Allen-Bradley 1336 WA018, WB009, WC009, WA070, WB035, WC035, WA115, WB110, WC085 Chopper Module Installation Instructions
Below you will find brief product information for 1336 WA018, 1336 WB009, 1336 WC009, 1336 WA070, 1336 WB035, 1336 WC035, 1336 WA115, 1336 WB110, 1336 WC085. These modules work in conjunction with customer-supplied braking resistors to increase the braking torque capability of Allen Bradley's 1336, 1336VT, 1336PLUS, 1336PLUSII, 1336FORCE or 1336IMPACT drives by 10% to 100%. The Chopper Module uses a Transistor Chopper on the DC Bus of the AC PWM drive that feeds a power resistor to transform regenerative electrical energy into thermal energy. The document provides specific instructions on how to select, configure, and install dynamic braking for your application. You can find information regarding module selection, dynamic brake resistor selection, wiring diagrams, and setup instructions.
Advertisement
Advertisement
Installation Instructions
Allen-Bradley
1336/1336VT
1336 PLUS/PLUS II/FORCE/IMPACT
Chopper Module
Cat. Nos. 1336 -WA018, WB009
&
WC009
-WA070, WB035
&
WC035
-WA115, WB110
&
WC085
Table of Contents
Selecting a Chopper Module and the Dynamic Brake Resistance . . . . . . . . . . . . . . . . . . . 6
WA018, WB009 and WC009 Terminal Block, Fuse and Jumper Locations . . . . . . . . . . . . 28
WA070, WB035 and WC035 Terminal Block, Fuse and Jumper Locations . . . . . . . . . . . . 29
WA115, WB110 and WC085 Terminal Block, Fuse and Jumper Locations . . . . . . . . . . . . 30
WA018, WB009 and WC009
Single Brake Wiring Scheme 1336F – BRF and 1336S – BRF Drives Only . . . . . . . . . . . . 31
Multiple Brake Wiring Scheme 1336F – BRF and 1336S – BRF Drives Only . . . . . . . . . . 32
WA070, WB035 and WC035 — WA115, WB110 and WC085
WA018, WB009 and WC009
WA070, WB035 and WC035 — WA115, WB110 and WC085
1336-5.65 — March, 2007
2
Heavy Duty Dynamic Braking
What This Option Provides
The brake chopper module is an open style assembly that together with customer supplied braking resistors can increase the braking torque capability of a 1336, 1336VT, 1336PLUS, 1336PLUSII, 1336FORCE or
1336IMPACT drive from approximately 10 to 100%.
Where This Option is Used
B003-B250 and C003-C250 1336 Drives.
B003-B250 1336VT Drives.
AQF05-A125, BRF05-B600 and CWF10-C600 1336PLUS and
1336PLUSII Drives.
A001-A125, B001-B600 and C001-C650 1336FORCE and 1336IMPACT
Drives.
1336 — W B 009
1336
1336VT
1336PLUS
1336PLUS II
1336FORCE
Brake Chopper Module
Voltage Rating
A = 230VAC
Continuous Amp Rating
018 = 375VDC, 18.0ADC
070 = 375VDC, 70.0ADC
115 = 375VDC, 115.0ADC
B = 380/415/460VAC 009 = 750VDC, 9.0ADC
035 = 750VDC, 35.0ADC
110 = 750VDC, 110.0ADC
C = 575VAC 009 = 935VDC, 9.0ADC
035 = 935VDC, 35.0ADC
085 = 935VDC, 85.0ADC
What These Instructions
Contain
How Dynamic Braking Works
These instructions contain the necessary information to select, configure and install dynamic braking. By completing Selecting a Chopper Module
and the Maximum Dynamic Brake Resistance first you will be able to determine:
1. Whether or not dynamic braking is required for your application.
2. If dynamic braking is required, the rating and quantity of chopper modules required as well as the size and type of braking resistors required.
When an induction motor’s rotor is turning slower than the synchronous speed set by the drive’s output power, the motor is transforming electrical energy obtained from the drive into mechanical energy available at the drive shaft of the motor. This process is referred to as motoring. When the rotor is turning faster than the synchronous speed set by the drive’s output power, the motor is transforming mechanical energy available at the drive shaft of the motor into electrical energy that can be transferred back into the utility grid. This process is referred to as regeneration.
Most AC PWM drives convert AC power from the fixed frequency utility grid into DC power by means of a diode rectifier bridge or controlled SCR bridge before it is inverted into variable frequency AC power. Diode and
SCR bridges are cost effective, but can only handle power in the motoring direction. Therefore, if the motor is regenerating, the bridge cannot conduct
1336-5.65 — March, 2007
How the Chopper Module
Works
Heavy Duty Dynamic Braking
3
the necessary negative DC current, the DC bus voltage will increase and cause a Bus Overvoltage trip at the drive.
Expensive bridge configurations use SCRs or transistors that can transform
DC regenerative electrical energy into fixed frequency utility electrical energy. A more cost effective solution is to provide a Transistor Chopper on the DC Bus of the AC PWM drive that feeds a power resistor which transforms the regenerative electrical energy into thermal energy. This is generally referred to as Dynamic Braking.
Figure 1 shows a simplified schematic of a Chopper Module with Dynamic
Brake Resistor. The Chopper Module is shown connected to the positive and negative conductors of an AC PWM Drive. The two series connected
Bus Caps are part of the DC Bus filter of the AC Drive.
A Chopper Module contains five significant power components:
Protective fuses are sized to work in conjunction with a Crowbar SCR.
Sensing circuitry within the Chopper Transistor Voltage Control determines if an abnormal conditions exist within the Chopper Module, such as a shorted Chopper Transistor. When an abnormal condition is sensed, the
Chopper Transistor Voltage Control will fire the Crowbar SCR, shorting the DC Bus, and melting the fuse links. This action isolates the Chopper
Module from the DC Bus until the problem can be resolved.
The Chopper Transistor is an Insulated Gate Bipolar Transistor (IGBT). The
Chopper Transistor is either ON or OFF, connecting the Dynamic Brake
Resistor to the DC Bus and dissipating power, or isolating the resistor from the DC Bus. There are several transistor ratings that are used in the various
Chopper Module ratings. The most important rating is the collector current rating of the Chopper Transistor that helps to determine the minimum ohmic value used for the Dynamic Brake Resistor.
Chopper Transistor Voltage Control (hysteretic voltage comparator) regulates the voltage of the DC Bus during regeneration. The average values of DC Bus voltages are:
• 375V DC (for 230V AC input)
• 750V DC (for 460V AC input)
• 937.5V DC (for 575V AC input)
Voltage dividers reduce the DC Bus voltage to a value that is usable in signal circuit isolation and control. The DC Bus feedback voltage from the voltage dividers is compared to a reference voltage to actuate the Chopper
Transistor.
The Freewheel Diode (FWD), in parallel with the Dynamic Brake Resistor, allows any magnetic energy stored in the parasitic inductance of that circuit to be safely dissipated during turn off of the Chopper Transistor.
1336-5.65 — March, 2007
4
Heavy Duty Dynamic Braking
Figure 1
Schematic of Chopper Module and Dynamic Brake Resistor
+ DC Bus
Fuse
Bus Caps
To
Voltage Dividers
Dynamic
Brake
Resistor
FWD
Voltage
Divider
To
Voltage
Control
Chopper
Transistor
Signal
Common
Chopper Transistor
Voltage Control
FWD
Voltage
Divider
To
Voltage
Control
Crowbar
SCR
Bus Caps
To
Voltage
Control
Fuse
To
Crowbar
SCR Gate
– DC Bus
Chopper Modules are designed to be applied in parallel if the current rating is insufficient for the application. One Chopper Module is the designated
Master Chopper Module, while any other Modules are the designated
Follower Modules.
Two lights are provided on the front of the enclosure to indicate operation.
• DC Power light illuminates when DC power has been applied to the
Chopper Module.
• Brake On light flickers when the Chopper Module is operating
(chopping).
1336-5.65 — March, 2007
How to Select a Chopper
Module and Dynamic Brake
Resistor
Heavy Duty Dynamic Braking
5
As a rule, a Chopper Module can be specified when regenerative energy is dissipated on an occasional or periodic basis. In general, the motor power rating, speed, torque, and details regarding the regenerative mode of operation will be needed in order to estimate what Chopper Module rating and Dynamic Brake Resistor value to use. If a drive is consistently operating in the regenerative mode of operation, serious consideration should be given to equipment that will transform the electrical energy back to the fixed frequency utility.
In order to select the appropriate Chopper Module and Dynamic Brake
Resistor for your application, the following data must be calculated.
Peak Regenerative Power of the Drive (Expressed in watts of power.)
This value is used to determine:
• The minimum current rating of the Chopper Module
Choose the actual current rating from the selection tables.
• The estimated maximum ohmic value of the Dynamic Brake Resistor
If this value is greater than the maximum imposed by the peak regenerative power of the drive, the drive can trip off due to transient
DC Bus overvoltage problems.
Minimum Dynamic Brake Resistance
If a Dynamic Brake Resistance value that is less than the minimum imposed by the choice of the Chopper Module is applied, damage can occur to the
Chopper Transistor.
Dynamic Brake Resistor’s Allowable Ohmic Value Range
(Use the Chopper Module current rating to determine this range.)
These values range between the minimum value set by the Chopper
Transistor current rating and the maximum value set by the peak regenerative power developed by the drive in order to decelerate or satisfy other regenerative applications.
Wattage Rating of the Dynamic Brake Resistor
This rating is estimated by applying what is known about the drive’s motoring and regenerating modes of operation. The average power dissipation of the regenerative mode must be estimated and the wattage of the Dynamic Brake Resistor chosen to be greater than the average regenerative power dissipation of the drive.
Dynamic Brake Resistors with large thermodynamic heat capacities, defined as thermal time constants less than 5 seconds, are able to absorb a large amount of energy without the temperature of the resistor element exceeding the operational temperature rating. Thermal time constants in the order of 50 seconds and higher satisfy the criteria of large heat capacities for these applications. If a resistor has a small heat capacity, the temperature of the resistor element could exceed maximum temperature limits during the application of pulse power to the element.
1336-5.65 — March, 2007
6
Heavy Duty Dynamic Braking
Selecting a Chopper Module and the Maximum Dynamic
Brake Resistance
The following calculations are demonstrated using The International
System of Units (SI).
Gather the following information:
• Power rating from motor nameplate in watts, kilowatts, or horsepower
• Speed rating from motor nameplate in rpm or rps (radians per second)
• Motor inertia and load inertia in kg-m
2
or lb-ft
2
• Gear ratio (GR) if a gear is present between the motor and load
• Motor shaft speed, torque, and power profile of the drive application
Figure 2 shows the speed, torque, and power profiles of the drive as a function of time for a particular cyclic application that is periodic over t
4 seconds. The desired time to decelerate is known or calculable and is within the drive performance limits. In Figure 2, the following variables are defined:
ω
(t)
= Motor shaft speed in radians per second
(rps)
ω
✕
Rad s
=
2
πN
60
N(t)
= Motor shaft speed in Revolutions Per Minute
(RPM)
T(t)
= Motor shaft torque in Newton-meters
1.0 lb-ft = 1.355818 N-m
P(t)
= Motor shaft power in watts
1.0 HP = 746 watts
-Pb
= Motor shaft peak regenerative power in watts
1336-5.65 — March, 2007
Heavy Duty Dynamic Braking
Figure 2
Application Speed, Torque and Power Profiles
7
ω
(t)
ω
b
ω
o
0
T(t) t
1 t
2 t
3 t
4 t
1
+ t
4 t t
P(t)
0 t
1 t
2 t
3 t
4 t
1
+ t
4
-Pb
0 t
1 t
2 t
3 t
4 t
1
+ t
4 t
1336-5.65 — March, 2007
8
Heavy Duty Dynamic Braking
Step 1 — Determine Gear Ratio
GR=
Turns of Load
Turns of Motor
GR = _________
Step 2 — Determine the Total Inertia
J
T
= J m
+ GR
2
✕
J
L
J
T
J
L
= Total inertia reflected to the motor shaft (kg-m
= Load inertia (kg-m
2
or lb-ft
2
)
1.0 lb-ft
2
= 0.04214011 kg-m
2
2
J m
= Motor inertia (kg-m
2
or lb-ft
2
)
GR = Gear ratio of any gear between motor and load
(dimensionless)
or lb-ft
2
)
J
T
= [ + ] ✕ [ ]
J
T
= __________ kg-m
2
or lb-ft
2
Step 3 — Calculate the Peak Braking Power
P b
=
J
T
✕
ω
b
(
ω
b
-
ω
o
)
(t
3
- t
2
)
J
T
ω
b
ω
o
= Total inertia reflected to the motor shaft (kg-m
2
)
= Rated angular rotational speed (Rad / s = 2
πN
b
/ 60)
= Angular rotational speed, less than rated speed down to zero (Rad / s)
N b
= Rated motor speed (RPM)
t
3
- t
2
= Deceleration time from
ω
b
to
ω
o
(seconds)
P b
= Peak braking power (watts)
1.0 HP = 746 watts
P b
=
[
[
✕
(
–
-
]
)]
P b
= __________watts
Compare the peak braking power to that of the rated motor power. If the peak braking power is greater that 1.5 times that of the motor, then the deceleration time (t
3
- t
2
) needs to be increased so that the drive does not go into current limit.
1336-5.65 — March, 2007
Heavy Duty Dynamic Braking
Step 4 — Calculate the Maximum Dynamic Brake Resistance Value
R db1
=
V d
2
P b
R db1
= Maximum allowable value for the dynamic brake resistor (ohms)
V d
P b
= DC Bus voltage the chopper module regulates to
(375V DC, 750V DC, or 937.5V DC)
= Peak braking power calculated in Step 2 (watts)
R db1
=
[
[
✕
]
]
R db1
= _________ ohms
9
The choice of the Dynamic Brake resistance value should be less than the value calculated in Step 4. If the resistance value is greater than the value calculated in Step 4, the drive can trip on DC Bus overvoltage.
Step 5 — Calculate the Minimum Chopper Module Current Rating
I d1
=
V d
R db1
I d1
V d
= Minimum current flow through Chopper Transistor
= Value of DC Bus voltage chosen in Step 3
R db1
= Value of Dynamic Brake Resistor calculated in Step 3
I d1
=
[
[ ]
]
I d1
= __________ amps
The value of I d1
sets the minimum current rating for the Chopper Module.
When choosing a Chopper Module, the current rating for the Chopper
Transistor must be greater than or equal to the value calculated for I d1
.
Step 6 — Calculate the Minimum Dynamic Brake Resistor Value
R db2
=
V d
0.75
✕
I d2
R db2
= Minimum ohmic value of the Dynamic Brake Resistor
V d
I d2
= Value of DC Bus voltage chosen in Step 3
= Value of Chopper Module current rating
R db2
=
[
[ ]
]
R db2
= __________ ohms
This step calculates the minimum resistance value that the Dynamic Brake
Resistor can have. If a lower resistance were to be used with the Chopper
Module of choice, the IGBT could be damaged from overcurrent.
1336-5.65 — March, 2007
10
Heavy Duty Dynamic Braking
Step 7 — Choose the Dynamic Brake Resistance Value
Use to Table 1a, 2a, or 3a to choose the correct table based on the Chopper
Module’s regulating voltage.
1. Find the column that lists the value of Dynamic Brake Resistance for the various Dynamic Brake Resistor assemblies.
2. Choose the resistor value that lies between R db1
and R db2
.
Preferred resistance values are as close R db1
as possible.
Step 8 — Estimate the Minimum Wattage Requirements for the Dynamic
Brake Resistor
It is assumed that the application exhibits a periodic function of acceleration and deceleration. If (t
3
- t
2
) equals the time in seconds necessary for deceleration from rated speed to 0 speed, and t
4 is the time in seconds before the process repeats itself, then the average duty cycle is (t
3
- t
2
)/t
4
. The power as a function of time is a linearly decreasing function from a value equal to the peak regenerative power to 0 after (t
3
- t
2
) seconds have elapsed.
The average power regenerated over the interval of (t
3
- t
2
) seconds is P b
/2.
The average power in watts regenerated over the period t
4 is:
P av
=
[t
3
- t
2
] t
4
✕
P b
2
ω
b
+
ω
o
(
ω
)
b
P av
= Average dynamic brake resister dissipation (watts)
t
3
- t
2
= Deceleration time from
ω
b
to
ω
o
(seconds)
= Total cycle time or period of process (seconds)
t
4
P b
ω
b
ω
o
= Peak braking power (watts)
= Rated motor speed (Rad / s)
= A lower motor speed (Rad / s)
P av
=
[
[
–
]
]
✕
[
2
]
P av
= _________ watts
Example Calculation
The Dynamic Brake Resistor power rating, in watts, that is chosen should be equal to or greater than the value calculated in Step 8.
Application Information
A 100 HP, 460 Volt motor and drive is accelerating and decelerating as depicted in Figure 2.
• Cycle period (t
4
) is 60 seconds
• Rated speed is 1785 RPM
• Deceleration time from rated speed to 0 speed is 6.0 seconds
• Motor load can be considered purely as an inertia
• All power expended or absorbed by the motor is absorbed by the motor and load inertia
• Load inertia is directly coupled to the motor
• Motor inertia plus load inertia is given as 9.61 kg-m
2
1336-5.65 — March, 2007
Heavy Duty Dynamic Braking
11
Calculate Application Values
Use the Application Information to calculate the necessary values to choose an acceptable Chopper Module and Dynamic Brake Resistor.
Rated Power of Motor = 100 HP
× 746 = 74.6 kW
This information is given and must be known before the calculation process begins. If this rating is given in horsepower, convert to watts before using in the equations.
Rated Speed = 1785 RPM = 2
π
× 1785/60 = 186.93 Rad/s =
ω
This information is given and must be known before the calculation process begins. If this rating is given in RPM, convert to radians per second before using in the equations.
Total Inertia = 9.61 kg-m
2
= J
T
If this value is given in lb-ft
2
or Wk
2
, convert to kg-m
2
before using in the equations. Total inertia is given and does not need further calculations as outlined in Step 2.
Deceleration Time = 6.0 seconds = (t
3
- t
2
)
Period of Cycle = 60 seconds = t
4
DC Bus Voltage = 750 Volts = V d
This is known because the drive is rated at 460 Volts rms.
If a drive is rated 230 Volts rms, V d
= 375 Volts.
If a drive is rated 575 Volts rms, V d
= 937.5 Volts.
Select the Correct Chopper Module
Peak Braking Power = J
T
ω
2
/(t
3
- t
2
) = 55.96 kW = P b
This is 75% rated power and is less than the maximum drive limit of 150% current limit. This calculation is the result of Step 3 and determines the peak power that must be dissipated by the Dynamic Brake Resistor.
Maximum Dynamic Brake Resistance = V d
2
/P b
= 10.5 ohms = R db1
This calculation is the result of Step 4 and determines the maximum ohmic value of the Dynamic Brake Resistor. Note that a choice of V d
= 750 Volts
DC was made based on the premise that the drive is rated at 460 Volts.
Minimum Current Flow = V d
/R db1
= 74.62 amps = I d1
This calculation is the result of Step 5. This is the minimum value of current that will flow through the Dynamic Brake Resistor when the Chopper
Module Transistor is turned on. Refer to Table 2b in the Installation
Instructions for the Brake Chopper Module, Publication 1336-5.65. Choose the Brake Chopper Module whose peak current capacity is greater than
74.62 amps. The correct choice must be the WB035 Chopper Module because it has a current rating greater than 74.62 amps.
1336-5.65 — March, 2007
12
Heavy Duty Dynamic Braking
Ordering Resistors
Minimum Dynamic Brake Resistance = V d
/I d2
= 10 ohms = R db2
This is the result of Step 6 and is also included as a value in Table 2b.
Choose the 10.4 ohms resistor, type T10F4R2K97, rated at 2.97 kW from
Table 2a.
Average Power Dissipation = [(t
3
- t
2
)/t
4
]P b
/2 = 2.8 kW = P av
This is the result of calculating the average power dissipation as outlined in Step 8. Verify that the power rating of the Dynamic Brake Resistor chosen in Step 7 is greater than the value calculated in Step 8. Note that the actual resistor wattage rating is much greater than what is needed. The type
T10F4R2K97 assembly is the best choice based on resistance and wattage values.
Resistor assemblies listed are manufactured by IPC Power Resistors
International Incorporated and Powerohm Resistors Incorporated and have been tested with Allen-Bradley Chopper Modules.
Available resistor assembly options include an overtemperature switch (see
Wiring Schemes), auxiliary terminal blocks and custom enclosures.
For purchase information, contact:
IPC Power Resistors International Inc.
167 Gap Way
Erlanger, KY 41018
Tel. 859-282-2900 Fax. (859) 282-2904 www.ipcresistors.com
Powerohm Resistors Inc.
5713 13th Street
Katy, TX 77493
Tel. 800-838-4694 Fax. (859) 384-8099 www.powerohm.com
1336-5.65 — March, 2007
Heavy Duty Dynamic Braking
13
Chopper Module Selection
Ohms
181
181
181
181
196
196
196
196
181
181
237
237
196
196
237
237
237
237
283
283
283
283
342
342
283
283
342
342
342
342
364
364
364
364
439
439
364
364
439
439
439
439
546
546
546
546
615
615
546
546
615
615
615
615
695
695
695
695
956
956
956
956
956
695
695
Watts
1987
2950
2965
4460
620
822
1385
2055
2068
3108
473
628
1057
1570
1577
2373
890
1180
1096
1645
614
817
1372
2043
2048
3089
1065
1588
1590
2402
329
435
734
1088
254
339
568
847
848
1281
477
635
605
915
316
424
707
1055
1059
1601
553
825
832
1258
180
242
404
602
242
400
597
605
915
248
333
Catalog
555-6A
555-6
550-6A
550-6
442-5A
442-5
445-5A
445-5
440-5A
440-5
442-4A
442-4
445-4A
445-4
440-4A
440-4
552-6A
552-6
440-3A
440-3
552-5A
552-5
555-5A
555-5
550-5A
550-5
555-4A
555-4
550-4A
550-4
442-3A
442-3
445-3A
445-3
442-2A
442-2
445-2A
445-2
440-2A
440-2
552-4A
552-4
445-1
440-1
552-3A
552-3
555-3A
550-3A
555-3
550-3
555-2A
550-2A
555-2
550-2
442-1A
442-1
445-1A
440-1A
552-1
555-1A
550-1A
555-1
550-1
552-2A
552-2
Manufacturer
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
Watt
Seconds
53519
83096
83096
130669
19248
19248
30985
77853
77853
77775
5321
15649
25351
38496
39748
61422
20970
33567
22534
36306
19092
19092
30046
48120
47338
76680
24412
38496
38496
39514
3677
3677
14397
23473
2973
2973
2973
11267
9389
24647
3990
15336
13615
13302
5634
12050
12050
23004
23004
36619
7981
7981
7981
15258
4225
4225
4225
13302
4225
6260
6260
6260
6260
4929
4929
Ohms
100
100
100
100
100
100
100
100
100
100
110
110
100
100
110
110
110
110
117
117
117
117
117
117
117
117
125
125
125
125
125
125
125
125
125
125
125
125
128
125
125
125
128
128
128
128
150
150
150
128
150
150
150
150
150
150
150
150
154
154
154
154
154
154
150
Manufacturer
IPC
IPC
IPC
IPC
IPC
IPC
Powerohm
Powerohm
Powerohm
Powerohm
Powerohm
Powerohm
Powerohm
Powerohm
Powerohm
Powerohm
Powerohm
Powerohm
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
Powerohm
Powerohm
IPC
IPC
IPC
Powerohm
Powerohm
Powerohm
Powerohm
Powerohm
IPC
IPC
IPC
IPC
IPC
IPC
Powerohm
Powerohm
Powerohm
IPC
Powerohm
IPC
Powerohm
IPC
IPC
IPC
IPC
IPC
IPC
Powerohm
Powerohm
Powerohm
Powerohm
Powerohm
Powerohm
Powerohm
Powerohm
Powerohm
Watt
Seconds
35300
55000
89800
130800
125700
211600
205200
285500
275000
273100
7511
7511
18779
18779
18779
46947
5200
20000
7950
10100
10600
12500
15800
18600
14300
20800
130903
161600
277800
208131
208131
212513
341300
344600
138024
6500
18300
25200
32863
44200
51954
68700
192400
333400
329100
22065
32863
55397
86382
82626
12100
30000
54200
53500
82500
132000
136500
196200
6416
6416
6416
16431
16431
16431
7700
1336-5.65 — March, 2007
Catalog
222-2A
222-2
225-2A
225-2
220-2A
220-2
PF100R400W
PF100R800W
PF100R1K20
PF100R1K60
PF100R2K00
PF100R2K40
PF100R2K80
PF100R3K60
PF100R4K00
PF100R4K80
PF100R5K20
PF100R5K60
555-7A
PF125R3K60
PF125R4K00
550-7A
555-7
550-7
PF125R7K20
PF125R7K60
T117R300W
T117R600W
T117R900W
T117R1K2
T117R1K5
T117R2K1
T117R2K7
T117R3K0
PF150R4K00
PF150R5K20
PF150R5K60
442-6A
442-6
445-6A
445-6
440-6A
440-6
PF125R400W
PF125R800W
PF125R1K20
552-7A
PF125R1K60
552-7
PF125R2K00
222-1A
222-1
225-1A
225-1
220-1A
220-1
PF150R400W
PF150R800W
PF150R1K20
PF150R1K60
PF150R2K00
PF150R2K40
PF150R2K80
PF150R3K20
PF150R3K60
Watts
1200
1600
2000
2400
2800
3600
4000
4800
5200
5600
255
338
570
845
850
1278
400
800
300
600
900
1200
1500
2100
2700
3000
3095
3600
4000
4620
4625
6994
7200
7600
4395
400
800
1200
1386
1600
1850
2000
4000
5200
5600
874
1162
1951
2906
2912
800
1200
1600
2000
2400
2800
3200
3600
182
242
408
604
610
913
400
14
Heavy Duty Dynamic Braking
Ohms
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
77
77
81
81
81
80
85
81
81
81
85
85
85
85
85
85
85
85
85
85
85
85
85
85
85
85
85
85
85
85
85
85
85
85
97
97
97
97
97
97
97
100
100
100
97
97
97
1336-5.65 — March, 2007
Watts
2100
2700
3000
3600
4000
4200
4500
5700
400
600
800
900
1200
1200
1500
2000
7600
8000
9000
9300
300
600
11200
1389
1837
3102
4592
4629
6944
300
5200
5600
6800
6801
6854
7200
10000
10285
1654
2000
2056
2720
2800
3600
4592
326
400
438
730
800
1089
1094
1200
1600
1200
1500
2100
2700
3000
3600
4200
6800
8000
9200
300
600
900
Manufacturer
Powerohm
IPC
Powerohm
IPC
IPC
Powerohm
IPC
Powerohm
IPC
IPC
IPC
IPC
Powerohm
IPC
IPC
IPC
Powerohm
Powerohm
Powerohm
IPC
IPC
Powerohm
Powerohm
IPC
Powerohm
IPC
IPC
IPC
IPC
IPC
IPC
IPC
Powerohm
Powerohm
IPC
IPC
IPC
IPC
IPC
Powerohm
IPC
IPC
Powerohm
IPC
IPC
Powerohm
Powerohm
IPC
Powerohm
IPC
IPC
Powerohm
Powerohm
IPC
Powerohm
Powerohm
Powerohm
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
Watt
Seconds
19100
24600
22100
18500
229300
25100
23300
29400
6500
10900
16000
18500
13700
44600
17500
102600
923100
34975
55084
55319
224640
221432
221276
8530
379200
383300
588500
231135
231135
578500
934100
361490
545700
897500
209000
230000
8210
10600
57901
109000
57588
92016
179500
173600
233795
9076
6900
9076
23004
17200
36384
36384
46200
75400
450100
692400
676300
10300
13400
13800
16500
20800
15400
19100
16800
22400
19100
Catalog
PF80R400W
T80R600W
PF80R800W
T80R900W
T80R1K2
PF80R1K20
T80R1K5
PF80R2K00
T80R2K1
T80R2K7
T80R3K0
T80R3K6
PF80R4K00
T80R4K2
T80R4K5
T80R5K7
PF85R5K20
PF85R5K60
PF85R6K80
555-8
550-8A
PF85R7K20
PF85R10K0
550-8
PF85R11K2
442-7A
442-7
445-7A
445-7
440-7A
440-7
T80R300W
PF80R7K60
PF80R8K00
T80R9K0
T80R9K3
T77R300W
T77R600W
222-3A
PF85R400W
222-3
225-3A
PF85R800W
220-3A
225-3
PF85R1K20
PF85R1K60
220-3
PF85R2K00
552-8A
552-8
PF85R2K80
PF85R3K60
555-8A
PF100R6K80
PF100R8K00
PF100R9K20
T97R300W
T97R600W
T97R900W
T97R1K2
T97R1K5
T97R2K1
T97R2K7
T97R3K0
T97R3K6
T97R4K2
Ohms
56
56
56
56
59
59
59
56
60
59
59
59
60
60
60
60
56
55
55
52
52
52
60
60
60
60
60
60
60
60
60
60
60
65
65
65
65
65
65
65
65
65
70
70
65
70
70
70
70
70
70
70
70
70
77
77
70
77
77
77
77
77
77
77
77
77
77
Manufacturer
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
Powerohm
IPC
Powerohm
IPC
IPC
IPC
Powerohm
Powerohm
Powerohm
Powerohm
Powerohm
IPC
Powerohm
IPC
Powerohm
IPC
IPC
IPC
Powerohm
IPC
IPC
Powerohm
IPC
Powerohm
Powerohm
Powerohm
Powerohm
Powerohm
Powerohm
Powerohm
Powerohm
IPC
IPC
Powerohm
IPC
IPC
IPC
Powerohm
IPC
Powerohm
Powerohm
Powerohm
Powerohm
Powerohm
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
Powerohm
Watt
Seconds
64161
64161
99762
61344
154455
245062
245375
245375
28000
164000
659400
448000
690800
10094
25038
39201
21400
13700
16400
20800
128300
18500
22000
269300
178100
291700
712100
709900
690800
10300
8700
13000
388094
8000
30800
10400
28600
65400
25000
62000
153900
76680
144048
308300
189665
297173
295765
1249300
482144
9500
23600
59300
138900
141100
17900
20800
16400
19100
23800
21300
28100
24200
22400
28700
209000
230000
5700
Catalog
T60R4K5
T60R6K9
PF60R8K00
T60R11K0
PF60R15K8
222-4A
222-4
225-4A
225-4
220-4A
220-4
442-8A
442-8
445-8A
445-8
440-8A
PF65R3K60
PF65R4K00
PF65R7K20
PF65R7K60
PF65R16K6
T60R300W
PF60R400W
T60R600W
PF60R800W
T60R900W
T60R1K2
T60R1K5
PF60R2K00
T60R2K7
T60R3K6
PF60R4K00
440-8
PF55R400W
PF55R800W
PF52R400W
PF52R800W
PF52R1K20
PF70R800W
PF70R1K20
PF70R2K40
552-9A
552-9
PF70R4K80
555-9A
555-9
550-9A
PF70R9K60
550-9
PF65R400W
PF65R800W
PF65R1K20
PF65R2K00
PF65R2K40
T77R900W
T77R1K2
T77R1K5
T77R2K1
T77R2K7
T77R3K0
T77R3K6
T77R4K2
T77R4K5
T77R5K7
T77R9K0
T77R9K3
PF70R400W
Watts
1576
1577
2384
2010
2657
4490
6642
6702
4500
6900
8000
11000
15896
473
631
1056
10045
400
800
400
800
1200
800
900
1200
1500
2000
2700
3600
4000
3600
4000
7200
7600
16640
300
400
600
9600
12489
400
800
1200
2000
2400
800
1200
2400
2527
3303
4800
5643
8258
8424
3600
4200
4500
5700
9000
9300
400
900
1200
1500
2100
2700
3000
Ohms
44
44
44
44
44
44
44
44
45
45
45
44
45
45
45
45
44
44
44
44
44
44
45
45
45
45
45
45
45
45
45
45
45
45
45
45
45
45
48
48
48
48
48
48
48
48
48
48
48
48
48
48
48
48
48
48
48
52
52
52
52
52
52
52
52
52
52
Manufacturer
IPC
IPC
IPC
IPC
IPC
IPC
IPC
Powerohm
Powerohm
Powerohm
Powerohm
IPC
Powerohm
IPC
Powerohm
Powerohm
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
Powerohm
IPC
Powerohm
Powerohm
IPC
IPC
Powerohm
IPC
IPC
Powerohm
IPC
Powerohm
IPC
IPC
IPC
Powerohm
IPC
IPC
IPC
IPC
IPC
IPC
Powerohm
Powerohm
Powerohm
Powerohm
Powerohm
Powerohm
Powerohm
Powerohm
Powerohm
Powerohm
IPC
Powerohm
IPC
Watt
Seconds
39500
57700
126100
121670
197900
190604
79000
300900
125000
370410
359000
409420
409420
656000
563362
8800
124800
28100
22000
19800
197177
26600
120810
308128
12300
15800
30828
30828
19100
49529
24900
124800
477000
184031
793400
775400
305624
302807
86200
23800
131000
131000
359000
656000
716000
26400
17500
20800
61600
16600
98500
23300
21100
28000
111200
149600
142400
233400
352900
569300
577000
598400
621800
583500
13100
9600
16500
Catalog
T45R6K0
555-10A
T45R12K6
555-10
550-10A
T45R19K1
550-10
PF44R400W
PF44R800W
PF44R1K20
PF44R2K00
442-9A
PF44R2K80
442-9
PF44R3K60
PF44R4K00
T45R300W
T45R600W
222-5A
222-5
T45R1K2
225-5A
T45R1K5
220-5A
225-5
T45R2K1
T45R2K7
T45R3K0
220-5
T45R3K6
552-10A
552-10
PF44R5K60
445-9A
PF44R7K20
PF44R7K60
445-9
440-9A
PF48R800W
T48R900W
T48R1K2
PF48R1K20
T48R1K5
PF48R2K00
T48R2K7
T48R3K0
T48R3K6
PF48R3K60
T48R4K2
T48R5K67
T48R6K6
T48R12K6
T48R19K1
T48R20K4
PF52R1K60
PF52R2K40
PF52R2K80
PF52R3K20
PF52R4K80
PF52R5K60
PF52R6K00
PF52R9K60
PF52R13K3
PF52R18K6
T48R300W
PF48R400W
T48R600W
Watts
800
1200
2000
2561
2800
3381
3600
4000
6000
8672
12600
12846
12943
19100
19427
400
5600
5720
7200
7600
8454
8537
2066
2100
2700
3000
3125
3600
3883
5138
300
600
617
827
1200
1378
1500
2056
3600
4200
5670
6600
12600
19100
20400
800
900
1200
1200
1500
2000
2700
3000
3600
6000
9600
13312
18625
300
400
600
1600
2400
2800
3200
4800
5600
Ohms
32
32
32
32
34
34
34
32
34
34
34
34
34
34
34
34
32
32
32
32
32
32
35
34
34
34
36
36
36
35
36
36
36
36
36
36
36
36
40
36
36
36
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
44
44
44
44
40
40
Heavy Duty Dynamic Braking
15
Manufacturer
IPC
IPC
IPC
IPC
Powerohm
IPC
Powerohm
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
Powerohm
Powerohm
Powerohm
Powerohm
Powerohm
Powerohm
IPC
IPC
IPC
Powerohm
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
Powerohm
IPC
Powerohm
IPC
IPC
Powerohm
Powerohm
IPC
Powerohm
IPC
Powerohm
IPC
Powerohm
IPC
IPC
IPC
Powerohm
Powerohm
Powerohm
Powerohm
Powerohm
IPC
Powerohm
Powerohm
IPC
Powerohm
Powerohm
IPC
IPC
Powerohm
IPC
Powerohm
Powerohm
Watt
Seconds
1017000
1048000
1591000
13800
11400
17500
41100
35054
30100
93000
98600
262000
285000
456000
456000
990000
449907
1064100
1321116
157272
249757
14700
19100
25100
103200
99000
79200
395700
399000
414500
316618
449907
19100
55162
70600
28100
91800
88573
105000
448800
727000
309000
414500
333000
440000
521000
638700
574000
568000
1202000
1130600
12900
32400
77000
483600
369388
495000
1263600
10900
8000
35900
14300
17300
83400
18500
114700
277000
Catalog
T34R2K4
T34R3K6
T34R4K0
T34R8K0
T34R9K0
T34R13K0
T34R15K0
T34R17K0
T34R18K0
T34R19K0
T34R26K0
T32R300W
PF32R400W
T32R600W
PF32R800W
222-6A
PF36R1K60
PF36R2K00
PF36R2K40
PF36R4K00
PF36R4K40
PF36R9K21
555-11A
555-11
550-11A
PF36R19K0
550-11
552-11A
552-11
T34R300W
T34R900W
T34R1K8
T32R900W
222-6
PF32R1K20
T32R1K5
PF32R1K60
225-6A
T40R4K0
PF40R4K00
PF40R6K00
T40R10K0
PF40R10K2
T40R11K0
PF40R11K4
T40R16K0
PF40R16K0
T40R17K0
T40R19K0
T40R22K0
PF40R22K8
PF36R400W
PF36R800W
PF36R1K20
PF44R11K2
440-9
PF44R15K0
PF44R23K2
T40R300W
PF40R400W
PF40R800W
T40R900W
T40R1K2
PF40R1K20
T40R1K8
PF40R2K00
PF40R3K20
1336-5.65 — March, 2007
Watts
18000
19000
26000
300
400
600
800
875
2400
3600
4000
8000
9000
13000
15000
17000
900
1162
1200
1500
1600
1955
16863
19044
24978
5058
6423
300
900
1800
1600
2000
2400
4000
4400
9216
11298
16517
17000
19000
22000
22858
400
800
1200
4000
4000
6000
10000
10240
11000
11429
16000
16000
800
900
1200
1200
1800
2000
3200
11264
12784
15000
23276
300
400
16
Heavy Duty Dynamic Braking
Ohms
27
27
27
27
28
27
27
27
28
28
28
28
28
28
28
28
27
27
27
27
27
25
28
28
28
28
28
28
28
28
28
28
28
29
29
28
28
28
29
29
29
29
32
32
32
32
32
32
32
32
32
32
32
32
32
32
32
32
32
32
32
32
32
32
32
32
32
1336-5.65 — March, 2007
Watts
36288
300
600
900
1200
1500
2100
3300
13615
15001
18928
20321
20646
23548
30001
30492
8420
11500
15000
21600
27400
300
4000
4400
5600
6096
7501
8258
9072
11200
12826
19396
400
800
1200
1600
2000
2800
26000
27090
28000
3800
5130
8487
12667
8420
9144
10368
12700
13545
17100
18000
18286
21632
2918
3600
4000
4395
4500
4800
5200
2000
2100
2400
2700
2800
2906
Manufacturer
IPC
Powerohm
Powerohm
IPC
IPC
Powerohm
Powerohm
IPC
Powerohm
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
Powerohm
Powerohm
Powerohm
Powerohm
Powerohm
Powerohm
Powerohm
Powerohm
Powerohm
IPC
Powerohm
IPC
Powerohm
Powerohm
IPC
IPC
IPC
IPC
IPC
IPC
IPC
Powerohm
Powerohm
IPC
Powerohm
IPC
IPC
Powerohm
Powerohm
IPC
Powerohm
IPC
IPC
IPC
IPC
IPC
Powerohm
IPC
Powerohm
IPC
Powerohm
IPC
IPC
Powerohm
IPC
IPC
IPC
Powerohm
Powerohm
Watt
Seconds
359925
846300
1132800
1100930
1033301
2224200
3042600
2138364
4610000
18500
15400
24900
18800
23700
27300
73900
502600
493600
320400
299521
345400
237463
330000
447100
359925
615920
15400
35900
57300
77000
124100
314200
358000
391000
931000
1346000
2075000
17200
246000
345400
385000
410000
511000
931000
1017000
931100
1203600
1591000
2541900
2304000
127069
199993
253840
359925
143600
20200
113100
25200
220200
82626
82626
102600
83300
222215
105000
581600
583400
Catalog
555-12A
PF28R15K0
PF28R18K9
550-12A
555-12
PF28R23K5
PF28R30K0
550-12
PF28R36K2
T27R300W
T27R600W
T27R900W
T27R1K2
T27R1K5
T27R2K1
T27R3K3
445-10
440-10
PF28R400W
PF28R800W
PF28R1K20
PF28R1K60
PF28R2K00
PF28R2K80
PF28R4K00
PF28R4K40
PF28R5K60
552-12A
PF28R7K50
552-12
PF28R9K07
PF28R11K2
T27R8K42
T27R11K5
T27R15K0
T27R21K6
T27R27K4
T25R300W
T32R8K42
PF32R9K14
PF32R10K3
T32R12K7
PF32R13K5
T32R17K1
T32R18K0
PF32R18K2
PF32R21K6
T32R26K0
PF32R27K0
T32R28K0
442-10A
442-10
445-10A
440-10A
PF32R2K00
T32R2K1
PF32R2K40
T32R2K7
PF32R2K80
225-6
220-6A
PF32R3K60
T32R4K0
220-6
T32R4K5
PF32R4K80
PF32R5K20
Ohms
21
21
21
21
21
21
21
21
21
21
21
21
23
23
23
23
21
21
21
21
21
20
23
23
23
23
23
23
23
23
23
23
23
23
23
23
23
23
24
24
24
24
25
24
24
25
25
25
25
25
25
25
25
25
25
25
25
25
25
25
25
25
25
25
25
25
25
Manufacturer
IPC
Powerohm
IPC
Powerohm
Powerohm
Powerohm
Powerohm
Powerohm
Powerohm
Powerohm
Powerohm
Powerohm
Powerohm
Powerohm
Powerohm
Powerohm
IPC
IPC
Powerohm
IPC
Powerohm
IPC
Powerohm
Powerohm
IPC
Powerohm
IPC
IPC
IPC
Powerohm
IPC
IPC
Powerohm
Powerohm
Powerohm
Powerohm
Powerohm
IPC
IPC
Powerohm
IPC
Powerohm
Powerohm
Powerohm
Powerohm
Powerohm
Powerohm
Powerohm
IPC
IPC
IPC
IPC
IPC
IPC
Powerohm
IPC
Powerohm
IPC
IPC
Powerohm
IPC
Powerohm
Powerohm
Powerohm
Powerohm
Powerohm
IPC
Watt
Seconds
143600
107700
373400
240800
236100
234800
319400
564200
492736
900900
825698
3841600
18900
47100
57700
75400
23100
185800
254295
179000
399830
275000
328000
310000
15800
20800
51300
21300
63500
20200
82600
157300
1694600
2282000
5992900
2394200
6778300
13700
190000
276400
328000
383200
752200
2012300
2789000
4149000
1445600
2926300
211079
299938
533797
1173670
1871068
844315
13800
14300
55600
23000
27700
71400
22000
55000
173100
130800
277000
272600
73900
Catalog
445-11A
PF23R15K5
445-11
PF23R29K8
PF21R400W
PF21R800W
PF21R1K20
PF21R1K60
PF21R2K00
PF21R2K40
PF21R3K20
PF21R4K00
PF21R5K62
PF21R7K42
PF21R8K40
PF21R11K2
T23R300W
T23R600W
PF23R800W
T23R900W
PF23R1K20
T23R1K5
PF23R1K60
PF23R2K00
T23R2K1
PF23R3K60
442-11A
T23R6K31
442-11
PF23R7K45
T23R7K49
T23R10K2
PF21R17K6
PF21R22K5
PF21R33K6
PF21R45K0
PF21R70K6
T20R300W
T25R3K9
PF25R6K87
T25R8K42
PF25R10K1
PF25R13K7
PF25R21K0
PF25R25K6
PF25R32K4
PF25R40K6
PF25R55K0
552-13A
552-13
555-13A
555-13
550-13A
550-13
PF25R400W
T25R600W
PF25R800W
T25R900W
T25R1K2
PF25R1K20
T25R1K5
PF25R1K60
PF25R2K00
PF25R2K40
PF25R2K80
PF25R3K20
T25R3K3
Watts
2000
2400
3200
4000
5626
7426
8400
11251
11125
15548
16172
29808
400
800
1200
1600
17661
22501
33600
45001
70644
300
2100
3600
4982
6310
6469
7452
7490
10200
300
600
800
900
1200
1500
1600
2000
55001
7340
9635
16393
24086
24468
36710
3900
6876
8420
10158
13751
21025
25600
32400
40632
1500
1600
2000
2400
2800
3200
3300
400
600
800
900
1200
1200
Ohms
15
15
15
15
15.4
15.4
15
15
18
18
18
15.4
15.4
15.4
15.4
15.4
15
15
15
15
15
15
19
18
18
18
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
Manufacturer
IPC
IPC
IPC
Powerohm
Powerohm
Powerohm
Powerohm
Powerohm
Powerohm
Powerohm
IPC
IPC
IPC
IPC
IPC
IPC
Powerohm
IPC
Powerohm
Powerohm
Powerohm
IPC
Powerohm
IPC
IPC
Powerohm
IPC
Powerohm
Powerohm
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
Powerohm
Powerohm
Powerohm
Powerohm
Powerohm
Powerohm
Powerohm
Powerohm
Powerohm
Powerohm
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
Watt
Seconds
1336477
1336477
899814
42400
106000
123100
165000
600600
2612300
2407200
16400
20800
22000
38800
143000
232000
564200
410613
700700
1497400
2155200
1514674
5393600
3029900
2913365
2128200
5953399
6142800
8113500
152850
234734
660558
179963
466000
328491
734000
550465
1158280
825698
1602000
1781970
1066000
1148000
17100
39000
84900
68300
213200
339300
344700
207300
220000
272600
410613
17300
18500
87086
28000
55084
138493
222215
221432
260000
169227
267000
582000
924000
Catalog
440-12A
445-12
440-12
PF15F4R800W
PF15F4R1K20
PF15F4R2K40
PF15F4R5K06
PF15F4R10K4
PF15F4R20K2
PF15F4R41K6
T15R300W
T15R600W
T15R900W
T15R1K5
T15R4K21
T15R6K16
PF19R10K0
552-14
PF19R13K6
PF19R16K4
PF19R19K4
555-14A
PF19R30K4
550-14A
555-14
PF19R40K2
550-14
PF19R63K9
PF19R77K8
442-12A
442-12
445-12A
442-13A
T15R8K57
442-13
T15R11K4
552-15A
445-13A
440-11A
T20R20K6
440-11
T20R28K4
T20R34K6
PF19R400W
PF19R800W
PF19R1K20
PF19R1K60
PF19R2K00
PF19R2K80
PF19R3K20
PF19R4K86
PF19R6K71
PF19R8K21
552-14A
T20R600W
T20R900W
222-7A
T20R1K5
222-7
225-7A
220-7A
225-7
T20R5K94
220-7
T20R8K92
T20R10K7
T20R15K2
Watts
7132
8570
9919
11400
12112
15927
20251
41642
300
600
900
1500
4210
6160
20612
20664
30910
800
1200
2400
5063
10410
31965
40204
47709
63916
77824
6184
8266
13810
10051
12170
13613
16425
19456
21305
30400
31798
2000
2800
3200
4864
6716
8213
9540
16605
20600
24910
28400
34600
400
800
1200
1600
4572
4650
5940
7031
8920
10700
15200
600
900
1372
1500
1860
3063
Ohms
11
11
11
11
11.5
11.5
11.5
11
11.5
11.5
11.5
11.5
11.5
11.5
11.5
11.5
11
10.4
10.4
10.4
10.4
10.4
12
12
11.5
11.5
11.5
11.5
11.5
11.5
12
12
12
12
12
12
12
12
13
13
12
12
13
13
13
14
14
14
14
14
14
14
14
14
14
14
14
15
15
14
14
15
15
15
15
15
15
Heavy Duty Dynamic Braking
17
Manufacturer
Powerohm
Powerohm
Powerohm
Powerohm
Powerohm
Powerohm
Powerohm
Powerohm
Powerohm
Powerohm
Powerohm
IPC
IPC
IPC
IPC
IPC
IPC
IPC
Powerohm
Powerohm
Powerohm
Powerohm
Powerohm
Powerohm
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
Powerohm
Powerohm
Powerohm
Powerohm
Powerohm
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
Watt
Seconds
191600
321100
500500
898500
1254700
1955300
3196300
1330100
1840800
7683200
11663100
121123
100080
237243
407344
407344
890985
599876
1924486
1040221
1040221
1040221
2387466
2247026
1314510
10015318
25700
41300
102600
206500
146900
140900
890985
17300
22900
24500
25400
95100
61344
154455
117367
232000
172138
172138
523728
734000
1038000
58400
111200
238800
191600
1048200
440372
890985
1158280
719851
719851
719851
1313963
1300276
1313963
7591398
15400
19400
20700
24500
27800
Catalog
PF11F5R4K60
PF11F5R6K08
PF11F5R7K77
PF11F5R9K67
PF11F5R11K7
PF11F5R14K9
PF11F5R18K4
PF11F5R24K3
PF11F5R31K0
PF11F5R59K6
PF11F5R110K0
222-9A
222-9
225-9A
225-9
220-9A
552-16A
552-16
445-14A
555-16A
440-14A
445-14
550-16A
555-16
440-14
550-16
PF11F5R400W
PF11F5R800W
PF11F5R1K60
PF11F5R2K00
PF11F5R2K94
PF11F5R3K72
220-9
T10F4R300W
T10F4R600W
T10F4R900W
T10F4R1K5
T10F4R2K97
222-8A
222-8
225-8A
T14R6K16
225-8
220-8A
220-8
T14R11K4
T14R12K7
PF13R800W
PF13R1K60
PF13R2K80
PF13R5K45
PF13R11K0
442-14A
442-14
552-15
440-13A
445-13
555-15A
440-13
550-15A
555-15
550-15
T14R300W
T14R600W
T14R900W
T14R1K2
T14R1K8
1336-5.65 — March, 2007
Watts
31096
59616
110001
2561
3381
5720
8454
8537
4600
6083
7774
9671
11776
14904
18400
24334
12784
300
600
900
1500
2970
48204
68911
400
800
1600
2000
2944
3726
13780
20673
21531
30776
32136
32297
45934
46170
800
1600
2800
5457
11000
9641
12398
2012
2657
4495
6160
6642
6708
10045
11400
12700
40587
60579
300
600
900
1200
1800
18173
23772
23894
27060
35663
40388
18
Heavy Duty Dynamic Braking
Ohms
7.3
7.3
7.3
7.3
8
8
8
8
8
8
8
8
9.2
9.2
8
8
7.3
7.3
7
7
7
7
9.2
9.2
9.2
9.2
9.2
9.2
9.2
9.2
9.2
9.2
9.2
9.2
9.2
9.2
9.2
9.2
9.5
9.5
9.2
9.2
9.2
9.2
9.2
9.5
9.5
9.5
9.5
10
10
10
10
10
10.4
10.4
10.4
10.4
10.1
10.1
10.1
10.4
10.4
10.4
10.4
10.4
10.4
1336-5.65 — March, 2007
Watts
47219
52321
70477
78475
3826
5095
8545
12738
90001
132480
14093
21143
23427
31474
35138
46977
12754
19264
400
800
1200
1600
15001
19467
24876
30948
37683
47693
58880
69635
2355
2981
3751
4867
6601
7737
9421
11923
39955
59635
400
800
1200
1600
2000
17713
26569
39559
59043
59339
11926
17890
26636
39755
26000
35600
43900
72300
400
800
1200
5360
6040
8890
11000
15500
18900
Manufacturer
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
Powerohm
Powerohm
IPC
IPC
IPC
IPC
IPC
IPC
Powerohm
Powerohm
Powerohm
Powerohm
Powerohm
Powerohm
Powerohm
Powerohm
Powerohm
Powerohm
Powerohm
Powerohm
Powerohm
Powerohm
Powerohm
Powerohm
IPC
IPC
Powerohm
Powerohm
Powerohm
Powerohm
IPC
IPC
Powerohm
Powerohm
Powerohm
Powerohm
Powerohm
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
Powerohm
Powerohm
Powerohm
Watt
Seconds
9127700
23372300
401656
693480
1211023
1564893
2494758
2966898
1560331
1559677
3325398
5345909
164245
267369
566990
359925
98000
116700
135600
282100
341800
748700
1075400
1520800
545200
1064100
1416000
2965500
4056800
6146600
10387700
6672400
359925
656981
19300
35900
123900
77000
479901
903350
1956117
1950414
1950414
316618
479901
3000513
2851152
1079776
1820386
18900
32400
102200
75500
161600
329000
489000
801000
359000
1742000
1991000
2002000
1230000
1367000
4620000
20600
35900
112100
Catalog
PF9F2R90K0
PF9F2R132K2
442-16A
442-16
552-18A
445-16A
552-18
440-16A
445-16
555-18A
440-16
555-18
222-10A
222-10
225-10A
225-10
PF9F2R2K35
PF9F2R2K98
PF9F2R3K75
PF9F2R4K86
PF9F2R6K60
PF9F2R7K73
PF9F2R9K42
PF9F2R11K9
PF9F2R15K0
PF9F2R19K4
PF9F2R24K8
PF9F2R30K9
PF9F2R37K6
PF9F2R47K6
PF9F2R58K8
PF9F2R69K6
220-10A
220-10
PF7R400W
PF7R800W
PF7R1K20
PF7R1K60
T10F4R5K36
T10F4R6K4
T10F4R8K89
T10F4R11K0
T10F4R15K5
T10F4R18K9
T10F4R26K0
T10F4R35K6
T10F4R43K9
T10F4R72K3
PF10F1R400W
PF10F1R800W
PF10F1R1K20
552-17A
552-17
555-17A
550-17A
555-17
442-15A
442-15
445-15A
440-15A
445-15
440-15
PF9F2R400W
PF9F2R800W
PF9F2R1K20
PF9F2R1K60
PF9F2R2K00
Ohms
5.1
5.1
5.1
5.1
5.1
5.1
5.1
5.1
5.4
5.4
5.4
5.4
5.4
5.4
5.4
5.4
5.1
5.1
5.1
5.1
5.1
5.1
5.4
5.4
5.4
5.4
5.7
5.7
5.7
5.7
6.4
6.4
6.4
6
6
6
5.7
5.7
6.5
6.5
6.5
6.5
6.5
6.4
6.4
7
7
6.5
6.5
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
Manufacturer
Powerohm
Powerohm
Powerohm
Powerohm
Powerohm
Powerohm
Powerohm
Powerohm
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
Powerohm
Powerohm
Powerohm
Powerohm
Powerohm
Powerohm
Powerohm
Powerohm
Powerohm
Powerohm
Powerohm
Powerohm
Powerohm
Powerohm
Powerohm
Powerohm
Powerohm
Powerohm
Powerohm
Powerohm
IPC
IPC
Powerohm
Powerohm
Powerohm
Powerohm
Powerohm
Powerohm
Powerohm
Powerohm
Powerohm
Powerohm
Powerohm
Powerohm
Powerohm
Watt
Seconds
35400
41100
141300
158300
212400
449300
537700
869000
328000
699000
738000
717000
2310000
1845000
1953000
3444000
1231840
4818224
4929414
1960167
1981674
2135190
260816
421193
905640
880744
880744
1781970
55700
185000
401000
169000
1412200
564200
800800
1694600
3380700
5992900
7990600
5083700
6845800
10141900
17978700
21021300
34493700
92600
90400
188100
256400
599000
717000
1086300
574859
719851
77800
107500
199600
300300
599000
765100
1303500
436200
802700
1132800
2330100
3042600
4610000
Catalog
T5F4R7K28
T5F4R12K0
T5F4R20K3
T5F4R22K0
T5F4R37K7
T5F4R48K1
T5F4R51K9
T5F4R104K0
PF5F1R400W
PF5F1R800W
PF5F1R1K60
PF5F1R2K70
PF5F1R3K44
PF5F1R4K29
PF5F1R5K40
PF5F1R6K60
445-17A
440-17A
445-17
552-19A
552-19
555-19A
222-11A
222-11
225-11A
225-11
220-11A
220-11
T5F4R1K67
T5F4R2K68
T5F4R5K8
T5F4R5K78
PF5F1R8K16
PF5F1R10K7
PF5F1R13K7
PF5F1R17K1
PF5F1R27K5
PF5F1R32K6
PF7R45K0
PF7R55K0
PF7R64K5
PF7R81K6
PF7R110K0
PF7R127K7
PF7R157K7
PF6F5R2K10
PF6F5R2K60
PF6F5R3K43
PF6F5R4K39
PF6F5R5K46
PF6F5R6K65
PF6F5R8K42
442-17A
442-17
PF7R2K26
PF7R2K80
PF7R3K70
PF7R4K73
PF7R6K23
PF7R7K38
PF7R9K30
PF7R11K2
PF7R14K8
PF7R18K9
PF7R23K5
PF7R28K6
PF7R36K9
Watts
400
800
1600
2704
3448
4290
5408
6610
7280
12000
20300
22000
37700
48100
51900
104000
8160
10791
13790
17156
27501
32640
11029
16314
16461
24694
1670
2680
5080
5780
39148
58430
58718
28008
42015
62551
4938
6525
3438
4394
5466
6656
8424
17529
26292
45001
55001
64512
81648
110001
127575
157500
2106
2600
9307
11251
14812
18928
23548
28672
36912
2268
2800
3703
4732
6240
7383
Ohms
3.9
3.9
3.9
3.8
4
4
4
4
3.8
3.8
3.8
4.5
4.5
4.5
4.5
4.6
4.6
4.5
4.5
4.6
4.6
4.6
4.6
4.6
4.6
4.6
4.6
4.6
4.6
4.6
4.6
4.6
4.6
4.6
4.8
4.8
4.6
4.6
4.8
4.8
4.8
4.8
4.8
5
5
4.8
4.8
4.8
4.8
4.8
5.1
5.1
5
5
5
5
Watts
28207
42308
44057
66084
32736
49108
62996
7227
9788
16139
24089
66240
149040
6184
8266
13810
20612
20715
30918
4710
7360
9733
12438
15600
18841
23846
34817
1200
1600
1630
1801
2433
3120
3869
19200
25800
34600
58200
61000
99300
132000
400
800
59486
114750
22848
30978
34269
46464
51028
76534
2580
4590
5490
8880
10900
Manufacturer
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
Powerohm
Powerohm
Powerohm
Powerohm
Powerohm
Powerohm
Powerohm
Powerohm
Powerohm
Powerohm
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
Powerohm
Powerohm
Powerohm
Powerohm
Powerohm
Powerohm
Powerohm
Powerohm
Powerohm
Powerohm
Powerohm
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
IPC
Watt
Seconds
1321116
1386961
3441020
1799627
2405659
3246136
8013142
182571
328491
430346
751149
537700
1412200
564200
683600
1497400
2028400
3073300
3495100
11386500
37346900
152850
239950
660558
1425576
1425576
1486256
586000
984000
2310000
3696000
3916000
6159000
8077000
16200
37800
53900
125900
61800
71700
133100
168500
383500
7375900
25239300
1603773
1651395
959801
3891643
1733701
3651418
185000
401000
169000
260000
359000
Catalog
442-19A
442-19
552-21A
552-21
442-20A
442-20
445-19A
222-13A
222-13
225-13A
220-13A
PF4F6R4K71
PF4F6R7K36
PF4F6R9K73
PF4F6R12K4
PF4F6R15K6
PF4F6R18K8
PF4F6R23K8
PF4F6R34K8
PF4F6R66K2
PF4F6R149K9
222-12A
222-12
225-12A
220-12A
225-12
220-12
PF5F1R59K4
PF5F1R114K4
442-18A
552-20A
442-18
552-20
445-18A
445-18
T4F8R2K58
T4F8R4K59
T4F8R5K49
T4F8R8K88
T4F8R10K9
T4F8R19K2
T4F8R25K8
T4F8R34K6
T4F8R58K2
T4F8R61K0
T4F8R99K3
T4F8R132K0
PF4F6R400W
PF4F6R800W
PF4F6R1K20
PF4F6R1K60
PF4F6R1K62
PF4F6R1K80
PF4F6R2K43
PF4F6R3K12
PF4F6R3K86
Ohms
2.1
2.1
2.1
2.1
2.2
2.1
2.1
2.1
1.88
1.88
1.88
1.5
2.3
2.2
2.2
2.2
2.3
2.3
2.3
2.3
2.3
2.3
2.3
2.3
2.3
2.3
2.3
2.3
2.7
2.7
2.7
2.6
2.3
2.3
2.3
3.3
3.3
2.7
2.7
3.3
3.3
3.3
3.3
3.3
3.3
3.3
3.3
3.3
3.3
3.3
3.3
3.8
3.8
3.3
3.3
3.3
3.3
Heavy Duty Dynamic Braking
19
Watts
44785
1200
1420
1767
2151
2722
3361
4443
15350
23026
34281
19884
17408
27501
33273
55001
74520
13370
20053
29860
1664
1934
2356
2980
3680
7737
9420
14720
23452
35003
35178
44505
800
1200
1600
24977
38491
47520
75001
106920
150001
214582
10500
15750
3379
4299
6982
9251
11101
13516
21489
24212
36138
1200
1876
2230
2775
Manufacturer
IPC
Powerohm
Powerohm
Powerohm
Powerohm
Powerohm
Powerohm
Powerohm
IPC
IPC
IPC
IPC
Powerohm
Powerohm
Powerohm
Powerohm
Powerohm
Powerohm
Powerohm
Powerohm
Powerohm
Powerohm
Powerohm
Powerohm
Powerohm
IPC
IPC
IPC
Powerohm
Powerohm
Powerohm
Powerohm
Powerohm
Powerohm
Powerohm
IPC
IPC
IPC
IPC
IPC
IPC
Powerohm
Powerohm
Powerohm
IPC
IPC
Powerohm
Powerohm
Powerohm
Powerohm
Powerohm
Powerohm
Powerohm
Powerohm
Powerohm
Powerohm
Powerohm
Watt
Seconds
1724576
84900
83100
168000
253600
365700
599300
266100
782447
1570711
2138364
1308926
112400
211900
253600
365700
723300
767000
1075400
2824300
1588700
3688000
5992900
11778400
18673500
316618
1603773
1685270
2541900
5071000
8390100
15984900
26362500
41191400
70836500
521631
520110
1173670
2164091
2187360
1126723
63000
56900
165200
1321116
2672955
61000
105500
124600
317800
380400
556400
376100
512700
1197900
1530100
3595800
Catalog
PF2F3R1K66
PF2F3R1K93
PF2F3R2K35
PF2F3R2K98
PF2F3R3K68
PF2F3R7K73
PF2F3R9K42
PF2F3R14K7
PF2F3R17K4
PF2F3R27K5
PF2F3R33K2
PF2F3R55K0
PF2F3R74K5
222-15A
222-15
225-15A
225-15
PF2F1R1K20
PF2F1R1K42
PF2F1R1K76
PF2F1R2K15
PF2F1R2K72
PF2F1R3K36
PF2F1R4K44
222-16A
222-16
225-16A
222-17A
225-13
220-13
PF3F3R1K20
PF3F3R1K87
PF3F3R2K23
PF3F3R2K77
PF3F3R3K37
PF3F3R4K29
PF3F3R6K98
PF3F3R9K25
PF3F3R11K1
PF3F3R13K5
PF3F3R21K4
PF3F3R24K9
PF3F3R38K4
PF3F3R47K5
PF3F3R75K0
PF3F3R106K6
PF3F3R150K0
PF3F3R214K4
222-14A
222-14
225-14A
220-14A
225-14
442-21A
PF2F3R800W
PF2F3R1K20
PF2F3R1K60
1336-5.65 — March, 2007
20
Heavy Duty Dynamic Braking
Chopper Module
Characteristics
Drive Voltage
(Volts AC)
230
Turn-On Voltage
(Volts DC)
375
460
575
750
935
Catalog Number
WA115
WA070
WA018
WB110
WB035
WB009
WC085
WC035
WC009
Chopper Peak Transistor
Current Rating (Amps)
100
25
400
75
25
400
200
50
400
Minimum Dynamic Brake
Resistance Value (Ohms)
1.25
2.3
9.0
2.5
9.0
37.0
3.0
15.5
46.0
1336-5.65 — March, 2007
WA018, WB009 and WC009
Dimensions and Weights
A
B
BULLETIN 1336 BRAKING CHOPPER
CAT
1336-WB009
SER
A
INPUT
750
VDC
9.0
ADC (RMS)
FOR USE WITH
460
VAC A.F. DRIVES
DC POWER
BRAKE ON
MADE IN U.S.A.
R1 (4 places)
(Front)
C
D
GND
R2
Heavy Duty Dynamic Braking
21
E
(Side)
(Bottom)
Chopper Module
WA018
WB009
WC009
Dimensions and Weights in Millimeters (Inches) and Kilograms (Pounds)
A
241.3
(9.50)
B
230.1
(9.06)
C
177.8
(7.00)
D
203.2
(8.00)
E
104.4
(4.11)
R1 Dia.
5.6
(0.22)
R2
12.7
(0.50)
Weight
3.18
(7.0)
1336-5.65 — March, 2007
22
Heavy Duty Dynamic Braking
WA070, WB035 and WC035
Dimensions and Weights
A
B
BULLETIN 1336 BRAKING CHOPPER
CAT
1336-WB035
SER
A
INPUT
750
VDC
35.0
ADC (RMS)
FOR USE WITH
460
VAC A.F. DRIVES
DC POWER
BRAKE ON
MADE IN U.S.A.
C
D
R1 (4 places)
1 2
E11
3 4
E12
5 6
(Front)
GND
R2
E
(Side)
(Bottom)
Chopper Module
WA070
WB035
WC035
Dimensions and Weights in Millimeters (Inches) and Kilograms (Pounds)
A
241.3
(9.50)
B
230.1
(9.06)
C
177.8
(7.00)
D
203.2
(8.00)
E
123.4
(4.86)
R1 Dia.
5.6
(0.22)
R2
12.7
(0.50)
Weight
4.08
(9.0)
1336-5.65 — March, 2007
WA115, WB110 and WC085
Dimensions and Weights
A
B
R1 (4 places) (Front)
BULLETIN 1336 BRAKING CHOPPER
CAT
1336-WB110
SER
A
INPUT
750
VDC
110.0
ADC (RMS)
FOR USE WITH
DC POWER
BRAKE ON
MADE IN U.S.A.
C
D
R2
Heavy Duty Dynamic Braking
23
E
(Side)
(Bottom)
Chopper Module
WA115
WB110
WC085
Dimensions and Weights in Millimeters (Inches) and Kilograms (Pounds)
A
290.6
(11.44)
B
279.4
(11.00)
C
228.6
(9.00)
D
304.8
(12.00)
E
239.8
(9.44)
R1 Dia.
5.6
(0.22)
R2
38.1
(1.50)
Weight
11.34
(25.0)
1336-5.65 — March, 2007
24
Heavy Duty Dynamic Braking
Specifications
Braking Torque
&
Duty Cycle
(Refer to pages 5-10)
DC power supplied from DC Bus.
Input Power
Brake Fault
Contact
Operating
Temperature
Storage
Temperature
Humidity
Atmosphere
Altitude Derating
Enclosure Type
(1) N.C. contact, TTL compatible, closed when power is applied to the brake module, open when a brake fault or loss of power occurs.
UL/CSA Rating: 1.0 Amps, 125VAC.
1.0 Amps, 110VAC.
2.0 Amps, 30VDC.
CE Certification: Low Voltage EN 60204-1.
PREN 50178.
Initial Contact Resistance: 100mOhms maximum.
Chopper: -10
°C to 40°C (14°F to 104°F).
Resistors: -10
°C to 50°C (14°F to 122°F).
Chopper: -40
°C to 70°C (-40°F to 158°F).
Resistors: -40
°C to 70°C (-40°F to 158°F).
5% to 95% non-condensing.
Noncorrosive/nonhazardous dust, vapor or gas.
1,000 meters (3,300 feet) maximum without derating.
Watts Dissipated
1
IP00 (Open)
WA018, WB009, WC009:75W at 100% Duty Cycle
WA070, WB035, WC035:115W at 100% Duty Cycle
WA115, WB110, WC085:190W at 100% Duty Cycle
Minimum
Brake Resistance
WA018 = 9.0 Ohms WB009 = 37.0 Ohms WC009 = 46.0 Ohms
WA070 = 2.5 Ohms WB035 = 9.0 Ohms WC035 = 15.5 Ohms
WA115 = 1.25 Ohms WB110 = 2.5 Ohms WC085 = 3.0 Ohms
1
Watts Dissipated at 100% (Continuous Duty Cycle) are approximately equal to the average watts dissipated at 20 and 50% Duty Cycles.
Installation Requirements
!
ATTENTION: Electric Shock can cause injury or death.
Remove all power before working on this product.
For all chopper module ratings, DC brake power is supplied from the drive DC Bus.
Hazards of electrical shock exist if accidental contact is made with parts carrying bus voltage. A DC power indicator on the brake enclosures provides visual indication that bus voltage is present. Before proceeding with any installation or troubleshooting activity, allow at least one minute after input power has been removed for the bus circuit to discharge. Bus voltage should be verified by using a voltmeter to measure the voltage between the +DC and -DC terminals on the drive power terminal block. Do not attempt any servicing until the
DC power indicating light has extinguished and bus voltage has been verified to be zero volts.
1336-5.65 — March, 2007
Heavy Duty Dynamic Braking
Mounting Requirements
IMPORTANT: The National Electrical Code (NEC) and local regulations govern the installation and wiring of the brake chopper modules, dynamic braking resistors and enclosure selection. DC power wiring, AC power wiring, control wiring and conduit must be chosen, sized and installed in accordance with these codes and the information supplied on the following pages.
Brake chopper modules must only be installed in the vertical position. Select an enclosure and a location using the guidelines below and on the following page.
Air Flow
(Front)
25
1.
Allow a minimum clearance of 152.4 mm
(6 in.) Between brake modules inside an enclosure and all other equipment including the drive. All brake resistor banks should be mounted external to the enclosure on a non combustible surface.
(Front)
(Bottom)
152.4 mm
(6 in.)
Minimum
152.4 mm
(6 in.)
Minimum
152.4 mm
(6 in.)
Minimum
(Front)
GND
152.4 mm
(6 in.)
Minimum
152.4 mm
(6 in.)
Minimum
152.4 mm
(6 in.)
Minimum
(Bottom)
152.4 mm
(6 in.)
Minimum
2.
If more than one module is required, all modules must be mounted within 3.0 m (10 ft.) of the drive. The wires used to connect each module to the drive must be the same length.
Resistors must be located within 30 m (100 ft.) of the chopper module. The minimum distance between each resistor bank and all other enclosures or equipment is application dependent and must be determined by the user.
3.0 m
(10 ft.)
Maximum
Drive
30 m
(100 ft.)
Maximum
Resistor
Bank
30 m
(100 ft.)
Maximum
Resistor
Bank
Each of these wires must be of equal length.
30 m
(100 ft.)
Maximum
Resistor
Bank
1336-5.65 — March, 2007
26
Setup
Heavy Duty Dynamic Braking
!
ATTENTION: Each brake chopper module contains a thermostat to guard against overheating and component damage.
If the duty cycle, torque setting and/or ambient temperature exceeds the specifications listed in this publication, the thermostat is designed to trip and disable the brake modules until components cool to rated temperature. During the cooling period, only 10% braking torque will be available to the motor.
If reduced braking torque represents a potential hazard to personnel, auxiliary stopping methods must be considered in the machine and/or control circuit design.
1336 and 1336VT Parameter Settings
Parameter 11 — Decel Frequency Hold — must be set to OFF when dynamic braking is installed. Refer to your 1336 or 1336VT Programming
Manual for programming procedures and record the changes for future reference.
1336IMPACT Parameter Settings
When dynamic braking is installed:
• Parameter 76 [Regen Power Lim] typically should be set to its factory default of “-200.0%”. A lower Regen Power Lim may be required to protect the load during decel.
• Set Bit 10 of Parameter 13 [Bus Options].
Refer to your 1336IMPACT User Manual for programming procedures and record the changes for future reference.
1336FORCE Parameter Settings
When dynamic braking is installed:
• A lower Regen Power Lim may be required to protect the load during decel.
Parameter 178 [Regen Power Lim] typically should be set to the required negative % of torque.
• Clear Bit 11 of Parameter 88 [VP Flt/Warn Cfg].
Refer to your 1336FORCE User Manual for programming procedures and record the changes for future reference.
1336PLUS and 1336PLUSII Parameter Settings
When dynamic braking is installed:
• Parameter 11 [Bus Limit En] must be set to “Disabled”.
• Braking for deceleration requires that the drive be programmed for
“Ramp-to-Stop”. Braking for overhauling loads may or may not be stop mode specific. Program Parameters 10 and 52 per the application.
Refer to your 1336PLUS User Manual for programming procedures and record the changes for future reference.
1336-5.65 — March, 2007
Heavy Duty Dynamic Braking
27
Brake Fault Contact Monitoring
For all brake module ratings a fault contact has been provided to provide a remote output signal. Should a brake fuse fail or the brake thermostat trip, the brake fault contact will open. Interconnection wiring for remote brake monitoring is provided in the Wiring Schemes section.
Brake Fuses
All brake modules are internally fused to protect brake components. When replacing brake fuses, use only the type and size specified below.
Dynamic Brake Fuse
WA018
WB009
WC009
F1
F1
F1
&
&
&
F2
F2
F2
WA070
WB035
WC035
WA115
WB110
WC085
F1
F1
F1
&
&
&
F2
F2
F2
F1
&
F2
F1
&
F2
F1
&
F2
Fuse Type
Ferraz Shawmut A60Q or Equivalent
A60Q or Equivalent
A60Q or Equivalent
Ferraz Shawmut A70QS or Equivalent
A70QS or Equivalent
A70QS or Equivalent
Ferraz Shawmut A70QS or Equivalent
A70QS or Equivalent
A70QS or Equivalent
Rating
30A, 600V
15A, 600V
15A, 600V
125A, 700V
60A, 700V
60A, 700V
200A, 700V
200A, 700V
200A, 700V
Brake Module Jumper Settings
For the Mounting Requirements shown previously as well as the Wiring Schemes, there can be only one master brake module to control dynamic braking. When multiple brake modules are used, only one brake module can serve as the master brake to control the remaining slave brake modules.
Slave/Master Jumper Set to Master
BRAKE MODE
MASTER SLAVE
W1
1 (2)(3)
Cat. No.
WA018
WB009
WC009
BRAKE MODE
SLAVE MASTER
W1
(3) (2) 1
Cat. No.
WA070
WB035
WC035
BRAKE MODE
W1
(3) (2)(1)
SLAVE MASTER
Cat. No.
WA115
WB110
WC085
Master Brake Module
Jumper Settings
For the master brake module, leave slave/master jumper W1 factory set to master (jumper positions 1
&
2).
Slave/Master Jumper Set to Slave
BRAKE MODE
MASTER SLAVE
W1
1 (2)(3)
Cat. No.
WA018
WB009
WC009
BRAKE MODE
SLAVE MASTER
W1
(3) (2)
1
Cat. No.
WA070
WB035
WC035
BRAKE MODE
W1
(3) (2)(1)
SLAVE MASTER
Cat. No.
WA115
WB110
WC085
Slave Brake Module
Jumper Settings
For each slave module, reset jumper W1 to slave (jumper positions 2
&
3).
Input Voltage Jumper Set to 460V
VOLTAGE SELECT
380V 460V
W2
(3) (2) 1
Cat. No.
WB009
VOLT SELECT
W2
(3) (2)(1)
380V 460V
Cat. No.
WB035
WB110
Input Voltage Jumper Settings
Set jumper W2 on 460V models to correspond to the nominal drive input voltage. Setting the jumper between positions 1
&
2 will select an input voltage of
415/460 volts. Setting the jumper between positions 2
&
3 will select an input voltage of
380 volts.
Only models WB009, WB035
&
WB110 have input voltage jumpers.
1336-5.65 — March, 2007
28
Heavy Duty Dynamic Braking
WA018, WB009 and WC009 Terminal Block, Fuse and Jumper Locations
BRAKE MODE
MASTER SLAVE
Slave/Master Jumper W1
W1
1
Input Voltage Select Jumper W2
VOLTAGE SELECT
380V 460V
W2
1
DC Power ON Light
DS1
Brake ON Light
DS2
BRAKE MODE
MASTER SLAVE
W1
1
VOLTAGE SELECT
380V 460V
W2
1
DS1
DS2
Brake Module Board
Fuse F2
Fuse F1
F2
F1
1 2 3 4 5 6
7
8 9 10
1 2 3 4 5
6 7
8 9 10
Terminal Block TB1
Max/Min Wire Size = 13.3
/ 0.5 mm
2
(6 / 20 AWG)
Max Torque = 2.26 N-m (20 lb.-in.)
GND
Brake Frame Ground
(Connect to Earth Ground)
1336-5.65 — March, 2007
Heavy Duty Dynamic Braking
WA070, WB035 and WC035 Terminal Block, Fuse and Jumper Locations
29
Slave/Master
Jumper W1
BRAKE MODE
SLAVE MASTER
W1
1
DS1
DS2
Input Voltage Select
Jumper W2
(WB035 Units Only)
VOLT SELECT
380V 460V
W2
1
DC Power ON Light
DS1
Brake ON Light
DS2
Brake Module Board
Fuse F1
VOLT SELECT
380V 460V
W2
1
BRAKE MODE
SLAVE MASTER
W1
1
Brake Frame Ground
(Connect to Earth Ground)
GND
Fuse F2
E9
E10
Terminals E9-E12
Max/Min Wire Size = 33.6
/ 2.1 mm
2
(2
/ 14 AWG)
Max Torque = 3.96 N-m (35 lb.-in.) for 5.3-2.1 mm 2
(10-14 AWG)
4.52 N-m (40 lb.-in.) for 8.4 mm 2
(8 AWG)
5.09 N-m (45 lb.-in.) for 21.2-13.3 mm 2
(4-6 AWG)
5.65 N-m (50 lb.-in.) for 33.6 mm 2
(2 AWG)
1 2
E11
3 4
E12
5 6
Terminal Block TB1
Max/Min Wire Size = 8.4
/ 0.8 mm 2 (8 / 18 AWG)
Max Torque = 1.81 N-m (16 lb.-in.)
1336-5.65 — March, 2007
30
Heavy Duty Dynamic Braking
WA115, WB110 and WC085 Terminal Block, Fuse and Jumper Locations
Brake Module Board
BRAKE MODE
W1
SLAVE MASTER
Slave/Master
Jumper W1
VOLT SELECT
W2
380V 460V
Input Voltage Select
Jumper W2
(WB110 Units Only)
BARCODE
BRAKE MODE
W1
SLAVE MASTER
VOLT SELECT
380V 460V
W2
DS1
DS2
DC Power ON Light
DS1
Brake ON Light
DS2
Fuse F1
Brake Frame Ground
(Connect to Earth Groun
Fuse F2
E9
(E9)
E10
(E10)
Terminals E9-E12
Max/Min Wire Size = 67.4
/ 21.2 mm
2
(2
/
0 / 4 AWG)
Max Torque = 14.13 N-m (125 lb.-in.) for 42.4-21.2 mm
16.95 N-m (150 lb.-in.) for 67.4-21.1 mm
2
2
(1-4 AWG)
(2
/
0-1 AWG)
GND
1 2 3 4 5 6
E11
(E11)
E12
(E12)
Terminal Block TB1
Max/Min Wire Size = 8.4
/ 0.8 mm
2
(8 / 18
Max Torque = 1.81 N-m (16 lb.-in.)
1336-5.65 — March, 2007
Heavy Duty Dynamic Braking
31
WA018, WB009 and WC009
Single Brake
Wiring Scheme
For Drive Catalog
Numbers:
1336F –
BRF75
BRF100
1336S –
BRF75
BRF100
115V AC
!
ATTENTION:
Damage to drives can result from improper wiring.
Read drive nameplate to confirm catalog number and rating code to determine correct wiring diagram.
L1 L2 L3 +DC -DC
-BRK
TB1
Drive
START
STOP
CUSTOMER
ENABLE
➊
MOD-L6 or MOD-L3
Option
19
START
TB3
20
STOP
21
COM
22
23
24
25
COM
26
27
28
29
COM
30
ENABLE
➋
TB1
1
(–) DC BUS
2
(+) DC BUS
3
(–) SLAVE IN
Master Brake
4
(+) SLAVE IN
5
EXT RESISTORS
6
EXT RESISTORS
7
(+) MASTER OUT
8
(–) MASTER OUT
9
AUX CONT
10
AUX CONT
➌
➍
➎
-DC Brake Power Wiring
+DC Brake Power Wiring
Brake Resistor Wiring
All Brake Power and Brake Resistor
Wiring must be twisted wire run in conduit separate from Control Wiring. Size wire according to NEC and local guidelines.
Control Wiring
All Control Wiring must be twisted wire run in conduit separate from DC Brake Power Wiring.
Interconnection Control Wiring between the brake terminals must be twisted pair, 1 mm
2
(18 AWG) minimum.
Typical Brake Fault Contact Wiring
➊
Connect to AUX at TB3 — Terminal 24 for L6 Option
— Terminal 28 for L3 Option.
➋
MASTER OUT terminals are factory jumpered and must remain jumpered for single brake applications. For multiple brake applications, remove the jumpers in all but the last enclosure.
➌
Contact is shown in a de-energized state. Contact is closed when power is applied and relay is energized. Loss of power or a brake malfunction will open contact.
➍
Connect the brake frame to earth ground. Refer to the connected drive's User Manual for grounding instructions.
➎
Optional overtemperature switch.
1336-5.65 — March, 2007
32
Heavy Duty Dynamic Braking
WA018, WB009 and WC009
Multiple Brake
Wiring Scheme
For Drive Catalog
Numbers:
1336F –
!
BRF75
BRF100
1336S –
BRF75
BRF100
ATTENTION:
Damage to drives can result from improper wiring.
Read drive nameplate to confirm catalog number and rating code to determine correct wiring diagram.
115V AC
START
STOP
CUSTOMER
ENABLE
L1 L2
L3 +DC -DC
-BRK
TB1
Drive
TB1
1
(–) DC BUS
2
(+) DC BUS
3
(–) SLAVE IN
4
(+) SLAVE IN
5
EXT RESISTORS
Master Brake
6
EXT RESISTORS
➋
7
(+) MASTER OUT
8
(–) MASTER OUT
9
AUX CONT
10
AUX CONT
➌
MOD-L6 or MOD-L3
Option
19
START
TB3
➍
➊
20
STOP
21
COM
22
23
24
25
COM
26
27
28
29
COM
30
ENABLE
TB1
1
(–) DC BUS
2
(+) DC BUS
3
(–) SLAVE IN
4
(+) SLAVE IN
5
EXT RESISTORS
6
EXT RESISTORS
7
(+) MASTER OUT
➋
8
(–) MASTER OUT
9
AUX CONT
10
AUX CONT
Slave Brake
➌
-DC Brake Power Wiring
+DC Brake Power Wiring
Brake Resistor Wiring
All Brake Power and Brake Resistor
Wiring must be twisted wire run in conduit separate from Control Wiring. Size wire according to NEC and local guidelines.
Control Wiring
All Control Wiring must be twisted wire run in conduit separate from DC Brake Power Wiring.
Interconnection Control Wiring between the brake terminals must be twisted pair, 1 mm
2
(18 AWG) minimum.
Typical Brake Fault Contact Wiring
➊
Connect to AUX at TB3 — Terminal 24 for L6 Option
— Terminal 28 for L3 Option.
➋
MASTER OUT terminals are factory jumpered and must remain jumpered for single brake applications. For multiple brake applications, remove the jumpers in all but the last enclosure.
➌
Contact is shown in a de-energized state. Contact is closed when power is applied and relay is energized. Loss of power or a brake malfunction will open contact.
➍
➋
TB1
1
(–) DC BUS
2
(+) DC BUS
3
(–) SLAVE IN
4
(+) SLAVE IN
5
EXT RESISTORS
6
EXT RESISTORS
7
(+) MASTER OUT
8
(–) MASTER OUT
9
AUX CONT
10
AUX CONT
Slave Brake
➌
➍
➎
➎
➎
➍
Connect the brake frame to earth ground. Refer to the connected drive's User Manual for grounding instructions.
➎
Optional overtemperature switch.
1336-5.65 — March, 2007
Heavy Duty Dynamic Braking
33
WA070, WB035 and WC035
WA115, WB110 and WC085
Single Brake
Wiring Scheme
For Drive Catalog
Numbers:
1336F –
BRF150
BRF200
115V AC
!
ATTENTION:
Damage to drives can result from improper wiring.
Read drive nameplate to confirm catalog number and rating code to determine correct wiring diagram.
L1 L2 L3 +DC -DC
-BRK
TB1
Drive
START
STOP
CUSTOMER
ENABLE
➊
MOD-L6 or MOD-L3
Option
19
START
TB3
20
STOP
21
COM
22
23
24
25
COM
26
27
28
29
COM
30
ENABLE
Master Brake
E9
(+) DC BUS
E10
(–) DC BUS
➋
1
AUX CONT
TB1
2
AUX CONT
3
(–) SLAVE IN
4
(+) SLAVE IN
5
(–) MASTER OUT
6
(+) MASTER OUT
E11
EXT RESISTORS
E12
EXT RESISTORS
➍
➌
-DC Brake Power Wiring
+DC Brake Power Wiring
Brake Resistor Wiring
All Brake Power and Brake Resistor
Wiring must be twisted wire run in conduit separate from Control Wiring. Size wire according to NEC and local guidelines.
Control Wiring
All Control Wiring must be twisted wire run in conduit separate from DC Brake Power Wiring.
Interconnection Control Wiring between the brake terminals must be twisted pair, 1 mm
2
(18 AWG) minimum.
Typical Brake Fault Contact Wiring
➊
Connect to AUX at TB3 — Terminal 24 for
L6 Option — Terminal 28 for L3 Option.
➋
MASTER OUT terminals are factory jumpered and must remain jumpered for single brake applications.
For multiple brake applications, remove the jumpers in all but the last enclosure.
➌
Contact is shown in a de-energized state. Contact is closed when power is applied and relay is energized. Loss of power or a brake malfunction will open contact.
➍
Connect the brake frame to earth ground. Refer to the connected drive's User Manual for grounding instructions.
➎
Optional overtemperature switch.
➎
1336-5.65 — March, 2007
34
Heavy Duty Dynamic Braking
WA070, WB035 and WC035
WA115, WB110 and WC085
Multiple Brake
Wiring Scheme
For Drive Catalog
Numbers:
1336F –
!
BRF150
BRF200
ATTENTION:
Damage to drives can result from improper wiring.
Read drive nameplate to confirm catalog number and rating code to determine correct wiring diagram.
115V AC
START
STOP
CUSTOMER
ENABLE
L1 L2 L3 +DC -DC
-BRK
TB1
Drive
Master Brake
E9
(+) DC BUS
E10
(–) DC BUS
1
AUX CONT
TB1
2
AUX CONT
3
(–) SLAVE IN
4
(+) SLAVE IN
5
(–) MASTER OUT
➋
6
(+) MASTER OUT
E11
EXT RESISTORS
E12
EXT RESISTORS
➍
➊
MOD-L6 or MOD-L3
Option
19
START
TB3
20
STOP
21
COM
22
23
24
25
COM
26
27
28
29
COM
30
ENABLE
Slave Brake
E9
(+) DC BUS
E10
(–) DC BUS
1
AUX CONT
TB1
2
AUX CONT
3
(–) SLAVE IN
➋
4
(+) SLAVE IN
5
(–) MASTER OUT
6
(+) MASTER OUT
E11
EXT RESISTORS
E12
EXT RESISTORS
➍
-DC Brake Power Wiring
+DC Brake Power Wiring
Brake Resistor Wiring
All Brake Power and Brake Resistor
Wiring must be twisted wire run in conduit separate from Control Wiring. Size wire according to NEC and local guidelines.
Slave Brake
E9
(+) DC BUS
E10
(–) DC BUS
Control Wiring
All Control Wiring must be twisted wire run in conduit separate from DC Brake Power Wiring.
Interconnection Control Wiring between the brake terminals must be twisted pair, 1 mm
2
(18 AWG) minimum.
Typical Brake Fault Contact Wiring
➊
Connect to AUX at TB3 — Terminal 24 for
L6 Option — Terminal 28 for L3 Option.
➋
MASTER OUT terminals are factory jumpered and must remain jumpered for single brake applications.
For multiple brake applications, remove the jumpers in all but the last enclosure.
➌
Contact is shown in a de-energized state. Contact is closed when power is applied and relay is energized. Loss of power or a brake malfunction will open contact.
➋
1
AUX CONT
TB1
2
AUX CONT
3
(–) SLAVE IN
4
(+) SLAVE IN
5
(–) MASTER OUT
6
(+) MASTER OUT
E11
EXT RESISTORS
E12
EXT RESISTORS
➍
➌
➌
➌
➍
Connect the brake frame to earth ground. Refer to the connected drive's User Manual for grounding instructions.
➎
Optional overtemperature switch.
1336-5.65 — March, 2007
➎
➎
➎
Heavy Duty Dynamic Braking
35
WA018, WB009 and WC009
Single Brake
Wiring Scheme
For Drive Catalog
Numbers:
1336
1336VT
1336S
1336F
1336T
1336E
115V AC
!
ATTENTION:
Damage to drives can result from improper wiring.
Read drive nameplate to confirm catalog number and rating code to determine correct wiring diagram.
L1 L2 L3 +DC -DC
TB1
Drive
START
STOP
CUSTOMER
ENABLE
➊
MOD-L6 or MOD-L3
Option
19
START
TB3
20
STOP
21
COM
22
23
24
25
COM
26
27
28
29
COM
30
ENABLE
➋
TB1
1
(–) DC BUS
2
(+) DC BUS
3
(–) SLAVE IN
Master Brake
4
(+) SLAVE IN
5
EXT RESISTORS
6
EXT RESISTORS
7
(+) MASTER OUT
8
(–) MASTER OUT
9
AUX CONT
10
AUX CONT
➌
➍
➎
-DC Brake Power Wiring
+DC Brake Power Wiring
Brake Resistor Wiring
All Brake Power and Brake Resistor
Wiring must be twisted wire run in conduit separate from Control Wiring. Size wire according to NEC and local guidelines.
Control Wiring
All Control Wiring must be twisted wire run in conduit separate from DC Brake Power Wiring.
Interconnection Control Wiring between the brake terminals must be twisted pair, 1 mm
2
(18 AWG) minimum.
Typical Brake Fault Contact Wiring
➊
Connect to AUX at TB3 — Terminal 24 for L6 Option
— Terminal 28 for L3 Option.
➋
MASTER OUT terminals are factory jumpered and must remain jumpered for single brake applications. For multiple brake applications, remove the jumpers in all but the last enclosure.
➌
Contact is shown in a de-energized state. Contact is closed when power is applied and relay is energized. Loss of power or a brake malfunction will open contact.
➍
Connect the brake frame to earth ground. Refer to the connected drive's User Manual for grounding instructions.
➎
Optional overtemperature switch.
1336-5.65 — March, 2007
36
Heavy Duty Dynamic Braking
WA018, WB009 and WC009
Multiple Brake
Wiring Scheme
For Drive Catalog
Numbers:
1336
1336VT
1336S
1336F
1336T
1336E
!
ATTENTION:
Damage to drives can result from improper wiring.
Read drive nameplate to confirm catalog number and rating code to determine correct wiring diagram.
115V AC
START
STOP
CUSTOMER
ENABLE
TB1
1
(–) DC BUS
2
(+) DC BUS
3
(–) SLAVE IN
Master Brake
4
(+) SLAVE IN
5
EXT RESISTORS
6
EXT RESISTORS
L1 L2 L3 +DC -DC
TB1
➊
Drive
MOD-L6 or MOD-L3
Option
19
START
TB3
20
STOP
21
COM
22
23
24
25
COM
26
27
28
29
COM
30
ENABLE
➋
7
(+) MASTER OUT
8
(–) MASTER OUT
9
AUX CONT
10
AUX CONT
TB1
1
(–) DC BUS
2
(+) DC BUS
3
(–) SLAVE IN
4
(+) SLAVE IN
5
EXT RESISTORS
6
EXT RESISTORS
➍
➌
Slave Brake
➋
7
(+) MASTER OUT
8
(–) MASTER OUT
9
AUX CONT
10
AUX CONT
➌
-DC Brake Power Wiring
+DC Brake Power Wiring
Brake Resistor Wiring
All Brake Power and Brake Resistor
Wiring must be twisted wire run in conduit separate from Control Wiring. Size wire according to NEC and local guidelines.
Control Wiring
All Control Wiring must be twisted wire run in conduit separate from DC Brake Power Wiring.
Interconnection Control Wiring between the brake terminals must be twisted pair, 1 mm
2
(18 AWG) minimum.
Typical Brake Fault Contact Wiring
➊
Connect to AUX at TB3 — Terminal 24 for L6 Option
— Terminal 28 for L3 Option.
➋
MASTER OUT terminals are factory jumpered and must remain jumpered for single brake applications. For multiple brake applications, remove the jumpers in all but the last enclosure.
➌
Contact is shown in a de-energized state. Contact is closed when power is applied and relay is energized. Loss of power or a brake malfunction will open contact.
➍
➋
TB1
1
(–) DC BUS
2
(+) DC BUS
3
(–) SLAVE IN
4
(+) SLAVE IN
5
EXT RESISTORS
6
EXT RESISTORS
7
(+) MASTER OUT
8
(–) MASTER OUT
9
AUX CONT
10
AUX CONT
Slave Brake
➌
➍
➍
Connect the brake frame to earth ground. Refer to the connected drive's User Manual for grounding instructions.
➎
Optional overtemperature switch.
1336-5.65 — March, 2007
➎
➎
➎
Heavy Duty Dynamic Braking
37
WA070, WB035 and WC035
WA115, WB110 and WC085
Single Brake
Wiring Scheme
For Drive Catalog
Numbers:
1336
1336VT
1336S
1336F
1336T
1336E
115V AC
START
!
ATTENTION:
Damage to drives can result from improper wiring.
Read drive nameplate to confirm catalog number and rating code to determine correct wiring diagram.
L1 L2 L3 +DC -DC
TB1
Drive
STOP
CUSTOMER
ENABLE
➊
MOD-L6 or MOD-L3
Option
19
START
TB3
20
STOP
21
COM
22
23
24
25
COM
26
27
28
29
COM
30
ENABLE
Master Brake
E9
(+) DC BUS
E10
(–) DC BUS
➋
1
AUX CONT
TB1
2
AUX CONT
3
(–) SLAVE IN
4
(+) SLAVE IN
5
(–) MASTER OUT
6
(+) MASTER OUT
E11
EXT RESISTORS
E12
EXT RESISTORS
➍
➌
-DC Brake Power Wiring
+DC Brake Power Wiring
Brake Resistor Wiring
All Brake Power and Brake Resistor
Wiring must be twisted wire run in conduit separate from Control Wiring. Size wire according to NEC and local guidelines.
Control Wiring
All Control Wiring must be twisted wire run in conduit separate from DC Brake Power Wiring.
Interconnection Control Wiring between the brake terminals must be twisted pair, 1 mm
2
(18 AWG) minimum.
Typical Brake Fault Contact Wiring
➊
Connect to AUX at TB3 — Terminal 24 for
L6 Option — Terminal 28 for L3 Option.
➋
MASTER OUT terminals are factory jumpered and must remain jumpered for single brake applications.
For multiple brake applications, remove the jumpers in all but the last enclosure.
➌
Contact is shown in a de-energized state. Contact is closed when power is applied and relay is energized. Loss of power or a brake malfunction will open contact.
➍
Connect the brake frame to earth ground. Refer to the connected drive's User Manual for grounding instructions.
➎
Optional overtemperature switch.
➎
1336-5.65 — March, 2007
38
Heavy Duty Dynamic Braking
WA070, WB035 and WC035
WA115, WB110 and WC085
Multiple Brake
Wiring Scheme
For Drive Catalog
Numbers:
1336
1336VT
1336S
1336F
1336T
1336E
!
ATTENTION:
Damage to drives can result from improper wiring.
Read drive nameplate to confirm catalog number and rating code to determine correct wiring
115V AC
START
STOP
CUSTOMER
ENABLE
L1 L2 L3 +DC -DC
TB1
Drive
Master Brake
E9
(+) DC BUS
E10
(–) DC BUS
➋
1
AUX CONT
TB1
2
AUX CONT
3
(–) SLAVE IN
4
(+) SLAVE IN
5
(–) MASTER OUT
6
(+) MASTER OUT
E11
EXT RESISTORS
E12
EXT RESISTORS
➍
➊
MOD-L6 or MOD-L3
Option
19
START
TB3
20
STOP
21
COM
22
23
24
25
COM
26
27
28
29
COM
30
ENABLE
Slave Brake
E9
(+) DC BUS
E10
(–) DC BUS
1
AUX CONT
TB1
2
AUX CONT
3
(–) SLAVE IN
➋
4
(+) SLAVE IN
5
(–) MASTER OUT
6
(+) MASTER OUT
E11
EXT RESISTORS
E12
EXT RESISTORS
➍
-DC Brake Power Wiring
+DC Brake Power Wiring
Brake Resistor Wiring
All Brake Power and Brake Resistor
Wiring must be twisted wire run in conduit separate from Control Wiring. Size wire according to NEC and local guidelines.
Slave Brake
E9
(+) DC BUS
E10
(–) DC BUS
Control Wiring
All Control Wiring must be twisted wire run in conduit separate from DC Brake Power Wiring.
Interconnection Control Wiring between the brake terminals must be twisted pair, 1 mm
2
(18 AWG) minimum.
Typical Brake Fault Contact Wiring
➊
Connect to AUX at TB3 — Terminal 24 for
L6 Option — Terminal 28 for L3 Option.
➋
MASTER OUT terminals are factory jumpered and must remain jumpered for single brake applications.
For multiple brake applications, remove the jumpers in all but the last enclosure.
➌
Contact is shown in a de-energized state. Contact is closed when power is applied and relay is energized. Loss of power or a brake malfunction will open contact.
➋
1
AUX CONT
TB1
2
AUX CONT
3
(–) SLAVE IN
4
(+) SLAVE IN
5
(–) MASTER OUT
6
(+) MASTER OUT
E11
EXT RESISTORS
E12
EXT RESISTORS
➍
➌
➌
➌
➍
Connect the brake frame to earth ground. Refer to the connected drive's User Manual for grounding instructions.
➎
Optional overtemperature switch.
1336-5.65 — March, 2007
➎
➎
➎
NOTES
Heavy Duty Dynamic Braking
39
1336-5.65 — March, 2007
www.rockwellautomation.com
Power, Control and Information Solutions Headquarters
Americas: Rockwell Automation, 1201 South Second Street, Milwaukee, WI 53204-2496 USA, Tel: (1) 414.382.2000, Fax: (1) 414.382.4444
Europe/Middle East/Africa: Rockwell Automation, Pegasus Park, De Kleetlaan 12a, 1831 Diegem, Belgium, Tel: (32) 2 663 0600, Fax: (32) 2 663 0640
Asia Pacific: Rockwell Automation, Level 14, Core F, Cyberport 3, 100 Cyberport Road, Hong Kong, Tel: (852) 2887 4788, Fax: (852) 2508 1846
Publication 1336-5.65 — March, 2007
Supersedes February, 2007
P/N 163435 (10)
Copyright © 2007 Rockwell Automation, Inc. All rights reserved. Printed in USA
Advertisement
Key Features
- Increases braking torque
- Works with customer-supplied resistors
- Uses transistor chopper
- Transforms regenerative energy
- Provides installation instructions
- Includes wiring diagrams
- Offers module and resistor selection guidance