Rockwell Automation ArmorStart LT 290D, 291D, 294D Distributed Motor Controller User Manual
Below you will find brief information for ArmorStart LT 290D, ArmorStart LT 291D, ArmorStart LT 294D. The ArmorStart LT Distributed Motor Controller (DMC) offers a robust and flexible solution for controlling motors in a variety of demanding industrial applications. The DMC features a compact design, IP66 enclosure, and a range of network and I/O capabilities. It is also suitable for group motor installations, meaning that multiple motors can be controlled from a single DMC. The DMC is fully integrated with the Rockwell Automation® Integrated Architecture and can be easily integrated with Allen-Bradley® ControlLogix® or CompactLogix™ line of Automation Controllers and PLCs.
Advertisement
Advertisement
User Manual
ArmorStart® LT Distributed Motor Controller
Catalog Numbers 290D, 291D, 294D
Important User Information
Because of the variety of uses for the products described in this publication, those responsible for the application and use of this control equipment must satisfy themselves that all necessary steps have been taken to assure that each application and use meets all performance and safety requirements, including any applicable laws, regulations, codes and standards.
The illustrations, charts, sample programs and layout examples shown in this guide are intended solely for purposes of example. Since there are many variables and requirements associated with any particular installation, Rockwell Automation does not assume responsibility or liability (to include intellectual property liability) for actual use based upon the examples shown in this publication.
Solid-state equipment has operational characteristics differing from those of electromechanical equipment.
Safety
Guidelines for the Application, Installation and Maintenance of Solid State Controls
(Publication SGI-1.1
available from your local Rockwell Automation sales office or online at http://www.rockwellautomation.com/literature/ ) describes some important differences between solid-state equipment and hard-wired electromechanical devices. Because of this difference, and also because of the wide variety of uses for solid-state equipment, all persons responsible for applying this equipment must satisfy themselves that each intended application of this equipment is acceptable.
In no event will Rockwell Automation, Inc. be responsible or liable for indirect or consequential damages resulting from the use or application of this equipment.
The examples and diagrams in this manual are included solely for illustrative purposes. Because of the many variables and requirements associated with any particular installation, Rockwell Automation, Inc. cannot assume responsibility or liability for actual use based on the examples and diagrams.
No patent liability is assumed by Rockwell Automation, Inc. with respect to use of information, circuits, equipment, or software described in this manual.
Reproduction of the contents of this manual, in whole or in part, without written permission of Rockwell Automation,
Inc., is prohibited.
Throughout this manual, when necessary, we use notes to make you aware of safety considerations.
WARNING:
Identifies information about practices or circumstances that can cause an explosion in a hazardous environment, which may lead to personal injury or death, property damage, or economic loss.
ATTENTION:
Identifies information about practices or circumstances that can lead to personal injury or death, property damage, or economic loss. Attentions help you identify a hazard, avoid a hazard, and recognize the consequence.
SHOCK HAZARD:
Labels may be on or inside the equipment, for example, a drive or motor, to alert people that dangerous voltage may be present.
BURN HAZARD:
Labels may be on or inside the equipment, for example, a drive or motor, to alert people that surfaces may reach dangerous temperatures.
IMPORTANT
Identifies information that is critical for successful application and understanding of the product.
General Precautions
In addition to the precautions listed throughout this manual, the following statements, which are general to the system, must be read and understood.
ATTENTION:
This manual is intended for qualified service personnel responsible for setting up and servicing these devices. The user must have previous experience with and a basic understanding of electrical terminology, configuration procedures, required equipment, and safety precautions.
WARNING:
The National Electrical Code (NEC), NFPA79, and any other governing regional or local code will overrule the information in this manual. Rockwell Automation cannot assume responsibility for the compliance or proper installation of the
ArmorStart LT or associated equipment. A hazard of personal injury and/or equipment damage exists if codes are ignored during installation.
ATTENTION:
The controller contains ESD (electrostatic discharge) sensitive parts and assemblies. Static control precautions are required when installing, testing, servicing, or repairing the assembly. Component damage may result if ESD control procedures are not followed. If you are not familiar with static control procedures, refer to Publication 8000-4.5.2
, Guarding against Electrostatic Discharge, or any other applicable ESD protection handbooks.
ATTENTION:
Only personnel familiar with the controller and associated machinery should plan or implement the installation, startup, and subsequent maintenance of the system. Failure to do this may result in personal injury and/or equipment damage.
Precautions for Bulletin 294D Applications
ATTENTION:
Only qualified personnel familiar with adjustable frequency AC drives and associated machinery should plan or implement the installation, startup, and subsequent maintenance of the system. Failure to do this may result in personal injury and/or equipment damage.
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
3
4
Software Requirements
The table lists the versions of software that are required.
Software Version
RSLinx Classic 2.56 or later
RSLogix 5000
RSNetworx
17.01 or later
Download the most current version of the Add-On Profile from http://www.rockwellautomation.com/support/downloads.html
.
11 or later
Additional Resources
These documents and websites contain additional information concerning related Rockwell Automation products.
You can view or download publications at http:/www.rockwellautomation.com/literature/ . To order paper copies of technical documentation, contact your local Allen-Bradley distributor or Rockwell Automation sales representative.
Table 1 - Rockwell Automation Industrial Network Resources
Resource
http://www.ab.com/networks/ http://www.rockwellautomation.com/services/networks/ http://www.rockwellautomation.com/services/security/ http://www.ab.com/networks/architectures.html
Industrial Automation Wiring and Grounding Guidelines, Publication 1770-4.1
Wiring and Grounding Guidelines, (PWM) AC Drives, Publication DRIVES-IN001
Product Certifications website, http://www.rockwellautomation.com/products/certification
Description
Rockwell Automation networks and communication website
Rockwell Automation network and security services websites
Education series webcasts for IT and controls professionals
Provides general guidelines for installing a Rockwell Automation industrial system.
Describes wiring and grounding guidelines for Pulse Width Modulated (PWM) AC Drives
Provides declarations of conformity, certificates, and other certification details.
Table 2 - ODVA Resources
Resource
http://www.odva.org/ http://www.odva.org/default.aspx?tabid=54
Description
Open DeviceNet Vendors Association (ODVA) website
The CIP Advantage website
•
CIP features and benefits
•
How to get started
Table 3 - Product Selection Resources
Resource
Industrial Controls catalog website, http://www.ab.com/catalogs/
ArmorStart LT Distributed Motor Controller Selection Guide, Publication 290-SG001
Description
Industrial Controls catalog website
Product selection guide
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
Rockwell Automation Support
Rockwell Automation provides technical information on the Web to assist you in using its products. At http://www.rockwellautomation.com/support/ , you can find technical manuals, a knowledge base of FAQs, technical and application notes, sample code and links to software service packs, and a MySupport feature that you can customize to make the best use of these tools.
Installation Assistance
If you experience a problem within the first 24 hours of installation, contact Customer Support.
United States or Canada
Outside United States or
Canada
1.440.646.3434
Use the Worldwide Locator at http://www.rockwellautomation.com/support/ americas/phone_en.html
, or contact your local Rockwell Automation representative.
New Product Satisfaction Return
Rockwell Automation tests all of its products to ensure that they are fully operational when shipped from the manufacturing facility. However, if your product is not functioning and needs to be returned, follow these procedures.
United States
Outside United States
Contact your distributor. You must provide a Customer Support case number (call the phone number above to obtain one) to your distributor to complete the return process.
Please contact your local Rockwell Automation representative for the return procedure.
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
5
Notes:
6
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
New and Updated
Information
Summary of Changes
This table contains the changes made to this revision.
Topic Page
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
7
Summary of Changes
Notes:
8
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
Preface
European Communities (EC)
Directive Compliance
If this product has the CE mark it is approved for installation within the
European Union and European Economic Area (EEA). It has been designed and tested to meet the following directives.
Low Voltage and EMC
Directives
This product is tested to meet the European Union (EU) Council 2006/95/EC
Low Voltage Directive and the EU Council 2004/108/EC Electromagnetic
Compatibility (EMC) Directive by applying the following standard(s):
•
Bulletin 290D_/291D_: EN 60947-4-1 — Low-voltage switchgear and controlgear — Part 4-1: Contactors and motor-starters — Electromechanical contactors and motor-starters.
•
Bulletin 294D_: EN 61800-3 — Adjustable speed electronic power drive systems — Part 3: EMC product standard including specific test methods
EN 61800-5-1:2003 — Adjustable speed electrical power drive systems —
Part 5-1: Safety requirements — Electrical, thermal and energy.
This product is intended for use in an industrial environment.
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
9
Preface
Introduction
The ArmorStart LT is an integrated, pre-engineered, motor starting solution designed for use in material handling applications. ArmorStart LT is the latest addition to the ArmorStart portfolio. ArmorStart LT is a leader in the market place given its compact size and high performance features in network, I/O, and motor control. This manual will guide you through the features and functionality when installing the product. Thank you for choosing ArmorStart LT for your distributed motor control needs. If you have any questions please refer to the
“Support Section” for contact information.
10
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
Product Overview
Table of Contents
Important User Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
General Precautions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Software Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Additional Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Rockwell Automation Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Installation Assistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
New Product Satisfaction Return . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Summary of Changes
New and Updated Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Preface
European Communities (EC) Directive Compliance . . . . . . . . . . . . . . . . . 9
Low Voltage and EMC Directives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Chapter 1
Product Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Standard Features Across Product Familly . . . . . . . . . . . . . . . . . . . . . . 20
Network Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
ArmorStart LT Characteristics Bulletin 290D/291D . . . . . . . . . . . . . . . 22
Catalog Number Explanation Bulletin 290D/291D. . . . . . . . . . . . . . . . . 23
ArmorStart LT Characteristics Bulletin 294D . . . . . . . . . . . . . . . . . . . . . . 24
Catalog Number Explanation Bulletin 294D . . . . . . . . . . . . . . . . . . . . . . . . 25
Basic Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Group Motor Installations for USA and Canada Markets . . . . . . . . . 26
Control Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Motor Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Local I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Overload Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Mode of Operation Bulletin 290D/291E. . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Full-Voltage Start. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Mode of Operation Bulletin 294D. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Sensorless Vector Performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Status LEDs and Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Electronic Data Sheet (EDS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Fault Diagnostics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Protection Faults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Optional HOA Selector Keypad. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Keypad Local Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Optional HOA Keypad Configuration (Bulletin 290D/291D only) . . . 34
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
11
Table of Contents
Installation and Wiring
12
Optional HOA Selector Keypad with Jog Function(Bulletin 294D only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Keypad Local Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Keypad and HOA Disable Parameter. . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Source Brake Contactor and Connector (Bulletin 294D only) . . . . . . . . 37
Chapter 2
Installation Precautions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Precautions for Bulletin 290D/291D Applications. . . . . . . . . . . . . . . . . . . 40
Precautions for Bulletin 294D Applications . . . . . . . . . . . . . . . . . . . . . . . . . 40
Dimensions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Bulletin 290D/291D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Bulletin 294D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
ArmorStart LT Gland Plate Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Connection Locations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Internal Power, Control, and Ground Locations . . . . . . . . . . . . . . . . . 43
Gland Connection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Wiring Terminal Detail. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Branch Circuit Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Typical System Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
ArmorConnect Power Media . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
ArmorConnect Cable Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Branch Circuit Protection Requirements for ArmorConnect
Three-Phase Power Media. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Electrical Wiring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Group Motor Installations for USA and Canada Markets . . . . . . . . . . . .55
Wiring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Cable Workmanship Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Service Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Hand Operation (HOA) Considerations . . . . . . . . . . . . . . . . . . . . . . . . 56
General Wiring Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Grounding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Grounding Safety Grounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Grounding PE or Ground . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Grounding Motors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Power Distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Delta/Wye with Grounded Wye Neutral . . . . . . . . . . . . . . . . . . . . . . . . 58
AC Line Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Line Reactor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Bulletin 294D Motor Cable Considerations . . . . . . . . . . . . . . . . . . . . . . . . . 59
Unshielded Cable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Shielded Cable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Recommended Cable Connectors/Glands . . . . . . . . . . . . . . . . . . . . . . . 60
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
Product Commissioning
Bulletin 290E/291E/294E
Programmable Parameters
Table of Contents
Recommended Cord Grips . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Shield Terminating Connectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Electromagnetic Compatibility (EMC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
General Notes (Bulletin 294D only) . . . . . . . . . . . . . . . . . . . . . . . . . . . .62
Ethernet, DeviceNet, and I/O Connections . . . . . . . . . . . . . . . . . . . . . . . . . 63
ArmorConnect Power Media Receptacles . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Optional Locking Clip. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Chapter 3
Configuring DeviceNet Address. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Manually Configure the Network Address Switches . . . . . . . . . . . . . . 67
DeviceNet Commissioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Establishing a DeviceNet Node Address. . . . . . . . . . . . . . . . . . . . . . . . . . . . .69
Node Commissioning using Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Node Commissioning using Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Registering an EDS File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Using the Node Commissioning Tool Inside RSNetworx for DeviceNet. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
System Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Chapter 4
Electronic Data Sheet (EDS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Basic Setup Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Parameter Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
ArmorStart LT DeviceNet Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Parameter Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Bulletin 290D/291D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Basic Status Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Trip Status Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Basic Configuration Group. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Starter Protection Group. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
User I/O Configuration Group. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101
Miscellaneous Configuration Group . . . . . . . . . . . . . . . . . . . . . . . . . . .105
Advanced Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .106
Bulletin 294D. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .122
Basic Status Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .122
Trip Status Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .128
Motor and Control Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .131
Speed Control Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .133
Starter Protection Group. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .135
User I/O Configuration Group. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .138
Miscellaneous Configuration Group . . . . . . . . . . . . . . . . . . . . . . . . . . .142
Advanced Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .143
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
13
Table of Contents
Diagnostics
Specifications
Appplying More Than One
ArmorStart LT Motor Controller in a Single Branch Circuit on Industrial Machinery
CIP Information
Chapter 5
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .167
Status LEDs and Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .167
Fault Diagnostics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .168
Protection Faults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .168
Quick Reference Troubleshooting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .170
Fault LED Indications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .170
Bulletin 290D/291D Faults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .170
Bulletin 294D Faults. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .172
Chapter 6
Bulletin 290D/291D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .175
Motor Overload Trip Curves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .180
Bulletin 100-K/104-K Life-Load Curves . . . . . . . . . . . . . . . . . . . . . . . . . . .181
Bulletin 294D. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .182
Motor Overload Trip Curves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .188
Appendix A
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .189
ArmorStart LT Product Family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .190
Multiple-Motor Branch Circuits and Motor Controllers Listed for Grooup Installation – General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .191
Maximum Fuse Ampere Rating According to 7.2.10.4(1) and 7.2.10.4(2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .193
Complete Text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .193
Explanatory Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .195
Input and Output Conductors of Bulletin 290D and 291D
Controllers (a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .201
Input and Output Conductors of Bulletin 294D Controllers (b) . . . . .201
Combined Load Conductors (c). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .201
Appendix B
High Level Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .203
Product Code and Name Strings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .203
CIP Explicit Connection Behavior. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .204
EDS Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .204
CIP Object Requirements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .204
Identity Object. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .205
CLASS CODE 0x0001 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .205
Message Router . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .206
CLASS CODE 0x0002 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .206
Assembly Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .206
CLASS CODE 0x0004 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .206
I/O Assemblies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .207
Connection Object. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .216
14
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
Using DeviceLogix
Support and Feedback
Table of Contents
CLASS CODE 0x0005 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .216
Discrete Input Point Object. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .219
CLASS CODE 0x0008 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .219
Discrete Output Point Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .220
CLASS CODE 0x0009 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .220
Discrete Output Point Object Special Requirements . . . . . . . . . . . .221
Analog Input Point Object. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .225
CLASS CODE 0x000A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .225
Analog Output Point Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .225
CLASS CODE 0x000B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .225
Parameter Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .226
CLASS CODE 0x000F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .226
Parameter Group Object. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .227
CLASS CODE 0x0010 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .227
Discrete Input Group Object. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .228
CLASS CODE 0x001D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .228
Discrete Output Group Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .228
CLASS CODE 0x001E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .228
Control Supervisor Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .229
CLASS CODE 0x0029 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .229
Overload Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .230
CLASS CODE 0x002C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .230
DPI Fault Object. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .231
CLASS CODE 0x0097 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .231
DeviceNet Interface Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .236
CLASS CODE 0x00B4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .236
Zip Object. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .238
CLASS CODE 0x032E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .238
ZIP Enable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .238
Attribute Symantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .240
Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .242
Appendix C
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .245
DeviceLogix Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .246
Rockwell Automation Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . Back Cover
Installation Assistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Back Cover
New Product Satisfaction Return . . . . . . . . . . . . . . . . . . . . . . . . . . Back Cover
Documentation Feedback. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Back Cover
Trademark List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Back Cover
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
15
Table of Contents
Notes:
16
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
Chapter
1
Product Overview
Bulletin
Network Communications:
EtherNet/IP
DeviceNet
Horsepower Range:
0.5…5 Hp (0.37…3.3 kW)
0.5…2 Hp (0.37…1.5 kW)
Starting Method:
Full-Voltage and Reversing
VFD (V/Hz)
Environmental Rating:
IP66/UL Type 4/12
Control Voltage:
24V DC
Internal Power Supply (sourced from 3-phase)
Operational Voltage Ratings:
200…480V DC
380…480V DC
Rated for Group Motor Installations
Local logic using DeviceLogic™
Peer-to-Peer (ZIP)
I/O Capability:
Six Self-Configurable Points
LED Status Indication
Gland Plate Entry:
Conduit Entrance
ArmorConnect® Power and Control Media (option)
Quick Disconnects: I/O and Communications
EMI Filter
Factory Installed Options:
Manual-Auto-Off HOA Keypad
Source Brake Contactor
Internal 24V DC Power Supply
Optional Motor Cables
ArmorConnect Gland
290/291
—
—
DeviceNet Version Only
—
—
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
294
—
—
—
DeviceNet Version Only
17
Chapter 1
Product Overview
Description
ArmorStart LT is available with Full Voltage, Full Voltage Reversing, or Variable
Speed motor control performance. It comes equipped with a UL Listed At-motor disconnect that supports a lock-out tag-out (LOTO) provision. ArmorStart LT is listed as suitable for group installations per UL and can be applied with either branch circuit breaker protection or fuse protection. It provides a robust IP66/
UL Type 4/12
➊
enclosure suitable for water washdown environments in a single box construction that will minimize inventory needs. All external connections are made from the bottom of the unit minimizing accidental contact by moving equipment. ArmorStart LT as a standard will come with quick disconnect receptacles for the I/O and network connections. And finally, ArmorStart LT will include DeviceLogix, a high-performing local logic engine when a fast I/O response is critical to the application.
ArmorStart LT leverages the capabilities of the Rockwell Automation® Integrated
Architecture so you can achieve an unmatched level of integration and ease of use. The architecture of ArmorStart LT allows Premiere Integration with
Allen-Bradley® ControlLogix® or CompactLogix™ line of Automation Controllers and PLCs.
The ArmorStart LT is available with options that can further reduce installation and commissioning time and cost
, such as:
•
Quick disconnect receptacles for power, control, and motor connections
•
Local Hand-Off-Auto keypad for manual control.
•
Internal power supply (IPS) eliminating the need to run additional control power to each unit
•
Bulletin 294 can be ordered with an electromechanical brake connection
(source brake)
•
EDS Tag Generator tool with RSLogix 5000
➊
The G2 gland option is rated IP66/ UL Type 4
18
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
Features
Product Overview
Chapter 1
The ArmorStart LT provides many features and benefits that are unsurpassed in the market place:
•
Robust IP66, UL Type 4/12 enclosure
•
UL Listed, Suitable for Group Motor Applications
•
UL Listed, At-motor disconnect switch
•
Native support for DeviceNet
•
6 user configurable I/O points
•
DeviceLogix
•
Zone interlock protocol (ZIP)
•
Optional internal power supply
•
Optional electromechanical brake contactor
•
Optional local control via Hand-Off-Auto keypad
•
Optional quick disconnect for power and motor connections
IMPORTANT
Not all options are available for Bulletin 290D/291D/294D. Refer to the catalog configurator for details.
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
19
Chapter 1
Product Overview
Feature Description
20
Standard Features Across Product Family
UL Listed “Suitable for Group Motor Applications”
— Where NFPA 70
(NEC) or 79 are required installation standards, this Listing allows two or more motors to be connected to the same branch circuit without individual motor branch short circuit or ground fault protection. Refer to Appendix A for details.
At-motor disconnect switch
— ArmorStart LT offers a local ON/Off motor disconnecting means with lockout-tagout provision. Industrial standards require a local at-motor disconnect to be within eye sight of the motor for maintenance or other shutdown reasons. Refer to your installation code for details.
User configurable I/O
— ArmorStart LT offers 6 user configurable I/O points to be used with sensors and actuators. By default all 6 points are configured as sinking 24V DC inputs. The user has the option to select any point as a sourcing
24V DC output.
DeviceNet Network Capabilities
The ArmorStart Distributed Motor Controller delivers advanced capabilities to access parameter settings and provides fault diagnostics, and remote start-stop control.
DeviceLogix
— ArmorStart LT offers local programmable logic via
DeviceLogix. DeviceLogix is a stand-alone program that resides within the
ArmorStart LT. It is programmed locally using the Add-On-Profile and implements operations such as, AND, OR, NOT, Timers, Counters, Latches, and Analog operations. DeviceLogix can run as a stand-alone application, independent of the network or collaboratively with the PLC. However, unswitched control power must be maintained for DeviceLogix to operate.
Zone Interlock Protocol (ZIP) —
The zone control capabilities of ArmorStart
LT is ideal for motored conveyors. Zone Interlocking Parameters (ZIP) allow one
ArmorStart to receive data directly, from up to four other DeviceNet nodes, without going through a network scanner. These direct communications between conveyor zones are beneficial in a merge, diverter, or accumulation conveyor application.
Quick disconnect for I/O and network —
ArmorStart LT offers quick disconnect connectors for I/O and communications.
DeviceNet node address
— ArmorStart LT offers external accessible address switches for device node address configuration. The address can be set statically or dynamically.
EMI filter
— ArmorStart LT for VFD application (Bulletin 294) provides an internal EMI filter and is CE compliant. For CE compliant installations refer to the recommended EMI/RFI cord grip accessory. For availability of the quick
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
Product Overview
Chapter 1
disconnect shielded motor cable contact your local sales representative for details.
Local and remote status and diagnostics
— ArmorStart LT offers comprehensive status and diagnostics for I/O, Network, and device health via 12
LEDs found on the electronic control module (ECM). If a fault occurs a local fault reset button allows the user to quickly get the process started after corrective action is taken. The user can also configure the embedded web server to send an e-mail when a fault or warning occurs.
Gland plate entrance
— ArmorStart LT offers different methods of connecting three-phase, control power, and motor. ArmorStart LT has conduit entrance openings, as standard.
Factory-Installed Options
Internal power supply (IPS)
— ArmorStart LT offers the user an optional
24V DC internal power supply. The internal power supply provides all control and I/O power needs and is sourced from the incoming 3-phase power. This eliminates the need to run separate control power to each unit, reducing installation time and cost. The local at-motor disconnect will remove power from the motor terminals and outputs when in the OFF condition.
Hand/Off/Auto (HOA) keypad
— ArmorStart LT offers an optional local
Hand-Off-Auto keypad. This key pad allows local start/stop motor control regardless of PLC status. This option can be used for troubleshooting or maintenance operations. The HOA can also be disabled when local control is not allowed, using parameter 67.
Source brake
— ArmorStart LT provides an optional, internally-controlled electromechanical motor brake contactor. The motor brake power is sourced from 3-phase power, L1 and L2.
Quick disconnect gland
— ArmorStart LT offers a plug -n- play solution that simplifies wiring and installation. These factory installed quick disconnect receptacles provide connectivity to ArmorConnect® media for three-phase, control, and motor connections. The cables are ordered separately.
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
21
Chapter 1
Product Overview
ArmorStart LT Characteristics
Figure 1 - Bulletin 290D/291D ArmorStart LT
0
Off
On/Off Switch
1
On
HOA Keypad (optional)
IP Address Switches
Status and Diagnostic LEDs
LockOut/TagOut Provision
Wiring Access
Reset
ECM (Electronic
Control Module)
6 Configurable I/Os
Gland Plate – Conduit/Cord Grip or
ArmorConnect
®
Media (optional)
DeviceNet Connector
Protective Earth (PE)
22
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
Product Overview
Chapter 1
Catalog Number Explanation
Examples given in this section are for reference purposes. This basic explanation should not be used for product selection; not all combinations will produce a valid catalog number.
290
—
a
E F
— —
b c
A
—
d
Z - G1 - Option 1 - Option 2
— — —— ——
e f g h
Code
290
291
a
Bulletin Number
Description
Full-Voltage Starter
Reversing Starter
Code
Z
P
e
Control Voltage
Description
External 24V DC control power
Internal power supply
Code
E
D
b
Communications
Description
EtherNet/IP
DeviceNet
Code
G1
G2
G3
f
Gland Plate Options
(Power and Motor)
Description
Conduit entry
ArmorConnect
Gland Kit
➋
Code
F
c
Enclosure Type
Description
UL Type 4/12
➊
Code
3
3FR
g
Option 1
Description
Hand/Off/Auto selector keypad
Hand/Off/Auto selector keypad with
Forward/Reverse
Code
A
B
d
Overload Selection
Description
0.25…3.5 A
1.1…7.6 A
Code blank
➌
h
Option 2
Description
No option
➊
IP66/UL Type 4 is available with all gland options. UL Type 4/12 is available with G1 and G3 gland option.
➋
See selection guide 290-SG001_-EN-P Accessories section for gland configurations and ordering
➌
Leave blank unless there is a customer-specific option defined by the factory.
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
23
Chapter 1
Product Overview
ArmorStart LT Characteristics
LockOut/TagOut Provision
0
Off
On/Off Switch
1
On
Figure 2 - Bulletin 294D ArmorStart LT
Wiring Access
Gland Plate – Conduit/Cord Grip or
ArmorConnect Media (optional)
Hand-Off-Auto Keypad
(optional)
Reset
Status and Diagnostic LEDs
IP Address Switches
ECM (Electronic Control Module)
6 Configurable I/Os
24
Protective Earth (PE)
Bottom View
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
DeviceNet connector
Product Overview
Chapter 1
Catalog Number Explanation
Examples given in this section are for reference purposes. This basic explanation should not be used for product selection; not all combinations will produce a valid catalog number.
294
—
a
E F
— —
b c
D1P5
—
d
Z - G1 - Option 1 - Option 2
— — —— ——
e f g h
Code
294
a
Bulletin Number
Description
VFD Starter
Code
Z
P
e
Control Voltage
Description
External 24V DC control power
Internal power supply
Code
E
D
b
Communications
Description
EtherNet/IP
DeviceNet
Code
G1
G2
G3
f
Gland Plate Options
(Power and Motor)
Description
Conduit entry
ArmorConnect
Gland Kits
➋
Code
F
c
Enclosure Type
Description
UL Type 4/12
➊
Code
3
g
Option 1
Description
Hand/Off/Auto selector keypad with Jog function
Code
D1P5
D2P5
D4P2
d
Output Current
Description
1.5 A (0.4 kW), 0.5 Hp
2.5 A (0.75 kW), 1.0Hp
3.6 A (1.5 kW), 2.0Hp
Code
SB blank
➌
h
Option 2
Description
Source Brake
No option
➊
IP66/UL Type 4 is available with all gland options. UL Type 4/12 is available with G1 and G3 gland option.
➋
Leave blank unless there is a customer-specific option defined by the factory.
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
25
Chapter 1
Product Overview
Basic Operation
26
Group Motor Installations for USA and Canada Markets
The ArmorStart LT Distributed Motor controllers are listed for use with each other in group installations per NFPA 79, Electrical Standard for Industrial
Machinery and NFPA 70, the National Electrical Code. When applied according to the group motor installation requirements, two or more motors are permitted on a single branch circuit. Group Motor Installation has been successfully used for many years in the USA and Canada.
Note:
For additional information regarding group motor installations with the
ArmorStart LT Distributed Motor Controller, see
Control Circuit
ArmorStart LT accepts a 24V DC Class 2 input power supply for switched and unswitched power. The control voltage provides power to the inputs
(unswitched) and outputs (switched). Unswitched control voltage is used to ensure no loss of network connectivity, sensor, or other field input status under normal operation. The control power terminal connections are labeled A1, A2, and A3. Switched power is identified as (+A1) (-A2). Unswitched power is identified as (+A3) (-A2).
As an option, ArmorStart LT can be supplied with an internal power supply
(IPS) eliminating the need for an external control power. The IPS is sourced from the line side of 3-phase power and is not impacted by the status of the local atmotor disconnect switch.
Figure 3 - Control Circuit Wiring Diagram — Single External Power Supply
L1 L2 L3
Off
Switched Control Power
Unswitched Control Power
Disconnect
Motor
Controller
T1 T2 T3
A1 A2 A3
EtherNet
Comms
Inputs Outputs
ArmorStart
LT
Motor
Control
* Control power output is determined by disconnect status
L
N
24VDC
+
-
Class 2
External
24VDC Power
Supply
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
Product Overview
Chapter 1
Figure 4 - Control Circuit Wiring Diagram — Multiple External Power Supplies
ArmorStart
LT
L1 L2 L3
Off
Switched Control Power
Unswitched Control Power
Disconnect
Motor
Controller
T1 T2 T3
A1 A2 A3
EtherNet
Comms
Inputs
Outputs
Motor
Control
* Control power output is determined by disconnect status
Class 2
External Switched
24VDC Power Supply
L
N
24VDC
+
-
Class 2
External Unswitched
24VDC Power Supply
L
N
24VDC
+
-
Figure 5 - Control Circuit Wiring Diagram — Internal Power Supply (optional)
Internal Power
Supply
Off
Disconnect
L1 L2 L3
Motor
Controller
T1 T2 T3
ArmorStart
LT
EtherNet
Comms
Inputs Outputs
Motor
Control
* Control power output is determined by disconnect status
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
27
Chapter 1
Product Overview
Mode of Operation
Bulletin 290D/291D
Motor Circuit
The ArmorStart LT Distributed Motor Controllers are rated to operate the following types of three-phase squirrel-cage induction motors:
Bulletin 290D/291D:
0.5 Hp (0.37 kW) to 5 Hp (3 kW) @ 480/277V AC
Bulletin 294D:
0.5 Hp (0.37 kW) to 2 Hp (1.5 kW) @ 480/277V AC
Local I/O
The ArmorStart LT provides as standard, 6 user configurable I/O points. By default, all points are configured as an Input. The user will need to refer to parameter 49 [IOPointConfiguration], to define an output point.
Overload Protection
The ArmorStart LT Distributed Motor Controller incorporates, as standard, electronic motor overload protection. This overload protection is accomplished electronically with an
I
2 t algorithm. The ArmorStart LTs overload protection is programmable via the communication network, providing the user with greater flexibility.
The Bulletin 290D/291D includes programmable overload Class 10, 15, and 20 protection. The Bulletin 294D provides overload protection: 150% for 60 s and
200% for 3 s.
Refer to
Chapter 6 , Specifications, for additional information.
Full-Voltage Start
This method is used in applications requiring across-the-line starting, in which full inrush current and locked-rotor torque are realized. The ArmorStart LT
Bulletin 290D offers full-voltage starting and Bulletin 291D offers full-voltage starting for reversing applications, from 0.5 Hp (0.37 kW) to 5 Hp (3 kW) at
480Y/277V AC, 3-phase power.
28
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
Product Overview
Chapter 1
Figure 6 - Full-Voltage Start
100%
Percent Voltage
Mode of Operation
Bulletin 294D
Time (seconds)
Sensorless Vector Performance
Using a distributed AC drive to operate mechanical equipment at optimum speed helps reduce energy costs and eliminates mechanical wear and tear that can occur in the mechanical parts. The advance monitoring found in ArmorStart LT protects critical equipment against unplanned downtime with advanced diagnostics and notification of irregular operating parameters. ArmorStart LT provides open-loop speed regulation (V/Hz) with slip compensation. This provides excellent speed regulation and high levels of torque across the entire speed range of the drive, and improved speed regulation as loading increases.
Open Loop Speed Regulation with Slip Compensation allows the VFD to automatically adjust the output frequency to compensate for speed changes due to motor loading. This feature utilizes an open loop, current feedback, slip compensation circuit. Slip Compensation works as an open loop speed regulator that increases the output frequency of the drive as the load is increased, or decreases the frequency as the load drops. This feature is used where the motor must run at a relatively constant speed regardless of torque output.
% of speed
100
99
98
97
96
95
0 10 20 30 40 50 60 70 80 90 100
% of load
With Slip
Compensation
Without Slip
Compensation
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
29
Chapter 1
Product Overview
Status LEDs and Reset
Figure 7 - Status, Diagnostic LEDs, and Reset
30
ArmorStart LT provides comprehensive status and diagnostics via 12 individually
, located on the ECM module. In addition, a local reset is provide for clearing of faults.
details the diagnostic and status LEDs.
Table 4 - ArmorStart LT Status and Diagnostics Indicators
Indicator
PWR LED
RUN/FLT LED
NET – Network Status
LED
The bicolor (green/red) LED indicates the status of the CIP network connection. See
Network Status Indicator for further information.
Flashing bicolor (red/green) indicates a self-test on power up.
I/O Status
Enunciators 0…5
LEDs
Reset Button
Description
The bicolor (green/yellow) LED shows the state of the control voltage. When LED is off, switched and/or unswitched power is not present.
The bicolor (green/red) LED combines the functions of the Run and Fault LEDs.
Six yellow LEDs are numbered 0…5 and indicate the status of the input/output connectors. One LED for each I/O point.
The blue reset button will cause a protection fault reset to occur.
Color_1
Solid green is illuminated when switched and unswitched control power is within its specified limits and has the proper polarity.
Color_2
Solid yellow is illuminated when switched or unswitched control power is outside its specified limits or has incorrect polarity.
Solid green is illuminated when a Run command is present.
Flashing green indicates an IP address is configured, no CIP connections are established, and an Exclusive Owner connection has not timed out.
Steady green indicates at least one CIP connection is established and an Exclusive
Owner connection has not timed out.
The LED will blink red in a prescribed fault pattern when a protection fault (trip)
condition is present. See Table 5
for fault blink patterns.
Flashing red indicates the connection has timed out. Steady Red indicates a duplicate
IP Address detected.
Yellow is illuminated when input is valid or output is on.
Off when input is not valid or the output is not turned on.
— —
Electronic Data Sheet (EDS)
ArmorStart LT EtherNet/IP has an embedded electronic data sheet. An EDS consists of specially formatted text files, as defined by the CIP™. EDS files contain details about the readable and configurable parameters of the device. They also provide information about the I/O connections that the device supports and the content of the associated data structures. EDS are used by device configuration tools, such as RSNetWorx™, and data servers such as RSLinx® Classic.
EDS files for all ArmorStart LT devices can be uploaded directly from the device via the web server interface. Rockwell Automation product EDS files are also available on the internet at: http://www.ab.com/networks/eds .
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
Fault Diagnostics
Product Overview
Chapter 1
Fault diagnostics capabilities built in the ArmorStart LT Distributed Motor
Controller are designed to help you pinpoint a problem for easy troubleshooting and quick re-starting.
Protection Faults
Protection faults will be generated when potentially dangerous or damaging conditions are detected. Protection faults are also known as “trips” or “faults”.
These faults will be reported in multiple formats, including:
•
Bit enumeration in the TripStatus parameter 16 in DeviceLogix
•
In the ArmorStart LT web server for ArmorStart EtherNet/IP version
•
As a sequence of LED flashes on the ECM
Table 5 - Protection Faults
15
16
13
14
11
12
9
10
7
8
5
6
LED Flash Bit Enumeration 290D/291D Trip Status Bits
1 0 OverloadTrip
➊
2 1
3
4
2
3
PhaseLossTrip
UnderPowerTrip
➊
SensorShortTrip
➊
4
5
6
7
PhaseImbalTrip
NonVolMemoryTrip reserved
JamTrip
➊
8
9
10
11
12
13
14
15
StallTrip
UnderloadTrip reserved reserved reserved
OutputShortTrip
➊
UserDefinedTrip
HardwareFltTrip
➊
294D Trip Status Bits
OverloadTrip
➊
PhaseLShortTrip
UnderPowerTrip
➊
SensorShortTrip
➊
OverCurrentTrip
NonVolMemoryTrip
➊
ParamSyncTrip
➊
DCBusOrDiscnnct
➊
StallTrip
➊
OverTemperature
➊
GroundFault
➊
RestartRetries
DriveHdwFault
➊
OutputShortTrip
➊
UserDefinedTrip
HardwareFltTrip
➊
➊
Cannot be disabled.
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
31
Chapter 1
Product Overview
Protection Warnings
ArmorStart LT supports fault warnings. Refer to the WarningStatus parameter
(param 17).
The following describes the warning conditions for 290D/291D units:
Bit Number Bit Enumeration Description
0 OverloadWarning This warning is generated when the value of %ThermalUtilized (param n5) becomes greater than the value of the OLWarningLevel parameter (param 69).
2
4
7
UnderPowerWarn
PhaseImbalWarn This warning is generated in firmware by monitoring the relative levels of the
JamWarning
This warning is generated when switched power dips below 19.2 V for more than 4 ms.
three phase currents. When the % imbalance becomes greater than the hard coded warning limit, the warning is generated.
This warning is generated in firmware when RMS current is greater than the
JAMWarningLevel (param 73) after the JamInhibitTime (param 70) has expired.
9
14
15
UnderloadWarning This warning is generated in firmware when RMS current is less than the
ULWarningLevel (param 79) after the ULInhibitTime (param 76) has expired.
UnswitchedPwrWarn This warning is generated when unswitched power dips below 19.2 V for 4 ms.
ConfigWarning This warning is generated when parameter configuration values that are inconsistent with certain device options are written. This warning may not be disabled.
The following describes the warning conditions for 294D units:
Bit Number Bit Enumeration Description
2 UnderPowerWarn This warning is generated when switched power dips below 19.2 V for more than 4 ms.
6 DriveParamInit This warning is generated when a Full Control Module to Drive parameter sync is in progress, either on power up, or after an internal comms loss has been remedied.
12
14
15
FanWarning This warning indicates that either the fan is running between 62% and 70% of rated RPM or that the “kick start” was needed to turn on the fan.
UnswitchedPwrWarn This warning is generated when unswitched power dips below 19.2 V for 4 ms.
ConfigWarning This warning is generated when parameter configuration values that are inconsistent with certain device options are written. This warning may not be disabled.
32
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
Product Overview
Chapter 1
Table 6 - Configuration Warnings
The following conditions will result in a configuration warning being generated:
Warning Type
BrakeConfig
IOPointConfig
ZIPConfig
JamConfig
UnderLoadConfig
Warning Code
41
42
43
44
45
Description
If Param 89 (BrakeMode) is set to anything other than
0=NoBrakeControl when brake hardware not present OR
If Param 89 (BrakeMode) is set to 1=AboveFrequency and
Param 90 (BrakeFreqThresh) is set to a value above Param
35 (MaximumFreq) OR
If Param 89 (BrakeMode) is set to 2=AboveCurrent and Param
91 (BrakeCurrThresh) is set to a value above Param 31
(CurrentLimit)
If Param 58 (Input00Function) thru Param 63 (Input05Function) are set to 5=BrakeRelease and no brake is present OR
If Param 58 (Input00Function) thru Param 63 (Input05Function) are set t0 anything other than 0=NoFunction while the corresponding bit in Param 49 (IOPointConfigure) is set to configure it as an output.
If Param 114 (Zone1PtMask) thru Param 121 (Zone4PtOffset) are set to have a mapping overlap, and Param 143
(ZoneCtrlEnable) set to Enabled OR
If Param 122 (Zone1AnalogMask) thru Param 129
(Zone4AnOffset) are set to have a mapping overlap, and Param
143 (ZoneCtrlEnable) set to Enabled
If Param 72 (JamTripLevel) is less than Param 73
(JamWarningLevel)
If Param 78 (ULTripLevel) is greater than Param 79
(ULWarningLevel)
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
33
Chapter 1
Product Overview
Optional HOA Selector
Keypad
Keypad Local Control
The HOA Selector Keypad allows for local start/stop/jog control in forward/ reverse motor direction. If two buttons are pressed simultaneously, this action is ignored by the device unless one of the buttons is the Off button. If the Off button is pressed at any time, the unit will go to the off state. When local Hand mode is entered, speed reference is switched to Internal Frequency. When in
“Auto” mode the unit the speed reference is switched to the mode specified in parameter 33 “SpeedReference”.
HAND
The Hand key will initiate starter operation
AUTO
The Auto key allows for Start/Stop control via the communications network
OFF
If the starter is running, pressing the OFF key will cause the starter to stop.
DIR Arrow
JOG
The Dir arrow selects the direction of the motor, either forward or reverse.
When pressed, JOG will be initiated if no other control devices are sending a stop command. Releasing the key will cause the drive to stop, using selected stop mode.
Optional HOA Keypad
Configuration
(Bulletin 290D/291D only)
The ArmorStart LT offers optional factory-installed Hand/Off/Auto (HOA) configurations: Standard (Bulletin 290D) and Forward/Reverse (Bulletin
291D).
Figure 8 - Bulletin 290D Standard HOA
E
Figure 9 - Bulletin 291D Forward/Reverse HOA
34
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
Product Overview
Chapter 1
Bulletin 290D
With the KeypadMode parameter (parameter 66) set to 1 = Maintained, pressing the buttons reacts like a maintained switch.
Key Press
AUTO
HAND
OFF
FAULT PRESENT
OFF
Auto Mode — Motor Off
If no fault, Motor On
—
—
Current Mode
HAND
—
—
Motor turns Off
Motor turns Off
AUTO
—
—
Motor turns Off
Motor turns Off
With the KeypadMode parameter (parameter 66) set to 0 = Momentary, pressing the buttons reacts like a momentary switch.
Key Press
NO KEY PRESSED
AUTO
HAND
OFF
PROTECTION FAULT PRESENT
OFF Key
—
Auto Mode — Motor Off
If no fault, Motor On
—
—
Current Mode
HAND
Motor Off
—
—
Motor Off
Motor Off
AUTO Key
—
—
—
Motor Off
—
Bulletin 291D
With the KeypadMode parameter (parameter 66) set to 1 = Maintained, pressing the buttons reacts like a maintained switch.
FWD/REV
Key Press
AUTO
HAND
OFF
PROTECTION FAULT PRESENT
OFF
FWD LED Set REV LED
REV LED Set FWD LED
Auto Mode — Motor Off
If no fault, Motor On
Ignore
Ignore
Current Mode
HAND
—
—
—
Motor Off
Motor Off
AUTO
—
—
—
Motor Off
—
With the KeypadMode parameter (parameter 66) set to 0 = Momentary, pressing the buttons reacts like a momentary switch.
Key Press
NO KEY PRESSED
FWD/REV
AUTO
HAND
OFF
PROTECTION FAULT PRESENT
OFF
—
FWD LED Set REV LED
REV LED Set FWD LED
Auto Mode — Motor Off
If no fault, Motor On
—
—
Current Mode
HAND
Motor Off
—
—
—
Motor Off
Motor Off
AUTO
—
—
—
—
Motor Off
—
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
35
Chapter 1
Product Overview
Optional HOA Selector
Keypad with Jog Function
(Bulletin 294D only)
The HOA Selector Keypad with Jog function allows for local start/stop control with capabilities to jog in forward/reverse motor directions.
Figure 10 - Bulletin 294D Jog/Forward/Reverse HOA
36
Keypad Local Control
With the KeypadMode parameter (parameter 66) set to 1 = Maintained, pressing the buttons reacts like a maintained switch.
Key Press
NO KEY PRESSED
FWD/REV
JOG
AUTO
HAND
OFF
PROTECTION FAULT PRESENT
OFF
—
FWD LED Set REV LED
REV LED Set FWD LED
If no fault, Jog Motor
Auto Mode — Motor Off
If no fault, Motor On
—
—
Current Mode
HAND
—
FWD LED Set REV LED
REV LED Set FWD LED
—
—
—
Motor Off
Motor Off
JOG
Motor Off
—
—
—
—
Motor Off
Motor Off
AUTO
—
—
—
—
—
Motor Off
—
With the KeypadMode parameter (parameter 66) set to 0 = Momentary, pressing the buttons reacts like a momentary switch.
Key Press
NO KEY PRESSED
FWD/REV
JOG
AUTO
HAND
OFF
PROTECTION FAULT PRESENT
OFF
—
FWD LED Set REV LED
REV LED Set FWD LED
If no fault, Jog Motor
Auto Mode — Motor Off
If no fault, Motor On
—
—
Current Mode
HAND
Motor Off
FWD LED Set REV LED
REV LED Set FWD LED
—
—
—
Motor Off
Motor Off
JOG
Motor Off
—
—
—
—
Motor Off
Motor Off
AUTO
—
—
—
—
—
Motor Off
—
IMPORTANT
If multiple buttons are pressed at the same time, the software interprets this as a “no button pressed” condition. The only exception to this rule is if multiple buttons are pressed and one of them is the Off button. If the Off button is pressed in combination with any combination of other buttons, the processor will behave as if the Off button were pressed by itself.
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
Source Brake Contactor and Connector
(Bulletin 294D only)
Product Overview
Chapter 1
Keypad Disable Parameter
“Keypad Disable”, parameter 67, only inhibits the “HAND”, “FWD”, “REV” and
“JOG” buttons on the HOA keypad. The “OFF” and “AUTO” buttons are always enabled, even if parameter 67 is set to “1=Disable”. The keypad OFF button can not be disabled.
An internal contactor is used to switch the electromechanical motor brake
On/Off. The motor brake contactor is actuated via the internal power which supplies L1 and L2 voltage to the mechanical brake in the motor. The source brake can be configured for independent control via parameter configuration.
The internal contactor, electromechanical motor brake, and associated motor branch cable are protected by the branch circuit protective device. There is no resettable or replaceable protective device in ArmorStart LT.
WARNING:
If the branch circuit protective device trips, the user must ensure that the Source Brake function is still operational prior to putting the equipment back in service. If the source brake function is not working properly, loss of brake function or motor damage can occur.
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
37
Chapter 1
Product Overview
Notes:
38
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
Receiving
Unpacking
Inspecting
Storing
Chapter
2
Installation and Wiring
It is the responsibility of the user to thoroughly inspect the equipment before accepting the shipment from the freight company. Check the item(s) received against the purchase order. If any items are damaged, it is the responsibility of the user not to accept delivery until the freight agent has noted the damage on the freight bill. Should any concealed damage be found during unpacking, it is also the responsibility of the user to notify the freight agent. The shipping container must be left intact and the freight agent should be requested to make a visual inspection of the equipment.
Remove all packing material, wedges, or braces from within and around the
ArmorStart LT distributed motor controller and other device(s). Check the contents of the package to see if all contents are included. Contact your local
Allen-Bradley representative if any items are missing.
IMPORTANT
Before the installation and start-up of the drive, a general inspection of mechanical integrity (i.e. loose parts, wires, connections, packing materials, etc.) must be made.
After unpacking, check nameplate catalog number(s) of the item(s) against the purchase order. See Chapter 1 for an explanation of the catalog numbering system which will aid in nameplate interpretation.
The controller should remain in the shipping container prior to installation.
If the equipment is not to be used for a period of time, it must be stored according to the following instructions in order to maintain warranty coverage.
•
Store in a clean, dry location.
•
Store within an ambient temperature range of –25…+85 °C
(–13…+185 °F).
•
Store within a relative humidity range of 0…95%, noncondensing.
•
Do not store equipment where it could be exposed to a corrosive atmosphere.
•
Do not store equipment in a construction area.
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
39
Chapter 2
Installation and Wiring
Installation Precautions
The following statements must be read and understood.
ATTENTION:
The earth ground terminal shall be connected to a solid earth ground via a low-impedance connection.
ATTENTION:
Copper ground conductors are recommended. The ArmorStart LT external protective earth (PE) pad is aluminum. Refer to your local electrical installation standard for proper bonding and protection when dissimilar metals are used.
ATTENTION:
An incorrectly applied or installed controller can damage components or reduce product life. Wiring or application errors, such as undersizing the motor, incorrect or inadequate AC supply, or out of range ambient temperatures, may result in malfunction of the system.
Precautions for
Bulletin 290D/291D
Applications
Precautions for
Bulletin 294D Applications
Dimensions
SHOCK HAZARD:
To prevent electrical shock, open appropriate machine disconnect switch prior to connecting and disconnecting cables. Risk of shock — environment rating may not be maintained with open receptacles.
SHOCK HAZARD:
The drive contains high voltage capacitors which take time to discharge after removal of mains supply. Before working on drive, ensure isolation of mains supply from line inputs (L1, L2, L3). Wait three minutes for capacitors to discharge to safe voltage levels. Failure to do so may result in personal injury or death.
ArmorStart LT consists of three components that are non-replaceable. The
Electronic Control Module (ECM); a gland plate for wire entry; and the aluminum alloy enclosure which makes up the back cover, top housing, and wiring access door. The ECM includes communications, discrete I/O, status and diagnostic LEDs, and the node address switches. All mating surfaces are sealed using foam in place gasket or o-ring.
40
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
Dimensions
202,05
[8.0]
Installation and Wiring
Chapter 2
Dimensions are shown in millimeters (inches). Dimensions are not intended to be used for manufacturing purposes. All dimensions are subject to change.
Figure 11 - Dimensions for Bulletin 290D/291D
130
[5.1]
260
[10.2]
170
[6.7]
217,83
[8.6]
65
[2.6]
Front View
Line
Right Side View
Control
Motor
37
[1.5]
57,13
[2.3]
38,49
[1.5]
24,25
[1.0]
1" CONDUIT OPENING
0.75" CONDUIT OPENING
48,5
[1.9]
Conduit Gland Entrance
Line
Motor
Line
Motor
ArmorConnect Media
Gland Entrance (optional)
Control
Source Brake
ArmorConnect Internal Power
Supply Gland Plate (optional)
ArmorConnect Source Brake
Gland Plate (optional)
IMPORTANT
For proper heat dissipation and product operation, mount the ArmorStart LT in the vertical orientation as shown.
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
41
Chapter 2
Installation and Wiring
Figure 12 - Dimensions for Bulletin 294D
381
[15.0]
240
[9.4]
206,43
[8.1]
170
[6.7]
219,32
[8.6]
120
[4.7]
Front View
37
[1.5]
92,9
[3.7]
Line
Motor
38,49
[1.5]
24,25
[1.0]
48,5
[1.9]
1" CONDUIT OPENING
0.75" CONDUIT OPENING
Conduit Gland Entrance - Bottom View
Line
Control
Motor
Line
Motor
Right Side View
Control
Source Brake
42
ArmorConnect Internal Power
Supply Gland Plate (optional)
ArmorConnect Media Gland
Entrance (optional)
ArmorConnect Gland Entrance
with Source Brake (optional)
IMPORTANT
For proper heat dissipation and product operation, mount the ArmorStart LT in the vertical orientation as shown.
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
Connection Locations
Installation and Wiring
Chapter 2
Dimensions are shown in millimeters (inches). Dimensions are not intended to be used for manufacturing purposes. All dimensions are subject to change.
Figure 13 - ArmorStart LT Gland Plate Matrix
G2 Media G1 Conduit
Standard
U.S. Trade Knock-outs
G3 Conduit
Daisy Chaining
IP66 Metric Fittings
Cat. No.
Dia. 25.5 mm
Dia. 20.5 mm
290-G3-A2
No Internal Power Supply
No Source Brake
1.00 in.
(25.4 mm)
0.75 in.
(19.05 mm)
Dia. 25.5 mm
Dia. 20.5 mm
Source Brake
No Internal Power Supply
0.75 in.
(19.05 mm)
290-G3-A3
Dia. 25.5 mm
Dia. 20.5 mm
Internal Power Supply
No Source Brake
1.00 in.
(25.4 mm)
0.75 in.
(19.05 mm)
290-G3-A4
Internal Power Supply and Source Brake
Dia. 25.5 mm
Dia. 20.5 mm
1.00 in.
(25.4 mm)
0.75 in.
(19.05 mm)
290-G3-A5
45°
User Modified
Gland Plate Clearances
Modifications are not permitted in the keepout region. Fitting(s) should be oriented so that they do not interfere with the enclosure when the gland plate is installed.
Torque the gland mounting screws to 12…14 in•lb (1.3…1.6 N•m).
66.1 mm
10.1 mm
290-G3-A1
80.7 mm
91.3 mm
11.8 mm
Figure 14 - Internal Power, Control, and Ground Locations
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
43
Chapter 2
Installation and Wiring
Figure 15 - Gland Connection
Conduit Entry (Standard)
Gland Plate
External PE connection
Optional ArmorConnect Quick
Disconnect Feature
Inputs/Outputs
Network
Three-Phase
Power
Receptacle
Motor
Receptacle
Control Power
Receptacle
Wiring Terminal Detail
The power, control, and ground wire capacity and the tightening torque
requirements are shown in Table 8 . The maximum number of connections
per terminal are shown in
. As shown in
Figure 16 all the terminals are
found in the wiring area. Access can be gained by removing the terminal access cover plate.
44
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
Wire Strip Length
0.35 ± 0.01 in.
(9 ± 0.2 mm)
Installation and Wiring
Chapter 2
L1
L2
T1
T2
L3
T3
Figure 16 - ArmorStart LT Power and Control Terminals
A1
A2
A3
PE
B1 B2
Table 7 - Power, Control, and Ground Terminal Designations
Terminal Designations
A1
A2
A3
L2
L3
PE
L1
T1
T2
T3
B1
B2
Wires/Connections
2
2
2
2
2
2
2
1
1
1
1
1
Description
Switched 24V DC Control Power (+)
➊
Control Power Common (–)
➊
Unswitched 24V DC Control Power (+)
➊
Ground
Line Power – Phase A
Line Power – Phase B
Line Power – Phase C
Motor Connection – Phase A
Motor Connection – Phase B
Motor Connection – Phase C
Source Brake Connection – B1
➋
Source Brake Connection – B2
➋
➊
When internal power supply option is selected, no connection is made here.
➋
Available only with Bulletin 294E.
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
45
Chapter 2
Installation and Wiring
Power Terminals
Motor Terminals
Control Terminals
PE/Ground
Source Brake (Bulletin 294)
Table 8 - Power, Control, and Ground Wire Capacity and the Tightening Torque Requirements
Wire Size (2) #18…#10 AWG (0.8…5.2 mm
2
) per terminal
Tightening Torque
Wire Size
Tightening Torque
Wire Size
Tightening Torque
Wire Size
Tightening Torque
Wire Size
Tightening Torque
10.6 +/– 2 lb•in (1.2 +/– 0.2 N•m)
#18…#10 AWG (0.8…5.2 mm
2
) per terminal
10.6 +/– 2 lb•in (1.2 +/– 0.2 N•m)
(2) #18…#10 AWG (0.8…5.2 mm
2
) per terminal
10.6 +/– 2 lb•in (1.2 +/– 0.2 N•m)
(2) #16…#10 AWG (1.3…5.2 mm
2
) per terminal
18 +/– 2 lb•in (2 +/– 0.2 N•m)
#16 …#10 AWG (1.0…4.0 mm
2
) per terminal
4.8 ± 2 lb•in (0.5 ± 0.2 N•m )
IMPORTANT
ArmorStart LT is UL Listed for use with 14 AWG wire or preassemble power cable. Refer to your local electrical code(s) when applying 16 AWG wire or cable in a motor circuit.
Branch Circuit Protection
ATTENTION:
Select the motor branch circuit protection that complies with the
NFPA79/ or NFPA70 (NEC) and any other governing regional or local codes.
The ArmorStart LT is Underwriters Laboratory (UL) Group Motor listed. Refer
,
Chapter 6 for maximum branch fuse and circuit
breaker ratings. Select the motor branch circuit protection device that complies with NFPA70 (NEC) or NFPA79, and any other governing regional or local codes. The installer shall observe the product nameplate markings and not apply the ArmorStart LT where the maximum perspective short circuit current is exceeded. The ArmorStart LT shall be applied to a solidly grounded WYE power distribution system that does not exceed 480V AC, 60 Hz or 400V AC, 50 Hz.
WARNING:
Do not install the ArmorStart LT where the maximum available fault current exceeds the product rating.
46
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
Typical System Example
Installation and Wiring
Chapter 2
The primary function of ArmorStart LT is to control and protect a three-phase squirrel cage induction motor. Three-phase power enters through terminals that are connected to a manually operated disconnect switch. The three-phase power may also connect internally to an optional three-phase to 24V DC power supply
(IPS). Wired in series with the disconnect is an electrically operated contactor or a variable frequency drive. For Bulletin 294D an optional source brake contactor may also be connected to the disconnect output terminals. The source brake contactor is used to control an electromechanical brake physically attached to the motor. The microcontroller and interface circuits are contained in the ECM.
The ECM also houses 6 user configurable I/O points. These six I/O points are used for system level control and are accessible via by the communication network or DeviceLogix.
The user has the flexibility to coordinate the appropriate safety function for their application. ArmorStart LT does not provide a safe torque-off input. Therefore, the safety function is configured externally from the controller and based upon the risk assessment.
For example, the risk assessment may require a safety circuit with a high level of performance. In this example, a safety relay with redundant safety contactors and emergency stop function can be integrated into the machine controls.
Figure 17 below is an example of this configuration. Contact your local
Rockwell Automation supplier for additional support regarding the safety circuit or for a risk assessment of your machinery.
Figure 17 -
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
47
Chapter 2
Installation and Wiring
ArmorConnect Power Media
For greater flexibility and faster installations the user may also use
ArmorConnect media for a complete plug-n-play solution. This solution provides plug-in style stop stations, as shown in Figure 18 . The ArmorConnect power media offers both three-phase and control power cable cord set systems.
These include patchcords, receptacles, tees, reducers and accessories to be utilized with the ArmorStart LT Distributed Motor Controller. This cable system allows quick connections and reduced installation time by utilizing pre-manufactured cable assemblies for more reliable connection of the three phase and control power.
IMPORTANT
When specifying power media for use with the ArmorStart LT Distributed
Motor Controllers (Bulletin 290D/291D and Bulletin 294D) use only
ArmorConnect power media. The use of any other power media will void the UL Listing of the motor controller.
Figure 18 - Media Diagram
48
IMPORTANT
A single channel Stop is pictured. It is necessary to perform a risk assessment and determine specific application requirements.
1. DeviceNet Trunk Cable - Patchcord trunk cable with integral female or male connector on each end (example 1485C-P*N5-M5)
2. DeviceNet Mini- T-Port Tap - T-ports are used for connecting drops to the trunk line (example 1485P-P1N5-MN5KM)
3. DeviceNet Drop Cable - Drop cables and patch cords are used to connect devices to the network (example 1485G-P*M5-Z5)
4. DeviceNet Receptacle - Recepatcles are used when connections present but required (example 1485A–CXN5–M5)
5. DeviceNet Terminator - Properly designed DeviceNet networks require terminating resistors (example 1485A–T1N5)
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
Installation and Wiring
Chapter 2
IMPORTANT
See the On-Machine Connectivity catalog for specific Ethernet media components
Figure 19 - On-Machine Stop Stations
Enclosure
Type
Plastic
Metal
Quick Connect
Mini Receptacle
Knockout
Type
Metric
Operator
Twist to Release
Illumination
Voltage
24V AC/DC
24V AC/DC
Contact
Configuration
1 N.C./1 N.O.
Cat. No.
800F-1YMQ4
800F-1MYMQ4
ArmorConnect Cable Ratings
The ArmorConnect Power Media cables are rated per UL Type TC 600V 90°C
Dry 75°C Wet, Exposed Run (ER) or MTW 600V 90°C or STOOW 105°C
600V - Canadian Standards Association (CSA) STOOW 600V FT2.
For additional information regarding ArmorConnect Power Media refer to ArmorStart LT selection guide, publication 290-SG001.
Branch Circuit Protection Requirements for ArmorConnect
Three-Phase Power Media
When using ArmorConnect Three-Phase Power Media, fuses or circuit breakers may be used for the motor branch circuit ground fault protection if properly sized and allowed by product labeling.
Circuit Breaker:
Where ArmorStart LT is used with ArmorConnect — suitable for use on a circuit capable of delivering not more than 10 000 RMS Symmetrical Amperes at 480Y/277V AC maximum when protected by Cat. No. 140U-D6D3-C30 circuit breaker, refer to the
.
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
49
Chapter 2
Installation and Wiring
Electrical Wiring
WARNING:
The total circuit impedance including each cable assembly's own impedance, must be low enough to ensure any short-circuit or ground fault current that can flow through any assembly, will be large enough to operate the magnetic trip of the Cat. No. 140U-D63-C circuit breaker. Refer to NFPA 70 and
NFPA 79 or your local electrical code for guidance in coordinating over current protective devices and the circuit being protected.
Fusing:
Where ArmorStart LT is used with ArmorConnect — suitable for use on a circuit capable of delivering not more than 10 000 RMS Symmetrical Amperes
(SCCR) at 480/277V AC maximum when protected by 40 A CC, J, and T class fuses, refer to the
.
ArmorStart LT EtherNet/IP utilizes 24V DC control power for communications and I/O. The control power terminal connections are labeled A1, A2, and A3.
Switched power (A1) will supply outputs and motor control. Unswitched power (A3) will supply logic power, communications, and sensor inputs.
IMPORTANT
EtherNet/IP is an unpowered network, therefore if device status is important, the A3 terminal must have an unswitched power source.
Figure 20 - Bulletin 290D Full Voltage
50
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
Figure 21 - Bulletin 291D Full Voltage Reversing
Installation and Wiring
Chapter 2
Figure 22 - Bulletin 294D VFD
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
51
Chapter 2
Installation and Wiring
Figure 23 - Bulletin 294D VFD with -SB
Figure 24 - Bulletin 290D Full Voltage with -IPS
52
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
Figure 25 - Bulletin 291D Full Voltage Reversing with -IPS
Installation and Wiring
Chapter 2
Figure 26 - Bulletin 294D VFD with -IPS
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
53
Chapter 2
Installation and Wiring
Figure 27 - Bulletin 294D VFD with -IPS, -SB
54
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
Installation and Wiring
Chapter 2
Group Motor Installations for
USA and Canada Markets
When ArmorStart LT is applied according to group motor installation requirements, two or more motors of any rating or controller type, are permitted on a single branch circuit. Group Motor Installation has been successfully used for many years in the USA and Canada.
IMPORTANT
For additional information regarding group motor installations with the
ArmorStart LT Distributed Motor Controller, see Appendix A
Wiring Cable Workmanship Guidelines
In addition to conduit and seal-tite raceway, it is acceptable to utilize cable that is dual rated Tray Cable Exposed Runs (TC-ER) and Cord, STOOW, for power and control wiring on ArmorStart LT installations. In the USA and Canada installations, the following guidance is outlined by the National Electrical Code
(NEC) and National Fire Protection Association (NFPA) 79.
In industrial establishments where the conditions of maintenance and supervision ensure that only qualified persons service the installation, and where the exposed cable is continuously supported and protected against physical damage using mechanical protection, such as struts, angles, or channels, Type TC tray cable that complies with the crush and impact requirements of Type MC
(Metal Clad) cable and is identified for such use with the marking Type TC-ER
(Exposed Run)
➊
shall be permitted between a cable tray and the utilization equipment or device as open wiring. The cable shall be secured at intervals not exceeding 6 ft (1.8 m) and installed in a “good workman-like” manner.
Equipment grounding for the utilization equipment shall be provided by an equipment grounding conductor within the cable.
While the ArmorStart LT is intended for installation in factory floor environments of industrial establishments, the following must be taken into consideration when locating the ArmorStart LT in the application:
•
Cables, including those for control voltage including 24V DC and communications, are not to be exposed to an operator or building traffic on a continuous basis.
•
Location of the ArmorStart LT to minimize exposure to continual traffic is recommended. If location to minimize traffic flow is unavoidable, other barriers to minimize inadvertent exposure to the cabling should be considered.
•
Routing cables should be done in such a manner to minimize inadvertent exposure and/or damage.
•
If conduit or other raceways are not used, it is recommended that strain relief fittings be utilized when installing the cables for the control and power wiring through the conduit openings.
➊
Historically cable meeting these crush and impact requirements was designated and marked “Open Wiring.” Cable so marked is equivalent to the present Type TC-ER and can be used.
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
55
Chapter 2
Installation and Wiring
General Wiring
Considerations
56
Service Space
The working space around the ArmorStart LT can be minimized as the
ArmorStart LT does not require examination, adjustment, servicing or maintenance while energized. In lieu of this service, the ArmorStart LT is meant to be unplugged and replaced after proper lock-out/tag-out procedures have been employed.
Hand Operation (HOA) Considerations
The Hand/Off/Auto (HOA) is a factory-installed option that the user may select. The HOA keypad may require the ArmorStart LT to be installed as follows, if the application requires frequent use of the hand operated interface by the equipment operator:
1.
Install not less than 2 ft (0.6 m) above the servicing level and within easy reach of the operator, who is in a normal working position.
2.
Install where the operator is not placed in a hazardous situation when operating the equipment.
3.
Install where the possibility of inadvertent operation is minimized.
Where inadvertent operation may cause adverse effects the HOA can be disabled via parameter 67.
Wire in an industrial control application can be divided into three groups: power, control, and signal. The following recommendations for physical separation between these groups is provided to reduce the coupling effect:
•
Minimum spacing between different wire groups in the same tray should be 6 in. (16 cm).
•
Wire runs outside an enclosure should be run in conduit or have shielding/ armor with equivalent attenuation.
•
Different wire groups should be run in separate conduits.
•
Minimum spacing between conduits containing different wire groups should be 3 in. (8 cm).
•
Minimum spacing between 3-phase power cabling and DeviceNet or I/O cabling should be at least 6 in. (16 cm) to avoid noise issues, unless properly shielded.
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
Grounding
Installation and Wiring
Chapter 2
An effectively grounded product is one that is “intentionally connected to earth through a ground connection or connections of sufficiently low impedance and having sufficient current-carrying capacity to prevent the buildup of voltages which may result in undue hazard to connected equipment or to persons” (as defined by the US National Electric Code NFPA70, Article 100B). Grounding is done for two basic reasons: safety (defined above) and noise containment or reduction. While the safety ground scheme and the noise current return circuit may sometimes share the same path and components, they should be considered different circuits with different requirements.
Grounding Safety Grounds
The object of safety grounding is to ensure that all metalwork is at the same ground (or Earth) potential at power frequencies. Impedance between the drive and the building scheme ground must conform to the requirements of national and local industrial safety regulations or electrical codes. These will vary based on country, type of distribution system and other factors. Periodically check the integrity of all ground connections.
General safety dictates that all metal parts are connected to earth with separate copper wire or wires of the appropriate gauge. Most equipment has specific provisions to connect a safety ground or PE (protective earth) directly to it.
Grounding PE or Ground
The safety ground - PE must be connected to earth ground. This point must be connected to an adjacent building steel (girder, joist), a floor ground rod, a bus bar or a building ground grid. Grounding points must comply with national and local industrial safety regulations or electrical codes. Some codes may require redundant ground paths and periodic examination of connection integrity.
IMPORTANT
To avoid electrolytic corrosion on the external earth terminal, avoid spraying moisture directly on the terminal. When used in washdown environments apply a sealant or other corrosion inhibitor on the external ground terminal to minimize any negative effects of galvanic or electro-chemical corrosion.
Ground connections should be inspected on a regular basis.
Grounding Motors
The motor frame or stator core must be connected directly to the PE connection with a separate ground conductor. It is recommended that each motor frame be grounded to building steel at the motor.
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
57
Chapter 2
Installation and Wiring
Power Distribution
The type of transformer and the connection configuration feeding an
ArmorStart LT Bulletin 294D plays an important role in its performance and safety.
Delta/Wye with Grounded Wye Neutral
Figure 28 -
AC Line Voltage
Line Reactor
58
Delta/Wye with Grounded Wye Neutral is the most common type of distribution system. The grounded neutral provides a direct path for common mode current caused by the drive output.
SHOCK HAZARD:
ArmorStart LT requires the use of grounded Wye power systems.
Incoming voltage imbalances greater than 2% can cause large unequal currents in a drive. An input line reactor may be necessary when line voltage imbalances are greater than 2%.
In general, ArmorStart LT does not require line reactors. In most applications, the ArmorStart LT is further away from the power distribution panel, therefore the length of cable provides additional impedance as compared to an in-panel solution.
Through design and engineering, the need for a line reactor is significantly reduced.
Therefore, ArmorStart LT does not define a minimum line impedance specification, and does not require a line reactor. Its design trades the external reactor supplied by the customer for an internal fan integral to the controller.
This improves the overall life of the product. To achieve maximum electrical life of Bulletin 294, an 800μH line reactor for the group can be applied to extend total service life.
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
Installation and Wiring
Chapter 2
In addition, if line disturbance mitigation is also necessary, the ArmorStart LT is equipped with an EMI filter and when used with a shielded motor cable reduces the impact of the power switching components. For CE compliant installations refer to the recommended EMI/RFI cord grip accessory or quick disconnect shielded motor cable. Contact your local sales representative for details.
If however, the customer specifications require input line reactors or transformers, the recommendation is to group the ArmorStarts at the distribution panel under one line reactor (not individual reactors or transformers). Keep in mind where full voltage ArmorStarts are included with VFD ArmorStarts, the starting currents of the full voltage ArmorStarts can be significant. The current must be accounted for in the selection of the line reactor or you run the risk of nuisance undervoltage faults of the VFD ArmorStarts while the full voltage ArmorStarts are starting their motors.
ATTENTION:
For 50°C ambients ArmorStart LT must be derated and applied with a minimum of 800 uH to1200 uH line reactor. Failure to follow this application requirement will result in premature product failure. Contact your local Rockwell Automation representative for assistance.
Bulletin 294D Motor Cable
Considerations
The majority of recommendations regarding drive cable address issues are caused by the nature of the drive output. A PWM drive creates AC motor current by sending DC voltage pulses to the motor in a specific pattern. These pulses affect the wire insulation and can be a source of electrical noise. The rise time, amplitude, and frequency of these pulses must be considered when choosing a wire/cable type. The choice of cable must consider:
1.
The effects of the drive output once the cable is installed
2.
The need for the cable to contain noise caused by the drive output
3.
The amount of cable charging current available from the drive
4.
Possible voltage drop (and subsequent loss of torque) for long wire runs
Keep the motor cable lengths less than 45 ft from the ArmorStart LT.
Unshielded Cable
Properly designed multi-conductor cable can provide superior performance in wet applications, significantly reduce voltage stress on wire insulation and reduce cross coupling between drives.
The use of cables without shielding is generally acceptable for installations where electrical noise created by the drive does not interfere with the operation of other devices such as: communications cards, photoelectric switches, weigh scales, and others. Be certain the installation does not require shielded cable
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
59
Chapter 2
Installation and Wiring to meet specific EMC standards for CE, C-Tick or FCC. Cable specifications depend on the installation type.
Figure 29 - Unshielded Multi-Conductor Cable
Filler PVC Outer
Sheath
W
B
R
G
Single Ground
Conductor
Shielded Cable
Shielded cable contains all of the general benefits of multi-conductor cable with the added benefit of a copper braided shield that can contain much of the noise generated by a typical AC Drive. Strong consideration for shielded cable should be given for installations with sensitive equipment such as weigh scales, capacitive proximity switches, and other devices that may be affected by electrical noise in the distribution system. Applications with large numbers of drives in a similar location, imposed EMC regulations, or a high degree of communications/networking are also good candidates for shielded cable.
An acceptable shielded cable will have 4 XLPE insulated conductors with a
100% coverage foil and an 85% coverage copper braided shield (with drain wire) surrounded by a PVC jacket.
Figure 30 - Shielded Cable with Four Conductors
Shield
Drain Wire
W
R
G
B
Recommended Cable Connectors/Glands
Choose cable connectors or glands that offer the best cable protection, shield termination, and ground contact.
60
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
Installation and Wiring
Chapter 2
Description
Motor/Source Brake
Motor/Source Brake
Power
Power
Control Power, Motor/Source
Brake
3-Phase Power
Recommended Cord Grips
The following are recommended cord grips to be used for ArmorStart LT installations.
Table 9 - Cord grip for Motor, Power, and Control
Recommended Thomas and Betts Cord Grips for G1 and G3 Glands.
Gland
G1
G1
G1
G1
Knockout
Size
0.75 in.
0.75 in.
1.0 in.
1.0 in.
G3 M20
Cable Diameter Range (in.
2
)
0.500…0.750
0.660…0.780
0.660…0.780
0.770…0.895
0.236…0.473
Thomas and Betts Part Nos.
Cord Grip
Sealing
Ring
Lock Nut
2932NM
2675
2676
2677
5263
5263
5264
5264
142TB
142TB
143
143
CC-ISO20-G – GMN-M20
G3 M25 0.512…0.709
CC-ISO25-G – GMN-M25
Shield Terminating Connectors
The cable connector selected must provide good 360 o
contact and low transfer impedance from the shield or armor of the cable to the conduit entry plate at both the motor and the ArmorStart LT for electrical bonding. SKINTOP
®
MS-SC/MS-SCL cable grounding connectors and NPT/PG adapters from
LAPPUSA are good examples of this type of shield terminating gland.
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
61
Chapter 2
Installation and Wiring
U (T1)
V (T2)
W (T3)
PE
One or More
Ground Leads
Figure 31 - Terminating the Shield with a Connector
Metal connector body makes direct contact with the braid wires
Braid wires pulled back in a 360
°
pattern around the ground cone of the connector
Ground Bushing
Metal locknut bonds the connector to the panel
Drain wires pulled back in a 360
°
pattern around the ground cone of the connector
Electromagnetic
Compatibility (EMC)
ATTENTION:
Shielded connector or motor cable is mandatory for CE compliant installations.
The following guidelines are provided for EMC installation compliance.
General Notes (Bulletin 294D only)
•
The motor cable should be kept as short as possible in order to avoid electromagnetic emissions as well as capacitive currents. CE conformity of ArmorStart LT with EMC directive does not guarantee the entire machine installation complies with CE EMC requirements. Many factors can influence total machine/installation compliance.
•
The EMI filter may result in relatively high ground leakage currents.
Therefore, ArmorStart LT must only be applied in installations that are solidly grounded (bonded) to the building power distribution ground.
62
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
Installation and Wiring
Chapter 2
ATTENTION: RFI Filter Grounding.
Due to the presence of an integral EMI filter, this product may draw more that 3.5 mA of leakage current. The controller must only be used in installations with grounded AC supply systems and be permanently installed and solidly grounded (bonded) to the building power distribution ground. Grounding should not include any form of plug or socket that would permit inadvertent disconnection. Consult your local codes regarding redundant ground connections and/or size of protective earthing conductor. The integrity of all connections should be periodically checked.
Ethernet, DeviceNet, and
I/O Connections
DeviceNet Connector (M18)
Pin 1 – Drain (no connection)
Pin 2 – +VDNET
Pin 3 – -VDNET
Pin 4 – CAN_H
Pin 5– CAN_L
Ethernet/IP Connector D-coded (M12)
4
3
M12 Female Ethernet Connector
Pin 1 – Tx+
Pin 2 – Rx+
Pin 3 – Tx–
Pin 4 – Rx–
I/O Connector (M12)
Pin 1 – Sensor Source Voltage
Pin 2 – Not Used
Pin 3 – Common
Pin 4 – Input or Output
Pin 5 – Not Used
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
63
Chapter 2
Installation and Wiring
ArmorConnect Power
Media Receptacles
ArmorStart LT utilizes a M22 male receptacle for power inputs and a M22 female receptacle for motor or motor brake output.
Motor Connector (optional)
Pin 1 - T1 (black)
Pin 2 - T2 (white)
Pin 3 - T3 (red)
Pin 4 - Ground (green/yellow)
Source Brake Connector (optional)
Pin 1 - Ground (green/yellow)
Pin 2 - B1(black)
Pin 3 -B2 (white)
Incoming Control Power (optional) – 24V DC Only
Pin 1 – (+V) Unswitched (A3/red)
Pin 2 – (–V) Common (A2/black)
Pin 3 – Not used (green)
Pin 4 – Not used (blank)
Pin 5 – (+V) Switched (A1/blue)
Pin 6 – Not used (white)
Incoming Three-Phase Power (optional)
Pin 1 - L1 (black)
Pin 2 - L2 (white)
Pin 3 - L3 (red)
Pin 4 - Ground (green/yellow)
64
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
Optional Locking Clip
Installation and Wiring
Chapter 2
The locking clip is an optional device that can be used, if desired. The clam shell design clips over power quick disconnect connections to limit customer access to disconnection.
Figure 32 -
SHOCK HAZARD:
DO NOT connect or disconnect power or motor connections while power is applied to ArmorStart LT. Proper Lock-Out Tag-Out procedures should be followed to reduced the risk of severe injury.
SHOCK HAZARD:
The ArmorStart LT local disconnect will only isolate the motor power and remove switched power when turned OFF. Power inputs must be switched OFF properly from their respective sources before connection or disconnection of incoming power. Proper Lock-Out Tag-Out procedures should be followed to reduced the risk of severe injury.
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
65
Chapter 2
Installation and Wiring
Notes:
66
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
Chapter
3
Product Commissioning
Configuring DeviceNet Address
The ArmorStart® is shipped with a default switch setting of 99 and Autobaud enabled. When a value greater than 63 is read, then the node address will be set to the value stored in memory. From the factory the node address will be set to 63.
The Each device on a DeviceNet network must have a unique node address which can be set to a value from 0 to 63. Keep in mind that most DeviceNet systems use address 0 for the master device (Scanner) and node address 63 should be left vacant for introduction of new slave devices. The ArmorStart offers two methods for node commissioning .The node address for a device can be changed using software or by setting hardware switches that reside on electronic control module (ECM). While both methods yield the same result, it is good practice to choose one method and deploy it throughout the system. For software configuration ensure that the node address is set to 99 and use RS Networx node commissioning wizard.
Manually Configure the Network Address Switches
Remove the protective caps from the rotary switches.
Figure 33 - Switches on the I/O module
Set the network address by adjusting the two rotary switches on the front of the ECM.
Rockwell Automation Publication 290E-UM001B-EN-P - June 2012
67
Chapter 3
Product Commissioning
Figure 34 - Network Address Example
This example shows the node address set to 00.
The switch value of 88 allows the user to reset to factory default configuration including configuration parameters. This setting is useful in situations where the user wishes to decommission a module or when the user wishes to commission a previously-used module that has an unknown configuration. When the switches are set to 888, upon the next power cycle the ArmorStart LT will return to factory default settings and cease all communications. The Module Status LED shall transition to blinking red and the Network Status LED shall transition to off.
After reset, the user will then need to change the IP address to a valid setting and power cycle. The purpose of this is to prevent the user from resetting the module and then never changing the switch setting from 88.
IMPORTANT
Setting the node address to “88” followed by a power cycle will reset the device to its factory default configuration.
To resume network communication the address
MUST
be set to a valid address and power cycled again.
68
Rockwell Automation Publication 290E-UM001B-EN-P - June 2012
Product Commissioning
Chapter 3
DeviceNet™
Commissioning
Establishing a DeviceNet
Node Address
The ArmorStart® LT is shipped with a default node address of 63 and Autobaud enabled. Each device on a DeviceNet network must have a unique node address or MAC ID which can be set to a value from 0 to 63. Keep in mind that most
DeviceNet systems use address 0 for the master device (Scanner) and node address 63 should be left vacant for introduction of new slave devices. The
ArmorStart offers two methods for node commissioning as shown below.
The node address for a device can be changed using software or by setting hardware switches that reside on the back of the control module. While both methods yield the same result, it is good practice to choose one method and deploy it throughout the system.
Node Commissioning using
Hardware
The ArmorStart is shipped with the hardware rotary switches set to a value of
(99). If the switches are set to a value (64) or above, the device will automatically configure itself to the software node address. If the switches are set to a value of
(63) or less, the device will be at the node address designated by the switch configuration.
To set an address using the hardware rotary switches, simply set the switches to the desired node address and cycle power to the unit. The Device will re-start at the new address.
Node Commissioning using
Software
To set the node address of the ArmorStart using software or other handheld tools, leave the hardware switches in there default position (99) or insure that they are set to something greater than (63). With the hardware switches set, use the software or handheld tool to change the address.
To begin the configuration of ArmorStart using software, execute the
RSNetWorx™ software and complete the following procedure. You must use
RSNetWorx Revision 11 or later.
Rockwell Automation Publication 290E-UM001B-EN-P - June 2012
69
Chapter 3
Product Commissioning
1.
Go on-line using RSNetWorx for DeviceNet. This can be accomplished by selecting the
Network
menu, and then choosing
RSWho
.
2.
Choose the appropriate DeviceNet PC interface.
Note:
DeviceNet drivers must be configured using RSLinx prior to being available to RSNetWorx.
3.
Click
OK
.
4.
RSNetWorx will notify the user to upload or download devices before viewing configuration. Click
OK
.
5.
RSNetWorx will now browse the network and display all of the nodes it has detected on the network. For some versions of RSNetWorx software the ArmorStart EDS files and icon may not be included and will show up as an “Unregistered Device”. Refer to Registering an EDS file for details.
70
Rockwell Automation Publication 290E-UM001B-EN-P - June 2012
Registering an EDS file
Product Commissioning
Chapter 3
6.
If RSNetWorx recognizes the device as an ArmorStart LT, skip ahead to the following section Changing the Node address (MAC ID)
The EDS file defines how RSNetWorx for DeviceNet will communicate to the
ArmorStart. Follow the steps below to build and register the EDS file.
To register a device you must first obtain the EDS file from the following web page:
http://www.ab.com/networks/eds
You are also able to upload the eds directly from the product if online.
After obtaining the files do the following:
1.
Right mouse click on the “Unrecognized Device” icon and choose
Register Device
from the menu.
2.
Click
Next
. The following screen appears:
3.
Choose “Register an EDS file(s)” as shown above and then click the
Next
button.
4.
Choose to “Register a single file” or "Register a directory of EDS files" and specify the file name or location using the
Browse
button to locate the
EDS file on your computer.
Rockwell Automation Publication 290E-UM001B-EN-P - June 2012
71
Chapter 3
Product Commissioning
5.
Click the
Next
button.
6.
The following screen will display any warning or errors if a problem occurs while registering the file. If a problem occurs insure that you have the correct file and try again. Click the
Next
button when no errors occur.
72
7.
Click the
Next
button
Rockwell Automation Publication 290E-UM001B-EN-P - June 2012
Product Commissioning
Chapter 3
Using the Node
Commissioning Tool
Inside RSNetWorx for DeviceNet
8.
Click the
Finish
button. After a short while RSNetWorx will update your online screen by replacing the unrecognized device with the name and icon given by the EDS file you have just registered.
1.
Choose “
Node Commissioning
” from the “
Tools
” menu at the top of the screen.
2.
Clicking on
Browse…
will prompt a screen similar to the one below to appear.
Rockwell Automation Publication 290E-UM001B-EN-P - June 2012
73
Chapter 3
Product Commissioning
3.
Select the ArmorStart located at node 63, and then click
OK
. The node commissioning screen will have the “Current Device Settings” entries completed. It will also provide the current network baud rate in the “New
ArmorStart Settings” area. Do not change the baud rate unless you absolutely sure that this value needs to be changed.
4.
Enter the desired node address in the “New Device Settings” section. In this example, the new node address is
5
. Click
Apply
to apply the new node address.
5.
When the new node address has been successfully applied, the “Current
Device Settings” section of the window is updated as follows. If an error occurs, check to make sure the device is properly powered up and connected to the network.
6.
Click
Close
to exit the node commissioning tool.
7.
Choose “
Single Pass Browse
” from the “
Network
” menu to update
RSNetWorx and verify that the node address is set correctly.
74
Rockwell Automation Publication 290E-UM001B-EN-P - June 2012
System Configuration
Product Commissioning
Chapter 3
Selection of produced and consumed I/O assemblies (sometimes referred to as input and output assemblies) define the format of I/O message data that is exchanged between the ArmorStart and other devices on the network. The consumed information is generally used to command the state of its outputs, and produced information typically contains the state of the inputs and the current fault status of the device.
The default consumed and produced assemblies are shown below; for additional formats refer to Appendix B. The ArmorStart default configuration varies depending on the type of starter.
Choosing the size and format of the I/O data that is exchanged by the
ArmorStart is done by choosing a consumed assembly instance number. This instance number is written to the
Consumed IO Assy
parameter. The different instances/formats allow user programming flexibility and network optimization.
IMPORTANT
The
Consumed and Produced IO Assy
parameter values can not be changed while the ArmorStart is online with a scanner. Any attempts to change the value of this parameter while online with a scanner will result in the error message “Object State Conflict”.
Rockwell Automation Publication 290E-UM001B-EN-P - June 2012
75
Chapter 3
Product Commissioning
Table 10 - Default Consume Assembly for Bulletin 294D
Instance 154 “Drive Cmd” – Default Consumed Assembly for 294 Starters
Byte Bit 7 Bit 6 Bit 5
0
1 Decel2 Accel2
Out05
4
5
2
3
6
7
Pt07DeviceIn
Pt15DeviceIn
Pt06DeviceIn
Pt14DeviceIn
Pt05DeviceIn
Pt13DeviceIn
Bit 4
JogReverse
Out04
Bit 3
JogForward
Out03
CommandFreq (Low) (xxx.x Hz)
CommandFreq (High) (xxx.x Hz)
Pt04DeviceIn
Pt12DeviceIn
Pt03DeviceIn
Pt11DeviceIn
AnalogDeviceIn (low byte)
AnalogDeviceIn (high byte)
Table 11 - Default Compact Produce Assembly for Bulletin 294D
5
6
3
4
7
Instance 155 “Compact Status” - Compact Produced Assembly for 294D Starters
Byte
0
Bit 7
AtReference
Bit 6
NetRefStatus
Bit 5
NetControlStatus
1
2
BrakeStatus DisconnectClosed
Bit 4
Ready
Bit 3
RunningReverse
KeyPadJogging KeyPadHand
OutputFrequency (Low) (xxx.x Hz)
Pt05
OutputFrequency (High) (xxx.x Hz)
Pt04 Pt03
Pt07DeviceOut
Pt15DeviceOut
Pt06DeviceOut
Pt14DeviceOut
Pt05DeviceOut
Pt13DeviceOut
Pt04DeviceOut
Pt12DeviceOut
Pt03DeviceOut
Pt11DeviceOut
Bit 2
ResetFault
Out02
Pt02DeviceIn
Pt10DeviceIn
Bit 2
RunningForward
KeyPadOff
Pt02
Pt02DeviceOut
Pt10DeviceOut
Bit 1
RunReverse
Out01
Pt01DeviceIn
Pt09DeviceIn
Bit 1
WarningPresent
KeyPadAuto
Pt01
Pt001DeviceOut
Pt09DeviceOut
Bit 0
RunForward
Out00
Pt00DeviceIn
Pt08DeviceIn
Bit 0
TripPresent
DLXEnabled
Pt00
Pt00DeviceOut
Pt08DeviceOut
76
Rockwell Automation Publication 290E-UM001B-EN-P - June 2012
Product Commissioning
Chapter 3
Table 12 - Bulletin 294D Produced Assembly Status Tags
Table 13 - Bulletin 294D Consume Assembly/Command Tag Explanation
Pt01DeviceIn
Pt02DeviceIn
Pt03DeviceIn
Pt04DeviceIn
Pt05DeviceIn
Pt06DeviceIn
Pt07DeviceIn
Pt08DeviceIn
Pt09DeviceIn
Pt10DeviceIn
Pt11DeviceIn
Pt12DeviceIn
Pt13DeviceIn
Pt14DeviceIn
Pt15DeviceIn
Int00DeviceIn
Device Output Command Tags
RunForward
RunReverse
ResetFault
JogForward
JogReverse
Pt00Data
Pt01Data
Pt02Data
Pt03Data
Pt04Data
Pt05Data
Accel2
Decel2
FreqCommand
Pt00DeviceIn
Tag Description/Use
Command VFD forward
Command VFD reverse
Fault reset
Command Jog forward per internal frequency
Command Jog reverse per internal frequency
If user defined as output, commnd output ON
If user defined as output, commnd output ON
If user defined as output, commnd output ON
If user defined as output, commnd output ON
If user defined as output, commnd output ON
If user defined as output, commnd output ON
VFD acceleration ramp 2
VFD deceleration ramp 2
Logix command frequency
Network input to DeviceLogix engine
Network input to DeviceLogix engine
Network input to DeviceLogix engine
Network input to DeviceLogix engine
Network input to DeviceLogix engine
Network input to DeviceLogix engine
Network input to DeviceLogix engine
Network input to DeviceLogix engine
Network input to DeviceLogix engine
Network input to DeviceLogix engine
Network input to DeviceLogix engine
Network input to DeviceLogix engine
Network input to DeviceLogix engine
Network input to DeviceLogix engine
Network input to DeviceLogix engine
Network input to DeviceLogix engine
Network analog input to DeviceLogix engine
Table 14 - Bulletin 294E Produced Assembly/Status Tag Explanation
Device Input Status Tags
Fault
TripPresent
WarningPresent
RunningForward
RunningReverse
Ready
NetworkControlStatus
Tag Description/Use
Communication fault between PLC and device (all 1s = fault, all 0s = normal)
Fault exists within unit
Warning of potential fault
Motor commanded to run forward
Motor commanded to run reverse
Control and 3-phase power present
Start and Stop command comes from network (PLC or Connected Explicit Messaging)
Rockwell Automation Publication 290E-UM001B-EN-P - June 2012
77
Chapter 3
Product Commissioning
78
Pt13DeviceOut
Pt14DeviceOut
Pt15DeviceOut
Int00DeviceOut
OutputCurrent
OutputVoltage
DCBusVoltage
SwitchedVoltageLevel
UnswitchedVoltageLevel
InternalFanRPM
OperatingHours
DriveTemperature
TripStatus
WarningStatus
Pt03Data
Pt04Data
Pt05Data
Pt00DeviceOut
Pt01DeviceOut
Pt02DeviceOut
Pt03DeviceOut
Pt04DeviceOut
Pt05DeviceOut
Pt06DeviceOut
Pt07DeviceOut
Pt08DeviceOut
Pt09DeviceOut
Pt10DeviceOut
Pt11DeviceOut
Pt12DeviceOut
Device Input Status Tags
NetworkReferenceStatus
AtReference
DeviceLogixEnabled
KeypadAuto
KeypadOff
KeypadHand
KeypadJogging
DisconnectClosed
BrakeContactorStatus
OutputFrequency
Pt00Data
Pt01Data
Pt02Data
Rockwell Automation Publication 290E-UM001B-EN-P - June 2012
Tag Description/Use
Speed reference comes from the network (not DeviceLogix)
At commanded speed reference
DeviceLogix is enabled
HOA is in Auto mode
HOA is in Off mode
HOA is in Hand mode
HOA is in Jog mode
Disconnect is closed
Source brake contactor status (1 = close, 0 = open)
VFD frequency
User-configured I/O status
User-configured I/O status
User-configured I/O status
User-configured I/O status
ASLT_DEMO:I.Pt04Data
User-configured I/O status
DeviceLogix network output status
DeviceLogix network output status
DeviceLogix network output status
DeviceLogix network output status
DeviceLogix network output status
DeviceLogix network output status
DeviceLogix network output status
DeviceLogix network output status
DeviceLogix network output status
DeviceLogix network output status
DeviceLogix network output status
DeviceLogix network output status
DeviceLogix network output status
DeviceLogix network output status
DeviceLogix network output status
DeviceLogix network output status
DeviceLogix network analog output
VFD output current — Parameter 3
VFD output voltage — Parameter 4
VFD DC bus voltage — Parameter 5
Switched control power voltage — Parameter 11
Unswitched control power voltage — Parameter 12
VFD fan speed — Parameter 13
Elapse run hours — Parameter 14
VFD internal temperature — Parameter 15
Bit enumerate trip status — Parameter 16
Bit enumerate warning status — Parameter 17
Product Commissioning
Chapter 3
Table 15 - Default Consume Assembly for Bulletin 290D/291D
Instance 150 “Starter Cmd” - DeviceLogix Consumed Assembly for 290D / 291D Starters
Byte Bit 7 Bit 6 Bit 5 Bit 4
0
1
Out05
Out04
2
3
4
5
Pt07DeviceIn
Pt15DeviceIn
Pt06DeviceIn
Pt14DeviceIn
Pt05DeviceIn
Pt13DeviceIn
Bit 3
Pt04DeviceIn
Pt12DeviceIn
Out03
Pt03DeviceIn
Pt11DeviceIn
AnalogDeviceIn (low byte)
AnalogDeviceIn (high byte)
Bit 2
ResetFault
Out02
Pt02DeviceIn
Pt10DeviceIn
Bit 1
RunReverse
Out01
Pt01DeviceIn
Pt09DeviceIn
Bit 0
RunForward
Out00
Pt00DeviceIn
Pt08DeviceIn
Rockwell Automation Publication 290E-UM001B-EN-P - June 2012
79
Chapter 3
Product Commissioning
Table 16 - Default Produce Compact Assembly for Bulletin 290D/291D
Instance 151 “Compact Status” - Compact Produced Assembly for 290D / 291D Starters
Byte Bit 7 Bit 6 Bit 5 Bit 4
0
1
CurrentFlowing
DisconnectClosed
NetControlStatus Ready
Pt05 Pt04
4
5
2
3
Pt07DeviceOut
Pt15DeviceOut
Pt06DeviceOut
Pt14DeviceOut
Pt05DeviceOut
Pt13DeviceOut
Pt04DeviceOut
Pt12DeviceOut
Bit 3
RunningReverse
KeyPadHand
Pt03
Pt03DeviceOut
Pt11DeviceOut
Bit 2
RunningForward
KeyPadOff
Pt02
Pt02DeviceOut
Pt10DeviceOut
Bit 1
WarningPresent
KeyPadAuto
Pt01
Pt01DeviceOut
Pt09DeviceOut
Bit 0
TripPresent
DLXEnabled
Pt00
Pt00DeviceOut
Pt08DeviceOut
80
Rockwell Automation Publication 290E-UM001B-EN-P - June 2012
Product Commissioning
Chapter 3
The following table provides a brief explanation for the tag function:
Table 17 - Bulletin 290D/291D Consume Assembly Command Tag Explanation
Pt05DeviceIn
Pt06DeviceIn
Pt07DeviceIn
Pt08DeviceIn
Pt09DeviceIn
Pt10DeviceIn
Pt11DeviceIn
Pt12DeviceIn
Pt13DeviceIn
Pt14DeviceIn
Pt15DeviceIn
Int00DeviceIn
Device Output Command Tags
RunForward
RunReverse
ResetFault
Pt00Data
Pt01Data
Pt02Data
Pt03Data
Pt04Data
Pt05Data
Pt00DeviceIn
Pt01DeviceIn
Pt02DeviceIn
Pt03DeviceIn
Pt04DeviceIn
Tag Description/Use
Command VFD forward
Command VFD reverse
Fault reset
If user defined as output, commnd output ON
If user defined as output, commnd output ON
If user defined as output, commnd output ON
If user defined as output, commnd output ON
If user defined as output, commnd output ON
If user defined as output, commnd output ON
Network input to DeviceLogix engine
Network input to DeviceLogix engine
Network input to DeviceLogix engine
Network input to DeviceLogix engine
Network input to DeviceLogix engine
Network input to DeviceLogix engine
Network input to DeviceLogix engine
Network input to DeviceLogix engine
Network input to DeviceLogix engine
Network input to DeviceLogix engine
Network input to DeviceLogix engine
Network input to DeviceLogix engine
Network input to DeviceLogix engine
Network input to DeviceLogix engine
Network input to DeviceLogix engine
Network input to DeviceLogix engine
Network analog input to DeviceLogix engine
Rockwell Automation Publication 290E-UM001B-EN-P - June 2012
81
Chapter 3
Product Commissioning
82
Table 18 - Bulletin 290D/291D Produced Assembly Status Tag Explanation
Pt03Data
Pt04Data
Pt05Data
Pt00DeviceOut
Pt01DeviceOut
Pt02DeviceOut
Pt03DeviceOut
Pt04DeviceOut
Pt05DeviceOut
Pt06DeviceOut
Pt07DeviceOut
Pt08DeviceOut
Pt09DeviceOut
Pt10DeviceOut
Pt11DeviceOut
Pt12DeviceOut
Device Input Status Tags
Fault
TripPresent
WarningPresent
RunningForward
RunningReverse
Ready
CurrentFlowing
DeviceLogixEnabled
KeypadAuto
KeypadOff
KeypadHand
DisconnectClosed
Pt00Data
Pt01Data
Pt02Data
Pt13DeviceOut
Pt14DeviceOut
Pt15DeviceOut
Int00DeviceOut
L1Current
L2Current
L3Current
AvgCurrent
PercentTCU
SwitchedVoltageLevel
Tag Description/Use
Communication fault between PLC and device (all 1s = fault, all 0s = normal)
Fault exists within unit
Warning of potential fault
Motor commanded to run forward
Motor commanded to run reverse
Control and 3-phase power present
Current is passing to motor
DeviceLogix is enabled
HOA is in Auto mode
HOA is in Off mode
HOA is in Hand mode
Disconnect is closed
User-configured I/O status
User-configured I/O status
User-configured I/O status
User-configured I/O status
ASLT_DEMO:I.Pt04Data
User-configured I/O status
DeviceLogix network output status
DeviceLogix network output status
DeviceLogix network output status
DeviceLogix network output status
DeviceLogix network output status
DeviceLogix network output status
DeviceLogix network output status
DeviceLogix network output status
DeviceLogix network output status
DeviceLogix network output status
DeviceLogix network output status
DeviceLogix network output status
DeviceLogix network output status
DeviceLogix network output status
DeviceLogix network output status
DeviceLogix network output status
DeviceLogix network analog output
Phase A current
Phase B current
Phase C current
Average phase A, B, and C current
Overload percentage thermal utilization (100% = overload trip)
Switched control power voltage — Parameter 11
Rockwell Automation Publication 290E-UM001B-EN-P - June 2012
Device Input Status Tags
UnswitchedVoltageLevel
TripStatus
WarningStatus
Product Commissioning
Chapter 3
Tag Description/Use
Unswitched control power voltage — Parameter 12
Bit enumerate trip status — Parameter 16
Bit enumerate warning status — Parameter 17
Rockwell Automation Publication 290E-UM001B-EN-P - June 2012
83
Chapter 3
Product Commissioning
Notes:
84
Rockwell Automation Publication 290E-UM001B-EN-P - June 2012
Chapter
4
Bulletin 290D/291D/294D
Programmable Parameters
Electronic Data Sheet (EDS)
An embedded EDS file can be uploaded directly from the ArmorStart LT. EDS files are also available on the internet at: http://www.ab.com/networks/eds .
Basic Setup Parameters
Table 19 lists the minimum setup configurations required for Bulletin 290D/
291D or Bulletin 294D.
RSLogix 5000 is the recommended commissioning software. Download the Add-
On-Profile (AOP) from http://support.rockwellautomation.com/controlflash/Logix
Profiler.asp
for additional functionality. There are additional capabilities that are not enabled or left at their default values.
Table 19 - Quick Parameter Setup
Bulletin 290D/291D
28
FLASetting
29
OLResetLevel
30
OverloadClass
49
IOPointConfiguration
Bulletin 294D
28
MotorNPVolts
29
MotorNPHertz
30
MotorOLCurrent
32
StopMode
34
MinimumFreq
35
MaximumFreq
36
AccelTime1
37
DecelTime1
49
IOPointConfiguration
IMPORTANT
All I/O points are configured as inputs, by default. Identify which points are outputs, when needed for proper operation, using parameter 49
[IOPointConfiguration].
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
85
Chapter 4
Bulletin 290D/291D/294D Programmable Parameters
Parameter Groups
1
PhaseL1Current
2
PhaseL2Current
3
PhaseL3Current
4
AverageCurrent
5
%ThermalUtilized
6
StarterStatus
7
StarterCommand
8
AuxIOStatus
9
NetworkStatus
10
DLXControlStatus
11
OutputSourceV
12
SensorSourceV
13
Reserved
14
Reserved
15
Reserved
Bulletin
290D/291D Units
Bulletin 294D Units
Basic Status
1
OutputFreq
2
CommandFreq
3
OutputCurrent
4
OutputVoltage
5
DCBusVoltage
6
StarterStatus
7
StarterCommand
8
AuxIOStatus
9
NetworkStatus
10
DLXControlStatus
11
OutputSourceV
12
SensorSourceV
13
InternalFanRPM
14
ElapsedRunTime
15
DriveTemperature
Common to Bulletin 290D/291D and Bulletin 294D Units
16
TripStatus
17
WarningStatus
18
TripLog0
19
TripLog1
Bulletin
290D/291D Units
Trip Status
20
TripLog2
21
TripLog3
22
TripLog4
Bulletin 294D Units
23
SnapShotL1Amps
24
SnapShotL2Amps
25
SnapShotL3Amps
26
SnapShotAvgAmps
27
SnapShot%Thermal
Trip Status
23
SnapShotOutFreq
24
SnapShotOutAmps
25
SnapShotOutVolts
26
SnapShotBusVolts
27
SnapShotDrvTemp
Bulletin
290D/291D Units
Basic Config
28
FLASetting
29
OLResetLevel
30
OverloadClass
31
…
40
Reserved
86
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
Bulletin 290D/291D/294D Programmable Parameters
Chapter 4
Bulletin 294D Units
Motor and Control
28
MotorNPVolts
29
MotorNPHertz
30
MotorOLCurrent
31
CurrentLimit
32
StopMode
Speed Control
33
SpeedReference
34
MinimumFreq
35
MaximumFreq
36
AccelTime1
37
DecelTime1
38
SCurvePercent
39
JogFrequency
40
JogAccelDecel
69
77
78
79
Bulletin
290D/291D Units
OLWarningLevel
70
JamInhibitTime
71
JamTripDelay
72
JamTripLevel
73
JamWarningLevel
74
StallEnabledTime
75
StallTripLevel
76
ULInhibitTime
ULTripDelay
ULTripLevel
ULWarningLevel
69
AccelTime2
70
Dtention
72
InternalFreq
73
SkipFrequency
74
SkipFreqBand
75
DCBrakeTime
76
DCBrakeLevel
77
ReverseDisable
78
FlyingStartEna
79
Compensation
80
SlipHertzAtFLA
81
BusRegulateMode
82
MotorOLSelect
83
SWCurrentTrip
84
AutoRestartTries
85
AutoRestartDelay
86
BoostSelect
87
MaximumVoltage
88
MotorNamPlateFLA
89
BrakeMode
90
BrakeFreqThresh
91
BrakeCurrThresh
92
OptionMatch
Bulletin 294D Units
Starter Protection
41
ProtFltResetMode
42
ProtectFltEnable
43
WarningEnable
44
ProtectFltReset
45
RunNetFltAction
46
RunNetFaultValue
47
RunNetIdleAction
48
RunNetIdleValue
Common to Bulletin 290D/291D and Bulletin 294D Units
User I/O Config.
Miscellaneous Config.
49
IOPointConfigure
50
FilterOffOn
51
FilterOnOff
52
OutProtFltState
53
OutProtFltValue
54
OutNetFaultState
55
OutNetFaultValue
56
OutNetIdleState
57
OutNetIdleValue
58
Input00Function
59
Input01Function
60
Input02Function
61
Input03Function
62
Input04Function
63
Input05Function
64
NetworkOverride
65
CommsOverride
66
KeypadMode
67
KeypadDisable
68
SetToDefaults
Network Group
Advanced Config.
100
AutobaudEnable
101
ConsumedIOAssy
102
ProducedIOAssy
ZIP Group
103
AutoRunZip
104
ZoneProducedEPR
105
ZoneProducedPIT
106
Zone1MacId
107
Zone2MacId
108
Zone3MacId
109
Zone4MacId
110
Zone1Health
111
Zone2Health
112
Zone3Health
113
Zone4Health
114
Zone1PtMask
115
Zone2PtMask
116
Zone3PtMask
117
Zone4PtMask
118
Zone1PtOffset
119
Zone2PtOffset
120
Zone3PtOffset
121
Zone4PtOffset
122
Zone1AnalogMask
123
Zone2AnalogMask
124
Zone3AnalogMask
125
Zone4AnalogMask
126
Zone1AnOffset
127
Zone2AnOffset
128
Zone3AnOffset
129
Zone4AnOffset
130
Zone1EPR
131
Zone2EPR
132
Zone3EPR
133
Zone4EPR
134
Zone1Control
135
Zone2Control
136
Zone3Control
137
Zone4Control
138
Zone1Key
139
Zone2Key
140
Zone3Key
141
Zone4Key
142
DeviceValueKey
143
ZoneCtrlEnable
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
87
Chapter 4
Bulletin 290D/291D/294D Programmable Parameters
ArmorStart LT DeviceNet
Parameters
Introduction
This chapter describes each programmable parameter and its function.
Parameter Programming
Each Distributed Motor Controller type will have a common set of parameters and a set of parameters that pertain to the individual starter type. Parameters
41
…
68 are common to all ArmorStart LTs.
IMPORTANT
Parameter setting changes take effect immediately unless otherwise noted in the parameter listing. These changes maybe immediate even during the
"running" status.
Bulletin 290D/291D Basic Status Group
PhaseL1Current
This parameter determines the actual
Phase L1 current.
PhaseL2Current
This parameter determines the actual
Phase L2 current.
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
2
GET
INT
Basic Status x.xx Amps
0
32767
0
1
GET
INT
Basic Status x.xx Amps
0
32767
0
88
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
PhaseL3Current
This parameter determines the actual
Phase L3 current.
AverageCurrent
This parameter determines the average of
3 Phase currents.
%ThermalUtilized
This parameter determines the percent of
Thermal Capacity used.
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Bulletin 290D/291D/294D Programmable Parameters
Chapter 4
4
GET
INT
Basic Status x.xx Amps
0
32767
0
3
GET
INT
Basic Status x.xx Amps
0
32767
0
5
GET
USINT
Basic Status
Percent
0
100
0
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
89
Chapter 4
Bulletin 290D/291D/294D Programmable Parameters
StarterStatus
This parameter provides the status of the starter.
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
6
GET
WORD
Basic Status
—
0
0x4FBF
0
Bit
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
— — — — — — — — — — — — — — —
— — — — — — — — — — — — — — X
X
—
Function
TripPresent
WarningPresent
— — — — — — — — — — — — — X — — RunningForward
— — — — — — — — — — — — X — — — RunningReverse
— — — — — — — — — — — X — — — — Ready
— — — — — — — — — — X — — — — — NetControlStatus
— — — — — — — — — X — — — — — —
— — — — — — — — X — — — — — — —
Reserved
CurrentFlowing
— — — — — — — X — — — — — — — —
— — — — — — X — — — — — — — — —
— — — — — X — — — — — — — — — —
— — — — X — — — — — — — — — — —
DLXEnabled
KeyPadAuto
KeyPadOff
KeyPadHand
— — X X — — — — — — — — — — — — Reserved
— X — — — — — — — — — — — — — — DisconnectClosed
X — — — — — — — — — — — — — — — Reserved
90
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
Bulletin 290D/291D/294D Programmable Parameters
Chapter 4
StarterCommand
The parameter provides the Run Command status to the starter.
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Bit
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
— — — — — — — — — — — — — — — X
— — — — — — — — — — — — — — X —
— — — — — — — — — — — — — X — —
— — — — — — — — X X X X X — — —
— — — — — — — X — — — — — — — —
— — — — — — X — — — — — — — — —
— — — — — X — — — — — — — — — —
— — — — X — — — — — — — — — — —
— — — X — — — — — — — — — — — —
— — X — — — — — — — — — — — — —
X X — — — — — — — — — — — — — —
7
GET
WORD
Basic Status
—
0
0x3F07
0
Function
RunForward
RunReverse
ResetFault
Reserved
Out00
Out01
Out02
Out03
Out04
Out05
Reserved
AuxIOStatus
The parameter provides the status of hardware input/output points.
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Bit
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
— — — — — — — — — — — — — — — X
— — — — — — — — — — — — — — X —
— — — — — — — — — — — — — X — —
— — — — — — — — — — — — X — — —
— — — — — — — — — — — X — — — —
— — — — — — — — — — X — — — — —
X X X X X X X X X X — — — — — —
8
GET
WORD
Basic Status
—
0
0x3F
0
Function
Pt00
Pt01
Pt02
Pt03
Pt04
Pt05
Reserved
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
91
Chapter 4
Bulletin 290D/291D/294D Programmable Parameters
92
NetworkStatus
The parameter provides the status of the network connections.
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
9
GET
WORD
Basic Status
—
0
0xDF
0
Bit
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
— — — — — — — — — — — — — — — X
— — — — — — — — — — — — — — X —
— — — — — — — — — — — — — X — —
— — — — — — — — — — — — X — — —
— — — — — — — — — — — X — — — —
— — — — — — — — X X X — — — — —
— — — — — — — X — — — — — — — —
— — — — — — X — — — — — — — — —
— — — — — X — — — — — — — — — —
— — — — X — — — — — — — — — — —
— — — X — — — — — — — — — — — —
— — X — — — — — — — — — — — — —
— X — — — — — — — — — — — — — —
X — — — — — — — — — — — — — — —
DLXControlStatus
The parameter provides the DeviceLogix
Control Status.
0 = Controlled in Logix programs.
1 = Controlled in local DLX programs.
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
10
GET
UINT
Basic Status
—
0
OXFF
0
Function:
ExplicitCnxn
I/OConnection
ExplicitCnxnFlt
IOCnxnFault
IOCnxnIdle
Reserved
ZIP1Cnxn
ZIP1CnxnFlt
ZIP2Cnxn
ZIP2CnxnFlt
ZIP3Cnxn
ZIP3CnxnFlt
ZIP4Cnxn
ZIP4CnxnFlt
Bit
7 6 5 4 3 2 1
— — — — — — —
— — — — — —
— — — — — X
— — — — X
X
—
—
—
— — —
0
X
Function:
RunForward
RunReverse
Out00
Out01
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
Bulletin 290D/291D/294D Programmable Parameters
Chapter 4
Bit
7 6 5
— — —
— —
— X
X
X
—
4
X
—
—
3
—
—
—
2
—
—
—
1
—
—
—
0
—
—
—
— — — — — — —
OutputSourceV (IPS)
[SwitchedVolts]
This parameter determines the incoming switched control voltage across terminals
A1…A2.
(IPS) Available voltage on User Output Pin
4 for all I/O points
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
SensorSourceV (IPS)
[UnswitchedVolts]
This parameter determines the incoming unswitched control voltage across terminals A2…A3.
(IPS) Available voltage on Input Sensor
Source Pin 1 for all I/O points
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Function:
Out02
Out03
Out04
Out05
11
GET
UINT
Basic Status x.xx Volts
0
65535
0
12
GET
UINT
Basic Status x.xx Volts
0
65535
0
Trip Status Group
TripStatus
This parameter provides the fault condition that caused any current trip.
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
16
GET
WORD
Trip Status
—
0
0xE3BF
0
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
93
Chapter 4
Bulletin 290D/291D/294D Programmable Parameters
Bit
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
— — — — — — — — — — — — — — —
— — — — — — — — — — — — — — X
X
—
Function
OverloadTrip
PhaseLossTrip
— — — — — — — — — — — — — X — — UnderPowerTrip
— — — — — — — — — — — — X — — — SensorShortTrip
— — — — — — — — — — — X — — — — PhaseImbalanceTrip
— — — — — — — — — — X — — — — — NonVolMemoryTrip
— — — — — — — — — X — — — — — —
— — — — — — — — X — — — — — — —
Reserved
JamTrip
— — — — — — — X — — — — — — — —
— — — — — — X — — — — — — — — —
StallTrip
UnderloadTrip
— — — X X X — — — — — — — — — — Reserved
— — X — — — — — — — — — — — — — OutputShortTrip
— X — — — — — — — — — — — — — — UserDefinedTrip
X — — — — — — — — — — — — — — — HardwareFltTrip
WarningStatus
This parameter provides the current warning condition.
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
17
GET
WORD
Trip Status
—
0
0xC295
Bit
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
— — — — — — — — — — — — — — —
— — — — — — — — — — — — — — X
X
—
Function
OverloadWarning
Reserved
— — — — — — — — — — — — — X — — UnderPowerWarn
— — — — — — — — — — — — X — — — Reserved
— — — — — — — — — — — X — — — — PhaseImbalanceWarn
— — — — — — — — — X X — — — — — Reserved
— — — — — — — — X — — — — — — —
— — — — — — — X — — — — — — — —
JamWarning
Reserved
— — — — — — X — — — — — — — — — UnderloadWarning
— — X X X X — — — — — — — — — — Reserved
—
X
— — — — — — — — — — — — — —
X — — — — — — — — — — — — — —
DNetPwrWarn
ConfigWarning
94
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
Bulletin 290D/291D/294D Programmable Parameters
Chapter 4
TripLog1
This parameter provides the last trip to occur.
TripLog2
This parameter provides the second last trip to occur.
TripLog3
This parameter provides the third last trip to occur.
TripLog4
This parameter provides the fourth last trip to occur.
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
21
GET
UINT
Trip Status
—
0
75
0
20
GET
UINT
Trip Status
—
0
75
0
19
GET
UINT
Trip Status
—
0
75
0
18
GET
UINT
Trip Status
—
0
75
0
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
95
Chapter 4
Bulletin 290D/291D/294D Programmable Parameters
TripLog5
This parameter provides the fifth last trip to occur.
SnapShotL1Amps
This parameter provides a snapshot of actual Phase L1 current at time of last trip.
SnapShotL2Amps
This parameter provides a snapshot of actual Phase L2 current at time of last trip.
SnapShotL3Amps
This parameter provides a snapshot of actual Phase L3 current at time of last trip.
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
25
GET
INT
Trip Status x.xx Amps
0
32767
0
24
GET
INT
Trip Status x.xx Amps
0
32767
0
23
GET
INT
Trip Status x.xx Amps
0
32767
22
GET
UINT
Trip Status
—
0
75
0
96
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
SnapShotLAvgAmps
This parameter provides a snapshot of average of 3 Phase currents at time of last trip.
SnapShot%Thermal
This parameter provides a snapshot of the percentage of Thermal Capacity used at time of last trip.
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Basic Configuration Group
FLASetting
The motor’s full load current rating is programmed in this parameter.
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Table 20 - FLA Setting Ranges and Default Values (with indicated setting precision)
290D/1_-FA_*
290D/1_-FB_*
460V AC
3 Hp
5 Hp
FLA Current Range (A)
Minimum Value
0.24
1.1
Maximum Value
3.5
7.6
Bulletin 290D/291D/294D Programmable Parameters
Chapter 4
27
GET
USINT
Trip Status
Percent
0
100
0
26
GET
INT
Trip Status x.xx Amps
0
32767
0
28
GET/SET
INT
Basic Configuration x.xx Amps
Default Value
0.24
1.1
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
97
Chapter 4
Bulletin 290D/291D/294D Programmable Parameters
OLResetLevel
This parameter determines the % Thermal
Capacity which an overload can be cleared.
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
OverloadClass
This parameter provides the overload trip classification.
1 = 10
2 = 15
3 = 20
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Starter Protection Group
ProtFltResetMode
This parameter configures the Protection
Fault reset mode.
0 = Manual
1 = Automatic
ProtectFltEnable
This parameter enables or disables protection faults (not all faults can be disabled).
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
29
GET/SET
BYTE
Basic Configuration
% TCU
75
100
75
30
GET
USINT
Basic Configuration
3
1
—
1
41
GET/SET
BOOL
Starter Protection
1
0
—
0
42
GET
WORD
Trip Status
—
0
0xE3BF
0
98
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
Bulletin 290D/291D/294D Programmable Parameters
Chapter 4
Bit
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
— — — — — — — — — — — — — — —
— — — — — — — — — — — — — — X
X
—
Function
OverloadTrip
PhaseLossTrip
— — — — — — — — — — — — — X — — UnderPowerTrip
— — — — — — — — — — — — X — — — SensorShortTrip
— — — — — — — — — — — X — — — — PhaseImbalanceTrip
— — — — — — — — — — X — — — — — NonVolMemoryTrip
— — — — — — — — — X — — — — — —
— — — — — — — — X — — — — — — —
Reserved
JamTrip
— — — — — — — X — — — — — — — —
— — — — — — X — — — — — — — — —
StallTrip
UnderloadTrip
— — — X X X — — — — — — — — — — Reserved
— — X — — — — — — — — — — — — — OutputShortTrip
— X — — — — — — — — — — — — — — UserDefinedTrip
X — — — — — — — — — — — — — — — HardwareFltTrip
The highlighted functions are enabled by default.
WarningStatus
This parameter provides the current warning condition.
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
43
GET
WORD
Trip Status
—
0
0xC295
Bit
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
— — — — — — — — — — — — — — —
— — — — — — — — — — — — — — X
X
—
Function
OverloadWarning
Reserved
— — — — — — — — — — — — — X — — UnderPowerWarn
— — — — — — — — — — — — X — — — Reserved
— — — — — — — — — — — X — — — — PhasImbalanceWarn
— — — — — — — — — X X — — — — — Reserved
— — — — — — — — X — — — — — — —
— — — — — — — X — — — — — — — —
JamWarning
Reserved
— — — — — — X — — — — — — — — — UnderloadWarning
— — X X X X — — — — — — — — — — Reserved
— X — — — — — — — — — — — — — — UnswitchedPwrWarn
X — — — — — — — — — — — — — — — ConfigWarning
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
99
Chapter 4
Bulletin 290D/291D/294D Programmable Parameters
ProtectFltReset
This parameter resets a Protection Fault by setting the bit to 1.
0 = NoAction
0 > 1 = ResetFault
RunNetFltAction
This parameter in conjunction with
Parameter 46 (RunNetFltValue) defines how the starter will respond when a fault occurs.
0 = GoToFaultValue
1 = HoldLastState
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
RunNetFltValue
This parameter determines how the starter will be commanded in the event of a fault.
State the starter will go to on a NetFlt if
Parameter 45 (RunNetFltAction) = 1
(GotoFault-Value).
0 = OFF
1 = ON
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
RunNetIdlAction
This parameter in conjunction with
Parameter 48 (RunNetIdlValue) defines how the starter will respond when a network is idle as determined by
Parameter 48.
0 = GoToIdleValue
1 = HoldLastState
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
46
GET/SET
BOOL
Starter Protection
1
0
—
0
47
GET/SET
BOOL
Starter Protection
1
0
—
0
44
GET/SET
BOOL
Starter Protection
1
0
—
0
45
GET/SET
BOOL
Starter Protection
1
0
—
0
100
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
Bulletin 290D/291D/294D Programmable Parameters
Chapter 4
RunNetIdlValue
This parameter determines the state that starter assumes when the network is idle and Parameter 47 (RunNetIdlAction) is set to 1.
0 = OFF
1 = ON
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
User I/O Configuration Group
IOPointConfigure
This parameter determines the point that is configured:
0 = Input
1 = Output
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
—
—
X
5
—
—
—
4
—
—
—
—
X
—
FilterOffOn
This parameter determines the input
(which must be present for this time) before being reported ON.
X
—
—
3
—
—
—
Bit
—
—
—
2
—
—
X
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
—
—
—
1
—
X
—
48
GET
BOOL
Starter Protection
1
0
—
0
49
GET/SET
WORD
User I/O Config.
—
0
0x3F
0
—
—
—
—
—
0
X
50
GET/SET
USINT
User I/O Config.
msecs
0
64
0
Function
Pt00
Pt01
Pt02
Pt03
Pt04
Pt05
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
101
Chapter 4
Bulletin 290D/291D/294D Programmable Parameters
FilterOnOff
This parameter determines the input
(which must be absent for this time) before being reported OFF.
OutProtFltState
This parameter in conjunction with
Parameter 53 (OutProtFltValue) defines how the starter outputs will respond when a fault occurs.
0 = GoToPrFltValue
1 = IgnorePrFlt
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
OutProtFltValue
This parameter determines how the starter outputs will be commanded in the event of a protection fault if Parameter 52
(OutProtFltState) = 0.
0 = OFF
1 = ON
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
OutNetFaultState
This parameter in conjunction with
Parameter 55 (OutNetFaultValue) defines how the starter outputs will respond on an
Ethernet fault.
0 = GoToFaultValue
1 = HoldLastState
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
53
GET/SET
BOOL
User I/O Config.
1
0
—
0
54
GET/SET
BOOL
User I/O Config.
1
0
—
0
51
GET/SET
USINT
User I/O Config.
msecs
0
64
0
52
GET/SET
BOOL
User I/O Config.
1
0
—
0
102
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
Bulletin 290D/291D/294D Programmable Parameters
Chapter 4
OutNetFaultValue
This parameter determines the state of the starter outputs when an Ethernet fault occurs and Parameter 54
(OutNetFaultState) is set to 0.
0 = OFF
1 = ON
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
OutNetIdleState
This parameter in conjunction with
Parameter 57 (OutNetIdleValue) defines how the starter outputs will respond when a network is idle.
0 = GoToIdleValue
1 = HoldLastState
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
OutNetIdleValue
This parameter determines the state that starter outputs assumes when the network is idle and Parameter 56
(OutNetIdleState) is set to 0.
0 = OFF
1 = ON
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Input00Function
This parameter determines the special function for User Input 0:
0 = NoFunction
1 = FaultReset
2 = MotionDisable
➊
3 = ForceSnapShot
4 = UserFault
5 = BrakeRelease
➊
➊
These choices are level sensitive. All others are edge sensitive
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
55
GET
BOOL
User I/O Config.
1
0
—
0
56
GET/SET
BOOL
User I/O Config.
1
0
—
0
57
GET
BOOL
User I/O Config.
1
0
—
0
58
GET/SET
USINT
User I/O Config.
4
0
—
0
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
103
Chapter 4
Bulletin 290D/291D/294D Programmable Parameters
Input01Function
This parameter determines the special function for User Input 1:
0 = NoFunction
1 = FaultReset
2 = MotionDisable
➊
3 = ForceSnapShot
4 = UserFault
5 = BrakeRelease
➊
➊
These choices are level sensitive. All others are edge sensitive
Input02Function
This parameter determines the special function for User Input 2:
0 = NoFunction
1 = FaultReset
2 = MotionDisable
➊
3 = ForceSnapShot
4 = UserFault
5 = BrakeRelease
➊
➊
These choices are level sensitive. All others are edge sensitive
Input03Function
This parameter determines the special function for User Input 3:
0 = NoFunction
1 = FaultReset
2 = MotionDisable
➊
3 = ForceSnapShot
4 = UserFault
5 = BrakeRelease
➊
➊
These choices are level sensitive. All others are edge sensitive
Input04Function
This parameter determines the special function for User Input 4:
0 = NoFunction
1 = FaultReset
2 = MotionDisable
➊
3 = ForceSnapShot
4 = UserFault
5 = BrakeRelease
➊
➊
These choices are level sensitive. All others are edge sensitive
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
59
GET/SET
USINT
User I/O Config.
4
0
—
0
60
GET/SET
USINT
User I/O Config.
4
0
—
0
61
GET/SET
USINT
User I/O Config.
4
0
—
0
62
GET/SET
USINT
User I/O Config.
4
0
—
0
104
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
Bulletin 290D/291D/294D Programmable Parameters
Chapter 4
Input05Function
This parameter determines the special function for User Input 5:
0 = NoFunction
1 = FaultReset
2 = MotionDisable
➊
3 = ForceSnapShot
4 = UserFault
5 = BrakeRelease
➊
➊
These choices are level sensitive. All others are edge sensitive
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Miscellaneous Configuration Group
NetworkOverride
This parameter allows for the local logic to override a Network fault.
0 = Disable
1 = Enable
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
CommsOverride
This parameter allows for local logic to override an I/O connection timeout.
0 = Disable
1 = Enable
KeypadMode
This parameter selects if the keypad operation is maintained or momentary.
0 = Momentary
1 = Maintained
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
63
GET/SET
USINT
User I/O Config.
4
0
—
0
65
GET/SET
BOOL
Misc. Config.
1
0
—
0
64
GET/SET
BOOL
Misc. Config.
1
0
—
0
66
GET/SET
BOOL
Misc. Config.
1
0
—
0
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
105
Chapter 4
Bulletin 290D/291D/294D Programmable Parameters
KeypadDisable
This parameter disables all keypad function except for the “OFF” and “RESET” buttons.
0 = KeypadEnabled
1 = KeypadDisabled
SetToDefaults
This parameter if set to “1” will set the device to the factory defaults.
0 = NoAction
1 = SetToDefaults
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Advanced Configuration
OLWarningLevel
This parameter determines the Overload
Warning Level in % Thermal Capacity Used
(%TCU).
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
JamInhibitTime
This parameter determines the time during motor starting that Jam detection is inhibited.
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
69
GET
USINT
Advanced Config.
%TCU
0
100
85
70
GET
USINT
Advanced Config.
secs.
0
250
10
68
GET/SET
BOOL
Misc. Config.
1
0
—
0
67
GET/SET
BOOL
Misc. Config.
1
0
—
0
106
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
JamTripDelay
This parameter determines how much time above the Jam Level before the unit will trip.
JamTripLevel
This parameter determines the Jam Trip
Level as a percentage of Full Load Amps.
JamWarningLevel
This parameter determines the Jam
Warning Level as a percentage of Full Load Amps.
StallEnabledTime
This parameter determines the time that stall detection is enabled during motor starting.
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Bulletin 290D/291D/294D Programmable Parameters
Chapter 4
73
GET
UINT
Advanced Config.
%FLA
50
600
150
74
GET
USINT
Advanced Config.
secs
0
250
10
71
GET
USINT
Advanced Config.
x.x secs
1
25.0
5.0
72
GET
UINT
Advanced Config.
%FLA
50
600
250
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
107
Chapter 4
Bulletin 290D/291D/294D Programmable Parameters
StallTripLevel
This parameter determines the Stall Trip
Level as a percentage of Full Load Amps.
ULInhibitTime
This parameter determines the time during motor starting that Underload detection is inhibited.
ULTripDelay
This parameter determines the time below
Underload Level before the unit will trip.
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
ULTripLevel
This parameter determines the
Underload Trip Level as a percentage of Full Load Amps.
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
77
GET
USINT
Advanced Config.
x.x secs
1
25.0
5.0
78
GET
USINT
Advanced Config.
%FLA
10
100
50
75
GET
UINT
Advanced Config.
%FLA
100
600
600
76
GET
USINT
Advanced Config.
secs
0
250
10
108
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
Bulletin 290D/291D/294D Programmable Parameters
Chapter 4
ULWarningLevel
This parameter determines the
Underload Warning Level as a percentage of Full Load Amps.
OptionMatch
If product options do not match value, a hardware fault will occur.
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
AutobaudEnable
Autobaud enabled when set
0=Disable
1=Enable
Bit
4-31 3 2 1 0
— — — — X
— — — X —
— — X — —
— X — — —
X — — — —
Function
KeypadPreesent
KeypadNotPresent
BrakePresent
BrakeNotPresent
Reserved
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
1
1
–
0
100
SET
BOOL
Network
79
GET
USINT
Advanced Config.
%FLA
10
100
70
92
GET/SET
DWORD
Advance Config
–
0
0xffffffff
0
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
109
Chapter 4
Bulletin 290D/291D/294D Programmable Parameters
ConsumedIOAssy
Selects the format of the I/O data consumed
290 default = 150
ProducedIOAssy
Selects the format of the I/O data consumed
290 default = 151
AutoRunZip
Enables this device to produce COS messages on powerup
0=Disable
1=Enable
ZoneProducedEPR
Expected Packet Rate for producing Zip
COS connection
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value msec
1
65535
75
104
SET
UINT
ZIP
1
0
–
0
103
SET
BOOL
ZIP
102
SET
USINT
Network
–
52
151
151
101
SET
USINT
Network
–
3
150
150
110
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
ZoneProducedPIT
Production Inhibit Time for the producing
Zip connection
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Zone1ProducedMacId
The MacId address of the device in Zone 1
Zone2ProducedMacId
The MacId address of the device in Zone 2
Zone3ProducedMacId
The MacId address of the device in Zone 3
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Bulletin 290D/291D/294D Programmable Parameters
Chapter 4
64
64
–
0
107
SET
USINT
ZIP
64
64
–
0
106
SET
USINT
ZIP
64
64
–
0
108
SET
USINT
ZIP msec
1
65535
75
105
SET
UINT
ZIP
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
111
Chapter 4
Bulletin 290D/291D/294D Programmable Parameters
Zone4ProducedMacId
The MacId address of the device in Zone 4
Zone1Health
The status of the DeviceNet connection to the Zone 1 device
0=Healthy
1=NotHealthy
Zone2Health
The status of the DeviceNet connection to the Zone 2device
0=Healthy
1=NotHealthy
Zone3Health
The status of the DeviceNet connection to the Zone 3device
0=Healthy
1=NotHealthy
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
1
0
–
0
112
GET
BOOL
ZIP
1
0
–
0
111
GET
BOOL
ZIP
1
0
–
0
110
GET
BOOL
ZIP
64
64
–
0
109
SET
USINT
ZIP
112
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
Zone4Health
The status of the DeviceNet connection to the Zone 4device
0=Healthy
1=NotHealthy
Zone1PtMask
Chooses consumed bytes to be placed in
Zone Data Point table
Zone2PtMask
Chooses consumed bytes to be placed in
Zone Data Point table
Zone3PtMask
Chooses consumed bytes to be placed in
Zone Data Point table
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Bulletin 290D/291D/294D Programmable Parameters
Chapter 4
–
0
255
0
116
SET
DWORD
ZIP
–
0
255
0
115
SET
DWORD
ZIP
–
0
255
0
114
SET
DWORD
ZIP
1
0
–
0
113
GET
BOOL
ZIP
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
113
Chapter 4
Bulletin 290D/291D/294D Programmable Parameters
Zone4PtMask
Chooses consumed bytes to be placed in
Zone Data Point table
Zone1PtOffset
Byte offset in Zone Data Point table to place masked data
Zone2PtOffset
Byte offset in Zone Data Point table to place masked data
Zone3PtOffset
Byte offset in Zone Data Point table to place masked data
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
7
0
–
0
119
SET
UINT
ZIP
7
0
–
0
118
SET
UINT
ZIP
7
0
–
0
120
SET
UINT
ZIP
–
0
255
0
117
SET
DWORD
ZIP
114
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
Zone1PtOffset
Byte offset in Zone Data Point table to place masked data
Zone1AnalogMask
Byte offset in Zone Data Point table to place masked data
Zone2AnalogMask
Byte offset in Zone Data Point table to place masked data
Zone3AnalogMask
Byte offset in Zone Data Point table to place masked data
Bulletin 290D/291D/294D Programmable Parameters
Chapter 4
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
–
0
255
0
122
SET
WORD
ZIP
7
0
–
0
121
SET
UINT
ZIP
–
0
255
0
124
SET
WORD
ZIP
–
0
255
0
123
SET
WORD
ZIP
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
115
Chapter 4
Bulletin 290D/291D/294D Programmable Parameters
Zone4AnalogMask
Byte offset in Zone Data Point table to place masked data
Zone1AnOffset
Word offset in Analog Zone Data to place masked analog data
Zone2AnOffset
Word offset in Analog Zone Data to place masked analog data
Zone3AnOffset
Word offset in Analog Zone Data to place masked analog data
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
7
0
–
0
128
SET
UINT
ZIP
7
0
–
0
127
SET
UINT
ZIP
7
0
–
0
126
SET
UINT
ZIP
–
0
255
0
125
SET
WORD
ZIP
116
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
Zone4AnOffset
Word offset in Analog Zone Data to place masked analog data
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Zone1EPR
Expected Packet Rate for Zone 1 consuming connection
Zone2EPR
Expected Packet Rate for Zone 2 consuming connection
Zone3EPR
Expected Packet Rate for Zone 3 consuming connection
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Bulletin 290D/291D/294D Programmable Parameters
Chapter 4
msec
0
65535
75
131
SET
UINT
ZIP msec
0
65535
75
130
SET
UINT
ZIP msec
0
65535
75
132
SET
UINT
ZIP
7
0
–
0
129
SET
UINT
ZIP
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
117
Chapter 4
Bulletin 290D/291D/294D Programmable Parameters
Zone4EPR
Expected Packet Rate for Zone 4 consuming connection
Zone1Control
Enables/Disables options for Zone 1 control
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Zone2Control
Enables/Disables options for Zone 2 control
Bit
7 6 5 4 3 2 1 0
— — — — — — — X
— — — — — — X —
— — — — — X — —
— — — — X — — —
— — — X — — — —
— — X — — — — —
X X — — — — — —
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Function
SecurityEnable
COSCnxn
PollCnxn
StrobeCnxn
MulticastPoll
FragmentedIO
Reserved
–
0
0x3F
0x02
135
SET
BYTE
ZIP
–
0
0x3F
0x02
134
SET
BYTE
ZIP msec
0
65535
75
133
SET
UINT
ZIP
118
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
Bulletin 290D/291D/294D Programmable Parameters
Chapter 4
Bit
7 6 5 4 3 2 1 0
— — — — — — — X
— — — — — — X —
— — — — — X — —
— — — — X — — —
— — — X — — — —
— — X — — — — —
X X — — — — — —
Function
SecurityEnable
COSCnxn
PollCnxn
StrobeCnxn
MulticastPoll
FragmentedIO
Reserved
Zone3Control
Enables/Disables options for Zone 3 control
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Bit
7 6 5 4 3 2 1 0
— — — — — — — X
— — — — — — X —
— — — — — X — —
— — — — X — — —
— — — X — — — —
— — X — — — — —
X X — — — — — —
Zone4Control
Enables/Disables options for Zone 4 control
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Function
SecurityEnable
COSCnxn
PollCnxn
StrobeCnxn
MulticastPoll
FragmentedIO
Reserved
–
0
0x3F
0x02
137
SET
BYTE
ZIP
–
0
0x3F
0x02
136
SET
BYTE
ZIP
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
119
Chapter 4
Bulletin 290D/291D/294D Programmable Parameters
Zone1Key
Device Value Key for the device in Zone 1
Zone2Key
Device Value Key for the device in Zone 2
Zone3Key
Bit
7 6 5 4 3 2 1 0
— — — — — — — X
— — — — — — X —
— — — — — X — —
— — — — X — — —
— — — X — — — —
— — X — — — — —
X X — — — — — —
Function
SecurityEnable
COSCnxn
PollCnxn
StrobeCnxn
MulticastPoll
FragmentedIO
Reserved
Device Value Key for the device in Zone 3
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
–
0
65535
0
139
SET
UINT
ZIP
–
0
65535
0
138
SET
UINT
ZIP
–
0
65535
0
140
SET
UINT
ZIP
120
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
Zone4Key
Device Value Key for the device in Zone 4
DeviceValueKey
Device Value Key for this device
ZoneCtrlEnable
Enables or disables this device's Zip functionality
0=Disable
1=Enable
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Bulletin 290D/291D/294D Programmable Parameters
Chapter 4
–
0
65535
0
142
SET
UINT
ZIP
–
0
65535
0
141
SET
UINT
ZIP
1
0
–
0
143
SET
BOOL
ZIP
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
121
Chapter 4
Bulletin 290D/291D/294D Programmable Parameters
Bulletin 294D Basic Status Group
OutputFreq
This parameter provides the output frequency at motor terminals T1, T2, T3.
CommandFreq
This parameter provides the commanded frequency even if the starter is not running.
OutputCurrent
This parameter provides the output current at motor terminals T1, T2, T3.
OutputVoltage
This parameter provides the output voltage at motor terminals T1, T2, T3.
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
4
GET
UINT
Basic Status x.xV AC
0
999.9
0
3
GET
UINT
Basic Status x.xx Amps
0
8.00
0
2
GET
UINT
Basic Status x.x Hz
0
999.9
0
1
GET
UINT
Basic Status x.x Hz
0
999.9
0
122
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
Bulletin 290D/291D/294D Programmable Parameters
Chapter 4
DCBusVoltage
This parameter provides the present DC bus voltage level.
Starter Status
This parameter provides the status of the starter.
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Bit
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Function
— — — — — — — — — — — — — — — X TripPresent
— — — — — — — — — — — — — — X — WarningPresent
— — — — — — — — — — — — — X — — RunningForward
— — — — — — — — — — — — X — — — RunningReverse
— — — — — — — — — — — X — — — — Ready
— — — — — — — — — — X — — — — — NetControlStatus
— — — — — — — — — X — — — — — —
— — — — — — — — X — — — — — — —
— — — — — — — X — — — — — — — —
— — — — — — X — — — — — — — — —
— — — — — X — — — — — — — — — —
— — — — X — — — — — — — — — — —
— — — X — — — — — — — — — — — —
— — X — — — — — — — — — — — — —
NetRefStatus
AtReference
DLXEnabled
KeyPadAuto
KeyPadOff
KeyPadHand
KeyPadJogging
Reserved
— X — — — — — — — — — — — — — — DisconnectClosed
X — — — — — — — — — — — — — — — BrakeStatus
6
GET
WORD
Basic Status
—
0
OxDFFF
0
5
GET
UINT
Basic Status
V DC
0
1200
0
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
123
Chapter 4
Bulletin 290D/291D/294D Programmable Parameters
StarterCommand
The parameter provides the command status of the starter.
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
7
GET
WORD
Basic Status
—
0
0xFF1F
0
Bit
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Function
— — — — — — — — — — — — — — — X RunningForward
— — — — — — — — — — — — — — X — RunningReverse
— — — — — — — — — — — — — X — —
— — — — — — — — — — — — X — — —
— — — — — — — — — — — X — — — —
— — — — — — — — X X X — — — — —
ResetFault
JogForward
JogReverse
Reserved
— — — — — — — X — — — — — — — —
— — — — — — X — — — — — — — — —
— — — — — X — — — — — — — — — —
— — — — X — — — — — — — — — — —
— — — X — — — — — — — — — — — —
— — X — — — — — — — — — — — — —
— X — — — — — — — — — — — — — —
X — — — — — — — — — — — — — — —
Out00
Out01
Out02
Out03
Out04
Out05
Accel2
Decel2
AuxIOStatus
Status of the hardware input/output points.
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
8
GET
WORD
Basic Status
—
0
0x3F
0
124
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
Bulletin 290D/291D/294D Programmable Parameters
Chapter 4
Bit
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
— — — — — — — — — — — — — — — X
— — — — — — — — — — — — — — X —
— — — — — — — — — — — — — X — —
— — — — — — — — — — — — X — — —
— — — — — — — — — — — X — — — —
— — — — — — — — — — X — — — — —
X X X X X X X X X X — — — — — —
NetworkStatus
The parameter provides the status of the network connections.
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
9
GET
WORD
Basic Status
—
0
0xDF
0
Function:
Pt00
Pt01
Pt02
Pt03
Pt04
Pt05
Reserved
Bit
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
— — — — — — — — — — — — — — — X
— — — — — — — — — — — — — — X —
— — — — — — — — — — — — — X — —
— — — — — — — — — — — — X — — —
— — — — — — — — — — — X — — — —
— — — — — — — — X X X — — — — —
— — — — — — — X — — — — — — — —
— — — — — — X — — — — — — — — —
— — — — — X — — — — — — — — — —
— — — — X — — — — — — — — — — —
— — — X — — — — — — — — — — — —
— — X — — — — — — — — — — — — —
— X — — — — — — — — — — — — — —
X — — — — — — — — — — — — — — —
Function:
ExplicitCnxn
IOConnection
ExplicitCnxnFlt
IOCnxnFault
IOCnxnIdle
Reserved
ZIP1Cnxn
ZIP1CnxnFlt
ZIP2Cnxn
ZIP2CnxnFlt
ZIP3Cnxn
ZIP3CnxnFlt
ZIP4Cnxn
ZIP4CnxnFlt
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
125
Chapter 4
Bulletin 290D/291D/294D Programmable Parameters
DLXControlStatus
The parameter provides the DeviceLogix
Control Status.
0 = Controlled in Logix Programs
1 = Controlled in local DLX programs.
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Bit
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
— — — — — — — — — — — — — — —
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
X
X —
— —
0
X
— — — — — — — — — — — —
— — — — — — — — — — — X
— — — — — — — — — —
— — — — — — — — — X
— — — — — — —
— — — — — — —
—
X
X —
—
X
—
—
—
—
—
—
—
X
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
— — — — — —
— — — — — X
— — — —
— — — X
X X X
X
—
—
—
X
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
— — — — — — — — — — — — —
OutputSourceV (IPS)
[SwitchedVolts]
This parameter determines the incoming switched control voltage across terminals
A1…A2.
(IPS) available voltage on User Output Pin
4 for all I/O points.
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
10
GET
UINT
Basic Status
—
0
0x1FFF
0
11
GET
UINT
Basic Status x.xx Volts
0
65535
0
Function:
RunForward
RunReverse
Out00
Out01
Out02
Out03
Out04
Out05
JogForward
JogReverse
Accel2
Decel2
Command Freq
Reserved
126
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
Bulletin 290D/291D/294D Programmable Parameters
Chapter 4
SensorSourceV (IPS)
[UnswitchedVolts]
This parameter determines the incoming unswitched control voltage across terminals A2…A3.
(IPS) available voltage on input Sensor
Source Pin 1 for all I/O points.
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
InternalFanRPM
This parameter determines the
Revolutions Per Minute (RPM) of the internal cooling fan.
DriveTemperature
This parameter determines the present operating temperature of the power section.
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
ElapsedRunTime
This parameter determines the accumulated run time displayed in 10 hour increments.
1 = 10 Hrs
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
14
GET
UINT
Basic Status
—
0
9999
0
13
GET
UINT
Basic Status
RPM
0
65535
0
15
GET
UINT
Basic Status
°C
0
9999
0
12
GET
UINT
Basic Status x.xx Volts
0
65535
0
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
127
Chapter 4
Bulletin 290D/291D/294D Programmable Parameters
Trip Status Group
TripStatus
This parameter provides the fault condition that caused any current trip.
WarningStatus
This parameter provides the current warning condition.
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
16
GET
WORD
Trip Status
—
0
0xFFFF
0
Bit
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
— — — — — — — — — — — — — — —
— — — — — — — — — — — — — — X
X
—
Function
OverloadTrip
PhaseShortTrip
— — — — — — — — — — — — — X — — UnderPowerTrip
— — — — — — — — — — — — X — — — SensorShortTrip
— — — — — — — — — — — X — — — — OverCurrentTrip
— — — — — — — — — — X — — — — — NonVolMemoryTrip
— — — — — — — — — X — — — — — —
— — — — — — — — X — — — — — — —
ParamSyncTrip
DCBusTrip/
OpenDisconnect
— — — — — — — X — — — — — — — —
— — — — — — X — — — — — — — — —
— — — — — X — — — — — — — — — —
— — — — X — — — — — — — — — — —
StallTrip
OverTemperature
GroundFault
RestartRetries
— — — X — — — — — — — — — — — — DriveHdwFault
— — X — — — — — — — — — — — — — OutputShortTrip
— X — — — — — — — — — — — — — — UserDefinedTrip
X — — — — — — — — — — — — — — — HardwareFltTrip
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
17
GET
WORD
Trip Status
—
0
0xC044
0
128
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
Bulletin 290D/291D/294D Programmable Parameters
Chapter 4
Bit
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Function
— — — — — — — — — — — — — — X X Reserved
— — — — — — — — — — — — — X — — UnderPowerWarn
— — — — — — — — — — X X X — — —
— — — — — — — — — X — — — — — —
— — X — X X X X X — — — — — — —
— — — X — — — — — — — — — — — —
— X — — — — — — — — — — — — — —
X — — — — — — — — — — — — — — —
Reserved
DriveParamInit
Reserved
FanWarning
DNetPwrWarn
ConfigWarning
TripLog0
This parameter provides the last trip to occur.
TripLog1
This parameter provides the second last trip to occur.
TripLog2
This parameter provides the third last trip to occur.
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
19
GET
UINT
Trip Status
—
0
75
0
18
GET
UINT
Trip Status
—
0
75
0
20
GET
UINT
Trip Status
—
0
75
0
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
129
Chapter 4
Bulletin 290D/291D/294D Programmable Parameters
TripLog3
This parameter provides the fourth last trip to occur.
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
TripLog4
This parameter provides the fifth last trip to occur.
SnapShotOutFreq
This parameter provides a snapshot of output frequency at time of last trip.
SnapShotOutAmps
This parameter provides a snapshot of output current at time of last trip.
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
23
GET
UINT
Trip Status x.x Hz
0
999.9
0
22
GET
UINT
Trip Status
—
0
75
0
24
GET
UINT
Trip Status x.xx Amps
0
4.60
0
21
GET
UINT
Trip Status
—
0
75
0
130
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
SnapShotOutVolts
This parameter provides a snapshot of output voltage at time of last trip.
SnapShotBusVolts
This parameter provides a snapshot of DC bus voltage level at time of last trip.
SnapShotDrvTemp
This parameter provides a snapshot of operating temperature at time of last trip.
Bulletin 290D/291D/294D Programmable Parameters
Chapter 4
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
27
GET
UINT
Trip Status
°C
0
9999
0
26
GET
UINT
Trip Status
V DC
0
1200
0
25
GET
UINT
Trip Status x.x V AC
0
999.9
0
Motor and Control Group
MotorNPVolts
O
Stop drive before changing this parameter.
Set to the motor nameplate rated voltage.
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
28
GET/SET
UINT
Motor and Control
V AC
35
460
460
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
131
Chapter 4
Bulletin 290D/291D/294D Programmable Parameters
MotorNPHertz
O
Stop drive before changing this parameter.
Set to the motor nameplate rated frequency.
MotorOLCurrent
Set to the maximum allowable motor current.
Cat. No.
294_FD1P5
294_FD2P5
294_FD4P2
Hp (kW)
0.5 (0.4)
1.0 (0.75)
2.0 (1.5)
Min Amps
0
0
0
CurrentLimit
Maximum output current allowed before current limiting occurs
Default Amps
1.5
2.5
3.6
Cat. No.
294_FD1P5
294_FD2P5
294_FD4P2
Hp (kW)
0.5 Hp
1.0 Hp
2.0 Hp
Min = 0; Max = 2.7; Default = 2.2
Min = 0; Max = 4.5; Default = 3.7
Min = 0; Max = 7.5; Default = 6.3
StopMode
Valid Stop Mode for the Bulletin 294E ArmorStart LT are the following:
0 =
RampToStop,
“Stop” command clears active fault
1 =
Coast to Stop,
“Stop” command clears active fault
2 =
DCBrake,
DC Injection Braking Stop, “Stop” command clears active fault
3 =
DCBrakeAuto,
DC Injection Stop with Auto Shutoff
Standard DC Injection Braking for value set in Parameter 75 (DC Brake Time) or
Drive shuts off if current limit is exceeded.
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Related Parameter
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Related Parameters
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Related Parameters
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
29
GET/SET
UINT
Motor and Control
Hz
10
400
60
30
31, 80, 82…83
GET/SET
UINT
Motor and Control x.x Amps
0
Cat. No. Dependent
Cat. No. Max Output
31
GET/SET
UINT
Motor and Control x.x Amps
0
Cat. No. Dependent
Cat. No. Dependent
32
GET/SET
UINT
Motor and Control
—
0
3
0
132
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
Bulletin 290D/291D/294D Programmable Parameters
Chapter 4
Speed Control Group
SpeedReference
Sets the source of the speed reference:
0 = Logix (Network or DeviceLogix)
1 = InternalFreq
AccelTime1
Sets the rate of acceleration for all speed increases.
Maximum Freq
Accel Time
= Accel Rate
Parameter 35
(Maximum Freq)
Dec eler ation
Speed
Ac celer ation
0
0
Accel
Time 1
Time
Decel
Time 1
MinimumFreq
Sets the lowest frequency the drive will output continuously.
MaximumFreq
O
Stop drive before changing this parameter.
Sets the highest frequency the drive will output.
Parameter Number
Related Parameter
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Related Parameters
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Related Parameters
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Related Parameter
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
36
33, 37
GET/SET
UINT
Speed Control x.x secs
0.0
600.0
10.0
35
1, 2, 34, 35, 139
GET/SET
UINT
Speed Control
Hz
0.0
400
60
34
1, 2, 35
GET/SET
UINT
Speed Control x.x Hz
0.0
400.0
0.0
33
1, 2, 36, 37, 72
GET/SET
UINT
Speed Control
—
0
2
0
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
133
Chapter 4
Bulletin 290D/291D/294D Programmable Parameters
DecelTime1
Sets the rate of deceleration for all speed decreases.
Maximum Freq
Decel Time
= Decel Rate
Parameter 35
(Maximum Freq)
Dec eler ation
Speed
Ac celer ation
0
0
Accel
Time 1
Time Decel
Time 1
Parameter Number
Related Parameters
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
SCurvePercent
Sets the percentage of acceleration or deceleration time that is applied to ramp as S Curve. Time is added, half at the beginning and half at the end of the ramp.
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Figure 35 - S Curve
Example:
Accel Time = 10 Seconds
S Curve Setting = 50%
S Curve Time = 10 x 0.5 = 5 Seconds
Total Time = 10 + 5 = 15 Seconds
Target
Target 2
50% S Curve
37
33, 36
GET/SET
UINT
Speed Control x.x secs
0.1
600.0
10.0
38
GET/SET
UINT
Speed Control
Percentage
0
100
0
134
JogFrequency
Sets the output frequency when the jog command is issued.
1/2 S Curve Time
2.5 Seconds
Accel Time
10 Seconds
Total Time to Accelerate = Accel Time + S Curve Time
1/2 S Curve Time
2.5 Seconds
Parameter Number
Related Parameters
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
39
35, 40
GET/SET
UINT
Drive Advanced Setup x.x Hz
0.0
400.0
10.0
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
JogAccelDecel
Sets the acceleration and deceleration time when a jog command is issued.
Bulletin 290D/291D/294D Programmable Parameters
Chapter 4
Parameter Number
Related Parameters
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Starter Protection Group
ProtFltResetMode
This parameter configures the Protection
Fault reset mode.
0 = Manual
1 = Automatic
ProtectFltEnable
This parameter enables the Protection
Fault by setting the bit to 1.
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
40
39
GET/SET
UINT
Drive Advanced Setup x.x secs
0.1
600.0
10.0
41
GET/SET
BOOL
Starter Protection
1
0
—
0
42
GET/SET
WORD
Starter Protection
—
0
0xFFFF
0xBFFF
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
135
Chapter 4
Bulletin 290D/291D/294D Programmable Parameters
Bit
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
— — — — — — — — — — — — — — —
— — — — — — — — — — — — — — X
X
—
Function
OverloadTrip
PhaseShortTrip
— — — — — — — — — — — — — X — — UnderPowerTrip
— — — — — — — — — — — — X — — — SensorShortTrip
— — — — — — — — — — — X — — — — OverCurrentTrip
— — — — — — — — — — X — — — — — NonVolMemoryTrip
— — — — — — — — — X — — — — — —
— — — — — — — — X — — — — — — —
ParamSyncTrip
DCBusTrip/
OpenDisconnect
— — — — — — — X — — — — — — — —
— — — — — — X — — — — — — — — —
— — — — — X — — — — — — — — — —
— — — — X — — — — — — — — — — —
StallTrip
OverTemperature
GroundFault
RestartRetries
— — — X — — — — — — — — — — — — DriveHdwFault
— — X — — — — — — — — — — — — — OutputShortTrip
— X — — — — — — — — — — — — — — UserDefinedTrip
X — — — — — — — — — — — — — — — HardwareFltTrip
The functions highlighted are enabled by default
WarningEnable
This parameter enables a warning by setting the bit to 1.
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
43
GET/SET
WORD
Starter Protection
—
0
0xC044
0
Bit
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Function
— — — — — — — — — — — — — — X X Reserved
— — — — — — — — — — — — — X — — UnderPowerWarn
— — — — — — — — — — X X X — — —
— — — — — — — — — X — — — — — —
— — X — X X X X X — — — — — — —
— — — X — — — — — — — — — — — —
— X — — — — — — — — — — — — — —
X — — — — — — — — — — — — — — —
Reserved
DriveParamInit
Reserved
FanWarning
DNetPwrWarn
ConfigWarning
136
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
ProtectFltReset
This parameter resets a Protection Fault by setting the bit to 1.
0 = NoAction
0 > 1 = ResetFault
RunNetFltAction
This parameter in conjunction with
Parameter 46 (RunNetFltValue) defines how the starter will respond when a network fault occurs as determined.
0 = GoToFaultValue
1 = HoldLastState
RunNetFltValue
This parameter determines how the starter will be commanded in the event of a fault.
State the starter will go to on a NetFlt if
Parameter 45 (RunNetFltAction) = 1
(GotoFault-Value).
0 = OFF
1 = ON
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
RunNetIdlAction
This parameter in conjunction with
Parameter 48 (RunNetIdlValue) defines how the starter will respond when a network is idle as determined by Parameter 48.
0 = GoToIdleValue
1 = HoldLastState
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Bulletin 290D/291D/294D Programmable Parameters
Chapter 4
46
GET/SET
BOOL
Starter Protection
1
0
—
0
47
GET/SET
BOOL
Starter Protection
1
0
—
0
44
GET/SET
BOOL
Starter Protection
1
0
—
0
45
GET/SET
BOOL
Starter Protection
1
0
—
0
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
137
Chapter 4
Bulletin 290D/291D/294D Programmable Parameters
RunNetIdlValue
This parameter determines the state that starter assumes when the network is idle and Parameter 47 (RunNetIdlAction) is set to 1.
0 = OFF
1 = ON
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
User I/O Configuration Group
IOPointConfigure
This parameter determines the point that is configured:
0 = Input
1 = Output
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
—
—
X
5
—
—
—
4
—
—
—
—
X
—
FilterOffOn
This parameter determines the input
(which must be present for this time) before being reported ON.
X
—
—
3
—
—
—
Bit
—
—
—
2
—
—
X
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
—
—
—
1
—
X
—
48
GET
BOOL
Starter Protection
—
0
0x3F
0
49
GET/SET
WORD
User I/O Config.
—
0
0x3F
0
—
—
—
—
—
0
X
50
GET/SET
USINT
User I/O Config.
msecs
0
64
0
Function
Pt00
Pt01
Pt02
Pt03
Pt04
Pt05
138
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
FilterOnOff
This parameter determines the input
(which must be absent for this time) before being reported OFF.
OutProtFltState
This parameter in conjunction with
Parameter 53 (OutProtFltValue) defines how the starter outputs will respond when a fault occurs.
0 = GoToPrFltValue
1 = IgnorePrFlt
OutProtFltValue
This parameter determines how the starter outputs will be commanded in the event of a protection fault if Parameter 52
(OutProtFltState) = 0.
0 = OFF
1 = ON
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
OutNetFaultState
This parameter in conjunction with
Parameter 55 (OutNetFaultValue) defines how the starter outputs will respond on an Ethernet fault.
0 = GoToFaultValue
1 = HoldLastState
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Bulletin 290D/291D/294D Programmable Parameters
Chapter 4
53
GET/SET
BOOL
User I/O Config.
1
0
—
0
54
GET/SET
BOOL
User I/O Config.
1
0
—
0
51
GET/SET
USINT
User I/O Config.
msecs
0
64
0
52
GET/SET
BOOL
User I/O Config.
1
0
—
0
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
139
Chapter 4
Bulletin 290D/291D/294D Programmable Parameters
OutNetFaultValue
This parameter determines the state that starter outputs when an Ethernet fault occurs and Parameter 54
(OutNetFaultState) is set to 0.
0 = OFF
1 = ON
OutNetIdleState
This parameter in conjunction with
Parameter 57 (OutNetIdleValue) defines how the starter outputs will respond when a network is idle.
0 = GoToIdleValue
1 = HoldLastState
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
OutNetIdleValue
This parameter determines the state that starter outputs assumes when the network is idle and Parameter 56
(OutNetIdleState) is set to 0.
0 = OFF
1 = ON
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Input00Function
This parameter determines the special function for User Input 0:
0 = NoFunction
1 = FaultReset
2 = MotionDisable
➊
3 = ForceSnapShot
4 = UserFault
5 = BrakeRelease
➊
➊
These choices are level sensitive.
All others are edge sensitive
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
55
GET
BOOL
User I/O Config.
1
0
—
0
56
GET/SET
BOOL
User I/O Config.
1
0
—
0
57
GET
BOOL
User I/O Config.
1
0
—
0
58
GET/SET
USINT
User I/O Config.
5
0
—
0
140
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
Bulletin 290D/291D/294D Programmable Parameters
Chapter 4
Input01Function
This parameter determines the special function for User Input 1:
0 = NoFunction
1 = FaultReset
2 = MotionDisable
➊
3 = ForceSnapShot
4 = UserFault
5 = BrakeRelease
➊
➊
These choices are level sensitive. All others are edge sensitive
Input02Function
This parameter determines the special function for User Input 2:
0 = NoFunction
1 = FaultReset
2 = MotionDisable
➊
3 = ForceSnapShot
4 = UserFault
5 = BrakeRelease
➊
➊
These choices are level sensitive. All others are edge sensitive
Input03Function
This parameter determines the special function for User Input 3:
0 = NoFunction
1 = FaultReset
2 = MotionDisable
➊
3 = ForceSnapShot
4 = UserFault
5 = BrakeRelease*
➊
➊
These choices are level sensitive. All others are edge sensitive
Input04Function
This parameter determines the special function for User Input 4:
0 = NoFunction
1 = FaultReset
2 = MotionDisable
➊
3 = ForceSnapShot
4 = UserFault
5 = BrakeRelease
➊
➊
These choices are level sensitive. All others are edge sensitive
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
59
GET/SET
USINT
User I/O Config.
5
0
—
0
60
GET/SET
USINT
User I/O Config.
5
0
—
0
61
GET/SET
USINT
User I/O Config.
5
0
—
0
62
GET/SET
USINT
User I/O Config.
5
0
—
0
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
141
Chapter 4
Bulletin 290D/291D/294D Programmable Parameters
Input05Function
This parameter determines the special function for User Input 5:
0 = NoFunction
1 = FaultReset
2 = MotionDisable
➊
3 = ForceSnapShot
4 = UserFault
5 = BrakeRelease
➊
➊
These choices are level sensitive. All others are edge sensitive
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Miscellaneous Configuration Group
NetworkOverride
This parameter allows for the local logic to override a Network fault.
0 = Disable
1 = Enable
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
CommsOverride
This parameter allows for local logic to override an I/O connection timeout.
0 = Disable
1 = Enable
KeypadMode
This parameter selects if the keypad operation is maintained or momentary.
0 = Momentary
1 = Maintained
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
142
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
63
GET/SET
USINT
User I/O Config.
5
0
—
0
65
GET/SET
BOOL
Misc. Config.
1
0
—
0
64
GET/SET
BOOL
Misc. Config.
1
0
—
0
66
GET/SET
BOOL
Misc. Config.
1
0
—
0
KeypadDisable
This parameter disables all keypad function except for the “OFF” and “RESET” buttons.
0 = KeypadEnabled
1 = KeypadDisabled
SetToDefaults
This parameter if set to “1” will set the device to the factory defaults.
0 = NoAction
1 = SetToDefaults
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Advanced Configuration
AccelTime2
When active, sets the rate of acceleration for all speed increases except for jog.
Maximum Freq
Accel Time
= Accel Rate
Parameter 35
(Maximum Freq)
Speed
Ac celer ation
0
0
Accel
Time 2
Dec eler ation
Time
Decel
Time 2
Parameter Number
Related Parameters
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Bulletin 290D/291D/294D Programmable Parameters
Chapter 4
68
GET/SET
BOOL
Misc. Config.
1
0
—
0
67
GET/SET
BOOL
Misc. Config.
1
0
—
0
69
36
GET/SET
UINT
Advanced Config.
x.x secs
0.0
600.0
20.0
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
143
Chapter 4
Bulletin 290D/291D/294D Programmable Parameters
DecelTime2
When active, sets the rate of deceleration for all speed decreases except for jog.
Maximum Freq
Decel Time
= Decel Rate
Parameter 35
(Maximum Freq)
Speed
Ac celer ation
0
0
Accel
Time 2
Time
Dec eler ation
Decel
Time 2
MotorOLRetention
Enables/disables the Motor overload
Retention function. When Enabled, the value held in the motor overload counter is saved at power-down and restored at power-up. A change to this parameter setting resets the counter.
0 = Disabled (Default)
1 = Enabled
InternalFreq
Provide the frequency command to drive when Parameter 33 (Speed-Reference) =
1 (InternalFreq). When enabled, this parameter will change the frequency command in real time.
Parameter Number
Related Parameters
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Related Parameters
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
70
37
GET/SET
UINT
Advanced Config.
x.x secs
0.0
600.0
20.0
71
GET/SET
UINT
Advanced Config.
1
0
—
0
72
33
GET/SET
UINT
Advanced Config.
x.x Hz
0.0
400.0
60.0
144
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
SkipFrequency
Sets the frequency at which the drive will not operate.
Parameter Number
Related Parameters
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
SkipFrqBand
Determines the band width around
Parameter 73 (SkipFrequency). Parameter
74 (SkipFreqBand) is split applying 1/2 above and 1/2 below the actual skip frequency. A setting of 0.0 disables this parameter.
Figure 36 - Skip Frequency Band
Frequency
Command
Frequency
Drive Output
Frequency
Parameter Number
Related Parameters
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Skip Frequency
Bulletin 290D/291D/294D Programmable Parameters
Chapter 4
73
74
GET/SET
UINT
Advanced Config.
Hz
0
400 Hz
0 Hz
74
73
GET/SET
UINT
Advanced Config.
x.x Hz
0.0 Hz
30.0 Hz
0.0 Hz
2x Skip
Frequency Band
Time
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
145
Chapter 4
Bulletin 290D/291D/294D Programmable Parameters
DCBrakeTime
Sets the length of time that DC brake current is injected into the motor. Refer to Parameter 76
(DCBrakeLevel).
Parameter Number
Related Parameters
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
75
32, 76
GET/SET
UINT
Advanced Config.
x.x secs
0.0
99.9
(Setting of 99.9 = Continuous)
0.0
DCBrakeLevel
Defines the maximum DC brake current, in amps, applied to the motor when Parameter 32
(StopMode) is set to either
0 = RAMP or 2 = DC BRAKE.
For 0.5 Hp units – Min = 0; Max = 2.7; Default = .1
For 1.0 Hp units – Min = 0; Max = 4.5; Default = .1
For 2.0Hp units – Min = 0; Max = 7.5; Default = .2
Parameter Number
Related Parameters
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
76
32, 75
GET/SET
UINT
Advanced Config.
x.x Amps
0.0
Hp Dependant
Hp Dependant
ATTENTION:
Ramp-to-Stop Mode
Voltage
DC Injection Braking Mode
Stop Command
Speed
Voltage
Time
[DC Brake Time]
}
[DC Brake Level]
Speed
[DC Brake Time]
}
[DC Brake Level]
Stop Command
Time
•
If a hazard of injury due to movement of equipment or material exists, an auxiliary mechanical braking device must be used.
•
This feature should not be used with synchronous or permanent magnet motors. Motors may be demagnetized during braking.
146
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
ReverseDisable
O
Stop drive before changing this parameter.
Enables/disables the function that allows the direction of the motor rotation to be changed.
0 = Enabled
1 = Disabled
FlyingStartEn
Sets the condition that allows the drive to reconnect to a spinning motor at actual RPM.
0 = Disabled
1 = Enabled
Compensation
Enables/disables correction options that may improve problems with motor instability,
0 = Disabled
1 = Electrical (Default)
Some drive/motor combinations have inherent instabilities which are exhibited as non-sinusoidal motor currents. This setting attempts to correct this condition
2 = Mechanical
Some motor/load combinations have mechanical resonances which can be excited by the drive current regulator. This setting slows down the current regulator response and attempts to correct this condition.
3 = Both
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Related Parameters
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Bulletin 290D/291D/294D Programmable Parameters
Chapter 4
77
—
GET/SET
UINT
Advanced Config.
—
0
1
0
78
GET/SET
UINT
Advanced Config.
1
0
—
0
79
GET/SET
UINT
Advanced Config.
3
1
—
0
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
147
Chapter 4
Bulletin 290D/291D/294D Programmable Parameters
SlipHertzAtFLA
Compensates for the inherent slip in an induction motor. This frequency is added to the commanded output frequency based on motor current.
Parameter Number
Related Parameters
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
BusRegulateMode
Controls the operation of the drive voltage regulation, which is normally operational at deceleration or when the bus voltage rises.
0 = Disable
1 = Enabled
Parameter Number
Related Parameters
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
148
ATTENTION:
The bus regulator mode function is extremely useful for preventing nuisance overvoltage faults resulting from aggressive decelerations, overhauling loads, and eccentric loads. However, it can also cause either of the following two conditions to occur.
1. Fast positive changes in input voltage or imbalanced input voltages can cause uncommanded positive speed changes;
2. Actual deceleration times can be longer than commanded deceleration times.
However, a "Stall Fault" is generated if the drive remains in this state for 1 minute.
If this condition is unacceptable, the bus regulator must be disabled.
MotorOLSelect
Drive provides Class 10 motor overload protection. Sets the derating factor for I
2
T motor overload function.
0 = NoDerating
1 = MinDerating
2 = MaxDerating
Parameter Number
Related Parameters
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
82
29, 30
GET/SET
UINT
Advanced Config.
—
0
2
0
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
80
30
GET/SET
UINT
Advanced Config.
x.x Hz
0.0 Hz
10.0 Hz
2.0 Hz
81
—
GET/SET
UINT
Advanced Config.
—
0
1
0
Bulletin 290D/291D/294D Programmable Parameters
Chapter 4
Figure 37 - Overload Trip Curves
No Derate
100
80
60
40
20
0
0 25 50 75 100 125 150 175
% of Motor Nameplate Hertz (P29)
200
Min. Derate
100
80
60
40
20
0
0 25 50 75 100 125 150
175
% of Motor Nameplate Hertz (P29)
200
SWCurrentTrip
Enables/disables a software instantaneous
(within 100 ms) current trip.
For 0.5 Hp units – Min = 0; Max = 3.0; Default = 0
For 1.0 Hp units – Min = 0; Max = 5.0; Default = 0
For 2.0Hp units – Min = 0; Max = 8.4; Default = 0
Parameter Number
Related Parameter
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Max. Derate
100
80
60
40
20
0
0 25 50 75 100 125 150 175
% of Motor Nameplate Hertz (P29)
200
83
30
GET/SET
UINT
Advanced Config.
x.x Amps
0.0
Hp Dependent
0.0 (Disabled)
AutoRstrtTries
Set the maximum number of times the drive attempts to reset a fault and restart.
Parameter Number
Related Parameter
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Clear a Type 1 Fault and Restart the Drive
1.
Set Parameter 84 (AutoRestartTries) to a value other than 0.
2.
Set Parameter 85 (AutoRestartDelay) to a value other than 0.
84
85
GET/SET
UINT
Advanced Config.
—
0
9
0
Clear an Overvoltage, Undervoltage, or Heatsink OvrTmp Fault without Restarting the Drive
1.
Set Parameter 84 (AutoRestartTries) to a value other than 0.
2.
Set Parameter 85 (AutoRestartDelay) to 0.
ATTENTION:
Equipment damage and/or personal injury may result if this parameter is used in an inappropriate application. Do not use this function without considering applicable local, national, and international codes, standards, regulations, or industry guidelines.
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
149
Chapter 4
Bulletin 290D/291D/294D Programmable Parameters
AutoRstrtDelay
Sets time between restart attempts when
Parameter 84(Auto Rstrt Tries) is set to a value other than zero.
Parameter Number
Related Parameter
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
85
84
GET/SET
UINT
Advanced Config.
x.x secs
0.0
120.0
1.0
BoostSelect
Sets the boost voltage (% of Parameter 28
[MotorNPVolts]) and redefines the Volts per Hz curve.
Parameter Number
Related Parameters
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
86
28, 29
GET/SET
UINT
Advanced Config.
—
1
14
8
11
12
9
10
13
14
7
8
5
6
3
4
1
2
Table 21 - Boost Select Options
Options
Custom V/Hz
30.0, VT
35.0, VT
40.0, VT
45.0, VT
0.0 no IR
0.0
2.5, CT
5.0, CT (default)
7.5, CT
10.0, CT
12.5, CT
15.0, CT
17.5, CT
20.0, CT
Description
Variable Torque
(Typical fan/pump curves)
Constant Torque
150
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
Bulletin 290D/291D/294D Programmable Parameters
Chapter 4
Figure 38 - Boost Select
100
50
1/2 [Motor NP Volts]
Settings
5-14
0 50
%P29 [Motor NP Hertz]
MaximumVoltage
Sets the highest voltage the drive will output.
2
1
4
3
100
Parameter Number
Related Parameters
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
MotorNamePlateFLA
Set to the motor nameplate Full Load Amps.
For 0.5 Hp units – Min = 0; Max = 3.0; Default = 1.5
For 1.0 Hp units – Min = 0; Max = 5.0; Default = 2.5
For 2.0Hp units – Min = 0; Max = 8.4; Default = 3.6
Parameter Number
Related Parameters
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
87
—
GET/SET
UINT
Advanced Config.
V AC
20V AC
460V AC
2V AC
88
—
GET/SET
UINT
Advanced Config.
x.x Amps
0.0
Hp Dependent
Hp Dependent
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
151
Chapter 4
Bulletin 290D/291D/294D Programmable Parameters
BrakeMode
This parameter determines the source brake control mode.
0 = NoBrakeControl
1 = AboveFrequency
2 = AboveCurrent
BrakeFreqThresh
This parameter determines the frequency above which the source brake is released.
BrakeCurrThresh
This parameter determines the motor current above which the source brake is released.
Parameter Number
Related Parameters
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Related Parameters
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Related Parameters
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
89
—
GET/SET
UINT
Advanced Config.
—
0
2
1
90
—
GET/SET
UINT
Advanced Config.
x.x Hz
0.0
999.9
0.0
91
—
GET/SET
UINT
Advanced Config.
x.xx Amps
0.0
8.0
0.0
IMPORTANT
For parameter 90 and 91 the value of the threshold can be set beyond the operational maximum limit of the product, or at a level which may cause multiple transitions during operation. Threshold values near the operational levels should be avoided.
152
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
Bulletin 290D/291D/294D Programmable Parameters
Chapter 4
OptionMatch
If product options do not match value, a hardware fault will occur.
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
92
GET/SET
DWORD
Advance Config
–
0
0xffffffff
0
Bit
4-31 3 2 1 0
— — — — X
— — — X —
— — X — —
— X — — —
X — — — —
Function
KeypadPreesent
KeypadNotPresent
BrakePresent
BrakeNotPresent
Reserved
AutobaudEnable
Autobaud enabled when set
0=Disable
1=Enable
ConsumedIOAssy
Selects the format of the I/O data consumed
294 default = 154
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
101
SET
USINT
Network
–
3
154
154
1
1
–
0
100
SET
BOOL
Network
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
153
Chapter 4
Bulletin 290D/291D/294D Programmable Parameters
ProducedIOAssy
Selects the format of the I/O data consumed
294 default = 155
AutoRunZip
Enables this device to produce COS messages on powerup
0=Disable
1=Enable
ZoneProducedEPR
Expected Packet Rate for producing Zip
COS connection
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
ZoneProducedPIT
Production Inhibit Time for the producing
Zip connection
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value msec
1
65535
75
105
SET
UINT
ZIP msec
1
65535
75
104
SET
UINT
ZIP
1
0
–
0
103
SET
BOOL
ZIP
102
SET
USINT
Network
–
52
190
155
154
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
Zone1ProducedMacId
The MacId address of the device in Zone 1
Zone2ProducedMacId
The MacId address of the device in Zone 2
Zone3ProducedMacId
The MacId address of the device in Zone 3
Zone4ProducedMacId
The MacId address of the device in Zone 4
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Bulletin 290D/291D/294D Programmable Parameters
Chapter 4
64
64
–
0
109
SET
USINT
ZIP
64
64
–
0
108
SET
USINT
ZIP
64
64
–
0
107
SET
USINT
ZIP
64
64
–
0
106
SET
USINT
ZIP
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
155
Chapter 4
Bulletin 290D/291D/294D Programmable Parameters
Zone1Health
The status of the DeviceNet connection to the Zone 1 device
0=Healthy
1=NotHealthy
Zone2Health
The status of the DeviceNet connection to the Zone 2device
0=Healthy
1=NotHealthy
Zone3Health
The status of the DeviceNet connection to the Zone 3device
0=Healthy
1=NotHealthy
Zone4Health
The status of the DeviceNet connection to the Zone 4device
0=Healthy
1=NotHealthy
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
1
0
–
0
113
GET
BOOL
ZIP
1
0
–
0
112
GET
BOOL
ZIP
1
0
–
0
111
GET
BOOL
ZIP
1
0
–
0
110
GET
BOOL
ZIP
156
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
Zone1PtMask
Chooses consumed bytes to be placed in
Zone Data Point table
Zone2PtMask
Chooses consumed bytes to be placed in
Zone Data Point table
Zone3PtMask
Chooses consumed bytes to be placed in
Zone Data Point table
Zone4PtMask
Chooses consumed bytes to be placed in
Zone Data Point table
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Bulletin 290D/291D/294D Programmable Parameters
Chapter 4
–
0
255
0
117
SET
DWORD
ZIP
–
0
255
0
116
SET
DWORD
ZIP
–
0
255
0
115
SET
DWORD
ZIP
–
0
255
0
114
SET
DWORD
ZIP
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
157
Chapter 4
Bulletin 290D/291D/294D Programmable Parameters
Zone1PtOffset
Byte offset in Zone Data Point table to place masked data
Zone2PtOffset
Byte offset in Zone Data Point table to place masked data
Zone3PtOffset
Byte offset in Zone Data Point table to place masked data
Zone1PtOffset
Byte offset in Zone Data Point table to place masked data
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
7
0
–
0
121
SET
UINT
ZIP
7
0
–
0
120
SET
UINT
ZIP
7
0
–
0
119
SET
UINT
ZIP
7
0
–
0
118
SET
UINT
ZIP
158
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
Zone1AnalogMask
Byte offset in Zone Data Point table to place masked data
Zone2AnalogMask
Byte offset in Zone Data Point table to place masked data
Zone3AnalogMask
Byte offset in Zone Data Point table to place masked data
Zone4AnalogMask
Byte offset in Zone Data Point table to place masked data
Bulletin 290D/291D/294D Programmable Parameters
Chapter 4
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
–
0
255
0
124
SET
WORD
ZIP
–
0
255
0
123
SET
WORD
ZIP
–
0
255
0
125
SET
WORD
ZIP
–
0
255
0
122
SET
WORD
ZIP
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
159
Chapter 4
Bulletin 290D/291D/294D Programmable Parameters
Zone1AnOffset
Word offset in Analog Zone Data to place masked analog data
Zone2AnOffset
Word offset in Analog Zone Data to place masked analog data
Zone3AnOffset
Word offset in Analog Zone Data to place masked analog data
Zone4AnOffset
Word offset in Analog Zone Data to place masked analog data
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
7
0
–
0
129
SET
UINT
ZIP
7
0
–
0
128
SET
UINT
ZIP
7
0
–
0
127
SET
UINT
ZIP
7
0
–
0
126
SET
UINT
ZIP
160
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
Zone1EPR
Expected Packet Rate for Zone 1 consuming connection
Zone2EPR
Expected Packet Rate for Zone 2 consuming connection
Zone3EPR
Expected Packet Rate for Zone 3 consuming connection
Zone4EPR
Expected Packet Rate for Zone 4 consuming connection
Bulletin 290D/291D/294D Programmable Parameters
Chapter 4
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value msec
0
65535
75
131
SET
UINT
ZIP msec
0
65535
75
130
SET
UINT
ZIP msec
0
65535
75
132
SET
UINT
ZIP msec
0
65535
75
133
SET
UINT
ZIP
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
161
Chapter 4
Bulletin 290D/291D/294D Programmable Parameters
Zone1Control
Enables/Disables options for Zone 1 control
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Zone2Control
Enables/Disables options for Zone 2 control
Bit
7 6 5 4 3 2 1 0
— — — — — — — X
— — — — — — X —
— — — — — X — —
— — — — X — — —
— — — X — — — —
— — X — — — — —
X X — — — — — —
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Bit
7 6 5 4 3 2 1 0
— — — — — — — X
— — — — — — X —
— — — — — X — —
— — — — X — — —
— — — X — — — —
— — X — — — — —
X X — — — — — —
Function
SecurityEnable
COSCnxn
PollCnxn
StrobeCnxn
MulticastPoll
FragmentedIO
Reserved
–
0
0x3F
0x02
135
SET
BYTE
ZIP
Function
SecurityEnable
COSCnxn
PollCnxn
StrobeCnxn
MulticastPoll
FragmentedIO
Reserved
–
0
0x3F
0x02
134
SET
BYTE
ZIP
162
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
Bulletin 290D/291D/294D Programmable Parameters
Chapter 4
Zone3Control
Enables/Disables options for Zone 3 control
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Bit
7 6 5 4 3 2 1 0
— — — — — — — X
— — — — — — X —
— — — — — X — —
— — — — X — — —
— — — X — — — —
— — X — — — — —
X X — — — — — —
Zone4Control
Enables/Disables options for Zone 4 control
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Bit
7 6 5 4 3 2 1 0
— — — — — — — X
— — — — — — X —
— — — — — X — —
— — — — X — — —
— — — X — — — —
— — X — — — — —
X X — — — — — —
Function
SecurityEnable
COSCnxn
PollCnxn
StrobeCnxn
MulticastPoll
FragmentedIO
Reserved
–
0
0x3F
0x02
137
SET
BYTE
ZIP
Function
SecurityEnable
COSCnxn
PollCnxn
StrobeCnxn
MulticastPoll
FragmentedIO
Reserved
–
0
0x3F
0x02
136
SET
BYTE
ZIP
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
163
Chapter 4
Bulletin 290D/291D/294D Programmable Parameters
Zone1Key
Device Value Key for the device in Zone 1
Zone2Key
Device Value Key for the device in Zone 2
Zone3Key
Device Value Key for the device in Zone 3
Zone4Key
Device Value Key for the device in Zone 4
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
–
0
65535
0
141
SET
UINT
ZIP
–
0
65535
0
140
SET
UINT
ZIP
–
0
65535
0
139
SET
UINT
ZIP
–
0
65535
0
138
SET
UINT
ZIP
164
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
DeviceValueKey
Device Value Key for this device
ZoneCtrlEnable
Enables or disables this device's Zip functionality
0=Disable
1=Enable
Bulletin 290D/291D/294D Programmable Parameters
Chapter 4
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
1
0
–
0
143
SET
BOOL
ZIP
–
0
65535
0
142
SET
UINT
ZIP
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
165
Chapter 4
Bulletin 290D/291D/294D Programmable Parameters
Notes:
166
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
Chapter
5
Diagnostics
Overview
Status LEDs and Reset
This chapter describes the fault diagnostics of the ArmorStart LT Distributed
Motor Controller and the conditions that cause various faults to occur.
Figure 39 - Status and Diagnostic LEDs and Reset
ArmorStart LT provides comprehensive status and diagnostics via 12 individually
marked LEDs shown in Figure 39
, located on the ECM module. In addition, a local reset is provide for clearing of faults. Table 22 details the diagnostic and status LEDs.
Table 22 - ArmorStart LT Status and Diagnostics Indicators
Indicator
PWR LED
RUN/FLT LED
I/O Status
Enunciators 0…5
LEDs
Reset Button
Description
The bicolor (green/yellow) LED shows the state of the control voltage. When LED is off, switched and/or unswitched power is not present.
The bicolor (green/red) LED combines the functions of the Run and Fault LEDs.
NET – Network Status
LED
The bicolor (green/red) LED indicates the status of the CIP network connection. See
Network Status Indicator for further information.
Flashing bicolor (red/green) indicates a self-test on power up.
Six yellow LEDs are numbered 0…5 and indicate the status of the input/output connectors. One LED for each I/O point.
The blue reset button will cause a protection fault reset to occur.
Color_1
Solid green is illuminated when switched and unswitched control power is within its specified limits and has the proper polarity.
Color_2
Solid yellow is illuminated when switched or unswitched control power is outside its specified limits or has incorrect polarity.
Flashing yellow indicates line voltage is not present (294 units only).
Solid green is illuminated when a Run command is present.
Flashing green indicates a node address is configured, no CIP connections are established, and an Exclusive Owner connection has not timed out.
Steady green indicates at least one CIP connection is established and an Exclusive
Owner connection has not timed out.
The LED will blink red in a prescribed fault pattern when a protection fault (trip) condition is present. See table for fault blink patterns.
Flashing red indicates the connection has timed out. Steady Red indicates a duplicate
IP Address detected.
Yellow is illuminated when input is valid or output is on.
Off when input is not valid or the output is not turned on.
— —
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
167
Chapter 5
Diagnostics
Fault Diagnostics
168
Fault diagnostics capabilities built in the ArmorStart LT Distributed Motor
Controller are designed to help you pinpoint a problem for easy troubleshooting and quick restarting.
Protection Faults
Protection faults will be generated when potentially dangerous or damaging conditions are detected. Protection faults are also known as “trips” or “faults”.
These faults will be reported in multiple formats, including:
•
Bit enumeration in the TripStatus parameter (parameter 16) used as discrete bits or in DeviceLogix
•
In the ArmorStart LT web server for ArmorStart EtherNet/IP version
•
As a sequence of LED flashes on the ECM
14
15
12
13
16
LED Flash Bit Enumeration 290D/291D Trip Status Bits
1 0 OverloadTrip
➊
2
3
4
5
6
7
1
2
3
4
5
6
PhaseLossTrip
UnderPowerTrip
➊
SensorShortTrip
➊
PhaseImbalTrip
NonVolMemoryTrip
➊ reserved
10
11
8
9
7
8
9
10
JamTrip
StallTrip
UnderloadTrip reserved
13
14
11
12
15 reserved reserved
OutputShortTrip
➊
UserDefinedTrip
HardwareFltTrip
➊
294D Trip Status Bits
OverloadTrip
➊
PhaseLShortTrip
UnderPowerTrip
➊
SensorShortTrip
➊
OverCurrentTrip
NonVolMemoryTrip
➊
ParamSyncTrip
➊
DCBusOrOpenDiscnnct
➊
StallTrip
➊
OverTemperature
➊
GroundFault
➊
RestartRetries
DriveHdwFault
➊
OutputShortTrip
➊
UserDefinedTrip
HardwareFltTrip
➊
➊
Can not be disabled.
A “ProtectFltEnable” parameter (param 42) is used to enable and disable individual protection faults. This parameter will be a bit enumerated parameter with each “disable-able fault” bit enumerated. Not all Faults can be disabled.
Setting a bit to the value “1” enables the corresponding protection fault. Clearing a bit disables the protection fault. For protection faults that can not be disabled the value is always “1”.
There are two Protection Fault Reset modes:
manual and automatic. When parameter 41 “ProtFltResetMode” is set to the value 0=Manual mode, a manual fault reset must occur before the fault is reset. When manual reset mode faults are
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
Diagnostics
Chapter 5
latched until a fault reset command has been detected either locally or remotely.
A Manual reset operation is either remotely via the network, locally via the
“Reset” button on the front keypad, or via a DeviceLogix program. A rising edge
(0 to 1 transition) of the “ResetFault” tag will attempt a reset. A rising edge of the parameter 44 “ProtectFltReset” will attempt a reset. A press of the local blue
“Reset” button on the front keypad will attempt a reset. A rising edge of the
“ResetFault” DeviceLogix tag will attempt a reset. When “ProtFltResetMode” is set to the value 1=Automatic, “auto-reset” faults are cleared automatically when the fault condition goes away.
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
169
Chapter 5
Diagnostics
Quick Reference
Troubleshooting
The LEDs on the front of the ArmorStart LT provide an indication as to the health of the device and network. The following is a brief troubleshooting guide.
Table 23 - LED Status Indication
Status LED
PWR (Control) Status Indicator
Off
Green
The PWR LED is not illuminated at all.
Voltage is present.
Description Recommended Action
Verify power is connected and with proper polarity.
No action
Verify that the control power is between 19.2 and 26V DC. Flashing Yellow
RUN/FLT Status Indicator
Power has fallen below minimum acceptable level.
Off The RUN/FLT LED is not illuminated when a Run command has been issued.
Verify that PLC is in Run mode. Verify that the correct run bit is being controlled. Verify that a stop condition does not exist.
Green
Flashing Red
Valid start command
Protection fault
NS – Network Status Indicator
Off The NS LED is not illuminated.
Steady Green
Flashing Green
Flashing Red
Solid Red
Flashes
Green-Red
I/O Status Indicators
Off
Check to make sure the product is properly wired and configured on the network.
No action CIP connection is established.
An IP address is configured, but no CIP connections are established, and an Exclusive Owner connection has not timed out.
Connection has timed out.
Check to make sure the product is properly wired and configured on the network.
Check to make sure the PLC is operating correctly and that there are no media/cabling issues. Check to see if other network devices are in a similar state.
Check for node address conflict and resolve.
Duplicate IP address detected
The device has not completed the initialization, is not on an active network, or has not finished self test at power up.
The user has plugged into the I/O, but the indicator did not illuminate, once initiated.
No action
Count flashes and refer to Table 24 and 25.
Remove or change the IP address of the conflicting device.
Verify the wiring of Input or Output is correct. When used as an output point, ensure the corresponding bit in parameter 49 [IOPointConfiguration] is set to Output.
Fault LED Indications
The RUN/FLT LED will blink red in a prescribed fault pattern when a protection fault (trip) condition is present. The LED will blink in 0.5 second intervals when indicating a fault code. Once the pattern is finished, there will be a
2 second pause after which the pattern will be repeated.
Bulletin 290D/291D Faults
Bulletin 290D/291D faults are detected by the main control board. When the
[ProtFltResetMode] Parameter 41 is set to the value 1=Automatic, the auto resettable faults in the table will reset automatically when the fault condition is no longer present.
170
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
Diagnostics
Chapter 5
Table 24 - Fault LED Indicator for Bulletin 290D/291D
Blink
Pattern Auto-Reset Disable Default
1 Yes No On
2
3
4
5
6
7
8
9
10
13
14
11
12
15
16
Yes
Yes
No
Yes
No
—
No
No
No
—
—
—
No
Yes
No
Yes
No
No
Yes
No
—
Yes
Yes
Yes
—
—
—
No
Yes
No
Off
On
On
Off
On
—
Off
Off
Off
—
—
—
On
Off
On
Bulletin 290D/
291D Trip Status
Overload Trip
Description
The load has drawn excessive current and based on the trip class selected, the device has tripped.
Action
Verify that the load is operating correctly and is properly set-up, [FLASetting] Parameter 28,
[OLResetLevel] Parameter 29. The fault may be reset only after the motor has sufficiently cooled.
Phase Loss Trip
Under Power Trip
Sensor Short Trip
The ArmorStart LT detected switched or unswitched power dip below 19.2 V for greater than 50 ms, or 13 V for greater than 4 ms.
This error indicates a shorted sensor, shorted input device, wiring input mistakes.
Phase Imbalance Trip The ArmorStart LT has detected a current imbalance in one of the phases.
Non-Volatile Memory
Trip
Reserved
Jam Trip
Stall Trip
Underload Trip
Reserved
Reserved
Reserved
Output Short Trip
User Defined Trip
The ArmorStart LT has detected a missing phase.
This is a major fault, which renders the
ArmorStart LT inoperable. Possible causes of this fault are transients induced during
Non-Volatile Storage (NVS) routines.
—
During normal running (after starting period), the RMS current draw exceeds the prescribed fault level. This fault is generated when current is greater than the Jam Trip
Level for longer than the Jam Delay time after the Jam Inhibit time has expired.
During starting, the motor did not reach running speed within the prescribed period. This fault is generated when the
RMS current is greater than
[StallTripLevel] Parameter 75 or longer than [StallEnbldTime] Parameter 74 during motor starting.
Underload protection is for undercurrent monitoring. A trip occurs when the motor current drops below the trip level.
—
—
—
This fault is generated when a hardware output short circuit condition is detected.
This fault is generated either in response to the rising edge of user input 0...5,
[Input00Function...Input- 05Function]
Parameter 58...63, or by DeviceLogix.
Hardware Fault Trip This fault indicates that a serious hardware problem exists.
This fault is generated by monitoring the relative levels of the 3-phase currents. Correct phase imbalance or disable fault using [ProtectFltEnable]
Parameter 42.
Check control voltage, wiring, and proper polarity (A1/
A2/A3 terminal).
Correct, isolated or remove wiring error prior to restarting the system.
Check the power system for current imbalance and correct. Correct phase imbalance or disable fault using
[ProtectFltEnable] Parameter 42.
1. If the fault was initiated by a transient, power cycling may clear the problem.
2. This fault may be reset by a [SetToDefaults]
Parameter 68.
3. Replacement of the ArmorStart LT may be required.
—
1. Check for the source of the jam (for example, excessive load or mechanical transmission component failure).
2. Check [JamInhibitTime] Parameter 70,
[JamTripDelay] Parameter 71, and [JamTripLevel]
Parameter 72 setting.
1. Check for source of stall (for example, excessive load, or mechanical transmission component failure).
2. Check [StallEnabledTime] Parameter 74 and
[StallTripLevel] Parameter 75.
3. Check if [FLASetting] Parameter 28 is set correctly.
Check motor and mechanical system for broken shaft, belts, or gear box. Check [ULInhibitTime] Parameter
76, [ULTripDelay] Parameter 77, [ULTripLevel]
Parameter 78, and [ULWarningLevel] Parameter 79.
—
—
—
Correct, isolate or remove wiring error prior to restarting the system.
This fault is generated based on user configuration.
This fault may be reset after the condition that caused it is removed. For example, the Auxiliary Input goes low or the DeviceLogix logic drives the bit low.
Power cycle to correct. If fault persists the ArmorStart
LT requires replacement.
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
171
Chapter 5
Diagnostics
Bulletin 294D Faults
Auto Reset
Drive Control
No
Yes
Bulletin 294E faults are detected by the main control board and/or the internal drive. When there is an internal drive fault, the main control board simply polls the drive for the existence of faults and reports the fault state. Writing a value to
[ProtFltResetMode] Parameter 41 determines auto-reset ability for some faults.
The auto-reset ability of faults that are generated on the drive are controlled by
[AutoRestartTries] Parameter 84 and [AutoRestar Delay] Parameter 85.
Function
Auto-Reset/Run
User Action Needed
[ProtFltResetMode]
Parameter 41 = 1 which is automatic
Auto Reset
Table 25 - Auto Reset Ability
Description
When this type of fault occurs, and [AutoRestartTries] Parameter 84 is set to a value greater than “0,” a user-configurable timer,
[AutoRestartDelay] Parameter 85, begins. When the timer reaches zero, the drive attempts to automatically reset the fault. If the condition that caused the fault is no longer present, the fault will be reset and the drive will be restarted.
This type of fault requires drive or motor repair, or is caused by wiring or programing errors. The cause of the fault must be corrected before the fault can be cleared via manual or network reset. A rising edge of the “Fault Reset” DeviceLogix bit will also clear the fault.
Faults are cleared automatically when the fault condition goes away.
Blink
Pattern
1
Auto-Reset
Capable
Drive
Controlled
2
3
4
5
6
No
Yes
No
Drive
Controlled
No
Table 26 - Fault LED Indicator for Bulletin 294D
Disable Default
No On
No
No
No
No
No
On
On
On
On
On
Bulletin 294E
Overload Trip
(PF 4M Codes 7 and
64)
Trip Status
Phase Short
(PF 4M Codes
38…43)
Under Power Trip
Sensor Short Trip
Over Current
(PF 4M Codes 12 and
63)
Non-Volatile Memory
Trip
(PF 4M Code 100)
Description
This fault is a result of the drive’s Motor
Overload fault or the Drive Overload fault.
Exceeding the Drive overload rating of
150% for 1 minute or 200% for 3 seconds caused the device to trip.
This fault is a result of the drive’s Phase to
Ground Short faults
(Codes 38…40)
Phase to Phase Short faults
41…43)
.
(Codes
or
The ArmorStart LT detected switched or unswitched power dip below 19.2 V for greater than 50 ms, or 13 V for greater than 4 ms.
Action
The fault may be reset only after the overload algorithm determines that the motor has sufficiently cooled or that the Drive heatsink temperature falls to an acceptable level. Check the following:
1. Excessive motor load. Reduce load so drive output current does not exceed the current set by
[MotorOLCurrent] Parameter 30.
2. Verify [BoostSelect] Parameter 86 setting.
1. Check the wiring between the drive and motor.
2. Check motor for grounded phase.
3. Replace ArmorStart LT if fault cannot be cleared.
Check control voltage, wiring, and proper polarity (A1/
A2 terminal). Correct power loss or disable fault using
[ProtectFltEnable] Parameter 42.
This error indicates a shorted sensor, shorted input device, wiring input mistakes.
This fault is a result of the drive’s HW
OverCurrent fault or it’s SW OverCurrent fault.
Correct, isolated or remove wiring error prior to restarting the system.
This is a major fault, which renders the
ArmorStart LT inoperable. Possible causes of this fault are transients induced during
Non-Volatile Storage (NVS) routines.
1. Check for excess load, improper [BoostSelect]
Parameter 86 setting or other causes of excess current or
2. Check load requirements and [SWCurrentTrip]
Parameter 83 setting.
1. If the fault was initiated by a transient, power cycling may clear the problem.
2. This fault may be reset by a [SetToDefaults]
Parameter 68.
3. Replacement of the ArmorStart LT may be required.
172
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
Diagnostics
Chapter 5
Blink
Pattern
7
Auto-Reset
Capable
Yes
8
9
10
11
12
13
14
15
16
Drive
Controlled
Drive
Controlled
Drive
Controlled
No
No
No
No
Yes
No
Table 26 - Fault LED Indicator for Bulletin 294D
Disable Default
No On
No
No
No
No
No
No
No
Yes
No
On
On
On
On
On
On
On
Off
On
Bulletin 294E
Trip Status
Parameter Sync
4M Codes 48, 71 and 81)
(PF
DCBusOrDiscnnct
(PF 4M Codes 3, 4 and 5)
Stall Trip
(PF 4M Code 6)
Over Temperature
(PF 4M Code 8)
Ground Fault
(PF 4M Code 13)
Restart Retries
(PF 4M Code 33)
➊
Description
This fault is generated during the parameter synchronization procedure between the Control Module and the internal drive when the syncing process fails resulting in the drive configuration not matching the Control Module configuration.
This fault is a result of the drive’s Power
Loss
(PF 4M Code 3)
, UnderVoltage
(PF 4M
Code 4)
and OverVoltage
(PF 4M Code 5)
faults. When an Undervoltage occurs because the Disconnect has been opened, the condition will be diagnosed as an
“Open Disconnect” trip
During starting the motor did not reach running speed within the prescribed period. This fault occurs when the drive detects a motor stall condition during acceleration.
This fault occurs when the drive detects a heat sink over temperature condition.
This fault occurs a current path to earth ground has been detected at one or more of the drive output terminals.
Drive unsuccessfully attempted to reset a fault and resume running for the programmed number of auto retries.
Action
1. The most common cause of this fault is that the disconnect has been opened, or that power has been removed from the drive. To clear the fault, repower the drive and activate a reset.
2. The drive may have been commanded to default values. Clear the fault or cycle power to the drive.
1. The most common cause of this fault is that the disconnect has been opened, or that power has been removed from the drive. To Clear the fault, repower the drive and activate a reset.
2. Monitor the incoming line for phase loss or line imbalance, low voltage or line power interruption. high line voltage or transient conditions. Bus
OverVoltage can also be caused by motor regeneration.
3. Extending the [DecelTime1] Parameter 37 or
[DecelTime2] Parameter 70 may also help with this fault.
1. Check for source of stall (for example, excessive load, or mechanical transmission component failure).
2. Increase [AccelTime1] Parameter 36 or
[AccelTime2] Parameter 69 or reduce load so drive output current does not exceed the current set by
[CurrentLimit] Parameter 31.
Check for blocked or dirty heat sink fins. Verify that ambient temperature has not exceeded 40° C (104° F).
Check the motor and external wiring to the drive output terminals for a grounded condition.
Drive Hardware Fault Failure has been detected in the drive
Output Short
User Defined power section.
This fault is generated when a hardware output short circuit condition is detected.
This fault is generated either in response to the rising edge of user input 0...5,
[Input00Function...Input- 05Function]
Parameter 58...63.
Hardware Fault Trip This fault indicates that a serious hardware problem exists. This fault is generated when either the PF 4M drive is not detected or an invalid factory configuration setting is detected.
Correct the cause of the fault and manually clear.
Check [AutoRestartTries] Parameter 84 and
[AutoRestartDelay] Parameter 85 meets application needs.
1. Cycle power.
2. Replace unit if failure can not be cleared.
Correct, isolate or remove wiring error prior to restarting the system.
This fault is generated based on user configuration.
This fault may be reset after the condition that caused it is removed. For example, the Auxiliary Input goes low or the DeviceLogix logic drives the bit low.
Power cycle to correct. If fault persists the ArmorStart
LT requires replacement.
➊
In the case of a Disconnect open fault, reclosing the disconnect will cause a reset to be issued.
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
173
Chapter 5
Diagnostics
Notes:
174
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
Chapter
6
Specifications
Power Circuit
Application
Number of Poles
Input Power Terminals
Motor Power Terminals
PE (Earth Ground) Terminal
Maximum Rated Operating Voltage
Rated Impulsed Voltage (
U
imp
)
Dielectric Withstand
Operating Frequency
Maximum Rated Operating
Current
Overload Type
Trip Class
Trip Rating — Full Load
Current (FLC)
Reset Mode
Overload Reset Level
Overvoltage Category
Bulletin 290D/291D
Electrical Ratings
Cat. No.
290_-___-A-*
291_-___-A-*
290_-___-B-*
291_-___-B-*
Three-phase
3
L1, L2, L3
T1, T2, T3
4 PE terminals
400Y/230…480Y/277 (-15%, +10%)
4 kV
UL
: 1960V AC,
IEC
: 2500V AC
50/60 Hz (±10%)
Hp (kW)
2 (1.5)
5 (3)
Solid-state I
2
T
[10]
, 15, 20 with thermal memory retention
(see Motor Overload Trip Curves)
120% of FLC
Automatic or manual
1…100% TCU
III
Overload Range
0.24…3.5 A
1.1…7.6 A
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
175
Chapter 6
Specifications
Electrical Ratings
Control Circuit
(External Source)
Power Supply
Rated Operating Voltage
Overvoltage Protection
Unswitched Power Supply
Requirements
Switched Power Supply
Requirements
Switched and Unswitched
Power Supply Requirements
Voltage
Nominal Current
Power
Input Current (each)
➊
Maximum Current
Maximum Power
Peak Inrush
➋
Voltage
Nominal Current
Power
Output Current (each)
➊
Maximum Current
Maximum Power
Peak Inrush
➋
Voltage
Nominal Current
Power
Number of Inputs (x 50 mA)
Number of Outputs (x 500 mA)
Maximum Current
Maximum Power
Peak Inrush
➋
NEC Class 2
24V DC (+10%, -20%)
Reverse-polarity protected
19.2…26.4V DC
150 mA
3.6 W
50 mA
450 mA
14.4 W
<5 A for 35 ms
19.2…26.4V DC
125 mA
3 W
500 mA
1.625 A
42 W
<5 A for 35 ms
19.2…26.4V DC
275 mA
6.6 W user defined user defined
275 mA + user defined
6.6 W + (24V DC x user defined)
<10 for 35 ms
Control Circuit
(Internal Source)
An internal 50 W power supply sources 24V DC for input, outputs, and logic control.
Cat. No.
290/1_-*-G1 (or G3)
Sym. Amps RMS
10 kA @ 480Y/277
Circuit Breaker
Short Circuit
Current Rating
(SCCR)
290/1_-*-G1 (or G3)
290/1_-*-G2
5 kA @ 480Y/277
10 kA @ 480Y/277
When used with Allen Bradley
Cat. No. 140U-D6D3-C30
Short Circuit
Coordination
➊
I/O is configurable to either input or output.
➋
Assumes zero wire resistance. Wire impedance will reduce current inrush.
Type 1
Size per NFPA 70 (NEC) or NFPA 79 for Group Motor Applications
Fuse
CC, J, or T fuse
(maximum 45 A)
UL Class fuse (maximum 45 A)
CC, J, or T fuse
(maximum 40 A)
176
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
Specifications
Chapter 6
Input and Output Ratings
Input
Supply Voltage
Type of Inputs
Connection Type
Input per Connection
Rated Operating Voltage
On-State Input Voltage (pin 4)
Off-State Input Voltage
On-State Input Current (pin 4)
Off-State Input Current
Maximum Sensor Leakage Current
Maximum Number of Input Devices
Maximum Sensor Sourcing Current (pin 1)
Sensor Operating Voltage Range
Input Bounce Filter
➊
(Software Configurable)
Filtering
DeviceLogix I/O Response
Supply Voltage (Switched Power)
Type of Outputs
Load Types
Utilization Category (IEC)
Output State
Connection Type
Output
Output per Connection
Overcurrent Protection
➋
Rated Insulation Voltage (
U
i
)
Rated Operating Voltage (
U
e
)
Maximum Blocking Voltage
Nominal Operating Current (
I
e
)
Maximum Thermal Current (
I
the
)
Maximum Off-state Leakage Current
Maximum Number of Outputs
Surge Suppression
➊
Input ON-to-OFF delay time is the time from a valid input signal to recognition by the module.
➋
If an output exceeds 1.5 A for greater than 7 ms, a fault is generated.
Unswitched power A3/A2
24V DC current sinking
Single keyed M12, quick disconnect
1/each
24V DC
10…26.4V DC, nominal 24V DC
5V DC
1…3.7 mA, 2.6 mA @ 24V DC
<1.5 mA
<2.5 mA
6
50 mA per point (max 300 mA total for sourcing one device)
19.2…26V DC
Off-On or On-Off: 0.5 ms + 64 ms
100 μs
2 ms (500 Hz)
A1/A2
DC sourcing
Resistive or light inductive
DC-1, DC-13
Normally Open (N.O.)
Single keyed M12, quick disconnect
1/each
1.5 A (the sum of all outputs cannot exceed this value)
UL:
1500V AC,
IEC:
2000V AC
19.2…26.4V DC
35V DC
500 mA per point
500 mA per point
1 μA
6
Integrated diode to protect against switching loads
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
177
Chapter 6
Specifications
Operating Temperature Range
Storage and Transportation Temperature Range
Environmental Ratings
-20…+50 °C (-4…+122 °F)
-25...+85 °C (-13…+185 °F)
Pollution Degree
Enclosure Ratings
Approximate Shipping Weight
3
IP66/UL Type 4/12
➊
4.6 kg (10 lb)
Resistance to Shock
Resistance to Vibration
Disconnect Lock Out
Disconnect LOTO Locks
Disconnect Mechanical Life
Contractor Utilization Category
(IEC)
Contactor Opening Delay
Contactor Closing Delay
Minimum Off Time
Contactor Mechanical Life
Wire Size
Wire Type
Tightening Torque
Wire Strip Length
Power Rating
Operational
Non-Operational
Operational
Non-Operational
Power Terminals
(2) #18 …#10 AWG
(0.8…5.2 mm
2
) per terminal
600V AC/25 Amp VAC
Mechanical Ratings
30 G, exceeds IEC 60947-1
50 G, exceeds IEC 60947-1
2.5 G, tested to MIL-STD-810G, exceeds IEC 60947-1
5 G, tested to MIL-STD-810G, exceeds IEC 60947-1
Maximum of 3/8 in. (9.5 mm) diameter lock shackle or hasp
Up to 2 locks or hasps are supported
200 000 operations
AC-1, AC-3, AC-4 (refer to Life Load Curves)
8…12 ms
18…40 ms
200 ms
15 million operations
Motor Terminals
#18…#10 AWG
(0.8…5.2 mm
2
) per terminal
Control Terminals
(2) #18 …#10 AWG
(0.8…5.2 mm
2
) per terminal
Multi-strand copper wire
10.6 ± 2 lb•in (1.2 ± 0.2 N•m)
0.35 ± 0.01 in. (9 ± 2 mm)
600 V AC/10 Amp VAC 600 V AC/10 Amp VAC
PE/Ground
(2) #16 …#10 AWG
(1.3…5.2 mm
2
) per terminal
18 ± 2 lb•in (2 ± 0.2 N•m)
—
Emission
Emission and Immunity Ratings
Conducted
Radiated
Electrostatic Discharge
Radio Frequency Electromagnetic Field
Fast Transient
Immunity
Surge Transient
Radio Frequency Conducted Disturbance
➊
IP66/UL Type 4 is available with gland options G1-3. IP66/UL Type 4/12 available with G1 and G3 gland option
178
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
EN 60947-4-1
Class A
4 kV contact, 8 kV air
EN 60947-4-1
10V/m, 80 MHz…1 GHz
10V/m, 1.4 GHz…2 GHz
2 kV (Power)
2 kV (PE)
1 kV (Communication and control)
1 kV (12)
L-L
, 2 kV (2)
L-N
(earth)
10V, 150 kHz…80 MHz
Standards Compliance
Certifications
EtherNet/IP
Web Server
Network Connections
Specifications
Chapter 6
UL/CSA
Standards Compliance and Certifications
UL 508 Industrial Control Equipment –
Suitable for Group Installation
CSA C22.2, No. 14
EN/IEC
EN 60947-4-1 Low Voltage Switchgear
CE Marked per Low Voltage Directive 2006/95/EC and EMC Directive 2004/108/EC
Other Agencies
CCC (Pending)
KCC
C-Tick
ODVA for EtherNet/IP and DeviceNet cULus (File No. E3125, Guide NLDX, NLDX7)
Communication Ratings
Rated Insulation Voltage
Operating Dielectric Withstand
EtherNet/IP ODVA – Conformance Testing
Ethernet Communication Rate
Ethernet Ports
Ethernet Network Topologies Supported
Device Level Ring Support
Ethernet Connector
Ethernet Cable
IP Configuration
DHCP Timeout
Data
Packet Rate (pps)
Consume Instance (Command)
Produce Instance (Status)
Message Support
Address Conflict Detection (ACD)
Sockets
Security
Webpage Features
Concurrent Sessions
Web Server
Concurrent TCP Connections
Maximum I/O Connections (CIP Class 1)
Maximum Concurrent Explicit Messages (CIP Class 3)
Class 1 Connection API
Class 3 Connection API
Request Packet Interval (RPI)
250V
UL/NEMA
: 1500V AC,
IEC
: 2000V AC
EtherNet/IP Interoperability Performance – Per A9 PF 2.1
10/100 Mbps, half or full-duplex
2 (embedded switch)
Star, Tree, Linear, and Ring
Beacon Performance, IEEE 1588 Transparent Clock
M12, D code, female, with Ethernet keying, 4 Pin
Category 5e: Shielded or unshielded
Static, DHCP, or BootP
30 s
Transported over both TCP and UDP
500 packets-per-second (2000 μs), Tx
500 packets-per-second (2000 μs), Rx
Default of 3 words (Instance 150)
Default of 14 words (Instance 152)
Unicast or Multicast
IP v4 Address Conflict Detection for EtherNet/IP devices
150 maximum
Login and password configurable
Support Simple Mail Transfer Protocol (SMTP)
Status, diagnostics, configuration
20
HTTP 1.1
Maximum of 15 encapsulated messages over both TCP and UDP
Supports up to 2 Class 1 CIP connections [Exclusive owner (data) or listen-only]. One connection per PLC. Listen only connection requires a data connection to be established.
6
2…3200 ms
100…10 000 ms
20 ms default (2 ms minimum)
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
179
Chapter 6
Specifications
Motor Overload Trip Curves
180
Class 10
Hot
Cold
% Full Load Current
Class 15
Hot
Cold
% Full Load Current
Class 20
% Full Load Current
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
Hot
Cold
Specifications
Chapter 6
Bulletin 100-K/104-K Life-Load Curves
Electrical life; Ue = 400…460V AC
AC-3: Switching of squirrel-cage motors while starting
10
1
100-K09
(Used with ArmorStart LT)
0.1
0.01
1
Electrical life; Ue = 400…460V AC
AC-4: Stepping of squirrel-cage motors
10
(Used with ArmorStart LT)
100-K09
10
Rated Current
Ie
AC-3 [A]
1
0.1
0.01
0.1
1
Rated Current
Ie
AC-4 [A]
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
100
10
181
Chapter 6
Specifications
Bulletin 294D
Power Circuit
Electrical Ratings
Application
Number of Poles
Input Power Terminals
Motor Power Terminals
PE (Earth Ground) Terminal
Maximum Rated Operating Voltage
Rated Impulsed Voltage (
U
imp
)
Dielectric Withstand
Operating Frequency
Three-phase
3
L1, L2, L3
T1, T2, T3
4 PE terminals
400Y/230…480Y/277 (-15%, +10%)
4 kV
UL:
1960V AC,
IEC:
2500V AC
50/60 Hz (±10%)
Power Circuit
Cat. No.
Maximum Rated
Operating Current
294_-FD1P5*
294_-FD2P5*
294_-FD4P2*
Solid-state
I
2 T type
Overload Protection Trip Class
Overcurrent Protection
Overvoltage Category
Reset Mode
Output Frequency
Efficiency
Overvoltage
Undervoltage
Control Ride Through
Faultless Power Ride Through
Carrier Frequency
Speed Regulation — Open Loop with Slip Compensation
Hp (kW)
0.5 (0.37)
1.0 (0.75)
2.0 (1.5)
Input Amps
400V AC, 50 Hz
2.0
3.7
6.5
Input Amps
480V AC, 60 Hz
1.8
3.0
5.5
150% for 60 s or 200% for 3 s
200% hardware limit, 300% instantaneous fault
III
Automatic or manual
0…400 Hz (programmable)
10 ms
2…10 kHz, drive rating based on 4 kHz
±2% of base speed across a 40:1 speed range
Output Amps
Class 10 protection with speed sensitive response and power-down overload retention function
97.5% typical
380…480V AC Input – Trip occurs at 810V DC bus voltage (equivalent to 575V AC incoming line)
380…480V AC Input – Trip occurs at 390V DC bus voltage (equivalent to 275V AC incoming line)
Minimum ride through is 0.5 s — typical value is 2 s
1.5
2.5
3.6
Acceleration/Deceleration
Maximum Motor Cable Lengths (Reflected
Wave Protection)
➊
Two independently programmable acceleration and deceleration times. Each time may be programmed from 0…600 s, in 0.1 s increments.
10 m (32 ft)(CE application)
14 m (45.9 ft) (non-CE application
➋
)
Source Brake (EM Brake) Current Maximum load current of 3 A
➊
The reflected wave data applies to all frequencies 2…10 kHz.
➋
For CE compliant installations refer to the recommended EMI/RFI cord grip accessory. For availability of the quick disconnect three-phase shielded power and motor cable contact your local sales representative for details.
182
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
Specifications
Chapter 6
Electrical Ratings
Control Circuit
(External Source)
Control Circuit
(Internal Source)
Short Circuit Current Rating
(SCCR)
Short Circuit Coordination
Power Supply
Rated Operating Voltage
Overvoltage Protection
Unswitched Power Supply
Requirements
Switched Power Supply
Requirements
Switched and Unswitched
Power Supply Requirements
Voltage
Nominal Current
Power
Input Current (each)
➊
Maximum Current
Maximum Power
Peak Inrush
➋
Voltage
Nominal Current
Power
Output Current (each)
➊
Maximum Current
Maximum Power
Peak Inrush
➋
Voltage
Nominal Current
Power
Number of Inputs (x 50 mA)
Number of Outputs (x 500 mA)
Maximum Current
Maximum Power
Peak Inrush
➋
NEC Class 2
24V DC (+10%, -20%)
Reverse-polarity protected
19.2…26.4V DC
150 mA
3.6 W
50 mA
450 mA
14.4 W
<5 A for 35 ms
19.2…26.4V DC
125 mA
3 W
500 mA
1.625 A
42 W
<5 A for 35 ms
19.2…26.4V DC
275 mA
6.6 W user defined user defined
275 mA + user defined
6.6 W + (24 x user defined), (60 W max.)
<10 A for 35 ms
Cat. No.
294_-*-G1 or (-G3)
An internal 50 W power supply sources 24V DC for input, outputs, and logic control.
Circuit Breaker Sym. Amps RMS
10 kA @ 480Y/277
294_-*-G1 or (-G3)
294_-*-G1-SB
294_-*-G1-SB
294_-*-G2*
5 kA @ 480Y/277
10 kA @ 480Y/277
5 kA @ 480Y/277
When used with Allen-Bradley
Cat. No. 140U-D6D3-C30
Fuse
CC, J, or T fuse
(maximum 45 A)
UL Class fuse
(maximum 45 A)
CC, J, or T fuse
(maximum 40 A)
UL Class fuse
(maximum 40 A)
CC, J, or T fuse
(maximum 40 A)
10 kA @ 480Y/277
Type 1
Size per NFPA 70 (NEC) or NFPA 79 for Group Motor Applications
➊
I/O is configurable to either input or output.
➋
Assumes zero wire resistance. Wire impedance will reduce current inrush.
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
183
Chapter 6
Specifications
Input
Input and Output Ratings
Supply Voltage
Type of Inputs
Connection Type
Input per Connection
Rated Operating Voltage
On-State Input Voltage (pin 4)
Off-State Input Voltage
On-State Input Current (pin 4)
Off-State Input Current
Maximum Sensor Leakage Current
Maximum Number of Input Devices
Maximum Sensor Sourcing Current (pin 1)
Sensor Operating Voltage Range
Input Bounce Filter
➊
(Software Configurable)
Output
Filtering
DeviceLogix I/O Response
Supply Voltage (Switched Power)
Type of Outputs
Load Types
Utilization Category (IEC)
Output State
Connection Type
Output per Connection
Overcurrent Protection
➋
Rated Insulation Voltage (
U
i
)
Rated Operating Voltage (
U
e
)
Maximum Blocking Voltage
Nominal Operating Current (
I
e
)
Maximum Thermal Current (
I
the
)
Maximum Off-state Leakage Current
Maximum Number of Outputs
Surge Suppression
➊
Input ON-to-OFF delay time is the time from a valid input signal to recognition by the module.
➋
If an output exceeds 1.5 A for greater than 7 ms, a fault is generated
Unswitched power A3/A2
24V DC current sinking
Single keyed M12, quick disconnect
1/each
24V DC
10…26.4V DC, nominal 24V DC
5V DC
1…3.7 mA, nominal 2.6 mA @ 24V DC
<1.5 mA
<2.5 mA
6
50mA per point (max 300mA total for sourcing one device)
19.2…26V DC
Off-On or On-Off: 0.5 ms + 64 ms
100 μs
2 ms (500 Hz)
A1/A2
DC sourcing
Resistive or light inductive
DC-1, DC-13
Normally Open (N.O.)
Single keyed M12, quick disconnect
1/each
1.5 A (the sum of all outputs cannot exceed this value)
UL
: 1500V AC,
IEC
: 2000V AC
19.2…26.4V DC
35V DC
500 mA per point
500 mA per point
1 μA
6
Integrated diode to protect against switching loads
184
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
Specifications
Chapter 6
Operating Temperature Range
Environmental Ratings
-20…+40 °C (-4…+104 °F)
50 °C (122 °F) without derating, when properly rated line reactors are installed in branch circuit.
Storage and Transportation
Temperature Range
Altitude
Humidity
Pollution Degree
Enclosure Ratings
Approximate Shipping Weight
➊
IP66/UL Type 4 is available with gland options G1-3. IP66/ UL Type 4/12 available with G1 and G3 gland option.
–25...+85 °C (–13…+185 °F)
1000 m
5…95% (non-condensing)
3
IP66/UL Type 4/12
➊
7.3 kg (16 lb)
Resistance to Shock
Resistance to Vibration
Disconnect Lock Out
Disconnect LOTO Locks
Disconnect Mechanical Life
Wire Size
Wire Type
Tightening Torque
Wire Strip Length
Power Rating
Operational
Non-Operational
Operational
Non-Operational
Power Terminals
(2) #18 …#10 AWG
(0.8…5.2 mm
2
) per terminal
600V AC/25 Amp VAC
Mechanical Ratings
30 G (exceeds IEC 61800-5-1)
50 G (exceeds IEC 61800-5-1)
2.5 G, MIL-STD-810G, (exceeds IEC 61800-5-1)
5 G, MIL-STD-810G, (exceeds IEC 61800-5-1)
Maximum of 3/8 in. (9.5 mm) diameter lock shackle or hasp
Up to 2 locks or hasps are supported
200 000 operations
Control Terminals Motor Terminals
#18…#10 AWG
(0.8…5.2 mm
2
) per terminal
(2) #18 …#10 AWG
(0.8…5.2 mm
2 terminal
) per
Multi-strand copper wire
PE/Ground
(2) #16 …#10 AWG
(1.3…5.2 mm
2
) per terminal
10.6 ± 2 lb•in (1.2 ± 0.2 N•m)
18 ± 2 lb•in
(2 ± 0.2 N•m)
600V AC/10 Amp VAC
0.35 ± 0.01 in. (9 ± 2 mm)
600V AC/10 Amp VAC —
Emission
Immunity
Emission and Immunity Ratings
Conducted
Radiated
Electrostatic Discharge
Radio Frequency Electromagnetic Field
Fast Transient
Surge Transient
Radio Frequency Conducted Disturbance
EN 55011
(1.0…4.0 mm
2
) per
600V AC/10 Amp VAC
Class Group 2
Source Brake
#16 …#10 AWG terminal
4.8 ± 2 lb•in
(0.5 ± 0.2 N•m)
4 kV contact, 8 kV air
EN 61800-3
10V/m, 80 MHz…1 GHz
2 kV (Power)
2 kV (PE)
1 kV (Communication and control)
1 kV (12)
L-L
, 2 kV (2)
L-N
(earth)
10V, 150 kHz…80 MHz
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
185
Chapter 6
Specifications
Standards Compliance
Certifications
DeviceNet
Standards Compliance and Certifications
UL/CSA EN/IEC
UL 508C Power Conversion Equipment –
Suitable for Group Installation
CSA C22.2, No. 14
EN 61800 - Adjustable Speed Electrical
Power Drive Systems, Part 3: EMC
Requirements and Specific Test Methods,
CE Marked per EMC Directive 2004/108/EC,
Part 5-1: Safety Requirements – Electrical,
Thermal and Energy, CE Marked per Low
Voltage Directive 2005/95/EC cULus (File No. E207834, Guides NMMS, NMMS7)
Other Agencies
CCC (Pending)
KCC
C-Tick
ODVA for EtherNet/IP and DeviceNet
Communication Ratings
Rated Insulation Voltage
Operating Dielectric Withstand
DeviceNet Supply Voltage Rating
DeviceNet Input Current
DeviceNet Input Current Surge
Baud Rates
Distance Maximum
Auto-Baud Rate Identification
"Group 2 - Slave Only" Device Type
Polled I/O Messaging
Change of State Messaging
Cyclic Messaging
Explicit Messaging
Full Parameter Object Support
Group 4 - Off-Line Node Recovery Messaging
Configuring Consistency Value
Unconnected Messaging Manager (UCMN)
UL/NEMA
250V
: 1500V AC,
Yes
Yes
Yes
Yes
Yes
IEC
: 2000V AC
Range 11…25V DC, 24V DC nominal
50 mA @ 24V DC
500 mA peak inrush
125, 250, 500 kbps
500 m (1630 ft) @ 125 kbps
200 m (656 ft) @ 250 kbps
100 m (328 ft) @ 500 kbps
Yes
Yes
Yes
Yes
Yes
186
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
EtherNet/IP
Web Server
Network Connections
Specifications
Chapter 6
Communication Ratings
EtherNet/IP ODVA - Conformance Testing
Ethernet Communication Rate
Ethernet Ports
Ethernet Network Topologies Supported
Device Level Ring Support
Ethernet Connector
Ethernet Cable
IP Configuration
DHCP Timeout
Data
Packet Rate (pps)
Consume Instance (Command)
Produce Instance (Status)
Message Support
Address Conflict Detection (ACD)
Sockets
Security
Webpage Features
Concurrent Sessions
Web Server
Concurrent TCP Connections
Maximum I/O Connections (CIP Class 1)
Maximum Concurrent Explicit Messages (CIP Class 3)
Class 1 Connection API
Class 3 Connection API
Request Packet Interval (RPI)
EtherNet/IP Interoperability Performance – Per A9 PF 2.1
10/100 Mbps, half or full-duplex
2 (embedded switch)
Star, Tree, Linear, and Ring
Beacon Performance, IEEE 1583 Transparent Clock
M12, D code, female, with Ethernet keying, 4 Pin
Category 5e: Shielded or unshielded
Static, DHCP, or BootP
30 s
Transported over both TCP and UDP
500 packets-per-second (2000 μs), Tx
500 packets-per-second (2000 μs), Rx
Default of 4 words (Instance 154)
Default of 16 words (Instance 156)
Unicast or Multicast
IP v4 Address Conflict Detection for EtherNet/IP devices
150 maximum
Login and password configurable
Support Simple Mail Transfer Protocol (SMTP)
Status, diagnostics, configuration
20
HTTP 1.1
Maximum of 5 encapsulated messages over both TCP and UDP
Supports up to 2 Class 1 CIP connections [Exclusive owner (data) or listen-only]. One connection per PLC. Listen-only connection requires a data connection to be established.
6
2…3200 ms
100…10 000 ms
20 ms default (2 ms minimum)
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
187
Chapter 6
Specifications
Motor Overload Trip Curves
No Derate
100
80
60
40
20
0
0 25 50 75 100 125 150 175
% of Motor Nameplate Hertz (P29)
200
Motor overload current parameter provides class 10 overload protection.
Ambient insensitivity is inherent in the electronic design of the overload.
Min. Derate
100
80
60
40
20
0
0 25 50 75 100 125 150
175
% of Motor Nameplate Hertz (P29)
200
Max. Derate
100
80
60
40
20
0
0 25 50 75 100 125 150 175
% of Motor Nameplate Hertz (P29)
200
188
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
Introduction
Appendix
A
Applying More Than One ArmorStart LT
Motor Controller in a Single Branch Circuit on Industrial Machinery
Each ArmorStart LT motor controller is listed for group installation. This appendix explains how to use this listing to apply ArmorStart LT motor controllers in multiple-motor branch circuits according to 7.2.10.4(1) and
7.2.10.4(2) of NFPA 79, Electrical Standard for Industrial Machinery.
From the perspective of the ArmorStart LT product family, being listed for group installation means one set of fuses or one circuit breaker may protect a branch circuit that has two or more of these motor controllers connected to it. This appendix refers to this type of branch circuit as a multiple-motor branch circuit.
The circuit topology shown in
, is one configuration, but not the only possible configuration, of a multiple-motor branch circuit. In these circuits, a single set of fuses (or a single circuit breaker) protects multiple motors, their controllers and the circuit conductors. The motors may be any mixture of power ratings and the controllers may be any mixture of motor controller technologies
(magnetic motor controllers and variable-frequency AC drive controllers).
This appendix addresses only NFPA 79 applications. This is not because these products are only suitable for industrial machinery, but because industrial machinery is their primary market. In fact, while all versions of the ArmorStart
LT products may be applied on industrial machinery, the versions that have the Conduit Entrance Gland Plate Option may also be used in applications governed by NFPA 70, National Electrical Code (NEC), (see “ArmorStart LT
Product Family”).
In the 2012 Edition of NFPA 79, motor controllers that are listed for group installation may be installed in multiple-motor branch circuits according to either of two alternative sets of requirements. The first is found in 7.2.10.4(2), the second in 7.2.10.4(3). The requirements of 7.2.10.4(3) are similar to those in
430.53(C) of NFPA 70, while the requirements of 7.2.10.4(2) are found only in
NFPA 79. This appendix explains the requirements of 7.2.10.4(2), rather than those of 7.2.10.4(3), because this is the simpler method to use when applying the
ArmorStart LT family of motor controllers.
The user must determine the requirements – NFPA 79 or NFPA 70 – to use for the application. When making this determination, it is necessary to understand the ArmorStart LT product characteristics and useful to understand the definition of industrial machinery. The section of this appendix, “ArmorStart LT
Product Family”, specifies whether a motor controller is suitable for installation according to NFPA 79 or NFPA 70 (or both). The definition
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
189
Appendix A
Applying More Than One ArmorStart LT Motor Controller in a Single Branch Circuit on Industrial Machinery
ArmorStart LT
Product Family
190
of industrial machinery is found in 3.3.56 of NFPA 79 and 670.2 of Article 670,
Industrial Machinery, in NFPA 70.
These conventions are used throughout this appendix. First, although all of the equipment is connected to a three-phase electrical supply, all of the figures are shown as one-line diagrams. Second, although all of the ArmorStart LT motor controllers are listed for group installation with both fuses and a specific family of inverse time circuit breakers, this appendix considers only fuses. This is done to avoid repetitive explanations with minor, but necessary qualifications, for circuit breakers. Generally, the principles for selecting the fuses also apply to selecting inverse time circuit breakers. Third, all references unless indicated otherwise, are to NFPA 79 – 2012.
Figure 40 - ArmorStart LT NFPA 79 Multi-Motor Branch Circuit
Electrical Supply
Final
Overcurrent
Device
Disconnecting
Means
Single Set of Fuses
NFPA 79, 3.3.10 Branch Circuit. The Circuit
Conductors Between the Final Overcurrent Device
Protecting the Circuit and the Outlet(s). [70:100]
Any Mixture of Motor Controller
Technologies
* Each Controller is Listed for Group
Installation with Specified Maximum
Protection
½ HP
Bulletin 294
Overload
Class 10
Nameplate*
2 HP
Bulletin 294
Overload
Class 10
Nameplate*
5 HP
Bulletin 291
Overload
Class 10/15/20
Nameplate*
5 HP
Bulletin 290
Overload
Class 10/15/20
Nameplate*
1 HP
Bulletin 294
Overload
Class 10
Nameplate*
1/2 Hp 2 Hp 5 Hp 5 Hp 1 Hp
Two or More Motors with any
Mixture or Power Ratings
This section contains a brief description of the attributes of the ArmorStart LT motor controllers that are relevant to applying them in multiple-motor branch circuits.
The term motor controller refers to the device that stops and starts the motor.
The ArmorStart LT product family consists of two types of motor controllers.
The Bulletin 290D and 291D controllers are magnetic motor controllers that use an electromechanical contactor to stop and start the motor. The Bulletin 294D motor controllers use a variable-frequency AC drive to stop, start and vary the speed of the motor. This appendix refers to the Bulletin 290D, 291D and 294D products as either motor controllers or just controllers.
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
Applying More Than One ArmorStart LT Motor Controller in a Single Branch Circuit on Industrial Machinery
Appendix A
Each ArmorStart LT motor controller incorporates an integrated overload relay and motor disconnecting means. The Underwriters Laboratories’ (UL) listing for each motor controller confirms that the motor controller — including its integral overload relay and motor disconnecting means — is suitable for motor group installation.
The suitability of each ArmorStart LT motor controller for installation according to either NFPA 79 or NFPA 70 depends on the means of connecting the power circuit wiring. All of the controllers are suitable for installation in multiple-motor branch circuits on industrial machinery according to 7.2.10.4 of NFPA 79. The controllers that have the Conduit Entrance Gland Plate Option are also suitable for installation in multiple-motor branch circuits according to 430.53(C) and
430.53(D) of NFPA 70 (NEC). The controllers that have the Power Media
Gland Plate Option are suitable for installation only on industrial machinery.
These versions are limited to industrial machinery because the UL listing for the power media connectors themselves and their matching cable assemblies covers installation only on industrial machinery.
Multiple-Motor Branch
Circuits and Motor
Controllers Listed for Group
Installation – General
Multiple-motor branch circuits, like that shown in
fundamental tradeoff: protecting more than one controller with a single set of fuses requires more electrical and mechanical robustness in each controller.
In exchange for eliminating the cost and space necessary for a dedicated set of fuses in front of each controller, the construction of each controller itself must be more robust. For the circuit configuration shown in
the ampere rating of the fuse must be large enough to operate all of the motors, without opening, under normal starting and running conditions. This rating of fuse must be larger than the rating permitted to protect a circuit that supplies only a single motor and its controller. In general, as the rating of the fuse increases, so does the magnitude of fault currents that flow until the fuse opens.
This higher magnitude of fault current results in more damage to the controller.
Therefore, the additional controller robustness is necessary to withstand these higher fault currents, without controller damage, that could result in a shock or fire hazard.
Consequently, to the controller, being listed for group installation mostly means the UL testing is performed with fuses that have this practical, and higher, ampere rating. This testing verifies that it is safe to apply this controller in a multiple-motor branch circuit, provided the fuse is of the same class and does not have a rating exceeding that marked on the controller.
The example in
Figure 41 , illustrates this increase in the maximum ampere rating
of fuse that is permitted to protect a controller. This example compares the rating of the fuse used in the UL testing of two variable-frequency AC drive-based motor controllers. Both controllers have a rated power of ½ horsepower and a rated output current of 1.5 amperes. The controller shown on the left is intended for installation in individual-motor branch circuits. The controller shown on the right is the ArmorStart LT Bulletin 294D controller that must be listed for group
191
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
191
Appendix A
Applying More Than One ArmorStart LT Motor Controller in a Single Branch Circuit on Industrial Machinery installation to be installed, as intended, in multiple-motor branch circuits. For this example, assume all testing is done with fuses of the same class.
The UL investigation of both controllers is done according to UL 508C, Power
Conversion Equipment. The controllers are connected to the test supply through the three-phase conductors and equipment grounding conductor and then covered with cotton in areas that are likely to vent hot gases and sparks during the tests. During the test, electrical faults are impressed on the output of, and internal to, these variable-frequency AC drive-based controllers. Increasing the ampere rating of the fuses increases the magnitude of the fault currents that flow through and damage the controller before the fuses open. Afterwards, the damage to the controller is evaluated to determine whether a potential shock or fire hazard exists when protected by fuses having this ampere rating. One criterion of the evaluation is the examination of the equipment grounding conductor that must not open during the test, as this could leave exposed conductive parts in an energized state (shock hazard). Another criterion is that the cotton must not ignite, as this indicates the expulsion from the controller of hot gases or molten metal fragments (fire hazard).
Referring to the controller on the left, UL 508C permits the individual-motor testing to be performed with the maximum rating of fuse that can be used to protect an individual-motor branch circuit. According to both NFPA 70 and
NFPA 79, this is 400 percent of the full-load current rating of the largest motor that the controller can supply. In UL 508C, this is taken to be 400 percent of the rated output current of the controller, or 6 amperes.
Referring to the controller on the right, UL 508C permits the group installation testing to be performed with the maximum rating of fuse that can be used to protect a multiple-motor branch circuit. According to both NFPA 70
[430.53(C)) and NFPA 79 (7.2.10.4(3)], this is 250 amperes. This value, derived from the installation requirements of 430.53(C) and 430.53(D) of NFPA 70, is determined by the largest size of power conductor that the ArmorStart LT controller can accept, 10 AWG. Because the UL 508C test covers all possibilities in NFPA 70 and NFPA 79, it permits the maximum value of 250 amperes. This covers 7.2.10.4(2), which permits only 100 amperes. However, in this case, the manufacturer, Rockwell Automation, chose to test and mark with the lower value of 45 amperes. This value was chosen as the tradeoff between the maximum number and type of controllers in the branch circuit — limited by the maximum fuse rating — and the electrical and mechanical robustness engineered into each controller.
Therefore, to make its use in the multiple-motor branch circuit of Figure 40
practical, the ½ horsepower Bulletin 294D controller was engineered to be robust enough to safely contain the damage when protected by a fuse having a rating of 45 amperes, rather than just 6 amperes.
192
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
Applying More Than One ArmorStart LT Motor Controller in a Single Branch Circuit on Industrial Machinery
Appendix A
Figure 41 - UL508C Variable-Frequency AC Drive Motor Controller Evaluation
Short-Circuit Test Circuit Short-Circuit Test Circuit
Rated Output
Current = 1.5 A
6A fuse max
UL 508C – test with 6 ampere max
½ HP Motor
Controller
Max = 400% * Rated Output Current
= 400% * 1.5 A = 6 A
Max permitted rating for test fuse based on
Rated Output
Current
Manufacturer’s choice -
Reduce rating for test to 45 A
Max rating for 10 AWG
= 250 A
Max permitted rating for test fuse based on maximum size of power conductors
Bulletin 294
½ HP Motor
Controller
Suitable for motor group installation
Rated Output
Current = 1.5 A
45 A fuse max
Maximum conductor size
= 10 AWG
Maximum conductor size
= 10 AWG
Motor Motor
Maximum Fuse Ampere
Rating According to
7.2.10.4(1) and 7.2.10.4(2)
This section uses
Figure 42 to explain the requirements from 7.2.10.4(1) and
7.2.10.4(2) that are relevant to, and permit, the multiple-motor branch circuit of
The following is the complete text of 7.2.10.4(1) and 7.2.10.4(2) and an
abbreviated version of Table 27 from the 2012 Edition of NFPA 79. The table
is abbreviated to cover the size of conductors that are generally relevant to the
ArmorStart LT motor controllers.
193
Complete Text -
“7.2.10.4 Two or more motors or one or more motor(s) and other load(s), and their control equipment shall be permitted to be connected to a single branch circuit where short-circuit and ground-fault protection is provided by a single inverse time circuit breaker or a single set of fuses, provided the following conditions under (1) and either (2) or (3) are met:
(1) Each motor controller and overload device is either listed for group installation with specified maximum branch-circuit protection or selected such that the ampere rating of the motor branch short-circuit and ground-fault protective device does not exceed that permitted by 7.2.10.1 for that individual motor controller or overload device and corresponding motor load.
(2) The rating or setting of the branch short-circuit and ground-fault protection device does not exceed the values in
for the smallest conductor in the circuit.”
(3) …(not considered in this appendix)
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
193
Appendix A
Applying More Than One ArmorStart LT Motor Controller in a Single Branch Circuit on Industrial Machinery
Table 27 - Abbreviated Table 7.2.10.4
Table 7.2.10.4 Relationship Between Conductor Size and Maximum Rating or Setting of Short-Circuit
Protective Device for Power Circuits Group Installations
Conductor Size (AWG) Maximum Rating
Fuse or Inverse Time*
Circuit Breaker
(amperes)
…
…
14
12
…
…
60
80
10
8
6
…
100
150
200
…
The following text and
provide an explanation of 7.2.10.4(1) and (2). In the following, the text not relevant to
is replaced by ellipsis points (…). Then each individual requirement is underlined and followed by an underlined letter in parentheses. This underlined letter in the following text corresponds to the letter in
“7.2.10.4 Two or more motors (a)…and their control equipment (b) shall be permitted to be connected to a single branch circuit (c) where short-circuit and ground-fault protection is provided by a single inverse time circuit breaker or a single set of fuses (d), provided the following conditions under (1) and…(2)… are met:
(1) Each motor controller and overload device is… listed for group installation with specified maximum branch-circuit protection (e) …
(2) The rating or setting of the branch short-circuit and ground-fault protection device does not exceed the values in Table 7.2.10.4 for the smallest conductor in the circuit.” (f )
Summarizing the requirements relevant to
Figure 40 : 7.2.10.4(1) and 7.2.10.4(2)
permit two or more ArmorStart LT motor controllers to be installed in a single branch circuit provided (1) all the motor controllers are listed for group
installation, (2) the fuse does not exceed the maximum rating that Table 27
permits to protect the smallest conductor and (3) the fuse complies with the maximum fuse ratings of all of the controllers.
194
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
Explanatory Example
Applying More Than One ArmorStart LT Motor Controller in a Single Branch Circuit on Industrial Machinery
Appendix A
Figure 42 - ArmorStart LT NFPA 79 Multi-Motor Branch Circuit
d
“...a single set of fuses…” f
“The rating or setting of the branch short-circuit and ground-fault protection device does not exceed the values in Table 7.2.10.4 for the smallest conductor in the circuit.”
Branch circuit (shown as dotted lines) – all of the conductors on the load side of the single set of fuses c
“...shall be permitted to be connected to a single branch circuit…” e
“Each motor controller and overload device is ...
listed for group installation with specified maximum branch-circuit protection…”
“Suitable for Motor Group Installation”
Sym. Amps RMS
Fuse
Max. Ratings
5 KA 10 KA
45A 45A*
* Type CC, J and T fuses only b e
Markings that satisfy
7.2.10.4(1)
“... and their control equipment … ”
½ HP
Bulletin 294
Overload
Class 10
Nameplate*
2 HP
Bulletin 294
Overload
Class 10
Nameplate*
5 HP
Bulletin 291
Overload
Class 10/15/20
Nameplate*
5 HP
Bulletin 290
Overload
Class 10/15/20
Nameplate*
1 HP
Bulletin 294
Overload
Class 10
Nameplate* a
“Two or more motors ...”
1/2 HP
FLC =
1.1 A**
2 HP
FLC =
3.4 A**
5 HP
FLC =
7.6 A**
5 HP
FLC =
7.6 A**
* Each controller is listed for group installation with the same specified maximum protection
1 HP
FLC =
2.1 A**
The example addresses the overcurrent protection of the conductors, controllers and motors. Protection for three overcurrent conditions is considered: motor running overloads, short-circuit (line-to-line) faults, and ground-faults (line-toground). The short-circuit fault and ground-fault protection is governed by
7.2.10.4(1) and 7.2.10.4(2) and explained in Requirements 1,2 and 3 and
Figure 43 . The overload protection, explained in Requirement 4, is governed by
7.3.1 and 7.3.1.1. Overload coordination depends on each conductor having the minimum ampacity given by 12.5.3 and 12.5.4. The method for determining this minimum ampacity is explained in Requirement 5 and
.
The example branch circuit is shown in
Figure 43 and Figure 44 . The circuit
topology consists of a set of 10 AWG conductors that supply multiple sets of 14
AWG conductors. Each set of 14 AWG conductors supply a controller and motor. These conductor sizes are chosen to be the smallest conductors that have sufficient ampacity, without derating, for the loads each must carry. All of the wiring is customer-supplied, rather than the ArmorConnect Power Media, because all controllers have the Conduit Entrance Gland Plate Option. Fuses protect the branch circuit.
The example addresses five basic requirements that the motor controllers, fuses and conductors must satisfy. The letters in the circles on
and
are referenced in the explanations as letters in parentheses. Ellipses points (…) are used to replace NFPA 79 text that is not applicable to the multiple-motor branch circuit shown in
Figure 43 and Figure 44 . Unless indicated, all text is
from NFPA 79.
195
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
195
Appendix A
Applying More Than One ArmorStart LT Motor Controller in a Single Branch Circuit on Industrial Machinery
Figure 43 - ArmorStart LT NFPA 79 Multi-Motor Branch Circuit —
Conductor and Controller Protection
Electrical Supply -
480Y/277V
Available Fault Current
Sym. Amps RMS 9 KA
Disconnecting
Means
Fuses
45 A Max,
CC, J or T d a
Branch short-circuit and ground-fault protection device
Combined Load Conductors
Controller ratings further restrict the fuse
“Suitable for Motor Group Installation”
Sym. Amps RMS
Fuse
Max. Ratings
5 KA 10 KA
45A 45A*
* Type CC, J and T fuses only d
Compare to controller max fuse ratings a
½ HP
Bulletin 294
Overload
Class 10
Nameplate*
2 HP
Bulletin 294
Overload
Class 10
Nameplate*
5 HP
Bulletin 291
Overload
Class 10/15/20
Nameplate*
5 HP
Bulletin 290
Overload
Class 10/15/20
Nameplate*
Table 7.2.10.4
Max
Fuse
AWG (A)
- -
14 60
12 80
10 100
8 150
- -
Conductor protection -
60 A max, any class c
7.2.10.4(2) -
“smallest conductor in the circuit”
= 14 AWG b
Conductor protection
Determine fuse class and max rating for conductor protection
1/2 HP
FLC =
1.1 A**
“Smallest conductor”
2 HP
FLC =
3.4 A**
5 HP
FLC =
7.6 A**
5 HP
FLC =
7.6 A**
10 AWG
1 HP
Bulletin 294
Overload
Class 10
Nameplate*
* Each controller is suitable for group installation with the same maximum ratings of fuse.
** Table 430.250 of NFPA 70-2011
1 HP
FLC =
2.1 A**
Figure 44 - ArmorStart LT NFPA 79 Multi-Motor Branch Circuit Minimum Conductor Ampacity
Electrical Supply
Min Amp. =
125% * 1.8 A
I1 =
1.8 A c
Min Amp. =
125% * 5.5 A
Minimum Required Ampacity (MRA)
MRA = 1.25 * Max {controller input currents} + Sum {remaining controller input currents}
Controller input currents = {I1,I2,I3,I4,I5}
Max controller input current = I3 = I4, choose I3 as Max (either is ok)
MRA = 1.25 * I3 + (I1 + I2 + I4 + I5}
= 1.25 * 7.6 A + (1.8 A + 5.5 A + 7.6 A + 3.0 A) = 27.4 A
Combined Load Conductors
10 AWG
I2 =
5.5 A
Min Amp. =
125% * 7.6 A
I3 =
7.6 A a
Min Amp. =
125% * 7.6 A
I4 =
7.6 A b
Min Amp. =
125% * 3.0 A
I5 =
3.0 A
Min Amp. =
125% * 1.1A
½ HP
Bulletin
294
1.1 A
1/2 HP
FLC =
1.1 A**
2 HP
Bulletin
294
3.4 A
Min Amp. =
125% * 7.6 A
5 HP
Bulletin
291
7.6 A a
Min Amp. =
125% * 7.6 A
5 HP
Bulletin
290
7.6 A b
Min Amp. =
125% * 2.1 A
1 HP
Bulletin
294
2.1 A
Min Amp. =
125% * 3.4 A
2 HP
FLC =
3.4 A**
5 HP
FLC =
7.6 A**
5 HP
FLC =
7.6 A**
1 HP
FLC =
2.1 A**
** Table 430.250 of NFPA 70-2011
196
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
197
Applying More Than One ArmorStart LT Motor Controller in a Single Branch Circuit on Industrial Machinery
Appendix A
1. Requirement One: Controller Ratings
— The motor controllers and overload relays must be listed for group installation with specified maximum branch-circuit protection.
Text:
“7.2.10.4(1) Each motor controller and overload device is… listed for group installation with specified maximum branch-circuit protection…”
Analysis:
To apply the ArmorStart LT motor controllers in the multiple-motor branch circuit shown in
Figure 43 , 7.2.10.4(1) must be satisfied; each controller
must be listed for group installation with specified maximum branch-circuit protection. The UL listing for each ArmorStart LT motor controller confirms that it – including its integral overload relay and motor disconnecting means — is suitable for motor group installation with specified fuses, satisfying 7.2.10.4(1).
The Bulletin 290D and 291D controllers are listed for group installation according to UL 508, Industrial Control Equipment. The Bulletin 294D controllers are listed for group installation according to UL 508C, Power
Conversion Equipment.
Referring to
Figure 44 (a) indicates the markings on the nameplate that satisfy
7.2.10.4(1). The marking “Suitable for Motor Group Installation” satisfies the requirement to be listed for group installation. The ratings located beneath the description “Max. Ratings” are the specified maximum branch circuit protection.
The (a) beside the fuse(s) indicates that the maximum protection specified on the nameplate applies to these fuse(s).
2. Requirement Two: Conductor Short-circuit and Ground-Fault
Protection
— The fuse must protect the conductors for short-circuit faults and ground faults.
Text:
“7.2.10.4(2) The rating or setting of the branch short-circuit and groundfault protection device does not exceed the values in
for the smallest conductor in the circuit.”
Analysis:
Referring to
Figure 43 , 7.2.10.4(2) must be satisfied. The fuse, as indicated by the description in Figure 43
(a), is the branch short-circuit and ground-fault protection device. The word circuit means the branch circuit.
The conductors of the branch circuit start at the load side of the fuses and end at the input to the motor, including the conductors between the motor controllers and the motor. The smallest conductor in the circuit is any one of the 14 AWG conductors that supply each controller and motor. The note at (b) indicates the conductor protection is based on the smallest conductor,
14 AWG. Referring to
Table 27 a 14 AWG conductor may be used in a circuit
that is protected by a fuse of any class having a rating of 60 amperes or less (c).
Therefore, selecting a fuse of any class with a maximum rating of 60 amperes satisfies the conductor protection requirement of 7.2.10.4(2).
Supplementary Note 1:
The value specified in Table 27 is the maximum rating
of fuse that 7.2.10.4(2) permits to protect that size of conductor. The rating of
the fuse may be set to the maximum value given by Table 27 for the smallest
conductor without further justification. However, if any controller, or other
component, has a maximum rating of fuse that is less than the Table 27
value, the
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
197
Appendix A
Applying More Than One ArmorStart LT Motor Controller in a Single Branch Circuit on Industrial Machinery
198
maximum rating of the fuse protecting the branch circuit must be reduced to the lower value so that all components are applied according to their ratings. For example, as shown in Requirement Three, a lower value may be necessary to protect the motor controller within its ratings because its specified maximum
protection is less than the rating that Table 27 permits for the smallest circuit
conductor. Another reason to use a lower rating of fuse is to provide more conservative conductor and controller protection. However, in all cases it is important to ensure the ampere rating is sufficient to start and operate the motors without nuisance opening of the fuse(s).
Supplementary Note 2:
The note at (b) points to the conductor on the output of the ½ Hp Bulletin 294E controller in order to emphasize that the smallest conductor in the circuit includes the conductors between each controller and motor. This includes the output of the variable-frequency AC drive-based
Bulletin 294E controllers; even though these drives have electronic short-circuit protection. According to NFPA 79, the fuse, and not the drive’s electronic shortcircuit protection, provides the short-circuit fault and ground-fault protection for these output conductors.
Supplementary Note 3:
Generally, connecting a smaller conductor to a larger conductor requires the installation of fuses at the connection. This connection may be made without this fuse, in some cases, through the use of a tap rule that indirectly protects the smaller conductor by limiting two things: the ratio of the ampacity of the larger conductor to the ampacity of the smaller conductor and the maximum length of the smaller conductor (see, for example, 7.2.8.2). When applying 7.2.10.4(2), such a tap rule is neither applicable nor necessary. In
Figure 43 , the smaller 14 AWG conductors may be connected to combined load
conductors of any size because 7.2.10.4 does not indirectly protect the smaller conductor by limiting the ratio of the larger to smaller conductor ampacities and
the conductor length. Instead, Table 27 protects the smallest conductor directly
by specifying the maximum rating of fuse that may protect a branch circuit that contains a conductor of that size.
3. Requirement Three: Controller Short-Circuit and Ground-Fault
Protection
— Each motor controller must be protected according to its own ratings, that is, applied in accordance with its listing.
Text:
“(1) Each motor controller and overload device is… listed for group installation with specified maximum branch-circuit protection…”
Analysis:
See (d) in
Figure 43 . The characteristics of the fuse(s) permitted to
protect the conductors (see Requirement 2) must now be compared to those in the controller’s ratings. To comply with the listing of each motor controller and overload relay, the fuse(s) must comply with the maximum branch-circuit protection specified in the controller markings. Therefore, the fuse(s) must be of a class marked on all of the controllers and the rating of the fuse(s) must not exceed the rating marked on any of the controllers. The markings of each controller specify that a fuse having a maximum rating of 45 A may protect the motor controller. When connecting to an electrical supply having an available fault current of 5000 amperes or less, the class of the fuse is not specified and may be any class. When connecting to an electrical supply having an available fault
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
199
Applying More Than One ArmorStart LT Motor Controller in a Single Branch Circuit on Industrial Machinery
Appendix A
current between 5000 and 10000 amperes, the class of the fuse must be CC, J or T. Since the electrical supply has an available fault current of 9000 amperes, selecting a Class CC, J or T fuse with a rating of 45 A or less ensures each motor controller is applied within its own ratings.
Supplementary Note 1:
The rating of the fuse must not exceed the rating permitted by 7.2.10.4(2) to protect the smallest conductor in the circuit.
Selecting a Class CC, J or T fuse with a rating of 45 amperes, being less than 60 amperes, also protects the conductors (see Requirement 2). Although the
ArmorStart LT products presently have a maximum fuse rating of 45 A, future controllers may have maximum fuse ratings that exceed 60 A. In this case, the maximum rating of fuse is limited by the rating to protect the 14 AWG conductors, 60 A. The maximum rating permitted for the controller, 45 A, is a maximum rating and can be reduced, for more conservative protection, provided nuisance opening of the fuses do not occur.
Supplementary Note 2:
In this appendix, a fuse having a rating of any class means a fuse having the let-through characteristics of an Class RK-5 fuse. Class
RK-5 fuses are assumed to have the maximum let-through of any class of fuse. For this reason, the ArmorStart LT motor controllers that are marked for use with fuses, without a restriction to a particular class, have been tested with and are intended to be used with fuses having a class of RK-5. Of course, fuses of a class that have lower let-throughs than Class RK-5, such as Class CC, J or T, are also acceptable. A fuse having a rating of any class also restricts the fuse to those that have been evaluated for use as branch-circuit protection devices. This means that semiconductor fuses, used to protect power electronic equipment, or supplemental fuses cannot be used to protect the multiple-motor branch circuit.
Supplementary Note 3:
There are four complementary ratings relevant to the
“specified maximum branch-circuit protection” of 7.2.10.4(1). They are: the fuse class, the maximum fuse rating, the voltage rating and connection of the source
(480Y/277 V), and the available fault current of the source. Applying the controllers according to these four ratings means that a fault on the output of all the controllers, and internal faults for Bulletin 294 controllers, will not result in a shock or fire hazard.
Supplementary Note 4:
In this example, the assumption is made that the available fault current at the controller is that of the source on the line side of the fuses. Although it is true that the wiring impedance between the fuses and the first controller reduce the fault current available at the controllers, this reduction is neglected by assuming the first controller, the ½ horsepower
Bulletin 294 controller, is very close to the fuses.
4. Requirement Four: Overload Protection
— The motors, conductors and controllers must be protected against motor overload conditions.
Text:
“7.3.1 General. Overload devices shall be provided to protect each motor, motor controller, and branch-circuit conductor against excessive heating due to motor overloads or failure to start.”
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
199
Appendix A
Applying More Than One ArmorStart LT Motor Controller in a Single Branch Circuit on Industrial Machinery
“7.3.1.1 Motors. Motor overload protection shall be provided in accordance with
Article 430, Part III, of NFPA 70.”
Analysis:
Each ArmorStart LT motor controller incorporates an integral overload relay. This overload function must be set in accordance with Article 430,
Part III of NFPA 70. Selecting the ampacity of the circuit conductors appropriately (see Requirement 5) ensures the overload relays, when set according to 7.3.1.1, will protect the conductors against overheating due to motor overloads.
Supplementary Note:
Each individual controller overload relay directly protects the conductors connected to the input and output of that controller and the motor that the controller supplies. The combined load conductor is protected by the tripping of one or more of the controller overload relays, which remove(s) the overloaded motor(s) before the combined load conductor overheats.
5. Requirement: Conductor Ampacity
—The minimum ampacity of conductors.
Text:
“12.5.3 Motor circuit conductors supplying a single motor shall have an ampacity not less than 125 percent of the motor full-load current rating.”
“12.5.4 Combined load conductors shall have an ampacity not less than … 125 percent of the full-load current rating of the highest rated motor plus the sum of the full-load current ratings of all other connected motors…”
Analysis:
Referring to
Figure 44 , (a), (b) and (c) explain the method for
calculating the minimum required conductor ampacity for each of these conductors: input and output conductors of Bulletin 290D and 291D controllers
(a), input and output conductors of Bulletin 294D controllers (b) and combined load conductors that supply Bulletin 290D, 291D and 294D controllers (c). The currents I1 through I5 are the input currents to the controllers. For the Bulletin
290D and 291D controllers, these are the same as the output motor currents. For the Bulletin 294D controllers, these currents are the rated input currents.
The example does not address conditions of use such as an ambient temperature exceeding 30 °C or more than three current-carrying conductors in a cable or raceway. In a particular application, these conditions of use may require derating of the ampacity given in Table 12.5.1. This example assumes that, under the conditions of use, both conductors have sufficient ampacity for the application.
This means the 14 AWG conductors have an ampacity of no less than
9.5 A and the 10 AWG conductors have an ampacity of no less than
27.4 A.
200
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
Applying More Than One ArmorStart LT Motor Controller in a Single Branch Circuit on Industrial Machinery
Appendix A
Input and Output Conductors of Bulletin 290D and 291D
Controllers (a)
For Bulletin 290D and 291D controllers, which use an electromechanical contactor to control the motor, the input current, like the output current, is just the current to the motor. Therefore, the minimum conductor ampacity for both input and output conductors is 125 percent of the motor full-load current rating, as specified in the text of 12.5.3 (a).
Referring to
Figure 44 , the full-load current rating of a three-phase, 460 V, 5 Hp
induction motor is 7.6 amperes. Using this value, both the input and output conductors must have an ampacity that is not less than 125% of 7.6 A or 9.5 A.
Input and Output Conductors of Bulletin 294D Controllers
(b)
The Bulletin 294D controllers use a variable-frequency AC drive to control the motor. These drives use a power conversion method that generates input currents that are larger than the output currents. The input currents are larger because, unlike the output currents to the motor, they are not sinusoidal. Consequently, when determining the minimum ampacity of the input conductors, the requirement of 12.5.3 must be based on the rated input current of the controller, rather than the full-load current rating of the motor. Therefore, the minimum ampacity of the input conductors must be 125% of the controller rated input current, while that of the output conductors must be 125% of the motor full-load current rating.
Referring to
Figure 44 , the 1 Hp Bulletin 294D controller has a rated input
current of 3.0 amperes. Using the rated input current, the conductors from the combined load conductors to the controllers must have an ampacity of 125% of 3.0 A or 3.75 A. The output conductors must have an ampacity of 125% of
2.1 A or 2.6 A.
Combined Load Conductors
(c)
The requirement for the minimum ampacity of the combined load conductors is given by 12.5.4. When the combined load conductors supply one or more
Bulletin 294D controllers, the minimum ampacity calculation of 12.5.4 must be made by substituting the rated input current of the Bulletin 294D controllers for the full-load current rating of the motors that these controllers supply.
, the currents I1, I2, I3, I4 and I5 are the input currents to each controller. I3 and I4 are the full-load current ratings of the 5 Hp motors. I1, I2 and I5 are the rated input currents of the Bulletin 294D controllers. Referring to the explanatory text (c) in
Figure 44 , the method for calculating the minimum
ampacity of the combined load conductors follows: first, multiply the largest input current to any controller – Bulletin 290D, 291D or 294D - by 125%. In this case, the input currents to the Bulletin 290D and 291D controllers, I3 and
I4, are the largest, 7.6 A. Because they are the same, either can be used. Choose I3 to calculate 125% of the maximum. 125% of 7.6 A is 9.5 A. Second, sum the remaining input currents (I1, I2, I4, I5) for a total of 17.9 A. Third, add the result from the first step to the result from the second for a total of 27.4 A. Finally, the minimum ampacity of the combined load conductors is 27.4 A.
201
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
201
Appendix A
Applying More Than One ArmorStart LT Motor Controller in a Single Branch Circuit on Industrial Machinery
Supplementary Note 1:
The input currents to the Bulletin 294D motor controllers are larger than the output currents to the motor because the input currents contain harmonics resulting from the power conversion process.
This harmonic content and the magnitude of the resulting non-sinusoidal input currents depend on the impedance of the electrical supply. The value specified for the rated input current is the maximum value over the range of possible supply impedances. For this reason, the magnitude of current measured on a particular electrical system may be less than the specified value.
202
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
High Level Product
Description
Appendix
B
CIP Information
The ArmorStart LT EtherNet/IP is an extension of the ArmorStart LT
DeviceNet. Three product types offered:
Table 28 - ArmorStart LT Distributed Starter Type
Bulletin Number
290D
291D
294D
Distributed Starter Type
DOL
Reversing
V/Hz
Product Codes and Name Strings
The following table lists the product codes and name strings that will be on the
ArmorStart LT product family.
Table 29 - Product Codes and Name Strings
0x251
0x252
0x2C2
0x2C4
0x2C6
0x2D2
0x2D4
0x2D6
Product
Code
0x201
0x202
0x211
0x212
0x241
0x242
Current
Rating
0.24…3.5 amps
1.1…7.6 amps
0.24…3.5 amps
1.1…7.6 amps
0.24…3.5 amps
1.1…7.6 amps
0.24…3.5 amps
1.1…7.6 amps
0.5…2.5 amps
1.1…5.5 amps
3.2…16 amps
0.5…2.5 amps
1.1…5.5 amps
3.2…16 amps
Identity Object Name String
ArmorStart 290D 0.24…3.5 A
ArmorStart 290D 1.1…7.6 A
ArmorStart 290DP 0.24…3.5 A
ArmorStart 290DP 1.1…7.6 A
ArmorStart 291D 0.24…3.5 A
ArmorStart 291D 1.1…7.6 A
ArmorStart 291DP 0.24…3.5 A
ArmorStart 291DP 1.1…7.6 A
ArmorStart 294D 0.5 Hp
ArmorStart 294D 1.0 Hp
ArmorStart 294D 2.0 Hp
ArmorStart 294DP 0.5 Hp
ArmorStart 294DP 1.0 Hp
ArmorStart 294DP 2.0 Hp
No
Yes
Yes
Yes
Yes
Yes
No
No
Integrated
Power Supply
No
No
Yes
Yes
No
No
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
203
Appendix B
CIP Information
CIP Explicit Connection
Behavior
The ArmorStart LT allows run, jog and user outputs to be driven by connected explicit messages when no I/O connection exists, or when a I/O connection exists in the idle state. a single EtherNet/IP Class 3 explicit connection will be allowed to send “explicit control” messages via an “Active Explicit” connection.
An EtherNet/IP Class 3 explicit connection becomes the “explicit control” connection when it becomes the first EtherNet/IP Class 3 explicit connection to send a “set” service to one of the following:
•
The “value” attribute of any Discrete Output Point (DOP) instance (Class
Code 0x09).
•
The “data” attribute of any output (consumed) Assembly instance (Class
Code 0x04).
•
Attribute 3 or 4 of the Control Supervisor Object (Class Code 0x29).
EDS Files
The information contained in the EDS (Electronic Data Sheet) files for
ArmorStart LT DeviceNet can be extracted via the network.
CIP Object Requirements
The following CIP objects will be covered in the following subsections:
0x000A
0x000B
0x000F
0x0010
0x001D
0x001E
0x0029
0x002C
Class
0x0001
0x0002
0x0003
0x0004
0x0005
0x0008
0x0009
0x0097
0x098
0x0376
0x032F
Object
Identity Object
Message Router
DeviceNet
Assembly Object
Connection Manager Object
Discrete Input Point Object
Discrete Output Point Object
Analog Input Point
Analog Output Point
Parameter Object
Parameter Group Object
Discrete Input Group Object
Discrete Output Group Object
Control Supervisor
Overload Object
DPI Fault Object
Alarm Object
Trip and Warning Email Object
Email Object
204
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
CIP Information
Appendix B
Identity Object
Attribute ID
1
2
Access Rule
Get
Get
Instance
1
2
CLASS CODE 0x0001
The following class attributes are supported for the Identity Object:
Name
Revision
Max Instance
Data Type
UINT
UINT
Value
1
1 for DOL/Reverser; 2 for VFD
One instance of the Identity Object will be supported for Bulletin 290D and Bulletin
291D; 2 for Bulletin 294D. The following table shows what each instance will represent.
Name
Main Control Board
PowerFlex 4M (294D only)
Revision Attribute
The firmware rev of the main control board operating system
The firmware revision of the PowerFlex 4M
Each instance of the Identity Object will contain the following attributes:
Attribute ID
2 Get Type
3
➊
Get Product Code
Revision
Minor Revision
7
6
➊
8
102
Access Rule
Get
Get
Get
Get
Name Data Type
UINT
UINT
UINT
Structure of:
USINT
USINT
1
22
Product Code specific.
Value
WORD
Bit 0 - 0 = Not Owned; 1 = Owned by Master
Bit 2 - 0 = Factory Defaulted; 1 = Configured
Bits 4-7 – Extended Status (see table below)
Bit 8 - Minor Recoverable fault
Bit 9 - Minor Unrecoverable fault
Bit 10 - Major Recoverable fault
Bit 11 - Major Unrecoverable fault
Unique number for each device Serial Number
Product Name
String Length
ASCII String
State
Build
UDINT
Structure of:
USINT
STRING
USINT
UINT
Product Code specific
Returns the value 3 = Operational
Unique value depending on output of the parameter checksum algorithm.
Firmware Build Number UDINT
➊
See product code definitions in
Table 29 , Product Codes and Name Strings.
Extended Device Status Field (bits 4-7) in “Status” Instance Attribute 5.
Value
0
1
2
3
Description
Self-testing or unknown
Firmware update in progress
At least one faulted I/O connection
No I/O connections established
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
205
Appendix B
CIP Information
Value
4
5
6
7
Description
Non-volatile configuration bad
Major fault – either bit 10 or bit 11 is true (1)
At least one I/O connection in run mode
At least one I/O connection established, all in idle mode
The following common services will be implemented for the Identity Object:
Service Code Class
Implemented for:
Instance Service Name
0x01 No Yes Get_Attributes_All
0x05 No Yes Reset
0x0E Yes Yes Get_Attributes_Single
0x010 No Yes Set_Attributes_Single
Message Router CLASS CODE 0x0002
No class or instance attributes will be supported. The message router object exists only to route explicit messages to other objects.
DeviceNet Object
Attribute ID
1
CLASS CODE 0x0003
Access Rule
Get Revision
The following class attributes will be supported for the DeviceNet Object:
Name Data Type
UINT 2
Value
A single instance (instance 1) of the DeviceNet Object will be supported. The following instance attributes will be supported.
Value Attribute ID
1
Access Rule
Get/Set Node Address
Baud Rate
Name
2 Get/Set
USINT
USINT
Data Type
0 - 63
0 = 125K
1 = 250K
2 = 500K
Allocation_byte
➊
0 - 63 = address
255 = unallocated
6
8
Get
Get
Allocation Info
Master Node Addr
MAC ID Switch Change
Structure of:
BYTE
USINT
BOOL
MAC ID Switch Value USINT
➊
Allocation_byte
Bit 0 Explicit messaging
Bit 1 Polled I/O
Bit 4 COS I/O
Bit 5 Cyclic I/O
Bit 6 Acknowledge Suppression
0 - 63
206
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
CIP Information
Appendix B
The following services will be implemented for the DeviceNet Object.
Implemented for:
Class Instance Service Name Service Code
0x0E
0x10
Assembly Object
Attribute ID
1
CLASS CODE 0x0004
The following class attribute is supported for the Assembly Object:
Access Rule Name
Get Revision
Data Type
UINT
Value
2
The following static Assembly instance attributes will be supported for each
Assembly instance:
Attribute ID
1
Access Rule
Get
Name
Number of Members in Member List UINT
Member List
Member Data Description
Data Type
Array of STRUCT
UINT
Member Path
UINT
Packed
EPATH
3
4
Conditional
Get
Data
Size
100 Get String
Array of BYTE
UINT
STRING
Array of CIP paths
Size of Member Data in bits
Value
—
Size of Member Path in bytes
Member EPATHs for each assembly instance
—
Number of bytes in attribute 3
—
The following services will be implemented for the Assembly Object:
Implemented for:
Class Instance Service Name Service Code
0x0E
0x10
I/O Assemblies
The following table summarizes the Assembly instances that are supported in the
ArmrorStart EtherNet/IP product:
Instance Type
3 Consumed
Description
Required ODVA Consumed Instance
52
100
Produced
Config
Required ODVA Produced Instance
Configuration Assembly for Bulletin 290D/291D Starters
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
207
Appendix B
CIP Information
208
Byte
0
Bit 7
—
Byte
—
Bit 7
—
Bit 6
—
Bit 6
—
Instance Type
101
150
Config
Consumed
Description
Configuration Assembly for Bulletin 294D Starters
Default Consumed Instance for Bulletin 290D/291D units
154
155
156
190
Consumed
Produced
Produced
Produced
Default Consumed Instance for Inverter type units
Default Produced Instance for Inverter units
Exhaustive Produced Instance for Inverter type units
1999-ZCIO Native Format Produced Assembly
Instance 3
Instance 3 is the required output (consumed) assembly.
Bit 5
—
Instance 3 "ODVA Cmd"
Bit 4 Bit 3
— —
Bit 2
—
Bit 1
—
Bit 0
Run Forward
Instance 52
Instance 52 is the required input (produced) assembly.
Bit 5
—
Instance 52 "ODVA Status"
Bit 4 Bit 3
— —
Bit 2
RunningForward
Bit 1
—
Bit 0
TripPresent
Instance 100
Instance 100 is the Configuration Assembly for Bulletin 290D and 291D units.
11
12
13
9
10
7
8
Member Index
0
1
2
5
6
3
4
24
26
20
22
16
18
12
14
Instance 100 for 290D/291D Starters
Byte Offset Name
0
2
Reserved for Logix
AssemblyRevision
8
10
4
6
FLASetting
OLResetLevel
OverloadClass
ProtFltResetMode
ProtectFltEnable
WarningEnable
RunNetFltAction
RunNetFltValue
RunNetIdleAction
RunNetIdleValue
IOPointConfigure
FilterOffOn
Parameter Instance
N/A
N/A
28
41
42
29
30
48
49
50
46
47
43
45
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
CIP Information
Appendix B
42
43
40
41
38
39
36
37
34
35
32
33
30
31
28
29
50
51
48
49
52
46
47
44
45
26
27
24
25
22
23
20
21
Member Index
14
15
18
19
16
17
Instance 100 for 290D/291D Starters
84
88
80
82
76
78
72
74
68
70
64
66
60
62
56
58
98
100
102
104
106
94
96
90
92
52
54
48
50
44
46
40
42
Byte Offset
28
30
36
38
32
34
CommOverride
KeypadMode
KeypadDisable
OLWarningLevel
JamInhibitTime
JamTripDeley
JamTripLevel
JamWarningLevel
StallEnableTime
StallTripLevel
ULInhibitTime
ULTripDelay
ULTripLevel
ULWarnLevel
OptionMatch
AutoBaudEnable
Name
FilterOnOff
OutProtFltState
OutProtFltValue
OutNetFltState
OutNetFltValue
OutNetIdleState
OutNetIdleValue
Input00Function
Input01Function
Input02Function
Input03Function
Input04Function
Input05Function
NetworkOverride
ConsumedAssy
ProducedAssy
AutoRunZip
ZoneProducedEPR
ZoneProducedPIT
Zone1MacID
Zone2MacID
Zone3MacID
Zone4MacID
78
79
92
100
76
77
74
75
72
73
70
71
67
69
65
66
105
106
107
108
109
101
102
103
104
Parameter Instance
51
52
55
56
53
54
63
64
61
62
59
60
57
58
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
209
Appendix B
CIP Information
210
81
82
79
80
77
78
75
76
73
74
71
72
69
70
67
68
65
66
63
64
61
62
59
60
Member Index
53
54
57
58
55
56
Instance 100 for 290D/291D Starters
168
170
172
174
160
162
164
166
152
154
156
158
144
146
148
150
136
138
140
142
128
130
132
134
Byte Offset
108
112
116
120
124
126
Zone3AnOffset
Zone4AnOffset
Zone1EPR
Zone2EPR
Zone3EPR
Zone4EPR
Zone1Control
Zone2Control
Zone3Control
Zone4Control
Zone1Key
Zone2Key
Zone3Key
Zone4Key
DeviceValueKey
ZoneCtrlEnable
Name
Zone1Mask
Zone2Mask
Zone3Mask
Zone4Mask
Zone1Offset
Zone2Offset
Zone3Offset
Zone4Offset
Zone1AnalogMask
Zone2AnalogMask
Zone3AnalogMask
Zone4AnalogMask
Zone1AnOffset
Zone2AnOffset
140
141
142
143
136
137
138
139
132
133
134
135
128
129
130
131
Parameter Instance
114
115
116
117
118
119
124
125
126
127
120
121
122
123
Instance 101
Instance 101 is the Configuration Assembly for Bulletin 294D units.
Member Index
0
1
2
Instance 101 for 294D Starters
Byte Offset Name
0
2
4
AssemblyRevision
AssemblyRevision
MotorNPVolts
Parameter Instance
N/A
N/A
28
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
CIP Information
Appendix B
31
32
29
30
27
28
25
26
23
24
21
22
19
20
17
18
39
40
37
38
41
35
36
33
34
15
16
13
14
11
12
9
10
Member Index
3
4
7
8
5
6
Instance 101 for 294D Starters
62
64
58
60
54
56
50
52
46
48
42
44
38
40
34
36
78
80
74
76
82
70
72
66
68
30
32
26
28
22
24
18
20
Byte Offset
6
8
14
16
10
12
WarningEnable
RunNetFltAction
RunNetFaultValue
RunNetIdleAction
RunNetIdleValue
IOPointConfigure
FilterOffOn
FilterOnOff
OutProtFltState
OutProtFltValue
OutNetFaultState
OutNetFaultValue
OutNetIdleState
OutNetIdleValue
Input00Function
Input01Function
Name
MotorNPHertz
MotorOLCurrent
CurrentLimit
StopMode
SpeedReference
MinimumFreq
MaximumFreq
AccelTime1
DecelTime1
SCurvePercent
JogFrequency
JogAccelDecel
ProtFltResetMode
ProtectFltEnable
Input02Function
Input03Function
Input04Function
Input05Function
NetworkOverride
CommOverride
KeypadMode
KeypadDisable
AccelTime2
58
59
56
57
54
55
52
53
50
51
48
49
46
47
43
45
66
67
64
65
69
62
63
60
61
Parameter Instance
29
30
33
34
31
32
41
42
39
40
37
38
35
36
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
211
Appendix B
CIP Information
212
70
71
68
69
66
67
64
65
62
63
60
61
58
59
56
57
78
79
76
77
80
74
75
72
73
54
55
52
53
50
51
48
49
Member Index
42
43
46
47
44
45
Instance 101 for 294D Starters
138
140
142
144
128
132
134
136
120
122
124
126
112
114
116
118
156
160
164
168
170
146
148
150
152
104
106
108
110
96
98
100
102
Byte Offset
84
86
92
94
88
90
AutoRestartTries
AutoRestartDelay
BoostSelect
MaximumVoltage
MotorNamPlateFLA
BrakeMode
BrkFreqThresh
BrkCurrThresh
OptionMatch
AutoBaudEnable
ConsumedAssy
ProducedAssy
AutoRunZip
AutoRunZip
ZoneProducedEPR
ZoneProducedPIT
Name
DecelTime2
MotorOLRetention
InternalFreq
SkipFrequency
SkipFreqBand
DCBrakeTime
DCBrakeLevel
ReverseDisable
FlytingStartEna
Compensation
SlipHertzAtFLA
BusRegulateMode
MotorOLSelect
SWCurrentTrip
Zone1MacID
Zone2MacID
Zone3MacID
Zone4MacID
Zone1Mask
Zone2Mask
Zone3Mask
Zone4Mask
Zone1Offset
103
104
105
106
92
100
101
102
90
91
88
89
86
87
84
85
115
116
117
118
119
107
108
109
114
Parameter Instance
70
71
74
75
72
73
82
83
80
81
78
79
76
77
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
CIP Information
Appendix B
Byte Bit 7
0 —
4
5
2 Pt07DeviceIn
3 Pt15DeviceIn
93
94
91
92
89
90
87
88
Member Index
81
82
85
86
83
84
99
100
101
102
97
98
95
96
103
104
206
208
210
212
198
200
202
204
214
216
218
220
188
190
192
194
180
182
184
186
Instance 101 for 294D Starters
Byte Offset Name
172
174
176
178
Zone2Offset
Zone3Offset
Zone4Offset
Zone1AnalogMask
Zone2AnalogMask
Zone3AnalogMask
Zone4AnalogMask
Zone1AnOffset
Zone2AnOffset
Zone3AnOffset
Zone4AnOffset
Zone1EPR
Zone2EPR
Zone3EPR
Zone4EPR
Zone1Control
Zone2Control
Zone3Control
Zone4Control
Zone1Key
Zone2Key
Zone3Key
Zone4Key
DeviceValueKey
Parameter Instance
120
121
122
123
124
125
130
131
132
133
126
127
128
129
138
139
140
141
134
135
136
137
142
143
Instance 150
Instance 150 is the default Output (Consumed) Assembly for Bulletin 290D/
291D starters.
Instance 150 "Starter Cmd" – DeviceLogix Consumed Assembly for Bulletin 290D/291D Starters
Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1
—
—
—
Out05
—
Out04
—
Out03
ResetFault
Out02
RunReverse
Out01
Pt06DeviceIn
Pt14DeviceIn
Pt05DeviceIn
Pt13DeviceIn
Pt04DeviceIn
Pt12DeviceIn
Pt03DeviceIn
Pt11DeviceIn
AnalogDeviceIn (low byte)
AnalogDeviceIn (high Byte)
Pt02DeviceIn
Pt10DeviceIn
Pt01DeviceIn
Pt09DeviceIn
Bit 0
RunForward
Out00
Pt00DeviceIn
Pt08DeviceIn
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
213
Appendix B
CIP Information
Instance 151
Instance 151 is the compact input (Produced) Assembly for Bulletin 290D/
291D starters.
3
4
5
Byte Bit 7
0 CurrentFlowing
Instance 151 "Compact Status" – Compact Produced Assembly for Bulletin 290D/291D Starters
Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1
1 DisconnectClosed
NetControlStatus
2 Pt05
Ready
Pt04
RunningReverse
KeyPadHand
Pt03
RunningForward
KeyPadOff
Pt02
WarningPresent
KeyPadAuto
Pt01
Pt07DeviceOut
Pt15DeviceOut
Pt06DeviceOut
Pt14DeviceOut
Pt05DeviceOut
Pt13DeviceOut
Pt04DeviceOut
Pt12DeviceOut
Pt03DeviceOut
Pt11DeviceOut
Pt02DeviceOut
Pt10DeviceOut
Pt01DeviceOut
Pt09DeviceOut
Bit 0
TripPresent
DLXEnabled
Pt00
Pt00DeviceOut
Pt08DeviceOut
214
Instance 152
13
14
11
12
9
10
7
8
5
6
3
4
Byte
0
1
2
19
20
21
17
18
15
16
Instance 152 is the Exhaustive Starter Status Assembly for Bulletin 290D/291D starters.
Bit 7
CurrentFlowing
Instance 152 "Starter Stat" – DeviceLogix Produced Assembly for Bulletin 290D/291D Starters
Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1
DisconnectClosed
NetControlStatus Ready RunningReverse
KeyPadHand
RunningForward
KeyPadOff
WarningPresent
KeyPadAuto
Pt05 Pt04 Pt03 Pt02 Pt01
Bit 0
TripPresent
DLXEnabled
Pt00
Pt07DeviceOut Pt06DeviceOut Pt05DeviceOut Pt04DeviceOut Pt03DeviceOut Pt02DeviceOut Pt01DeviceOut Pt00DeviceOut
Pt15DeviceOut Pt14DeviceOut Pt13DeviceOut Pt12DeviceOut Pt11DeviceOut Pt10DeviceOut Pt09DeviceOut Pt08DeviceOut
An00DeviceOut (low byte)
An00DeviceOut (high byte)
Parameter 1 – PhaseL1Current
Parameter 2 – PhaseL2Current
Parameter 3 – PhaseL3Current
Parameter 4 – AverageCurrent
Parameter 5 – %ThermalUtilized
Parameter 11 – SwitchedVolts
OutputSourceV (IPS units)
Parameter 12 – UnswitchedVolts
SensorSourceV (IPS units)
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
CIP Information
Appendix B
24
25
22
23
Instance 152 "Starter Stat" – DeviceLogix Produced Assembly for Bulletin 290D/291D Starters
Parameter 16 – TripStatus
Parameter 17 – WarningStstus
Instance 154
Instance 154 is the default Output (Consumed) Assembly for Inverter type
(Bulletin 294D) Distributed Starters.
5
6
3
4
7
Byte Bit 7
Instance 154 "Drive Cmd" – DeviceLogix Consumed Assembly for Bulletin 294D Starters
Bit 6 Bit 5 Bit 4
0 JogReverse
Bit 3
JogForward
Bit 2
ResetFault
Bit 1
RunReverse
1 Decel2
2
Accel2 Out05 Out04 Out03
CommandFreq (Low) (xxx.x Hz)
Out02 Out01
Pt07DeviceIn
Pt15DeviceIn
Pt06DeviceIn
Pt14DeviceIn
Pt05DeviceIn
Pt13DeviceIn
CommandFreq (High) (xxx.x Hz)
Pt04DeviceIn
Pt12DeviceIn
Pt03DeviceIn
Pt11DeviceIn
An00DeviceIn (lowbyte)
An00DeviceIn (highbyte)
Pt02DeviceIn
Pt10DeviceIn
Pt01DeviceIn
Pt09DeviceIn
Bit 0
RunFoward
Out00
Pt00DeviceIn
Pt08DeviceIn
Instance 156
11
12
13
9
10
7
8
5
6
3
4
Byte
0
1
2
Bit 7
AtReference
BrakeStatus
Instance 156 is the Exhaustive Drive Status Assembly Instance
Bit 6
Instance 156 "Drive Status" – Produced Assembly for Bulletin 294E Starters
NetRefStatus
Bit 5
NetControlStatus
Bit 4
Ready
Bit 3 Bit 2 Bit 1
RunningReverse RunningForward WarningPresent
DisconnectClosed KeyPadJogging KeyPadHand
Output Frequency (Low) (xxx.x Hz)
KeyPadOff KeyPadAuto
Pt05
Output Frequency (High) (xxx.x Hz)
Pt04 Pt03 Pt02 Pt01
Parameter 4 – OutputVoltage
Bit 0
TripPresent
DLXEnabled
Pt00
Pt07DeviceOut Pt06DeviceOut Pt05DeviceOut Pt04DeviceOut Pt03DeviceOut Pt02DeviceOut Pt01DeviceOut Pt00DeviceOut
Pt15DeviceOut Pt14DeviceOut Pt13DeviceOut Pt12DeviceOut Pt11DeviceOut Pt10DeviceOut Pt09DeviceOut Pt08DeviceOut
An00DeviceOut (low byte)
An00DeviceOut (high byte)
Parameter 3 – OutputCurrent
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
215
Appendix B
CIP Information
28
29
26
27
30
31
24
25
22
23
20
21
18
19
16
17
14
15
Instance 156 "Drive Status" – Produced Assembly for Bulletin 294E Starters
Parameter 5 – DCBusVoltage
Parameter 11 – SwitchedVolts
OutputSourceV (IPS units)
Parameter 12 – UnswitchedVolts
SensorSourceV (IPS units)
Parameter 13 – InternalFanRPM
Parameter 14 – ElaspedRunTime
Parameter 15 – DriveTemperature
Parameter 16 – TripStatus
Parameter 17 – WarningStatus
Parameter 142 – DeviceValueKey
Instance 190
Instance 190 is the 1999-ZCIO Native Format Produced Assembly.
5
6
3
4
Byte Bit 7
Instance 190 "Native 1" – DeviceLogix Consumed Assembly for Bulletin 294D Starters
Bit 6 Bit 5
0 Pt04
Bit 4
Pt04
Bit 3
Pt03
Bit 2
Pt02
1 Ready
2 Out05 Out04 Out03 Out02
RunningReverse
Out01
RunningFoward
Out00
Bit 1
Pt01
WarningPresent
RunReverse
Bit 0
Pt00
TripPresent
RunFoward
JogForward
Pt07DeviceOut Pt06DeviceOut Pt05DeviceOut Pt04DeviceOut Pt03DeviceOut Pt02DeviceOut Pt01DeviceOut Pt00DeviceOut
ZICCV (Low)
ZICCV (High)
JogReverse
Connection Object
Attribute ID
1
CLASS CODE 0x0005
The following class attributes will be supported for the Connection Object.
Access Rule Name
Get Revision
Data Type
UINT
Value
2
216
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
4
5
9
12
7
8
2
3
Attribute ID
1
Attribute ID
1
2
7
8
CIP Information
Appendix B
Get
Get
Get
Get
Get
Get
Get/Set
Get
Access Rule
Get
Access Rule
Get
Get
Get
Get
Name
State
Instance Type
Transport Class Trigger
Produced Connection ID
Consumed Connection ID
Produced Connection Size
Consumed Connection Size
Expected Packet Rate
Watchdog Action
Data Type
USINT
USINT
USINT
UINT
UINT
UINT
UINT
UINT
USINT
Value
0=nonexistant
1=configuring
3=established
4=timed out
0=Explicit
Message
0x83 - Server, Transport
Class 3
10xxxxxx011 xxxxxx=node address
10xxxxxx100 xxxxxx=node address
0x61
0x61 in milliseconds
01 = auto delete
03 = deferred delete
Instance 2
Instance 2 is the Predefined Group 2 Connection Set Polled I/O Message
Connection. The following instance 2 attributes will be supported:
Name
State
Multiple instances of the Connection Object will be supported, instances 1, 2, and 4 from the group 2 predefined master/slave connection set, instances 5-7 will be available explicit UCMM connections, and instances 8-11 will act as ZIP consumers.
Instance 1
Instance 1 is the Predefined Group 2 Connection Set Explicit Message
Connection. The following instance 1 attributes will be supported:
Instance Type
Produced Connection Size
Consumed Connection Size
Data Type
USINT
USINT
UINT
UINT
Value
0=nonexistant
1=configuring
3=established
4=timed out
1=I/O Connection
0 to 8
0 to 8
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
217
Appendix B
CIP Information
Attribute ID
1
6
7
8
9
7
8
2
3
2
3
Attribute ID
1
Access Rule
Get
Get
Get
Get
Get
Get
Get/Set
Access Rule
Get
Get
Get
Get
Get
Name
State
Instance Type
Transport Class Trigger
Initial Comm Characteristics
Produced Connection Size
Consumed Connection Size
Expected Packet Rate
Data Type
USINT
USINT
USINT
USINT
UINT
UINT
UINT
Value
0=nonexistant
1=configuring
3=established
4=timed out
1=I/O Connection
0x00 (Cyclic, unacknowledged)
0x03 (Cyclic, acknowledged)
0x10 (COS, unacknowledged)
0x13 (COS, acknowledged)
0x02 (acknowledged)
0x0F (unacknowledged)
0 to 8
0 to 8 in milliseconds
Instance 5-7
Instance 5 - 7 will be available group 3 explicit message connections that are allocated through the UCMM. The following attributes will be supported:
Name
State
Instance 4
Instance 4 is the Predefined Group 2 Connection Set of State/Cyclic I/O
Message Connection. The following instance 4 attributes will be supported:
Instance Type
Transport Class Trigger
Produced Connection Size
Consumed Connection Size
Data Type
USINT
USINT
USINT
UINT
UINT
Value
0=nonexistant
1=configuring
3=established
4=timed out
1=Explicit Message
0x83 - Server, Transport
Class 3
0
218
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
Attribute ID
1
2
7
8
CIP Information
Appendix B
Access Rule
Get
Get
Get
Get
Instance 8-11
Instances 8-11 are ZIP Consumers. The following instance attributes will be supported:
Name
State
Instance Type
Produced Connection Size
Consumed Connection Size
Data Type
USINT
USINT
UINT
UINT
Value
0=nonexistant
1=configuring
3=established
1=I/O Connection
0
8
The following services will be implemented for the Connection Object:
Service Code
0x05
0x0E
0x10
Implemented for:
Class Instance Service Name
No
No
Yes Reset
Yes Get_Attribute_Single
Discrete Input Point
Object
Attribute ID
1
2
Access Rule
Get
Get
Attribute ID
3
4
115
116
Access Rule
Get
Get
Get/Set
Get/Set
CLASS CODE 0x0008
The following class attributes are currently supported for the Discrete Input
Point Object:
Name
Revision
Max Instance
Data Type
UINT
UINT
Value
2
6
Six instances of the Discrete Input Point Object are supported. All instances contain the following attributes:
Name
Value
Fault Status
Force Enable
Force Value
Data Type
BOOL
BOOL
BOOL
BOOL
Value
0 = OFF, 1 = ON
0 = OK, 1 = Fault
0 = Disable, 1 = Enable
0 = OFF, 1 = ON
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
219
Appendix B
CIP Information
The following common services will be implemented for the Discrete Input Point
Object:
Service Code
0x0E
0x10
Implemented for:
Class Instance Service Name
Yes
No
Yes
Yes
Get_Attribute_Single
Set_Attribute_Single
Discrete Output Point
Object
Attribute ID Access Rule
1 Get
2 Get
CLASS CODE 0x0009
fo
The following class attributes will be supported for the Discreet Output Point
Object:
Name
Revision
Max Instance
Data Type
UINT
UINT
Value
1
8 for 290D/291D, 10 for 294D
6
7
4
5
Instance Name
1 Run Fwd Output
2
3
Run Rev Output
User Output A
User Output B
User Output C
User Output D
User Output E
8
9
10
User Output F
Drive Jog Fwd
Drive Jog Rev
Eight instances of the Discrete Output Point Object will be supported for DOL/
Reverser (Bulletin 290D/291D) units. Ten instances will be supported for Drive
(Bulletin 294E) units. The following table summarizes the DOP instances:
Description
0029-01-03
0029-01-04
None
None
None
None
None
None
None
None
Run Forward output.
Run Reverse output.
These are the six possible user outputs for all starter types. Their fault/idle behavior is defined in DOP Instance 3.
This instances exists for Inverter (Bulletin 294D) units only.
220
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
CIP Information
Appendix B
Attribute ID
3
5
6
7
8
113
114
115
116
117
Access Rule
Get
Get/Set
Get/Set
Name
Value
Comm Fault Action
Comm Fault Value
Comm Fault Action
Comm Fault Value
Prot Fault Action
Prot Fault Value
Force Enable
Force Value
Get/Set
All instances contain the following attributes:
Input Binding
Data Type
BOOL
BOOL
BOOL
BOOL
BOOL
BOOL
BOOL
BOOL
BOOL
STRUCT:
USINT
Array of USINT
Value
0 = OFF, 1 = ON
0=Comm Fault Value, 1=Hole Last State
0 = OFF, 1 = ON
0=Comm Fault Value, 1=Hole Last State
0 = OFF, 1 = ON
0=Flt Value, 1=Ignore
0 = OFF, 1 = ON
These attributes are not settable in instances
1,2,9 or 10
0=Disable, 1=Enable
0 = OFF, 1 = ON
Size of appendix I encoded path
Appendix I encoded path
NULL path means attribute 3 drives the output.
Otherwise, this is a path to a bit in the Bit Table.
The following common services will be implemented for the Discrete Output
Point Object:
Service Code
0x0E
0x10
Implemented for:
Class Instance Service Name
Yes
No
Yes
Yes
Get_Attribute_Single
Set_Attribute_Single
Discrete Output Point Object Special Requirements
There are many sources that can affect an output point's value: an I/O message, an explicit message, local logic, network fault and idle conditions, and protection fault conditions. An output point must know how to select which source of data to use to drive its value attribute.
An output that is not bound behaves much the same as in the DeviceNet
Specification. Two notable additions to unbound DOP behavior for the
Intimidator implementation are:
•
Explicit control of the value attribute via Explicit messages is constrained by the Touch Algorithm
•
Protection Fault Action and Protection Fault Value
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
221
Appendix B
CIP Information
Power off
The following state transition diagram is used for an unbound Bulletin 290D
Figure 45 - State Transition for Unbound Bulletin 290D
Non-Existent
Power up
Available
Connection
Transitions to
Established
Protection Fault
DNet Fault
Ready
Idle DNet Fault
Protection
Fault
Connection Transitions to Established
DNet Fault
Receive Idle
DNet
Idle
Ready
Receive
Data
Run
Protection Fault Reset
Protection Fault
Protection Fault
Protection
Fault
DNet Fault
222
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
CIP Information
Appendix B
The following flow chart illustrates the behavior of
Bound DOPs
Figure 46 - State Transition for Bound Bulletin 290D
Protection
Fault
Yes
Pr Fault
Action = Ignore
Yes
Unrecoverable
Network
Fault
Yes
Return Object State
Conflict
Yes
Ignore
Message
Yes
EM
I/O
Comm
Override
Yes
Yes
Network
Fault
Override
DN
Fault
Yes
DN Idle
Yes
Run
Yes
Use PrFault Action &
PrFault Value
Available
Yes
Clear Value
Logic
Enabled
Yes
Perform LEO
Function
Apply Force Value
Use DNIdle Action &
DNIdle Value
Use DNFault Action
& DNFault Value
Apply Value
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
223
Appendix B
CIP Information
Protection
Fault
The following flow chart illustrates the behavior of
Bound DOP Instances
.
Figure 47 - State Transition for Bound Bulletin 290D
Yes
Unrecoverable
Network
Fault
Yes
Return Object State
Conflict
Yes
Ignore
Message
Yes
EM
I/O
Yes
Comm
Override
DN
Fault
Yes
DN Idle
Yes
Run
Y es
Yes
Network
Fault
Override
Available
Yes
Clear Value
Logic
Enabled
Yes
Perform LEO
Function
Apply Force Value
Apply Value
Use DNIdle Action &
DNIdle Value
Use DNFault Action
& DNFault Value
Turn off output
224
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
CIP Information
Appendix B
Analog Input Point Object CLASS CODE 0x000A (Implemented in Bulletin 294D units only)
Attribute ID
1
2
Access Rule
Get
Get
The following class attributes will be supported for the Analog Input Point
Object:
Name
Revision
Max Instance
Data Type
UINT
UINT
Value
2
1
Attribute ID
3
8
Access Rule
Get
Get
Two instances of the Analog Input Point Object will be supported.
CommandFreq from Assembly 154 is placed in the value attribute when it is consumed.
Name
Value
Value Data Type
Data Type
INT
USINT
Value
Default = 0
0 = INT
The following common services will be implemented for the Analog Input Point
Object:
Implemented for:
Service Code Class Instance
0x0E Yes Yes
Service Name
Get_Attribute_Single
0x10 No Yes Set_Attribute_Single
Analog Output Point Object CLASS CODE 0x000B (Implemented in Bulletin 294D units only)
Attribute ID
1
2
Access Rule
Get
Get
The following class attributes will be supported for the Analog Output Point
Object:
Name
Revision
Max Instance
Data Type
UINT
UINT
Value
2
1
Attribute ID
3
8
Access Rule
Get/Set
Get
129 Get/Set
One instance of the Analog Output Point object will supported. It will represent the Frequency command. CommandFreq from Assembly 154 is placed in the
Value Attribute when it is consumed. The Value Attribute can then be overwritten by DeviceLogix.
Name
Value
Value Data Type
Input Binding
INT
USINT
Data Type
STRUCT:
USINT
Array of USINT
Value
0 = Default
0 = INT
Size of Appendix I encoded path
Appendix I encoded path
NULL path means attribute 3 drives the output.
Otherwise, this is a path to a bit in the Bit Table.
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
225
Appendix B
CIP Information
The following common services will be implemented for the Analog Output
Point Object:
Implemented for:
Service Code Class Instance
0x0E Yes Yes
Service Name
Get_Attribute_Single
0x10 No Yes Set_Attribute_Single
Parameter Object
Attribute ID
1
2
8
9
Access Rule
Get
Get
Get
Get
Attribute ID
1
2
Access Rule
Get/Set
Get
3
10
11
8
9
6
7
4
5
14
15
12
13
16
Get
Get
Get
Get
Get
Get
Get
Get
Get
Get
Get
Get
Get
Get
CLASS CODE 0x000F
The following class attributes will be supported for the Parameter Object:
Name
Revision
Max Instance
Parameter Class Descriptor
Configuration Assembly Instance
Data Type
UINT
UINT
WORD
UINT
Value
—
—
—
100 for 290D/291D units
101 for 294D units
The number of instances of the parameter object will depend upon the type of
Distributed Starter that the control board is connected to.
Descriptor
Data Type
Data Size
Parameter Name String
Units String
Help String
Minimum Value
Maximum Value
Default Value
Scaling Multiplier
Scaling Divisor
Scaling Base
Scaling Offset
The following instance attributes will be implemented for all parameter attributes:
Name
Value
Link Path Size
Link Path
Data Type
Specified in Descriptor
USINT
Array of:
BYTE
EPATH
WORD
EPATH
USINT
SHORT_STRING
SHORT_STRING
SHORT_STRING
Specified in Descriptor
Specified in Descriptor
Specified in Descriptor
UINT
UINT
UINT
INT
Value
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
226
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
Attribute ID
17
18
19
20
21
Access Rule
Get
Get
Get
Get
Get
CIP Information
Appendix B
Name
Multiplier Link
Divisor Link
Base Link
Offset Link
Decimal Precision
UINT
UINT
UINT
UINT
USINT
Data Type Value
—
—
—
—
—
The following services will be implemented for the Parameter Object:
Implemented for:
Service Code Class Instance
0x01 No Yes
Service Name
Get_Attribute_All
0x0E Yes
0x10 No
0x4b No
Yes
Yes
Yes
Get_Attribute_Single
Set_Attribute_Single
Get_Enum_String
Parameter Group Object
Attribute ID
1
2
Access Rule
Get
Get
Attribute ID
1
2
3
4 n
Access Rule
Get
Get
Get
Get
Get
CLASS CODE 0x0010
The following class attributes will be supported for the Parameter Group Object:
Name
Revision
Max Instance
Data Type
UINT
UINT
Value
—
—
The following instance attributes will be supported for all Parameter Group
Instances.
Name
Group Name String
Number of Members
1st Parameter
2nd Parameter
Nth Parameter
Data Type
SHORT_STRING
UINT
UINT
UINT
UINT
Value
—
—
—
—
—
The following common services will be implemented for the Parameter Group
Object.
Implemented for:
Service Code Class Instance
0x0E Yes Yes
Service Name
Get_Attribute_Single
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
227
Appendix B
CIP Information
Discrete Input
Group Object
Attribute ID
3
4
6
7
Access Rule
Get
Get
Get/Set
Get/Set
CLASS CODE 0x001D
No class attributes will be supported for the Discrete Input Group (DIP) Object.
A single instance of the Discrete Input Group Object is supported and contains the following instance attributes:
Name
Number of Instances
Binding
Off_On_Delay
On_Off_Delay
Data Type
USINT
Array of UINT
UINT
UINT
Value
6
List of DIP Instances
—
—
The following common services will be implemented for the Discrete Input
Group Object:
Service Code
0x0E
0x10
Implemented for:
Class Instance Service Name
No
No
Yes
Yes
Get_Attribute_Single
Set_Attribute_Single
Discrete Output
Group Object
Attribute ID
3
4
6
115
116
Access Rule
Get
Get
Get/Set
Get/Set
Get/Set
CLASS CODE 0x001E
No class attributes will be supported for the Discrete Output Group (DOP) object.
Instance 1
…
3 exist for all ArmorStart LT units.
Instance 1 exists for the sole purpose of providing a place holder for the Comm
Override and Network Override parameters. Instance 1 will contain the following attributes:
Name
Number of Instances
Binding
Command
Network Status Overrride
Comm Status Overrride
Data Type
USINT
Array of UINT
BOOL
BOOL
BOOL
Value
8 for DOL/Soft Starter (290D/291D)
12 for Inverters (294D)
List of DOP Instances
0 = Idle, 1 = Run
0 = No override (go to safe state)
1 = Override (run local logic)
0 = No Override (go to safe state)
1 = Override (run local logic)
Instance 2 controls the communication fault and idle behaviors for run/jog outputs. Instance 2 contains the following instance attributes:
228
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
CIP Information
Appendix B
Attribute ID
3
4
8
9
6
7
10
Access Rule
Get
Get
Get/Set
Get/Set
Get/Set
Get/Set
Get/Set
Attribute ID
3
4
6
9
10
7
8
113
114
Access Rule
Get
Get
Get/Set
Get/Set
Get/Set
Get/Set
Get/Set
Get/Set
Get/Set
Name
Number of Instances
Binding
Command
Fault Action
Fault Value
Idle Action
Idle Value
Data Type
USINT
Array of UINT
BOOL
BOOL
BOOL
BOOL
BOOL
2 for DOLs (290D/291D)
4 for Drives (294D)
1, 2 for DOLs (290D/291D)
1, 2, 9, 10 for Drives (294D)
Value
0 = Idle, 1 = Run
0 = Fault Value Attribute, 1 = Hold Last State
0 = OFF, 1 = On
0 = Idle Value Attribute, 1 = Hold Last State
0 = OFF, 1 = On
Note:
There are no protection fault attributes. Behavior for protection faults is go to OFF.
Instance 3 will drive protection fault and communication fault/idle behaviors for user outputs. Instance 3 will have the following attributes.
Name
Number of Instances
Binding
Command
Fault Action
Fault Value
Idle Action
Idle Value
Pr Fault Action
Pr Fault Value
Data Type
USINT
Array of UINT
BOOL
BOOL
BOOL
BOOL
BOOL
BOOL
BOOL
Value
6
3, 4, 5, 6, 7, 8
0 = Idle, 1 = Run
0 = Fault Value Attribute, 1 = Hold Last State
0 = OFF, 1 = On
0 = Idle Value Attribute, 1 = Hold Last State
0 = OFF, 1 = On
0 = Pr Fault Value Attribute, 1 = Ignore
0 = OFF, 1 = On
The following common services are implemented for the Discrete Input Group
Object.
Service Code
0x0E
0x10
Implemented for:
Class Instance Service Name
No
No
Yes
Yes
Get_Attribute_Single
Set_Attribute_Single
Control Supervisor Object CLASS CODE 0x0029
No class attributes are supported.
A single instance (Instance 1) of the Control Supervisor Object is supported and contains the following instance attributes.
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
229
Appendix B
CIP Information
Attribute ID
3
4
➊
7
8
➊
9
10
12
Access Rule
Get/Set
Get/Set
Get
Get
Get
Get
Get/Set
Name
Run 1
Run 2
Running 1
Running 2
Ready
Tripped
Fault Reset
Data Type
BOOL
BOOL
BOOL
BOOL
BOOL
BOOL
BOOL 0 > 1 = Trip Reset
➊
Reversing Starters (291D) and Inverter (294D) Starters only
Value
These Run outputs also map to DOP Instances 1 and 2
—
—
—
—
The following common services will be implemented for the Control Supervisor
Object.
Service Code
0x0E
0x10
Implemented for:
Class Instance Service Name
No
No
Yes
Yes
Get_Attribute_Single
Set_Attribute_Single
Overload Object
Attribute ID
3
4
5
9
10
7
8
190
192
193
194
195
Access Rule
Get/Set
Get/Set
Get
Get
Get
Get
Get
Get/Set
Get
Get
Get
Get
CLASS CODE 0x002C
No class attributes will be supported for the Overload Object.
A single instance (Instance 1) of the Overload Object is supported for DOL
(290D/291D) and Reversing (294D) Starters. Instance 1 contains the following instance attributes.
Name
FLA Setting
Trip Class
Average Current
% Thermal Utilized
Current L1
Current L2
Current L3
FLA Setting Times 10
Average Current Times 10
Current L1 Times 10
Current L2 Times 10
Current L3 Times 10
Data Type
BOOL
USINT
INT
USINT
INT
INT
INT
BOOL
UINT
UINT
UINT
UINT
Value
xxx.x amps
— xxx.x amps xxx% FLA xxx.x Amps xxx.xx Amps
230
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
CIP Information
Appendix B
The following common services are implemented for the Overload Object.
Service Code
0x01
0x0E
0x10
Implemented for:
Class Instance Service Name
No
No
No
Yes
Yes
Yes
Get_Attribute_All
Get_Attribute_Single
Set_Attribute_Single
DPI Fault Object
Attribute ID
1
2
3
4
5
6
CLASS CODE 0x0097
Access Rule
Get
Get
Get/Set
Get
Get
Get
This object provides access to fault information within the device.
The following class attributes will be supported for the DPI Fault Object.
Name
Class Revision
Number of Instances
Fault Cmd Write
Fault Instance Read
UINT
UINT
USINT
UINT
Data Type
Fault into parameter instance array
Struct of:
UINT
Array [5] of UINT
Number of Recorded Faults UINT
Value
1
4
0=NOP; 1=Clear Fault; 2=Clear Flt Queue
The instance of the Fault Queue Entry containing information about the fault that tripped the device.
Array of SnapShot parameter instance numbers
Array Size = 5
Array of Instance Numbers = 23, 24, 25, 26, 27
The number of faults recorded in the fault queue.
Attribute ID
0
1
3
Access Rule
Get
Name
Full/All Info
Fault Code
Fault Source
DPI Port Number
Device Object Instance
Fault Text
Fault Time Stamp
Timer Value
Timer Descriptor
Help Object Instance
Fault Data
Get
Get
Four instances of the DPI Fault Object will be supported.
Value
Basic Info
Fault Code
Fault Source
DPI Port Number
Device Object Instance
Fault Time Stamp
Timer Value
Timer Descriptor
Help Text
Data Type
Struct of:
UINT
Struct of:
USINT
USINT
BYTE [16]
Struct of:
ULDINT
WORD
USINT
Array [5] of 32 bit fault data values
See Tables below
0
0x2c
See Tables below
Snapshot data
Struct of:
UINT
Struct of:
USINT
USINT
Struct of:
ULINT
WORD
STRING
See Tables below
0
0x2c
See Tables below
The following common services will be implemented for the DPI Fault Object.
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
231
Appendix B
CIP Information
232
Service Code
0x0E
0x10
Implemented for:
Class Instance Service Name
Yes
Yes
Yes
No
Get_Attribute_Single
Set_Attribute_Single
The table below lists Fault Codes, Fault Text, and Fault Help Strings for DOL and Reversers.
Table 30 - Fault Codes, Fault Text, and Fault Help Strings for DOL and Reversers
11
12
13
9
10
7
8
5
6
3
4
Fault
Code
1
2
14
28
29
26
27
24
25
22
23
19
20
21
17
18
15
16
Fault Text
Fault 1
User Defined
Overload Trip
Fault 4
Phase Loss Trip
Jam Trip
Underload Trip
Fault 8
Fault 9
Fault 10
Fault 11
Stall Trip
Switched Power
Under Power Trip
Sensor Short
Output Short
Fault 17
Fault 18
Phase Imbalance
Fault 20
Aux Power Loss
Fault 22
Fault 23
Fault 24
Fault 25
Fault 26
NonVol Memory
Fault 28
Fault 29
Help Text
—
User defined trip has occurred.
Load has drawn excessive current based on trip class selected.
—
Indicates missing supply phase. This fault can be disabled.
Motor current above jam level for more than jam trip delay time.
Motor current below UL level for more than UL trip delay time.
—
—
—
—
Motor current above stall trip level during motor starting.
Indicates the loss of switched control power.
Not available in units with Integrated Power Supply.
Indicates the internal power supply is below its working level.
Available in units with Integrated Power Supply only
Flags a miswired hardware input point.
Flags a miswired hardware output point.
—
—
Indicates an imbalanced phase current.
—
Auxiliary Power was lost or dipped below the minimum threshold.
Not available in units with Integrated Power Supply
—
—
—
—
—
This is a major fault which renders the unit inoperable.
—
—
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
CIP Information
Appendix B
Table 30 - Fault Codes, Fault Text, and Fault Help Strings for DOL and Reversers
40
41
42
…
75
38
39
36
37
34
35
32
33
Fault
Code
30
31
Fault Text
Hardware Fault
Fault 31
Fault 32
Fault 33
Fault 34
Fault 35
Fault 36
Fault 37
Fault 38
Fault 39
Unknown Fault
BrakeOption
KeypadOption
Fault 75
Help Text
This is a major fault which renders the unit inoperable.
—
—
—
—
—
—
—
—
—
—
Brake Option hardware does not match parameter 92 setting.
Keypad Option hardware does not match parameter 92 setting.
—
The table below lists Fault Codes, Fault Text, and Fault Help Strings for Drive units.
Table 31 - Fault Codes, Fault Text, and Fault Help Strings for Drive Units
PF4M
Fault
Code
11
12
13
9
10
7
8
5
6
3
4
Fault
Code
1
2
14
15
16
Fault Text
Fault 1
User Defined
Motor Overload
Drive Overload
Phase U to Gnd
Phase V to Gnd
Phase W to Gnd
Phase UV Short
Phase UW Short
Phase VW Short
Ground Fault
Stall Trip
Switched Power
Under Power Trip
Sensor Short
Output Short
Help Text
—
User defined trip has occurred.
The load has drawn excessive current.
150% load for 1 min. or 200% load for 3 sec. exceeded.
A Phase U to Ground fault detected between drive and motor.
A Phase V to Ground fault detected between drive and motor.
A Phase W to Ground fault detected between drive and motor.
Excessive current detected between phases U and V.
Excessive current detected between phases U and W.
Excessive current detected between phases V and W.
A current path to earth ground at one or more output terminals.
The drive is unable to accelerate the motor.
Indicates the loss of switched control power.
Not available in units with Integrated Power Supply
Indicates the internal power supply is below its working level.
Available in units with Integrated Power Supply only.
Flags a miswired hardware input point.
Flags a miswired hardware output point.
42
43
40
41
13
6
38
39
7
64
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
233
Appendix B
CIP Information
19
20
21
Fault
Code
17
18
36
37
34
35
32
33
30
31
28
29
26
27
24
25
22
23
42
43
…
75
40
41
38
39
Table 31 - Fault Codes, Fault Text, and Fault Help Strings for Drive Units
Fault Text
Fault 17
Heatsink Temp
HW Over Current
SW OverCurrent
Aux Power Loss
Help Text
The Heatsink temperature exceeds a predefined value.
The drive output current has exceeded the hardware limit.
Programmed parameter 83 (SW Current Trip) has been exceeded.
Auxiliary Power was lost or dipped below the minimum threshold.
Not available in units with Integrated Power Supply.
Internal Comm Communication with the internal Power Flex drive has been lost.
Drive Comm Loss The RS485 port on the internal Power Flex stopped communicating.
Power Loss
Under Voltage
Drive DC Bus Voltage remained below 85% of nominal bus voltage.
DC Bus Voltage fell below the minimum value.
Over Voltage
MCB EEPROM
Param Sync
Drive EEPROM
DC Bus Voltage exceeded the maximum value.
This is a major fault which renders the ArmorStart inoperable.
The drive and Main Control Board EEPROMS are not in sync.
The drive EEPROM checksum checks have failed.
Hardware Fault
Fan RMP
Power Unit
Drive I/O Brd
This is a major fault which renders the unit inoperable
The internal cooling fan is not running properly.
A major failure has been detected in the drive power section.
A failure has been detected in the drive control and I/O section.
Restart Retries
Drive Aux In Flt
Automatic fault reset and run retries exceeded.
The drive auxiliary input interlock is open inside the ArmorStart.
Fault 36 —
Drv Param Reset Internal Drive Parameters (Parameters > 100) have been defaulted.
Fault 38
Fault 39
Unknown Fault
BrakeOption
KeypadOption
Disconnect Open
—
—
—
Brake Option hardware does not match parameter 92 setting
Keypad Option hardware does not match parameter 92 setting
Disconnect is open causing a DC Bus Under Voltage in the drive
PF4M
Fault
Code
100
48
41
42
8
12
63
3
4
71
81
5
70
122
33
2
Fault 75 —
…
75
234
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
CIP Information
Appendix B
DPI Alarm Object
Attribute ID
1
2
3
4
6
Attribute ID
0
1
3
Access Rule
Get
Get
Set
Get
Get
CLASS CODE 0x0098
This object provides access to warning information within the device.
The following class attributes will be supported.
Name
Class Revision
Number of Instances
Alarm Cmd Write
Alarm Instance Read
Number of Recorded Alarms
UINT
UINT
USINT
UINT
UINT
Data Type Value
1
1
0=NOP; 1=Clear Alarm; 2=Clear Queue
The instance of the Fault Queue Entry containing information about the fault that tripped the device.
The number of faults recorded in the fault queue.
A single instance of the DPI Alarm Object will be supported.
Value Access Rule
Get
Get
Get
Name
Full/All Info
Alarm Code
Alarm Source
DPI Port Number
Device Object Instance
Alarm Text
Alarm Time Stamp
Timer Value
Timer Descriptor
Help Object Interface
Alarm Data
Basic Info
Alarm Code
Alarm Source
DPI Port Number
Device Object Instance
Alarm Time Stamp
Timer Value
Timer Descriptor
Help Text
Data Type
Struct of:
UINT
Struct of:
USINT
USINT
STRING
Struct of:
ULINT
WORD
USINT
Struct of:
UINT
Struct of:
USINT
USINT
Struct of:
ULINT
WORD
STRING
See Tables below
0
See Tables below
See Tables below
0
See Tables below
The following common services will be implemented for the DPI Fault Object.
Service Code
0x0E
0x10
Implemented for:
Class Instance Service Name
Yes
Yes
Yes
No
Get_Attribute_Single
Set_Attribute_Single
The table below lists Fault Codes, Fault Text, and Fault Help Strings.
Table 32 - Fault Codes, Fault Text, and Fault Help Strings for ArmorStart LT
Warning
Code
1
2
3
Warning Text
Warning 1
Warning 2
Motor Overload
Help Text
—
—
Overload warning level has been exceeded.
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
235
Appendix B
CIP Information
43
44
41
42
22
…
31
…
45
…
75
Table 32 - Fault Codes, Fault Text, and Fault Help Strings for ArmorStart LT
14
19
20
21
17
18
15
16
Warning
Code
4
5
8
9
6
7
12
13
10
11
Warning Text
Warning 4
Warning 5
Jam Warning
Underload Warning
Warning 8
Warning 9
Warning 10
Warning 11
Warning 12
Switched Pwr Warn
Under Power Warn
Warning 15
Warning 16
Warning 17
Warning 18
Warning 19
Warning 20
Aux Power Warn
Help Text
—
Indicates missing supply phase. This fault can be disabled.
Motor current has exceeded jam warning level.
Motor current dropped below Underload Warning level.
—
—
—
—
—
Indicates the control power has dipped below 19 Volts.
Not available in units with Integrated Power Supply.
Indicates the internal power supply is below its optimal level.
Available in units with Integrated Power Supply only.
—
—
—
—
—
—
Indicates auxiliary Power was has dipped below 19 Volts.
Not available in units with Integrated Power Supply.
Warning 22
FanRPMWarning
BrakeConfig
IOPointConfig
ZIPConfig
JamConfig
UnderloadConfig
Warning 75
Internal fan is too slow, or needed to be kick started
Values for params 58 - 63 and/or param 49 are invalid
Values for params 58 - 63 and/or param 49 are invalid
Values for params 114 - 129 result in ZIP data mapping overlap
Param 72 JamTripLevel is less than Param 73 JamWarningLevel
Param 78 ULTripLevel is greater than Param 79 ULWarningLevel
DeviceNet Interface Object CLASS CODE 0x00B4
Attribute ID
1
Access Rule
Get
The following class attributes will be supported.
Name
Revision UINT
Data Type
236
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
Value
2
CIP Information
Appendix B
Attribute
ID
15
16
Access
Rule
Name
Get/Set Autobaud Enable
Get/Set Consumed Assy
17
19
100
101
103
104
Get/Set Produced Assy
Get/Set Set to Defaults
Get Build
Get
Get
Get
PTableinit errs
Fan Data
Fan RPM
Fan Tach Pulses
Fan Control
Hardware Fault Data
A single instance of the DPI Alarm Object will be supported.
Data Type Min/Max Default Description
BOOL
USINT
USINT
BOOL
USINT
USINT
Struct of
UINT
UINT
WORD
Struct of
WORD
0 -1
0 to 85
100 to 190
0 to 1
1
150 (drive 154)
151 (drive 155)
0
1= enabled; 0 = disabled
See assembly instance definitions for legal values
See assembly instance definitions for legal values
0=No action; 1=Reset
Firmware Build Number
UINT
UINT
UINT
Bit0 = Forward Status
Bit1 = Reverse Status
Bit 2 = Disconnect On
Bit 3 = Brake Contactor
Bits 5-13 = unused
Bit 14 = CT Present error
Bit 15 = Power 24
Status Board Error
Present
Status Board Total Error
Present Conditions
Status Board Total Read
Errors
105
106
107
Get
Get
Get
Boot Rev
NVS Object Init Errors
Error Data Structure
STRUCT of
USINT
USINT
Struct of
UINT
Array of UINT
Struct of
DWORD
DWORD
DWORD
Major rev
Minor rev
Number of Errors
List of CIP Objects that failed
The following common services will be implemented for the DeviceNet Interface
Object.
Service Code
0x0E
0x10
Implemented for:
Class Instance Service Name
No
No
Yes
Yes
Get_Attribute_Single
Set_Attribute_Single
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
237
Appendix B
CIP Information
ZIP Object
Attribute ID Access Rule
1 Get
3
8
9
Get
Get
Set
NV
NV
NV
V
NV
CLASS CODE 0x032E
The following class attributes will be supported.
Name
Revision
Number of Instances
Instance List
ZIP Enable
Data Type
UINT
UINT
Array of USINT
BOOL
Description of Attribute
List of instances
Enable/Disable ZIP for the device
Semantics of Values
1
5
A maximum of 255 instances may be supported.
0=disable 1=enable
Attribute ID Access Rule
1 Set*
2 Get
NV
NV
NV
3
Set*
(Get for producers)
NV
4
5
6
7
Set*
Set
Set
Get/Set*
NV
NV
NV
NV
ZIP Enable
Allows ZIP functionality to be enabled/disabled for the entire device. This parameter must be disabled before any changes to the ZIP configuration for the device can be made. The default value for this attribute is 0=disable. Upon enabling ZIP, the ZIP object checks that the produced and consumed assembly instances chosen for each ZIP producing and consuming connection contain the
Zone Key (instance attribute #7). If any of the chosen assemblies does not contain the Zone Key in the last 2 bytes of the assembly data attribute, then the error code 0x0C (Object State Conflict) is returned by the Set service.
Five Instances of the ZIP object will be supported. Instances 1-4 are ZIP consumers, and Instance 5 is the ZIP producer.
Name Data Type
Zone Connection ID UDINT
Zone Health
Zone Point Mask
Zone Point Offset
Zone RPI
Zone PIT
Zone Key
BOOL
STRUCT of:
USINT
Array of
BYTE
UINT
UINT
UINT
UINT
Description of Attribute
The Connection ID
Semantics of Values
*For producing connections,
Set access not required.
Health status of the connection 0=healthy
1=not healthy
Masks individual bytes in a consumed message for use by in Zone Point Data table.
Masking results in a byte packed image.
Specifies an offset into the 8byte Zone Point Data table to place masked data.
Struct of
USINT = 4
Array[4] of BYTE
Producers return USINT= 0
*Get access for producers.
Producers return UINT = 0
Requested Packet Interval
(RPI) of the producing or consuming connection. This value is placed in the Expected
Packet Rate attribute of the connection
Production Inhibit Time (PIT) of producing connection object
The security key attribute for the connection.
ms ms
Required for I/O client connections, except those with production trigger of Cyclic.
*Access Rule of Get only for producing connections.
238
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
CIP Information
Appendix B
Attribute ID Access Rule
8 Set
9
10
11
12
13
14
15
16
17
101
103
114
116
Get*
Set
Set (prod)
Get (cons)
Set (cons)
Get (prod)
Get*
Set*
Set*
Set*
(Get for producers)
Set*
(Get for producers)
Set*
Set*
Set*
Set*
NV
NV
NV
NV
NV
NV
NV
NV
NV
NV
NV
NV
NV
NV
NV
Name
ZIP Auto Run
Associated Connection
Instance
Connection Path Length
Connection Path
Data Size
Connection Direction
Data Security Disable
Data Type
BOOL
UINT
UINT
EPATH
UINT
BOOL
BOOL
Description of Attribute
Configure the ZIP producing connection to auto-allocate on power-up
The instance number of the connection object associated with this ZIP instance.
Number of bytes of the
“Connection Path” attribute.
Specifies an application object whose data is to be produced, or is to receive consumed data.
The size of the data to be produced or consumed.
The direction of data flow for the connection instance represented by this instance.
0=disable
1=enable
Semantics of Values
*For systems that dynamically allocate connections, the access rule can be Set.
Consumed path:
21 0e 03 25 01 00 30 02
Produced path:
Produced assy path
Consumed: 32 or 8
Procuced: size of produced assembly
0=Producing
1=Consuming
*For systems that dynamically allocate connections, the access rule can be Set.
0=enable
1=disable
(Default = 0)
Zone Analog Data Type
Zone Analog Mask
Zone Analog Offset
Zone MAC ID
Point Mask
ZoneControl
Analog Mask
UINT
STRUCT of:
USINT
Array of
BYTE
UINT
USINT
DWORD
BYTE
WORD
Enables data security checking for the connection.
*Get access for producers.
Producers return the value 0
Data type from CIP Common
Spec Table C-6.1
“Identification Codes of
Elementary Data Types”.
Masks individual data units of the type defined in the “Zone
Analog Data Type” in a consumed message for use by in Zone Analog Data table.
Each bit in a BYTE mask represents one unit (WORD,
REAL, etc.) of consumed data
Specifies an offset into the 8byte Zone Point Data table to place masked data.
Reflects attribute 1 for
ArmorStart LT
Reflects attribute 3 for
ArmorStart LT
Choose consumed IO connection properties
Reflects attribute 16 for
ArmorStart LT
0xC7 = UINT
Struct of
USINT = 2
Array[2] of BYTE
Producers return USINT= 0
*Get access for producers.
Producers return UINT = 0
This attribute matches the Array[4] structure element in attribute 3
Semantics of this bit enumerated value are the same as params 134-137
This attribute matches the Array[2] structure element in attribute 16
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
239
Appendix B
CIP Information
240
Attribute Symantics
1) Zone Connection ID -
Contains the Consumed_Connection_Id attribute for the connection represented by this object instance. The default value will be
0xFFFF. For consuming connections, the value 0xFFFF disables the consumption of data for the connection. For producing connections, this value represents the connection ID on which production occurs. For predefined producing connections, this value is set to the producing Connection ID when Auto Run occurs at power-up, or upon allocation of the connection.
2) Zone Health -
Indicates the health status of the zone connection. If the ZIP connection for the zone times out, this parameter is set to the value 1 = Not
Healthy. Also, if Data Security is enabled and the Zone Key received in the consumed I/O message does not match the entered Zone Key attribute, 1 = Not
Healthy is reported. For ZIP implementations that use predefined connection instances, this value is 0 = Healthy (the default value) when ZIP is disabled for the instance i.e. when the Zone Connection ID attribute is 0xFFFF. This value is
0 = Healthy when ZIP is disabled via the ZIP Enable class attribute.
3) Zone Point Mask -
Allows for the selection of the consumed bytes within a consumed message for use by in the Zone Point Data Table. Each single bit in the mask represents a corresponding byte in the consumed message packet.
4) Zone Point Offset -
Allows consumed data to be placed within the Zone
Point Data Table. This offset is application-specific. For ArmorStart LT, it represents a byte offset into the Discrete Zone Point Data Table.
5) Zone RPI -
The requested packet interval (in milliseconds) of the connection represented by this ZIP object instance. For DeviceNet implementations, this value is placed in the connection object Expected Packet Rate attribute. If a consuming connection does not receive data in 4 times this value, the connection times out, and the Zone Health attribute is set to the value 1 = Not Healthy. For producing connections, the expected packet rate specifies the heartbeat rate.
6) Zone PIT -
The Production Inhibit Time (in milliseconds) associated with a connection.
7) Zone Key -
For producing instances, this value is calculated by performing a
CRC on all of the ZIP class and instance attributes, and all other device configuration values deemed necessary to insure the integrity and meaning of
ZIP data produced on the network. The Identity Object device keys should always be included in the CRC calculation. For consuming instances, this is the value of the Zone Key calculated in the producing connection whose data is to be consumed. The ZIP consuming connection will validate the security key received within each consumed message against this stored value.
8) ZIP Auto Run -
When enabled, the producing device creates and configures a producing connection at power-up. For initial ZIP implementations on
DeviceNet, a connection is created, and the contents of the Allocation
Information attribute in the DeviceNet Object are set accordingly. The connection is no longer available for allocation within the predefined
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
CIP Information
Appendix B
Group 2 connection set. A ZIP consuming device does not have to enable
AutoRun ZIP if it is a consumer only or if a scanner is used to allocate the producing connections.
9) Associated Connection Instance -
The instance number of the connection object associated with this ZIP instance. Initial DeviceNet implementations of the ZIP object will implement this attribute with Get access, and associate ZIP instances with predefined connection instances. Future implementations will be allowed to dynamically allocate connections and associate them with a ZIP instance. This attribute would then be implemented with Set access.
10) Connection Path Length -
The number of bytes of the “Connection Path” attribute. For consuming connections, this value is written to the consumed_connection_path_length” attribute of the connection object when
ZIP is enabled. For producing connections, this value is written to the
“produced_connection_path_length” attribute of the connection object when
ZIP is enabled.
11) Connection Path -
For consuming connections, this attribute specifies the application object that is to receive the consumed data. This value is written to the “consumed_connection_path” attribute of the connection object when ZIP is enabled. For producing connections, this attribute specifies the application object whose data is to be produced. This value is written to the
“produced_connection_path” attribute of the connection object when ZIP is enabled.
12) Data Size -
The size (in bytes) of the data to be produced or consumed. If any of the “FragmentedIO” bits are set in the Zone Control attribute, this value is 32.
If all “FragmentedIO” bits are clear in the Zone control Attributes, then this value is 8.
14) Data Security Disable -
Enables/disables data security checking for the connection. Enabling data security protects against a ZIP producer being replaced and not having the correct ZIP configuration set. Enabling data security also protects against the consumption of data from the wrong device type. The default value for this attribute is 0=enabled.
15)
Zone Analog Data Type –
This attribute defines the analog data type used in the Zone Analog Data Table. Data type value codes are given in the CIP
Common Spec Table “Identification Codes and Descriptions of Elementary Data
Types”. For ArmorStart LT this attribute returns the value 0xC7 = UINT.
16) Zone Analog Mask -
Allows for the selection of the consumed data within a consumed message for use by in the Zone Analog Data Table. Each single bit in the mask represents a corresponding piece of analog data in the consumed message packet whose data type is given by the Zone Analog Data Type attribute.
For ArmorStart LT, each bit in the Mask represents a WORD of consumed data
17) Zone Analog Offset -
Allows consumed data to be placed within the Zone
Analog Data Table. This offset is application-specific. For ArmorStart LT, it represents a WORD offset into the Zone Analog Data Table.
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
241
Appendix B
CIP Information
242
101) MAC ID -
This attribute is used so that MAC ID can be entered for a consuming instance instead of Zone Connection ID in a EDS file. When this attribute is changed, the Zone Connection ID attribute value is updated to reflect the new Connection ID.
103) Point Mask -
This attribute is used so that a mask value of type DWORD can be used in an EDS file parameter for the Zone Point Mask since arrays are not supported in EDS parameters. When this attribute is changed, the Zone Point
Mask attribute value is updated to reflect the new mask value.
114) Zone Control -
This attribute is used to choose the IO Connection type that is consumed, whether security is enabled and whether the consumed data is fragmented. See parameters 134-137 for the bit enumerations.
116) Analog Mask -
This attribute is used so that a mask value of type WORD can be used in an EDS file parameter for the Zone Analog Mask since arrays are not supported in EDS parameters. When this attribute is changed, the Zone
Analog Mask attribute value is updated to reflect the new mask value.
The following common services will be implemented for the ZIP Object.
Service Code
0x0E
0x10
Implemented for:
Class Instance Service Name
No
No
Yes
Yes
Get_Attribute_Single
Set_Attribute_Single
Behavior
The ZIP object provides a means for devices on a network to share I/O data directly without hard wiring them together, with, or without the use of a network scanner. A single ZIP enabled device can consume data directly from multiple devices on a network. A ZIP enabled device can also auto-allocate and configure producing I/O connections. In initial DeviceNet ZIP implementations, devices will be capable of auto-allocating and configuring unacknowledged COS connections, but the object definition does not preclude the use of other types of
I/O connections for data production.
Instances of the ZIP object represent connection endpoints on a network. Two types of ZIP object instances are defined:
•
ZIP Producers
•
ZIP Consumers
Multiple instances of each instance type can exist, but in initial DeviceNet implementations, a single ZIP Producer will be used to allow for the automatic allocation and configuration of an unacknowledged COS connection. The automatic allocation of producing I/O connections only occurs if the Auto Run
ZIP attribute for the ZIP Producer is enabled.
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
CIP Information
Appendix B
When a ZIP Producer is automatically allocated on power-up with the Auto Run
Zip attribute set to the value 1=enable, the Master’s MAC ID portion of the
Allocation Information attribute in the DeviceNet Object is not changed. This indicates that the Predefined Master Slave connection set is still available for allocation by a network master.
The ZIP object also provides a means for ensuring that system configuration is secure. A 16-bit Zone Key instance attribute is calculated for each ZIP Producer, which is based on the device configuration and the Identity Object device key attributes. The Zone Key value is manually read by the user from the ZIP producer and manually written to the Zone Key of the ZIP Consumers that will consume the data as part of the system configuration process.
When the Data Security Enable attribute is enabled, ZIP Producers place the 16bit Zone Key at the end of each produced I/O message. When security is disabled for a producer, the Zone Key is still placed at the end of each produced I/O message.
ZIP Consumers assume that the last 16 bits of each consumed I/O message contains the Zone Key. When the Data Security Enable attribute is enabled for a consumer, the consumed Zone Key is compared to the ZIP consumer’s stored
Zone Key. If they do not match, the Zone Health instance attribute is set to
1=not healthy. When security is disabled for a consumer, the consumed Zone
Key is ignored.
The selection of I/O Assemblies that contain the 16 bit Zone Key is verified for both producing and consuming connections when ZIP is enabled.
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
243
Appendix B
CIP Information
Notes:
244
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
Introduction
Appendix
C
Using DeviceLogix™
DeviceLogix is a stand-alone Boolean program that resides within the
ArmorStart LT. The program is embedded in the product so that there is no additional module required to use this technology; DeviceLogix is programmed using the Add-On Profile for RSLogix™5000.
In addition to the actual programming, DeviceLogix can be configured to operate under specific situations. It is important to note that the DeviceLogix program will only run if the logic has been enabled and unswitched power is present. This can be done within the “Logic Editor.” The operation configuration is accomplished by setting the “Network Override” and “Communication
Override” parameter. The following information describes the varying levels of operation:
•
If both overrides are disabled and the logic is enabled, the ONLY time
DeviceLogix will run is if there is an active I/O connection with a master, i.e. the master is in Run mode. At all other times DeviceLogix will be running the logic, but will NOT control the state of the outputs.
•
If the Network Override is enabled and the logic is enabled then
DeviceLogix controls the state of the outputs when the PLC is in Run mode and if a network fault occurs.
•
If the Communications Override is enabled and the logic is enabled, the device does not need any I/O connection to run the logic. As long as there are switched and unswitched power sources connected to the device, the logic will control the state of the outputs.
DeviceLogix Local Control Mode
In local control mode, the embedded DeviceLogix logic engine drives the local outputs and motor run/jog commands from a local DeviceLogix program. Local
Control is completely independent of the any or all CIP connections. I/O and/or Explicit Message connections can exist in any state and they do not affect the user outputs or the run/jog commands for the motor. Local control mode is chosen by when the keypad “Auto LED” is on, “Network Override” is set
“Communication Override” is set, and DeviceLogix is enabled.
I/O Networked Control Mode
In I/O networked control mode, local outputs and motor run/jog commands are received over a CIP I/O connection in the established state. I/O networked control mode is chosen when DeviceLogix is disabled, or when DeviceLogix is enabled and no user outputs or run commands are being driven in the
DeviceLogix program.
Rockwell Automation Publication 290E-UM001B-EN-P - June 2012
245
Appendix C
Using DeviceLogix™
DeviceLogix Programming
DeviceLogix has many applications and the implementation is typically only limited to the imagination of the programmer. Keep in mind that the application of DeviceLogix is only designed to handle simple logic routines.
DeviceLogix is programmed using simple Boolean math operators, such as AND,
OR, NOT, timers, counters, latches, and analog values. Decision making is done by combining these Boolean operations with any of the available I/O. The inputs and outputs used to interface with the logic can come from the network or from the device hardware. Hardware I/O is the physical Inputs and Outputs located on the device such as push buttons and pilot lights that are connected to the
ArmotStart LT. Refer to Table 33 - for complete list of DeviceLogix I/O
functions.
There are many reasons to use the DeviceLogix functionality, but some of the most common are listed below:
•
Increased system reliability
•
Fast update times (1 - 2 ms possible)
•
Improved diagnostics and reduced troubleshooting
•
Operation independent of PLC or Network status
•
Continue to run process in the event of network interruptions
•
Critical operations can be safely shutdown through local logic
DeviceLogix Programming Example
The following example will show how to program a simple logic routine to interface the ArmorStart with a remote hard-wired startstop station. In this case the I/O is wired as shown in the table below.
Bit
Pt00
Pt01
Out02
Input/Output Table
Description
Start Button
Stop Button
Run Forward
IMPORTANT
Before programming logic, it is important to decide on the conditions under which the logic will run. The conditions can be defined by setting
CommsOverride and NetworkOverride to the value that you want.
1.
Refer to section “How to Add a New Module, Using the Add-On Profile” to configure the I/O. Then select the DeviceLogix section and create a program.
246
Rockwell Automation Publication 290E-UM001B-EN-P - June 2012
Using DeviceLogix™
Appendix C
2.
Click on the “
DeviceLogix
” tab. If you are on-line with a device, a dialog box will appear asking you to upload or download. Click on “
Upload
.”
3.
Click the “Start Logic Editor
”
button.
4.
If programming off-line continue to step 5, otherwise click on the “
Edit
” button. Click “
Yes
” when asked if you want to Enter Edit Mode. Once in edit mode the entire list of Function Blocks will be displayed in the toolbar.
5.
Left Click on the “
RSL
” function block. This is a reset dominate latch.
6.
Move the cursor into the grid, and left click to drop the function onto the grid.
7.
From the toolbar, Click on the “
Discrete Input
” button and select
Pt00
from the pull-down menu. This is the remote start button based on the example I/O table.
8.
Place the input to the left of the RSL function. To drop the input on the page, left click on the desired position.
9.
Place the mouse cursor over the tip of Pt00. The tip will turn green. Click on the tip when it turns green.
10.
Move the mouse cursor toward the input of the RSL function. A line will follow the cursor. When a connection can be made, the tip of the RSL function will also turn green. Click the on Input and the line will be drawn from Pt00 to the Set Input of the RSL function.
Note:
If this was not a valid connection, one of the pin tips would have turned red rather than green. Left double clicking on the unused portion of the grid or pressing the “
Esc
” key at any time will cancel the connection process.
Rockwell Automation Publication 290E-UM001B-EN-P - June 2012
247
Appendix C
Using DeviceLogix™
11.
From the toolbar, Click on the “
Discrete Input
” button and select
Pt01
from the pull-down menu. This is the remote stop button based on the example I/O table.
12.
Place the input to the left of the RSL function.
13.
Connect the input to the reset input of the RSL latch.
14.
From the toolbar, Click on the “
Discrete Output
” button and select
“
RunForward”
from the pull-down menu. RunForward is the relay controlling the coil of the contactor. Click OK.
15.
Move the cursor into the grid and place the Output to the right of the RSL function block.
16.
Connect the output of the “
RSL
” function block to
Run Fwd.
248
17.
Click on the “
Verify
” button located in the toolbar or select “Logic Verify” from the “Tools” pull-down menu.
18.
Click on the “
Edit
” button to toggle out of edit mode if online with a device.
Rockwell Automation Publication 290E-UM001B-EN-P - June 2012
Element Type
Consumed Network Data
Discrete Input Points
Discrete Output Points
Produced Network Data
Using DeviceLogix™
Appendix C
19.
Go to the pull-down menu in the right corner of the toolbar and select
“
Download
”.
Note:
Ensure that the PLC key switch is in the Program position. If in any other position, the download will not occur and an error will be generated.
20.
Press “
OK
” when told the download was successful.
21.
Now from the same pull-down menu select “
Logic Enable On
.”
22.
The ArmorStart is now programmed and the logic is Active.
Table 33 - DeviceLogix Input and Output Variables
Bulletin 290D
PT00DeviceIn
…
PT15DeviceIn
ZoneDataPt00
…
ZoneDataPt64
PT00
…
PT05
RunForward
…
Out00
…
Out05
Pt00DeviceOut
…
Pt15DeviceOut
ResetFault
MotionDisable
ForceSnapshot
UserDefinedFault
KeypadDisable
Bulletin 291D
PT00DeviceIn
…
PT15DeviceIn
ZoneDataPt00
…
ZoneDataPt64
PT00
…
PT05
RunForward
RunReverse
Out00
…
Out05
Pt00DeviceOut
…
Pt15DeviceOut
ResetFault
MotionDisable
ForceSnapshot
UserDefinedFault
KeypadDisable
Bulletin 294D
PT00DeviceIn
…
PT15DeviceIn
ZoneDataPt00
…
ZoneDataPt64
PT00
…
PT05
RunForward
RunReverse
Out00
…
Out05
JogForward
JogReverse
Pt00DeviceOut
…
Pt15DeviceOut
ResetFault
MotionDisable
ForceSnapshot
UserDefinedFault
KeypadDisable
Accel2
Decel2
BrakeRelease
Rockwell Automation Publication 290E-UM001B-EN-P - June 2012
249
Appendix C
Using DeviceLogix™
Element Type
Faults
Warnings
Bulletin 290D
OverloadTrip
PhaseLossTrip
UnderPowerTrip
SensorShortTrip
PhaseImbalTrip
NonVolMemoryTrip
JamTrip
StallTrip
UnderloadTrip
OutputShortTrip
UserDefinedTrip
HardwareFltTrip
OverloadWarning
UnderPowerWarn
PhaseImbalWarn
JamWarning
UnderLoadWarn
DNetPowerWarning
ConfigWarning
Bulletin 291D
OverloadTrip
PhaseLossTrip
UnderPowerTrip
SensorShortTrip
PhaseImbalTrip
NonVolMemoryTrip
JamTrip
StallTrip
UnderloadTrip
OutputShortTrip
UserDefinedTrip
HardwareFltTrip
OverloadWarning
UnderPowerWarn
PhaseImbalWarn
JamWarning
UnderLoadWarn
DNetPowerWarning
ConfigWarning
Bulletin 294D
OverloadTrip
PhaseShortTrip
UnderPowerTrip
SensorShortTrip
OverCurrentTrip
NonVolMemoryTrip
ParamSyncTrip
DCBusFaults
StallTrip
UnderloadTrip
GroundFault
RestartRetries
DriveHdwFault
OutputShortTrip
UserDefinedTrip
HardwareFltTrip
DriveParamInit
UnderPowerWarn
DNetPowerWarning
FanWarning
ConfigWarning
250
Rockwell Automation Publication 290E-UM001B-EN-P - June 2012
Element Type
Misc Data
Analog Input Point
Analog Output Point
Misc Analog Input Data
Analog Consumed Network Data
Analog Produced Network Data
Bulletin 290D
TripPresent
WarningPresent
RunningForward
RunningReverse
Ready
NetControlStatus
CurrentFlowing
KeyPadAuto
KeyPadOff
KeyPadHand
DisconnectStatus
ExplicitCnxn
IOConnection
ExplicitCnxnFault
IOCnxnFault
IOCnxnIdle
ZIP1Cnxn
ZIP1CnxnFault
ZIP2Cnxn
ZIP2CnxnFault
ZIP3Cnxn
ZIP3CnxnFault
ZIP4Cnxn
ZIP4CnxnFault
PhaseL1Current
PhaseL2Current
PhaseL3Current
AverageCurrent
%ThermalUtilized
SwitchedVolts
OutputSourceV
➊
UnswitchedVolts
SensorSourceV
➊
AnalogDeviceIn
ZoneDataAnalog0
ZoneDataAnalog1
ZoneDataAnalog2
ZoneDataAnalog3
ZoneDataAnalog4
ZoneDataAnalog5
ZoneDataAnalog6
ZoneDataAnalog7
AnalogDeviceOut
➊
IPS Units
Rockwell Automation Publication 290E-UM001B-EN-P - June 2012
PhaseL1Current
PhaseL2Current
PhaseL3Current
AverageCurrent
%ThermalUtilized
SwitchedVolts
OutputSourceV
➊
UnswitchedVolts
SensorSourceV
➊
AnalogDeviceIn
ZoneDataAnalog0
ZoneDataAnalog1
ZoneDataAnalog2
ZoneDataAnalog3
ZoneDataAnalog4
ZoneDataAnalog5
ZoneDataAnalog6
ZoneDataAnalog7
AnalogDeviceOut
Bulletin 291D
TripPresent
WarningPresent
RunningForward
RunningReverse
Ready
NetControlStatus
CurrentFlowing
KeyPadAuto
KeyPadOff
KeyPadHand
DisconnectStatus
ExplicitCnxn
IOConnection
ExplicitCnxnFault
IOCnxnFault
IOCnxnIdle
ZIP1Cnxn
ZIP1CnxnFault
ZIP2Cnxn
ZIP2CnxnFault
ZIP3Cnxn
ZIP3CnxnFault
ZIP4Cnxn
ZIP4CnxnFault
Using DeviceLogix™
Appendix C
BrakeStatus
ExplicitCnxn
IOConnection
ExplicitCnxnFault
IOCnxnFault
IOCnxnIdle
ZIP1Cnxn
ZIP1CnxnFault
ZIP2Cnxn
ZIP2CnxnFault
ZIP3Cnxn
ZIP3CnxnFault
ZIP4Cnxn
ZIP4CnxnFault
NetInputFreq
CommandFreq
Bulletin 294D
TripPresent
WarningPresent
RunningForward
RunningReverse
Ready
NetControlStatus
NetRefStatus
AtReference
KeyPadAuto
KeyPadOff
KeyPadHand
KeyPadJogging
DisconnectStatus
OutputFreq
CommandFreq
OutputCurrent
OutputVoltage
DCBusVoltage
SwitchedVolts
OutputSourceV
➊
UnswitchedVolts
SensorSourceV
➊
AnalogDeviceIn
ZoneDataAnalog0
ZoneDataAnalog1
ZoneDataAnalog2
ZoneDataAnalog3
ZoneDataAnalog4
ZoneDataAnalog5
ZoneDataAnalog6
ZoneDataAnalog7
AnalogDeviceOut
251
Appendix C
Using DeviceLogix™
Notes:
252
Rockwell Automation Publication 290E-UM001B-EN-P - June 2012
Rockwell Automation Support
Rockwell Automation provides technical information on the Web to assist you in using its products.
At http://www.rockwellautomation.com/support/
, you can find technical manuals, a knowledge base of FAQs, technical and application notes, sample code and links to software service packs, and a MySupport feature that you can customize to make the best use of these tools.
For an additional level of technical phone support for installation, configuration, and troubleshooting, we offer
TechConnect SM support programs. For more information, contact your local distributor or Rockwell Automation representative, or visit http://www.rockwellautomation.com/support/
.
Installation Assistance
If you experience a problem within the first 24 hours of installation, review the information that is contained in this manual. You can contact Customer Support for initial help in getting your product up and running.
United States or Canada 1.440.646.3434
Outside United States or Canada Use the Worldwide Locator at http://www.rockwellautomation.com/support/americas/phone_en.html
, or contact your local Rockwell
Automation representative.
New Product Satisfaction Return
Rockwell Automation tests all of its products to ensure that they are fully operational when shipped from the manufacturing facility. However, if your product is not functioning and needs to be returned, follow these procedures.
United States
Outside United States
Contact your distributor. You must provide a Customer Support case number (call the phone number above to obtain one) to your distributor to complete the return process.
Please contact your local Rockwell Automation representative for the return procedure.
Documentation Feedback
Your comments will help us serve your documentation needs better. If you have any suggestions on how to improve this document, complete this form, publication
RA-DU002
, available at http://www.rockwellautomation.com/literature/
.
Trademark List
Allen-Bradley, ArmorConnect, ArmorStart LT, ControlLogix, CompactLogix, PowerFlex, RSLinx, StepLogic, DeviceLogix, On-Machine, RSNetWorx, and RSLogix5000, are trademarks of
Rockwell Automation, Inc. Trademarks not belonging to Rockwell Automation are property of their respective companies
Rockwell Otomasyon Ticaret A.Ş., Kar Plaza İş Merkezi E Blok Kat:6 34752 İçerenköy, İstanbul, Tel: +90 (216) 5698400
www.rockwel lautomation.com
Power, Control and Information Solutions Headquarters
Americas: Rockwell Automation, 1201 South Second Street, Milwaukee, WI 53204-2496 USA, Tel: (1) 414.382.2000, Fax: (1) 414.382.4444
Europe/Middle East/Africa: Rockwell Automation NV, Pegasus Park, De Kleetlaan 12a, 1831 Diegem, Belgium, Tel: (32) 2 663 0600, Fax: (32) 2 663 0640
Asia Pacific: Rockwell Automation, Level 14, Core F, Cyberport 3, 100 Cyberport Road, Hong Kong, Tel: (852) 2887 4788, Fax: (852) 2508 1846
Rockwell Automation Publication 290D-UM001A-EN-P - June 2012
Copyright © 2012 Rockwell Automation, Inc. All rights reserved. Printed in the U.S.A.

Public link updated
The public link to your chat has been updated.
Advertisement
Key features
- Robust IP66 enclosure
- UL Listed, Suitable for Group Motor Applications
- UL Listed, At-motor disconnect switch
- Native support for DeviceNet
- 6 user configurable I/O points
- DeviceLogix
- Zone interlock protocol (ZIP)
- Optional internal power supply
- Optional electromechanical brake contactor
- Optional local control via Hand-Off-Auto keypad