the OBD2 System are:

„

To detect degraded and/or failed emissions-related components or systems that could cause tailpipe emissions to exceed by 1.5 times the Federal Test Procedure (FTP) standard.

„

To expand emissions-related system monitoring. This includes a set of computer run diagnostics called Monitors. Monitors perform diagnostics and testing to verify that all emissions-related components and/or systems are operating correctly and within the manufacturer’s specifications.

„

To use a standardized Diagnostic Link Connector (DLC) in all vehicles. (Before OBD2, DLCs were of different shapes and sizes.)

„

„

„

To standardize the code numbers, code definitions and language used to describe faults. (Before OBD2, each vehicle manufacturer used their own code numbers, code definitions and language to describe the same faults.)

To expand the operation of the Malfunction Indicator Lamp (MIL).

To standardize communication procedures and protocols between the diagnostic equipment (Scan Tools, Diagnostic Tools, etc.) and the vehicle’s on-board computer.

OBD2 Terminology

The following terms and their definitions are related to OBD2 systems.

Read and reference this list as needed to aid in the understanding of

OBD2 systems.

14 3150d

Onboard Diagnostics

COMPUTER ENGINE CONTROLS

„

„

Powertrain Control Module (PCM) - The PCM is the OBD2 accepted term for the vehicle’s “on-board computer.” In addition to controlling the engine management and emissions systems, the PCM also participates in controlling the powertrain

(transmission) operation. Most PCMs also have the ability to communicate with other computers on the vehicle (ABS, ride control, body, etc.).

Monitor - Monitors are “diagnostic routines” programmed into the

PCM. The PCM utilizes these programs to run diagnostic tests, and to monitor operation of the vehicle’s emissions-related components or systems to ensure they are operating correctly and within the vehicle’s manufacturer specifications. Currently, up to fifteen

Monitors are used in OBD2 systems. Additional Monitors will be added as the OBD2 system is further developed.

Not all vehicles support all fifteen Monitors.

„

„

„

Enabling Criteria - Each Monitor is designed to test and monitor the operation of a specific part of the vehicle’s emissions system

(EGR system, oxygen sensor, catalytic converter, etc.). A specific set of “conditions” or “driving procedures” must be met before the computer can command a Monitor to run tests on its related system.

These “conditions” are known as “Enabling Criteria.” The requirements and procedures vary for each Monitor. Some Monitors only require the ignition key to be turned “On” for them to run and complete their diagnostic testing. Others may require a set of complex procedures, such as, starting the vehicle when cold, bringing it to operating temperature, and driving the vehicle under specific conditions before the Monitor can run and complete its diagnostic testing.

Monitor Has/Has Not Run - The terms “Monitor has run” or

“Monitor has not run” are used throughout this manual. “Monitor

has run,” means the PCM has commanded a particular Monitor to perform the required diagnostic testing on a system to ensure the system is operating correctly (within factory specifications). The term

Monitor has not run” means the PCM has not yet commanded a particular Monitor to perform diagnostic testing on its associated part of the emissions system.

Trip - A Trip for a particular Monitor requires that the vehicle is being driven in such a way that all the required “Enabling Criteria” for the Monitor to run and complete its diagnostic testing are met.

The “Trip Drive Cycle” for a particular Monitor begins when the ignition key is turned “On.” It is successfully completed when all the

“Enabling Criteria” for the Monitor to run and complete its diagnostic testing are met by the time the ignition key is turned “Off.” Since each of the fifteen monitors is designed to run diagnostics and testing on a different part of the engine or emissions system, the

“Trip Drive Cycle” needed for each individual Monitor to run and complete varies.

3150d 15

Onboard Diagnostics

DIAGNOSTIC TROUBLE CODES (DTCs)

„

„

OBD2 Drive Cycle - An OBD2 Drive Cycle is an extended set of driving procedures that takes into consideration the various types of driving conditions encountered in real life. These conditions may include starting the vehicle when it is cold, driving the vehicle at a steady speed (cruising), accelerating, etc. An OBD2 Drive Cycle begins when the ignition key is turned “On” (when cold) and ends when the vehicle has been driven in such a way as to have all the

“Enabling Criteria” met for all its applicable Monitors. Only those trips that provide the Enabling Criteria for all Monitors applicable to the vehicle to run and complete their individual diagnostic tests qualify as an OBD2 Drive Cycle. OBD2 Drive Cycle requirements vary from one model of vehicle to another. Vehicle manufacturers set these procedures. Consult your vehicle’s service manual for

OBD2 Drive Cycle procedures.

Do not confuse a “Trip” Drive Cycle with an OBD2 Drive Cycle. A

“Trip” Drive Cycle provides the “Enabling Criteria” for one specific

Monitor to run and complete its diagnostic testing. An OBD2 Drive

Cycle must meet the “Enabling Criteria” for all Monitors on a particular vehicle to run and complete their diagnostic testing.

Warm-up Cycle - Vehicle operation after an engine off period where engine temperature rises at least 40°F (22°C) from its temperature before starting, and reaches at least 160°F (70°C). The PCM uses warm-up cycles as a counter to automatically erase a specific code and related data from its memory. When no faults related to the original problem are detected within a specified number of warm-up cycles, the code is erased automatically.

DIAGNOSTIC TROUBLE CODES (DTCs)

Diagnostic Trouble Codes (DTCs) are meant to guide you to the proper service procedure in the vehicle’s service manual. DO NOT replace parts

Diagnostic Trouble

Codes (DTCs) are codes that identify a

based only on DTCs without first consulting the vehicle’s service manual for proper testing procedures for that particular system, circuit or component.

specific problem area.

DTCs are alphanumeric codes that are used to identify a problem that is present in any of the systems that are monitored by the on-board computer (PCM). Each trouble code has an assigned message that identifies the circuit, component or system area where the problem was found.

OBD2 diagnostic trouble codes are made up of five characters:

„ The 1st character is a letter (B, C, P or U). It identifies the “main system” where the fault occurred (Body, Chassis, Powertrain, or Network).

„ The 2nd character is a numeric digit (0 thru 3). It identifies the

“type” of code (Generic or Manufacturer-Specific).

Generic DTCs are codes that are used by all vehicle manufacturers. The standards for generic DTCs, as well as their definitions, are set by the Society of Automotive Engineers (SAE).

16 3150d

Onboard Diagnostics

DIAGNOSTIC TROUBLE CODES (DTCs)

„

„

Manufacturer-Specific DTCs are codes that are controlled by the vehicle manufacturers. The Federal Government does not require vehicle manufacturers to go beyond the standardized generic DTCs in order to comply with the new OBD2 emissions standards. However, manufacturers are free to expand beyond the standardized codes to make their systems easier to diagnose.

The 3rd character is a letter or a numeric digit (0 thru 9, A thru F).

It identifies the specific system or sub-system where the problem is located.

The 4th and 5th characters are letters or numeric digits (0 thru 9, A thru F). They identify the section of the system that is malfunctioning.

OBD2 DTC EXAMPLE

P0201 - Injector Circuit Malfunction, Cylinder 1

P 0 2 0 1

B

C

P

U

-

-

-

-

Body

Chassis

Powertrain

Network

0

1

2

-

-

-

3

-

Generic

Manufacturer Specific

Generic ("P" Codes) and Manufacturer

Specific ("B", "C" and "U" Codes)

Includes both Generic and Manufacturer

Specific Codes

Identifies the system where the problem is located. "P" Code systems are listed below.

"B", "C" and "U" Code systems will vary.

0

Fuel and Air Metering; Auxiliary Emission

Controls

1 - Fuel and Air Metering

2

3

4

5

6

7

-

-

-

-

-

-

Fuel and Air Metering (injector circuit malfunction only)

Ignition System or Misfire

Auxiliary Emission Control System

Vehicle Speed Control and Idle Control

System

Computer Output Circuits

Transmission

8 - Transmission

9 - Transmission

A - Hybrid Propulsion

B - Hybrid Propulsion

C

Hybrid Propulsion

Identifies what section of the system is malfunctioning

3150d 17

Onboard Diagnostics

DIAGNOSTIC TROUBLE CODES (DTCs)

DTCs and MIL Status

When the vehicle’s on-board computer detects a failure in an emissions-related component or system, the computer’s internal diagnostic program assigns a diagnostic trouble code

(DTC) that points to the system (and subsystem) where the fault was found. The diagnostic program saves the code in the computer’s memory. It records a “Freeze Frame” of conditions present when the fault was found, and lights the Malfunction

Indicator Lamp (MIL). Some faults require detection for two trips in a row before the MIL is turned on.

The “Malfunction Indicator Lamp” (MIL) is the accepted term used to describe the lamp on the dashboard that lights to warn the driver that an emissions-related fault has been found.

Some manufacturers may still call this lamp a “Check Engine” or “Service Engine Soon” light.

There are two types of DTCs used for emissions-related faults: Type “A” and Type “B.” Type “A” codes are “One-Trip” codes; Type “B” DTCs are usually Two-Trip DTCs.

When a Type “A” DTC is found on the First Trip, the following events take place:

„

„

„

„

The computer commands the MIL “On” when the failure is first found.

If the failure causes a severe misfire that may cause damage to the catalytic converter, the MIL “flashes” once per second. The MIL continues to flash as long as the condition exists. If the condition that caused the MIL to flash is no longer present, the MIL will light

“steady” On.

A DTC is saved in the computer’s memory for later retrieval.

A “Freeze Frame” of the conditions present in the engine or emissions system when the MIL was ordered “On” is saved in the computer’s memory for later retrieval. This information shows fuel system status

(closed loop or open loop), engine load, coolant temperature, fuel trim value, MAP vacuum, engine RPM and DTC priority.

When a Type “B” DTC is found on the First Trip, the following events take place:

„

„

The computer sets a Pending DTC, but the MIL is not ordered “On.”

“Freeze Frame” data may or may not be saved at this time depending on manufacturer. The Pending DTC is saved in the computer’s memory for later retrieval.

If the failure is found on the second consecutive trip, the MIL is ordered “On.” “Freeze Frame” data is saved in the computer’s memory.

„

If the failure is not found on the second Trip, the Pending DTC is erased from the computer’s memory.

The MIL will stay lit for both Type “A” and Type “B” codes until one of the following conditions occurs:

18 3150d

Onboard Diagnostics

OBD2 MONITORS

„

„

„

If the conditions that caused the MIL to light are no longer present for the next three trips in a row, the computer automatically turns the

MIL “Off” if no other emissions-related faults are present. However, the DTCs remain in the computer’s memory as a history code for 40 warm-up cycles (80 warm-up cycles for fuel and misfire faults). The

DTCs are automatically erased if the fault that caused them to be set is not detected again during that period.

Misfire and fuel system faults require three trips with “similar conditions” before the MIL is turned “Off.” These are trips where the engine load, RPM and temperature are similar to the conditions present when the fault was first found.

After the MIL has been turned off, DTCs and Freeze Frame data stay in the computer’s memory.

Erasing the DTCs from the computer’s memory can also turn off the

MIL. See ERASING DIAGNOSTIC TROUBLE CODES (DTCs) on page 50, before erasing codes from the computer’s memory. If a

Diagnostic Tool or Scan Tool is used to erase the codes, Freeze

Frame data will also be erased.

OBD2 MONITORS

To ensure the correct operation of the various emissions-related components and systems, a diagnostic program was developed and installed in the vehicle’s on-board computer. The program has several procedures and diagnostic strategies. Each procedure or diagnostic strategy is made to monitor the operation of, and run diagnostic tests on, a specific emissions-related component or system. These tests ensure the system is running correctly and is within the manufacturer’s specifications. On OBD2 systems, these procedures and diagnostic strategies are called “Monitors.”

Currently, fifteen Monitors are supported by OBD2 systems. Additional monitors may be added as a result of Government regulations as the

OBD2 system grows and matures. Not all vehicles support all fifteen

Monitors. Additionally, some Monitors are supported by “spark ignition” vehicles only, while others are supported by “compression ignition” vehicles only.

Monitor operation is either “Continuous” or “Non-Continuous,” depending on the specific monitor.

Continuous Monitors

Three of these Monitors are designed to constantly monitor their associated components and/or systems for proper operation.

Continuous Monitors run constantly when the engine is running. The

Continuous Monitors are:

Comprehensive Component Monitor (CCM)

Misfire Monitor

Fuel System Monitor

3150d 19

Onboard Diagnostics

OBD2 MONITORS

Non-Continuous Monitors

The other twelve Monitors are “non-continuous” Monitors. “Noncontinuous” Monitors perform and complete their testing once per trip.

The “non-continuous” Monitors are:

Oxygen Sensor Monitor

Oxygen Sensor Heater Monitor

Catalyst Monitor

Heated Catalyst Monitor

EGR System Monitor

EVAP System Monitor

Secondary Air System Monitor

The following Monitors became standard beginning in 2010.

The majority of vehicles produced before this time will not support these Monitors

NMHC Monitor

NOx Adsorber Monitor

Boost Pressure System Monitor

Exhaust Gas Sensor Monitor

PM Filter Monitor

The following provides a brief explanation of the function of each Monitor:

Comprehensive Component Monitor (CCM) - This Monitor continuously checks all inputs and outputs from sensors, actuators, switches and other devices that provide a signal to the computer. The Monitor checks for shorts, opens, out of range value, functionality and “rationality.”

Rationality: Each input signal is compared against all other inputs and against information in the computer’s memory to see if it makes sense under the current operating conditions.

Example: The signal from the throttle position sensor indicates the vehicle is in a wide-open throttle condition, but the vehicle is really at idle, and the idle condition is confirmed by the signals from all other sensors. Based on the input data, the computer determines that the signal from the throttle position sensor is not rational (does not make sense when compared to the other inputs). In this case, the signal would fail the rationality test.

The CCM is supported by both “spark ignition” vehicles and

“compression ignition” vehicles. The CCM may be either a “One-Trip” or a “Two-Trip” Monitor, depending on the component.

20 3150d

Onboard Diagnostics

OBD2 MONITORS

Fuel System Monitor - This Monitor uses a Fuel System

Correction program, called Fuel Trim, inside the on-board computer. Fuel Trim is a set of positive and negative values that represent adding or subtracting fuel from the engine. This program is used to correct for a lean (too much air/not enough fuel) or rich (too much fuel/not enough air) air-fuel mixture. The program is designed to add or subtract fuel, as needed, up to a certain percent. If the correction needed is too large and exceeds the time and percent allowed by the program, a fault is indicated by the computer.

The Fuel System Monitor is supported by both “spark ignition” vehicles and “compression ignition” vehicles. The Fuel System Monitor may be a

“One-Trip” or “Two-Trip” Monitor, depending on the severity of the problem.

Misfire Monitor - This Monitor continuously checks for engine misfires.

A misfire occurs when the air-fuel mixture in the cylinder does not ignite.

The misfire Monitor uses changes in crankshaft speed to sense an engine misfire. When a cylinder misfires, it no longer contributes to the speed of the engine, and engine speed decreases each time the affected cylinder(s) misfire.

The misfire Monitor is designed to sense engine speed fluctuations and determine from which cylinder(s) the misfire is coming, as well as how bad the misfire is. There are three types of engine misfires, Types 1, 2, and 3.

- Type 1 and Type 3 misfires are two-trip monitor faults. If a fault is sensed on the first trip, the computer temporarily saves the fault in its memory as a Pending Code. The MIL is not commanded on at this time. If the fault is found again on the second trip, under similar conditions of engine speed, load and temperature, the computer commands the MIL “On,” and the code is saved in its long term memory.

- Type 2 misfires are the most severe type of misfire. When a Type 2 misfire is sensed on the first trip, the computer commands the MIL to light when the misfire is sensed. If the computer determines that a

Type 2 misfire is severe , and may cause catalytic converter damage, it commands the MIL to “flash” once per second as soon as the misfire is sensed. When the misfire is no longer present, the MIL reverts to steady “On” condition.

The Misfire Monitor is supported by both “spark ignition” vehicles and

“compression ignition” vehicles.

Catalyst Monitor - The catalytic converter is a device that is installed downstream of the exhaust manifold. It helps to oxidize

(burn) the unburned fuel (hydrocarbons) and partially burned fuel

(carbon monoxide) left over from the combustion process. To accomplish this, heat and catalyst materials inside the converter react with the exhaust gases to burn the remaining fuel. Some materials inside the catalytic converter also have the ability to store oxygen, and release it as needed to oxidize hydrocarbons and carbon monoxide. In the process, it reduces vehicle emissions by converting the polluting gases into carbon dioxide and water.

The computer checks the efficiency of the catalytic converter by monitoring the oxygen sensors used by the system. One sensor is located before (upstream of) the converter; the other is located after (downstream of) the converter. If the catalytic converter loses its ability to store oxygen,

3150d 21

Onboard Diagnostics

OBD2 MONITORS

the downstream sensor signal voltage becomes almost the same as the upstream sensor signal. In this case, the monitor fails the test.

The Catalyst Monitor is supported by “spark ignition” vehicles only. The

Catalyst Monitor is a “Two-Trip” Monitor. If a fault is found on the first trip, the computer temporarily saves the fault in its memory as a

Pending Code. The computer does not command the MIL on at this time.

If the fault is sensed again on the second trip, the computer commands the MIL “On” and saves the code in its long-term memory.

Heated Catalyst Monitor - Operation of the “heated” catalytic converter is similar to the catalytic converter. The main difference is that a heater is added to bring the catalytic converter to its operating temperature more quickly. This helps reduce emissions by reducing the converter’s down time when the engine is cold. The Heated Catalyst

Monitor performs the same diagnostic tests as the catalyst Monitor, and also tests the catalytic converter’s heater for proper operation.

The Heated Catalyst Monitor is supported by “spark ignition” vehicles only. This Monitor is also a “Two-Trip” Monitor.

Exhaust Gas Recirculation (EGR) Monitor - The Exhaust Gas

Recirculation (EGR) system helps reduce the formation of

Oxides of Nitrogen during combustion. Temperatures above 2500°F cause nitrogen and oxygen to combine and form Oxides of Nitrogen in the combustion chamber. To reduce the formation of Oxides of Nitrogen, combustion temperatures must be kept below 2500°F. The EGR system recirculates small amounts of exhaust gas back into the intake manifold, where it is mixed with the incoming air/fuel mixture. This reduces combustion temperatures by up to 500°F. The computer determines when, for how long, and how much exhaust gas is recirculated back to the intake manifold. The EGR Monitor performs EGR system function tests at preset times during vehicle operation.

The EGR Monitor is supported by both “spark ignition” vehicles and

“compression ignition” vehicles. The EGR Monitor is a “Two-Trip”

Monitor. If a fault is found on the first trip, the computer temporarily saves the fault in its memory as a Pending Code. The computer does not command the MIL on at this time. If the fault is sensed again on the second trip, the computer commands the MIL “On,” and saves the code in its long-term memory.

Evaporative System (EVAP) Monitor - OBD2 vehicles are equipped with a fuel Evaporative system (EVAP) that helps prevent fuel vapors from evaporating into the air. The EVAP system carries fumes from the fuel tank to the engine where they are burned during combustion. The EVAP system may consist of a charcoal canister, fuel tank cap, purge solenoid, vent solenoid, flow monitor, leak detector and connecting tubes, lines and hoses.

Fumes are carried from the fuel tank to the charcoal canister by hoses or tubes. The fumes are stored in the charcoal canister. The computer controls the flow of fuel vapors from the charcoal canister to the engine via a purge solenoid. The computer energizes or de-energizes the purge solenoid (depending on solenoid design). The purge solenoid opens a valve to allow engine vacuum to draw the fuel vapors from the canister

22 3150d

Onboard Diagnostics

OBD2 MONITORS

into the engine where the vapors are burned. The EVAP Monitor checks for proper fuel vapor flow to the engine, and pressurizes the system to test for leaks. The computer runs this Monitor once per trip.

The EVAP Monitor is supported by “spark ignition” vehicles only. The

EVAP Monitor is a “Two-Trip” Monitor. If a fault is found on the first trip, the computer temporarily saves the fault in its memory as a Pending

Code. The computer does not command the MIL on at this time. If the fault is sensed again on the second trip, the PCM commands the MIL

“On,” and saves the code in its long-term memory.

Oxygen Sensor Heater Monitor - The Oxygen Sensor Heater

Monitor tests the operation of the oxygen sensor’s heater. There are two modes of operation on a computer-controlled vehicle: “openloop” and “closed-loop.” The vehicle operates in open-loop when the engine is cold, before it reaches normal operating temperature. The vehicle also goes to open-loop mode at other times, such as heavy load and full throttle conditions. When the vehicle is running in open-loop, the oxygen sensor signal is ignored by the computer for air/fuel mixture corrections. Engine efficiency during open-loop operation is very low, and results in the production of more vehicle emissions.

Closed-loop operation is the best condition for both vehicle emissions and vehicle operation. When the vehicle is operating in closed-loop, the computer uses the oxygen sensor signal for air/fuel mixture corrections.

In order for the computer to enter closed-loop operation, the oxygen sensor must reach a temperature of at least 600°F. The oxygen sensor heater helps the oxygen sensor reach and maintain its minimum operating temperature (600°F) more quickly, to bring the vehicle into closed-loop operation as soon as possible.

The Oxygen Sensor Heater Monitor is supported by “spark ignition” vehicles only. The Oxygen Sensor Heater Monitor is a “Two-Trip”

Monitor. If a fault is found on the first trip, the computer temporarily saves the fault in its memory as a Pending Code. The computer does not command the MIL on at this time. If the fault is sensed again on the second trip, the computer commands the MIL “On,” and saves the code in its long-term memory.

Oxygen Sensor Monitor - The Oxygen Sensor monitors how much oxygen is in the vehicle’s exhaust. It generates a varying voltage of up to one volt, based on how much oxygen is in the exhaust gas, and sends the signal to the computer. The computer uses this signal to make corrections to the air/fuel mixture. If the exhaust gas has a large amount of oxygen (a lean air/fuel mixture), the oxygen sensor generates a “low” voltage signal. If the exhaust gas has very little oxygen (a rich mixture condition), the oxygen sensor generates a “high” voltage signal. A 450mV signal indicates the most efficient, and least polluting, air/fuel ratio of 14.7 parts of air to one part of fuel.

The oxygen sensor must reach a temperature of at least 600-650°F, and the engine must reach normal operating temperature, for the computer to enter into closed-loop operation. The oxygen sensor only functions when the computer is in closed-loop. A properly operating oxygen sensor reacts quickly to any change in oxygen content in the

3150d 23

Onboard Diagnostics

OBD2 MONITORS

exhaust stream. A faulty oxygen sensor reacts slowly, or its voltage signal is weak or missing.

The Oxygen Sensor Monitor is supported by “spark ignition” vehicles only. The Oxygen Sensor Monitor is a “Two-Trip” monitor. If a fault is found on the first trip, the computer temporarily saves the fault in its memory as a Pending Code. The computer does not command the MIL on at this time. If the fault is sensed again on the second trip, the computer commands the MIL “On,” and saves the code in its long-term memory.

Secondary Air System Monitor - When a cold engine is first started, it runs in open-loop mode. During open-loop operation, the engine usually runs rich. A vehicle running rich wastes fuel and creates increased emissions, such as carbon monoxide and some hydrocarbons. A Secondary Air System injects air into the exhaust stream to aid catalytic converter operation:

1.

It supplies the catalytic converter with the oxygen it needs to oxidize the carbon monoxide and hydrocarbons left over from the combustion process during engine warm-up.

2.

The extra oxygen injected into the exhaust stream also helps the catalytic converter reach operating temperature more quickly during warm-up periods. The catalytic converter must heat to operating temperature to work properly.

The Secondary Air System Monitor checks for component integrity and system operation, and tests for faults in the system. The computer runs this Monitor once per trip.

The Secondary Air System Monitor is a “Two-Trip” monitor. If a fault is found on the first trip, the computer temporarily saves this fault in its memory as a Pending Code. The computer does not command the MIL on at this time. If the fault is sensed again on the second trip, the computer commands the MIL “On,” and saves the code in its long-term memory.

Non-Methane Hydrocarbon Catalyst (NMHC) Monitor - The non-methane hydrocarbon catalyst is a type of catalytic converter.

It helps to remove non-methane hydrocarbons (NMH) left over from the combustion process from the exhaust stream. To accomplish this, heat and catalyst materials react with the exhaust gases to convert NMH to less harmful compounds. The computer checks the efficiency of the catalyst by monitoring the quantity of NMH in the exhaust stream. The monitor also verifies that sufficient temperature is present to aid in particulate matter (PM) filter regeneration.

The NMHC Monitor is supported by “compression ignition” vehicles only.

The NMHC Monitor is a “Two-Trip” Monitor. If a fault is found on the first trip, the computer temporarily saves the fault in its memory as a

Pending Code. The computer does not command the MIL on at this time.

If the fault is sensed again on the second trip, the computer commands the MIL “On,” and saves the code in its long-term memory.

24 3150d

Onboard Diagnostics

OBD2 MONITORS

NOx Aftertreatment Monitor - NOx aftertreatment is based on a catalytic converter support that has been coated with a special washcoat containing zeolites. NOx Aftertreatment is designed to reduce oxides of nitrogen emitted in the exhaust stream. The zeolite acts as a molecular "sponge" to trap the NO and NO2 molecules in the exhaust stream. In some implementations, injection of a reactant before the aftertreatment purges it. NO2 in particular is unstable, and will join with hydrocarbons to produce H2O and N2. The NOx Aftertreatment Monitor monitors the function of the NOx aftertreatment to ensure that tailpipe emissions remain within acceptable limits.

The NOx Aftertreatment Monitor is supported by “compression ignition” vehicles only. The NOx Aftertreatment Monitor is a “Two-Trip” Monitor. If a fault is found on the first trip, the computer temporarily saves the fault in its memory as a Pending Code. The computer does not command the

MIL on at this time. If the fault is sensed again on the second trip, the computer commands the MIL “On,” and saves the code in its long-term memory.

Boost Pressure System Monitor - The boost pressure system serves to increase the pressure produced inside the intake manifold to a level greater than atmospheric pressure. This increase in pressure helps to ensure compete combustion of the air-fuel mixture.

The Boost Pressure System Monitor checks for component integrity and system operation, and tests for faults in the system. The computer runs this Monitor once per trip.

The Boost Pressure System Monitor is supported by “compression ignition” vehicles only. The Boost Pressure System Monitor is a “Two-

Trip” Monitor. If a fault is found on the first trip, the computer temporarily saves the fault in its memory as a Pending Code. The computer does not command the MIL on at this time. If the fault is sensed again on the second trip, the computer commands the MIL “On,” and saves the code in its long-term memory.

Exhaust Gas Sensor Monitor - The exhaust gas sensor is used by a number of systems/monitors to determine the content of the exhaust stream. The computer checks for component integrity, system operation, and tests for faults in the system, as well as feedback faults that may affect other emission control systems.

The Exhaust Gas Sensor Monitor is supported by “compression ignition” vehicles only. The Exhaust Gas Sensor Monitor is a “Two-Trip” Monitor.

If a fault is found on the first trip, the computer temporarily saves the fault in its memory as a Pending Code. The computer does not command the MIL on at this time. If the fault is sensed again on the second trip, the computer commands the MIL “On,” and saves the code in its long-term memory.

3150d 25

Onboard Diagnostics

OBD2 MONITORS

PM Filter Monitor - The particulate matter (PM) filter removes particulate matter from the exhaust stream by filtration. The filter has a honeycomb structure similar to a catalyst substrate, but with the channels blocked at alternate ends. This forces the exhaust gas to flow through the walls between the channels, filtering the particulate matter out. The filters are self-cleaning by periodic modification of the exhaust gas concentration in order to burn off the trapped particles (oxidizing the particles to form CO2 and water). The computer monitors the efficiency of the filter in trapping particulate matter, as well as the ability of the filter to regenerate (self-clean).

The PM Filter Monitor is supported by “compression ignition” vehicles only. The PM Filter Monitor is a “Two-Trip” Monitor. If a fault is found on the first trip, the computer temporarily saves the fault in its memory as a

Pending Code. The computer does not command the MIL on at this time.

If the fault is sensed again on the second trip, the computer commands the MIL “On,” and saves the code in its long-term memory.

OBD2 Reference Table

The table below lists current OBD2 Monitors, and indicates the following for each Monitor:

A.

Monitor Type (how often does the Monitor run; Continuous or

Once per trip)

B.

Number of trips needed, with a fault present, to set a pending DTC

C.

Number of consecutive trips needed, with a fault present, to command the MIL “On” and store a DTC

D.

Number of trips needed, with no faults present, to erase a Pending

DTC

E.

Number and type of trips or drive cycles needed, with no faults present, to turn off the MIL

F.

Number of warm-up periods needed to erase the DTC from the computer’s memory after the MIL is turned off

26 3150d

Name of

Monitor

Comprehensive

Component Monitor

Misfire Monitor

(Type 1 and 3)

Misfire Monitor

(Type 2)

Fuel System Monitor

A

Continuous

Continuous

Continuous

Continuous

Catalytic Converter

Monitor

Oxygen Sensor

Monitor

Oxygen Sensor

Heater Monitor

Exhaust Gas

Recirculation (EGR)

Monitor

Evaporative

Emissions Controls

Monitor

Once per trip

Once per trip

Once per trip

Once per trip

Once per trip

Secondary Air

System (AIR) Monitor

NMHC Monitor

Once per trip

Once per trip

Nox Adsorber Monitor Once per trip

Boost Pressure

System Monitor

Once per trip

Exhaust Gas Sensor

Monitor

PM Filter Monitor

Once per trip

Once per trip

Onboard Diagnostics

OBD2 MONITORS

B C D E F

1 2 1 3 40

80

80

1 1 or 2 1

3 - similar conditions

80

1 2 1 40

1 2 1 40

1 2 1 40

1 2 1 40

1 2 1 40

1 2 1 40

1 2 1 40

1 2 1 40

1 2 1 40

1 2 1 40

1 2 1 40

3150d 27

Preparation for Testing

PRELIMINARY VEHICLE DIAGNOSTIC WORKSHEET

PRELIMINARY VEHICLE DIAGNOSTIC WORKSHEET

The purpose of this form is to help you gather preliminary information on your vehicle before you retrieve codes. By having a complete account of your vehicle's current problem(s), you will be able to systematically pinpoint the problem(s) by comparing your answers to the fault codes you retrieve. You can also provide this information to your mechanic to assist in diagnosis and help avoid costly and unnecessary repairs. It is important for you to complete this form to help you and/or your mechanic have a clear understanding of your vehicle's problems.

NAME:

DATE:

VIN*:

YEAR:

MAKE:

MODEL:

ENGINE SIZE:

VEHICLE MILEAGE:

*VIN: Vehicle Identification Number, found at the base of the windshield on a metallic plate, or at the driver door latch area (consult your vehicle owner's manual for location).

TRANSMISSION:

†

†

Automatic

Manual

Please check all applicable items in each category.

DESCRIBE THE PROBLEM:

28 3150d

Preparation for Testing

PRELIMINARY VEHICLE DIAGNOSTIC WORKSHEET

WHEN DID YOU FIRST NOTICE THE PROBLEM:

†

†

†

Just Started

Started Last Week

Started Last Month

† Other: m

LIST ANY REPAIRS DONE IN THE PAST SIX MONTHS:

PROBLEMS STARTING

†

†

No symptoms

Will not crank

†

†

Cranks, but will not start

Starts, but takes a long time

ENGINE QUITS OR STALLS

†

†

No symptoms

Right after starting

†

†

When shifting into gear

During steady-speed driving

IDLING CONDITIONS

†

†

†

No symptoms

Is too slow at all times

Is too fast

†

†

†

†

†

†

†

Right after vehicle comes to a stop

While idling

During acceleration

When parking

Is sometimes too fast or too slow

Is rough or uneven

Fluctuates up and down

RUNNING CONDITIONS

†

†

†

†

No symptoms

Runs rough

Lacks power

Bucks and jerks

†

†

Poor fuel economy

Hesitates or stumbles on accelerations

†

†

†

†

†

Backfires

Misfires or cuts out

Engine knocks, pings or rattles

Surges

Dieseling or run-on

3150d 29

Preparation for Testing

PRELIMINARY VEHICLE DIAGNOSTIC WORKSHEET

†

†

†

AUTOMATIC TRANSMISSION PROBLEMS (if applicable)

No symptoms † Vehicle does not move when in gear

Shifts too early or too late

Changes gear incorrectly

†

Jerks or bucks

PROBLEM OCCURS

† Morning † Afternoon †

ENGINE TEMPERATURE WHEN PROBLEM OCCURS

†

Cold

†

Warm

†

Anytime

Hot

DRIVING CONDITIONS WHEN PROBLEM OCCURS

†

†

†

†

†

†

†

†

Short - less than 2 miles

2 - 10 miles

Long - more than 10 miles

Stop and go

While turning

While braking

At gear engagement

With A/C operating

†

†

†

†

†

†

†

With headlights on

During acceleration

Mostly driving downhill

Mostly driving uphill

Mostly driving level

Mostly driving curvy roads

Mostly driving rough roads

DRIVING HABITS

†

†

†

†

Mostly city driving

Highway

Park vehicle inside

Park vehicle outside

†

†

†

Drive less than 10 miles per day

Drive 10 to 50 miles per day

Drive more than 50 miles per day

GASOLINE USED

†

†

87 Octane

89 Octane

†

†

91 Octane

More than 91 Octane

WEATHER CONDITIONS WHEN PROBLEM OCCURS

†

†

32 - 55° F (0 - 13° C)

Below freezing (32° F / 0° C)

† Above 55° F (13° C)

CHECK ENGINE LIGHT / DASH WARNING LIGHT

† Sometimes ON † Always ON † Never ON

†

†

†

PECULIAR SMELLS

"Hot"

Sulfur ("rotten egg")

Burning rubber

STRANGE NOISES

†

†

Rattle

Knock

†

†

†

†

†

Gasoline

Burning oil

Electrical

Squeak

Other

30 3150d

Preparation for Testing

BEFORE YOU BEGIN

BEFORE YOU BEGIN

The Diagnostic Tool aids in monitoring electronic- and emissions-related faults in your vehicle and retrieving fault codes related to malfunctions in these systems. Mechanical problems such as low oil level or damaged hoses, wiring or electrical connectors can cause poor engine performance and may also cause a fault code to set. Fix any known mechanical problems before performing any test. See your vehicle’s service manual or a mechanic for more information.

Check the following areas before starting any test:

„ Check the engine oil, power steering fluid, transmission fluid (if applicable), engine coolant and other fluids for proper levels. Top off low fluid levels if needed.

„

„

Make sure the air filter is clean and in good condition. Make sure all air filter ducts are properly connected. Check the air filter ducts for holes, rips or cracks.

Make sure all engine belts are in good condition. Check for cracked, torn, brittle, loose or missing belts.

„

„

„

„

„

„

Make sure mechanical linkages to engine sensors (throttle, gearshift position, transmission, etc.) are secure and properly connected. See your vehicle’s service manual for locations.

Check all rubber hoses (radiator) and steel hoses (vacuum/fuel) for leaks, cracks, blockage or other damage. Make sure all hoses are routed and connected properly.

Make sure all spark plugs are clean and in good condition. Check for damaged, loose, disconnected or missing spark plug wires.

Make sure the battery terminals are clean and tight. Check for corrosion or broken connections. Check for proper battery and charging system voltages.

Check all electrical wiring and harnesses for proper connection.

Make sure wire insulation is in good condition, and there are no bare wires.

Make sure the engine is mechanically sound. If needed, perform a compression check, engine vacuum check, timing check (if applicable), etc.

3150d 31

Preparation for Testing

VEHICLE SERVICE MANUALS

VEHICLE SERVICE MANUALS

Always refer to the manufacturer’s service manual for your vehicle before performing any test or repair procedures. Contact your local car dealership, auto parts store or bookstore for availability of these manuals. The following companies publish valuable repair manuals:

„

Haynes Publications

861 Lawrence Drive

Newbury Park, California 91320

Phone: 800-442-9637

Web: www.haynes.com

„

„

Mitchell 1

14145 Danielson Street

Poway, California 92064

Phone: 888-724-6742

Web: www.m1products.com

Motor Publications

5600 Crooks Road, Suite 200

Troy, Michigan 48098

Phone: 800-426-6867

Web: www.motor.com

FACTORY SOURCES

Ford, GM, Chrysler, Honda, Isuzu, Hyundai and Subaru Service

Manuals

„

Helm Inc.

14310 Hamilton Avenue

Highland Park, Michigan 48203

Phone: 800-782-4356

Web: www.helminc.com

32 3150d

Using the Diagnostic Tool

CODE RETRIEVAL PROCEDURE

CODE RETRIEVAL PROCEDURE

Retrieving and using Diagnostic Trouble Codes (DTCs) for troubleshooting vehicle operation is only one part of an

overall diagnostic strategy.

Never replace a part based only on the DTC definition.

Each DTC has a set of testing procedures, instructions and flow charts that must be followed to confirm the location of the problem. This information is found in the vehicle's service manual. Always refer to the vehicle's service manual for detailed testing instructions.

Check your vehicle thoroughly before performing any test. See BEFORE YOU BEGIN on page 31 for details.

ALWAYS observe safety precautions whenever working on a vehicle. See SAFETY PRECAUTIONS on page 3 for more information.

1.

Turn the ignition off.

2.

Locate the vehicle's 16-pin Data Link

Connector (DLC). See page 5 for connector location.

Some DLCs have a plastic cover that must be removed before connecting the Diagnostic Tool cable connector.

If the Diagnostic Tool is ON, turn it

OFF by pressing the POWER/LINK

button BEFORE connecting the Diagnostic Tool to the DLC.

3.

Connect the Diagnostic Tool cable connector to the vehicle’s DLC.

The cable connector is keyed and will only fit one way.

„ If you have problems connecting the cable connector to the DLC, rotate the connector 180° and try again.

„ If you still have problems, check the DLC on the vehicle and on the Diagnostic Tool. Refer to your vehicle’s service manual to properly check the vehicle’s DLC.

4.

Turn the ignition on. DO NOT start the engine.

5.

When the Diagnostic Tool’s cable connector is properly connected to the vehicle’s DLC, the unit automatically turns ON.

„ If the unit does not power on automatically when connected to the vehicle’s DLC connector, it usually indicates there is no power present at the vehicle’s DLC connector. Check your fuse panel and replace any burned-out fuses.

3150d 33

Using the Diagnostic Tool

CODE RETRIEVAL PROCEDURE

„ If replacing the fuse(s) does not correct the problem, consult your vehicle’s repair manual to identify the proper computer

(PCM) fuse/circuit, and perform any necessary repairs before proceeding.

6.

The Diagnostic Tool will automatically start a check of the vehicle’s computer to determine which type of communication protocol it is using. When the Diagnostic

Tool identifies the computer’s communication protocol, a communication link is established. The protocol type used by the vehicle’s computer is shown on the display.

A PROTOCOL is a set of rules and procedures for regulating data transmission between computers, and between testing equipment and computers. As of this writing, five different types of protocols

(ISO 9141, Keyword 2000, J1850

PWM, J1850 VPW and CAN) are in use by vehicle manufacturers. The

Diagnostic Tool automatically identifies the protocol type and establishes a communication link with the vehicle’s computer.

7.

After approximately 10~60 seconds, the Diagnostic Tool will retrieve and display any Diagnostic Trouble Codes, I/M Monitor Status and

Freeze Frame Data retrieved from the vehicle’s computer memory.

„ If the Diagnostic fails to link to the vehicle’s computer a “Linking

Failed” message shows on the

Diagnostic Tool’s display.

- Verify the connection at the DLC, and verify the ignition is ON.

- Turn the ignition OFF, wait 5 seconds, then turn back ON to reset the computer.

- Ensure your vehicle is OBD2 compliant. See VEHICLES

COVERED on page 5 for vehicle compliance verification information.

„ The Diagnostic Tool will display a code only if codes are present in the vehicle’s computer memory. If no codes are present, the message “No

Powertrain DTCs or Freeze Frame

Data presently stored in the vehicle’s computer. Press DTC button to continue” displays. Press the SYSTEM MENU

button to enter the “OEM Enhanced” mode (see THE SYSTEM MENU on page 38).

34 3150d

Using the Diagnostic Tool

CODE RETRIEVAL PROCEDURE

„ The Diagnostic Tool is capable of retrieving and storing up to 32 codes in memory, for immediate or later viewing.

8.

To read the display:

Refer to DISPLAY FUNCTIONS on page 9 for a description of display elements.

„

„

„

„

„

A visible icon indicates that the Diagnostic Tool is being powered through the vehicle’s DLC connector.

A visible icon indicates that the Diagnostic Tool is linked to

(communicating with) the vehicle’s computer.

The I/M Monitor Status icons indicate the type and number of

Monitors the vehicle supports, and provides indications of the current status of the vehicle’s Monitors. A solid Monitor icon indicates the associated Monitor has run and completed its testing. A blinking Monitor icon indicates the associated Monitor

has not run and completed its testing.

The upper right hand corner of the display shows the number of the code currently being displayed, the total number of codes retrieved, and whether or not the displayed code commanded the MIL on. If the code being displayed is a PENDING code, the PENDING icon is shown. If the code being displayed is a PERMA-

NENT code, the PERMANENT icon is shown.

The Diagnostic Trouble Code (DTC) and related code definition are shown in the lower section of the display.

In the case of long code definitions, a small arrow is shown in the upper/lower right-hand corner of the Diagnostic Tool display area to indicate the presence of additional information. Use the and

buttons, as necessary, to view the additional information.

If a definition for the currently displayed code is not available, an advisory message shows on the

Diagnostic Tool’s display.

9.

Read and interpret Diagnostic Trouble

Codes/system condition using the display and the green, yellow and red

LEDs.

The green, yellow and red LEDs are used (with the display) as visual aids to make it easier to determine engine system conditions.

3150d 35

Using the Diagnostic Tool

CODE RETRIEVAL PROCEDURE

„

„

Green LED – Indicates that all engine systems are “OK” and operating normally. All monitors supported by the vehicle have run and performed their diagnostic testing, and no trouble codes are present. All Monitor icons will be solid.

Yellow LED – Indicates one of the following conditions:

A. A PENDING CODE IS PRESENT –

If the yellow LED is illuminated, it may indicate a Pending code is present. Check the Tool’s display for confirmation. A Pending code is confirmed by the presence of a numeric code and the word

PENDING on the Diagnostic Tool’s display.

B. MONITOR NOT RUN STATUS – If the Diagnostic Tool’s display shows a zero (indicating there are no DTC’s present in the vehicle’s computer memory), but the yellow

LED is illuminated, it may be an indication that some of the

Monitors supported by the vehicle have not yet run and completed their diagnostic testing. Check the

Diagnostic Tool’s display for confirmation. All Monitor icons that are blinking have not yet run and completed their diagnostic testing; all Monitor icons that are

solid have run and completed their diagnostic testing.

„

„

Red LED – Indicates there is a problem with one or more of the vehicle’s systems. The red LED is also used to indicate that DTC(s) are present (displayed on the Diagnostic

Tool’s screen). In this case, the

Malfunction Indicator (Check Engine) lamp on the vehicle’s instrument panel will be illuminated.

DTC’s that start with “P0”, “P2” and some “P3” are considered Generic

(Universal). All Generic DTC definitions are the same on all OBD2 equipped vehicles. The Diagnostic Tool automatically displays the code definitions (if available) for Generic DTC’s.

36 3150d

Using the Diagnostic Tool

CODE RETRIEVAL PROCEDURE

„ DTC’s that start with “P1” and some

“P3” are Manufacturer specific codes and their code definitions vary with each vehicle manufacturer. When a

Manufacturer specific DTC is retrieved, the LCD display shows a list of vehicle manufacturers. Use the UP and

DOWN buttons, as necessary, to highlight the appropriate manufacturer, then press the ENTER button to display the correct code definition for your vehicle. A confirmation message shows on the LCD display.

- If the correct manufacturer is shown, use the UP and DOWN buttons, as necessary, to highlight Yes, then press the

ENTER button to continue.

- If the correct manufacturer is not shown, use the UP and DOWN buttons, as necessary, to highlight No, then press the ENTER button to return to the list of vehicle manufacturers.

If the manufacturer for your vehicle is not listed, use the UP and DOWN buttons, as necessary, to select Other

manufacturer and press the ENTER button for additional

DTC information.

If the definition for the currently displayed code is not available, an advisory message shows on the

Diagnostic Tool’s LCD display.

10.

If more than one DTC was retrieved, press and release the DTC button, as necessary.

„ Each time the DTC button is pressed and released, the

Diagnostic Tool will scroll and display the next DTC in sequence until all DTCs in its memory have displayed.

„

Retrieved information can be uploaded to a Personal Computer

(PC) with the use of optional software (see instructions included with the software for more information).

11.

When the last retrieved DTC has been displayed and the DTC button is pressed, the Diagnostic Tool returns to the “Priority” code.

To view Freeze Frame Data (if available), press the FF button.

See VIEWING FREEZE FRAME DATA on page 61 for more information.

3150d 37

Using the Diagnostic Tool

THE SYSTEM MENU

„

See VIEWING OEM ENHANCED DTCs on page 40 to view

OEM enhanced DTCs, ABS DTCs, or SRS DTCs for your vehicle.

„ If you do not wish to view OEM enhanced, ABS or SRS DTCs, press the M button to return to the Main Menu.

12.

Determine engine system(s) condition by viewing the Diagnostic

Tool’s display for any retrieved Diagnostic Trouble Codes, code definitions and Freeze Frame data, interpreting the green, yellow and red LEDs.

„

If DTC’s were retrieved and you are going to perform the repairs yourself, proceed by consulting the Vehicle’s Service Repair

Manual for testing instructions, testing procedures, and flow charts related to retrieved code(s).

„

„

If you plan to take the vehicle to a professional to have it serviced, complete the PRELIMINARY VEHICLE DIAGNOSTIC

WORKSHEET on page 28 and take it together with the retrieved codes, freeze frame data and LED information to aid in the troubleshooting procedure.

To prolong battery life, the Diagnostic Tool automatically shuts

“Off” approximately three minutes after it is disconnected from the vehicle. The DTCs retrieved, Monitor Status and Freeze

Frame data (if any) will remain in the Diagnostic Tool’s memory, and may be viewed at any time by turning the unit “On”. If the

Diagnostic Tool’s batteries are removed, or if the Diagnostic

Tool is re-linked to a vehicle to retrieve codes/data, any prior codes/data in its memory are automatically cleared.

THE SYSTEM MENU

The System Menu provides the ability to retrieve OEM Enhanced DTCs from most Audi, BMW, Chrysler/Jeep, Ford/Mazda, GM/Isuzu, Hyundai, Kia,

Mercedes Benz, Toyota/Lexus and Volkswagen vehicles. The types of enhanced data available depend on the vehicle make.

„

To access the System Menu, press the

SYSTEM MENU button. Use the UP

and DOWN buttons, as necessary, to highlight the desired option, then press the ENTER button to view the selected information. generic DTCs were retrieved, and

OEM Enhanced, ABS or SRS is selected, the Select Manufacturer screen displays. Use the UP and

DOWN buttons, as necessary, to highlight the appropriate manufacturer, then press the ENTER button to view the selected information.

38 3150d

„

Using the Diagnostic Tool

THE ENHANCED MAIN MENU

If the manufacturer of the vehicle from which codes were retrieved is not listed, use the UP and DOWN buttons, as necessary, to highlight Exit on the Select Manufacturer screen, then press the ENTER button to return to the previous screen. OEM Enhanced data is not available for your vehicle.

If a Manufacturer specific DTC was retrieved, and the manufacturer selected for the code was Chrysler, Jeep, Ford, Mazda, General Motors,

Isuzu, Honda, Acura, Toyota or Lexus, the Select Data menu displays, as appropriate. Use the UP and DOWN buttons, as necessary, to highlight the desired option, the press the ENTER button to view the selected information, or, press the M button to return to the Main

Menu.

„

„

If the manufacturer selected was Audi,

BMW, Hyundai, Kia, Mercedes Benz or

Volkswagen, the Diagnostic Tool retrieves enhanced DTCs from the vehicle’s computer.

If enhanced communication is not supported by the vehicle under test, an advisory message displays. Press the M button to exit. OEM Enhanced DTCs are not available for your vehicle.

To view OEM Enhanced DTCs: Select

OEM Enhanced from the System Menu

(then choose the appropriate manufacturer if prompted). Refer to VIEWING OEM

ENHANCED DTCs on page 40 to view enhanced DTCs for your vehicle.

To view ABS DTCs: Select ABS from the

System Menu (then choose the appropriate manufacturer if prompted). Refer to

VIEWING ABS DTCs on page 50 to view

ABS DTCs for your vehicle.

To view SRS DTCs: Select SRS from the

System Menu (then choose the appropriate manufacturer if prompted). Refer to

VIEWING SRS DTCs on page 51 to view

SRS DTCs for your vehicle.

3150d 39

Using the Diagnostic Tool

VIEWING OEM ENHANCED DTCs

VIEWING OEM ENHANCED DTCs

Refer to the appropriate paragraph to view enhanced data for your vehicle:

„

„

„

„

„

„

Chrysler/Jeep Enhanced DTCs

When View OEM Enhanced DTCs is chosen from the System Menu

(and Chrysler is selected when prompted), the Chrysler Enhanced menu displays. You may view either “Engine DTCs” or “Transmission DTCs.”

1.

Use the UP

and DOWN buttons, as necessary, to highlight the desired option, then press the ENTER button.

„

„

Transmission DTCs are not supported on most Chrysler/Jeep vehicles manufactured prior to 2002.

A “One moment please” message displays while the Diagnostic Tool retrieves the selected DTCs.

If the Diagnostic Tool fails to link to the vehicle’s computer, a “Linking

Failed” message shows on the

Diagnostic Tool’s display.

- Verify the ignition is ON, then press the POWER/LINK button to continue.

2.

To read the display:

Refer to DISPLAY FUNCTIONS on page 9 for a description of

LCD display elements.

„

„

„

A visible icon indicates that the Diagnostic Tool is being powered through the vehicle’s DLC connector.

The upper right hand corner of the display shows the number of the code currently being displayed, the total number of codes retrieved.

The Diagnostic Trouble Code (DTC) and related code definition are shown in the lower section of the

LCD display.

40 3150d

Using the Diagnostic Tool

VIEWING OEM ENHANCED DTCs

If the definition for the currently displayed code is not available, an advisory message shows on the Diagnostic Tool’s LCD display.

I/M MONITOR STATUS icons are not displayed when viewing OEM enhanced DTCs.

In the case of long code definitions, or when viewing

Freeze Frame data, a small arrow is shown in the upper/lower right-hand corner of the code display area to indicate the presence of additional information. Use the UP and DOWN buttons, as necessary, to view the additional information.

„ The Tool will display a code only if codes are present in the vehicle’s computer memory. If no codes are present, a “No OEM Enhanced DTC’s are presently stored in the vehicle’s computer” is displayed. Press the M button to return to the Main Menu.

3.

If more than one code was retrieved press the DTC button, as necessary, to display additional codes one at a time.

„ Whenever the Scroll function is used to view additional codes, the Diagnostic Tool’s communication link with the vehicle’s computer disconnects. To re-establish communication, press the

POWER/LINK

button again.

4.

When the last retrieved DTC has been displayed and the DTC button is pressed, the Diagnostic Tool returns to the “Priority” code.

„ To view additional OEM enhanced DTCs, repeat steps 1 through 4, above.

„ To exit the enhanced mode, press the M button. The Diagnostic

Tool returns to the Main Menu.

Ford/Mazda Enhanced DTCs

Mazda Enhanced DTCs are available for Mazda-branded

Ford vehicles only.

When View OEM Enhanced DTCs is chosen from the System Menu

(and Ford is selected when prompted), the Ford Enhanced menu displays. You may view DTCs for either the “Continuous Memory Test”,

“KOEO (Key On Engine Off) Test” or “KOER (Key On Engine Running)

Test.”

3150d 41

Using the Diagnostic Tool

VIEWING OEM ENHANCED DTCs

1.

Use the UP

and DOWN buttons, as necessary, to highlight the desired option, then press the ENTER button.

„

„

When choosing to view KOER

Test DTCs, start the vehicle’s engine before making your selection.

If the KOER Test was selected, and the vehicle’s engine is not running, an advisory message shows on the

Diagnostic Tool’s display.

- Press the M button to return to the

Main Menu.

If the KOEO Test was selected, and the vehicle’s engine is running, an advisory message shows on the

Diagnostic Tool’s display.

- Press the M button to return to the

Main Menu.

2.

An “instructional” message shows on the Diagnostic Tool’s display. Perform test procedures as appropriate.

„

If the Continuous Memory or KOEO test was selected, turn the ignition

OFF, then back ON. Press the

ENTER button to start the test.

- A “One moment please” message displays while the test is in progress.

„

„

If the KOER test was selected, press the ENTER continue.

button to

- Turn the steering wheel to the right, then release.

- Press and release the brake pedal.

- Cycle the overdrive switch (if equipped).

- A “One moment please” message displays while the test is in progress.

A “One moment please” message displays, while the Diagnostic

Tool retrieves the selected DTCs.

42 3150d

Using the Diagnostic Tool

VIEWING OEM ENHANCED DTCs

„ If the Diagnostic Tool fails to link to the vehicle’s computer, a “Linking

Failed” message shows on the

Diagnostic Tool’s Display.

- Verify the ignition is ON, then press the POWER/LINK button to continue.

3.

To read the display:

Refer to DISPLAY FUNCTIONS on page 9 for a description of

LCD display elements.

„

„

„

A visible icon indicates that the Diagnostic Tool is being powered through the vehicle’s DLC connector.

The upper right hand corner of the display shows the number of the code currently being displayed, the total number of codes retrieved.

The Diagnostic Trouble Code (DTC) and related code definition are shown in the lower section of the

LCD display.

If the definition for the currently displayed code is not available, an advisory message shows on the

Diagnostic Tool’s LCD display.

I/M MONITOR STATUS icons are not displayed when viewing OEM enhanced DTCs.

In the case of long code definitions, or when viewing

Freeze Frame data, a small arrow is shown in the upper/lower right-hand corner of the code display area to indicate the presence of additional information. Use the and buttons, as necessary, to view the additional information.

„ The Diagnostic Tool will display a code only if codes are present in the vehicle’s computer memory. If no codes are present, a “No OEM

Enhanced DTC’s are presently stored in the vehicle’s computer” is displayed. Press the M button to return to the Main Menu.

4.

If more than one code was retrieved press the DTC button, as necessary, to display additional codes one at a time.

3150d 43

Using the Diagnostic Tool

VIEWING OEM ENHANCED DTCs

„ Whenever the Scroll function is used to view additional codes, the Diagnostic Tool’s communication link with the vehicle’s computer disconnects. To re-establish communication, press the

POWER/LINK

button again.

5.

When the last retrieved DTC has been displayed and the DTC button is pressed, the Diagnostic Tool returns to the “Priority” code.

„ To view additional OEM enhanced DTCs, repeat steps 1 through

5, above.

„ To exit the enhanced mode, press the M button. The Diagnostic

Tool returns to the Main Menu.

General Motors/Isuzu Enhanced DTCs

When View OEM Enhanced DTCs is chosen from the System Menu

(and General Motors is selected when prompted), the GM Enhanced menu displays. You may view the “MIL DTC”, “Current DTC”, “Fail Since

Clear DTC” or “History DTC.”

1.

Use the UP

and DOWN buttons, as necessary, to highlight the desired option, then press the ENTER button.

„

„

A “One moment please” message displays while the Diagnostic Tool retrieves the selected DTCs.

If the Diagnostic Tool fails to link to the vehicle’s computer, a “Linking

Failed” message shows on the

Diagnostic Tool’s display.

- Verify the ignition is ON, then press the POWER/LINK button to continue.

2.

To read the display:

Refer to DISPLAY FUNCTIONS on page 9 for a description of

LCD display elements.

„

„

„

A visible icon indicates that the Diagnostic Tool is being powered through the vehicle’s DLC connector.

The upper right hand corner of the display shows the number of the code currently being displayed, the total number of codes retrieved.

The Diagnostic Trouble Code (DTC) and related code definition are shown in the lower section of the

LCD display.

44 3150d

Using the Diagnostic Tool

VIEWING OEM ENHANCED DTCs

If the definition for the currently displayed code is not available, an advisory message shows on the Diagnostic Tool’s LCD display.

I/M MONITOR STATUS icons are not displayed when viewing OEM enhanced DTCs.

In the case of long code definitions, or when viewing

Freeze Frame data, a small arrow is shown in the upper/ lower right-hand corner of the code display area to indicate the presence of additional information. Use the

and buttons, as necessary, to view the additional information.

„ The Diagnostic Tool will display a code only if codes are present in the vehicle’s computer memory. If no codes are present, a “No OEM

Enhanced DTC’s are presently stored in the vehicle’s computer” is displayed. Press the M button to return to the Main Menu.

3.

If more than one code was retrieved press the DTC button, as necessary, to display additional codes one at a time.

„

Whenever the Scroll function is used to view additional codes, the Diagnostic Tool’s communication link with the vehicle’s computer disconnects. To re-establish communication, press the

POWER/LINK button again.

4.

When the last retrieved DTC has been displayed and the DTC button is pressed, the Diagnostic Tool returns to the “Priority” code.

„ To view additional OEM enhanced DTCs, repeat steps 1 through

4, above.

„

To exit the enhanced mode, press the M button. The Diagnostic

Tool returns to the Main Menu.

Honda/Acura Enhanced DTCs

When View OEM Enhanced DTCs is chosen from the System Menu (and Honda is selected when prompted), the Honda

Enhanced menu displays. Depending on the protocol used to communicate with your vehicle, the Honda Enhanced menu provides options to view:

3150d 45

Using the Diagnostic Tool

VIEWING OEM ENHANCED DTCs

„

„

Confirmed DTCs or Pending DTCs

Permanent DTCs or Temporary DTCs

1.

Use the UP

and DOWN buttons, as necessary, to highlight the desired option, then press the ENTER button.

„

„

A “One moment please” message displays while the Diagnostic Tool retrieves the selected DTCs.

If the Diagnostic Tool fails to link to the vehicle’s computer, a “Linking

Failed” message shows on the

Diagnostic Tool’s display.

- Verify the ignition is ON, then press the POWER/LINK button to continue.

2.

To read the display:

Refer to DISPLAY FUNCTIONS on page 9 for a description of

LCD display elements.

„

„

„

A visible icon indicates that the Diagnostic Tool is being powered through the vehicle’s DLC connector.

The upper right hand corner of the display shows the number of the code currently being displayed, the total number of codes retrieved.

The Diagnostic Trouble Code (DTC) and related code definition are shown in the lower section of the

LCD display.

If the definition for the currently displayed code is not available, an advisory message shows on the Diagnostic Tool’s LCD display.

I/M MONITOR STATUS icons are not displayed when viewing OEM enhanced DTCs.

In the case of long code definitions, or when viewing

Freeze Frame data, a small arrow is shown in the upper/lower right-hand corner of the code display area to indicate the presence of additional information. Use the and buttons, as necessary, to view the additional information.

46 3150d

Using the Diagnostic Tool

VIEWING OEM ENHANCED DTCs

„ The Diagnostic Tool will display a code only if codes are present in the vehicle’s computer memory. If no codes are present, a “No OEM

Enhanced DTC’s are presently stored in the vehicle’s computer” is displayed.

Press the M button to return to the

Main Menu.

3.

If more than one code was retrieved press the DTC button, as necessary, to display additional codes one at a time.

„ Whenever the Scroll function is used to view additional codes, the Diagnostic Tool’s communication link with the vehicle’s computer disconnects. To re-establish communication, press the

POWER/LINK

button again.

4.

When the last retrieved DTC has been displayed and the DTC button is pressed, the Tool returns to the “Priority” code.

„

To view additional OEM enhanced DTCs, repeat steps 1 through

4, above.

„ To exit the enhanced mode, press the M button. The Diagnostic

Tool returns to the Main Menu.

Toyota/Lexus Enhanced DTCs

When View OEM Enhanced DTCs is chosen from the System Menu (and Toyota is selected when prompted), the Toyota

Enhanced menu displays. Depending on the protocol used to communicate with your vehicle, the Toyota Enhanced menu provides options to view:

„ Current DTCs, History DTCs or Pending

DTCs

„

Current DTCs, Historical DTCs or

Readiness DTCs

1.

Use the UP

and DOWN buttons, as necessary, to highlight the desired option, then press the ENTER button.

„

„

A “One moment please” message displays while the Diagnostic Tool retrieves the selected DTCs.

If the Diagnostic Tool fails to link to the vehicle’s computer, a “Linking

Failed” message shows on the

Diagnostic Tool’s display.

- Verify the ignition is ON, then press the POWER/LINK button to continue.

3150d 47

Using the Diagnostic Tool

VIEWING OEM ENHANCED DTCs

2.

To read the display:

Refer to DISPLAY FUNCTIONS on page 9 for a description of

LCD display elements.

„

„

A visible icon indicates that the

Diagnostic Tool is being powered through the vehicle’s DLC connector.

The upper right hand corner of the display shows the number of the code currently being displayed, the total number of codes retrieved.

„ The Diagnostic Trouble Code (DTC) and related code definition are shown in the lower section of the LCD display.

If the definition for the currently displayed code is not available, an advisory message shows on the

Tool’s LCD display.

I/M MONITOR STATUS icons are not displayed when viewing OEM enhanced DTCs.

In the case of long code definitions, or when viewing

Freeze Frame data, a small arrow is shown in the upper/lower right-hand corner of the code display area to indicate the presence of additional information. Use the and buttons, as necessary, to view the additional information.

„ The Diagnostic Tool will display a code only if codes are present in the vehicle’s computer memory. If no codes are present, a “No OEM

Enhanced DTC’s are presently stored in the vehicle’s computer” is displayed.

Press the M button to return to the

Main Menu.

3.

If more than one code was retrieved press the DTC button, as necessary, to display additional codes one at a time.

„ Whenever the Scroll function is used to view additional codes, the Diagnostic Tool’s communication link with the vehicle’s computer disconnects. To re-establish communication, press the

POWER/LINK

button again.

4.

When the last retrieved DTC has been displayed and the DTC button is pressed, the Diagnostic Tool returns to the “Priority” code.

„ To view additional OEM enhanced DTCs, repeat steps 1 through

4, above.

48 3150d

Using the Diagnostic Tool

VIEWING OEM ENHANCED DTCs

„

To exit the enhanced mode, press the M button. The Diagnostic

Tool returns to the Main Menu.

OEM Enhanced DTCs for Other Vehicles

When View OEM Enhanced DTCs is chosen from the System Menu

(and Audi, BMW, Hyundai, Kia, Mercedes, or Volkswagen is selected when prompted, the Diagnostic Tool retrieves enhanced DTCs from the vehicle’s computer.

1.

A “One moment please message displays while the Diagnostic Tool retrieves enhanced DTCs.

„ If the Diagnostic Tool fails to link to the vehicle’s computer, a “Linking

Failed” message shows on the

Diagnostic Tool’s display.

- Verify the ignition is ON, then press the POWER/LINK button to continue.

2.

To read the display:

Refer to DISPLAY FUNCTIONS on page 9 for a description of

LCD display elements.

„

„

„

A visible icon indicates that the Diagnostic Tool is being powered through the vehicle’s DLC connector.

The upper right hand corner of the display shows the number of the code currently being displayed, the total number of codes retrieved.

The Diagnostic Trouble Code (DTC) and related code definition are shown in the lower section of the

LCD display.

I/M MONITOR STATUS icons are not displayed when viewing OEM enhanced DTCs.

Freeze Frame data, a small arrow is shown in the upper/lower right-hand corner of the code display area to indicate the presence of additional information. Use the and buttons, as necessary, to view the additional information.

„

The Diagnostic Tool will display a code only if codes are present in the vehicle’s computer memory. If no codes are present, a

“No OEM Enhanced DTC’s are presently stored in the vehicle’s computer” is displayed. Press the M button to return to the Main

Menu.

3.

If more than one code was retrieved press the DTC button, as necessary, to display additional codes one at a time.

3150d 49

Using the Diagnostic Tool

VIEWING ABS DTCs

„ Whenever the Scroll function is used to view additional codes, the Diagnostic Tool’s communication link with the vehicle’s computer disconnects. To re-establish communication, press the

POWER/LINK button again.

4.

When the last retrieved DTC has been displayed and the DTC button is pressed, the Diagnostic Tool returns to the “Priority” code.

„ To exit the enhanced mode, press the M button. The Diagnostic

Tool returns to the Main Menu.

VIEWING ABS DTCs

Refer to Vehicle Applications - ABS on page 77 for vehicles covered.

Reading ABS DTCs

1.

When ABS is chosen from the System Menu, a "One moment please" message displays while the Diagnostic Tool retrieves the selected DTCs.

„ If the Diagnostic Tool fails to link to the vehicle’s computer, a "Linking

Failed" message shows on the

Diagnostic Tool’s display.

- Verify the ignition is ON, then press the ENTER button to continue.

2.

To read the display:

Refer to DISPLAY FUNCTIONS on page 9 for a description of

LCD display elements.

„

A visible icon indicates that the Diagnostic Tool is being powered through the vehicle’s DLC connector.

„

„

„

A visible icon indicates that the Diagnostic Tool is linked to

(communicating with) the vehicle’s computer.

The upper right hand corner of the display shows the number of the code currently being displayed, the total number of codes retrieved.

The Diagnostic Trouble Code (DTC) and related code definition are shown in the lower section of the

LCD display.

If the definition for the currently displayed code is not available, an advisory message shows on the

Diagnostic Tool’s LCD display.

50 3150d

Using the Diagnostic Tool

VIEWING SRS DTCs

I/M MONITOR STATUS icons are not displayed when viewing

ABS DTCs.

In the case of long code definitions, a small arrow is shown in the upper/lower right-hand corner of the code display area to indicate the presence of additional information. Use the UP and DOWN buttons, as necessary, to view the additional information.

„ The Diagnostic Tool will display a code only if codes are present in the vehicle’s computer memory. If no codes are present, a "No ABS

DTC’s are presently stored in the vehicle’s computer" is displayed.

Press the M button to return to the

Main Menu.

3.

If more than one code was retrieved press the DTC button, as necessary, to display additional codes one at a time.

„ Whenever the Scroll function is used to view additional codes, the Diagnostic Tool’s communication link with the vehicle’s computer disconnects. To re-establish communication, press the

POWER/LINK button again.

4.

When the last retrieved DTC has been displayed and the DTC button is pressed, the Diagnostic Tool returns to the “Priority” code.

„

To exit the enhanced mode, press the M button. The Diagnostic

Tool returns to the Main Menu.

VIEWING SRS DTCs

Refer to Vehicle Applications - SRS on page 77 for vehicles covered.

Reading SRS DTCs

1.

When SRS is chosen from the System Menu, a "One moment please" message displays while the Tool retrieves the selected

DTCs.

„

If the Diagnostic Tool fails to link to the vehicle’s computer, a "Linking

Failed" message shows on the

Diagnostic Tool’s display.

- Verify the ignition is ON, then press the ENTER button to continue.

2.

To read the display:

Refer to DISPLAY FUNCTIONS on page 9 for a description of

LCD display elements.

3150d 51

Using the Diagnostic Tool

VIEWING SRS DTCs

„

„

„

„

A visible icon indicates that the Diagnostic Tool is being powered through the vehicle’s DLC connector.

A visible icon indicates that the Diagnostic Tool is linked to

(communicating with) the vehicle’s computer.

The upper right hand corner of the display shows the number of the code currently being displayed, the total number of codes retrieved.

The Diagnostic Trouble Code (DTC) and related code definition are shown in the lower section of the

LCD display.

If the definition for the currently displayed code is not available, an advisory message shows on the

Diagnostic Tool’s LCD display.

I/M MONITOR STATUS icons are not displayed when viewing SRS

DTCs.

In the case of long code definitions, a small arrow is shown in the upper/lower right-hand corner of the code display area to indicate the presence of additional information. Use the UP and DOWN buttons, as necessary, to view the additional information.

„ The Diagnostic Tool will display a code only if codes are present in the vehicle’s computer memory. If no codes are present, a "No SRS

DTC’s are presently stored in the vehicle’s computer" is displayed.

Press the M button to return to the

Main Menu.

3.

If more than one code was retrieved press the DTC button, as necessary, to display additional codes one at a time.

„ Whenever the Scroll function is used to view additional codes, the Diagnostic Tool’s communication link with the vehicle’s computer disconnects. To re-establish communication, press the

POWER/LINK button again.

4.

When the last retrieved DTC has been displayed and the DTC button is pressed, the Diagnostic Tool returns to the “Priority” code.

„ To exit the enhanced mode, press the M button. The Diagnostic

Tool returns to the Main Menu.

52 3150d

Using the Diagnostic Tool

ERASING DIAGNOSTIC TROUBLE CODES (DTCs)

ERASING DIAGNOSTIC TROUBLE CODES (DTCs)

When the Diagnostic Tool’s ERASE function is used to erase DTCs from the vehicle's on-board computer,

"Freeze Frame" data and manufacturer-specific-enhanced data are also erased. "Permanent" DTCs ARE NOT erased by the ERASE function.

If you plan to take the vehicle to a Service Center for repair, DO NOT erase the codes from the vehicle's computer. If the codes are erased, valuable information that might help the technician troubleshoot the problem will also be erased.

Erase DTCs from the computer's memory as follows:

When DTCs are erased from the vehicle's computer memory, the

I/M Readiness Monitor Status program resets the status of all

Monitors to a not run "flashing" condition. To set all of the Monitors to a DONE status, an OBD2 Drive Cycle must be performed.

Refer to your vehicle's service manual for information on how to perform an OBD2 Drive Cycle for the vehicle under test.

1.

If not connected already, connect the

Diagnostic Tool to the vehicle's DLC, and turn the ignition "On.” (If the Diagnostic

Tool is already connected and linked to the vehicle's computer, proceed directly to step 3. If not, continue to step 2.)

2.

Perform the Code Retrieval procedure as described on page 33.

„ To erase OBD2 DTCs: Wait until the codes are displayed on the

Diagnostic Tool’s LCD and then proceed to step 3.

„ To erase OEM enhanced, ABS or SRS DTCs: Press the

SYSTEM MENU button to display the System Menu.

Perform the appropriate Code Retrieval (see page 40 for more information) and then proceed to step 3.

3.

Press and release the ERASE button. A confirmation message shows on the LCD display.

„

If you are sure you want to proceed, use the UP and DOWN buttons, as necessary, to highlight

YES, then press the ENTER button.

- If you do not want to proceed, use the UP and DOWN buttons, as necessary, to highlight NO, then press the

ENTER button.

3150d 53

Using the Diagnostic Tool

I/M READINESS TESTING

4.

If you chose to erase DTCs, a progress screen displays while the erase function is in progress.

„

„

If the erase was successful, a confirmation message shows on the display. Press the POWER/LINK

button to re-link the Tool to the vehicle.

If the erase was not successful, an advisory message shows on the display. Verify that the Scan Tool is properly connected to the vehicle’s

DLC and that the ignition is on, then repeat steps 2 and 3, above.

I/M READINESS TESTING

I/M is an Inspection and Maintenance program legislated by the

Government to meet federal clean-air standards.

The program requires that a vehicle be taken periodically to an

Emissions Station for an "Emissions Test" or "Smog Check,” where the emissions-related components and systems are inspected and tested for proper operation. Emissions Tests are generally performed once a year, or once every two years.

On OBD2 systems, the I/M program is enhanced by requiring vehicles to meet stricter test standards. One of the tests instituted by the Federal

Government is called I/M 240. On I/M 240, the vehicle under test is driven under different speeds and load conditions on a dynamometer for

240 seconds, while the vehicle's emissions are measured.

Emissions tests vary depending on the geographic or regional area in which the vehicle is registered. If the vehicle is registered in a highly urbanized area, the I/M 240 is probably the type of test required. If the vehicle is registered in a rural area, the stricter “dynamometer type” test may not be required.

I/M Readiness Monitors

I/M Readiness shows whether the various emissions-related systems on the vehicle are operating properly and are ready for Inspection and

Maintenance testing.

State and Federal Governments enacted Regulations, Procedures and

Emission Standards to ensure that all emissions-related components and systems are continuously or periodically monitored, tested and diagnosed whenever the vehicle is in operation. It also requires vehicle manufacturers to automatically detect and report any problems or faults that may increase the vehicle's emissions to an unacceptable level.

The vehicle's emissions control system consists of several components or sub-systems (Oxygen Sensor, Catalytic Converter, EGR, Fuel

System, etc.) that aid in reducing vehicle emissions.

54 3150d

Using the Diagnostic Tool

I/M READINESS TESTING

To have an efficient Vehicle Emission Control System, all the emissionsrelated components and systems must work correctly whenever the vehicle is in operation.

To comply with State and Federal Government regulations, vehicle manufacturers designed a series of special computer programs called

"Monitors" that are programmed into the vehicle's computer. Each of these Monitors is specifically designed to run tests and diagnostics on a specific emissions-related component or system (Oxygen Sensor,

Catalytic Converter, EGR Valve, Fuel System, etc.) to ensure their proper operation. Currently, there are a maximum of fifteen Monitors available for use.

Each Monitor has a specific function to test and diagnose only its designated emissions-related component or system. The names of the Monitors (Oxygen Sensor Monitor, Catalyst

Monitor, EGR Monitor, Misfire Monitor, etc.) describe which component or system each Monitor is designed to test and diagnose.

Emissions Inspection and Maintenance (I/M) Readiness

Monitor Status Information

I/M Readiness Monitor Status shows which of the vehicle's Monitors have run and completed their diagnosis and testing, and which ones have not yet run and completed testing and diagnosis of their designated sections of the vehicle's emissions system.

„ If a Monitor was able to meet all the conditions required to enable it to perform the self-diagnosis and testing of its assigned engine system, it means the monitor "HAS RUN.”

„ If a Monitor has not yet met all the conditions required for it to perform the self-diagnosis and testing of its assigned engine system; it means the Monitor "HAS NOT RUN.”

The Monitor Run/Not Run status does not show whether or not a problem exists in a system. Monitor status only indicates whether a particular Monitor has or has not run and performed the self-diagnosis and testing of its associated system.

Performing I/M Readiness Quick Check

When a vehicle first comes from the factory, all Monitors indicate a “HAVE RUN” status. This indicates that all Monitors have run and completed their diagnostic testing. The “HAVE

RUN” status remains in the computer's memory, unless the

Diagnostic Trouble Codes are erased or the vehicle's computer memory is cleared.

3150d 55

Using the Diagnostic Tool

I/M READINESS TESTING

The Diagnostic Tool allows you to retrieve Monitor/System Status

Information to help you determine if the vehicle is ready for an

Emissions Test (Smog Check). In addition to retrieving Diagnostic

Trouble Codes, the Scan Tool also retrieves Monitor Run/Not Run status.

This information is very important since different areas of the state/country have different emissions laws and regulations concerning

Monitor Run/Not Run status.

Before an Emissions Test (Smog Check) can be performed, your vehicle must meet certain rules, requirements and procedures legislated by the Federal and state (country) governments where you live.

1.

In most areas, one of the requirements that must be met before a vehicle is allowed to be Emissions Tested (Smog Checked) is that the vehicle does not have any Diagnostic Trouble Codes present

(with the exception of PENDING Diagnostic Trouble Codes).

2.

In addition to the requirement that no Diagnostic Trouble Codes be present, some areas also require that all the Monitors that a particular vehicle supports indicate a "Has Run" status condition before an Emissions Check may be performed.

3.

Other areas may only require that some (but not all) Monitors indicate a "Has Run" status before an Emissions Test (Smog Check) may be performed.

Monitors with a "Has Run" status indicate that all the required conditions they needed to perform diagnosis and testing of their assigned engine area (system) have been met, and all diagnostic testing has completed successfully.

Monitors with a "Has Not Run" status have not yet met the conditions they need to perform diagnosis and testing of their assigned engine area (system), and have not been

able to perform diagnostic testing on that system.

The green, yellow and red LEDs provide a quick way to help you determine if a vehicle is ready for an Emissions Test (Smog Check).

Follow the instructions below to perform the Quick Check.

Perform the CODE RETRIEVAL PROCEDURE as described on page

33, then interpret the LED indications as follows:

Interpreting I/M Readiness Test Results

1.

GREEN LED - Indicates that all engine systems are "OK" and operating normally (all Monitors supported by the vehicle have run and performed their self-diagnostic testing). The vehicle is ready for an Emissions Test (Smog

Check), and there is a good possibility that it can be certified.

2.

YELLOW LED - Determine from the CODE RETRIEVAL

PROCEDURE (page 33) which of the two possible conditions is causing the yellow LED to light.

56 3150d

Using the Diagnostic Tool

I/M READINESS TESTING

„

„

If a "PENDING" Diagnostic Trouble

Code is causing the yellow LED to light, it is possible that the vehicle will be allowed to be tested for emissions and certified. Currently, most areas (states / countries) will allow an Emissions Test (Smog

Check) to be performed if the only code in the vehicle's computer is a

"PENDING" Diagnostic Trouble

Code.

If the illumination of the Yellow LED is being caused by monitors that

“have not run” their diagnostic testing, then the issue of the vehicle being ready for an Emissions Test

(Smog Check) depends on the emissions regulations and laws of your local area.

- Some areas require that all Monitors indicate a "Has Run" status before they allow an Emissions Test (Smog Check) to be performed. Other areas only require that some, but not all,

Monitors have run their self-diagnostic testing before an

Emissions Test (Smog Check) may be performed.

- From the code retrieval procedure, determine the status of each Monitor (a solid Monitor icon shows Monitor "Has Run" status, a flashing Monitor icon indicates "Has Not Run" status).

Take this information to an emissions professional to determine (based on your test results) if your vehicle is ready for an Emissions Test (Smog Check).

3.

RED LED - Indicates there is a problem with one or more of the vehicle's systems. A vehicle displaying a red LED is definitely not ready for an Emissions

Test (Smog Check). The red LED is also an indication that there are

Diagnostic Trouble Code(s) present

(displayed on the Scan Tool's screen).

P2247

Generic

O2 sensor reference voltage circuit/open bank 2 sensor 1

The Malfunction Indicator (Check

Engine) Lamp on the vehicle's instrument panel will light steady. The problem that is causing the red LED to light must be repaired before an Emissions Test (Smog Check) can be performed. It is also suggested that the vehicle be inspected/repaired before driving the vehicle further.

If the Red LED was obtained, there is a definite problem present in the system(s). In these cases, you have the following options.

„

Repair the vehicle yourself. If you are going to perform the repairs yourself, proceed by reading the vehicle service manual and following all its procedures and recommendations.

3150d 57

Using the Diagnostic Tool

I/M READINESS TESTING

„ Take the vehicle to a professional to have it serviced. The problem(s) causing the red LED to light must be repaired before the vehicle is ready for an Emissions Test (Smog Check).

Using the I/M Readiness Monitor Status to Confirm a Repair

The I/M Readiness Monitor Status function can be used (after repair of a fault has been performed) to confirm that the repair has been performed correctly, and/or to check for Monitor Run Status. Use the following procedure to determine I/M Readiness Monitor Status:

1.

Using retrieved Diagnostic Trouble Codes (DTCs) and code definitions as a guide, and following manufacturer's repair procedures, repair the fault or faults as instructed.

2.

After the fault or faults have been repaired, connect the Diagnostic

Tool to the vehicle's DLC and erase the code or codes from the vehicle's computer memory.

„ See page 50 for procedures for ERASING DIAGNOSTIC

TROUBLE CODES (DTCs) from the vehicle's on-board computer.

„

Write the codes down on a piece of paper for reference before erasing.

3.

After the erase procedure is performed, most of the Monitor icons on the Diagnostic Tool’s display will be flashing. Leave the Diagnostic

Tool connected to the vehicle, and perform a Trip Drive Cycle for each "flashing" Monitor:

„

Misfire, Fuel and Comprehensive Component Monitors run continuously and their icons will always be on solid, even after the erase function is performed.

Each DTC is associated with a specific Monitor. Consult the vehicle's service manual to identify the Monitor (or Monitors) associated with the faults that were repaired. Follow the manufacturer's procedures to perform a Trip Drive Cycle for the appropriate Monitors.

„

While observing the Monitor icons on the Diagnostic Tool’s display, perform a Trip Drive Cycle for the appropriate Monitor or

Monitors.

If the vehicle needs to be driven in order to perform a Trip

Drive Cycle, ALWAYS have a second person help you.

One person should drive the vehicle while the other

person observes the Monitor icons on the Diagnostic Tool

for Monitor RUN status. Trying to drive and observe the

Diagnostic Tool at the same time is dangerous, and could

cause a serious traffic accident.

4.

When a Monitor's Trip Drive Cycle is performed properly, the

Monitor icon on the Diagnostic Tool’s display changes from

"flashing" to "solid,” indicating that the Monitor has run and finished its diagnostic testing.

58 3150d

Using the Diagnostic Tool

ABOUT REPAIRSOLUTIONS®

„

„

If, after the Monitor has run, the MIL on the vehicle's dash is not lit, and no stored or pending codes associated with that particular Monitor are present in the vehicle's computer, the repair was successful.

If, after the Monitor has run, the MIL on the vehicle's dash lights and/or a DTC associated with that Monitor is present in the vehicle's computer, the repair was unsuccessful. Refer to the vehicle's service manual and recheck repair procedures.

ABOUT REPAIRSOLUTIONS®

RepairSolutions® is a web-based service created to assist professional technicians in quickly and accurately diagnosing and repairing today’s vehicles. RepairSolutions® allows you to view, save, and email the diagnostic data retrieved from a vehicle’s on-board computer(s) using an Innova Scan Tool. RepairSolutions® also provides access to an extensive knowledge database including:

„

„

Verified Fixes – Find the most likely fixes reported and verified by

ASE Technicians for the retrieved DTCs.

Step-By-Step Repair Instructions – View available repair instructions to properly perform the fix.

„

„

How-To-Repair Videos – Watch repair video tutorials for valuable repair tips.

Technical Service Bulletins – Research known problems reported by vehicle manufacturers.

„ Safety Recalls – Research known safety concerns applicable to a vehicle.

And much more. Please visit www. innova.com for additional information.

Hardware Requirements:

„

„

Innova Diagnostic Tool

Mini USB Cable (included with tool)

Minimum System Operating Requirements:

„

„

„

„

„

„

„

Windows® PC System

Windows® XP, Windows® Vista, or Windows® 7

128 MD Ram

Pentium III Processor

One available USB port

Internet Connection

Internet Explorer 5.5, Netscape 7.0 or Firefox 1.0 browser

3150d 59

Using the Diagnostic Tool

ABOUT REPAIRSOLUTIONS®

Accessing RepairSolutions®

1.

Link your Diagnostic Tool to a vehicle and retrieve diagnostic data.

2.

Visit www.innova.com, download and install the latest

RepairSolutions® software for your Diagnostic Tool. Select the

Support tab, then choose Troubleshoot/Download.

3.

Connect the Diagnostic Tool to your PC using a Mini USB cable

(cable included).

„ Your default web browser launches automatically and connects to the www.innova.com website.

4.

Login to your RepairSolutions® account using your registered Email

Address and Password.

If you have not yet established an account, you must register for a FREE RepairSolutions® account before proceeding.

60 3150d

Additional Tests

SPECIAL TEST MENU

In addition to retrieving Diagnostic Trouble Codes (DTCs), you can use the

Diagnostic Tool to perform additional diagnostic tests, to view diagnostic and vehicle information stored in your vehicle's on-board computer, and to configure the Scan Tool for your particular needs.

VIEWING FREEZE FRAME DATA

In OBD2 systems, when an emissions-related engine malfunction occurs that causes a DTC to set, a record or snapshot of engine conditions at the time that the malfunction occurred is also saved in the vehicle’s computer memory. The record saved is called Freeze Frame data.

1.

While linked to the vehicle, press and release the FF button.

„

„

The Freeze Frame screen displays.

Saved engine conditions include but are not limited to: engine speed, open or closed loop operation, fuel system commands, coolant temperature, calculated load value, fuel pressure, vehicle speed, air flow rate and intake manifold pressure.

If more than one malfunction is present that causes more than one DTC to be set, only the code with the highest priority will contain Freeze Frame data. The code designated “01” on the Diagnostic Tool’s display is referred to as the PRIORITY code, and Freeze Frame data always refers to this code. The priority code is also the one that has commanded the MIL on.

„ Use the UP and DOWN buttons, as necessary, to view all available Freeze Frame data.

If Freeze Frame data is not presently stored in the vehicle’s computer, an advisory message displays. Press the M button to return to the Main

Menu.

2.

When finished, press and release the M button to return to the Main

Menu.

VIEWING VEHICLE INFORMATION

The Vehicle Info function offers three options for retrieving reference information for the vehicle under test; Vehicle ID, Available Modules and IPT (In-Use Performance Tracking).

3150d 61

Additional Tests

VIEWING VEHICLE INFORMATION

Retrieving Vehicle ID Information

The Vehicle ID function is applicable to model year 2000 and newer OBD2-compliant vehicles.

The Tool can retrieve a list of information (provided by the vehicle manufacturer), unique to the vehicle under test, from the vehicle's onboard computer. This information may include:

„

„

The vehicle's VIN number

The control module identification number

„ The vehicle's calibration ID(s). These IDs uniquely identify the software version(s) for the vehicle's control module(s).

„

The Vehicle's Calibration Verification Number(s) (CVNs) required by

ODB2 regulations. CVNs are used to determine if emission-related calibrations for the vehicle under test have been changed. One or more CVNs may be returned by the vehicle's computer.

1.

With the Diagnostic Tool in OBD2 mode, press and release the M button.

„ The Main Menu displays.

2.

Use the UP

and DOWN buttons, as necessary, to highlight Vehicle Info, then press the ENTER

button.

„ The Vehicle Info Menu displays.

3.

Use the UP

and DOWN buttons, as necessary, to highlight Vehicle ID, then press the ENTER

button.

4.

A "One moment please..." message displays while the requested information is retrieved from the vehicle's computer.

The first time the Vehicle ID function is used, it may take several minutes to retrieve the information from the vehicle's computer.

5.

When the retrieval process is completed, the vehicle ID information is shown on the Tool's display. Use the UP and

DOWN buttons, as necessary, to view the entire list.

6.

When you have finished viewing the retrieved vehicle ID information, press the M button to exit.

Viewing Available Modules

The Diagnostic Tool can retrieve a list of modules supported by the vehicle under test.

62 3150d

Additional Tests

VIEWING VEHICLE INFORMATION

1.

With the Diagnostic Tool in OBD2 mode, press and release the M button.

„ The Main Menu displays.

2.

Use the UP

and DOWN buttons, as necessary, to highlight Vehicle Info, then press the ENTER

button.

„

The Vehicle Info Menu displays.

3.

Use the UP

and DOWN buttons, as necessary, to highlight Available

Modules, then press the ENTER button.

4.

A "One moment please..." message displays while the requested information is retrieved from the vehicle's computer.

5.

When the retrieval process is completed, a complete list of modules supported by the vehicle under test is shown on the

Scan Tool's display. Use the UP and

DOWN buttons, as necessary, to view the entire list.

6.

When you have finished viewing the list of available modules, press the M button to return to exit.

Viewing In-use Performance Tracking (IPT)

The Tool can retrieve In-use Performance Tracking (IPT) statistics for monitors supported by the vehicle under test. Two values are returned for each monitor; the number of times that all conditions necessary for a specific monitor to detect a malfunction have been encountered

(XXXCOND), and the number of times that the vehicle has been operated under the specific conditions for the monitor (XXXCOMP).

Statistics are also provided for the number of times the vehicle has been operated in OBD monitoring conditions (OBDCOND), and the number of times the vehicle’s engine has been started (IGNCNTR).

1.

With the Diagnostic Tool in OBD2 mode, press and release the M button.

„ The Main Menu displays.

2.

Use the UP

and DOWN buttons, as necessary, to highlight Vehicle Info, then press the ENTER

button.

„

The Vehicle Info Menu displays.

3.

Use the UP

and DOWN buttons, as necessary, to highlight IPT, then press the ENTER

button.

3150d 63

Additional Tests

VIEWING VEHICLE INFORMATION

4.

A “One moment please . . .” message displays while the requested information is retrieved from the vehicle’s computer.

5.

If In-use Performance Tracking is not supported by the vehicle under test, an advisory message shows on the Tool’s display. Press the M button to exit.

6.

When the retrieved process is completed,

In-use Performance Tracking statistics for monitors supported by the vehicle under test are shown on the Tool’s display. Use the UP and DOWN buttons, as necessary, to view the entire list.

7.

When you have finished viewing the statistics, press the M button to exit.

SEARCHING FOR A DTC DEFINITION USING THE DTC

LIBRARY (OBD1)

1.

With the Diagnostic Tool in OBD2 mode, press and release the M button.

„ The Main Menu displays.

2.

Use the UP

and DOWN buttons, as necessary, to highlight DTC Library in the Main Menu, then press the

ENTER button.

„

The Select Library screen displays.

3.

Use the UP

and DOWN buttons, as necessary, to highlight OBD1

Library in the DTC Library Menu, then press the ENTER button.

„ The Select Manufacturer screen displays.

4.

Use the UP

and DOWN buttons, as necessary, to highlight the desired vehicle manufacturer, then press the

ENTER button.

„

A confirmation message shows on the LCD display.

- If the correct manufacturer is shown, use the UP and

DOWN buttons, as necessary, to highlight Yes, then press the

ENTER button to continue.

64 3150d

Additional Tests

SEARCHING FOR A DTC DEFINITION USING THE DTC LIBRARY (OBD2)

- If the correct manufacturer is not shown, use the UP and

DOWN buttons, as necessary, to highlight No, then press the ENTER manufacturers. button to return to the list of vehicle

5.

The Enter DTC screen displays. The screen shows the code "001", with the first "0" highlighted.

6.

Use the UP

and DOWN buttons, as necessary, to scroll to the first digit of the DTC, then press the DTC button.

„ The selected character displays solid, and the next character is highlighted.

7.

Select the remaining digits in the DTC in the same way, pressing the DTC button to confirm each digit. When you have selected all the DTC digits, press the ENTER

button to view the DTC definition.

If a definition for the DTC you entered is not available, an advisory message shows on the

Tool’s display.

8.

If you wish to view definitions for additional

DTCs, press the M button to return to the

Enter DTC screen, and repeat steps 5 and

6.

9.

When all desired DTCs have been viewed, press the M button to return to the Enter DTC screen (if necessary), then press the M button to exit the DTC Library.

SEARCHING FOR A DTC DEFINITION USING THE DTC

LIBRARY (OBD2)

1.

With the Diagnostic Tool in OBD2 mode, press and release the M button.

„ The Main Menu displays.

2.

Use the UP

and DOWN buttons, as necessary, to highlight DTC Library in the Main Menu, then press the

ENTER button.

„ The Select Library screen displays.

3.

Use the UP

and DOWN buttons, as necessary, to highlight OBD2

Library in the DTC Library Menu, then press the ENTER button.

3150d 65

Additional Tests

SEARCHING FOR A DTC DEFINITION USING THE DTC LIBRARY (OBD2)

„ The Enter DTC screen displays. The screen shows the code

“P0001”, with the “P” highlighted.

4.

Use UP

and DOWN buttons, as necessary, to scroll to the desired DTC type (P=Powertrain, U=Network, B=Body, C=Chassis), then press the DTC button.

„ The selected character displays “solid”, and the next character is highlighted.

5.

Select the remaining characters in the

DTC in the same way, pressing the DTC button to confirm each character. When you have selected all the DTC characters, press the ENTER button to view the DTC definition.

„ If you entered a “Generic” DTC

(DTCs that start with “P0”, “P2” and some “P3”):

- The selected DTC and DTC definition (if available) show on the Diagnostic Tool’s display.

If a definition for the DTC you entered is not available, an advisory message shows on the Scan Tool’s display.

„ If you entered a “Manufacturer-Specific” DTC (DTCs that start with “P1” and some “P3”):

- The “Select Manufacturer” screen displays.

- Use the UP and DOWN buttons, as necessary, to highlight the appropriate manufacturer, then press the ENTER button to display the correct DTC for your vehicle. A confirmation message shows on the LCD display.

- If the correct manufacturer is shown, use the UP and

DOWN buttons, as necessary, to highlight YES then press the ENTER button to continue.

- If the correct manufacturer is not shown, use the UP and

DOWN buttons, as necessary, to highlight NO then press the ENTER manufacturers. button to return to the list of vehicle

If a definition for the DTC you entered is not available, an advisory message shows on the

Diagnostic Tool’s display.

66 3150d

Additional Tests

ADJUSTMENTS AND SETTINGS

6.

If you wish to view definitions for additional DTCs, press the ENTER

button to return to the Enter DTC screen, and repeat steps 3 and

4.

7.

When all desired DTCs have been viewed, press the M button to return to the Enter DTC screen (if necessary), then press the M button again to exit the DTC Library.

VIEWING THE FIRMWARE VERSION

1.

With the Diagnostic Tool in OBD2 mode, press and release the M button.

„ The Main Menu displays.

2.

Use the UP

and DOWN buttons, as necessary, to highlight Firmware

Version in the Main Menu, then press the ENTER button.

„ The Firmware Version screen displays.

„ The screen shows the Diagnostic

Tool’s current firmware version, bootloader version and database version.

3.

Press the M button to return to the Menu.

ADJUSTMENTS AND SETTINGS

The Diagnostic Tool lets you make several adjustments and settings to configure the Diagnostic Tool to your particular needs. It also contains an OBD2 DTC Library that allows you to search for DTC definitions. The following functions, adjustments and settings can be performed when the Diagnostic Tool is in “Tool Setting” mode:

„

„

Adjust Brightness: Adjusts the brightness of the display screen.

Audible Tone: Turns the Diagnostic Tool’s audible tone “on” and

“off.” When turned “on,” a tone sounds each time a button is pressed.

„

„

„

Display Backlight: Turns the display backlight on and off.

Select Language: Sets the display language for the Diagnostic Tool to English, French or Spanish.

Unit of Measurement: Sets the Unit of Measurement for the

Diagnostic Tool’s display to USA or metric.

Adjustments and settings can be made only when the

Diagnostic Tool is NOT connected to a vehicle.

3150d 67

Additional Tests

ADJUSTMENTS AND SETTINGS

To enter the “Tool Setting” Mode:

1.

With the Diagnostic Tool in OBD2 mode, press and release the M button.

„ The Main Menu displays.

2.

Use the UP

and DOWN buttons, as necessary, to highlight Tool Settings, then press the ENTER button.

„

The Tool Setting Menu displays.

3.

Make adjustments and settings as described in the following paragraphs.

Adjusting Display Brightness

1.

Use the UP

and DOWN buttons, as necessary, to highlight Adjust

Brightness in the Tool Settings Menu, then press the ENTER button.

„ The Adjust Brightness screen displays.

„ The Brightness field shows the current brightness setting, from 1 to 4.

2.

Press the UP

button to decrease the brightness of the display (make the display darker).

3.

Press the DOWN

button to increase the brightness of the display (make the display lighter).

4.

When the desired brightness is obtained, press the ENTER button to save your changes and return to the Tool Settings Menu.

Enabling the Audible Tone

1.

Use the UP

and DOWN buttons, as necessary, to highlight Audible Tone in the Tool Settings Menu, then press the ENTER button.

„ The Audible Tone screen displays.

2.

Use the UP

and DOWN buttons, as necessary, to highlight ON or OFF as desired.

3.

When the desired option is selected, press the ENTER button to save your changes and return to the Tool Settings

Menu.

68 3150d

Additional Tests

ADJUSTMENTS AND SETTINGS

Using the Backlight

1.

Use the UP

and DOWN buttons, as necessary, to highlight Display

Backlight in the Tool Settings Menu, then press the ENTER button.

„ The Display Backlight screen displays.

2.

Use the UP

and DOWN buttons, as necessary, to select the desired backlight mode, either ON or OFF.

3.

When the desired backlight mode is selected, press the ENTER button to save your changes.

„ The display returns to the Menu, and the backlight turns “on” or “off” as selected.

Selecting the Display Language

1.

Use the UP

and DOWN buttons, as necessary, to highlight Select

Language in the Tool Settings Menu, then press the ENTER button.

„

„

The Select Language screen displays.

The currently selected display

Language is highlighted.

2.

Use the UP

and DOWN buttons, as necessary, to highlight the desired display language.

3.

When the desired display language is highlighted, press the ENTER button to save your changes and return to the

Tool Settings Menu (shown in the selected display language).

Setting the Unit of Measurement

1.

Use the UP

and DOWN buttons, as necessary, to highlight Unit of

Measurement in the Tool Settings

Menu, then press the ENTER button.

2.

Use the UP

and DOWN buttons, as necessary, to highlight the desired

Unit of Measurement.

3150d 69

Additional Tests

ADJUSTMENTS AND SETTINGS

3.

When the desired Unit of Measurement value is selected, press the ENTER button to save your changes and return to the Tool Settings Menu.

Exiting the MENU Mode

„

Press the M button.

70 3150d

Using Tool Memory

VIEWING DATA IN MEMORY

When you retrieve DTCs from a vehicle, the data is saved to the

Diagnostic Tool’s memory.

Each time you retrieve DTCs, existing data in the Diagnostic

Tool's memory is overwritten with the new data.

VIEWING DATA IN MEMORY

When you turn the Diagnostic Tool on while NOT connected to a vehicle, and data is currently saved in the Diagnostic Tool's memory, the

Diagnostic Tool enters Memory mode.

1.

With the Diagnostic Tool NOT connected to a vehicle. press and release the POWER/LINK button to turn the Tool on.

„

If the Diagnostic Tool’s batteries are low, a warning message displays. Replace the batteries before continuing.

2.

The Diagnostic Tool automatically displays the “Priority” code.

If there are no OBD2 DTCs currently stored in the Tool's memory, an advisory message shows on the display.

„

„

„

Press the DTC button to scroll through all stored DTCs.

When all OBD2 DTCs have been displayed and the DTC button is pressed, the Diagnostic Tool displays the “Priority” code.

To view Freeze Frame Data in the

Diagnostic Tool’s memory, press the

FF button.

„ To view OEM Enhanced DTCs in the

Diagnostic Tool’s memory, press the

SYSTEM MENU button. Use the

UP and DOWN buttons, as necessary, to high OEM Enhanced, then press the ENTER button.

If there are no OEM enhanced

DTCs currently stored in the

Diagnostic Tool’s memory, an advisory message shows on the display.

3.

When you have finished viewing data in the Diagnostic Tool's memory, press and release the POWER/LINK button to turn the Diagnostic Tool off.

3150d 71

Generic (Global) OBD2 PID List

The following is a list of Generic (Global) PIDs and their descriptions.

Tool

Display

ACC Pedal D

ACC Pedal E

ACC Pedal F

Air Status

%

%

%

-

XXX.X

XXX.X

XXX.X

UPS, DNS,

OFF

Accelerator Pedal Position D

Accelerator Pedal Position E

Accelerator Pedal Position F

Commanded Secondary Air Status

Ambient Air Temperature

Aux Input

Status

*F

- On / Off Auxiliary Input Status

Calc LOAD

CAT Temp 11

CAT Temp 12

CAT Temp 21

CAT Temp 22

/inHg

%

*C /

*F

*C /

*F

*C /

*F

*C /

*F

XX.X

XXX.X

XXXX.X Catalyst Temperature Bank 1-

XXXX.X

XXXX.X

XXXX.X

Barometric Pressure

Calculated LOAD Value

Sensor 1

Catalyst Temperature Bank 1-

Sensor 2

Catalyst Temperature Bank 2-

Sensor 1

Catalyst Temperature Bank 2-

Sensor 2

Command

EGR

Command

EVAP

Command

TAC

Dist DTC Clr

% XXX.X Commanded Throttle Actuator km

/mile

XXXXX Distance since DTC Cleared

Dist MIL ON km

/mile s

XXXXX

ECT *C Engine Coolant Temp

ECU Volts

*F

V XX.XXX Control Module Voltage

EGR Error

Eng RPM

EQ Ratio

EQ Ratio 11

EQ Ratio 12

EQ Ratio 13

% min

-

-

-

-

XXX.X

XXXXX

X.XXX

X.XXX

X.XXX

X.XXX

Distance Traveled while MIL ON

EGR Error

Engine RPM

Commanded Equivalence Ratio

Bank 1 - Sensor 1 Equivalence

Ratio

Bank 1 - Sensor 2 Equivalence

Ratio

Bank 1 - Sensor 3 Equivalence

Ratio

EQ Ratio 14 - X.XXX Bank 1 - Sensor 4 Equivalence

72 3150d

Generic (Global) OBD2 PID List

Tool

EQ Ratio 21

EQ Ratio 22

EQ Ratio 23

EQ Ratio 24

-

-

-

-

Value Description

Ratio

X.XXX

X.XXX

X.XXX

X.XXX

Bank 2 - Sensor 1 Equivalence

Ratio

Bank 2 - Sensor 2 Equivalence

Ratio

Bank 2 - Sensor 3 Equivalence

Ratio

Bank 2 - Sensor 4 Equivalence

Ratio

XXXX.XX

/XX.XXX

Evap System Vapor Pressure EVAP Press

FP / Vac

Fuel Level

Fuel Press

Fuel Press

Pa

/in

H2O kPa

/PSI

% kPa

/PSI kPa

/PSI

XXXX.XXX

/XXX.X

XXX.X

XXX /

XX.X

XXXXX

/XXXX.X

Fuel Rail Pressure relative toVacuum

Fuel Level Input

Fuel Rail Pressure

Fuel Rail Pressure

Fuel Sys 1

Fuel Sys 1

Fuel Sys 1

Fuel Sys 1

Fuel Sys 1

Fuel Sys 2

Fuel Sys 2

Fuel Sys 2

-

-

-

-

-

-

-

-

OL

CL

Fuel System 1 Status

Fuel System 1 Status

OL-Drive Fuel System 1 Status

OL-Fault Fuel System 1 Status

CL-Fault Fuel System 1 Status

OL Fuel System 2 Status

CL Fuel System 2 Status

OL-Drive Fuel System 2 Status

Fuel Sys 2

Fuel Sys 2

-

-

OL-Fault

CL-Fault

Fuel System 2 Status

Fuel System 2 Status

IAT *C Intake Air Temperature

*F

LOAD Value

LTFT B1

LTFT B2

LTFT B3

LTFT B4

%

%

%

%

% b/min

XXX.X

XXX.X

XXX.X

XXX.X

XXX.X

/XXXX.X

Absolute Load Value

Long Term Fuel Trim-Bank 1

Long Term Fuel Trim-Bank 2

Long Term Fuel Trim-Bank 3

Long Term Fuel Trim-Bank 4

Air Flow Rate from Mass Air Flow

Sensor

MIL On Time

Monitor Status

/PSI hrs, min

-

Intake Manifold Absolute Pressure

XX.X

XXXX, XX Engine Run Time while MIL ON

Monitor Status this Driving Cycle

O2S B1 S1

O2S B1 S1

V mA

ICONS on

Display

X.XXX

X.XXX

Bank 1 - Sensor 1

Bank 1 - Sensor 1 O2S Current

3150d 73

Generic (Global) OBD2 PID List

Tool

Value Description

O2S B2 S2 V

O2S B2 S3

O2S B2 S3 mA

O2S B2 S3 V

O2S B2 S4

O2S B2 S4 mA

O2S B2 S4 V

O2S Location

O2S Location

O2S Location

O2S Location

O2S Location

O2S Location

O2S Location

O2S Location

O2S Location

O2S Location

O2S Location

O2S Location

O2S Location

O2S Location

O2S Location

O2S Location mA

O2S B1 S1 V

O2S B1 S2

O2S B1 S2 mA

O2S B1 S2 V

O2S B1 S3

O2S B1 S3 mA

O2S B1 S3 V

O2S B1 S4

O2S B1 S4 mA

O2S B1 S4 V

O2S B2 S1

O2S B2 S1 mA

O2S B2 S1 V

O2S B2 S2

O2S B2 S2 mA

V

V mA

V

V mA

V

V mA

V

V mA

V

V mA

V

V mA

V

V mA

-

-

-

-

-

-

-

-

-

-

-

-

-

-

V

-

-

X.XXX

X.XXX

X.XXX

X.XXX

X.XXX

X.XXX

X.XXX

X.XXX

X.XXX

X.XXX

X.XXX

X.XXX

X.XXX

X.XXX

X.XXX

X.XXX

X.XXX

X.XXX

X.XXX

X.XXX

X.XXX

X.XXX

O2S11

O2S12

O2S13

O2S14

O2S21

O2S22

O2S23

O2S24

O2S11

O2S12

O2S21

O2S22

O2S31

O2S32

O2S41

O2S42

Bank 1 - Sensor 1 O2S Voltage

Bank 1 - Sensor 2

Bank 1 - Sensor 2 O2S Current

Bank 1 - Sensor 2 O2S Voltage

Bank 1 - Sensor 3

Bank 1 - Sensor 3 O2S Current

Bank 1 - Sensor 3 O2S Voltage

Bank 1 - Sensor 4

Bank 1 - Sensor 4 O2S Current

Bank 1 - Sensor 4 O2S Voltage

Bank 2 - Sensor 1

Bank 2 - Sensor 1 O2S Current

Bank 2 - Sensor 1 O2S Voltage

Bank 2 - Sensor 2

Bank 2 - Sensor 2 O2S Current

Bank 2 - Sensor 2 O2S Voltage

Bank 2 - Sensor 3

Bank 2 - Sensor 3 O2S Current

Bank 2 - Sensor 3 O2S Voltage

Bank 2 - Sensor 4

Bank 2 - Sensor 4 O2S Current

Bank 2 - Sensor 4 O2S Voltage

Oxygen Sensor, Bank 1, Sensor 1

Oxygen Sensor, Bank 1, Sensor 2

Oxygen Sensor, Bank 1, Sensor 3

Oxygen Sensor, Bank 1, Sensor 4

Oxygen Sensor, Bank 2, Sensor 1

Oxygen Sensor, Bank 2, Sensor 1

Oxygen Sensor, Bank 2, Sensor 3

Oxygen Sensor, Bank 2, Sensor 4

Oxygen Sensor, Bank 1, Sensor 1

Oxygen Sensor, Bank 1, Sensor 2

Oxygen Sensor, Bank 2, Sensor 1

Oxygen Sensor, Bank 2, Sensor 2

Oxygen Sensor, Bank 3, Sensor 1

Oxygen Sensor, Bank 3, Sensor 2

Oxygen Sensor, Bank 4, Sensor 1

Oxygen Sensor, Bank 4, Sensor 2

74 3150d

Generic (Global) OBD2 PID List

Tool

OBD Support

OBD Support

OBD Support

OBD Support

OBD Support

OBD Support

OBD Support

OBD Support

OBD Support

OBD Support

OBD Support

OBD Support

OBD Support

-

-

-

-

-

-

-

-

-

-

-

-

-

PTO Status

Rel TPS

Spark Adv

-

% deg

STFT B1

STFT B1 S1

STFT B1 S2

STFT B1 S3

STFT B1 S4

STFT B2

STFT B2 S1

STFT B2 S2

STFT B2 S3

STFT B2 S4

STFT B3

STFT B4

%

%

%

%

Time DTC Clr hrs, min

Time Since

Start sec

TPS %

TPS B

TPS C

%

%

%

%

%

%

%

%

%

%

Value Description

OBD2 OBD Requirements

OBD

OBD and

OBD2

OBD Requirements

OBD Requirements

OBD1 OBD Requirements

No OBD OBD Requirements

EOBD

EOBD and

OBD2

OBD Requirements

OBD Requirements

EOBD and

OBD

OBD Requirements

OBD Requirements EOBD,

OBD and

OBD2

JOBD

JOBD and

OBD2

JOBD and

EOBD

OBD Requirements

OBD Requirements

OBD Requirements

JOBD,

EOBD and

OBD2

On / Off

XXX.X

XX

XXX.X

XXX.X

XXX.X

XXX.X

XXX.X

XXX.X

XXX.X

XXX.X

OBD Requirements

Power Take Off Status

Relative Throttle Position

Ignition Timing Advance #1

Cylinder

Short Term Fuel Trim-Bank 1

Bank 1 - Sensor 1

Bank 1 - Sensor 2

Bank 1 - Sensor 3

Bank 1 - Sensor 4

Short Term Fuel Trim-Bank 2

Bank 2 - Sensor 1

Bank 2 - Sensor 2

XXX.X

XXX.X

XXX.X

XXX.X

Bank 2 - Sensor 3

Bank 2 - Sensor 4

Short Term Fuel Trim-Bank 3

Short Term Fuel Trim-Bank 4

XXXX, XX Time since DTC Cleared

XXXX

XXX.X

XXX.X

XXX.X

Time Since Engine Start

Absolute Throttle Position

Absolute Throttle Position B

Absolute Throttle Position C

3150d 75

Generic (Global) OBD2 PID List

Tool

Veh Speed

Warm-up DTC

Clr km/h

/ mph

-

Value Description

XXX / XXX Vehicle Speed Sensor

XXX # Warm-ups since DTC Cleared

76 3150d

Vehicle Applications - ABS

VEHICLE APPLICATIONS – MAKES COVERED

The Diagnostic Tool has the ability to retrieve and erase ABS codes.

Vehicle Makes supported by the Diagnostic Tool are shown below.

Please visit www.innova.com for a complete list of vehicles covered.

BUICK JEEP

CADILLAC LEXUS

CHEVROLET LINCOLN

CHRYSLER MERCURY

DODGE OLDSMOBILE

FORD PONTIAC

GMC SCION

HUMMER TOYOTA

3150d 77

Vehicle Applications - SRS

VEHICLE APPLICATIONS – MAKES COVERED

The Diagnostic Tool has the ability to retrieve and erase SRS codes.

Vehicle Makes supported by the Diagnostic Tool are shown below.

Please visit www.innova.com for a complete list of vehicles covered.

BUICK JEEP

CADILLAC LEXUS

CHEVROLET LINCOLN

CHRYSLER MERCURY

DODGE OLDSMOBILE

FORD PONTIAC

GMC SCION

HUMMER TOYOTA

78 3150d

Notes

GLOSSARY OF TERMS AND ABBREVIATIONS

CARB – California Air Resources Board

CCM – Central Control Module

Computer Control System – An electronic control system, consisting of an on-board computer and related sensors, switches and actuators, used to ensure peak performance and fuel efficiency while reducing pollutants in the vehicle’s emissions.

DIY – Do-It-Yourself

DLC – Data Link Connector

Drive Cycle – An extended set of driving procedures that takes into consideration the various types of driving conditions encountered in real life.

Driving Condition – A specific environmental or operation condition under which a vehicle is operated; such as starting the vehicle when cold, driving at steady speed (cruising), accelerating, etc.

DTC(s) – Diagnostic Trouble Code(s)

EGR – Exhaust Gas Recirculation

EPA – Environmental Protection Agency

EVAP – Evaporative Emissions System

Fault Code – See DTCs

Freeze Frame – A digital representation of engine and/or emissions system conditions present when a fault code was recorded.

FTP – Fuel Tank Pressure

Generic Code – A DTC that applies to all OBD2 compliant vehicles.

I/M Readiness – An indication of whether or not a vehicle’s emissionsrelated system are operating properly and are ready for Inspection and

Maintenance testing.

I/M Test / Emissions Test / Smog Check – A functional test of a vehicle to determine if tailpipe emissions are within Federal/State/Local requirements.

LCD – Liquid Crystal Display

LED – Light Emitting Diode

LTFT – Long Term Fuel Trim, is a program in the vehicle’s computer designed to add or subtract fuel from the vehicle to compensate for operating conditions that vary from the ideal A/F ratio (long term).

Manufacturer Specific Code – A DTC that applies only to OBD2 compliant vehicles made by a specific manufacturer.

MIL – Malfunction Indicator Lamp (also referred to as “Check Engine” light

OBD1 – On-Board Diagnostics Version 1 (also referred to as “OBD I”)

3150d 79

Notes

OBD2 – On-Board Diagnostics Version 2 (also referred to as “OBD II”)

On-Board Computer – The central processing unit in the vehicle’s computer control system.

PCM – Powertrain Control Module

Pending Code – A code recorded on the “first trip” for a “two-trip” code.

If the fault that caused the code to be set is not detected on the second trip, the code is automatically erased.

PID – Parameter Identification

STFT – Short Term Fuel Trim, is a program in the vehicle’s computer designed to add or subtract fuel from the vehicle to compensate for operating conditions that vary from the ideal A/F ratio. The vehicle uses this program to make minor fuel adjustments (fine tune) on a short-term basis.

Trip Drive Cycle – Vehicle operation that provides the necessary driving condition to enable a vehicle Monitor to run and complete its diagnostic testing.

VECI – Vehicle Emission Control Information Decal

80 3150d

Warranty and Servicing

LIMITED ONE YEAR WARRANTY

The Manufacturer warrants to the original purchaser that this unit is free of defects in materials and workmanship under normal use and maintenance for a period of one (1) year from the date of original purchase.

If the unit fails within the one (1) year period, it will be repaired or replaced, at the Manufacturer’s option, at no charge, when returned prepaid to the Service Center with Proof of Purchase. The sales receipt may be used for this purpose. Installation labor is not covered under this warranty. All replacement parts, whether new or remanufactured, assume as their warranty period only the remaining time of this warranty.

This warranty does not apply to damage caused by improper use, accident, abuse, improper voltage, service, fire, flood, lightning, or other acts of God, or if the product was altered or repaired by anyone other than the Manufacturer’s Service Center.

The Manufacturer, under no circumstances shall be liable for any consequential damages for breach of any written warranty of this unit.

This warranty gives you specific legal rights, and you may also have rights, which vary from state to state. This manual is copyrighted with all rights reserved. No portion of this document may be copied or reproduced by any means without the express written permission of the

Manufacturer. THIS WARRANTY IS NOT TRANSFERABLE. For service, send via U.P.S. (if possible) prepaid to Manufacturer. Allow 3-4 weeks for service/repair.

SERVICE PROCEDURES

If you have any questions, require technical support or information on

UPDATES and OPTIONAL ACCESSORIES, please contact your local store, distributor or the Service Center.

USA & Canada:

(800) 544-4124 (6:00 AM-6:00 PM,

7 days a week PST)

All others: (714) 241-6802 (6:00 AM-6:00 PM,

7 days a week PST)

FAX: (714) 432-3979 (24 hr.)

Web: www.innova.com

3150d 81

Was this manual useful for you? yes no
Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Download PDF

advertisement