User`s Manual for GSTAR

User`s Manual for GSTAR
User’s Manual for
GSTAR-1D 1.0.2
(Generalized Sediment Transport for Alluvial Rivers –
One Dimension, Version 1.0.2)
US Department of Interior
Bureau of Reclamation
Technical Service Center
Sedimentation and River Hydraulics Group
October 2005
MISSION STATEMENTS
The mission of the Department of the Interior is to protect and
provide access to our Nation’s natural and cultural heritage and
honor our trust responsibilities to Indian tribes and our
commitments to island communities.
The mission of the Bureau of Reclamation is to manage, develop,
and protect water and related resources in an environmentally and
economically sound manner in the interest of the American public.
User’s Manual for
GSTAR-1D 1.0.2
(Generalized Sediment Transport for Alluvial Rivers –
One Dimension, Version 1.0.2)
Prepared by
Chih Ted Yang
Jianchun Victor Huang
Blair P. Greimann
US Department of Interior
Bureau of Reclamation
Technical Service Center
Sedimentation and River Hydraulics Group
October 2005
This report was prepared by the following persons:
Chih Ted Yang, Formerly Manager, Sedimentation and River Hydraulics
Group, Technical Service Center of the Bureau of Reclamation
Jianchun Victor Huang, Visiting Hydraulic Engineer, Sedimentation and
River Hydraulics Group, Technical Service Center of the Bureau
of Reclamation
Blair Greimann, Hydraulic Engineer, Sedimentation and River Hydraulics
Group, Technical Service Center of the Bureau of Reclamation
Peer review was performed by the following Reclamation, Technical Service
Center personnel:
Yong G. Lai, Sedimentation and River Hydraulics Group
David Mooney, Sedimentation and River Hydraulics Group
Acknowledgements
Bureau of Reclamation, Technical Service Center, Denver, Colorado
Travis Bauer
Cassie Klumpp
Kent Collins
Robert Hilldale
Chris Holmquist-Johnson
Paula Makar
Timothy Randle
Christi Young
Environmental Protection Agency
Earl Hayter (Athens, Georgia)
(This page intentionally left blank)
TABLE OF CONTENTS
1 INTRODUCTION.............................................................................................. 1
1.1 BACKGROUND ................................................................................................ 1
1.2 GSTAR-1D CAPABILITIES ............................................................................. 1
1.3 LIMITS OF APPLICATION ................................................................................. 2
1.4 ACQUIRING GSTAR-1D ................................................................................ 2
1.5 DISCLAIMER ................................................................................................... 3
2 FLOW ROUTING ............................................................................................. 5
2.1 STEADY FLOW SOLUTION .............................................................................. 5
2.1.1 Governing Equations for a Single River................................................ 5
2.1.2 Numerical Method for a Single River .................................................... 6
2.1.3 Governing Equations For River Networks ............................................ 7
2.1.4 Numerical Method for a Network .......................................................... 8
2.1.4.1 Internal sections .......................................................................... 8
2.1.4.2 Upstream Boundary Conditions.................................................. 9
2.1.4.3 Downstream Boundary Conditions........................................... 10
2.2 UNSTEADY FLOW SOLUTION ........................................................................ 10
2.2.1 Governing Equations ........................................................................... 11
2.2.2 Numerical Scheme ............................................................................... 11
2.2.3 Upstream Boundary Conditions .......................................................... 14
2.2.3.1 Water Discharge........................................................................ 14
2.2.3.2 River Stage................................................................................ 15
2.2.4 Downstream Boundary Conditions...................................................... 16
2.2.4.1 Rating Curve ............................................................................. 16
2.2.4.2 River Stage................................................................................ 16
2.2.5 Network Boundary Condition .............................................................. 17
2.3 INTERNAL BOUNDARY CONDITION .............................................................. 18
2.3.1 Governing Equations for Internal Boundaries .................................... 18
2.3.1.1 Time Stage Table ...................................................................... 18
2.3.1.2 Elevation versus discharge table............................................... 18
2.3.1.3 Weir........................................................................................... 18
2.3.1.4 Bridge........................................................................................ 19
2.3.1.5 Radial Gate................................................................................ 21
2.3.2 Implementation for Steady Flows ........................................................ 22
2.3.3 Implementation for Unsteady Flows.................................................... 22
3 SEDIMENT TRANSPORT ............................................................................ 24
3.1 SEDIMENT ROUTING ..................................................................................... 24
3.1.1 Exner Equation Routing....................................................................... 24
3.1.1.2 Non-Cohesive Sediment Routing ............................................. 25
3.1.1.3 Floodplain Routing ................................................................... 27
3.1.1.4 Cohesive Sediment.................................................................... 29
3.1.2 Unsteady Sediment Transport.............................................................. 30
3.1.2.2 Unsteady Term.......................................................................... 31
Table of Contents
i
3.1.2.3 Convective Term....................................................................... 31
3.1.2.4 Diffusion Term.......................................................................... 33
3.1.2.5 Discretized Sediment Transport Equation ................................ 34
3.1.2.6 Source Terms ............................................................................ 34
3.1.3 Non-Cohesive Particle Fall Velocity Calculations.............................. 35
3.1.4 Non-Cohesive Sediment Transport Capacity....................................... 36
3.1.4.2 DuBoys’ Method (1879) ........................................................... 37
3.1.4.3 Meyer-Peter and Müller's Formula (1948) ............................... 38
3.1.4.4 Laursen's Formula (1958) and Modified Version (Madden,
1993)
38
3.1.4.5 Toffaleti's Method (1969) ......................................................... 39
3.1.4.6 Engelund and Hansen's Method (1972) .................................... 39
3.1.4.7 Ackers and White's Method (1973) and (HR Wallingford, 1990)
39
3.1.4.8 Yang's Sand (1973) and Gravel (1984) Transport Formulas .... 40
3.1.4.9 Yang's Sand (1979) Transport Formulas .................................. 41
3.1.4.10
Parker's Method (1990)......................................................... 42
3.1.4.11
Brownlie’s Method ............................................................... 43
3.1.4.12
Yang et al. 's Modified Formula for Sand Transport with High
Concentration of Wash Load (1996)......................................................... 43
3.1.5 Cohesive Sediment Aggregation .......................................................... 44
3.1.6 Cohesive Sediment Deposition............................................................. 46
3.1.7 Cohesive Sediment Erosion.................................................................. 47
3.2 BED MATERIAL MIXING ............................................................................... 49
3.3 CONSOLIDATION .......................................................................................... 53
4 BED GEOMETRY SOLUTION .................................................................... 55
4.1 CHANNEL GEOMETRY ADJUSTMENT ............................................................ 55
4.2 THEORY FOR CHANNEL NARROWING AND WIDENING ................................. 56
4.2.1 No Minimization................................................................................... 56
4.2.2 Maximization of Conveyance............................................................... 56
4.2.3 Minimization of Total Stream Power................................................... 56
4.2.4 Minimization of Energy Slope.............................................................. 57
4.2.5 Minimization of Bed Slope ................................................................... 57
4.3 ANGLE OF REPOSE ADJUSTMENTS ............................................................... 57
5 INPUT DATA REQUIREMENTS................................................................. 59
5.1 MODEL PARAMETERS................................................................................... 59
5.2 UPSTREAM FLOW BOUNDARY CONDITIONS ................................................. 60
5.3 DOWNSTREAM FLOW BOUNDARY CONDITIONS ........................................... 61
5.4 INTERNAL BOUNDARY CONDITIONS ............................................................. 61
5.5 LATERAL INFLOWS ....................................................................................... 62
5.6 CHANNEL GEOMETRY AND FLOW CHARACTERISTICS .................................. 62
5.7 SEDIMENT MODEL PARAMETERS ................................................................. 64
5.8 SEDIMENT BOUNDARY CONDITIONS ............................................................ 64
5.9 LATERAL SEDIMENT DISCHARGE ................................................................. 65
5.10 SEDIMENT BED MATERIAL ......................................................................... 65
5.11 WATER TEMPERATURE .............................................................................. 65
ii
GSTAR-1D User’s Manual
5.12 EROSION AND DEPOSITION LIMITS ............................................................. 65
5.13 SEDIMENT TRANSPORT PARAMETERS ........................................................ 66
5.14 COHESIVE SEDIMENT TRANSPORT PARAMETERS ....................................... 66
6 RUNNING GSTAR-1D ................................................................................... 69
6.1 INPUT DATA FORMAT .................................................................................. 69
6.2 EXECUTING GSTAR-1D .............................................................................. 69
6.3 OUTPUT FILES .............................................................................................. 70
REFERENCES.................................................................................................... 73
APPENDIX A FLOW CHART OF INPUT DATA RECORDS..........................A1
APPENDIX B ALPHABETIC LIST OF THE INPUT DATA RECORDS.........B1
APPENDIX C DESCRIPTIONS OF RECORDS ................................................C1
APPENDIX D EXAMPLE APPLICATIONS......................................................D1
D1 TRAPEZOID CHANNEL ..................................................................................D3
D2 CHANNEL NETWORK ..................................................................................D17
D3 CALIFORNIA AQUEDUCT ............................................................................D39
Table of Contents
iii
TABLE OF FIGURES
Figure 2.1 Upstream boundaries of River 2 and River 3 .....................................................9
Figure 2.2 Discrete grid for unsteady flow simulation ......................................................12
Figure 2.3 Schematic of bridge (Source: Fread and Lewis, 1998) ....................................20
Figure 2.4 Schematic of radial gate (Source: Brunner, 2001)). .........................................21
Figure 3.1 Ratio between non-equilibrium concentration and carrying capacity as
a function of sediment particle size. ......................................................................26
Figure 3.2 Effect of the recovery parameter α on the computation of nonequilibrium sediment concentrations for two sediment particle sizes. (a)
deposition and (b) erosion......................................................................................27
Figure 3.3 Variation of non-equilibrium effects as a function of distance between
cross sections for aggradation (a) and for erosion (b)............................................27
Figure 3.4 Discrete grid for unsteady flow simulation ......................................................31
Figure 3.5 Relation between particle sieve diameter and its fall velocity according
to the U.S. Interagency Committee on Water Resources Subcommittee on
Sedimentation (1957).............................................................................................36
Figure 3.6 The influence of sediment concentration on the settling velocity
(source: Van Rijn, 1993, figure 11.4.2) ................................................................45
Figure 3.7 Input data illustration for settling velocity .......................................................46
Figure 3.8 The schematic illustrates the erosional characteristics that need to be
determined from erosion tests (after: Vermeyen, 1995)........................................48
Figure 3.9 Conceptual model of bed mixing. ....................................................................50
Figure 4.1 Schematic representation of channel changes: (a) vertical adjustment
due to scour or deposition; (b) width adjustment due to scour or
deposition. Line AB denotes the sub-channel boundary. ......................................55
Figure 5.1 Steady Flow Representation of a Water Discharge Hydrograph......................60
Figure 5.2 Representation of River by Discrete Cross sections.........................................63
Figure 5.3 Representation of Cross Section by Discrete Points. .......................................64
TABLE OF TABLES
Table 3.1 Sediment transport functions available in GSTAR-1D and its type (B =
bed load; BM = bed-material total load)................................................................37
Table 3.2 Coefficients for the 1973 and 1990 versions of the Ackers and White
formula...................................................................................................................40
Table 5.1 Input records in Model Parameter data group. ..................................................60
Table 5.2 Possible downstream boundary conditions........................................................61
Table 5.3 Possible internal boundary conditions. ..............................................................61
Table 5.4 Records used in Sediment Transport Parameters data group. ...........................66
Table 5.5 Parameters necessary for cohesive sediment erosion and deposition................66
iv
GSTAR-1D User’s Manual
CHAPTER
1
INTRODUCTION
1.1 Background
GSTAR-1D (Generalized Sediment Transport for Alluvial Rivers – One
Dimension) is a one-dimensional hydraulic and sediment transport model for use
in natural rivers and manmade canals. It is a mobile boundary model with the
ability to simulate steady or unsteady flows, internal boundary conditions, looped
river networks, cohesive and non-cohesive sediment transport, and lateral inflows.
EPA (Environmental Protection Agency) and Reclamation (Bureau of
Reclamation) are funding partners in the development of the GSTAR-1D model.
GSTAR-1D is the most recent model developed in the GSTAR series. It borrows
many ideas and some computer code from the previous versions of GSTARS
(Molinas and Yang, 1986; Yang and Simões, 2000; Yang and Simões, 2002), but
it has been mostly rewritten and updated. The input format has also changed.
Previous versions of the GSTAR model were termed GSTARS and the acronym
meant “Generalized Stream Tube model for Alluvial River Simulation.” The
name and meaning of the acronym were changed to reflect the general nature of
the model and to accommodate future models. For example, GSTAR-2D
(Generalized Sediment Transport for Alluvial Rivers – Two Dimensions) and
GSTAR-W (Generalized Sediment Transport for Alluvial Rivers – Watershed)
are under development at Reclamation.
Many other sediment and water routing models, such as the HEC-6 model (U.S.
Army Corps of Engineers or USCOE, 1977, 1993), FLUVIAL-12 (Chang, 1998),
CONCEPTS (Langendoen, 2000), EFDC1D (Tetra Tech, 2001), and CCHE1D
(Wu and Vieira, 2002) have also been developed to solve one-dimensional
alluvial river problems. These models generally have many of the same
capabilities as GSTAR-1D.
1.2 GSTAR-1D Capabilities
GSTAR-1D is a hydraulic and sediment transport numerical model developed to
simulate flows in rivers and channels with or without movable boundaries. Some
of the model’s capabilities are:
Introduction
1
•
•
•
•
•
•
•
•
•
•
•
•
•
•
Computation of water surface profiles in a single channel or multi-channel
looped networks.
Steady and unsteady flows.
Subcritical flows in a steady hydraulic simulation.
Subcritical, supercritical, and transcritical flows in an unsteady hydraulic
simulation.
Steady and unsteady sediment transport.
Transport of cohesive and non-cohesive sediments.
Cohesive sediment aggregation, deposition, erosion, and consolidation.
Sixteen different non-cohesive sediment transport equations that are
applicable to a wide range of hydraulic and sediment conditions.
Cross stream variation in hydraulic roughness.
Exchange of water and sediment between main channel and floodplains.
Fractional sediment transport, bed sorting, and armoring.
Computation of width changes using theories of minimum stream power
and other minimizations.
Point and non-point sources of flow and sediments.
Internal boundary conditions, such as time-stage tables, rating curves,
weirs, bridges, and radial gates.
1.3 Limits of Application
GSTAR-1D is a general numerical model developed to simulate and predict
cohesive and non-cohesive sediment transport and related river morphological
changes due to natural or human influences. GSTAR-1D is an engineering tool
for solving fluvial hydraulic problems with the following limitations:
(1) GSTAR-1D is a one-dimensional model for flow simulation. It should not be
applied to situations where a two-dimensional or three-dimensional model is
needed for detailed simulation of local hydraulic conditions.
(2) GSTAR-1D is based on the sub-channel concept. The phenomena of
secondary current, lateral diffusion, and superelevation are ignored.
(3) Many of the sediment transport modules and concepts used in GSTAR-1D are
simplified approximations of real phenomena. Those approximations and their
limits of validity are embedded in the model.
(4) GSTAR-1D is currently compiled to run only within the Windows 2000/XP
operating system.
(5) There are no specific system requirements, but the size of the problem may be
limited by the computer memory. Systems with 256 MB or more are usually
sufficient.
1.4 Acquiring GSTAR-1D
The latest information about GSTAR-1D version 1.0 is placed on the Web and
can be found by accessing http://www.usbr.gov/pmts/sediment and following the
links on the web page. Requests may be sent directly to the Bureau of
Reclamation’s Sedimentation and River Hydraulics Group (Attention: GSTAR
2
GSTAR-1D User’s Manual
Support, U.S. Bureau of Reclamation, Sedimentation and River Hydraulics
Group, P.O. Box 25007 (D-8540), Denver, CO 80225).
GSTAR-1D is under continuous development and improvement. A user is
encouraged to check the GSTAR-1D web page regularly for updates.
1.5 Disclaimer
The program GSTAR-1D and information in this manual are developed for use at
the Bureau of Reclamation. Reclamation does not guarantee the performance of
the program, nor help external users solve their problems. Reclamation assumes
no responsibility for the correct use of GSTAR-1D and makes no warranties
concerning the accuracy, completeness, reliability, usability, or suitability for any
particular purpose of the software or the information contained in this manual.
GSTAR-1D is a program that requires engineering expertise to be used correctly.
Like other computer programs, GSTAR-1D is potentially fallible. All results
obtained from the use of the program should be carefully examined by an
experienced engineer to determine if they are reasonable and accurate.
Reclamation will not be liable for any special, collateral, incidental, or
consequential damages in connection with the use of the software.
Introduction
3
(This page intentionally left blank)
4
GSTAR-1D User’s Manual
CHAPTER
2
FLOW ROUTING
This chapter describes the theoretical basis for the one-dimensional flow solutions
used in GSTAR-1D. GSTAR-1D has the capability to solve either the steady or
unsteady flow equations. The governing equations for steady flow are presented
first, followed by the steady flow numerical methods for a single channel, as well
as a channel network. The governing equations of unsteady flows are given next
with the numerical solution method for simple and complex river networks. The
available boundary conditions are described last.
2.1 Steady Flow Solution
GSTAR-1D uses the standard step method to solve the energy equation for steady
gradually varied flows. Presently, only subcritical and critical flow profiles are
calculated when the steady flow option is used.
2.1.1 GOVERNING EQUATIONS FOR A SINGLE RIVER
The energy equation for steady gradually varied flow between downstream cross
section 1 and upstream cross section 2 is expressed as:
Z 2 + β2
where:
V22
V2
− Z1 − β1 1 = h f + hc
2g
2g
(2.1)
Z1, Z2 = water surface elevations at cross sections 1 and 2, respectively;
V1, V2 = average velocities at cross sections 1 and 2, respectively;
β1, β2 = velocity distribution coefficients at cross sections 1 and 2,
respectively;
g = gravitational acceleration;
hf = friction loss between cross sections 1 and 2, and
hc = contraction or expansion losses between cross sections 1 and 2.
The equation for friction loss may be calculated in two ways as:
Flow Routing
5
h fa = S f1 S f 2 ( x2 − x1 )
(2.2)
2
⎡ 2Q ⎤
h fb = ⎢
( x2 − x1 )
⎣ (K1 + K 2 )⎥⎦
where:
(2.3)
S f1 , S f 2 = friction slopes at cross sections 1 and 2, respectively;
x1 , x2 = streamwise coordinates of cross sections 1 and 2,
respectively;
Q = flow rate; and
K1, K2 = conveyance at cross sections 1 and 2, respectively.
The actual friction loss used is the minimum of the two:
h f = min(h fa , h fb )
(2.4)
For a specific discharge, the conveyance, K, is used to determine the friction slope
in Eq. (2.3):
Q
S f = ⎛⎜ ⎞⎟
⎝K⎠
2
(2.5)
where K is computed from the Manning’s equation:
Q = KS 1f / 2 =
where:
Cm
AR 2 / 3 S 1f / 2
n
(2.6)
n = Manning’s coefficient;
A = cross-sectional area;
R = hydraulic radius (A/P);
P = wetted perimeter; and
Cm = 1.486 for English units or 1.0 for SI units.
The equation for contraction or expansion losses is expressed as:
2
hc = Cc V
2g
where:
(2.7)
Cc = a user defined energy loss coefficient, and
V = average velocity between sections 1 and 2.
2.1.2 NUMERICAL METHOD FOR A SINGLE RIVER
Standard step method is used to solve Eq. (2.1), which can be expressed as:
f (Z 2 ) = Z 2 + β2
6
GSTAR-1D User’s Manual
V22
V2
− Z1 − β1 1 − h f − hc = 0
2g
2g
(2.8)
This nonlinear algebraic equation can be solved by the Newton-Raphson iterative
method (Jain, 2000). Let Z 2* be an estimate of Z 2 , the Newton-Raphson method
gives a better estimate of Z 2 using the following:
Z 2′ = Z 2* −
where:
f ( Z 2* )
f ' ( Z 2* )
f ' ( Z 2* ) = 1 − (β 2 + Cc )
(2.9)
V22 ∂h f
−
gR ∂Z 2
(2.10)
After the first 2 iterations, the derivative in Eq (2.10) is computed by using the
previous 2 values of f(Z2). After the updated Z 2′ is found, it is checked to see if
the flow at that cross section is supercritical. If it is, then the depth is set to either
critical depth or normal depth, depending upon the input given by the user (see
Data Group 1 in Chapter 5).
The iteration continues until a preset accuracy is obtained. The model
automatically switches to the multiple interval method if the Newton-Raphson
method does not reach a convergent solution. The multiple interval method
separates the cross section into several intervals then begins searching for the
elevation where the sign of the left hand side of Eq (2.6) changes. The first
interval where the change in sign occurs is then subdivided. This process is
continued until the interval reduces to an user specified accuracy.
2.1.3 GOVERNING EQUATIONS FOR RIVER NETWORKS
GSTAR-1D provides solutions to both dendritic networks and looped networks.
The method used by GSTAR-1D for such networks is similar to that found in
Chaudhry (1993). However, some modifications were made to handle large
numbers of connections within a river network.
The following strategy is used to record the network connection information.
River numbering is in ascending order from upstream to downstream. The
boundary condition for each river entering a junction is the ID numbers of the
other rivers entering that junction. If the flow is into the junction, the ID number
is positive and if the flow is out of the junction the ID number is negative. In a
looped network where the flow direction is unknown before the numerical
simulation, the input flow direction can be assumed by the user. A calculated
positive discharge means that the assumed flow direction is correct. A negative
discharge indicates a flow direction opposite of that initially assumed.
A numerical solution of flow in a network requires the calculation of both the
energy equation and the continuity equation. At each cross section, the flow depth
and flow discharge are initially unknown. The energy equation and the continuity
equation are written for each cross section as:
Flow Routing
7
⎛ β i +1Qi +1 Qi +1 β i Qi Qi
−
Fi = Z i +1 − Z i + 1 ⎜⎜
2g ⎝
Ai2+1
Ai2
C ⎛ Qi +1 Qi +1 Qi Qi
+ h f + c ⎜⎜
+
4 g ⎝ Ai2+1
Ai2
⎞
⎟
⎟
⎠
⎞
⎟=0
⎟
⎠
Gi = Qi +1 − Qi − Q Lati = 0
(2.11)
(2.12)
where QLati = the lateral inflow at the reach between cross sections i and i+1.
Since A and R are functions of only water surface elevation Z, the unknowns are
water surface elevation and discharge. For a river with N+1 cross-sections, there
are 2(N+1) unknowns, but only 2N equations for N river reaches. Therefore, two
boundary conditions are required for a unique solution of the system and these
can be written in a general form as:
BU = f (Q1 , Z1 ) = 0
(2.13)
BD = f (QN +1 , Z N +1 ) = 0
(2.14)
'
where f and f’ are functions defined by the boundary conditions and BU and BD
signify the upstream and downstream boundary conditions, respectively.
2.1.4 NUMERICAL METHOD FOR A NETWORK
2.1.4.1
INTERNAL SECTIONS
By expanding Eqs. (2.11) to (2.14) in Taylor series the system of equations
become:
⎡ ∂BU
⎢ ∂Z 1
⎢ ∂F1
⎢
⎢ ∂Z 1
⎢ ∂G1
⎢ ∂Z 1
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣⎢
∂BU
∂Q1
∂F1
∂Q1
∂G1
∂Q1
∂F1
∂Z 2
∂G1
∂Z 2
M
∂F1
∂Q 2
∂G1
∂Q 2
M
O
M
∂G N
∂Z N
∂G N
∂Z N
M
∂G N
∂Q N
∂G N
∂Q N
∂G N
∂Z N +1
∂G N
∂Z N +1
∂BD
∂Z N +1
⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
∂G N ⎥
∂Q N +1 ⎥
∂G N ⎥
⎥
∂Q N +1 ⎥
∂BD ⎥
∂Q N +1 ⎦⎥
⎡ ΔZ 1 ⎤
⎡ BU ⎤
⎢ ΔQ ⎥
⎢F ⎥
1 ⎥
⎢
⎢ 1⎥
⎢ ΔZ 2 ⎥
⎢ G1 ⎥
⎥
⎢
⎥
⎢
⎢ M ⎥ = −⎢ M ⎥
⎢ ΔQ N ⎥
⎢ FN ⎥
⎥
⎢
⎥
⎢
⎢ ΔZ N +1 ⎥
⎢GN ⎥
⎢⎣ ΔQ N +1 ⎥⎦
⎢⎣ BD ⎥⎦
(2.15)
For a river network, one can add equations to the matrix in Eq. (2.15) for each
individual cross section. However, the boundary conditions may contain the river
depth or discharge in the connected sections of adjoined rivers. For the energy
equation Fi, the four non-zero partial derivatives at the nodes joining rivers are
written as:
⎛ 2β + C ci Bi ⎞ ∂h f
∂Fi
⎟+
= −1 + Qi2 ⎜⎜ i
∂Z i
Ai3 ⎟⎠ ∂Z i
⎝ 2g
8
GSTAR-1D User’s Manual
(2.16)
∂h
∂Fi
2β + C
= −2Qi i 2 ci + f
∂Qi
∂Qi
4 gAi
(2.17)
⎛ 2β − C ci Bi +1 ⎞ ∂h f
∂Fi
⎟+
= 1 − Qi2+1 ⎜⎜ i +1
∂Z i +1
2g
Ai3+1 ⎟⎠ ∂Z i +1
⎝
(2.18)
⎛ 2β − C ⎞ ∂h f
∂Fi
= 2Q ⎜⎜ i +1 2 ci ⎟⎟ +
∂Qi +1
⎝ 4 gAi +1 i ⎠ ∂Qi +1
(2.19)
For the continuity equation Gi, the two non-zero partial derivatives are written as:
2.1.4.2
∂Gi
= −1
∂Qi
(2.20)
∂Gi
=1
∂Qi +1
(2.21)
UPSTREAM BOUNDARY CONDITIONS
For each individual river in a network, one upstream and one downstream
boundary condition are required. If the upstream or downstream boundary is a
junction, then the ID numbers of the other rivers comprising that junction are
entered into the input file. Figure 2.1 illustrates a simple network where one river
splits into two.
Figure 2.1 Upstream boundaries of River 2 and River 3
River 1 enters into the junction and ie1 is the last cross section of River 1. The
first cross sections of rivers 2 and 3 are is2 and is3, respectively. Two equations
are necessary to define the flow rates and water surface elevations at the junction.
The equations used are the continuity equation and the energy equation, assuming
no energy loss. They can be written as:
BU 2 = Qis 2 + Qis 3 − Qin = 0
(2.22)
β is 3Qis2 3
β is 2Qis2 2
− Z is 2 −
=0
BU 3 = Z is 3 +
2 gAis2 3
2 gAis2 2
(2.23)
Flow Routing
9
The non-zero partial derivatives in the matrix are:
∂BU 2 ∂BU 2
=1
=
∂Qis 3
∂Qis 2
(2.24)
∂BU 3
β Q2 B
= −1 + is 2 is32 is 2
∂Z is 2
gAis 2
(2.25)
∂BU 3
β Q
= − is 2 2 is 2
∂Qis 2
gAis 2
(2.26)
∂BU 3
β Q2 B
= 1 − is 3 is33 is 3
∂Z is 3
gAis 3
(2.27)
∂BU 3 βis 3Qis 3
=
∂Qis 3
gAis2 3
(2.28)
If there are other rivers in the network, each river has an additional energy
equation for the upstream boundary. For a complex network where the upstream
incoming discharge is unknown, the partial derivative of the continuity equation is
also a function of the discharge of the upstream river.
2.1.4.3
DOWNSTREAM BOUNDARY CONDITIONS
For each river in the network, the energy equation is used as the downstream
boundary condition:
BD = Z ie +
β ieQie2
β is Qis2
−
Z
−
=0
is
2 gAie2
2 gAis2
(2.29)
where ie and is denote the cross-sections of the upstream and downstream rivers,
respectively, that comprise the junction.
The non-zero partial derivatives in the matrix are:
2
∂BD = 1 − β ieQie Bie
∂Z ie
gAie3
(2.30)
∂BD = − βieQie
∂Qie
gAie2
(2.31)
2
∂BD = −1 + β is Qis Bis
∂Z is
gAis3
(2.32)
∂BD = − βisQis
∂Qis
gAis2
(2.33)
2.2 Unsteady Flow Solution
GSTAR-1D also has the ability to simulate unsteady flow. The theoretical basis
for the unsteady flow solution is described below.
10
GSTAR-1D User’s Manual
2.2.1 GOVERNING EQUATIONS
One-dimensional river flows are described by the de St Venant equations,
Continuity:
Momentum:
where:
∂ ( A + Ad ) ∂Q
+
= qlat
∂x
∂t
∂Q ∂ (βQ 2 / A)
+
+ gA ∂Z = − gAS f
∂t
∂x
∂x
(2.34)
(2.35)
Q = discharge (m3/s),
A = cross section area (m2),
Ad = ineffective cross section area (m2),
qlat = lateral inflow per unit length of channel (m2/s),
t = time independent variable (s),
x = spatial independent variable (m),
g = gravity acceleration (m/s2),
β = velocity distribution coefficients,
Z = water surface elevation (m),
Sf = energy slope (=
QQ
), and
K2
K = conveyance (m3/s).
2.2.2 NUMERICAL SCHEME
The numerical scheme used in GSTAR-1D was taken from the “NewC” scheme
by Kutija and Newett (2002). There are many numerical methods available to
solve the St Venant equations. To model transcritical flow, the conservative form
of the momentum equations should be solved (see discussion of the NewC
scheme by Meselhe et al. 2005). However, transcritical flows are seldom
encountered in natural channels. When they are, it is often in steep mountain
streams where it is difficult to obtain sufficiently detailed topography to resolve
hydraulic jumps. In addition, the water surface is seldom constant across the cross
section in these types of flow and the 1D flow assumptions are not valid.
Therefore, this model is not recommended to obtain detailed hydraulic
information near the transition between sub- and super-critical flows. However,
the model is stable for both sub- and super-critical flow and will be accurate
sufficiently far away from the transition.
The scheme is similar to Kutija and Newett, but the position of A and Q points are
reversed. In GSTAR-1D, A points are located at the cross section and Q points are
located at the center of two cross sections. Figure 2.2 shows a staggered grid with
A points placed at the beginning and the end of the domain and known cross
sections shown as solid lines.
Flow Routing
11
Δsi
Δxi
×Qis
×Qis+1
Ais
×Qi
×Qi-1
Ais+1
Ai-1
×Qi+1
Ai
×Qie
Ai+1
×Qie+1
Aie
Figure 2.2 Discrete grid for unsteady flow simulation
The discretization of the continuity equation is made with one A-point and two Qpoints giving the difference equation:
n −1
n
Ain + Ad i − Ain −1 − Ad i
= − Δt (Q i +1 − Q i )
Δx i
(2.36)
where the overbar signifies a time weighted averaged value with a weighting
factor θ in the time dimension. The time weighted discharge, Q i , can be written
as:
Q i = θQin + (1 − θ)Qin −1
(2.37)
and Eq. (2.36) can be written in an iteration form, with m signifying the iteration
number;
ΔAim = αi ΔQim + δi ΔQim+1 + γ i
(2.38)
where the coefficients are:
α i = θΔ t
Δx i
(2.38a)
δ i = − θΔt
Δx i
(2.38b)
n
n −1
γ i = − Ain − Ad i + Ain −1 + Ad i
+ (Q i − Q i +1 ) Δt
Δx i
(2.38c)
The discrete form of the momentum equation is made with two A-points and three
Q-points with a weighting factor θ in the time dimension giving the difference
equation:
⎛ Z i − Z i −1
⎞
− S fi ⎟⎟ (2.39)
Qin − Qin −1 + Δt ( F e − F w ) = Δt g Ai + Ai −1 ⎜⎜
Δ si
2
⎝ Δs i
⎠
where:
(Q i + Q i +1 ) 2
Fe = β
4 Ai
(Q i + Q i −1 ) 2
Fw =β
4 Ai −1
12
GSTAR-1D User’s Manual
S fi =
4Q i Q i
( K i + K i −1 ) 2
Using a weighting factor θ in the time dimension, Eq. (2.39) can be written in
iteration form as:
⎛ ∂F e
⎞
ΔQim + ∂ Fne ΔQim+1 + ∂ F ne ΔAim
⎜
⎟
n
∂Qi +1
∂Ai
⎜ ∂Qi
⎟
m
t
Δ
ΔQ i + θ
⎟
Δx i ⎜ ∂ F w
F
F
∂
∂
m
m
m
w
w
Q
Q
A
Δ
−
Δ
−
⎜⎜ −
Δ
⎟⎟
i
i
i
−
1
−
1
n
∂Qin−1
∂Ain−1
⎝ ∂Qi
⎠
− θΔ t g
ΔAim + ΔAim−1
2
− θΔt g A i + A i −1
2
⎞
⎛ Z in−+11 − Z in +1
⎜⎜
− S nfi+1 ⎟⎟
s
Δ
i
⎠
⎝
(2.40)
⎛ ΔAim−1
⎞
ΔA m
∂ S fi
⎜ n +1
− n +1 i −
ΔAim ⎟
n
⎜ Ti −1 Δs i Ti Δs i ∂Ai
⎟
⎜
⎟
⎜ − ∂ S fi ΔA m − ∂ S fi ΔQ m
⎟
i −1
i
⎜ ∂A n
⎟
∂Qin
i −1
⎝
⎠
= −Q in + Q in −1 − Δt ( F e − F w ) + Δt g A i + A i −1
2
Δx i
⎞
⎛ Z i −1 − Z i
⎜
− S fi ⎟
⎟
⎜ Δs i
⎠
⎝
Substituting Eq. (2.38) into Eq. (2.40), results in:
ai ΔQim−1 + bi ΔQim + ci ΔQim+1 = d i
(2.41)
where the coefficients are:
⎛
⎞
a i = θ Δt ⎜⎜ − ∂ Fnw − ∂ Fnw α i −1 ⎟⎟
Δsi ⎝ ∂Qi −1 ∂Ai −1
⎠
(2.41a)
θα Δt g ⎡ Z in−+11 − Z in +1
∂ S fi ⎞⎤
⎛
⎞⎛ 1
− i −1
− S fi + ⎜ Ai + Ai −1 ⎟⎜⎜ n
− n ⎟⎟⎥
⎢
2
2
Δsi
⎝
⎠⎝ Ti −1 Δsi ∂Ai −1 ⎠⎦
⎣
⎛
⎞
bi = 1 + θ Δt ⎜⎜ ∂ F ne + ∂ F ne α i − ∂ F wn − ∂ Fnw δ i −1 ⎟⎟
Δs i ⎝ ∂Qi
∂Ai
∂Qi
∂Ai −1
⎠
−θ
(2.41b)
⎞
⎛ Z n − Z in
Δt g
( α i + δ i −1 )⎜⎜ i −1
− S fi ⎟⎟
2
⎠
⎝ Δs i
⎡
⎤
⎛ 1
∂ S fi ⎞
− n ⎟⎟ + ⎥
⎢δ i −1 ⎜⎜ n
Δt g
⎝ Ti −1 Δs i ∂Ai −1 ⎠
⎢
⎥
−θ
( A i + A i −1 ) ⎢
⎥
2
⎛ −1
⎞
∂ S fi
∂ S fi ⎥
⎢α i ⎜
⎟
−
−
⎢⎣ ⎜⎝ Ti n Δs i ∂Ain ⎟⎠ ∂Qin ⎥⎦
⎛
⎞
ci = θ Δt ⎜⎜ ∂ Fne + ∂ F ne δ i ⎟⎟
Δsi ⎝ ∂Qi +1 ∂Ai
⎠
⎞
⎛ − 1 ∂S fi
θδ Δt g ⎡⎛ Z in−1 − Z in
⎜⎜
−
− i
− S fi ⎟⎟ + Ai + Ai −1 ⎜⎜
⎢
2 ⎣ ⎝ Δs i
2
⎝ Ti Δsi ∂Ai
⎠
(2.41c)
⎞⎤
⎟⎟⎥
⎠⎦
Flow Routing
13
d i = Qin −1 − Qin
⎛
⎞
+ Δt ⎜⎜ F w − F e − θγ i ∂ F ne + θγ i −1 ∂ Fnw ⎟⎟
Δs i ⎝
∂Ai
∂Ai −1 ⎠
(
Δt g
+
Ai + Ai −1 + θγ i + θγ i −1
2
+
(2.41d)
⎛ Z in−1 − Z in
⎞
⎜
− S fi ⎟
⎜ Δs i
⎟
⎝
⎠
)
⎡ ⎛ 1
⎛ −1
θΔt g
∂ S fi ⎞
∂ S fi
( Ai + Ai −1 ) ⎢ γ i −1 ⎜⎜ n
− n ⎟⎟ + γ i ⎜⎜ n
−
n
2
⎝ Ti Δs i ∂Ai
⎣ ⎝ Ti −1 Δs i ∂Ai −1 ⎠
⎞⎤
⎟⎟⎥
⎠⎦
where T is the flow top width. For a single channel with N+1 cross sections, there
are N+2 unknowns and N Eqs. (2.41). An upstream and a downstream boundary
condition are therefore required.
The method as described above can be unstable for supercritical flow. If
supercritical flow is to be simulated, GSTAR-1D uses the Local Partial Inertia
(LPI, from Fread and Lewis, 1998) technique to compute the flow. The LPI
technique consists of multiplying the convective terms by a parameter, σ, as
follows:
⎡ ∂Q ∂ (βQ 2 / A) ⎤
∂Z
σ⎢
+
⎥ + gA ∂x = − gAS f
∂
t
∂
x
⎣
⎦
n
σ = max(0, 1 − Fr )
(2.42)
(2.43)
where Fr is the Froude Number and n is a coefficient. In GSTAR-1D, n is set to a
value of 5. If Fr ≥ 1, then σ = 0 and the momentum equation simplifies to the
diffusive wave equation for open channel flow. The diffusive wave equation is
generally stable for sub- or super-critical flow, but because it ignores the
acceleration terms in the momentum equation, it may not accurately simulate the
propagation of rapidly changing hydrographs such as may occur during dam
breaks. GSTAR-1D assumes that subcritical flow occurs at the boundaries of a
river and the user must therefore supply both upstream and downstream boundary
conditions. Therefore, supercritical flow should not occur at the upstream or
downstream ends of any river.
2.2.3 UPSTREAM BOUNDARY CONDITIONS
Two upstream boundary conditions are available: 1. known water discharge; 2.
known water surface elevation
2.2.3.1
WATER DISCHARGE
The known water discharge boundary condition is summarized as:
Qis = f (t )
(2.44)
where Qis = the discharge at the center of the left fictitious cell, i = 1, outside of
the model domain. The discretization of the upstream boundary condition written
in an iteration form as:
14
GSTAR-1D User’s Manual
ΔQis = −Qisn + f (tn +1 )
(2.45)
The above equation can be written in the following form:
ais ΔQism−1 + bis ΔQism + cis ΔQism+1 = d is
(2.46)
where the coefficients are:
a is = 0
bis = 1
cis = 0
d is = f (t ) − Qisn
These coefficients are used to replace the coefficients defined in Eqs. (2.41a) to
(2.41d) at the upstream boundary.
2.2.3.2
RIVER STAGE
The river stage boundary condition can be written as:
H is = f (t ) or Ais = f (t )
(2.47)
The discretized continuity equation (Eq. 2.38) is used to implement this boundary
condition:
αis ΔQism + δis ΔQism+1 + γ is = ΔAism
where:
(2.48)
ΔAism = Aisn − Aism−1 ;
Ais
= the given entrance cross section area defined in Eq. (2.47),
and
Aism −1 = the estimated entrance cross section area of last iteration.
The above equation can be written in the following form:
ais ΔQism−1 + bis ΔQism + cis ΔQism+1 = d is
(2.49)
where the coefficients are:
ais = 0
bis = α is
cis = δ is
d is = ΔAism − γ is
These coefficients are used to replace the coefficients defined in Eqs. (2.41a) to
(2.41d).
Flow Routing
15
2.2.4 DOWNSTREAM BOUNDARY CONDITIONS
The downstream boundary conditions can also be grouped into two general types:
1. rating curve (the discharge is a function of the river stage); 2. known water
surface elevation.
2.2.4.1
RATING CURVE
The rating curve boundary conditions can be expressed as:
Qie+1 = f ( Aie )
(2.50)
where Qie+1 is the discharge at the center of the right fictitious cell, xie+1 in Figure
2.2, and Aie is the exit cross section area as defined in Figure 2.2. The
discretization of the downstream boundary condition in iteration form is:
ΔQie+1 = −Qien +1 + f ( Aien ) +
∂f
ΔAie
∂Aie
(2.51)
Expression (2.38) can be used to eliminate the unknown ΔAie in Eq. (2.51),
resulting in the following form:
aie+1ΔQiem + bie+1ΔQiem+1 + cie+1ΔQiem+2 = d ie+1
(2.52)
where the coefficients are:
aie+1 = −
∂f
α
∂Aie ie
bie+1 = 1 −
∂f
δ
∂Aie ie
cie +1 = 0
d ie+1 = f ( Aien ) − Qien +1 +
∂f
γ
∂Aie ie
These coefficients are used to replace the coefficients defined in Eqs. (2.41a) to
(2.41d) for the downstream boundary.
2.2.4.2
RIVER STAGE
The given river stage boundary condition can be written as:
H ie = f (t ) or Aie = f (t )
(2.53)
where ie = last cross section. The discretized continuity equation (Eq. 2.38) is
used to implement the boundary condition.
αie ΔQiem + δie ΔQiem+1 + γ ie = ΔAiem
(2.54)
where ΔAiem = Aie − Aiem−1 and Aie is the given cross section area defined in Eq.
(2.53).
The above equation can be written in the following form:
16
GSTAR-1D User’s Manual
aie+1ΔQiem + bie+1ΔQiem+1 + cie+1ΔQiem+ 2 = d ie+1
(2.55)
where the coefficients are:
aie+1 = α ie
bie+1 = δ ie
cie +1 = 0
d ie+1 = ΔAiem − γ ie
These coefficients are used to replace the coefficients defined in Eqs. (2.41a) to
(2.41d) for the downstream boundary.
2.2.5 NETWORK BOUNDARY CONDITION
For each river with N cross sections, there are N+1 unknowns of discharge and
N-1 equations (Eq. 2.41). Closing the solution system requires equations from
boundary conditions. In addition to the upstream and downstream boundary
conditions, the junction of the rivers provides the constraints required to solve the
continuity and momentum equations.
A general case is discussed here with s rivers entering the junction and t rivers
exiting the junction. A total of s+t boundary conditions exist including one
continuity equation and s+t-1 momentum equations. No storage is allowed in the
junction. The continuity equation is written as:
s
∑Q
l =1
m
l ,ie +1
t
− ∑ Qlm,is = 0
(2.56)
l =1
where Qlm,ie+1 is the estimated outlet discharge of river l, Qlm,is is the estimated
entrance discharge of river l. The correction form of the discharge is written as:
s
∑ ΔQ
l =1
m
l ,ie +1
t
− ∑ ΔQlm,is = 0
(2.57)
l =1
A simplified momentum equation is introduced at the junction, requiring that all
cross sections associated with the junction share the same water level correction.
Assuming river t is the maximum river index of the rivers that exit the junction,
the boundary condition for the river l entering the junction is written as:
ΔH lm,ie+1 = ΔH tm,is or ΔAlm,ie+1 / Tl ,ie+1 = ΔAtm,is / Tt ,is
(2.58)
The area correction can be replaced by Eq. (2.49), and Eq. (2.58) can be written
as:
( α l ,ie ΔQlm,ie + δ l ,ie ΔQlm,ie+1 + γ l ,ie ) / Tl ,ie =
( α t ,is ΔQtm,is + δ t ,is ΔQtm,is +1 + γ t ,is ) / Tt ,is
(2.59)
The same boundary condition for the river l exiting the junction is written as:
Flow Routing
17
(α l ,is ΔQlm,is + δ l ,is ΔQlm,is +1 + γ l ,is ) / Tl ,is =
( α t ,is ΔQtm,is + δ t ,is ΔQtm,is +1 + γ t ,is ) / Tt ,is
(2.60)
2.3 Internal Boundary Condition
Hydraulic structures such as dams, bridges, weirs, and gates may exist along a
natural river and special treatments are required in the numerical model. For each
internal cross sectional structure, two more unknowns are introduced: the
discharge Qi and water surface elevation Zi at that structure. The conservation of
mass serves as one of the equations necessary to solve for the unknowns. The
other equation depends upon the particular structure. Structures currently
supported by GSTAR-1D are listed in the following sections. Steady and unsteady
flow conditions use the same equations, but the interpolation in time of time series
data is handled differently. Internal boundary conditions are interpolated using a
step function for steady flow simulations and linearly in time for unsteady flow
simulations. Internal structures are assumed to occur between cross sections and
are identified by the cross section that occurs immediately upstream.
2.3.1 GOVERNING EQUATIONS FOR INTERNAL BOUNDARIES
2.3.1.1
TIME STAGE TABLE
For this boundary condition, the user enters a known water surface elevation
versus time at a cross section. Forexample, this boundary condition could
represent a pool that is controlled based upon daily operations:
H = H (t )
2.3.1.2
(2.61)
ELEVATION VERSUS DISCHARGE TABLE
For this boundary condition, a user inputs a table of water surface elevation versus
flow rate. The water surface elevation for each discharge is linearly interpolated
between user-entered points. No extrapolation is performed. This boundary
condition could represent many different structures that have a unique relationship
between flow rate and water surface elevation:
H = H (Q)
2.3.1.3
(2.62)
WEIR
To simulate weirs in GSTAR-1D the user enters the spillway crest elevation, the
weir width, and the weir coefficient. If the downstream water surface elevation
does not impact the upstream water surface elevation, the flow over the weir is
considered unsubmerged. The submergence parameter, R, can be computed as:
R=
Z D − Z SP
ZU − Z SP
(2.63)
For unsubmerged flow past a weir, discharge is expressed as a function of the
water surface elevation, Z, written as:
3
Q = CB( ZU − Z SP ) 2
18
GSTAR-1D User’s Manual
if
R < 0.67
(2.64)
where:
C = weir coefficient;
ZSP = elevation of weir crest;
ZU is the elevation upstream;
ZD is the elevation downstream; and
B = width of weir crest.
For submerged flow the flow over the weir is computed as:
1
Q = CBF ( Z D − Z SP )( ZU − Z D ) 2
if R ≥ 0.67
(2.65)
where F is the discharge reduction factor, computed similar to that presented in
U.S. Army Corps of Engineers HEC-RAS 3.1 (2002):
1
1
F=
−
Rc Rc
⎛ R − Rc ⎞
⎟⎟
⎜⎜
⎝ 1 − Rc ⎠
5
(2.66)
where Rc is equal to 0.67. The function in 2.66 ensures that the submerged and
unsubmerged results are equivalent at R = Rc and that F = 0 at R = 1.
2.3.1.4
BRIDGE
Flow Routing
19
Figure 2.3 Schematic of bridge (Source: Fread and Lewis, 1998)
The present model uses the equations presented in FLDWAV (Fread and Lewis,
1998) for highway/railway bridges and their associated earthen embankments (as
shown in Figure 2.3). The discharge can be expressed as:
Q = 2gCAbr ( Z i − Z i +1 + Vi 2 / 2 g − Δh f )1 / 2
+ ccu Lu k u ( Z i − hcu ) 3 / 2 + ccl Ll k l ( Z i − hcl ) 3 / 2
where:
ku = 1.0
if
hru ≤ 0.76
(2.68)
ku = 1.0 − cu (hru − 0.76)3
if
hru > 0.76
(2.69)
cu = 133(hru − 0.78) + 10
if
0.76 < hru ≤ 0.96
(2.70)
cu = 400(hru − 0.96) + 34
if
hru > 0.96
(2.71)
hru = ( Z i +1 − hcu ) /( Z i − hcu )
ccu = 3.02( Z i − hcu ) 0.015
(2.72)
if
ccu = 3.06 + 0.27(hu − 0.15) if
where:
(2.67)
0 < hu ≤ 0.15
(2.73)
hu > 0.15
(2.74)
hu = ( Z i − hcu ) / wu
(2.75)
Δh f = Δxi (Qbr / K i ) 2
(2.76)
Qbr = 2 g CAbr ( Z i − Z i +1 + Vi 2 / 2 g )1 / 2
(2.77)
V = Qi / Ai
(2.78)
C = bridge coefficient,
Abr = cross-section flow area of the downstream end of bridge
opening which is user-specified via a tabular relation of wetted top
width versus elevation,
hcu = elevation of the upper embankment crest,
Zi = water surface elevation at section i (slightly upstream of
bridge),
Zi+1 = water surface elevation at section i+1 (slightly downstream
of bridge),
V = velocity of flow within the bridge opening,
Lu = length of the upper embankment crest perpendicular to the
flow direction including the length of bridge at elevation hcu,
ku = computed submergence correction factor for flow over the
upper embankment crest, and
wu = width (parallel to flow direction) of the crest of the upper
embankment.
When the bridge opening is submerged, the coefficient C in Eqs. (2.67) and (2.77)
is replaced by C ' for orifice flow:
20
GSTAR-1D User’s Manual
C ' = c0 C
where:
and:
2.3.1.5
⎧1.0 − ( r − 0.09)
⎪
c0 = ⎨
⎪⎩1.0
r = ( Z i − hbr ) / d i
(2.79)
if 0.09 ≤ r ≤ 0.31
(2.80)
otherwise
(2.81)
RADIAL GATE
For radial gates, GSTAR-1D uses equations similar to those in HEC-RAS 3.0
(Brunner, 2001). The schematic of radial gate is shown in Figure 2.4. According
to the upstream and downstream water surface elevations, the flow can be
cataloged into three types: free flow, partially submerged flow, and fully
submerged flow.
Figure 2.4 Schematic of radial gate (Source: Brunner, 2001)).
When the downstream tailwater elevation (ZD) is not high enough to cause an
increase in the upstream headwater elevation, the flow is considered to be “free”
flow. The discharge can be expressed as
Q = C 2 gWT TE B BE H HE
if
Z D − Z SP
≤ 0.67
Z U − Z SP
(2.82)
where Q = flow rate (cfs); C = discharge coefficient (typically ranges from 0.6 –
0.8); W = width of the gate (ft); T = trunnion height (ft, from spillway crest to
trunnion pivot point); TE = trunnion height exponent (typically about 0.16); B =
height of gate opening (ft); BE = gate opening exponent (typically about 0.72); H
= upstream energy head above the spillway crest (ZU-ZSP); HE = head exponent
(typically about 0.62); ZU = elevation of the upstream energy grade line (ft); ZD =
elevation of the downstream water surface (ft); ZSP = elevation of the spillway
crest through the gate (ft).
When the downstream tailwater elevation (ZD) is high enough to cause an increase
in the upstream headwater elevation, the flow is considered to be “partially
submerged” flow. The discharge can be expressed as
Flow Routing
21
Q = C 2 gWT TE B BE (3H ) HE
if
Z D − Z SP
> 0.67
Z U − Z SP
(2.83)
where H = upstream energy head (ft) above the downstream water surface (ZUZD).
When the discharge is further increased, the gate is “fully submerged” and the
discharge can be expressed as
Q = CA 2 gH
if
Z D − Z SP
> 0.80
Z U − Z SP
(2.84)
where A = area of the gate opening (ft2); H = upstream energy head (ft) above the
downstream water surface (ZU-ZD), and C = discharge coefficient (typically 0.8).
2.3.2 IMPLEMENTATION FOR STEADY FLOWS
For an internal boundary, the mass conservation equation is the same as equation
(2.12) and the energy equation (2.11) is replaced by the appropriate internal
boundary condition. The water surface elevation upstream of the internal
boundary is solved using the flow rate computed from the mass conservation
equation.
The equation for an internal boundary can be written as:
Fi (Yi , Qi , Yi +1 , Qi +1 ) = 0
(2.85)
This equation is used to replace the energy equation (Eq. 2.11). The derivatives
∂Fi
∂Fi
∂Fi ∂Fi
,
,
, and
are calculated and substituted into Eq. (2.15).
∂Z i ∂Qi ∂Z i +1
∂Qi +1
2.3.3 IMPLEMENTATION FOR UNSTEADY FLOWS
All internal boundary conditions can be summarized as:
Qi = f ( Ai −1 , Ai )
(2.86)
where Ai −1 and Ai are the cross section areas before and after the internal
boundary, respectively. The discretized form of the internal boundary condition
written in iteration form is:
ΔQi = −Qin + f ( Ain−1 , Ain ) +
∂f
∂f
ΔA +
ΔAi
∂Ai −1 i −1 ∂Ai
Expression (2.38) can be used to eliminate unknowns ΔAi −1 and
(2.87), which results in the following form:
ai ΔQim−1 + bi ΔQim + ci ΔQim+1 = di
where the coefficients are:
ai = −
22
∂f
α
∂Ai −1 i −1
GSTAR-1D User’s Manual
(2.87)
ΔAi
in
Eq.
(2.88)
bi = 1 −
ci = −
∂f
∂f
δ −
α
∂Ai −1 i −1 ∂Ai i
∂f
δ
∂Ai i
d i = f ( Ain−1 , Ain ) − Qin +
∂f
∂f
γ +
γ
∂Ai −1 i −1 ∂Ai i
These coefficients are used to replace the coefficients defined in Eqs. (2.41a) to
(2.41d).
Flow Routing
23
CHAPTER
3
SEDIMENT TRANSPORT
This chapter describes the methods used to perform the sediment transport
calculations. GSTAR-1D simulates the physical processes important to both
cohesive and non-cohesive sediment transport. There are three major components
of sediment transport:
1. Sediment Routing
2. Bed Material Mixing
3. Cohesive Sediment Consolidation
Sediment routing is the simulation of the downstream movement of sediment in
the river flow. Bed material mixing processes include bed material sorting and
armoring. Consolidation is compaction of cohesive sediment over time. The
modeling of each of these components is described in the following sections.
3.1 Sediment Routing
There are two types of sediment routing available in GSTAR-1D: unsteady
sediment routing and Exner equation routing. The unsteady sediment routing
computes the changes to the suspended sediment concentration with time. The
Exner equation routing ignores changes to the suspended sediment concentration
over time. Unsteady sediment routing can be used when unsteady flow is being
simulated and suspended concentrations change rapidly. In most other cases,
Exner equation routing can be used.
3.1.1 EXNER EQUATION ROUTING
The Exner equation (Exner, 1920; 1925) was derived assuming that changes to
the volume of sediment in suspension are much smaller than the changes to the
volume of sediment in the bed, which is generally true for long-term simulations
where steady flow is being simulated. The mass conservation equation for
sediment reduces to,
∂Q s
∂A
+ ε d − qs = 0
∂x
∂t
24
GSTAR-1D User’s Manual
(3.1)
where ε = volume of sediment in a unit bed layer volume (one minus porosity);
Ad = volume of bed sediment per unit length; Qs = volumetric sediment discharge;
and qs = lateral sediment inflow per unit length. Integrating (3.1) over a control
volume centered on each cross section gives an equation for the deposition depth
(ΔZb) for a single sediment size fraction at a particular cross section, i:
ε iWi Δxi ΔZ b,i = qs ,i Δxi Δt + (Qs ,i −1 − Qs ,i )Δt
(3.2)
where W is the width of the cross section subject to erosion or deposition. The
erosion volumes for each size fraction are summed to compute the total erosion or
deposition for a particular cross section. The lateral inflows are user defined and
the erosion width is computed based upon the hydraulic calculations. The only
unknowns remaining are the sediment transport rates. The sediment transport rate
(Qs) can also be written as QC, where C is the computed cross sectional average
sediment concentration. The following sections describe the numerical solution
for sediment concentration for the cases of non-cohesive sediment, floodplain
routing, and cohesive sediment.
3.1.1.2
NON-COHESIVE SEDIMENT ROUTING
If the cross sections are far apart relative it can be acceptable to assume that the
bed-material load discharge equals to the sediment transport capacity of the flow;
i.e., the bed-material load is transported in an equilibrium mode (Qs = Qcap, where
Qcap is the transport capacity). In other words, the exchange of sediment between
the bed and the fractions in transport is instantaneous. However, the spatial-delay
and/or time-delay effects are important in circumstances where there are rapid
hydraulic changes in short reaches. For example, reservoir sedimentation
processes and the siltation of estuaries are non-equilibrium processes. Laboratory
studies have shown that it may take a significant distance for clear water inflow to
reach saturation sediment concentrations. To model these effects, GSTAR-1D
uses the method developed by Han (1980) based on the analytical solution of the
following equation:
dQs
= Q dC = αω f (C * − C )W
dx
dx
(3.3)
where C = sediment concentration; C * = sediment carrying capacity; ωf =
sediment fall velocity; and α = a dimensionless parameter. The analytical solution
to the above equation between two cross sections indicated as i and i-1 is:
⎧ αω f Δx ⎫
Ci = Ci* + (Ci −1 − Ci* ) exp ⎨−
q ⎬⎭
⎩
(3.4)
where Δx = reach length; and i = cross-section index (increasing from upstream to
downstream). Eq. (3.4) is employed for each of the particle size fractions in the
non-cohesive range, i.e., with diameter greater than 62.5 μm. The parameter α is a
recovery factor. It controls the rate at which the sediment concentration
approaches the sediment carrying capacity. Higher values of α indicate that the
concentration reaches the carrying capacity more quickly. In GSTAR-1D,
separate values for α are used for deposition versus erosion and the program
Sediment Transport
25
automatically chooses the correct one. Han and He (1990) recommend a value of
0.25 for deposition and 1.0 for erosion.
Although Eq. (3.4) was derived for suspended load, its application to bed-load is
reasonable. The asymptotic behavior of Eq. (3.4) for the larger particles (higher
values of ωs) is correct in the sense that Ci → Ci* as ωs becomes larger.
Therefore, for the larger particles that are transported near the bed as bed load, the
non-equilibrium correction due to Eq. (3.4) becomes negligible and Ci ≅ Ci* .
Figure 3.1 shows the ratio Ci / Ci* as a function of particle size, for the case of
erosion (the correction is similar for the case of aggradation). The nonequilibrium capacity becomes almost identical for gravel and larger particle sizes.
Figure 3.1 Ratio between non-equilibrium concentration and carrying capacity
as a function of sediment particle size.
The influence of the recovery parameter α is illustrated in Figure 3.2. The
depositional case represents a situation in which there is a sudden loss of carrying
capacity ( Ci* = 0 ) from an upstream equilibrium condition ( Ci −1 = Ci*−1 ). The plot
shows the actual normalized concentration for two sizes of the sediment particles.
It is clear that the non-equilibrium effect is stronger on the finer particles, and that
it diminishes as α increases. The erosional case represents a sudden increase in
carrying capacity, such as when clear water enters a channel with an erodible bed.
In this case, Ci −1 = Ci*−1 = 0 and Ci* > 0 . The same trend occurs as before, i.e., the
non-equilibrium effects tend to diminish with increasing particle sizes and
recovery factor.
The distance between computational cross sections, Δx, is another important
factor in non-equilibrium calculations. Figure 3.3 shows how the non-equilibrium
effects vary with distance for the same situations and particle sizes in Figure 3.2.
26
GSTAR-1D User’s Manual
In practice, the values of α vary widely. If data are available, α may be a
calibration parameter.
Figure 3.2 Effect of the recovery parameter α on the computation of non-equilibrium
sediment concentrations for two sediment particle sizes. (a) deposition and (b) erosion
Figure 3.3 Variation of non-equilibrium effects as a function of distance between cross
sections for aggradation (a) and for erosion (b).
3.1.1.3
FLOODPLAIN ROUTING
The user may elect to simulate the exchange of sediment between the main
channel and floodplains. The existing 1D non-equilibrium sediment transport
model discussed in the previous section is modified to account for the sediment
Sediment Transport
27
transfer between the main channel and the floodplains. Because of the high bed
roughness and low velocity, the floodplain usually has a lower sediment transport
capacity than the main channel for a given sediment size class and usually
experiences deposition. To better simulate floodplain deposition, a model is
needed to treat floodplain transport separately from main channel transport. In
GSTAR-1D, a sub-channel is specified for the left floodplain and another is
specified for the right floodplain. The main channel flow is another sub-channel.
The definition of the main channel and the floodplains can be based on vegetation
and cross-section geometry. The lateral transfer of water and sediment across subchannels is calculated by the distribution of conveyance across a section. No
water is allowed in the floodplain until the water surface is above the bank
elevation. When there is no water in the floodplain, the calculations proceed
identical to the no floodplain option.
The non-equilibrium sediment mass conservation equation is written for each subchannel as:
~
Qi −1Ci −1 − Qi Ci + (Qi − Qi −1 )C + αω f (C * − C )WΔx = 0
(3.5)
~
where C = average sediment concentration of lateral flow between the main
channel and the floodplain. This is the average sediment concentration in the
adjacent sub-channel if there is a net lateral flow into the calculated sub-channel.
If there is a net outflow, it is the average sediment concentration in the calculated
sub-channel. In Eq. (3.5), the first term is the sediment discharge flowing into the
sub-channel reach from upstream. The second term is the sediment discharge
flowing out of the sub-channel reach at the downstream end. The third term is the
sediment discharge flowing into the sub-channel reach from adjacent subchannels. The last term is the sediment erosion/deposition term. The differential
form of Eq. (3.5) can be written as:
dQ ~
d (QC )
= αω f (C * − C )W +
C
dx
dx
(3.6)
If there is a net flow out of the sub-channel, Eq. (3.6) can be written as:
Q dC = αω f (C * − C )W
dx
(3.7)
This equation can be solved analytically assuming constant transport capacity
and constant unit width discharge Q/T, where T = top width. The average values
of Q/T is used ( 0.5(Qi −1 / Ti −1 + Qi / Ti ) ). The sediment concentration at section i
is written as:
⎧ αω f ΔxW ⎫
Ci = Ci* + (Ci −1 − Ci* ) exp ⎨−
⎬
Q
⎩
⎭
(3.8)
The concentration of sediment transferred between two sub-channels is computed
as the weighted average concentration in the sub-channel where there is net
outflow:
28
GSTAR-1D User’s Manual
~ Q C + Qi Ci
C = i −1 i −1
Qi−1 + Qi
(3.9)
If there is a net flow into the sub-channel, Eq. (3.6) can be written as:
dC + P ( x )C = S ( x )
dx
(3.10)
where P(x) and S(x) are defined as:
P( x ) =
αω f W 1 dQ
+
Q
Q dx
(3.11)
S ( x) =
αω f W * 1 dQ ~
C +
C
Q
Q dx
(3.12)
The solution of Eq. (3.6) can be written as:
xi
C ( x ) = C0 exp[− ξ( x )] + exp[− ξ( x )] ∫ exp[ξ( x )]S ( x )dx
(3.13)
xi −1
x
where:
ξ( x ) = ∫ P ( x )dx =
0
αω f W
Q
x + ln( i )
Q
Qi −1
(3.14)
By substituting Eqs. (3.12) and (3.14) into Eq. (3.13) and using the same
assumption of constant transport capacity through the reach, the final solution for
Eq. (3.13) can be written as:
Ci = Ci* + (Ci −1
⎛ αω f WΔx ⎞
Qi −1
⎟⎟
− Ci*−1 ) exp⎜⎜ −
Qi
Q
⎝
⎠
~
+(Qi − Qi −1 )C
3.1.1.4
⎡
⎛ αω f WΔx ⎞⎤
Q
⎟⎟⎥
1 − exp⎜⎜ −
⎢
αω f WΔx ⎣
Q
⎝
⎠⎦
(3.15)
COHESIVE SEDIMENT
GSTAR-1D defines cohesive sediment as sediment with a diameter smaller than
0.0625 mm. For cohesive sediment, the capacity concentration, C*, is not defined
because the capacity concentration is essentially controlled by the erosion or
deposition rates occurring in the river. In GSTAR-1D, the erosion of fine
sediment is prevented only if the volumetric concentration exceeds 20% by
volume (approximately 530,000 mg/l).
The steady sediment transport equation for cohesive sediment is written as
dQs
dQ ~
= (Ve P − Vd C )W +
C
dx
dx
(3.16)
where Ve and Vd = cohesive sediment erosion and deposition velocities,
respectively; P = volume fraction of cohesive sediment in the active layer; C =
cohesive sediment volumetric concentration. The computation of the erosional
and depositional velocities is given in Section 3.1.5 to Section 3.1.7. If the erosion
Sediment Transport
29
velocity is zero, and the deposition velocity is greater than zero, the solution to
(3.16) is given as:
⎛ V WΔx ⎞ ΔQ ~
C i = C i −1 exp⎜ − d
C
⎟+
Q ⎠ Q
⎝
(3.17)
If the deposition velocity is zero and the erosion velocity is greater than zero, the
solution to (3.16) is given as:
C i = C i −1 +
Ve PWΔx ΔQ ~
+
C
Q
Q
(3.18)
3.1.2 UNSTEADY SEDIMENT TRANSPORT
When simulating unsteady flow, the changes in suspended concentration cannot
always be ignored. To compute the changes in suspended sediment concentration,
the convection-diffusion equation with a source term for sediment
erosion/deposition is used. If floodplains are being simulated, the sediment
transport is two-dimensional (2D) and the cross-stream component of sediment
transport in the y-direction is responsible for the transfer of sediment into and out
of the floodplain. If floodplains are not simulated, the transport in the y-direction
is ignored. The 2D depth-averaged convection-diffusion equation for a particular
sediment size class is:
∂ ( hC ) ∂ ( huC ) ∂ ( hvC ) ∂
+
+
= ( D x h ∂C ) + ∂ ( D y h ∂C ) + Ω (3.19)
∂t
∂x
∂y
∂x
∂x
∂y
∂y
where h = depth; C = depth-averaged sediment concentration of one constituent; t
= time; u, v = depth-averaged velocity components in the horizontal streamwise
and transverse directions, x and y, respectively; Dx, Dy = diffusion coefficients in
the x and y directions, respectively; and Ω = source (erosion) and sink
(deposition) terms for one sediment constituent. The source term can be written
as:
Ω = V e P − Vd C
(3.20)
where Ve, Vd = erosion and deposition velocities, respectively; Pa = sediment
fraction of the calculated constituent in the active layer. The erosion and
deposition velocities are defined in Section 3.1.4 for non-cohesive sediment and
in Sections 3.1.5 to 3.1.7 for cohesive sediment.
One obtains the conservation equation by integrating Eq. (3.19) over a control
volume:
r r
r
∂
ChdA + ∫ C ( hV ⋅ n )dl = ∫ Dh (∇C ⋅ n )dl + ∫∫ ΩdA
(3.21)
∫∫
l
l
A
∂t A
This equation is applied to each computational cell in Figure 3.4. Lower case
letters denote the cell boundary lines (CL) and their directions (e, w, n, and s)
with respect to cell central (P), and upper case letters denote the control surface
(CS) centers and their directions (E, W, N, and S). Eq. (3.21) is solved with a spilt
operator, meaning that the convective and diffusive terms are solved separately
30
GSTAR-1D User’s Manual
from the source term. This is to maintain stability and to maintain consistency
with the methods used to compute the source term in the Exner Equation routing
methods.
A general discrete approximation of the convective and diffusion terms in Eq.
(3.21) can be written for each cell as:
AP C P + ∑ AL C L = R P
(3.22)
where P represents the CS center, and L is summed over the neighborhood CS
centers W, E, S, or N as shown in Figure 3.4.
*N
* WW
*W
*P
*E
* EE
*S
Figure 3.4 Discrete grid for unsteady flow simulation
The following sections discuss the integrals in Eq. (3.21) and their contributions
to the coefficients and source terms in Eq. (3.22).
3.1.2.2
UNSTEADY TERM
The unsteady term requires integration over the CS area. The implicit Euler
method is applied for time marching. The unsteady term is approximated by the
product of CS area and the ch value at the CS center,
∂ ChdA = ΔC P h a
Δt P P
∂t ∫∫A
(3.23)
where ΔC P = C pn − C pn −1 , and the superscripts n-1 and n denote the previous and
current time steps, respectively. The unsteady term contributions to the
coefficients in Eq. (3.22) and can be written as:
AP |U =
hP a P
Δt
(3.24)
where the subscript U indicates the contribution of the unsteady term to the Ap
coefficient; Δt = time step; hP = average depth of CS; and aP = area of CS.
3.1.2.3
CONVECTIVE TERM
The Lax-Wendroff TVD (Total Variation Diminishing) Method is used to
discretize the convective term. The original Lax-Wendroff Method is a secondorder accuracy scheme. However, numerical results oscillate on discontinuities.
The Lax-Wendroff TVD Method suppresses the correction term in Lax-Wendroff
Method when discontinuities appear. The TVD scheme remains second-order
Sediment Transport
31
accurate for smooth regions but becomes a first order scheme near discontinuities
to avoid oscillations. Details of Lax-Wendroff TVD Method are discussed in
Tannehill et al. (1997).
Approximations of the convective term involve values of variables at the CL
centers:
r r
(3.25)
c
(
h
V
⋅ n )dl = Fe* Δl e − Fw* Δl w + Fn* Δl n − Fs* Δl s
∫
l
r r
where hV ⋅ n = mass flux through cell boundaries, Δl e = length of east boundary
r r
of CS; and F = C ( hV ⋅ n ) . In Lax-Wendroff TVD method, Fe* can be expressed
as
Fe* = 1 [heVe C P + heVe C E − heWe (C E − C P )]
2
(3.26)
where
We = Ve [(1 − ψ ) + ψc r Ve ]
and ψ is the flux limiter computed as,
ψ = max [0, min (2,2 r, (1 + r ) / 2 )] , r =
CE − CP
C i1 − C i 2
(3.27)
with i1 = P and i2 = W if Ve is positive and i1 = EE and i2 = E if Ve is negative. Eq.
(3.27) is van Leer’s MUSCL flux limiter (van Leer, 1979). If ψ = 1 then the 2nd
order accurate Lax-Wendroff scheme is obtained. If ψ = 0 then the scheme is a
first order accurate upwind scheme. The Crank-Nicolson method is applied to get
second-order accuracy in time but it is conditionally stable. With this scheme,
Fe* Δl e can be expressed as
(
) (
)
Fe* Δl e = 1 Qe + 1 he Δl eWe C P + 1 Qe − 1 he Δl eWe C E
2
2
2
2
= 1 Qe + 1 a eWe (C Pn −1 + θΔC p )
2
2
+ 1 Qe − 1 a eWe (C En −1 + θΔC E )
2
2
(
(
)
)
(3.28)
where Qe = the flow rate through the east side of CS, ae = he Δle the area of the
east side of CS, θ = implicit factor ( 0 < θ < 1 ). If unconditional stability is to be
guaranteed, then θ should be greater than 0.5. Similar expressions can be written
for the other three terms in Eq. (3.25). The final contributions of the convective
term to the coefficients in Eq. (3.22) can be written as:
32
GSTAR-1D User’s Manual
(
(
(
(
(
(
)
AE |C = θ 1 Qe − 1 a eWe
2
2
AW |C = θ − 1 Qw − 1 a wWw
2
2
AN |C = θ 1 Qn − 1 a nWn
2
2
1
AS |C = θ − Qs − 1 a sWs
2
2
AP |C = θ 1 Qe + 1 a eW + θ − 1 Qw + 1 a wWw
2
2
2
2
e
+ θ 1 Qn + 1 a nWn + θ − 1 Qs + 1 a sWs
2
2
2
2
n −1
n −1
⎛ AP |C C P + AE |C C E + AW |C CWn −1 + ⎞
1
⎟
R |C = − ⎜
⎟
θ ⎜ A | C n −1 + A | C n −1
S C
S
⎝ N C N
⎠
)
)
)
) (
) (
)
)
(3.29)
where the subscript C indicates the contribution of the convective term to the
coefficients of Eq. (3.22).
3.1.2.4 DIFFUSION TERM
The approximation of the diffusion term in Eq. (3.19) also involves the values of
variables at the CL. First, the central differential scheme (CDS) is applied in
space, and then the Crank-Nicolson method is applied in time. The discretization
of the diffusion term is second-order accurate in both space and time.
C − CW
C − CP
r
− ∫ Dh(∇c ⋅ n )dl = − De a e E
+ Dw a w P
l
Δx w
Δx e
− Dn a n
CN − CP
C − CS
+ Ds a s P
Δx n
Δx s
C n −1 + θΔC P − CWn −1 − θΔCW
C n −1 + θΔC E − C Pn −1 − θΔC P
= − De a e E
+ Dw a w P
Δx e
Δx w
(3.30)
c Nn −1 + θΔC N − C Pn −1 − θΔc P
C Pn −1 + θΔC P − C Sn −1 − θΔC S
− Dn a n
+ Ds a s
Δx n
Δx s
where Δxe , Δx w , Δx s , and Δx n are distances between the CS center P and
neighborhood CS centers E, W, N, and S, respectively. The coefficients from the
diffusion term can now be summarized as:
AE |D = −θDe ae / Δxe
AW |D = −θDw a w / Δx w
AN |D = −θDn a n / Δxn
AS |D = − θDs a s / Δx s
(3.31)
AP |D = −( AE |D + AW |D + AN |D + AS |D )
⎛ AP |D C Pn −1 + AE |D C En −1 + AW |D CWn −1 + ⎞
1
⎟
R |D = − ⎜
⎟
θ ⎜ A | C n −1 + A | C n −1
S D
S
⎝ N D N
⎠
Sediment Transport
33
where the subscript D indicates the contribution of the diffusion term to the
coefficients of Eq. (3.22)
3.1.2.5 DISCRETIZED SEDIMENT TRANSPORT EQUATION
Adding all the convective and diffusive terms gives:
AP C P + ∑ AL C L = R
(3.32)
where P = CS center; L = neighborhood CS centers W, E, S, or N, respectively;
and:
AP = AP |U + AP |C + AP |D
AL = AL |C + AL |D
(3.33)
R = R |C + R |D
For multiple sub-channels, Eq. (3.33) is solved by a 5-point 2D equation solver. If
there is only one sub-channel, the sediment transport solution is simplified as a
1D problem and Eq. (3.33) is solved by a 3-point 1D equation solver.
3.1.2.6 SOURCE TERMS
The only term remaining in the sediment transport Eq. (3.21) is the source term
from net sediment erosion and deposition in the streamwise direction. The source
term is calculated using a split operator approach. For each time step, the matrix
equation that includes the convective and diffusive terms (3.22) is solved first,
then the concentrations are updated by calculating the source term as follows. For
non-cohesive sediment, the concentration is computed as:
⎧ αω f Δt ⎫
Ci = Ci* + (Cˆ i − Ci* ) exp ⎨−
h ⎬⎭
⎩
(3.34)
where Ĉi is the concentration computed after Eq. (3.22) is solved, Δt is the time
step, and h is the average flow depth. For cohesive sediment, if the erosion
velocity is zero, and the deposition velocity is greater than zero, the concentration
is computed as:
⎛ V Δt ⎞
Ci = Cˆ i exp⎜ − d ⎟
h ⎠
⎝
(3.35)
If, for cohesive sediment, the deposition velocity is zero and the erosion velocity
is greater than zero, the solution to (3.16) is given as:
Ci = Ci −1 +
Ve PΔt
h
(3.36)
The average depth of deposition for each size fraction at a cross section i is
calculated using mass conservation as:
(
)
εiWi ΔxΔZ b,i = Cin − Cˆ i Ai Δx
(3.37)
where Ai is the cross sectional area. The erosion volumes for each size fraction are
summed to compute the total erosion or deposition for a particular cross section.
34
GSTAR-1D User’s Manual
3.1.3 NON-COHESIVE PARTICLE FALL VELOCITY CALCULATIONS
Computation of particle fall velocity is necessary for several non-cohesive
sediment transport capacity calculations. GSTAR-1D computes sediment fall
velocities in different ways, depending on the sediment transport equation used
and on particle size. When Toffaleti's equation is used, Rubey's formula (Rubey,
1933) is employed:
ω f = F dg (G − 1)
(3.38)
where
⎡
ν2 ⎤
F = ⎢ 2 + 36
⎥
3
⎣ 3 gd (G − 1) ⎦
1/ 2
⎡
ν2 ⎤
− ⎢ 36
⎥
3
⎣ gd (G − 1) ⎦
1/ 2
(3.39)
for particles with diameter, d, between 0.0625 mm and 1 mm. For particles
greater than 1 mm, F = 0.79. In the above equations, ωf = fall velocity of
sediments; g = acceleration due to gravity; G = specific gravity of sediments; and
ν = kinematic viscosity of water. In GSTAR-1D, the specific gravity of sediments
is 2.65 (quartz) and the viscosity of water is computed from the water
temperature, T, using the following expression:
ν=
1.792 × 10 −6
1.0 + 0.0337T + 0.000221T 2
(3.40)
with T in degrees Centigrade and ν in m2/s.
When any of the other sediment transport formulas are used, values recommended
by the U.S. Interagency Committee on Water Resources Subcommittee on
Sedimentation (1957) are used (Figure 3.5). GSTAR-1D assumes the Corey shape
factor of SF = 0.7, which is defined as
SF = c
ab
(3.41)
where a, b, and c = the length of the longest, the intermediate, and the shortest
mutually perpendicular axes of the particle, respectively. For particles with
diameters above the range given in Figure 3.5, i.e. greater than 10 mm, the
following formula is used:
ω f = 1.1 (G − 1) gd
(3.42)
Sediment Transport
35
Fall Velocity (cm/s)
Particle Size (mm)
Figure 3.5 Relation between particle sieve diameter and its fall
velocity according to the U.S. Interagency Committee on Water
Resources Subcommittee on Sedimentation (1957)
3.1.4 NON-COHESIVE SEDIMENT TRANSPORT CAPACITY
The literature contains many sediment transport functions. Usually, each transport
function was developed for a certain range of sediment size and flow conditions.
Computed results based on different transport functions can differ significantly
from each other and from measurements. No universal function exists which can
be applied with accuracy to all sediment and flow conditions. With the exception
of Yang's formulas, most transport functions are intended for subcritical flows.
GSTAR-1D employs 13 transport functions for non-cohesive material, presented
in Table 3.1. Yang (1996) published a more detailed description of some of these
functions including comprehensive comparisons and evaluations.
36
GSTAR-1D User’s Manual
Table 3.1 Sediment transport functions available in GSTAR-1D and its type (B =
bed load; BM = bed-material total load)
Equations
DuBoys (1879)
Meyer-Peter and Müller (1948)
Laursen (1958)
Midified Laursen's Formula (Madden, 1993)
Toffaleti (1969)
Engelund and Hansen (1972)
Ackers and White (1973)
Ackers and White (HR Wallingford, 1990)
Yang (1973) + Yang (1984)
Yang (1979) + Yang (1984)
Parker (1990)
Brownlie (1981)
Yang et al. (1996)
Type
B
B
BM
BM
BM
BM
BM
BM
BM
BM
B
BM
BM
Most sediment transport formulas were developed for computing the total bedmaterial load without breaking down the load by size fraction. In GSTAR-1D,
these formulas have been modified to account for transport by size class. The
sediment transport capacity of size class m at cross section i ( Ci*,m ) is computed
as:
Ci*,m = pi ,m CiT,m
(3.43)
where pi = percentage of material of size fraction i available in the bed; and CiT,m =
sediment transport capacity computed if the bed was composed entirely of that
size fraction. The erosion and deposition velocity for non-cohesive sediment are
given as:
Ve = αw f C iT,m
and
Vd = −αw f
(3.44)
3.1.4.2 DUBOYS’ METHOD (1879)
The work of DuBoys (1879) is based on the premise that the sediment moves in
layers that slide over each other. Although the concept was not entirely correct,
the equation can still be used to reasonably describe the relationship between
shear stress and bed load transport. DuBoys developed an expression based on
excess shear stress:
qb = Kτ(τ − τc )
(3.45)
where qb = bed load discharge by volume per unit channel width (ft2/s); τ = bed
shear stress (lb/ft2); and τc = critical tractive force along the bed. τc can be
computed from Shields diagram. Straub (1935) found the following relationship
for K:
K = 0.173
d 3/ 4
(3.46)
Sediment Transport
37
where d = particle size in mm.
3.1.4.3 MEYER-PETER AND MÜLLER'S FORMULA (1948)
In non-dimension form, the Meyer-Peter and Müller's bedload formula (1948) is:
1/ 3
γ
qb2 / 3 ⎛⎜ ⎞⎟
g
⎝ ⎠
3/ 2
0.25 = ( K s / K r ) γRS − 0.047
( γ s − γ )d
( γ s − γ )d
(3.47)
where γ and γs = specific weights of water and sediment, respectively; R =
hydraulic radius; S = energy slope; d = mean particle diameter; ρ = specific mass
of water; qb = bedload rate in underwater weight per unit time and width; and
(Ks/Kr)S = the adjusted energy slope that is responsible for bed-load motion. The
value of Ks and Kr can be computed from:
Ks =
V
Cm R 2 / 3 S 1/ 2
(3.48)
and
K r = 26
1/ 6
d 90
(3.49)
where d90 = the size of sediment for which 90 percent of the material is finer and
is in meters.
3.1.4.4 LAURSEN'S FORMULA (1958) AND MODIFIED
VERSION (MADDEN, 1993)
Laursen's formula (1958) was expressed in dimensionally homogeneous forms by
an American Society of Civil Engineers Task Committee (1971) as,
⎛d ⎞
Ct = 0.01γ ∑ pi ⎜ i ⎟
⎝D⎠
i
7/6
⎛ τ'
⎞ ⎛ *⎞
⎜ − 1⎟ f ⎜ U ⎟
⎝ τci
⎠ ⎝ ωi ⎠
(3.50)
where Ct = sediment concentration by weight per unit volume; U * = gDS ; pi =
percentage of materials available in size fraction i; ωi = fall velocity of particles of
mean size di in water; D = average water depth; and τci = critical tractive force for
sediment size di as given by the Shields diagram. Laursen's bed shear stress, τ ' ,
caused by grain resistance resulting from the use of the Manning equation is,
1/ 3
τ' =
ρV 2 ⎛ d50 ⎞
⎜
⎟
58 ⎝ D ⎠
(3.51)
In Eq. (3.50), the parameter τ' / τci − 1 is important in determining bed load, and
the parameter U * / ωi relates to suspended load. The functional relation
f (U * / ωi ) is given by Laursen (1958) in a graphical form.
Madden (1993) revised the Laursen relation to fit the sediment load discharge
rating curves in the lower Arkansas River. The result was a curve parallel to the
original one, but one that predicts significantly higher transport rates. Both the
38
GSTAR-1D User’s Manual
original Laursen equation and the revised equation by Madden are implemented
in GSTAR-1D.
3.1.4.5 TOFFALETI'S METHOD (1969)
Toffaleti's method (1969) is based on the concept of Einstein (1950) and Einstein
and Chen (1953) with the following simplifications: (1) channel width for
sediment discharge is equal to that of a rectangular channel of width B and depth
R, with R being the hydraulic radius of the actual channel; and (2) the total depth
of flow is divided into four zones. The bed material load, Qti, for sediment of size
di is
Qti = B(qbi + qsui + qsmi + qsli )
(3.52)
where B = channel width; and qbi, qsui, qsmi, qsli = sediment load per unit width in
the bed zone, upper zone, middle zone, and lower zone, respectively. Semiempirical and graphical methods were used by Toffaleti for the computation of
sediment load in each zone.
3.1.4.6 ENGELUND AND HANSEN'S METHOD (1972)
Engelund and Hansen (1972) proposed the following transport function:
f ' φ = 0.1θ 5 / 2
f' =
(3.53)
2 gSD
V2
q ⎡γ − γ 3⎤
φ= t ⎢ s
gd ⎥
γs ⎣ γ
⎦
τ
θ=
( γ s − γ )d
(3.54)
−1 / 2
(3.55)
(3.56)
where g = gravitational acceleration; S = energy slope; V = average flow velocity;
qt = total sediment discharge by weight per unit width; γs and γ = specific weights
of sediment and water, respectively; d = median particle diameter; D = mean
water depth; and τ = shear stress along the bed.
3.1.4.7 ACKERS AND WHITE'S METHOD (1973) AND (HR
WALLINGFORD, 1990)
Ackers and White (1973) applied dimensional analysis to express the mobility
and transport rate of sediment in terms of dimensionless parameters. Their
mobility number for sediment is
γ
⎡
⎤
Fgr = U ⎢ gd ( s − 1)⎥
γ
⎣
⎦
*n
−1 / 2
⎡
⎤
V
⎢
⎥
⎣ 32 log(αD / d ) ⎦
1−n
(3.57)
where U* = shear velocity; n = transition exponent, depending on sediment size;
α = 10 , in turbulent flow; d = sediment particle size; and D = water depth. They
also expressed the sediment size by a dimensionless grain diameter:
Sediment Transport
39
⎡g γ
⎤
d gr = d ⎢ 2 ( s − 1)⎥
γ
⎣ν
⎦
1/ 3
(3.58)
where ν = kinematic viscosity of water. A dimensionless sediment transport
function can then be expressed as
G gr = f ( Fgr , d gr )
(3.59)
with
Ggr =
XD (U * ) n
(dγ s ) / γ V
(3.60)
where X = rate of sediment transport in terms of mass flow per unit mass flow
rate, i.e., concentration by weight of fluid flux. The generalized dimensionless
sediment transport function can also be expressed as
⎛F
⎞
Ggr = C ⎜⎜ gr − 1⎟⎟
A
⎝
⎠
m
(3.61)
The values of A, C, m, and n were determined by Ackers and White (1973) based
on best-fit curves of laboratory data with sediment sizes greater than 0.04 mm and
Froude numbers less than 0.8.
The original Ackers and White formula is known to overpredict transport rates for
fine sediments (smaller than 0.2 mm) and for relatively coarse sediments. To
correct that tendency, a revised form of the coefficients was published (HR
Wallingford, 1990). Both versions of the coefficients are implemented in
GSTAR-1D. Table 3.2 compares the original and the revised coefficients.
Table 3.2 Coefficients for the 1973 and 1990 versions of the Ackers and White
formula
1973
1990
−1 / 2
1 < d gr ≤ 60
A = 0.23d gr + 0.14
A = 0.23d gr−1 / 2 + 0.14
log C = −3.53 + 2.86 log d gr
−(log d gr ) 2
m = 9.66d gr−1 + 1.34
n = 1.00 − 0.56 log d gr
d gr > 60
log C = −3.46 + 2.79 log d gr
−0.98(log d gr ) 2
m = 6.83d gr−1 + 1.67
n = 1.00 − 0.56 log d gr
A = 0.17
C = 0.025
m = 1.50
A = 0.17
C = 0.025
m = 1.78
n=0
n=0
3.1.4.8 YANG'S SAND (1973) AND GRAVEL (1984)
TRANSPORT FORMULAS
Yang's 1973 dimensionless unit stream power formula for sand transport is
40
GSTAR-1D User’s Manual
log Cts = 5.435 − 0.286 log ωd − 0.457 log U
ν
ω
*
*
V S⎞
⎛
+⎛⎜1.799 − 0.409 log ωd − 0.314 log U ⎞⎟ log⎜ VS − cr ⎟
ν
ω⎠ ⎝ ω
ω ⎠
⎝
(3.62)
where Cts = total sand concentration in parts per million by weight; ω = sediment
fall velocity; d = sediment particle diameter; ν = kinematic viscosity of water; U*
= shear velocity; VS = unit stream power; V = average flow velocity; S = water
surface or energy slope; and Vcr = critical average flow velocity at incipient
motion. The coefficients in Eq. (3.62) were determined from 463 sets of
laboratory flume data. Eq. (3.62) applies to sand transport with particle diameters
less than 2 mm.
The critical dimensionless unit stream power, Vcr S / ω , is the product of
dimensionless critical velocity Vcr / ω and energy slope S, where
⎧
2.5
+ 0.66
Vcr ⎪ log(U *d / ν) − 0.06
=
ω ⎨
⎪2.05
⎩
*
if 1.2 < U d < 70
ν
*
if 70 ≤ U d
ν
(3.63)
Yang's 1984 dimensionless unit stream power formula for gravel transport with
particle diameters equal to or greater than 2 mm is
*
log Ctg = 6.681 − 0.633 log ωd − 4.816 log U
ν
ω
*
+ ⎛⎜ 2.784 − 0.305 log ωd − 0.282 log U ⎞⎟ ⋅
ν
ω⎠
⎝
(3.64)
V S⎞
⎛
log⎜ VS − cr ⎟
ω ⎠
⎝ ω
where Ctg = total gravel concentration in parts per million by weight. The
coefficients in Eq. (3.64) were determined from 167 sets of laboratory flume data.
The incipient motion criteria given in Eq. (3.63) should be used for Eqs. (3.62)
and (3.64). Because of the range of data used for the determination of the
coefficients in Eq. (3.64), the equation should be applied to gravel with median
particle size between 2 and 10 mm. However, published literature suggests that
Eq. (3.64) may be applicable to materials coarser than 10 mm. GSTAR-1D uses
Eq. (3.64) for sizes up to 100 mm. Eqs. (3.62) and (3.64) were originally derived
for uniform materials. When they are applied to nonuniform materials, the total
sediment concentration should be computed using Eq. (3.43).
For natural rivers, the bed-material size may vary from sand to gravel. In this
case, GSTAR-1D uses Eqs.(3.62) for the sand sized sediment and (3.64) for the
gravel sized sediment.
3.1.4.9 YANG'S SAND (1979) TRANSPORT FORMULAS
Yang (1979) proposed a sand transport formula for flow conditions well
exceeding those required for incipient motion. In this case, the dimensionless
Sediment Transport
41
critical unit stream power required at incipient motion can be neglected. Yang's
1979 sand transport formula for sediment concentration greater than 100 parts per
million by weight is
*
log Cts = 5.165 − 0.153 log ωd − 0.297 log U
ν
ω
*
+⎛⎜1.780 − 0.360 log ωd − 0.480 log U ⎞⎟ log VS
ν
ω⎠
ω
⎝
(3.65)
The coefficients in Eq. (3.65) were determined from 452 sets of laboratory flume
data. Eqs. (3.62) and (3.65) give about the same degree of accuracy when the bedmaterial concentration is greater than about 100 parts per million by weight. Users
can either use a combination of Eqs. (3.62) and (3.64) or (3.65) and (3.64) for the
computation of bed material concentration in a river, depending on sediment size
in that river. If bed materials are not uniform, Eq. (3.43) is also applied in
GSTAR-1D.
3.1.4.10 PARKER'S METHOD (1990)
Parker (1990) developed an empirical gravel transport function based on the equal
mobility concept and field data. Parker's dimensionless bedload transport
parameter, Wi* , was assumed to be a single valued function of the dimensionless
shear stress parameter, φi, or,
Wi * = f (φi )
(3.66)
where the two parameters are defined as,
Wi * =
φi =
qbi g (s − 1)
pi (τ b ρ )
1.5
θi
θc ξi
(3.67)
(3.68)
where qs = volumetric sediment transport rate per unit width; τb = total bed shear
stress, d50 = the median diameter; g = acceleration of gravity; γ = specific weight
of water; and s = relative specific density of sediment ( ρ s ρ ). Also, θc = critical
Shield’s parameter; and θi = Shield’s parameter of the sediment size class i
computed as:
θ i = τ b (γ (s − 1)d i )
(3.69)
The parameter ξi = exposure factor, which accounts for the reduction in the
critical shear stress for relatively large particles and the increase in the critical
shear stress for relatively small particles:
ξ i = (d i d 50 )
−α
(3.70)
where α = a constant usually fitted to data. The function in Eq. (3.66) was fit to
field data and is:
42
GSTAR-1D User’s Manual
, φ > 1.59
⎧1 − 0.853 φ
⎪
2
f (φ) = ⎨0.000183 exp 14.2(φ − 1) − 9.28(φ − 1) , 1 < φ ≤ 1.59 (3.71)
⎪0.000183φ14.2
, φ ≤1
⎩
[
]
Two parameters must be defined by the user to use Parker’s equation: θc and α.
Ideally, these values should be fit to data of the stream being simulated. However,
in the absence of data, several references provide guidance, such as Buffington
and Montgomery (1997) and Andrews (2000).
3.1.4.11 BROWNLIE’S METHOD
Brownlie (1981) developed a sediment transport equation based solely on
dimensional analysis. The equation is best used for sand transport and yields parts
per million by weight as
C = 7115C F ( Fg − Fg 0 )1.978 S 0f .6601 ( R ) −0.3301
di
(3.72)
where CF = Brownlie’s coefficient for field application (=1.268); Fg, Fgo = the
grain Froude number and critical grain Froude number, respectively, calculated
as:
Fg =
Fgo =
V
(3.73)
⎛ ρs − ρ ⎞
⎜⎜
⎟⎟ g d50
⎝ ρ ⎠
4.596 τ*0c.5293
S 0f .1405 σ0g.1606
(3.74)
1
⎛d ⎞ 2
where σ g = the geometric standard deviation of bed-particle sizes ( = ⎜⎜ 84 ⎟⎟ );
⎝ d16 ⎠
and τ*c = the critical shear stress calculated as:
τ*c = 0.22 Y +
0.06
(10)7.7 Y
⎞
⎛ ρ −ρ
Y = ⎜⎜ s
Rg ⎟⎟
ρ
⎠
⎝
Rg =
(3.75)
−0.6
(3.76)
g d 503
ν
(3.77)
where Rg = the grain Reynolds number, and Y = temporary variable.
3.1.4.12 YANG ET AL. 'S MODIFIED FORMULA FOR SAND
TRANSPORT WITH HIGH CONCENTRATION OF
WASH LOAD (1996)
Up to this point, all transport functions were developed for equilibrium sediment
transport where the effects of wash load can be neglected. The existence of high
Sediment Transport
43
concentration of wash load can significantly affect the flow viscosity, sediment
fall velocity, and the relative density or relative specific weight of sediment. For a
given set of hydraulic conditions, non-equilibrium sediment transport of varying
rates may occur because of a varying rate of high concentration of wash load.
Yang et al. (1996) rewrote Yang's 1979 formula in the following form for
sediment-laden flow with high concentration of wash load:
log Cts = 5.165 − 0.153 log
*
ωm d
− 0.297 log U
νm
ωm
*
ω d
⎛
⎞ ⎛ γ m VS ⎞
+ ⎜1.78 − 0.36 log m − 0.48 log U ⎟ log⎜
⎟
νm
ωm ⎠ ⎝ γ s − γ m ωm ⎠
⎝
(3.78)
where ωm = particle fall velocity in a sediment-laden flow; νm = kinematic
viscosity of sediment laden flow; and γs, γm = specific weights of sediment and
sediment-laden flow, respectively.
It should be noted that the coefficients in Eq. (3.78) are identical to those in Eq.
(3.65). However, the values of fall velocity, kinematic viscosity, and relative
specific weight are modified for sediment transport in sediment-laden flows with
high concentrations of fine suspended materials. The modifications made by Yang
et al. (1996) were based on sediments from the Yellow River in China, which is
noted for its high concentration of wash load and bed-material load. Similar to the
applications of Eqs. (3.62), (3.64), and (3.65), Eq. (3.78) is used in conjunction
with Eq. (3.43) for non-uniform bed materials.
3.1.5 COHESIVE SEDIMENT AGGREGATION
Cohesive sediments tend to aggregate to form large, low-density units. This
process is strongly dependent on the type of sediment, the type and concentration
of ions in the water, and the flow condition (Mehta et al. 1989). Cohesive
sediments are primarily composed of clay-sized material, which have strong
interparticle forces because of their surface ionic charges. As particle size
decreases, the interparticle forces dominate gravitational force, and the settling
velocity is no longer a function of only particle size. McAnally and Mehta (2001)
provided a new formulation of the collision efficiency and collision diameter
function through a non-dimensional analysis of the significant parameters in
collision, aggregation, and disaggregation. In engineering models, aggregation is
often indirectly considered by the change in settling velocity.
Several researchers investigated the effects of aggregation on the settling velocity.
Krone (1962) performed flume studies and found settling velocity increases with
sediment concentration. Cole and Miles (1983) used a linear relationship between
fall velocity and sediment concentration. Van Leussen (1994) proposed an
empirical relationship between settling velocity, concentration and shear stress.
Nicholson and O’Connor (1986) developed a relationship for settling velocity that
incoroporates high concentrations of cohesive particles. Burban et al. (1990)
linked the settling velocity with the median floc diameter from laboratory
experiment data.
44
GSTAR-1D User’s Manual
Thorn (1981) showed settling velocity increases with concentration at low
concentrations, attains a maximum value, and then decreases due to hindered
settling at intermediate concentrations and structural flocculation at high
concentrations. Van Rijn (1993) summarized the influence of sediment
concentration on the settling velocity for several types of sediments (Figure 3.6).
Figure 3.6 The influence of sediment concentration on the settling velocity (source:
Van Rijn, 1993, figure 11.4.2)
Settling velocities due to sediment flocculating are usually site-specific and
determined by experiment. GSTAR-1D allows the user to enter a set of data (C1,
V1, C2, V2, C3, V3, C4, and V4) as shown in Figure 3.7.
Sediment Transport
45
10
1
Mean settling velicity (mm/s)
(C2, V2)
(C3, V3)
10
10
0
-1
(C4, V4)
(C1, V1)
10
-2
1
10
10
2
3
10
Concentration (mg/l)
10
4
10
5
Figure 3.7 Input data illustration for settling velocity
3.1.6 COHESIVE SEDIMENT DEPOSITION
Deposition occurs when the bottom shear stress is less than a critical shear stress.
Only aggregates with sufficient shear strengths to withstand highly disruptive
shear stresses in the near bed region will deposit and adhere to the bed. Mehta and
Partheniades (1973) performed laboratory studies on the depositional behavior of
cohesive sediment and found that deposition is controlled by the bed shear stress,
turbulence processes in the zone near the bed, settling velocity, type of sediment,
depth of flow, suspension concentration, and ionic constitution of the suspending
fluid (also summarized in Hayter et al., 1999).
Two kinds of sediment deposition are included in GSTAR-1D, full and partial
depositions. Van Rijn (1993) provides more information about the equations used
below.
Krone’s (1962) deposition formulation governs when the bed shear stress ( τ ) is
smaller than the critical shear stress for full deposition ( τ d , full ) and all sediment
particles and flocs can deposit.
Vd = Pd ωc for τ ≤ τd , full
(3.79a)
where Vd = deposition velocity, and Pd = the deposition probability. The variable
Pd is also the probability of particles sticking to the bed and not being re-entrained
by the flow. A fraction of sediments settling to the near bed region cannot
withstand the high shear stresses at the sediment-water interface and are broken
up and resuspended. The probability of deposition is given by,
Pd = 1 − τ / τd , full for
τ ≤ τd , full
(3.79b)
where τ = bottom shear stress; and τd, full = critical shear stress for full deposition.
Many experiments were performed to determine the values of critical shear stress
46
GSTAR-1D User’s Manual
for full deposition of cohesive sediments. They range between 0.06 and 1.1 N/m2
depending upon the sediment type and concentration. Krone (1962) conducted a
series of flume experiments to determine the critical shear stress for full
deposition. For San Francisco Bay sediment, he found that τd, full = 0.06 N/m2
when c < 0.3g/l; τd, full = 0.078 N/m2 when 0.3 < c < 10g/l. Mehta and
Partheniades (1975) found that τd, full = 0.15 N/m2 for kaolinite in distilled water.
Partial deposition exists when the bed shear stress is greater than the critical shear
stress for full deposition but smaller than the critical shear stress for partial
deposition (Van Rijn, 1993). At this range of bed shear stress, relatively strong
flocs are deposited and relatively weak flocs remain in suspension. The partial
deposition formulation is written as,
Vd = Pd ω( c − ceq ) for τd , full < τ < τd , part
(3.79c)
where ceq is the equilibrium cohesive sediment concentration, which is the
concentration of relatively weak flocs that are broken apart before reaching the
bed or eroded immediately after deposition. The probability of deposition is given
by,
Pd = 1 − τ / τd , part for τd , full < τ < τd , part
(3.79d)
The deposition rate is zero when the bed shear stress is larger than the critical
shear stress for partial deposition,
Pd = 0
for
τ ≥ τd , part
(3.79e)
At present, the behavior of critical shear stresses for full and partial depositions
are not well understood, but the accuracy of the deposition model depends on the
use of correct values. When the actual value of τd,full and τd,part are uncertain, they
become primary calibration parameters for determining the deposition rate.
3.1.7 COHESIVE SEDIMENT EROSION
Two kinds of erosion modes are simulated: surface and mass erosion. Surface
erosion occurs when the bed shear stress is just above a critical value. At higher
levels of stress, the bed shear stress exceeds the bulk shear strength of a layer of
material and that layer of bed material is susceptible to mass erosion.
The excess bed shear stress, defined as τ − τe , is a measure of erosion force. The
critical erosion shear stress depends on a number of factors including sediment
composition, bed structure, chemical compositions of the pore and eroding fluids,
deposition history, and organic matter and its state of oxidation (Ariathurai and
Krone, 1976; Mehta et al., 1989). Usually, both erosion rate constant M and
critical erosion shear stress τe change with the bed properties in depth and time.
Field studies or laboratory measurements should be made to obtain the critical
shear stress and erosion rate.
Sediment Transport
47
5
Erosion Rate, Qse
4
3
1
Surface Erosion
Rate Constant, M se
2
Mass Erosion
Rate Constant, M me
1
c
τ se
1
τ
τ d,full
c
me
0
0
0.05
0.1
0.15
0.2
Shear Stress, τ
Figure 3.8 The schematic illustrates the erosional characteristics that need to be
determined from erosion tests (after: Vermeyen, 1995)
Field studies and laboratory flume studies are the most reliable physical methods
to determine empirical model parameters. Figure 3.8 illustrates the ideal erosional
and depositional characteristics that can be determined from physical tests. In
general, a physical test should provide the following information: critical shear
stresses for deposition, surface erosion, mass erosion, and the erosion rates for
surface and mass erosion. Measured erosion rates often exhibit large amounts of
scatter or are not linearly dependent upon shear stress. However, a simple linear
model is often the most reasonable approach.
A formula for surface erosion rate was described by Partheniades (1965):
⎧
τ − τc
⎪M se c se
Qse = ⎨
τ se
⎪0
⎩
τ ≥ τcse
τ<τ
(3.80)
c
se
where Qse (lb/ft2/hr or kg/m2/hr) = surface erosion rate; τ and τcse (lb/ft2 or kg/m2)
= bed shear stress and critical surface erosion shear stress, respectively; Mse =
surface erosion constant (lb/ft2/hr or kg/m2/hr). The GSTAR-1D model uses a
modified version of Eq. (3.80):
48
GSTAR-1D User’s Manual
⎧
τ − τ cse
) τ ≥ τ cse
⎪P (
Qse = ⎨ se τ cme − τ cse
⎪0
τ < τ cse
⎩
(3.81)
where τcme = critical mass erosion shear stress and Pse is the surface erosion
constant replacing Mse. The modified relationship is more consistent with the
mass erosion rate discussed below. The parameters τcse and Pse are site-specific
and have to be determined experimentally.
Mass erosion is usually arbitrarily dependent on the model setup and its time
scale. Hwang and Mehta (1989) found a maximum rate of mass erosion is on the
order of 0.6 g/s/m2. The presented model uses a mass erosion equation similar to
surface erosion:
Qme
τ − τ cme
= M me ( c ) + Pse
τ me
τ ≥ τ cme
(3.82)
where Qme = mass erosion rate; τ and τcme = bed shear stress and critical mass
erosion shear stress, respectively; Mme = mass erosion constant. The erosion rates
in lb/ft2/hr or kg/m2/hr are converted to the erosion velocity, Ve, through
appropriate unit conversion before calculations proceed in GSTAR-1D.
3.2 Bed Material Mixing
This section describes the simulation of the bed material mixing processes that
occur in natural river systems. Figure 3.9 provides a schematic of the conceptual
model, in which the bed is composed of one active layer and N-1 inactive layers.
In this figure, hn = bed thickness of layer n, Pn,k = volume fraction of k-th size
class in layer n. A user-defined number of size fractions will be used to represent
the sediment size distributions. The bed profile is composed of a number of layers
of various thicknesses and bulk densities. Each individual layer is assumed to
have the same size distribution and bulk density throughout its depth. In each
layer, bulk density of the cohesive sediment increases with time due to
consolidation. The bulk density of the non-cohesive sediment remains constant.
During consolidation, the bed thickness decreases but no mixing occurs between
layers.
The active layer is defined as a thin upper zone of constant thickness that is
proportional to the geometric mean of the largest size class. The constant of
proportionality is user defined. The thickness of the active layer can control the
rate at which the bed armors. The active layer methodology assumes that all
sediment particles of a given size class inside the active layer are equally exposed
to the flow.
Another phenomena simulated in GSTAR-1D is the reduction in erosion rate of
non-cohesive sediment by cohesive sediment. Experimental results demonstrate
that the presence of fine cohesive sediment in the bed can increase the bed’s
resistance to erosion. The model used by GSTAR-1D assumes that the erosion
Sediment Transport
49
rates of sand and gravel are limited by the entrainment rate of the silt and clay if
the fraction of the silt and clay is above a user specified value.
Flow
Erosion/deposition
Floor source
h2, P2,k
Layer 2: inactive
h3, P3,k
Layer 3: inactive
h1, P1,k
Layer 1: active
……
hN, PN,k
Layer N: inactive
Figure 3.9 Conceptual model of bed mixing.
Armoring effects can be simulated using the active layer concept. If the bed shear
stress is larger than the critical shear stress for the finer size classes, but smaller
than that for coarser size classes, only the finer size classes are eroded from the
active layer. This process of selective erosion will eventually armor the bed
surface and prevent further erosion.
The active layer contains the bed material available for transport. During net
erosion, the first inactive layer supplies material to the active layer. During net
deposition, the additional material is moved to the first inactive layer. A minimum
and a maximum thickness are specified for the first inactive layer. If the thickness
of the first inactive layer is smaller than the minimum thickness, the first inactive
layer merges with the next layer. On the other hand, if the layer thickness is larger
than the maximum, it is separated into two layers. All other layers are shifted
accordingly.
The notation of the active layer provides a means to model winnowing and
armoring. Sediment can only be eroded from or deposited onto the active layer.
The active layer thickness is defined by an auxiliary relation proportional to the
geometric mean of the largest size class of the bed material at that location.
50
GSTAR-1D User’s Manual
As the bed elevation descends or ascends during erosion and deposition, the
active-layer floor changes its elevation to keep the active-layer thickness constant,
as shown in Figure 3.9. The movement of the active-layer floor generates the
active-layer floor source Ωf,k for the size class k. The kinematic condition of the kth size fraction in the active layer can be written as:
ha
Ω f ,k
dPa ,k
Ω
=− k + ~
εk
dt
εk
(3.83)
where subscripts a, k = active layer and size class, respectively; ε is equal to one
minus porosity; Ωk and Ωf,k = the active layer source and floor source,
respectively. During net erosion, the volume of sediment in a unit bed layer
volume, εk , of the active layer source term takes the value of the active layer (ε
~
a,k) and εk of the floor source takes the value of the first non-active layer (ε 2,k).
On the other hand, during net deposition, εk of the active layer source takes the
value of the fresh deposited sediment (ε i,k) and ~εk of the floor source takes the
value of the active layer (ε a,k). Thus εk and ~εk can be expressed as:
⎧ε
ε k = ⎨ a ,k
⎩ ε i ,k
~ε = ⎧ ε 2,k
⎨ε
k
⎩ a ,k
net erosion
net deposition
(3.84)
net erosion
net deposition
(3.85)
where subscript i = fresh deposited sediment.
Summation of Eq. (3.83) gives the global mass-conservation equation for the
active layer:
Ωk
∑ε
k
k
Ω f ,k
=∑ ~
εk
k
(3.86)
which shows that the change of the bed elevation due to erosion (or deposition) is
the same as the change of the active-layer floor elevation, and the active-layer
thickness remains constant.
According to the definition of the volume fraction of a size class, Eq.(3.83) can be
written as:
ha
Ω f ,k
dPa ,k
Ω
~
= − k + Pk ∑ ~
dt
εk
εk
k
(3.87)
Ω
Ω
~
= − k + Pk ∑ k
εk
εk
k
~
where Pk can be expressed as (Hoy and Ferguson, 1994):
~ ⎧P
Pk = ⎨ 2,k
⎩ χpk + (1 − χ )Pa ,k
net erosion
net deposition
(3.88)
Sediment Transport
51
where pk is the bed load fraction, and χ is the weight given to the bed load during
the transfer of material to the sublayer and must be between 0 and 1. ToroEscobar et al. (1996) use data collected from depositional experiments to calculate
a best fit value of 0.7 for χ. Hoy and Ferguson tested various value of χ in
numerical simulations of downstream fining. They found little affect on results for
values of χ between 0 and 0.5. The downstream fining, however, did increase
significantly when the value of χ was increased beyond 0.5. The value of χ is
specified by the user in GSTAR-1D. It should be considered a secondary
calibration parameter.
The active layer source term, is calcualted using the expressions from the
previous section Eqs. (3.2) and (3.37). The result is an average thickness of
deposition or erosion (ΔZ) for each size fraction.
~
(3.89)
Pan,k+1 = Pan,k − ΔZ k ,i + ΔZ T Pk ha
(
)
The mass-conservation equation for k-th size class in active layer reads:
d (ε P h ) = −Ω + Ω
k
f ,k
dt a ,k a ,k a
(3.90)
By substituting into Eq. (3.87) into Eq.(3.90), one can express the change of εa,k
as:
~ ~
d ε = −(1 − ε a ,k ) Ω k + (1 − ε a ,k ) εk Pk
~ε P h
ε k Pa ,k ha
dt a ,k
k
a,k a
∑
k
Ω e,k
εk
(3.91)
Because the bed fraction appears in the sediment capacity calculation, the bed
material mixing and the steady routing processes are tightly coupled. An iteration
scheme is employed where the sediment routing and bed mixing calculations are
repeated using updated bed fractions until the change to the bed fraction and
sediment concentration between iterations is less than a specified tolerance.
Once the thickness of the first inactive layer decreases below a minimum value,
the content of the layer merges with the underlying layer. The minimum thickness
for the first inactive layer is the thickness of the active layer. Though merging of
bed layers is not a physical process, it is a requirement of the discrete
representation of the sediment bed.
During the merging of two layers, a new layer thickness is calculated as the sum
of the two layers:
h = hn + hn+1
(3.92)
and the volume size fraction is
Pk =
Pn ,k hn + Pn +1,k hn+1
hn + hn+1
(3.93)
The mass conservation equation used to obtain εk is:
εk =
52
ε n,k Pn,k hn + ε n+1,k Pn+1,k hn+1
Pk h
GSTAR-1D User’s Manual
(3.94)
3.3 Consolidation
Consolidation changes the thickness and density of the bed through decreases in
porosity. Consolidation processes also affect the tracking of size-fraction
distributions within the bed because the size fraction distribution in GSTAR-1D
depends on volume. Due to the slow rate of consolidation, GSTAR1-D uncouples
the simulation of erosion and deposition from the bed consolidation process.
Simulation of bed consolidation applies to both the active and inactive layers.
During consolidation, the mass of each size fraction remains constant. The massconservation equation for the sediment in each layer is:
ε n ,k Pn ,k hn = Const
(3.95)
where the subscripts n, k = the layer and size class indexes, respectively; Pn,k =
volume fraction of sediment size class k in layer n; εn,k = volume concentration of
sediment size class k in layer n (ε = 1− η); and hn = thickness of layer n;
Eq. (3.95) can also be written as:
Pnt,+k Δt hnt + Δt = ε tn , k Pnt, k hnt / ε tn+, kΔt
(3.96)
where t = time before consolidation, and t+Δt = time after consolidation.
Summation of Eq. (3.96) with the constraint of size fractions
∑P
n ,k
= 1 gives the
k
global mass conservation equation for sediment in layer n, i.e.,
hnt + Δt = ∑ (εtn , k Pnt, k hnt / εtn+, kΔt )
(3.97)
k
Eqs (3.96) and (3.97) yield the expression for the size fraction change as:
Pnt,+k Δt =
εtn , k Pnt, k hnt / εtn+, kΔt
∑ (εtn,k Pnt,k hnt / εtn+, kΔt )
(3.98)
k
Eqs (3.97) and (3.98) are the governing equations for bed consolidation.
The relationship in Eq. 3.50 is used to calculate the change of volume
concentration of sediment at bed ε n, k .
ε = ε f − (ε f − ε i )e − β t
(3.99)
where β = the consolidation coefficient, computed from user input for initial
density ρ i , fully consolidated density ρ f , and density ρ e at the reference time t e
by ,
⎛ ρ − ρi ⎞
⎟⎟
β = log⎜⎜ f
⎝ ρ f − ρe ⎠
(3.100)
The change of ε can be written as:
Sediment Transport
53
dε = β(ε − ε)
f
dt
(3.101)
An explicit Euler method is used to calculate the sediment concentration after
consolidation:
ε tn+,kΔt = ε tn ,k + dε = ε tn ,k + β( ε f − ε) Δt
(3.102)
The bed thickness and sediment size fraction are calculated from Eqs. (3.97) and
(3.98).
54
GSTAR-1D User’s Manual
CHAPTER
4
BED GEOMETRY SOLUTION
4.1 Channel Geometry Adjustment
The volume of erosion or deposition is computed using the mass conservation
equations described in Chapter 3. This chapter describes the methods used to
apply the computed volume of erosion or deposition to the cross sections. Figure
4.1 shows the two methods GSTAR-1D uses to adjust channel geometry: vertical
adjustment and width adjustment. A vertical adjustment will move all the cross
section points below the water surface the same vertical distance as shown in
Figure 4.1(a). A width adjustment will move the cross section points below the
water surface according to the local water depth as shown in Figure 4.1(b), e.g.,
Δzi = chi , where Δzi is the depth change at point i, hi is the water depth at point i,
and c is a constant. For width adjustments, the maximum bed geometry change
occurs near the bank and the thalweg elevation remains unchanged. The user can
choose to allow only vertical changes or the user can select one of several
methods for the automatic selection of vertical or width changes by GSTAR-1D.
If floodplains are being simulated, channel adjustment in the floodplains is always
assumed to occur in the vertical direction. The selection methods are only applied
to the main channel.
A
A
Δzi
Δzi
Δzi
B
B
(a)
(b)
Figure 4.1 Schematic representation of channel changes: (a) vertical
adjustment due to scour or deposition; (b) width adjustment due to
scour or deposition. Line AB denotes the sub-channel boundary.
Bed Geometry Solution
55
Limits on the erosion or deposition can be input as a function of stream distance.
The vertical erosion limits are commonly encountered when bedrock or grade
control structures are present. Deposition limits can be imposed when the user
knows that deposition cannot occur above a certain elevation.
It some cases, erosion does not occur across the entire channel. For example, the
sediment delta in a reservoir is much wider than the upstream or downstream river
and as the reservoir is drawdown, or the dam is removed, the width of the incising
channel is usually similar to the width of the upstream and downstream river. In
GSTAR-1D, the user can specify the erosion width as a function of stream flow.
The following equation is used in GSTAR-1D to determine the erosion width:
We = aQ b
(4.1)
where We is the erosion width, Q is the stream flow, and a and b are user defined
constants. The boundaries of the erosion width are determined by first finding the
centroid, then assuming that We is apportioned equally on either side.
4.2 Theory for Channel Narrowing and Widening
The user can select one of the several methods below to allow GSTAR-1D to
choose the direction of channel change. Of the following theories, only the No
Minimization option or Minimization of Energy Slope has been tested and proven
to provide reliable results based upon the developer’s experience. It is usually
recommended that the No Minimization option be initially chosen when first
debugging your model runs.
4.2.1 NO MINIMIZATION
The No Minimization option is provided so that all changes occur in the vertical
direction, as shown in Figure 4.1a.
4.2.2 MAXIMIZATION OF CONVEYANCE
This method maximizes total conveyance of the river. From Eq. (2.5), one can see
that the conveyance maximization is equivalent to energy slope minimization for
a single cross section.
4.2.3 MINIMIZATION OF TOTAL STREAM POWER
This procedure minimizes the total stream power along the channel, defined as
Φ T = ∫ γQS f dx
(4.2)
where Q = discharge and Sf = energy slope. For one sub-channel, the same
channel adjustment is performed in one direction for all cross sections. Currently,
this method does account for the fact that the energy slope depends upon changes
to water surface elevation.
56
GSTAR-1D User’s Manual
4.2.4 MINIMIZATION OF ENERGY SLOPE
This minimization procedure adjusts energy slope toward uniformity (Chang,
1988). A channel width reduction is usually associated with a decrease in energy
gradient at a section, whereas a channel width increase is associated with an
increase in energy gradient at a section. To determine the direction of channel
geometry change, the energy slope at a section (Sf,i) is compared with the
weighted average of its adjacent sections ( S f ,i ), which is determined as
S f ,i =
S f ,i+1dsi + S f ,i −1dsi +1
dsi + dsi+1
(4.3)
where dsi-1, dsi and dsi+1 = distances between sections i-1, i, and i+1, respectively.
If the energy slope Sf,i is greater than S f ,i , the channel width at this section is
reduced during deposition or the depth is increased during erosion. If the energy
slope Sf,i is smaller than S f ,i , the channel depth at this section is decreased during
deposition or the width is increased during erosion.
4.2.5 MINIMIZATION OF BED SLOPE
This minimization procedure adjusts the slope toward uniformity. To determine
the direction of channel geometry change, the slope at a section (S0,i) is compared
with the weighted average of its adjacent sections ( S 0,i ), which is determined as
S 0,i =
S 0,i+1dsi + S 0,i −1dsi+1
dsi + dsi +1
(4.4)
If the energy slope S0,i is greater than S 0,i , the channel width at this section is
reduced during deposition or the depth is increased during erosion. If the slope S0,i
is smaller than S 0,i , the channel depth at this section is decreased during
deposition or the width is increased during erosion.
4.3 Angle of Repose Adjustments
As erosion progresses, the steepness of the bank slope will increase. The
maximum allowable bank slope depends on the stability of bank materials. When
erosion undermines the lower portion of the bank and the slope increases past a
critical value, the bank may collapse to a stable slope. The bank slope should not
be allowed to increase beyond a certain critical value. The critical angle may vary
from case to case, depending on the type of soil and the existence of natural or
artificial protection.
GSTAR-1D checks the angle of repose for violation of a known critical slope.
The user must specify one critical angle above the water surface, and another
critical angle for submerged points. GSTAR-1D scans each cross section at the
end of each time step to determine if vertical or horizontal adjustments have
caused the banks to become too steep. If violations occur, the two points adjacent
to the segment are adjusted vertically until the slope equals the user-provided
Bed Geometry Solution
57
critical slope. The material taken from the bank is added as a lateral sediment
input. The
58
GSTAR-1D User’s Manual
CHAPTER
5
Input Data Requirements
The input data necessary to run the GSTAR-1D model may be separated into 14
data groups as listed below:
1. Model Parameters
2. Upstream Boundary Conditions
3. Downstream Boundary Conditions
4. Internal Boundary Conditions
5. Lateral Inflows
6. Channel Geometry and Flow Characteristics
7. Sediment Model Parameters
8. Upstream Sediment Boundary Conditions
9. Lateral Sediment Discharge
10. Sediment Bed Material
11. Water Temperature
12. Erosion and Deposition Limits
13. Sediment Transport Parameters
14. Cohesive Sediment Transport Parameters
The following sections describe each data group.
5.1 Model Parameters
The Model Parameters data group contains the input parameters that control the
overall simulation. The Model Parameters contain the title of the simulation and
the number of simulated rivers. The number of sediment size fractions is also set
here and if no sediment transport is simulated the number of size fractions is set to
zero. The number of dissolved substances can be set to one or greater if
substances dissolved in the flow are being simulated. The number of bed layers is
input here and must be 2 or more. A list of the records is given in Table 5.1.
Bed Geometry Solution
59
The time step is an important parameter that influences the stability and accuracy
of the simulation. In general, smaller time steps will produce more stable and
more accurate results. However, the computer time required for simulation is
directly proportional to the number of time steps calculated. It is recommended
that the time step be decreased until further decreases no longer significant affect
the final answer.
Table 5.1 Input records in Model Parameter data group.
Record
YTT
YNR
YSL
YFP
YTM
YDT
Description
Title of study
Dimension of problem (i.e. number of rivers, size fractions, dissolved
substances, and bed layers)
Solution parameters
Floodplain option and minimum flow
Time of simulation
Simulation time step and output time step
5.2 Upstream Flow Boundary Conditions
The upstream flow boundary condition can be specified as a junction to another
river, a stage time series or a water discharge time series. When a time series is
specified and the simulated time falls between the given values, interpolation is
required. The interpolation is linear in time when unsteady flow is specified. If
steady flow is specified, no interpolation is performed and the water discharge or
stage does not change until the time of the next input water discharge is reached.
An example of the steady flow approximation of a water discharge hydrograph is
shown in Figure 5.1.
Actual Flow
Input Flow
Flow
Time
Figure 5.1 Steady Flow Representation of a Water Discharge Hydrograph.
60
GSTAR-1D User’s Manual
5.3 Downstream Flow Boundary Conditions
Several different types of downstream boundary conditions are possible. A water
discharge rating curve specifies the relationship between water discharge and
elevation. The downstream boundary condition can also be a times series of water
surface elevations or, for unsteady flow, water discharge. For time series data, the
interpolation between given values is performed the same as for the upstream
flow boundary condition. A weir boundary condition can also be specified where
the weir elevation, width, and discharge coefficient are given. The normal depth
boundary condition uses a user specified slope to compute the normal depth at the
downstream end. This boundary condition is not recommended for long-term
simulations of sediment transport. The final bed profile will most likely be too
sensitive to the specified slope at the downstream end. The rating curve option is
similar to the water discharge versus water surface elevation table, but the user
just enters the coefficients in a power relationship between water discharge and
water surface elevation.
Table 5.2 Possible downstream boundary conditions.
Record
D00
D01
D02
D03
D04
D05
D09
Description
Junction – this river is linked to another river
Time versus water surface elevation table
Time versus water discharge table (only available for unsteady flow)
Water discharge versus water surface elevation table
Weir
Normal Depth – a bed slope is given
Rating Curve relationship between water discharge and water surface
elevation
5.4 Internal Boundary Conditions
Many of the same boundary conditions that can be applied at the downstream end
of the modeled reach can also be used at internal cross sections. In addition,
bridges and radial gates can be modeled. The types of permissible internal
boundary conditions, along with there record identification are given in Table 5.3.
Table 5.3 Possible internal boundary conditions.
Record
I 01
I 02
I 03
I 04
I 05
I 06
I 08
I 09
Description
Time versus water surface elevation table
Time versus water discharge table (only available for unsteady flow)
Water discharge versus water surface elevation table
Weir
Normal Depth – a bed slope is given
Bridge
Radial Gate – inline or side discharge
Rating Curve relationship between water discharge and water surface
elevation
Bed Geometry Solution
61
5.5 Lateral Inflows
Lateral inflows can be specified anywhere along a river reach according to the
stream distance where the lateral inflow enters. Each lateral inflow requires a time
series table of water discharge.
5.6 Channel Geometry and Flow Characteristics
GSTAR-1D represents the river in a manner similar to other 1D models. The river
is described by discrete cross sections located at specified intervals (Figure 5.2).
The cross sections are chosen by the user to represent important hydraulic
behaviors of the river and all the controls that may exist on that river. The
distance between the cross sections is termed the reach length. The reach length
should be appropriate to the problem being solved. Many factors control the
choice of cross section location and reach lengths, but some guidelines are given
below (modified from Samuels, 1990):
1. Select all sites of key interest.
2. Select cross sections adjacent to major structures and control points.
3. Select cross sections representative of the river geometry.
4. As a first estimate, select cross sections 20 times the channel width apart.
5. Select sections a maximum of 0.2Y/S0 apart, where Y is the depth and S0 is
the bed slope.
6. For unsteady flow modeling, select sections a maximum of L/30 apart,
where L is the length of the physically important flood wave.
7. Cross sections spacing must be greater than the survey horizontal error
and greater than the computer’s precision for representing distance.
8. The ratio of the area between two adjacent cross sections should be
between 2/3 and 3/2.
9. Cross-sectional spacing may have to be reduced for shallow flows where
the average of the friction slope between cross sections has a large error.
62
GSTAR-1D User’s Manual
Figure 5.2 Representation of River by Discrete Cross sections
The GSTAR-1D cross section geometry representation was developed similar to
the HEC-RAS representation. The cross section representation used in HEC-RAS
can be found in the Hydraulic Reference Manual of HEC-RAS 3.1 (Brunner,
2002). An example of a cross section is shown in Figure 5.3. Three components
are required for every cross section. The cross section points describe the
geometry. The over bank points distinguish the main channel from the floodplain.
For braided streams, these points should be located on the left most and right most
points of the active channels. Roughness coefficients are defined for segments of
the cross section. The user may define one to 10 different roughness segments for
each cross section. The Manning’s equation is used to calculate friction loss.
Many references describe the selection of the Manning’s roughness coefficients.
A pictorial guide of roughness characteristics of streams is found in Barnes
(1987). Extensive tables of Manning’s roughness coefficient values are found in
Chow (1959). Cowan (1956) and Arcement and Schneider (1987) use various
factors, such as bed material type, vegetation, channel meandering, etc. and
develop a method for computing Manning’s roughness coefficients based on
individual modifications. There have also been several attempts to develop
equations to predict Manning’s n value based upon water discharge and bed
material characteristics. For example, see Einstein and Barbarossa (1952),
Engelund and Hansen (1966), Richardson and Simon (1967), Limerinos (1970),
White et al. (1979), Griffiths (1981), van Rijn (1982), Brownlie (1983), Jarrett
(1984), Karim and Kennedy (1990), and Yang (1996).
Optional flow areas are available to restrict conveyance in a cross section. The
options are designed similar to those of HEC-RAS 3.1. These options include
temporary ineffective flow areas, permanent ineffective flow areas, dry areas, and
blocked areas. Ineffective flow is used to define a portion of a cross section where
water is not actively conveyed. In an ineffective flow area, water ponds and the
velocity of the water is close to zero. Temporary ineffective flow areas become
effective once the water surface rises above the defined elevations. Permanent
Bed Geometry Solution
63
ineffective flow areas are used to define a portion of a cross section where the
water is always ineffective below the established elevation, and effective above
the elevation. Dry areas are used to define an area protected by levees. No water
is allowed in the area until the levee elevation is exceeded. Blocked areas are used
to define a portion of a cross section permanently blocked by a hydraulic structure
or other feature.
1240
n1
n2
n3
1230
elevation (ft)
1220
1210
1200
Cross Section Data
Overbank Points
1190
1180
0
100
200
300
400
500
600
700
800
900
1000
station (ft)
Figure 5.3 Representation of Cross Section by Discrete Points.
5.7 Sediment Model Parameters
Sediment model parameters control the implicit factor for sediment transport
computations and number of sediment time steps performed for each hydraulic
time step. The implicit factor should be set to 1. The number of sediment time
steps may be set to greater than 1 if model results are unstable. Stability could
also be increased by shortening the overall time step (in Data Group 1). The
sediment size groups are also given in this data group.
5.8 Sediment Boundary Conditions
Sediment entering a reach at an upstream boundary must be specified for each
size fraction. There are several ways to specify incoming sediment loads:
1. An equilibrium sediment load can be assumed. If this option is chosen,
then the sediment load coming into the reach is calculated based on the
bed material and the sediment transport equation specified in Data Group
13. The hydraulics of the most upstream section are used in the transport
equation.
64
GSTAR-1D User’s Manual
2. A sediment rating curve is used. The sediment rating curve is a power
relationship between flow and total sediment discharge. The total sediment
discharge is divided into fractional sediment discharge using a table of
water discharge and fraction of total sediment load for each size fraction.
3. A total sediment load versus discharge table is specified. This option is
similar to the previous option except that a table is used to specify the
sediment discharge instead of a power function.
4. The total sediment load is specified as a time series. The user may directly
specify the amount of sediment entering the reach as a function of time.
The total sediment discharge is divided into the sediment size fractions
similar to the previous two options.
Ideally, to determine the amount of sediment entering a reach, there is a sediment
measuring station at the most upstream cross section of the model. However, this
is rarely the case. It may be necessary to calculate an approximate incoming load
based upon bed material and a sediment transport function. The sediment
transport function generally should be consistent with the Sediment Transport
Parameters Data Group.
5.9 Lateral Sediment Discharge
A lateral sediment discharge can be specified for each lateral inflow specified in
Data Group 5. The lateral sediment discharge is specified in the same way as the
upstream sediment discharge.
5.10 Sediment Bed Material
The percentage of each sediment size fraction present in the initial river bed is
required for each river reach. The information is given at specific locations or
select cross sections and interpolated to the rest of the river. Edwards and Glysson
(1999) describe bed material sampling methods and equipment appropriate for
material finer than medium gravel (less than 8 mm) as well as those appropriate
for larger material. Bunte and Abt (2001) provide a comprehensive detailed
description of available methods.
5.11 Water Temperature
The water temperature is input for each river as a time series. Presently, a uniform
temperature is assumed throughout the river.
5.12 Erosion and Deposition Limits
The erosion and deposition limits control the allowable extents of cross section
change. No deposition is allowed above the maximum vertical limit and no
erosion is allowed below the minimum vertical limit. The points to the left of the
minimum horizontal erosion limit and to the right of the maximum horizontal
erosion limit are not allowed to erode. The points to the left of the minimum
horizontal deposit limit and to the right of the maximum horizontal deposit limit
are not allowed to deposit.
Bed Geometry Solution
65
The constants used to determine the erosion width are also set here. These are
commonly required when such processes as incision through reservoir deltas are
being simulated.
5.13 Sediment Transport Parameters
The Sediment Transport Parameters Data Group contains several parameters used
in the computation of sediment transport. These are given in Table 5.4. The
number of sub-channels define the number of channels within the main channel.
The stream tube concept used in previous GSTARS versions is no longer used in
GSTAR-1D to simulate lateral variations of flow and sediment conditions.
Therefore, it is recommended that the user define only one sub-channel for
sediment transport computations in the main channel.
The angle of repose defines the maximum bank angle within the cross section.
This information can be taken from field data of bank angles.
The model may be sensitive to the sediment transport equation chosen. No one
equation can be recommended for all rivers. Ideally, the sediment transport
equation should be compared against actual sediment load measurements. Yang
and Huang (2001) analyzed the performance of some commonly used formulas.
The active layer thickness is also set here. The active layer thickness is an
important parameter in determining the rate at which the simulated river responds
to changes in sediment load. The active layer thickness is the thickness over
which mixing of sediment occurs. As the active layer thickness increases, the bed
fractions of the active layer thickness will change more slowly. Therefore,
armoring occurs more slowly. Conversely, as the active layer thickness decreases,
armoring will occur more rapidly. Often, the coefficient that is multiplied by a
representative particle diameter to obtain the active layer thickness is a calibration
parameter.
Table 5.4 Records used in Sediment Transport Parameters data group.
Record
STU
SMN
SEQ
SA0
SAT
Description
Number of sub-channels
Minimization option – 0 is no minimization performed
Sediment transport equation
Location of sediment transport parameters in SAT
Sediment transport parameters – angle of repose, active layer thickness,
non-equilibrium factors, diffusion coefficients
5.14 Cohesive Sediment Transport Parameters
Sediment particles smaller than 0.0625 mm are assumed cohesive sediment and
require several parameters to define their transport characteristics (Table 5.5). The
physical significance of the parameters are given in Sections 3.1.5 to 3.1.7.
Additional guidance on the parameter values can be found in Huang et al. (2004).
Table 5.5 Parameters necessary for cohesive sediment erosion and deposition.
66
GSTAR-1D User’s Manual
Parameter
Fall velocity, ω
Critical shear stress for full
deposition, τ cd , full
Description
Controls the rate at which deposition occurs
Deposition will occur at shear stresses below τ dc , full .
Critical shear stress for
partial deposition, τ dc , part
Partial deposition will occur at shear stresses below
τ dc , part and above τ cd , full .
Equilibrium concentration
for partial deposition, ceq
Critical shear stress for
surface erosion, τ cse
Equilibrium concentration during partial deposition
Critical shear stress for
mass erosion, τ cme
Mass erosion occurs above τ cme .
Rate Constant for Surface
Erosion, M se
Slope of surface erosion rate versus shear stress line
Rate Constant for Mass
Erosion, M me
Slope of mass erosion rate versus shear stress line
Initial bulk density, ρi
Initial bulk density of cohesive sediment
Final bulk density, ρf
Time to reference bulk
density, te, and reference
bulk density, ρe
Final bulk density after full consolidation
Surface erosion occurs above τ cse and below τ cme .
te and ρe are used to compute, β, which is the
consolidation parameter controlling the rate of
consolidation
Bed Geometry Solution
67
(This page intentionally left blank)
68
GSTAR-1D User’s Manual
CHAPTER
6
Running GSTAR-1D
6.1 Input Data Format
GSTAR-1D reads a single input file that contains all the necessary information to
perform a simulation. An input file is organized in sequential records. The
sequence is presented in a flow chart in Appendix A. A record is a line of up to
300 characters in length. A line starting with “***” is a comment line and will be
ignored by the model. A record starts with a specific record name containing 3
characters. Each record name is unique and inputs specific data to the program. A
comprehensive list of all records names used by GSTAR-1D is given in Appendix
B. A detailed explanation of all the records is given in Appendix C. Not all
records are used (for example, some are mutually exclusive) but they have to be
in an appropriate sequence.
Data after the record name is in an unformatted form to prevent unnecessary
errors. Error checking is provided to prevent some human errors, which include:
•
•
•
•
•
empty lines;
lines started with space instead of the record name;
incorrect record names;
incorrect number of data following the record name;
incorrect data values.
The data are prepared in ASCII files. For easy data input, sample examples are
provided in the Microsoft EXCEL format, users may save the data in type of
“Text Formatted (Space delimited) *.prn”. It is recommended that the user study
the example input files included in the distribution of GSTAR-1D to become
familiar with the input data format. The unused records are hidden in the EXCEL
files and can be viewed by highlighting rows, right clicking the mouse, and the
selecting the ‘unhide’ function from the menu. The EXCEL sample input files
also contain the explanation of each variable in the comment field.
6.2 Executing GSTAR-1D
After preparing the input data file, GSTAR-1D can be executed within windows
by double-clicking the filename in Windows Explorer. GSTAR-1D can also be
used from the command line interface (DOS window – see your system’s user’s
Running GSTAR-1D
69
manual for more information regarding your particular computer) like any
conventional DOS program. At the prompt simply type
C:\> GSTAR1D.EXE FILENAME.DAT
or
C:\> GSTAR1D.EXE –e FILENAME.DAT
The argument “-e” in the commend line forces the program to exit all windows
when the program is terminated.
Make sure the executables exist in the system PATH variable. If GSTAR-1D is
launched without an input file name, the program prompts the user to enter it. For
consistency, the input data file should have an extension .DAT (or .dat), but the
program will work with any other extension.
GSTAR-1D displays the current bed profile and user specified cross sections
during the simulation. Using this real time display, one can monitor the simulation
during a run. This feature is useful in debugging the simulation.
6.3 Output Files
For a given input file named sample.dat, the following files may be generated.
sample_OUT.dat: the *_OUT.dat file first summarizes the dimensions used by
the model, such as the river number, the sediment size fractions, the bed layer
number, the cross section number, the maximum points in a cross section, etc.
Then it echoes the input data. When an error occurs, the users should first check
this file for possible warnings.
sample_HEC_RAS_GEOMETRY.g01: the *_HEC_RAS_GEOMETRY.g01 is
a HEC-RAS geometry file. It is updated each DTPLT time step defined in record
YDT. User may use HEC_RAS model to check the initial input geometry and the
final geometry.
sample_OUT_Profile.dat: the *_ OUT_Profile.dat file is the bed profile file,
which contains the cross section number, the original cross section number, the
cross section location, the discharge, the lateral water discharge, the original
thalweg elevation, the current thalweg elevation, the current water surface
elevation, the average bed elevation of the main channel, the friction slope, the
channel top width, the hydraulic radius, the sediment sizes d16, d35, d50, d86, and
the bed shear stress.
sample_OUT_XC.dat: the *_OUT_XC.dat file contains the cross section data.
The program will not permit the cross section file to be written more than 100
times.
sample_OUT_MaterialVolume.dat: the *_OUT_MaterialVolume.dat file
contains the cumulative material volume of deposition in all sub-channels and in
each sub-channel.
sample_OUT_Volume.dat: the *_OUT_Volume.dat file contains the cumulative
volume of deposition material in all size fractions and as calculated in the main
channel and left and right floodplains.
70
GSTAR-1D User’s Manual
sample_OUT_MassBalance.dat: the *_MassBalance.dat file is the mass
balance file, which contains the mass balance, sediment coming in from upstream
entrances, sediment flowing out from downstream exits, sediment coming in from
lateral point and not-point sources, and sediment erosion. The sediment mass
balance is only valid for a steady sediment transport model.
sample_OUT_Conc.dat: the *_OUT_Conc.dat file contains the sediment
concentration data of each size fraction in each sub-channel.
sample_OUT_BedLayer.dat: the *_OUT_BedLayer.dat file contains the bed
thickness data of each bed layer in each sub-channel.
sample_OUT_BedFraction.dat: the *_OUT_BedFraction.dat file contains the
sediment size fraction data of each bed layer in each sub-channel.
sample_OUT_Porosity.dat: the *_OUT_Porosity.dat file contains the sediment
porosity data of each bed layer in each sub-channel.
sample_OUT_SedimentLoad.dat: the *_OUT_SedimentLoad.dat file contains
the sediment load passing each cross section for each size fraction in each subchannel.
Running GSTAR-1D
71
(This page intentionally left blank)
72
GSTAR-1D User’s Manual
REFERENCES
Ackers, P., and White, W.R. (1973). "Sediment transport: new approach and
analysis," Journal of Hydraulic Division, ASCE, Vol. 99(11), 2041-2060.
Andrews, E.D. (2000). “Bed material transport in the Virgin River, Utah,” Water
Resources Research, 36(2), 585-596.
Arcement, G.J., and Schneider, V.R. (1987). “Roughness coefficients for densely
vegetated flood plains,” US Geological Survey Water-Resources Investigation
Report 83-4247.
Ariathurai, R., and Krone, R.B. (1976). “Finite element model for cohesive
sediment transport,” Journal of Hydraulic Division, ASCE, 102(3), 323-338.
ASCE Task Committee on Preparation of Sedimentation Manual. (1971).
“Sediment transportation mechanics: H. Sediment discharge formulas,” Journal
of the Hydraulic Division, ASCE, Vol. 97(4), 1328-1365.
Barnes, H.H. Jr. (1987). “Roughness characteristics of Natural Channels,” US
Geological Survey Water-Supply Paper 1849.
Brownlie, W.R. (1981). Prediction of flow depth and sediment discharge in open
channels, Report KH-R-43A, W.M. Keck Laboratory of Hydraulics and Water
Resouces, Division of Engineering and Applied Science, California Institute of
Technology, Pasadena, CA.
Brownlie, W.R. (1983). “Flow depth in sand bed channels,” Journal of Hydraulic
Engineering, American Society of Civil Engineers, 109(7), 959-990.
Brunner, G.W. (2001). HEC-RAS River Analysis System, Version 3.0, Hydrologic
Engineering Center, US Army Corps of Engineers, Davis, CA 95616.
Buffington, J.M, and Montgomery, D.R. (1997). “A systematic Analysis of Eight
Decades of Incipient Motion Studies, with special Reference to Gravel-Bedded
Rivers,” Water Resources Research, Vol. 33, No. 8, pp. 1993-2029.
Bunte, K. and Abt, S.R. (2001). “Sampling Surface and Subsurface Particle-Size
Distributions in Wadable Gravel- and Cobble-Bed Streams for Analysis in
Sediment Transport, Hydraulics, and Streambed Monitoring,” US Forest
References
73
Service, Rocky Mountain Research Station, General Technical Report RMRSGTR-74.
Burban, P.Y., Xu, Y.U., McNeil, J., and Lick, W. (1990). “Settling speeds of flocs
in fresh water and seawater,” Journal of Geophysics Research, 95(10), 1821318200.
Chang, H.C. (1988). Fluvial Processes in River Engineering, John Wiley & Sons,
Inc.
Chang, H.C. (1998). Fluvial-12 mathematical model for erodible channels, Users
Manual, 1998.
Chaudhry, M.H. (1993). Open-Channel Flow, Prentice-Hall, Inc. Englewood
Cliffs, NJ.
Chow, V.T. (1959). Open-channel hydraulics, McGraw-Hill, New York, NY.
Cole, P., and Miles, G.V. (1983). “Two-dimensional model of mud transport,”
Journal of Hydraulic Engineering, ASCE, 109(1), 1-12.
Cowan, W.L. (1956). “Estimating hydraulic roughness coefficients,” Agricultural
Engineering (37), July, 473 – 475.
DuBoys, M.P. (1879). “Le Rh ne et les rivi res lit affouillable,” Annals de Ponts et
Chauss e, Vol. 18(5), 141-195. (In French.)
Edwards, T.K. and Glysson, G.D. (1999). “Field methods for Measurement of
Fluvial Sediment,” Techniques of Water-Resources Investigations of the U.S.
Geological Survey, Book 3, Applications of Hydraulics, Chapter C2.
Einstein, H.A. (1950). The bed-load function for sediment transportation in open
channel flows. U.S. Department of Agriculture, Soil Conservation Service,
Technical Bulletin No. 1026.
Einstein, H.A. and Barbarossa, N.L. (1952). “River channel roughness,”
Transactions of the American Society of Civil Engineering, 117, 1121-1146.
Einstein, H.A., and Chien, N. (1953). Transport of sediment mixtures with large
range of grain size. University of California Institute of Engineering Research,
Missouri River Division Sediment Series, No. 2.
Engelund, F. and Hansen, H. (1966). “Hydraulic resistance in alluvial streams,”
Journal of the Hydraulics Division, American Society of Civil Engineering,
92(2), 315-326.
Engelund, F., and Hansen, E. (1972). A monograph on sediment transport in
alluvial streams, Teknish Forlag, Technical Press, Copenhagen, Denmark.
Exner, F. M., (1920). Zur Physik der Dunen, Sitzber. Akad. Wiss Wien, Part IIa,
Bd. 129 (in German).
Exner, F. M., (1925). Uber die Wechselwirkung zwischen Wasser und Geschiebe
in Flussen, Sitzber. Akad. Wiss Wien, Part IIa, Bd. 134 (in German).
Fread, D.L., and Lewis, J.M. (1998). NWS FLDWAV Model, Hydrologic Research
Laboratory, Office of Hydrology, National Weather Service (NWS), NOAA,
Silver Spring, MD 20910.
74
GSTAR-1D User’s Manual
Griffiths, G.A. (1981). “Flow resistance in coarse gravel bed rivers,” Journal of
the Hydraulics Division, American Society of Civil Engineering, 107(7), 899918.
Han, Q. (1980). "A study on the non-equilibrium transportation of suspended
load," Proc. of the Int. Symp. on River Sedimentation, Beijing, China, pp. 793–
802. (In Chinese.)
Han, Q., and He, M. (1990). "A mathematical model for reservoir sedimentation
and fluvial processes," Int. J. of Sediment Res., 5(2), IRTCES, pp. 43–84.
Hayter, E.J., Bergs, M.A., Gu, R., McCutcheon, S.C., Smith, S.J., and Whiteley,
H.J. (1999). “HSCTM-2D, A Finite Element Model for Depth-Averaged
Hydrodynamics, Sediment and Contaminant Transport,” Report, National
Exposure Research Laboratory, Office of Research and Development, U.S.
EPA, Athens, GA 30605.
HR Wallingford (1990). Sediment transport, the Ackers and White theory revised.
Report SR237, HR Wallingford, England.
Hoy, T. B., and Ferguson, R. (1994). “Numerical Simulation of Downstream
Fining by Selective Transport in Gravel Bed Rivers,” Water Resources
Research, 30(7): 2251-2260.
Huang, J., Hilldale, R. and B. Greimann (2004). “Cohesive Sediment Transport,”
Reclamation Sedimentation Manual, Ch 4.
Hwang, K.-N, and Mehta, A.J. (1989). “Fine sediment erodibility in Lake
Okeechobee,” Coastal and Oceanographic Engineering Dept., Univ. of Florida,
Report UFL/COEL-89/019, Gainesville, FL.
Jain, S.C. (2000). Open Channel Flow, John Wiley & Sons, Inc.
Jarret, R.D. (1984). "Hydraulics of High Gradient Streams," Journal of Hydraulic
Engineering, ASCE, 110(11):1519-1539.
Johannesson, H. and G. Parker, (1989). “Linear Theory of River Meanders,” in
Water Resources Monograph No. 12: River Meandering, edited by S. Ikeda and
G. Parker, American Geophysical Union, Washington DC, 1989, pp. 181-213.
Karim, M.F., and Kennedy, J.F. (1990). “Menu of coupled Velocity and Sediment
Discharge relationships for rivers,” Journal of Hydraulic Engineering, American
Society of Civil Engineering, 116(8), 978-996.
Krone, R.B. (1962). “Flumes studies of the transport of sediment in estuarial
shoaling processes,” Technical Report, Hydraulic Engineering Laboratory,
University of California, Berkeley, California.
Kutija, V., and Newett C.JM. (2002). “Modelling of supercritical flow conditions
revisited; NewC Scheme,” Journal of Hydraulic Research, Vol. 40(2), 145-152.
Langendoen, E.J. (2000). CONCEPTS – Conservational Channel Evolution and
Pollutant Transport System, USDA-ARS National Sedimentation Laboratory,
Research Report No. 16, December.
References
75
Laursen, E.M. (1958). "The total sediment load of streams," Journal of Hydraulic
Division, ASCE, Vol. 84(1), 1531-1536.
Limerinos, J.T. (1970). "Determination of the Manning Coefficient from
Measured Bed Roughness in Natural Channels," Geological Survey WaterSupply Paper 1898-B, Prepared in cooperation with the Callifornia Department
of Water Resources, US Government Printing Office, Washington DC, 20402.
Madden, E.B. (1993). Modified Laursen Method for Estimating Bed-Material
Sediment Load, U.S. Army Corps of Engineers, U.S. Army Engineer
Waterways Experiment Station, Contract report HL-93-3.
McAnally, W.H., and Mehta, A.J. (2001). “Collisional Aggregation of fine
Estuarial Sediment,” Coastal and Estuarine Fine Sediment Processes,
Proceedings in Marine Science 3.
Mehta, A. J. and Partheniades, E. (1973). “Depositional Behavior of Cohesive
Sediments.” Tech report No. 16, Univ. of Florida, Gainsville, FL.
Mehta, A.J., and Partheniades, E. (1975). “An investigation of the depositional
properties of flocculated fine sediment,” Journal of Hydraulic Research, Vol.
13(4), 361-381.
Mehta, A.J., Hayter, E.J., Parker, W.R., Krone, R.B., and Teeter, A.M. (1989).
“Cohesive sediment transport. I: Process description,” Journal of Hydraulic
Engineering, 115(8), 1076-1093.
Meselhe, E., Ogden, F.L, and Holly, F.M. (2005). “Discussion of Modelling of
supercritical flow conditions revisisted; NewC Scheme,” Journal of Hydraulic
Research, 42(6):668-671.
Meyer-Peter, E., and Müller, R. (1948). "Formula for bed-load transport," Proc. of
the Int. Assoc. for Hydraulic Research, 2nd Meeting, Stockholm.
Molinas, A., and C.T. Yang, (1986). Computer Program User’s manual for
GSTARS (Generalized Stream Tube model for Alluvial River Simulation). U.S.
Bureau of Reclamation, Technical Service Center, Denver, Colorado.
Nicholson, J., and O’Connor, B.A. (1986). “Cohesive sediment transport model,”
Journal of Hydraulic Engineering, 112 (7), 621-640.
Parker, G. (1990). "Surface based bedload transport relationship for gravel
rivers," Journal of Hydraulic Research, Vol. 28(4), 417–436.
Parker, G. and E. Andrews (1985). “Sorting of Bed Load Se4dimetn by Flow in
Meander Bends,” Water Resources Research, 21(9), 1361-1373.
Partheniades, E. (1965). “Erosion and deposition of cohesive soils,” Journal of
the Hydraulics Devision, ASCE, Vol. 91(1), 105-139.
Richardson E.V., and Simon, D.B. (1967). “Resistance to flow resistance and
sediment transport, Rio Grande near Bernalillo, New Mexico, “ U.S. Geological
Survey Water-Supply Paper 1498-H.
Rubey, W. (1933). "Setting velocities of gravel, sand, and silt particles," Am. J. of
Science, 25.
76
GSTAR-1D User’s Manual
Samuels, P.G. (1990). “Cross-section location in 1-D models,” Int. Conf. on River
Hydraulics, ed. by W. White, John Wiley.
Straub, L.G. (1935). Missouri River report. In-House Document 238, 73rd
Congress, 2nd Session, U.S. Government Printing Office, Washington, D.C.
Tannehill, J.C., Anderson, D.A., and Pletcher, R.H. (1997). Computational Fluid
Mechanics and Heat Transfer, 2nd Edition, Taylor & Francis Ltd., Washington
DC.
Tetra Tech, Inc. (2001). EFDC1D, a one dimensional hydrodynamic and sediment
transport mdoel for river and stream networks, model theory and users guide,
prepared for US Environmental Protection Agency, Office of Science and
Technology, Washington, DC.
Thorn, M.F.C. (1981). “Physical processes of siltation in tidal channels,”
Proceedings of the Conference on Hydraulic Modelling Applied to Maritime
Engineering Problems, Institution of Civil Engineers, London, England, 1981,
47-55.
Toffaleti, F.B. (1969). "Definitive computations of sand discharge in rivers,"
Journal of the Hydraulic Division. ASCE, Vol. 95(1), 225-246.
Toro-Escobar, C. M., Paola, G. Parker, P. R. Wilcock, and J. B. Southard, (1997).
“Experiments on Downstream Fining of Gravel: I. Wide and Sandy Runs,” J.
Hydraulic Engineering, 126(3):198-208.
U.S. Army Corps of Engineers. (1993). The Hydraulic Engineering Center, HEC6 Scour and Deposition in Rivers and Reservoirs, User's Manual. Mar. 1977
(revised 1993).
U.S. Army Corps of Engineers. (2002). HEC-RAS River Analysis System
Hydraulic Reference Manual, Hydrologic Engineering Center, Davis, CA.
U.S. Interagency Committee on Water Resources, Subcommittee on
Sedimentation. (1957). Some fundamentals of particle size analysis. Report no.
12.
Van Leer, B. (1979). “Towards the Ultimate Conservation Difference Scheme. V.
A Second-Order Sequel to Godunov’s Method,” Journal of Computational
Physics, 32, 101-135.
Van Leussen, W. (1994). “Estuarine macroflocs and their role in fine-grained
sediment transport,” Ph.D. thesis, Utrecht University (NL).
Van Niekerk, A., Vogel, K.R., Slingerland, R.L., and Bridge, J.S. (1992).
“Routing of heterogeneous sediments over movable bed: model development.”
Journal of Hydraulic Engineering, ASCE, 118(2), 246-262.
Van Rijn, L.C. (1982). “Equivalent roughness of alluvial bed,” Journal of the
Hydraulic Division. ASCE, Vol. 108(10), 1215-1218.
van Rijn, L.C. (1993). Principles of sediment transport in rivers, estuaries, and
coastal seas, Aqua Publications, 1006 AN Amsterdam, The Netherlands.
Vermeyen, T. (1995). “Erosional and depositional characteristics of cohesive
sediments found in Elephant Butte Reservoir, New Mexico,” Technical Report
References
77
R-95-15., Water Resources Services, Technical Service Center, Bureau of
Reclamation, Denver, CO.
White, W.R., Paris, E., and Bettess, R. (1979). “A new general method for
predicting the frictional characteristics of alluvial streams,” Hydraulic Research
Station, Wallingfor, U.K., Report No. IT 187.
Wu, W. and Vieira, D.A. (2002) “One-Dimensional Channel Network Model
CCHE1D Version 3.0 – Technical Manual,” Technical Report No. NCCHE-TR2002-1, National Center for Computational Hydroscience and Engineering, The
University of Mississippi.
Yang C.T., and Huang, C. (2001). “Applicability of sediment transport formulas,”
Int. J. of Sediment Research, 16(3), 335-353.
Yang, C.T. (1973). "Incipient motion and sediment transport," Journal of
Hydraulic Division, ASCE, Vol. 99(10), 1679-1704.
Yang, C.T. (1979). "Unit stream power equations for total load," Journal of
Hydrology, Vol. 40, 123-128.
Yang, C.T. (1984). "Unit stream power equation for gravel," Journal of Hydraulic
Division, ASCE, Vol. 110(12)1783-1797.
Yang, C.T. (1996). Sediment Transport: Theory and Practice, McGraw-Hill
Companies, Inc., New York, NY.
Yang, C.T., and Simões, F.J.M. (2000). User’s manual for GSTARS 2.1
(Generalized Stream Tube model for Alluvial River Simulation version 2.1).
U.S. Bureau of Reclamation, Technical Service Center, Denver, Colorado.
Yang, C.T., and Simões, F.J.M. (2002). User’s manual for GSTAR3 (Generalized
Stream Tube model for Alluvial River Simulation version 3.0). U.S. Bureau of
Reclamation, Technical Service Center, Denver, Colorado.
Yang, C.T., Molinas, A., and Wu, B. (1996). "Sediment transport in the Yellow
River," Journal of Hydraulic Engineering, ASCE, Vol. 122(5), 237-244.
78
GSTAR-1D User’s Manual
APPENDIX A - Flow Chart of Input Data Records
START
YTT
YNR
YSL
YFP
YTM
YDT
1 Flow Data For System
Flow Data For River
Another
River?
Y
N
YST
YSG
7 Sediment Data For System
Sediment Data For River
Legend
Another
River?
Y
N
Single Record
Multiple Records
Optional Record
END
Figure A-1 Flowchart of input data records
Appendix A
A1
I01
D00
I02
D01
UFB
U01
DFB
INF
D03
I05
I06
D05
N
I6A
I8A
D09
2 Upstream Boundary
Another
Internal BC
I04
IFB
D04
U02
Y
I03
D02
U00
I08
3 Downstream Boundary
I8B
4 Internal Boundary
Y
LNF
LFL
Another Lateral
Flow
LFD
N
5 Lateral Flows
NAM
XIN
XII
XPI
XLI
XBI
XIX
XPX
XLX
XBX
XBU
XST
XBD
XSP
XRH
XOI
XFL
XSL
XOX
Another Cross
Section
N
Y
6 Cross Sections
End of Flow Input
Figure A-2 Flowchart of flow data records for a river
Appendix A
A2
US0
LS2
US1
LS3
USB
US2
LNS
LSS
LSL
LS4
US3
USS
LS5
US4
Y
8 Upperstream Sediment Boundary
Another Lateral
Sediment
9 Lateral Sediment
N
NLAY>2
Y
N
BP0
BT0
BT1
BTT
BP1
FI0
BLP
TMP
FIM
FI1
FIW
BP2
BT2
FI2
10 Initial Bed
11 Temperature
12 Erosion and Deposition Limits
SA0
STU
SMN
SEQ
SA1
SAT
SA2
13 Sediment Properties
CD0
Cohesive Sed
Y
CE0
CR0
CM0
CT0
CF0
CE1
CR1
CM1
CT1
CF1
CSD
CSC
CD1
CDI
CD2
N
14 Cohesive Sediment Properties
End of Sediment Input
Figure A-3 Flowchart of sediment data records for a river
Appendix A
A3
APPENDIX B – List of the Input Data Records
Alphabetical List
Record: Explanation
Page in Appendix C
YTT: TITLE OF STUDY ................................................................................................................. 2
YNR: DIMENSIONS ...................................................................................................................... 3
YSL: SOLUTION PARAMETERS ..................................................................................................... 4
YFP: FLOOD PLAIN OPTION AND MINIMUM DISCHARGE ............................................................. 5
YTM: TIME ................................................................................................................................. 6
YDT: TIME STEP ......................................................................................................................... 7
UFB: UPSTREAM FLOW BOUNDARY CONDITION ......................................................................... 8
U00: UPSTREAM FLOW BOUNDARY CONDITION ------ JUNCTION ................................................ 9
U01: UPSTREAM FLOW BOUNDARY CONDITION ------ TIME-STAGE TABLE .............................. 10
U02: UPSTREAM FLOW BOUNDARY CONDITION ------ TIME-DISCHARGE TABLE ...................... 11
DFB: DOWNSTREAM FLOW BOUNDARY CONDITION ................................................................. 12
D00: DOWNSTREAM FLOW BOUNDARY CONDITION ------ JUNCTION......................................... 13
D01: DOWNSTREAM FLOW BOUNDARY CONDITION ------ TIME-STAGE TABLE ......................... 14
D02: DOWNSTREAM FLOW BOUNDARY CONDITION ------ TIME-DISCHARGE TABLE................. 15
D03: DOWNSTREAM FLOW BOUNDARY CONDITION ------ DISCHARGE-STAGE TABLE .............. 16
D04: DOWNSTREAM FLOW BOUNDARY CONDITION ------ WEIR................................................ 17
D09: DOWNSTREAM FLOW BOUNDARY CONDITION ------ NORMAL DEPTH .............................. 18
D09: DOWNSTREAM FLOW BOUNDARY CONDITION ------ RATING CURVE ................................ 19
INF: INTERNAL FLOW BOUNDARY CONDITION ------ NUMBER .................................................. 20
IFB: INTERNAL FLOW BOUNDARY CONDITION ------ LOCATION AND TYPE ............................... 21
I01: INTERNAL FLOW BOUNDARY CONDITION ------ TIME-STAGE TABLE ................................. 22
I02: INTERNAL FLOW BOUNDARY CONDITION ------ TIME-DISCHARGE TABLE ......................... 23
I03: INTERNAL FLOW BOUNDARY CONDITION ------ DISCHARGE-STAGE TABLE ....................... 24
I04: INTERNAL FLOW BOUNDARY CONDITION ------ WEIR ........................................................ 25
I05: INTERNAL FLOW BOUNDARY CONDITION ------ NORMAL DEPTH ....................................... 26
I06, I6A: INTERNAL FLOW BOUNDARY CONDITION ------ BRIDGE ............................................. 27
I08, I8A, I8B: INTERNAL FLOW BOUNDARY CONDITION ------ RADIAL GATE ........................... 29
LNF: LATERAL FLOWS ------ NUMBER ...................................................................................... 31
LFL: LATERAL FLOW INPUTS ------ LOCATION .......................................................................... 32
LFD: LATERAL FLOW INPUTS ------ TIME-DISCHARGE TABLE .................................................. 33
NAM: NUMBER AND NAME OF RIVER ........................................................................................ 34
XIN: STATION ------ INITIAL CONDITION ................................................................................... 35
XST: STATION ------ LOCATION ................................................................................................. 36
XSP: STATION ------ CROSS SECTION GEOMETRY ..................................................................... 37
XII/XIX: STATION ------ INEFFECTIVE FLOW AREA .................................................................. 38
XPI/XPX: STATION ------ PERMANENT INEFFECTIVE FLOW AREA............................................ 39
XLI/XLX: STATION ------ DRY AREAS ..................................................................................... 40
XBI/XBX: STATION ------ BLOCKED AREAS............................................................................. 41
XBU: STATION ------ UPSTREAM BREAK POINTS ...................................................................... 42
XBD: STATION ------ DOWNSTREAM BREAK POINTS ................................................................ 43
XRH: STATION ------ ROUGHNESS COEFFICIENTS..................................................................... 44
Appendix B
B1
XOI/XOX: STATION ------ BANK LOCATION ............................................................................ 45
XFL: STATION ------ CROSS SECTION ENERGY LOSS COEFFICIENT ........................................... 46
XSL: STATION ------ CROSS SECTION ENDPOINT LOCATION ..................................................... 47
YST: SEDIMENT SOLUTION PARAMETERS ................................................................................. 48
YSG: SEDIMENT SIZE GROUP .................................................................................................... 49
USB: UPSTREAM SEDIMENT BOUNDARY CONDITION ................................................................ 50
US0: UPSTREAM SEDIMENT BOUNDARY CONDITION ------ JUNCTION ....................................... 51
US1: UPSTREAM SEDIMENT BOUNDARY CONDITION ------ SEDIMENT TRANSPORT EQUATION . 52
US2: UPSTREAM SEDIMENT BOUNDARY CONDITION ------ RATING CURVE .............................. 53
US3: UPSTREAM SEDIMENT BOUNDARY CONDITION ------ FLOW-SEDIMENT DISCHARGE TABLE
................................................................................................................................................... 54
US4: UPSTREAM SEDIMENT BOUNDARY CONDITION ------ TIME-DISCHARGE TABLE ............... 55
USS: UPSTREAM SEDIMENT BOUNDARY CONDITION ------ SEDIMENT SIZE DISTRIBUTION ....... 56
LNS: NUMBER OF LATERAL SEDIMENT INPUTS ......................................................................... 57
LSL: LOCATION OF LATERAL SEDIMENT INPUT......................................................................... 58
LS2: LATERAL SEDIMENT DISCHARGE – RATING CURVE .......................................................... 59
LS3: LATERAL SEDIMENT DISCHARGE – FLOW-SEDIMENT DISCHARGE TABLE ........................ 60
LS4: UPSTREAM SEDIMENT BOUNDARY CONDITION ------ TIME-DISCHARGE TABLE................ 61
LS5: UPSTREAM SEDIMENT BOUNDARY CONDITION ------ TIME-DISCHARGE TABLE FOR EACH
SIZE FRACTION .......................................................................................................................... 62
LSS: LATERAL SEDIMENT DISCHARGE SEDIMENT SIZE DISTRIBUTION ..................................... 63
BT0/BT1/BT2: BED PROPERTIES ------ LOCATION OF THICKNESS ............................................ 64
BTT: BED PROPERTIES ------ THICKNESS ................................................................................... 65
BP0/BPI/BP2: BED PROPERTIES ------ LOCATION OF SIZE FRACTIONS ...................................... 66
BPL: BED PROPERTIES ------ SEDIMENT SIZE FRACTIONS .......................................................... 67
TMP: WATER TEMPERATURE .................................................................................................... 68
FI0/FI1/FI2: BED LIMITATION LOCATIONS ................................................................................ 69
FIM: BED LIMITATIONS ............................................................................................................. 70
FIW: BED LIMITATIONS AND EROSION LIMITS DEFINED BY FLOW ............................................ 71
STU: NUMBER OF SUB-CHANNELS ............................................................................................ 72
SMN: SEDIMENT PROPERTIES ------ MINIMIZATION OPTION ..................................................... 73
SEQ: SEDIMENT TRANSPORT EQUATION ................................................................................... 74
SA0/SA1/SA2: SEDIMENT TRANSPORT ------ LOCATION FOR SEDIMENT TRANSPORT PROPERTIES
INPUT ......................................................................................................................................... 75
SAT: SEDIMENT TRANSPORT ------ PROPERTIES ........................................................................ 76
CS0/CS1/CS2: COHESIVE SEDIMENT DEPOSITION ------ LOCATIONS ........................................ 77
CSD: COHESIVE SEDIMENT DEPOSITION ------ PARAMETERS .................................................... 78
CE0/CE1/CE2: COHESIVE SEDIMENT EROSION ------ LOCATIONS............................................. 79
CER: COHESIVE SEDIMENT EROSION ------ PARAMETERS ......................................................... 80
CF0/CF1: COHESIVE SEDIMENT ------ FALL VELOCITY ............................................................. 82
CSC: COHESIVE SEDIMENT ------ CONSOLIDATION.................................................................... 83
CD0/CD1/CD2: COHESIVE SEDIMENT ------ LOCATION OF COHESIVE SEDIMENT DENSITY IN
BED............................................................................................................................................ 84
CDI: COHESIVE SEDIMENT ------ COHESIVE SEDIMENT DRY BULK DENSITY IN BED ................ 85
END: END OF INPUT .................................................................................................................. 86
Appendix B
B2
Sequential List
Record: Explanation
Page in Appendix C
APPENDIX A - FLOW CHART OF INPUT DATA RECORDS ............................................ 1
APPENDIX B – LIST OF THE INPUT DATA RECORDS..................................................... 1
APPENDIX C - DESCRIPTIONS OF RECORDS.................................................................... 1
DATA GROUP 1. MODEL PARAMETERS............................................................................. 2
YTT: TITLE OF STUDY ................................................................................................................. 2
YNR: DIMENSIONS ...................................................................................................................... 3
YSL: SOLUTION PARAMETERS ..................................................................................................... 4
YFP: FLOOD PLAIN OPTION AND MINIMUM DISCHARGE ............................................................. 5
YTM: TIME ................................................................................................................................. 6
YDT: TIME STEP ......................................................................................................................... 7
DATA GROUP 2. UPSTREAM BOUNDARY CONDITIONS ............................................... 8
UFB: UPSTREAM FLOW BOUNDARY CONDITION ......................................................................... 8
U00: UPSTREAM FLOW BOUNDARY CONDITION ------ JUNCTION ................................................ 9
U01: UPSTREAM FLOW BOUNDARY CONDITION ------ TIME-STAGE TABLE .............................. 10
U02: UPSTREAM FLOW BOUNDARY CONDITION ------ TIME-DISCHARGE TABLE ...................... 11
DATA GROUP 3. DOWNSTREAM BOUNDARY CONDITION ........................................ 12
DFB: DOWNSTREAM FLOW BOUNDARY CONDITION ................................................................. 12
D00: DOWNSTREAM FLOW BOUNDARY CONDITION ------ JUNCTION......................................... 13
D01: DOWNSTREAM FLOW BOUNDARY CONDITION ------ TIME-STAGE TABLE ......................... 14
D02: DOWNSTREAM FLOW BOUNDARY CONDITION ------ TIME-DISCHARGE TABLE................. 15
D03: DOWNSTREAM FLOW BOUNDARY CONDITION ------ DISCHARGE-STAGE TABLE .............. 16
D04: DOWNSTREAM FLOW BOUNDARY CONDITION ------ WEIR................................................ 17
D09: DOWNSTREAM FLOW BOUNDARY CONDITION ------ NORMAL DEPTH .............................. 18
D09: DOWNSTREAM FLOW BOUNDARY CONDITION ------ RATING CURVE ................................ 19
DATA GROUP 4. INTERNAL BOUNDARY CONDITIONS............................................... 20
INF: INTERNAL FLOW BOUNDARY CONDITION ------ NUMBER .................................................. 20
IFB: INTERNAL FLOW BOUNDARY CONDITION ------ LOCATION AND TYPE ............................... 21
I01: INTERNAL FLOW BOUNDARY CONDITION ------ TIME-STAGE TABLE ................................. 22
I02: INTERNAL FLOW BOUNDARY CONDITION ------ TIME-DISCHARGE TABLE ......................... 23
I03: INTERNAL FLOW BOUNDARY CONDITION ------ DISCHARGE-STAGE TABLE ....................... 24
I04: INTERNAL FLOW BOUNDARY CONDITION ------ WEIR ........................................................ 25
I05: INTERNAL FLOW BOUNDARY CONDITION ------ NORMAL DEPTH ....................................... 26
I06, I6A: INTERNAL FLOW BOUNDARY CONDITION ------ BRIDGE ............................................. 27
I08, I8A, I8B: INTERNAL FLOW BOUNDARY CONDITION ------ RADIAL GATE ........................... 29
DATA GROUP 5. LATERAL FLOW INPUTS ...................................................................... 31
LNF: LATERAL FLOWS ------ NUMBER ...................................................................................... 31
LFL: LATERAL FLOW INPUTS ------ LOCATION .......................................................................... 32
LFD: LATERAL FLOW INPUTS ------ TIME-DISCHARGE TABLE .................................................. 33
DATA GROUP 6. CHANNEL GEOMETRY AND FLOW CHARACTERISTICS ........... 34
NAM: NUMBER AND NAME OF RIVER ........................................................................................ 34
XIN: STATION ------ INITIAL CONDITION ................................................................................... 35
XST: STATION ------ LOCATION ................................................................................................. 36
XSP: STATION ------ CROSS SECTION GEOMETRY ..................................................................... 37
Appendix B
B3
XII/XIX: STATION ------ INEFFECTIVE FLOW AREA .................................................................. 38
XPI/XPX: STATION ------ PERMANENT INEFFECTIVE FLOW AREA............................................ 39
XLI/XLX: STATION ------ DRY AREAS ..................................................................................... 40
XBI/XBX: STATION ------ BLOCKED AREAS............................................................................. 41
XBU: STATION ------ UPSTREAM BREAK POINTS ...................................................................... 42
XBD: STATION ------ DOWNSTREAM BREAK POINTS ................................................................ 43
XRH: STATION ------ ROUGHNESS COEFFICIENTS..................................................................... 44
XOI/XOX: STATION ------ BANK LOCATION ............................................................................ 45
XFL: STATION ------ CROSS SECTION ENERGY LOSS COEFFICIENT ........................................... 46
XSL: STATION ------ CROSS SECTION ENDPOINT LOCATION ..................................................... 47
DATA GROUP 7. SEDIMENT MODEL PARAMETERS .................................................... 48
YST: SEDIMENT SOLUTION PARAMETERS ................................................................................. 48
YSG: SEDIMENT SIZE GROUP .................................................................................................... 49
DATA GROUP 8. SEDIMENT BOUNDARY CONDITIONS .............................................. 50
USB: UPSTREAM SEDIMENT BOUNDARY CONDITION ................................................................ 50
US0: UPSTREAM SEDIMENT BOUNDARY CONDITION ------ JUNCTION ....................................... 51
US1: UPSTREAM SEDIMENT BOUNDARY CONDITION ------ SEDIMENT TRANSPORT EQUATION . 52
US2: UPSTREAM SEDIMENT BOUNDARY CONDITION ------ RATING CURVE .............................. 53
US3: UPSTREAM SEDIMENT BOUNDARY CONDITION ------ FLOW-SEDIMENT DISCHARGE TABLE
................................................................................................................................................... 54
US4: UPSTREAM SEDIMENT BOUNDARY CONDITION ------ TIME-DISCHARGE TABLE ............... 55
USS: UPSTREAM SEDIMENT BOUNDARY CONDITION ------ SEDIMENT SIZE DISTRIBUTION ....... 56
DATA GROUP 9. LATERAL SEDIMENT INFLOWS ......................................................... 57
LNS: NUMBER OF LATERAL SEDIMENT INPUTS ......................................................................... 57
LSL: LOCATION OF LATERAL SEDIMENT INPUT......................................................................... 58
LS2: LATERAL SEDIMENT DISCHARGE – RATING CURVE .......................................................... 59
LS3: LATERAL SEDIMENT DISCHARGE – FLOW-SEDIMENT DISCHARGE TABLE ........................ 60
LS4: UPSTREAM SEDIMENT BOUNDARY CONDITION ------ TIME-DISCHARGE TABLE................ 61
LS5: UPSTREAM SEDIMENT BOUNDARY CONDITION ------ TIME-DISCHARGE TABLE FOR EACH
SIZE FRACTION .......................................................................................................................... 62
LSS: LATERAL SEDIMENT DISCHARGE SEDIMENT SIZE DISTRIBUTION ..................................... 63
DATA GROUP 10. SEDIMENT BED MATERIAL ............................................................... 64
BT0/BT1/BT2: BED PROPERTIES ------ LOCATION OF THICKNESS ............................................ 64
BTT: BED PROPERTIES ------ THICKNESS ................................................................................... 65
BP0/BPI/BP2: BED PROPERTIES ------ LOCATION OF SIZE FRACTIONS ...................................... 66
BPL: BED PROPERTIES ------ SEDIMENT SIZE FRACTIONS .......................................................... 67
DATA GROUP 11. WATER TEMPERATURE...................................................................... 68
TMP: WATER TEMPERATURE .................................................................................................... 68
DATA GROUP 12. EROSION AND DEPOSITION LIMITS ............................................... 69
FI0/FI1/FI2: BED LIMITATION LOCATIONS ................................................................................ 69
FIM: BED LIMITATIONS ............................................................................................................. 70
FIW: BED LIMITATIONS AND EROSION LIMITS DEFINED BY FLOW ............................................ 71
DATA GROUP 13. SEDIMENT TRANSPORT PARAMETERS......................................... 72
STU: NUMBER OF SUB-CHANNELS ............................................................................................ 72
SMN: SEDIMENT PROPERTIES ------ MINIMIZATION OPTION ..................................................... 73
SEQ: SEDIMENT TRANSPORT EQUATION ................................................................................... 74
Appendix B
B4
SA0/SA1/SA2: SEDIMENT TRANSPORT ------ LOCATION FOR SEDIMENT TRANSPORT PROPERTIES
INPUT ......................................................................................................................................... 75
SAT: SEDIMENT TRANSPORT ------ PROPERTIES ........................................................................ 76
DATA GROUP 14. COHESIVE SEDIMENT PARAMETERS ............................................ 77
CS0/CS1/CS2: COHESIVE SEDIMENT DEPOSITION ------ LOCATIONS ........................................ 77
CSD: COHESIVE SEDIMENT DEPOSITION ------ PARAMETERS .................................................... 78
CE0/CE1/CE2: COHESIVE SEDIMENT EROSION ------ LOCATIONS............................................. 79
CER: COHESIVE SEDIMENT EROSION ------ PARAMETERS ......................................................... 80
CF0/CF1: COHESIVE SEDIMENT ------ FALL VELOCITY ............................................................. 82
CSC: COHESIVE SEDIMENT ------ CONSOLIDATION.................................................................... 83
CD0/CD1/CD2: COHESIVE SEDIMENT ------ LOCATION OF COHESIVE SEDIMENT DENSITY IN
BED............................................................................................................................................ 84
CDI: COHESIVE SEDIMENT ------ COHESIVE SEDIMENT DRY BULK DENSITY IN BED ................ 85
END: END OF INPUT .................................................................................................................. 86
Appendix B
B5
APPENDIX C - Descriptions of Records
The following sections detail the input data for each of the 14 data groups. Each record is defined
by a three letter code followed by variables. Each variable can be one of three types: text,
integer, or real number data. Each record may contain several variables. Each variable is
described as follows:
Variable: Gives the variable name.
Type: The type can be either text, integer (int), or real (float).
Value: Give the potential ranges for this variable.
Description: Describes the significance of this variable.
Appendix C
C1
Data Group 1. Model Parameters
YTT
YTT: Title of Study
Optional
The YTT record is used to define the title of the simulation. Any number of YTT records can be
used. The text will be echoed to the output files generated by GSTAR-1D.
If a river network is simulated, records YTT to YDT are common data for the entire network.
Records UFB to XSL are specified for each river.
YTT
TITIL
Variable
Type
TITIL
text
Value
Description
Title of study
Appendix C
C2
YNR
YNR: Dimensions
Required
The YNR record defines the number of rivers, the number of sediment size classes, and the
number of bed layers to be used by the program. If more than one river is studied, the program
should be organized with the most upstream river being river number 1 and proceeding
downstream. If the number of sediment size classes is set to 0, no sediment transport process
will be studied and no sediment information is required. The minimum number of bed layers is 2
(an active layer and one inactive layer).
YNR NRIV
NF
NTOX
NLAY
Variable
Type
Value
Description
NRIV
NF
NTOX
NLAY
int
int
int
int
+
0/+
0/+
2+
Number of rivers
Number of sediment size classes
Number of dissolved substances being modeled
Number of bed layers
Appendix C
C3
YSL
YSL: Solution parameters
Required
The YSL record specifies the solution method used to compute the hydraulics, the solution
method used to compute the sediment transport, the calculation tolerance, the implicit factor, the
streamwise distance scaling factor, metric option, and the cross section coordinate order.
YSL
ISOLVE
Variable
Type
ISOLVE
int
ISOLVES
EPSY F1
Value
Description
0
1
2
3
4
ISOLVES int
EPSY
F1
XFACT
float
float
float
METRIC
int
1
2
+
+
+
0
1
YZ
int
0
1
XFACT
METRIC
YZ
Type of flow solution
Steady flow, normal depth default
Steady flow, critical depth default
Unsteady flow, diffusive wave
Unsteady flow, dynamic wave, LPI technique
Unsteady flow, dynamic wave
Type of sediment solution
Ignore changes in suspended sediment concentration
Calculate changes in suspended sediment concentration
Calculating tolerance for flow and sediment
Implicit factor for unsteady flow, not used for steady flow
Scaling factor, the cross-section streamwise distance will be
multiplied by this factor
Metric units option
English unit
Metric Unit
Coordinate Order
ZY order, bed elevation (Z value) followed by the lateral
location (Y value)
YZ order, lateral location (Y value) followed by the bed
elevation (Z value)
Appendix C
C4
YFP
YFP: Flood Plain Option and Minimum Discharge
Required
GSTAR-1D has the ability to calculate the erosion/deposition in the floodplain separately from
the main channel. The record YFP defines controls whether or not the program simulates the
erosion/deposition in main channel differently with that in floodplains. Also, the model assumes
that the river morphology changes only at large flows. YFP record defines a minimum flow
discharge, under which no hydraulic calculations or sediment transport is simulated. It can be set
to zero the user wants to include all flows in the hydrology record.
YFP
KFLP
Variable
Type
KFLP
int
QMIN
float
QMIN
Value
Description
0
1
2
Floodplain Option.
No Floodplain simulation
Floodplain simulation using sub-channel concept
Only main channel contributes to sediment transport capacity
0/+
Minimum flow discharge to be calculated. Discharges
smaller than this value will be ignored.
Appendix C
C5
YTM
YTM: Time
Required
YTM record defines the total time of simulation.
YTM
THE
IHOTST
Variable
Type
Value
Description
THE
IHOTST
float
int
+
0/1
0
1
Total time of simulation (hr)
Option to start the calculation
Start the calculation from time 0
Start the calculation from last saved calculation
Appendix C
C6
YDT
YDT: Time Step
Required
This record defines the time step for flow simulation and for printing. This record also defines
the cross section numbers that will be displayed on the screen during the simulation. More than
one YDT record can be used. No interpolation and extrapolation is used. If the time step is
smaller than the time TDT at the first record, the time step at the first record is used. If the time
step is larger than the time TDT at the last record, the time step at the last record is used.
Multiple XCPLT numbers can be specified, with a maximum of 10 suggested.
YDT
TDT
DT
DTPLT
XCPLT
Variable
Type
Value
Description
TDT
float
+
DT
DTPLT
XCPLT
float
float
int
+
+
+
Time (hr) when time step is defined (increases in each
record)
Time step (hr) at time TDT
Time interval (hr) at time TDT to output data
Cross section number for on-screen plotting at time TDT
Appendix C
C7
Data Group 2. Upstream Boundary Conditions
UFB
UFB: Upstream Flow Boundary Condition
Required
The UFB record specifies the upstream flow boundary condition type.
If a river network is simulated, records YTT to YDT are common flow data for the entire
network. Records UFB to XSL are specified for each river.
UFB
KU
Variable
Type
Value
Description
KU
int
0/+
0
1
2
Type of upstream boundary condition
Junction
Table (time, stage)
Table (time, flow rate).
Appendix C
C8
U00
U00: Upstream Flow Boundary Condition ------ Junction
Optional, required only if KU = 0 in record UFB
The U00 record specifies which rivers connect to the upstream end of the river. The record ID is
followed by other river indexes at the junction. A positive number is used if the connecting river
is entering the junction and negative number is used if the connecting river is exiting the
junction. If flow direction is not known before the simulation is run, a flow direction can be
assumed and a negative discharge for that river at the junction indicates that flow is in the other
direction. The program organizes the rivers in ascending order with river 1 being the most
upstream.
U00
URIV(1:nu)
Variable
Type
Value
Description
URIV
int
-/+
River indexes at the junction
+
Flow enters junction
-
Flow exits junction
+
Number of rivers connected with the river at upstream
nu
int
Appendix C
C9
U01
U01: Upstream Flow Boundary Condition ------ Time-Stage Table
Optional, required only if KU = 1 in record UFB
The U01 record defines the upstream flow boundary condition as a time-stage table. The U01
record is repeated until the entire table is input. This record can only be used for unsteady flow
simulations.
U01
T1
ST1
Variable
Type
Value
Description
T1
float
+
time (hr)
ST1
float
+
river stage (cfs or cms) at upstream at time T1
Appendix C
C10
U02
U02: Upstream Flow Boundary Condition ------ Time-Discharge Table
Optional, required only if KU = 2 in record UFB
The U02 record defines the upstream flow boundary condition as a time-discharge table. The
U02 record is repeated until the entire table is input. One record is used for each time-discharge
pair. The U02 record is repeated until the entire table is input. For steady flow, no interpolation
of discharge is performed and the discharge becomes a step function in time. Changes to the
discharge occur at the times input in the time-discharge table. For unsteady flow, the discharges
are interpolated in time between the specified T1 values. For values of the discharge outside of
the table, no extrapolation is done; i.e., if T < T 11 the discharge for T 11 is used; if T > T 1n the
discharge for T1n is used, where n is the total last row of the table. If there is no discharge before
the first value or after the last value, a zero discharge should be added at the beginning or end of
the table, respectively.
U02
T1
ST1
Variable
Type
Value
Description
T1
float
+
time (hr)
ST1
float
+
river discharge (cfs or cms) at upstream at time T1
Appendix C
C11
Data Group 3. Downstream Boundary Condition
DFB
DFB: Downstream Flow Boundary Condition
Required
The DFB record specifies the downstream flow boundary condition type.
DFB
KD
Variable
Type
Value
Description
KD
int
0/+
0
1
2
3
4
5
9
Type of upstream boundary condition
Junction
Table (time, stage)
Table (time, discharge)
Table (discharge, stage)
Weir flow
Normal depth
Rating curve with coefficients
Appendix C
C12
D00
D00: Downstream Flow Boundary Condition ------ Junction
Optional, required only if KD = 0 in record DFB
The D00 record specifies which rivers connect to the downstream end of the river. The record ID
is followed by other river indexes at the junction. A positive number is used if the connecting
river is entering the junction and negative number is used if the connecting river is exiting the
junction. If flow direction is not known before the simulation is run, a flow direction can be
assumed and a negative discharge for that river at the junction indicates that flow is in the other
direction. The program organizes the rivers in ascending order with river 1 upstream.
D00
DRIV(1:nd)
Variable
Type
Value
Description
DRIV
int
-/+
River index at the junction
+
Flow enters junction
-
Flow exits junction
+
Number of rivers connected with the river at downstream
nd
int
Appendix C
C13
D01
D01: Downstream Flow Boundary Condition ------ Time-Stage Table
Optional, required only if KD = 1 in record DFB
The D01 record defines the downstream flow boundary condition as a time-stage table. The
record ID is followed by one pair of time and stage data. The D01 record is repeated until the
entire table is input.
D01
TN
STN
Variable
Type
Value
Description
TN
float
+
Time (hr)
STN
float
+
River stage (ft or m) at downstream at time TN
Appendix C
C14
D02
D02: Downstream Flow Boundary Condition ------ Time-Discharge Table
Optional, required only if KD = 2 in record DFB
The D02 record defines the downstream flow boundary condition as a time-discharge table. The
record ID is followed by one pair of time and discharge data. The D02 record is repeated until
the entire table is input. For unsteady flow, the discharges are interpolated in time between the
specified T1 values. For values of the discharge outside of the table, no extrapolation is done;
i.e., if T < TN1 the discharge for TN1 is used; if T > TN n the discharge for TN n is used, where n
is the total last row of the table. For steady flow, this record should not be used.
D02
TN
STN
Variable
Type
Value
Description
TN
float
+
Time (hr)
STN
float
+
Discharge (cfs or cms) at downstream boundary at time TN
Appendix C
C15
D03
D03: Downstream Flow Boundary Condition ------ Discharge-Stage Table
Optional, required only if KD = 3 in record DFB
The D03 record defines the downstream flow boundary condition as a discharge-stage table. The
record ID is followed by one pair of discharge and stage data. The D03 record is repeated until
the entire table is input.
D03
TN
STN
Variable
Type
Value
Description
TN
float
+
Discharge (cfs or cms)
STN
float
+
Stage (ft or m) at downstream at time TN
Appendix C
C16
D04
D04: Downstream Flow Boundary Condition ------ Weir
Optional, required only if KD = 4 in record DFB
The D04 record defines the weir downstream flow boundary condition. The record ID is
followed by three weir parameters: weir height H0, weir width B, and weir constant C. For free
flowing weirs, the discharge is calculated as Q = CB( H − H 0 ) 3 / 2 , where H is the elevation of the
total energy head upstream of the weir.
D04
WEIR_HEIGHT
WEIR_WIDTH
WEIR_CONST
Variable
Type
Value
Description
WEIR_HEIGHT
float
+
Weir elevation, H0 (ft or m)
WEIR_WIDTH
float
+
Weir width, B (ft or m)
WEIR_CONST
float
+
Weir constant, C (ft1/2/s or m1/2/s)
Appendix C
C17
D05
D09: Downstream Flow Boundary Condition ------ Normal Depth
Optional, required only if KD = 5 in record DFB
The D05 record defines the normal depth downstream flow boundary condition. The record ID is
followed by one pair of time and slope data. The D05 record is repeated until the entire table is
input.
D05
TN
STN
Variable
Type
Value
Description
TN
float
+
Time (hr)
STN
float
+
Energy slope at downstream boundary at time TN (ft/ft)
Appendix C
C18
D09
D09: Downstream Flow Boundary Condition ------ Rating Curve
Optional, required only if KD = 9 in record DFB
The D09 record defines the rating curve downstream flow boundary condition. The record ID is
followed by three rating curve parameters: a, b, and c. The river stage is calculated as,
H = aQ b + c , where Q is the flow discharge and H is the river stage.
D09
RC_A
RC_B
RC_C
Variable
Type
Value
Description
RC_A
float
0/+
Parameter a
RC_B
float
0/+
Parameter b
RC_C
float
-/0/+
Parameter c
Appendix C
C19
Data Group 4. Internal Boundary Conditions
INF
INF: Internal Flow Boundary Condition ------ Number
Required
The INF record specifies the number of internal flow boundary conditions.
INF
NKI
Variable
Type
Value
Description
KKI
int
0/+
0
Number of internal flow boundary conditions
No internal flow boundary conditions. Skip records IFB to
I8B
n internal flow boundary conditions, repeat records IFB to
I8B for n times
n
Appendix C
C20
IFB
IFB: Internal Flow Boundary Condition ------ Location and Type
Required
The IFB record specifies the location and type of internal flow boundary condition. Records IFB
to I8B should be skipped if NKI = 0 in record INF or should be repeated if NKI>1 for each
internal boundary.
IFB
NXI
KI
XTI
Variable
Type
Value
Description
NXI
KI
int
int
+
+
1
2
3
4
5
6
7
8
+
Station number immediately upstream of internal bc
Type of internal boundary condition
Time-stage table
Time-discharge table
Discharge-stage table
Weir
Normal depth
Bridge
Dam (not currently available)
Radial gate
Distance from the boundary to the station NXI
XTI
Appendix C
C21
I01
I01: Internal Flow Boundary Condition ------ Time-Stage Table
Optional, required only if KI = 1 in record IFB
The I01 record defines the internal flow boundary condition as a time-stage table. The record ID
is followed by one pair of time and stage data. The I01 record is repeated until the entire table is
input.
I01
T2
ST2
Variable
Type
Value
Description
T2
float
+
time (hr)
ST2
float
+
river stage (ft or m) at upstream at time T2
Appendix C
C22
I02
I02: Internal Flow Boundary Condition ------ Time-Discharge Table
Optional, required only if KI = 2 in record IFB
The I02 record defines the internal flow boundary condition as a time-discharge table. The
record ID is followed by one pair of time and discharge data. The I02 record is repeated until the
entire table is input. For steady flow simulations, this record should not be used.
I02
T2
ST2
Variable
Type
Value
Description
T2
float
+
Time (hr)
ST2
float
+
Discharge (cfs or cms) at internal boundary at time T2
Appendix C
C23
I03
I03: Internal Flow Boundary Condition ------ Discharge-Stage Table
Optional, required only if KI = 3 in record IFB
The I03 record defines the internal flow boundary condition as a discharge-stage table. The
record ID is followed by one pair of discharge and stage data. The I03 record is repeated until the
entire table is input.
I03
T2
ST2
Variable
Type
Value
Description
T2
float
+
Discharge (cfs or cms)
ST2
float
+
Stage (ft or m) at internal boundary condition at time T2
Appendix C
C24
I04
I04: Internal Flow Boundary Condition ------ Weir
Optional, required only if KI = 4 in record IFB
The I04 record defines the weir internal flow boundary condition. The record ID is followed by
three weir parameters: weir height H0, weir width B, and weir constant C. For free flowing weirs,
the discharge is calculated as Q = CB( H − H 0 ) 3 / 2 , where H is the elevation of the total energy
head.
I04
WEIR_HEIGHT
WEIR_WIDTH
WEIR_CONST
Variable
Type
Value
Description
WEIR_HEIGHT
float
+
Weir elevation, H0 (ft or m)
WEIR_WIDTH
float
+
Weir width, B (ft or m)
WEIR_CONST
float
+
Constant, C (ft1/2/s or m1/2/s)
WEIR_DIR
int
0/1
Weir direction
0
Inline weir
1
Lateral weir
WEIR_DIR
Appendix C
C25
I05
I05: Internal Flow Boundary Condition ------ Normal Depth
Optional, required only if KI = 5 in record IFB
The I05 record defines the normal depth internal flow boundary condition.
I05
T2
ST2
Variable
Type
Value
Description
T2
float
+
Time (hr)
ST2
float
+
Slope at internal boundary at time T2
Appendix C
C26
I06, I6A
I06, I6A: Internal Flow Boundary Condition ------ Bridge
Optional, required only if KI = 6 in record IFB
The I06 record defines the bridge internal flow boundary condition. One I06 is used for one
bridge, and records I6A are used to input elevation-opening table of the bridge. The record ID
I6A is followed by one pair of elevation and opening data. The I6A record is repeated until the
entire table is input. The present model uses the equations in FLDWAV (Fread and Lewis, 1998)
for highway/railway bridges and their associated earthen embankments. The discharge can be
expressed as,
Q = 2gCAbr (hi − hi +1 + Vi 2 / 2 g − Δh f )1 / 2
+ ccu Lu k u (hi − hcu ) 3 / 2 + ccl Ll k l (hi − hcl ) 3 / 2
where
(C1)
k u = 1.0
if
hru ≤ 0.76
(C2)
k u = 1.0 − cu (hru − 0.76) 3
if
hru > 0.76
(C3)
cu = 133(hru − 0.78) + 10
if
0.76 < hru ≤ 0.96
(C4)
cu = 400(hru − 0.96) + 34
if
hru > 0.96
(C5)
hru = (hi +1 − hcu ) /(hi − hcu )
ccu = 3.02(hi − hcu ) 0.015
(C6)
if
ccu = 3.06 + 0.27(hu − 0.15) if
0 < hu ≤ 0.15
(C7)
hu > 0.15
(C8)
hu = (hi − hcu ) / wu
(C9)
Δh f = Δxi (Qbr / K i ) 2
(C10)
Qbr = 2 g CAbr (hi − hi +1 + Vi 2 / 2 g )1 / 2
(C11)
V = Qi / Ai
(C12)
where C = bridge coefficient; Abr = cross-section flow area of the downstream end of bridge
opening which is user-specified via a tabular relation of wetted top width versus elevation; hcu =
elevation of the upper embankment crest; hi = water surface elevation at section i (slightly
upstream of bridge); hi+1 = water surface elevation at section i+1 (slightly downstream of
bridge); V = velocity of flow within the bridge opening; Lu = length of the upper embankment
crest perpendicular to the flow direction including the length of bridge at elevation hcu; Ll =
length of the lower embankment crest perpendicular to the flow direction including the length of
bridge at elevation hcl; ku , kl = computed submergence correction factor for flow over the upper,
Appendix C
C27
and lower embankment crests, respectively; wu = width (parallel to flow direction) of the crest of
the upper , and lower embankment, respectively.
When the bridge opening is submerged, C in Eqs. (C1) and (C11) is replaced by C’ for orifice
flow which is written as
C '= c0 C
in which
(C13)
⎧1.0 − (r − 0.09)
⎪
c0 = ⎨
⎪⎩1.0
if 0.09 ≤ r ≤ 0.31
(C14)
otherwise
r = (hi − hbr ) / d i
and
I06
C
HCU LU
I6A
ELEV B
WU
(C15)
HCL LL
WL
Variable
Type
Value
Description
C
float
+
C, bridge coefficient
HCU
float
+
hcu, elevation of the upper embankment crest
LU
float
+
WU
float
+
Lu, length of the upper embankment crest perpendicular to
the flow direction including the length of bridge at elevation
hcu
wu, width (parallel to flow direction) of the crest of the upper
embankment
HCL
float
+
hcl, elevation of the lower embankment crest
LL
float
+
WL
float
+
ELEV
B
float
float
+
0/+
Ll, length of the lower embankment crest perpendicular to the
flow direction including the length of bridge at elevation hcl
wl, width (parallel to flow direction) of the crest of the lower
embankment
Elevation (ft)
Bridge opening B (ft) at Elevation ELEV
Appendix C
C28
I08, I8A, I8B
I08, I8A, I8B: Internal Flow Boundary Condition ------ Radial Gate
I08-optional, required only if KI = 8 in record IFB
I8A-optional, required after I08 if radial gate opening is given by time-opening table.
I8B-optional, required after I08 if radial gate opening is determined by water surface elevation.
The I08 record defines the bridge internal flow boundary condition. One I08 is used for a radial
gate. Records I8A are used if the radial gate opening is input as a time-opening table. The record
ID I8A is followed by one pair of time and opening data. The I8A record is repeated until the
entire table is input. The I8B record is used if the gate opening is governed by the water surface
elevation.
I8A
C
W
T
ZSP
TE
BE
HE
CW
GDIR GTYPE
I8A
T2
ST2
I8B
WSEOpen WSEClose OpenRate CloseRate MaxOpen MinOpen InitOpen
Variable
Type
Value
Description
C
float
+
C, discharge coefficient (typically ranges from 0.6-0.8)
W
float
+
W (ft or m), width of the gate spillway (ft or m)
T
float
+
ZSP
float
+
T (ft or m), Trunnion height (from spillway crest to trunnion
pivot point)
Zsp (ft or m), elevation of the spillway crest through the gate
(ft or m)
TE
float
+
TE, trunnion height exponent (typically about 0.16)
BE
HE
CW
GDIR
float
float
float
int
GTYPE
int
T2
ST2
float
float
+
+
+
0/1
0
1
0/1
0
1
+
0/+
BE, gate opening exponent (typically about 0.72)
HE, head exponent (typically about 0.62)
CW ,weir coefficient for weir flow
Gate direction
Inline gate
Lateral gate (i.e. flow is taken away from river)
Gate type
Radial gate
Sluice gate
Time (hr)
B (ft or m), gate opening at time T2
B
Appendix C
C29
WSEOpen float
+
WSEClose float
+
OpenRate
CloseRate
MaxOpen
MaxOpen
InitOpen
+
+
+
+
+
float
float
float
float
float
Upstream water surface elevation at which gate begins to
open (ft or m)
Upstream water surface elevation at which gate begins to
close (ft or m)
Gate opening rate (ft/min or m/min)
Gate closing rate (ft/min or m/min)
Maximum gate opening (ft or m)
Minimum gate opening (ft or m)
Initial gate opening (ft or m)
Appendix C
C30
Data Group 5. Lateral Flow Inputs
LNF
LNF: Lateral Flows ------ Number
Required
The LNF record specifies the number of lateral flow inputs.
LNF
NKQF
Variable
Type
Value
Description
NKQF
int
0/+
0
n
number of lateral flow inputs
No lateral flows. Skip records LFL to LFD
n lateral flows, repeat records LFL to LFD for n times
Appendix C
C31
LFL
LFL: Lateral Flow Inputs ------ Location
Optional, required if NKQF > 0 in record LNF.
The LFL record specifies the location of the lateral flows. Records LFL and LFD should be
skipped if NKQF = 0 in record LNF and should be repeated if NKQF >1 for each lateral flow.
LFL
X1QF
X2QF
Variable
Type
Value
Description
X1QF
float
+
X2QF
float
+
Start location (ft or m) of lateral flows. The location
coordinate will by multiplied by the scaling factor XFACT in
records YSL
End location (ft or m) of lateral flows. If point lateral flow is
simulated, X2QF=X1QF. The location coordinate will by
multiplied by the scaling factor XFACT in records YSL
Appendix C
C32
LFD
LFD: Lateral Flow Inputs ------ Time-Discharge Table
Optional, required if NKQF > 0 in record LNF.
The LFD record defines the lateral flow input as a time-discharge table. A lateral inflow is
defined as positive and an outflow is defined as negative. One record is used for each timedischarge pair. The LFD record is repeated until the entire table is input. For steady flow, no
interpolation of discharge is performed and the discharge becomes a step function in time.
Changes to the discharge occur at the times input in the time-discharge table.. For unsteady flow,
the discharges are interpolated for time between the specified T1 values. For values of the
discharge outside of the table, no extrapolation is done; i.e., if T < T 31 the discharge for T 31 is
used; if T > T 3 n the discharge for T 3 n is used, where n is the total last row of the table. If there
is no discharge before the first value or after the last value, zero discharge should be added at the
beginning or end of the table, respectively.
LFD
T3
ST3
Variable
Type
Value
Description
T3
float
+
Time (hr)
ST3
float
-/0/+
Lateral flow discharge (cfs or cms) at time T3
-
Lateral outflow
+
Lateral inflow
Appendix C
C33
Data Group 6. Channel Geometry and Flow
Characteristics
NAM
NAM: Number and name of river
Required
The NAM record specifies the number and name of river. The river numbering must occur in
sequential order. The river name may include spaces.
NAM
RNUM
RNAM
Variable
Type
Value
Description
RNUM
RNAM
INT
CHAR
1+
River number
Name of River
Appendix C
C34
XIN
XIN: Station ------ Initial Condition
Required
The XIN record specifies the initial condition at a station. The XIN records are only used for
unsteady flow. Each station is identified by a set of several records: XIN, XST, XSP, XII/XIX,
XLI/XLX, XBU, XBD, XBI/XBX, XFL, and XSL. Among the records, XII/XIX, XLI/XLX,
XBU, and XBD are optional, and the others are required. These records are repeated for each
station. The stations are entered in order, in the downstream direction, starting at the most
upstream cross section.
XIN
TMP ZDI
Variable
Type
TMP
ZDI
float
float
QDI
float
QDI
Value
Description
0/+
0
0/+
0
Not presently used
Initial stage
Initial stage is calculated from steady solution
Initial discharge
Initial discharge is calculated from steady solution
Appendix C
C35
XST
XST: Station ------ Location
Required
The XST record is used to define various cross section properties: its streamwise location, the
modification to bed elevations, number of interpolated cross sections. This record also controls if
the cross section data is updated during a hot start. A cold start mains that the simulation starts
from the initial condition. A hot start means that the simulation starts from the end of last
simulation, whose results are saved in a binary file.
XST
XT
BEC
NINTERP
IHOTC
Variable
Type
Value
Description
XT
float
0/+
BEC
float
0/+
Location of the station, i.e., its coordinate measured from a
reference station location downstream (ft or m). The location
coordinate will by multiplied by the scaling factor XFACT in
the record YSL
Cross section elevation adjustment factor, BEC, will be
added to the given bed elevation across the channel at the
present station
Interpolation number, NINTERP, this number of cross
sections will be interpolated between the present cross
section and the next downstream cross section
No action
Option to restart the calculation with new cross section
geometry. This data is ignored during cold start
Use cross section geometry of last calculation during hot
start
Use new input of this cross section geometry during hot start
NINTERP int
0/+
IHOTC
0
0/1
int
0
1
Appendix C
C36
XSP
XSP: Station ------ Cross Section Geometry
Required
The XSP record is used to define the cross sectional geometry at the given station. The cross
section is described by a set of coordinate pairs. Each coordinate pair contains a lateral location
and a bed elevation. The set of data points for each cross section start from the left side of the
channel, looking downstream, and progress towards the right-hand side. The number of the
coordinate pairs in each XSP record may vary. However, each line is limited to 200 characters
and one coordinate pair cannot be separately placed in two XSP records. XSP records are added
until all coordinate pairs are input. If YZ = 0 in the YSL record, the cross section geometry must
be input using bottom elevation and lateral location pairs instead of the lateral location and
bottom elevation pairs as shown below.
XSP
Variable
CROSLOC
Type
BOTTOM
Value
Description
CROSLOC float
-/0/+
BOTTOM float
-/0/+
Lateral coordinate, measured from a reference point, of the
data points that define the cross-sectional geometry at the
current station (ft or m)
Vertical coordinate (bottom elevation) of the data points that
define the cross-section geometry at the current station (ft or
m). The cross section elevation adjustment factor, BEC, in
record XST is added to BOTTOM
Appendix C
C37
XII/XIX
XII/XIX: Station ------ Ineffective Flow Area
Optional
The XII/XIN record is used to define the ineffective flow areas (areas where the conveyance is
zero): their left and right extents (specified as an index or lateral coordinate), and water surface
elevations under which the conveyance is zero. More then one ineffective flow area can be
defined in a cross section. The ineffective area can be defined by either one of the records (XII or
XIX), but not both together.
XII
LOCL_DEAD
LOCR_DEAD
HDEAD
XIX
DEADL
DEADL
HDEAD
Variable
Type
Value
Description
LOCL_DEAD
LOCR_DEAD
DEADL
int
int
float
+
+
-/0/+
DEADR
float
-/0/+
HDEAD
float
-/0/+
Point index of left location of ineffective flow area
Point index of right location of ineffective flow area
Lateral coordinate of left location of ineffective
flow area
Lateral coordinate of right location of ineffective
flow area
Elevation (ft or m) until which the area is ineffective
Appendix C
C38
XPI/XPX
XPI/XPX: Station ------ Permanent Ineffective Flow Area
Optional
The XPI/XPX record is used to define the permanent ineffective flow areas, their left and right
extents (specified as an index or lateral coordinate), and upper elevations. When the water
surface elevation is lower than the upper elevation, the area is ineffective. When the water
surface elevation is higher than the upper elevations, the area about the elevation is effective and
the area below the upper elevation is still ineffective. More then one permanent ineffective flow
area can be defined in a cross section. The permanent ineffective area can be defined by either
one of the records (XPI or XPX), but not by both together.
XPI
LOCL_PDEAD
LOCR_PDEAD
HPDEAD
XPX
PDEADL
PDEADL
PHDEAD
Variable
Type
Value
Description
LOCL_PDEAD
int
+
LOCR_PDEAD
int
+
PDEADL
float
-/0/+
PDEADR
float
-/0/+
HPDEAD
float
-/0/+
Point index of left location of permanent inefficient
flow area
Point index of right location of permanent
inefficient flow area
Lateral coordinate of left location of permanent
inefficient flow area
Lateral coordinate of right location of permanent
inefficient flow area
Elevation (ft or m) until which the area is permanent
inefficient (conveyance is zero)
Appendix C
C39
XLI/XLX
XLI/XLX: Station ------ Dry Areas
Optional
The XLI/XLX record is used to define dry areas: their left and right extents (specified as an
index or lateral coordinate), and water surface elevation under which the area is dry. More than
one dry area can be defined in a cross section. The dry area can be defined by either of the
records (XLI or XLX), but not by both together. Dry areas can be used to represent levees.
XLI
LOCL_LEV
LOCR_LEV
HLEV
XLX
LEVEEL
LEVEER
HLEV
Variable
Type
Value
Description
LOCL_LEV
LOCR_LEV
LEVEEL
LEVEER
HLEV
int
int
float
float
float
+
+
-/0/+
-/0/+
-/0/+
Point index of left location of dry area
Point index of right location of dry area
Lateral coordinate of left location of dry area
Lateral coordinate of right location of dry area
Elevation (ft or m) until which the area is dry
Appendix C
C40
XBI/XBX
XBI/XBX: Station ------ Blocked Areas
Optional
The XBI/XBX record is used to define blocked areas: their left and right extents (specified as an
index or lateral coordinate), and the upper elevations. More than one blocked areas can be
defined in a cross section. The blocked area can be defined by either of the records (XBI or
XBX), but not by both together.
XBI
LOCL_BLOCK
LOCR_ BLOCK
HBLOCK
XBX
BLOCKL
BLOCKR
HBLOCK
Variable
Type
Value
Description
LOCL_BLOCK
LOCR_BLOCK
BLOCKL
BLOCKR
HBLOCK
int
int
float
float
float
+
+
-/0/+
-/0/+
-/0/+
Point index of left location of blocked area
Point index of right location of blocked area
Lateral coordinate of left location of blocked area
Lateral coordinate of right location of blocked area
Elevation (ft or m) until which the area is blocked
Appendix C
C41
XBU
XBU: Station ------ Upstream Break Points
Optional
The XBU record is used to define the upstream break points. The break points are used to
interpolate cross sections between two input cross sections. The number of upstream break points
should be equal to that of downstream break points defined at the upstream cross section.
Breakpoints are only used when cross sections are interpolated. The method of interpolation is
similar to that performed in HEC-RAS. By default, there are 5 breakpoints defined: 2 for the
endpoints, 2 for the overbank points and 1 for the channel thalweg.
XBU
Variable
LOCBPU(1:n)
Type
Value
Description
LOCBPU int
+
Point index of break point
n
+
Number of breakpoints
int
Appendix C
C42
XBD
XBD: Station ------ Downstream Break Points
Optional
The XBD record is used to define the downstream break points. The break points are used to
interpolate cross sections between two input cross section. The number of downstream break
points should be equal to that of upstream break points defined at the downstream cross section.
Breakpoints are only used when cross sections are interpolated. By default, there are 5
breakpoints defined: 2 for the endpoints, 2 for the overbank points and 1 for the channel thalweg.
XBD
Variable
LOCBPD(1:n)
Type
Value
Description
LOCBPD int
+
Point index of break point
n
+
Number of breakpoints
int
Appendix C
C43
XRH
XRH: Station ------ Roughness Coefficients.
Required
The XRH record is used to define the roughness coefficients. The roughness coefficients are
described by coordinate-coefficient pairs. The coordinates divides the cross sections into
subchannels with different roughness coefficients. The coordinates must be given starting from
the left side of the channel, looking downstream, and progress towards the right-hand side. The
number of the pairs in each XSP record may vary. However, a coordinate pair cannot be
separated in two XRH records.
XRH
XLOC_LCOEF
LCOEF
Variable
Type
Value
Description
XLOC_LCOEF
float
-/0/+
LCOEF
float
+
Lateral coordinate (ft or m) under which the
roughness coefficient is defined in the pair
Roughness coefficient when the lateral coordinate is
greater than XLOC_RCOEF
Appendix C
C44
XOI/XOX
XOI/XOX: Station ------ Bank Location
Required
The XBI/XBX record is used to define the overbank locations. The overbank points divide the
cross section into a left floodplain, a main channel, and a right floodplain. If there is no
floodplain on one side of the channel, the overbank location is set at the end point of the cross
section.
XOI
LOCL_OB
LOCR_OB
XOX
BANKL
BANKR
Variable
Type
LOCL_OB int
LOCR_OB int
BANKL float
BANKR float
Value
Description
+
+
-/0/+
-/0/+
Point index of left overbank.
Point index of right overbank.
Lateral coordinate of left overbank.
Lateral coordinate of right overbank.
Appendix C
C45
XFL
XFL: Station ------ Cross Section Energy Loss Coefficient
Required
The XFL record is used to define the energy loss coefficient at that cross section or downstream
of that cross section.
XFL
FKEC
Variable
Type
Value
Description
FKEC
float
0/+
Local energy loss coefficient that accounts for bends or
natural and man-made structures downstream or at this cross
section
Appendix C
C46
XSL
XSL: Station ------ Cross Section Endpoint Location
Required
The XSL record is used to define the end points of the cross section in real space. This is the end
of flow input. This is the last data record required if there is no sediment simulation (NF = 0 in
record YNR). If there is no sediment input then Data Groups 7 to 14 will be skipped.
XSL
XL
YL
XR
YR
Variable
Type
Value
Description
XL
YL
XR
YR
float
float
float
float
-/0/+
-/0/+
-/0/+
-/0/+
Left bank lateral coordinate (ft or m)
Left bank elevation coordinate (ft or m)
Right bank lateral coordinate (ft or m)
Right bank elevation coordinate (ft or m)
Appendix C
C47
Data Group 7. Sediment Model Parameters
YST
YST: Sediment Solution Parameters
Required
The YST record is used to define the sediment solution parameters: the implicit factor for
sediment transport solution, number of sediment time steps to perform during one flow
computation, and frequency of angle of repose calculations.
If a river network is simulated, records YST to YSG are used for the entire river network, and
records USB to CDI are specific to an individual river and should be repeated for each river.
YST
THETA
NTSEDF
NREPOSE
Variable
Type
Value
Description
THETA
float
0-1
NTSEDF
int
+
NREPOSE int
+
Implicit factor used in the sediment transport solution
(usually set to 1)
Number of sediment time steps to perform during one flow
computation
Bank adjustment is performed every NREPOSE time steps
Appendix C
C48
YSG
YSG: Sediment Size Group
Required
YSG records are used to define the sediment size groups. The dry specific weight for individual
size groups can also be defined in these records. The number of YSG records must equal the
value of NF defined in record YNR (one YSG record is required for each size fraction), and the
records must be ordered with increasing sediment sizes.
The lower bound for sand sizes is 0.0625 mm. If a lower mean particle size is given, the cohesive
sediment transport methods will automatically be activated. For each size group, the program
computes the geometric mean grain size as Dmean = DRU × DRL .
YSG
DRL DRU BDIN
Variable
Type
Value
Description
DRL
DRU
BDIN
float
float
float
+
+
+
Lower boundary of the particle size for this group (mm)
Upper boundary of the particle size for this group (mm)
Dry specific weight or dry bulk density for the size fraction
(lb/ft3 or kg/m3)
Use the default dry specific weight (99.26 lb/ft3 or 1590
kg/m3)
0
Appendix C
C49
Data Group 8. Sediment Boundary Conditions
USB
USB: Upstream Sediment Boundary Condition
Required
The USB record specifies the upstream sediment boundary condition type.
If a river network is simulated, records YST to YSG are used for the entire river network, and
records USB to CDI are specific to an individual river and should be repeated for each river.
USB
KUS
Variable
Type
Value
Description
KUS
int
0/1/2/3/4
0
1
2
3
4
Type of upstream sediment boundary condition
Junction, sediment input comes from upstream rivers
Sediment transport formula
Rating curve
Table (flow, sediment discharge)
Table (time, sediment discharge)
Appendix C
C50
US0
US0: Upstream Sediment Boundary Condition ------ Junction
Optional, required only if KUS = 0 in record USB
The US0 record defines the upstream sediment boundary condition as junction. The sediment
input at the upstream will come from the last cross section of upstream river. No variable is
required.
US0
Appendix C
C51
US1
US1: Upstream Sediment Boundary Condition ------ Sediment Transport
Equation
Optional, required only if KUS = 1 in record US2
The US1 record is used when the upstream sediment input is calculated using a sediment
transport equation, defined in record SEQ. The record ID is followed by a scaling factor a s . The
sediment discharge from sediment transport equation will be multiplied by a s .
US1
AQRC
Variable
Type
Value
Description
AQRC
float
+
Scaling Factor, a s . The sediment discharge from sediment
transport equation will be multiplied by a s
Appendix C
C52
US2
US2: Upstream Sediment Boundary Condition ------ Rating Curve
Optional, required only if KUS = 2 in record USB
The US2 record defines the upstream flow boundary condition as a rating curve. The record ID is
followed by two rating parameters a s , bs . The sediment discharge (ton/day) is calculated as
Q x = a s Q bs , where Q = flow discharge (cfs or cms).
US2
AQRC
BQRC
Variable
Type
Value
Description
AQRC
BQRC
float
float
+
0/+
Rating curve coefficient a s
Rating curve coefficient bs
Appendix C
C53
US3
US3: Upstream Sediment Boundary Condition ------ Flow-Sediment Discharge
Table
Optional, required only if KUS = 3 in record USB
The US3 record defines the upstream sediment boundary condition as a flow-sediment discharge
table. One record is used for each flow-sediment discharge pair. The US3 record is repeated until
the entire table is input. For values of the discharge outside of the table, no extrapolation is done;
i.e., if Q < QI 1 the sediment discharge for QI 1 is used; if Q > QI n the discharge for QI n is used,
where n is the last row of the table.
US3
QI
QSI
Variable
Type
Value
Description
QI
float
0/+
Flow rate (cfs or cms)
QSI
float
0/+
Sediment discharge (ton/day)
Appendix C
C54
US4
US4: Upstream Sediment Boundary Condition ------ Time-Discharge Table
Optional, required only if KUS = 4 in record USB
The US4 record defines the upstream sediment boundary condition as a time-discharge table.
One record is used for each time-discharge pair. The US4 record is repeated until the entire table
is input. For steady flow, no interpolation of discharge is performed and the discharge becomes a
step function in time. Changes to the discharge occur at the times input in the time-discharge
table. For unsteady flow, the discharges are interpolated in time between the specified TSI
values. For values of the discharge outside of the table, no extrapolation is done; i.e., if T < TSI 1
the discharge for TSI 1 is used; if T > TSI n the discharge for TSI n is used, where n is the last row
of the table. If there is no sediment discharge before the first value or after the last value, a zero
value should be added at the beginning or end of the table, respectively.
US4
TSI
QSI
Variable
Type
Value
Description
TSI
float
0/+
Time (hr)
QSI
float
0/+
Sediment discharge (ton/day)
Appendix C
C55
USS
USS: Upstream Sediment Boundary Condition ------ Sediment Size
Distribution
Optional, required only if KUS = 2, 3, or 4 in record USB
The USS record defines the sediment size distribution at the flow discharge QIC. The size
distributions are given from the finest to the coarsest size fractions. The sediment size
distributions are interpolated for flow discharges between the specified QIN values. For values of
the flow discharge outside of the table, no extrapolation is done; i.e., if Q < QIN 1 the distribution
for QIN1 is used; if Q > QIN n the distribution for QIN n is used, where n is the last row of the
table.
USS
QIN
PISID(1:nf)
Variable
Type
Value
Description
QIN
float
+
Flow discharge (cfs or cms) at which sediment size
distribution is given
PISID(1:nf)float
+
Sediment size distribution at one flow discharge.
nf
+
Sediment size number defined in record YNR.
in
Appendix C
C56
Data Group 9. Lateral Sediment Inflows
LNS
LNS: Number of Lateral Sediment Inputs
Required
The LNF record specifies the number of lateral sediment inputs.
LNS
NKQS
Variable
Type
Value
Description
NKQS
int
0/+
0
n
Number of lateral sediment input
No lateral sediment input. Skip records LSL to LSD
n lateral sediment input, Records LSL and LSD will be
repeated n times
Appendix C
C57
LSL
LSL: Location of Lateral Sediment Input
Optional, required if NKQS>0 in records LNS.
The LQL record specifies the stream location of the lateral sediment input. Records LSL to LSD
should be skipped if NKQS = 0 in record LNS and should be repeated if NKQS >1 for each
lateral sediment input.
LSL
X1QS
X2QS
LTYPE
Variable
Type
Value
Description
X1QS
float
+
X2QS
float
+
LTYPE
int
2/3/4/5
2
3
4
5
Starting location (ft or m) of the lateral sediment input. The
location coordinate will be multiplied by the scaling factor
XFACT in the record YSL
End location (ft or m) of lateral sediment input. If point
lateral sediment input is simulated, X2QS=X1QS. The
location coordinate will be multiplied by the scaling factor
XFACT in the record YSL
Type of lateral flow input sediment boundary condition.
Rating curve
Table (flow, sediment discharge)
Table (time, sediment discharge)
Table (time, sediment discharge for each size fraction)
Appendix C
C58
LS2
LS2: Lateral Sediment Discharge – Rating Curve
Optional, required only if LTYPE = 2 in record LSL
The LS2 record defines the upstream flow boundary condition as a rating curve. The record ID is
followed by two rating parameters a s and bs . The sediment discharge (ton/day) is calculated as
Q x ,lat = a s Q bs , where Q = flow discharge of lateral flow input (cfs or cms).
LS2
LAQRC
LBQRC
Variable
Type
Value
Description
LAQRC
LBQRC
float
float
+
0/+
Rating curve coefficient a s for lateral flow input
Rating curve coefficient bs for lateral flow input
Appendix C
C59
LS3
LS3: Lateral Sediment Discharge – Flow-Sediment Discharge Table
Optional, required only if LTYPE = 3 in record LSL
The LS3 record defines the upstream sediment boundary condition as a flow-sediment discharge
table. One record is used for each flow-sediment discharge pair. The LS3 record is repeated until
the entire table is input. For values of the discharge outside of the table, no extrapolation is done;
i.e., if Qlat < QLI 1 the sediment discharge for QLI 1 is used; if Qlat > QLI n the discharge for
QLI n is used, where n is the last row of the table.
LS3
QLI
QSLI
Variable
Type
Value
Description
QLI
float
0/+
Flow rate (cfs or cms)
QSLI
float
0/+
Sediment discharge (ton/day)
Appendix C
C60
LS4
LS4: Upstream Sediment Boundary Condition ------ Time-Discharge Table
Optional, required only if LTYPE = 4 in record LSL
The LS4 record defines the upstream sediment boundary condition as a time-discharge table.
One record is used for each time-discharge pair. The LS4 record is repeated until the entire table
is input. For steady flow, no interpolation of discharge is performed and the discharge becomes a
step function in time. Changes to the discharge occur at the times input in the time-discharge
table. For unsteady flow, the discharges are interpolated in time between the specified TSLI
values. For values of the discharge outside of the table, no extrapolation is done; i.e., if
T < TSLI 1 the discharge for TSLI 1 is used; if T > TSLI n the discharge for TSLI n is used, where
n is the last row of the table. If there is no sediment discharge before the first value or after the
last value, a zero value should be added at the beginning or end of the table, respectively.
LS4
TSLI QSLI
Variable
Type
Value
Description
TSLI
float
0/+
Time (hr)
QSLI
float
0/+
Sediment discharge (ton/day)
Appendix C
C61
LS5
LS5: Upstream Sediment Boundary Condition ------ Time-Discharge Table for
Each Size Fraction
Optional, required only if LTYPE = 5 in record LSL
The LS5 record defines the upstream sediment boundary condition as a time-discharge table.
One record is used for each time-discharge pair. The LS5 record is repeated until the entire table
is input. For steady flow, no interpolation of discharge is performed and the discharge becomes a
step function in time. Changes to the discharge occur at the times input in the time-discharge
table. For unsteady flow, the discharges are interpolated in time between the specified TSI
values. For values of the discharge outside of the table, no extrapolation is done; i.e., if
T < TSLI 1 the discharge for TSLI 1 is used; if T > TSLI n the discharge for TSLI n is used, where
n is the last row of the table. If there is no sediment discharge before the first value or after the
last value, a zero value should be added at the beginning or end of the table, respectively.
US4
TSLI QSLI(1:nf)
Variable
Type
Value
Description
TSI
float
0/+
Time (hr)
QSI(1:nf) float
0/+
Sediment discharge (ton/day) for each size fraction
nf
+
Sediment size number defined in record YNR
int
Appendix C
C62
LSS
LSS: Lateral Sediment Discharge Sediment Size Distribution
Optional, required only if LTYPE = 2, 3, or 4 in record LSL
The LSS record defines the sediment size distribution at the flow discharge QIC. The size
distributions are given in order from the finest to the coarsest size fractions. The sediment size
distributions are interpolated for flow discharges between the specified QIN values. For values of
the flow discharge outside of the table, no extrapolation is done; i.e., if Q < QIN 1 the distribution
for QIN1 is used; if Q > QIN n the distribution for QIN n is used, where n is the last row of the
table.
LSS
QLIN
PISIDL(1:nf)
Variable
Type
Value
Description
QLIN
float
+
Flow discharge (cfs or cms) at which sediment size
distribution is given
PISIDL(1:nf)float
+
Sediment size distribution at one flow discharge
nf
+
Sediment size number defined in record YNR
in
Appendix C
C63
Data Group 10. Sediment Bed Material
BT0/BT1/BT2
BT0/BT1/BT2: Bed Properties ------ Location of Thickness
Required if NLAY > 2
The BT0/BT1/BT2 record specifies the locations where the bed layer thicknesses (see Figure
3.1) are given. If the record BT0 is used, the bed thicknesses will be given at each station listed
in XST records and no variable is required. If the record BT1 is used, the bed thicknesses will be
given at specific stations in the form of station indexes. If the record BT2 is used, the bed
thicknesses will be given at specific locations in the form of streamwise coordinates (x). Both
location indexes and longitudinal coordinates can be given in ascending or descending order.
Additional BT1/BT2 records can be used until all locations are defined.
BT0
BT1
II(1:nt)
BT2
XC(1:nt)
Variable
Type
Value
Description
II
int
+
XC
float
0/+
nt
int
+
Station index where bed thicknesses for each layer will be
given
Station Coordinates (ft or m) where bed thicknesses for each
layer will be given. The location coordinate will by
multiplied by the scaling factor XFACT in the record YSL
Total number of stations where bed thicknesses for each
layer will be given
Appendix C
C64
BTT
BTT: Bed Properties ------ Thickness
Required if NLAY > 2
The BTT specifies the bed layer thickness at each bed layer (see Figure 3.1) where location is
given at the BT0/BT1/BT2 record. If the record BT0 is used, the bed thicknesses are given at
each station listed in XST records. If the record BT1/BT2 is given, the bed thicknesses are given
at specific locations. The record should be repeated nt times, where nt is the number of locations
specified in the BT0/BT1/BT2 record. Since the first layer is always active layer, its thickness is
not given in this record. The input for second layer thickness includes both first layer and second
layer thicknesses used in the program. The last layer’s thickness is always considered infinite
and is not input. Therefore, this record is only required if more than 2 layers are being considered
in the model.
BTT
THICK(2:nlay-1)
Variable
Type
Value
Description
THICK
float
+
Bed layer thickness at given locations
Appendix C
C65
BP0/BP1/BP2
BP0/BPI/BP2: Bed Properties ------ Location of Size Fractions
One of the three is required
The BP0/BP1/BP2 record specifies the locations where the sediment size fractions at each bed
layer are given. If the record BP0 is used, the size fractions will be given at each station listed in
XST records and no variable is required. If the record BP1 is used, the size fractions will be
given at specific stations in the form of station indexes. If the record BP2 is used, the size
fractions will be given at specific locations in the form of longitudinal coordinates (x). Both
location indexes and longitudinal coordinates can be given in ascending or descending order.
Additional BP1/BP2 records can be used until all locations are input.
BP0
BP1
II(1:nt)
BP2
XC(1:nt)
Variable
Type
Value
Description
II
int
+
XC
float
0/+
nt
int
+
Station index where sediment size fractions for each layer
will be given
Station Coordinate (ft or m) where sediment size fraction for
each layer will be given. The location coordinate will by
multiplied by the scaling factor XFACT in the record YSL
Total number of stations where sediment size fractions will
be given
Appendix C
C66
BPL
BPL: Bed Properties ------ Sediment Size Fractions
Required.
The BPL record specifies the fractions within each sediment size class at each bed layer at the
locations given in the BP0/BP1/BP2 record. If the record BP0 is used, the sediment size class
fractions are given at each station given in XST records. If the record BP1/BP2 is given, the
sediment size class fractions are given at specific locations. The record is repeated for layer
number 2 until all the locations are given. Then, this process is repeated for layers 3 to NLAY.
Since the first layer is the active layer, its fractions are not given in this record. The fractions in
the second layer will be used for the active layer in the program.
BPL
PTMP(1:nf)
Variable
Type
Value
Description
PTMP
float
+
sediment size fractions
Appendix C
C67
Data Group 11. Water Temperature
TMP
TMP: Water Temperature
Required
The TMP record is used to enter the water temperature of the study reach. A time-temperature
table is input in this record. The TMP record is repeated until the entire table is input. The
program obtains the temperature at a specific time by interpolation. The temperatures are
interpolated between the given times. For times outside of the given times, no extrapolation is
done; i.e., if T < TIME1 the temperatures for TIME1 is used; if T > TIME n the temperatures for
TIMEn is used, where n is the last row of the table.
TMP
TIME
TMP
Variable
Type
Value
Description
TIME
float
+
Time (hr)
TMP
float
-/0/+
Temperature (F or C)
Appendix C
C68
Data Group 12. Erosion and Deposition Limits
FI0/FI1/FI2
FI0/FI1/FI2: Bed Limitation Locations
One of three required.
The FI0/FI1/FI2 record specifies the locations where the limits of scour and deposition are
defined. These limits correspond to restrictions, geological or man-made, to deposition and/or
scour. If the record FI0 is used, the limits will be given at each station listed in XST records and
no variable is required. If the record FI1 is used, the limits will be given at specific stations in the
form of station indexes. If the record FI2 is used, the limits will be given at specific locations in
the form of longitudinal coordinates (x). Both location indexes and longitudinal coordinates are
given in ascending or descending order. Additional FI1/FI2 records are used until all locations
are defined.
FI0
FI1
II(1:nt)
FI2
XC(1:nt)
Variable
Type
Value
Description
II
int
+
XC
float
0/+
nt
int
+
Station index where width and bed elevation limits will be
given
Station Coordinates (ft or m) where width and bed elevation
limits will be given. The location coordinate will by
multiplied by the scaling factor XFACT in the record YSL
Total number of stations where width and bed elevation
limits will be given
Appendix C
C69
FIM
FIM: Bed Limitations
Optional.
The FIM specifies the vertical limits of scour and deposition at the locations specified in the
FI0/FI1/FI2 record. If the record FI0 is used, the vertical and horizontal limits are given at each
station listed in XST records. If the record FI1/FI2 is given, the width vertical and horizontal
limits are given at specific locations. The record should be repeated until all the stations are
given. The table is interpolated for stations within the table. For stations outside of the table, no
extrapolation is done. If a specific location is not inside the range of given locations, the first or
last of the limits in the table is used, depending on if the specific location is upstream or
downstream of the range. Very large or very small numbers are used if scour or deposition is not
constrained.
FIM
CROSMIN_E CROSMAX_E
BOTMAX
CROSMIN_D CROSMAX_D
BOTMIN
Variable
Type
Value
Description
CROSMIN_E
float
-/0/+
CROSMAX_E
float
-/0/+
CROSMIN_D
float
-/0/+
CROSMAX_D
float
-/0/+
BOTMIN
float
-/0/+
BOTMAX
float
-/0/+
Lateral location (ft or m) beyond which no erosion
is allowed. This location corresponds to the lefthand side restriction, looking downstream
Lateral location (ft or m) beyond which no erosion
is allowed. This location corresponds to the righthand side restriction, looking downstream
Lateral location (ft or m) beyond which no
deposition is allowed. This location corresponds to
the left-hand side restriction, looking downstream
Lateral location (ft or m) beyond which no
deposition is allowed. This location corresponds to
the right-hand side restriction, looking downstream
Limit for scour in the vertical direction. No scour is
allowed beyond this bottom elevation (ft or m)
Limit for deposition in the vertical direction. No
deposition is allowed beyond this bottom elevation
(ft or m)
Appendix C
C70
FIW
FIW: Bed Limitations and Erosion Limits Defined by Flow
Optional.
The FIW specifies the vertical limits of scour and deposition at the locations specified in the
FI0/FI1/FI2 record. It is also used to specify the erosion width. If the record FI0 is used, the
vertical and horizontal limits are given at each station listed in XST records. If the record FI1/FI2
is given, the width vertical and horizontal limits are given at specific locations. The record
should be repeated until all the stations are given. The table is interpolated for stations within the
table. For stations outside of the table, no extrapolation is done. If a specific location is not inside
the range of given locations, the first or last of the limits in the table is used, depending on if the
specific location is upstream or downstream of the range. Very large or very small numbers are
used if scour or deposition is not constrained. The erosion width, We, is determined by:
We = aQ b , where a and b are user defined values.
FIM
CROSMIN_E CROSMAX_E
CROSMIN_D CROSMAX_D
BOTMIN
BOTMAX ACONST BCONST
Variable
Type
Value
Description
CROSMIN_E
float
-/0/+
CROSMAX_E
float
-/0/+
CROSMIN_D
float
-/0/+
CROSMAX_D
float
-/0/+
BOTMIN
float
-/0/+
BOTMAX
float
-/0/+
ACONST
float
-/+
BCONST
float
+
Lateral location (ft or m) beyond which no erosion
is allowed. This location corresponds to the lefthand side restriction, looking downstream
Lateral location (ft or m) beyond which no erosion
is allowed. This location corresponds to the righthand side restriction, looking downstream
Lateral location (ft or m) beyond which no
deposition is allowed. This location corresponds to
the left-hand side restriction, looking downstream
Lateral location (ft or m) beyond which no
deposition is allowed. This location corresponds to
the right-hand side restriction, looking downstream
Limit for scour in the vertical direction. No erosion
is allowed beyond this bottom elevation (ft or m)
Limit for deposition in the vertical direction. No
deposition is allowed beyond this bottom elevation
(ft or m)
constant in erosion width equation. If negative, then
erosion width always is greater then wetted width.
exponent in erosion width equation.
Appendix C
C71
Data Group 13. Sediment Transport Parameters
STU
STU: Number of Sub-channels
Required
The STU record is used to define the total number of subchannels that are used in sediment
transport simulations. If KFLP = 1 in record YFP, then NSTUBE should be 3.
STU
Variable
NSTUBE
Type
WFRAC
Value
Description
NSTUBE int
1-3
Number of subchannels
WFRAC
0~1
Not presently used. Will be used to control the type of
widening implemented
float
Appendix C
C72
SMN
SMN: Sediment Properties ------ Minimization Option
Required.
The record SMN specifies the type of minimization routine performed.
SMN
IMIN ILENGTH
Variable
Type
Value
Description
IMIN
int
ILENGTH
int
0/1/2/3+ Minimization option
No minimization
0
minimization of conveyance
1
minimization of total stream power (not presently
2
supported)
minimization of energy slope
3
0/+
Reserved for future options
Appendix C
C73
SEQ
SEQ: Sediment Transport Equation
Required
The SEQ record selects the sediment transport equation used to compute sediment carrying
capacities for non-cohesive sediment.
SEQ
ISED
Variable
Type
Value
Description
ISED
int
+
Variable to choose the non-cohesive sediment transport
equation used to compute sediment carrying capacity
Meyer-Peter and Muller’s method
Laursen method
Toffaleti’s method
England and Hansen’s method
Ackers and White’s 1973 method
Yang’s 1973 sand and 1984 gravel formulas
Yang’s 1979 sand and 1984 gravel formulas
Parker’s method using Einstein’s method to correct shear
stress
Yang’s 1996 modified formula for Yellow River
Ackers and White’s method with revised (1990) coefficients
Debouy’s method
Laursen-Madden method
Revised Brownlie method
Parker’s method for bed load without shear stress correction
1
2
3
4
5
6
7
8
9
10
11
12
13
14
Appendix C
C74
SA0/SA1/SA2
SA0/SA1/SA2: Sediment Transport ------ Location for Sediment Transport
Properties Input
Required one of three.
The SA0/SA1/SA2 record specifies the locations where the SAT record for sediment transport
properties is given. If the record SA0 is used, the SAT record will be given at each station listed
in XST records and no variable is required. If the record SA1 is used, the SAT record will be
given at specific stations in the form of station indexes. If the record SA2 is used, the SAT record
will be given at specific locations in the form of longitudinal coordinates (x). Both location
indexes and longitudinal coordinates are given in ascending or descending order. Additional
SA1/SA2 records are used until all locations are input.
SA0
SA1
II(1:nt)
SA2
XC(1:nt)
Variable
Type
Value
Description
II
XC
int
float
+
0/+
nt
int
+
Station index where the SAT record will be given
Station Coordinates (ft or m) where the SAT record will be
given. The location coordinate will by multiplied by the
scaling factor XFACT in the record YSL
Total number of stations where the SAT record will be given
Appendix C
C75
SAT
SAT: Sediment Transport ------ Properties
Required.
The SAT specifies the sediment transport properties at each location given in the SA0/SA1/SA2
record. These properties include: the sediment angle of repose, the coefficient of active layer
thickness, the recovery factors for deposition and scour, the transverse and longitudinal
dispersion coefficients, the weight given to the bed load during transfer to the sublayer, and
coefficient of secondary flow. If the record SA0 is used, the sediment transport properties are
given at each station given in XST records. If the record SA1/SA2 is used, the sediment transport
properties are given at specific locations. The record should be repeated until all the stations are
given.
SAT ANGLE 1 ANGLE 2 NALT
FRAC2
Variable
Type
ALPHAD
ALPHAS
DTRANS DLONG
WTDEP
Value
Description
ANGLE1 float
+
Angle of repose of sediment at and above water
ANGLE2 float
+
Angle of repose of sediment below water
NALT
+
A user-specified positive multiplication factor for defining
the thickness of active layer given as NALT*D(NF), where
D(NF) is the geometric mean sediment size of the largest
size fraction of record
0
Use the default active layer thickness of 14* D(NF)
0/+
Recovery factor for deposition
0
Default value 0.25
0/+
Recovery factor for Scour
0
Default value 1.0
DTRANS float
0/+
Transverse dispersion coefficient (not currently used)
DLONG
float
0/+
Longitudinal dispersion coefficient
WTDEP
float
0~1
Weight given to bed load fractions for transfer of material
from surface to subsurface layer during deposition (χ in
equation 3.88)
FRAC2
float
0/+
Coefficient of secondary flow (not currently used)
float
ALPHAD float
ALPHAS float
Appendix C
C76
Data Group 14. Cohesive Sediment Parameters
CS0/CS1/CS2
CS0/CS1/CS2: Cohesive Sediment Deposition ------ Locations
One of the three is required if cohesive sediment is present
The CS0/CS1/CS2 record specifies the locations where the cohesive sediment deposition
parameters are given. If the record CS0 is used, cohesive sediment deposition parameters will be
given at each station listed in XST records and no variable is required. If the record CS1 is used,
cohesive sediment deposition parameters will be given at specific stations in the form of station
indexes. If the record CS2 is used, cohesive sediment deposition parameters will be given at
specific locations in the form of longitudinal coordinates (x). Both location indexes and
longitudinal coordinates can be given in ascending or descending order. Additional CS1/CS2
records can be used until all locations are input.
CS0
CS1
II(1:nt)
CS2
XC(1:nt)
Variable
Type
Value
Description
II
int
+
XC
float
0/+
nt
int
+
Station index where cohesive sediment deposition
parameters will be given
Station Coordinate (ft or m) where cohesive sediment
deposition parameters will be given. The location coordinate
will by multiplied by the scaling factor XFACT in the record
YSL
Total number of stations where cohesive sediment deposition
parameters will be given
Appendix C
C77
CSD
CSD: Cohesive Sediment Deposition ------ Parameters
Required only if cohesive sediment is present
The CSD record specifies the critical shear stress for cohesive sediment deposition, equilibrium
sediment concentration during partial deposition, and the threshold value for the percentage of
clay in the bed composition above which the erosion rates of gravels, sands, and silts are limited
by the erosion rate of clay. These parameters are given at locations defined in the CS0/CS1/CS2
record.
The CSD record to CDI records are used in the cohesive sediment (clay and silt) transport model.
If a sediment size group has a geometric mean grain size lower than 0.0625 mm, the cohesive
sediment transport methods will be used to predict for the transport for those size groups. The
equation specified in record SEQ record will be used for the remaining size groups. If silt and/or
clay sizes are not present, these records should not be given.
CSD
Variable
STDEP_F
Type
STDEP_P
CONCEQ
ER_LIM
Value
Description
STDEP_F float
+
STDEP_F float
+
CONCEQ float
+
ER_LIM
0~1.
Critical shear stress for full deposition of clay and silt (lb/ft2
or N/m2)
Critical shear stress for partial deposition of clay and silt
(lb/ft2 or N/m2)
Equilibrium sediment concentration during partial
deposition. (g/l)
Threshold value for the fraction of clay in the bed
composition above which the erosion rates of gravels, sands,
and silts are limited to the erosion rate of clay
float
Appendix C
C78
CE0/CE1/CE2
CE0/CE1/CE2: Cohesive Sediment Erosion ------ Locations
One of the three is required if cohesive sediment is present
The CE0/CE1/CE2 record specifies the locations where the cohesive sediment erosion
parameters are given. If the record CE0 is used, cohesive sediment erosion parameters will be
given at each station listed in XST records and no variable is required. If the record CE1 is used,
cohesive sediment erosion parameters will be given at specific stations in the form of station
indexes. If the record CE2 is used, cohesive sediment erosion parameters will be given at
specific locations in the form of longitudinal coordinates (x). Both location indexes and
longitudinal coordinates can be given in ascending or descending order. Additional CE1/CE2
records can be used until all locations are input.
CE0
CE1
II(1:nt)
CE2
XC(1:nt)
Variable
Type
Value
Description
II
int
+
XC
float
0/+
nt
int
+
Station index where cohesive sediment erosion parameters
will be given
Station Coordinate (ft or m) where cohesive sediment
erosion parameters will be given. The location coordinate
will by multiplied by the scaling factor XFACT in the record
YSL
Total number of stations where cohesive sediment erosion
parameters will be given
Appendix C
C79
CER
CER: Cohesive Sediment Erosion ------ Parameters
Required only if cohesive sediment is present.
The CER record specifies parameters for cohesive sediment erosions. If 4 parameters are used,
the critical shear stress of the surface erosion, surface erosion rate, the critical shear stress of the
mass erosion, and mass erosion rate are given. If 8 parameters are used, cohesive sediment
transport parameters are calculated from the wet bulk density, ρb. The critical shear stress of
surface erosion is calculated as τ cse = a se (ρ b − ρ l ) bse + c se , the surface erosion rate is calculated as
log10 (100 M se / d se ) = 0.23 exp( 0.198 ) , the critical shear stress of mass erosion is calculated
ρ b − 1.0023
as τ cme = a me ρ b + bme , and the mass erosion rate is calculated as log10 (100M me / d me ) =
0.23 exp( 0.198 ) . The variables are defined in the input table.
ρ − 1.0023
b
CER
STPERO
ER_STME
CER
ASE
CSE
BSE
STMERO
RO_LSE
DSE
ER_MASS
AME BME DME
Variable
Type
Value
Description
STPERO
float
+
ER_STME float
STMERO float
+
+
ER_ MASS float
ASE
float
+
+
0
BSE
float
CSE
float
+
0
+
τ cse , critical shear stress of surface erosion of clay and silt
(lb/ft2 or N/m2)
Pse, surface erosion constant (lb/ft2/hr or kg/m2/hr)
c
, critical shear stress of cohesive sediment mass erosion
τ me
(lb/ft2 or N/m2)
Pme, mass erosion constant (lb/ft2/hr or kg/m2/hr)
ase, coefficient used to calculate critical shear
Default value (0.0807 for English Units and 0.883 for SI
Units)
bse, coefficient used to calculate critical shear
Default value (0.20 for both units)
cse, coefficient (lb/ft3 or g/cm3) used to calculate critical
shear
Default value (0.001045 for English Units and 0.005 for SI
Units)
ρ l , coefficient used to calculate critical shear
Default value (66.4lb/ft3 or 1.065g/cm3)
0
RO_LSE
float
+
0
Appendix C
C80
DSE
float
+
0
+
0
AME
float
BSE
float
0
DME
float
+
0
dse, coefficient used to calculate surface erosion constant.
Default value (1.0)
ame, coefficient in calculating critical shear
default value (0.00329 for English Units and 0.208for SI
Uints)
bme, coefficient in calculating critical shear
Default value (-0.208 for English Units and -9.934 for SI
Uints)
dme, coefficient used to calculate the mass erosion constant.
Default value (10.0)
Appendix C
C81
CF0/CF1
CF0/CF1: Cohesive Sediment ------ Fall Velocity
Required one of the two only if cohesive sediment is present.
The CF0/CF1 record specifies the relationship between the fall velocity and sediment
concentration. If the CF0 record is used, a set of default values are used. If the CF1 record is
used, the user needs to input four fall velocities at four specific sediment concentrations.
CF0
FVFORM
CF1
C1
Variable
Type
FVFORM INT
V1
C2
V2
C3
V3
C4
V4
Value
Description
+
Default material of cohesive sediment determining the fall
velocity
1
program default for KAOLINITE
4
program default for SEVERN River
C1
float
+
Cohesive sediment concentration (g/l)
V1
float
+
Cohesive sediment fall velocity (mm/s) at concentration C1
C2
float
+
Cohesive sediment concentration (g/l)
V2
float
+
Cohesive sediment fall velocity (mm/s) at concentration C2
C3
float
+
Cohesive sediment concentration (g/l)
V3
float
+
Cohesive sediment fall velocity (mm/s) at concentration C3
C4
float
+
Cohesive sediment concentration (g/l)
V4
float
+
Cohesive sediment fall velocity (mm/s) at concentration C4
Appendix C
C82
CSC
CSC: Cohesive Sediment ------ Consolidation
Required only if cohesive sediment is present
The CSC record specifies the consolidation parameters of cohesive sediment. The consolidation
coefficient is computed from the user input of initial dry bulk density ρ i , fully consolidated
density ρ f , and density ρ e at the reference time t e . All densities are dry bulk densities.
CSC
Variable
DENSC_I
Type
DENSC_F
DENSC_E
TIME_E
Value
Description
DENSC_I float
+
DENSC_F float
+
DENSC_E float
+
TIME_E
+
Initial (fresh deposited) sediment dry bulk density (lb/ft3 or
kg/m3)
Fully consolidated sediment dry bulk density (lb/ft3 or
kg/m3)
Reference sediment dry bulk density at reference time
TIME_E (lb/ft3 or kg/m3)
Reference time (hr) at which the cohesive sediment dry bulk
density DENSC_E is known
float
Appendix C
C83
CD0/CD1/CD2
CD0/CD1/CD2: Cohesive Sediment ------ Location of Cohesive Sediment
Density in Bed
One of three is required only if cohesive sediment is present.
The CD0/CD1/CD2 record specifies the locations where the cohesive sediment density in the
bed is given. If the record CD0 is used, the cohesive sediment density will be given at each
station listed in the XST records and no variable is required. If the record CD1 is used, the
cohesive sediment density will be given at specific stations in the form of station indexes. If the
record CD2 is used, the cohesive sediment density will be given at specific locations in the form
of longitudinal coordinates (x). Both location indexes and longitudinal coordinates can be given
in ascending or descending order. Additional CD1/CD2 records are used until all data are input.
CD0
CD1
II(1:nt)
CD2
XC(1:nt)
Variable
Type
Value
Description
II
XC
int
float
+
0/+
nt
int
+
Station index where cohesive sediment density will be given
Station Coordinates (ft or m) where cohesive sediment
density will be given. The location coordinate will by
multiplied by the scaling factor XFACT in the record YSL
Total number of stations where cohesive sediment dry bulk
density will be given
Appendix C
C84
CDI
CDI: Cohesive Sediment ------ Cohesive Sediment Dry Bulk Density in Bed
Required.
The CDI specifies the cohesive sediment dry bulk density at each bed layer at the locations given
in the CD0/CD1/CD2 record. If the record CD0 is used, the cohesive sediment density is given at
each station given in XST records. If the record CD1 or CD2 is given, the cohesive sediment
density is given at specific locations. The record should be repeated until all the stations or
locations are given. Since the first layer is the active layer, its cohesive sediment density is not
given in this record. The input for second layer cohesive sediment density will be used for the
density of both the first and second layers. The cohesive sediment dry bulk density ( ρ d ) is input
in this record.
CDI
DENSITYCLAY0(2:nlay)
Variable
Type
Value
Description
DENSITYCLAY0
float
+
Nlay
int
2+
Dry bulk density of cohesive sediment transport
from layer 2 to the bottom layer (nlay)
Number of bed layers
Appendix C
C85
END
END: End of Input
Required.
The record END is required at the end of the input data file to terminate the data input
operations. No variable is required.
END
Appendix C
C86
APPENDIX D
EXAMPLE APPLICATIONS
Appendix D
D1
(This page intentionally left blank)
D2
GSTAR-1D User’s Manual
EXAMPLE 1
TRAPEZOID CHANNEL
This example shows a GSTAR-1D data file set-up for a simple trapezoid channel with sediment
transport. A 5000-ft long trapezoid channel with bottom width of 200 ft and side slopes of
1V:2H is used. The channel slope is 0.001. The water discharge is 14,900 cfs and the
downstream water surface elevation is set at normal depth. The upstream and downstream cross
sections were input and then 9 cross sections were interpolated between them.
Figure D1.1 Sketch showing the discretization points used in the cross section
template to define the channel. The smaller insert shows an equivalent cross section
using the minimum possible number of discretisation points.
The upstream and downstream cross section use 29 points, as shown in Figure D1.1. The cross
sections are input in (z, y) order and the elevation above datum is set using variable BEC in
record XST.
The input sediment load is 48420 ton/day and 11 sediment sizes are used ranging from silt to
small cobble. Incoming sediment size distribution is given in record USS. Two bed layers (one
active layer and one inactive layer) are used. Only inactive layer thickness is input and the active
layer thickness is calculated with input data NALT in record SAT. Bed size distributions are set
using BLP records.
Appendix D/Example 1
D3
D1.1 Input data file (Example1.txt)
The files shown in this and the next section are part of the main GSTAR-1D distribution
package. They can be found under directory Example1.
YTT
GSTARS-1D version 1.0 Example data file for Appendix D of user's manual.
YTT
Trapezoidal channel with sediment transport.
YTT
********************************************************************************
*** NOTE: this is a datafile to be used as an example of input data as it
***
*** might be used in a GSTARS-1D version 1.0 simulation. It represents a
***
*** ficticious case and it should be viewed as such. It should not be used ***
*** for any other purpose without appropriate verification and validation. ***
***
***
*** ------------------------------------------------------------------***
*** Problem Description: Trapezoidal channel with sediment transport.
***
*** Data Filename: trapzoid.data
***
*** Shape: trapezoidal channel, top width = 200 + 4y ft (61 + 4y m).
***
*** Side Slopes: 1V:2H
***
*** Channel Slope (s): 0.001
***
*** Number of Stations: 21 equally spaced at 250 ft (76.2 m).
***
*** ------------------------------------------------------------------***
********************************************************************************
***
nriv
nf
nlay
YNR
1
11
2
***
isolve
isolves
EPSY
F1
XFACT METRIC
YZ
YSL
1
1 1.00E-05
1
1
0
0
***
KFLP
qmin
YFP
0
0
***
THE
iHotSt
YTM
2400
0
***
TDT
DT
DTPLT
xcplt
YDT
0
1
2400
1
***
Start of River 1
***
KU(J)
UFB
2
***
T1
ST1
U02
0
14900
U02
2400
14900
DFB
5
***
TN
SLFI
D05
0
0.001
D05
2
0.001
D05
3
0.001
D05
4
0.001
D05
2400
0.001
***
# int. BC
INF
0
***
NKQF(J) non-point flow source
LNF
0
***
FLDST
ZDI
QDI --------cross
section
1
XIN
0
0
0
***
xt
bec ninterp
iHotC xc spac
500 slope =
0.001
XST
5000
5
9
0
***
station elevation
data
XSP
1020
0
1015
10
1010
20
1005
30
1000
XSP
1000
50
1000
60
1000
70
1000
80
1000
XSP
1000
100
1000
110
1000
120
1000
130
1000
XSP
1000
150
1000
160
1000
170
1000
180
1000
XSP
1000
200
1000
210
1000
220
1000
230
1000
XSP
1005
250
1010
260
1015
270
1020
280
***
xloc_rcoef
rcoef
XRH
40
0.03
240
0.03
280
0.03
***
bankl
bankr
XOX
0
280
***
fkec
XFL
0
***
xl
yl
xr
yr
XSL
5000
0
5000
280
***
FLDST
ZDI
QDI --------cross
section
11
XIN
0
0
0
***
xt
bec ninterp
iHotC
D4
GSTAR-1D User’s Manual
40
90
140
190
240
XST
0.0000000
0
0
0
***
station elevation
data
XSP
1020
0
1015
10
1010
20
1005
30
1000
40
XSP
1000
50
1000
60
1000
70
1000
80
1000
90
XSP
1000
100
1000
110
1000
120
1000
130
1000
140
XSP
1000
150
1000
160
1000
170
1000
180
1000
190
XSP
1000
200
1000
210
1000
220
1000
230
1000
240
XSP
1005
250
1010
260
1015
270
1020
280
***
xloc_rcoef
rcoef
XRH
40
0.03
240
0.03
280
0.03
***
***
bankl
bankr
XOX
0
280
***
fkec
XFL
0
***
xl
yl
xr
yr
XSL
0
0
0
280
***
End of River 1
***
Start Sediment Transport Input
***
theta
ntsedf nrespone
YST
1
2
1
***
drl
dru
bdin
YSG
0.01
0.0625
0
! silt
0.025
YSG
0.0625
0.25
0
! fsnd
0.125
YSG
0.25
0.5
0
! msnd
0.353553
YSG
0.5
1
0
! csnd
0.707107
YSG
1
2
0
! vcsnd
1.414214
YSG
2
4
0
! vfgrv
2.828427
YSG
4
8
0
! fgrv
5.656854
YSG
8
16
0
! mgrv
11.31371
YSG
16
32
0
! cgrv
22.62742
YSG
32
64
0
! vcgrv
45.25483
YSG
64
128
0
! scob
90.50967
***
Start of River 1
3
***
nts
USB
4
***
TSI
QSI
US4
0
48420
US4
1000
48420
US4
2000
48420
***
QI
PISED
***
1
2
3
4
5
6
7
8
9
10
11
USS
0.0000
0.0000
0.5690
0.1234
0.1434
0.1490
0.0029
0.0042
0.0043
0.0036
0.0003
0.0000
***
NKQS(J) non-point flow source
LNS
0
***
ii
BP1
1
***
PTMP
***
Layer
2
*** silt/clay vfs
fs
s
cs
vcs
vfg
fg
g
cg
vcg
BPL
0
0.104
0.083
0.13
0.146
0.156
0.141
0.109
0.086
0.032
0.013
***
ttin
temp
TMP
0
70.00
***
Erosion
and
Deposition Limits
FI2
0
10
***
crosmin_e crosmax_e crosmin_d crosmax_d
botmin
botmax
FIM
-99999
99999
-99999
99999
0
99999
FIM
-99999
99999
-99999
99999
0
99999
***
nstube
wfrac
STU
1
0.8
***
imin ilength
SMN
0
0
***
ised
SEQ
6
***
xc
SA2
0
5000
***
angle1(abangle2(be
nalt
alphad
alphas
dlat
dlong
betas
frac2
SAT
90
90
10
0.25
1
0
0
0
0
SAT
90
90
10
0.25
1
0
0
0
0
***
ii
CS2
0
***
stdep_f stdep_p
concEq
er_lim
CSD
0.02
0.02
1
0.1
***
ii
CE2
0
***
stpero er_stme
stmero er_mass
CER
0.04
0.2500
2.84
1.07
***
fall velocity
CF0
1.00
Appendix D/Example 1
D5
***
CSC
***
CD2
***
CDI
***
END
densC_I densC_f densC_e
77.98
101.30
81.86
xc
0
densityClay0
101.30
end message
time_e
1000.00
D1.2 Output data file
Most lines in the output files are too long to be fitted into the width of the paper. In the
following output data files, new lines are started with a black dot for easier reading. Sediment
variables are not calculated at the initial time step.
D1.2.1 MAIN OUTPUT FILE (EXAMPLE1_OUT.DAT)
This file summarizes the dimensions that are used in the model. The total number of cross
sections used in the simulation is more than the original input cross sections and interpolated
cross sections because one extra cross section for each river is used for unsteady flow
calculation. The maximum number of points in each cross section is two times of the original
input due to cross section interpolation. The input data is also echoed in output, which is not
printed here due to space limit. When input errors occur, the users should first check this file for
possible warnings.
• ****************************SUMMARY****************************************
•
Number of rivers=
1
•
Number of sediment class=
11
•
Number of sediment bed layers=
0
•
Number of cross sections in river
1=
2
•
Total number of cross sections used in simulation=
11
•
Max number of stream tubes=
1
•
Max number of points in each cross section=
58
•
Max number of ineffective area in each cross section=
0
•
Max number of permanent ineffective area in each cross section=
0
•
Max number of levee area in each cross section=
0
•
Max number of blocked area in each cross section=
0
•
Total number of internal boundary conditions=
0
• ***************************************************************************
......
D1.2.2 HEC-RAS GEIOMETRY OUTPUT FILE (EXAMPLE1_HEC_RAS_GEOMETRY.G01)
This file is a HEC-RAS format geometry file. It is updated each DTPLT time step defined in
record YDT. User may use HEC_RAS model to check the initial input geometry and the final
geometry. This file is too long to be included in this section. It can be found under directory
Example 1 in the GSTAR-1D distribution.
D1.2.3 BED PROFILE FILE (EXAMPLE1_OUT_PROFILE.DAT)
This file is the bed profile file. The meaning of each variable is explained in the file header.
•
•
•
•
•
•
•
#
#
#
#
#
#
#
D6
output bed profile
t = time(hr)
i = cross section number
idxc = original cross seciton number
xt = cross section location (ft or m)
q = discharge (cfs or m^3/s)
qlatf = lateral flow discharge (cfs or m^3/s)
GSTAR-1D User’s Manual
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
# zb0 = original thalweg elevation (ft or m)
# zb = current thalweg elevation (ft or m)
# z = current water surface elevation (ft or m)
# zba = average bed elevation of the main channel (ft or m)
# fslope = friction slope (-)
# topw = top width (ft or m)
# hydrad = hydraulic radius (ft or m)
# d16 = sediment size d16 at bed layer 1 (mm)
# d35 = sediment size d35 at bed layer 1 (mm)
# d50 = sediment size d50 at bed layer 1 (mm)
# d84 = sediment size d84 at bed layer 1 (mm)
# tshear(j)= bed shear stress at sub-channel j (lb/ft2 or N/m2)
TITLE="bed profile"
variables=i,idxc,xt,q,qlatf,zb0,zb,z,zba,fslope,topw,hydrad,d16,d35,d50,d84,tshear01
ZONE T=" t =
0.0000, river # = 1 , river name =
"
# i idxc
xt
q
qlatf
zb0
zb
z
zba
fslope
topw
hydrad
d16
d35
d50
d84
tshear( 1)
1
1 5000.00000
14900.0000
0.00000000
1005.00000
1005.00000
1014.92466
1007.85714
0.999988419E-03 239.698659
9.10280805
0.399065856
1.16960984
2.35737208
13.3054437
0.00000000
2 #### 4500.00000
14900.0000
0.00000000
1004.50000
1004.50000
1014.42467
1007.35714
0.999986014E-03 239.698687
9.10281398
0.399065856
1.16960984
2.35737208
13.3054437
0.00000000
3 #### 4000.00000
14900.0000
0.00000000
1004.00000
1004.00000
1013.92468
1006.85714
0.999983062E-03 239.698721
9.10282126
0.399065856
1.16960984
2.35737208
13.3054437
0.00000000
4 #### 3500.00000
14900.0000
0.00000000
1003.50000
1003.50000
1013.42469
1006.35714
0.999979437E-03 239.698763
9.10283020
0.399065856
1.16960984
2.35737208
13.3054437
0.00000000
5 #### 3000.00000
14900.0000
0.00000000
1003.00000
1003.00000
1012.92470
1005.85714
0.999974986E-03 239.698815
9.10284117
0.399065856
1.16960984
2.35737208
13.3054437
0.00000000
6 #### 2500.00000
14900.0000
0.00000000
1002.50000
1002.50000
1012.42472
1005.35714
0.999969522E-03 239.698879
9.10285465
0.399065856
1.16960984
2.35737208
13.3054437
0.00000000
7 #### 2000.00000
14900.0000
0.00000000
1002.00000
1002.00000
1011.92474
1004.85714
0.999962812E-03 239.698957
9.10287119
0.399065856
1.16960984
2.35737208
13.3054437
0.00000000
8 #### 1500.00000
14900.0000
0.00000000
1001.50000
1001.50000
1011.42476
1004.35714
0.999954575E-03 239.699052
9.10289151
0.399065856
1.16960984
2.35737208
13.3054437
0.00000000
9 #### 1000.00000
14900.0000
0.00000000
1001.00000
1001.00000
1010.92479
1003.85714
0.999944462E-03 239.699170
9.10291645
0.399065856
1.16960984
2.35737208
13.3054437
0.00000000
10 #### 500.000000
14900.0000
0.00000000
1000.50000
1000.50000
1010.42483
1003.35714
0.999932045E-03 239.699315
9.10294707
0.399065856
1.16960984
2.35737208
13.3054437
0.00000000
11
2 0.00000000
14900.0000
0.00000000
1000.00000
1000.00000
1009.92486
1002.85714
0.999919879E-03 239.699456
9.10297707
0.399065856
1.16960984
2.35737208
13.3054437
0.00000000
ZONE T=" t =
2400.0000, river # = 1 , river name =
"
# i idxc
xt
q
qlatf
zb0
zb
z
zba
fslope
topw
hydrad
d16
d35
d50
d84
tshear( 1)
1
1 5000.00000
14900.0000
0.00000000
1005.00000
1005.05585
1014.97785
1007.90303
0.100130744E-02 239.910396
9.09438981
0.376862066
1.13709280
2.30223542
13.0827887
0.568476832
2 #### 4500.00000
14900.0000
0.00000000
1004.50000
1004.55478
1014.47733
1007.40214
0.100110865E-02 239.908299
9.09497923
0.376712567
1.13659482
2.30131665
13.0864216
0.568400809
3 #### 4000.00000
14900.0000
0.00000000
1004.00000
1004.05382
1013.97690
1006.90136
0.100092000E-02 239.906578
9.09553259
0.376561322
1.13609641
2.30051484
13.0948569
0.568328276
4 #### 3500.00000
14900.0000
0.00000000
1003.50000
1003.55298
1013.47655
1006.40067
0.100074317E-02 239.905208
9.09604588
0.376419919
1.13563035
2.29992644
13.1102697
0.568259939
5 #### 3000.00000
14900.0000
0.00000000
1003.00000
1003.05228
1012.97628
1005.90009
0.100059042E-02 239.904129
9.09648699
0.376298559
1.13523126
2.29957906
13.1313839
0.568200752
6 #### 2500.00000
14900.0000
0.00000000
1002.50000
1002.55170
1012.47607
1005.39962
0.100046015E-02 239.903297
9.09686123
0.376195772
1.13489457
2.29937810
13.1544549
0.568150152
Appendix D/Example 1
D7
•
•
•
•
•
7 ####
1011.97592
1.13458994
8 ####
1011.47583
1.13428968
9 ####
1010.97580
1.13398460
10 ####
1010.47583
1.13368119
11
2
1009.97585
1.13353161
2000.00000
1004.89922
2.29917805
1500.00000
1004.39887
2.29887298
1000.00000
1003.89857
2.29843552
500.000000
1003.39832
2.29789854
0.00000000
1002.89823
2.29761090
14900.0000
0.00000000
0.100034158E-02 239.902697
13.1753222
0.568103869
14900.0000
0.00000000
0.100022472E-02 239.902332
13.1912394
0.568057932
14900.0000
0.00000000
0.100010614E-02 239.902210
13.2014508
0.568010960
14900.0000
0.00000000
0.999987988E-03 239.902328
13.2066787
0.567963820
14900.0000
0.00000000
0.999942844E-03 239.902417
13.2078576
0.567945745
1002.00000
1002.05122
9.09719836
0.376102481
1001.50000
1001.55080
9.09752548
0.376010466
1001.00000
1001.05043
9.09785187
0.375917013
1000.50000
1000.55012
9.09817166
0.375824048
1000.00000
1000.05001
9.09829285
0.375774727
D1.2.4 CROSS SECTION GEOMETRY FILE (EXAMPLE1_OUT_XC.DAT)
Due to space limitation, only part of the file is printed here. Interested users may find the
complete file under directory Example1.
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
# output cross section geometry
# due to disk space limitation, maxmium times of geometry printed is 30
# xc = cross section number
# t = time(hr)
# crosloc = transversal coordinate y of bed geometry (ft or m)
# bottom = vertical coordinate z of bed geometry (ft or m)
TITLE="cross section geometry"
VARIABLES=y,z
ZONE T=" t =
0.0000, river # = 1 , river name =
1"
#
crosloc
bottom
0.00000000
1025.00000
10.0000000
1020.00000
20.0000000
1015.00000
30.0000000
1010.00000
40.0000000
1005.00000
50.0000000
1005.00000
60.0000000
1005.00000
70.0000000
1005.00000
80.0000000
1005.00000
90.0000000
1005.00000
100.000000
1005.00000
110.000000
1005.00000
120.000000
1005.00000
130.000000
1005.00000
140.000000
1005.00000
150.000000
1005.00000
160.000000
1005.00000
170.000000
1005.00000
180.000000
1005.00000
190.000000
1005.00000
200.000000
1005.00000
210.000000
1005.00000
220.000000
1005.00000
230.000000
1005.00000
240.000000
1005.00000
250.000000
1010.00000
260.000000
1015.00000
270.000000
1020.00000
280.000000
1025.00000
ZONE T=" t =
0.0000, river # = 1 , river name =
2"
#
crosloc
bottom
0.00000000
1024.50000
0.00000000
1024.50000
10.0000000
1019.50000
D8
GSTAR-1D User’s Manual
, xc =
, xc =
• 20.0000000
• 30.0000000
• 40.0000000
• 50.0000000
• 60.0000000
• 70.0000000
• 80.0000000
• 90.0000000
• 100.000000
• 110.000000
• 120.000000
• 130.000000
• 140.000000
• 150.000000
• 160.000000
• 170.000000
• 180.000000
• 190.000000
• 200.000000
• 210.000000
• 220.000000
• 230.000000
• 240.000000
• 250.000000
• 260.000000
• 270.000000
• 280.000000
• 280.000000
• ......
1014.50000
1009.50000
1004.50000
1004.50000
1004.50000
1004.50000
1004.50000
1004.50000
1004.50000
1004.50000
1004.50000
1004.50000
1004.50000
1004.50000
1004.50000
1004.50000
1004.50000
1004.50000
1004.50000
1004.50000
1004.50000
1004.50000
1004.50000
1009.50000
1014.50000
1019.50000
1024.50000
1024.50000
D1.2.5 CUMULATIVE VOLUME OF DEPOSITION FILE (EXAMPLE1_OUT_VOLUME.DAT)
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
# cumulative volume of deposition in each sub-channel
# i = cross seciton number
# xt = cross seciton location (ft or m)
# ssumdM = cumulative material volume of deposition in main channel (ft^3 or m^3)
# ssumdF = cumulative material volume of deposition in floodplain (ft^3 or m^3)
# ssumdT = cumulative material volume of deposition for entire cross section (ft^3 or m^3)
# ssumdVM = cumulative bulk volume of deposition in main channel (ft^3 or m^3)
# ssumdVF = cumulative bulk volume of deposition in floodplain (ft^3 or m^3)
# ssumdVT = cumulative bulk volume of deposition for entire cross section (ft^3 or m^3)
# ssumdCT = cumulative bulk volume of consolidation for entire cross section (ft^3 or m^3)
# t=time(hr)
TITLE="deposition volume"
VARIABLES=xt,ssumdM,ssumdF,ssumdT,ssumdVM,ssumdVF,ssumdVT,ssumdCT
ZONE T=" t =
0.0000, river # = 1 , river name =
"
# i
xt
ssumdM
ssumdF
ssumdT
ssumdVM
ssumdVF
ssumdVT
ssumdCT
1
0.5000E+04
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
2
0.4500E+04
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
3
0.4000E+04
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
4
0.3500E+04
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
5
0.3000E+04
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
6
0.2500E+04
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
7
0.2000E+04
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
8
0.1500E+04
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
9
0.1000E+04
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
Appendix D/Example 1
D9
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
10
0.5000E+03
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
11
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
ZONE T=" t =
2400.0000, river # = 1 , river name =
# i
xt
ssumdM
ssumdF
ssumdT
ssumdVT
ssumdCT
1
0.5000E+04
0.1927E+04
0.0000E+00
0.1927E+04
0.3212E+04
0.2125E-07
2
0.4500E+04
0.3780E+04
0.0000E+00
0.3780E+04
0.6300E+04
0.4234E-07
3
0.4000E+04
0.3714E+04
0.0000E+00
0.3714E+04
0.6190E+04
0.4394E-07
4
0.3500E+04
0.3656E+04
0.0000E+00
0.3656E+04
0.6093E+04
0.4154E-07
5
0.3000E+04
0.3608E+04
0.0000E+00
0.3608E+04
0.6013E+04
0.4176E-07
6
0.2500E+04
0.3568E+04
0.0000E+00
0.3568E+04
0.5947E+04
0.4495E-07
7
0.2000E+04
0.3535E+04
0.0000E+00
0.3535E+04
0.5891E+04
0.4085E-07
8
0.1500E+04
0.3505E+04
0.0000E+00
0.3505E+04
0.5842E+04
0.3600E-07
9
0.1000E+04
0.3480E+04
0.0000E+00
0.3480E+04
0.5800E+04
0.3803E-07
10
0.5000E+03
0.3459E+04
0.0000E+00
0.3459E+04
0.5764E+04
0.4101E-07
11
0.0000E+00
0.1726E+04
0.0000E+00
0.1726E+04
0.2876E+04
0.2072E-07
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
ssumdVM
"
ssumdVF
0.3212E+04
0.0000E+00
0.6300E+04
0.0000E+00
0.6190E+04
0.0000E+00
0.6093E+04
0.0000E+00
0.6013E+04
0.0000E+00
0.5947E+04
0.0000E+00
0.5891E+04
0.0000E+00
0.5842E+04
0.0000E+00
0.5800E+04
0.0000E+00
0.5764E+04
0.0000E+00
0.2876E+04
0.0000E+00
D1.2.6 MATERIAL VOLUME OF DEPOSITION IN EACH SUB-CHANNEL
(EXAMPLE1_OUT_MATERIALVOLUME.DAT)
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
# material volume of deposition in each size fraction
# i =cross seciton number
# xt=cross seciton location (ft or m)
# ssd_mat(0) = material volume of deposition in all size fractions (ft^3 or m^3)
# ssd_mat(m) = material volume of deposition in m size fraction (ft^3 or m^3)
# t=time(hr)
TITLE="deposition material volume"
VARIABLES=
i,xt,ssd_mat00,ssd_mat01,ssd_mat02,ssd_mat03,ssd_mat04,ssd_mat05,ssd_mat06,ssd_mat07,ssd_mat08,
ssd_mat09,ssd_mat10,ssd_mat11
ZONE T=" t =
0.0000, river # = 1 , river name =
"
# i
xt
ssd_mat(00)
ssd_mat(01)
ssd_mat(02)
ssd_mat(03)
ssd_mat(04)
ssd_mat(05)
ssd_mat(06)
ssd_mat(07)
ssd_mat(08)
ssd_mat(09)
ssd_mat(10)
ssd_mat(11)
1
0.5000E+04
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
2
0.4500E+04
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
3
0.4000E+04
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
4
0.3500E+04
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
5
0.3000E+04
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
6
0.2500E+04
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
7
0.2000E+04
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
8
0.1500E+04
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
9
0.1000E+04
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
10
0.5000E+03
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
11
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
ZONE T=" t =
2400.0000, river # = 1 , river name =
"
D10
GSTAR-1D User’s Manual
• # i
xt
ssd_mat(00)
ssd_mat(01)
ssd_mat(02)
ssd_mat(03)
ssd_mat(04)
ssd_mat(05)
ssd_mat(06)
ssd_mat(07)
ssd_mat(08)
ssd_mat(09)
ssd_mat(10)
ssd_mat(11)
•
1
0.5000E+04
0.1927E+04
0.0000E+00
0.1036E+04
0.1066E+03
0.1795E+03
0.2002E+03
0.2703E+03
0.7073E+02
0.8491E+02
0.1409E+03
-0.1624E+03
0.0000E+00
•
2
0.4500E+04
0.3780E+04
0.0000E+00
0.2071E+04
0.2122E+03
0.3565E+03
0.3969E+03
0.4976E+03
0.1254E+03
0.1617E+03
0.2778E+03
-0.3193E+03
0.0000E+00
•
3
0.4000E+04
0.3714E+04
0.0000E+00
0.2072E+04
0.2118E+03
0.3549E+03
0.3941E+03
0.4437E+03
0.1098E+03
0.1541E+03
0.2743E+03
-0.3007E+03
0.0000E+00
•
4
0.3500E+04
0.3656E+04
0.0000E+00
0.2073E+04
0.2118E+03
0.3539E+03
0.3921E+03
0.3756E+03
0.9391E+02
0.1466E+03
0.2711E+03
-0.2620E+03
0.0000E+00
•
5
0.3000E+04
0.3608E+04
0.0000E+00
0.2074E+04
0.2119E+03
0.3532E+03
0.3906E+03
0.2999E+03
0.7747E+02
0.1389E+03
0.2676E+03
-0.2059E+03
0.0000E+00
•
6
0.2500E+04
0.3568E+04
0.0000E+00
0.2075E+04
0.2121E+03
0.3527E+03
0.3894E+03
0.2259E+03
0.6096E+02
0.1308E+03
0.2639E+03
-0.1429E+03
0.0000E+00
•
7
0.2000E+04
0.3535E+04
0.0000E+00
0.2076E+04
0.2124E+03
0.3526E+03
0.3887E+03
0.1613E+03
0.4541E+02
0.1225E+03
0.2599E+03
-0.8476E+02
0.0000E+00
•
8
0.1500E+04
0.3505E+04
0.0000E+00
0.2078E+04
0.2130E+03
0.3529E+03
0.3885E+03
0.1103E+03
0.3200E+02
0.1141E+03
0.2560E+03
-0.3961E+02
0.0000E+00
•
9
0.1000E+04
0.3480E+04
0.0000E+00
0.2080E+04
0.2140E+03
0.3539E+03
0.3890E+03
0.7310E+02
0.2156E+02
0.1054E+03
0.2521E+03
-0.9510E+01
0.0000E+00
•
10
0.5000E+03
0.3459E+04
0.0000E+00
0.2083E+04
0.2154E+03
0.3553E+03
0.3900E+03
0.4805E+02
0.1447E+02
0.9655E+02
0.2481E+03
0.7817E+01
0.0000E+00
•
11
0.0000E+00
0.1726E+04
0.0000E+00
0.1043E+04
0.1081E+03
0.1781E+03
0.1953E+03
0.2005E+02
0.5918E+01
0.4602E+02
0.1229E+03
0.6629E+01
0.0000E+00
D1.2.7 MASS BALANCE FILE (EXAMPLE1_OUT_MASSBALANCE.DAT)
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
# mass balance
# this mass balance check is only valid for sslove = 1, when negeleting
# suspended sediment change
# t=time(hr)
# massbal = balance of material volume (ft^3 or m^3)
# sumtin = material volume of sediment entering upstream boundary (ft^3 or m^3)
# sumtex = material volume of erosion exiting downstream boundary (ft^3 or m^3)
# sumtlt = material volume of sediment entering laterally (ft^3 or m^3)
# sume = material volume of erosion (ft^3 or m^3)
TITLE="mass balance"
VARIABLES=
t,massbal00,sumtin00,masstex00,masstlt00,sume00,massbal01,sumtin01,masstex01,masstlt01,sume01,m
assbal02,sumtin02,masstex02,masstlt02,sume02,massbal03,sumtin03,masstex03,masstlt03,sume03,mass
bal04,sumtin04,masstex04,masstlt04,sume04,massbal05,sumtin05,masstex05,masstlt05,sume05,massbal
06,sumtin06,masstex06,masstlt06,sume06,massbal07,sumtin07,masstex07,masstlt07,sume07,massbal08,
sumtin08,masstex08,masstlt08,sume08,massbal09,sumtin09,masstex09,masstlt09,sume09,massbal10,sum
tin10,masstex10,masstlt10,sume10,massbal11,sumtin11,masstex11,masstlt11,sume11
ZONE T=" mass balance"
#
|
size 0
|
size 1
|
size 2
|
size 3
|
size 4
|
size 5
|
size 6
|
size 7
|
size 8
|
size 9
|
size 10
|
size 11
|
#
tt
massbal
sumtin
sumtex
sumtlt
sume
massbal
sumtin
sumtex
sumtlt
sume
massbal
sumtin
sumtex
sumtlt
sume
massbal
sumtin
sumtex
sumtlt
sume
massbal
sumtin
sumtex
sumtlt
sume
massbal
sumtin
sumtex
sumtlt
sume
massbal
sumtin
sumtex
sumtlt
sume
massbal
sumtin
sumtex
sumtlt
sume
massbal
sumtin
sumtex
sumtlt
sume
massbal
sumtin
sumtex
sumtlt
sume
massbal
sumtin
sumtex
sumtlt
sume
massbal
sumtin
sumtex
sumtlt
sume
0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
0.0000E+00 0.0000E+00
0.0000E+00 0.0000E+00
0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
0.0000E+00
0.0000E+00 0.0000E+00 0.0000E+00
0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
0.2400E+04 -0.3069E-05 0.5861E+08 0.5857E+08 0.0000E+00 -0.3596E+05 0.0000E+00
0.0000E+00 0.0000E+00
0.0000E+00 0.0000E+00 -0.3328E-05 0.3233E+08
0.3231E+08
0.0000E+00 -0.2076E+05 -0.1679E-06
0.7292E+07 0.7290E+07 0.0000E+00 -0.2129E+04
0.6311E06 0.8493E+07 0.8490E+07 0.0000E+00 -0.3543E+04 -0.2644E-06 0.9185E+07 0.9181E+07
0.0000E+00 -0.3915E+04 0.1435E-07 0.1993E+06
0.1968E+06 0.0000E+00 -0.2526E+04 -0.3872E-08
Appendix D/Example 1
D11
0.3165E+06 0.3159E+06 0.0000E+00 -0.6576E+03
-0.1302E+04 0.2150E-07 0.3869E+06 0.3842E+06
0.3517E+05
0.3668E+05 0.0000E+00 0.1513E+04
0.0000E+00 0.0000E+00
0.2984E-07 0.3751E+06 0.3738E+06 0.0000E+00
0.0000E+00 -0.2634E+04 -0.1995E-08
0.0000E+00
0.0000E+00 0.0000E+00
D1.2.8 SEDIMENT LOAD FILE (EXAMPLE1_OUT_SEDIMENTLOAD.DAT)
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
# cumulative sediment load passing cross section in each sub-channel
# i = cross seciton number
# xt = cross seciton location (ft or m)
# ssed(j,0) = cumulative sediment load passing in sub-channel j (tons or metric tons)
# ssed(j,m) = cumulative sediment load passing for size fraction m in sub-channel j (tons or
metric tons)
# t = time(hr)
TITLE = "sediment load"
VARIABLES=
i,xt,ssed(01_00),ssed(01_01),ssed(01_02),ssed(01_03),ssed(01_04),ssed(01_05),ssed(01_06),ssed(0
1_07),ssed(01_08),ssed(01_09),ssed(01_10),ssed(01_11)
ZONE T=" t =
0.0000, river # = 1 , river name =
"
# i
xt
ssed(01,00)
ssed(01,01)
ssed(01,02)
ssed(01,03)
ssed(01,04)
ssed(01,05)
ssed(01,06)
ssed(01,07)
ssed(01,08)
ssed(01,09)
ssed(01,10)
ssed(01,11)
1 0.500000E+04 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00
0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00
0.000000E+00
2 0.450000E+04 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00
0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00
0.000000E+00
3 0.400000E+04 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00
0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00
0.000000E+00
4 0.350000E+04 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00
0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00
0.000000E+00
5 0.300000E+04 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00
0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00
0.000000E+00
6 0.250000E+04 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00
0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00
0.000000E+00
7 0.200000E+04 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00
0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00
0.000000E+00
8 0.150000E+04 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00
0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00
0.000000E+00
9 0.100000E+04 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00
0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00
0.000000E+00
10 0.500000E+03 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00
0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00
0.000000E+00
11 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00
0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00
0.000000E+00
VARIABLES=
i,xt,ssed(01_00),ssed(01_01),ssed(01_02),ssed(01_03),ssed(01_04),ssed(01_05),ssed(01_06),ssed(0
1_07),ssed(01_08),ssed(01_09),ssed(01_10),ssed(01_11)
ZONE T=" t =
2400.0000, river # = 1 , river name =
"
# i
xt
ssed(01,00)
ssed(01,01)
ssed(01,02)
ssed(01,03)
ssed(01,04)
ssed(01,05)
ssed(01,06)
ssed(01,07)
ssed(01,08)
ssed(01,09)
ssed(01,10)
ssed(01,11)
1 0.500000E+04 0.484782E+07 0.000000E+00 0.267384E+07 0.603140E+06 0.702528E+06
0.759738E+06 0.164624E+05 0.261759E+05 0.310231E+05 0.319882E+05 0.292251E+04
0.000000E+00
2 0.450000E+04 0.484751E+07 0.000000E+00 0.267367E+07 0.603123E+06 0.702498E+06
0.759705E+06 0.164213E+05 0.261655E+05 0.310098E+05 0.319652E+05 0.294892E+04
0.000000E+00
3 0.400000E+04 0.484720E+07 0.000000E+00 0.267350E+07 0.603105E+06 0.702469E+06
0.759672E+06 0.163846E+05 0.261564E+05 0.309970E+05 0.319425E+05 0.297379E+04
0.000000E+00
4 0.350000E+04 0.484690E+07 0.000000E+00 0.267333E+07 0.603088E+06 0.702439E+06
0.759640E+06 0.163535E+05 0.261486E+05 0.309849E+05 0.319201E+05 0.299546E+04
0.000000E+00
D12
GSTAR-1D User’s Manual
•
•
•
•
•
•
•
5 0.300000E+04 0.484660E+07 0.000000E+00 0.267316E+07 0.603070E+06 0.702410E+06
0.759608E+06 0.163287E+05 0.261422E+05 0.309734E+05 0.318980E+05 0.301249E+04
0.000000E+00
6 0.250000E+04 0.484630E+07 0.000000E+00 0.267298E+07 0.603052E+06 0.702381E+06
0.759575E+06 0.163100E+05 0.261372E+05 0.309626E+05 0.318762E+05 0.302431E+04
0.000000E+00
7 0.200000E+04 0.484601E+07 0.000000E+00 0.267281E+07 0.603035E+06 0.702352E+06
0.759543E+06 0.162966E+05 0.261334E+05 0.309524E+05 0.318547E+05 0.303132E+04
0.000000E+00
8 0.150000E+04 0.484572E+07 0.000000E+00 0.267264E+07 0.603017E+06 0.702323E+06
0.759511E+06 0.162875E+05 0.261308E+05 0.309430E+05 0.318335E+05 0.303460E+04
0.000000E+00
9 0.100000E+04 0.484543E+07 0.000000E+00 0.267247E+07 0.603000E+06 0.702293E+06
0.759479E+06 0.162815E+05 0.261290E+05 0.309343E+05 0.318126E+05 0.303538E+04
0.000000E+00
10 0.500000E+03 0.484515E+07 0.000000E+00 0.267230E+07 0.602982E+06 0.702264E+06
0.759447E+06 0.162775E+05 0.261278E+05 0.309263E+05 0.317921E+05 0.303474E+04
0.000000E+00
11 0.000000E+00 0.484501E+07 0.000000E+00 0.267221E+07 0.602973E+06 0.702249E+06
0.759430E+06 0.162758E+05 0.261273E+05 0.309225E+05 0.317820E+05 0.303419E+04
0.000000E+00
D1.2.9 SEDIMENT CONCENTRATION FILE (EXAMPLE1_OUT_CONC.DAT)
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
# concentration in each sub-channel
# i = cross seciton number
# xt = cross seciton location (ft or m)
# conc(j,0) = total concentration in sub-channel j (mg/l)
# conc(j,m) = concentration of size m in sub-channel j (mg/l)
# t = time(hr)
TITLE = "concentration"
VARIABLES=
i,xt,conc(01_00),conc(01_01),conc(01_02),conc(01_03),conc(01_04),conc(01_05),conc(01_06),conc(0
1_07),conc(01_08),conc(01_09),conc(01_10),conc(01_11)
ZONE T=" t =
0.0000, river # = 1 , river name =
"
# i
xt
conc(01,00)
conc(01,01)
conc(01,02)
conc(01,03)
conc(01,04)
conc(01,05)
conc(01,06)
conc(01,07)
conc(01,08)
conc(01,09)
conc(01,10)
conc(01,11)
1
0.5000E+04
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
2
0.4500E+04
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
3
0.4000E+04
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
4
0.3500E+04
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
5
0.3000E+04
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
6
0.2500E+04
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
7
0.2000E+04
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
8
0.1500E+04
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
9
0.1000E+04
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
10
0.5000E+03
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
11
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
VARIABLES=
i,xt,conc(01_00),conc(01_01),conc(01_02),conc(01_03),conc(01_04),conc(01_05),conc(01_06),conc(0
1_07),conc(01_08),conc(01_09),conc(01_10),conc(01_11)
ZONE T=" t =
2400.0000, river # = 1 , river name =
"
# i
xt
conc(01,00)
conc(01,01)
conc(01,02)
conc(01,03)
conc(01,04)
conc(01,05)
conc(01,06)
conc(01,07)
conc(01,08)
conc(01,09)
conc(01,10)
conc(01,11)
1
0.5000E+04
0.1207E+04
0.0000E+00
0.6657E+03
0.1502E+03
0.1749E+03
0.1892E+03
0.4103E+01
0.6517E+01
0.7724E+01
0.7966E+01
0.7239E+00
0.0000E+00
2
0.4500E+04
0.1207E+04
0.0000E+00
0.6657E+03
0.1502E+03
0.1749E+03
0.1891E+03
0.4099E+01
0.6514E+01
0.7722E+01
0.7964E+01
0.7236E+00
0.0000E+00
Appendix D/Example 1
D13
•
•
•
•
•
•
•
•
•
3
0.4000E+04
0.1207E+04
0.0000E+00
0.6657E+03
0.1502E+03
0.1749E+03
0.1891E+03
0.4093E+01
0.6511E+01
0.7720E+01
0.7963E+01
0.7248E+00
0.0000E+00
4
0.3500E+04
0.1207E+04
0.0000E+00
0.6657E+03
0.1502E+03
0.1749E+03
0.1891E+03
0.4086E+01
0.6508E+01
0.7718E+01
0.7961E+01
0.7281E+00
0.0000E+00
5
0.3000E+04
0.1207E+04
0.0000E+00
0.6657E+03
0.1502E+03
0.1749E+03
0.1891E+03
0.4078E+01
0.6505E+01
0.7716E+01
0.7959E+01
0.7333E+00
0.0000E+00
6
0.2500E+04
0.1207E+04
0.0000E+00
0.6657E+03
0.1502E+03
0.1749E+03
0.1891E+03
0.4069E+01
0.6502E+01
0.7713E+01
0.7957E+01
0.7393E+00
0.0000E+00
7
0.2000E+04
0.1207E+04
0.0000E+00
0.6657E+03
0.1502E+03
0.1749E+03
0.1891E+03
0.4062E+01
0.6499E+01
0.7710E+01
0.7955E+01
0.7449E+00
0.0000E+00
8
0.1500E+04
0.1207E+04
0.0000E+00
0.6657E+03
0.1501E+03
0.1749E+03
0.1891E+03
0.4055E+01
0.6496E+01
0.7708E+01
0.7953E+01
0.7490E+00
0.0000E+00
9
0.1000E+04
0.1207E+04
0.0000E+00
0.6657E+03
0.1501E+03
0.1749E+03
0.1891E+03
0.4051E+01
0.6493E+01
0.7705E+01
0.7951E+01
0.7516E+00
0.0000E+00
10
0.5000E+03
0.1207E+04
0.0000E+00
0.6657E+03
0.1501E+03
0.1749E+03
0.1891E+03
0.4047E+01
0.6491E+01
0.7701E+01
0.7948E+01
0.7528E+00
0.0000E+00
11
0.0000E+00
0.1207E+04
0.0000E+00
0.6657E+03
0.1501E+03
0.1749E+03
0.1891E+03
0.4046E+01
0.6491E+01
0.7700E+01
0.7947E+01
0.7532E+00
0.0000E+00
D1.2.10 BED FRACTION FILE (EXAMPLE1_OUT_BEDFRACTION.DAT)
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
# bed material fraction in each sub-channel
# i = cross seciton number
# xt = cross seciton location (ft or m)
# pn(n,m) = bed material fraction of size m in layer n (1/1)
# t=time(hr)
TITLE="bed fraction"
VARIABLES=
i,xt,pn(01_01),pn(01_02),pn(01_03),pn(01_04),pn(01_05),pn(01_06),pn(01_07),pn(01_08),pn(01_09),
pn(01_10),pn(01_11)
ZONE T=" t =
0.0000, river # = 1 , river name =
, subchannel = 1"
# i
xt
pn( 1, 1)
pn( 1, 2)
pn( 1, 3)
pn( 1, 4)
pn( 1, 5)
pn( 1, 6)
pn( 1, 7)
pn( 1, 8)
pn( 1, 9)
pn( 1,10)
pn( 1,11)
1
0.5000E+04
0.0000E+00
0.1040E+00
0.8300E-01
0.1300E+00
0.1460E+00
0.1560E+00
0.1410E+00
0.1090E+00
0.8600E-01
0.3200E-01
0.1300E-01
2
0.4500E+04
0.0000E+00
0.1040E+00
0.8300E-01
0.1300E+00
0.1460E+00
0.1560E+00
0.1410E+00
0.1090E+00
0.8600E-01
0.3200E-01
0.1300E-01
3
0.4000E+04
0.0000E+00
0.1040E+00
0.8300E-01
0.1300E+00
0.1460E+00
0.1560E+00
0.1410E+00
0.1090E+00
0.8600E-01
0.3200E-01
0.1300E-01
4
0.3500E+04
0.0000E+00
0.1040E+00
0.8300E-01
0.1300E+00
0.1460E+00
0.1560E+00
0.1410E+00
0.1090E+00
0.8600E-01
0.3200E-01
0.1300E-01
5
0.3000E+04
0.0000E+00
0.1040E+00
0.8300E-01
0.1300E+00
0.1460E+00
0.1560E+00
0.1410E+00
0.1090E+00
0.8600E-01
0.3200E-01
0.1300E-01
6
0.2500E+04
0.0000E+00
0.1040E+00
0.8300E-01
0.1300E+00
0.1460E+00
0.1560E+00
0.1410E+00
0.1090E+00
0.8600E-01
0.3200E-01
0.1300E-01
7
0.2000E+04
0.0000E+00
0.1040E+00
0.8300E-01
0.1300E+00
0.1460E+00
0.1560E+00
0.1410E+00
0.1090E+00
0.8600E-01
0.3200E-01
0.1300E-01
8
0.1500E+04
0.0000E+00
0.1040E+00
0.8300E-01
0.1300E+00
0.1460E+00
0.1560E+00
0.1410E+00
0.1090E+00
0.8600E-01
0.3200E-01
0.1300E-01
9
0.1000E+04
0.0000E+00
0.1040E+00
0.8300E-01
0.1300E+00
0.1460E+00
0.1560E+00
0.1410E+00
0.1090E+00
0.8600E-01
0.3200E-01
0.1300E-01
10
0.5000E+03
0.0000E+00
0.1040E+00
0.8300E-01
0.1300E+00
0.1460E+00
0.1560E+00
0.1410E+00
0.1090E+00
0.8600E-01
0.3200E-01
0.1300E-01
11
0.0000E+00
0.0000E+00
0.1040E+00
0.8300E-01
0.1300E+00
0.1460E+00
0.1560E+00
0.1410E+00
0.1090E+00
0.8600E-01
0.3200E-01
0.1300E-01
ZONE T=" t =
2400.0000, river # = 1 , river name =
, subchannel = 1"
# i
xt
pn( 1, 1)
pn( 1, 2)
pn( 1, 3)
pn( 1, 4)
pn( 1, 5)
pn( 1, 6)
pn( 1, 7)
pn( 1, 8)
pn( 1, 9)
pn( 1,10)
pn( 1,11)
1
0.5000E+04
0.0000E+00
0.1111E+00
0.8255E-01
0.1294E+00
0.1453E+00
0.1557E+00
0.1393E+00
0.1079E+00
0.8579E-01
0.3008E-01
0.1279E-01
2
0.4500E+04
0.0000E+00
0.1112E+00
0.8257E-01
0.1294E+00
0.1453E+00
0.1556E+00
0.1393E+00
0.1079E+00
0.8580E-01
0.3011E-01
0.1279E-01
3
0.4000E+04
0.0000E+00
0.1112E+00
0.8259E-01
0.1295E+00
0.1454E+00
0.1554E+00
0.1392E+00
0.1079E+00
0.8581E-01
0.3020E-01
0.1279E-01
4
0.3500E+04
0.0000E+00
0.1112E+00
0.8261E-01
0.1295E+00
0.1454E+00
0.1552E+00
0.1392E+00
0.1079E+00
0.8582E-01
0.3037E-01
0.1280E-01
5
0.3000E+04
0.0000E+00
0.1113E+00
0.8263E-01
0.1295E+00
0.1454E+00
0.1549E+00
0.1392E+00
0.1079E+00
0.8582E-01
0.3062E-01
0.1280E-01
D14
GSTAR-1D User’s Manual
•
•
•
•
•
•
6
0.2500E+04
0.0000E+00
0.1113E+00
0.8264E-01
0.1295E+00
0.1454E+00
0.1546E+00
0.1391E+00
0.1079E+00
0.8582E-01
0.3089E-01
0.1280E-01
7
0.2000E+04
0.0000E+00
0.1113E+00
0.8266E-01
0.1295E+00
0.1455E+00
0.1543E+00
0.1391E+00
0.1079E+00
0.8582E-01
0.3115E-01
0.1280E-01
8
0.1500E+04
0.0000E+00
0.1113E+00
0.8267E-01
0.1296E+00
0.1455E+00
0.1541E+00
0.1390E+00
0.1079E+00
0.8581E-01
0.3135E-01
0.1280E-01
9
0.1000E+04
0.0000E+00
0.1113E+00
0.8268E-01
0.1296E+00
0.1455E+00
0.1540E+00
0.1390E+00
0.1078E+00
0.8580E-01
0.3148E-01
0.1281E-01
10
0.5000E+03
0.0000E+00
0.1114E+00
0.8270E-01
0.1296E+00
0.1455E+00
0.1539E+00
0.1390E+00
0.1078E+00
0.8579E-01
0.3156E-01
0.1281E-01
11
0.0000E+00
0.0000E+00
0.1114E+00
0.8270E-01
0.1296E+00
0.1455E+00
0.1539E+00
0.1390E+00
0.1078E+00
0.8579E-01
0.3158E-01
0.1281E-01
D1.2.11 SEDIMENT PORSITY FILE (EXAMPLE1_OUT_POROSITY.DAT)
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
# maximum porosity in each sub-channel and layer of bed
# i =cross seciton number
# xt=cross seciton location (ft or m)
# porsty(n,0) = porosity in bed layer n (-)
# porsty(n,m) = relative porosity in bed of size m in layer n (-)
# t=time(hr)
TITLE="porosity"
VARIABLES=
i,xt,porsty01_00,porsty01_01,porsty01_02,porsty01_03,porsty01_04,porsty01_05,porsty01_06,porsty
01_07,porsty01_08,porsty01_09,porsty01_10,porsty01_11
ZONE T=" t =
0.0000, river # = 1 , river name =
, subchannel = 1"
# i
xt porsty( 1, 0) porsty( 1, 1) porsty( 1, 2) porsty( 1, 3) porsty( 1, 4)
porsty( 1, 5) porsty( 1, 6) porsty( 1, 7) porsty( 1, 8) porsty( 1, 9) porsty( 1,10) porsty(
1,11)
1
0.5000E+04
0.1000E+01
0.1000E+01
0.1000E+01
0.1000E+01
0.1000E+01
0.1000E+01
0.1000E+01
0.1000E+01
0.1000E+01
0.1000E+01
0.1000E+01
0.1000E+01
2
0.4500E+04
0.1000E+01
0.1000E+01
0.1000E+01
0.1000E+01
0.1000E+01
0.1000E+01
0.1000E+01
0.1000E+01
0.1000E+01
0.1000E+01
0.1000E+01
0.1000E+01
3
0.4000E+04
0.1000E+01
0.1000E+01
0.1000E+01
0.1000E+01
0.1000E+01
0.1000E+01
0.1000E+01
0.1000E+01
0.1000E+01
0.1000E+01
0.1000E+01
0.1000E+01
4
0.3500E+04
0.1000E+01
0.1000E+01
0.1000E+01
0.1000E+01
0.1000E+01
0.1000E+01
0.1000E+01
0.1000E+01
0.1000E+01
0.1000E+01
0.1000E+01
0.1000E+01
5
0.3000E+04
0.1000E+01
0.1000E+01
0.1000E+01
0.1000E+01
0.1000E+01
0.1000E+01
0.1000E+01
0.1000E+01
0.1000E+01
0.1000E+01
0.1000E+01
0.1000E+01
6
0.2500E+04
0.1000E+01
0.1000E+01
0.1000E+01
0.1000E+01
0.1000E+01
0.1000E+01
0.1000E+01
0.1000E+01
0.1000E+01
0.1000E+01
0.1000E+01
0.1000E+01
7
0.2000E+04
0.1000E+01
0.1000E+01
0.1000E+01
0.1000E+01
0.1000E+01
0.1000E+01
0.1000E+01
0.1000E+01
0.1000E+01
0.1000E+01
0.1000E+01
0.1000E+01
8
0.1500E+04
0.1000E+01
0.1000E+01
0.1000E+01
0.1000E+01
0.1000E+01
0.1000E+01
0.1000E+01
0.1000E+01
0.1000E+01
0.1000E+01
0.1000E+01
0.1000E+01
9
0.1000E+04
0.1000E+01
0.1000E+01
0.1000E+01
0.1000E+01
0.1000E+01
0.1000E+01
0.1000E+01
0.1000E+01
0.1000E+01
0.1000E+01
0.1000E+01
0.1000E+01
10
0.5000E+03
0.1000E+01
0.1000E+01
0.1000E+01
0.1000E+01
0.1000E+01
0.1000E+01
0.1000E+01
0.1000E+01
0.1000E+01
0.1000E+01
0.1000E+01
0.1000E+01
11
0.0000E+00
0.1000E+01
0.1000E+01
0.1000E+01
0.1000E+01
0.1000E+01
0.1000E+01
0.1000E+01
0.1000E+01
0.1000E+01
0.1000E+01
0.1000E+01
0.1000E+01
ZONE T=" t =
2400.0000, river # = 1 , river name =
, subchannel = 1"
# i
xt porsty( 1, 0) porsty( 1, 1) porsty( 1, 2) porsty( 1, 3) porsty( 1, 4)
porsty( 1, 5) porsty( 1, 6) porsty( 1, 7) porsty( 1, 8) porsty( 1, 9) porsty( 1,10) porsty(
1,11)
1
0.5000E+04
0.4000E+00
0.3869E+00
0.4000E+00
0.4000E+00
0.4000E+00
0.4000E+00
0.4000E+00
0.4000E+00
0.4000E+00
0.4000E+00
0.4000E+00
0.4000E+00
2
0.4500E+04
0.4000E+00
0.3869E+00
0.4000E+00
0.4000E+00
0.4000E+00
0.4000E+00
0.4000E+00
0.4000E+00
0.4000E+00
0.4000E+00
0.4000E+00
0.4000E+00
3
0.4000E+04
0.4000E+00
0.3869E+00
0.4000E+00
0.4000E+00
0.4000E+00
0.4000E+00
0.4000E+00
0.4000E+00
0.4000E+00
0.4000E+00
0.4000E+00
0.4000E+00
4
0.3500E+04
0.4000E+00
0.3869E+00
0.4000E+00
0.4000E+00
0.4000E+00
0.4000E+00
0.4000E+00
0.4000E+00
0.4000E+00
0.4000E+00
0.4000E+00
0.4000E+00
5
0.3000E+04
0.4000E+00
0.3869E+00
0.4000E+00
0.4000E+00
0.4000E+00
0.4000E+00
0.4000E+00
0.4000E+00
0.4000E+00
0.4000E+00
0.4000E+00
0.4000E+00
6
0.2500E+04
0.4000E+00
0.3869E+00
0.4000E+00
0.4000E+00
0.4000E+00
0.4000E+00
0.4000E+00
0.4000E+00
0.4000E+00
0.4000E+00
0.4000E+00
0.4000E+00
7
0.2000E+04
0.4000E+00
0.3869E+00
0.4000E+00
0.4000E+00
0.4000E+00
0.4000E+00
0.4000E+00
0.4000E+00
0.4000E+00
0.4000E+00
0.4000E+00
0.4000E+00
Appendix D/Example 1
D15
•
8
0.1500E+04
0.4000E+00
0.3869E+00
0.4000E+00
0.4000E+00
0.4000E+00
0.4000E+00
0.4000E+00
0.4000E+00
0.4000E+00
0.4000E+00
0.4000E+00
0.4000E+00
•
9
0.1000E+04
0.4000E+00
0.3869E+00
0.4000E+00
0.4000E+00
0.4000E+00
0.4000E+00
0.4000E+00
0.4000E+00
0.4000E+00
0.4000E+00
0.4000E+00
0.4000E+00
•
10
0.5000E+03
0.4000E+00
0.3869E+00
0.4000E+00
0.4000E+00
0.4000E+00
0.4000E+00
0.4000E+00
0.4000E+00
0.4000E+00
0.4000E+00
0.4000E+00
0.4000E+00
•
11
0.0000E+00
0.4000E+00
0.3869E+00
0.4000E+00
0.4000E+00
0.4000E+00
0.4000E+00
0.4000E+00
0.4000E+00
0.4000E+00
0.4000E+00
0.4000E+00
0.4000E+00
D1.3 Final Remarks
1016
1014
1012
Elevation (ft)
1010
Initial Water Surface
Initial Bed Elevation
Final Bed Elevation
1008
1006
1004
1002
1000
998
0
500
1000
1500
2000
2500
3000
3500
4000
4500
5000
Channel Distance (ft)
Figure D1.2 Bed elevation and water surface
Figure D1.2 shows the initial and final bed elevation and water surface elevation profiles. The
incoming sediment load near equilibrium condition, the bed elevation change is small. The user
may change the incoming sediment load to see the result of erosion and deposition.
D16
GSTAR-1D User’s Manual
EXAMPLE 2
CHANNEL NETWORK
This example shows a GSTAR-1D input data file set-up for a simple network channel with
sediment transport. The network is composed of 4 trapezoid channels as shown in Figure D2.1.
Rivers are numbered in ascending order from upstream to downstream. Each channel is 1 mile
(5,280 ft) long with a trapezoid cross section of bottom width of 200 ft and side slopes of 1V:2H.
The upstream water discharge is 14,900 cfs and the downstream water surface elevation is set to
a fixed depth. Each channel was input with two original cross sections and 9 interpolated cross
sections.
River 1
River 3
River 2
River 4
Figure D2.1 Sketch showing the river network
The downstream boundary of river 1 is defined in Record D00 (D00 -2, -3). This record shows
river 1 is connected with rivers 2 and 3 at downstream. Negative numbers represent that flow
directions in river 2 and river 3 are out of the junction. The upstream boundary of river 2 is
defined in Record U00 (U00 1, -3). The record shows river 2 is connected with rivers 1 and 3 at
its upstream end. A positive number 1 represents that the flow direction in river 1 is into the
junction. Negative number -3 represents that the flow direction in river 3 is out of the junction.
The boundary conditions of junction are defined in the same way for rivers 3 and 4.
Appendix D/Example 2
D17
The input sediment load is 57709 ton/day and 11 sediment sizes are used ranging from silt to
small cobble. The incoming sediment size distribution is given in record USS. Two bed layers
(one active layer and one inactive layer) are used. The active layer thickness is calculated from
the input value of NALT in record SAT. Bed size distributions are set using BLP records.
D2.1 Input Data File (example2.dat)
The files shown in this and the next sections are part of the main GSTAR-1D distribution
package. They can be found under directory Example2.
YTT GSTAR-1D version 1.0 Example data file for Appendix D of user's manual.
YTT Network of 4 trapezoidal channels with sediment transport.
YTT
********************************************************************************
*** NOTE: this is a datafile to be used as an example of input data as it
***
*** might be used in a GSTARS-1D version 1.0 simulation. It represents a
***
*** ficticious case and it sould be viewed as such. It should not be used ***
*** for any other purpose without appropriate verification and validation. ***
***
***
*** ------------------------------------------------------------------***
*** Problem Description: Network of 4 trapezoidal channels
***
***
with sediment transport
***
***
Rivers 2 and 3 are connected upstream and downstream
***
***
River 1 are connected with rivers 2 and 3 at upstream
***
***
River 4 are connected with rivers 2 and 3 at downstream ***
*** Data Filename: network.data
***
*** Shape: trapezoidal channel, top width = 200 + 4y ft (61 + 4y m).
***
*** Side Slopes: 1V:2H
***
*** Channel Length: 5280 ft (1609 m) each.
***
*** Channel Slope (s): 0.00095
***
*** Number of Stations: 11 each channel equally spaced at 528 ft (161 m). ***
*** ------------------------------------------------------------------***
********************************************************************************
***
nriv
nf
nlay
YNR
4
11
2
***
isolve isolves
EPSY
F1
XFACT METRIC
YZ
YSL
1
1 1.0E-04
1
5280
0
0
***
KFLP
qmin
YFP
0
0
***
THE iHotSt
YTM
2400
0
***
TDT
DT
DTPLT
xcplt
xcplt
YDT
0
1
2400
5
27
*** Start of River
1
***
KU(J)
UFB
2
***
T1
ST1
U02
0
14900
U02
2
14900
U02
3
14900
U02
2400
14900
***
KD(J)
DFB
0
*** DRIV(I,J)
(+) if entering, (-) if exiting
D00
-2
-3
***
NKI(J) b.c. for internal station
INF
0
*** NKQF(J) non-point flow source
LNF
0
***
FLDST
ZDI
QDI --------cross
section
1
XIN
0
0
0
***
xt
bec ninterp
iHotC
XST
1.000
15
9
0
*** station elevatio
data
XSP
1020
0
1015
10
1010
20
1005
30
1000
XSP
1000
50
1000
60
1000
70
1000
80
1000
XSP
1000
100
1000
110
1000
120
1000
130
1000
XSP
1000
150
1000
160
1000
170
1000
180
1000
XSP
1000
200
1000
210
1000
220
1000
230
1000
XSP
1005
250
1010
260
1015
270
1020
280
*** xloc_rco rcoef
XRH
40
0.03
240
0.03
280
0.03
***
bankl
bankr
XOX
0
280
***
fkec
D18
GSTAR-1D User’s Manual
40
90
140
190
240
XFL
***
XSL
***
XIN
***
XST
***
XSP
XSP
XSP
XSP
XSP
XSP
***
XRH
***
***
XOX
***
XFL
***
XSL
***
***
***
UFB
***
U00
***
DFB
***
D00
***
INF
***
LNF
***
XIN
***
XST
***
XSP
XSP
XSP
XSP
XSP
XSP
***
XRH
***
XOX
***
XFL
***
XSL
***
XIN
***
XST
***
XSP
XSP
XSP
XSP
XSP
XSP
***
XRH
***
***
XOX
***
XFL
***
XSL
***
***
***
UFB
***
0
xl
yl
xr
yr
5280
0
5280
280
FLDST
ZDI
QDI --------cross
section
0
0
0
xt
bec ninterp
iHotC
0.00
10
0
0
station elevatio
data
1020
0
1015
10
1010
20
1000
50
1000
60
1000
70
1000
100
1000
110
1000
120
1000
150
1000
160
1000
170
1000
200
1000
210
1000
220
1005
250
1010
260
1015
270
xloc_rco rcoef
40
0.03
240
0.03
280
0.03
bankl
0
2
1005
1000
1000
1000
1000
1020
30
80
130
180
230
280
1000
1000
1000
1000
1000
40
90
140
190
240
30
80
130
180
230
280
1000
1000
1000
1000
1000
40
90
140
190
240
30
80
130
180
230
280
1000
1000
1000
1000
1000
40
90
140
190
240
bankr
280
fkec
0
xl
yl
xr
yr
0
0
0
280
End of River
1
Start of River
2
KU(J)
0
URIV(I,J)
(+) if entering, (-) if exiting
1
-3
KD(J)
0
DRIV(I,J)
(+) if entering, (-) if exiting
3
-4
NKI(J) b.c. for internal station
0
NKQF(J) non-point flow source
0
FLDST
ZDI
QDI --------cross
section
0
0
0
xt
bec ninterp
iHotC
1.000
10
9
0
station elevatio
data
1020
0
1015
10
1010
20
1000
50
1000
60
1000
70
1000
100
1000
110
1000
120
1000
150
1000
160
1000
170
1000
200
1000
210
1000
220
1005
250
1010
260
1015
270
xloc_rco rcoef
40
0.03
240
0.03
280
0.03
bankl
bankr
0
280
fkec
0
xl
yl
xr
yr
5280
0
5280
280
FLDST
ZDI
QDI --------cross
section
0
0
0
xt
bec ninterp
iHotC
0.000
5
0
0
station elevatio
data
1020
0
1015
10
1010
20
1000
50
1000
60
1000
70
1000
100
1000
110
1000
120
1000
150
1000
160
1000
170
1000
200
1000
210
1000
220
1005
250
1010
260
1015
270
xloc_rco rcoef
40
0.03
240
0.03
280
0.03
bankl
0
1
1005
1000
1000
1000
1000
1020
2
1005
1000
1000
1000
1000
1020
bankr
280
fkec
0
xl
yl
xr
yr
0
0
0
280
End of River
2
Start of River
3
KU(J)
0
URIV(I,J)
(+) if entering, (-) if exiting
Appendix D/Example 2
D19
U00
***
DFB
***
D00
***
INF
***
LNF
***
XIN
***
XST
***
XSP
XSP
XSP
XSP
XSP
XSP
***
XRH
***
XOX
***
XFL
***
XSL
***
XIN
***
XST
***
XSP
XSP
XSP
XSP
XSP
XSP
***
XRH
***
***
XOX
***
XFL
***
XSL
***
***
***
UFB
***
U00
***
DFB
***
D01
D01
D01
D01
D01
***
INF
***
LNF
***
XIN
***
XST
***
XSP
XSP
XSP
XSP
XSP
XSP
***
XRH
***
XOX
D20
1
-2
KD(J)
0
DRIV(I,J)
(+) if entering, (-) if exiting
2
-4
NKI(J) b.c. for internal station
0
NKQF(J) non-point flow source
0
FLDST
ZDI
QDI --------cross
section
0
0
0
xt
bec ninterp
iHotC
1.0
10
9
0
station elevatio
data
1020
0
1015
10
1010
20
1000
50
1000
60
1000
70
1000
100
1000
110
1000
120
1000
150
1000
160
1000
170
1000
200
1000
210
1000
220
1005
250
1010
260
1015
270
xloc_rco rcoef
40
0.03
240
0.03
280
0.03
bankl
bankr
0
280
fkec
0
xl
yl
xr
yr
5280
0
5280
280
FLDST
ZDI
QDI --------cross
section
0
0
0
xt
bec ninterp
iHotC
0.00
5
0
0
station elevatio
data
1020
0
1015
10
1010
20
1000
50
1000
60
1000
70
1000
100
1000
110
1000
120
1000
150
1000
160
1000
170
1000
200
1000
210
1000
220
1005
250
1010
260
1015
270
xloc_rco rcoef
40
0.03
240
0.03
280
0.03
bankl
0
1
1005
1000
1000
1000
1000
1020
30
80
130
180
230
280
1000
1000
1000
1000
1000
40
90
140
190
240
30
80
130
180
230
280
1000
1000
1000
1000
1000
40
90
140
190
240
30
80
130
180
230
280
1000
1000
1000
1000
1000
40
90
140
190
240
2
1005
1000
1000
1000
1000
1020
bankr
280
fkec
0
xl
yl
xr
yr
0
0
0
280
End of River
3
Start of River
4
KU(J)
0
URIV(I,J)
(+) if entering, (-) if exiting
2
3
KD(J)
1
TN
STN
0 1009.88
2 1009.88
3 1009.88
4 1009.88
2400 1009.88
NKI(J) b.c. for internal station
0
NKQF(J) non-point flow source
0
FLDST
ZDI
QDI --------cross
section
0
0
0
xt
bec ninterp
iHotC
1.00
5
9
0
station elevatio
data
1020
0
1015
10
1010
20
1000
50
1000
60
1000
70
1000
100
1000
110
1000
120
1000
150
1000
160
1000
170
1000
200
1000
210
1000
220
1005
250
1010
260
1015
270
xloc_rco rcoef
40
0.03
240
0.03
280
0.03
bankl
bankr
0
280
GSTAR-1D User’s Manual
1
1005
1000
1000
1000
1000
1020
***
fkec
XFL
0
***
xl
yl
xr
yr
XSL
5280
0
5280
280
***
FLDST
ZDI
QDI --------cross
section
2
XIN
0
0
0
***
xt
bec ninterp
iHotC
XST
0.00
0
0
0
*** station elevatio
data
XSP
1020
0
1015
10
1010
20
1005
30
1000
XSP
1000
50
1000
60
1000
70
1000
80
1000
XSP
1000
100
1000
110
1000
120
1000
130
1000
XSP
1000
150
1000
160
1000
170
1000
180
1000
XSP
1000
200
1000
210
1000
220
1000
230
1000
XSP
1005
250
1010
260
1015
270
1020
280
*** xloc_rco rcoef
XRH
40
0.03
240
0.03
280
0.03
***
***
bankl
bankr
XOX
0
280
***
fkec
XFL
0
***
xl
yl
xr
yr
XSL
0
0
0
280
*** End of River
4
*** Start inputof sediment transport data
****************************************************************************
***
theta ntsedf nrespone
YST
1
1
1
***
drl
dru
bdin
YSG
0.01 0.0625
0
! silt
YSG
0.0625
0.25
0
! fsnd
YSG
0.25
0.5
0
! msnd
YSG
0.5
1
0
! csnd
YSG
1
2
0
! vcsnd
YSG
2
4
0
! vfgrv
YSG
4
8
0
! fgrv
YSG
8
16
0
! mgrv
YSG
16
32
0
! cgrv
YSG
32
64
0
! vcgrv
YSG
64
128
0
! scob
*** Start of River
1
***
nts
USB
3
***
TSI
QSI
US3
0
57709
US3
1
57709
US3
2
57709
US3
3
57709
US3
4
57709
US3
5
57709
***
QI
PISED
USS
100
0
0.608 0.1188 0.1256 0.1275 0.0031 0.0049 0.0057
0
USS
100000
0
0.608 0.1188 0.1256 0.1275 0.0031 0.0049 0.0057
0
*** NKQS(J) non-point flow source
LNS
0
***
ii
BP1
1
2
***
PTMP
***
Layer
2
BLP
0
0.104
0.083
0.13
0.146
0.156
0.141
0.109
0.086
BLP
0
0.104
0.083
0.13
0.146
0.156
0.141
0.109
0.086
***
ttin
temp
TMP
0.00
70
TMP
2400
70
***
ii
FI1
1
2
*** crosmin crosmax crosmin crosmax botmin botmax
FIM
-9999
9999
-9999
9999
0
9999
!section
1
FIM
-9999
9999
-9999
9999
0
9999
!section
2
***
nstube
wfrac
STU
1
0.8
***
imin ilength
SMN
0
0
***
ised
SEQ
6
***
ii
SA1
1
2
***
angle1 angle2
nalt alphad alphas
dlat
dlong
betas
frac2
40
90
140
190
240
0.0058
0.0007
0.0058
0.0007
0.032
0.032
0.013
0.013
Appendix D/Example 2
D21
SAT
SAT
***
CS1
***
CSD
CSD
***
CE1
***
CER
CER
***
CF0
***
CSC
***
CD1
***
CDI
CDI
***
***
***
USB
***
US0
***
LNS
***
BP1
***
***
BLP
BLP
***
TMP
TMP
***
FI1
***
FIM
FIM
***
STU
***
SMN
***
SEQ
***
SA1
***
SAT
SAT
***
CS1
***
CSD
CSD
***
CE1
***
CER
CER
***
CF0
***
CSC
***
CD1
***
CDI
CDI
***
***
***
USB
***
US0
***
LNS
D22
90
90
10
0.25
90
90
10
0.25
ii
1
2
stdep_f stdep_p concEq er_lim
0.005
0.01
0.1
0.1
0.005
0.01
0.1
0.1
ii
1
2
stpero er_stme stmero er_mass
0.05 0.0678
3.00
0.4
0.05 0.0678
3.00
0.4
fvform
1
densC_I densC_f densC_e time_e
77.98 101.30
81.86 1000.00
it
1
2
densityClay0
101.30
101.30
End of River
1
Start of River
2
nts
0
1
1
0
0
NKQS(J) non-point flow source
0
ii
1
2
PTMP
Layer
2
0
0.104
0.083
0.13
0.146
0.156
0
0.104
0.083
0.13
0.146
0.156
ttin
temp
0.00
70
2400
70
ii
1
2
crosmin crosmax crosmin crosmax botmin botmax
-9999
9999
-9999
9999
0
9999
-9999
9999
-9999
9999
0
9999
nstube
wfrac
1
0.8
imin ilength
0
0
ised
6
ii
1
2
angle1 angle2
nalt alphad alphas
dlat
90
90
10
0.25
1
0
90
90
10
0.25
1
0
ii
1
2
stdep_f stdep_p concEq er_lim
0.005
0.01
0.1
0.1
0.005
0.01
0.1
0.1
ii
1
2
stpero er_stme stmero er_mass
0.05 0.0678
3.00
0.4
0.05 0.0678
3.00
0.4
fvform
1
densC_I densC_f densC_e time_e
77.98 101.30
81.86 1000.00
it
1
2
densityClay0
101.30
101.30
End of River
2
Start of River
3
nts
0
NKQS(J) non-point flow source
0
GSTAR-1D User’s Manual
0
0
0
0
0
0
0.141
0.141
0.109
0.109
0.086
0.086
!section
!section
1
2
dlong
0
0
betas
0
0
frac2
0
0
0.032
0.032
0.013
0.013
***
BP1
***
***
BLP
BLP
***
TMP
TMP
***
FI1
***
FIM
FIM
***
STU
***
SMN
***
SEQ
***
SA1
***
SAT
SAT
***
CS1
***
CSD
CSD
***
CE1
***
CER
CER
***
CF0
***
CSC
***
CD1
***
CDI
CDI
***
***
***
USB
***
US0
***
LNS
***
BP1
***
***
BLP
BLP
***
TMP
TMP
***
FI1
***
FIM
FIM
***
STU
***
SMN
***
SEQ
***
SA1
***
SAT
SAT
***
CS1
***
CSD
ii
1
PTMP
Layer
0
0
2
2
0.104
0.104
temp
70
70
0.083
0.083
0.13
0.13
0.146
0.146
0.156
0.156
ttin
0.00
2400
ii
1
2
crosmin crosmax crosmin crosmax botmin botmax
-9999
9999
-9999
9999
0
9999
-9999
9999
-9999
9999
0
9999
nstube
wfrac
1
0.8
imin ilength
0
0
ised
6
ii
1
2
angle1 angle2
nalt alphad alphas
dlat
90
90
10
0.25
1
0
90
90
10
0.25
1
0
ii
1
2
stdep_f stdep_p concEq er_lim
0.005
0.01
0.1
0.1
0.005
0.01
0.1
0.1
ii
1
2
stpero er_stme stmero er_mass
0.05 0.0678
3.00
0.4
0.05 0.0678
3.00
0.4
fvform
1
densC_I densC_f densC_e time_e
77.98 101.30
81.86 1000.00
it
1
2
densityClay0
101.30
101.30
End of River
3
Start of River
4
nts
0
NKQS(J) non-point flow source
0
ii
1
2
PTMP
Layer
2
0
0.104
0.083
0.13
0.146
0.156
0
0.104
0.083
0.13
0.146
0.156
ttin
temp
0.00
70
2400
70
ii
1
2
crosmin crosmax crosmin crosmax botmin botmax
-9999
9999
-9999
9999
0
9999
-9999
9999
-9999
9999
0
9999
nstube
wfrac
1
0.8
imin ilength
0
0
ised
6
ii
1
2
angle1 angle2
nalt alphad alphas
dlat
90
90
10
0.25
1
0
90
90
10
0.25
1
0
ii
1
2
stdep_f stdep_p concEq er_lim
0.005
0.01
0.1
0.1
0.141
0.141
0.109
0.109
0.086
0.086
!section
!section
1
2
dlong
0
0
betas
0
0
0.141
0.141
0.109
0.109
0.086
0.086
!section
!section
1
2
dlong
0
0
betas
0
0
0.032
0.032
0.013
0.013
0.032
0.032
0.013
0.013
frac2
0
0
frac2
0
0
Appendix D/Example 2
D23
CSD
***
CE1
***
CER
CER
***
CF0
***
CSC
***
CD1
***
CDI
CDI
***
***
END
0.005
0.01
0.1
0.1
ii
1
2
stpero er_stme stmero er_mass
0.05 0.0678
3.00
0.4
0.05 0.0678
3.00
0.4
fvform
1
densC_I densC_f densC_e time_e
77.98 101.30
81.86 1000.00
it
1
2
densityClay0
101.30
101.30
End of River
4
end message
D2.2 Output Data File
Most lines in the output files are too long to be fitted into the width of the paper. In the
following output data files, new lines are started with a black dot for easier reading. Sediment
variables are not calculated at the initial time step.
D2.2.1 MAIN OUTPUT FILE (EXAMPLE2_OUT.DAT)
This file summarizes the dimensions that are used in the model. The total number of cross
sections used in the simulation is more than the original input cross sections and interpolated
cross sections. The maximum number of points in each cross section is two times of the original
input due to cross section interpolation. The input data is also echoed in this output file, but is
not printed here due to space limit. When an error occurs, the users should first check this file
for possible warnings.
• ****************************SUMMARY****************************************
•
Number of rivers=
4
•
Number of sediment class=
11
•
Number of sediment bed layers=
0
•
Number of cross sections in river
1=
2
•
Number of cross sections in river
2=
2
•
Number of cross sections in river
3=
2
•
Number of cross sections in river
4=
2
•
Total number of cross sections used in simulation=
48
•
Max number of stream tubes=
1
•
Max number of points in each cross section=
58
•
Max number of ineffective area in each cross section=
0
•
Max number of permanent ineffective area in each cross section=
0
•
Max number of levee area in each cross section=
0
•
Max number of blocked area in each cross section=
0
•
Total number of internal boundary conditions=
0
• ***************************************************************************
......
D2.2.2 HEC-RAS GEIOMETRY FILE (EXAMPLE2_HEC_RAS_GEOMETRY.G01)
This file is the HEC-RAS geometry input file. It is updated each DTPLT time step defined in
record YDT. User may use the HEC-RAS model to check the initial input geometry and the
final geometry. This file is too long to be included in this section. They can be found under
directory Example 2 in the GSTAR-1D distribution.
D24
GSTAR-1D User’s Manual
D2.2.3 BED PROFILE FILE (EXAMPLE2_OUT_PROFILE.DAT)
This file contains the bed profile data. The meaning of each variable is explained in the file
header.
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
# output bed profile
# t = time(hr)
# i = cross section number
# idxc = original cross seciton number
# xt = cross section location (ft or m)
# q = discharge (cfs or m^3/s)
# qlatf = lateral flow discharge (cfs or m^3/s)
# zb0 = original thalweg elevation (ft or m)
# zb = current thalweg elevation (ft or m)
# z = current water surface elevation (ft or m)
# zba = average bed elevation of the main channel (ft or m)
# fslope = friction slope (-)
# topw = top width (ft or m)
# hydrad = hydraulic radius (ft or m)
# d16 = sediment size d16 at bed layer 1 (mm)
# d35 = sediment size d35 at bed layer 1 (mm)
# d50 = sediment size d50 at bed layer 1 (mm)
# d84 = sediment size d84 at bed layer 1 (mm)
# tshear(j)= bed shear stress at sub-channel j (lb/ft2 or N/m2)
TITLE="bed profile"
variables=i,idxc,xt,q,qlatf,zb0,zb,z,zba,fslope,topw,hydrad,d16,d35,d50,d84,tshear01
ZONE T=" t =
0.0000, river # = 1 , river name =
"
# i idxc
xt
q
qlatf
zb0
zb
z
zba
fslope
topw
hydrad
d16
d35
d50
d84
tshear( 1)
1
1 5280.00000
14900.0000
0.00000000
1015.00000
1015.00000
1024.88162
1017.85714
0.101493530E-02 239.526475
9.06629021
0.399065856
1.16960984
2.35737208
13.3054437
0.00000000
2 #### 4752.00000
14900.0000
0.00000000
1014.50000
1014.50000
1024.33342
1017.35714
0.103201378E-02 239.333682
9.02537583
0.399065856
1.16960984
2.35737208
13.3054437
0.00000000
3 #### 4224.00000
14900.0000
0.00000000
1014.00000
1014.00000
1023.77271
1016.85714
0.105405617E-02 239.090831
8.97379946
0.399065856
1.16960984
2.35737208
13.3054437
0.00000000
4 #### 3696.00000
14900.0000
0.00000000
1013.50000
1013.50000
1023.19559
1016.35714
0.108293584E-02 238.782352
8.90822310
0.399065856
1.16960984
2.35737208
13.3054437
0.00000000
5 #### 3168.00000
14900.0000
0.00000000
1013.00000
1013.00000
1022.59652
1015.85714
0.112154560E-02 238.386078
8.82388063
0.399065856
1.16960984
2.35737208
13.3054437
0.00000000
6 #### 2640.00000
14900.0000
0.00000000
1012.50000
1012.50000
1021.96726
1015.35714
0.117462788E-02 237.869020
8.71365611
0.399065856
1.16960984
2.35737208
13.3054437
0.00000000
7 #### 2112.00000
14900.0000
0.00000000
1012.00000
1012.00000
1021.29477
1014.85714
0.125060040E-02 237.179097
8.56627127
0.399065856
1.16960984
2.35737208
13.3054437
0.00000000
8 #### 1584.00000
14900.0000
0.00000000
1011.50000
1011.50000
1020.55659
1014.35714
0.136623881E-02 236.226358
8.36215551
0.399065856
1.16960984
2.35737208
13.3054437
0.00000000
9 #### 1056.00000
14900.0000
0.00000000
1011.00000
1011.00000
1019.70792
1013.85714
0.156159373E-02 234.831671
8.06211188
0.399065856
1.16960984
2.35737208
13.3054437
0.00000000
10 #### 528.000000
14900.0000
0.00000000
1010.50000
1010.50000
1018.63196
1013.35714
0.197066844E-02 232.527829
7.56317602
0.399065856
1.16960984
2.35737208
13.3054437
0.00000000
11
2 0.00000000
14900.0000
0.00000000
1010.00000
1010.00000
1017.30233
1012.85714
0.283934320E-02 229.209332
6.83704588
0.399065856
1.16960984
2.35737208
13.3054437
0.00000000
ZONE T=" t =
0.0000, river # = 2 , river name =
"
# i idxc
xt
q
qlatf
zb0
zb
z
zba
fslope
topw
hydrad
d16
d35
d50
d84
tshear( 1)
1
1 5280.00000
7450.00000
0.00000000
1010.00000
1010.00000
1017.30233
1012.85714
0.710259637E-03 229.204189
6.83591367
0.399065856
1.16960984
2.35737208
13.3054437
0.00000000
Appendix D/Example 2
D25
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
2 ####
1016.95587
1.16960984
3 ####
1016.63729
1.16960984
4 ####
1016.34796
1.16960984
5 ####
1016.08770
1.16960984
6 ####
1015.85603
1.16960984
7 ####
1015.65117
1.16960984
8 ####
1015.47137
1.16960984
9 ####
1015.31398
1.16960984
10 ####
1015.17700
1.16960984
11
2
1015.05748
1.16960984
ZONE T=" t
# i idxc
z
d35
1
1
1017.30233
1.16960984
2 ####
1016.95587
1.16960984
3 ####
1016.63729
1.16960984
4 ####
1016.34796
1.16960984
5 ####
1016.08770
1.16960984
6 ####
1015.85603
1.16960984
7 ####
1015.65117
1.16960984
8 ####
1015.47137
1.16960984
9 ####
1015.31398
1.16960984
10 ####
1015.17700
1.16960984
11
2
1015.05748
1.16960984
ZONE T=" t
# i idxc
z
d35
1
1
1015.05748
1.16960984
D26
4752.00000
7450.00000
0.00000000
1012.35714
0.661839740E-03 229.818667
2.35737208
13.3054437
0.00000000
4224.00000
7450.00000
0.00000000
1011.85714
0.610005450E-03 230.544220
2.35737208
13.3054437
0.00000000
3696.00000
7450.00000
0.00000000
1011.35714
0.556145333E-03 231.387529
2.35737208
13.3054437
0.00000000
3168.00000
7450.00000
0.00000000
1010.85714
0.502105932E-03 232.346634
2.35737208
13.3054437
0.00000000
2640.00000
7450.00000
0.00000000
1010.35714
0.449344693E-03 233.420843
2.35737208
13.3054437
0.00000000
2112.00000
7450.00000
0.00000000
1009.85714
0.399298217E-03 234.601670
2.35737208
13.3054437
0.00000000
1584.00000
7450.00000
0.00000000
1009.35714
0.352802360E-03 235.883466
2.35737208
13.3054437
0.00000000
1056.00000
7450.00000
0.00000000
1008.85714
0.310507044E-03 237.254210
2.35737208
13.3054437
0.00000000
528.000000
7450.00000
0.00000000
1008.35714
0.272519065E-03 238.707709
2.35737208
13.3054437
0.00000000
0.00000000
7450.00000
0.00000000
1007.85714
0.238904291E-03 240.229934
2.35737208
13.3054437
0.00000000
=
0.0000, river # = 3 , river name =
xt
q
qlatf
zba
fslope
topw
d50
d84
tshear( 1)
5280.00000
7450.00000
0.00000000
1012.85714
0.710259637E-03 229.204189
2.35737208
13.3054437
0.00000000
4752.00000
7450.00000
0.00000000
1012.35714
0.661839740E-03 229.818667
2.35737208
13.3054437
0.00000000
4224.00000
7450.00000
0.00000000
1011.85714
0.610005450E-03 230.544220
2.35737208
13.3054437
0.00000000
3696.00000
7450.00000
0.00000000
1011.35714
0.556145333E-03 231.387529
2.35737208
13.3054437
0.00000000
3168.00000
7450.00000
0.00000000
1010.85714
0.502105932E-03 232.346634
2.35737208
13.3054437
0.00000000
2640.00000
7450.00000
0.00000000
1010.35714
0.449344693E-03 233.420843
2.35737208
13.3054437
0.00000000
2112.00000
7450.00000
0.00000000
1009.85714
0.399298217E-03 234.601670
2.35737208
13.3054437
0.00000000
1584.00000
7450.00000
0.00000000
1009.35714
0.352802360E-03 235.883466
2.35737208
13.3054437
0.00000000
1056.00000
7450.00000
0.00000000
1008.85714
0.310507044E-03 237.254210
2.35737208
13.3054437
0.00000000
528.000000
7450.00000
0.00000000
1008.35714
0.272519065E-03 238.707709
2.35737208
13.3054437
0.00000000
0.00000000
7450.00000
0.00000000
1007.85714
0.238904291E-03 240.229934
2.35737208
13.3054437
0.00000000
=
0.0000, river # = 4 , river name =
xt
q
qlatf
zba
fslope
topw
d50
d84
tshear( 1)
5280.00000
14900.0000
0.00000000
1007.85714
0.955617162E-03 240.229934
2.35737208
13.3054437
0.00000000
GSTAR-1D User’s Manual
1009.50000
1009.50000
6.97105017
0.399065856
1009.00000
1009.00000
7.13021430
0.399065856
1008.50000
1008.50000
7.31467075
0.399065856
1008.00000
1008.00000
7.52375776
0.399065856
1007.50000
1007.50000
7.75706759
0.399065856
1007.00000
1007.00000
8.01248759
0.399065856
1006.50000
1006.50000
8.28852584
0.399065856
1006.00000
1006.00000
8.58233469
0.399065856
1005.50000
1005.50000
8.89234506
0.399065856
1005.00000
1005.00000
9.21534890
0.399065856
"
zb0
hydrad
zb
d16
1010.00000
1010.00000
6.83591367
0.399065856
1009.50000
1009.50000
6.97105017
0.399065856
1009.00000
1009.00000
7.13021430
0.399065856
1008.50000
1008.50000
7.31467075
0.399065856
1008.00000
1008.00000
7.52375776
0.399065856
1007.50000
1007.50000
7.75706759
0.399065856
1007.00000
1007.00000
8.01248759
0.399065856
1006.50000
1006.50000
8.28852584
0.399065856
1006.00000
1006.00000
8.58233469
0.399065856
1005.50000
1005.50000
8.89234506
0.399065856
1005.00000
1005.00000
9.21534890
0.399065856
"
zb0
hydrad
zb
d16
1005.00000
1005.00000
9.21534890
0.399065856
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
2 #### 4752.00000
14900.0000
0.00000000
1004.50000
1014.55149
1007.35714
0.957565225E-03 240.205948
9.21027237
1.16960984
2.35737208
13.3054437
0.00000000
3 #### 4224.00000
14900.0000
0.00000000
1004.00000
1014.04413
1006.85714
0.959960797E-03 240.176539
9.20404726
1.16960984
2.35737208
13.3054437
0.00000000
4 #### 3696.00000
14900.0000
0.00000000
1003.50000
1013.53511
1006.35714
0.962911104E-03 240.140448
9.19640715
1.16960984
2.35737208
13.3054437
0.00000000
5 #### 3168.00000
14900.0000
0.00000000
1003.00000
1013.02403
1005.85714
0.966551343E-03 240.096112
9.18702045
1.16960984
2.35737208
13.3054437
0.00000000
6 #### 2640.00000
14900.0000
0.00000000
1002.50000
1012.51039
1005.35714
0.971053171E-03 240.041579
9.17547276
1.16960984
2.35737208
13.3054437
0.00000000
7 #### 2112.00000
14900.0000
0.00000000
1002.00000
1011.99360
1004.85714
0.976636395E-03 239.974396
9.16124341
1.16960984
2.35737208
13.3054437
0.00000000
8 #### 1584.00000
14900.0000
0.00000000
1001.50000
1011.47287
1004.35714
0.983585411E-03 239.891465
9.14367407
1.16960984
2.35737208
13.3054437
0.00000000
9 #### 1056.00000
14900.0000
0.00000000
1001.00000
1010.94721
1003.85714
0.992272874E-03 239.788839
9.12192555
1.16960984
2.35737208
13.3054437
0.00000000
10 #### 528.000000
14900.0000
0.00000000
1000.50000
1010.41536
1003.35714
0.100319472E-02 239.661446
9.09491745
1.16960984
2.35737208
13.3054437
0.00000000
11
2 0.00000000
14900.0000
0.00000000
1000.00000
1009.88000
1002.85714
0.101550298E-02 239.520000
9.06491650
1.16960984
2.35737208
13.3054437
0.00000000
ZONE T=" t =
2400.0000, river # = 1 , river name =
# i idxc
xt
q
qlatf
zb0
z
zba
fslope
topw
hydrad
d35
d50
d84
tshear( 1)
1
1 5280.00000
14900.0000
0.00000000
1015.00000
1025.58725
1018.56680
0.105514870E-02 240.000725
8.95058880
1.02941316
2.21875676
12.4653206
0.589572252
2 #### 4752.00000
14900.0000
0.00000000
1014.50000
1025.03456
1018.00568
0.104871087E-02 240.000371
8.96704521
1.01351668
2.18620855
12.5546279
0.587052432
3 #### 4224.00000
14900.0000
0.00000000
1014.00000
1024.48528
1017.44751
0.104229332E-02 240.000409
8.98357220
0.996944372
2.15069915
12.6581581
0.584535350
4 #### 3696.00000
14900.0000
0.00000000
1013.50000
1023.93959
1016.89178
0.103558210E-02 240.000045
9.00100670
0.979005462
2.11103672
12.7620312
0.581898691
5 #### 3168.00000
14900.0000
0.00000000
1013.00000
1023.39753
1016.33890
0.102875813E-02 240.000545
9.01886567
0.961029055
2.06772046
12.8329431
0.579211211
6 #### 2640.00000
14900.0000
0.00000000
1012.50000
1022.85904
1015.78921
0.102198264E-02 240.000217
9.03676945
0.943501145
2.02235857
12.8535498
0.576538725
7 #### 2112.00000
14900.0000
0.00000000
1012.00000
1022.32395
1015.24303
0.101548030E-02 240.000110
9.05409241
0.926975921
1.97798847
12.8287198
0.573968671
8 #### 1584.00000
14900.0000
0.00000000
1011.50000
1021.79198
1014.70060
0.100945145E-02 240.000120
9.07028079
0.911927222
1.93775022
12.7736355
0.571581195
9 #### 1056.00000
14900.0000
0.00000000
1011.00000
1021.26278
1014.16188
0.100399880E-02 240.000483
9.08502257
0.898541744
1.90207765
12.6988327
0.569417706
10 #### 528.000000
14900.0000
0.00000000
1010.50000
1020.73611
1013.62658
0.999079819E-03 240.000072
9.09842792
0.886670411
1.87054279
12.6053231
0.567463990
11
2 0.00000000
14900.0000
0.00000000
1010.00000
1020.20969
1013.09705
0.996542360E-03 240.000030
9.10537281
0.880086639
1.85326140
12.5051771
0.566454796
ZONE T=" t =
2400.0000, river # = 2 , river name =
# i idxc
xt
q
qlatf
zb0
z
zba
fslope
topw
hydrad
d35
d50
d84
tshear( 1)
1
1 5280.00000
7450.00000
0.00000000
1010.00000
1020.20969
1016.15121
0.130473213E-02 240.000454
5.54078878
1.01572153
2.22629864
29.1483976
0.451299358
1004.50000
0.399065856
1004.00000
0.399065856
1003.50000
0.399065856
1003.00000
0.399065856
1002.50000
0.399065856
1002.00000
0.399065856
1001.50000
0.399065856
1001.00000
0.399065856
1000.50000
0.399065856
1000.00000
0.399065856
"
zb
d16
1015.81270
0.309626715
1015.24285
0.305889106
1014.67632
0.302000140
1014.11245
0.297983626
1013.55174
0.293947930
1012.99458
0.290001199
1012.44142
0.286267774
1011.89255
0.282855143
1011.34796
0.279807283
1010.80731
0.277093100
1010.27365
0.275570480
"
zb
d16
1013.99185
0.315657045
Appendix D/Example 2
D27
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
2 #### 4752.00000
7450.00000
0.00000000
1009.50000
1019.57750
1015.40253
0.119174590E-02 240.000455
5.69341578
0.793491411
1.56815738
16.1363755
0.423573061
3 #### 4224.00000
7450.00000
0.00000000
1009.00000
1018.95479
1014.78311
0.117819372E-02 239.359802
5.72215345
0.771907041
1.51545483
15.3063711
0.420869997
4 #### 3696.00000
7450.00000
0.00000000
1008.50000
1018.33987
1014.17543
0.116113031E-02 237.947226
5.76769871
0.746817437
1.45452001
14.5776843
0.418076049
5 #### 3168.00000
7450.00000
0.00000000
1008.00000
1017.73745
1013.56756
0.113801910E-02 236.900483
5.81796102
0.711783283
1.36925282
13.4823950
0.413325426
6 #### 2640.00000
7450.00000
0.00000000
1007.50000
1017.15275
1012.95860
0.110528751E-02 236.202720
5.87951801
0.662837145
1.25083946
11.8301255
0.405684813
7 #### 2112.00000
7450.00000
0.00000000
1007.00000
1016.58938
1012.35282
0.106554013E-02 235.858800
5.94967230
0.606759373
1.11682919
9.93355380
0.395762482
8 #### 1584.00000
7450.00000
0.00000000
1006.50000
1016.04593
1011.76379
0.102890836E-02 235.744132
6.01419767
0.558975780
1.00433001
8.17628580
0.386301286
9 #### 1056.00000
7450.00000
0.00000000
1006.00000
1015.51592
1011.20036
0.100365496E-02 235.695986
6.05994383
0.528135069
0.929322899
6.74419281
0.379686186
10 #### 528.000000
7450.00000
0.00000000
1005.50000
1014.99324
1010.66089
0.990309244E-03 235.649207
6.08505350
0.512522018
0.891603300
5.89613850
0.376189783
11
2 0.00000000
7450.00000
0.00000000
1005.00000
1014.47220
1010.14190
0.985740927E-03 235.218657
6.10018977
0.507888971
0.880518375
5.61050832
0.375385848
ZONE T=" t =
2400.0000, river # = 3 , river name =
# i idxc
xt
q
qlatf
zb0
z
zba
fslope
topw
hydrad
d35
d50
d84
tshear( 1)
1
1 5280.00000
7450.00000
0.00000000
1010.00000
1020.20969
1016.15121
0.130473213E-02 240.000454
5.54078878
1.01572153
2.22629864
29.1483976
0.451299358
2 #### 4752.00000
7450.00000
0.00000000
1009.50000
1019.57750
1015.40253
0.119174590E-02 240.000455
5.69341578
0.793491411
1.56815738
16.1363755
0.423573061
3 #### 4224.00000
7450.00000
0.00000000
1009.00000
1018.95479
1014.78311
0.117819372E-02 239.359802
5.72215345
0.771907041
1.51545483
15.3063711
0.420869997
4 #### 3696.00000
7450.00000
0.00000000
1008.50000
1018.33987
1014.17543
0.116113031E-02 237.947226
5.76769871
0.746817437
1.45452001
14.5776843
0.418076049
5 #### 3168.00000
7450.00000
0.00000000
1008.00000
1017.73745
1013.56756
0.113801910E-02 236.900483
5.81796102
0.711783283
1.36925282
13.4823950
0.413325426
6 #### 2640.00000
7450.00000
0.00000000
1007.50000
1017.15275
1012.95860
0.110528751E-02 236.202720
5.87951801
0.662837145
1.25083946
11.8301255
0.405684813
7 #### 2112.00000
7450.00000
0.00000000
1007.00000
1016.58938
1012.35282
0.106554013E-02 235.858800
5.94967230
0.606759373
1.11682919
9.93355380
0.395762482
8 #### 1584.00000
7450.00000
0.00000000
1006.50000
1016.04593
1011.76379
0.102890836E-02 235.744132
6.01419767
0.558975780
1.00433001
8.17628580
0.386301286
9 #### 1056.00000
7450.00000
0.00000000
1006.00000
1015.51592
1011.20036
0.100365496E-02 235.695986
6.05994383
0.528135069
0.929322899
6.74419281
0.379686186
10 #### 528.000000
7450.00000
0.00000000
1005.50000
1014.99324
1010.66089
0.990309244E-03 235.649207
6.08505350
0.512522018
0.891603300
5.89613850
0.376189783
11
2 0.00000000
7450.00000
0.00000000
1005.00000
1014.47220
1010.14190
0.985740927E-03 235.218657
6.10018977
0.507888971
0.880518375
5.61050832
0.375385848
ZONE T=" t =
2400.0000, river # = 4 , river name =
# i idxc
xt
q
qlatf
zb0
z
zba
fslope
topw
hydrad
d35
d50
d84
tshear( 1)
1
1 5280.00000
14900.0000
0.00000000
1005.00000
1014.47220
1006.93092
0.822332333E-03 241.690240
9.60513694
0.534964449
0.967694879
6.07831321
0.493086020
D28
GSTAR-1D User’s Manual
1013.20064
0.263113938
1012.56193
0.257805035
1011.93082
0.251604178
1011.29948
0.240909213
1010.66682
0.225542200
1010.03864
0.208227100
1009.43131
0.193688486
1008.85513
0.184421036
1008.30791
0.179785295
1007.78124
0.178426777
"
zb
d16
1013.99185
0.315657045
1013.20064
0.263113938
1012.56193
0.257805035
1011.93082
0.251604178
1011.29948
0.240909213
1010.66682
0.225542200
1010.03864
0.208227100
1009.43131
0.193688486
1008.85513
0.184421036
1008.30791
0.179785295
1007.78124
0.178426777
"
zb
d16
1003.96786
0.183525995
•
•
•
•
•
•
•
•
•
•
2 #### 4752.00000
14900.0000
0.00000000
1004.50000
1014.03630
1006.49748
0.824633144E-03 241.675134
9.59744919
0.538208611
0.975379321
6.11432582
0.494069870
3 #### 4224.00000
14900.0000
0.00000000
1004.00000
1013.59928
1006.06111
0.826815585E-03 241.666944
9.59003721
0.541331166
0.982771236
5.72716853
0.494994882
4 #### 3696.00000
14900.0000
0.00000000
1003.50000
1013.15655
1005.63914
0.835066979E-03 241.587518
9.56339623
0.553779562
1.01294808
5.53310774
0.498545985
5 #### 3168.00000
14900.0000
0.00000000
1003.00000
1012.70697
1005.22138
0.846650048E-03 241.466467
9.52682001
0.571836653
1.05651986
5.49738623
0.503528039
6 #### 2640.00000
14900.0000
0.00000000
1002.50000
1012.25045
1004.80038
0.859362575E-03 241.329055
9.48756011
0.592484413
1.10670500
5.57695376
0.508982369
7 #### 2112.00000
14900.0000
0.00000000
1002.00000
1011.78701
1004.37661
0.871869417E-03 241.016933
9.45386229
0.613846994
1.15908153
5.72879750
0.514555800
8 #### 1584.00000
14900.0000
0.00000000
1001.50000
1011.31774
1003.93824
0.884372555E-03 241.042717
9.41296086
0.635401838
1.21230277
5.94006308
0.519676731
9 #### 1056.00000
14900.0000
0.00000000
1001.00000
1010.84237
1003.49212
0.896175803E-03 241.057881
9.37524170
0.656520936
1.26484256
6.17799425
0.524502362
10 #### 528.000000
14900.0000
0.00000000
1000.50000
1010.36127
1003.03869
0.907300640E-03 241.067188
9.34039005
0.677173788
1.31661626
6.43479322
0.529039369
1003.54026
0.184483296
1003.11100
0.185410659
1002.69808
0.188996218
1002.28988
0.194203189
1001.87805
0.200199973
1001.45828
0.206428496
1001.03109
0.212737581
1000.59479
0.218941138
1000.14992
0.225025715
11
2 0.00000000
14900.0000
0.00000000
1000.00000
999.684755
1009.88000
1002.56840
0.912321923E-03 241.082174
9.32459001
0.227624609
0.686225879
1.33971580
6.56041737
0.531067371
D2.2.4 CROSS SECTION GEOMETRY FILE (EXAMPLE2_OUT_XC.DAT)
Due to space limitation, only part of the file is printed here. Interested users may find the
complete file under directory Example 2.
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
# output cross section geometry
# due to disk space limitation, maxmium times of geometry printed is 30
# xc = cross section number
# t = time(hr)
# crosloc = transversal coordinate y of bed geometry (ft or m)
# bottom = vertical coordinate z of bed geometry (ft or m)
TITLE="cross section geometry"
VARIABLES=y,z
ZONE T=" t =
0.0000, river # = 1 , river name =
1"
#
crosloc
bottom
0.00000000
1035.00000
10.0000000
1030.00000
20.0000000
1025.00000
30.0000000
1020.00000
40.0000000
1015.00000
50.0000000
1015.00000
60.0000000
1015.00000
70.0000000
1015.00000
80.0000000
1015.00000
90.0000000
1015.00000
100.000000
1015.00000
110.000000
1015.00000
120.000000
1015.00000
130.000000
1015.00000
140.000000
1015.00000
150.000000
1015.00000
160.000000
1015.00000
170.000000
1015.00000
180.000000
1015.00000
190.000000
1015.00000
200.000000
1015.00000
, xc =
Appendix D/Example 2
D29
• 210.000000
• 220.000000
• 230.000000
• 240.000000
• 250.000000
• 260.000000
• 270.000000
• 280.000000
• ZONE T=" t =
2"
• #
crosloc
• 0.00000000
• 0.00000000
• 10.0000000
• 20.0000000
• 30.0000000
• 40.0000000
• 50.0000000
• 60.0000000
• 70.0000000
• 80.0000000
• 90.0000000
• 100.000000
• 110.000000
• 120.000000
• 130.000000
• 140.000000
• 150.000000
• 160.000000
• 170.000000
• 180.000000
• 190.000000
• 200.000000
• 210.000000
• 220.000000
• 230.000000
• 240.000000
• 250.000000
• 260.000000
• 270.000000
• 280.000000
• 280.000000
• ……
1015.00000
1015.00000
1015.00000
1015.00000
1020.00000
1025.00000
1030.00000
1035.00000
0.0000, river # =
1 , river name =
, xc =
bottom
1034.50000
1034.50000
1029.50000
1024.50000
1019.50000
1014.50000
1014.50000
1014.50000
1014.50000
1014.50000
1014.50000
1014.50000
1014.50000
1014.50000
1014.50000
1014.50000
1014.50000
1014.50000
1014.50000
1014.50000
1014.50000
1014.50000
1014.50000
1014.50000
1014.50000
1014.50000
1019.50000
1024.50000
1029.50000
1034.50000
1034.50000
D2.2.5 CUMULATIVE VOLUME OF DEPOSITION FILE (EXAMPLE2_OUT_VOLUME.DAT)
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
# cumulative volume of deposition in each sub-channel
# i = cross seciton number
# xt = cross seciton location (ft or m)
# ssumdM = cumulative material volume of deposition in main channel (ft^3 or m^3)
# ssumdF = cumulative material volume of deposition in floodplain (ft^3 or m^3)
# ssumdT = cumulative material volume of deposition for entire cross section (ft^3 or m^3)
# ssumdVM = cumulative bulk volume of deposition in main channel (ft^3 or m^3)
# ssumdVF = cumulative bulk volume of deposition in floodplain (ft^3 or m^3)
# ssumdVT = cumulative bulk volume of deposition for entire cross section (ft^3 or m^3)
# ssumdCT = cumulative bulk volume of consolidation for entire cross section (ft^3 or m^3)
# t=time(hr)
TITLE="deposition volume"
VARIABLES=xt,ssumdM,ssumdF,ssumdT,ssumdVM,ssumdVF,ssumdVT,ssumdCT
ZONE T=" t =
0.0000, river # = 1 , river name =
"
# i
xt
ssumdM
ssumdF
ssumdT
ssumdVM
ssumdVF
ssumdVT
ssumdCT
•
1
0.5280E+04
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
•
2
0.4752E+04
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
D30
GSTAR-1D User’s Manual
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
3
0.4224E+04
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
4
0.3696E+04
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
5
0.3168E+04
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
6
0.2640E+04
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
7
0.2112E+04
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
8
0.1584E+04
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
9
0.1056E+04
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
10
0.5280E+03
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
11
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
ZONE T=" t =
0.0000, river # = 2 , river name =
# i
xt
ssumdM
ssumdF
ssumdT
ssumdVT
ssumdCT
1
0.5280E+04
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
2
0.4752E+04
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
3
0.4224E+04
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
4
0.3696E+04
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
5
0.3168E+04
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
6
0.2640E+04
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
7
0.2112E+04
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
8
0.1584E+04
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
9
0.1056E+04
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
10
0.5280E+03
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
11
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
ZONE T=" t =
0.0000, river # = 3 , river name =
# i
xt
ssumdM
ssumdF
ssumdT
ssumdVT
ssumdCT
1
0.5280E+04
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
2
0.4752E+04
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
3
0.4224E+04
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
4
0.3696E+04
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
5
0.3168E+04
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
6
0.2640E+04
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
7
0.2112E+04
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
8
0.1584E+04
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
9
0.1056E+04
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
10
0.5280E+03
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
11
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
ZONE T=" t =
0.0000, river # = 4 , river name =
# i
xt
ssumdM
ssumdF
ssumdT
ssumdVT
ssumdCT
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
ssumdVM
"
ssumdVF
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
ssumdVM
"
ssumdVF
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
ssumdVM
"
ssumdVF
Appendix D/Example 2
D31
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
1
0.5280E+04
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
2
0.4752E+04
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
3
0.4224E+04
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
4
0.3696E+04
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
5
0.3168E+04
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
6
0.2640E+04
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
7
0.2112E+04
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
8
0.1584E+04
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
9
0.1056E+04
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
10
0.5280E+03
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
11
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
ZONE T=" t =
2400.0000, river # = 1 , river name =
# i
xt
ssumdM
ssumdF
ssumdT
ssumdVT
ssumdCT
1
0.5280E+04
0.3147E+05
0.0000E+00
0.3147E+05
0.5246E+05
0.1001E-07
2
0.4752E+04
0.5753E+05
0.0000E+00
0.5753E+05
0.9588E+05
0.2541E-07
3
0.4224E+04
0.5237E+05
0.0000E+00
0.5237E+05
0.8728E+05
0.2407E-07
4
0.3696E+04
0.4742E+05
0.0000E+00
0.4742E+05
0.7904E+05
0.2430E-07
5
0.3168E+04
0.4273E+05
0.0000E+00
0.4273E+05
0.7122E+05
0.2300E-07
6
0.2640E+04
0.3833E+05
0.0000E+00
0.3833E+05
0.6388E+05
0.1953E-07
7
0.2112E+04
0.3423E+05
0.0000E+00
0.3423E+05
0.5705E+05
0.2303E-07
8
0.1584E+04
0.3047E+05
0.0000E+00
0.3047E+05
0.5078E+05
0.2292E-07
9
0.1056E+04
0.2703E+05
0.0000E+00
0.2703E+05
0.4505E+05
0.2646E-07
10
0.5280E+03
0.2390E+05
0.0000E+00
0.2390E+05
0.3983E+05
0.2278E-07
11
0.0000E+00
0.1064E+05
0.0000E+00
0.1064E+05
0.1773E+05
0.8817E-08
ZONE T=" t =
2400.0000, river # = 2 , river name =
# i
xt
ssumdM
ssumdF
ssumdT
ssumdVT
ssumdCT
1
0.5280E+04
0.1461E+06
0.0000E+00
0.1461E+06
0.2435E+06
0.1253E-07
2
0.4752E+04
0.2701E+06
0.0000E+00
0.2701E+06
0.4502E+06
0.1893E-07
3
0.4224E+04
0.2595E+06
0.0000E+00
0.2595E+06
0.4326E+06
0.1719E-07
4
0.3696E+04
0.2500E+06
0.0000E+00
0.2500E+06
0.4167E+06
0.2011E-07
5
0.3168E+04
0.2404E+06
0.0000E+00
0.2404E+06
0.4007E+06
0.1921E-07
6
0.2640E+04
0.2308E+06
0.0000E+00
0.2308E+06
0.3846E+06
0.1644E-07
7
0.2112E+04
0.2214E+06
0.0000E+00
0.2214E+06
0.3690E+06
0.1655E-07
8
0.1584E+04
0.2135E+06
0.0000E+00
0.2135E+06
0.3558E+06
0.1708E-07
9
0.1056E+04
0.2079E+06
0.0000E+00
0.2079E+06
0.3464E+06
0.1993E-07
10
0.5280E+03
0.2044E+06
0.0000E+00
0.2044E+06
0.3406E+06
0.1885E-07
11
0.0000E+00
0.1013E+06
0.0000E+00
0.1013E+06
0.1689E+06
0.8495E-08
D32
GSTAR-1D User’s Manual
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
ssumdVM
"
ssumdVF
0.5246E+05
0.0000E+00
0.9588E+05
0.0000E+00
0.8728E+05
0.0000E+00
0.7904E+05
0.0000E+00
0.7122E+05
0.0000E+00
0.6388E+05
0.0000E+00
0.5705E+05
0.0000E+00
0.5078E+05
0.0000E+00
0.4505E+05
0.0000E+00
0.3983E+05
0.0000E+00
0.1773E+05
0.0000E+00
ssumdVM
"
ssumdVF
0.2435E+06
0.0000E+00
0.4502E+06
0.0000E+00
0.4326E+06
0.0000E+00
0.4167E+06
0.0000E+00
0.4007E+06
0.0000E+00
0.3846E+06
0.0000E+00
0.3690E+06
0.0000E+00
0.3558E+06
0.0000E+00
0.3464E+06
0.0000E+00
0.3406E+06
0.0000E+00
0.1689E+06
0.0000E+00
• ZONE T=" t =
2400.0000, river # = 3 , river
• # i
xt
ssumdM
ssumdF
ssumdVT
ssumdCT
•
1
0.5280E+04
0.1461E+06
0.0000E+00
0.2435E+06
0.1220E-07
•
2
0.4752E+04
0.2701E+06
0.0000E+00
0.4502E+06
0.2212E-07
•
3
0.4224E+04
0.2595E+06
0.0000E+00
0.4326E+06
0.2224E-07
•
4
0.3696E+04
0.2500E+06
0.0000E+00
0.4167E+06
0.1478E-07
•
5
0.3168E+04
0.2404E+06
0.0000E+00
0.4007E+06
0.1754E-07
•
6
0.2640E+04
0.2308E+06
0.0000E+00
0.3846E+06
0.1999E-07
•
7
0.2112E+04
0.2214E+06
0.0000E+00
0.3690E+06
0.1218E-07
•
8
0.1584E+04
0.2135E+06
0.0000E+00
0.3558E+06
0.1652E-07
•
9
0.1056E+04
0.2079E+06
0.0000E+00
0.3464E+06
0.2069E-07
•
10
0.5280E+03
0.2044E+06
0.0000E+00
0.3406E+06
0.1328E-07
•
11
0.0000E+00
0.1013E+06
0.0000E+00
0.1689E+06
0.8065E-08
• ZONE T=" t =
2400.0000, river # = 4 , river
• # i
xt
ssumdM
ssumdF
ssumdVT
ssumdCT
•
1
0.5280E+04
-0.4108E+05
0.0000E+00
0.6847E+05
0.7017E-08
•
2
0.4752E+04
-0.7626E+05
0.0000E+00
0.1271E+06
0.1447E-07
•
3
0.4224E+04
-0.7061E+05
0.0000E+00
0.1177E+06
0.1830E-07
•
4
0.3696E+04
-0.6369E+05
0.0000E+00
0.1061E+06
0.2107E-07
•
5
0.3168E+04
-0.5640E+05
0.0000E+00
0.9399E+05
0.1912E-07
•
6
0.2640E+04
-0.4939E+05
0.0000E+00
0.8231E+05
0.2352E-07
•
7
0.2112E+04
-0.4263E+05
0.0000E+00
0.7104E+05
0.1742E-07
•
8
0.1584E+04
-0.3716E+05
0.0000E+00
0.6193E+05
0.1952E-07
•
9
0.1056E+04
-0.3238E+05
0.0000E+00
0.5396E+05
0.2062E-07
•
10
0.5280E+03
-0.2825E+05
0.0000E+00
0.4708E+05
0.2178E-07
•
11
0.0000E+00
-0.1281E+05
0.0000E+00
0.2134E+05
0.7976E-08
name =
ssumdT
ssumdVM
"
ssumdVF
0.1461E+06
0.2435E+06
0.0000E+00
0.2701E+06
0.4502E+06
0.0000E+00
0.2595E+06
0.4326E+06
0.0000E+00
0.2500E+06
0.4167E+06
0.0000E+00
0.2404E+06
0.4007E+06
0.0000E+00
0.2308E+06
0.3846E+06
0.0000E+00
0.2214E+06
0.3690E+06
0.0000E+00
0.2135E+06
0.3558E+06
0.0000E+00
0.2079E+06
0.3464E+06
0.0000E+00
0.2044E+06
0.3406E+06
0.0000E+00
0.1013E+06
0.1689E+06
0.0000E+00
name =
ssumdT
ssumdVM
"
ssumdVF
-0.4108E+05
-0.6847E+05
0.0000E+00
-
-0.7626E+05
-0.1271E+06
0.0000E+00
-
-0.7061E+05
-0.1177E+06
0.0000E+00
-
-0.6369E+05
-0.1061E+06
0.0000E+00
-
-0.5640E+05
-0.9399E+05
0.0000E+00
-
-0.4939E+05
-0.8231E+05
0.0000E+00
-
-0.4263E+05
-0.7104E+05
0.0000E+00
-
-0.3716E+05
-0.6193E+05
0.0000E+00
-
-0.3238E+05
-0.5396E+05
0.0000E+00
-
-0.2825E+05
-0.4708E+05
0.0000E+00
-
-0.1281E+05
-0.2134E+05
0.0000E+00
-
D2.2.6 BED FRACTION FILE (EXAMPLE2_OUT_BEDFRACTION.DAT)
•
•
•
•
•
•
•
•
# fraction in each sub-channel
# bed material fraction in each sub-channel
# i = cross seciton number
# xt = cross seciton location (ft or m)
# pn(n,m) = bed material fraction of size m in layer n (1/1)
# t=time(hr)
TITLE="bed fraction"
VARIABLES=
i,xt,pn(01_01),pn(01_02),pn(01_03),pn(01_04),pn(01_05),pn(01_06),pn(01_07),pn(01_08),pn(01_09),
pn(01_10),pn(01_11)
• ZONE T=" t =
0.0000, river # = 1 , river name =
, subchannel = 1"
• # i
xt
pn( 1, 1)
pn( 1, 2)
pn( 1, 3)
pn( 1, 4)
pn( 1, 5)
pn( 1, 6)
pn( 1, 7)
pn( 1, 8)
pn( 1, 9)
pn( 1,10)
pn( 1,11)
•
1
0.5280E+04
0.0000E+00
0.1040E+00
0.8300E-01
0.1300E+00
0.1460E+00
0.1560E+00
0.1410E+00
0.1090E+00
0.8600E-01
0.3200E-01
0.1300E-01
Appendix D/Example 2
D33
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
2
0.4752E+04
0.0000E+00
0.1040E+00
0.8300E-01
0.1300E+00
0.1460E+00
0.1560E+00
0.1410E+00
0.1090E+00
0.8600E-01
0.3200E-01
0.1300E-01
3
0.4224E+04
0.0000E+00
0.1040E+00
0.8300E-01
0.1300E+00
0.1460E+00
0.1560E+00
0.1410E+00
0.1090E+00
0.8600E-01
0.3200E-01
0.1300E-01
4
0.3696E+04
0.0000E+00
0.1040E+00
0.8300E-01
0.1300E+00
0.1460E+00
0.1560E+00
0.1410E+00
0.1090E+00
0.8600E-01
0.3200E-01
0.1300E-01
5
0.3168E+04
0.0000E+00
0.1040E+00
0.8300E-01
0.1300E+00
0.1460E+00
0.1560E+00
0.1410E+00
0.1090E+00
0.8600E-01
0.3200E-01
0.1300E-01
6
0.2640E+04
0.0000E+00
0.1040E+00
0.8300E-01
0.1300E+00
0.1460E+00
0.1560E+00
0.1410E+00
0.1090E+00
0.8600E-01
0.3200E-01
0.1300E-01
7
0.2112E+04
0.0000E+00
0.1040E+00
0.8300E-01
0.1300E+00
0.1460E+00
0.1560E+00
0.1410E+00
0.1090E+00
0.8600E-01
0.3200E-01
0.1300E-01
8
0.1584E+04
0.0000E+00
0.1040E+00
0.8300E-01
0.1300E+00
0.1460E+00
0.1560E+00
0.1410E+00
0.1090E+00
0.8600E-01
0.3200E-01
0.1300E-01
9
0.1056E+04
0.0000E+00
0.1040E+00
0.8300E-01
0.1300E+00
0.1460E+00
0.1560E+00
0.1410E+00
0.1090E+00
0.8600E-01
0.3200E-01
0.1300E-01
10
0.5280E+03
0.0000E+00
0.1040E+00
0.8300E-01
0.1300E+00
0.1460E+00
0.1560E+00
0.1410E+00
0.1090E+00
0.8600E-01
0.3200E-01
0.1300E-01
11
0.0000E+00
0.0000E+00
0.1040E+00
0.8300E-01
0.1300E+00
0.1460E+00
0.1560E+00
0.1410E+00
0.1090E+00
0.8600E-01
0.3200E-01
0.1300E-01
ZONE T=" t =
0.0000, river # = 2 , river name =
, subchannel = 1"
# i
xt
pn( 1, 1)
pn( 1, 2)
pn( 1, 3)
pn( 1, 4)
pn( 1, 5)
pn( 1, 6)
pn( 1, 7)
pn( 1, 8)
pn( 1, 9)
pn( 1,10)
pn( 1,11)
1
0.5280E+04
0.0000E+00
0.1040E+00
0.8300E-01
0.1300E+00
0.1460E+00
0.1560E+00
0.1410E+00
0.1090E+00
0.8600E-01
0.3200E-01
0.1300E-01
2
0.4752E+04
0.0000E+00
0.1040E+00
0.8300E-01
0.1300E+00
0.1460E+00
0.1560E+00
0.1410E+00
0.1090E+00
0.8600E-01
0.3200E-01
0.1300E-01
3
0.4224E+04
0.0000E+00
0.1040E+00
0.8300E-01
0.1300E+00
0.1460E+00
0.1560E+00
0.1410E+00
0.1090E+00
0.8600E-01
0.3200E-01
0.1300E-01
4
0.3696E+04
0.0000E+00
0.1040E+00
0.8300E-01
0.1300E+00
0.1460E+00
0.1560E+00
0.1410E+00
0.1090E+00
0.8600E-01
0.3200E-01
0.1300E-01
5
0.3168E+04
0.0000E+00
0.1040E+00
0.8300E-01
0.1300E+00
0.1460E+00
0.1560E+00
0.1410E+00
0.1090E+00
0.8600E-01
0.3200E-01
0.1300E-01
6
0.2640E+04
0.0000E+00
0.1040E+00
0.8300E-01
0.1300E+00
0.1460E+00
0.1560E+00
0.1410E+00
0.1090E+00
0.8600E-01
0.3200E-01
0.1300E-01
7
0.2112E+04
0.0000E+00
0.1040E+00
0.8300E-01
0.1300E+00
0.1460E+00
0.1560E+00
0.1410E+00
0.1090E+00
0.8600E-01
0.3200E-01
0.1300E-01
8
0.1584E+04
0.0000E+00
0.1040E+00
0.8300E-01
0.1300E+00
0.1460E+00
0.1560E+00
0.1410E+00
0.1090E+00
0.8600E-01
0.3200E-01
0.1300E-01
9
0.1056E+04
0.0000E+00
0.1040E+00
0.8300E-01
0.1300E+00
0.1460E+00
0.1560E+00
0.1410E+00
0.1090E+00
0.8600E-01
0.3200E-01
0.1300E-01
10
0.5280E+03
0.0000E+00
0.1040E+00
0.8300E-01
0.1300E+00
0.1460E+00
0.1560E+00
0.1410E+00
0.1090E+00
0.8600E-01
0.3200E-01
0.1300E-01
11
0.0000E+00
0.0000E+00
0.1040E+00
0.8300E-01
0.1300E+00
0.1460E+00
0.1560E+00
0.1410E+00
0.1090E+00
0.8600E-01
0.3200E-01
0.1300E-01
ZONE T=" t =
0.0000, river # = 3 , river name =
, subchannel = 1"
# i
xt
pn( 1, 1)
pn( 1, 2)
pn( 1, 3)
pn( 1, 4)
pn( 1, 5)
pn( 1, 6)
pn( 1, 7)
pn( 1, 8)
pn( 1, 9)
pn( 1,10)
pn( 1,11)
1
0.5280E+04
0.0000E+00
0.1040E+00
0.8300E-01
0.1300E+00
0.1460E+00
0.1560E+00
0.1410E+00
0.1090E+00
0.8600E-01
0.3200E-01
0.1300E-01
2
0.4752E+04
0.0000E+00
0.1040E+00
0.8300E-01
0.1300E+00
0.1460E+00
0.1560E+00
0.1410E+00
0.1090E+00
0.8600E-01
0.3200E-01
0.1300E-01
3
0.4224E+04
0.0000E+00
0.1040E+00
0.8300E-01
0.1300E+00
0.1460E+00
0.1560E+00
0.1410E+00
0.1090E+00
0.8600E-01
0.3200E-01
0.1300E-01
4
0.3696E+04
0.0000E+00
0.1040E+00
0.8300E-01
0.1300E+00
0.1460E+00
0.1560E+00
0.1410E+00
0.1090E+00
0.8600E-01
0.3200E-01
0.1300E-01
5
0.3168E+04
0.0000E+00
0.1040E+00
0.8300E-01
0.1300E+00
0.1460E+00
0.1560E+00
0.1410E+00
0.1090E+00
0.8600E-01
0.3200E-01
0.1300E-01
6
0.2640E+04
0.0000E+00
0.1040E+00
0.8300E-01
0.1300E+00
0.1460E+00
0.1560E+00
0.1410E+00
0.1090E+00
0.8600E-01
0.3200E-01
0.1300E-01
7
0.2112E+04
0.0000E+00
0.1040E+00
0.8300E-01
0.1300E+00
0.1460E+00
0.1560E+00
0.1410E+00
0.1090E+00
0.8600E-01
0.3200E-01
0.1300E-01
8
0.1584E+04
0.0000E+00
0.1040E+00
0.8300E-01
0.1300E+00
0.1460E+00
0.1560E+00
0.1410E+00
0.1090E+00
0.8600E-01
0.3200E-01
0.1300E-01
9
0.1056E+04
0.0000E+00
0.1040E+00
0.8300E-01
0.1300E+00
0.1460E+00
0.1560E+00
0.1410E+00
0.1090E+00
0.8600E-01
0.3200E-01
0.1300E-01
10
0.5280E+03
0.0000E+00
0.1040E+00
0.8300E-01
0.1300E+00
0.1460E+00
0.1560E+00
0.1410E+00
0.1090E+00
0.8600E-01
0.3200E-01
0.1300E-01
11
0.0000E+00
0.0000E+00
0.1040E+00
0.8300E-01
0.1300E+00
0.1460E+00
0.1560E+00
0.1410E+00
0.1090E+00
0.8600E-01
0.3200E-01
0.1300E-01
D34
GSTAR-1D User’s Manual
• ZONE T=" t =
0.0000, river # = 4 , river name =
, subchannel = 1"
• # i
xt
pn( 1, 1)
pn( 1, 2)
pn( 1, 3)
pn( 1, 4)
pn( 1, 5)
pn( 1, 6)
pn( 1, 7)
pn( 1, 8)
pn( 1, 9)
pn( 1,10)
pn( 1,11)
•
1
0.5280E+04
0.0000E+00
0.1040E+00
0.8300E-01
0.1300E+00
0.1460E+00
0.1560E+00
0.1410E+00
0.1090E+00
0.8600E-01
0.3200E-01
0.1300E-01
•
2
0.4752E+04
0.0000E+00
0.1040E+00
0.8300E-01
0.1300E+00
0.1460E+00
0.1560E+00
0.1410E+00
0.1090E+00
0.8600E-01
0.3200E-01
0.1300E-01
•
3
0.4224E+04
0.0000E+00
0.1040E+00
0.8300E-01
0.1300E+00
0.1460E+00
0.1560E+00
0.1410E+00
0.1090E+00
0.8600E-01
0.3200E-01
0.1300E-01
•
4
0.3696E+04
0.0000E+00
0.1040E+00
0.8300E-01
0.1300E+00
0.1460E+00
0.1560E+00
0.1410E+00
0.1090E+00
0.8600E-01
0.3200E-01
0.1300E-01
•
5
0.3168E+04
0.0000E+00
0.1040E+00
0.8300E-01
0.1300E+00
0.1460E+00
0.1560E+00
0.1410E+00
0.1090E+00
0.8600E-01
0.3200E-01
0.1300E-01
•
6
0.2640E+04
0.0000E+00
0.1040E+00
0.8300E-01
0.1300E+00
0.1460E+00
0.1560E+00
0.1410E+00
0.1090E+00
0.8600E-01
0.3200E-01
0.1300E-01
•
7
0.2112E+04
0.0000E+00
0.1040E+00
0.8300E-01
0.1300E+00
0.1460E+00
0.1560E+00
0.1410E+00
0.1090E+00
0.8600E-01
0.3200E-01
0.1300E-01
•
8
0.1584E+04
0.0000E+00
0.1040E+00
0.8300E-01
0.1300E+00
0.1460E+00
0.1560E+00
0.1410E+00
0.1090E+00
0.8600E-01
0.3200E-01
0.1300E-01
•
9
0.1056E+04
0.0000E+00
0.1040E+00
0.8300E-01
0.1300E+00
0.1460E+00
0.1560E+00
0.1410E+00
0.1090E+00
0.8600E-01
0.3200E-01
0.1300E-01
•
10
0.5280E+03
0.0000E+00
0.1040E+00
0.8300E-01
0.1300E+00
0.1460E+00
0.1560E+00
0.1410E+00
0.1090E+00
0.8600E-01
0.3200E-01
0.1300E-01
•
11
0.0000E+00
0.0000E+00
0.1040E+00
0.8300E-01
0.1300E+00
0.1460E+00
0.1560E+00
0.1410E+00
0.1090E+00
0.8600E-01
0.3200E-01
0.1300E-01
• ZONE T=" t =
2400.0000, river # = 1 , river name =
, subchannel = 1"
• # i
xt
pn( 1, 1)
pn( 1, 2)
pn( 1, 3)
pn( 1, 4)
pn( 1, 5)
pn( 1, 6)
pn( 1, 7)
pn( 1, 8)
pn( 1, 9)
pn( 1,10)
pn( 1,11)
•
1
0.5280E+04
0.0000E+00
0.1332E+00
0.8678E-01
0.1245E+00
0.1322E+00
0.1558E+00
0.1396E+00
0.1062E+00
0.8170E-01
0.2992E-01
0.1014E-01
•
2
0.4752E+04
0.0000E+00
0.1345E+00
0.8750E-01
0.1254E+00
0.1331E+00
0.1518E+00
0.1387E+00
0.1061E+00
0.8202E-01
0.3051E-01
0.1035E-01
•
3
0.4224E+04
0.0000E+00
0.1359E+00
0.8827E-01
0.1264E+00
0.1340E+00
0.1475E+00
0.1377E+00
0.1061E+00
0.8237E-01
0.3123E-01
0.1056E-01
•
4
0.3696E+04
0.0000E+00
0.1374E+00
0.8908E-01
0.1274E+00
0.1349E+00
0.1432E+00
0.1365E+00
0.1061E+00
0.8281E-01
0.3184E-01
0.1075E-01
•
5
0.3168E+04
0.0000E+00
0.1390E+00
0.8993E-01
0.1284E+00
0.1359E+00
0.1394E+00
0.1349E+00
0.1061E+00
0.8331E-01
0.3199E-01
0.1093E-01
•
6
0.2640E+04
0.0000E+00
0.1406E+00
0.9078E-01
0.1295E+00
0.1369E+00
0.1367E+00
0.1330E+00
0.1060E+00
0.8386E-01
0.3154E-01
0.1110E-01
•
7
0.2112E+04
0.0000E+00
0.1421E+00
0.9162E-01
0.1306E+00
0.1379E+00
0.1351E+00
0.1307E+00
0.1058E+00
0.8440E-01
0.3065E-01
0.1124E-01
•
8
0.1584E+04
0.0000E+00
0.1435E+00
0.9240E-01
0.1316E+00
0.1388E+00
0.1343E+00
0.1283E+00
0.1052E+00
0.8484E-01
0.2961E-01
0.1137E-01
•
9
0.1056E+04
0.0000E+00
0.1449E+00
0.9312E-01
0.1325E+00
0.1397E+00
0.1343E+00
0.1261E+00
0.1043E+00
0.8512E-01
0.2866E-01
0.1146E-01
•
10
0.5280E+03
0.0000E+00
0.1461E+00
0.9378E-01
0.1333E+00
0.1404E+00
0.1345E+00
0.1244E+00
0.1030E+00
0.8516E-01
0.2789E-01
0.1152E-01
•
11
0.0000E+00
0.0000E+00
0.1468E+00
0.9415E-01
0.1337E+00
0.1408E+00
0.1348E+00
0.1237E+00
0.1023E+00
0.8515E-01
0.2761E-01
0.1086E-01
• ZONE T=" t =
2400.0000, river # = 2 , river name =
, subchannel = 1"
• # i
xt
pn( 1, 1)
pn( 1, 2)
pn( 1, 3)
pn( 1, 4)
pn( 1, 5)
pn( 1, 6)
pn( 1, 7)
pn( 1, 8)
pn( 1, 9)
pn( 1,10)
pn( 1,11)
•
1
0.5280E+04
0.0000E+00
0.1305E+00
0.8782E-01
0.1286E+00
0.1401E+00
0.8469E-01
0.8490E-01
0.8106E-01
0.1184E+00
0.1395E+00
0.4511E-02
•
2
0.4752E+04
0.0000E+00
0.1526E+00
0.1006E+00
0.1453E+00
0.1564E+00
0.9605E-01
0.9626E-01
0.9103E-01
0.1452E+00
0.1184E-01
0.4771E-02
•
3
0.4224E+04
0.0000E+00
0.1555E+00
0.1022E+00
0.1474E+00
0.1583E+00
0.9366E-01
0.9785E-01
0.9093E-01
0.1392E+00
0.1064E-01
0.4322E-02
•
4
0.3696E+04
0.0000E+00
0.1590E+00
0.1042E+00
0.1499E+00
0.1607E+00
0.8755E-01
0.9870E-01
0.9231E-01
0.1320E+00
0.1107E-01
0.4497E-02
•
5
0.3168E+04
0.0000E+00
0.1644E+00
0.1072E+00
0.1538E+00
0.1644E+00
0.8065E-01
0.9790E-01
0.9504E-01
0.1203E+00
0.1152E-01
0.4681E-02
•
6
0.2640E+04
0.0000E+00
0.1728E+00
0.1121E+00
0.1601E+00
0.1704E+00
0.7518E-01
0.9460E-01
0.9714E-01
0.1008E+00
0.1201E-01
0.4877E-02
•
7
0.2112E+04
0.0000E+00
0.1843E+00
0.1186E+00
0.1686E+00
0.1786E+00
0.7190E-01
0.8836E-01
0.9483E-01
0.7694E-01
0.1269E-01
0.5155E-02
•
8
0.1584E+04
0.0000E+00
0.1961E+00
0.1254E+00
0.1774E+00
0.1870E+00
0.7078E-01
0.8071E-01
0.8634E-01
0.5744E-01
0.1347E-01
0.5471E-02
Appendix D/Example 2
D35
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
9
0.1056E+04
0.0000E+00
0.2050E+00
0.1305E+00
0.1840E+00
0.1933E+00
0.7130E-01
0.7423E-01
0.7497E-01
0.4689E-01
0.1412E-01
0.5736E-02
10
0.5280E+03
0.0000E+00
0.2099E+00
0.1334E+00
0.1878E+00
0.1969E+00
0.7249E-01
0.7055E-01
0.6547E-01
0.4294E-01
0.1460E-01
0.5931E-02
11
0.0000E+00
0.0000E+00
0.2114E+00
0.1343E+00
0.1890E+00
0.1981E+00
0.7332E-01
0.6949E-01
0.6159E-01
0.4188E-01
0.1490E-01
0.6054E-02
ZONE T=" t =
2400.0000, river # = 3 , river name =
, subchannel = 1"
# i
xt
pn( 1, 1)
pn( 1, 2)
pn( 1, 3)
pn( 1, 4)
pn( 1, 5)
pn( 1, 6)
pn( 1, 7)
pn( 1, 8)
pn( 1, 9)
pn( 1,10)
pn( 1,11)
1
0.5280E+04
0.0000E+00
0.1305E+00
0.8782E-01
0.1286E+00
0.1401E+00
0.8469E-01
0.8490E-01
0.8106E-01
0.1184E+00
0.1395E+00
0.4511E-02
2
0.4752E+04
0.0000E+00
0.1526E+00
0.1006E+00
0.1453E+00
0.1564E+00
0.9605E-01
0.9626E-01
0.9103E-01
0.1452E+00
0.1184E-01
0.4771E-02
3
0.4224E+04
0.0000E+00
0.1555E+00
0.1022E+00
0.1474E+00
0.1583E+00
0.9366E-01
0.9785E-01
0.9093E-01
0.1392E+00
0.1064E-01
0.4322E-02
4
0.3696E+04
0.0000E+00
0.1590E+00
0.1042E+00
0.1499E+00
0.1607E+00
0.8755E-01
0.9870E-01
0.9231E-01
0.1320E+00
0.1107E-01
0.4497E-02
5
0.3168E+04
0.0000E+00
0.1644E+00
0.1072E+00
0.1538E+00
0.1644E+00
0.8065E-01
0.9790E-01
0.9504E-01
0.1203E+00
0.1152E-01
0.4681E-02
6
0.2640E+04
0.0000E+00
0.1728E+00
0.1121E+00
0.1601E+00
0.1704E+00
0.7518E-01
0.9460E-01
0.9714E-01
0.1008E+00
0.1201E-01
0.4877E-02
7
0.2112E+04
0.0000E+00
0.1843E+00
0.1186E+00
0.1686E+00
0.1786E+00
0.7190E-01
0.8836E-01
0.9483E-01
0.7694E-01
0.1269E-01
0.5155E-02
8
0.1584E+04
0.0000E+00
0.1961E+00
0.1254E+00
0.1774E+00
0.1870E+00
0.7078E-01
0.8071E-01
0.8634E-01
0.5744E-01
0.1347E-01
0.5471E-02
9
0.1056E+04
0.0000E+00
0.2050E+00
0.1305E+00
0.1840E+00
0.1933E+00
0.7130E-01
0.7423E-01
0.7497E-01
0.4689E-01
0.1412E-01
0.5736E-02
10
0.5280E+03
0.0000E+00
0.2099E+00
0.1334E+00
0.1878E+00
0.1969E+00
0.7249E-01
0.7055E-01
0.6547E-01
0.4294E-01
0.1460E-01
0.5931E-02
11
0.0000E+00
0.0000E+00
0.2114E+00
0.1343E+00
0.1890E+00
0.1981E+00
0.7332E-01
0.6949E-01
0.6159E-01
0.4188E-01
0.1490E-01
0.6054E-02
ZONE T=" t =
2400.0000, river # = 4 , river name =
, subchannel = 1"
# i
xt
pn( 1, 1)
pn( 1, 2)
pn( 1, 3)
pn( 1, 4)
pn( 1, 5)
pn( 1, 6)
pn( 1, 7)
pn( 1, 8)
pn( 1, 9)
pn( 1,10)
pn( 1,11)
1
0.5280E+04
0.0000E+00
0.2059E+00
0.1270E+00
0.1754E+00
0.1796E+00
0.1009E+00
0.8481E-01
0.6048E-01
0.1760E-01
0.3286E-01
0.1544E-01
2
0.4752E+04
0.0000E+00
0.2049E+00
0.1265E+00
0.1749E+00
0.1791E+00
0.1037E+00
0.8319E-01
0.5783E-01
0.1755E-01
0.3638E-01
0.1597E-01
3
0.4224E+04
0.0000E+00
0.2040E+00
0.1260E+00
0.1743E+00
0.1787E+00
0.1140E+00
0.8302E-01
0.5587E-01
0.1779E-01
0.3047E-01
0.1583E-01
4
0.3696E+04
0.0000E+00
0.2004E+00
0.1242E+00
0.1721E+00
0.1766E+00
0.1272E+00
0.8427E-01
0.5423E-01
0.1798E-01
0.2741E-01
0.1556E-01
5
0.3168E+04
0.0000E+00
0.1956E+00
0.1216E+00
0.1689E+00
0.1737E+00
0.1399E+00
0.8760E-01
0.5304E-01
0.1816E-01
0.2612E-01
0.1527E-01
6
0.2640E+04
0.0000E+00
0.1905E+00
0.1189E+00
0.1656E+00
0.1706E+00
0.1497E+00
0.9308E-01
0.5253E-01
0.1844E-01
0.2560E-01
0.1498E-01
7
0.2112E+04
0.0000E+00
0.1856E+00
0.1163E+00
0.1623E+00
0.1676E+00
0.1562E+00
0.1001E+00
0.5290E-01
0.1891E-01
0.2521E-01
0.1474E-01
8
0.1584E+04
0.0000E+00
0.1811E+00
0.1138E+00
0.1593E+00
0.1648E+00
0.1595E+00
0.1077E+00
0.5420E-01
0.1967E-01
0.2536E-01
0.1451E-01
9
0.1056E+04
0.0000E+00
0.1769E+00
0.1116E+00
0.1565E+00
0.1623E+00
0.1607E+00
0.1148E+00
0.5651E-01
0.2082E-01
0.2554E-01
0.1432E-01
10
0.5280E+03
0.0000E+00
0.1731E+00
0.1095E+00
0.1539E+00
0.1599E+00
0.1606E+00
0.1209E+00
0.5974E-01
0.2241E-01
0.2572E-01
0.1416E-01
11
0.0000E+00
0.0000E+00
0.1716E+00
0.1086E+00
0.1528E+00
0.1588E+00
0.1601E+00
0.1234E+00
0.6149E-01
0.2329E-01
0.2581E-01
0.1409E-01
D36
GSTAR-1D User’s Manual
D2.3 Final Remarks
1030
1025
Elevation (ft)
1020
1015
1010
1005
Initial Water Surface Elevation
Final Water Surface
1000
Initial Bed Profile
Final Bed Profile
995
0
2000
4000
6000
8000
10000
12000
14000
16000
Channel Distance (ft)
Figure D2.2 Bed elevation and water surface
Figure D2.2 shows the initial and final bed elevation and water surface elevation profiles. The
middle section is the profiles for river 2 and 3, which are identical in the calculation. Due to
larger conveyances and lower energy slopes in rivers 2 and 3, the sediment transport capacity is
lower and sediment deposition occurs in rivers 2 and 3. The lower section expericnces erosions
because some of the sediments are deposited in rivers 2 and 3, and there is not enough sediment
supply. The deposition in river 2 and 3 also raises the water surface elevation in river 1,
resulting in sediment deposition in river 1.
Appendix D/Example 2
D37
(This page intentionally left blank)
D38
GSTAR-1D User’s Manual
EXAMPLE 3
CALIFORNIA AQUEDUCT
This example illustrates the use of the unsteady flow and sediment transport features of GSTAR1D. In this example, the model was applied to the California Aqueduct near Arroyo Pasajero to
study the influence of rainfall-runoff on sedimentation (Klumpp, et al., 2003). An unsteady flow
and unsteady sediment model was used to simulate a duration of 2000 hrs. The studied reach of
the California Aqueduct, or San Luis Canal (SLC), extends 75 miles from Check Structure 15 to
Check Structure 21. The SLC was designed and built to distribute water for both agricultural
and municipal uses. It was built with drain inlet structures to capture floodwaters generated west
of the SLC. Rainfall-runoff is admitted to the SLC when the capacity of ponding areas or bypass
structures is exceeded. The runoff carries many tons of sediment into the aqueduct. The input
data includes the cross-section geometry, the six check structures and their radial gate operations.
The flow in the canal prior to the flood is assumed to be 2000 cfs. In this example, only one of
the six later inflows that carry storm water into the aqueduct is modeled.
The lateral inflow is modeled in terms of discharge hydrograph and sediment inflow. The bed
material along the aqueduct is approximately 2% sand (non-cohesive sediment) and 98% silt and
clay (cohesive sediment).
An equilibrium sediment concentration for partial deposition of 265 mg/l was observed at the
downstream end of the channel, therefore an equilibrium concentration of 265 mg/l was used in
the model.
The present model used a modified version of Eq. (D3.1) for surface erosion
⎧
τ −τ c
c
⎪ Pse ( c sec ) τ ≥ τ se
Qse = ⎨ τ me − τ se
⎪0
τ < τ sec
⎩
c
where τ sec , τ me
(D3.1)
= critical surface and mass erosion shear stress, respectively.
The modified relationship is more consistent with the mass erosion rate used below. The
parameters τ sec and Pse are site-specific and have to be determined experimentally. Mass erosion
is usually arbitrarily dependent on the model setup and its time scale used. The presented
example takes the similar equation for mass erosion as the surface erosion.
Appendix D/Example 3
D39
c
τ − τ me
Qme = Pme ( c ) + Pse
τ me
where Qme
τ and τ
c
me
Pme
c
τ ≥ τ me
(D3.2)
= mass erosion rate,
= bed shear stress and critical mass erosion shear stress, respectively, and
= mass erosion constant.
Because physical experiments were not performed, the cohesive sediment transport parameters
were calibrated to the available observations. The critical shear stresses for full deposition,
partial deposition, surface erosion, and mass erosion were determined from the observations in
the channel during various discharges. These parameters are listed in Table D3.1.
Process
Full deposition
Partial deposition
Surface erosion
Mass erosion
Discharge
(cfs)
2,000
2,000
8,000
>>10,000
Shear Stress
(lb/ft2)
0.003
0.003
0.005
0.01
Table D3.1.— Cohesive sediment parameters for erosion and deposition
The surface erosion rate was calibrated and found to equal 0.3 lb/ft2/hr. The settling velocities
are found in Figure 3.4.
The parameters used in this example are listed in Table D3.2.
Point
1
2
3
4
C (mg/l)
200
6,000
20,000
100,000
V (mm/s)
0.2
0.2
0.35
0.35
Table D3.2.— Cohesive sediment parameters for fall velocity used in the GSTAR-1D
example.
D3.1 Input Data File (Example3.txt)
The files shown in this and the next sections are part of the main GSTAR-1D distribution
package. They can be found under directory Example3.
YTT
PROBLEM San Luis Canal - Flooding of Arroyo Pasajero
YTT
lateral inflows and radial gates
YTT
EOM
****************************************************************************************
***
Note: This is a simplified version of the datafile used to sim
***
***
the San Luis Canal. It may not represent the actual flow and
***
***
geological conditions a the site, and is used here only as an e
***
***
of input data as it might be used in a GSTARS-1D simulation.
***
***
This file was constructed for didactic purposes only.
***
****************************************************************************************
***
nriv
nf
nlay
D40
GSTAR-1D-1D User’s Manual
YNR
***
YSL
***
YFP
***
YTM
***
YDT
YDT
***
***
UFB
***
U02
U02
U02
U02
U02
U02
U02
U02
U02
U02
U02
***
DFB
***
D03
D03
D03
D03
D03
D03
D03
***
INF
***
IFB
***
I08
0
***
I8B
***
IFB
***
I08
0
***
I8B
***
IFB
***
I08
0
***
I8B
***
IFB
***
I08
0
***
I8B
***
IFB
***
I08
0
***
I8B
***
IFB
***
I08
0
***
I8B
***
IFB
1
isolve
4
isolves
4
KFLP
2
EPSY
2 5.00E-04
F1
XFACT
1
METRIC
1
YZ
0
1
38
38
43
43
BE
0.72
HE
0.62
qmin
0
0
THE
iHotSt
2000
0
TDT
DT
DTPLT
xcplt
0 5.00E-03
10
36
37
1000 5.00E-03
10
36
37
Start of River 1
KU(J)
2
T1
ST1
0
2000
! 5/21/01 0:00
650
2000
660
5600
670
6000
680
6400
690
6800
700
7200
740
7600
760
8000
770
8300
3000
8300
KD(J)
3
FLOWR
ELEVR
0.00
289.00
100.00
305.00
500.00
306.00
1000.00
308.00
2500.00
314.00
10000.00
315.00
20000.00
316.00
NKI(J) b.c. for internal station
8
NXI(J,nk)KI(J,nk) XTI(J,NK)
Check 15
9
8
0
C
W
T
Zsp
TE
0.70
100.00
28.00
303.50
0.16
WSEOpen WSEClose OpenRate CloseRate MaxOpen MinOpen InitOpen
326.00
325.00
0.10
0.10
28.00
2.00
3.00
NXI(J,nk)KI(J,nk) XTI(J,NK)
Check 16
23
8
0
C
W
T
Zsp
TE
BE
HE
0.70
100.00
28.00
298.00
0.16
0.72
0.62
WSEOpen WSEClose OpenRate CloseRate MaxOpen MinOpen InitOpen
324.00
323.00
0.10
0.10
28.00
2.00
5.00
NXI(J,nk)KI(J,nk) XTI(J,NK)
Check 17
33
8
0
C
W
T
Zsp
TE
BE
HE
0.70
100.00
28.00
296.10
0.16
0.72
0.62
WSEOpen WSEClose OpenRate CloseRate MaxOpen MinOpen InitOpen
321.00
319.50
0.10
0.10
27.00
2.00
3.00
NXI(J,nk)KI(J,nk) XTI(J,NK)
Check 18
45
8
0
C
W
T
Zsp
TE
BE
HE
0.70
100.00
27.00
292.30
0.16
0.72
0.62
WSEOpen WSEClose OpenRate CloseRate MaxOpen MinOpen InitOpen
320.00
318.00
0.10
0.10
26.00
2.00
3.00
NXI(J,nk)KI(J,nk) XTI(J,NK)
Check 19
57
8
0
C
W
T
Zsp
TE
BE
HE
0.70
75.00
27.00
292.30
0.16
0.72
0.62
WSEOpen WSEClose OpenRate CloseRate MaxOpen MinOpen InitOpen
318.00
317.00
0.10
0.10
25.00
2.00
5.00
NXI(J,nk)KI(J,nk) XTI(J,NK)
Check 20
68
8
0
C
W
T
Zsp
TE
BE
HE
0.70
75.00
27.00
291.20
0.16
0.72
0.62
Cw
GDIR
3
Cw
GTYPE
0
GDIR
3
Cw
GTYPE
0
GDIR
3
Cw
GTYPE
0
GDIR
3
Cw
GTYPE
0
GDIR
3
Cw
GTYPE
0
GDIR
3
GTYPE
0
WSEOpen WSEClose OpenRate CloseRate MaxOpen MinOpen InitOpen
317.00
313.00
0.10
0.10
25.00
2.00
7.00
NXI(J,nk)KI(J,nk) XTI(J,NK)
Check 21
79
8
0
Appendix D/Example 3
D41
***
I08
0
***
I8B
***
IFB
***
I08
1
***
I8B
***
LNF
***
LFL
***
LFD
LFD
LFD
LFD
LFD
LFD
LFD
LFD
LFD
LFD
LFD
LFD
LFD
LFD
LFD
LFD
LFD
LFD
LFD
LFD
LFD
LFD
LFD
LFD
LFD
LFD
LFD
LFD
LFD
***
15
XIN
***
XST
***
XSP
336.5
XSP
***
XRH
***
XOX
***
XFL
***
XSL
***
XIN
***
XST
***
XSP
335.71
XSP
***
XRH
***
XOX
***
XFL
***
XSL
***
XIN
D42
C
0.70
W
75.00
T
30.00
Zsp
289.50
TE
0.16
BE
0.72
HE
0.62
WSEOpen WSEClose OpenRate CloseRate MaxOpen MinOpen InitOpen
315.00
311.00
0.10
0.10
24.00
2.00
24.00
NXI(J,nk)KI(J,nk) XTI(J,NK)
Lateral Weir
76
8
100
C
W
T
Zsp
TE
BE
HE
0.70
90.00
25.00
309.00
0.00
0.00
0.60
Cw
GDIR
3
Cw
3.7
GTYPE
0
GDIR
GTYPE
1
WSEOpen WSEClose OpenRate CloseRate MaxOpen MinOpen InitOpen
314.00
313.00
0.10
0.10
7.00
0.00
0.00
NKQF(J) non-point flow source
1
X1QF(J,nkX2QF(J,nk)
Lateral 1
192414.5
180000
t3
ST3
199.99
0
!
200
2
! 5/28/01 0:00
284
905
! 5/31/01 12:00
288
937
! 5/31/01 16:00
292
969
! 5/31/01 20:00
296
1002
! 6/1/01 0:00
300
1002
! 6/1/01 4:00
304
1002
! 6/1/01 8:00
308
1002
! 6/1/01 12:00
312
969
! 6/1/01 16:00
316
969
! 6/1/01 20:00
320
969
! 6/2/01 0:00
324
937
! 6/2/01 4:00
404
937
! 6/5/01 12:00
408
905
! 6/5/01 16:00
412
874
! 6/5/01 20:00
416
814
! 6/6/01 0:00
420
756
! 6/6/01 4:00
424
684
! 6/6/01 8:00
428
520
! 6/6/01 12:00
452
305
! 6/7/01 12:00
456
242
! 6/7/01 16:00
460
242
! 6/7/01 20:00
464
242
! 6/8/01 0:00
468
242
! 6/8/01 4:00
472
242
! 6/8/01 8:00
476
184
! 6/8/01 12:00
596
184
! 6/13/01 12:00
600
0
FLDST
ZDI
QDI --------cross section
1beginning
MP
95.11
0
0
0
xt
bec ninterp
iHotC
395338.09
0
0
0
station elevation
data
0
336.5
100
336.5
159.8
306.6
244.8
306.6
304.6
404.6
336.5
xloc_rcoe
rcoef
0
0.015
100
0.015
locl_ob locl_ob
100
304.6
fkec
0
xl
yl
xr
yr
100
336.5
304.6
336.5
FLDST
ZDI
QDI --------0
0
0
location
bec ninterp
iHotC
386230.91
0
0
0
station elevation
data
0
335.71
100
335.71
304.6
404.6
xloc_rcoe
0
bankl
100
fkec
0
xl
100
FLDST
0
335.71
rcoef
0.015
bankr
304.6
yl
335.71
ZDI
0
100
0.015
xr
yr
304.6
335.71
QDI --------0
GSTAR-1D-1D User’s Manual
304.6
cross
0.015
section
159.8
305.81
304.6
0.015
cross
of
section
2
244.8
3
305.81
pool
***
XST
***
XSP
335.23
XSP
***
XRH
***
XOX
***
XFL
***
XSL
***
XIN
***
XST
***
XSP
334.96
XSP
***
XRH
***
XOX
***
XFL
***
XSL
***
XIN
***
XST
***
XSP
334.26
XSP
***
XRH
***
XOX
***
XFL
***
XSL
***
XIN
***
XST
***
XSP
333.46
XSP
***
XRH
***
XOX
***
XFL
***
XSL
***
XIN
***
XST
***
XSP
334.5
XSP
***
XRH
***
XOX
***
XFL
***
XSL
***
XIN
***
location
bec ninterp
369003.09
0
0
station elevation
data
0
335.23
100
iHotC
0
335.23
408.6
335.23
xloc_rcoe
rcoef
0
0.015
100
0.015
bankl
bankr
100
308.6
fkec
0
xl
yl
xr
yr
100
335.23
308.6
335.23
FLDST
ZDI
QDI --------0
0
0
location
bec ninterp
iHotC
346361.44
0
0
0
station elevation
data
0
334.96
100
334.96
415.27
334.96
xloc_rcoe
rcoef
0
0.015
100
0.015
bankl
bankr
100
315.27
fkec
0
xl
yl
xr
yr
100
334.96
315.27
334.96
FLDST
ZDI
QDI --------0
0
0
location
bec ninterp
iHotC
334957.12
0
0
0
station elevation
data
0
334.26
100
334.26
416.44
334.26
xloc_rcoe
rcoef
0
0.015
100
0.015
bankl
bankr
100
316.44
fkec
0
xl
yl
xr
yr
100
334.26
316.44
334.26
FLDST
ZDI
QDI --------0
0
0
location
bec ninterp
iHotC
326362.12
0
0
0
station elevation
data
0
333.46
100
333.46
416.24
333.46
xloc_rcoe
rcoef
0
0.015
100
0.015
bankl
bankr
100
316.24
fkec
0
xl
yl
xr
yr
100
333.46
316.24
333.46
FLDST
ZDI
QDI --------0
0
0
location
bec ninterp
iHotC
324603.12
0
0
0
station elevation
data
0
334.5
121.22
334.5
416.36
xloc_rcoe
0
bankl
121.22
fkec
0
xl
121.22
FLDST
0
location
334.5
rcoef
0.015
bankr
295.14
121.22
0.015
yl
xr
yr
334.5
295.14
334.5
ZDI
QDI --------0
0
bec ninterp
iHotC
161.8
304.33
308.6
0.015
cross
section
165.13
302.39
315.27
0.015
cross
section
165.72
301.4
316.44
0.015
cross
section
165.62
300.65
316.24
0.015
cross
section
160.58
301.7
295.14
0.015
cross
section
246.8
304.33
308.6
302.39
315.27
301.4
316.44
300.65
316.24
301.7
295.14
4
250.13
5
250.72
6
250.62
7
255.78
8
Appendix D/Example 3
D43
XST
***
XSP
336
XSP
***
XRH
***
XOX
***
XFL
***
XSL
***
XIN
***
XST
***
XSP
336.3
XSP
***
XRH
***
XOX
***
XFL
***
XSL
***
XIN
***
XST
***
XSP
335.55
XSP
***
XRH
***
XOX
***
XFL
***
XSL
***
XIN
***
XST
***
XSP
333.67
XSP
***
XRH
***
XOX
***
XFL
***
XSL
***
XIN
***
XST
***
XSP
333.96
XSP
***
XRH
***
XOX
***
XFL
***
XSL
***
XIN
***
XST
D44
324553.12
0
station elevation
0
336
0
data
147.75
0
336
416.56
336
xloc_rcoe
rcoef
0
0.015
147.75
0.015
bankl
bankr
147.75
268.82
fkec
0
xl
yl
xr
yr
147.75
336
268.82
336
FLDST
ZDI
QDI --------0
0
0
location
bec ninterp
iHotC
324433.12
0
0
0
station elevation
data
0
336.3
155.3
336.3
395.6
336.3
xloc_rcoe
rcoef
0
0.015
0
0.015
bankl
bankr
155.3
237.5
fkec
0
xl
yl
xr
yr
0.00E+00
336.3 0.00E+00
336.3
FLDST
ZDI
QDI --------0
0
0
location
bec ninterp
iHotC
324405.62
0
0
0
station elevation
data
0
335.55
139.79
335.55
414
335.55
xloc_rcoe
rcoef
0
0.015
139.79
0.015
bankl
bankr
139.79
274.21
fkec
0
xl
yl
xr
yr
139.79
335.55
274.21
335.55
FLDST
ZDI
QDI --------0
0
0
location
bec ninterp
iHotC
324336.88
0
0
0
station elevation
data
0
333.67
106.63
333.67
407.5
333.67
xloc_rcoe
rcoef
0
0.015
106.63
0.015
bankl
bankr
106.63
300.87
fkec
0
xl
yl
xr
yr
106.63
333.67
300.87
333.67
FLDST
ZDI
QDI --------0
0
0
location
bec ninterp
iHotC
323383.12
0
0
0
station elevation
data
0
333.96
142.6
333.96
411
xloc_rcoe
0
bankl
142.6
fkec
0
xl
142.6
FLDST
0
location
322443.12
333.96
rcoef
0.015
bankr
265.28
142.6
0.015
yl
xr
yr
333.96
265.28
333.96
ZDI
QDI --------0
0
bec ninterp
iHotC
0
0
0
GSTAR-1D-1D User’s Manual
154.31
303.2
268.82
0.015
cross
section
155.5
302.98
0
0.015
cross
section
156.19
302.75
274.21
0.015
cross
section
164.03
300.88
300.87
0.015
cross
section
168.84
300.5
265.28
0.015
cross
section
262.26
9
237.3
303.2
check
268.82
15
302.98
237.5
302.75
274.21
300.88
300.87
300.5
265.28
10
257.81
11
243.47
12
239.04
13
***
station elevation
XSP
0
334.4
334.4
XSP
414.2
334.4
***
xloc_rcoe
rcoef
XRH
0
0.015
***
bankl
bankr
XOX
156.8
253.24
***
fkec
XFL
0
***
xl
yl
XSL
156.8
334.4
***
FLDST
ZDI
XIN
0
0
***
location
bec
XST
321371.44
0
***
station elevation
XSP
0
334.3
334.3
XSP
414.2
334.3
***
xloc_rcoe
rcoef
XRH
0
0.015
***
bankl
bankr
XOX
100
314.2
***
fkec
XFL
0
***
xl
yl
XSL
100
334.3
***
FLDST
ZDI
transitio MP109.90
XIN
0
0
***
location
bec
XST
316813.09
0
***
station elevation
XSP
0
333.8
333.8
XSP
414.2
333.8
***
xloc_rcoe
rcoef
XRH
0
0.015
***
bankl
bankr
XOX
100
314.2
***
fkec
XFL
0
***
xl
yl
XSL
100
333.8
***
FLDST
ZDI
XIN
0
0
***
location
bec
XST
304953.09
0
***
station elevation
XSP
0
335.33
335.33
XSP
414.2
335.33
***
xloc_rcoe
rcoef
XRH
0
0.015
***
bankl
bankr
XOX
100
314.2
***
fkec
XFL
0
***
xl
yl
XSL
100
335.33
***
FLDST
ZDI
XIN
0
0
***
location
bec
XST
292345.31
0
***
station elevation
XSP
0
332.88
332.88
XSP
412.42
332.88
***
xloc_rcoe
rcoef
XRH
0
0.015
***
bankl
bankr
XOX
100
312.42
***
fkec
XFL
0
***
xl
yl
XSL
100
332.88
***
FLDST
ZDI
XIN
0
0
***
location
bec
XST
276900.84
0
data
156.8
334.4
170.72
299.6
156.8
0.015
253.24
0.015
xr
yr
253.24
334.4
QDI --------0
ninterp
iHotC
0
0
data
100
334.3
100
0.015
xr
yr
314.2
334.3
QDI ---------
cross
section
169.6
299.53
314.2
0.015
cross
section
239.32
299.6
253.24
299.53
314.2
14
244.6
15
invert
rise
0
ninterp
iHotC
0
0
data
100
333.8
169.6
299.2
100
0.015
314.2
0.015
xr
yr
314.2
333.8
QDI --------0
ninterp
iHotC
0
0
data
100
335.33
100
0.015
xr
yr
314.2
335.33
QDI --------0
ninterp
iHotC
0
0
data
100
332.88
100
0.015
xr
yr
312.42
332.88
QDI --------0
ninterp
iHotC
0
0
cross
section
169.6
300.53
314.2
0.015
cross
section
168.71
298.52
312.42
0.015
cross
section
244.6
299.2
314.2
300.53
314.2
298.52
312.42
16
244.6
17
243.71
18
Appendix D/Example 3
D45
***
XSP
330.82
XSP
***
XRH
***
XOX
***
XFL
***
XSL
***
XIN
***
XST
***
XSP
328.96
XSP
***
XRH
***
XOX
***
XFL
***
XSL
***
XIN
***
XST
***
XSP
328.36
XSP
***
XRH
***
XOX
***
XFL
***
XSL
***
XIN
***
XST
***
XSP
328.1
XSP
***
XRH
***
XOX
***
XFL
***
XSL
***
XIN
***
XST
***
XSP
328.34
XSP
***
XRH
***
XOX
***
XFL
***
XSL
***
XIN
***
XST
***
D46
station elevation
0
330.82
data
100
330.82
407.98
330.82
xloc_rcoe
rcoef
0
0.015
100
0.015
bankl
bankr
100
307.98
fkec
0
xl
yl
xr
yr
100
330.82
307.98
330.82
FLDST
ZDI
QDI --------0
0
0
location
bec ninterp
iHotC
266927.06
0
0
0
station elevation
data
0
328.96
100
328.96
406.2
328.96
xloc_rcoe
rcoef
0
0.015
100
0.015
bankl
bankr
100
306.2
fkec
0
xl
yl
xr
yr
100
328.96
306.2
328.96
FLDST
ZDI
QDI --------0
0
0
location
bec ninterp
iHotC
257937.06
0
0
0
station elevation
data
0
328.36
100
328.36
406.2
328.36
xloc_rcoe
rcoef
0
0.015
100
0.015
bankl
bankr
100
306.2
fkec
0
xl
yl
xr
yr
100
328.36
306.2
328.36
FLDST
ZDI
QDI --------0
0
0
location
bec ninterp
iHotC
252523.05
0
0
0
station elevation
data
0
328.1
109.57
328.1
406.2
328.1
xloc_rcoe
rcoef
0
0.015
109.57
0.015
bankl
bankr
109.57
296.63
fkec
0
xl
yl
xr
yr
109.57
328.1
296.63
328.1
FLDST
ZDI
QDI --------0
0
0
location
bec ninterp
iHotC
252473.06
0
0
0
station elevation
data
0
328.34
133.5
328.34
406.2
328.34
xloc_rcoe
rcoef
0
0.015
133.5
0.015
bankl
bankr
133.5
272.71
fkec
0
xl
yl
xr
yr
133.5
328.34
272.71
328.34
FLDST
ZDI
QDI --------0
0
0
location
bec ninterp
iHotC
252333.06
0
0
0
station elevation
data
GSTAR-1D-1D User’s Manual
166.49
297.58
307.98
0.015
cross
section
165.6
296.16
306.2
0.015
cross
section
165.6
295.56
306.2
0.015
cross
section
162.05
295.76
296.63
0.015
cross
section
153.18
297.16
272.71
0.015
cross
section
241.49
297.58
307.98
296.16
306.2
295.56
306.2
295.76
296.63
297.16
272.71
19
240.6
20
240.6
21
244.15
22
253.03
23
check
16
XSP
329
XSP
***
XRH
***
XOX
***
XFL
***
XSL
***
XIN
***
XST
***
XSP
328.12
XSP
***
XRH
***
XOX
***
XFL
***
XSL
***
XIN
***
XST
***
XSP
327.72
XSP
***
XRH
***
XOX
***
XFL
***
XSL
***
XIN
***
XST
***
XSP
327.25
XSP
***
XRH
***
XOX
***
XFL
***
XSL
***
XIN
***
XST
***
XSP
326.79
XSP
***
XRH
***
XOX
***
XFL
***
XSL
***
XIN
***
XST
***
0
329
155.3
329
400
329
xloc_rcoe
rcoef
0
0.015
0
0.015
bankl
bankr
155.3
237.5
fkec
0
xl
yl
xr
yr
0.00E+00
329 0.00E+00
329
FLDST
ZDI
QDI --------0
0
0
location
bec ninterp
iHotC
252264.31
0
0
0
station elevation
data
0
328.12
117.94
328.12
406.2
328.12
xloc_rcoe
rcoef
0
0.015
117.94
0.015
bankl
bankr
117.94
288.26
fkec
0
xl
yl
xr
yr
117.94
328.12
288.26
328.12
FLDST
ZDI
QDI --------0
0
0
location
bec ninterp
iHotC
246866.16
0
0
0
station elevation
data
0
327.72
100
327.72
406.82
327.72
xloc_rcoe
rcoef
0
0.015
100
0.015
bankl
bankr
100
306.82
fkec
0
xl
yl
xr
yr
100
327.72
306.82
327.72
FLDST
ZDI
QDI --------0
0
0
location
bec ninterp
iHotC
233473.89
0
0
0
station elevation
data
0
327.25
100
327.25
408.35
327.25
xloc_rcoe
rcoef
0
0.015
100
0.015
bankl
bankr
100
308.35
fkec
0
xl
yl
xr
yr
100
327.25
308.35
327.25
FLDST
ZDI
QDI --------0
0
0
location
bec ninterp
iHotC
220081.62
0
0
0
station elevation
data
0
326.79
100
326.79
409.89
326.79
xloc_rcoe
rcoef
0
0.015
100
0.015
bankl
bankr
100
309.89
fkec
0
xl
yl
xr
yr
100
326.79
309.89
326.79
FLDST
ZDI
QDI --------0
0
0
location
bec ninterp
iHotC
211863.16
0
0
0
station elevation
data
155.5
296.68
0
0.015
cross
section
158.94
296.19
288.26
0.015
cross
section
165.91
294.76
306.82
0.015
cross
section
166.68
293.92
308.35
0.015
cross
section
167.45
293.07
309.89
0.015
cross
section
237.3
296.68
237.5
296.19
288.26
294.76
306.82
293.92
308.35
293.07
309.89
24
247.26
25
240.91
26
241.68
27
242.45
28
Appendix D/Example 3
D47
XSP
327.08
XSP
***
XRH
***
XOX
***
XFL
***
XSL
***
XIN
***
XST
***
XSP
327.7
XSP
***
XRH
***
XOX
***
XFL
***
XSL
***
XIN
***
XST
***
XSP
328.2
XSP
***
XRH
***
XOX
***
XFL
***
XSL
***
XIN
***
XST
***
XSP
326.97
XSP
***
XRH
***
XOX
***
XFL
***
XSL
***
XIN
***
XST
***
XSP
325.43
XSP
***
XRH
***
XOX
***
XFL
***
XSL
***
XIN
***
XST
***
D48
0
327.08
100
327.08
410.2
327.08
xloc_rcoe
rcoef
0
0.015
100
0.015
bankl
bankr
100
310.2
fkec
0
xl
yl
xr
yr
100
327.08
310.2
327.08
FLDST
ZDI
QDI --------0
0
0
location
bec ninterp
iHotC
202963.16
0
0
0
station elevation
data
0
327.7
100
327.7
410.2
327.7
xloc_rcoe
rcoef
0
0.015
100
0.015
bankl
bankr
100
310.2
fkec
0
xl
yl
xr
yr
100
327.7
310.2
327.7
FLDST
ZDI
QDI --------0
0
0
location
bec ninterp
iHotC
195743.16
0
0
0
station elevation
data
0
328.2
100
328.2
410.2
328.2
xloc_rcoe
rcoef
0
0.015
100
0.015
bankl
bankr
100
310.2
fkec
0
xl
yl
xr
yr
100
328.2
310.2
328.2
FLDST
ZDI
QDI --------0
0
0
location
bec ninterp
iHotC
195063.16
0
0
0
station elevation
data
0
326.97
118.13
326.97
410.2
326.97
xloc_rcoe
rcoef
0
0.015
118.13
0.015
bankl
bankr
118.13
292.07
fkec
0
xl
yl
xr
yr
118.13
326.97
292.07
326.97
FLDST
ZDI
QDI --------0
0
0
location
bec ninterp
iHotC
195013.16
0
0
0
station elevation
data
0
325.43
140.79
325.43
410.2
325.43
xloc_rcoe
rcoef
0
0.015
140.79
0.015
bankl
bankr
140.79
269.41
fkec
0
xl
yl
xr
yr
140.79
325.43
269.41
325.43
FLDST
ZDI
QDI --------0
0
0
location
bec ninterp
iHotC
194883.14
0
0
0
station elevation
data
GSTAR-1D-1D User’s Manual
167.6
292.52
310.2
0.015
cross
section
167.6
291.9
310.2
0.015
cross
section
167.6
291.4
310.2
0.015
cross
section
161.15
293.11
292.07
0.015
cross
section
153.08
295.25
269.41
0.015
cross
section
242.6
292.52
310.2
291.9
310.2
291.4
310.2
293.11
292.07
295.25
269.41
29
242.6
30
242.6
31
249.05
32
257.12
33
check
17
XSP
327
XSP
***
XRH
***
XOX
***
XFL
***
XSL
***
XIN
***
XST
***
XSP
324.57
XSP
***
XRH
***
XOX
***
XFL
***
XSL
***
XIN
***
XST
***
XSP
323.33
XSP
***
XRH
***
XOX
***
XFL
***
XSL
***
Pool
XIN
***
XST
***
XSP
322.1
XSP
***
XBD
***
XRH
***
XOX
***
XFL
***
XSL
***
XIN
***
XST
***
XSP
321.94
XSP
***
XBU
***
XBD
***
XRH
***
XOX
***
XFL
***
0
327
155.3
327
410.2
327
xloc_rcoe
rcoef
0
0.015
0
0.015
bankl
bankr
155.3
237.5
fkec
0
xl
yl
xr
yr
0.00E+00
327 0.00E+00
327
FLDST
ZDI
QDI --------0
0
0
location
bec ninterp
iHotC
194873.16
0
0
0
station elevation
data
0
324.57
145.32
324.57
409.11
324.57
xloc_rcoe
rcoef
0
0.015
145.32
0.015
bankl
bankr
145.32
263.79
fkec
0
xl
yl
xr
yr
145.32
324.57
263.79
324.57
FLDST
ZDI
QDI --------0
0
0
location
bec ninterp
iHotC
194823.17
0
0
0
station elevation
data
0
323.33
122.66
323.33
403.65
323.33
xloc_rcoe
rcoef
0
0.015
122.66
0.015
bankl
bankr
122.66
281
fkec
0
xl
yl
xr
yr
122.66
323.33
281
323.33
FLDST
ZDI
QDI --------18
MP
133
0
0
0
location
bec ninterp
iHotC
194773.16
0
0
0
station elevation
data
0
322.1
100
322.1
398.2
322.1
LOCBPU(1:n)
2
5
xloc_rcoe
rcoef
0
0.015
100
0.015
bankl
bankr
100
298.2
fkec
0
xl
yl
xr
yr
100
322.1
298.2
322.1
FLDST
ZDI
QDI --------0
0
0
location
bec ninterp
iHotC
189305.5
0
0
0
station elevation
data
0
321.94
100
321.94
398.2
321.94
LOCBPU(1:n)
2
5
LOCBPD(1:n)
2
5
xloc_rcoe
rcoef
0
0.015
bankl
bankr
100
298.2
fkec
0
xl
yl
100
xr
0.015
155.5
295.45
0
0.015
cross
section
150.92
295.66
263.79
0.015
cross
section
156.26
293.48
281
0.015
cross
section
161.6
291.3
298.2
0.015
cross
section
161.6
291.14
298.2
0.015
237.3
295.45
237.5
295.66
263.79
293.48
281
34
257.74
35
244.67
36
231.6
First
section
291.3
298.2
291.14
298.2
in
37
231.6
yr
Appendix D/Example 3
D49
XSL
***
XIN
***
XST
***
XSP
322.47
XSP
***
XBU
***
XBD
***
XRH
***
XOX
***
XFL
***
XSL
***
XIN
***
XST
***
XSP
322.8
XSP
***
XBU
***
XBD
***
XRH
***
XOX
***
XFL
***
XSL
***
XIN
***
XST
***
XSP
323.12
XSP
***
XBU
***
XBD
***
XRH
***
XOX
***
XFL
***
XSL
***
XIN
***
XST
***
XSP
323.45
XSP
***
XBU
***
XBD
***
XRH
***
XOX
***
XFL
***
XSL
D50
100
321.94
298.2
321.94
FLDST
ZDI
QDI --------0
0
0
location
bec ninterp
iHotC
184461
0
0
0
station elevation
data
0
322.47
100
322.47
398.2
322.47
LOCBPU(1:n)
2
5
LOCBPU(1:n)
2
5
xloc_rcoe
rcoef
0
0.015
100
0.015
bankl
bankr
100
298.2
fkec
0
xl
yl
xr
yr
100
322.47
298.2
322.47
FLDST
ZDI
QDI --------0
0
0
location
bec ninterp
iHotC
178659
0
0
0
station elevation
data
0
322.8
100
322.8
398.2
322.8
LOCBPU(1:n)
2
5
LOCBPU(1:n)
2
5
xloc_rcoe
rcoef
0
0.015
100
0.015
bankl
bankr
100
298.2
fkec
0
xl
yl
xr
yr
100
322.8
298.2
322.8
FLDST
ZDI
QDI --------0
0
0
location
bec ninterp
iHotC
169109.94
0
0
0
station elevation
data
0
323.12
100
323.12
398.2
323.12
LOCBPU(1:n)
2
5
LOCBPU(1:n)
2
5
xloc_rcoe
rcoef
0
0.015
100
0.015
bankl
bankr
100
298.2
fkec
0
xl
yl
xr
yr
100
323.12
298.2
323.12
FLDST
ZDI
QDI --------0
0
0
location
bec ninterp
iHotC
159560.88
0
0
0
station elevation
data
0
323.45
100
323.45
398.2
LOCBPU(1:n)
2
LOCBPU(1:n)
2
xloc_rcoe
0
bankl
100
fkec
0
xl
100
cross
section
161.6
291.67
298.2
0.015
cross
section
161.6
292
298.2
0.015
cross
section
161.6
292.32
298.2
0.015
cross
section
161.6
292.65
298.2
0.015
323.45
5
5
rcoef
0.015
bankr
298.2
100
0.015
yl
323.45
xr
298.2
yr
323.45
GSTAR-1D-1D User’s Manual
38
231.6
291.67
298.2
292
298.2
292.32
298.2
292.65
298.2
39
231.6
40
231.6
41
231.6
***
XIN
***
XST
***
XSP
323.77
XSP
***
XBU
***
XBD
***
XRH
***
XOX
***
XFL
***
XSL
***
XIN
***
XST
***
XSP
324.23
XSP
***
XBU
***
XRH
***
XOX
***
XFL
***
XSL
***
XIN
***
XST
***
XSP
324.78
XSP
***
XRH
***
XOX
***
XFL
***
XSL
***
XIN
***
XST
***
XSP
325
XSP
***
XRH
***
XOX
***
XFL
***
XSL
***
XIN
***
XST
***
XSP
325.71
XSP
***
XRH
***
FLDST
ZDI
QDI --------0
location
bec ninterp
iHotC
150011.81
0
0
0
station elevation
data
0
323.77
100
323.77
0
398.2
323.77
LOCBPU(1:n)
2
5
LOCBPU(1:n)
2
5
xloc_rcoe
rcoef
0
0.015
100
0.015
bankl
bankr
100
298.2
fkec
0
xl
yl
xr
yr
100
323.77
298.2
323.77
FLDST
ZDI
QDI --------0
0
0
location
bec ninterp
iHotC
146162.19
0
0
0
station elevation
data
0
324.23
113.15
324.23
398.2
324.23
LOCBPU(1:n)
2
5
xloc_rcoe
rcoef
0
0.015
113.15
0.015
bankl
bankr
113.15
285.05
fkec
0
xl
yl
xr
yr
113.15
324.23
285.05
324.23
FLDST
ZDI
QDI --------0
0
0
location
bec ninterp
iHotC
146112.19
0
0
0
station elevation
data
0
324.78
135.08
324.78
398.2
324.78
xloc_rcoe
rcoef
0
0.015
135.08
0.015
bankl
bankr
135.08
263.12
fkec
0
xl
yl
xr
yr
135.08
324.78
263.12
324.78
FLDST
ZDI
QDI --------0
0
0
location
bec ninterp
iHotC
145982.19
0
0
0
station elevation
data
0
325
155.3
325
410.2
325
xloc_rcoe
rcoef
0
0.015
0
0.015
bankl
bankr
155.3
237.5
fkec
0
xl
yl
xr
yr
0.00E+00
325 0.00E+00
325
FLDST
ZDI
QDI --------0
0
0
location
bec ninterp
iHotC
145972.19
0
0
0
station elevation
data
0
325.71
139.86
325.71
397.24
xloc_rcoe
0
bankl
cross
section
42
0
325.71
rcoef
0.015
bankr
139.86
0.015
161.6
292.97
298.2
0.015
cross
section
156.28
292.86
285.05
0.015
cross
section
147.4
292.46
263.12
0.015
cross
section
155.5
292.45
0
0.015
cross
section
145.66
292.45
257.37
0.015
231.6
292.97
298.2
292.86
285.05
292.46
263.12
43
238.43
44
249.8
45
237.3
check
18
292.45
237.5
292.45
257.37
46
251.57
Appendix D/Example 3
D51
XOX
***
XFL
***
XSL
***
XIN
***
XST
***
XSP
325.75
XSP
***
XRH
***
XOX
***
XFL
***
XSL
***
pool
XIN
***
XST
***
XSP
325.8
XSP
***
XBD
***
XRH
***
XOX
***
XFL
***
XSL
***
XIN
***
XST
***
XSP
325.35
XSP
***
XBU
***
XBD
***
XRH
***
XOX
***
XFL
***
XSL
***
XIN
***
XST
***
XSP
324.9
XSP
***
XBU
***
XBD
***
XRH
***
XOX
***
XFL
***
XSL
***
D52
139.86
257.37
fkec
0
xl
yl
xr
yr
139.86
325.71
257.37
325.71
FLDST
ZDI
QDI --------0
0
0
location
bec ninterp
iHotC
145922.19
0
0
0
station elevation
data
0
325.75
119.93
325.75
392.42
325.75
xloc_rcoe
rcoef
0
0.015
119.93
0.015
bankl
bankr
119.93
272.49
fkec
0
xl
yl
xr
yr
119.93
325.75
272.49
325.75
FLDST
ZDI
QDI --------19
0
0
0
location
bec ninterp
iHotC
145872.19
0
0
0
station elevation
data
0
325.8
100
325.8
387.6
325.8
LOCBPU(1:n)
2
5
xloc_rcoe
rcoef
0
0.015
100
0.015
bankl
bankr
100
287.6
fkec
0
xl
yl
xr
yr
100
325.8
287.6
325.8
FLDST
ZDI
QDI --------0
0
0
location
bec ninterp
iHotC
136272.58
0
0
0
station elevation
data
0
325.35
100
325.35
388.98
325.35
LOCBPU(1:n)
2
5
LOCBPU(1:n)
2
5
xloc_rcoe
rcoef
0
0.015
100
0.015
bankl
bankr
100
288.98
fkec
0
xl
yl
xr
yr
100
325.35
288.98
325.35
FLDST
ZDI
QDI --------0
0
0
location
bec ninterp
iHotC
126673.03
0
0
0
station elevation
data
0
324.9
100
324.9
390.36
324.9
LOCBPU(1:n)
2
5
LOCBPU(1:n)
2
5
xloc_rcoe
rcoef
0
0.015
bankl
bankr
100
290.36
fkec
0
xl
yl
100
324.9
FLDST
ZDI
100
0.015
xr
yr
290.36
324.9
QDI ---------
GSTAR-1D-1D User’s Manual
cross
section
154.73
293.17
272.49
0.015
cross
section
163.8
293.9
287.6
0.015
cross
section
164.49
293.14
288.98
0.015
cross
section
165.18
292.38
290.36
0.015
cross
section
47
237.69
48
223.8
293.17
first
272.49
section
293.9
287.6
293.14
288.98
292.38
290.36
49
224.49
50
225.18
51
in
XIN
***
XST
***
XSP
324.46
XSP
***
XBU
***
XBD
***
XRH
***
XOX
***
XFL
***
XSL
***
XIN
***
XST
***
XSP
324.01
XSP
***
XBU
***
XBD
***
XRH
***
XOX
***
XFL
***
XSL
***
XIN
***
XST
***
XSP
323.56
XSP
***
XBU
***
XRH
***
XOX
***
XFL
***
XSL
***
XIN
***
XST
***
XSP
323.47
XSP
***
XRH
***
XOX
***
XFL
***
XSL
***
XIN
***
XST
***
XSP
324.8
XSP
0
0
0
location
bec ninterp
117073.5
0
0
station elevation
data
0
324.46
100
iHotC
0
324.46
391.74
324.46
LOCBPU(1:n)
2
5
LOCBPU(1:n)
2
5
xloc_rcoe
rcoef
0
0.015
100
0.015
bankl
bankr
100
291.74
fkec
0
xl
yl
xr
yr
100
324.46
291.74
324.46
FLDST
ZDI
QDI --------0
0
0
location
bec ninterp
iHotC
107473.96
0
0
0
station elevation
data
0
324.01
100
324.01
393.12
324.01
LOCBPU(1:n)
2
5
LOCBPU(1:n)
2
5
xloc_rcoe
rcoef
0
0.015
100
0.015
bankl
bankr
100
293.12
fkec
0
xl
yl
xr
yr
100
324.01
293.12
324.01
FLDST
ZDI
QDI --------0
0
0
location
bec ninterp
iHotC
97874.44
0
0
0
station elevation
data
0
323.56
100
323.56
394.5
323.56
LOCBPU(1:n)
2
5
xloc_rcoe
rcoef
0
0.015
100
0.015
bankl
bankr
100
294.5
fkec
0
xl
yl
xr
yr
100
323.56
294.5
323.56
FLDST
ZDI
QDI --------0
0
0
location
bec ninterp
iHotC
90184.82
0
0
0
station elevation
data
0
323.47
105.05
323.47
395.6
323.47
xloc_rcoe
rcoef
0
0.015
105.05
0.015
bankl
bankr
105.05
290.32
fkec
0
xl
yl
xr
yr
105.05
323.47
290.32
323.47
FLDST
ZDI
QDI --------0
0
0
location
bec ninterp
iHotC
90134.81
0
0
0
station elevation
data
0
324.8
130.27
324.8
395.6
165.87
291.62
291.74
0.015
cross
section
166.56
290.87
293.12
0.015
cross
section
167.25
290.11
294.5
0.015
cross
section
166.68
289.75
290.32
0.015
cross
161.09
section
291.03
225.87
291.62
291.74
290.87
293.12
290.11
294.5
289.75
290.32
291.03
263.91
52
226.56
53
227.25
54
228.68
55
233.09
324.8
Appendix D/Example 3
D53
***
XRH
***
XOX
***
XFL
***
XSL
***
Check19
XIN
***
XST
***
XSP
326.13
XSP
***
XRH
***
XOX
***
XFL
***
XSL
***
XIN
***
XST
***
XSP
329
XSP
***
XRH
***
XOX
***
XFL
***
XSL
***
XIN
***
XST
***
XSP
324.02
XSP
***
XBD
***
XRH
***
XOX
***
XFL
***
XSL
***
XIN
***
XST
***
XSP
321.14
XSP
***
XBU
***
XBD
***
XRH
***
XOX
***
XFL
***
XSL
***
XIN
D54
xloc_rcoe
0
bankl
130.27
fkec
0
xl
130.27
FLDST
rcoef
0.015
bankr
263.91
yl
324.8
ZDI
130.27
0.015
xr
yr
263.91
324.8
QDI ---------
0
0
0
location
bec ninterp
90084.81
0
0
station elevation
data
0
326.13
155.3
cross
0.015
section
56 section
0
326.13
395.6
329
xloc_rcoe
rcoef
0
0.015
0
0.015
bankl
bankr
155.5
237.3
fkec
0
xl
yl
xr
yr
0.00E+00
329 0.00E+00
329
FLDST
ZDI
QDI --------0
0
0
location
bec ninterp
iHotC
89925.59
0
0
0
station elevation
data
0
324.02
131.71
324.02
387.89
324.02
LOCBPU(1:n)
2
5
xloc_rcoe
rcoef
0
0.015
131.71
0.015
bankl
bankr
131.71
254.69
fkec
0
xl
yl
xr
yr
131.71
324.02
254.69
324.02
FLDST
ZDI
QDI --------0
0
0
location
bec ninterp
iHotC
88455.5
0
0
0
station elevation
data
0
321.14
100
321.14
155.5
292.3
237.5
0.015
cross
section
155.5
291.66
0
0.015
cross
section
159.06
291.01
254.69
0.015
cross
section
163.8
289.24
277.6
0.015
237.3
57
237.3
227.34
yl
321.14
ZDI
0
0.015
xr
yr
277.6
321.14
QDI --------0
GSTAR-1D-1D User’s Manual
cross
section
check
237.5
19
291.66
237.5
291.01
254.69
289.24
277.6
59
213.8
5
100
292.3
58
321.14
5
rcoef
0.015
bankr
277.6
U/S
iHotC
395.6
326.13
xloc_rcoe
rcoef
0
0.015
155.5
0.015
bankl
bankr
155.3
237.5
fkec
0
xl
yl
xr
yr
155.5
292.3
237.5
326.13
FLDST
ZDI
QDI --------0
0
0
location
bec ninterp
iHotC
89974.81
0
0
0
station elevation
data
0
329
155.3
329
377.6
LOCBPU(1:n)
2
LOCBPU(1:n)
2
xloc_rcoe
0
bankl
100
fkec
0
xl
100
FLDST
0
263.91
60
of
***
XST
***
XSP
320.86
XSP
***
XBU
***
XBD
***
XRH
***
XOX
***
XFL
***
XSL
***
the
XIN
***
XST
***
XSP
320.64
XSP
***
XBU
***
XBD
***
XRH
***
XOX
***
XFL
***
XSL
***
XIN
***
XST
***
XSP
320.57
XSP
***
XBU
***
XBD
***
XRH
***
XOX
***
XFL
***
XSL
***
XIN
***
XST
***
XSP
320.49
XSP
***
XBU
***
XBD
***
XRH
***
XOX
***
XFL
***
XSL
***
XIN
location
bec ninterp
81433.16
0
0
station elevation
data
0
320.86
100
iHotC
0
320.86
377.6
320.86
LOCBPU(1:n)
2
5
LOCBPU(1:n)
2
5
xloc_rcoe
rcoef
0
0.015
100
0.015
bankl
bankr
100
277.6
fkec
0
xl
yl
xr
yr
100
320.86
277.6
320.86
FLDST
ZDI
QDI --------DI
0
0
0
location
bec ninterp
iHotC
75665.28
0
0
1
station elevation
data
0
320.64
100
320.64
377.6
320.64
LOCBPU(1:n)
2
5
LOCBPU(1:n)
2
5
xloc_rcoe
rcoef
0
0.015
100
0.015
bankl
bankr
100
277.6
fkec
0
xl
yl
xr
yr
100
320.64
277.6
320.64
FLDST
ZDI
QDI --------0
0
0
location
bec ninterp
iHotC
68399.97
0
0
0
station elevation
data
0
320.57
100
320.57
377.6
320.57
LOCBPU(1:n)
2
5
LOCBPU(1:n)
2
5
xloc_rcoe
rcoef
0
0.015
100
0.015
bankl
bankr
100
277.6
fkec
0
xl
yl
xr
yr
100
320.57
277.6
320.57
FLDST
ZDI
QDI --------0
0
0
location
bec ninterp
iHotC
61134.66
0
0
0
station elevation
data
0
320.49
100
320.49
377.6
LOCBPU(1:n)
2
LOCBPU(1:n)
2
xloc_rcoe
0
bankl
100
fkec
0
xl
100
FLDST
0
163.8
288.96
277.6
0.015
cross
section
163.8
288.74
277.6
0.015
cross
section
163.8
288.67
277.6
0.015
cross
section
163.8
288.59
277.6
0.015
213.8
61
213.8
288.96
Pool
277.6
20
288.74
277.6
288.67
277.6
288.59
277.6
after
62
213.8
63
213.8
320.49
5
5
rcoef
0.015
bankr
277.6
yl
320.49
ZDI
0
100
0.015
xr
yr
277.6
320.49
QDI --------0
cross
section
64
Appendix D/Example 3
D55
***
XST
***
XSP
320.42
XSP
***
XBU
***
XBD
***
XRH
***
XOX
***
XFL
***
XSL
***
XIN
***
XST
***
XSP
320.34
XSP
***
XBU
***
XRH
***
XOX
***
XFL
***
XSL
***
XIN
***
XST
***
XSP
320.97
XSP
***
XRH
***
XOX
***
XFL
***
XSL
***
XIN
***
XST
***
XSP
322.65
XSP
***
XRH
***
XOX
***
XFL
***
XSL
***
XIN
***
XST
***
XSP
325
XSP
***
XRH
***
XOX
***
D56
location
bec ninterp
53869.34
0
0
station elevation
data
0
320.42
100
iHotC
0
320.42
377.6
320.42
LOCBPU(1:n)
2
5
LOCBPU(1:n)
2
5
xloc_rcoe
rcoef
0
0.015
100
0.015
bankl
bankr
100
277.6
fkec
0
xl
yl
xr
yr
100
320.42
277.6
320.42
FLDST
ZDI
QDI --------0
0
0
location
bec ninterp
iHotC
46604.03
0
0
0
station elevation
data
0
320.34
100
320.34
377.6
320.34
LOCBPU(1:n)
2
5
xloc_rcoe
rcoef
0
0.015
100
0.015
bankl
bankr
100
277.6
fkec
0
xl
yl
xr
yr
100
320.34
277.6
320.34
FLDST
ZDI
QDI --------0
0
0
location
bec ninterp
iHotC
42227.59
0
0
0
station elevation
data
0
320.97
110.09
320.97
380.87
320.97
xloc_rcoe
rcoef
0
0.015
110.09
0.015
bankl
bankr
110.09
270.31
fkec
0
xl
yl
xr
yr
110.09
320.97
270.31
320.97
FLDST
ZDI
QDI --------0
0
0
location
bec ninterp
iHotC
42184.47
0
0
0
station elevation
data
0
322.65
135.32
322.65
389.05
322.65
xloc_rcoe
rcoef
0
0.015
135.32
0.015
bankl
bankr
135.32
252.08
fkec
0
xl
yl
xr
yr
135.32
322.65
252.08
322.65
FLDST
ZDI
QDI --------0
0
0
location
bec ninterp
iHotC
42039.97
0
0
0
station elevation
data
0
325
155.3
325
395.6
xloc_rcoe
0
bankl
155.3
fkec
325
rcoef
0.015
bankr
237.5
237.3
GSTAR-1D-1D User’s Manual
0
0.015
163.8
288.52
277.6
0.015
cross
section
163.8
288.44
277.6
0.015
cross
section
162.29
288.91
270.31
0.015
cross
section
158.52
290.18
252.08
0.015
cross
section
155.5
290.09
0
0.015
213.8
288.52
277.6
288.44
277.6
288.91
270.31
290.18
252.08
65
213.8
66
218.11
67
228.88
68
237.3
check
290.09
20
237.5
XFL
***
XSL
***
XIN
***
XST
***
XSP
322.36
XSP
***
XRH
***
XOX
***
XFL
***
XSL
***
XIN
***
XST
***
XSP
320.31
XSP
***
XBD
***
XRH
***
XOX
***
XFL
***
XSL
***
XIN
***
XST
***
XSP
320.1
XSP
***
XBU
***
XBD
***
XRH
***
XOX
***
XFL
***
XSL
***
XIN
***
XST
***
XSP
320.35
XSP
***
XBU
***
XBD
***
XRH
***
XOX
***
XFL
***
XSL
***
XIN
***
XST
0
xl
yl
xr
yr
0.00E+00
325 0.00E+00
325
FLDST
ZDI
QDI --------0
0
0
location
bec ninterp
iHotC
41999.97
0
0
0
station elevation
data
0
322.36
133.3
322.36
388.08
322.36
xloc_rcoe
rcoef
0
0.015
133.3
0.015
bankl
bankr
133.3
253.22
fkec
0
xl
yl
xr
yr
133.3
322.36
253.22
322.36
FLDST
ZDI
QDI --------0
0
0
location
bec ninterp
iHotC
41949.97
0
0
0
station elevation
data
0
320.31
105.55
320.31
378.68
320.31
LOCBPU(1:n)
2
5
xloc_rcoe
rcoef
0
0.015
105.55
0.015
bankl
bankr
105.55
272.87
fkec
0
xl
yl
xr
yr
105.55
320.31
272.87
320.31
FLDST
ZDI
QDI --------0
0
0
location
bec ninterp
iHotC
36305.97
0
0
0
station elevation
data
0
320.1
100
320.1
376.8
320.1
LOCBPU(1:n)
2
5
LOCBPU(1:n)
2
5
xloc_rcoe
rcoef
0
0.015
100
0.015
bankl
bankr
100
276.8
fkec
0
xl
yl
xr
yr
100
320.1
276.8
320.1
FLDST
ZDI
QDI --------0
0
0
location
bec ninterp
iHotC
29263.47
0
0
0
station elevation
data
0
320.35
100
320.35
376.8
LOCBPU(1:n)
2
LOCBPU(1:n)
2
xloc_rcoe
0
bankl
100
fkec
0
xl
100
FLDST
0
location
22220.97
cross
section
158.66
290
253.22
0.015
cross
section
162.61
288.5
272.87
0.015
cross
section
163.4
288.4
276.8
0.015
cross
section
163.4
288.65
276.8
0.015
69
227.86
290
253.22
288.5
272.87
288.4
276.8
288.65
276.8
70
215.81
71
213.4
72
213.4
320.35
5
5
rcoef
0.015
bankr
276.8
100
0.015
yl
xr
yr
320.35
276.8
320.35
ZDI
QDI --------0
0
bec ninterp
iHotC
0
0
0
cross
section
73
Appendix D/Example 3
D57
***
XSP
320.6
XSP
***
XBU
***
XBD
***
XRH
***
XOX
***
XFL
***
XSL
***
XIN
***
XST
***
XSP
320.85
XSP
***
XBU
***
XBD
***
XRH
***
XOX
***
XFL
***
XSL
***
XIN
***
XST
***
XSP
319.79
XSP
***
XBU
***
XBD
***
XRH
***
XOX
***
XFL
***
XSL
***
WLF
XIN
***
XST
***
XSP
318.4
XSP
***
XBU
***
XRH
***
XOX
***
XFL
***
XSL
***
XIN
***
XST
***
D58
station elevation
0
320.6
data
100
320.6
376.8
320.6
LOCBPU(1:n)
2
5
LOCBPU(1:n)
2
5
xloc_rcoe
rcoef
0
0.015
100
0.015
bankl
bankr
100
276.8
fkec
0
xl
yl
xr
yr
100
320.6
276.8
320.6
FLDST
ZDI
QDI --------0
0
0
location
bec ninterp
iHotC
15178.47
0
0
0
station elevation
data
0
320.85
100
320.85
376.8
320.85
LOCBPU(1:n)
2
5
LOCBPU(1:n)
2
5
xloc_rcoe
rcoef
0
0.015
100
0.015
bankl
bankr
100
276.8
fkec
0
xl
yl
xr
yr
100
320.85
276.8
320.85
FLDST
ZDI
QDI --------0
0
0
location
bec ninterp
iHotC
8321.09
0
0
0
station elevation
data
0
319.79
100
319.79
371.82
319.79
LOCBPU(1:n)
2
5
LOCBPU(1:n)
2
5
xloc_rcoe
rcoef
0
0.015
100
0.015
bankl
bankr
100
271.82
fkec
0
xl
yl
xr
yr
100
319.79
271.82
319.79
FLDST
ZDI
QDI --------turnout
0
0
0
location
bec ninterp
iHotC
1510
0
0
0
station elevation
data
0
318.4
100
318.4
365.6
318.4
LOCBPU(1:n)
2
5
xloc_rcoe
rcoef
0
0.015
100
0.015
bankl
bankr
100
265.6
fkec
0
xl
yl
xr
yr
100
318.4
265.6
318.4
FLDST
ZDI
QDI --------0
0
0
location
bec ninterp
iHotC
1230
0
0
0
station elevation
data
GSTAR-1D-1D User’s Manual
163.4
288.9
276.8
0.015
cross
section
163.4
289.15
276.8
0.015
cross
section
160.91
289.33
271.82
0.015
cross
section
157.8
289.5
265.6
0.015
cross
section
213.4
288.9
276.8
289.15
276.8
289.33
271.82
74
213.4
75
210.91
76 Section
207.8
77
289.5
U/s
265.6
of
XSP
0
319.98
120.81
319.98
319.98
XSP
376.85
319.98
***
xloc_rcoe
rcoef
XRH
0
0.015
120.81
0.015
***
bankl
bankr
XOX
120.81
255.06
***
fkec
XFL
0
***
xl
yl
xr
yr
XSL
120.81
319.98
255.06
319.98
***
FLDST
ZDI
QDI --------Check21
XIN
0
0
0
***
location
bec ninterp
iHotC
XST
1180
0
0
0
***
station elevation
data
XSP
0
322.6
120.4
322.6
322.6
XSP
395.6
322.6
***
xloc_rcoe
rcoef
XRH
0
0.015
155.5
0.015
***
bankl
bankr
XOX
155.3
237.5
***
fkec
XFL
0
***
xl
yl
xr
yr
XSL
155.5
289.5
237.5
322.6
***
FLDST
ZDI
QDI --------XIN
0
0
0
***
location
bec ninterp
iHotC
XST
1070
0
0
0
***
station elevation
data
XSP
0
322.6
155.3
322.6
322.6
XSP
395.6
322.6
***
xloc_rcoe
rcoef
XRH
0
0.015
0
0.015
***
bankl
bankr
XOX
155.3
237.5
***
fkec
XFL
0
***
xl
yl
xr
yr
XSL
0.00E+00
325 0.00E+00
325
***
FLDST
ZDI
QDI --------XIN
0
0
0
***
location
bec ninterp
iHotC
XST
267.5
0
0
0
***
station elevation
data
XSP
0
317.2
113.88
317.2
317.2
XSP
373.1
317.2
***
xloc_rcoe
rcoef
XRH
0
0.015
113.88
0.015
***
bankl
bankr
XOX
113.88
258.58
***
fkec
XFL
0
***
xl
yl
xr
yr
XSL
113.88
317.2
258.58
317.2
***
FLDST
ZDI
QDI --------the simulation
Pool22
XIN
0
0
0
***
location
bec ninterp
iHotC
XST
0
0
0
0
***
station elevation
data
XSP
0
315.4
100
315.4
315.4
XSP
365.6
315.4
***
xloc_rcoe
rcoef
XRH
0
0.015
100
0.015
***
bankl
bankr
XOX
100
265.6
***
fkec
XFL
0
***
xl
yl
xr
yr
XSL
100
315.4
265.6
315.4
***
End of River 1
***
Start inputof sediment transportment
***
theta
ntsedf nrespone
YST
1
1
1
156.94
289.5
255.06
0.015
cross
section
155.5
289.5
237.5
0.015
cross
section
155.5
289.5
0
0.015
cross
section
157.23
287.25
258.58
0.015
cross
section
157.8
286.5
265.6
0.015
218.94
289.5
78 section
217.5
79
237.3
289.5
check
255.06
U/S
of
255.5
21
289.5
237.5
287.25
258.58
80
215.23
81
207.8
last
286.5
section
in
265.6
Appendix D/Example 3
D59
***
YSG
YSG
YSG
YSG
***
***
USB
***
US4
US4
***
USS
USS
***
LNS
***
LSL
***
***
LS5
LS5
LS5
LS5
LS5
LS5
LS5
LS5
LS5
LS5
LS5
LS5
LS5
LS5
LS5
LS5
LS5
LS5
LS5
LS5
LS5
LS5
LS5
LS5
BP2
***
BLP
BLP
BLP
***
TMP
***
FI0
***
FIM
FIM
FIM
FIM
FIM
FIM
FIM
FIM
FIM
FIM
FIM
FIM
FIM
FIM
FIM
FIM
FIM
FIM
FIM
FIM
FIM
FIM
FIM
FIM
FIM
FIM
FIM
D60
drl
dru
bdin
0.004
0.074
0
0.074
0.15
0
0.15
0.3
0
0.3
1
0
Start of River 1
nts
4
TSI
QSI
1431
0
1431
796
1431
QI
PISED
2000
0.96
0.01
0.01
3000
0.96
0.01
0.01
NKQS(J) non-point flow source
1
X1QS(J,nkX2QS(J,nklat type
192414.5
180000
5
t4
st4
0.7 1.00E-01
0.1
200
0.0
0.0
0.0
204
0.0
0.0
0.0
208
0.0
0.0
0.0
216
14.0
4.0
4.0
232
54.3
15.5
15.5
264
209.4
59.8
59.8
272
3962.7
1132.2
1132.2
276 13563.0
3875.1
3875.1
280 18691.7
5340.5
5340.5
284 23459.8
6702.8
6702.8
292 27226.2
7778.9
7778.9
296 28800.9
8228.8
8228.8
312 27226.2
7778.9
7778.9
412 23459.8
6702.8
6702.8
416 18691.7
5340.5
5340.5
420 16459.9
4702.8
4702.8
424 13563.0
3875.1
3875.1
428 10798.3
3085.2
3085.2
432
8133.8
2323.9
2323.9
444
3646.2
1041.8
1041.8
456
2384.0
681.2
681.2
596
1682.9
480.8
480.8
600
0.0
0.0
0.0
600.1
0.0
0.0
0.0
386230.91 324405.62 195743.16
PTMP
0.960
0.010
0.010
0.020
0.960
0.010
0.010
0.020
0.960
0.010
0.010
0.020
ttin
temp
0
67.83
crosmin crosmax crosmin crosmax
158
246
158
246
158
246
158
246
161
247
161
247
164
252
164
252
164
252
164
252
159
257
159
257
153
263
153
263
153
263
153
263
155.4
237.4
155.4
237.4
155
259
155
259
163
244
163
244
167
240
167
240
167
240
167
240
169
240
169
240
168
246
168
246
168
245
168
245
167
245
167
245
165
242
165
242
164
242
164
242
164
242
164
242
161
245
161
245
152
254
152
254
155.4
237.4
155.4
237.4
157
248
157
248
164
242
164
242
165
243
165
243
166
243
166
243
GSTAR-1D-1D User’s Manual
0.02
0.02
Lateral
1
0.1
0.0
0.0
0.0
4.0
15.5
59.8
1132.2
3875.1
5340.5
6702.8
7778.9
8228.8
7778.9
6702.8
5340.5
4702.8
3875.1
3085.2
2323.9
1041.8
681.2
480.8
0.0
0.0
botmin
306.6
305.81
304.33
302.39
301.4
300.65
301.7
303.2
302.98
302.75
300.88
300.5
299.6
299.53
299.2
300.53
298.52
297.58
296.16
295.56
295.76
297.16
296.68
296.19
294.76
293.92
293.07
botmax
9999
9999
9999
9999
9999
9999
9999
9999
9999
9999
9999
9999
9999
9999
9999
9999
9999
9999
9999
9999
9999
9999
9999
9999
9999
9999
9999
!section
!section
!section
!section
!section
!section
!section
!section
!section
!section
!section
!section
!section
!section
!section
!section
!section
!section
!section
!section
!section
!section
!section
!section
!section
!section
!section
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
FIM
166
244
166
244
FIM
166
244
166
244
FIM
166
244
166
244
FIM
160
250
160
250
FIM
152
258
152
258
FIM
155.4
237.4
155.4
237.4
FIM
149
258
149
258
FIM
155
246
155
246
FIM
160
232
160
232
FIM
160
232
160
232
FIM
160
232
160
232
FIM
160
232
160
232
FIM
160
232
160
232
FIM
160
232
160
232
FIM
160
232
160
232
FIM
155
239
155
239
FIM
146
251
146
251
FIM
155.4
237.4
155.4
237.4
FIM
144
252
144
252
FIM
153
239
153
239
FIM
162
225
162
225
FIM
163
226
163
226
FIM
164
226
164
226
FIM
164
226
164
226
FIM
165
228
165
228
FIM
166
228
166
228
FIM
165
230
165
230
FIM
160
234
160
234
FIM
155.4
237.4
155.4
237.4
FIM
155.4
237.4
155.4
237.4
FIM
158
228
158
228
FIM
162
215
162
215
FIM
162
215
162
215
FIM
162
215
162
215
FIM
162
215
162
215
FIM
162
215
162
215
FIM
162
215
162
215
FIM
162
215
162
215
FIM
161
220
161
220
FIM
157
230
157
230
FIM
155.4
237.4
155.4
237.4
FIM
157
229
157
229
FIM
161
217
161
217
FIM
162
215
162
215
FIM
162
215
162
215
FIM
162
215
162
215
FIM
162
215
162
215
FIM
160
212
160
212
FIM
156
209
156
209
FIM
155
220
155
220
FIM
154
219
154
219
FIM
155.4
237.4
155.4
237.4
FIM
156
217
156
217
FIM
156
209
156
209
***
nstube
wfrac
STU
1
0.8
***
imin ilength
SMN
0
0
***
ised
SEQ
4
***
xc
SA2
386230.91324405.62195743.16
***
angle1(abangle2(be
nalt
alphad
need to repeat for each xc)
SAT
90
90
200
0.05
SAT
90
90
200
0.05
SAT
90
90
200
0.05
***
xc
CS2
0.00
1.00
***
stdep_f stdep_p
concEq
er_lim
CSD
0.005
0.005
0.85
0.1
CSD
0.005
0.005
0.85
0.1
***
xc
CE2
0.00
1.00
***
stpero er_stme
stmero er_mass
CER
0.005
7.0000
0.01
10
CER
0.005
7.0000
0.01
10
***
fvform
CF0
1
***
densC_I densC_f densC_e
time_e
CSC
77.98
101.30
81.86 1000.00
292.52
291.9
291.4
293.11
295.25
295.45
295.66
293.48
291.3
291.14
291.67
292
292.32
292.65
292.97
292.86
292.46
292.45
292.45
293.17
293.9
293.14
292.38
291.62
290.87
290.11
289.75
291.03
292.3
291.66
291.01
289.24
288.96
288.74
288.67
288.59
288.52
288.44
288.91
290.18
290.09
290
288.5
288.4
288.65
288.9
289.15
289.33
289.5
289.5
289.5
289.5
287.25
286.5
alphas
1
9999
9999
9999
9999
9999
9999
9999
9999
9999
9999
9999
9999
9999
9999
9999
9999
9999
9999
9999
9999
9999
9999
9999
9999
9999
9999
9999
9999
9999
9999
9999
9999
9999
9999
9999
9999
9999
9999
9999
9999
9999
9999
9999
9999
9999
9999
9999
9999
9999
9999
9999
9999
9999
9999
dlat
1
1
1
!section
!section
!section
!section
!section
!section
!section
!section
!section
!section
!section
!section
!section
!section
!section
!section
!section
!section
!section
!section
!section
!section
!section
!section
!section
!section
!section
!section
!section
!section
!section
!section
!section
!section
!section
!section
!section
!section
!section
!section
!section
!section
!section
!section
!section
!section
!section
!section
!section
!section
!section
!section
!section
!section
dlong
0
0
0
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
betas
0
0
0
frac2 (may
0
0
0
0
0
0
Appendix D/Example 3
D61
***
CD2
***
CDI
CDI
CDI
CDI
***
***
END
xc
386230.91324405.62195743.16
densityClay0
78.00
78.00
78.00
78.00
End of River 1
end message
100000
D3.2 Output Data Files
The output files are too long to be included in this section. They can be found under directory
Example3 in the GSTAR-1D distribution.
D3.3 Final Remarks
310
t = 0 hrs
t = 350 hrs
t = 600 hrs
Elevation (ft)
305
300
295
290
285
0
50000
100000
150000
200000
250000
300000
350000
400000
450000
Channel Distance (ft)
Figure D3.1 Bed elevation change of the SLC before and after a flood event.
Figure D3.1 shows the bed elevations before and after the flood. The sediments allowed into the
aqueduct are deposited just downstream of the inlet, raising the channel bed elevation. The
sediments are eroded after the flood, and the bed geometry returns to its initial form after the
flood.
D62
GSTAR-1D-1D User’s Manual
4500
4000
Concentration (mg/l)
3500
3000
Upstream of Lateral Inflow
Downstream of Lateral Inflow
2500
15 miles d/s of Lateral Inflow
2000
1500
1000
500
0
0
200
400
600
800
1000
1200
1400
1600
1800
2000
Time (hrs)
Figure D3.2 Sediment concentration changes with time
Figure D3.2 shows concentration changes with the sediment lateral inflow. The peak sediment
inflow concentration just downstream of the lateral inflow is about 3800 mg/l. The baseline
condition prior to the lateral sediment inflow is 265 mg/l. After time of about 700 hr, the
contration just downstream of the lateral inlet increases to 2000 mg/l. This increase is due to the
increase in flow rate that erodes sediment that was deposited by the lateral inflow. Fifteen miles
downstream of the lateral inflow the concentration increasesto almost 4000 mg/l at 700 hours.
Appendix D/Example 3
D63
Was this manual useful for you? yes no
Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Download PDF

advertisement