Bulletin 290D/291D - Rockwell Automation

User Manual

ArmorStart® LT Distributed Motor Controller

Catalog Numbers 290D, 291D, 294D

Important User Information

Because of the variety of uses for the products described in this publication, those responsible for the application and use of this control equipment must satisfy themselves that all necessary steps have been taken to assure that each application and use meets all performance and safety requirements, including any applicable laws, regulations, codes and standards.

The illustrations, charts, sample programs and layout examples shown in this guide are intended solely for purposes of example. Since there are many variables and requirements associated with any particular installation, Rockwell Automation does not assume responsibility or liability (to include intellectual property liability) for actual use based upon the examples shown in this publication.

Solid-state equipment has operational characteristics differing from those of electromechanical equipment.

Safety

Guidelines for the Application, Installation and Maintenance of Solid State Controls

(Publication SGI-1.1

available from your local Rockwell Automation sales office or online at http://www.rockwellautomation.com/literature/ ) describes some important differences between solid-state equipment and hard-wired electromechanical devices. Because of this difference, and also because of the wide variety of uses for solid-state equipment, all persons responsible for applying this equipment must satisfy themselves that each intended application of this equipment is acceptable.

In no event will Rockwell Automation, Inc. be responsible or liable for indirect or consequential damages resulting from the use or application of this equipment.

The examples and diagrams in this manual are included solely for illustrative purposes. Because of the many variables and requirements associated with any particular installation, Rockwell Automation, Inc. cannot assume responsibility or liability for actual use based on the examples and diagrams.

No patent liability is assumed by Rockwell Automation, Inc. with respect to use of information, circuits, equipment, or software described in this manual.

Reproduction of the contents of this manual, in whole or in part, without written permission of Rockwell Automation,

Inc., is prohibited.

Throughout this manual, when necessary, we use notes to make you aware of safety considerations.

WARNING:

Identifies information about practices or circumstances that can cause an explosion in a hazardous environment, which may lead to personal injury or death, property damage, or economic loss.

ATTENTION:

Identifies information about practices or circumstances that can lead to personal injury or death, property damage, or economic loss. Attentions help you identify a hazard, avoid a hazard, and recognize the consequence.

SHOCK HAZARD:

Labels may be on or inside the equipment, for example, a drive or motor, to alert people that dangerous voltage may be present.

BURN HAZARD:

Labels may be on or inside the equipment, for example, a drive or motor, to alert people that surfaces may reach dangerous temperatures.

IMPORTANT

Identifies information that is critical for successful application and understanding of the product.

General Precautions

In addition to the precautions listed throughout this manual, the following statements, which are general to the system, must be read and understood.

ATTENTION:

This manual is intended for qualified service personnel responsible for setting up and servicing these devices. The user must have previous experience with and a basic understanding of electrical terminology, configuration procedures, required equipment, and safety precautions.

WARNING:

The National Electrical Code (NEC), NFPA79, and any other governing regional or local code will overrule the information in this manual. Rockwell Automation cannot assume responsibility for the compliance or proper installation of the

ArmorStart LT or associated equipment. A hazard of personal injury and/or equipment damage exists if codes are ignored during installation.

ATTENTION:

The controller contains ESD (electrostatic discharge) sensitive parts and assemblies. Static control precautions are required when installing, testing, servicing, or repairing the assembly. Component damage may result if ESD control procedures are not followed. If you are not familiar with static control procedures, refer to Publication 8000-4.5.2

, Guarding against Electrostatic Discharge, or any other applicable ESD protection handbooks.

ATTENTION:

Only personnel familiar with the controller and associated machinery should plan or implement the installation, startup, and subsequent maintenance of the system. Failure to do this may result in personal injury and/or equipment damage.

Precautions for Bulletin 294D Applications

ATTENTION:

Only qualified personnel familiar with adjustable frequency AC drives and associated machinery should plan or implement the installation, startup, and subsequent maintenance of the system. Failure to do this may result in personal injury and/or equipment damage.

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

3

4

Software Requirements

The table lists the versions of software that are required.

Software Version

RSLinx Classic 2.56 or later

RSLogix 5000

RSNetworx

17.01 or later

Download the most current version of the Add-On Profile from http://www.rockwellautomation.com/support/downloads.html

.

11 or later

Additional Resources

These documents and websites contain additional information concerning related Rockwell Automation products.

You can view or download publications at http:/www.rockwellautomation.com/literature/ . To order paper copies of technical documentation, contact your local Allen-Bradley distributor or Rockwell Automation sales representative.

Table 1 - Rockwell Automation Industrial Network Resources

Resource

http://www.ab.com/networks/ http://www.rockwellautomation.com/services/networks/ http://www.rockwellautomation.com/services/security/ http://www.ab.com/networks/architectures.html

Industrial Automation Wiring and Grounding Guidelines, Publication 1770-4.1

Wiring and Grounding Guidelines, (PWM) AC Drives, Publication DRIVES-IN001

Product Certifications website, http://www.rockwellautomation.com/products/certification

Description

Rockwell Automation networks and communication website

Rockwell Automation network and security services websites

Education series webcasts for IT and controls professionals

Provides general guidelines for installing a Rockwell Automation industrial system.

Describes wiring and grounding guidelines for Pulse Width Modulated (PWM) AC Drives

Provides declarations of conformity, certificates, and other certification details.

Table 2 - ODVA Resources

Resource

http://www.odva.org/ http://www.odva.org/default.aspx?tabid=54

Description

Open DeviceNet Vendors Association (ODVA) website

The CIP Advantage website

CIP features and benefits

How to get started

Table 3 - Product Selection Resources

Resource

Industrial Controls catalog website, http://www.ab.com/catalogs/

ArmorStart LT Distributed Motor Controller Selection Guide, Publication 290-SG001

Description

Industrial Controls catalog website

Product selection guide

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

Rockwell Automation Support

Rockwell Automation provides technical information on the Web to assist you in using its products. At http://www.rockwellautomation.com/support/ , you can find technical manuals, a knowledge base of FAQs, technical and application notes, sample code and links to software service packs, and a MySupport feature that you can customize to make the best use of these tools.

Installation Assistance

If you experience a problem within the first 24 hours of installation, contact Customer Support.

United States or Canada

Outside United States or

Canada

1.440.646.3434

Use the Worldwide Locator at http://www.rockwellautomation.com/support/ americas/phone_en.html

, or contact your local Rockwell Automation representative.

New Product Satisfaction Return

Rockwell Automation tests all of its products to ensure that they are fully operational when shipped from the manufacturing facility. However, if your product is not functioning and needs to be returned, follow these procedures.

United States

Outside United States

Contact your distributor. You must provide a Customer Support case number (call the phone number above to obtain one) to your distributor to complete the return process.

Please contact your local Rockwell Automation representative for the return procedure.

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

5

Notes:

6

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

New and Updated

Information

Summary of Changes

This table contains the changes made to this revision.

Topic Page

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

7

Summary of Changes

Notes:

8

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

Preface

European Communities (EC)

Directive Compliance

If this product has the CE mark it is approved for installation within the

European Union and European Economic Area (EEA). It has been designed and tested to meet the following directives.

Low Voltage and EMC

Directives

This product is tested to meet the European Union (EU) Council 2006/95/EC

Low Voltage Directive and the EU Council 2004/108/EC Electromagnetic

Compatibility (EMC) Directive by applying the following standard(s):

Bulletin 290D_/291D_: EN 60947-4-1 — Low-voltage switchgear and controlgear — Part 4-1: Contactors and motor-starters — Electromechanical contactors and motor-starters.

Bulletin 294D_: EN 61800-3 — Adjustable speed electronic power drive systems — Part 3: EMC product standard including specific test methods

EN 61800-5-1:2003 — Adjustable speed electrical power drive systems —

Part 5-1: Safety requirements — Electrical, thermal and energy.

This product is intended for use in an industrial environment.

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

9

Preface

Introduction

The ArmorStart LT is an integrated, pre-engineered, motor starting solution designed for use in material handling applications. ArmorStart LT is the latest addition to the ArmorStart portfolio. ArmorStart LT is a leader in the market place given its compact size and high performance features in network, I/O, and motor control. This manual will guide you through the features and functionality when installing the product. Thank you for choosing ArmorStart LT for your distributed motor control needs. If you have any questions please refer to the

“Support Section” for contact information.

10

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

Product Overview

Table of Contents

Important User Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

General Precautions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Software Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Additional Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Rockwell Automation Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Installation Assistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

New Product Satisfaction Return . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Summary of Changes

New and Updated Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Preface

European Communities (EC) Directive Compliance . . . . . . . . . . . . . . . . . 9

Low Voltage and EMC Directives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Chapter 1

Product Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Feature Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Standard Features Across Product Familly . . . . . . . . . . . . . . . . . . . . . . 20

Network Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Factory Installed Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

ArmorStart LT Characteristics Bulletin 290D/291D . . . . . . . . . . . . . . . 22

Catalog Number Explanation Bulletin 290D/291D. . . . . . . . . . . . . . . . . 23

ArmorStart LT Characteristics Bulletin 294D . . . . . . . . . . . . . . . . . . . . . . 24

Catalog Number Explanation Bulletin 294D . . . . . . . . . . . . . . . . . . . . . . . . 25

Basic Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Group Motor Installations for USA and Canada Markets . . . . . . . . . 26

Control Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Motor Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Local I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Overload Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Mode of Operation Bulletin 290D/291E. . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Full-Voltage Start. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Mode of Operation Bulletin 294D. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Sensorless Vector Performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Status LEDs and Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Electronic Data Sheet (EDS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Fault Diagnostics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Protection Faults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Optional HOA Selector Keypad. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Keypad Local Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Optional HOA Keypad Configuration (Bulletin 290D/291D only) . . . 34

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

11

Table of Contents

Installation and Wiring

12

Optional HOA Selector Keypad with Jog Function(Bulletin 294D only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Keypad Local Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Keypad and HOA Disable Parameter. . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Source Brake Contactor and Connector (Bulletin 294D only) . . . . . . . . 37

Chapter 2

Receiving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Unpacking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Inspecting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Storing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Installation Precautions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Precautions for Bulletin 290D/291D Applications. . . . . . . . . . . . . . . . . . . 40

Precautions for Bulletin 294D Applications . . . . . . . . . . . . . . . . . . . . . . . . . 40

Dimensions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Bulletin 290D/291D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Bulletin 294D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

ArmorStart LT Gland Plate Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Connection Locations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Internal Power, Control, and Ground Locations . . . . . . . . . . . . . . . . . 43

Gland Connection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Wiring Terminal Detail. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Branch Circuit Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Typical System Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

ArmorConnect Power Media . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

ArmorConnect Cable Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Branch Circuit Protection Requirements for ArmorConnect

Three-Phase Power Media. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Electrical Wiring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Group Motor Installations for USA and Canada Markets . . . . . . . . . . . .55

Wiring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Cable Workmanship Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Service Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Hand Operation (HOA) Considerations . . . . . . . . . . . . . . . . . . . . . . . . 56

General Wiring Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Grounding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Grounding Safety Grounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Grounding PE or Ground . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Grounding Motors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Power Distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Delta/Wye with Grounded Wye Neutral . . . . . . . . . . . . . . . . . . . . . . . . 58

AC Line Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Line Reactor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Bulletin 294D Motor Cable Considerations . . . . . . . . . . . . . . . . . . . . . . . . . 59

Unshielded Cable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Shielded Cable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Recommended Cable Connectors/Glands . . . . . . . . . . . . . . . . . . . . . . . 60

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

Product Commissioning

Bulletin 290E/291E/294E

Programmable Parameters

Table of Contents

Recommended Cord Grips . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Shield Terminating Connectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Electromagnetic Compatibility (EMC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

General Notes (Bulletin 294D only) . . . . . . . . . . . . . . . . . . . . . . . . . . . .62

Ethernet, DeviceNet, and I/O Connections . . . . . . . . . . . . . . . . . . . . . . . . . 63

ArmorConnect Power Media Receptacles . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Optional Locking Clip. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Chapter 3

Configuring DeviceNet Address. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Manually Configure the Network Address Switches . . . . . . . . . . . . . . 67

DeviceNet Commissioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Establishing a DeviceNet Node Address. . . . . . . . . . . . . . . . . . . . . . . . . . . . .69

Node Commissioning using Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Node Commissioning using Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Registering an EDS File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Using the Node Commissioning Tool Inside RSNetworx for DeviceNet. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

System Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Chapter 4

Electronic Data Sheet (EDS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Basic Setup Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Parameter Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

ArmorStart LT DeviceNet Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Parameter Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Bulletin 290D/291D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Basic Status Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Trip Status Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

Basic Configuration Group. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Starter Protection Group. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

User I/O Configuration Group. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101

Miscellaneous Configuration Group . . . . . . . . . . . . . . . . . . . . . . . . . . .105

Advanced Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .106

Bulletin 294D. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .122

Basic Status Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .122

Trip Status Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .128

Motor and Control Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .131

Speed Control Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .133

Starter Protection Group. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .135

User I/O Configuration Group. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .138

Miscellaneous Configuration Group . . . . . . . . . . . . . . . . . . . . . . . . . . .142

Advanced Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .143

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

13

Table of Contents

Diagnostics

Specifications

Appplying More Than One

ArmorStart LT Motor Controller in a Single Branch Circuit on Industrial Machinery

CIP Information

Chapter 5

Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .167

Status LEDs and Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .167

Fault Diagnostics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .168

Protection Faults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .168

Quick Reference Troubleshooting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .170

Fault LED Indications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .170

Bulletin 290D/291D Faults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .170

Bulletin 294D Faults. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .172

Chapter 6

Bulletin 290D/291D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .175

Motor Overload Trip Curves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .180

Bulletin 100-K/104-K Life-Load Curves . . . . . . . . . . . . . . . . . . . . . . . . . . .181

Bulletin 294D. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .182

Motor Overload Trip Curves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .188

Appendix A

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .189

ArmorStart LT Product Family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .190

Multiple-Motor Branch Circuits and Motor Controllers Listed for Grooup Installation – General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .191

Maximum Fuse Ampere Rating According to 7.2.10.4(1) and 7.2.10.4(2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .193

Complete Text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .193

Explanatory Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .195

Input and Output Conductors of Bulletin 290D and 291D

Controllers (a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .201

Input and Output Conductors of Bulletin 294D Controllers (b) . . . . .201

Combined Load Conductors (c). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .201

Appendix B

High Level Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .203

Product Code and Name Strings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .203

CIP Explicit Connection Behavior. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .204

EDS Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .204

CIP Object Requirements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .204

Identity Object. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .205

CLASS CODE 0x0001 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .205

Message Router . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .206

CLASS CODE 0x0002 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .206

Assembly Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .206

CLASS CODE 0x0004 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .206

I/O Assemblies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .207

Connection Object. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .216

14

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

Using DeviceLogix

Support and Feedback

Table of Contents

CLASS CODE 0x0005 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .216

Discrete Input Point Object. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .219

CLASS CODE 0x0008 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .219

Discrete Output Point Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .220

CLASS CODE 0x0009 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .220

Discrete Output Point Object Special Requirements . . . . . . . . . . . .221

Analog Input Point Object. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .225

CLASS CODE 0x000A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .225

Analog Output Point Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .225

CLASS CODE 0x000B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .225

Parameter Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .226

CLASS CODE 0x000F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .226

Parameter Group Object. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .227

CLASS CODE 0x0010 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .227

Discrete Input Group Object. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .228

CLASS CODE 0x001D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .228

Discrete Output Group Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .228

CLASS CODE 0x001E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .228

Control Supervisor Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .229

CLASS CODE 0x0029 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .229

Overload Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .230

CLASS CODE 0x002C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .230

DPI Fault Object. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .231

CLASS CODE 0x0097 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .231

DeviceNet Interface Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .236

CLASS CODE 0x00B4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .236

Zip Object. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .238

CLASS CODE 0x032E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .238

ZIP Enable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .238

Attribute Symantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .240

Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .242

Appendix C

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .245

DeviceLogix Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .246

Rockwell Automation Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . Back Cover

Installation Assistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Back Cover

New Product Satisfaction Return . . . . . . . . . . . . . . . . . . . . . . . . . . Back Cover

Documentation Feedback. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Back Cover

Trademark List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Back Cover

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

15

Table of Contents

Notes:

16

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

Chapter

1

Product Overview

Bulletin

Network Communications:

EtherNet/IP

DeviceNet

Horsepower Range:

0.5…5 Hp (0.37…3.3 kW)

0.5…2 Hp (0.37…1.5 kW)

Starting Method:

Full-Voltage and Reversing

VFD (V/Hz)

Environmental Rating:

IP66/UL Type 4/12

Control Voltage:

24V DC

Internal Power Supply (sourced from 3-phase)

Operational Voltage Ratings:

200…480V DC

380…480V DC

Rated for Group Motor Installations

Local logic using DeviceLogic™

Peer-to-Peer (ZIP)

I/O Capability:

Six Self-Configurable Points

LED Status Indication

Gland Plate Entry:

Conduit Entrance

ArmorConnect® Power and Control Media (option)

Quick Disconnects: I/O and Communications

EMI Filter

Factory Installed Options:

Manual-Auto-Off HOA Keypad

Source Brake Contactor

Internal 24V DC Power Supply

Optional Motor Cables

ArmorConnect Gland

290/291

DeviceNet Version Only

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

294

DeviceNet Version Only

17

Chapter 1

Product Overview

Description

ArmorStart LT is available with Full Voltage, Full Voltage Reversing, or Variable

Speed motor control performance. It comes equipped with a UL Listed At-motor disconnect that supports a lock-out tag-out (LOTO) provision. ArmorStart LT is listed as suitable for group installations per UL and can be applied with either branch circuit breaker protection or fuse protection. It provides a robust IP66/

UL Type 4/12

enclosure suitable for water washdown environments in a single box construction that will minimize inventory needs. All external connections are made from the bottom of the unit minimizing accidental contact by moving equipment. ArmorStart LT as a standard will come with quick disconnect receptacles for the I/O and network connections. And finally, ArmorStart LT will include DeviceLogix, a high-performing local logic engine when a fast I/O response is critical to the application.

ArmorStart LT leverages the capabilities of the Rockwell Automation® Integrated

Architecture so you can achieve an unmatched level of integration and ease of use. The architecture of ArmorStart LT allows Premiere Integration with

Allen-Bradley® ControlLogix® or CompactLogix™ line of Automation Controllers and PLCs.

The ArmorStart LT is available with options that can further reduce installation and commissioning time and cost

, such as:

Quick disconnect receptacles for power, control, and motor connections

Local Hand-Off-Auto keypad for manual control.

Internal power supply (IPS) eliminating the need to run additional control power to each unit

Bulletin 294 can be ordered with an electromechanical brake connection

(source brake)

EDS Tag Generator tool with RSLogix 5000

The G2 gland option is rated IP66/ UL Type 4

18

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

Features

Product Overview

Chapter 1

The ArmorStart LT provides many features and benefits that are unsurpassed in the market place:

Robust IP66, UL Type 4/12 enclosure

UL Listed, Suitable for Group Motor Applications

UL Listed, At-motor disconnect switch

Native support for DeviceNet

6 user configurable I/O points

DeviceLogix

Zone interlock protocol (ZIP)

Optional internal power supply

Optional electromechanical brake contactor

Optional local control via Hand-Off-Auto keypad

Optional quick disconnect for power and motor connections

IMPORTANT

Not all options are available for Bulletin 290D/291D/294D. Refer to the catalog configurator for details.

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

19

Chapter 1

Product Overview

Feature Description

20

Standard Features Across Product Family

UL Listed “Suitable for Group Motor Applications”

— Where NFPA 70

(NEC) or 79 are required installation standards, this Listing allows two or more motors to be connected to the same branch circuit without individual motor branch short circuit or ground fault protection. Refer to Appendix A for details.

At-motor disconnect switch

— ArmorStart LT offers a local ON/Off motor disconnecting means with lockout-tagout provision. Industrial standards require a local at-motor disconnect to be within eye sight of the motor for maintenance or other shutdown reasons. Refer to your installation code for details.

User configurable I/O

— ArmorStart LT offers 6 user configurable I/O points to be used with sensors and actuators. By default all 6 points are configured as sinking 24V DC inputs. The user has the option to select any point as a sourcing

24V DC output.

DeviceNet Network Capabilities

The ArmorStart Distributed Motor Controller delivers advanced capabilities to access parameter settings and provides fault diagnostics, and remote start-stop control.

DeviceLogix

— ArmorStart LT offers local programmable logic via

DeviceLogix. DeviceLogix is a stand-alone program that resides within the

ArmorStart LT. It is programmed locally using the Add-On-Profile and implements operations such as, AND, OR, NOT, Timers, Counters, Latches, and Analog operations. DeviceLogix can run as a stand-alone application, independent of the network or collaboratively with the PLC. However, unswitched control power must be maintained for DeviceLogix to operate.

Zone Interlock Protocol (ZIP) —

The zone control capabilities of ArmorStart

LT is ideal for motored conveyors. Zone Interlocking Parameters (ZIP) allow one

ArmorStart to receive data directly, from up to four other DeviceNet nodes, without going through a network scanner. These direct communications between conveyor zones are beneficial in a merge, diverter, or accumulation conveyor application.

Quick disconnect for I/O and network —

ArmorStart LT offers quick disconnect connectors for I/O and communications.

DeviceNet node address

— ArmorStart LT offers external accessible address switches for device node address configuration. The address can be set statically or dynamically.

EMI filter

— ArmorStart LT for VFD application (Bulletin 294) provides an internal EMI filter and is CE compliant. For CE compliant installations refer to the recommended EMI/RFI cord grip accessory. For availability of the quick

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

Product Overview

Chapter 1

disconnect shielded motor cable contact your local sales representative for details.

Local and remote status and diagnostics

— ArmorStart LT offers comprehensive status and diagnostics for I/O, Network, and device health via 12

LEDs found on the electronic control module (ECM). If a fault occurs a local fault reset button allows the user to quickly get the process started after corrective action is taken. The user can also configure the embedded web server to send an e-mail when a fault or warning occurs.

Gland plate entrance

— ArmorStart LT offers different methods of connecting three-phase, control power, and motor. ArmorStart LT has conduit entrance openings, as standard.

Factory-Installed Options

Internal power supply (IPS)

— ArmorStart LT offers the user an optional

24V DC internal power supply. The internal power supply provides all control and I/O power needs and is sourced from the incoming 3-phase power. This eliminates the need to run separate control power to each unit, reducing installation time and cost. The local at-motor disconnect will remove power from the motor terminals and outputs when in the OFF condition.

Hand/Off/Auto (HOA) keypad

— ArmorStart LT offers an optional local

Hand-Off-Auto keypad. This key pad allows local start/stop motor control regardless of PLC status. This option can be used for troubleshooting or maintenance operations. The HOA can also be disabled when local control is not allowed, using parameter 67.

Source brake

— ArmorStart LT provides an optional, internally-controlled electromechanical motor brake contactor. The motor brake power is sourced from 3-phase power, L1 and L2.

Quick disconnect gland

— ArmorStart LT offers a plug -n- play solution that simplifies wiring and installation. These factory installed quick disconnect receptacles provide connectivity to ArmorConnect® media for three-phase, control, and motor connections. The cables are ordered separately.

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

21

Chapter 1

Product Overview

ArmorStart LT Characteristics

Figure 1 - Bulletin 290D/291D ArmorStart LT

0

Off

On/Off Switch

1

On

HOA Keypad (optional)

IP Address Switches

Status and Diagnostic LEDs

LockOut/TagOut Provision

Wiring Access

Reset

ECM (Electronic

Control Module)

6 Configurable I/Os

Gland Plate – Conduit/Cord Grip or

ArmorConnect

®

Media (optional)

DeviceNet Connector

Protective Earth (PE)

22

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

Product Overview

Chapter 1

Catalog Number Explanation

Examples given in this section are for reference purposes. This basic explanation should not be used for product selection; not all combinations will produce a valid catalog number.

290

a

E F

— —

b c

A

d

Z - G1 - Option 1 - Option 2

— — —— ——

e f g h

Code

290

291

a

Bulletin Number

Description

Full-Voltage Starter

Reversing Starter

Code

Z

P

e

Control Voltage

Description

External 24V DC control power

Internal power supply

Code

E

D

b

Communications

Description

EtherNet/IP

DeviceNet

Code

G1

G2

G3

f

Gland Plate Options

(Power and Motor)

Description

Conduit entry

ArmorConnect

Gland Kit

Code

F

c

Enclosure Type

Description

UL Type 4/12

Code

3

3FR

g

Option 1

Description

Hand/Off/Auto selector keypad

Hand/Off/Auto selector keypad with

Forward/Reverse

Code

A

B

d

Overload Selection

Description

0.25…3.5 A

1.1…7.6 A

Code blank

h

Option 2

Description

No option

IP66/UL Type 4 is available with all gland options. UL Type 4/12 is available with G1 and G3 gland option.

See selection guide 290-SG001_-EN-P Accessories section for gland configurations and ordering

Leave blank unless there is a customer-specific option defined by the factory.

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

23

Chapter 1

Product Overview

ArmorStart LT Characteristics

LockOut/TagOut Provision

0

Off

On/Off Switch

1

On

Figure 2 - Bulletin 294D ArmorStart LT

Wiring Access

Gland Plate – Conduit/Cord Grip or

ArmorConnect Media (optional)

Hand-Off-Auto Keypad

(optional)

Reset

Status and Diagnostic LEDs

IP Address Switches

ECM (Electronic Control Module)

6 Configurable I/Os

24

Protective Earth (PE)

Bottom View

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

DeviceNet connector

Product Overview

Chapter 1

Catalog Number Explanation

Examples given in this section are for reference purposes. This basic explanation should not be used for product selection; not all combinations will produce a valid catalog number.

294

a

E F

— —

b c

D1P5

d

Z - G1 - Option 1 - Option 2

— — —— ——

e f g h

Code

294

a

Bulletin Number

Description

VFD Starter

Code

Z

P

e

Control Voltage

Description

External 24V DC control power

Internal power supply

Code

E

D

b

Communications

Description

EtherNet/IP

DeviceNet

Code

G1

G2

G3

f

Gland Plate Options

(Power and Motor)

Description

Conduit entry

ArmorConnect

Gland Kits

Code

F

c

Enclosure Type

Description

UL Type 4/12

Code

3

g

Option 1

Description

Hand/Off/Auto selector keypad with Jog function

Code

D1P5

D2P5

D4P2

d

Output Current

Description

1.5 A (0.4 kW), 0.5 Hp

2.5 A (0.75 kW), 1.0Hp

3.6 A (1.5 kW), 2.0Hp

Code

SB blank

h

Option 2

Description

Source Brake

No option

IP66/UL Type 4 is available with all gland options. UL Type 4/12 is available with G1 and G3 gland option.

Leave blank unless there is a customer-specific option defined by the factory.

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

25

Chapter 1

Product Overview

Basic Operation

26

Group Motor Installations for USA and Canada Markets

The ArmorStart LT Distributed Motor controllers are listed for use with each other in group installations per NFPA 79, Electrical Standard for Industrial

Machinery and NFPA 70, the National Electrical Code. When applied according to the group motor installation requirements, two or more motors are permitted on a single branch circuit. Group Motor Installation has been successfully used for many years in the USA and Canada.

Note:

For additional information regarding group motor installations with the

ArmorStart LT Distributed Motor Controller, see

Appendix A .

Control Circuit

ArmorStart LT accepts a 24V DC Class 2 input power supply for switched and unswitched power. The control voltage provides power to the inputs

(unswitched) and outputs (switched). Unswitched control voltage is used to ensure no loss of network connectivity, sensor, or other field input status under normal operation. The control power terminal connections are labeled A1, A2, and A3. Switched power is identified as (+A1) (-A2). Unswitched power is identified as (+A3) (-A2).

As an option, ArmorStart LT can be supplied with an internal power supply

(IPS) eliminating the need for an external control power. The IPS is sourced from the line side of 3-phase power and is not impacted by the status of the local atmotor disconnect switch.

Figure 3 - Control Circuit Wiring Diagram — Single External Power Supply

L1 L2 L3

Off

Switched Control Power

Unswitched Control Power

Disconnect

Motor

Controller

T1 T2 T3

A1 A2 A3

EtherNet

Comms

Inputs Outputs

ArmorStart

LT

Motor

Control

* Control power output is determined by disconnect status

L

N

24VDC

+

-

Class 2

External

24VDC Power

Supply

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

Product Overview

Chapter 1

Figure 4 - Control Circuit Wiring Diagram — Multiple External Power Supplies

ArmorStart

LT

L1 L2 L3

Off

Switched Control Power

Unswitched Control Power

Disconnect

Motor

Controller

T1 T2 T3

A1 A2 A3

EtherNet

Comms

Inputs

Outputs

Motor

Control

* Control power output is determined by disconnect status

Class 2

External Switched

24VDC Power Supply

L

N

24VDC

+

-

Class 2

External Unswitched

24VDC Power Supply

L

N

24VDC

+

-

Figure 5 - Control Circuit Wiring Diagram — Internal Power Supply (optional)

Internal Power

Supply

Off

Disconnect

L1 L2 L3

Motor

Controller

T1 T2 T3

ArmorStart

LT

EtherNet

Comms

Inputs Outputs

Motor

Control

* Control power output is determined by disconnect status

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

27

Chapter 1

Product Overview

Mode of Operation

Bulletin 290D/291D

Motor Circuit

The ArmorStart LT Distributed Motor Controllers are rated to operate the following types of three-phase squirrel-cage induction motors:

Bulletin 290D/291D:

0.5 Hp (0.37 kW) to 5 Hp (3 kW) @ 480/277V AC

Bulletin 294D:

0.5 Hp (0.37 kW) to 2 Hp (1.5 kW) @ 480/277V AC

Local I/O

The ArmorStart LT provides as standard, 6 user configurable I/O points. By default, all points are configured as an Input. The user will need to refer to parameter 49 [IOPointConfiguration], to define an output point.

Overload Protection

The ArmorStart LT Distributed Motor Controller incorporates, as standard, electronic motor overload protection. This overload protection is accomplished electronically with an

I

2 t algorithm. The ArmorStart LTs overload protection is programmable via the communication network, providing the user with greater flexibility.

The Bulletin 290D/291D includes programmable overload Class 10, 15, and 20 protection. The Bulletin 294D provides overload protection: 150% for 60 s and

200% for 3 s.

Refer to

Chapter 6 , Specifications, for additional information.

Full-Voltage Start

This method is used in applications requiring across-the-line starting, in which full inrush current and locked-rotor torque are realized. The ArmorStart LT

Bulletin 290D offers full-voltage starting and Bulletin 291D offers full-voltage starting for reversing applications, from 0.5 Hp (0.37 kW) to 5 Hp (3 kW) at

480Y/277V AC, 3-phase power.

28

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

Product Overview

Chapter 1

Figure 6 - Full-Voltage Start

100%

Percent Voltage

Mode of Operation

Bulletin 294D

Time (seconds)

Sensorless Vector Performance

Using a distributed AC drive to operate mechanical equipment at optimum speed helps reduce energy costs and eliminates mechanical wear and tear that can occur in the mechanical parts. The advance monitoring found in ArmorStart LT protects critical equipment against unplanned downtime with advanced diagnostics and notification of irregular operating parameters. ArmorStart LT provides open-loop speed regulation (V/Hz) with slip compensation. This provides excellent speed regulation and high levels of torque across the entire speed range of the drive, and improved speed regulation as loading increases.

Open Loop Speed Regulation with Slip Compensation allows the VFD to automatically adjust the output frequency to compensate for speed changes due to motor loading. This feature utilizes an open loop, current feedback, slip compensation circuit. Slip Compensation works as an open loop speed regulator that increases the output frequency of the drive as the load is increased, or decreases the frequency as the load drops. This feature is used where the motor must run at a relatively constant speed regardless of torque output.

% of speed

100

99

98

97

96

95

0 10 20 30 40 50 60 70 80 90 100

% of load

With Slip

Compensation

Without Slip

Compensation

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

29

Chapter 1

Product Overview

Status LEDs and Reset

Figure 7 - Status, Diagnostic LEDs, and Reset

30

ArmorStart LT provides comprehensive status and diagnostics via 12 individually

marked LEDs shown in Figure 7

, located on the ECM module. In addition, a local reset is provide for clearing of faults.

Table 4

details the diagnostic and status LEDs.

Table 4 - ArmorStart LT Status and Diagnostics Indicators

Indicator

PWR LED

RUN/FLT LED

NET – Network Status

LED

The bicolor (green/red) LED indicates the status of the CIP network connection. See

Network Status Indicator for further information.

Flashing bicolor (red/green) indicates a self-test on power up.

I/O Status

Enunciators 0…5

LEDs

Reset Button

Description

The bicolor (green/yellow) LED shows the state of the control voltage. When LED is off, switched and/or unswitched power is not present.

The bicolor (green/red) LED combines the functions of the Run and Fault LEDs.

Six yellow LEDs are numbered 0…5 and indicate the status of the input/output connectors. One LED for each I/O point.

The blue reset button will cause a protection fault reset to occur.

Color_1

Solid green is illuminated when switched and unswitched control power is within its specified limits and has the proper polarity.

Color_2

Solid yellow is illuminated when switched or unswitched control power is outside its specified limits or has incorrect polarity.

Solid green is illuminated when a Run command is present.

Flashing green indicates an IP address is configured, no CIP connections are established, and an Exclusive Owner connection has not timed out.

Steady green indicates at least one CIP connection is established and an Exclusive

Owner connection has not timed out.

The LED will blink red in a prescribed fault pattern when a protection fault (trip)

condition is present. See Table 5

for fault blink patterns.

Flashing red indicates the connection has timed out. Steady Red indicates a duplicate

IP Address detected.

Yellow is illuminated when input is valid or output is on.

Off when input is not valid or the output is not turned on.

— —

Electronic Data Sheet (EDS)

ArmorStart LT EtherNet/IP has an embedded electronic data sheet. An EDS consists of specially formatted text files, as defined by the CIP™. EDS files contain details about the readable and configurable parameters of the device. They also provide information about the I/O connections that the device supports and the content of the associated data structures. EDS are used by device configuration tools, such as RSNetWorx™, and data servers such as RSLinx® Classic.

EDS files for all ArmorStart LT devices can be uploaded directly from the device via the web server interface. Rockwell Automation product EDS files are also available on the internet at: http://www.ab.com/networks/eds .

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

Fault Diagnostics

Product Overview

Chapter 1

Fault diagnostics capabilities built in the ArmorStart LT Distributed Motor

Controller are designed to help you pinpoint a problem for easy troubleshooting and quick re-starting.

Protection Faults

Protection faults will be generated when potentially dangerous or damaging conditions are detected. Protection faults are also known as “trips” or “faults”.

These faults will be reported in multiple formats, including:

Bit enumeration in the TripStatus parameter 16 in DeviceLogix

In the ArmorStart LT web server for ArmorStart EtherNet/IP version

As a sequence of LED flashes on the ECM

Table 5 - Protection Faults

15

16

13

14

11

12

9

10

7

8

5

6

LED Flash Bit Enumeration 290D/291D Trip Status Bits

1 0 OverloadTrip

2 1

3

4

2

3

PhaseLossTrip

UnderPowerTrip

SensorShortTrip

4

5

6

7

PhaseImbalTrip

NonVolMemoryTrip reserved

JamTrip

8

9

10

11

12

13

14

15

StallTrip

UnderloadTrip reserved reserved reserved

OutputShortTrip

UserDefinedTrip

HardwareFltTrip

294D Trip Status Bits

OverloadTrip

PhaseLShortTrip

UnderPowerTrip

SensorShortTrip

OverCurrentTrip

NonVolMemoryTrip

ParamSyncTrip

DCBusOrDiscnnct

StallTrip

OverTemperature

GroundFault

RestartRetries

DriveHdwFault

OutputShortTrip

UserDefinedTrip

HardwareFltTrip

Cannot be disabled.

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

31

Chapter 1

Product Overview

Protection Warnings

ArmorStart LT supports fault warnings. Refer to the WarningStatus parameter

(param 17).

The following describes the warning conditions for 290D/291D units:

Bit Number Bit Enumeration Description

0 OverloadWarning This warning is generated when the value of %ThermalUtilized (param n5) becomes greater than the value of the OLWarningLevel parameter (param 69).

2

4

7

UnderPowerWarn

PhaseImbalWarn This warning is generated in firmware by monitoring the relative levels of the

JamWarning

This warning is generated when switched power dips below 19.2 V for more than 4 ms.

three phase currents. When the % imbalance becomes greater than the hard coded warning limit, the warning is generated.

This warning is generated in firmware when RMS current is greater than the

JAMWarningLevel (param 73) after the JamInhibitTime (param 70) has expired.

9

14

15

UnderloadWarning This warning is generated in firmware when RMS current is less than the

ULWarningLevel (param 79) after the ULInhibitTime (param 76) has expired.

UnswitchedPwrWarn This warning is generated when unswitched power dips below 19.2 V for 4 ms.

ConfigWarning This warning is generated when parameter configuration values that are inconsistent with certain device options are written. This warning may not be disabled.

The following describes the warning conditions for 294D units:

Bit Number Bit Enumeration Description

2 UnderPowerWarn This warning is generated when switched power dips below 19.2 V for more than 4 ms.

6 DriveParamInit This warning is generated when a Full Control Module to Drive parameter sync is in progress, either on power up, or after an internal comms loss has been remedied.

12

14

15

FanWarning This warning indicates that either the fan is running between 62% and 70% of rated RPM or that the “kick start” was needed to turn on the fan.

UnswitchedPwrWarn This warning is generated when unswitched power dips below 19.2 V for 4 ms.

ConfigWarning This warning is generated when parameter configuration values that are inconsistent with certain device options are written. This warning may not be disabled.

32

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

Product Overview

Chapter 1

Table 6 - Configuration Warnings

The following conditions will result in a configuration warning being generated:

Warning Type

BrakeConfig

IOPointConfig

ZIPConfig

JamConfig

UnderLoadConfig

Warning Code

41

42

43

44

45

Description

If Param 89 (BrakeMode) is set to anything other than

0=NoBrakeControl when brake hardware not present OR

If Param 89 (BrakeMode) is set to 1=AboveFrequency and

Param 90 (BrakeFreqThresh) is set to a value above Param

35 (MaximumFreq) OR

If Param 89 (BrakeMode) is set to 2=AboveCurrent and Param

91 (BrakeCurrThresh) is set to a value above Param 31

(CurrentLimit)

If Param 58 (Input00Function) thru Param 63 (Input05Function) are set to 5=BrakeRelease and no brake is present OR

If Param 58 (Input00Function) thru Param 63 (Input05Function) are set t0 anything other than 0=NoFunction while the corresponding bit in Param 49 (IOPointConfigure) is set to configure it as an output.

If Param 114 (Zone1PtMask) thru Param 121 (Zone4PtOffset) are set to have a mapping overlap, and Param 143

(ZoneCtrlEnable) set to Enabled OR

If Param 122 (Zone1AnalogMask) thru Param 129

(Zone4AnOffset) are set to have a mapping overlap, and Param

143 (ZoneCtrlEnable) set to Enabled

If Param 72 (JamTripLevel) is less than Param 73

(JamWarningLevel)

If Param 78 (ULTripLevel) is greater than Param 79

(ULWarningLevel)

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

33

Chapter 1

Product Overview

Optional HOA Selector

Keypad

Keypad Local Control

The HOA Selector Keypad allows for local start/stop/jog control in forward/ reverse motor direction. If two buttons are pressed simultaneously, this action is ignored by the device unless one of the buttons is the Off button. If the Off button is pressed at any time, the unit will go to the off state. When local Hand mode is entered, speed reference is switched to Internal Frequency. When in

“Auto” mode the unit the speed reference is switched to the mode specified in parameter 33 “SpeedReference”.

HAND

The Hand key will initiate starter operation

AUTO

The Auto key allows for Start/Stop control via the communications network

OFF

If the starter is running, pressing the OFF key will cause the starter to stop.

DIR Arrow

JOG

The Dir arrow selects the direction of the motor, either forward or reverse.

When pressed, JOG will be initiated if no other control devices are sending a stop command. Releasing the key will cause the drive to stop, using selected stop mode.

Optional HOA Keypad

Configuration

(Bulletin 290D/291D only)

The ArmorStart LT offers optional factory-installed Hand/Off/Auto (HOA) configurations: Standard (Bulletin 290D) and Forward/Reverse (Bulletin

291D).

Figure 8 - Bulletin 290D Standard HOA

E

Figure 9 - Bulletin 291D Forward/Reverse HOA

34

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

Product Overview

Chapter 1

Bulletin 290D

With the KeypadMode parameter (parameter 66) set to 1 = Maintained, pressing the buttons reacts like a maintained switch.

Key Press

AUTO

HAND

OFF

FAULT PRESENT

OFF

Auto Mode — Motor Off

If no fault, Motor On

Current Mode

HAND

Motor turns Off

Motor turns Off

AUTO

Motor turns Off

Motor turns Off

With the KeypadMode parameter (parameter 66) set to 0 = Momentary, pressing the buttons reacts like a momentary switch.

Key Press

NO KEY PRESSED

AUTO

HAND

OFF

PROTECTION FAULT PRESENT

OFF Key

Auto Mode — Motor Off

If no fault, Motor On

Current Mode

HAND

Motor Off

Motor Off

Motor Off

AUTO Key

Motor Off

Bulletin 291D

With the KeypadMode parameter (parameter 66) set to 1 = Maintained, pressing the buttons reacts like a maintained switch.

FWD/REV

Key Press

AUTO

HAND

OFF

PROTECTION FAULT PRESENT

OFF

FWD LED Set REV LED

REV LED Set FWD LED

Auto Mode — Motor Off

If no fault, Motor On

Ignore

Ignore

Current Mode

HAND

Motor Off

Motor Off

AUTO

Motor Off

With the KeypadMode parameter (parameter 66) set to 0 = Momentary, pressing the buttons reacts like a momentary switch.

Key Press

NO KEY PRESSED

FWD/REV

AUTO

HAND

OFF

PROTECTION FAULT PRESENT

OFF

FWD LED Set REV LED

REV LED Set FWD LED

Auto Mode — Motor Off

If no fault, Motor On

Current Mode

HAND

Motor Off

Motor Off

Motor Off

AUTO

Motor Off

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

35

Chapter 1

Product Overview

Optional HOA Selector

Keypad with Jog Function

(Bulletin 294D only)

The HOA Selector Keypad with Jog function allows for local start/stop control with capabilities to jog in forward/reverse motor directions.

Figure 10 - Bulletin 294D Jog/Forward/Reverse HOA

36

Keypad Local Control

With the KeypadMode parameter (parameter 66) set to 1 = Maintained, pressing the buttons reacts like a maintained switch.

Key Press

NO KEY PRESSED

FWD/REV

JOG

AUTO

HAND

OFF

PROTECTION FAULT PRESENT

OFF

FWD LED Set REV LED

REV LED Set FWD LED

If no fault, Jog Motor

Auto Mode — Motor Off

If no fault, Motor On

Current Mode

HAND

FWD LED Set REV LED

REV LED Set FWD LED

Motor Off

Motor Off

JOG

Motor Off

Motor Off

Motor Off

AUTO

Motor Off

With the KeypadMode parameter (parameter 66) set to 0 = Momentary, pressing the buttons reacts like a momentary switch.

Key Press

NO KEY PRESSED

FWD/REV

JOG

AUTO

HAND

OFF

PROTECTION FAULT PRESENT

OFF

FWD LED Set REV LED

REV LED Set FWD LED

If no fault, Jog Motor

Auto Mode — Motor Off

If no fault, Motor On

Current Mode

HAND

Motor Off

FWD LED Set REV LED

REV LED Set FWD LED

Motor Off

Motor Off

JOG

Motor Off

Motor Off

Motor Off

AUTO

Motor Off

IMPORTANT

If multiple buttons are pressed at the same time, the software interprets this as a “no button pressed” condition. The only exception to this rule is if multiple buttons are pressed and one of them is the Off button. If the Off button is pressed in combination with any combination of other buttons, the processor will behave as if the Off button were pressed by itself.

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

Source Brake Contactor and Connector

(Bulletin 294D only)

Product Overview

Chapter 1

Keypad Disable Parameter

“Keypad Disable”, parameter 67, only inhibits the “HAND”, “FWD”, “REV” and

“JOG” buttons on the HOA keypad. The “OFF” and “AUTO” buttons are always enabled, even if parameter 67 is set to “1=Disable”. The keypad OFF button can not be disabled.

An internal contactor is used to switch the electromechanical motor brake

On/Off. The motor brake contactor is actuated via the internal power which supplies L1 and L2 voltage to the mechanical brake in the motor. The source brake can be configured for independent control via parameter configuration.

The internal contactor, electromechanical motor brake, and associated motor branch cable are protected by the branch circuit protective device. There is no resettable or replaceable protective device in ArmorStart LT.

WARNING:

If the branch circuit protective device trips, the user must ensure that the Source Brake function is still operational prior to putting the equipment back in service. If the source brake function is not working properly, loss of brake function or motor damage can occur.

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

37

Chapter 1

Product Overview

Notes:

38

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

Receiving

Unpacking

Inspecting

Storing

Chapter

2

Installation and Wiring

It is the responsibility of the user to thoroughly inspect the equipment before accepting the shipment from the freight company. Check the item(s) received against the purchase order. If any items are damaged, it is the responsibility of the user not to accept delivery until the freight agent has noted the damage on the freight bill. Should any concealed damage be found during unpacking, it is also the responsibility of the user to notify the freight agent. The shipping container must be left intact and the freight agent should be requested to make a visual inspection of the equipment.

Remove all packing material, wedges, or braces from within and around the

ArmorStart LT distributed motor controller and other device(s). Check the contents of the package to see if all contents are included. Contact your local

Allen-Bradley representative if any items are missing.

IMPORTANT

Before the installation and start-up of the drive, a general inspection of mechanical integrity (i.e. loose parts, wires, connections, packing materials, etc.) must be made.

After unpacking, check nameplate catalog number(s) of the item(s) against the purchase order. See Chapter 1 for an explanation of the catalog numbering system which will aid in nameplate interpretation.

The controller should remain in the shipping container prior to installation.

If the equipment is not to be used for a period of time, it must be stored according to the following instructions in order to maintain warranty coverage.

Store in a clean, dry location.

Store within an ambient temperature range of –25…+85 °C

(–13…+185 °F).

Store within a relative humidity range of 0…95%, noncondensing.

Do not store equipment where it could be exposed to a corrosive atmosphere.

Do not store equipment in a construction area.

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

39

Chapter 2

Installation and Wiring

Installation Precautions

The following statements must be read and understood.

ATTENTION:

The earth ground terminal shall be connected to a solid earth ground via a low-impedance connection.

ATTENTION:

Copper ground conductors are recommended. The ArmorStart LT external protective earth (PE) pad is aluminum. Refer to your local electrical installation standard for proper bonding and protection when dissimilar metals are used.

ATTENTION:

An incorrectly applied or installed controller can damage components or reduce product life. Wiring or application errors, such as undersizing the motor, incorrect or inadequate AC supply, or out of range ambient temperatures, may result in malfunction of the system.

Precautions for

Bulletin 290D/291D

Applications

Precautions for

Bulletin 294D Applications

Dimensions

SHOCK HAZARD:

To prevent electrical shock, open appropriate machine disconnect switch prior to connecting and disconnecting cables. Risk of shock — environment rating may not be maintained with open receptacles.

SHOCK HAZARD:

The drive contains high voltage capacitors which take time to discharge after removal of mains supply. Before working on drive, ensure isolation of mains supply from line inputs (L1, L2, L3). Wait three minutes for capacitors to discharge to safe voltage levels. Failure to do so may result in personal injury or death.

ArmorStart LT consists of three components that are non-replaceable. The

Electronic Control Module (ECM); a gland plate for wire entry; and the aluminum alloy enclosure which makes up the back cover, top housing, and wiring access door. The ECM includes communications, discrete I/O, status and diagnostic LEDs, and the node address switches. All mating surfaces are sealed using foam in place gasket or o-ring.

40

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

Dimensions

202,05

[8.0]

Installation and Wiring

Chapter 2

Dimensions are shown in millimeters (inches). Dimensions are not intended to be used for manufacturing purposes. All dimensions are subject to change.

Figure 11 - Dimensions for Bulletin 290D/291D

130

[5.1]

260

[10.2]

170

[6.7]

217,83

[8.6]

65

[2.6]

Front View

Line

Right Side View

Control

Motor

37

[1.5]

57,13

[2.3]

38,49

[1.5]

24,25

[1.0]

1" CONDUIT OPENING

0.75" CONDUIT OPENING

48,5

[1.9]

Conduit Gland Entrance

Line

Motor

Line

Motor

ArmorConnect Media

Gland Entrance (optional)

Control

Source Brake

ArmorConnect Internal Power

Supply Gland Plate (optional)

ArmorConnect Source Brake

Gland Plate (optional)

IMPORTANT

For proper heat dissipation and product operation, mount the ArmorStart LT in the vertical orientation as shown.

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

41

Chapter 2

Installation and Wiring

Figure 12 - Dimensions for Bulletin 294D

381

[15.0]

240

[9.4]

206,43

[8.1]

170

[6.7]

219,32

[8.6]

120

[4.7]

Front View

37

[1.5]

92,9

[3.7]

Line

Motor

38,49

[1.5]

24,25

[1.0]

48,5

[1.9]

1" CONDUIT OPENING

0.75" CONDUIT OPENING

Conduit Gland Entrance - Bottom View

Line

Control

Motor

Line

Motor

Right Side View

Control

Source Brake

42

ArmorConnect Internal Power

Supply Gland Plate (optional)

ArmorConnect Media Gland

Entrance (optional)

ArmorConnect Gland Entrance

with Source Brake (optional)

IMPORTANT

For proper heat dissipation and product operation, mount the ArmorStart LT in the vertical orientation as shown.

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

Connection Locations

Installation and Wiring

Chapter 2

Dimensions are shown in millimeters (inches). Dimensions are not intended to be used for manufacturing purposes. All dimensions are subject to change.

Figure 13 - ArmorStart LT Gland Plate Matrix

G2 Media G1 Conduit

Standard

U.S. Trade Knock-outs

G3 Conduit

Daisy Chaining

IP66 Metric Fittings

Cat. No.

Dia. 25.5 mm

Dia. 20.5 mm

290-G3-A2

No Internal Power Supply

No Source Brake

1.00 in.

(25.4 mm)

0.75 in.

(19.05 mm)

Dia. 25.5 mm

Dia. 20.5 mm

Source Brake

No Internal Power Supply

0.75 in.

(19.05 mm)

290-G3-A3

Dia. 25.5 mm

Dia. 20.5 mm

Internal Power Supply

No Source Brake

1.00 in.

(25.4 mm)

0.75 in.

(19.05 mm)

290-G3-A4

Internal Power Supply and Source Brake

Dia. 25.5 mm

Dia. 20.5 mm

1.00 in.

(25.4 mm)

0.75 in.

(19.05 mm)

290-G3-A5

45°

User Modified

Gland Plate Clearances

Modifications are not permitted in the keepout region. Fitting(s) should be oriented so that they do not interfere with the enclosure when the gland plate is installed.

Torque the gland mounting screws to 12…14 in•lb (1.3…1.6 N•m).

66.1 mm

10.1 mm

290-G3-A1

80.7 mm

91.3 mm

11.8 mm

Figure 14 - Internal Power, Control, and Ground Locations

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

43

Chapter 2

Installation and Wiring

Figure 15 - Gland Connection

Conduit Entry (Standard)

Gland Plate

External PE connection

Optional ArmorConnect Quick

Disconnect Feature

Inputs/Outputs

Network

Three-Phase

Power

Receptacle

Motor

Receptacle

Control Power

Receptacle

Wiring Terminal Detail

The power, control, and ground wire capacity and the tightening torque

requirements are shown in Table 8 . The maximum number of connections

per terminal are shown in

Table 7

. As shown in

Figure 16 all the terminals are

found in the wiring area. Access can be gained by removing the terminal access cover plate.

44

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

Wire Strip Length

0.35 ± 0.01 in.

(9 ± 0.2 mm)

Installation and Wiring

Chapter 2

L1

L2

T1

T2

L3

T3

Figure 16 - ArmorStart LT Power and Control Terminals

A1

A2

A3

PE

B1 B2

Table 7 - Power, Control, and Ground Terminal Designations

Terminal Designations

A1

A2

A3

L2

L3

PE

L1

T1

T2

T3

B1

B2

Wires/Connections

2

2

2

2

2

2

2

1

1

1

1

1

Description

Switched 24V DC Control Power (+)

Control Power Common (–)

Unswitched 24V DC Control Power (+)

Ground

Line Power – Phase A

Line Power – Phase B

Line Power – Phase C

Motor Connection – Phase A

Motor Connection – Phase B

Motor Connection – Phase C

Source Brake Connection – B1

Source Brake Connection – B2

When internal power supply option is selected, no connection is made here.

Available only with Bulletin 294E.

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

45

Chapter 2

Installation and Wiring

Power Terminals

Motor Terminals

Control Terminals

PE/Ground

Source Brake (Bulletin 294)

Table 8 - Power, Control, and Ground Wire Capacity and the Tightening Torque Requirements

Wire Size (2) #18…#10 AWG (0.8…5.2 mm

2

) per terminal

Tightening Torque

Wire Size

Tightening Torque

Wire Size

Tightening Torque

Wire Size

Tightening Torque

Wire Size

Tightening Torque

10.6 +/– 2 lb•in (1.2 +/– 0.2 N•m)

#18…#10 AWG (0.8…5.2 mm

2

) per terminal

10.6 +/– 2 lb•in (1.2 +/– 0.2 N•m)

(2) #18…#10 AWG (0.8…5.2 mm

2

) per terminal

10.6 +/– 2 lb•in (1.2 +/– 0.2 N•m)

(2) #16…#10 AWG (1.3…5.2 mm

2

) per terminal

18 +/– 2 lb•in (2 +/– 0.2 N•m)

#16 …#10 AWG (1.0…4.0 mm

2

) per terminal

4.8 ± 2 lb•in (0.5 ± 0.2 N•m )

IMPORTANT

ArmorStart LT is UL Listed for use with 14 AWG wire or preassemble power cable. Refer to your local electrical code(s) when applying 16 AWG wire or cable in a motor circuit.

Branch Circuit Protection

ATTENTION:

Select the motor branch circuit protection that complies with the

NFPA79/ or NFPA70 (NEC) and any other governing regional or local codes.

The ArmorStart LT is Underwriters Laboratory (UL) Group Motor listed. Refer

to the product Specifications

,

Chapter 6 for maximum branch fuse and circuit

breaker ratings. Select the motor branch circuit protection device that complies with NFPA70 (NEC) or NFPA79, and any other governing regional or local codes. The installer shall observe the product nameplate markings and not apply the ArmorStart LT where the maximum perspective short circuit current is exceeded. The ArmorStart LT shall be applied to a solidly grounded WYE power distribution system that does not exceed 480V AC, 60 Hz or 400V AC, 50 Hz.

WARNING:

Do not install the ArmorStart LT where the maximum available fault current exceeds the product rating.

46

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

Typical System Example

Installation and Wiring

Chapter 2

The primary function of ArmorStart LT is to control and protect a three-phase squirrel cage induction motor. Three-phase power enters through terminals that are connected to a manually operated disconnect switch. The three-phase power may also connect internally to an optional three-phase to 24V DC power supply

(IPS). Wired in series with the disconnect is an electrically operated contactor or a variable frequency drive. For Bulletin 294D an optional source brake contactor may also be connected to the disconnect output terminals. The source brake contactor is used to control an electromechanical brake physically attached to the motor. The microcontroller and interface circuits are contained in the ECM.

The ECM also houses 6 user configurable I/O points. These six I/O points are used for system level control and are accessible via by the communication network or DeviceLogix.

The user has the flexibility to coordinate the appropriate safety function for their application. ArmorStart LT does not provide a safe torque-off input. Therefore, the safety function is configured externally from the controller and based upon the risk assessment.

For example, the risk assessment may require a safety circuit with a high level of performance. In this example, a safety relay with redundant safety contactors and emergency stop function can be integrated into the machine controls.

Figure 17 below is an example of this configuration. Contact your local

Rockwell Automation supplier for additional support regarding the safety circuit or for a risk assessment of your machinery.

Figure 17 -

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

47

Chapter 2

Installation and Wiring

ArmorConnect Power Media

For greater flexibility and faster installations the user may also use

ArmorConnect media for a complete plug-n-play solution. This solution provides plug-in style stop stations, as shown in Figure 18 . The ArmorConnect power media offers both three-phase and control power cable cord set systems.

These include patchcords, receptacles, tees, reducers and accessories to be utilized with the ArmorStart LT Distributed Motor Controller. This cable system allows quick connections and reduced installation time by utilizing pre-manufactured cable assemblies for more reliable connection of the three phase and control power.

IMPORTANT

When specifying power media for use with the ArmorStart LT Distributed

Motor Controllers (Bulletin 290D/291D and Bulletin 294D) use only

ArmorConnect power media. The use of any other power media will void the UL Listing of the motor controller.

Figure 18 - Media Diagram

48

IMPORTANT

A single channel Stop is pictured. It is necessary to perform a risk assessment and determine specific application requirements.

1. DeviceNet Trunk Cable - Patchcord trunk cable with integral female or male connector on each end (example 1485C-P*N5-M5)

2. DeviceNet Mini- T-Port Tap - T-ports are used for connecting drops to the trunk line (example 1485P-P1N5-MN5KM)

3. DeviceNet Drop Cable - Drop cables and patch cords are used to connect devices to the network (example 1485G-P*M5-Z5)

4. DeviceNet Receptacle - Recepatcles are used when connections present but required (example 1485A–CXN5–M5)

5. DeviceNet Terminator - Properly designed DeviceNet networks require terminating resistors (example 1485A–T1N5)

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

Installation and Wiring

Chapter 2

IMPORTANT

See the On-Machine Connectivity catalog for specific Ethernet media components

Figure 19 - On-Machine Stop Stations

Enclosure

Type

Plastic

Metal

Quick Connect

Mini Receptacle

Knockout

Type

Metric

Operator

Twist to Release

Illumination

Voltage

24V AC/DC

24V AC/DC

Contact

Configuration

1 N.C./1 N.O.

Cat. No.

800F-1YMQ4

800F-1MYMQ4

ArmorConnect Cable Ratings

The ArmorConnect Power Media cables are rated per UL Type TC 600V 90°C

Dry 75°C Wet, Exposed Run (ER) or MTW 600V 90°C or STOOW 105°C

600V - Canadian Standards Association (CSA) STOOW 600V FT2.

For additional information regarding ArmorConnect Power Media refer to ArmorStart LT selection guide, publication 290-SG001.

Branch Circuit Protection Requirements for ArmorConnect

Three-Phase Power Media

When using ArmorConnect Three-Phase Power Media, fuses or circuit breakers may be used for the motor branch circuit ground fault protection if properly sized and allowed by product labeling.

Circuit Breaker:

Where ArmorStart LT is used with ArmorConnect — suitable for use on a circuit capable of delivering not more than 10 000 RMS Symmetrical Amperes at 480Y/277V AC maximum when protected by Cat. No. 140U-D6D3-C30 circuit breaker, refer to the

Specifications , Chapter 6

.

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

49

Chapter 2

Installation and Wiring

Electrical Wiring

WARNING:

The total circuit impedance including each cable assembly's own impedance, must be low enough to ensure any short-circuit or ground fault current that can flow through any assembly, will be large enough to operate the magnetic trip of the Cat. No. 140U-D63-C circuit breaker. Refer to NFPA 70 and

NFPA 79 or your local electrical code for guidance in coordinating over current protective devices and the circuit being protected.

Fusing:

Where ArmorStart LT is used with ArmorConnect — suitable for use on a circuit capable of delivering not more than 10 000 RMS Symmetrical Amperes

(SCCR) at 480/277V AC maximum when protected by 40 A CC, J, and T class fuses, refer to the

Specifications , Chapter 6

.

ArmorStart LT EtherNet/IP utilizes 24V DC control power for communications and I/O. The control power terminal connections are labeled A1, A2, and A3.

Switched power (A1) will supply outputs and motor control. Unswitched power (A3) will supply logic power, communications, and sensor inputs.

IMPORTANT

EtherNet/IP is an unpowered network, therefore if device status is important, the A3 terminal must have an unswitched power source.

Figure 20 - Bulletin 290D Full Voltage

50

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

Figure 21 - Bulletin 291D Full Voltage Reversing

Installation and Wiring

Chapter 2

Figure 22 - Bulletin 294D VFD

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

51

Chapter 2

Installation and Wiring

Figure 23 - Bulletin 294D VFD with -SB

Figure 24 - Bulletin 290D Full Voltage with -IPS

52

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

Figure 25 - Bulletin 291D Full Voltage Reversing with -IPS

Installation and Wiring

Chapter 2

Figure 26 - Bulletin 294D VFD with -IPS

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

53

Chapter 2

Installation and Wiring

Figure 27 - Bulletin 294D VFD with -IPS, -SB

54

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

Installation and Wiring

Chapter 2

Group Motor Installations for

USA and Canada Markets

When ArmorStart LT is applied according to group motor installation requirements, two or more motors of any rating or controller type, are permitted on a single branch circuit. Group Motor Installation has been successfully used for many years in the USA and Canada.

IMPORTANT

For additional information regarding group motor installations with the

ArmorStart LT Distributed Motor Controller, see Appendix A

Wiring Cable Workmanship Guidelines

In addition to conduit and seal-tite raceway, it is acceptable to utilize cable that is dual rated Tray Cable Exposed Runs (TC-ER) and Cord, STOOW, for power and control wiring on ArmorStart LT installations. In the USA and Canada installations, the following guidance is outlined by the National Electrical Code

(NEC) and National Fire Protection Association (NFPA) 79.

In industrial establishments where the conditions of maintenance and supervision ensure that only qualified persons service the installation, and where the exposed cable is continuously supported and protected against physical damage using mechanical protection, such as struts, angles, or channels, Type TC tray cable that complies with the crush and impact requirements of Type MC

(Metal Clad) cable and is identified for such use with the marking Type TC-ER

(Exposed Run)

shall be permitted between a cable tray and the utilization equipment or device as open wiring. The cable shall be secured at intervals not exceeding 6 ft (1.8 m) and installed in a “good workman-like” manner.

Equipment grounding for the utilization equipment shall be provided by an equipment grounding conductor within the cable.

While the ArmorStart LT is intended for installation in factory floor environments of industrial establishments, the following must be taken into consideration when locating the ArmorStart LT in the application:

Cables, including those for control voltage including 24V DC and communications, are not to be exposed to an operator or building traffic on a continuous basis.

Location of the ArmorStart LT to minimize exposure to continual traffic is recommended. If location to minimize traffic flow is unavoidable, other barriers to minimize inadvertent exposure to the cabling should be considered.

Routing cables should be done in such a manner to minimize inadvertent exposure and/or damage.

If conduit or other raceways are not used, it is recommended that strain relief fittings be utilized when installing the cables for the control and power wiring through the conduit openings.

Historically cable meeting these crush and impact requirements was designated and marked “Open Wiring.” Cable so marked is equivalent to the present Type TC-ER and can be used.

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

55

Chapter 2

Installation and Wiring

General Wiring

Considerations

56

Service Space

The working space around the ArmorStart LT can be minimized as the

ArmorStart LT does not require examination, adjustment, servicing or maintenance while energized. In lieu of this service, the ArmorStart LT is meant to be unplugged and replaced after proper lock-out/tag-out procedures have been employed.

Hand Operation (HOA) Considerations

The Hand/Off/Auto (HOA) is a factory-installed option that the user may select. The HOA keypad may require the ArmorStart LT to be installed as follows, if the application requires frequent use of the hand operated interface by the equipment operator:

1.

Install not less than 2 ft (0.6 m) above the servicing level and within easy reach of the operator, who is in a normal working position.

2.

Install where the operator is not placed in a hazardous situation when operating the equipment.

3.

Install where the possibility of inadvertent operation is minimized.

Where inadvertent operation may cause adverse effects the HOA can be disabled via parameter 67.

Wire in an industrial control application can be divided into three groups: power, control, and signal. The following recommendations for physical separation between these groups is provided to reduce the coupling effect:

Minimum spacing between different wire groups in the same tray should be 6 in. (16 cm).

Wire runs outside an enclosure should be run in conduit or have shielding/ armor with equivalent attenuation.

Different wire groups should be run in separate conduits.

Minimum spacing between conduits containing different wire groups should be 3 in. (8 cm).

Minimum spacing between 3-phase power cabling and DeviceNet or I/O cabling should be at least 6 in. (16 cm) to avoid noise issues, unless properly shielded.

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

Grounding

Installation and Wiring

Chapter 2

An effectively grounded product is one that is “intentionally connected to earth through a ground connection or connections of sufficiently low impedance and having sufficient current-carrying capacity to prevent the buildup of voltages which may result in undue hazard to connected equipment or to persons” (as defined by the US National Electric Code NFPA70, Article 100B). Grounding is done for two basic reasons: safety (defined above) and noise containment or reduction. While the safety ground scheme and the noise current return circuit may sometimes share the same path and components, they should be considered different circuits with different requirements.

Grounding Safety Grounds

The object of safety grounding is to ensure that all metalwork is at the same ground (or Earth) potential at power frequencies. Impedance between the drive and the building scheme ground must conform to the requirements of national and local industrial safety regulations or electrical codes. These will vary based on country, type of distribution system and other factors. Periodically check the integrity of all ground connections.

General safety dictates that all metal parts are connected to earth with separate copper wire or wires of the appropriate gauge. Most equipment has specific provisions to connect a safety ground or PE (protective earth) directly to it.

Grounding PE or Ground

The safety ground - PE must be connected to earth ground. This point must be connected to an adjacent building steel (girder, joist), a floor ground rod, a bus bar or a building ground grid. Grounding points must comply with national and local industrial safety regulations or electrical codes. Some codes may require redundant ground paths and periodic examination of connection integrity.

IMPORTANT

To avoid electrolytic corrosion on the external earth terminal, avoid spraying moisture directly on the terminal. When used in washdown environments apply a sealant or other corrosion inhibitor on the external ground terminal to minimize any negative effects of galvanic or electro-chemical corrosion.

Ground connections should be inspected on a regular basis.

Grounding Motors

The motor frame or stator core must be connected directly to the PE connection with a separate ground conductor. It is recommended that each motor frame be grounded to building steel at the motor.

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

57

Chapter 2

Installation and Wiring

Power Distribution

The type of transformer and the connection configuration feeding an

ArmorStart LT Bulletin 294D plays an important role in its performance and safety.

Delta/Wye with Grounded Wye Neutral

Figure 28 -

AC Line Voltage

Line Reactor

58

Delta/Wye with Grounded Wye Neutral is the most common type of distribution system. The grounded neutral provides a direct path for common mode current caused by the drive output.

SHOCK HAZARD:

ArmorStart LT requires the use of grounded Wye power systems.

Incoming voltage imbalances greater than 2% can cause large unequal currents in a drive. An input line reactor may be necessary when line voltage imbalances are greater than 2%.

In general, ArmorStart LT does not require line reactors. In most applications, the ArmorStart LT is further away from the power distribution panel, therefore the length of cable provides additional impedance as compared to an in-panel solution.

Through design and engineering, the need for a line reactor is significantly reduced.

Therefore, ArmorStart LT does not define a minimum line impedance specification, and does not require a line reactor. Its design trades the external reactor supplied by the customer for an internal fan integral to the controller.

This improves the overall life of the product. To achieve maximum electrical life of Bulletin 294, an 800μH line reactor for the group can be applied to extend total service life.

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

Installation and Wiring

Chapter 2

In addition, if line disturbance mitigation is also necessary, the ArmorStart LT is equipped with an EMI filter and when used with a shielded motor cable reduces the impact of the power switching components. For CE compliant installations refer to the recommended EMI/RFI cord grip accessory or quick disconnect shielded motor cable. Contact your local sales representative for details.

If however, the customer specifications require input line reactors or transformers, the recommendation is to group the ArmorStarts at the distribution panel under one line reactor (not individual reactors or transformers). Keep in mind where full voltage ArmorStarts are included with VFD ArmorStarts, the starting currents of the full voltage ArmorStarts can be significant. The current must be accounted for in the selection of the line reactor or you run the risk of nuisance undervoltage faults of the VFD ArmorStarts while the full voltage ArmorStarts are starting their motors.

ATTENTION:

For 50°C ambients ArmorStart LT must be derated and applied with a minimum of 800 uH to1200 uH line reactor. Failure to follow this application requirement will result in premature product failure. Contact your local Rockwell Automation representative for assistance.

Bulletin 294D Motor Cable

Considerations

The majority of recommendations regarding drive cable address issues are caused by the nature of the drive output. A PWM drive creates AC motor current by sending DC voltage pulses to the motor in a specific pattern. These pulses affect the wire insulation and can be a source of electrical noise. The rise time, amplitude, and frequency of these pulses must be considered when choosing a wire/cable type. The choice of cable must consider:

1.

The effects of the drive output once the cable is installed

2.

The need for the cable to contain noise caused by the drive output

3.

The amount of cable charging current available from the drive

4.

Possible voltage drop (and subsequent loss of torque) for long wire runs

Keep the motor cable lengths less than 45 ft from the ArmorStart LT.

Unshielded Cable

Properly designed multi-conductor cable can provide superior performance in wet applications, significantly reduce voltage stress on wire insulation and reduce cross coupling between drives.

The use of cables without shielding is generally acceptable for installations where electrical noise created by the drive does not interfere with the operation of other devices such as: communications cards, photoelectric switches, weigh scales, and others. Be certain the installation does not require shielded cable

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

59

Chapter 2

Installation and Wiring to meet specific EMC standards for CE, C-Tick or FCC. Cable specifications depend on the installation type.

Figure 29 - Unshielded Multi-Conductor Cable

Filler PVC Outer

Sheath

W

B

R

G

Single Ground

Conductor

Shielded Cable

Shielded cable contains all of the general benefits of multi-conductor cable with the added benefit of a copper braided shield that can contain much of the noise generated by a typical AC Drive. Strong consideration for shielded cable should be given for installations with sensitive equipment such as weigh scales, capacitive proximity switches, and other devices that may be affected by electrical noise in the distribution system. Applications with large numbers of drives in a similar location, imposed EMC regulations, or a high degree of communications/networking are also good candidates for shielded cable.

An acceptable shielded cable will have 4 XLPE insulated conductors with a

100% coverage foil and an 85% coverage copper braided shield (with drain wire) surrounded by a PVC jacket.

Figure 30 - Shielded Cable with Four Conductors

Shield

Drain Wire

W

R

G

B

Recommended Cable Connectors/Glands

Choose cable connectors or glands that offer the best cable protection, shield termination, and ground contact.

60

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

Installation and Wiring

Chapter 2

Description

Motor/Source Brake

Motor/Source Brake

Power

Power

Control Power, Motor/Source

Brake

3-Phase Power

Recommended Cord Grips

The following are recommended cord grips to be used for ArmorStart LT installations.

Table 9 - Cord grip for Motor, Power, and Control

Recommended Thomas and Betts Cord Grips for G1 and G3 Glands.

Gland

G1

G1

G1

G1

Knockout

Size

0.75 in.

0.75 in.

1.0 in.

1.0 in.

G3 M20

Cable Diameter Range (in.

2

)

0.500…0.750

0.660…0.780

0.660…0.780

0.770…0.895

0.236…0.473

Thomas and Betts Part Nos.

Cord Grip

Sealing

Ring

Lock Nut

2932NM

2675

2676

2677

5263

5263

5264

5264

142TB

142TB

143

143

CC-ISO20-G – GMN-M20

G3 M25 0.512…0.709

CC-ISO25-G – GMN-M25

Shield Terminating Connectors

The cable connector selected must provide good 360 o

contact and low transfer impedance from the shield or armor of the cable to the conduit entry plate at both the motor and the ArmorStart LT for electrical bonding. SKINTOP

®

MS-SC/MS-SCL cable grounding connectors and NPT/PG adapters from

LAPPUSA are good examples of this type of shield terminating gland.

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

61

Chapter 2

Installation and Wiring

U (T1)

V (T2)

W (T3)

PE

One or More

Ground Leads

Figure 31 - Terminating the Shield with a Connector

Metal connector body makes direct contact with the braid wires

Braid wires pulled back in a 360

°

pattern around the ground cone of the connector

Ground Bushing

Metal locknut bonds the connector to the panel

Drain wires pulled back in a 360

°

pattern around the ground cone of the connector

Electromagnetic

Compatibility (EMC)

ATTENTION:

Shielded connector or motor cable is mandatory for CE compliant installations.

The following guidelines are provided for EMC installation compliance.

General Notes (Bulletin 294D only)

The motor cable should be kept as short as possible in order to avoid electromagnetic emissions as well as capacitive currents. CE conformity of ArmorStart LT with EMC directive does not guarantee the entire machine installation complies with CE EMC requirements. Many factors can influence total machine/installation compliance.

The EMI filter may result in relatively high ground leakage currents.

Therefore, ArmorStart LT must only be applied in installations that are solidly grounded (bonded) to the building power distribution ground.

62

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

Installation and Wiring

Chapter 2

ATTENTION: RFI Filter Grounding.

Due to the presence of an integral EMI filter, this product may draw more that 3.5 mA of leakage current. The controller must only be used in installations with grounded AC supply systems and be permanently installed and solidly grounded (bonded) to the building power distribution ground. Grounding should not include any form of plug or socket that would permit inadvertent disconnection. Consult your local codes regarding redundant ground connections and/or size of protective earthing conductor. The integrity of all connections should be periodically checked.

Ethernet, DeviceNet, and

I/O Connections

DeviceNet Connector (M18)

Pin 1 – Drain (no connection)

Pin 2 – +VDNET

Pin 3 – -VDNET

Pin 4 – CAN_H

Pin 5– CAN_L

Ethernet/IP Connector D-coded (M12)

4

3

M12 Female Ethernet Connector

Pin 1 – Tx+

Pin 2 – Rx+

Pin 3 – Tx–

Pin 4 – Rx–

I/O Connector (M12)

Pin 1 – Sensor Source Voltage

Pin 2 – Not Used

Pin 3 – Common

Pin 4 – Input or Output

Pin 5 – Not Used

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

63

Chapter 2

Installation and Wiring

ArmorConnect Power

Media Receptacles

ArmorStart LT utilizes a M22 male receptacle for power inputs and a M22 female receptacle for motor or motor brake output.

Motor Connector (optional)

Pin 1 - T1 (black)

Pin 2 - T2 (white)

Pin 3 - T3 (red)

Pin 4 - Ground (green/yellow)

Source Brake Connector (optional)

Pin 1 - Ground (green/yellow)

Pin 2 - B1(black)

Pin 3 -B2 (white)

Incoming Control Power (optional) – 24V DC Only

Pin 1 – (+V) Unswitched (A3/red)

Pin 2 – (–V) Common (A2/black)

Pin 3 – Not used (green)

Pin 4 – Not used (blank)

Pin 5 – (+V) Switched (A1/blue)

Pin 6 – Not used (white)

Incoming Three-Phase Power (optional)

Pin 1 - L1 (black)

Pin 2 - L2 (white)

Pin 3 - L3 (red)

Pin 4 - Ground (green/yellow)

64

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

Optional Locking Clip

Installation and Wiring

Chapter 2

The locking clip is an optional device that can be used, if desired. The clam shell design clips over power quick disconnect connections to limit customer access to disconnection.

Figure 32 -

SHOCK HAZARD:

DO NOT connect or disconnect power or motor connections while power is applied to ArmorStart LT. Proper Lock-Out Tag-Out procedures should be followed to reduced the risk of severe injury.

SHOCK HAZARD:

The ArmorStart LT local disconnect will only isolate the motor power and remove switched power when turned OFF. Power inputs must be switched OFF properly from their respective sources before connection or disconnection of incoming power. Proper Lock-Out Tag-Out procedures should be followed to reduced the risk of severe injury.

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

65

Chapter 2

Installation and Wiring

Notes:

66

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

Chapter

3

Product Commissioning

Configuring DeviceNet Address

The ArmorStart® is shipped with a default switch setting of 99 and Autobaud enabled. When a value greater than 63 is read, then the node address will be set to the value stored in memory. From the factory the node address will be set to 63.

The Each device on a DeviceNet network must have a unique node address which can be set to a value from 0 to 63. Keep in mind that most DeviceNet systems use address 0 for the master device (Scanner) and node address 63 should be left vacant for introduction of new slave devices. The ArmorStart offers two methods for node commissioning .The node address for a device can be changed using software or by setting hardware switches that reside on electronic control module (ECM). While both methods yield the same result, it is good practice to choose one method and deploy it throughout the system. For software configuration ensure that the node address is set to 99 and use RS Networx node commissioning wizard.

Manually Configure the Network Address Switches

Remove the protective caps from the rotary switches.

Figure 33 - Switches on the I/O module

Set the network address by adjusting the two rotary switches on the front of the ECM.

Rockwell Automation Publication 290E-UM001B-EN-P - June 2012

67

Chapter 3

Product Commissioning

Figure 34 - Network Address Example

This example shows the node address set to 00.

The switch value of 88 allows the user to reset to factory default configuration including configuration parameters. This setting is useful in situations where the user wishes to decommission a module or when the user wishes to commission a previously-used module that has an unknown configuration. When the switches are set to 888, upon the next power cycle the ArmorStart LT will return to factory default settings and cease all communications. The Module Status LED shall transition to blinking red and the Network Status LED shall transition to off.

After reset, the user will then need to change the IP address to a valid setting and power cycle. The purpose of this is to prevent the user from resetting the module and then never changing the switch setting from 88.

IMPORTANT

Setting the node address to “88” followed by a power cycle will reset the device to its factory default configuration.

To resume network communication the address

MUST

be set to a valid address and power cycled again.

68

Rockwell Automation Publication 290E-UM001B-EN-P - June 2012

Product Commissioning

Chapter 3

DeviceNet™

Commissioning

Establishing a DeviceNet

Node Address

The ArmorStart® LT is shipped with a default node address of 63 and Autobaud enabled. Each device on a DeviceNet network must have a unique node address or MAC ID which can be set to a value from 0 to 63. Keep in mind that most

DeviceNet systems use address 0 for the master device (Scanner) and node address 63 should be left vacant for introduction of new slave devices. The

ArmorStart offers two methods for node commissioning as shown below.

The node address for a device can be changed using software or by setting hardware switches that reside on the back of the control module. While both methods yield the same result, it is good practice to choose one method and deploy it throughout the system.

Node Commissioning using

Hardware

The ArmorStart is shipped with the hardware rotary switches set to a value of

(99). If the switches are set to a value (64) or above, the device will automatically configure itself to the software node address. If the switches are set to a value of

(63) or less, the device will be at the node address designated by the switch configuration.

To set an address using the hardware rotary switches, simply set the switches to the desired node address and cycle power to the unit. The Device will re-start at the new address.

Node Commissioning using

Software

To set the node address of the ArmorStart using software or other handheld tools, leave the hardware switches in there default position (99) or insure that they are set to something greater than (63). With the hardware switches set, use the software or handheld tool to change the address.

To begin the configuration of ArmorStart using software, execute the

RSNetWorx™ software and complete the following procedure. You must use

RSNetWorx Revision 11 or later.

Rockwell Automation Publication 290E-UM001B-EN-P - June 2012

69

Chapter 3

Product Commissioning

1.

Go on-line using RSNetWorx for DeviceNet. This can be accomplished by selecting the

Network

menu, and then choosing

RSWho

.

2.

Choose the appropriate DeviceNet PC interface.

Note:

DeviceNet drivers must be configured using RSLinx prior to being available to RSNetWorx.

3.

Click

OK

.

4.

RSNetWorx will notify the user to upload or download devices before viewing configuration. Click

OK

.

5.

RSNetWorx will now browse the network and display all of the nodes it has detected on the network. For some versions of RSNetWorx software the ArmorStart EDS files and icon may not be included and will show up as an “Unregistered Device”. Refer to Registering an EDS file for details.

70

Rockwell Automation Publication 290E-UM001B-EN-P - June 2012

Registering an EDS file

Product Commissioning

Chapter 3

6.

If RSNetWorx recognizes the device as an ArmorStart LT, skip ahead to the following section Changing the Node address (MAC ID)

The EDS file defines how RSNetWorx for DeviceNet will communicate to the

ArmorStart. Follow the steps below to build and register the EDS file.

To register a device you must first obtain the EDS file from the following web page:

http://www.ab.com/networks/eds

You are also able to upload the eds directly from the product if online.

After obtaining the files do the following:

1.

Right mouse click on the “Unrecognized Device” icon and choose

Register Device

from the menu.

2.

Click

Next

. The following screen appears:

3.

Choose “Register an EDS file(s)” as shown above and then click the

Next

button.

4.

Choose to “Register a single file” or "Register a directory of EDS files" and specify the file name or location using the

Browse

button to locate the

EDS file on your computer.

Rockwell Automation Publication 290E-UM001B-EN-P - June 2012

71

Chapter 3

Product Commissioning

5.

Click the

Next

button.

6.

The following screen will display any warning or errors if a problem occurs while registering the file. If a problem occurs insure that you have the correct file and try again. Click the

Next

button when no errors occur.

72

7.

Click the

Next

button

Rockwell Automation Publication 290E-UM001B-EN-P - June 2012

Product Commissioning

Chapter 3

Using the Node

Commissioning Tool

Inside RSNetWorx for DeviceNet

8.

Click the

Finish

button. After a short while RSNetWorx will update your online screen by replacing the unrecognized device with the name and icon given by the EDS file you have just registered.

1.

Choose “

Node Commissioning

” from the “

Tools

” menu at the top of the screen.

2.

Clicking on

Browse…

will prompt a screen similar to the one below to appear.

Rockwell Automation Publication 290E-UM001B-EN-P - June 2012

73

Chapter 3

Product Commissioning

3.

Select the ArmorStart located at node 63, and then click

OK

. The node commissioning screen will have the “Current Device Settings” entries completed. It will also provide the current network baud rate in the “New

ArmorStart Settings” area. Do not change the baud rate unless you absolutely sure that this value needs to be changed.

4.

Enter the desired node address in the “New Device Settings” section. In this example, the new node address is

5

. Click

Apply

to apply the new node address.

5.

When the new node address has been successfully applied, the “Current

Device Settings” section of the window is updated as follows. If an error occurs, check to make sure the device is properly powered up and connected to the network.

6.

Click

Close

to exit the node commissioning tool.

7.

Choose “

Single Pass Browse

” from the “

Network

” menu to update

RSNetWorx and verify that the node address is set correctly.

74

Rockwell Automation Publication 290E-UM001B-EN-P - June 2012

System Configuration

Product Commissioning

Chapter 3

Selection of produced and consumed I/O assemblies (sometimes referred to as input and output assemblies) define the format of I/O message data that is exchanged between the ArmorStart and other devices on the network. The consumed information is generally used to command the state of its outputs, and produced information typically contains the state of the inputs and the current fault status of the device.

The default consumed and produced assemblies are shown below; for additional formats refer to Appendix B. The ArmorStart default configuration varies depending on the type of starter.

Choosing the size and format of the I/O data that is exchanged by the

ArmorStart is done by choosing a consumed assembly instance number. This instance number is written to the

Consumed IO Assy

parameter. The different instances/formats allow user programming flexibility and network optimization.

IMPORTANT

The

Consumed and Produced IO Assy

parameter values can not be changed while the ArmorStart is online with a scanner. Any attempts to change the value of this parameter while online with a scanner will result in the error message “Object State Conflict”.

Rockwell Automation Publication 290E-UM001B-EN-P - June 2012

75

Chapter 3

Product Commissioning

Table 10 - Default Consume Assembly for Bulletin 294D

Instance 154 “Drive Cmd” – Default Consumed Assembly for 294 Starters

Byte Bit 7 Bit 6 Bit 5

0

1 Decel2 Accel2

Out05

4

5

2

3

6

7

Pt07DeviceIn

Pt15DeviceIn

Pt06DeviceIn

Pt14DeviceIn

Pt05DeviceIn

Pt13DeviceIn

Bit 4

JogReverse

Out04

Bit 3

JogForward

Out03

CommandFreq (Low) (xxx.x Hz)

CommandFreq (High) (xxx.x Hz)

Pt04DeviceIn

Pt12DeviceIn

Pt03DeviceIn

Pt11DeviceIn

AnalogDeviceIn (low byte)

AnalogDeviceIn (high byte)

Table 11 - Default Compact Produce Assembly for Bulletin 294D

5

6

3

4

7

Instance 155 “Compact Status” - Compact Produced Assembly for 294D Starters

Byte

0

Bit 7

AtReference

Bit 6

NetRefStatus

Bit 5

NetControlStatus

1

2

BrakeStatus DisconnectClosed

Bit 4

Ready

Bit 3

RunningReverse

KeyPadJogging KeyPadHand

OutputFrequency (Low) (xxx.x Hz)

Pt05

OutputFrequency (High) (xxx.x Hz)

Pt04 Pt03

Pt07DeviceOut

Pt15DeviceOut

Pt06DeviceOut

Pt14DeviceOut

Pt05DeviceOut

Pt13DeviceOut

Pt04DeviceOut

Pt12DeviceOut

Pt03DeviceOut

Pt11DeviceOut

Bit 2

ResetFault

Out02

Pt02DeviceIn

Pt10DeviceIn

Bit 2

RunningForward

KeyPadOff

Pt02

Pt02DeviceOut

Pt10DeviceOut

Bit 1

RunReverse

Out01

Pt01DeviceIn

Pt09DeviceIn

Bit 1

WarningPresent

KeyPadAuto

Pt01

Pt001DeviceOut

Pt09DeviceOut

Bit 0

RunForward

Out00

Pt00DeviceIn

Pt08DeviceIn

Bit 0

TripPresent

DLXEnabled

Pt00

Pt00DeviceOut

Pt08DeviceOut

76

Rockwell Automation Publication 290E-UM001B-EN-P - June 2012

Product Commissioning

Chapter 3

Table 12 - Bulletin 294D Produced Assembly Status Tags

Table 13 - Bulletin 294D Consume Assembly/Command Tag Explanation

Pt01DeviceIn

Pt02DeviceIn

Pt03DeviceIn

Pt04DeviceIn

Pt05DeviceIn

Pt06DeviceIn

Pt07DeviceIn

Pt08DeviceIn

Pt09DeviceIn

Pt10DeviceIn

Pt11DeviceIn

Pt12DeviceIn

Pt13DeviceIn

Pt14DeviceIn

Pt15DeviceIn

Int00DeviceIn

Device Output Command Tags

RunForward

RunReverse

ResetFault

JogForward

JogReverse

Pt00Data

Pt01Data

Pt02Data

Pt03Data

Pt04Data

Pt05Data

Accel2

Decel2

FreqCommand

Pt00DeviceIn

Tag Description/Use

Command VFD forward

Command VFD reverse

Fault reset

Command Jog forward per internal frequency

Command Jog reverse per internal frequency

If user defined as output, commnd output ON

If user defined as output, commnd output ON

If user defined as output, commnd output ON

If user defined as output, commnd output ON

If user defined as output, commnd output ON

If user defined as output, commnd output ON

VFD acceleration ramp 2

VFD deceleration ramp 2

Logix command frequency

Network input to DeviceLogix engine

Network input to DeviceLogix engine

Network input to DeviceLogix engine

Network input to DeviceLogix engine

Network input to DeviceLogix engine

Network input to DeviceLogix engine

Network input to DeviceLogix engine

Network input to DeviceLogix engine

Network input to DeviceLogix engine

Network input to DeviceLogix engine

Network input to DeviceLogix engine

Network input to DeviceLogix engine

Network input to DeviceLogix engine

Network input to DeviceLogix engine

Network input to DeviceLogix engine

Network input to DeviceLogix engine

Network analog input to DeviceLogix engine

Table 14 - Bulletin 294E Produced Assembly/Status Tag Explanation

Device Input Status Tags

Fault

TripPresent

WarningPresent

RunningForward

RunningReverse

Ready

NetworkControlStatus

Tag Description/Use

Communication fault between PLC and device (all 1s = fault, all 0s = normal)

Fault exists within unit

Warning of potential fault

Motor commanded to run forward

Motor commanded to run reverse

Control and 3-phase power present

Start and Stop command comes from network (PLC or Connected Explicit Messaging)

Rockwell Automation Publication 290E-UM001B-EN-P - June 2012

77

Chapter 3

Product Commissioning

78

Pt13DeviceOut

Pt14DeviceOut

Pt15DeviceOut

Int00DeviceOut

OutputCurrent

OutputVoltage

DCBusVoltage

SwitchedVoltageLevel

UnswitchedVoltageLevel

InternalFanRPM

OperatingHours

DriveTemperature

TripStatus

WarningStatus

Pt03Data

Pt04Data

Pt05Data

Pt00DeviceOut

Pt01DeviceOut

Pt02DeviceOut

Pt03DeviceOut

Pt04DeviceOut

Pt05DeviceOut

Pt06DeviceOut

Pt07DeviceOut

Pt08DeviceOut

Pt09DeviceOut

Pt10DeviceOut

Pt11DeviceOut

Pt12DeviceOut

Device Input Status Tags

NetworkReferenceStatus

AtReference

DeviceLogixEnabled

KeypadAuto

KeypadOff

KeypadHand

KeypadJogging

DisconnectClosed

BrakeContactorStatus

OutputFrequency

Pt00Data

Pt01Data

Pt02Data

Rockwell Automation Publication 290E-UM001B-EN-P - June 2012

Tag Description/Use

Speed reference comes from the network (not DeviceLogix)

At commanded speed reference

DeviceLogix is enabled

HOA is in Auto mode

HOA is in Off mode

HOA is in Hand mode

HOA is in Jog mode

Disconnect is closed

Source brake contactor status (1 = close, 0 = open)

VFD frequency

User-configured I/O status

User-configured I/O status

User-configured I/O status

User-configured I/O status

ASLT_DEMO:I.Pt04Data

User-configured I/O status

DeviceLogix network output status

DeviceLogix network output status

DeviceLogix network output status

DeviceLogix network output status

DeviceLogix network output status

DeviceLogix network output status

DeviceLogix network output status

DeviceLogix network output status

DeviceLogix network output status

DeviceLogix network output status

DeviceLogix network output status

DeviceLogix network output status

DeviceLogix network output status

DeviceLogix network output status

DeviceLogix network output status

DeviceLogix network output status

DeviceLogix network analog output

VFD output current — Parameter 3

VFD output voltage — Parameter 4

VFD DC bus voltage — Parameter 5

Switched control power voltage — Parameter 11

Unswitched control power voltage — Parameter 12

VFD fan speed — Parameter 13

Elapse run hours — Parameter 14

VFD internal temperature — Parameter 15

Bit enumerate trip status — Parameter 16

Bit enumerate warning status — Parameter 17

Product Commissioning

Chapter 3

Table 15 - Default Consume Assembly for Bulletin 290D/291D

Instance 150 “Starter Cmd” - DeviceLogix Consumed Assembly for 290D / 291D Starters

Byte Bit 7 Bit 6 Bit 5 Bit 4

0

1

Out05

Out04

2

3

4

5

Pt07DeviceIn

Pt15DeviceIn

Pt06DeviceIn

Pt14DeviceIn

Pt05DeviceIn

Pt13DeviceIn

Bit 3

Pt04DeviceIn

Pt12DeviceIn

Out03

Pt03DeviceIn

Pt11DeviceIn

AnalogDeviceIn (low byte)

AnalogDeviceIn (high byte)

Bit 2

ResetFault

Out02

Pt02DeviceIn

Pt10DeviceIn

Bit 1

RunReverse

Out01

Pt01DeviceIn

Pt09DeviceIn

Bit 0

RunForward

Out00

Pt00DeviceIn

Pt08DeviceIn

Rockwell Automation Publication 290E-UM001B-EN-P - June 2012

79

Chapter 3

Product Commissioning

Table 16 - Default Produce Compact Assembly for Bulletin 290D/291D

Instance 151 “Compact Status” - Compact Produced Assembly for 290D / 291D Starters

Byte Bit 7 Bit 6 Bit 5 Bit 4

0

1

CurrentFlowing

DisconnectClosed

NetControlStatus Ready

Pt05 Pt04

4

5

2

3

Pt07DeviceOut

Pt15DeviceOut

Pt06DeviceOut

Pt14DeviceOut

Pt05DeviceOut

Pt13DeviceOut

Pt04DeviceOut

Pt12DeviceOut

Bit 3

RunningReverse

KeyPadHand

Pt03

Pt03DeviceOut

Pt11DeviceOut

Bit 2

RunningForward

KeyPadOff

Pt02

Pt02DeviceOut

Pt10DeviceOut

Bit 1

WarningPresent

KeyPadAuto

Pt01

Pt01DeviceOut

Pt09DeviceOut

Bit 0

TripPresent

DLXEnabled

Pt00

Pt00DeviceOut

Pt08DeviceOut

80

Rockwell Automation Publication 290E-UM001B-EN-P - June 2012

Product Commissioning

Chapter 3

The following table provides a brief explanation for the tag function:

Table 17 - Bulletin 290D/291D Consume Assembly Command Tag Explanation

Pt05DeviceIn

Pt06DeviceIn

Pt07DeviceIn

Pt08DeviceIn

Pt09DeviceIn

Pt10DeviceIn

Pt11DeviceIn

Pt12DeviceIn

Pt13DeviceIn

Pt14DeviceIn

Pt15DeviceIn

Int00DeviceIn

Device Output Command Tags

RunForward

RunReverse

ResetFault

Pt00Data

Pt01Data

Pt02Data

Pt03Data

Pt04Data

Pt05Data

Pt00DeviceIn

Pt01DeviceIn

Pt02DeviceIn

Pt03DeviceIn

Pt04DeviceIn

Tag Description/Use

Command VFD forward

Command VFD reverse

Fault reset

If user defined as output, commnd output ON

If user defined as output, commnd output ON

If user defined as output, commnd output ON

If user defined as output, commnd output ON

If user defined as output, commnd output ON

If user defined as output, commnd output ON

Network input to DeviceLogix engine

Network input to DeviceLogix engine

Network input to DeviceLogix engine

Network input to DeviceLogix engine

Network input to DeviceLogix engine

Network input to DeviceLogix engine

Network input to DeviceLogix engine

Network input to DeviceLogix engine

Network input to DeviceLogix engine

Network input to DeviceLogix engine

Network input to DeviceLogix engine

Network input to DeviceLogix engine

Network input to DeviceLogix engine

Network input to DeviceLogix engine

Network input to DeviceLogix engine

Network input to DeviceLogix engine

Network analog input to DeviceLogix engine

Rockwell Automation Publication 290E-UM001B-EN-P - June 2012

81

Chapter 3

Product Commissioning

82

Table 18 - Bulletin 290D/291D Produced Assembly Status Tag Explanation

Pt03Data

Pt04Data

Pt05Data

Pt00DeviceOut

Pt01DeviceOut

Pt02DeviceOut

Pt03DeviceOut

Pt04DeviceOut

Pt05DeviceOut

Pt06DeviceOut

Pt07DeviceOut

Pt08DeviceOut

Pt09DeviceOut

Pt10DeviceOut

Pt11DeviceOut

Pt12DeviceOut

Device Input Status Tags

Fault

TripPresent

WarningPresent

RunningForward

RunningReverse

Ready

CurrentFlowing

DeviceLogixEnabled

KeypadAuto

KeypadOff

KeypadHand

DisconnectClosed

Pt00Data

Pt01Data

Pt02Data

Pt13DeviceOut

Pt14DeviceOut

Pt15DeviceOut

Int00DeviceOut

L1Current

L2Current

L3Current

AvgCurrent

PercentTCU

SwitchedVoltageLevel

Tag Description/Use

Communication fault between PLC and device (all 1s = fault, all 0s = normal)

Fault exists within unit

Warning of potential fault

Motor commanded to run forward

Motor commanded to run reverse

Control and 3-phase power present

Current is passing to motor

DeviceLogix is enabled

HOA is in Auto mode

HOA is in Off mode

HOA is in Hand mode

Disconnect is closed

User-configured I/O status

User-configured I/O status

User-configured I/O status

User-configured I/O status

ASLT_DEMO:I.Pt04Data

User-configured I/O status

DeviceLogix network output status

DeviceLogix network output status

DeviceLogix network output status

DeviceLogix network output status

DeviceLogix network output status

DeviceLogix network output status

DeviceLogix network output status

DeviceLogix network output status

DeviceLogix network output status

DeviceLogix network output status

DeviceLogix network output status

DeviceLogix network output status

DeviceLogix network output status

DeviceLogix network output status

DeviceLogix network output status

DeviceLogix network output status

DeviceLogix network analog output

Phase A current

Phase B current

Phase C current

Average phase A, B, and C current

Overload percentage thermal utilization (100% = overload trip)

Switched control power voltage — Parameter 11

Rockwell Automation Publication 290E-UM001B-EN-P - June 2012

Device Input Status Tags

UnswitchedVoltageLevel

TripStatus

WarningStatus

Product Commissioning

Chapter 3

Tag Description/Use

Unswitched control power voltage — Parameter 12

Bit enumerate trip status — Parameter 16

Bit enumerate warning status — Parameter 17

Rockwell Automation Publication 290E-UM001B-EN-P - June 2012

83

Chapter 3

Product Commissioning

Notes:

84

Rockwell Automation Publication 290E-UM001B-EN-P - June 2012

Chapter

4

Bulletin 290D/291D/294D

Programmable Parameters

Electronic Data Sheet (EDS)

An embedded EDS file can be uploaded directly from the ArmorStart LT. EDS files are also available on the internet at: http://www.ab.com/networks/eds .

Basic Setup Parameters

Table 19 lists the minimum setup configurations required for Bulletin 290D/

291D or Bulletin 294D.

RSLogix 5000 is the recommended commissioning software. Download the Add-

On-Profile (AOP) from http://support.rockwellautomation.com/controlflash/Logix

Profiler.asp

for additional functionality. There are additional capabilities that are not enabled or left at their default values.

Table 19 - Quick Parameter Setup

Bulletin 290D/291D

28

FLASetting

29

OLResetLevel

30

OverloadClass

49

IOPointConfiguration

Bulletin 294D

28

MotorNPVolts

29

MotorNPHertz

30

MotorOLCurrent

32

StopMode

34

MinimumFreq

35

MaximumFreq

36

AccelTime1

37

DecelTime1

49

IOPointConfiguration

IMPORTANT

All I/O points are configured as inputs, by default. Identify which points are outputs, when needed for proper operation, using parameter 49

[IOPointConfiguration].

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

85

Chapter 4

Bulletin 290D/291D/294D Programmable Parameters

Parameter Groups

1

PhaseL1Current

2

PhaseL2Current

3

PhaseL3Current

4

AverageCurrent

5

%ThermalUtilized

6

StarterStatus

7

StarterCommand

8

AuxIOStatus

9

NetworkStatus

10

DLXControlStatus

11

OutputSourceV

12

SensorSourceV

13

Reserved

14

Reserved

15

Reserved

Bulletin

290D/291D Units

Bulletin 294D Units

Basic Status

1

OutputFreq

2

CommandFreq

3

OutputCurrent

4

OutputVoltage

5

DCBusVoltage

6

StarterStatus

7

StarterCommand

8

AuxIOStatus

9

NetworkStatus

10

DLXControlStatus

11

OutputSourceV

12

SensorSourceV

13

InternalFanRPM

14

ElapsedRunTime

15

DriveTemperature

Common to Bulletin 290D/291D and Bulletin 294D Units

16

TripStatus

17

WarningStatus

18

TripLog0

19

TripLog1

Bulletin

290D/291D Units

Trip Status

20

TripLog2

21

TripLog3

22

TripLog4

Bulletin 294D Units

23

SnapShotL1Amps

24

SnapShotL2Amps

25

SnapShotL3Amps

26

SnapShotAvgAmps

27

SnapShot%Thermal

Trip Status

23

SnapShotOutFreq

24

SnapShotOutAmps

25

SnapShotOutVolts

26

SnapShotBusVolts

27

SnapShotDrvTemp

Bulletin

290D/291D Units

Basic Config

28

FLASetting

29

OLResetLevel

30

OverloadClass

31

40

Reserved

86

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

Bulletin 290D/291D/294D Programmable Parameters

Chapter 4

Bulletin 294D Units

Motor and Control

28

MotorNPVolts

29

MotorNPHertz

30

MotorOLCurrent

31

CurrentLimit

32

StopMode

Speed Control

33

SpeedReference

34

MinimumFreq

35

MaximumFreq

36

AccelTime1

37

DecelTime1

38

SCurvePercent

39

JogFrequency

40

JogAccelDecel

69

77

78

79

Bulletin

290D/291D Units

OLWarningLevel

70

JamInhibitTime

71

JamTripDelay

72

JamTripLevel

73

JamWarningLevel

74

StallEnabledTime

75

StallTripLevel

76

ULInhibitTime

ULTripDelay

ULTripLevel

ULWarningLevel

69

AccelTime2

70

Dtention

72

InternalFreq

73

SkipFrequency

74

SkipFreqBand

75

DCBrakeTime

76

DCBrakeLevel

77

ReverseDisable

78

FlyingStartEna

79

Compensation

80

SlipHertzAtFLA

81

BusRegulateMode

82

MotorOLSelect

83

SWCurrentTrip

84

AutoRestartTries

85

AutoRestartDelay

86

BoostSelect

87

MaximumVoltage

88

MotorNamPlateFLA

89

BrakeMode

90

BrakeFreqThresh

91

BrakeCurrThresh

92

OptionMatch

Bulletin 294D Units

Starter Protection

41

ProtFltResetMode

42

ProtectFltEnable

43

WarningEnable

44

ProtectFltReset

45

RunNetFltAction

46

RunNetFaultValue

47

RunNetIdleAction

48

RunNetIdleValue

Common to Bulletin 290D/291D and Bulletin 294D Units

User I/O Config.

Miscellaneous Config.

49

IOPointConfigure

50

FilterOffOn

51

FilterOnOff

52

OutProtFltState

53

OutProtFltValue

54

OutNetFaultState

55

OutNetFaultValue

56

OutNetIdleState

57

OutNetIdleValue

58

Input00Function

59

Input01Function

60

Input02Function

61

Input03Function

62

Input04Function

63

Input05Function

64

NetworkOverride

65

CommsOverride

66

KeypadMode

67

KeypadDisable

68

SetToDefaults

Network Group

Advanced Config.

100

AutobaudEnable

101

ConsumedIOAssy

102

ProducedIOAssy

ZIP Group

103

AutoRunZip

104

ZoneProducedEPR

105

ZoneProducedPIT

106

Zone1MacId

107

Zone2MacId

108

Zone3MacId

109

Zone4MacId

110

Zone1Health

111

Zone2Health

112

Zone3Health

113

Zone4Health

114

Zone1PtMask

115

Zone2PtMask

116

Zone3PtMask

117

Zone4PtMask

118

Zone1PtOffset

119

Zone2PtOffset

120

Zone3PtOffset

121

Zone4PtOffset

122

Zone1AnalogMask

123

Zone2AnalogMask

124

Zone3AnalogMask

125

Zone4AnalogMask

126

Zone1AnOffset

127

Zone2AnOffset

128

Zone3AnOffset

129

Zone4AnOffset

130

Zone1EPR

131

Zone2EPR

132

Zone3EPR

133

Zone4EPR

134

Zone1Control

135

Zone2Control

136

Zone3Control

137

Zone4Control

138

Zone1Key

139

Zone2Key

140

Zone3Key

141

Zone4Key

142

DeviceValueKey

143

ZoneCtrlEnable

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

87

Chapter 4

Bulletin 290D/291D/294D Programmable Parameters

ArmorStart LT DeviceNet

Parameters

Introduction

This chapter describes each programmable parameter and its function.

Parameter Programming

Each Distributed Motor Controller type will have a common set of parameters and a set of parameters that pertain to the individual starter type. Parameters

41

68 are common to all ArmorStart LTs.

IMPORTANT

Parameter setting changes take effect immediately unless otherwise noted in the parameter listing. These changes maybe immediate even during the

"running" status.

Bulletin 290D/291D Basic Status Group

PhaseL1Current

This parameter determines the actual

Phase L1 current.

PhaseL2Current

This parameter determines the actual

Phase L2 current.

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

2

GET

INT

Basic Status x.xx Amps

0

32767

0

1

GET

INT

Basic Status x.xx Amps

0

32767

0

88

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

PhaseL3Current

This parameter determines the actual

Phase L3 current.

AverageCurrent

This parameter determines the average of

3 Phase currents.

%ThermalUtilized

This parameter determines the percent of

Thermal Capacity used.

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Bulletin 290D/291D/294D Programmable Parameters

Chapter 4

4

GET

INT

Basic Status x.xx Amps

0

32767

0

3

GET

INT

Basic Status x.xx Amps

0

32767

0

5

GET

USINT

Basic Status

Percent

0

100

0

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

89

Chapter 4

Bulletin 290D/291D/294D Programmable Parameters

StarterStatus

This parameter provides the status of the starter.

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

6

GET

WORD

Basic Status

0

0x4FBF

0

Bit

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

— — — — — — — — — — — — — — —

— — — — — — — — — — — — — — X

X

Function

TripPresent

WarningPresent

— — — — — — — — — — — — — X — — RunningForward

— — — — — — — — — — — — X — — — RunningReverse

— — — — — — — — — — — X — — — — Ready

— — — — — — — — — — X — — — — — NetControlStatus

— — — — — — — — — X — — — — — —

— — — — — — — — X — — — — — — —

Reserved

CurrentFlowing

— — — — — — — X — — — — — — — —

— — — — — — X — — — — — — — — —

— — — — — X — — — — — — — — — —

— — — — X — — — — — — — — — — —

DLXEnabled

KeyPadAuto

KeyPadOff

KeyPadHand

— — X X — — — — — — — — — — — — Reserved

— X — — — — — — — — — — — — — — DisconnectClosed

X — — — — — — — — — — — — — — — Reserved

90

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

Bulletin 290D/291D/294D Programmable Parameters

Chapter 4

StarterCommand

The parameter provides the Run Command status to the starter.

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Bit

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

— — — — — — — — — — — — — — — X

— — — — — — — — — — — — — — X —

— — — — — — — — — — — — — X — —

— — — — — — — — X X X X X — — —

— — — — — — — X — — — — — — — —

— — — — — — X — — — — — — — — —

— — — — — X — — — — — — — — — —

— — — — X — — — — — — — — — — —

— — — X — — — — — — — — — — — —

— — X — — — — — — — — — — — — —

X X — — — — — — — — — — — — — —

7

GET

WORD

Basic Status

0

0x3F07

0

Function

RunForward

RunReverse

ResetFault

Reserved

Out00

Out01

Out02

Out03

Out04

Out05

Reserved

AuxIOStatus

The parameter provides the status of hardware input/output points.

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Bit

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

— — — — — — — — — — — — — — — X

— — — — — — — — — — — — — — X —

— — — — — — — — — — — — — X — —

— — — — — — — — — — — — X — — —

— — — — — — — — — — — X — — — —

— — — — — — — — — — X — — — — —

X X X X X X X X X X — — — — — —

8

GET

WORD

Basic Status

0

0x3F

0

Function

Pt00

Pt01

Pt02

Pt03

Pt04

Pt05

Reserved

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

91

Chapter 4

Bulletin 290D/291D/294D Programmable Parameters

92

NetworkStatus

The parameter provides the status of the network connections.

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

9

GET

WORD

Basic Status

0

0xDF

0

Bit

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

— — — — — — — — — — — — — — — X

— — — — — — — — — — — — — — X —

— — — — — — — — — — — — — X — —

— — — — — — — — — — — — X — — —

— — — — — — — — — — — X — — — —

— — — — — — — — X X X — — — — —

— — — — — — — X — — — — — — — —

— — — — — — X — — — — — — — — —

— — — — — X — — — — — — — — — —

— — — — X — — — — — — — — — — —

— — — X — — — — — — — — — — — —

— — X — — — — — — — — — — — — —

— X — — — — — — — — — — — — — —

X — — — — — — — — — — — — — — —

DLXControlStatus

The parameter provides the DeviceLogix

Control Status.

0 = Controlled in Logix programs.

1 = Controlled in local DLX programs.

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

10

GET

UINT

Basic Status

0

OXFF

0

Function:

ExplicitCnxn

I/OConnection

ExplicitCnxnFlt

IOCnxnFault

IOCnxnIdle

Reserved

ZIP1Cnxn

ZIP1CnxnFlt

ZIP2Cnxn

ZIP2CnxnFlt

ZIP3Cnxn

ZIP3CnxnFlt

ZIP4Cnxn

ZIP4CnxnFlt

Bit

7 6 5 4 3 2 1

— — — — — — —

— — — — — —

— — — — — X

— — — — X

X

— — —

0

X

Function:

RunForward

RunReverse

Out00

Out01

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

Bulletin 290D/291D/294D Programmable Parameters

Chapter 4

Bit

7 6 5

— — —

— —

— X

X

X

4

X

3

2

1

0

— — — — — — —

OutputSourceV (IPS)

[SwitchedVolts]

This parameter determines the incoming switched control voltage across terminals

A1…A2.

(IPS) Available voltage on User Output Pin

4 for all I/O points

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

SensorSourceV (IPS)

[UnswitchedVolts]

This parameter determines the incoming unswitched control voltage across terminals A2…A3.

(IPS) Available voltage on Input Sensor

Source Pin 1 for all I/O points

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Function:

Out02

Out03

Out04

Out05

11

GET

UINT

Basic Status x.xx Volts

0

65535

0

12

GET

UINT

Basic Status x.xx Volts

0

65535

0

Trip Status Group

TripStatus

This parameter provides the fault condition that caused any current trip.

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

16

GET

WORD

Trip Status

0

0xE3BF

0

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

93

Chapter 4

Bulletin 290D/291D/294D Programmable Parameters

Bit

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

— — — — — — — — — — — — — — —

— — — — — — — — — — — — — — X

X

Function

OverloadTrip

PhaseLossTrip

— — — — — — — — — — — — — X — — UnderPowerTrip

— — — — — — — — — — — — X — — — SensorShortTrip

— — — — — — — — — — — X — — — — PhaseImbalanceTrip

— — — — — — — — — — X — — — — — NonVolMemoryTrip

— — — — — — — — — X — — — — — —

— — — — — — — — X — — — — — — —

Reserved

JamTrip

— — — — — — — X — — — — — — — —

— — — — — — X — — — — — — — — —

StallTrip

UnderloadTrip

— — — X X X — — — — — — — — — — Reserved

— — X — — — — — — — — — — — — — OutputShortTrip

— X — — — — — — — — — — — — — — UserDefinedTrip

X — — — — — — — — — — — — — — — HardwareFltTrip

WarningStatus

This parameter provides the current warning condition.

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

17

GET

WORD

Trip Status

0

0xC295

Bit

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

— — — — — — — — — — — — — — —

— — — — — — — — — — — — — — X

X

Function

OverloadWarning

Reserved

— — — — — — — — — — — — — X — — UnderPowerWarn

— — — — — — — — — — — — X — — — Reserved

— — — — — — — — — — — X — — — — PhaseImbalanceWarn

— — — — — — — — — X X — — — — — Reserved

— — — — — — — — X — — — — — — —

— — — — — — — X — — — — — — — —

JamWarning

Reserved

— — — — — — X — — — — — — — — — UnderloadWarning

— — X X X X — — — — — — — — — — Reserved

X

— — — — — — — — — — — — — —

X — — — — — — — — — — — — — —

DNetPwrWarn

ConfigWarning

94

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

Bulletin 290D/291D/294D Programmable Parameters

Chapter 4

TripLog1

This parameter provides the last trip to occur.

TripLog2

This parameter provides the second last trip to occur.

TripLog3

This parameter provides the third last trip to occur.

TripLog4

This parameter provides the fourth last trip to occur.

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

21

GET

UINT

Trip Status

0

75

0

20

GET

UINT

Trip Status

0

75

0

19

GET

UINT

Trip Status

0

75

0

18

GET

UINT

Trip Status

0

75

0

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

95

Chapter 4

Bulletin 290D/291D/294D Programmable Parameters

TripLog5

This parameter provides the fifth last trip to occur.

SnapShotL1Amps

This parameter provides a snapshot of actual Phase L1 current at time of last trip.

SnapShotL2Amps

This parameter provides a snapshot of actual Phase L2 current at time of last trip.

SnapShotL3Amps

This parameter provides a snapshot of actual Phase L3 current at time of last trip.

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

25

GET

INT

Trip Status x.xx Amps

0

32767

0

24

GET

INT

Trip Status x.xx Amps

0

32767

0

23

GET

INT

Trip Status x.xx Amps

0

32767

22

GET

UINT

Trip Status

0

75

0

96

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

SnapShotLAvgAmps

This parameter provides a snapshot of average of 3 Phase currents at time of last trip.

SnapShot%Thermal

This parameter provides a snapshot of the percentage of Thermal Capacity used at time of last trip.

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Basic Configuration Group

FLASetting

The motor’s full load current rating is programmed in this parameter.

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Table 20 - FLA Setting Ranges and Default Values (with indicated setting precision)

290D/1_-FA_*

290D/1_-FB_*

460V AC

3 Hp

5 Hp

FLA Current Range (A)

Minimum Value

0.24

1.1

Maximum Value

3.5

7.6

Bulletin 290D/291D/294D Programmable Parameters

Chapter 4

27

GET

USINT

Trip Status

Percent

0

100

0

26

GET

INT

Trip Status x.xx Amps

0

32767

0

28

GET/SET

INT

Basic Configuration x.xx Amps

See Table 20.

See Table 20.

See Table 20.

Default Value

0.24

1.1

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

97

Chapter 4

Bulletin 290D/291D/294D Programmable Parameters

OLResetLevel

This parameter determines the % Thermal

Capacity which an overload can be cleared.

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

OverloadClass

This parameter provides the overload trip classification.

1 = 10

2 = 15

3 = 20

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Starter Protection Group

ProtFltResetMode

This parameter configures the Protection

Fault reset mode.

0 = Manual

1 = Automatic

ProtectFltEnable

This parameter enables or disables protection faults (not all faults can be disabled).

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

29

GET/SET

BYTE

Basic Configuration

% TCU

75

100

75

30

GET

USINT

Basic Configuration

3

1

1

41

GET/SET

BOOL

Starter Protection

1

0

0

42

GET

WORD

Trip Status

0

0xE3BF

0

98

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

Bulletin 290D/291D/294D Programmable Parameters

Chapter 4

Bit

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

— — — — — — — — — — — — — — —

— — — — — — — — — — — — — — X

X

Function

OverloadTrip

PhaseLossTrip

— — — — — — — — — — — — — X — — UnderPowerTrip

— — — — — — — — — — — — X — — — SensorShortTrip

— — — — — — — — — — — X — — — — PhaseImbalanceTrip

— — — — — — — — — — X — — — — — NonVolMemoryTrip

— — — — — — — — — X — — — — — —

— — — — — — — — X — — — — — — —

Reserved

JamTrip

— — — — — — — X — — — — — — — —

— — — — — — X — — — — — — — — —

StallTrip

UnderloadTrip

— — — X X X — — — — — — — — — — Reserved

— — X — — — — — — — — — — — — — OutputShortTrip

— X — — — — — — — — — — — — — — UserDefinedTrip

X — — — — — — — — — — — — — — — HardwareFltTrip

The highlighted functions are enabled by default.

WarningStatus

This parameter provides the current warning condition.

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

43

GET

WORD

Trip Status

0

0xC295

Bit

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

— — — — — — — — — — — — — — —

— — — — — — — — — — — — — — X

X

Function

OverloadWarning

Reserved

— — — — — — — — — — — — — X — — UnderPowerWarn

— — — — — — — — — — — — X — — — Reserved

— — — — — — — — — — — X — — — — PhasImbalanceWarn

— — — — — — — — — X X — — — — — Reserved

— — — — — — — — X — — — — — — —

— — — — — — — X — — — — — — — —

JamWarning

Reserved

— — — — — — X — — — — — — — — — UnderloadWarning

— — X X X X — — — — — — — — — — Reserved

— X — — — — — — — — — — — — — — UnswitchedPwrWarn

X — — — — — — — — — — — — — — — ConfigWarning

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

99

Chapter 4

Bulletin 290D/291D/294D Programmable Parameters

ProtectFltReset

This parameter resets a Protection Fault by setting the bit to 1.

0 = NoAction

0 > 1 = ResetFault

RunNetFltAction

This parameter in conjunction with

Parameter 46 (RunNetFltValue) defines how the starter will respond when a fault occurs.

0 = GoToFaultValue

1 = HoldLastState

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

RunNetFltValue

This parameter determines how the starter will be commanded in the event of a fault.

State the starter will go to on a NetFlt if

Parameter 45 (RunNetFltAction) = 1

(GotoFault-Value).

0 = OFF

1 = ON

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

RunNetIdlAction

This parameter in conjunction with

Parameter 48 (RunNetIdlValue) defines how the starter will respond when a network is idle as determined by

Parameter 48.

0 = GoToIdleValue

1 = HoldLastState

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

46

GET/SET

BOOL

Starter Protection

1

0

0

47

GET/SET

BOOL

Starter Protection

1

0

0

44

GET/SET

BOOL

Starter Protection

1

0

0

45

GET/SET

BOOL

Starter Protection

1

0

0

100

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

Bulletin 290D/291D/294D Programmable Parameters

Chapter 4

RunNetIdlValue

This parameter determines the state that starter assumes when the network is idle and Parameter 47 (RunNetIdlAction) is set to 1.

0 = OFF

1 = ON

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

User I/O Configuration Group

IOPointConfigure

This parameter determines the point that is configured:

0 = Input

1 = Output

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

X

5

4

X

FilterOffOn

This parameter determines the input

(which must be present for this time) before being reported ON.

X

3

Bit

2

X

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

1

X

48

GET

BOOL

Starter Protection

1

0

0

49

GET/SET

WORD

User I/O Config.

0

0x3F

0

0

X

50

GET/SET

USINT

User I/O Config.

msecs

0

64

0

Function

Pt00

Pt01

Pt02

Pt03

Pt04

Pt05

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

101

Chapter 4

Bulletin 290D/291D/294D Programmable Parameters

FilterOnOff

This parameter determines the input

(which must be absent for this time) before being reported OFF.

OutProtFltState

This parameter in conjunction with

Parameter 53 (OutProtFltValue) defines how the starter outputs will respond when a fault occurs.

0 = GoToPrFltValue

1 = IgnorePrFlt

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

OutProtFltValue

This parameter determines how the starter outputs will be commanded in the event of a protection fault if Parameter 52

(OutProtFltState) = 0.

0 = OFF

1 = ON

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

OutNetFaultState

This parameter in conjunction with

Parameter 55 (OutNetFaultValue) defines how the starter outputs will respond on an

Ethernet fault.

0 = GoToFaultValue

1 = HoldLastState

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

53

GET/SET

BOOL

User I/O Config.

1

0

0

54

GET/SET

BOOL

User I/O Config.

1

0

0

51

GET/SET

USINT

User I/O Config.

msecs

0

64

0

52

GET/SET

BOOL

User I/O Config.

1

0

0

102

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

Bulletin 290D/291D/294D Programmable Parameters

Chapter 4

OutNetFaultValue

This parameter determines the state of the starter outputs when an Ethernet fault occurs and Parameter 54

(OutNetFaultState) is set to 0.

0 = OFF

1 = ON

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

OutNetIdleState

This parameter in conjunction with

Parameter 57 (OutNetIdleValue) defines how the starter outputs will respond when a network is idle.

0 = GoToIdleValue

1 = HoldLastState

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

OutNetIdleValue

This parameter determines the state that starter outputs assumes when the network is idle and Parameter 56

(OutNetIdleState) is set to 0.

0 = OFF

1 = ON

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Input00Function

This parameter determines the special function for User Input 0:

0 = NoFunction

1 = FaultReset

2 = MotionDisable

3 = ForceSnapShot

4 = UserFault

5 = BrakeRelease

These choices are level sensitive. All others are edge sensitive

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

55

GET

BOOL

User I/O Config.

1

0

0

56

GET/SET

BOOL

User I/O Config.

1

0

0

57

GET

BOOL

User I/O Config.

1

0

0

58

GET/SET

USINT

User I/O Config.

4

0

0

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

103

Chapter 4

Bulletin 290D/291D/294D Programmable Parameters

Input01Function

This parameter determines the special function for User Input 1:

0 = NoFunction

1 = FaultReset

2 = MotionDisable

3 = ForceSnapShot

4 = UserFault

5 = BrakeRelease

These choices are level sensitive. All others are edge sensitive

Input02Function

This parameter determines the special function for User Input 2:

0 = NoFunction

1 = FaultReset

2 = MotionDisable

3 = ForceSnapShot

4 = UserFault

5 = BrakeRelease

These choices are level sensitive. All others are edge sensitive

Input03Function

This parameter determines the special function for User Input 3:

0 = NoFunction

1 = FaultReset

2 = MotionDisable

3 = ForceSnapShot

4 = UserFault

5 = BrakeRelease

These choices are level sensitive. All others are edge sensitive

Input04Function

This parameter determines the special function for User Input 4:

0 = NoFunction

1 = FaultReset

2 = MotionDisable

3 = ForceSnapShot

4 = UserFault

5 = BrakeRelease

These choices are level sensitive. All others are edge sensitive

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

59

GET/SET

USINT

User I/O Config.

4

0

0

60

GET/SET

USINT

User I/O Config.

4

0

0

61

GET/SET

USINT

User I/O Config.

4

0

0

62

GET/SET

USINT

User I/O Config.

4

0

0

104

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

Bulletin 290D/291D/294D Programmable Parameters

Chapter 4

Input05Function

This parameter determines the special function for User Input 5:

0 = NoFunction

1 = FaultReset

2 = MotionDisable

3 = ForceSnapShot

4 = UserFault

5 = BrakeRelease

These choices are level sensitive. All others are edge sensitive

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Miscellaneous Configuration Group

NetworkOverride

This parameter allows for the local logic to override a Network fault.

0 = Disable

1 = Enable

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

CommsOverride

This parameter allows for local logic to override an I/O connection timeout.

0 = Disable

1 = Enable

KeypadMode

This parameter selects if the keypad operation is maintained or momentary.

0 = Momentary

1 = Maintained

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

63

GET/SET

USINT

User I/O Config.

4

0

0

65

GET/SET

BOOL

Misc. Config.

1

0

0

64

GET/SET

BOOL

Misc. Config.

1

0

0

66

GET/SET

BOOL

Misc. Config.

1

0

0

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

105

Chapter 4

Bulletin 290D/291D/294D Programmable Parameters

KeypadDisable

This parameter disables all keypad function except for the “OFF” and “RESET” buttons.

0 = KeypadEnabled

1 = KeypadDisabled

SetToDefaults

This parameter if set to “1” will set the device to the factory defaults.

0 = NoAction

1 = SetToDefaults

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Advanced Configuration

OLWarningLevel

This parameter determines the Overload

Warning Level in % Thermal Capacity Used

(%TCU).

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

JamInhibitTime

This parameter determines the time during motor starting that Jam detection is inhibited.

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

69

GET

USINT

Advanced Config.

%TCU

0

100

85

70

GET

USINT

Advanced Config.

secs.

0

250

10

68

GET/SET

BOOL

Misc. Config.

1

0

0

67

GET/SET

BOOL

Misc. Config.

1

0

0

106

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

JamTripDelay

This parameter determines how much time above the Jam Level before the unit will trip.

JamTripLevel

This parameter determines the Jam Trip

Level as a percentage of Full Load Amps.

JamWarningLevel

This parameter determines the Jam

Warning Level as a percentage of Full Load Amps.

StallEnabledTime

This parameter determines the time that stall detection is enabled during motor starting.

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Bulletin 290D/291D/294D Programmable Parameters

Chapter 4

73

GET

UINT

Advanced Config.

%FLA

50

600

150

74

GET

USINT

Advanced Config.

secs

0

250

10

71

GET

USINT

Advanced Config.

x.x secs

1

25.0

5.0

72

GET

UINT

Advanced Config.

%FLA

50

600

250

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

107

Chapter 4

Bulletin 290D/291D/294D Programmable Parameters

StallTripLevel

This parameter determines the Stall Trip

Level as a percentage of Full Load Amps.

ULInhibitTime

This parameter determines the time during motor starting that Underload detection is inhibited.

ULTripDelay

This parameter determines the time below

Underload Level before the unit will trip.

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

ULTripLevel

This parameter determines the

Underload Trip Level as a percentage of Full Load Amps.

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

77

GET

USINT

Advanced Config.

x.x secs

1

25.0

5.0

78

GET

USINT

Advanced Config.

%FLA

10

100

50

75

GET

UINT

Advanced Config.

%FLA

100

600

600

76

GET

USINT

Advanced Config.

secs

0

250

10

108

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

Bulletin 290D/291D/294D Programmable Parameters

Chapter 4

ULWarningLevel

This parameter determines the

Underload Warning Level as a percentage of Full Load Amps.

OptionMatch

If product options do not match value, a hardware fault will occur.

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

AutobaudEnable

Autobaud enabled when set

0=Disable

1=Enable

Bit

4-31 3 2 1 0

— — — — X

— — — X —

— — X — —

— X — — —

X — — — —

Function

KeypadPreesent

KeypadNotPresent

BrakePresent

BrakeNotPresent

Reserved

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

1

1

0

100

SET

BOOL

Network

79

GET

USINT

Advanced Config.

%FLA

10

100

70

92

GET/SET

DWORD

Advance Config

0

0xffffffff

0

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

109

Chapter 4

Bulletin 290D/291D/294D Programmable Parameters

ConsumedIOAssy

Selects the format of the I/O data consumed

290 default = 150

ProducedIOAssy

Selects the format of the I/O data consumed

290 default = 151

AutoRunZip

Enables this device to produce COS messages on powerup

0=Disable

1=Enable

ZoneProducedEPR

Expected Packet Rate for producing Zip

COS connection

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value msec

1

65535

75

104

SET

UINT

ZIP

1

0

0

103

SET

BOOL

ZIP

102

SET

USINT

Network

52

151

151

101

SET

USINT

Network

3

150

150

110

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

ZoneProducedPIT

Production Inhibit Time for the producing

Zip connection

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Zone1ProducedMacId

The MacId address of the device in Zone 1

Zone2ProducedMacId

The MacId address of the device in Zone 2

Zone3ProducedMacId

The MacId address of the device in Zone 3

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Bulletin 290D/291D/294D Programmable Parameters

Chapter 4

64

64

0

107

SET

USINT

ZIP

64

64

0

106

SET

USINT

ZIP

64

64

0

108

SET

USINT

ZIP msec

1

65535

75

105

SET

UINT

ZIP

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

111

Chapter 4

Bulletin 290D/291D/294D Programmable Parameters

Zone4ProducedMacId

The MacId address of the device in Zone 4

Zone1Health

The status of the DeviceNet connection to the Zone 1 device

0=Healthy

1=NotHealthy

Zone2Health

The status of the DeviceNet connection to the Zone 2device

0=Healthy

1=NotHealthy

Zone3Health

The status of the DeviceNet connection to the Zone 3device

0=Healthy

1=NotHealthy

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

1

0

0

112

GET

BOOL

ZIP

1

0

0

111

GET

BOOL

ZIP

1

0

0

110

GET

BOOL

ZIP

64

64

0

109

SET

USINT

ZIP

112

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

Zone4Health

The status of the DeviceNet connection to the Zone 4device

0=Healthy

1=NotHealthy

Zone1PtMask

Chooses consumed bytes to be placed in

Zone Data Point table

Zone2PtMask

Chooses consumed bytes to be placed in

Zone Data Point table

Zone3PtMask

Chooses consumed bytes to be placed in

Zone Data Point table

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Bulletin 290D/291D/294D Programmable Parameters

Chapter 4

0

255

0

116

SET

DWORD

ZIP

0

255

0

115

SET

DWORD

ZIP

0

255

0

114

SET

DWORD

ZIP

1

0

0

113

GET

BOOL

ZIP

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

113

Chapter 4

Bulletin 290D/291D/294D Programmable Parameters

Zone4PtMask

Chooses consumed bytes to be placed in

Zone Data Point table

Zone1PtOffset

Byte offset in Zone Data Point table to place masked data

Zone2PtOffset

Byte offset in Zone Data Point table to place masked data

Zone3PtOffset

Byte offset in Zone Data Point table to place masked data

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

7

0

0

119

SET

UINT

ZIP

7

0

0

118

SET

UINT

ZIP

7

0

0

120

SET

UINT

ZIP

0

255

0

117

SET

DWORD

ZIP

114

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

Zone1PtOffset

Byte offset in Zone Data Point table to place masked data

Zone1AnalogMask

Byte offset in Zone Data Point table to place masked data

Zone2AnalogMask

Byte offset in Zone Data Point table to place masked data

Zone3AnalogMask

Byte offset in Zone Data Point table to place masked data

Bulletin 290D/291D/294D Programmable Parameters

Chapter 4

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

0

255

0

122

SET

WORD

ZIP

7

0

0

121

SET

UINT

ZIP

0

255

0

124

SET

WORD

ZIP

0

255

0

123

SET

WORD

ZIP

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

115

Chapter 4

Bulletin 290D/291D/294D Programmable Parameters

Zone4AnalogMask

Byte offset in Zone Data Point table to place masked data

Zone1AnOffset

Word offset in Analog Zone Data to place masked analog data

Zone2AnOffset

Word offset in Analog Zone Data to place masked analog data

Zone3AnOffset

Word offset in Analog Zone Data to place masked analog data

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

7

0

0

128

SET

UINT

ZIP

7

0

0

127

SET

UINT

ZIP

7

0

0

126

SET

UINT

ZIP

0

255

0

125

SET

WORD

ZIP

116

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

Zone4AnOffset

Word offset in Analog Zone Data to place masked analog data

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Zone1EPR

Expected Packet Rate for Zone 1 consuming connection

Zone2EPR

Expected Packet Rate for Zone 2 consuming connection

Zone3EPR

Expected Packet Rate for Zone 3 consuming connection

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Bulletin 290D/291D/294D Programmable Parameters

Chapter 4

msec

0

65535

75

131

SET

UINT

ZIP msec

0

65535

75

130

SET

UINT

ZIP msec

0

65535

75

132

SET

UINT

ZIP

7

0

0

129

SET

UINT

ZIP

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

117

Chapter 4

Bulletin 290D/291D/294D Programmable Parameters

Zone4EPR

Expected Packet Rate for Zone 4 consuming connection

Zone1Control

Enables/Disables options for Zone 1 control

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Zone2Control

Enables/Disables options for Zone 2 control

Bit

7 6 5 4 3 2 1 0

— — — — — — — X

— — — — — — X —

— — — — — X — —

— — — — X — — —

— — — X — — — —

— — X — — — — —

X X — — — — — —

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Function

SecurityEnable

COSCnxn

PollCnxn

StrobeCnxn

MulticastPoll

FragmentedIO

Reserved

0

0x3F

0x02

135

SET

BYTE

ZIP

0

0x3F

0x02

134

SET

BYTE

ZIP msec

0

65535

75

133

SET

UINT

ZIP

118

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

Bulletin 290D/291D/294D Programmable Parameters

Chapter 4

Bit

7 6 5 4 3 2 1 0

— — — — — — — X

— — — — — — X —

— — — — — X — —

— — — — X — — —

— — — X — — — —

— — X — — — — —

X X — — — — — —

Function

SecurityEnable

COSCnxn

PollCnxn

StrobeCnxn

MulticastPoll

FragmentedIO

Reserved

Zone3Control

Enables/Disables options for Zone 3 control

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Bit

7 6 5 4 3 2 1 0

— — — — — — — X

— — — — — — X —

— — — — — X — —

— — — — X — — —

— — — X — — — —

— — X — — — — —

X X — — — — — —

Zone4Control

Enables/Disables options for Zone 4 control

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Function

SecurityEnable

COSCnxn

PollCnxn

StrobeCnxn

MulticastPoll

FragmentedIO

Reserved

0

0x3F

0x02

137

SET

BYTE

ZIP

0

0x3F

0x02

136

SET

BYTE

ZIP

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

119

Chapter 4

Bulletin 290D/291D/294D Programmable Parameters

Zone1Key

Device Value Key for the device in Zone 1

Zone2Key

Device Value Key for the device in Zone 2

Zone3Key

Bit

7 6 5 4 3 2 1 0

— — — — — — — X

— — — — — — X —

— — — — — X — —

— — — — X — — —

— — — X — — — —

— — X — — — — —

X X — — — — — —

Function

SecurityEnable

COSCnxn

PollCnxn

StrobeCnxn

MulticastPoll

FragmentedIO

Reserved

Device Value Key for the device in Zone 3

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

0

65535

0

139

SET

UINT

ZIP

0

65535

0

138

SET

UINT

ZIP

0

65535

0

140

SET

UINT

ZIP

120

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

Zone4Key

Device Value Key for the device in Zone 4

DeviceValueKey

Device Value Key for this device

ZoneCtrlEnable

Enables or disables this device's Zip functionality

0=Disable

1=Enable

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Bulletin 290D/291D/294D Programmable Parameters

Chapter 4

0

65535

0

142

SET

UINT

ZIP

0

65535

0

141

SET

UINT

ZIP

1

0

0

143

SET

BOOL

ZIP

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

121

Chapter 4

Bulletin 290D/291D/294D Programmable Parameters

Bulletin 294D Basic Status Group

OutputFreq

This parameter provides the output frequency at motor terminals T1, T2, T3.

CommandFreq

This parameter provides the commanded frequency even if the starter is not running.

OutputCurrent

This parameter provides the output current at motor terminals T1, T2, T3.

OutputVoltage

This parameter provides the output voltage at motor terminals T1, T2, T3.

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

4

GET

UINT

Basic Status x.xV AC

0

999.9

0

3

GET

UINT

Basic Status x.xx Amps

0

8.00

0

2

GET

UINT

Basic Status x.x Hz

0

999.9

0

1

GET

UINT

Basic Status x.x Hz

0

999.9

0

122

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

Bulletin 290D/291D/294D Programmable Parameters

Chapter 4

DCBusVoltage

This parameter provides the present DC bus voltage level.

Starter Status

This parameter provides the status of the starter.

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Bit

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Function

— — — — — — — — — — — — — — — X TripPresent

— — — — — — — — — — — — — — X — WarningPresent

— — — — — — — — — — — — — X — — RunningForward

— — — — — — — — — — — — X — — — RunningReverse

— — — — — — — — — — — X — — — — Ready

— — — — — — — — — — X — — — — — NetControlStatus

— — — — — — — — — X — — — — — —

— — — — — — — — X — — — — — — —

— — — — — — — X — — — — — — — —

— — — — — — X — — — — — — — — —

— — — — — X — — — — — — — — — —

— — — — X — — — — — — — — — — —

— — — X — — — — — — — — — — — —

— — X — — — — — — — — — — — — —

NetRefStatus

AtReference

DLXEnabled

KeyPadAuto

KeyPadOff

KeyPadHand

KeyPadJogging

Reserved

— X — — — — — — — — — — — — — — DisconnectClosed

X — — — — — — — — — — — — — — — BrakeStatus

6

GET

WORD

Basic Status

0

OxDFFF

0

5

GET

UINT

Basic Status

V DC

0

1200

0

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

123

Chapter 4

Bulletin 290D/291D/294D Programmable Parameters

StarterCommand

The parameter provides the command status of the starter.

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

7

GET

WORD

Basic Status

0

0xFF1F

0

Bit

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Function

— — — — — — — — — — — — — — — X RunningForward

— — — — — — — — — — — — — — X — RunningReverse

— — — — — — — — — — — — — X — —

— — — — — — — — — — — — X — — —

— — — — — — — — — — — X — — — —

— — — — — — — — X X X — — — — —

ResetFault

JogForward

JogReverse

Reserved

— — — — — — — X — — — — — — — —

— — — — — — X — — — — — — — — —

— — — — — X — — — — — — — — — —

— — — — X — — — — — — — — — — —

— — — X — — — — — — — — — — — —

— — X — — — — — — — — — — — — —

— X — — — — — — — — — — — — — —

X — — — — — — — — — — — — — — —

Out00

Out01

Out02

Out03

Out04

Out05

Accel2

Decel2

AuxIOStatus

Status of the hardware input/output points.

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

8

GET

WORD

Basic Status

0

0x3F

0

124

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

Bulletin 290D/291D/294D Programmable Parameters

Chapter 4

Bit

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

— — — — — — — — — — — — — — — X

— — — — — — — — — — — — — — X —

— — — — — — — — — — — — — X — —

— — — — — — — — — — — — X — — —

— — — — — — — — — — — X — — — —

— — — — — — — — — — X — — — — —

X X X X X X X X X X — — — — — —

NetworkStatus

The parameter provides the status of the network connections.

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

9

GET

WORD

Basic Status

0

0xDF

0

Function:

Pt00

Pt01

Pt02

Pt03

Pt04

Pt05

Reserved

Bit

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

— — — — — — — — — — — — — — — X

— — — — — — — — — — — — — — X —

— — — — — — — — — — — — — X — —

— — — — — — — — — — — — X — — —

— — — — — — — — — — — X — — — —

— — — — — — — — X X X — — — — —

— — — — — — — X — — — — — — — —

— — — — — — X — — — — — — — — —

— — — — — X — — — — — — — — — —

— — — — X — — — — — — — — — — —

— — — X — — — — — — — — — — — —

— — X — — — — — — — — — — — — —

— X — — — — — — — — — — — — — —

X — — — — — — — — — — — — — — —

Function:

ExplicitCnxn

IOConnection

ExplicitCnxnFlt

IOCnxnFault

IOCnxnIdle

Reserved

ZIP1Cnxn

ZIP1CnxnFlt

ZIP2Cnxn

ZIP2CnxnFlt

ZIP3Cnxn

ZIP3CnxnFlt

ZIP4Cnxn

ZIP4CnxnFlt

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

125

Chapter 4

Bulletin 290D/291D/294D Programmable Parameters

DLXControlStatus

The parameter provides the DeviceLogix

Control Status.

0 = Controlled in Logix Programs

1 = Controlled in local DLX programs.

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Bit

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

— — — — — — — — — — — — — — —

X

X —

— —

0

X

— — — — — — — — — — — —

— — — — — — — — — — — X

— — — — — — — — — —

— — — — — — — — — X

— — — — — — —

— — — — — — —

X

X —

X

X

— — — — — —

— — — — — X

— — — —

— — — X

X X X

X

X

— — — — — — — — — — — — —

OutputSourceV (IPS)

[SwitchedVolts]

This parameter determines the incoming switched control voltage across terminals

A1…A2.

(IPS) available voltage on User Output Pin

4 for all I/O points.

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

10

GET

UINT

Basic Status

0

0x1FFF

0

11

GET

UINT

Basic Status x.xx Volts

0

65535

0

Function:

RunForward

RunReverse

Out00

Out01

Out02

Out03

Out04

Out05

JogForward

JogReverse

Accel2

Decel2

Command Freq

Reserved

126

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

Bulletin 290D/291D/294D Programmable Parameters

Chapter 4

SensorSourceV (IPS)

[UnswitchedVolts]

This parameter determines the incoming unswitched control voltage across terminals A2…A3.

(IPS) available voltage on input Sensor

Source Pin 1 for all I/O points.

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

InternalFanRPM

This parameter determines the

Revolutions Per Minute (RPM) of the internal cooling fan.

DriveTemperature

This parameter determines the present operating temperature of the power section.

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

ElapsedRunTime

This parameter determines the accumulated run time displayed in 10 hour increments.

1 = 10 Hrs

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

14

GET

UINT

Basic Status

0

9999

0

13

GET

UINT

Basic Status

RPM

0

65535

0

15

GET

UINT

Basic Status

°C

0

9999

0

12

GET

UINT

Basic Status x.xx Volts

0

65535

0

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

127

Chapter 4

Bulletin 290D/291D/294D Programmable Parameters

Trip Status Group

TripStatus

This parameter provides the fault condition that caused any current trip.

WarningStatus

This parameter provides the current warning condition.

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

16

GET

WORD

Trip Status

0

0xFFFF

0

Bit

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

— — — — — — — — — — — — — — —

— — — — — — — — — — — — — — X

X

Function

OverloadTrip

PhaseShortTrip

— — — — — — — — — — — — — X — — UnderPowerTrip

— — — — — — — — — — — — X — — — SensorShortTrip

— — — — — — — — — — — X — — — — OverCurrentTrip

— — — — — — — — — — X — — — — — NonVolMemoryTrip

— — — — — — — — — X — — — — — —

— — — — — — — — X — — — — — — —

ParamSyncTrip

DCBusTrip/

OpenDisconnect

— — — — — — — X — — — — — — — —

— — — — — — X — — — — — — — — —

— — — — — X — — — — — — — — — —

— — — — X — — — — — — — — — — —

StallTrip

OverTemperature

GroundFault

RestartRetries

— — — X — — — — — — — — — — — — DriveHdwFault

— — X — — — — — — — — — — — — — OutputShortTrip

— X — — — — — — — — — — — — — — UserDefinedTrip

X — — — — — — — — — — — — — — — HardwareFltTrip

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

17

GET

WORD

Trip Status

0

0xC044

0

128

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

Bulletin 290D/291D/294D Programmable Parameters

Chapter 4

Bit

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Function

— — — — — — — — — — — — — — X X Reserved

— — — — — — — — — — — — — X — — UnderPowerWarn

— — — — — — — — — — X X X — — —

— — — — — — — — — X — — — — — —

— — X — X X X X X — — — — — — —

— — — X — — — — — — — — — — — —

— X — — — — — — — — — — — — — —

X — — — — — — — — — — — — — — —

Reserved

DriveParamInit

Reserved

FanWarning

DNetPwrWarn

ConfigWarning

TripLog0

This parameter provides the last trip to occur.

TripLog1

This parameter provides the second last trip to occur.

TripLog2

This parameter provides the third last trip to occur.

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

19

GET

UINT

Trip Status

0

75

0

18

GET

UINT

Trip Status

0

75

0

20

GET

UINT

Trip Status

0

75

0

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

129

Chapter 4

Bulletin 290D/291D/294D Programmable Parameters

TripLog3

This parameter provides the fourth last trip to occur.

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

TripLog4

This parameter provides the fifth last trip to occur.

SnapShotOutFreq

This parameter provides a snapshot of output frequency at time of last trip.

SnapShotOutAmps

This parameter provides a snapshot of output current at time of last trip.

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

23

GET

UINT

Trip Status x.x Hz

0

999.9

0

22

GET

UINT

Trip Status

0

75

0

24

GET

UINT

Trip Status x.xx Amps

0

4.60

0

21

GET

UINT

Trip Status

0

75

0

130

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

SnapShotOutVolts

This parameter provides a snapshot of output voltage at time of last trip.

SnapShotBusVolts

This parameter provides a snapshot of DC bus voltage level at time of last trip.

SnapShotDrvTemp

This parameter provides a snapshot of operating temperature at time of last trip.

Bulletin 290D/291D/294D Programmable Parameters

Chapter 4

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

27

GET

UINT

Trip Status

°C

0

9999

0

26

GET

UINT

Trip Status

V DC

0

1200

0

25

GET

UINT

Trip Status x.x V AC

0

999.9

0

Motor and Control Group

MotorNPVolts

O

Stop drive before changing this parameter.

Set to the motor nameplate rated voltage.

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

28

GET/SET

UINT

Motor and Control

V AC

35

460

460

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

131

Chapter 4

Bulletin 290D/291D/294D Programmable Parameters

MotorNPHertz

O

Stop drive before changing this parameter.

Set to the motor nameplate rated frequency.

MotorOLCurrent

Set to the maximum allowable motor current.

Cat. No.

294_FD1P5

294_FD2P5

294_FD4P2

Hp (kW)

0.5 (0.4)

1.0 (0.75)

2.0 (1.5)

Min Amps

0

0

0

CurrentLimit

Maximum output current allowed before current limiting occurs

Default Amps

1.5

2.5

3.6

Cat. No.

294_FD1P5

294_FD2P5

294_FD4P2

Hp (kW)

0.5 Hp

1.0 Hp

2.0 Hp

Min = 0; Max = 2.7; Default = 2.2

Min = 0; Max = 4.5; Default = 3.7

Min = 0; Max = 7.5; Default = 6.3

StopMode

Valid Stop Mode for the Bulletin 294E ArmorStart LT are the following:

0 =

RampToStop,

“Stop” command clears active fault

1 =

Coast to Stop,

“Stop” command clears active fault

2 =

DCBrake,

DC Injection Braking Stop, “Stop” command clears active fault

3 =

DCBrakeAuto,

DC Injection Stop with Auto Shutoff

Standard DC Injection Braking for value set in Parameter 75 (DC Brake Time) or

Drive shuts off if current limit is exceeded.

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Related Parameter

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Related Parameters

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Related Parameters

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

29

GET/SET

UINT

Motor and Control

Hz

10

400

60

30

31, 80, 82…83

GET/SET

UINT

Motor and Control x.x Amps

0

Cat. No. Dependent

Cat. No. Max Output

31

GET/SET

UINT

Motor and Control x.x Amps

0

Cat. No. Dependent

Cat. No. Dependent

32

GET/SET

UINT

Motor and Control

0

3

0

132

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

Bulletin 290D/291D/294D Programmable Parameters

Chapter 4

Speed Control Group

SpeedReference

Sets the source of the speed reference:

0 = Logix (Network or DeviceLogix)

1 = InternalFreq

AccelTime1

Sets the rate of acceleration for all speed increases.

Maximum Freq

Accel Time

= Accel Rate

Parameter 35

(Maximum Freq)

Dec eler ation

Speed

Ac celer ation

0

0

Accel

Time 1

Time

Decel

Time 1

MinimumFreq

Sets the lowest frequency the drive will output continuously.

MaximumFreq

O

Stop drive before changing this parameter.

Sets the highest frequency the drive will output.

Parameter Number

Related Parameter

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Related Parameters

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Related Parameters

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Related Parameter

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

36

33, 37

GET/SET

UINT

Speed Control x.x secs

0.0

600.0

10.0

35

1, 2, 34, 35, 139

GET/SET

UINT

Speed Control

Hz

0.0

400

60

34

1, 2, 35

GET/SET

UINT

Speed Control x.x Hz

0.0

400.0

0.0

33

1, 2, 36, 37, 72

GET/SET

UINT

Speed Control

0

2

0

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

133

Chapter 4

Bulletin 290D/291D/294D Programmable Parameters

DecelTime1

Sets the rate of deceleration for all speed decreases.

Maximum Freq

Decel Time

= Decel Rate

Parameter 35

(Maximum Freq)

Dec eler ation

Speed

Ac celer ation

0

0

Accel

Time 1

Time Decel

Time 1

Parameter Number

Related Parameters

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

SCurvePercent

Sets the percentage of acceleration or deceleration time that is applied to ramp as S Curve. Time is added, half at the beginning and half at the end of the ramp.

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Figure 35 - S Curve

Example:

Accel Time = 10 Seconds

S Curve Setting = 50%

S Curve Time = 10 x 0.5 = 5 Seconds

Total Time = 10 + 5 = 15 Seconds

Target

Target 2

50% S Curve

37

33, 36

GET/SET

UINT

Speed Control x.x secs

0.1

600.0

10.0

38

GET/SET

UINT

Speed Control

Percentage

0

100

0

134

JogFrequency

Sets the output frequency when the jog command is issued.

1/2 S Curve Time

2.5 Seconds

Accel Time

10 Seconds

Total Time to Accelerate = Accel Time + S Curve Time

1/2 S Curve Time

2.5 Seconds

Parameter Number

Related Parameters

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

39

35, 40

GET/SET

UINT

Drive Advanced Setup x.x Hz

0.0

400.0

10.0

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

JogAccelDecel

Sets the acceleration and deceleration time when a jog command is issued.

Bulletin 290D/291D/294D Programmable Parameters

Chapter 4

Parameter Number

Related Parameters

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Starter Protection Group

ProtFltResetMode

This parameter configures the Protection

Fault reset mode.

0 = Manual

1 = Automatic

ProtectFltEnable

This parameter enables the Protection

Fault by setting the bit to 1.

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

40

39

GET/SET

UINT

Drive Advanced Setup x.x secs

0.1

600.0

10.0

41

GET/SET

BOOL

Starter Protection

1

0

0

42

GET/SET

WORD

Starter Protection

0

0xFFFF

0xBFFF

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

135

Chapter 4

Bulletin 290D/291D/294D Programmable Parameters

Bit

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

— — — — — — — — — — — — — — —

— — — — — — — — — — — — — — X

X

Function

OverloadTrip

PhaseShortTrip

— — — — — — — — — — — — — X — — UnderPowerTrip

— — — — — — — — — — — — X — — — SensorShortTrip

— — — — — — — — — — — X — — — — OverCurrentTrip

— — — — — — — — — — X — — — — — NonVolMemoryTrip

— — — — — — — — — X — — — — — —

— — — — — — — — X — — — — — — —

ParamSyncTrip

DCBusTrip/

OpenDisconnect

— — — — — — — X — — — — — — — —

— — — — — — X — — — — — — — — —

— — — — — X — — — — — — — — — —

— — — — X — — — — — — — — — — —

StallTrip

OverTemperature

GroundFault

RestartRetries

— — — X — — — — — — — — — — — — DriveHdwFault

— — X — — — — — — — — — — — — — OutputShortTrip

— X — — — — — — — — — — — — — — UserDefinedTrip

X — — — — — — — — — — — — — — — HardwareFltTrip

The functions highlighted are enabled by default

WarningEnable

This parameter enables a warning by setting the bit to 1.

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

43

GET/SET

WORD

Starter Protection

0

0xC044

0

Bit

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Function

— — — — — — — — — — — — — — X X Reserved

— — — — — — — — — — — — — X — — UnderPowerWarn

— — — — — — — — — — X X X — — —

— — — — — — — — — X — — — — — —

— — X — X X X X X — — — — — — —

— — — X — — — — — — — — — — — —

— X — — — — — — — — — — — — — —

X — — — — — — — — — — — — — — —

Reserved

DriveParamInit

Reserved

FanWarning

DNetPwrWarn

ConfigWarning

136

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

ProtectFltReset

This parameter resets a Protection Fault by setting the bit to 1.

0 = NoAction

0 > 1 = ResetFault

RunNetFltAction

This parameter in conjunction with

Parameter 46 (RunNetFltValue) defines how the starter will respond when a network fault occurs as determined.

0 = GoToFaultValue

1 = HoldLastState

RunNetFltValue

This parameter determines how the starter will be commanded in the event of a fault.

State the starter will go to on a NetFlt if

Parameter 45 (RunNetFltAction) = 1

(GotoFault-Value).

0 = OFF

1 = ON

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

RunNetIdlAction

This parameter in conjunction with

Parameter 48 (RunNetIdlValue) defines how the starter will respond when a network is idle as determined by Parameter 48.

0 = GoToIdleValue

1 = HoldLastState

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Bulletin 290D/291D/294D Programmable Parameters

Chapter 4

46

GET/SET

BOOL

Starter Protection

1

0

0

47

GET/SET

BOOL

Starter Protection

1

0

0

44

GET/SET

BOOL

Starter Protection

1

0

0

45

GET/SET

BOOL

Starter Protection

1

0

0

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

137

Chapter 4

Bulletin 290D/291D/294D Programmable Parameters

RunNetIdlValue

This parameter determines the state that starter assumes when the network is idle and Parameter 47 (RunNetIdlAction) is set to 1.

0 = OFF

1 = ON

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

User I/O Configuration Group

IOPointConfigure

This parameter determines the point that is configured:

0 = Input

1 = Output

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

X

5

4

X

FilterOffOn

This parameter determines the input

(which must be present for this time) before being reported ON.

X

3

Bit

2

X

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

1

X

48

GET

BOOL

Starter Protection

0

0x3F

0

49

GET/SET

WORD

User I/O Config.

0

0x3F

0

0

X

50

GET/SET

USINT

User I/O Config.

msecs

0

64

0

Function

Pt00

Pt01

Pt02

Pt03

Pt04

Pt05

138

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

FilterOnOff

This parameter determines the input

(which must be absent for this time) before being reported OFF.

OutProtFltState

This parameter in conjunction with

Parameter 53 (OutProtFltValue) defines how the starter outputs will respond when a fault occurs.

0 = GoToPrFltValue

1 = IgnorePrFlt

OutProtFltValue

This parameter determines how the starter outputs will be commanded in the event of a protection fault if Parameter 52

(OutProtFltState) = 0.

0 = OFF

1 = ON

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

OutNetFaultState

This parameter in conjunction with

Parameter 55 (OutNetFaultValue) defines how the starter outputs will respond on an Ethernet fault.

0 = GoToFaultValue

1 = HoldLastState

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Bulletin 290D/291D/294D Programmable Parameters

Chapter 4

53

GET/SET

BOOL

User I/O Config.

1

0

0

54

GET/SET

BOOL

User I/O Config.

1

0

0

51

GET/SET

USINT

User I/O Config.

msecs

0

64

0

52

GET/SET

BOOL

User I/O Config.

1

0

0

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

139

Chapter 4

Bulletin 290D/291D/294D Programmable Parameters

OutNetFaultValue

This parameter determines the state that starter outputs when an Ethernet fault occurs and Parameter 54

(OutNetFaultState) is set to 0.

0 = OFF

1 = ON

OutNetIdleState

This parameter in conjunction with

Parameter 57 (OutNetIdleValue) defines how the starter outputs will respond when a network is idle.

0 = GoToIdleValue

1 = HoldLastState

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

OutNetIdleValue

This parameter determines the state that starter outputs assumes when the network is idle and Parameter 56

(OutNetIdleState) is set to 0.

0 = OFF

1 = ON

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Input00Function

This parameter determines the special function for User Input 0:

0 = NoFunction

1 = FaultReset

2 = MotionDisable

3 = ForceSnapShot

4 = UserFault

5 = BrakeRelease

These choices are level sensitive.

All others are edge sensitive

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

55

GET

BOOL

User I/O Config.

1

0

0

56

GET/SET

BOOL

User I/O Config.

1

0

0

57

GET

BOOL

User I/O Config.

1

0

0

58

GET/SET

USINT

User I/O Config.

5

0

0

140

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

Bulletin 290D/291D/294D Programmable Parameters

Chapter 4

Input01Function

This parameter determines the special function for User Input 1:

0 = NoFunction

1 = FaultReset

2 = MotionDisable

3 = ForceSnapShot

4 = UserFault

5 = BrakeRelease

These choices are level sensitive. All others are edge sensitive

Input02Function

This parameter determines the special function for User Input 2:

0 = NoFunction

1 = FaultReset

2 = MotionDisable

3 = ForceSnapShot

4 = UserFault

5 = BrakeRelease

These choices are level sensitive. All others are edge sensitive

Input03Function

This parameter determines the special function for User Input 3:

0 = NoFunction

1 = FaultReset

2 = MotionDisable

3 = ForceSnapShot

4 = UserFault

5 = BrakeRelease*

These choices are level sensitive. All others are edge sensitive

Input04Function

This parameter determines the special function for User Input 4:

0 = NoFunction

1 = FaultReset

2 = MotionDisable

3 = ForceSnapShot

4 = UserFault

5 = BrakeRelease

These choices are level sensitive. All others are edge sensitive

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

59

GET/SET

USINT

User I/O Config.

5

0

0

60

GET/SET

USINT

User I/O Config.

5

0

0

61

GET/SET

USINT

User I/O Config.

5

0

0

62

GET/SET

USINT

User I/O Config.

5

0

0

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

141

Chapter 4

Bulletin 290D/291D/294D Programmable Parameters

Input05Function

This parameter determines the special function for User Input 5:

0 = NoFunction

1 = FaultReset

2 = MotionDisable

3 = ForceSnapShot

4 = UserFault

5 = BrakeRelease

These choices are level sensitive. All others are edge sensitive

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Miscellaneous Configuration Group

NetworkOverride

This parameter allows for the local logic to override a Network fault.

0 = Disable

1 = Enable

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

CommsOverride

This parameter allows for local logic to override an I/O connection timeout.

0 = Disable

1 = Enable

KeypadMode

This parameter selects if the keypad operation is maintained or momentary.

0 = Momentary

1 = Maintained

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

142

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

63

GET/SET

USINT

User I/O Config.

5

0

0

65

GET/SET

BOOL

Misc. Config.

1

0

0

64

GET/SET

BOOL

Misc. Config.

1

0

0

66

GET/SET

BOOL

Misc. Config.

1

0

0

KeypadDisable

This parameter disables all keypad function except for the “OFF” and “RESET” buttons.

0 = KeypadEnabled

1 = KeypadDisabled

SetToDefaults

This parameter if set to “1” will set the device to the factory defaults.

0 = NoAction

1 = SetToDefaults

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Advanced Configuration

AccelTime2

When active, sets the rate of acceleration for all speed increases except for jog.

Maximum Freq

Accel Time

= Accel Rate

Parameter 35

(Maximum Freq)

Speed

Ac celer ation

0

0

Accel

Time 2

Dec eler ation

Time

Decel

Time 2

Parameter Number

Related Parameters

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Bulletin 290D/291D/294D Programmable Parameters

Chapter 4

68

GET/SET

BOOL

Misc. Config.

1

0

0

67

GET/SET

BOOL

Misc. Config.

1

0

0

69

36

GET/SET

UINT

Advanced Config.

x.x secs

0.0

600.0

20.0

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

143

Chapter 4

Bulletin 290D/291D/294D Programmable Parameters

DecelTime2

When active, sets the rate of deceleration for all speed decreases except for jog.

Maximum Freq

Decel Time

= Decel Rate

Parameter 35

(Maximum Freq)

Speed

Ac celer ation

0

0

Accel

Time 2

Time

Dec eler ation

Decel

Time 2

MotorOLRetention

Enables/disables the Motor overload

Retention function. When Enabled, the value held in the motor overload counter is saved at power-down and restored at power-up. A change to this parameter setting resets the counter.

0 = Disabled (Default)

1 = Enabled

InternalFreq

Provide the frequency command to drive when Parameter 33 (Speed-Reference) =

1 (InternalFreq). When enabled, this parameter will change the frequency command in real time.

Parameter Number

Related Parameters

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Related Parameters

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

70

37

GET/SET

UINT

Advanced Config.

x.x secs

0.0

600.0

20.0

71

GET/SET

UINT

Advanced Config.

1

0

0

72

33

GET/SET

UINT

Advanced Config.

x.x Hz

0.0

400.0

60.0

144

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

SkipFrequency

Sets the frequency at which the drive will not operate.

Parameter Number

Related Parameters

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

SkipFrqBand

Determines the band width around

Parameter 73 (SkipFrequency). Parameter

74 (SkipFreqBand) is split applying 1/2 above and 1/2 below the actual skip frequency. A setting of 0.0 disables this parameter.

Figure 36 - Skip Frequency Band

Frequency

Command

Frequency

Drive Output

Frequency

Parameter Number

Related Parameters

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Skip Frequency

Bulletin 290D/291D/294D Programmable Parameters

Chapter 4

73

74

GET/SET

UINT

Advanced Config.

Hz

0

400 Hz

0 Hz

74

73

GET/SET

UINT

Advanced Config.

x.x Hz

0.0 Hz

30.0 Hz

0.0 Hz

2x Skip

Frequency Band

Time

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

145

Chapter 4

Bulletin 290D/291D/294D Programmable Parameters

DCBrakeTime

Sets the length of time that DC brake current is injected into the motor. Refer to Parameter 76

(DCBrakeLevel).

Parameter Number

Related Parameters

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

75

32, 76

GET/SET

UINT

Advanced Config.

x.x secs

0.0

99.9

(Setting of 99.9 = Continuous)

0.0

DCBrakeLevel

Defines the maximum DC brake current, in amps, applied to the motor when Parameter 32

(StopMode) is set to either

0 = RAMP or 2 = DC BRAKE.

For 0.5 Hp units – Min = 0; Max = 2.7; Default = .1

For 1.0 Hp units – Min = 0; Max = 4.5; Default = .1

For 2.0Hp units – Min = 0; Max = 7.5; Default = .2

Parameter Number

Related Parameters

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

76

32, 75

GET/SET

UINT

Advanced Config.

x.x Amps

0.0

Hp Dependant

Hp Dependant

ATTENTION:

Ramp-to-Stop Mode

Voltage

DC Injection Braking Mode

Stop Command

Speed

Voltage

Time

[DC Brake Time]

}

[DC Brake Level]

Speed

[DC Brake Time]

}

[DC Brake Level]

Stop Command

Time

If a hazard of injury due to movement of equipment or material exists, an auxiliary mechanical braking device must be used.

This feature should not be used with synchronous or permanent magnet motors. Motors may be demagnetized during braking.

146

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

ReverseDisable

O

Stop drive before changing this parameter.

Enables/disables the function that allows the direction of the motor rotation to be changed.

0 = Enabled

1 = Disabled

FlyingStartEn

Sets the condition that allows the drive to reconnect to a spinning motor at actual RPM.

0 = Disabled

1 = Enabled

Compensation

Enables/disables correction options that may improve problems with motor instability,

0 = Disabled

1 = Electrical (Default)

Some drive/motor combinations have inherent instabilities which are exhibited as non-sinusoidal motor currents. This setting attempts to correct this condition

2 = Mechanical

Some motor/load combinations have mechanical resonances which can be excited by the drive current regulator. This setting slows down the current regulator response and attempts to correct this condition.

3 = Both

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Related Parameters

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Bulletin 290D/291D/294D Programmable Parameters

Chapter 4

77

GET/SET

UINT

Advanced Config.

0

1

0

78

GET/SET

UINT

Advanced Config.

1

0

0

79

GET/SET

UINT

Advanced Config.

3

1

0

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

147

Chapter 4

Bulletin 290D/291D/294D Programmable Parameters

SlipHertzAtFLA

Compensates for the inherent slip in an induction motor. This frequency is added to the commanded output frequency based on motor current.

Parameter Number

Related Parameters

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

BusRegulateMode

Controls the operation of the drive voltage regulation, which is normally operational at deceleration or when the bus voltage rises.

0 = Disable

1 = Enabled

Parameter Number

Related Parameters

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

148

ATTENTION:

The bus regulator mode function is extremely useful for preventing nuisance overvoltage faults resulting from aggressive decelerations, overhauling loads, and eccentric loads. However, it can also cause either of the following two conditions to occur.

1. Fast positive changes in input voltage or imbalanced input voltages can cause uncommanded positive speed changes;

2. Actual deceleration times can be longer than commanded deceleration times.

However, a "Stall Fault" is generated if the drive remains in this state for 1 minute.

If this condition is unacceptable, the bus regulator must be disabled.

MotorOLSelect

Drive provides Class 10 motor overload protection. Sets the derating factor for I

2

T motor overload function.

0 = NoDerating

1 = MinDerating

2 = MaxDerating

Parameter Number

Related Parameters

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

82

29, 30

GET/SET

UINT

Advanced Config.

0

2

0

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

80

30

GET/SET

UINT

Advanced Config.

x.x Hz

0.0 Hz

10.0 Hz

2.0 Hz

81

GET/SET

UINT

Advanced Config.

0

1

0

Bulletin 290D/291D/294D Programmable Parameters

Chapter 4

Figure 37 - Overload Trip Curves

No Derate

100

80

60

40

20

0

0 25 50 75 100 125 150 175

% of Motor Nameplate Hertz (P29)

200

Min. Derate

100

80

60

40

20

0

0 25 50 75 100 125 150

175

% of Motor Nameplate Hertz (P29)

200

SWCurrentTrip

Enables/disables a software instantaneous

(within 100 ms) current trip.

For 0.5 Hp units – Min = 0; Max = 3.0; Default = 0

For 1.0 Hp units – Min = 0; Max = 5.0; Default = 0

For 2.0Hp units – Min = 0; Max = 8.4; Default = 0

Parameter Number

Related Parameter

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Max. Derate

100

80

60

40

20

0

0 25 50 75 100 125 150 175

% of Motor Nameplate Hertz (P29)

200

83

30

GET/SET

UINT

Advanced Config.

x.x Amps

0.0

Hp Dependent

0.0 (Disabled)

AutoRstrtTries

Set the maximum number of times the drive attempts to reset a fault and restart.

Parameter Number

Related Parameter

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Clear a Type 1 Fault and Restart the Drive

1.

Set Parameter 84 (AutoRestartTries) to a value other than 0.

2.

Set Parameter 85 (AutoRestartDelay) to a value other than 0.

84

85

GET/SET

UINT

Advanced Config.

0

9

0

Clear an Overvoltage, Undervoltage, or Heatsink OvrTmp Fault without Restarting the Drive

1.

Set Parameter 84 (AutoRestartTries) to a value other than 0.

2.

Set Parameter 85 (AutoRestartDelay) to 0.

ATTENTION:

Equipment damage and/or personal injury may result if this parameter is used in an inappropriate application. Do not use this function without considering applicable local, national, and international codes, standards, regulations, or industry guidelines.

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

149

Chapter 4

Bulletin 290D/291D/294D Programmable Parameters

AutoRstrtDelay

Sets time between restart attempts when

Parameter 84(Auto Rstrt Tries) is set to a value other than zero.

Parameter Number

Related Parameter

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

85

84

GET/SET

UINT

Advanced Config.

x.x secs

0.0

120.0

1.0

BoostSelect

Sets the boost voltage (% of Parameter 28

[MotorNPVolts]) and redefines the Volts per Hz curve.

See Table 21 for details.

Parameter Number

Related Parameters

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

86

28, 29

GET/SET

UINT

Advanced Config.

1

14

8

11

12

9

10

13

14

7

8

5

6

3

4

1

2

Table 21 - Boost Select Options

Options

Custom V/Hz

30.0, VT

35.0, VT

40.0, VT

45.0, VT

0.0 no IR

0.0

2.5, CT

5.0, CT (default)

7.5, CT

10.0, CT

12.5, CT

15.0, CT

17.5, CT

20.0, CT

Description

Variable Torque

(Typical fan/pump curves)

Constant Torque

150

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

Bulletin 290D/291D/294D Programmable Parameters

Chapter 4

Figure 38 - Boost Select

100

50

1/2 [Motor NP Volts]

Settings

5-14

0 50

%P29 [Motor NP Hertz]

MaximumVoltage

Sets the highest voltage the drive will output.

2

1

4

3

100

Parameter Number

Related Parameters

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

MotorNamePlateFLA

Set to the motor nameplate Full Load Amps.

For 0.5 Hp units – Min = 0; Max = 3.0; Default = 1.5

For 1.0 Hp units – Min = 0; Max = 5.0; Default = 2.5

For 2.0Hp units – Min = 0; Max = 8.4; Default = 3.6

Parameter Number

Related Parameters

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

87

GET/SET

UINT

Advanced Config.

V AC

20V AC

460V AC

2V AC

88

GET/SET

UINT

Advanced Config.

x.x Amps

0.0

Hp Dependent

Hp Dependent

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

151

Chapter 4

Bulletin 290D/291D/294D Programmable Parameters

BrakeMode

This parameter determines the source brake control mode.

0 = NoBrakeControl

1 = AboveFrequency

2 = AboveCurrent

BrakeFreqThresh

This parameter determines the frequency above which the source brake is released.

BrakeCurrThresh

This parameter determines the motor current above which the source brake is released.

Parameter Number

Related Parameters

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Related Parameters

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Related Parameters

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

89

GET/SET

UINT

Advanced Config.

0

2

1

90

GET/SET

UINT

Advanced Config.

x.x Hz

0.0

999.9

0.0

91

GET/SET

UINT

Advanced Config.

x.xx Amps

0.0

8.0

0.0

IMPORTANT

For parameter 90 and 91 the value of the threshold can be set beyond the operational maximum limit of the product, or at a level which may cause multiple transitions during operation. Threshold values near the operational levels should be avoided.

152

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

Bulletin 290D/291D/294D Programmable Parameters

Chapter 4

OptionMatch

If product options do not match value, a hardware fault will occur.

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

92

GET/SET

DWORD

Advance Config

0

0xffffffff

0

Bit

4-31 3 2 1 0

— — — — X

— — — X —

— — X — —

— X — — —

X — — — —

Function

KeypadPreesent

KeypadNotPresent

BrakePresent

BrakeNotPresent

Reserved

AutobaudEnable

Autobaud enabled when set

0=Disable

1=Enable

ConsumedIOAssy

Selects the format of the I/O data consumed

294 default = 154

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

101

SET

USINT

Network

3

154

154

1

1

0

100

SET

BOOL

Network

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

153

Chapter 4

Bulletin 290D/291D/294D Programmable Parameters

ProducedIOAssy

Selects the format of the I/O data consumed

294 default = 155

AutoRunZip

Enables this device to produce COS messages on powerup

0=Disable

1=Enable

ZoneProducedEPR

Expected Packet Rate for producing Zip

COS connection

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

ZoneProducedPIT

Production Inhibit Time for the producing

Zip connection

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value msec

1

65535

75

105

SET

UINT

ZIP msec

1

65535

75

104

SET

UINT

ZIP

1

0

0

103

SET

BOOL

ZIP

102

SET

USINT

Network

52

190

155

154

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

Zone1ProducedMacId

The MacId address of the device in Zone 1

Zone2ProducedMacId

The MacId address of the device in Zone 2

Zone3ProducedMacId

The MacId address of the device in Zone 3

Zone4ProducedMacId

The MacId address of the device in Zone 4

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Bulletin 290D/291D/294D Programmable Parameters

Chapter 4

64

64

0

109

SET

USINT

ZIP

64

64

0

108

SET

USINT

ZIP

64

64

0

107

SET

USINT

ZIP

64

64

0

106

SET

USINT

ZIP

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

155

Chapter 4

Bulletin 290D/291D/294D Programmable Parameters

Zone1Health

The status of the DeviceNet connection to the Zone 1 device

0=Healthy

1=NotHealthy

Zone2Health

The status of the DeviceNet connection to the Zone 2device

0=Healthy

1=NotHealthy

Zone3Health

The status of the DeviceNet connection to the Zone 3device

0=Healthy

1=NotHealthy

Zone4Health

The status of the DeviceNet connection to the Zone 4device

0=Healthy

1=NotHealthy

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

1

0

0

113

GET

BOOL

ZIP

1

0

0

112

GET

BOOL

ZIP

1

0

0

111

GET

BOOL

ZIP

1

0

0

110

GET

BOOL

ZIP

156

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

Zone1PtMask

Chooses consumed bytes to be placed in

Zone Data Point table

Zone2PtMask

Chooses consumed bytes to be placed in

Zone Data Point table

Zone3PtMask

Chooses consumed bytes to be placed in

Zone Data Point table

Zone4PtMask

Chooses consumed bytes to be placed in

Zone Data Point table

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Bulletin 290D/291D/294D Programmable Parameters

Chapter 4

0

255

0

117

SET

DWORD

ZIP

0

255

0

116

SET

DWORD

ZIP

0

255

0

115

SET

DWORD

ZIP

0

255

0

114

SET

DWORD

ZIP

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

157

Chapter 4

Bulletin 290D/291D/294D Programmable Parameters

Zone1PtOffset

Byte offset in Zone Data Point table to place masked data

Zone2PtOffset

Byte offset in Zone Data Point table to place masked data

Zone3PtOffset

Byte offset in Zone Data Point table to place masked data

Zone1PtOffset

Byte offset in Zone Data Point table to place masked data

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

7

0

0

121

SET

UINT

ZIP

7

0

0

120

SET

UINT

ZIP

7

0

0

119

SET

UINT

ZIP

7

0

0

118

SET

UINT

ZIP

158

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

Zone1AnalogMask

Byte offset in Zone Data Point table to place masked data

Zone2AnalogMask

Byte offset in Zone Data Point table to place masked data

Zone3AnalogMask

Byte offset in Zone Data Point table to place masked data

Zone4AnalogMask

Byte offset in Zone Data Point table to place masked data

Bulletin 290D/291D/294D Programmable Parameters

Chapter 4

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

0

255

0

124

SET

WORD

ZIP

0

255

0

123

SET

WORD

ZIP

0

255

0

125

SET

WORD

ZIP

0

255

0

122

SET

WORD

ZIP

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

159

Chapter 4

Bulletin 290D/291D/294D Programmable Parameters

Zone1AnOffset

Word offset in Analog Zone Data to place masked analog data

Zone2AnOffset

Word offset in Analog Zone Data to place masked analog data

Zone3AnOffset

Word offset in Analog Zone Data to place masked analog data

Zone4AnOffset

Word offset in Analog Zone Data to place masked analog data

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

7

0

0

129

SET

UINT

ZIP

7

0

0

128

SET

UINT

ZIP

7

0

0

127

SET

UINT

ZIP

7

0

0

126

SET

UINT

ZIP

160

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

Zone1EPR

Expected Packet Rate for Zone 1 consuming connection

Zone2EPR

Expected Packet Rate for Zone 2 consuming connection

Zone3EPR

Expected Packet Rate for Zone 3 consuming connection

Zone4EPR

Expected Packet Rate for Zone 4 consuming connection

Bulletin 290D/291D/294D Programmable Parameters

Chapter 4

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value msec

0

65535

75

131

SET

UINT

ZIP msec

0

65535

75

130

SET

UINT

ZIP msec

0

65535

75

132

SET

UINT

ZIP msec

0

65535

75

133

SET

UINT

ZIP

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

161

Chapter 4

Bulletin 290D/291D/294D Programmable Parameters

Zone1Control

Enables/Disables options for Zone 1 control

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Zone2Control

Enables/Disables options for Zone 2 control

Bit

7 6 5 4 3 2 1 0

— — — — — — — X

— — — — — — X —

— — — — — X — —

— — — — X — — —

— — — X — — — —

— — X — — — — —

X X — — — — — —

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Bit

7 6 5 4 3 2 1 0

— — — — — — — X

— — — — — — X —

— — — — — X — —

— — — — X — — —

— — — X — — — —

— — X — — — — —

X X — — — — — —

Function

SecurityEnable

COSCnxn

PollCnxn

StrobeCnxn

MulticastPoll

FragmentedIO

Reserved

0

0x3F

0x02

135

SET

BYTE

ZIP

Function

SecurityEnable

COSCnxn

PollCnxn

StrobeCnxn

MulticastPoll

FragmentedIO

Reserved

0

0x3F

0x02

134

SET

BYTE

ZIP

162

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

Bulletin 290D/291D/294D Programmable Parameters

Chapter 4

Zone3Control

Enables/Disables options for Zone 3 control

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Bit

7 6 5 4 3 2 1 0

— — — — — — — X

— — — — — — X —

— — — — — X — —

— — — — X — — —

— — — X — — — —

— — X — — — — —

X X — — — — — —

Zone4Control

Enables/Disables options for Zone 4 control

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Bit

7 6 5 4 3 2 1 0

— — — — — — — X

— — — — — — X —

— — — — — X — —

— — — — X — — —

— — — X — — — —

— — X — — — — —

X X — — — — — —

Function

SecurityEnable

COSCnxn

PollCnxn

StrobeCnxn

MulticastPoll

FragmentedIO

Reserved

0

0x3F

0x02

137

SET

BYTE

ZIP

Function

SecurityEnable

COSCnxn

PollCnxn

StrobeCnxn

MulticastPoll

FragmentedIO

Reserved

0

0x3F

0x02

136

SET

BYTE

ZIP

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

163

Chapter 4

Bulletin 290D/291D/294D Programmable Parameters

Zone1Key

Device Value Key for the device in Zone 1

Zone2Key

Device Value Key for the device in Zone 2

Zone3Key

Device Value Key for the device in Zone 3

Zone4Key

Device Value Key for the device in Zone 4

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

0

65535

0

141

SET

UINT

ZIP

0

65535

0

140

SET

UINT

ZIP

0

65535

0

139

SET

UINT

ZIP

0

65535

0

138

SET

UINT

ZIP

164

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

DeviceValueKey

Device Value Key for this device

ZoneCtrlEnable

Enables or disables this device's Zip functionality

0=Disable

1=Enable

Bulletin 290D/291D/294D Programmable Parameters

Chapter 4

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

Parameter Number

Access Rule

Data Type

Group

Units

Minimum Value

Maximum Value

Default Value

1

0

0

143

SET

BOOL

ZIP

0

65535

0

142

SET

UINT

ZIP

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

165

Chapter 4

Bulletin 290D/291D/294D Programmable Parameters

Notes:

166

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

Chapter

5

Diagnostics

Overview

Status LEDs and Reset

This chapter describes the fault diagnostics of the ArmorStart LT Distributed

Motor Controller and the conditions that cause various faults to occur.

Figure 39 - Status and Diagnostic LEDs and Reset

ArmorStart LT provides comprehensive status and diagnostics via 12 individually

marked LEDs shown in Figure 39

, located on the ECM module. In addition, a local reset is provide for clearing of faults. Table 22 details the diagnostic and status LEDs.

Table 22 - ArmorStart LT Status and Diagnostics Indicators

Indicator

PWR LED

RUN/FLT LED

I/O Status

Enunciators 0…5

LEDs

Reset Button

Description

The bicolor (green/yellow) LED shows the state of the control voltage. When LED is off, switched and/or unswitched power is not present.

The bicolor (green/red) LED combines the functions of the Run and Fault LEDs.

NET – Network Status

LED

The bicolor (green/red) LED indicates the status of the CIP network connection. See

Network Status Indicator for further information.

Flashing bicolor (red/green) indicates a self-test on power up.

Six yellow LEDs are numbered 0…5 and indicate the status of the input/output connectors. One LED for each I/O point.

The blue reset button will cause a protection fault reset to occur.

Color_1

Solid green is illuminated when switched and unswitched control power is within its specified limits and has the proper polarity.

Color_2

Solid yellow is illuminated when switched or unswitched control power is outside its specified limits or has incorrect polarity.

Flashing yellow indicates line voltage is not present (294 units only).

Solid green is illuminated when a Run command is present.

Flashing green indicates a node address is configured, no CIP connections are established, and an Exclusive Owner connection has not timed out.

Steady green indicates at least one CIP connection is established and an Exclusive

Owner connection has not timed out.

The LED will blink red in a prescribed fault pattern when a protection fault (trip) condition is present. See table for fault blink patterns.

Flashing red indicates the connection has timed out. Steady Red indicates a duplicate

IP Address detected.

Yellow is illuminated when input is valid or output is on.

Off when input is not valid or the output is not turned on.

— —

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

167

Chapter 5

Diagnostics

Fault Diagnostics

168

Fault diagnostics capabilities built in the ArmorStart LT Distributed Motor

Controller are designed to help you pinpoint a problem for easy troubleshooting and quick restarting.

Protection Faults

Protection faults will be generated when potentially dangerous or damaging conditions are detected. Protection faults are also known as “trips” or “faults”.

These faults will be reported in multiple formats, including:

Bit enumeration in the TripStatus parameter (parameter 16) used as discrete bits or in DeviceLogix

In the ArmorStart LT web server for ArmorStart EtherNet/IP version

As a sequence of LED flashes on the ECM

14

15

12

13

16

LED Flash Bit Enumeration 290D/291D Trip Status Bits

1 0 OverloadTrip

2

3

4

5

6

7

1

2

3

4

5

6

PhaseLossTrip

UnderPowerTrip

SensorShortTrip

PhaseImbalTrip

NonVolMemoryTrip

➊ reserved

10

11

8

9

7

8

9

10

JamTrip

StallTrip

UnderloadTrip reserved

13

14

11

12

15 reserved reserved

OutputShortTrip

UserDefinedTrip

HardwareFltTrip

294D Trip Status Bits

OverloadTrip

PhaseLShortTrip

UnderPowerTrip

SensorShortTrip

OverCurrentTrip

NonVolMemoryTrip

ParamSyncTrip

DCBusOrOpenDiscnnct

StallTrip

OverTemperature

GroundFault

RestartRetries

DriveHdwFault

OutputShortTrip

UserDefinedTrip

HardwareFltTrip

Can not be disabled.

A “ProtectFltEnable” parameter (param 42) is used to enable and disable individual protection faults. This parameter will be a bit enumerated parameter with each “disable-able fault” bit enumerated. Not all Faults can be disabled.

Setting a bit to the value “1” enables the corresponding protection fault. Clearing a bit disables the protection fault. For protection faults that can not be disabled the value is always “1”.

There are two Protection Fault Reset modes:

manual and automatic. When parameter 41 “ProtFltResetMode” is set to the value 0=Manual mode, a manual fault reset must occur before the fault is reset. When manual reset mode faults are

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

Diagnostics

Chapter 5

latched until a fault reset command has been detected either locally or remotely.

A Manual reset operation is either remotely via the network, locally via the

“Reset” button on the front keypad, or via a DeviceLogix program. A rising edge

(0 to 1 transition) of the “ResetFault” tag will attempt a reset. A rising edge of the parameter 44 “ProtectFltReset” will attempt a reset. A press of the local blue

“Reset” button on the front keypad will attempt a reset. A rising edge of the

“ResetFault” DeviceLogix tag will attempt a reset. When “ProtFltResetMode” is set to the value 1=Automatic, “auto-reset” faults are cleared automatically when the fault condition goes away.

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

169

Chapter 5

Diagnostics

Quick Reference

Troubleshooting

The LEDs on the front of the ArmorStart LT provide an indication as to the health of the device and network. The following is a brief troubleshooting guide.

Table 23 - LED Status Indication

Status LED

PWR (Control) Status Indicator

Off

Green

The PWR LED is not illuminated at all.

Voltage is present.

Description Recommended Action

Verify power is connected and with proper polarity.

No action

Verify that the control power is between 19.2 and 26V DC. Flashing Yellow

RUN/FLT Status Indicator

Power has fallen below minimum acceptable level.

Off The RUN/FLT LED is not illuminated when a Run command has been issued.

Verify that PLC is in Run mode. Verify that the correct run bit is being controlled. Verify that a stop condition does not exist.

Green

Flashing Red

Valid start command

Protection fault

NS – Network Status Indicator

Off The NS LED is not illuminated.

Steady Green

Flashing Green

Flashing Red

Solid Red

Flashes

Green-Red

I/O Status Indicators

Off

Check to make sure the product is properly wired and configured on the network.

No action CIP connection is established.

An IP address is configured, but no CIP connections are established, and an Exclusive Owner connection has not timed out.

Connection has timed out.

Check to make sure the product is properly wired and configured on the network.

Check to make sure the PLC is operating correctly and that there are no media/cabling issues. Check to see if other network devices are in a similar state.

Check for node address conflict and resolve.

Duplicate IP address detected

The device has not completed the initialization, is not on an active network, or has not finished self test at power up.

The user has plugged into the I/O, but the indicator did not illuminate, once initiated.

No action

Count flashes and refer to Table 24 and 25.

Remove or change the IP address of the conflicting device.

Verify the wiring of Input or Output is correct. When used as an output point, ensure the corresponding bit in parameter 49 [IOPointConfiguration] is set to Output.

Fault LED Indications

The RUN/FLT LED will blink red in a prescribed fault pattern when a protection fault (trip) condition is present. The LED will blink in 0.5 second intervals when indicating a fault code. Once the pattern is finished, there will be a

2 second pause after which the pattern will be repeated.

Bulletin 290D/291D Faults

Bulletin 290D/291D faults are detected by the main control board. When the

[ProtFltResetMode] Parameter 41 is set to the value 1=Automatic, the auto resettable faults in the table will reset automatically when the fault condition is no longer present.

170

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

Diagnostics

Chapter 5

Table 24 - Fault LED Indicator for Bulletin 290D/291D

Blink

Pattern Auto-Reset Disable Default

1 Yes No On

2

3

4

5

6

7

8

9

10

13

14

11

12

15

16

Yes

Yes

No

Yes

No

No

No

No

No

Yes

No

Yes

No

No

Yes

No

Yes

Yes

Yes

No

Yes

No

Off

On

On

Off

On

Off

Off

Off

On

Off

On

Bulletin 290D/

291D Trip Status

Overload Trip

Description

The load has drawn excessive current and based on the trip class selected, the device has tripped.

Action

Verify that the load is operating correctly and is properly set-up, [FLASetting] Parameter 28,

[OLResetLevel] Parameter 29. The fault may be reset only after the motor has sufficiently cooled.

Phase Loss Trip

Under Power Trip

Sensor Short Trip

The ArmorStart LT detected switched or unswitched power dip below 19.2 V for greater than 50 ms, or 13 V for greater than 4 ms.

This error indicates a shorted sensor, shorted input device, wiring input mistakes.

Phase Imbalance Trip The ArmorStart LT has detected a current imbalance in one of the phases.

Non-Volatile Memory

Trip

Reserved

Jam Trip

Stall Trip

Underload Trip

Reserved

Reserved

Reserved

Output Short Trip

User Defined Trip

The ArmorStart LT has detected a missing phase.

This is a major fault, which renders the

ArmorStart LT inoperable. Possible causes of this fault are transients induced during

Non-Volatile Storage (NVS) routines.

During normal running (after starting period), the RMS current draw exceeds the prescribed fault level. This fault is generated when current is greater than the Jam Trip

Level for longer than the Jam Delay time after the Jam Inhibit time has expired.

During starting, the motor did not reach running speed within the prescribed period. This fault is generated when the

RMS current is greater than

[StallTripLevel] Parameter 75 or longer than [StallEnbldTime] Parameter 74 during motor starting.

Underload protection is for undercurrent monitoring. A trip occurs when the motor current drops below the trip level.

This fault is generated when a hardware output short circuit condition is detected.

This fault is generated either in response to the rising edge of user input 0...5,

[Input00Function...Input- 05Function]

Parameter 58...63, or by DeviceLogix.

Hardware Fault Trip This fault indicates that a serious hardware problem exists.

This fault is generated by monitoring the relative levels of the 3-phase currents. Correct phase imbalance or disable fault using [ProtectFltEnable]

Parameter 42.

Check control voltage, wiring, and proper polarity (A1/

A2/A3 terminal).

Correct, isolated or remove wiring error prior to restarting the system.

Check the power system for current imbalance and correct. Correct phase imbalance or disable fault using

[ProtectFltEnable] Parameter 42.

1. If the fault was initiated by a transient, power cycling may clear the problem.

2. This fault may be reset by a [SetToDefaults]

Parameter 68.

3. Replacement of the ArmorStart LT may be required.

1. Check for the source of the jam (for example, excessive load or mechanical transmission component failure).

2. Check [JamInhibitTime] Parameter 70,

[JamTripDelay] Parameter 71, and [JamTripLevel]

Parameter 72 setting.

1. Check for source of stall (for example, excessive load, or mechanical transmission component failure).

2. Check [StallEnabledTime] Parameter 74 and

[StallTripLevel] Parameter 75.

3. Check if [FLASetting] Parameter 28 is set correctly.

Check motor and mechanical system for broken shaft, belts, or gear box. Check [ULInhibitTime] Parameter

76, [ULTripDelay] Parameter 77, [ULTripLevel]

Parameter 78, and [ULWarningLevel] Parameter 79.

Correct, isolate or remove wiring error prior to restarting the system.

This fault is generated based on user configuration.

This fault may be reset after the condition that caused it is removed. For example, the Auxiliary Input goes low or the DeviceLogix logic drives the bit low.

Power cycle to correct. If fault persists the ArmorStart

LT requires replacement.

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

171

Chapter 5

Diagnostics

Bulletin 294D Faults

Auto Reset

Drive Control

No

Yes

Bulletin 294E faults are detected by the main control board and/or the internal drive. When there is an internal drive fault, the main control board simply polls the drive for the existence of faults and reports the fault state. Writing a value to

[ProtFltResetMode] Parameter 41 determines auto-reset ability for some faults.

The auto-reset ability of faults that are generated on the drive are controlled by

[AutoRestartTries] Parameter 84 and [AutoRestar Delay] Parameter 85.

Function

Auto-Reset/Run

User Action Needed

[ProtFltResetMode]

Parameter 41 = 1 which is automatic

Auto Reset

Table 25 - Auto Reset Ability

Description

When this type of fault occurs, and [AutoRestartTries] Parameter 84 is set to a value greater than “0,” a user-configurable timer,

[AutoRestartDelay] Parameter 85, begins. When the timer reaches zero, the drive attempts to automatically reset the fault. If the condition that caused the fault is no longer present, the fault will be reset and the drive will be restarted.

This type of fault requires drive or motor repair, or is caused by wiring or programing errors. The cause of the fault must be corrected before the fault can be cleared via manual or network reset. A rising edge of the “Fault Reset” DeviceLogix bit will also clear the fault.

Faults are cleared automatically when the fault condition goes away.

Blink

Pattern

1

Auto-Reset

Capable

Drive

Controlled

2

3

4

5

6

No

Yes

No

Drive

Controlled

No

Table 26 - Fault LED Indicator for Bulletin 294D

Disable Default

No On

No

No

No

No

No

On

On

On

On

On

Bulletin 294E

Overload Trip

(PF 4M Codes 7 and

64)

Trip Status

Phase Short

(PF 4M Codes

38…43)

Under Power Trip

Sensor Short Trip

Over Current

(PF 4M Codes 12 and

63)

Non-Volatile Memory

Trip

(PF 4M Code 100)

Description

This fault is a result of the drive’s Motor

Overload fault or the Drive Overload fault.

Exceeding the Drive overload rating of

150% for 1 minute or 200% for 3 seconds caused the device to trip.

This fault is a result of the drive’s Phase to

Ground Short faults

(Codes 38…40)

Phase to Phase Short faults

41…43)

.

(Codes

or

The ArmorStart LT detected switched or unswitched power dip below 19.2 V for greater than 50 ms, or 13 V for greater than 4 ms.

Action

The fault may be reset only after the overload algorithm determines that the motor has sufficiently cooled or that the Drive heatsink temperature falls to an acceptable level. Check the following:

1. Excessive motor load. Reduce load so drive output current does not exceed the current set by

[MotorOLCurrent] Parameter 30.

2. Verify [BoostSelect] Parameter 86 setting.

1. Check the wiring between the drive and motor.

2. Check motor for grounded phase.

3. Replace ArmorStart LT if fault cannot be cleared.

Check control voltage, wiring, and proper polarity (A1/

A2 terminal). Correct power loss or disable fault using

[ProtectFltEnable] Parameter 42.

This error indicates a shorted sensor, shorted input device, wiring input mistakes.

This fault is a result of the drive’s HW

OverCurrent fault or it’s SW OverCurrent fault.

Correct, isolated or remove wiring error prior to restarting the system.

This is a major fault, which renders the

ArmorStart LT inoperable. Possible causes of this fault are transients induced during

Non-Volatile Storage (NVS) routines.

1. Check for excess load, improper [BoostSelect]

Parameter 86 setting or other causes of excess current or

2. Check load requirements and [SWCurrentTrip]

Parameter 83 setting.

1. If the fault was initiated by a transient, power cycling may clear the problem.

2. This fault may be reset by a [SetToDefaults]

Parameter 68.

3. Replacement of the ArmorStart LT may be required.

172

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

Diagnostics

Chapter 5

Blink

Pattern

7

Auto-Reset

Capable

Yes

8

9

10

11

12

13

14

15

16

Drive

Controlled

Drive

Controlled

Drive

Controlled

No

No

No

No

Yes

No

Table 26 - Fault LED Indicator for Bulletin 294D

Disable Default

No On

No

No

No

No

No

No

No

Yes

No

On

On

On

On

On

On

On

Off

On

Bulletin 294E

Trip Status

Parameter Sync

4M Codes 48, 71 and 81)

(PF

DCBusOrDiscnnct

(PF 4M Codes 3, 4 and 5)

Stall Trip

(PF 4M Code 6)

Over Temperature

(PF 4M Code 8)

Ground Fault

(PF 4M Code 13)

Restart Retries

(PF 4M Code 33)

Description

This fault is generated during the parameter synchronization procedure between the Control Module and the internal drive when the syncing process fails resulting in the drive configuration not matching the Control Module configuration.

This fault is a result of the drive’s Power

Loss

(PF 4M Code 3)

, UnderVoltage

(PF 4M

Code 4)

and OverVoltage

(PF 4M Code 5)

faults. When an Undervoltage occurs because the Disconnect has been opened, the condition will be diagnosed as an

“Open Disconnect” trip

During starting the motor did not reach running speed within the prescribed period. This fault occurs when the drive detects a motor stall condition during acceleration.

This fault occurs when the drive detects a heat sink over temperature condition.

This fault occurs a current path to earth ground has been detected at one or more of the drive output terminals.

Drive unsuccessfully attempted to reset a fault and resume running for the programmed number of auto retries.

Action

1. The most common cause of this fault is that the disconnect has been opened, or that power has been removed from the drive. To clear the fault, repower the drive and activate a reset.

2. The drive may have been commanded to default values. Clear the fault or cycle power to the drive.

1. The most common cause of this fault is that the disconnect has been opened, or that power has been removed from the drive. To Clear the fault, repower the drive and activate a reset.

2. Monitor the incoming line for phase loss or line imbalance, low voltage or line power interruption. high line voltage or transient conditions. Bus

OverVoltage can also be caused by motor regeneration.

3. Extending the [DecelTime1] Parameter 37 or

[DecelTime2] Parameter 70 may also help with this fault.

1. Check for source of stall (for example, excessive load, or mechanical transmission component failure).

2. Increase [AccelTime1] Parameter 36 or

[AccelTime2] Parameter 69 or reduce load so drive output current does not exceed the current set by

[CurrentLimit] Parameter 31.

Check for blocked or dirty heat sink fins. Verify that ambient temperature has not exceeded 40° C (104° F).

Check the motor and external wiring to the drive output terminals for a grounded condition.

Drive Hardware Fault Failure has been detected in the drive

Output Short

User Defined power section.

This fault is generated when a hardware output short circuit condition is detected.

This fault is generated either in response to the rising edge of user input 0...5,

[Input00Function...Input- 05Function]

Parameter 58...63.

Hardware Fault Trip This fault indicates that a serious hardware problem exists. This fault is generated when either the PF 4M drive is not detected or an invalid factory configuration setting is detected.

Correct the cause of the fault and manually clear.

Check [AutoRestartTries] Parameter 84 and

[AutoRestartDelay] Parameter 85 meets application needs.

1. Cycle power.

2. Replace unit if failure can not be cleared.

Correct, isolate or remove wiring error prior to restarting the system.

This fault is generated based on user configuration.

This fault may be reset after the condition that caused it is removed. For example, the Auxiliary Input goes low or the DeviceLogix logic drives the bit low.

Power cycle to correct. If fault persists the ArmorStart

LT requires replacement.

In the case of a Disconnect open fault, reclosing the disconnect will cause a reset to be issued.

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

173

Chapter 5

Diagnostics

Notes:

174

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

Chapter

6

Specifications

Power Circuit

Application

Number of Poles

Input Power Terminals

Motor Power Terminals

PE (Earth Ground) Terminal

Maximum Rated Operating Voltage

Rated Impulsed Voltage (

U

imp

)

Dielectric Withstand

Operating Frequency

Maximum Rated Operating

Current

Overload Type

Trip Class

Trip Rating — Full Load

Current (FLC)

Reset Mode

Overload Reset Level

Overvoltage Category

Bulletin 290D/291D

Electrical Ratings

Cat. No.

290_-___-A-*

291_-___-A-*

290_-___-B-*

291_-___-B-*

Three-phase

3

L1, L2, L3

T1, T2, T3

4 PE terminals

400Y/230…480Y/277 (-15%, +10%)

4 kV

UL

: 1960V AC,

IEC

: 2500V AC

50/60 Hz (±10%)

Hp (kW)

2 (1.5)

5 (3)

Solid-state I

2

T

[10]

, 15, 20 with thermal memory retention

(see Motor Overload Trip Curves)

120% of FLC

Automatic or manual

1…100% TCU

III

Overload Range

0.24…3.5 A

1.1…7.6 A

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

175

Chapter 6

Specifications

Electrical Ratings

Control Circuit

(External Source)

Power Supply

Rated Operating Voltage

Overvoltage Protection

Unswitched Power Supply

Requirements

Switched Power Supply

Requirements

Switched and Unswitched

Power Supply Requirements

Voltage

Nominal Current

Power

Input Current (each)

Maximum Current

Maximum Power

Peak Inrush

Voltage

Nominal Current

Power

Output Current (each)

Maximum Current

Maximum Power

Peak Inrush

Voltage

Nominal Current

Power

Number of Inputs (x 50 mA)

Number of Outputs (x 500 mA)

Maximum Current

Maximum Power

Peak Inrush

NEC Class 2

24V DC (+10%, -20%)

Reverse-polarity protected

19.2…26.4V DC

150 mA

3.6 W

50 mA

450 mA

14.4 W

<5 A for 35 ms

19.2…26.4V DC

125 mA

3 W

500 mA

1.625 A

42 W

<5 A for 35 ms

19.2…26.4V DC

275 mA

6.6 W user defined user defined

275 mA + user defined

6.6 W + (24V DC x user defined)

<10 for 35 ms

Control Circuit

(Internal Source)

An internal 50 W power supply sources 24V DC for input, outputs, and logic control.

Cat. No.

290/1_-*-G1 (or G3)

Sym. Amps RMS

10 kA @ 480Y/277

Circuit Breaker

Short Circuit

Current Rating

(SCCR)

290/1_-*-G1 (or G3)

290/1_-*-G2

5 kA @ 480Y/277

10 kA @ 480Y/277

When used with Allen Bradley

Cat. No. 140U-D6D3-C30

Short Circuit

Coordination

I/O is configurable to either input or output.

Assumes zero wire resistance. Wire impedance will reduce current inrush.

Type 1

Size per NFPA 70 (NEC) or NFPA 79 for Group Motor Applications

Fuse

CC, J, or T fuse

(maximum 45 A)

UL Class fuse (maximum 45 A)

CC, J, or T fuse

(maximum 40 A)

176

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

Specifications

Chapter 6

Input and Output Ratings

Input

Supply Voltage

Type of Inputs

Connection Type

Input per Connection

Rated Operating Voltage

On-State Input Voltage (pin 4)

Off-State Input Voltage

On-State Input Current (pin 4)

Off-State Input Current

Maximum Sensor Leakage Current

Maximum Number of Input Devices

Maximum Sensor Sourcing Current (pin 1)

Sensor Operating Voltage Range

Input Bounce Filter

(Software Configurable)

Filtering

DeviceLogix I/O Response

Supply Voltage (Switched Power)

Type of Outputs

Load Types

Utilization Category (IEC)

Output State

Connection Type

Output

Output per Connection

Overcurrent Protection

Rated Insulation Voltage (

U

i

)

Rated Operating Voltage (

U

e

)

Maximum Blocking Voltage

Nominal Operating Current (

I

e

)

Maximum Thermal Current (

I

the

)

Maximum Off-state Leakage Current

Maximum Number of Outputs

Surge Suppression

Input ON-to-OFF delay time is the time from a valid input signal to recognition by the module.

If an output exceeds 1.5 A for greater than 7 ms, a fault is generated.

Unswitched power A3/A2

24V DC current sinking

Single keyed M12, quick disconnect

1/each

24V DC

10…26.4V DC, nominal 24V DC

5V DC

1…3.7 mA, 2.6 mA @ 24V DC

<1.5 mA

<2.5 mA

6

50 mA per point (max 300 mA total for sourcing one device)

19.2…26V DC

Off-On or On-Off: 0.5 ms + 64 ms

100 μs

2 ms (500 Hz)

A1/A2

DC sourcing

Resistive or light inductive

DC-1, DC-13

Normally Open (N.O.)

Single keyed M12, quick disconnect

1/each

1.5 A (the sum of all outputs cannot exceed this value)

UL:

1500V AC,

IEC:

2000V AC

19.2…26.4V DC

35V DC

500 mA per point

500 mA per point

1 μA

6

Integrated diode to protect against switching loads

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

177

Chapter 6

Specifications

Operating Temperature Range

Storage and Transportation Temperature Range

Environmental Ratings

-20…+50 °C (-4…+122 °F)

-25...+85 °C (-13…+185 °F)

Pollution Degree

Enclosure Ratings

Approximate Shipping Weight

3

IP66/UL Type 4/12

4.6 kg (10 lb)

Resistance to Shock

Resistance to Vibration

Disconnect Lock Out

Disconnect LOTO Locks

Disconnect Mechanical Life

Contractor Utilization Category

(IEC)

Contactor Opening Delay

Contactor Closing Delay

Minimum Off Time

Contactor Mechanical Life

Wire Size

Wire Type

Tightening Torque

Wire Strip Length

Power Rating

Operational

Non-Operational

Operational

Non-Operational

Power Terminals

(2) #18 …#10 AWG

(0.8…5.2 mm

2

) per terminal

600V AC/25 Amp VAC

Mechanical Ratings

30 G, exceeds IEC 60947-1

50 G, exceeds IEC 60947-1

2.5 G, tested to MIL-STD-810G, exceeds IEC 60947-1

5 G, tested to MIL-STD-810G, exceeds IEC 60947-1

Maximum of 3/8 in. (9.5 mm) diameter lock shackle or hasp

Up to 2 locks or hasps are supported

200 000 operations

AC-1, AC-3, AC-4 (refer to Life Load Curves)

8…12 ms

18…40 ms

200 ms

15 million operations

Motor Terminals

#18…#10 AWG

(0.8…5.2 mm

2

) per terminal

Control Terminals

(2) #18 …#10 AWG

(0.8…5.2 mm

2

) per terminal

Multi-strand copper wire

10.6 ± 2 lb•in (1.2 ± 0.2 N•m)

0.35 ± 0.01 in. (9 ± 2 mm)

600 V AC/10 Amp VAC 600 V AC/10 Amp VAC

PE/Ground

(2) #16 …#10 AWG

(1.3…5.2 mm

2

) per terminal

18 ± 2 lb•in (2 ± 0.2 N•m)

Emission

Emission and Immunity Ratings

Conducted

Radiated

Electrostatic Discharge

Radio Frequency Electromagnetic Field

Fast Transient

Immunity

Surge Transient

Radio Frequency Conducted Disturbance

IP66/UL Type 4 is available with gland options G1-3. IP66/UL Type 4/12 available with G1 and G3 gland option

178

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

EN 60947-4-1

Class A

4 kV contact, 8 kV air

EN 60947-4-1

10V/m, 80 MHz…1 GHz

10V/m, 1.4 GHz…2 GHz

2 kV (Power)

2 kV (PE)

1 kV (Communication and control)

1 kV (12)

L-L

, 2 kV (2)

L-N

(earth)

10V, 150 kHz…80 MHz

Standards Compliance

Certifications

EtherNet/IP

Web Server

Network Connections

Specifications

Chapter 6

UL/CSA

Standards Compliance and Certifications

UL 508 Industrial Control Equipment –

Suitable for Group Installation

CSA C22.2, No. 14

EN/IEC

EN 60947-4-1 Low Voltage Switchgear

CE Marked per Low Voltage Directive 2006/95/EC and EMC Directive 2004/108/EC

Other Agencies

CCC (Pending)

KCC

C-Tick

ODVA for EtherNet/IP and DeviceNet cULus (File No. E3125, Guide NLDX, NLDX7)

Communication Ratings

Rated Insulation Voltage

Operating Dielectric Withstand

EtherNet/IP ODVA – Conformance Testing

Ethernet Communication Rate

Ethernet Ports

Ethernet Network Topologies Supported

Device Level Ring Support

Ethernet Connector

Ethernet Cable

IP Configuration

DHCP Timeout

Data

Packet Rate (pps)

Consume Instance (Command)

Produce Instance (Status)

Message Support

Address Conflict Detection (ACD)

Sockets

Security

E-mail

Webpage Features

Concurrent Sessions

Web Server

Concurrent TCP Connections

Maximum I/O Connections (CIP Class 1)

Maximum Concurrent Explicit Messages (CIP Class 3)

Class 1 Connection API

Class 3 Connection API

Request Packet Interval (RPI)

250V

UL/NEMA

: 1500V AC,

IEC

: 2000V AC

EtherNet/IP Interoperability Performance – Per A9 PF 2.1

10/100 Mbps, half or full-duplex

2 (embedded switch)

Star, Tree, Linear, and Ring

Beacon Performance, IEEE 1588 Transparent Clock

M12, D code, female, with Ethernet keying, 4 Pin

Category 5e: Shielded or unshielded

Static, DHCP, or BootP

30 s

Transported over both TCP and UDP

500 packets-per-second (2000 μs), Tx

500 packets-per-second (2000 μs), Rx

Default of 3 words (Instance 150)

Default of 14 words (Instance 152)

Unicast or Multicast

IP v4 Address Conflict Detection for EtherNet/IP devices

150 maximum

Login and password configurable

Support Simple Mail Transfer Protocol (SMTP)

Status, diagnostics, configuration

20

HTTP 1.1

Maximum of 15 encapsulated messages over both TCP and UDP

Supports up to 2 Class 1 CIP connections [Exclusive owner (data) or listen-only]. One connection per PLC. Listen only connection requires a data connection to be established.

6

2…3200 ms

100…10 000 ms

20 ms default (2 ms minimum)

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

179

Chapter 6

Specifications

Motor Overload Trip Curves

180

Class 10

Hot

Cold

% Full Load Current

Class 15

Hot

Cold

% Full Load Current

Class 20

% Full Load Current

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

Hot

Cold

Specifications

Chapter 6

Bulletin 100-K/104-K Life-Load Curves

Electrical life; Ue = 400…460V AC

AC-3: Switching of squirrel-cage motors while starting

10

1

100-K09

(Used with ArmorStart LT)

0.1

0.01

1

Electrical life; Ue = 400…460V AC

AC-4: Stepping of squirrel-cage motors

10

(Used with ArmorStart LT)

100-K09

10

Rated Current

Ie

AC-3 [A]

1

0.1

0.01

0.1

1

Rated Current

Ie

AC-4 [A]

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

100

10

181

Chapter 6

Specifications

Bulletin 294D

Power Circuit

Electrical Ratings

Application

Number of Poles

Input Power Terminals

Motor Power Terminals

PE (Earth Ground) Terminal

Maximum Rated Operating Voltage

Rated Impulsed Voltage (

U

imp

)

Dielectric Withstand

Operating Frequency

Three-phase

3

L1, L2, L3

T1, T2, T3

4 PE terminals

400Y/230…480Y/277 (-15%, +10%)

4 kV

UL:

1960V AC,

IEC:

2500V AC

50/60 Hz (±10%)

Power Circuit

Cat. No.

Maximum Rated

Operating Current

294_-FD1P5*

294_-FD2P5*

294_-FD4P2*

Solid-state

I

2 T type

Overload Protection Trip Class

Overcurrent Protection

Overvoltage Category

Reset Mode

Output Frequency

Efficiency

Overvoltage

Undervoltage

Control Ride Through

Faultless Power Ride Through

Carrier Frequency

Speed Regulation — Open Loop with Slip Compensation

Hp (kW)

0.5 (0.37)

1.0 (0.75)

2.0 (1.5)

Input Amps

400V AC, 50 Hz

2.0

3.7

6.5

Input Amps

480V AC, 60 Hz

1.8

3.0

5.5

150% for 60 s or 200% for 3 s

200% hardware limit, 300% instantaneous fault

III

Automatic or manual

0…400 Hz (programmable)

10 ms

2…10 kHz, drive rating based on 4 kHz

±2% of base speed across a 40:1 speed range

Output Amps

Class 10 protection with speed sensitive response and power-down overload retention function

97.5% typical

380…480V AC Input – Trip occurs at 810V DC bus voltage (equivalent to 575V AC incoming line)

380…480V AC Input – Trip occurs at 390V DC bus voltage (equivalent to 275V AC incoming line)

Minimum ride through is 0.5 s — typical value is 2 s

1.5

2.5

3.6

Acceleration/Deceleration

Maximum Motor Cable Lengths (Reflected

Wave Protection)

Two independently programmable acceleration and deceleration times. Each time may be programmed from 0…600 s, in 0.1 s increments.

10 m (32 ft)(CE application)

14 m (45.9 ft) (non-CE application

)

Source Brake (EM Brake) Current Maximum load current of 3 A

The reflected wave data applies to all frequencies 2…10 kHz.

For CE compliant installations refer to the recommended EMI/RFI cord grip accessory. For availability of the quick disconnect three-phase shielded power and motor cable contact your local sales representative for details.

182

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

Specifications

Chapter 6

Electrical Ratings

Control Circuit

(External Source)

Control Circuit

(Internal Source)

Short Circuit Current Rating

(SCCR)

Short Circuit Coordination

Power Supply

Rated Operating Voltage

Overvoltage Protection

Unswitched Power Supply

Requirements

Switched Power Supply

Requirements

Switched and Unswitched

Power Supply Requirements

Voltage

Nominal Current

Power

Input Current (each)

Maximum Current

Maximum Power

Peak Inrush

Voltage

Nominal Current

Power

Output Current (each)

Maximum Current

Maximum Power

Peak Inrush

Voltage

Nominal Current

Power

Number of Inputs (x 50 mA)

Number of Outputs (x 500 mA)

Maximum Current

Maximum Power

Peak Inrush

NEC Class 2

24V DC (+10%, -20%)

Reverse-polarity protected

19.2…26.4V DC

150 mA

3.6 W

50 mA

450 mA

14.4 W

<5 A for 35 ms

19.2…26.4V DC

125 mA

3 W

500 mA

1.625 A

42 W

<5 A for 35 ms

19.2…26.4V DC

275 mA

6.6 W user defined user defined

275 mA + user defined

6.6 W + (24 x user defined), (60 W max.)

<10 A for 35 ms

Cat. No.

294_-*-G1 or (-G3)

An internal 50 W power supply sources 24V DC for input, outputs, and logic control.

Circuit Breaker Sym. Amps RMS

10 kA @ 480Y/277

294_-*-G1 or (-G3)

294_-*-G1-SB

294_-*-G1-SB

294_-*-G2*

5 kA @ 480Y/277

10 kA @ 480Y/277

5 kA @ 480Y/277

When used with Allen-Bradley

Cat. No. 140U-D6D3-C30

Fuse

CC, J, or T fuse

(maximum 45 A)

UL Class fuse

(maximum 45 A)

CC, J, or T fuse

(maximum 40 A)

UL Class fuse

(maximum 40 A)

CC, J, or T fuse

(maximum 40 A)

10 kA @ 480Y/277

Type 1

Size per NFPA 70 (NEC) or NFPA 79 for Group Motor Applications

I/O is configurable to either input or output.

Assumes zero wire resistance. Wire impedance will reduce current inrush.

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

183

Chapter 6

Specifications

Input

Input and Output Ratings

Supply Voltage

Type of Inputs

Connection Type

Input per Connection

Rated Operating Voltage

On-State Input Voltage (pin 4)

Off-State Input Voltage

On-State Input Current (pin 4)

Off-State Input Current

Maximum Sensor Leakage Current

Maximum Number of Input Devices

Maximum Sensor Sourcing Current (pin 1)

Sensor Operating Voltage Range

Input Bounce Filter

(Software Configurable)

Output

Filtering

DeviceLogix I/O Response

Supply Voltage (Switched Power)

Type of Outputs

Load Types

Utilization Category (IEC)

Output State

Connection Type

Output per Connection

Overcurrent Protection

Rated Insulation Voltage (

U

i

)

Rated Operating Voltage (

U

e

)

Maximum Blocking Voltage

Nominal Operating Current (

I

e

)

Maximum Thermal Current (

I

the

)

Maximum Off-state Leakage Current

Maximum Number of Outputs

Surge Suppression

Input ON-to-OFF delay time is the time from a valid input signal to recognition by the module.

If an output exceeds 1.5 A for greater than 7 ms, a fault is generated

Unswitched power A3/A2

24V DC current sinking

Single keyed M12, quick disconnect

1/each

24V DC

10…26.4V DC, nominal 24V DC

5V DC

1…3.7 mA, nominal 2.6 mA @ 24V DC

<1.5 mA

<2.5 mA

6

50mA per point (max 300mA total for sourcing one device)

19.2…26V DC

Off-On or On-Off: 0.5 ms + 64 ms

100 μs

2 ms (500 Hz)

A1/A2

DC sourcing

Resistive or light inductive

DC-1, DC-13

Normally Open (N.O.)

Single keyed M12, quick disconnect

1/each

1.5 A (the sum of all outputs cannot exceed this value)

UL

: 1500V AC,

IEC

: 2000V AC

19.2…26.4V DC

35V DC

500 mA per point

500 mA per point

1 μA

6

Integrated diode to protect against switching loads

184

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

Specifications

Chapter 6

Operating Temperature Range

Environmental Ratings

-20…+40 °C (-4…+104 °F)

50 °C (122 °F) without derating, when properly rated line reactors are installed in branch circuit.

Storage and Transportation

Temperature Range

Altitude

Humidity

Pollution Degree

Enclosure Ratings

Approximate Shipping Weight

IP66/UL Type 4 is available with gland options G1-3. IP66/ UL Type 4/12 available with G1 and G3 gland option.

–25...+85 °C (–13…+185 °F)

1000 m

5…95% (non-condensing)

3

IP66/UL Type 4/12

7.3 kg (16 lb)

Resistance to Shock

Resistance to Vibration

Disconnect Lock Out

Disconnect LOTO Locks

Disconnect Mechanical Life

Wire Size

Wire Type

Tightening Torque

Wire Strip Length

Power Rating

Operational

Non-Operational

Operational

Non-Operational

Power Terminals

(2) #18 …#10 AWG

(0.8…5.2 mm

2

) per terminal

600V AC/25 Amp VAC

Mechanical Ratings

30 G (exceeds IEC 61800-5-1)

50 G (exceeds IEC 61800-5-1)

2.5 G, MIL-STD-810G, (exceeds IEC 61800-5-1)

5 G, MIL-STD-810G, (exceeds IEC 61800-5-1)

Maximum of 3/8 in. (9.5 mm) diameter lock shackle or hasp

Up to 2 locks or hasps are supported

200 000 operations

Control Terminals Motor Terminals

#18…#10 AWG

(0.8…5.2 mm

2

) per terminal

(2) #18 …#10 AWG

(0.8…5.2 mm

2 terminal

) per

Multi-strand copper wire

PE/Ground

(2) #16 …#10 AWG

(1.3…5.2 mm

2

) per terminal

10.6 ± 2 lb•in (1.2 ± 0.2 N•m)

18 ± 2 lb•in

(2 ± 0.2 N•m)

600V AC/10 Amp VAC

0.35 ± 0.01 in. (9 ± 2 mm)

600V AC/10 Amp VAC —

Emission

Immunity

Emission and Immunity Ratings

Conducted

Radiated

Electrostatic Discharge

Radio Frequency Electromagnetic Field

Fast Transient

Surge Transient

Radio Frequency Conducted Disturbance

EN 55011

(1.0…4.0 mm

2

) per

600V AC/10 Amp VAC

Class Group 2

Source Brake

#16 …#10 AWG terminal

4.8 ± 2 lb•in

(0.5 ± 0.2 N•m)

4 kV contact, 8 kV air

EN 61800-3

10V/m, 80 MHz…1 GHz

2 kV (Power)

2 kV (PE)

1 kV (Communication and control)

1 kV (12)

L-L

, 2 kV (2)

L-N

(earth)

10V, 150 kHz…80 MHz

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

185

Chapter 6

Specifications

Standards Compliance

Certifications

DeviceNet

Standards Compliance and Certifications

UL/CSA EN/IEC

UL 508C Power Conversion Equipment –

Suitable for Group Installation

CSA C22.2, No. 14

EN 61800 - Adjustable Speed Electrical

Power Drive Systems, Part 3: EMC

Requirements and Specific Test Methods,

CE Marked per EMC Directive 2004/108/EC,

Part 5-1: Safety Requirements – Electrical,

Thermal and Energy, CE Marked per Low

Voltage Directive 2005/95/EC cULus (File No. E207834, Guides NMMS, NMMS7)

Other Agencies

CCC (Pending)

KCC

C-Tick

ODVA for EtherNet/IP and DeviceNet

Communication Ratings

Rated Insulation Voltage

Operating Dielectric Withstand

DeviceNet Supply Voltage Rating

DeviceNet Input Current

DeviceNet Input Current Surge

Baud Rates

Distance Maximum

Auto-Baud Rate Identification

"Group 2 - Slave Only" Device Type

Polled I/O Messaging

Change of State Messaging

Cyclic Messaging

Explicit Messaging

Full Parameter Object Support

Group 4 - Off-Line Node Recovery Messaging

Configuring Consistency Value

Unconnected Messaging Manager (UCMN)

UL/NEMA

250V

: 1500V AC,

Yes

Yes

Yes

Yes

Yes

IEC

: 2000V AC

Range 11…25V DC, 24V DC nominal

50 mA @ 24V DC

500 mA peak inrush

125, 250, 500 kbps

500 m (1630 ft) @ 125 kbps

200 m (656 ft) @ 250 kbps

100 m (328 ft) @ 500 kbps

Yes

Yes

Yes

Yes

Yes

186

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

EtherNet/IP

Web Server

Network Connections

Specifications

Chapter 6

Communication Ratings

EtherNet/IP ODVA - Conformance Testing

Ethernet Communication Rate

Ethernet Ports

Ethernet Network Topologies Supported

Device Level Ring Support

Ethernet Connector

Ethernet Cable

IP Configuration

DHCP Timeout

Data

Packet Rate (pps)

Consume Instance (Command)

Produce Instance (Status)

Message Support

Address Conflict Detection (ACD)

Sockets

Security

E-mail

Webpage Features

Concurrent Sessions

Web Server

Concurrent TCP Connections

Maximum I/O Connections (CIP Class 1)

Maximum Concurrent Explicit Messages (CIP Class 3)

Class 1 Connection API

Class 3 Connection API

Request Packet Interval (RPI)

EtherNet/IP Interoperability Performance – Per A9 PF 2.1

10/100 Mbps, half or full-duplex

2 (embedded switch)

Star, Tree, Linear, and Ring

Beacon Performance, IEEE 1583 Transparent Clock

M12, D code, female, with Ethernet keying, 4 Pin

Category 5e: Shielded or unshielded

Static, DHCP, or BootP

30 s

Transported over both TCP and UDP

500 packets-per-second (2000 μs), Tx

500 packets-per-second (2000 μs), Rx

Default of 4 words (Instance 154)

Default of 16 words (Instance 156)

Unicast or Multicast

IP v4 Address Conflict Detection for EtherNet/IP devices

150 maximum

Login and password configurable

Support Simple Mail Transfer Protocol (SMTP)

Status, diagnostics, configuration

20

HTTP 1.1

Maximum of 5 encapsulated messages over both TCP and UDP

Supports up to 2 Class 1 CIP connections [Exclusive owner (data) or listen-only]. One connection per PLC. Listen-only connection requires a data connection to be established.

6

2…3200 ms

100…10 000 ms

20 ms default (2 ms minimum)

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

187

Chapter 6

Specifications

Motor Overload Trip Curves

No Derate

100

80

60

40

20

0

0 25 50 75 100 125 150 175

% of Motor Nameplate Hertz (P29)

200

Motor overload current parameter provides class 10 overload protection.

Ambient insensitivity is inherent in the electronic design of the overload.

Min. Derate

100

80

60

40

20

0

0 25 50 75 100 125 150

175

% of Motor Nameplate Hertz (P29)

200

Max. Derate

100

80

60

40

20

0

0 25 50 75 100 125 150 175

% of Motor Nameplate Hertz (P29)

200

188

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

Introduction

Appendix

A

Applying More Than One ArmorStart LT

Motor Controller in a Single Branch Circuit on Industrial Machinery

Each ArmorStart LT motor controller is listed for group installation. This appendix explains how to use this listing to apply ArmorStart LT motor controllers in multiple-motor branch circuits according to 7.2.10.4(1) and

7.2.10.4(2) of NFPA 79, Electrical Standard for Industrial Machinery.

From the perspective of the ArmorStart LT product family, being listed for group installation means one set of fuses or one circuit breaker may protect a branch circuit that has two or more of these motor controllers connected to it. This appendix refers to this type of branch circuit as a multiple-motor branch circuit.

The circuit topology shown in

Figure 40

, is one configuration, but not the only possible configuration, of a multiple-motor branch circuit. In these circuits, a single set of fuses (or a single circuit breaker) protects multiple motors, their controllers and the circuit conductors. The motors may be any mixture of power ratings and the controllers may be any mixture of motor controller technologies

(magnetic motor controllers and variable-frequency AC drive controllers).

This appendix addresses only NFPA 79 applications. This is not because these products are only suitable for industrial machinery, but because industrial machinery is their primary market. In fact, while all versions of the ArmorStart

LT products may be applied on industrial machinery, the versions that have the Conduit Entrance Gland Plate Option may also be used in applications governed by NFPA 70, National Electrical Code (NEC), (see “ArmorStart LT

Product Family”).

In the 2012 Edition of NFPA 79, motor controllers that are listed for group installation may be installed in multiple-motor branch circuits according to either of two alternative sets of requirements. The first is found in 7.2.10.4(2), the second in 7.2.10.4(3). The requirements of 7.2.10.4(3) are similar to those in

430.53(C) of NFPA 70, while the requirements of 7.2.10.4(2) are found only in

NFPA 79. This appendix explains the requirements of 7.2.10.4(2), rather than those of 7.2.10.4(3), because this is the simpler method to use when applying the

ArmorStart LT family of motor controllers.

The user must determine the requirements – NFPA 79 or NFPA 70 – to use for the application. When making this determination, it is necessary to understand the ArmorStart LT product characteristics and useful to understand the definition of industrial machinery. The section of this appendix, “ArmorStart LT

Product Family”, specifies whether a motor controller is suitable for installation according to NFPA 79 or NFPA 70 (or both). The definition

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

189

Appendix A

Applying More Than One ArmorStart LT Motor Controller in a Single Branch Circuit on Industrial Machinery

ArmorStart LT

Product Family

190

of industrial machinery is found in 3.3.56 of NFPA 79 and 670.2 of Article 670,

Industrial Machinery, in NFPA 70.

These conventions are used throughout this appendix. First, although all of the equipment is connected to a three-phase electrical supply, all of the figures are shown as one-line diagrams. Second, although all of the ArmorStart LT motor controllers are listed for group installation with both fuses and a specific family of inverse time circuit breakers, this appendix considers only fuses. This is done to avoid repetitive explanations with minor, but necessary qualifications, for circuit breakers. Generally, the principles for selecting the fuses also apply to selecting inverse time circuit breakers. Third, all references unless indicated otherwise, are to NFPA 79 – 2012.

Figure 40 - ArmorStart LT NFPA 79 Multi-Motor Branch Circuit

Electrical Supply

Final

Overcurrent

Device

Disconnecting

Means

Single Set of Fuses

NFPA 79, 3.3.10 Branch Circuit. The Circuit

Conductors Between the Final Overcurrent Device

Protecting the Circuit and the Outlet(s). [70:100]

Any Mixture of Motor Controller

Technologies

* Each Controller is Listed for Group

Installation with Specified Maximum

Protection

½ HP

Bulletin 294

Overload

Class 10

Nameplate*

2 HP

Bulletin 294

Overload

Class 10

Nameplate*

5 HP

Bulletin 291

Overload

Class 10/15/20

Nameplate*

5 HP

Bulletin 290

Overload

Class 10/15/20

Nameplate*

1 HP

Bulletin 294

Overload

Class 10

Nameplate*

1/2 Hp 2 Hp 5 Hp 5 Hp 1 Hp

Two or More Motors with any

Mixture or Power Ratings

This section contains a brief description of the attributes of the ArmorStart LT motor controllers that are relevant to applying them in multiple-motor branch circuits.

The term motor controller refers to the device that stops and starts the motor.

The ArmorStart LT product family consists of two types of motor controllers.

The Bulletin 290D and 291D controllers are magnetic motor controllers that use an electromechanical contactor to stop and start the motor. The Bulletin 294D motor controllers use a variable-frequency AC drive to stop, start and vary the speed of the motor. This appendix refers to the Bulletin 290D, 291D and 294D products as either motor controllers or just controllers.

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

Applying More Than One ArmorStart LT Motor Controller in a Single Branch Circuit on Industrial Machinery

Appendix A

Each ArmorStart LT motor controller incorporates an integrated overload relay and motor disconnecting means. The Underwriters Laboratories’ (UL) listing for each motor controller confirms that the motor controller — including its integral overload relay and motor disconnecting means — is suitable for motor group installation.

The suitability of each ArmorStart LT motor controller for installation according to either NFPA 79 or NFPA 70 depends on the means of connecting the power circuit wiring. All of the controllers are suitable for installation in multiple-motor branch circuits on industrial machinery according to 7.2.10.4 of NFPA 79. The controllers that have the Conduit Entrance Gland Plate Option are also suitable for installation in multiple-motor branch circuits according to 430.53(C) and

430.53(D) of NFPA 70 (NEC). The controllers that have the Power Media

Gland Plate Option are suitable for installation only on industrial machinery.

These versions are limited to industrial machinery because the UL listing for the power media connectors themselves and their matching cable assemblies covers installation only on industrial machinery.

Multiple-Motor Branch

Circuits and Motor

Controllers Listed for Group

Installation – General

Multiple-motor branch circuits, like that shown in

Figure 40 , have this

fundamental tradeoff: protecting more than one controller with a single set of fuses requires more electrical and mechanical robustness in each controller.

In exchange for eliminating the cost and space necessary for a dedicated set of fuses in front of each controller, the construction of each controller itself must be more robust. For the circuit configuration shown in

Figure 40 to be practical,

the ampere rating of the fuse must be large enough to operate all of the motors, without opening, under normal starting and running conditions. This rating of fuse must be larger than the rating permitted to protect a circuit that supplies only a single motor and its controller. In general, as the rating of the fuse increases, so does the magnitude of fault currents that flow until the fuse opens.

This higher magnitude of fault current results in more damage to the controller.

Therefore, the additional controller robustness is necessary to withstand these higher fault currents, without controller damage, that could result in a shock or fire hazard.

Consequently, to the controller, being listed for group installation mostly means the UL testing is performed with fuses that have this practical, and higher, ampere rating. This testing verifies that it is safe to apply this controller in a multiple-motor branch circuit, provided the fuse is of the same class and does not have a rating exceeding that marked on the controller.

The example in

Figure 41 , illustrates this increase in the maximum ampere rating

of fuse that is permitted to protect a controller. This example compares the rating of the fuse used in the UL testing of two variable-frequency AC drive-based motor controllers. Both controllers have a rated power of ½ horsepower and a rated output current of 1.5 amperes. The controller shown on the left is intended for installation in individual-motor branch circuits. The controller shown on the right is the ArmorStart LT Bulletin 294D controller that must be listed for group

191

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

191

Appendix A

Applying More Than One ArmorStart LT Motor Controller in a Single Branch Circuit on Industrial Machinery installation to be installed, as intended, in multiple-motor branch circuits. For this example, assume all testing is done with fuses of the same class.

The UL investigation of both controllers is done according to UL 508C, Power

Conversion Equipment. The controllers are connected to the test supply through the three-phase conductors and equipment grounding conductor and then covered with cotton in areas that are likely to vent hot gases and sparks during the tests. During the test, electrical faults are impressed on the output of, and internal to, these variable-frequency AC drive-based controllers. Increasing the ampere rating of the fuses increases the magnitude of the fault currents that flow through and damage the controller before the fuses open. Afterwards, the damage to the controller is evaluated to determine whether a potential shock or fire hazard exists when protected by fuses having this ampere rating. One criterion of the evaluation is the examination of the equipment grounding conductor that must not open during the test, as this could leave exposed conductive parts in an energized state (shock hazard). Another criterion is that the cotton must not ignite, as this indicates the expulsion from the controller of hot gases or molten metal fragments (fire hazard).

Referring to the controller on the left, UL 508C permits the individual-motor testing to be performed with the maximum rating of fuse that can be used to protect an individual-motor branch circuit. According to both NFPA 70 and

NFPA 79, this is 400 percent of the full-load current rating of the largest motor that the controller can supply. In UL 508C, this is taken to be 400 percent of the rated output current of the controller, or 6 amperes.

Referring to the controller on the right, UL 508C permits the group installation testing to be performed with the maximum rating of fuse that can be used to protect a multiple-motor branch circuit. According to both NFPA 70

[430.53(C)) and NFPA 79 (7.2.10.4(3)], this is 250 amperes. This value, derived from the installation requirements of 430.53(C) and 430.53(D) of NFPA 70, is determined by the largest size of power conductor that the ArmorStart LT controller can accept, 10 AWG. Because the UL 508C test covers all possibilities in NFPA 70 and NFPA 79, it permits the maximum value of 250 amperes. This covers 7.2.10.4(2), which permits only 100 amperes. However, in this case, the manufacturer, Rockwell Automation, chose to test and mark with the lower value of 45 amperes. This value was chosen as the tradeoff between the maximum number and type of controllers in the branch circuit — limited by the maximum fuse rating — and the electrical and mechanical robustness engineered into each controller.

Therefore, to make its use in the multiple-motor branch circuit of Figure 40

practical, the ½ horsepower Bulletin 294D controller was engineered to be robust enough to safely contain the damage when protected by a fuse having a rating of 45 amperes, rather than just 6 amperes.

192

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

Applying More Than One ArmorStart LT Motor Controller in a Single Branch Circuit on Industrial Machinery

Appendix A

Figure 41 - UL508C Variable-Frequency AC Drive Motor Controller Evaluation

Short-Circuit Test Circuit Short-Circuit Test Circuit

Rated Output

Current = 1.5 A

6A fuse max

UL 508C – test with 6 ampere max

½ HP Motor

Controller

Max = 400% * Rated Output Current

= 400% * 1.5 A = 6 A

Max permitted rating for test fuse based on

Rated Output

Current

Manufacturer’s choice -

Reduce rating for test to 45 A

Max rating for 10 AWG

= 250 A

Max permitted rating for test fuse based on maximum size of power conductors

Bulletin 294

½ HP Motor

Controller

Suitable for motor group installation

Rated Output

Current = 1.5 A

45 A fuse max

Maximum conductor size

= 10 AWG

Maximum conductor size

= 10 AWG

Motor Motor

Maximum Fuse Ampere

Rating According to

7.2.10.4(1) and 7.2.10.4(2)

This section uses

Figure 42 to explain the requirements from 7.2.10.4(1) and

7.2.10.4(2) that are relevant to, and permit, the multiple-motor branch circuit of

Figure 40 .

The following is the complete text of 7.2.10.4(1) and 7.2.10.4(2) and an

abbreviated version of Table 27 from the 2012 Edition of NFPA 79. The table

is abbreviated to cover the size of conductors that are generally relevant to the

ArmorStart LT motor controllers.

193

Complete Text -

“7.2.10.4 Two or more motors or one or more motor(s) and other load(s), and their control equipment shall be permitted to be connected to a single branch circuit where short-circuit and ground-fault protection is provided by a single inverse time circuit breaker or a single set of fuses, provided the following conditions under (1) and either (2) or (3) are met:

(1) Each motor controller and overload device is either listed for group installation with specified maximum branch-circuit protection or selected such that the ampere rating of the motor branch short-circuit and ground-fault protective device does not exceed that permitted by 7.2.10.1 for that individual motor controller or overload device and corresponding motor load.

(2) The rating or setting of the branch short-circuit and ground-fault protection device does not exceed the values in

Table 27

for the smallest conductor in the circuit.”

(3) …(not considered in this appendix)

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

193

Appendix A

Applying More Than One ArmorStart LT Motor Controller in a Single Branch Circuit on Industrial Machinery

Table 27 - Abbreviated Table 7.2.10.4

Table 7.2.10.4 Relationship Between Conductor Size and Maximum Rating or Setting of Short-Circuit

Protective Device for Power Circuits Group Installations

Conductor Size (AWG) Maximum Rating

Fuse or Inverse Time*

Circuit Breaker

(amperes)

14

12

60

80

10

8

6

100

150

200

The following text and

Figure 42

provide an explanation of 7.2.10.4(1) and (2). In the following, the text not relevant to

Figure 40

is replaced by ellipsis points (…). Then each individual requirement is underlined and followed by an underlined letter in parentheses. This underlined letter in the following text corresponds to the letter in

Figure 42 .

“7.2.10.4 Two or more motors (a)…and their control equipment (b) shall be permitted to be connected to a single branch circuit (c) where short-circuit and ground-fault protection is provided by a single inverse time circuit breaker or a single set of fuses (d), provided the following conditions under (1) and…(2)… are met:

(1) Each motor controller and overload device is… listed for group installation with specified maximum branch-circuit protection (e) …

(2) The rating or setting of the branch short-circuit and ground-fault protection device does not exceed the values in Table 7.2.10.4 for the smallest conductor in the circuit.” (f )

Summarizing the requirements relevant to

Figure 40 : 7.2.10.4(1) and 7.2.10.4(2)

permit two or more ArmorStart LT motor controllers to be installed in a single branch circuit provided (1) all the motor controllers are listed for group

installation, (2) the fuse does not exceed the maximum rating that Table 27

permits to protect the smallest conductor and (3) the fuse complies with the maximum fuse ratings of all of the controllers.

194

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

Explanatory Example

Applying More Than One ArmorStart LT Motor Controller in a Single Branch Circuit on Industrial Machinery

Appendix A

Figure 42 - ArmorStart LT NFPA 79 Multi-Motor Branch Circuit

d

“...a single set of fuses…” f

“The rating or setting of the branch short-circuit and ground-fault protection device does not exceed the values in Table 7.2.10.4 for the smallest conductor in the circuit.”

Branch circuit (shown as dotted lines) – all of the conductors on the load side of the single set of fuses c

“...shall be permitted to be connected to a single branch circuit…” e

“Each motor controller and overload device is ...

listed for group installation with specified maximum branch-circuit protection…”

“Suitable for Motor Group Installation”

Sym. Amps RMS

Fuse

Max. Ratings

5 KA 10 KA

45A 45A*

* Type CC, J and T fuses only b e

Markings that satisfy

7.2.10.4(1)

“... and their control equipment … ”

½ HP

Bulletin 294

Overload

Class 10

Nameplate*

2 HP

Bulletin 294

Overload

Class 10

Nameplate*

5 HP

Bulletin 291

Overload

Class 10/15/20

Nameplate*

5 HP

Bulletin 290

Overload

Class 10/15/20

Nameplate*

1 HP

Bulletin 294

Overload

Class 10

Nameplate* a

“Two or more motors ...”

1/2 HP

FLC =

1.1 A**

2 HP

FLC =

3.4 A**

5 HP

FLC =

7.6 A**

5 HP

FLC =

7.6 A**

* Each controller is listed for group installation with the same specified maximum protection

1 HP

FLC =

2.1 A**

The example addresses the overcurrent protection of the conductors, controllers and motors. Protection for three overcurrent conditions is considered: motor running overloads, short-circuit (line-to-line) faults, and ground-faults (line-toground). The short-circuit fault and ground-fault protection is governed by

7.2.10.4(1) and 7.2.10.4(2) and explained in Requirements 1,2 and 3 and

Figure 43 . The overload protection, explained in Requirement 4, is governed by

7.3.1 and 7.3.1.1. Overload coordination depends on each conductor having the minimum ampacity given by 12.5.3 and 12.5.4. The method for determining this minimum ampacity is explained in Requirement 5 and

Figure 44

.

The example branch circuit is shown in

Figure 43 and Figure 44 . The circuit

topology consists of a set of 10 AWG conductors that supply multiple sets of 14

AWG conductors. Each set of 14 AWG conductors supply a controller and motor. These conductor sizes are chosen to be the smallest conductors that have sufficient ampacity, without derating, for the loads each must carry. All of the wiring is customer-supplied, rather than the ArmorConnect Power Media, because all controllers have the Conduit Entrance Gland Plate Option. Fuses protect the branch circuit.

The example addresses five basic requirements that the motor controllers, fuses and conductors must satisfy. The letters in the circles on

Figure 43

and

Figure 44

are referenced in the explanations as letters in parentheses. Ellipses points (…) are used to replace NFPA 79 text that is not applicable to the multiple-motor branch circuit shown in

Figure 43 and Figure 44 . Unless indicated, all text is

from NFPA 79.

195

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

195

Appendix A

Applying More Than One ArmorStart LT Motor Controller in a Single Branch Circuit on Industrial Machinery

Figure 43 - ArmorStart LT NFPA 79 Multi-Motor Branch Circuit —

Conductor and Controller Protection

Electrical Supply -

480Y/277V

Available Fault Current

Sym. Amps RMS 9 KA

Disconnecting

Means

Fuses

45 A Max,

CC, J or T d a

Branch short-circuit and ground-fault protection device

Combined Load Conductors

Controller ratings further restrict the fuse

“Suitable for Motor Group Installation”

Sym. Amps RMS

Fuse

Max. Ratings

5 KA 10 KA

45A 45A*

* Type CC, J and T fuses only d

Compare to controller max fuse ratings a

½ HP

Bulletin 294

Overload

Class 10

Nameplate*

2 HP

Bulletin 294

Overload

Class 10

Nameplate*

5 HP

Bulletin 291

Overload

Class 10/15/20

Nameplate*

5 HP

Bulletin 290

Overload

Class 10/15/20

Nameplate*

Table 7.2.10.4

Max

Fuse

AWG (A)

- -

14 60

12 80

10 100

8 150

- -

Conductor protection -

60 A max, any class c

7.2.10.4(2) -

“smallest conductor in the circuit”

= 14 AWG b

Conductor protection

Determine fuse class and max rating for conductor protection

1/2 HP

FLC =

1.1 A**

“Smallest conductor”

2 HP

FLC =

3.4 A**

5 HP

FLC =

7.6 A**

5 HP

FLC =

7.6 A**

10 AWG

1 HP

Bulletin 294

Overload

Class 10

Nameplate*

* Each controller is suitable for group installation with the same maximum ratings of fuse.

** Table 430.250 of NFPA 70-2011

1 HP

FLC =

2.1 A**

Figure 44 - ArmorStart LT NFPA 79 Multi-Motor Branch Circuit Minimum Conductor Ampacity

Electrical Supply

Min Amp. =

125% * 1.8 A

I1 =

1.8 A c

Min Amp. =

125% * 5.5 A

Minimum Required Ampacity (MRA)

MRA = 1.25 * Max {controller input currents} + Sum {remaining controller input currents}

Controller input currents = {I1,I2,I3,I4,I5}

Max controller input current = I3 = I4, choose I3 as Max (either is ok)

MRA = 1.25 * I3 + (I1 + I2 + I4 + I5}

= 1.25 * 7.6 A + (1.8 A + 5.5 A + 7.6 A + 3.0 A) = 27.4 A

Combined Load Conductors

10 AWG

I2 =

5.5 A

Min Amp. =

125% * 7.6 A

I3 =

7.6 A a

Min Amp. =

125% * 7.6 A

I4 =

7.6 A b

Min Amp. =

125% * 3.0 A

I5 =

3.0 A

Min Amp. =

125% * 1.1A

½ HP

Bulletin

294

1.1 A

1/2 HP

FLC =

1.1 A**

2 HP

Bulletin

294

3.4 A

Min Amp. =

125% * 7.6 A

5 HP

Bulletin

291

7.6 A a

Min Amp. =

125% * 7.6 A

5 HP

Bulletin

290

7.6 A b

Min Amp. =

125% * 2.1 A

1 HP

Bulletin

294

2.1 A

Min Amp. =

125% * 3.4 A

2 HP

FLC =

3.4 A**

5 HP

FLC =

7.6 A**

5 HP

FLC =

7.6 A**

1 HP

FLC =

2.1 A**

** Table 430.250 of NFPA 70-2011

196

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

197

Applying More Than One ArmorStart LT Motor Controller in a Single Branch Circuit on Industrial Machinery

Appendix A

1. Requirement One: Controller Ratings

— The motor controllers and overload relays must be listed for group installation with specified maximum branch-circuit protection.

Text:

“7.2.10.4(1) Each motor controller and overload device is… listed for group installation with specified maximum branch-circuit protection…”

Analysis:

To apply the ArmorStart LT motor controllers in the multiple-motor branch circuit shown in

Figure 43 , 7.2.10.4(1) must be satisfied; each controller

must be listed for group installation with specified maximum branch-circuit protection. The UL listing for each ArmorStart LT motor controller confirms that it – including its integral overload relay and motor disconnecting means — is suitable for motor group installation with specified fuses, satisfying 7.2.10.4(1).

The Bulletin 290D and 291D controllers are listed for group installation according to UL 508, Industrial Control Equipment. The Bulletin 294D controllers are listed for group installation according to UL 508C, Power

Conversion Equipment.

Referring to

Figure 44 (a) indicates the markings on the nameplate that satisfy

7.2.10.4(1). The marking “Suitable for Motor Group Installation” satisfies the requirement to be listed for group installation. The ratings located beneath the description “Max. Ratings” are the specified maximum branch circuit protection.

The (a) beside the fuse(s) indicates that the maximum protection specified on the nameplate applies to these fuse(s).

2. Requirement Two: Conductor Short-circuit and Ground-Fault

Protection

— The fuse must protect the conductors for short-circuit faults and ground faults.

Text:

“7.2.10.4(2) The rating or setting of the branch short-circuit and groundfault protection device does not exceed the values in

Table 27

for the smallest conductor in the circuit.”

Analysis:

Referring to

Figure 43 , 7.2.10.4(2) must be satisfied. The fuse, as indicated by the description in Figure 43

(a), is the branch short-circuit and ground-fault protection device. The word circuit means the branch circuit.

The conductors of the branch circuit start at the load side of the fuses and end at the input to the motor, including the conductors between the motor controllers and the motor. The smallest conductor in the circuit is any one of the 14 AWG conductors that supply each controller and motor. The note at (b) indicates the conductor protection is based on the smallest conductor,

14 AWG. Referring to

Table 27 a 14 AWG conductor may be used in a circuit

that is protected by a fuse of any class having a rating of 60 amperes or less (c).

Therefore, selecting a fuse of any class with a maximum rating of 60 amperes satisfies the conductor protection requirement of 7.2.10.4(2).

Supplementary Note 1:

The value specified in Table 27 is the maximum rating

of fuse that 7.2.10.4(2) permits to protect that size of conductor. The rating of

the fuse may be set to the maximum value given by Table 27 for the smallest

conductor without further justification. However, if any controller, or other

component, has a maximum rating of fuse that is less than the Table 27

value, the

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

197

Appendix A

Applying More Than One ArmorStart LT Motor Controller in a Single Branch Circuit on Industrial Machinery

198

maximum rating of the fuse protecting the branch circuit must be reduced to the lower value so that all components are applied according to their ratings. For example, as shown in Requirement Three, a lower value may be necessary to protect the motor controller within its ratings because its specified maximum

protection is less than the rating that Table 27 permits for the smallest circuit

conductor. Another reason to use a lower rating of fuse is to provide more conservative conductor and controller protection. However, in all cases it is important to ensure the ampere rating is sufficient to start and operate the motors without nuisance opening of the fuse(s).

Supplementary Note 2:

The note at (b) points to the conductor on the output of the ½ Hp Bulletin 294E controller in order to emphasize that the smallest conductor in the circuit includes the conductors between each controller and motor. This includes the output of the variable-frequency AC drive-based

Bulletin 294E controllers; even though these drives have electronic short-circuit protection. According to NFPA 79, the fuse, and not the drive’s electronic shortcircuit protection, provides the short-circuit fault and ground-fault protection for these output conductors.

Supplementary Note 3:

Generally, connecting a smaller conductor to a larger conductor requires the installation of fuses at the connection. This connection may be made without this fuse, in some cases, through the use of a tap rule that indirectly protects the smaller conductor by limiting two things: the ratio of the ampacity of the larger conductor to the ampacity of the smaller conductor and the maximum length of the smaller conductor (see, for example, 7.2.8.2). When applying 7.2.10.4(2), such a tap rule is neither applicable nor necessary. In

Figure 43 , the smaller 14 AWG conductors may be connected to combined load

conductors of any size because 7.2.10.4 does not indirectly protect the smaller conductor by limiting the ratio of the larger to smaller conductor ampacities and

the conductor length. Instead, Table 27 protects the smallest conductor directly

by specifying the maximum rating of fuse that may protect a branch circuit that contains a conductor of that size.

3. Requirement Three: Controller Short-Circuit and Ground-Fault

Protection

— Each motor controller must be protected according to its own ratings, that is, applied in accordance with its listing.

Text:

“(1) Each motor controller and overload device is… listed for group installation with specified maximum branch-circuit protection…”

Analysis:

See (d) in

Figure 43 . The characteristics of the fuse(s) permitted to

protect the conductors (see Requirement 2) must now be compared to those in the controller’s ratings. To comply with the listing of each motor controller and overload relay, the fuse(s) must comply with the maximum branch-circuit protection specified in the controller markings. Therefore, the fuse(s) must be of a class marked on all of the controllers and the rating of the fuse(s) must not exceed the rating marked on any of the controllers. The markings of each controller specify that a fuse having a maximum rating of 45 A may protect the motor controller. When connecting to an electrical supply having an available fault current of 5000 amperes or less, the class of the fuse is not specified and may be any class. When connecting to an electrical supply having an available fault

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

199

Applying More Than One ArmorStart LT Motor Controller in a Single Branch Circuit on Industrial Machinery

Appendix A

current between 5000 and 10000 amperes, the class of the fuse must be CC, J or T. Since the electrical supply has an available fault current of 9000 amperes, selecting a Class CC, J or T fuse with a rating of 45 A or less ensures each motor controller is applied within its own ratings.

Supplementary Note 1:

The rating of the fuse must not exceed the rating permitted by 7.2.10.4(2) to protect the smallest conductor in the circuit.

Selecting a Class CC, J or T fuse with a rating of 45 amperes, being less than 60 amperes, also protects the conductors (see Requirement 2). Although the

ArmorStart LT products presently have a maximum fuse rating of 45 A, future controllers may have maximum fuse ratings that exceed 60 A. In this case, the maximum rating of fuse is limited by the rating to protect the 14 AWG conductors, 60 A. The maximum rating permitted for the controller, 45 A, is a maximum rating and can be reduced, for more conservative protection, provided nuisance opening of the fuses do not occur.

Supplementary Note 2:

In this appendix, a fuse having a rating of any class means a fuse having the let-through characteristics of an Class RK-5 fuse. Class

RK-5 fuses are assumed to have the maximum let-through of any class of fuse. For this reason, the ArmorStart LT motor controllers that are marked for use with fuses, without a restriction to a particular class, have been tested with and are intended to be used with fuses having a class of RK-5. Of course, fuses of a class that have lower let-throughs than Class RK-5, such as Class CC, J or T, are also acceptable. A fuse having a rating of any class also restricts the fuse to those that have been evaluated for use as branch-circuit protection devices. This means that semiconductor fuses, used to protect power electronic equipment, or supplemental fuses cannot be used to protect the multiple-motor branch circuit.

Supplementary Note 3:

There are four complementary ratings relevant to the

“specified maximum branch-circuit protection” of 7.2.10.4(1). They are: the fuse class, the maximum fuse rating, the voltage rating and connection of the source

(480Y/277 V), and the available fault current of the source. Applying the controllers according to these four ratings means that a fault on the output of all the controllers, and internal faults for Bulletin 294 controllers, will not result in a shock or fire hazard.

Supplementary Note 4:

In this example, the assumption is made that the available fault current at the controller is that of the source on the line side of the fuses. Although it is true that the wiring impedance between the fuses and the first controller reduce the fault current available at the controllers, this reduction is neglected by assuming the first controller, the ½ horsepower

Bulletin 294 controller, is very close to the fuses.

4. Requirement Four: Overload Protection

— The motors, conductors and controllers must be protected against motor overload conditions.

Text:

“7.3.1 General. Overload devices shall be provided to protect each motor, motor controller, and branch-circuit conductor against excessive heating due to motor overloads or failure to start.”

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

199

Appendix A

Applying More Than One ArmorStart LT Motor Controller in a Single Branch Circuit on Industrial Machinery

“7.3.1.1 Motors. Motor overload protection shall be provided in accordance with

Article 430, Part III, of NFPA 70.”

Analysis:

Each ArmorStart LT motor controller incorporates an integral overload relay. This overload function must be set in accordance with Article 430,

Part III of NFPA 70. Selecting the ampacity of the circuit conductors appropriately (see Requirement 5) ensures the overload relays, when set according to 7.3.1.1, will protect the conductors against overheating due to motor overloads.

Supplementary Note:

Each individual controller overload relay directly protects the conductors connected to the input and output of that controller and the motor that the controller supplies. The combined load conductor is protected by the tripping of one or more of the controller overload relays, which remove(s) the overloaded motor(s) before the combined load conductor overheats.

5. Requirement: Conductor Ampacity

—The minimum ampacity of conductors.

Text:

“12.5.3 Motor circuit conductors supplying a single motor shall have an ampacity not less than 125 percent of the motor full-load current rating.”

“12.5.4 Combined load conductors shall have an ampacity not less than … 125 percent of the full-load current rating of the highest rated motor plus the sum of the full-load current ratings of all other connected motors…”

Analysis:

Referring to

Figure 44 , (a), (b) and (c) explain the method for

calculating the minimum required conductor ampacity for each of these conductors: input and output conductors of Bulletin 290D and 291D controllers

(a), input and output conductors of Bulletin 294D controllers (b) and combined load conductors that supply Bulletin 290D, 291D and 294D controllers (c). The currents I1 through I5 are the input currents to the controllers. For the Bulletin

290D and 291D controllers, these are the same as the output motor currents. For the Bulletin 294D controllers, these currents are the rated input currents.

The example does not address conditions of use such as an ambient temperature exceeding 30 °C or more than three current-carrying conductors in a cable or raceway. In a particular application, these conditions of use may require derating of the ampacity given in Table 12.5.1. This example assumes that, under the conditions of use, both conductors have sufficient ampacity for the application.

This means the 14 AWG conductors have an ampacity of no less than

9.5 A and the 10 AWG conductors have an ampacity of no less than

27.4 A.

200

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

Applying More Than One ArmorStart LT Motor Controller in a Single Branch Circuit on Industrial Machinery

Appendix A

Input and Output Conductors of Bulletin 290D and 291D

Controllers (a)

For Bulletin 290D and 291D controllers, which use an electromechanical contactor to control the motor, the input current, like the output current, is just the current to the motor. Therefore, the minimum conductor ampacity for both input and output conductors is 125 percent of the motor full-load current rating, as specified in the text of 12.5.3 (a).

Referring to

Figure 44 , the full-load current rating of a three-phase, 460 V, 5 Hp

induction motor is 7.6 amperes. Using this value, both the input and output conductors must have an ampacity that is not less than 125% of 7.6 A or 9.5 A.

Input and Output Conductors of Bulletin 294D Controllers

(b)

The Bulletin 294D controllers use a variable-frequency AC drive to control the motor. These drives use a power conversion method that generates input currents that are larger than the output currents. The input currents are larger because, unlike the output currents to the motor, they are not sinusoidal. Consequently, when determining the minimum ampacity of the input conductors, the requirement of 12.5.3 must be based on the rated input current of the controller, rather than the full-load current rating of the motor. Therefore, the minimum ampacity of the input conductors must be 125% of the controller rated input current, while that of the output conductors must be 125% of the motor full-load current rating.

Referring to

Figure 44 , the 1 Hp Bulletin 294D controller has a rated input

current of 3.0 amperes. Using the rated input current, the conductors from the combined load conductors to the controllers must have an ampacity of 125% of 3.0 A or 3.75 A. The output conductors must have an ampacity of 125% of

2.1 A or 2.6 A.

Combined Load Conductors

(c)

The requirement for the minimum ampacity of the combined load conductors is given by 12.5.4. When the combined load conductors supply one or more

Bulletin 294D controllers, the minimum ampacity calculation of 12.5.4 must be made by substituting the rated input current of the Bulletin 294D controllers for the full-load current rating of the motors that these controllers supply.

In Figure 44

, the currents I1, I2, I3, I4 and I5 are the input currents to each controller. I3 and I4 are the full-load current ratings of the 5 Hp motors. I1, I2 and I5 are the rated input currents of the Bulletin 294D controllers. Referring to the explanatory text (c) in

Figure 44 , the method for calculating the minimum

ampacity of the combined load conductors follows: first, multiply the largest input current to any controller – Bulletin 290D, 291D or 294D - by 125%. In this case, the input currents to the Bulletin 290D and 291D controllers, I3 and

I4, are the largest, 7.6 A. Because they are the same, either can be used. Choose I3 to calculate 125% of the maximum. 125% of 7.6 A is 9.5 A. Second, sum the remaining input currents (I1, I2, I4, I5) for a total of 17.9 A. Third, add the result from the first step to the result from the second for a total of 27.4 A. Finally, the minimum ampacity of the combined load conductors is 27.4 A.

201

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

201

Appendix A

Applying More Than One ArmorStart LT Motor Controller in a Single Branch Circuit on Industrial Machinery

Supplementary Note 1:

The input currents to the Bulletin 294D motor controllers are larger than the output currents to the motor because the input currents contain harmonics resulting from the power conversion process.

This harmonic content and the magnitude of the resulting non-sinusoidal input currents depend on the impedance of the electrical supply. The value specified for the rated input current is the maximum value over the range of possible supply impedances. For this reason, the magnitude of current measured on a particular electrical system may be less than the specified value.

202

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

High Level Product

Description

Appendix

B

CIP Information

The ArmorStart LT EtherNet/IP is an extension of the ArmorStart LT

DeviceNet. Three product types offered:

Table 28 - ArmorStart LT Distributed Starter Type

Bulletin Number

290D

291D

294D

Distributed Starter Type

DOL

Reversing

V/Hz

Product Codes and Name Strings

The following table lists the product codes and name strings that will be on the

ArmorStart LT product family.

Table 29 - Product Codes and Name Strings

0x251

0x252

0x2C2

0x2C4

0x2C6

0x2D2

0x2D4

0x2D6

Product

Code

0x201

0x202

0x211

0x212

0x241

0x242

Current

Rating

0.24…3.5 amps

1.1…7.6 amps

0.24…3.5 amps

1.1…7.6 amps

0.24…3.5 amps

1.1…7.6 amps

0.24…3.5 amps

1.1…7.6 amps

0.5…2.5 amps

1.1…5.5 amps

3.2…16 amps

0.5…2.5 amps

1.1…5.5 amps

3.2…16 amps

Identity Object Name String

ArmorStart 290D 0.24…3.5 A

ArmorStart 290D 1.1…7.6 A

ArmorStart 290DP 0.24…3.5 A

ArmorStart 290DP 1.1…7.6 A

ArmorStart 291D 0.24…3.5 A

ArmorStart 291D 1.1…7.6 A

ArmorStart 291DP 0.24…3.5 A

ArmorStart 291DP 1.1…7.6 A

ArmorStart 294D 0.5 Hp

ArmorStart 294D 1.0 Hp

ArmorStart 294D 2.0 Hp

ArmorStart 294DP 0.5 Hp

ArmorStart 294DP 1.0 Hp

ArmorStart 294DP 2.0 Hp

No

Yes

Yes

Yes

Yes

Yes

No

No

Integrated

Power Supply

No

No

Yes

Yes

No

No

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

203

Appendix B

CIP Information

CIP Explicit Connection

Behavior

The ArmorStart LT allows run, jog and user outputs to be driven by connected explicit messages when no I/O connection exists, or when a I/O connection exists in the idle state. a single EtherNet/IP Class 3 explicit connection will be allowed to send “explicit control” messages via an “Active Explicit” connection.

An EtherNet/IP Class 3 explicit connection becomes the “explicit control” connection when it becomes the first EtherNet/IP Class 3 explicit connection to send a “set” service to one of the following:

The “value” attribute of any Discrete Output Point (DOP) instance (Class

Code 0x09).

The “data” attribute of any output (consumed) Assembly instance (Class

Code 0x04).

Attribute 3 or 4 of the Control Supervisor Object (Class Code 0x29).

EDS Files

The information contained in the EDS (Electronic Data Sheet) files for

ArmorStart LT DeviceNet can be extracted via the network.

CIP Object Requirements

The following CIP objects will be covered in the following subsections:

0x000A

0x000B

0x000F

0x0010

0x001D

0x001E

0x0029

0x002C

Class

0x0001

0x0002

0x0003

0x0004

0x0005

0x0008

0x0009

0x0097

0x098

0x0376

0x032F

Object

Identity Object

Message Router

DeviceNet

Assembly Object

Connection Manager Object

Discrete Input Point Object

Discrete Output Point Object

Analog Input Point

Analog Output Point

Parameter Object

Parameter Group Object

Discrete Input Group Object

Discrete Output Group Object

Control Supervisor

Overload Object

DPI Fault Object

Alarm Object

Trip and Warning Email Object

Email Object

204

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

CIP Information

Appendix B

Identity Object

Attribute ID

1

2

Access Rule

Get

Get

Instance

1

2

CLASS CODE 0x0001

The following class attributes are supported for the Identity Object:

Name

Revision

Max Instance

Data Type

UINT

UINT

Value

1

1 for DOL/Reverser; 2 for VFD

One instance of the Identity Object will be supported for Bulletin 290D and Bulletin

291D; 2 for Bulletin 294D. The following table shows what each instance will represent.

Name

Main Control Board

PowerFlex 4M (294D only)

Revision Attribute

The firmware rev of the main control board operating system

The firmware revision of the PowerFlex 4M

Each instance of the Identity Object will contain the following attributes:

Attribute ID

2 Get Type

3

Get Product Code

Revision

Minor Revision

7

6

8

102

Access Rule

Get

Get

Get

Get

Name Data Type

UINT

UINT

UINT

Structure of:

USINT

USINT

1

22

Product Code specific.

Value

WORD

Bit 0 - 0 = Not Owned; 1 = Owned by Master

Bit 2 - 0 = Factory Defaulted; 1 = Configured

Bits 4-7 – Extended Status (see table below)

Bit 8 - Minor Recoverable fault

Bit 9 - Minor Unrecoverable fault

Bit 10 - Major Recoverable fault

Bit 11 - Major Unrecoverable fault

Unique number for each device Serial Number

Product Name

String Length

ASCII String

State

Build

UDINT

Structure of:

USINT

STRING

USINT

UINT

Product Code specific

Returns the value 3 = Operational

Unique value depending on output of the parameter checksum algorithm.

Firmware Build Number UDINT

See product code definitions in

Table 29 , Product Codes and Name Strings.

Extended Device Status Field (bits 4-7) in “Status” Instance Attribute 5.

Value

0

1

2

3

Description

Self-testing or unknown

Firmware update in progress

At least one faulted I/O connection

No I/O connections established

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

205

Appendix B

CIP Information

Value

4

5

6

7

Description

Non-volatile configuration bad

Major fault – either bit 10 or bit 11 is true (1)

At least one I/O connection in run mode

At least one I/O connection established, all in idle mode

The following common services will be implemented for the Identity Object:

Service Code Class

Implemented for:

Instance Service Name

0x01 No Yes Get_Attributes_All

0x05 No Yes Reset

0x0E Yes Yes Get_Attributes_Single

0x010 No Yes Set_Attributes_Single

Message Router CLASS CODE 0x0002

No class or instance attributes will be supported. The message router object exists only to route explicit messages to other objects.

DeviceNet Object

Attribute ID

1

CLASS CODE 0x0003

Access Rule

Get Revision

The following class attributes will be supported for the DeviceNet Object:

Name Data Type

UINT 2

Value

A single instance (instance 1) of the DeviceNet Object will be supported. The following instance attributes will be supported.

Value Attribute ID

1

Access Rule

Get/Set Node Address

Baud Rate

Name

2 Get/Set

USINT

USINT

Data Type

0 - 63

0 = 125K

1 = 250K

2 = 500K

Allocation_byte

0 - 63 = address

255 = unallocated

6

8

Get

Get

Allocation Info

Master Node Addr

MAC ID Switch Change

Structure of:

BYTE

USINT

BOOL

MAC ID Switch Value USINT

Allocation_byte

Bit 0 Explicit messaging

Bit 1 Polled I/O

Bit 4 COS I/O

Bit 5 Cyclic I/O

Bit 6 Acknowledge Suppression

0 - 63

206

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

CIP Information

Appendix B

The following services will be implemented for the DeviceNet Object.

Implemented for:

Class Instance Service Name Service Code

0x0E

0x10

Assembly Object

Attribute ID

1

CLASS CODE 0x0004

The following class attribute is supported for the Assembly Object:

Access Rule Name

Get Revision

Data Type

UINT

Value

2

The following static Assembly instance attributes will be supported for each

Assembly instance:

Attribute ID

1

Access Rule

Get

Name

Number of Members in Member List UINT

Member List

Member Data Description

Data Type

Array of STRUCT

UINT

Member Path

UINT

Packed

EPATH

3

4

Conditional

Get

Data

Size

100 Get String

Array of BYTE

UINT

STRING

Array of CIP paths

Size of Member Data in bits

Value

Size of Member Path in bytes

Member EPATHs for each assembly instance

Number of bytes in attribute 3

The following services will be implemented for the Assembly Object:

Implemented for:

Class Instance Service Name Service Code

0x0E

0x10

I/O Assemblies

The following table summarizes the Assembly instances that are supported in the

ArmrorStart EtherNet/IP product:

Instance Type

3 Consumed

Description

Required ODVA Consumed Instance

52

100

Produced

Config

Required ODVA Produced Instance

Configuration Assembly for Bulletin 290D/291D Starters

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

207

Appendix B

CIP Information

208

Byte

0

Bit 7

Byte

Bit 7

Bit 6

Bit 6

Instance Type

101

150

Config

Consumed

Description

Configuration Assembly for Bulletin 294D Starters

Default Consumed Instance for Bulletin 290D/291D units

154

155

156

190

Consumed

Produced

Produced

Produced

Default Consumed Instance for Inverter type units

Default Produced Instance for Inverter units

Exhaustive Produced Instance for Inverter type units

1999-ZCIO Native Format Produced Assembly

Instance 3

Instance 3 is the required output (consumed) assembly.

Bit 5

Instance 3 "ODVA Cmd"

Bit 4 Bit 3

— —

Bit 2

Bit 1

Bit 0

Run Forward

Instance 52

Instance 52 is the required input (produced) assembly.

Bit 5

Instance 52 "ODVA Status"

Bit 4 Bit 3

— —

Bit 2

RunningForward

Bit 1

Bit 0

TripPresent

Instance 100

Instance 100 is the Configuration Assembly for Bulletin 290D and 291D units.

11

12

13

9

10

7

8

Member Index

0

1

2

5

6

3

4

24

26

20

22

16

18

12

14

Instance 100 for 290D/291D Starters

Byte Offset Name

0

2

Reserved for Logix

AssemblyRevision

8

10

4

6

FLASetting

OLResetLevel

OverloadClass

ProtFltResetMode

ProtectFltEnable

WarningEnable

RunNetFltAction

RunNetFltValue

RunNetIdleAction

RunNetIdleValue

IOPointConfigure

FilterOffOn

Parameter Instance

N/A

N/A

28

41

42

29

30

48

49

50

46

47

43

45

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

CIP Information

Appendix B

42

43

40

41

38

39

36

37

34

35

32

33

30

31

28

29

50

51

48

49

52

46

47

44

45

26

27

24

25

22

23

20

21

Member Index

14

15

18

19

16

17

Instance 100 for 290D/291D Starters

84

88

80

82

76

78

72

74

68

70

64

66

60

62

56

58

98

100

102

104

106

94

96

90

92

52

54

48

50

44

46

40

42

Byte Offset

28

30

36

38

32

34

CommOverride

KeypadMode

KeypadDisable

OLWarningLevel

JamInhibitTime

JamTripDeley

JamTripLevel

JamWarningLevel

StallEnableTime

StallTripLevel

ULInhibitTime

ULTripDelay

ULTripLevel

ULWarnLevel

OptionMatch

AutoBaudEnable

Name

FilterOnOff

OutProtFltState

OutProtFltValue

OutNetFltState

OutNetFltValue

OutNetIdleState

OutNetIdleValue

Input00Function

Input01Function

Input02Function

Input03Function

Input04Function

Input05Function

NetworkOverride

ConsumedAssy

ProducedAssy

AutoRunZip

ZoneProducedEPR

ZoneProducedPIT

Zone1MacID

Zone2MacID

Zone3MacID

Zone4MacID

78

79

92

100

76

77

74

75

72

73

70

71

67

69

65

66

105

106

107

108

109

101

102

103

104

Parameter Instance

51

52

55

56

53

54

63

64

61

62

59

60

57

58

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

209

Appendix B

CIP Information

210

81

82

79

80

77

78

75

76

73

74

71

72

69

70

67

68

65

66

63

64

61

62

59

60

Member Index

53

54

57

58

55

56

Instance 100 for 290D/291D Starters

168

170

172

174

160

162

164

166

152

154

156

158

144

146

148

150

136

138

140

142

128

130

132

134

Byte Offset

108

112

116

120

124

126

Zone3AnOffset

Zone4AnOffset

Zone1EPR

Zone2EPR

Zone3EPR

Zone4EPR

Zone1Control

Zone2Control

Zone3Control

Zone4Control

Zone1Key

Zone2Key

Zone3Key

Zone4Key

DeviceValueKey

ZoneCtrlEnable

Name

Zone1Mask

Zone2Mask

Zone3Mask

Zone4Mask

Zone1Offset

Zone2Offset

Zone3Offset

Zone4Offset

Zone1AnalogMask

Zone2AnalogMask

Zone3AnalogMask

Zone4AnalogMask

Zone1AnOffset

Zone2AnOffset

140

141

142

143

136

137

138

139

132

133

134

135

128

129

130

131

Parameter Instance

114

115

116

117

118

119

124

125

126

127

120

121

122

123

Instance 101

Instance 101 is the Configuration Assembly for Bulletin 294D units.

Member Index

0

1

2

Instance 101 for 294D Starters

Byte Offset Name

0

2

4

AssemblyRevision

AssemblyRevision

MotorNPVolts

Parameter Instance

N/A

N/A

28

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

CIP Information

Appendix B

31

32

29

30

27

28

25

26

23

24

21

22

19

20

17

18

39

40

37

38

41

35

36

33

34

15

16

13

14

11

12

9

10

Member Index

3

4

7

8

5

6

Instance 101 for 294D Starters

62

64

58

60

54

56

50

52

46

48

42

44

38

40

34

36

78

80

74

76

82

70

72

66

68

30

32

26

28

22

24

18

20

Byte Offset

6

8

14

16

10

12

WarningEnable

RunNetFltAction

RunNetFaultValue

RunNetIdleAction

RunNetIdleValue

IOPointConfigure

FilterOffOn

FilterOnOff

OutProtFltState

OutProtFltValue

OutNetFaultState

OutNetFaultValue

OutNetIdleState

OutNetIdleValue

Input00Function

Input01Function

Name

MotorNPHertz

MotorOLCurrent

CurrentLimit

StopMode

SpeedReference

MinimumFreq

MaximumFreq

AccelTime1

DecelTime1

SCurvePercent

JogFrequency

JogAccelDecel

ProtFltResetMode

ProtectFltEnable

Input02Function

Input03Function

Input04Function

Input05Function

NetworkOverride

CommOverride

KeypadMode

KeypadDisable

AccelTime2

58

59

56

57

54

55

52

53

50

51

48

49

46

47

43

45

66

67

64

65

69

62

63

60

61

Parameter Instance

29

30

33

34

31

32

41

42

39

40

37

38

35

36

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

211

Appendix B

CIP Information

212

70

71

68

69

66

67

64

65

62

63

60

61

58

59

56

57

78

79

76

77

80

74

75

72

73

54

55

52

53

50

51

48

49

Member Index

42

43

46

47

44

45

Instance 101 for 294D Starters

138

140

142

144

128

132

134

136

120

122

124

126

112

114

116

118

156

160

164

168

170

146

148

150

152

104

106

108

110

96

98

100

102

Byte Offset

84

86

92

94

88

90

AutoRestartTries

AutoRestartDelay

BoostSelect

MaximumVoltage

MotorNamPlateFLA

BrakeMode

BrkFreqThresh

BrkCurrThresh

OptionMatch

AutoBaudEnable

ConsumedAssy

ProducedAssy

AutoRunZip

AutoRunZip

ZoneProducedEPR

ZoneProducedPIT

Name

DecelTime2

MotorOLRetention

InternalFreq

SkipFrequency

SkipFreqBand

DCBrakeTime

DCBrakeLevel

ReverseDisable

FlytingStartEna

Compensation

SlipHertzAtFLA

BusRegulateMode

MotorOLSelect

SWCurrentTrip

Zone1MacID

Zone2MacID

Zone3MacID

Zone4MacID

Zone1Mask

Zone2Mask

Zone3Mask

Zone4Mask

Zone1Offset

103

104

105

106

92

100

101

102

90

91

88

89

86

87

84

85

115

116

117

118

119

107

108

109

114

Parameter Instance

70

71

74

75

72

73

82

83

80

81

78

79

76

77

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

CIP Information

Appendix B

Byte Bit 7

0 —

4

5

2 Pt07DeviceIn

3 Pt15DeviceIn

93

94

91

92

89

90

87

88

Member Index

81

82

85

86

83

84

99

100

101

102

97

98

95

96

103

104

206

208

210

212

198

200

202

204

214

216

218

220

188

190

192

194

180

182

184

186

Instance 101 for 294D Starters

Byte Offset Name

172

174

176

178

Zone2Offset

Zone3Offset

Zone4Offset

Zone1AnalogMask

Zone2AnalogMask

Zone3AnalogMask

Zone4AnalogMask

Zone1AnOffset

Zone2AnOffset

Zone3AnOffset

Zone4AnOffset

Zone1EPR

Zone2EPR

Zone3EPR

Zone4EPR

Zone1Control

Zone2Control

Zone3Control

Zone4Control

Zone1Key

Zone2Key

Zone3Key

Zone4Key

DeviceValueKey

Parameter Instance

120

121

122

123

124

125

130

131

132

133

126

127

128

129

138

139

140

141

134

135

136

137

142

143

Instance 150

Instance 150 is the default Output (Consumed) Assembly for Bulletin 290D/

291D starters.

Instance 150 "Starter Cmd" – DeviceLogix Consumed Assembly for Bulletin 290D/291D Starters

Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1

Out05

Out04

Out03

ResetFault

Out02

RunReverse

Out01

Pt06DeviceIn

Pt14DeviceIn

Pt05DeviceIn

Pt13DeviceIn

Pt04DeviceIn

Pt12DeviceIn

Pt03DeviceIn

Pt11DeviceIn

AnalogDeviceIn (low byte)

AnalogDeviceIn (high Byte)

Pt02DeviceIn

Pt10DeviceIn

Pt01DeviceIn

Pt09DeviceIn

Bit 0

RunForward

Out00

Pt00DeviceIn

Pt08DeviceIn

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

213

Appendix B

CIP Information

Instance 151

Instance 151 is the compact input (Produced) Assembly for Bulletin 290D/

291D starters.

3

4

5

Byte Bit 7

0 CurrentFlowing

Instance 151 "Compact Status" – Compact Produced Assembly for Bulletin 290D/291D Starters

Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1

1 DisconnectClosed

NetControlStatus

2 Pt05

Ready

Pt04

RunningReverse

KeyPadHand

Pt03

RunningForward

KeyPadOff

Pt02

WarningPresent

KeyPadAuto

Pt01

Pt07DeviceOut

Pt15DeviceOut

Pt06DeviceOut

Pt14DeviceOut

Pt05DeviceOut

Pt13DeviceOut

Pt04DeviceOut

Pt12DeviceOut

Pt03DeviceOut

Pt11DeviceOut

Pt02DeviceOut

Pt10DeviceOut

Pt01DeviceOut

Pt09DeviceOut

Bit 0

TripPresent

DLXEnabled

Pt00

Pt00DeviceOut

Pt08DeviceOut

214

Instance 152

13

14

11

12

9

10

7

8

5

6

3

4

Byte

0

1

2

19

20

21

17

18

15

16

Instance 152 is the Exhaustive Starter Status Assembly for Bulletin 290D/291D starters.

Bit 7

CurrentFlowing

Instance 152 "Starter Stat" – DeviceLogix Produced Assembly for Bulletin 290D/291D Starters

Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1

DisconnectClosed

NetControlStatus Ready RunningReverse

KeyPadHand

RunningForward

KeyPadOff

WarningPresent

KeyPadAuto

Pt05 Pt04 Pt03 Pt02 Pt01

Bit 0

TripPresent

DLXEnabled

Pt00

Pt07DeviceOut Pt06DeviceOut Pt05DeviceOut Pt04DeviceOut Pt03DeviceOut Pt02DeviceOut Pt01DeviceOut Pt00DeviceOut

Pt15DeviceOut Pt14DeviceOut Pt13DeviceOut Pt12DeviceOut Pt11DeviceOut Pt10DeviceOut Pt09DeviceOut Pt08DeviceOut

An00DeviceOut (low byte)

An00DeviceOut (high byte)

Parameter 1 – PhaseL1Current

Parameter 2 – PhaseL2Current

Parameter 3 – PhaseL3Current

Parameter 4 – AverageCurrent

Parameter 5 – %ThermalUtilized

Parameter 11 – SwitchedVolts

OutputSourceV (IPS units)

Parameter 12 – UnswitchedVolts

SensorSourceV (IPS units)

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

CIP Information

Appendix B

24

25

22

23

Instance 152 "Starter Stat" – DeviceLogix Produced Assembly for Bulletin 290D/291D Starters

Parameter 16 – TripStatus

Parameter 17 – WarningStstus

Instance 154

Instance 154 is the default Output (Consumed) Assembly for Inverter type

(Bulletin 294D) Distributed Starters.

5

6

3

4

7

Byte Bit 7

Instance 154 "Drive Cmd" – DeviceLogix Consumed Assembly for Bulletin 294D Starters

Bit 6 Bit 5 Bit 4

0 JogReverse

Bit 3

JogForward

Bit 2

ResetFault

Bit 1

RunReverse

1 Decel2

2

Accel2 Out05 Out04 Out03

CommandFreq (Low) (xxx.x Hz)

Out02 Out01

Pt07DeviceIn

Pt15DeviceIn

Pt06DeviceIn

Pt14DeviceIn

Pt05DeviceIn

Pt13DeviceIn

CommandFreq (High) (xxx.x Hz)

Pt04DeviceIn

Pt12DeviceIn

Pt03DeviceIn

Pt11DeviceIn

An00DeviceIn (lowbyte)

An00DeviceIn (highbyte)

Pt02DeviceIn

Pt10DeviceIn

Pt01DeviceIn

Pt09DeviceIn

Bit 0

RunFoward

Out00

Pt00DeviceIn

Pt08DeviceIn

Instance 156

11

12

13

9

10

7

8

5

6

3

4

Byte

0

1

2

Bit 7

AtReference

BrakeStatus

Instance 156 is the Exhaustive Drive Status Assembly Instance

Bit 6

Instance 156 "Drive Status" – Produced Assembly for Bulletin 294E Starters

NetRefStatus

Bit 5

NetControlStatus

Bit 4

Ready

Bit 3 Bit 2 Bit 1

RunningReverse RunningForward WarningPresent

DisconnectClosed KeyPadJogging KeyPadHand

Output Frequency (Low) (xxx.x Hz)

KeyPadOff KeyPadAuto

Pt05

Output Frequency (High) (xxx.x Hz)

Pt04 Pt03 Pt02 Pt01

Parameter 4 – OutputVoltage

Bit 0

TripPresent

DLXEnabled

Pt00

Pt07DeviceOut Pt06DeviceOut Pt05DeviceOut Pt04DeviceOut Pt03DeviceOut Pt02DeviceOut Pt01DeviceOut Pt00DeviceOut

Pt15DeviceOut Pt14DeviceOut Pt13DeviceOut Pt12DeviceOut Pt11DeviceOut Pt10DeviceOut Pt09DeviceOut Pt08DeviceOut

An00DeviceOut (low byte)

An00DeviceOut (high byte)

Parameter 3 – OutputCurrent

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

215

Appendix B

CIP Information

28

29

26

27

30

31

24

25

22

23

20

21

18

19

16

17

14

15

Instance 156 "Drive Status" – Produced Assembly for Bulletin 294E Starters

Parameter 5 – DCBusVoltage

Parameter 11 – SwitchedVolts

OutputSourceV (IPS units)

Parameter 12 – UnswitchedVolts

SensorSourceV (IPS units)

Parameter 13 – InternalFanRPM

Parameter 14 – ElaspedRunTime

Parameter 15 – DriveTemperature

Parameter 16 – TripStatus

Parameter 17 – WarningStatus

Parameter 142 – DeviceValueKey

Instance 190

Instance 190 is the 1999-ZCIO Native Format Produced Assembly.

5

6

3

4

Byte Bit 7

Instance 190 "Native 1" – DeviceLogix Consumed Assembly for Bulletin 294D Starters

Bit 6 Bit 5

0 Pt04

Bit 4

Pt04

Bit 3

Pt03

Bit 2

Pt02

1 Ready

2 Out05 Out04 Out03 Out02

RunningReverse

Out01

RunningFoward

Out00

Bit 1

Pt01

WarningPresent

RunReverse

Bit 0

Pt00

TripPresent

RunFoward

JogForward

Pt07DeviceOut Pt06DeviceOut Pt05DeviceOut Pt04DeviceOut Pt03DeviceOut Pt02DeviceOut Pt01DeviceOut Pt00DeviceOut

ZICCV (Low)

ZICCV (High)

JogReverse

Connection Object

Attribute ID

1

CLASS CODE 0x0005

The following class attributes will be supported for the Connection Object.

Access Rule Name

Get Revision

Data Type

UINT

Value

2

216

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

4

5

9

12

7

8

2

3

Attribute ID

1

Attribute ID

1

2

7

8

CIP Information

Appendix B

Get

Get

Get

Get

Get

Get

Get/Set

Get

Access Rule

Get

Access Rule

Get

Get

Get

Get

Name

State

Instance Type

Transport Class Trigger

Produced Connection ID

Consumed Connection ID

Produced Connection Size

Consumed Connection Size

Expected Packet Rate

Watchdog Action

Data Type

USINT

USINT

USINT

UINT

UINT

UINT

UINT

UINT

USINT

Value

0=nonexistant

1=configuring

3=established

4=timed out

0=Explicit

Message

0x83 - Server, Transport

Class 3

10xxxxxx011 xxxxxx=node address

10xxxxxx100 xxxxxx=node address

0x61

0x61 in milliseconds

01 = auto delete

03 = deferred delete

Instance 2

Instance 2 is the Predefined Group 2 Connection Set Polled I/O Message

Connection. The following instance 2 attributes will be supported:

Name

State

Multiple instances of the Connection Object will be supported, instances 1, 2, and 4 from the group 2 predefined master/slave connection set, instances 5-7 will be available explicit UCMM connections, and instances 8-11 will act as ZIP consumers.

Instance 1

Instance 1 is the Predefined Group 2 Connection Set Explicit Message

Connection. The following instance 1 attributes will be supported:

Instance Type

Produced Connection Size

Consumed Connection Size

Data Type

USINT

USINT

UINT

UINT

Value

0=nonexistant

1=configuring

3=established

4=timed out

1=I/O Connection

0 to 8

0 to 8

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

217

Appendix B

CIP Information

Attribute ID

1

6

7

8

9

7

8

2

3

2

3

Attribute ID

1

Access Rule

Get

Get

Get

Get

Get

Get

Get/Set

Access Rule

Get

Get

Get

Get

Get

Name

State

Instance Type

Transport Class Trigger

Initial Comm Characteristics

Produced Connection Size

Consumed Connection Size

Expected Packet Rate

Data Type

USINT

USINT

USINT

USINT

UINT

UINT

UINT

Value

0=nonexistant

1=configuring

3=established

4=timed out

1=I/O Connection

0x00 (Cyclic, unacknowledged)

0x03 (Cyclic, acknowledged)

0x10 (COS, unacknowledged)

0x13 (COS, acknowledged)

0x02 (acknowledged)

0x0F (unacknowledged)

0 to 8

0 to 8 in milliseconds

Instance 5-7

Instance 5 - 7 will be available group 3 explicit message connections that are allocated through the UCMM. The following attributes will be supported:

Name

State

Instance 4

Instance 4 is the Predefined Group 2 Connection Set of State/Cyclic I/O

Message Connection. The following instance 4 attributes will be supported:

Instance Type

Transport Class Trigger

Produced Connection Size

Consumed Connection Size

Data Type

USINT

USINT

USINT

UINT

UINT

Value

0=nonexistant

1=configuring

3=established

4=timed out

1=Explicit Message

0x83 - Server, Transport

Class 3

0

218

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

Attribute ID

1

2

7

8

CIP Information

Appendix B

Access Rule

Get

Get

Get

Get

Instance 8-11

Instances 8-11 are ZIP Consumers. The following instance attributes will be supported:

Name

State

Instance Type

Produced Connection Size

Consumed Connection Size

Data Type

USINT

USINT

UINT

UINT

Value

0=nonexistant

1=configuring

3=established

1=I/O Connection

0

8

The following services will be implemented for the Connection Object:

Service Code

0x05

0x0E

0x10

Implemented for:

Class Instance Service Name

No

No

Yes Reset

Yes Get_Attribute_Single

Discrete Input Point

Object

Attribute ID

1

2

Access Rule

Get

Get

Attribute ID

3

4

115

116

Access Rule

Get

Get

Get/Set

Get/Set

CLASS CODE 0x0008

The following class attributes are currently supported for the Discrete Input

Point Object:

Name

Revision

Max Instance

Data Type

UINT

UINT

Value

2

6

Six instances of the Discrete Input Point Object are supported. All instances contain the following attributes:

Name

Value

Fault Status

Force Enable

Force Value

Data Type

BOOL

BOOL

BOOL

BOOL

Value

0 = OFF, 1 = ON

0 = OK, 1 = Fault

0 = Disable, 1 = Enable

0 = OFF, 1 = ON

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

219

Appendix B

CIP Information

The following common services will be implemented for the Discrete Input Point

Object:

Service Code

0x0E

0x10

Implemented for:

Class Instance Service Name

Yes

No

Yes

Yes

Get_Attribute_Single

Set_Attribute_Single

Discrete Output Point

Object

Attribute ID Access Rule

1 Get

2 Get

CLASS CODE 0x0009

fo

The following class attributes will be supported for the Discreet Output Point

Object:

Name

Revision

Max Instance

Data Type

UINT

UINT

Value

1

8 for 290D/291D, 10 for 294D

6

7

4

5

Instance Name

1 Run Fwd Output

2

3

Run Rev Output

User Output A

User Output B

User Output C

User Output D

User Output E

8

9

10

User Output F

Drive Jog Fwd

Drive Jog Rev

Eight instances of the Discrete Output Point Object will be supported for DOL/

Reverser (Bulletin 290D/291D) units. Ten instances will be supported for Drive

(Bulletin 294E) units. The following table summarizes the DOP instances:

Description

0029-01-03

0029-01-04

None

None

None

None

None

None

None

None

Run Forward output.

Run Reverse output.

These are the six possible user outputs for all starter types. Their fault/idle behavior is defined in DOP Instance 3.

This instances exists for Inverter (Bulletin 294D) units only.

220

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

CIP Information

Appendix B

Attribute ID

3

5

6

7

8

113

114

115

116

117

Access Rule

Get

Get/Set

Get/Set

Name

Value

Comm Fault Action

Comm Fault Value

Comm Fault Action

Comm Fault Value

Prot Fault Action

Prot Fault Value

Force Enable

Force Value

Get/Set

All instances contain the following attributes:

Input Binding

Data Type

BOOL

BOOL

BOOL

BOOL

BOOL

BOOL

BOOL

BOOL

BOOL

STRUCT:

USINT

Array of USINT

Value

0 = OFF, 1 = ON

0=Comm Fault Value, 1=Hole Last State

0 = OFF, 1 = ON

0=Comm Fault Value, 1=Hole Last State

0 = OFF, 1 = ON

0=Flt Value, 1=Ignore

0 = OFF, 1 = ON

These attributes are not settable in instances

1,2,9 or 10

0=Disable, 1=Enable

0 = OFF, 1 = ON

Size of appendix I encoded path

Appendix I encoded path

NULL path means attribute 3 drives the output.

Otherwise, this is a path to a bit in the Bit Table.

The following common services will be implemented for the Discrete Output

Point Object:

Service Code

0x0E

0x10

Implemented for:

Class Instance Service Name

Yes

No

Yes

Yes

Get_Attribute_Single

Set_Attribute_Single

Discrete Output Point Object Special Requirements

There are many sources that can affect an output point's value: an I/O message, an explicit message, local logic, network fault and idle conditions, and protection fault conditions. An output point must know how to select which source of data to use to drive its value attribute.

An output that is not bound behaves much the same as in the DeviceNet

Specification. Two notable additions to unbound DOP behavior for the

Intimidator implementation are:

Explicit control of the value attribute via Explicit messages is constrained by the Touch Algorithm

Protection Fault Action and Protection Fault Value

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

221

Appendix B

CIP Information

Power off

The following state transition diagram is used for an unbound Bulletin 290D

Figure 45 - State Transition for Unbound Bulletin 290D

Non-Existent

Power up

Available

Connection

Transitions to

Established

Protection Fault

DNet Fault

Ready

Idle DNet Fault

Protection

Fault

Connection Transitions to Established

DNet Fault

Receive Idle

DNet

Idle

Ready

Receive

Data

Run

Protection Fault Reset

Protection Fault

Protection Fault

Protection

Fault

DNet Fault

222

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

CIP Information

Appendix B

The following flow chart illustrates the behavior of

Bound DOPs

Figure 46 - State Transition for Bound Bulletin 290D

Protection

Fault

Yes

Pr Fault

Action = Ignore

Yes

Unrecoverable

Network

Fault

Yes

Return Object State

Conflict

Yes

Ignore

Message

Yes

EM

I/O

Comm

Override

Yes

Yes

Network

Fault

Override

DN

Fault

Yes

DN Idle

Yes

Run

Yes

Use PrFault Action &

PrFault Value

Available

Yes

Clear Value

Logic

Enabled

Yes

Perform LEO

Function

Apply Force Value

Use DNIdle Action &

DNIdle Value

Use DNFault Action

& DNFault Value

Apply Value

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

223

Appendix B

CIP Information

Protection

Fault

The following flow chart illustrates the behavior of

Bound DOP Instances

.

Figure 47 - State Transition for Bound Bulletin 290D

Yes

Unrecoverable

Network

Fault

Yes

Return Object State

Conflict

Yes

Ignore

Message

Yes

EM

I/O

Yes

Comm

Override

DN

Fault

Yes

DN Idle

Yes

Run

Y es

Yes

Network

Fault

Override

Available

Yes

Clear Value

Logic

Enabled

Yes

Perform LEO

Function

Apply Force Value

Apply Value

Use DNIdle Action &

DNIdle Value

Use DNFault Action

& DNFault Value

Turn off output

224

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

CIP Information

Appendix B

Analog Input Point Object CLASS CODE 0x000A (Implemented in Bulletin 294D units only)

Attribute ID

1

2

Access Rule

Get

Get

The following class attributes will be supported for the Analog Input Point

Object:

Name

Revision

Max Instance

Data Type

UINT

UINT

Value

2

1

Attribute ID

3

8

Access Rule

Get

Get

Two instances of the Analog Input Point Object will be supported.

CommandFreq from Assembly 154 is placed in the value attribute when it is consumed.

Name

Value

Value Data Type

Data Type

INT

USINT

Value

Default = 0

0 = INT

The following common services will be implemented for the Analog Input Point

Object:

Implemented for:

Service Code Class Instance

0x0E Yes Yes

Service Name

Get_Attribute_Single

0x10 No Yes Set_Attribute_Single

Analog Output Point Object CLASS CODE 0x000B (Implemented in Bulletin 294D units only)

Attribute ID

1

2

Access Rule

Get

Get

The following class attributes will be supported for the Analog Output Point

Object:

Name

Revision

Max Instance

Data Type

UINT

UINT

Value

2

1

Attribute ID

3

8

Access Rule

Get/Set

Get

129 Get/Set

One instance of the Analog Output Point object will supported. It will represent the Frequency command. CommandFreq from Assembly 154 is placed in the

Value Attribute when it is consumed. The Value Attribute can then be overwritten by DeviceLogix.

Name

Value

Value Data Type

Input Binding

INT

USINT

Data Type

STRUCT:

USINT

Array of USINT

Value

0 = Default

0 = INT

Size of Appendix I encoded path

Appendix I encoded path

NULL path means attribute 3 drives the output.

Otherwise, this is a path to a bit in the Bit Table.

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

225

Appendix B

CIP Information

The following common services will be implemented for the Analog Output

Point Object:

Implemented for:

Service Code Class Instance

0x0E Yes Yes

Service Name

Get_Attribute_Single

0x10 No Yes Set_Attribute_Single

Parameter Object

Attribute ID

1

2

8

9

Access Rule

Get

Get

Get

Get

Attribute ID

1

2

Access Rule

Get/Set

Get

3

10

11

8

9

6

7

4

5

14

15

12

13

16

Get

Get

Get

Get

Get

Get

Get

Get

Get

Get

Get

Get

Get

Get

CLASS CODE 0x000F

The following class attributes will be supported for the Parameter Object:

Name

Revision

Max Instance

Parameter Class Descriptor

Configuration Assembly Instance

Data Type

UINT

UINT

WORD

UINT

Value

100 for 290D/291D units

101 for 294D units

The number of instances of the parameter object will depend upon the type of

Distributed Starter that the control board is connected to.

Descriptor

Data Type

Data Size

Parameter Name String

Units String

Help String

Minimum Value

Maximum Value

Default Value

Scaling Multiplier

Scaling Divisor

Scaling Base

Scaling Offset

The following instance attributes will be implemented for all parameter attributes:

Name

Value

Link Path Size

Link Path

Data Type

Specified in Descriptor

USINT

Array of:

BYTE

EPATH

WORD

EPATH

USINT

SHORT_STRING

SHORT_STRING

SHORT_STRING

Specified in Descriptor

Specified in Descriptor

Specified in Descriptor

UINT

UINT

UINT

INT

Value

226

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

Attribute ID

17

18

19

20

21

Access Rule

Get

Get

Get

Get

Get

CIP Information

Appendix B

Name

Multiplier Link

Divisor Link

Base Link

Offset Link

Decimal Precision

UINT

UINT

UINT

UINT

USINT

Data Type Value

The following services will be implemented for the Parameter Object:

Implemented for:

Service Code Class Instance

0x01 No Yes

Service Name

Get_Attribute_All

0x0E Yes

0x10 No

0x4b No

Yes

Yes

Yes

Get_Attribute_Single

Set_Attribute_Single

Get_Enum_String

Parameter Group Object

Attribute ID

1

2

Access Rule

Get

Get

Attribute ID

1

2

3

4 n

Access Rule

Get

Get

Get

Get

Get

CLASS CODE 0x0010

The following class attributes will be supported for the Parameter Group Object:

Name

Revision

Max Instance

Data Type

UINT

UINT

Value

The following instance attributes will be supported for all Parameter Group

Instances.

Name

Group Name String

Number of Members

1st Parameter

2nd Parameter

Nth Parameter

Data Type

SHORT_STRING

UINT

UINT

UINT

UINT

Value

The following common services will be implemented for the Parameter Group

Object.

Implemented for:

Service Code Class Instance

0x0E Yes Yes

Service Name

Get_Attribute_Single

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

227

Appendix B

CIP Information

Discrete Input

Group Object

Attribute ID

3

4

6

7

Access Rule

Get

Get

Get/Set

Get/Set

CLASS CODE 0x001D

No class attributes will be supported for the Discrete Input Group (DIP) Object.

A single instance of the Discrete Input Group Object is supported and contains the following instance attributes:

Name

Number of Instances

Binding

Off_On_Delay

On_Off_Delay

Data Type

USINT

Array of UINT

UINT

UINT

Value

6

List of DIP Instances

The following common services will be implemented for the Discrete Input

Group Object:

Service Code

0x0E

0x10

Implemented for:

Class Instance Service Name

No

No

Yes

Yes

Get_Attribute_Single

Set_Attribute_Single

Discrete Output

Group Object

Attribute ID

3

4

6

115

116

Access Rule

Get

Get

Get/Set

Get/Set

Get/Set

CLASS CODE 0x001E

No class attributes will be supported for the Discrete Output Group (DOP) object.

Instance 1

3 exist for all ArmorStart LT units.

Instance 1 exists for the sole purpose of providing a place holder for the Comm

Override and Network Override parameters. Instance 1 will contain the following attributes:

Name

Number of Instances

Binding

Command

Network Status Overrride

Comm Status Overrride

Data Type

USINT

Array of UINT

BOOL

BOOL

BOOL

Value

8 for DOL/Soft Starter (290D/291D)

12 for Inverters (294D)

List of DOP Instances

0 = Idle, 1 = Run

0 = No override (go to safe state)

1 = Override (run local logic)

0 = No Override (go to safe state)

1 = Override (run local logic)

Instance 2 controls the communication fault and idle behaviors for run/jog outputs. Instance 2 contains the following instance attributes:

228

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

CIP Information

Appendix B

Attribute ID

3

4

8

9

6

7

10

Access Rule

Get

Get

Get/Set

Get/Set

Get/Set

Get/Set

Get/Set

Attribute ID

3

4

6

9

10

7

8

113

114

Access Rule

Get

Get

Get/Set

Get/Set

Get/Set

Get/Set

Get/Set

Get/Set

Get/Set

Name

Number of Instances

Binding

Command

Fault Action

Fault Value

Idle Action

Idle Value

Data Type

USINT

Array of UINT

BOOL

BOOL

BOOL

BOOL

BOOL

2 for DOLs (290D/291D)

4 for Drives (294D)

1, 2 for DOLs (290D/291D)

1, 2, 9, 10 for Drives (294D)

Value

0 = Idle, 1 = Run

0 = Fault Value Attribute, 1 = Hold Last State

0 = OFF, 1 = On

0 = Idle Value Attribute, 1 = Hold Last State

0 = OFF, 1 = On

Note:

There are no protection fault attributes. Behavior for protection faults is go to OFF.

Instance 3 will drive protection fault and communication fault/idle behaviors for user outputs. Instance 3 will have the following attributes.

Name

Number of Instances

Binding

Command

Fault Action

Fault Value

Idle Action

Idle Value

Pr Fault Action

Pr Fault Value

Data Type

USINT

Array of UINT

BOOL

BOOL

BOOL

BOOL

BOOL

BOOL

BOOL

Value

6

3, 4, 5, 6, 7, 8

0 = Idle, 1 = Run

0 = Fault Value Attribute, 1 = Hold Last State

0 = OFF, 1 = On

0 = Idle Value Attribute, 1 = Hold Last State

0 = OFF, 1 = On

0 = Pr Fault Value Attribute, 1 = Ignore

0 = OFF, 1 = On

The following common services are implemented for the Discrete Input Group

Object.

Service Code

0x0E

0x10

Implemented for:

Class Instance Service Name

No

No

Yes

Yes

Get_Attribute_Single

Set_Attribute_Single

Control Supervisor Object CLASS CODE 0x0029

No class attributes are supported.

A single instance (Instance 1) of the Control Supervisor Object is supported and contains the following instance attributes.

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

229

Appendix B

CIP Information

Attribute ID

3

4

7

8

9

10

12

Access Rule

Get/Set

Get/Set

Get

Get

Get

Get

Get/Set

Name

Run 1

Run 2

Running 1

Running 2

Ready

Tripped

Fault Reset

Data Type

BOOL

BOOL

BOOL

BOOL

BOOL

BOOL

BOOL 0 > 1 = Trip Reset

Reversing Starters (291D) and Inverter (294D) Starters only

Value

These Run outputs also map to DOP Instances 1 and 2

The following common services will be implemented for the Control Supervisor

Object.

Service Code

0x0E

0x10

Implemented for:

Class Instance Service Name

No

No

Yes

Yes

Get_Attribute_Single

Set_Attribute_Single

Overload Object

Attribute ID

3

4

5

9

10

7

8

190

192

193

194

195

Access Rule

Get/Set

Get/Set

Get

Get

Get

Get

Get

Get/Set

Get

Get

Get

Get

CLASS CODE 0x002C

No class attributes will be supported for the Overload Object.

A single instance (Instance 1) of the Overload Object is supported for DOL

(290D/291D) and Reversing (294D) Starters. Instance 1 contains the following instance attributes.

Name

FLA Setting

Trip Class

Average Current

% Thermal Utilized

Current L1

Current L2

Current L3

FLA Setting Times 10

Average Current Times 10

Current L1 Times 10

Current L2 Times 10

Current L3 Times 10

Data Type

BOOL

USINT

INT

USINT

INT

INT

INT

BOOL

UINT

UINT

UINT

UINT

Value

xxx.x amps

— xxx.x amps xxx% FLA xxx.x Amps xxx.xx Amps

230

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

CIP Information

Appendix B

The following common services are implemented for the Overload Object.

Service Code

0x01

0x0E

0x10

Implemented for:

Class Instance Service Name

No

No

No

Yes

Yes

Yes

Get_Attribute_All

Get_Attribute_Single

Set_Attribute_Single

DPI Fault Object

Attribute ID

1

2

3

4

5

6

CLASS CODE 0x0097

Access Rule

Get

Get

Get/Set

Get

Get

Get

This object provides access to fault information within the device.

The following class attributes will be supported for the DPI Fault Object.

Name

Class Revision

Number of Instances

Fault Cmd Write

Fault Instance Read

UINT

UINT

USINT

UINT

Data Type

Fault into parameter instance array

Struct of:

UINT

Array [5] of UINT

Number of Recorded Faults UINT

Value

1

4

0=NOP; 1=Clear Fault; 2=Clear Flt Queue

The instance of the Fault Queue Entry containing information about the fault that tripped the device.

Array of SnapShot parameter instance numbers

Array Size = 5

Array of Instance Numbers = 23, 24, 25, 26, 27

The number of faults recorded in the fault queue.

Attribute ID

0

1

3

Access Rule

Get

Name

Full/All Info

Fault Code

Fault Source

DPI Port Number

Device Object Instance

Fault Text

Fault Time Stamp

Timer Value

Timer Descriptor

Help Object Instance

Fault Data

Get

Get

Four instances of the DPI Fault Object will be supported.

Value

Basic Info

Fault Code

Fault Source

DPI Port Number

Device Object Instance

Fault Time Stamp

Timer Value

Timer Descriptor

Help Text

Data Type

Struct of:

UINT

Struct of:

USINT

USINT

BYTE [16]

Struct of:

ULDINT

WORD

USINT

Array [5] of 32 bit fault data values

See Tables below

0

0x2c

See Tables below

Snapshot data

Struct of:

UINT

Struct of:

USINT

USINT

Struct of:

ULINT

WORD

STRING

See Tables below

0

0x2c

See Tables below

The following common services will be implemented for the DPI Fault Object.

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

231

Appendix B

CIP Information

232

Service Code

0x0E

0x10

Implemented for:

Class Instance Service Name

Yes

Yes

Yes

No

Get_Attribute_Single

Set_Attribute_Single

The table below lists Fault Codes, Fault Text, and Fault Help Strings for DOL and Reversers.

Table 30 - Fault Codes, Fault Text, and Fault Help Strings for DOL and Reversers

11

12

13

9

10

7

8

5

6

3

4

Fault

Code

1

2

14

28

29

26

27

24

25

22

23

19

20

21

17

18

15

16

Fault Text

Fault 1

User Defined

Overload Trip

Fault 4

Phase Loss Trip

Jam Trip

Underload Trip

Fault 8

Fault 9

Fault 10

Fault 11

Stall Trip

Switched Power

Under Power Trip

Sensor Short

Output Short

Fault 17

Fault 18

Phase Imbalance

Fault 20

Aux Power Loss

Fault 22

Fault 23

Fault 24

Fault 25

Fault 26

NonVol Memory

Fault 28

Fault 29

Help Text

User defined trip has occurred.

Load has drawn excessive current based on trip class selected.

Indicates missing supply phase. This fault can be disabled.

Motor current above jam level for more than jam trip delay time.

Motor current below UL level for more than UL trip delay time.

Motor current above stall trip level during motor starting.

Indicates the loss of switched control power.

Not available in units with Integrated Power Supply.

Indicates the internal power supply is below its working level.

Available in units with Integrated Power Supply only

Flags a miswired hardware input point.

Flags a miswired hardware output point.

Indicates an imbalanced phase current.

Auxiliary Power was lost or dipped below the minimum threshold.

Not available in units with Integrated Power Supply

This is a major fault which renders the unit inoperable.

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

CIP Information

Appendix B

Table 30 - Fault Codes, Fault Text, and Fault Help Strings for DOL and Reversers

40

41

42

75

38

39

36

37

34

35

32

33

Fault

Code

30

31

Fault Text

Hardware Fault

Fault 31

Fault 32

Fault 33

Fault 34

Fault 35

Fault 36

Fault 37

Fault 38

Fault 39

Unknown Fault

BrakeOption

KeypadOption

Fault 75

Help Text

This is a major fault which renders the unit inoperable.

Brake Option hardware does not match parameter 92 setting.

Keypad Option hardware does not match parameter 92 setting.

The table below lists Fault Codes, Fault Text, and Fault Help Strings for Drive units.

Table 31 - Fault Codes, Fault Text, and Fault Help Strings for Drive Units

PF4M

Fault

Code

11

12

13

9

10

7

8

5

6

3

4

Fault

Code

1

2

14

15

16

Fault Text

Fault 1

User Defined

Motor Overload

Drive Overload

Phase U to Gnd

Phase V to Gnd

Phase W to Gnd

Phase UV Short

Phase UW Short

Phase VW Short

Ground Fault

Stall Trip

Switched Power

Under Power Trip

Sensor Short

Output Short

Help Text

User defined trip has occurred.

The load has drawn excessive current.

150% load for 1 min. or 200% load for 3 sec. exceeded.

A Phase U to Ground fault detected between drive and motor.

A Phase V to Ground fault detected between drive and motor.

A Phase W to Ground fault detected between drive and motor.

Excessive current detected between phases U and V.

Excessive current detected between phases U and W.

Excessive current detected between phases V and W.

A current path to earth ground at one or more output terminals.

The drive is unable to accelerate the motor.

Indicates the loss of switched control power.

Not available in units with Integrated Power Supply

Indicates the internal power supply is below its working level.

Available in units with Integrated Power Supply only.

Flags a miswired hardware input point.

Flags a miswired hardware output point.

42

43

40

41

13

6

38

39

7

64

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

233

Appendix B

CIP Information

19

20

21

Fault

Code

17

18

36

37

34

35

32

33

30

31

28

29

26

27

24

25

22

23

42

43

75

40

41

38

39

Table 31 - Fault Codes, Fault Text, and Fault Help Strings for Drive Units

Fault Text

Fault 17

Heatsink Temp

HW Over Current

SW OverCurrent

Aux Power Loss

Help Text

The Heatsink temperature exceeds a predefined value.

The drive output current has exceeded the hardware limit.

Programmed parameter 83 (SW Current Trip) has been exceeded.

Auxiliary Power was lost or dipped below the minimum threshold.

Not available in units with Integrated Power Supply.

Internal Comm Communication with the internal Power Flex drive has been lost.

Drive Comm Loss The RS485 port on the internal Power Flex stopped communicating.

Power Loss

Under Voltage

Drive DC Bus Voltage remained below 85% of nominal bus voltage.

DC Bus Voltage fell below the minimum value.

Over Voltage

MCB EEPROM

Param Sync

Drive EEPROM

DC Bus Voltage exceeded the maximum value.

This is a major fault which renders the ArmorStart inoperable.

The drive and Main Control Board EEPROMS are not in sync.

The drive EEPROM checksum checks have failed.

Hardware Fault

Fan RMP

Power Unit

Drive I/O Brd

This is a major fault which renders the unit inoperable

The internal cooling fan is not running properly.

A major failure has been detected in the drive power section.

A failure has been detected in the drive control and I/O section.

Restart Retries

Drive Aux In Flt

Automatic fault reset and run retries exceeded.

The drive auxiliary input interlock is open inside the ArmorStart.

Fault 36 —

Drv Param Reset Internal Drive Parameters (Parameters > 100) have been defaulted.

Fault 38

Fault 39

Unknown Fault

BrakeOption

KeypadOption

Disconnect Open

Brake Option hardware does not match parameter 92 setting

Keypad Option hardware does not match parameter 92 setting

Disconnect is open causing a DC Bus Under Voltage in the drive

PF4M

Fault

Code

100

48

41

42

8

12

63

3

4

71

81

5

70

122

33

2

Fault 75 —

75

234

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

CIP Information

Appendix B

DPI Alarm Object

Attribute ID

1

2

3

4

6

Attribute ID

0

1

3

Access Rule

Get

Get

Set

Get

Get

CLASS CODE 0x0098

This object provides access to warning information within the device.

The following class attributes will be supported.

Name

Class Revision

Number of Instances

Alarm Cmd Write

Alarm Instance Read

Number of Recorded Alarms

UINT

UINT

USINT

UINT

UINT

Data Type Value

1

1

0=NOP; 1=Clear Alarm; 2=Clear Queue

The instance of the Fault Queue Entry containing information about the fault that tripped the device.

The number of faults recorded in the fault queue.

A single instance of the DPI Alarm Object will be supported.

Value Access Rule

Get

Get

Get

Name

Full/All Info

Alarm Code

Alarm Source

DPI Port Number

Device Object Instance

Alarm Text

Alarm Time Stamp

Timer Value

Timer Descriptor

Help Object Interface

Alarm Data

Basic Info

Alarm Code

Alarm Source

DPI Port Number

Device Object Instance

Alarm Time Stamp

Timer Value

Timer Descriptor

Help Text

Data Type

Struct of:

UINT

Struct of:

USINT

USINT

STRING

Struct of:

ULINT

WORD

USINT

Struct of:

UINT

Struct of:

USINT

USINT

Struct of:

ULINT

WORD

STRING

See Tables below

0

See Tables below

See Tables below

0

See Tables below

The following common services will be implemented for the DPI Fault Object.

Service Code

0x0E

0x10

Implemented for:

Class Instance Service Name

Yes

Yes

Yes

No

Get_Attribute_Single

Set_Attribute_Single

The table below lists Fault Codes, Fault Text, and Fault Help Strings.

Table 32 - Fault Codes, Fault Text, and Fault Help Strings for ArmorStart LT

Warning

Code

1

2

3

Warning Text

Warning 1

Warning 2

Motor Overload

Help Text

Overload warning level has been exceeded.

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

235

Appendix B

CIP Information

43

44

41

42

22

31

45

75

Table 32 - Fault Codes, Fault Text, and Fault Help Strings for ArmorStart LT

14

19

20

21

17

18

15

16

Warning

Code

4

5

8

9

6

7

12

13

10

11

Warning Text

Warning 4

Warning 5

Jam Warning

Underload Warning

Warning 8

Warning 9

Warning 10

Warning 11

Warning 12

Switched Pwr Warn

Under Power Warn

Warning 15

Warning 16

Warning 17

Warning 18

Warning 19

Warning 20

Aux Power Warn

Help Text

Indicates missing supply phase. This fault can be disabled.

Motor current has exceeded jam warning level.

Motor current dropped below Underload Warning level.

Indicates the control power has dipped below 19 Volts.

Not available in units with Integrated Power Supply.

Indicates the internal power supply is below its optimal level.

Available in units with Integrated Power Supply only.

Indicates auxiliary Power was has dipped below 19 Volts.

Not available in units with Integrated Power Supply.

Warning 22

FanRPMWarning

BrakeConfig

IOPointConfig

ZIPConfig

JamConfig

UnderloadConfig

Warning 75

Internal fan is too slow, or needed to be kick started

Values for params 58 - 63 and/or param 49 are invalid

Values for params 58 - 63 and/or param 49 are invalid

Values for params 114 - 129 result in ZIP data mapping overlap

Param 72 JamTripLevel is less than Param 73 JamWarningLevel

Param 78 ULTripLevel is greater than Param 79 ULWarningLevel

DeviceNet Interface Object CLASS CODE 0x00B4

Attribute ID

1

Access Rule

Get

The following class attributes will be supported.

Name

Revision UINT

Data Type

236

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

Value

2

CIP Information

Appendix B

Attribute

ID

15

16

Access

Rule

Name

Get/Set Autobaud Enable

Get/Set Consumed Assy

17

19

100

101

103

104

Get/Set Produced Assy

Get/Set Set to Defaults

Get Build

Get

Get

Get

PTableinit errs

Fan Data

Fan RPM

Fan Tach Pulses

Fan Control

Hardware Fault Data

A single instance of the DPI Alarm Object will be supported.

Data Type Min/Max Default Description

BOOL

USINT

USINT

BOOL

USINT

USINT

Struct of

UINT

UINT

WORD

Struct of

WORD

0 -1

0 to 85

100 to 190

0 to 1

1

150 (drive 154)

151 (drive 155)

0

1= enabled; 0 = disabled

See assembly instance definitions for legal values

See assembly instance definitions for legal values

0=No action; 1=Reset

Firmware Build Number

UINT

UINT

UINT

Bit0 = Forward Status

Bit1 = Reverse Status

Bit 2 = Disconnect On

Bit 3 = Brake Contactor

Bits 5-13 = unused

Bit 14 = CT Present error

Bit 15 = Power 24

Status Board Error

Present

Status Board Total Error

Present Conditions

Status Board Total Read

Errors

105

106

107

Get

Get

Get

Boot Rev

NVS Object Init Errors

Error Data Structure

STRUCT of

USINT

USINT

Struct of

UINT

Array of UINT

Struct of

DWORD

DWORD

DWORD

Major rev

Minor rev

Number of Errors

List of CIP Objects that failed

The following common services will be implemented for the DeviceNet Interface

Object.

Service Code

0x0E

0x10

Implemented for:

Class Instance Service Name

No

No

Yes

Yes

Get_Attribute_Single

Set_Attribute_Single

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

237

Appendix B

CIP Information

ZIP Object

Attribute ID Access Rule

1 Get

3

8

9

Get

Get

Set

NV

NV

NV

V

NV

CLASS CODE 0x032E

The following class attributes will be supported.

Name

Revision

Number of Instances

Instance List

ZIP Enable

Data Type

UINT

UINT

Array of USINT

BOOL

Description of Attribute

List of instances

Enable/Disable ZIP for the device

Semantics of Values

1

5

A maximum of 255 instances may be supported.

0=disable 1=enable

Attribute ID Access Rule

1 Set*

2 Get

NV

NV

NV

3

Set*

(Get for producers)

NV

4

5

6

7

Set*

Set

Set

Get/Set*

NV

NV

NV

NV

ZIP Enable

Allows ZIP functionality to be enabled/disabled for the entire device. This parameter must be disabled before any changes to the ZIP configuration for the device can be made. The default value for this attribute is 0=disable. Upon enabling ZIP, the ZIP object checks that the produced and consumed assembly instances chosen for each ZIP producing and consuming connection contain the

Zone Key (instance attribute #7). If any of the chosen assemblies does not contain the Zone Key in the last 2 bytes of the assembly data attribute, then the error code 0x0C (Object State Conflict) is returned by the Set service.

Five Instances of the ZIP object will be supported. Instances 1-4 are ZIP consumers, and Instance 5 is the ZIP producer.

Name Data Type

Zone Connection ID UDINT

Zone Health

Zone Point Mask

Zone Point Offset

Zone RPI

Zone PIT

Zone Key

BOOL

STRUCT of:

USINT

Array of

BYTE

UINT

UINT

UINT

UINT

Description of Attribute

The Connection ID

Semantics of Values

*For producing connections,

Set access not required.

Health status of the connection 0=healthy

1=not healthy

Masks individual bytes in a consumed message for use by in Zone Point Data table.

Masking results in a byte packed image.

Specifies an offset into the 8byte Zone Point Data table to place masked data.

Struct of

USINT = 4

Array[4] of BYTE

Producers return USINT= 0

*Get access for producers.

Producers return UINT = 0

Requested Packet Interval

(RPI) of the producing or consuming connection. This value is placed in the Expected

Packet Rate attribute of the connection

Production Inhibit Time (PIT) of producing connection object

The security key attribute for the connection.

ms ms

Required for I/O client connections, except those with production trigger of Cyclic.

*Access Rule of Get only for producing connections.

238

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

CIP Information

Appendix B

Attribute ID Access Rule

8 Set

9

10

11

12

13

14

15

16

17

101

103

114

116

Get*

Set

Set (prod)

Get (cons)

Set (cons)

Get (prod)

Get*

Set*

Set*

Set*

(Get for producers)

Set*

(Get for producers)

Set*

Set*

Set*

Set*

NV

NV

NV

NV

NV

NV

NV

NV

NV

NV

NV

NV

NV

NV

NV

Name

ZIP Auto Run

Associated Connection

Instance

Connection Path Length

Connection Path

Data Size

Connection Direction

Data Security Disable

Data Type

BOOL

UINT

UINT

EPATH

UINT

BOOL

BOOL

Description of Attribute

Configure the ZIP producing connection to auto-allocate on power-up

The instance number of the connection object associated with this ZIP instance.

Number of bytes of the

“Connection Path” attribute.

Specifies an application object whose data is to be produced, or is to receive consumed data.

The size of the data to be produced or consumed.

The direction of data flow for the connection instance represented by this instance.

0=disable

1=enable

Semantics of Values

*For systems that dynamically allocate connections, the access rule can be Set.

Consumed path:

21 0e 03 25 01 00 30 02

Produced path:

Produced assy path

Consumed: 32 or 8

Procuced: size of produced assembly

0=Producing

1=Consuming

*For systems that dynamically allocate connections, the access rule can be Set.

0=enable

1=disable

(Default = 0)

Zone Analog Data Type

Zone Analog Mask

Zone Analog Offset

Zone MAC ID

Point Mask

ZoneControl

Analog Mask

UINT

STRUCT of:

USINT

Array of

BYTE

UINT

USINT

DWORD

BYTE

WORD

Enables data security checking for the connection.

*Get access for producers.

Producers return the value 0

Data type from CIP Common

Spec Table C-6.1

“Identification Codes of

Elementary Data Types”.

Masks individual data units of the type defined in the “Zone

Analog Data Type” in a consumed message for use by in Zone Analog Data table.

Each bit in a BYTE mask represents one unit (WORD,

REAL, etc.) of consumed data

Specifies an offset into the 8byte Zone Point Data table to place masked data.

Reflects attribute 1 for

ArmorStart LT

Reflects attribute 3 for

ArmorStart LT

Choose consumed IO connection properties

Reflects attribute 16 for

ArmorStart LT

0xC7 = UINT

Struct of

USINT = 2

Array[2] of BYTE

Producers return USINT= 0

*Get access for producers.

Producers return UINT = 0

This attribute matches the Array[4] structure element in attribute 3

Semantics of this bit enumerated value are the same as params 134-137

This attribute matches the Array[2] structure element in attribute 16

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

239

Appendix B

CIP Information

240

Attribute Symantics

1) Zone Connection ID -

Contains the Consumed_Connection_Id attribute for the connection represented by this object instance. The default value will be

0xFFFF. For consuming connections, the value 0xFFFF disables the consumption of data for the connection. For producing connections, this value represents the connection ID on which production occurs. For predefined producing connections, this value is set to the producing Connection ID when Auto Run occurs at power-up, or upon allocation of the connection.

2) Zone Health -

Indicates the health status of the zone connection. If the ZIP connection for the zone times out, this parameter is set to the value 1 = Not

Healthy. Also, if Data Security is enabled and the Zone Key received in the consumed I/O message does not match the entered Zone Key attribute, 1 = Not

Healthy is reported. For ZIP implementations that use predefined connection instances, this value is 0 = Healthy (the default value) when ZIP is disabled for the instance i.e. when the Zone Connection ID attribute is 0xFFFF. This value is

0 = Healthy when ZIP is disabled via the ZIP Enable class attribute.

3) Zone Point Mask -

Allows for the selection of the consumed bytes within a consumed message for use by in the Zone Point Data Table. Each single bit in the mask represents a corresponding byte in the consumed message packet.

4) Zone Point Offset -

Allows consumed data to be placed within the Zone

Point Data Table. This offset is application-specific. For ArmorStart LT, it represents a byte offset into the Discrete Zone Point Data Table.

5) Zone RPI -

The requested packet interval (in milliseconds) of the connection represented by this ZIP object instance. For DeviceNet implementations, this value is placed in the connection object Expected Packet Rate attribute. If a consuming connection does not receive data in 4 times this value, the connection times out, and the Zone Health attribute is set to the value 1 = Not Healthy. For producing connections, the expected packet rate specifies the heartbeat rate.

6) Zone PIT -

The Production Inhibit Time (in milliseconds) associated with a connection.

7) Zone Key -

For producing instances, this value is calculated by performing a

CRC on all of the ZIP class and instance attributes, and all other device configuration values deemed necessary to insure the integrity and meaning of

ZIP data produced on the network. The Identity Object device keys should always be included in the CRC calculation. For consuming instances, this is the value of the Zone Key calculated in the producing connection whose data is to be consumed. The ZIP consuming connection will validate the security key received within each consumed message against this stored value.

8) ZIP Auto Run -

When enabled, the producing device creates and configures a producing connection at power-up. For initial ZIP implementations on

DeviceNet, a connection is created, and the contents of the Allocation

Information attribute in the DeviceNet Object are set accordingly. The connection is no longer available for allocation within the predefined

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

CIP Information

Appendix B

Group 2 connection set. A ZIP consuming device does not have to enable

AutoRun ZIP if it is a consumer only or if a scanner is used to allocate the producing connections.

9) Associated Connection Instance -

The instance number of the connection object associated with this ZIP instance. Initial DeviceNet implementations of the ZIP object will implement this attribute with Get access, and associate ZIP instances with predefined connection instances. Future implementations will be allowed to dynamically allocate connections and associate them with a ZIP instance. This attribute would then be implemented with Set access.

10) Connection Path Length -

The number of bytes of the “Connection Path” attribute. For consuming connections, this value is written to the consumed_connection_path_length” attribute of the connection object when

ZIP is enabled. For producing connections, this value is written to the

“produced_connection_path_length” attribute of the connection object when

ZIP is enabled.

11) Connection Path -

For consuming connections, this attribute specifies the application object that is to receive the consumed data. This value is written to the “consumed_connection_path” attribute of the connection object when ZIP is enabled. For producing connections, this attribute specifies the application object whose data is to be produced. This value is written to the

“produced_connection_path” attribute of the connection object when ZIP is enabled.

12) Data Size -

The size (in bytes) of the data to be produced or consumed. If any of the “FragmentedIO” bits are set in the Zone Control attribute, this value is 32.

If all “FragmentedIO” bits are clear in the Zone control Attributes, then this value is 8.

14) Data Security Disable -

Enables/disables data security checking for the connection. Enabling data security protects against a ZIP producer being replaced and not having the correct ZIP configuration set. Enabling data security also protects against the consumption of data from the wrong device type. The default value for this attribute is 0=enabled.

15)

Zone Analog Data Type –

This attribute defines the analog data type used in the Zone Analog Data Table. Data type value codes are given in the CIP

Common Spec Table “Identification Codes and Descriptions of Elementary Data

Types”. For ArmorStart LT this attribute returns the value 0xC7 = UINT.

16) Zone Analog Mask -

Allows for the selection of the consumed data within a consumed message for use by in the Zone Analog Data Table. Each single bit in the mask represents a corresponding piece of analog data in the consumed message packet whose data type is given by the Zone Analog Data Type attribute.

For ArmorStart LT, each bit in the Mask represents a WORD of consumed data

17) Zone Analog Offset -

Allows consumed data to be placed within the Zone

Analog Data Table. This offset is application-specific. For ArmorStart LT, it represents a WORD offset into the Zone Analog Data Table.

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

241

Appendix B

CIP Information

242

101) MAC ID -

This attribute is used so that MAC ID can be entered for a consuming instance instead of Zone Connection ID in a EDS file. When this attribute is changed, the Zone Connection ID attribute value is updated to reflect the new Connection ID.

103) Point Mask -

This attribute is used so that a mask value of type DWORD can be used in an EDS file parameter for the Zone Point Mask since arrays are not supported in EDS parameters. When this attribute is changed, the Zone Point

Mask attribute value is updated to reflect the new mask value.

114) Zone Control -

This attribute is used to choose the IO Connection type that is consumed, whether security is enabled and whether the consumed data is fragmented. See parameters 134-137 for the bit enumerations.

116) Analog Mask -

This attribute is used so that a mask value of type WORD can be used in an EDS file parameter for the Zone Analog Mask since arrays are not supported in EDS parameters. When this attribute is changed, the Zone

Analog Mask attribute value is updated to reflect the new mask value.

The following common services will be implemented for the ZIP Object.

Service Code

0x0E

0x10

Implemented for:

Class Instance Service Name

No

No

Yes

Yes

Get_Attribute_Single

Set_Attribute_Single

Behavior

The ZIP object provides a means for devices on a network to share I/O data directly without hard wiring them together, with, or without the use of a network scanner. A single ZIP enabled device can consume data directly from multiple devices on a network. A ZIP enabled device can also auto-allocate and configure producing I/O connections. In initial DeviceNet ZIP implementations, devices will be capable of auto-allocating and configuring unacknowledged COS connections, but the object definition does not preclude the use of other types of

I/O connections for data production.

Instances of the ZIP object represent connection endpoints on a network. Two types of ZIP object instances are defined:

ZIP Producers

ZIP Consumers

Multiple instances of each instance type can exist, but in initial DeviceNet implementations, a single ZIP Producer will be used to allow for the automatic allocation and configuration of an unacknowledged COS connection. The automatic allocation of producing I/O connections only occurs if the Auto Run

ZIP attribute for the ZIP Producer is enabled.

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

CIP Information

Appendix B

When a ZIP Producer is automatically allocated on power-up with the Auto Run

Zip attribute set to the value 1=enable, the Master’s MAC ID portion of the

Allocation Information attribute in the DeviceNet Object is not changed. This indicates that the Predefined Master Slave connection set is still available for allocation by a network master.

The ZIP object also provides a means for ensuring that system configuration is secure. A 16-bit Zone Key instance attribute is calculated for each ZIP Producer, which is based on the device configuration and the Identity Object device key attributes. The Zone Key value is manually read by the user from the ZIP producer and manually written to the Zone Key of the ZIP Consumers that will consume the data as part of the system configuration process.

When the Data Security Enable attribute is enabled, ZIP Producers place the 16bit Zone Key at the end of each produced I/O message. When security is disabled for a producer, the Zone Key is still placed at the end of each produced I/O message.

ZIP Consumers assume that the last 16 bits of each consumed I/O message contains the Zone Key. When the Data Security Enable attribute is enabled for a consumer, the consumed Zone Key is compared to the ZIP consumer’s stored

Zone Key. If they do not match, the Zone Health instance attribute is set to

1=not healthy. When security is disabled for a consumer, the consumed Zone

Key is ignored.

The selection of I/O Assemblies that contain the 16 bit Zone Key is verified for both producing and consuming connections when ZIP is enabled.

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

243

Appendix B

CIP Information

Notes:

244

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

Introduction

Appendix

C

Using DeviceLogix™

DeviceLogix is a stand-alone Boolean program that resides within the

ArmorStart LT. The program is embedded in the product so that there is no additional module required to use this technology; DeviceLogix is programmed using the Add-On Profile for RSLogix™5000.

In addition to the actual programming, DeviceLogix can be configured to operate under specific situations. It is important to note that the DeviceLogix program will only run if the logic has been enabled and unswitched power is present. This can be done within the “Logic Editor.” The operation configuration is accomplished by setting the “Network Override” and “Communication

Override” parameter. The following information describes the varying levels of operation:

If both overrides are disabled and the logic is enabled, the ONLY time

DeviceLogix will run is if there is an active I/O connection with a master, i.e. the master is in Run mode. At all other times DeviceLogix will be running the logic, but will NOT control the state of the outputs.

If the Network Override is enabled and the logic is enabled then

DeviceLogix controls the state of the outputs when the PLC is in Run mode and if a network fault occurs.

If the Communications Override is enabled and the logic is enabled, the device does not need any I/O connection to run the logic. As long as there are switched and unswitched power sources connected to the device, the logic will control the state of the outputs.

DeviceLogix Local Control Mode

In local control mode, the embedded DeviceLogix logic engine drives the local outputs and motor run/jog commands from a local DeviceLogix program. Local

Control is completely independent of the any or all CIP connections. I/O and/or Explicit Message connections can exist in any state and they do not affect the user outputs or the run/jog commands for the motor. Local control mode is chosen by when the keypad “Auto LED” is on, “Network Override” is set

“Communication Override” is set, and DeviceLogix is enabled.

I/O Networked Control Mode

In I/O networked control mode, local outputs and motor run/jog commands are received over a CIP I/O connection in the established state. I/O networked control mode is chosen when DeviceLogix is disabled, or when DeviceLogix is enabled and no user outputs or run commands are being driven in the

DeviceLogix program.

Rockwell Automation Publication 290E-UM001B-EN-P - June 2012

245

Appendix C

Using DeviceLogix™

DeviceLogix Programming

DeviceLogix has many applications and the implementation is typically only limited to the imagination of the programmer. Keep in mind that the application of DeviceLogix is only designed to handle simple logic routines.

DeviceLogix is programmed using simple Boolean math operators, such as AND,

OR, NOT, timers, counters, latches, and analog values. Decision making is done by combining these Boolean operations with any of the available I/O. The inputs and outputs used to interface with the logic can come from the network or from the device hardware. Hardware I/O is the physical Inputs and Outputs located on the device such as push buttons and pilot lights that are connected to the

ArmotStart LT. Refer to Table 33 - for complete list of DeviceLogix I/O

functions.

There are many reasons to use the DeviceLogix functionality, but some of the most common are listed below:

Increased system reliability

Fast update times (1 - 2 ms possible)

Improved diagnostics and reduced troubleshooting

Operation independent of PLC or Network status

Continue to run process in the event of network interruptions

Critical operations can be safely shutdown through local logic

DeviceLogix Programming Example

The following example will show how to program a simple logic routine to interface the ArmorStart with a remote hard-wired startstop station. In this case the I/O is wired as shown in the table below.

Bit

Pt00

Pt01

Out02

Input/Output Table

Description

Start Button

Stop Button

Run Forward

IMPORTANT

Before programming logic, it is important to decide on the conditions under which the logic will run. The conditions can be defined by setting

CommsOverride and NetworkOverride to the value that you want.

1.

Refer to section “How to Add a New Module, Using the Add-On Profile” to configure the I/O. Then select the DeviceLogix section and create a program.

246

Rockwell Automation Publication 290E-UM001B-EN-P - June 2012

Using DeviceLogix™

Appendix C

2.

Click on the “

DeviceLogix

” tab. If you are on-line with a device, a dialog box will appear asking you to upload or download. Click on “

Upload

.”

3.

Click the “Start Logic Editor

button.

4.

If programming off-line continue to step 5, otherwise click on the “

Edit

” button. Click “

Yes

” when asked if you want to Enter Edit Mode. Once in edit mode the entire list of Function Blocks will be displayed in the toolbar.

5.

Left Click on the “

RSL

” function block. This is a reset dominate latch.

6.

Move the cursor into the grid, and left click to drop the function onto the grid.

7.

From the toolbar, Click on the “

Discrete Input

” button and select

Pt00

from the pull-down menu. This is the remote start button based on the example I/O table.

8.

Place the input to the left of the RSL function. To drop the input on the page, left click on the desired position.

9.

Place the mouse cursor over the tip of Pt00. The tip will turn green. Click on the tip when it turns green.

10.

Move the mouse cursor toward the input of the RSL function. A line will follow the cursor. When a connection can be made, the tip of the RSL function will also turn green. Click the on Input and the line will be drawn from Pt00 to the Set Input of the RSL function.

Note:

If this was not a valid connection, one of the pin tips would have turned red rather than green. Left double clicking on the unused portion of the grid or pressing the “

Esc

” key at any time will cancel the connection process.

Rockwell Automation Publication 290E-UM001B-EN-P - June 2012

247

Appendix C

Using DeviceLogix™

11.

From the toolbar, Click on the “

Discrete Input

” button and select

Pt01

from the pull-down menu. This is the remote stop button based on the example I/O table.

12.

Place the input to the left of the RSL function.

13.

Connect the input to the reset input of the RSL latch.

14.

From the toolbar, Click on the “

Discrete Output

” button and select

RunForward”

from the pull-down menu. RunForward is the relay controlling the coil of the contactor. Click OK.

15.

Move the cursor into the grid and place the Output to the right of the RSL function block.

16.

Connect the output of the “

RSL

” function block to

Run Fwd.

248

17.

Click on the “

Verify

” button located in the toolbar or select “Logic Verify” from the “Tools” pull-down menu.

18.

Click on the “

Edit

” button to toggle out of edit mode if online with a device.

Rockwell Automation Publication 290E-UM001B-EN-P - June 2012

Element Type

Consumed Network Data

Discrete Input Points

Discrete Output Points

Produced Network Data

Using DeviceLogix™

Appendix C

19.

Go to the pull-down menu in the right corner of the toolbar and select

Download

”.

Note:

Ensure that the PLC key switch is in the Program position. If in any other position, the download will not occur and an error will be generated.

20.

Press “

OK

” when told the download was successful.

21.

Now from the same pull-down menu select “

Logic Enable On

.”

22.

The ArmorStart is now programmed and the logic is Active.

Table 33 - DeviceLogix Input and Output Variables

Bulletin 290D

PT00DeviceIn

PT15DeviceIn

ZoneDataPt00

ZoneDataPt64

PT00

PT05

RunForward

Out00

Out05

Pt00DeviceOut

Pt15DeviceOut

ResetFault

MotionDisable

ForceSnapshot

UserDefinedFault

KeypadDisable

Bulletin 291D

PT00DeviceIn

PT15DeviceIn

ZoneDataPt00

ZoneDataPt64

PT00

PT05

RunForward

RunReverse

Out00

Out05

Pt00DeviceOut

Pt15DeviceOut

ResetFault

MotionDisable

ForceSnapshot

UserDefinedFault

KeypadDisable

Bulletin 294D

PT00DeviceIn

PT15DeviceIn

ZoneDataPt00

ZoneDataPt64

PT00

PT05

RunForward

RunReverse

Out00

Out05

JogForward

JogReverse

Pt00DeviceOut

Pt15DeviceOut

ResetFault

MotionDisable

ForceSnapshot

UserDefinedFault

KeypadDisable

Accel2

Decel2

BrakeRelease

Rockwell Automation Publication 290E-UM001B-EN-P - June 2012

249

Appendix C

Using DeviceLogix™

Element Type

Faults

Warnings

Bulletin 290D

OverloadTrip

PhaseLossTrip

UnderPowerTrip

SensorShortTrip

PhaseImbalTrip

NonVolMemoryTrip

JamTrip

StallTrip

UnderloadTrip

OutputShortTrip

UserDefinedTrip

HardwareFltTrip

OverloadWarning

UnderPowerWarn

PhaseImbalWarn

JamWarning

UnderLoadWarn

DNetPowerWarning

ConfigWarning

Bulletin 291D

OverloadTrip

PhaseLossTrip

UnderPowerTrip

SensorShortTrip

PhaseImbalTrip

NonVolMemoryTrip

JamTrip

StallTrip

UnderloadTrip

OutputShortTrip

UserDefinedTrip

HardwareFltTrip

OverloadWarning

UnderPowerWarn

PhaseImbalWarn

JamWarning

UnderLoadWarn

DNetPowerWarning

ConfigWarning

Bulletin 294D

OverloadTrip

PhaseShortTrip

UnderPowerTrip

SensorShortTrip

OverCurrentTrip

NonVolMemoryTrip

ParamSyncTrip

DCBusFaults

StallTrip

UnderloadTrip

GroundFault

RestartRetries

DriveHdwFault

OutputShortTrip

UserDefinedTrip

HardwareFltTrip

DriveParamInit

UnderPowerWarn

DNetPowerWarning

FanWarning

ConfigWarning

250

Rockwell Automation Publication 290E-UM001B-EN-P - June 2012

Element Type

Misc Data

Analog Input Point

Analog Output Point

Misc Analog Input Data

Analog Consumed Network Data

Analog Produced Network Data

Bulletin 290D

TripPresent

WarningPresent

RunningForward

RunningReverse

Ready

NetControlStatus

CurrentFlowing

KeyPadAuto

KeyPadOff

KeyPadHand

DisconnectStatus

ExplicitCnxn

IOConnection

ExplicitCnxnFault

IOCnxnFault

IOCnxnIdle

ZIP1Cnxn

ZIP1CnxnFault

ZIP2Cnxn

ZIP2CnxnFault

ZIP3Cnxn

ZIP3CnxnFault

ZIP4Cnxn

ZIP4CnxnFault

PhaseL1Current

PhaseL2Current

PhaseL3Current

AverageCurrent

%ThermalUtilized

SwitchedVolts

OutputSourceV

UnswitchedVolts

SensorSourceV

AnalogDeviceIn

ZoneDataAnalog0

ZoneDataAnalog1

ZoneDataAnalog2

ZoneDataAnalog3

ZoneDataAnalog4

ZoneDataAnalog5

ZoneDataAnalog6

ZoneDataAnalog7

AnalogDeviceOut

IPS Units

Rockwell Automation Publication 290E-UM001B-EN-P - June 2012

PhaseL1Current

PhaseL2Current

PhaseL3Current

AverageCurrent

%ThermalUtilized

SwitchedVolts

OutputSourceV

UnswitchedVolts

SensorSourceV

AnalogDeviceIn

ZoneDataAnalog0

ZoneDataAnalog1

ZoneDataAnalog2

ZoneDataAnalog3

ZoneDataAnalog4

ZoneDataAnalog5

ZoneDataAnalog6

ZoneDataAnalog7

AnalogDeviceOut

Bulletin 291D

TripPresent

WarningPresent

RunningForward

RunningReverse

Ready

NetControlStatus

CurrentFlowing

KeyPadAuto

KeyPadOff

KeyPadHand

DisconnectStatus

ExplicitCnxn

IOConnection

ExplicitCnxnFault

IOCnxnFault

IOCnxnIdle

ZIP1Cnxn

ZIP1CnxnFault

ZIP2Cnxn

ZIP2CnxnFault

ZIP3Cnxn

ZIP3CnxnFault

ZIP4Cnxn

ZIP4CnxnFault

Using DeviceLogix™

Appendix C

BrakeStatus

ExplicitCnxn

IOConnection

ExplicitCnxnFault

IOCnxnFault

IOCnxnIdle

ZIP1Cnxn

ZIP1CnxnFault

ZIP2Cnxn

ZIP2CnxnFault

ZIP3Cnxn

ZIP3CnxnFault

ZIP4Cnxn

ZIP4CnxnFault

NetInputFreq

CommandFreq

Bulletin 294D

TripPresent

WarningPresent

RunningForward

RunningReverse

Ready

NetControlStatus

NetRefStatus

AtReference

KeyPadAuto

KeyPadOff

KeyPadHand

KeyPadJogging

DisconnectStatus

OutputFreq

CommandFreq

OutputCurrent

OutputVoltage

DCBusVoltage

SwitchedVolts

OutputSourceV

UnswitchedVolts

SensorSourceV

AnalogDeviceIn

ZoneDataAnalog0

ZoneDataAnalog1

ZoneDataAnalog2

ZoneDataAnalog3

ZoneDataAnalog4

ZoneDataAnalog5

ZoneDataAnalog6

ZoneDataAnalog7

AnalogDeviceOut

251

Appendix C

Using DeviceLogix™

Notes:

252

Rockwell Automation Publication 290E-UM001B-EN-P - June 2012

Rockwell Automation Support

Rockwell Automation provides technical information on the Web to assist you in using its products.

At http://www.rockwellautomation.com/support/

, you can find technical manuals, a knowledge base of FAQs, technical and application notes, sample code and links to software service packs, and a MySupport feature that you can customize to make the best use of these tools.

For an additional level of technical phone support for installation, configuration, and troubleshooting, we offer

TechConnect SM support programs. For more information, contact your local distributor or Rockwell Automation representative, or visit http://www.rockwellautomation.com/support/

.

Installation Assistance

If you experience a problem within the first 24 hours of installation, review the information that is contained in this manual. You can contact Customer Support for initial help in getting your product up and running.

United States or Canada 1.440.646.3434

Outside United States or Canada Use the Worldwide Locator at http://www.rockwellautomation.com/support/americas/phone_en.html

, or contact your local Rockwell

Automation representative.

New Product Satisfaction Return

Rockwell Automation tests all of its products to ensure that they are fully operational when shipped from the manufacturing facility. However, if your product is not functioning and needs to be returned, follow these procedures.

United States

Outside United States

Contact your distributor. You must provide a Customer Support case number (call the phone number above to obtain one) to your distributor to complete the return process.

Please contact your local Rockwell Automation representative for the return procedure.

Documentation Feedback

Your comments will help us serve your documentation needs better. If you have any suggestions on how to improve this document, complete this form, publication

RA-DU002

, available at http://www.rockwellautomation.com/literature/

.

Trademark List

Allen-Bradley, ArmorConnect, ArmorStart LT, ControlLogix, CompactLogix, PowerFlex, RSLinx, StepLogic, DeviceLogix, On-Machine, RSNetWorx, and RSLogix5000, are trademarks of

Rockwell Automation, Inc. Trademarks not belonging to Rockwell Automation are property of their respective companies

Rockwell Otomasyon Ticaret A.Ş., Kar Plaza İş Merkezi E Blok Kat:6 34752 İçerenköy, İstanbul, Tel: +90 (216) 5698400

www.rockwel lautomation.com

Power, Control and Information Solutions Headquarters

Americas: Rockwell Automation, 1201 South Second Street, Milwaukee, WI 53204-2496 USA, Tel: (1) 414.382.2000, Fax: (1) 414.382.4444

Europe/Middle East/Africa: Rockwell Automation NV, Pegasus Park, De Kleetlaan 12a, 1831 Diegem, Belgium, Tel: (32) 2 663 0600, Fax: (32) 2 663 0640

Asia Pacific: Rockwell Automation, Level 14, Core F, Cyberport 3, 100 Cyberport Road, Hong Kong, Tel: (852) 2887 4788, Fax: (852) 2508 1846

Rockwell Automation Publication 290D-UM001A-EN-P - June 2012

Copyright © 2012 Rockwell Automation, Inc. All rights reserved. Printed in the U.S.A.

Was this manual useful for you? yes no
Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Download PDF

advertisement

Table of contents