Computer Program User`s Manual For Advanced

Computer Program User`s Manual For Advanced
.” c -a
k
“
1.
”-
“
I
NASA CONTRACT0.R
REPORT
*o
*o
0
cv
L O A N COPY: RETURN TO
=
I
AFWL
U
(DOUL)
KIRTLAND AFB. N.
M.
COMPUTER PROGRAM USER’S MANUAL
FOR ADVANCED GENERAL
AVIATION PROPELLER STUDY
by Rose Worobel
Prepared by
HAMILTONSTANDARD
Windsor Locks, Conn.
,
for Advanced Concepts a n d Missions Division
’
Ofice of Advanced Research and Technology
?I:‘!
MoflettField,
Cui$ 94035
?
IONAL
AERONAUTICS
AND
SPACE
ADMlN
I
d
ISTRATION
WASHINGTON,
D. C.
M A Y 1972
TECH LIBRARY KAFB, NM
00bL148
1. Report No.
I
NASA CR-2066
3. Recipient's Catalog No.
2. Government
No.Accession
4. Title and Subtitle
5. ReportDate
"Computer Program User's Manual for
Propeller S l x d y "
Advanced
General
Aviation May 1972
6. Performing Organization Code
8. Performing Orqanization Report No.
7. Author(s)
Rose
Worobel
10. Work Unit No.
9. Performing Organization Name andAddress
Hamilton Standard
Division of United Aircraft
Windsor Locks, Connecticut
11. Contract or Grant No.
Corporation
hL4S 2- 6477
13. Type of Report
12. Sponsoring Agency Name and Address
National Aeronautics& Space
Washington, D.C.
and Period Covered
Contractor
Administration
Report
14. Sponsoring Agency Code
15. Supplementary Notes
- ._
16. Abstract
A User's Manual is presented afor
computer program for predicting the performance
(static, flight, and reverse), noise, weight and cost of propellers for advanced
general aviation aircraft
of the 1980 time period. Complete listings of this
computer program with detailed instructions
and samples of input and output are
included.
17. Key Words (Suggested by Authorls))
18. DistributionStatement
propellers, propulsion, noise
19. Security Classif. (of
this
report)
Unclassified
20. Security Classif. (of this page)
IJNCL4SSIFIJ3-WLIMITED
21. NO. of Pages
74
F o r sale by the National Technical Information
Service, Springfield, Virginia 22151
22. Price'
3.00
CONTENTS
SUMMARY
1
INTRODUCTION
3
SYMBOLS
5
TECHNOLOGY IDENTIFICATION
7
Propeller Performance Generalization
Static and Forward Flight
Reverse
Propeller Noise Generalization
Propeller Weight Generalization
Propeller Cost Generalization
Computer Program
7
7
9
11
13
13
14
PARAMETRIC STUDY OPTIONS
17
COMPUTER PROGRAM USAGE INSTRUCTIONS
17
Program Input
Program Output
Messages
Sample Cases
18
21
23
24
CONCLUDING REMARKS
26
REFERENCES
26
TABLES
IAdvanced
GeneralAviationPropellerStudy
Classification
II
GeneralAviation
Equation
- GeneralizedPropeller
- Aircraft
27
Weight
28
FIGURES
1
PowerCoefficient Chart for a 2-Bladed, 150 ActivityFactor,
0.500 Integrated Design C L. Propeller
1
29
CONTENTS (Contents)
FIGURES (Contined)
Thrust Coefficient Chart for a 2-Bladed 150 Activity Factor,
0.500 IntegratedDesign C Propeller
Li
Basic Performance Curve-Variation of Effective Torque
Coefficient with Advance Ratio and Blade Angle.
31
Basic Performance Curve-Variation of Effective Thrust
Coefficient with Advance Ratio and Blade Cycle
32
5
Basic Noise Curve.
33
6
Category I Parametric Study
34
7
Category 11 Parametric Study
35
8
Category IV Parametric Study
36
9
Example Reverse Thrust Variation with Landing Speed and
Power Setting
37
10
Sample Input Coding
38
11
Sample Output
12
Sample Output
2
3
4
- SHP Option
30
40
13
- Thrust Option
Sample Output - 50% Stall Option
14
Sample Output
IA
Computer Program Flow Chart
46
2A
List of Subroutines
47
3A
FORTRAN IV Listing
48
- Reverse
Thrust Option
41
42
43
APPENDIX
A
Flow Charts, SubroutineList, and FORTRAN IV Listingfor
Standard Hamilton
Deck H432
vi
45
SUMMARY
A major outcome of the studies sponsored by theAdvanced Concept and Mission
Division, A. C. M. D.of NASA under Contract No. NAS2-5885 dated 30 January 1970
as reported in CR 114289 and under Contract No. NAS2-6477 dated 6 May 1971 as
reported in CR 114399 has been the development of a computer program forevaluating propeller performance (static, flight, reverse), noise, weight, and cost for
general aviation aircraft propellers as a function of the prime geometric and aerodynamic variables. Propellers have been divided into five classifications which
distinguish the complexity of general aviation propellers, i. e. , fixed versus variable
pitch, deicing capability, full feathering capability, and reverse thrust capability.
Parameters that may be varied independently include number of blades, blade activity
factor, blade integrated design lift coefficient, and blade tipspeed. A User's Manual
for the computer program was written under Contract No. NAS2-6477 and is presented
herein.
A brief description of the technology development is presented, and a complete
listing of the computer program as well as detailed instructions and samples of input
and output are included. Examples of parametric studies which can be made with the
computer program are shown.
1
INTRODUCTION
Aviation forecasts for the nextten to fifteen year time period, indicate thecontinued steady growth of gensral aviation. Furthermore, it is apparent that most of
these aircraft, even into the 1980 time period will be propeller driven utilizing primarily reciprocating engines with increased number of turbine engines as their economics improve. The attainment of this forecasted growth is dependent upon the continued
improvement in the safety, utility, performance and cost of general aviation aircraft.
In view of this, a study was undertaken under the sponsorship of the Advanced
Concept and Mission Division ofNASA to derive and computerize appropriate propeller
performance (static and forward flight), noise, weight and cost criteria to permit
sensitivity studies of these factors to be made for advance propeller configurations
designed for general aviation aircraft of the 1980 time period. This study is reported
in reference 1. A t NASA's request, a contract study was undertaken to provide a
User'sManual which includes a complete listing of this computer program with detailed instructions on its use. Furthermore, the scope of the computer program was extended to incorporate the inclusion of the generalized integrated design lift coefficient
(the only prime propeller blade shape variable not included in the original program),
the computation of reverse thrust, and the refinement of the weight generalization.
The technology development required to incorporate the above extensions into the
computer program for inclusion in the User's Manual is presented in reference 2. The
User's Manual is presented in this report.
3
SYMBOLS AND ABBREVIATIONS
1.0
AF
propeller blade activity factor,
b
blade section width, ft
B
number of blades
16
-0.15
blade section design lift coefficient
C
LD
1.0
propeller blade integrated design lift coefficient 4
C
Li
0.15
SHP ( P o / P ) 1011
cP
power coefficient,
2N3D5
SHP ( P o / P ) 10"
C
Q
torque coefficient for J 5 1.0,
3 5
477 N D
6
1.514 x 10 T ( P o / P )
cT
thrust coefficient,
N2D4
D
propeller diameter, ft
h
maximum blade section thickness,
101.4 Vk
J
advance ratio,
M
free stream Mach number
N
propeller speed, rpm
PNL
perceived noise level, PN'dB
ND
5
ft
SHP ( P o / P ) 10l1
torque coefficient forJ’1.0,
QC
3 5
4n N D
R
blade radius at propeller tip, f t
r
radius at blade element, ft
SHP
shaft horsepower
T
propeller thrust, pounds
X-
J2
6
1.514 x 10 T(Po/, )
thrust coefficient for J =. 1.0,
TC
xN2D4
1
J2
freestream velocity, knots
vK
fraction of propeller tip radius, r/R
X
3/4
propeller blade angle at 3/4 radius
2
density, lb sec /ft
P
PO
4
density at sea level standard day, 0.002378 lb sec2/ft4
Po/P
@/a
0
ratio of absolute temperature to absolute temperature at sea level,
T/T,
6
ratio of static pressure to static pressure at sea level,p/p0
6
TECHNOLOGY IDENTIFICATION
'
General aviation aircraft coversa very broad spectrum of aircraft implied by
a
the power plant size range of 100-1500 shaft horsepower. Thus, in order to provide
meaningful study within the scope intended by the Advanced Concepts and Missions
Division, A. C. M. D. , as an initial step under the study in reference 1 the Contractor
classified into five categories the general aviation aircraft envisioned
by A. C. M. D.
F o r convenience, the categories are repeated here in Table I. Analytical generalizations for predicting the performance (static, forward flight, and reverse), noise,
weight and cost of propellers for general aviation aircraft classified in Table
I were
established and computerized. With' the aircraft and propeller requirements thus defined and the computer program having been established, comprehensive sensitivity
studies of the propeller geometric and performance parameters can be
conducted.
were
presented
in
reference
1
for
representative
aircraft
from each
Such studies
general category described in Table I.
The details of the analytical procedures are defined in references 1 and 2. A
brief description of each generalization is presented in the following text.
Propeller Performance Generalization
A s a means of assessing propeller performance over the entire flight spectrum,
performance generalizations were developed for predicting static and forward flight
performance. Furthermore, for those aircraft incorporating propellers with the reverse thrust feature, a method of calculating reverse thrust has been included. These
generalizations were made fora family of propellers spanning the prime propeller
variables of 2 to 8 in number of blades, 80-200 in blade activity factor, AF, and 0.3
to 0.8 in integrated design lift coefficient, CL..
1
A brief description of these generalizations is presented in the following test.
-
Static and forward flight.
A performance generalization was developed for
predicting static and forward flight performance for general aviation propellers. Using
the proven propeller performance prediction methods discussed in references 1 and 2 ,
performance calculations were made for a family of propellers selected on the basis
of propeller shapes which prior study had shown to be the most favorable for minimum
weight, low noise characteristics and good performance (ref. Afig. 1, 2, 3 and 4 and
ref 2, fig. 1). These calculations were used in developing the performance generalizations. The horsepower, thrust, propeller rotational speed, velocity
and diameter were
included in the non-dimensional form of power coefficient, Cp, thrust coefficient, CT,
and advance ratio, J defined as follows.
C
-
P
-
cT
SHP ( P o / P ) x 10l1
3 5
2 N D
6
1.514 x10 T( P , / P )
N2 D4
-
J
101.4 V
k
ND
where:
SHP
-
shaft
horsepower
D
-
ratio of density at sea-level standard day to density for a
specific operating condition.
propeller
diameter,
ft
N
-
propeller
speed,
rpm
p o/,,
-
T
k
'
propeller
thrust,
pounds
forward speed velocity, knots
Base curves were defined in this non-dimensional form for presenting the performance of 2, 4 , 6 and 8 bladed propellers referenced to an activity factor of 150 and
0.5 integrated design lift coefficient. In order to minimize the number of curves and
consequently the size and complexity of the computer program, the terms effective
power coefficients, C p E and effective thrust coefficient, CTE were -introduced. The
effective power and thrust coefficients are defined as follows:
C
pE
C
TE
-
'P~'AF
-
x TC
' T ~ ~ A F
-
powercoefficient
-
activity factor adjustment to power coefficient (ref.
1, fig. 3A)
integrateddesign lift coefficientadjustmentfactorto
efficient
(ref.
2, fig. 4 )
powerco-
XPC
Li
Li
where:
'P
'AF
-
PC
Li
8
T~~
-
TC
-
cT
Li
thrust coefficient
activity factor adjustment factor to thrust coefficient (ref. 1,
fig. 3A)
integrateddesign lift coefficientadjustmentfactortothrust
efficient
(ref.
2 , fig. 6 )
co-
Thus, the base curves while referenced to a basic activity factor and integrated design
lift coefficient are applicable to the complete range of the prime blade shape parameters
including 80-200 activity factor, 0 . 3 to 0.8 integrated design lift' coefficient and 2 to 8
blades. This performance generalization format is shown for 2 bladed propellers
referenced to 150 activity factor and 0.5 integrated design lift coefficient on figures 1
and 2 for the effective power coefficient chart and the effective thrust coefficient chart,
respectively.
Since it has been projected that general aviation aircraft will be operating at
significantly higher speeds by the 1980 time period, a compressibility factor, Ft was
derived for use with the base performance plots. The thrust is multiplied by Ft (ref.
2 , fig. 9) to correct for compressibility losses.
The complete generalization together with detailed computational instructions are
presented in APPENDIX A of reference 1 and in reference 2.
It is to be noted that the performance predicted by this method is for the isolated
propeller since no single body blockage effect could be generalized to cover the wide
variety of aircraft included in general aviation.
Reverse. - The analytical method for computing reverse thrust is based on an
existing Hamilton Standard procedurewhich was obtained by generalizing all available propeller test data. The shaft horsepower, thrust, propeller rotational speed,
velocity and diameter are included in the non-dimensional formof torque coefficient,
CQ or Qc , thrust coefficient, CT or TC, and advance ratio, J defined as follows:
J
-
C
-
Q
QC
101.4 VK
ND
1 0 l 1 SHP ( P , / P )
-
3 5
4 n N D
-
X-
4 R N3D5
6
1.514 x10
1
for J s
1.0
for J
z
1.0
for J s
1.0
J2
T( P,/P)
9
1.514 x
TC
-
lo6 T( Po/P)
1
.&
xN2D4
for J r
1.0
J2
where:
SHP
-
po/P
-
ratio of density at sea level standard day to density for a specific
operating condition
N
-
propeller
speed,
rpm
D
-
propeller
diameter,
ft
T
-
propeller
thrust,
vK
-
forward speed velocity, knots
shaft
horsepower
pounds
Base curves have been defined in this manner for a 3-b1adedy 100 activity factor, AF,
0.4 integrated design lift coefficient, C L propeller.
~
The term effective torque coefficient, CQE or QcE, and effective thrust coefficient, C T o~r T CE , are used. As
with the forward flight generalization, these base curves with appropriate adjustments
for A F , C L and
~ number of blades can be used in predicting reverse thrust characteristics for the family of propellers spanning 2 to 8 number of blades, 80-200 A F , and
0.3 to 0.8 C L ~ . The effective torque coefficients and thrust coefficients a r e defined as
follows:
C
=
[ CQ x (3/B?83
x QAF
QE
1-
AC
(PCR/100)
for J
5
1.0
QE2
for J > 1.0
&CE
]
83
C
- AC
TE
[ TC x (3/BP’ 83 x TAF ]
- ATC
E2
where:
Q
for J
I1 . 0
(PCR/100)
for J
1.0
TE2
=
C
(PCR/100)
-
torque coefficient for J
(3/BP83- number
5
1.0
of blades, B adjustment
10
&AF
-
AC
-
activity factor adjustment factor to torque
(ref. 2, fig.
11)
integrateddesignliftcoefficientadjustmentfactortotorquefor
12)
J s 1.0 (ref.2,fig.
Q:E2
PCR
-
QC
-
torque coefficient for J r 1.0
-
integrated design lift coefficient adjustment factor to torque
for J 2 1.0 (ref. 2, fig. 15)
*QC
E2
cT
T~~
-
thrust coefficient for J s 1.0
-
activity factor adjustment factor to thrust (ref.
-
integrated design lift coefficient adjustment factor
for J s 1.0 (ref. 2, fig. 18)
-
thrust coefficient for J
-
integrated design lift coefficient adjustment factor to thrust
for J > 1.0 (ref. 2, fig. 18)
E2
TC
ATC ~2
percentage of integrateddesignliftcoefficientadjustmentfactor
to be used (ref. 2, fig. 13)
5
2 , fig. 17)
to thrust
1.0
This performance generalization format is shown for 3-bladed propellers referenced to 100 activity factor and 0.4 integrated design lift coefficient on figures 3 and 4
for the effective torque coefficients and effective thrust coefficients, respectively. The
complete generalization together with detailed instructions for computing the reverse
angle for a given throttle setting and the reverse thrust over the landing distance run
with the propeller fixed at the reverseangle a r e presented in reference 2.
Propeller Noise Generalization
For assessing propeller noise, the far field perceived noise level (PNL) was
selected as the noise rating scale because: 1) It is a good measurement of the relative
annoyance of the various aircraft designs considered in general aviation aircraft, 2)
It can be estimated by use of a relatively simple calculation procedure, and 3) It is a
reasonable indication of the subjective reaction to aircraft noise.
An empirical method €or predicting far-field perceived noise levels, P N d B developed a t Hamilton Standard has been includedin the computer program. It presents
a means of calculating noise for a broad range of propeller design and operating parameter s.
11
The required inputs to the propeller noise estimating method
are:
1.
Propeller
diameter
2.
Number of bladesperpropeller
3.
Propeller RPM o r tipspeed
4.
Shaft horsepowerperpropeller
5
Ambient
temperature
6.
Aircraft
forward
speed
7.
Number of propellersinstalled
8.
Distance from the propeller center
noise is to be measured.
of the desired field point at which the
The computational procedure consists of a basic noise level (dB) curve (fig. 5)
for a 4-bladed, 10.5 foot diameter propeller defined at 500 feet from the propeller
center. The base curve is a function of shaft horsepower and rotational tipspeed.
There are adjustments for variations in diameter, number of blades, and distance from
the propeller center. Then, there
is an adjustment to obtain the corresponding perceived noise level. The directivity pattern of the noise emanating from the propeller
is ignored, and the perceived noise level is computed for the azimuth angle for which
the noise is a maximum.
Recent test data on highly loaded low tipspeed propellers have indicated that the
reduction in noise with tipspeed is a function of propeller stall characteristics. It
appears that noise reductions can be achieved with decreasing tip speed at a given
power only to the point where the propellerstall is limited to approximately the inner
50% of the blades. The 50% stall region is defined on the base Cp and CT curves
(fig. 1 and 2). It is recommended that propellers be selected to operate to the left
of the indicated 50% stall line. The detailed procedure is explained in APPENDIX B
of reference 1.
Since this generalization is for propellers only, it is emphasized that the low
noise levels which may be achieved through selected design and operating conditions
will not be representative of those from the complete aircraft unless a parallel effort
is made to reduce the noise from other sources (particularly from the engine) as these
will become predominant and set the perceived noise level of the aircraft.
12
Propeller Weight Generalization
A weight estimating equation (ref. 2) was derived for preliminary propeller
selection studies. The propeller geometric parameters (diameter, number of blades,
activity factor) and the operational parameters (SHP, RPM, Mach number) incorporated in this formula are those which experience has shown to have the most predominant
effect on propeller weight and the exponents have been established empirically to best
fit the weight trends of current general aviation propellersand those anticipated for the
1980 time period. The equation is presented on Table
II.
The weight equation of Table I1 provides a useful tool for estimating propeller
weight for any general aviation aircraft installation in this decade within *lo’%
accuracy. However, it must be remembered that parameters other than the basic
geometric and performance characteristics used in this equation effect propeller
weights. These are variations in propeller environmental temperatures, type of
control system and the degree to which individual manufacturers design.for minimum
weight.
Propeller Cost Generalization
A cost equation (ref. 1) was generalized using end user price lists and weights
obtained for representative industry propellersin the five general aviation aircraft
categories shown in Table I. The equation is defined as follows:
C
where:
C
c1
Z
-
average original equipment manufacturer,
for a number of units/year, $/lb.
-
single unit 0. E. M. propeller cost $/lb.
0. E .M. propeller cost
LF
”
LF1
LF
LFl
B
-
learning curve factor for a number of units/year
-
learning curve factor for a single unit
-
number of blades
13
F
E
-
single unit cost
factor
empirical
factor
F o r the computer program, an 89% slope learning curve was assumed. F and E
factors were generated to evaluate costs of 1969 and the projected costs of 1980 time
periods. The factors for propellers installed on each aircraft category are listed below.
Category
I
1.0
2 8I1
10
1.5
I11
3.5
IV
29 3.5
V
65
3.5
F
3.5
3.7
3.2
2.6
2.0
196 9
E
19 80
Quantity
F
10
19
1.0
3.5
5470
1.5
3.7
1030 3 . 5
3.2
5
3.53.5
3.5 3.4
E
Quantity
2230
1990
6 80
36 8
Computer Program
The performance generalization for conventional and multi-bladed propellers and
the corresponding noise, weight and cost generalizations described in the previous
text have been computerized. The computer program has been coded in FORTRAN Tv
and has been run on the IBM System/370. With this computer program, the aforementioned propeller performance characteristics can be readily calculated fora range
of selected propeller geometries and desired operating conditions. Examples
of parametric studies made with the computer program are presented in another section of the
text.
There are four performance computation options available.
F i r s t , if an engine
is specified, then the operating condition is defined with the horsepower and the corresponding propeller thrust is computed. Second, if a propeller thrust requirement
is defined then the thrust is included as input and the horsepower is computed, thus
indicating engine size. Third, for operating conditions
defined by horsepower or
thrust, it is possible to define the tipspeed corresponding to 50% stall. This would be
the tipspeed for minimum noise. Fourth, reverse pitch angle and the corresponding
reverse thrusts for a range of landing ground roll velocities operating at the fixed
reverse pitch angle are computed. The corresponding noise ( P N d B ) , weight and cost
for the first three options are calculated. The weight and cost are calculated for both
the 1969 and 1980 time period where costs are basedon the 89% slope learning curve
and the unit costs and quantities selected by Hamilton Standard from available surveys.
There are the options of varying learning curve, unit costs, and quantities.
The required inputs for all options of this computer program a r e the following:
14
Propeller
1.
Diameter
range
2.
Number of bladesrange
3.
A F range (80-200)
4.
C
range (0.3
(2-8)
- 0.8)
Li
Operating conditions (maximum of 10).
tion options, the following is required.
1.
Shaft horsepower orthrust
2.
Altitude, ft.
3.
Velocity,
knots
4.
Temperature, OF
5.
Tipspeed
range
-
For static and forward flight computa-
For the reverse flight computational option, the following is required.
1.
Normalrated take-off horsepower, SHP
2.
Normalrated
3.
Altitude,
ft.
4.
Touchdown speed,
knots
5.
Temperature, OF
6.
Range of power settings, % of normal rated shaft horsepower
7.
Type of engine,reciprocating
take-off speed,rpm
or turbine
Other
1.
Number of engines
2.
Distance from the propeller center of the desired field point at
noise is to be measured.
15
which the
3.
Airplaneclassification(Table
4.
FlightdesignMachnumber
5.
Performance
computation
options
6.
Cost
computation
options
I)
The pertinent input-output instructions are discussed later in the text.
16
PARAMETRIC STUDY OPTIONS
Having developed a computer program incorporating the propeller performance,
noise, weight and cost criteria, parametric studies can be undertaken to evaluate the
trade-offs among these factors for propeller configurations applicable to general
aviation aircraft.
The variety of parametric studies which can be performed with this computer
program are illustrated in figures 6 through 9. A study for fixed pitch propellers
associated with aircraft Category I is shown as figure 6. Curves of performance (T.O.,
climb and cruise), noise, weight and cost were plotted versus tipspeed for constant
values of diameter for 2 bladed, 100 activity factor, 0 . 5 integrated design lift
coefficient propellers for a specific engine application. The SHP was defined and the
corresponding thrust was computed. Propeller blade angles
as independent variables
have been included in the performance curves. Thus, the blade angle providing the
best performance compromise for take-off, climb and cruise can be selected as desired by the particular operator. Similar data can be plotted for a range of number of
blades, activity factors and integrated design lift coefficients. From an inspection
of
such curves, the effects of the primary geometric and operating parameters can be
evaluated and a propeller selected as the best compromise for the particular application. A similar study is shown for variable pitch propellers applicable to aircraft
Category I1 for a 4 bladed, 150 activity factor, 0.5 integrated design lift coefficient
propellers on figure 7. For this example, the thrust requirements were defined and
the corresponding SHP's were computed. The minimum tipspeeds shown as end points
for each of the curves in figures 6 and 7 represent the tipspeed corresponding to the
50% blade stall lines shown in figures 1 and 2.
An optimum low noise study based on the assumption that the propeller is always
operating at the tipspeed corresponding to 50% stall at take-off and consequently
minimum noise can be made as shown on figure 8. The study was made for a representative airplane in Category IV showing a variation in diameter and activity factor
for a fixed number of blades and integrated design lift coefficient.
A reverse thrust study is shown on figure 9 for a propeller applicable for
Category V. Reverse thrust angles were computed for several throttle settings. Then,
reverse thrust, and the corresponding shaft horsepower and propeller rotational
speeds were computed for the velocity range corresponding to ground roll. The
corresponding runway landing distances can be computed and the reverse angle selected corresponding to the required runway distance.
COMPUTER PROGRAM USAGE INSTRUCTIONS
The flow chart, subroutine list, and FORTRAN IV listings for the computer
program (Hamilton Standard deck H432) are included as APPENDIX A . The detailed
description of input and output are presented in the following text.
17
Program Input
The input to the program is defined in the following text.
Cards 1 and 2 include the card number in column 3 and any legal Hollerith punched in columns 4 through 80.
Card 3 contains the following input data in an (13, 3X, 10F6.0) format:
1.
Card number
2.
Number of engines
3.Airplaneclassification(Table
4.
Flightdesign
I)
Mach number
all of these items as zero
Items 5 through 11 include the various cost options. Code
if the cost criteria built into the computer program is to be used. This criteria is defined in the section on cost generalization. If any deviations are required, the following additional information must be coded.
Learning curve variation. - It is based on assuming that a learning curve is a
straight line when plotted on log paper. The learning curve
is replaced as follows:
5.
Learningcurvefactorforsingleunit
6.
Learningcurvefactorfor
Unit cost factor, C1.
-
1000 units
If a revision in unit cost is required, code as follows:
7.
C1
-
singleunit O.E.M. propellercost,$/lb.for
1970
8.
C1
-
singleunit O.E.M. propellercost,$/lb.for
1980
Quantities variations.
code as follows:
-
To investigate the effects of quantity changes on cost,
9.
Initialquantityto
be used
10.
Increment to quantity
11.
Number of differentquantities
Card 4 contains the following input data in an (I3 , 3X, 9F6.0) format where:
18
1.
Card number
2.
Initial diameter
3.
Increment in diameter if a range of diameters are to be computed
4.
Number of diameters
5.
Initial activity factor (80-200 AF)
6.
Increment of activity factor if a range of A F is to be computed
7.
Number of activity factors
a.
Initial number of blades (2-8 blades)
9.
Increment in number of blades, if a range of blades is to be computed
10.
Number of number of blades
Card 5 contains the following input data in a (213, 5F6.0) format.
1.
Card number
2.
Number of operating conditions with a maximum of 10
3.
Initial integrated design lift coefficient (0.3
4.
5.
Increment of integrated design lift coefficient
computed
Number of C
L
to 0.8 C
)
Li
if a range of C
i s to be
Li
's
i
6.
For reverse thrust calculation option if bladeangle P
radius is given,
3/4
code 2. If p3/4 radius is to be computed, code 1.
7.
For reverse thrust calculation option, code 1. for turbine engines and 2 .
for reciprocating engines.
Subsequent cards are coded as follows with (3X, I3, 10F6.0) format for each
operating condition. The number of these cards must be equal to the number specified
in 2 on card 5 .
1.
Computational
option
-
Code option= 1 for defining condition with SHP
2.
option = 2
- for defining condition with thrust
option = 3
- for reverse thrust
calculation
Shaft horsepower or thrust per propeller depending on option selected in 1
above.
-
option
=
1 SHP
option
=
2
option = 3
3.
- Thrust
- SHP for zero velocity,
full throttle setting
Altitude in feet
For options 1 and 2, forward flight calculations, code
4.
Velocity,
knots
trueairspeed
5.
Temperature,
6.
Initial
tipspeed,
7.
Increment of tipspeed
8.
Number of tipspeeds
9.
Distance of field point at which noise is to becomputed.Directivityfor
peak noise is automatically used. The noise calculation
should be made
for take-off conditions only; code = 0. when no noise calculation i s to be
made.
10.
Code = 1. for computing the tipspeed corresponding to
option should be used for take-off conditions only.
11.
Code = 1. if cost and weight a r e to be computed.
with a take-off condition.
O F
- code 0.
nND
60
9
forstandard
day
fPS
For option 3 , reverse thrust calculation, code
4.
Landingtouch down speed,knots
5.
Temperature,
true airspeed
O F
20
50% stall. The
This option must be used
6.
RPMforzerovelocity,
7.
F i r s t power
setting
8.
Increment of powersetting
9.
Number of power settings
10.
Reverseangle,
p
3/4
full throttlesetting
if item 6 on card 5 is coded as 2.
F o r subsequent cases, repeat all the input data previously specified.
For termination, include two blank cards and a third card with 99 coded in an I6 format.
Program Output
The input prints out initially and then the pertinent data under the following headings for options 1 and 2 for forward flight:
1.
2.
3.
4.
- propeller
diameter,
ft.
T.S.
FPS
- tipspeed, fps
THRUST o r SHP - dependent on which option is selected
PNL
- perceived
noise
in
PNdB, value
corresponds
the
to
DUM-FT
number of engines specified in the input.
The following cost and weight data prints out when computations a r e requested.
5.
QUANTITY
number of unitstobe
includedin
costcomputation
- propeller weight, lbs.
WT-LBS
6.
7.
-
$COST
- propeller
dollars
cost
in
The weight and cost areincluded for both 1970 and 1980 technology.
8.
ANGLE
- propellerbladeangleindegrees
at 3/4 radius which is
of particular interest in analyzing fixed pitch propellers.
The following data is included as additional information. For example, from an examination of these parameters, an indicationof the presence and magnitude of compressibility losses and the blade loading characteristics may be established.
9.
FT
- compressibility
correction
21
10.
M
- free stream Mach number
11.
J
- advanceratio
12.
C
- power
coefficient
101.4 VK
=
ND
SHP ( P o / P ) 10"
=
2 N3D5
13.
CT
- thrustcoefficient
6
1.514 x 10 T( p 0 / P )
=
N2D4
For option 3, reverse thrust calculation, the following data prints out.
1.
2.
- propeller
diameter,
ft.
PERCENT THROTTLE - specifies what percent of normal
DIA. FT.
rated power
was used.
3.
REVERSE ANGLE
4.
V-KNOTS
5.
REVERSE THRUST
6.
SHP
- reverse angle at 3/4radius
- landing run velocity
- reverse thrust corresponding to 4 above
- shaft horsepower corresponding to 4 above
7.
RPM
- propeller speed corresponding to 4 above
The input propeller and operating condition parameters for the parametric studies
are varied as follows in the output print outs. For option 1 and 2 , forward flight calculations, the calculations a r e made for the input ranges in the following order:
1.
Tipspeed
2.
Diameter
3.
Number of blades
4.
Integrateddesignliftcoefficient
5.
Activity
factor
6.
Operating
condition
22
F o r the option where tipspeed for 50% stall is to be defined, the computations a r e made
for theinput ranges as follows:
1.
Diameter
2.
Number of blades
3.
Activity
factor
4.
Integrateddesignliftcoefficient
5.
Operating condition
For option 3 , reverse thrust calculation, the calculations
ranges in the following order.
1.
Throttle
setting
2.
Diameter
3.
Number of blades
4.
Activity
factor
5.
Integrateddesignliftcoefficient
6.
Operating condition
are made for the input
MESSAGES
A series of messages print out which indicate that the limits of the generalizaare listed below.
tions have been exceeded. These
1.
' INPUT ERROR IW = 12, IC = 12' - the input item specifying whichoption
is' to be used has been included as other than l., 2. or 3 . , the only option
values
.
- theinput
2.
'ILLEGAL ACTIVITYFACTOR = F8.1'
missible 80-200 A F range.
3.
'ILLEGAL NUMBER OF BLADES = F8.1'
ceeds the permissible 2-8 blades.
4.
'ILLEGAL INTEGRATED DES. CL = F8.1'
permissible range of 0 . 3 to 0.8 C L ~ .
23
A F exceeds the per-
- the input number
of blades ex-
- the input C L ~exceeds the
-
5.
'ADVANCE RATIO TOO HIGH' check to see that input diameter, RPM,
and velocity are correct. The advance ratio limits are 0 to 5.
6.
'FAILED STALL ITERATION' problem encountered in defining tipspeed
corresponding to 50% stall. If this message is encountered, check input
for SHP, RPM, altitude, velocity,
and diameter.
7.
-
******* - print out under PNL indicates that the propeller
is operating at
a condition where it is more than 50% stalled.
8.
****** - printout under SHP o r THRUST indicates that this
condition is off
the limits of the performance curves.
Sample Cases
Input coding sample cases for the four performance computation options are
shown on figure 10 and the output presented as figures 11 through 14 respectively.
The sample cases are presented in the following order.
1.
The condition is definedbySHPandtipspeedvariation.Performanceand
cost calculations based on the information included in the computer program
is requested.
2.
The condition is defined by a thrust requirement and tipspeed variation.
Only performance calculations a r e requested.
3.
The condition is defined by SHP.Tipspeedcorrespondingto
cost for a span of quantities will be computed.
4.
Reverse thrusts are required for
of throttle settings.
50% stall and
a given propeller geometry for a range
Computer Running Time
The computer program has been run
on an IBM-System/37O.
1000 operating conditions are computed per minute.
24
Approximately
CONCLUDING REMARKS
1.
Generalizations of analytical methods for accurately predicting propeller
performance, noise, weight and cost for general aviation aircraft application have been made.
3.
The computer program offers many options for performing parametric
propeller studies for general aviation aircraft.
4.
Computer program listings and detailed
presented.
25
inputandoutput
instructions are
REFERENCES
1.
Worobel,R.andMayo,M.
: AdvancedGeneralAviationPropellerStudy.
NASA Report CR 114289, April 1971.
2.
Worobel, R . andMayo,M. : AdvancedGeneralAviationPropeller
NASA Report CR 114399, Jan 1972.
.
26
Study.
TABLE I
ADVANCED GENERAL AVIATION P m P U E R STUDY
AIKRAFTCLASSIFICATION
Gross Weight,
Seats
Cruise Vel.,
MPH
Single Eng.
Trainer
Fixed Gear
2-h
100-160
100-200
Recip DD
Fixed Pitch
2 Blades
11. Single Eng.
b-6
120-150
150-300
Recip DD &
Geared
Some %all
Turboprops
150-300
Aircraft
Class
I.
Adv. Trainer
Retract Gear
IFR Equip.
111. Light Twins
h-6
150-300
4
IV.
Medium Twins
Retract Gear
IFR Equip.
6-U
Heavy Twins
Retract Gear
IFR Equip.
11 & Up
150-300
Propeller Type
Application
P r i cleb s .
Range
$8-Z5K
CESSNA 150, 172, SQhawk
BEECH Musketeer AZ.3-19
PLPER Super Cub,
Cherokee
Constant Speed
Adv. Trainer
2 Blades,Private(Family)
Some 3 Blades
Survey,
Business
2000-L000
$20-50K
CESSNA Slqwagon 180, 206,
207, 210
BEECH Bonanza Musketeer
Super 300
PIPERComanche C,
Cherokee Arrow
MOONEY M20F
Constant Speed
2 Blades
Survey,
Business
Some 3 Blades
Deicing
P r i v a t e (Family)
3500-6000
250450
Turboprops,
Recip DD &
Geared
Constant Speed
Full Feather
Charter
Deicing
3 Blades
Executive
600-1500
Turbines
Constant Speed
Full
Feather
Charter,
Third
Deicing,
Tier
Reverse
3 and b Blades
Trainer,Private
Rental, Aerobatic
,
$LO-lZOK
175-hOO
CESSNA Super Skymster,
310Q
BEECH Turhbaron,
Barron 55
PIPERTwinComanche C ,
Aztec D
MOONEY Aerostar
6000-8000
$100-200K
CESSNA LOlB, L02BJ LUJ
b21
BEECH Queen Air Duke
FVER Navajo 300 , Turbo
Navajo
KORTH AMERTCAN ADCIMGL”
Shrike Commander
BRITTEN-NORMAN ISLANDER,
Helio Twin S t a l l i o n
8000-12,500
$h00-600K
DEHAVILLAND Twin Otter
MOONEX MU-2G
NOWH AMERICAN ADCKWUL
HawkCommander
BEECH King A i r
HANDLEY
PAGE Jetstream
Air T a x i
j
V.
A
E ixrqclrea f t
1000-2500
Recip DD &
Geared
Some Small
Turboprops
Retract Gear
IFFi Equip.
Ir)
Engine Power
Large Executive
Air Liners
Generalized Propeller \Veight
-
Equjltion:
Where:
B
A. 1'.
No. of Blades
.-
B1:ule Activity I's-tor
.
N
= prop
S.p e e d ,
SHP
L
cW
= Y
'n
Rl'hl (t;Ike-Off)
S h a f tH o r s e p o w c r ,
HI' (take-off)
(s) (B) (s)
(T)
-90,000
O.:'
= Countcrweight Wt., lbs.
K w , C w , u, v and y vnlues f o r use in the weight equxtion ; r e t a k e n f r o m t a b l e b e l o w :
Class
IV
((2l))
I
( ::)
(4)
j
(1)
170
0.9
0.35
0
(2)
200
0.9
0.35
0
(3)
220
0.7
0.40
5.0
(4)
190
0.7
0.40
3.5
(5)
130
0.7
0.20
0
I
V
(5)
(1)
All f i x e d - p i t cphr o p s
(9)
hlc C a u l e yn o n - c o u n t e n v c i g h t c d ,n o n - l e n t h e r i n g ,c o n s t m ts p e e dp r o p s
(3)
All H a r t z e l l , :dl HamiltonSt:lnd:trd
(4)
F i b c r g h s s - b l a d c d c, o n s t m st p e e d c, o u n t e n v e i p h t e d ,
(5)
sn~:tllp r o p s , :lnd fe:lthering hIc C:tule,v
1:iberg'lass-l,l~ded,const;~nt-specd,doul,le-acting
reverse
28
full f e a t h e r e d
(non-countel~\,eighted), full f e a t h e r e d ,
Y
(I)
4
w
EFFECTIVE POWER COEFFICIENT.
FIGURE 1.
c p ~
POWER COEFFICIENT CHARTFOR A 2 BLADED, 150 ACTIVITY
FACTOR, 0.500 INTEGRATEDDESIGN CL; PROPELLER
w
0
W
-I
z
4
EFFECTIVE THRUST COEFFICIENT, C T ~
F I G U R E 2, THRUST COEFFICIENT CHART FOR A 2 BLADED, 150 ACTIVITY
FACTOR, 0.500 INTEGRATEDDESIGN C L i PROPELLER
3 BLADES/IOOA F / O . ~ cLi
BLADE A N G L E .
p
3/4
FIGURE 3. BASIC PERFORMANCE CURVE VARIATION OF EFFECTIVE TORQUE
COEFFICIENT WITH ADVANCE RATIO 8r BLADE ANGLE
31
I
C L ~
3 BLADES/lOOAF/0.4
-30
v
-
20
- 20
-
-
10
10
BLADE ANGLE,
0
10
0
io
p 314
FIGURE 4. BASIC PERFORMANCE CURVE VARIATION OF EFFECTIVE THRUST
COEFFICIENT WITH ADVANCE RATIO 8c BLADE ANGLE
32
PROPELLER INPUT HORSEPOWER
FIGURE 5. BASICNOISECURVE
2 BLADES - 1 OOAF - 0.5 C
Li
MAXIMUM CRUISE
1 12 SHP - 7000 - 1 15 KNOTS
tn
200
I
100
CLIMB 150 QHP - SL - 70.5 KNOTS
I
I
600
20°
I
15O
I
100)
I
I
50
400 D
IA=6'
T.O. 150 SHP tn
500
S.L. - 52.5
0
T.O. A T 500' SIDELINE
,6'
KNOTS
I
I
I
700
900
1100
F
4
08' DIA
500
TIPSPEED FT/SEC
FIGURE 6. CATEGORY I PARAMETRIC STUDY
700
900
TIPSPEED FT/SEC
1100
4 BLADES - 150 A F
- 0.5 CLi
MINIMUM CRUISE
370# THRUST - 7500 - 163.2 KNOTS
n
3000
0
[r
I-
5 2000
!:
-
8'
4 1000
6'-
d
n
n
4001
CLlbiB 700 THRUST - S.L. - 95.5 KNOTS
ja,
I
I
T.O. AT $00' SIDELINE
90
T.O. 820 THRUST - S..L. - 71.2 KNOTS
~
I
~
'
urn
1
m
200
3 00
500
700
TIPSPEED FT/SEC
900
60'
3 00
FIGURE 7. CATEGORY I I PARAMETRICSTUDY
I
I
500
700
TIPSPEED FT/SEC
I
900
4 BLADES - 0.6 CLi
loo
1
4
4000
,
3 000
90
urn
$E
v)
t-K
In
4
80
0
70
2000
1000
" V
T.O. 340 SHP - S.L. - 77.5 KNOTS
'
0 0 4
8
DIAMETER-FT
FIGURE 8. CATEGORY I V PARAMETRIC STUDY
I
J
10
12
DIAMETER - FT
CATEGORY V
I
I
LANDING SPEEDS, KNOTS
FIGURE 9. EXAMPLE REVERSE T H R U S T VARIATION WITH LANDING
SPEED AND POWER SETTING
37
J O B NO:
!
_ _ _ _ _ _ _ . ~ _ _
ACCT
NO.:
W 0 .N O
JOB NO.:
!
w
W
ACCT.
NO:
W . O . NO.:
Y A M I I T O Y SThYOA9Q
CIYPLITFK
DFCK NL1. H 4 3 2
CflST F9R
C I Y P U T F SP T ~ F f l R Y ~ l Y C C , Y l l IS r , k E I G H T , A N D
G F H F Q A L 9VlATIPNPQ(!D€LLFRS
1
4 1 R P L P , l \ r F I N C.¶TEG[lRY I
2
SHO
Tfil"VT-TIP5UFI:D
SAMPLE C A S E I
AN0 3IAYFTF.Q
VAKIhTION-COST
AN0 WFIGHT
0"EQATlNGCONDTTION
SHP
ALT-FT
V-KTAS
TFMP R
=
vn.
O F ENGINFS
=
3 r S I G N FYL.I=GOH. lTH l
CLASSIFIChTIflN
=
FIELD
PQI'VT
FT. =
151.
0.
=
=
=
5?.5
.
519.
= 3.22
= 1.02
W I T FACTUP 1L.C.
1 0 0 0 F4CTflR
L.C.
1.
1.
5no.
CT
CP
6.
5.
6 .
5.
rp
0
7'fl.
95".
7 5 1'.
5qn.
.
3.
557.
9 5'1.
q57.
75C.
9.
8.
55".
h.
9.
9.
SHD
=
ALT-FT =
=
V-KTAS
TEMP 9 =
>!
50
.
543.
101.
97.540.
9 25. 1 4 .
47rl.s*ctst;
377.et***:*
524.
97.
sa3.
97.
618.
RE.
691.
H4.
559.
70.
I
T.5.FPS
215.
707.
198.
188.
179.
357.
343.
329.
312.
295.
36.
34.
73.
31.
25.
59.
5 7.
55.
E.?.
49.
191C.
1910.
1QIP.
191 0 .
1910.
22'11).
2230.
2230.
2230.
2230.
2 2 30.
2230.
2230.
2230.
2230.
710.
36.
34.
33.
31.
29.
59.
51.
55.
52.
49.
[email protected]
193.
1A4.
173.
348.
335.
320.
3c5.
767.
13.3
16.5
20.4
25.8
33.8
8.8
11.5
15.0
19.3
25.4
0.0794
0.0794
0.0794
0.0794
1.9000.07q4
1. 'lo0 0 . 0 7 9 4
1 .OOO 0 . 0 7 9 4
1,000 0 . 0 7 9 4
1 . 0 0 90 . 0 7 9 4
I . ooo 0.0794
1.000
1 .OOO
1.000
1.no0
0.2 9.3
0.128
0.372
0.429
0.507
0.293
0.328
0.372
0.429
0.507
NO. f l F E Y G I N E S
=
1.
n F S I G NF L I G H T
W.=O.187
CLASSIFICATIDN
=
1.
FT =
0.
FlFLO "OIhlT
112.
7000.
115.0
494.
NUMREQ 'lr RLAOC\=
0Ib.FT.
191n.
1q1c.
1710.
1919.
1910.
2.
THRUST
PNL
267.
280.
275.
265.
252.
179.
256.
292.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
2az.
260.
4NGLF
.'+
16
19.6
23.7
28.9
35.9
13.1
16.4
20.1
2 4 .Z
30.0
FT
Y
J
0. 6 4 3
0.718
0.814
0.939
1.110
0.643
n.71~
0. A14
0.939
1.110
0.0694
0.0863
0.1055
0.0613
0.0923
0.1200
0.1283
0.1440
0.0377
0.0524
0.0713
0.1011
.
A C T I V I T Y FACTflR=100.
0,0349
0.0487
0 .O 7 0 9
0.1089
0.1798
0.01 9 6
0.0274
0.0399
-
.
. .. .-. .
INTFGR4TEO D E S I G N CL =.500
CP
0.0321
0.0449
0.0652
n. 1 0 0 7
0.1554
0.0181
0.0252
0. (1367
0.0564
0.0930
CT
0.0421
0 .0550
0.0695
n. 0 8 9 2
0.1 I 8 4
0.0159
0.0283
0.041 5
rl.0534
0 .a741
..
. . ..
FIGURE 11. SAMPLE OUTPUT - SHP OPTION
- -~
~
.
.
.-
.
- .-.
. . .
. ....
...
. .-
.
.
HAMILTON STANQARD
CflMPUTER
DECK Nfl. H43Z
C O S T FOR
COHPUTFS PFoFORYANCE1Y21SE,dEIGHl,AYD
GFNFRAL A V I A T I O N PROPELLEKS
1
A17PLANE I N ChTfGPRY 11
Z
TH9UST
SAMPLE CASF 2
-
INPUT-TIPSPEEl7 P N l l llIAYETE9 V A R .
COST AND WEIGHT
IPFRATINT,CONDITION
THRUST =
@?O.
4LT-FT
0.
71.2
V-KTAS
=
TEMP K =
*1Y.
NIJHREQ O F Rl.AnES= 4.
T.S.FPS
SHP
9 5 0 .6 .
6.
6.
97. 274.
75n.
270.
o5C.
275.
86. 273.
5.
550.
HV.
9 4 .2 9 3 .
1 4 6109.
6. 554. 176037
. 1156.025.8. 1 08. 9 . 2 5 0 .
8.
,h1
5 '5)26. 9. 1 08. 5 . 2 4 3 .
242.
9.
550.
IJNIT L.C.
FACTDR
1000 L.C.
FACTOR
DNL
= 3.22
= 1.02
FACTflR=150.
ACTIVITY
***
DIA.FT.
*** ***
1 9 7 0 TECHNPCOGY
WT-LRS
6C;)ST
QUANTITY
90.
tc.
2810.
2910.
2910.
2810.
100.
95.
90.
175.
. ..
.
.
~...
.
.
"
INTFGRATEO D E S I G N C L =.500
1 Y A O TECHNOLnGY X X X
WT-I.RS
$COST
'JUAr\lTITY.
i'R10.1 0554.17003
1. 3
@. 5 .
93.
...
"
40. n F EYSINFS =
1.
.DESIGN FLIGHT Y.=0.762
CLhSSIFICATIflN
2.
FIELD POINT FT. = 5 n 0 .
925.
100.
95.
78A.
5470.
5470.
941.
7 9 4 981.
.
90. 5470.
. 755
. 470.
11
75
24
98
.1
AR4.
R43.
1539.1 3 7185.564. 7 0 .
91.
5 417405.114.279. 1 0 .
1299.
147.
ANGLE
15.2
18.6
23.6
30.3
11.5
14.0
17.5
22.5
FT
1.000
J
H
0.1077
1.030 0 . 1 0 7 7
1.030 0.1077
1.000 0 . 1 0 7 7
1.000 0.1077
1.000 0.1077
1.000 0.1077
1.noo 0 . 1 0 7 7
0.445
0.504
0.582
0.687
0.445
0.504
0.582
0.6R7
CP
CT
3DFRATINC C O N D I T I O N
THRUST =
ALT-FT =
V-KTAS
=
TEMP
R
=
N'I.
370.
7500.
153.2
407.
ClF FhlGtNFS
nEsIrx
=
1.
~.=0.762
2.
CLASSIFICATION =
F I E L D POINT F T =
0.
NLJElYFQ I F 4LADES = 4 .
FLIGHT
A C T I V ITY FACTflQ- 1 5 0 ,
Ik!TE3RATED D F S I G N C L =.500
"
DIA.FT.
F.S.FPS
StIP
PNL
0.
6."0
6.00
6.nO
6.00
A59.
750.
6qP.
3.00
350.
226.
213.
70P.
217.
262.
9.m
759.
?32.
n.
8.o~
9.01
h5n.
715.
70 7.
0.
0.
553.
55,).
n.
0.
0.
n.
ANGLE
23.5
76.4
31.5
77.9
23.0
25.1
29.1
34.3
FT
1.OO'l
1.010
1.000
1 . n
1.oon
1.0nn
1.090
I .m)n
H
!).7534
P . 715. 3
14
55
0.7534
~0 . 2 5 3 4
0.2534
9.2534
0.7534
~7.2~34
J
1.019
1.333
1.575
1.019
I .155
1.333
1.575
CP
0.3919
0.1259
0.1991
0.3179
0. C 5 9 R
0.0773
0.1099
0 . 1747
CT
q.0739
0 .O950
0. I 2 6 4
0.1766
0.041 h
o .n534
0.0711
0.0993
FIGURE 12. SAMPLE OUTPUT
- THRUST OPTION
.
0.0888
0.1309
0.1276
0.1682
0.1993
0.2239
0.3268
-0.3127
0.0535
0.0737
0. 0690" 0 . 0 9 4 6 .
0.0992
0.1260
0.1634
0.1759
"
HAMILTONSlANDARD
COMPUTER DECK NO. H 4 3 2
COMPUTES P E R F O R H A N C E I N O I S E ~ W E I G H T ~ A NCOST
O FOR
GENERAL A V I A T I O N PROPELLERS
1
AIRPLANE
2
SHP INPUT-CALC.
TIPSPEED
I N CATEGORY 1 V
SAMPLE CASE 3
FOR 50PERCENT
STALL-COST
FOR RANGE
QUANT.
OPERATINGCONOITION
=
SHP
ALT-FT =
V-KTAS =
TEMP R =
OF NUMBER
NO. OF ENGINES =
2.
DESIGN
FLIGHT
M.=0.327
CLISSIFICATION =
4.
740.
0.
77.5
F5P
IE
1O9
LI.O
NT
FT.
a.
T.S.FPS
THRUST
BLR.
345.
PNL
77.
228.
228.
228.
7106.
2252.
2~07.
3001.
22a.
228.
282.
***
1 9 8 0 TECHNOLOGY
UT-LBS
SCOST
QUANTITY
185.
1a5.
7770.
2463.
1876.
1.
1001.
2001.
3001.
185.
185.
2195.
2052.
1788.
4001.
185.
1956.
ANGLE
46.3
FT
M
1.000
0.1172
THRUST
828.
QUANTITY
PNL
74.
1 9 7 0 TECHNOLOGY * a *
SCOST
WT-LBS
1. 1 1 9 2 63.0 6 .
1001. 3 7 8 03. 0 6 .
2001.
306.
306.
3001.
4001.
306.
3368.
3149.
3002.
J
1.194
CP
0.9333
CT.
0.4473
C L =.600
FACTOR=200.
ACTIVITY
INTEGRATED
DESIGN
***
8.
DES1G.N CL =.600
*** ***
1970 TFCHNOLOGY
SCOST
WT-LBS
1.
1001.
2001.
NUMBFR OF
6. BLADES=
T.S.FPS
= 500.
QUANTITY
4001.
DIA.FT.
= 3.22
= 1.02
A C T I V I T Y FACTOR-200.
INTEGRATED
BLAOES= 4.
***
0IA.FT.
U N I T FACTOR L.C.
1000 FACTOR L.C.
***
***
1980 TECHNOLOGY
QUANTITY
UT-LBS
SCOST
1. 12887.
245.
1001. 4084.245.
2001.
245.
3001.
245.
4001.
245.
FIGURE 13. SAMPLE OPTION
- 50%
ANGLE
51.2
3640.
3403.
3244.
STALL OPTION
FT
M
1.000
0.1171
J
1.459
1.7021
CP
CT
0.6759
-
2FClPR7CATIVG F'IGI'JF
650.
547.
543.
53a.
531.
523.
514.
503.
501.
440.
437.
434.
430.
425.
419.
412.
404.
402.
330.
37R.
325.
321.
318.
311.
308.
2109.
2198.
2172.
2151.
2124.
2092.
7056.
7013.
2004.
2194.
21R7.
21 7 0 .
2 149.
2174.
2093.
2059.
2019.
2010.
2200.
21114.
2165.
2141.
2117.
2097.
2054.
303.
2019.
302.
2010.
FIGURE 14. SAMPLE OUTPUT - REVERSE THRUST OPTION
.-.-
-
-
APPENDIX A
FLOW CHART, SUBROUTINE LIST AND FORTRAN IV LISTING FOR
HAMILTON STANDARD DECK H432
Hamilton Standard computer deck H432 computers propeller performance (static,
flight, and reverse), noise, weight and cost for a broad spectrum of propeller
geometric configurations over the complete range of potential operating conditions.
The flow chart is presented on figure IA, the list of subroutines on figure 2A,
and the FORTRAN IV listing on figure 3A.
45
(INPUT)
INPUT DATA
ACTIVITY FACTOR
NUMBER OF BLADES
TIPSPEED
DETERMINE
TIPSPEED AT WHICH
BLADE WILL BE
50% STALLED
CALCULATES
SHP
FOR GIVEN THRUST
REVERSE ANGLE
AND REVERSE THRUST
YES
CALCULATES
NOISE
CALCULATES
COST
PRINT
RESULTS
-
HAVE A L L
CONDITIONS FOR
THIS CASE
BEEN COMPUTED
F I G U R E 1A
I
~
No
C O M P U T E RP R O G R A M FLOW C H A R T
46
HAMILTON STANDARD DECK H432
Computer Program for Advanced General Aviation
Propeller Studies
MAIN
INPUT
PERFM
ZNOISE
WAIT
C OST
REVTHT
UNINT
BIQUA D
Figure 2A LIST OF SUBROUTINES
47
. FORTRAN .CY G L E V E L
~
0001
0002
2011
H A 1N
D A T E = 72034
10/08/04
R E ABLL* A
8 NK
COnHOH/AFCOR/AFCPE,AFCTE,XFT
COMHON/ASTRK/CPASTrCTASTERK
COMHON/CPECTE/CPEsCTEIBLLLLL
0003
0004
0005.
0006
0007
0008
0009
ALTPR
DiMENSION F C ~ l O ~ r A L T P R ~ l l ~ ~ P R E S S R ~ l l ~ ~ R O R O ~ l O ~ ~ Z M S ~ Z ~
DIMENSION C J I S T ~ l O ) r C O U A N ~ 2 r l l ) r C O S T 7 0 ( 1 0 1 r C O S T 8 O t l O ~
D I H E N S i O N BHPG(lO)rTHRSTG110)rTIPSDG(ll)
COMMON / Z I N P U T / B H P ~ 1 0 ~ ~ T H R U S T ~ 1 0 ~ r A L T ~ l O ~ r V K T A S ~ l O ~ ~ T ~ l O
l * I W I C ( l O ) TNOFIDIDD,NDIAF*DAFINAFIBLADN.D~LADN,D~L~D, N B L * D T S ( l O ) r N D T S I . 10)
2~DIST~XNOE~kTCON~ZMWT~STALIT~lO~~CLFl~CLF~CK7O~C~8O~CAMT~DAM
3 ~ D C O S T ~ l O ~ ~ C L X ~ ~ D ~ L ~ ~ Z N C L I ~ R T C ~ R O T ~ P C P ~ ~ l O ~ ~ N P C ~
4DPCPW ( L O ) r R P M C l 1 0 ) r A N D V K 10)
(
DATA
/0~r10000~~20000~~30000~~40000~~50000~
00 10
PRESSR
X60000~~70000~r80000~~90000~~100000~/
DATA
/1~0~~6877~~4595~~2970~~1851s~1145r.07
0011
0012
00 13
0014
0015
0016
0017
00 1 8
0019
0020
0021
0022
0023
C
C
C
0 024
0025
0026 ~.
0027
0028
C
0029
00 30
0031
0032
0033
0034
0035
0036
00 37
0038
0 039
0040
0041
0042
0043
0044
0045
X~04419~~02741~~01699~~01054/
B LDAANTKA/ 6 H
/
CBRT(X)X
= **(1./3.)
701 CONTINUE
W R I T E (6.1 I
1 FORMAT('1',19X'HAMILTONSTANDARDCOMPUTERDECK
NO. H 4 3 2 ' / 1 7 X * C O M P
l U T E S P E R F O R M A N C E I N O I S E V W E I G H T * A N DC O S TF O R ' / 2 6 X ' G E N E R A LA V I A T I O N
P
ZROPELUERS' 1
C A L ILN P U T
DO 7 0 0 I C = l , N O F
NCOST=DCOST~ICI+.Ol
IF ( S T A L L T t IC).LE..SO)
GO TO 710
NDTSI. I C ) = l O
D T S ( I C )=O.O
710 C O N T I N U E
W
I =I W I C ( 1 C )
W
I =
1 HP INPUT
IW=2
T H R UIS
NTP U T
IW=3
REVERSE
THRUST
I F (IW.LE.3)
GO TO 3
W Q I T E ( 6 ~ 2 )I W t I C
2 FORMAT
* I N P U T ERROR9 IW= ',IZ*' I C = ' * I 2 )
GO TO 700
3 CONTINUE
C O M P U T A T I O N OF D E N S IRTAYT I O
IFIT(IC))100~100~160
100 I F ( A L T I I C ) - 3 6 0 0 0 ~ ) 1 2 0 s l 2 0 ~ 1 4 0
120 T ( 1 6 ) ~ 5 1 8 . 6 8 8 - . 0 0 3 5 6 + A L T ( I C )
GO Tn 180
140 T (I C ) = 3 8 9 . 9 8 8
GO TO 180
160 T ( I ) = T ( I C ) + 4 5 9 . 6 9
1 8 0 TO=5 18.69
TOT=TO/T( IC)
F C II t ) = S O R T I T O T )
C A L LU N I N T( l l * A L T P R v P R E S S R , A L T (
IC) *POPILIMIT)
RORO(IC)=l.O/IPOP*TOT)
C
AF L O O P
.AFT=AF-DAF
GO T O 7000
I F (IW.EQ.3)
WRITE ( 6 , 7 0 6 )
706 FORMAT ~ * O s ~ l 8 X * 0 P E R A T I N GC O N D I T I O N ' / I
IF I N C O S T - 1 ) 2 9 0 r 2 0 0 9 2 9 0
F I G U R E 3A. F O R T R A N IV LISTING
48
FORTRAN I V 2G0 .L1E V E L
0046
0047
O A T S =1 07/ 20 08 3/ 04 4
MA I N
200 I E N T = l
C A L L COST ( W T C O N ~ B L A D T ~ G L F l ~ C L F I C K 7 0 r C K 7 O ~ C K 8 O ~ C A M T ~ D A M T ~ N A M T ~ C ~ U A N ~ l ~
l~~W770~WT80~COST70~COST8O~CCLFl~CCLF~CCK7O~CCK8O~IENT~
0048
0049
0050
0051
0052
0053
00 5 4
0055
00 5 6
0057
0058
0059
0060
0061
0062
0063
OC64
0065
0066
0067
0068
0069
0070
0071
0072
c073
00 74
0075
0076
0077
0078
0079
OC80
0081
OC82
0083
0084
0085
OC 86
0087
0088
OC89
GO 70 1 2 1 0 * 2 3 0 ) r I W
210 WRITE ( 6 ~ 2 2 0 )B H P ( I C I m X N O E e C C L F 1
='rF7.0,9X'NO.
OF ENGINES
2 2 0 F O R M A T ( ' SHP
=' 1 F 5 . 0 1 9 X ' U N I FT A C T O R
= 1' rLF-5C. .2 )
GO TO 250
2 4F
0ORMAT('
THRUST = * r F 7 0 0 9 9 X ' N O .
OF E N G I N E S
= ' . F ~ . O I ~ X ' U N IF
TA C T O R
= * rF5.2)
1L.C.
230 WRITE ( 6 . 2 4 0 ) T H R U S T ( I C l r X N O E t C G L F L
2 5 0 IF(CK70.GT.O..OR.CK8O.GT.O.)
GO r0 2 5 5
W R I T E (6,2521 A L T ( I C ~ ~ Z M W T I C C L F ~ V K T A S ( I C ~ ~ W T C O N I T ( I C ) ~ D I S T ~ I C J
2 5 2F O R M A T (A
' L T - F T= ' r F 7 . 0 . 9 X . ' D E S I G NF L I G H TM . = ' * F 5 . 3 r 9 X ,
'1000 FACTO
1 R L.C.
=*rF5.2/'
V-KTAS = ' ~ F ~ . ~ ~ ~ X I ' C L A S S I F I C A T I O N= ' , F 5 - 0T/E'
2MP R = ' W F ~ . O , ~ X I ' F I € L DP O I N TF T=. ' . F 5 . 0 )
GO TO 270
255 WRITE ( 6 ~ 2 6 0 1
A L T ( IC) v Z M W T
~ C C L F I V K T A S ( I C ) ~ W T C O NCI K 7 0 , T [ I C ) ,
1 D I S T ( IC) e CK8O
2 6 0 FORMAT( ' A L T - F T= ' P F ~ . Q , ~ X I ' D E S I G NF L I G H TM . = ' . F 5 . 3 r 9 X * ' l 0 0 0F A C T
='sF5.2/'
V-KTAS ='~F7.lr9X~'CLASSIFICATION
='rF5.0.9X,
1 0 R L.C.
2 ' U h r I T C O S T 1 9 7=0' r F 5 . 1 / *
TEMP R = ' . F T . O I ~ X , ' F I E LPDO I NFTT .
=
=' t F 5 . 1 )
3'*F5.0,9Xs1UNIT
COST 1 9 8 0
GO T O 2 7 0
2 9 0 GO T O ( 1 0 1 1 2 ) . I W
LO W R I T E (6.111 B H P ( 1 C ) r X N O E
11 FORMAT(
SHP
=Ir F 7 . 0 1 2 3 X ' N O .
OF E N G I N E S
='1F5.0)
GO T O 1 4
1 2 WRITE ( b e 1 3 1 THRUSTIIC),XNOE
' THRUST
='.F7.0122X'NO.
OF E N G I N E S ='.F5.0)
F1O
3 RHAT(
1 4 W R I T E ( 6 ~ 1 5 ) A L T f I C I ~ Z M W T I V K T A S ( I C ) ~ W T C O N ~ T ~ ~ D IISC T
)(
15 F O R M A T (A' L T - F T= ' r F 7 . 0 v 2 3 X * D E S I G NF L I G H TH . = ' r F 5 . 3 / '
V - K T A S ='t
1F7.1r23X8CLASSIFICATION
='pF5.0/'
TEMP R = ' r F 7 . 0 , 2 3 X ' F I E L P
DO I N T
2 F T =* r F 5 - 0 )
GO TO 2 7 0
2000 W R I T E ( 6 . 2 1 0 0 )
2 1 0 0 FORMAT ( ' ~ ' ~ ~ ~ X I ' R E V E R STEH R U S TC O M P U T A T I O N ' / / )
I F (ROT.EO.1.1
GO TO 2 3 0 0
WRITE ( 6 1 2 2 0 0 )
2200 FORYAT(Z~XI'RECIPROCATING ENGINE*//)
GO T O 2 4 0 0
2 3 0 0H R I T E ( 6 ~ 2 3 5 0 1
2350
FORMAT
(27X.'TURBINE
ENGINE'//)
IC).T( I C )
2 4 0 0 WRITE ( 6 r 2 5 0 0 ) B H P ( I C ) r R P M G ( I C ) . A N D V K ( I C ) r A L T (
2 5 0 0 FORMAT ( 2 2 X . ' F U L T
LHROTTLE
SHP
=' 9 F 6 . 0 / 2 2 X'rF U L LT H R O T T L E
RPM
=
;I,
I ' ~ F ~ . O / Z Z X I ' T O U C H DOWN V-KNOTS = ' , F 6 . 0 / 2 2 X . ' A L T I T U D EF E F T
~ F ~ . O / Z ~ X I ' T E M P E R A T U R ER A N K I N E = ' r F 6 . 0 / / 1
DO 1 2 0I0A F = l r N A F
270
AFT=AFT+DAF
IF(AFT.LE.200..AND.AFT.GE.E0.)
GO TO 1 8 2
URITE(6.1Rl)
AFT
' I L L E G A L A C T I V I T Y FACTOR = ' r F 8 . 1 )
1 8F1O R M A T (
GO T O 1 2 0 0
1 8 2 CONT I N U €
C
INTEGRAT
DEED
LSO
C
I GO
LNP
NCLI=ZNCLI+.l
CL I = C L 1 1 - D C L I
DO 1 0 0 1I C L = l r N C L I
FIGURE 3A. FORTRAN I V LISTING (CONTINUED)
49
FORTRAN .I.V G L E V E L
.
0090
0091
0092
0093
0094
0095
0096
00 97
0098
0099
0 100
0 101
0102
0 103
0104
0105
0106
0107
0108
0 109
0110
0111
0112
. 0113
0114
0115
0116
0117
0118
0119
0120
0121
0122
2011 .
.
= 72034
DMA
A TI N
E
10/08/04
CL I=CCI+DCLI
IF(CLI.LE~.80001.AND,CLI.GE..29999)
GO T O 875
W R I T E (6,870)
CLI
870 F O R M A TI L( L E G AI N
L T E G R A T EDCE S I GCNL
='tF5.31
GO TO 1 0 0 1
8 7 5C O N T I N U E
LOOP
NO. C
BO
LF
ADES
BLADT=BLADN-DBLAO
DO 1000 I B = l , N B L
BLADT=BLADT+DRLAD
IF(BLAOT.LE.B..AND.BLADT.GE.2.)
GO TO 888
W R I T E ( 6 . 8 8 7B) L A D T
887 F O R M A T (I' L L E G A L
NO. OF B L A D E S = ' t F R . 1)
GO T O 1000
888 C O N T I N U E
C P R I N TA P P R O P I A T EH E A D I N G
I F ( I U .LT.3)
GO TO 2700
W R I T E 16,2650) B L A D T t A F T t C L I
2 6 5 0 FORMAT ( ' O ' t ' N U M B E R
OBFL A O E S = * , F 3 . 0 ,A*C T I V I TFYA C T O R = * t F 4 . 0 , '
1 I N T E G R . A T E DD E S I G NC L = ' t F 4 . 3 / )
W R I T E (6,2660)
2 6 6 0 F O R Y A( 1T3 X v ' T H R O T T L E
REVERSE'pRX.'REVERSE'/5XI'DIA.FT
SETTING
A
lNGLE
V-KNOTS
RPM*/)
THRUST
SHP
GO TO 30
2700 W R I T E (6.20) B L A D T t A F T v C L I
20 FORMATI'O'.'
NUMBER
OF B L A D E S = ' V F ~ . O ~ ~ ~ X ' A C T I V IFT4 C
Y TOR='tF4.0t
X 1 8 X ' I N T E G R A T E DD E S I G NC L
='rF4.3)
IF(NCOST.EQ.1)
GO TO 500
GO TO ( 2 1 r 2 4 1 ~ I U
21 W R I T E (6.22)
2 2 F O R M A T (D' 0I 'Ar '- F T .
T.S.FPS
T H RAPUNNS
FGLTL E
M
1 J
CT' CP
/1
GO TO 30
24
WRITE(6t25)
2 5 F O R M A TD(I' A
0 '.tF' T .
T.S.FPS
SHP
AF
N
PTG
NLE
u
L J
CP
CT' / 1
GO TO 30
500 GO TO l510t550)rIW
510 W R I T 1E6 , 5 2 0 )
5 2 0 FORMAT(.'0',30X****
1 9 7 0 TECHNOLOGY
1 9 8 0 TECHNOLOGY ***I/
1' D I A e F T . T.S.FPS
T H R UPQ
SNT
ULA N T U
I TTY- L B S
&COST
QUANTITY
2 ANGLE
$COST
WT-LBS
FT
N
J
CP
11
GO TO 30
550 W R I T E ( 6 , 5 6 0 )
560 F O R M A T ( ' 0 ' ' 3 0 X ' * * *
1 9 7 0 TECHNOLOGY *++
*++ 1 9 8 0 TECHNOLOGY X X X ' /
WT-LRS
SCOST
1 ' DIA.FT.
T.S.FPS
SHP
QUANTITY
PQhULA N T I T Y
M
FT
2 WT-LBS
$COST
ANGLE
J
CP
CT' / )
30 CONTINUE
It [NE= I L I N E + 6
0 1 ANETEK
LOOP
C
D I A=D- DD
DO R O O I D = l r N D
0 1 A = D I A+OD
I F IIW.EQ.3)
GO TO 3 0 0 0
C
T I P SLP
OEOEPD
TO 3 1 0
I F ( S T A L I T 1 I C ) .LE..50)GO
D T S ( I C 110.
TRIG=O.
*** ***
cr*
0123
0124
012s
0 126
0 127
0128
0129
0 1 30
0 131
0132
0 133
0134
FIGURE.3A.
FORTRAN IV LISTING (CONTINUED)
50
FOHTRAN I V G L E V E L
0 135
0136
0137
0138
0139
0140
0141
0 142
0143
0144
0 145
0146
0147
0148
0149
0150
0151
0152
0 153
0154
0155
0156
0157
0158
0159
0160
0161
0162
0163
0164
0165
0 166
0 167
0168
0 169
0170
0171
0172
0173
0174
0175
0 1 76
0177
0178
0179
oleo
0101
0182
0183
0184
0185
20.1
MAIN
OATE = 7 2 0 3 4
N T S= 10
T I PSDC4 1 ) =700.
T I PSPO=700.
GO TO 3 2 0
.
310 T l P S P D = T S ( f C ) - D T S ( I C )
NTS=NDTS I IC 1
320 DO 600 I T S = l * N T S
TIPSPD=TlPSPD+DTSlIC)
C
MACH NUMBER C A L C U L A T I OANNADU V A N CREA T I O
10/08/04
J
LHS~l~=.001512*VKTASlIC~*FC~IC~
Z M S ( Z I = T I P S P D * f C ( IC)/1120.
ZMl=ZMSI 1)
ZJI=5.309*VKTASllC)/TlPSPD
IFlZJI.EQ.0.)
ZHL=ZMS(Z)
IF ISTALITIIC).LE..SO.AND.ZJI.LE.5.0)
GO TO 342
IF(STALITLIC).GT..50.AND.ZJI.L€.3.0)
GO TO 3 4 2
WRITE(6p341) ZJI
RATIO
TOO H I G H = ' 9 F 8 . 4 )
3 4 1 F O E M A T (A' D V A N C E
GO TO 6 0 0
3 4 2 CONTlNUE
C
I T E R A I I O N ON CT OR C P TO
GET
50 P F R C E N S
T T A LT
LIPSPEED
I F IN=O
IF (STALIT(ICJ.LE..501
GO TO 3 9 9
IUSV=IW
I u=3
~ 3 ~ C P ~ Z J I ~ A F T ~ B L A O T ~ C L l ~ C l ~ Z ~ S ~ 7 7 l O ~
C A LP
LERFY
I d = I HSV
IF(Ik.EQ.2)
GO T U 7 1 2
711 B H P C l I T S I = 2 . 0 * T I P S D G ~ I T S ) * * 3 * D I A * ~ 2 ~ 6 9 h b . ~ C P / ~ l ~ . E l ~ ~ R ~ R ~ ~ I C ~ l
IF(ABSIBHPlIC)-BHPG(lTS)).GE..OO5*BHP(IC~)
GO TO 7 0 5
THHUSTIIC~=CT*TIPSPD**2*~IA~~2/~1.515E06*RORO~IC~~~~64.76
T4 1C=l.
GO TO 7 2 0
705 IF(ITS.EQ.11
GO TO 7000
T I P S D G ~ I T S + 1 ~ ~ ~ A L O G ~ B H P l I C ~ ~ - A L O G l B H P G )l) l* (TTSI P- Sl D~ G ( l T S ) 1TIPSDGllTS-1l~/~ALOG~BHPG(ITS~~-ALOG~~HPG~lTS-l~~~+TlPSDG~ITS-l~
G O TO 709
7000 T I P S D G 1 2 1 = 4 0 0 .
TIPSPO=TIPSDGIITS+l)
GO TO 600
712 THRSTG(ITS)=TIPSDG(ITS)**2*DlA**2*364.76*CT/l
1.515E06*RDRO(lC)~
IFlABS(THRUST(ICI-THRSTG(iTS~~.~E..O~5*THRUST~IC
GO) ~ T O 7 2 2
TIPSPD=TIPSCG(ITS)
BHPlICI=CP*2.0*TIPSP0**7*DIA**2/(10.E10*ROR~~IC~I*6966.
TRIG=l.
GO TO 7 2 0
722 l F l I T S . E Q . 1 )
GO TO 7000
TIPSDG~ITS+L)=(ALOGITHRUST(IC))-ALOG(THRSTG(ITS-~~I~*(TIPS~G(ITS~lTIPSDG~ITS-1~I/~ALOG~THRSTG~ITSI~-ALOG~THRSTGll~S-lJ~~+TIPSDG
2 ( I is-I 1
709 T I P S P D = T I P S O G ( I T S + l )
1FlNTS.NE.ITS)
GO TO 600
W R I T E I 615981
598 FORMAT { / / ' F A I LSETDA
I TLELR A T I O N
'// I
GO T O 700
C
END OF T I P S P D I T E R A T I O N 50 P E R C E NST T A L L
C
C A L C U L A T I O N OF R E Q U I R E
CD
P
OR C T
399 I F l l U - 1 ) 4 0 0 ~ 4 0 0 ~ 4 3 0
FIGURE 3A. FORTRAN I V L-ISTING (CONTINUED)
51
FORTRAN I V G L E V E L
PERFM CALL
10/08/04
400 C P = B H P I I C ~ * l O . E 1 0 * R U R O ( I C ~ / ~ 2 . O * T I P S P D * ~ 3 * D I A * * 2 * 6 9 6 6 . ~
0187
0188,
0189
420 T H R U S T ~ I C ~ ~ C T * T I P S P D * * 2 * D l A * * 2 / ~ l ~ 5 l 5 E O 6 * R O R O ~ I C ~ ~ * 3 6 4 ~ 7 6 * X F T
(lrCP~ZJI,AFT~BLAOT~CLi~CT~Zf4S~LIMIT~
IF
450 B H P ~ I C ~ = C P * 2 . 0 ~ T I P S P ~ ~ * 3 * ~ I A * ~ 2 / ~ ~ O . E l O * R O R O ~ I C ~ ~ * 6 9 6 6 .
I F I C PI .CE)Q
=9
.BA5HS9PT
9(9
E9R9K9)9 .
460 I F (CP.NE.ASTERKI
0201
0202
0203
I F I D 0I S2 T
0 I4I C ) . L E . O . )
0 206
0207
0208
0 209
0 2 10
0211
0212
0213
0214
0215
0216
0217
C O S T 7 0 ( 1 )=99999.
COST80(1)=99999.
GO T O 7 3 0
7 2 0 [email protected]
I S TALL=O
GO TO 4 6 1
CALL ZNOISE ( B L A D T ~ D I A , T I P S P D ~ V K T A S ~ I C l ~ ~ H P ~ l C ) ~ O I S T l [ C ~ ~ P N L
lFCLIC),XNOEI
CPA=CP
CTA=CT
SBLLL'BLCLL
SXFT=XFT
IWSV=IkJ
I13=3
CALL P E F F Y ( 3 ~ C P , Z J I ~ A F T ~ B L A D T ~ C L I ~ C T ~ Z M S ~ 7 7 1 0 ~
CPS=CP
CP=C PA
C T=C T A
BLLLL=SE!LLL
XFT=SXFT
0218
Ik=I wsv
0219
0220
0221
0222
IF
0 223
0224
0225
0 226
0227
0228
0229
0230
0231
GO T O 720
PNL=99999999.
0200
0205
ICT.E
TQ
H .RAUSSTTEIR
I CKJJ= 9 9 9 9 9 9 9 9 9 9 .
GO Ti) 460
430 C T ~ T H R U S T ~ I C ~ * 1 ~ 5 l S E O 6 ~ R O R D ~ I C ~ / ~ T I P S P D * * 2 * D ~ A * * 2 * 3 6 4 ~ 7 6 ~
(~~CPIZJI~AFT~BLADT~CLI~CT,ZMS~LIMIT)
P E RC
FM
A L L0 1 9 2
0193
0194
0195
0 196
0197
0198
0 199
575
OATE = 72034
0186
0 190
0 191
CALL
M A IN
20.1
( C P . G T . C P SP) N L = 9 3 9 9 9 9 9 9 .
CONTINUE
kl70-99999.
WTE0=99999.
COST7011)=99999.
COSTRO( 1) =99999.
IF
NCClST-1)
730,7251730
725 I F ( N C O S T . E O . 1 ) C A L LW A I T ( k T C O N , Z Y W T , B H P I
lkf7C~WT801
[C),OIA,AFTrHLAOT,TIPSPDI
I W T C CO O~ Sr BT L A O T , C L F L ~ C L F 1 C K 7 0 1 C K 7 O ~ C K ~ O ~ C A ~ T ~ ~ A ~ T ~ N A ~ T ~ C ~ U A N ( l ~ l
l ~ r ~ l 7 0 r W T 8 O ~ C O S T 7 0 ~ C O S T 8 O ~ C C L F I C C ~ 7 ~ ~ C C K ~ O ~ l E N T ~
GO TO 1 5 7 0 r 5 8 0 1 , I W
W R I T E5 7 6
( 6 ~ 5 7 5 1 D I A ~ T I P S P D ~ T H R U S T t I C ~ ~ P N L ~ C ~ U A N ~ l ~ l ~ ~ W T 7 O ~
1 C Q U A N ~ 2 ~ 1 I ~ W T 8 0 ~ C O S T ~ O ~ l ~ ~ B L L L L ~ X f ~ ~ Z ~ l ~ ~ J ~ ~ C P ~
F O P M A T ( 2 F 7 ~ O ~ F 9 ~ 0 ~ F 6 ~ O ~ Z F $ ~ O ~ f 9 ~ O ~ Z ~ ~ ~ O ~ F 9 ~
12~e.4)
585
GO TU 5 8 5
0232
02 3 3
580 W R IlT6E9 5 7D5I )A v T I P S P D , B H[ P
C () r P N L v C Q U A1N1 l ) r W T 7 Q 1 C 3 S T 7 0 (
0234
0235
0236
0237
1CQCAN~2rl~~hT8OrCOSTBOorBCLLL~~XFT~ZMl~ZJI~CP~CT
I F I N A M T - 1 ) 409401586
5 8 6 DO 5 8 I8= 2 9 r \ l A M T
kRITE(h,587)
C Q U A N ~ L ~ ~ ~ ~ W T 7 0 ~ C @ S T 7 O ~ I ~ ~ C Q U A N ~ 2 ~ I ~ ~ W
FORMAT (29X,2F8.0,F9.0,2F8.0~F9.0)
FIGURE 3A. FORTRAN I V LISTING (CONTINUED)
52
11,
= 72034
DA
FORTRAN
TE MAIN I V
20G
.1 LEVEL
0238
0 239
0240
0241
02 4 2
0243
0244
0245
0246
0247
0248
0249
0 2 50
0251
0252
02 53
0254
0255
0256
0 2 57
0258
0259
0260
0261
02 6 2
0263
0264
0265
10/08/04
C O N 1 I NUE
GO TO 40
730 GO TO ( 3 1 r 3 4 1 r I W
31
WRITE16,32) OtA~lIPSPD,THRUSTIIC)tPNL,8LLLL~XFr,ZMl,ZJIrCP~CT
32 FOR~AT(F7.2rF7.O~F9.OIF6.OIF6.lrF8.31F7.4~F8~3t2F~~4~
GO TO 40
3b4l R I T E ( 6 r 3 2 )
DIA~TIPSPDrBHP~IClrPNLteLLLLL~XFT~Z~l~~JlrCP~CT
40 I F I T R I G . E O . 1 . )
G O TO 750
IF(ISTALL,EC.
2 ) GO TO 800
IFIIFIN.EQ.7710)
GO TO 8 0 0
6 0 0 CONT I NUE
I F (IW.LT.~)
GO ro 7 5 0
C
REVERSE THRUST C A L C U L A T I O N
3000 IRl=NPCPW I I C 1
PCPWC=PCPW(ICI
DO 3 9 0 0I = l r I R T
IF ( R T C - 1 . 3) 2 0 0 r 3 1 0 0 ~ 3 2 0 0
3100 C P ~ B H P I I C ~ * P C P W C * R O R O I I C ) * 1 0 . E 1 0 / ~ 2 ~ O * R ~ ~ C l I C ~ * ~ 3 * D I A * * 5 ~ l O O ~ ~
3 2 0 0C A L LR E V T H T
~RTCrROT,AFTrGL~~8LADT~DIA~CP,BETA(IC~,RUFOIIC~~
1BHP( I C 1
rRPMC(IC),PCPWCrANDVK(IC))
PCPWC=PCPWC+DPCPH I IC 1
3900 C O N T I N U E
7 5 0 COhTINUE
800 C O N T I N U E
1000 GONT I NUE
LOO1 C O N T I N U E
1 2 0 0 CONTINUE
700 CONT I NU€
GO TO 701
END
588'
FIGURE 3A. FORTRAN
IV L I S T I N G (CONTINUED)
53
= 72031
F C l Q T R 4 1 I V GD
I NAL7
PTE
0UE.VT1E L
FIGURE 3A. FORTRAN I V LISTING (CONTINUED)
54
,
.
,
..
,
08/48/14
..EDRIRAN-LY. . G . I E Y E L _ . . Z Q r L
..4.Q.01.
.._
. ..
. ._. ...
.. ....
0004
.
.--QQQL.
0006
0007 . .
.
..
.
-
0008
'0009
. .. .
..
.
-. -
0010
0011
"
001
.-
_ .
. QQl3
,
..
.
0 0 14
0015
0016
"
.
__
.PERFM
. .
.
DATE = .72034
.10(08/04
SUBRO-UTINE .PERFH . I I W * C P r Z J I r A F T * B L A D ~ ~ C L I r C T * Z M S * ~ I M I T )
COMHON/AFCOR/AFCPErAFerEIXFT
.. . COMHON/CPECTE/CPE sCTEr BLLLL
COUMON/ASTRU/CPAST~CT~ST~ASTERU
.-.D"f.WLON ... A F - V A L ( 6 ) . A F C P C . ( 6 1 2 I , A F C T C ( 6 r Z ) * A F C P ( 7 J . A F C i [ ? ) r X L B ( 4 ) r
X
I N N l 7 ) r Z J J ( 7 ) r C T T ( 7 ) . C P P ( 7 ) r C T i T ( 4 ) rCPPP(C)rCPANG( 1017.4)
..
0002
-.OD01
..
.
'
__
*
0017
00 19
0 0 19
0020
0021
0022
56
FORTRAM -1 Y .G..LEYf L ._ 2Q.l.
0025-
.
._
.
PERFH
DATE = 7 2 0 3 4
.
0026
FIGURE3A.FORTRAN
IV LISTING(CONTINUED)
57
10/08/04
FORTRAN
I V G LEVEL
20.1
PERFM
DATE = 10/08/04
72034
0027
0028
OC29
0030
003 1
0032
0033
0034
0035
00 36
0037
0038
0039
0040
0041
FIGURE 3A. FORTRAN IV LISTING (CONTINUED)
FOXTRAV
I V G L2F0V. E
1L
DATE
P-ERFH-
=
72035
.
-
. .
.13/3 2 i . 2 4 .
3 0 9 7 9 r 0 9 8 1 1 ~ 9 8 4 1 ~ 9 8 7 1 0 9 ~ 0 ~ 0 ~ ~ 3 1 ~ 9 ~ 6 ~ ~ 0 0 0 ~ 1 0 ~ ~..1 1 0 C 0 ~ 1 0
4~944~~945~~950r~958~~9661~975~~984109901~996~0~99~1~
0342
0043
03 4 4
00 4 5
00 46
004 7
004R
00 4 9
0350
005 1
03 5 2
OD53
00 5 4
0355
00 5 6
0057
0358
0059
00 6 0
'336 1
OOh?
0 0 h3
00h4
0065
0366
0367
COh8
03 6 9
03 7 0
C071
03 7 2
0373
ao 7 4
0375
05 76
0077
03 78
c079
00 80
0381
5 . 9 0 1 1 .9 0 5 + . 9 1 2 ~ . 9 2 7 ~ .9 4 2 1 .
~5410964109741~~~4T0990~
.9031
090~1.
6.862~.866,.875~.R921.909r.9261.9421.926~.942~o~57~.970~o9~~~.984~.984~
7.806108131.82510851
r . 8 7 7 ~ ~ 9 0 4 + ~ 9 2 4 ? 0 9 3 9 ? o 9 ~ 2 ~ o 9 6 l r ~-9 7 - 1 ~ ~ 9 ~ ~ /
KK= 1
' AST E R K = 9 9 9 9 9 9
C
AN ADJUSTMENT F O R C P A k C CT FCR AF
03 1 2 0K = l r 2
CALL UNIrVT ' ( ~ ~ A F V A L ~ ~ ) ~ A F C P C . ( ~ ~ K ~ ~ A F T I A F C P I K ~ ~ L I M T T J
C A L L U N I N TI 6 * A F V A l ( l lr A F C T C ( 1r K )r b F T + A f C T ( K ) q L I M I T
1
,
..
..
. . .. .
1 2 0 CONT I N U F
D O 100 K = 3 9 7
AFCP(K)=AFCP(Z)
100
AFCT ( K ) = A F C T ( 2 1
IF1ZJI0GT..51
GO TO 1 0 5
A F C P E = 2 . * Z J I * I A F C P l 2 ) - A F C P ( l ) ) + A F C P I 1)
AFCTE=2.*ZJI*(AFCT(2I-AFCT(II)+AFCT(
1)
G O TO 110
105AFCPF=AFCP( 2 )
AFCTE=AFCT[Z I
110 IF(ZJI.CT.1.9)
G O TC 140
NRFG= 1
N E ND=4
G O TO 14R
140 I F ( Z J I . G T . 1 . 5 )
6 0 TO 1 4 2
NRFG=2
NE ND=5
Gn T O 14R
142 IFltJI.GT.2.0.AND.IW.LT.3)
N3FG=3
NENr)=h
GO TO 14FI
1 4 7 N3FG-4
NFNO=7
1 4 8 CUNT IN U €
N6L=O
D q 130 I I = l r h
G O TO 1 4 7
IZ=T I
I F ( A B T ( C L I - C C L I ( II)).LF..OCO91
1 3 0 CONTINUE
I F ( C L I aGTm.61 G O T O 1 3 1
G O Tfl
FICL T = l
131
OG82
008 3
0384
0385
00 8 6
9087
009 8
0089
0090
132
0091
009%
0093
119
135
NCLTT=4
GO TO 1 1 9
IF(CLI.GT..7)GO
TO
KC L T =Z
NZLTT=5
GO T O 119
FICLT=3
N3L JT=6
GO TO 119
NCLT=IZ
N".=1
hCLTT= I2
C q N T I NtJE
1
NB=BLADT+.
LMcJD=MOC(NB, 2 ) + 1
I32
FIGURE 3A. FORTRAN IV LISTING(CONTINUED)
59
135
FORTRAN I V G L E V E L
0 094
0095
o a96
0097
0098
0 099
0 LOO
0 101
0 102
0 103
0 104
0105
0 106
0 107
o 108
0 109
01 LO
0111
01 12
0113
0114
0115
0116
01 17
0118
0119
0120
0121
0 122
0123
0 124
0125
0126
0127
0 128
0129
0 130
0131
0 132
0 133
0134
0 135
0136
0137
0138
0139
0 140
0 141
0142
0.143
0 144
0145
0 146
0147
0 148
20.1
PERFM
Gfl TO
160 N B B = l
D A T E = 72034
10/08/04
f160r180l rLMOD
L=BLADT/2.+.1
GO TO 200
1 8 0 NBB=4
L= 1
200 DO 5 0 0 I B B = l r N B B
C
J INTERPOLATION
DO 300 K=NBEGrNENO
208 G O T O IZlOr250r21'2)rIW
I t L IrLJJlK) *CTT(K) ,LIMIT)
212 C A L L U N I N T ( 9 r Z J S T A L , C T S T A L (
C A L LU N I N T
(9rZJSTAL~CPSTALll~L)1ZJJ(KI1CPP(KI~LIMIl)
C A L LU N I N T
(INN(KlrCPANGIl,K~L)1BLDANG(11K)~CPP(K)~~LL(K)~LIMITl
210 CPE=CP*AFCP(K)
~14rCPECIl~~RLOCR~1~LI~CPE~P~L~IMIT~
CALL
UNINT
CPEl=CPE*PBL*PFCLI ( K 1
NNCLT=NCLT
00 215 K L z N C L T r N C L T T
~NCLXlNNCLTl~CPCCI~11NNCLTI,XPCLT~~XPCLl~l~NNC~~T~~CPEl
CALL
UNINT
1lKLIvLIMITI
G O T O 591
I F LLIMIT.EQ.11
215 N N C L T = N N C L T + l
GO TO 220
I F lNCL.EQ.1)
C A LU
L N I N(T4 , C C L I ( ~ C L T ) , P X C L I ( N C L T ) , C L I 1 P C L I , P C L I , L I M I T )
GO T O 221
220 P C L I = P X C L I ( N C L T I
221 C O K T I N U E
CPE=CPE*PCLI
C A L LU N I N T
f I N N I K ~ r C P A N G ~ l r K , L ~ ~ 8 L D A N ~ ~ l ~ K ) ~ C P E ~ ~ L L l K ~ ~ L
C A L LU N I N T
(INN~KI~BLDANG(l~K),CTANG(l~K~L),6LL~K)~ClT~K~~LI
IF(LIMIT.EQ.01
G O TO 211
GO TO 591
211 C O N T I N U E
GO T O 2501
250 NNCLT=NCLT
2200 Dn 260 K L z N C L T v N C L T T
C T A ( 1) = C T
CTA(2)=1*5*CT
DO 2 6 0 0 K J = l t 5
NF TX=K J
CTEl=CTA(KJ)*AFCTlK)
CALL U N T N T 1 1 4 , C T E C ( l ~ ~ B l D C R ( l ~ L ~ ~ C T E ~ T ~ L , I Y [ T ~
CTEl=CTEl*TBL*TFCLI(K)
CALL
UNINT
(NCLX(NNCLT)rCTCLI(l~NNCLT)~~TCLI(l~NNCLl)~CTEl~TXCLI
1IKLIpLIMITI
I F (LIMIT.EQ.1)GO
TO 5 9 1
9998 I F ( Z J J I K ) . E C . O . )
GO TO 40CO
C A LILJ N I N T
(ll~ZJCLI1)~ZMCRLllrNNCLTlrZJJ(K),~~CRT~LIMIT~
9999 DMF\=ZMS(l)-LMCRT
Gn TO 4 0 5 0
4000 ZMCRT=ZMCRO(NNCLT)
D M k Z M S I 2)-LHCRT
4050 X F F T ( K L ) = l . O
I F L D M N ) 2300~2300,252
252 C T E 2 = C T E l * T X C L I ( K L ) / T F C L I ( K 1
C A L LB I O U A D
(ZMMMC,L,OMN,CTF2rXFFT(KL)
,LIMIT)
2300 C T A l ( K J I = C T - C T A l K J I * X F F T ( K L )
IFICTA1lKJ).EQ.O~.A~D.KJ.EQ.1)
GO TO 2700
F I G U R E 3A. F O R T R A N I V LISTING(CONTINUED)
60
3.
FORTRAN
DATEPERFMI 20.1
V G LEVEL
0149
0150
0151
0152
0153
0154
0 155
0156
0 157
0158
0159
0 160
0161
0162
0163
0164
0165
0166
0 167
0 16fl
0169
0170
0 171
0172
0173
0174
0175
0176
0177
0178
0179
0 180
0 181
0 182
0183
Olfl4
0185
0186
0187
0 188
0189
0190
0 191
0192
0193
0 194
01 9 5
0 196
0197
0198
0 199
0200
0 201
0202
0203
0204
1=
0 / 0782/ 00 34 4
IFlKJ.LE.1)
GO
TO
2600
I F I A B S l C T A 1 l K J ~ 1 ~ ~ C T A l ~ K J ~ ~ / C T GO
~ L TO
E ~ ~2700
O O l ~
CTA(KJ~+l~=-CTAlIKJ-L~*~CTA~KJ~-CTAIKJ-L)~/~CTAl~KJ~-CTAl~KJ-l~~+
LCTA(KJ-1)
.
2 6 0 0C O N T I N U E
WRITE ( 6 , 3 9 1 )
2700 C T ~ [ K ~ ) = C T A ( N F T X ) / X F F T l K L )
260 N N C L T = N N C L T + l
I F lNCL.EQ.1)
GO TO 2 7 0
C A LU
L NINT
(4rCCLIINCLT)rTXCLI(NCLT~~CLI~TCLl~LI~IT~
C A LU
L NINT
(4,CCLI(NCLT)~XFFT(NCLT)~CLI~XFTllK)~LlMIT~
C A L LU N I N T
~ 4 ~ C C L I l N C L T ~ ~ C T N l N C L T ~ ~ C L I ~ C T T ~ K ~ ~ L I M l T ~
GO TO 271
2 7 0 T C L I = T X C L I 1NCLT)XF TL ( K 1 = X F F T ( N C L T )
CTT(K)=CTN(NCLT)
271 C T E = C T T l K ) * A F C T ( K 1 * T C L I
CALL U N I N T ~ I N N l K ~ ~ C T A N G l 1 ~ K ~ L ~ ~ B L D A ~ G ~ l ~ K ~ ~ ~ T E ~ B L L l K ~
C A LU
L NINT
~ ~ N N I K ~ ~ B L D A ~ J G l l r K ~ ~ C P A N G I 1 ~ K ~ L ~ ~ B L L I K ~ r t P P ~ I o
IF(LIMIT.EO.OI
GO ro 2501
GO TO 591
2 5 0 1 CONT I N U €
3 0 0 CONTINUE
14~ZJJ(NEEG)~RLL(NBECI,ZJI,BLLLL(CBB~~LI~IT)
C A LUL N I N T
BLLLL=BLLL( lBRl
GO TO ( 3 1 0 ~ 3 5 0 r 3 1 0 ) v I W
3 1C
0 A LU
L NINT
(4,ZJJlN~EG)vCTT(NHEG)1ZJlrCTTTI IBR),LIMlT)
C T G ( 11=.100
CTGl2)=.200
I7~ZJJI1)~TFCLI~l)~ZJI,TFCLll~LIYIT)
C A LU
LNINT
DO 3 9 0I L = 1 , 5
CT=CTGIIL)
CTE=CTGl I L )*AFCTE
(14~CTEC(l)~BTDCR(l,L)~CTE~T~L~IMIT)
CALU
L NINT
CTEl=CTE*TBL*TFCL I I
NNCLT=NCLT
00 3 9 6K L l N C L T t N C L T T
(NCLX(NNCLT),CTCLI(L~~NCLT)~XTCLl(l~NNCLT~~CTEl~TXCLII
C A LU
L NINT
1KL)pLIMIT)
I f ILZM1T.EQ.L)
GO T O 5 9 1
GO T O 3 0 0 0
IF(ZJI.EQ.0.)
CALL U N I N T I L l ~ Z J C L ~ 1 ~ ~ Z M C R L l l ~ N N C L T ~ ~ Z J I ~ Z M C R T ~ L l ~ I T ~
OMh=ZMS( 1)-ZMCRT
GO TO 3 0 5 0
3000 ZMCRT=ZMCRO(NNCLTI
DMR=ZMS(Z)-ZMCRT
3050 X F F T I K L ) = 1 . 0
I F I D M N3) 9 6 , 3 9 6 , 3 9 9
3 9 9C T E Z = C T E * T X C L I ( K L ) * T B L
CALL BIQUAD I Z H H M C ~ l ~ D M N t C T E 2 r X F F T I K L ) . L I M I T )
3 9 6N N C L T = N N C L T + l
I F lNCL.EO.1)
GO TO 395
CALL
UNINT
(4rCCLI~NCLT)~TXCLI(NCLT~~CLl~TCLII~LIMITJ
CALU
L NINT
I4rCCLI~NCLT~~XfFTINCLT)rCLI1XFTIL[nIT)
IF~XFT.GT,l.IXFT=l.O
GO T O 3 9 4
3 9 5T C L I I r T X C L I t N C L T )
XFl=XF.FT (NCLT)
F I G U R E3 A .F O R T R A N
I V LISTING(CONTINUED)
61
.
"
.
-. .. .
. I D R T R A N .IV..G
..
.
0205 ..
0206
0207
0208
-.
3209
0210
0 211
0212
0213
.
.
0214
.0215
0216
0217
0218
0219
0220
0221
0222
.0223
0224
0225
0226
0227
0228
0229
0 230.
0231
0232
0233
0234
0235
0236
0237
0238
0239
0240
0241
0242
0243
0244
0245-
0244.
0247
0248
0249
0250
0251
9252
0253
0254
0255
0256
0257
.. .
LEVEL
20.1. .
. .
.
=
....DATE
PERFH
.71200/ 03 84 / 0 4
. 394 C T = C T G f I L )
CTE=CTGIIL)*AFCTE*TCLII
CTGlI IL)=CTE-ClTTlCBB)
I F l ~ B S ~ C T G l ~ L L ~ / C T l T l I ~ B ~ ~ GO
~ L TO
T ~ ,3 O
9 2O L ~
I E ( I L - L E o 1 ) GO TO 390
CTG( I L + l ) = - C T C l ( I L - l I * ( C T G ( I L ) - C T G (
IL-1) ) / ( C T G l ( I L ) - C ' T G l ( I L - 1 J )+
1 C T G ( IL-1)
390 C O h ' T I N U E
..
. WRITE
(6,391)
391 FORMAT t
INTEGRATED
DESIGN
CL
ADJUSTMENT
NOT
WORKING
PROPERLY
FO
. . XR CT D E F I N I T I O N ' )
3 9 2C T T T ( . I B B ) = C T
GO TO ( 3 6 0 9 3 5 0 r 3 4 0 J r I W
3 5 0C A L LU N I N T
(4rZJJ(NBEGlrXFTl(NBEG)~ZJIrXFTrLIMIT)
IF(XFJ.GT.L.)XFT=l.O
340 C A LUL N I N T
~4rZJJ~NBEGJrCPP~NBEG)rZJIrCPPP~IBB~~LIMCTl
CPGIll=.l50
CPGI21=.200
(4rZJJ(NBEGlrPFCLIINB€Gl~ZJIrPFCLII~LI~ITl
C A L LU N I N T
DO 2 9 0 I L ~ l r 5
CP=CPG(ILI
CPE=CPG( IL ) * A F C P E
C A L LU N I N T( 1 4 m C P E C (
1) rBLDCR(lrL)rCPErPBL,IMIT)
CPEl=CPE+PBL*PFCL I I
NNCLTTNCLT
DO 2 8 0K L = N C L T e N C L T T
INCLX(NNCLT)rCPCLI(lrNNCLTlrXPCLI(lrNN~LT),CPElrPXCLI~
C A L LU N I N T
lKL)*LI.HITI
I F .(LIMIT.EQ.l!
GO TO 591
2 8 0N N C L T = N N C L T + l
IF(NCL.EP.1)
GO T O2 8 2
CALLUNINT(4,CCLI(NCLT)rPXCLIINCLT)rCLIrPCLI1,LIMITI
GO TO 2 8 4
2 8 2P C L I I = P X C L I ( N C L T )
2 8 4C P = C P G I I L )
CPE=CPE*PCL I I
C P G 1 I I L ) = C P E - C P P P [ IBB)
I F 1 A B 4 ~ C P G l I I L l / C P P P o ) . L E ~ ~ O O l ~GO TO 2 8 7
IFCIL.EQ-1)
GO TO 290
'
CPGIILt1~~-CPGl~IL-1~*(CPC(IL~-CPG~IL-lJl/IC~Gl~IL~-CPGl~IL-i~~
1CPGt 1Lf-l)
2 9 0 COFtTINUE
WRITE
(692851
2 8 5 FORMAT I ' I N T E G R A T E D
DESIGN
1 C PD E F ! I N I T I O N ' 1
287 CPPPI IBBI=CP
CL ADJUSTMENT
NOT
WORKING
PROPERLY
FOR
360 L=L+1
500 C O N T I N U E
I F I N B B ' I5) 1 0 r 5 9 0 r 5 1 0
5 1 0 C A L LU N I N T
I4rXLBIl),BLLL(l)rBLADTrBLLLLrLIMIT)
GO T O I ' 5 2 0 r 5 3 0 r 5 2 0 l r I W
(4rXLBll)rCTTT(l)rBLADTrCT,LIMIT)
5 2 0C A L LU N I N T
GO TO 5 9 0
530 C A L L U N I N T I 4 r X L B l l ) r C P P P I 1 ) r 8 L A D T r C P r L f M I T )
5 9 0C O N T I N U E
GO TO 600
5 9 1C T = A S T E R K
CP-ASTERK
FIGURE 3A. FORTRAN I V LISTING (CONTINUED)
62
WRTRAN
0 2 58
0259
0260
IY
G LEVEL
.20.1
PERFM
DATE = 7 2 0 3 4
6 0 0 CONTINUE
'
RETURN
END
FIGURE3A.FORTRAN
I V LISTING(CONTINUED)
63
10/08/04
FOPTRAU
1 V C, L F V F L
23.1
Z N O ISF
D A T E =0 87/ 24 08 3/ 1 4
0On 1
0002
OCOr,
0008
FIGURE 3A. FORTRAN 1V LISTING (CONTINUED)
64
p
FoRTRAN I V G LEVEL
20.1
.
.
.
.
.
7N01SE..
.DAT€..=..7-2_03-1-.
...........
-
08/48/14
X
x3.414.215.41
X
0099
0010
on1 1
on12
091 3
00 14
0015
0016
0017
On18
001 9
0029
002 1
on22
0073
0024
0025
0326
0027
OP79
007 9
00 3n
on31
0037
0033
2 KK=IR
....
G f l TO 7
NBB=4
KK= 1
GO T O 7
6 KK=4
NBR=4
7 CONTINUE
DO 8 K=KK*NSR
5
. .
-
. .
-.
- -
....
. . . . . . . . . . . . . . . .
. . . . . . . . .
"
.
.
.
.......
.
. -. .
- ..
-
---.-
-
-
.
"
-
..
1=1,7
Dr) 9
9 CALL
UNIb!T
(13,TMTH(1)1PNLC(lrIIK)rTMT,
PNLA(1)
, L I M I T _ ) - -. __
. .- ...... - .
9 C A L LU N I N T
[ 7 r D I A Y I 1 ) r P N L A ( 1 ) r l 3 I A p P N L B ( K )p L i M I T - 1
PNLD = P N L R I K K )
C 4 L LU N I N T I 4 1 B R L ( l )p P N L B ( 1 )r B L A D T , P N L D . L I M I T - )
IF (19.EQ.S)
RMT = T I P S P ? / l 1 2 @ .
)-4.34*ALOG(BLADT~*2*DIA**~*DIST*f2jSPL = 1 0 76. .76+Y * A L O G ( B t i P
X X N f l F ) + 38.1*
RYT
+ PNLD
. . . . . .
- - .. - . . . . .
-. .
.
.
.- . .- .. - . .
I F ( L l M l T . N F . 0 )S P L = 9 9 9 9 9 9 .
RFTlJRN
...
F ND
"
FIGURE 3A.
FORTRAN I V LISTING (CONTINUED)
65
FORTRAN I V G L E V E L . . 2 0 . 1
0301
0002
0003
0004
0005
0006
0037
0008
0009
00 10
on11
C
e01 2
on1 3
0 0 14
on15
001 6
0017
001 e
0019
nn23
0321
O02Z
0073
O ~ 2J4
0025
OP?6
on77
no2 P
0021
0030
0031
10
. .
.. .
"
.
DATF = 7 2 0 3 1
. WAIT
S U R ~ O U T I Y EW l l I T ( W T C O ~ , Z Y ~ T , B H P , D T A ~ A F T , ~ L A D T , T I P S P D ~ W T 7 O , W T 8 0 )
IF-[HTCON.LE.O.I
RFTURN
ZND=TIPSPD*60./3.14159
ZN=ZND/DIA
ZK2=(DIA/10.1**2
ZK3=(OLfiOT/4.1**.7
ZK4=AFT/100.
7K5=7N0/20000.
1**.12
ZKh=(BHP/lO./DIA**3
ZK7=IZMWT+1.0)**.5
WTFhC=ZK2*7K3+ZKh*ZK7
WTCnN DEF I N E S A I RPLANF
CATEGnRY
IWTCnN=WTCOY
Zt=3.5*Z&Z*BLADT*ZK4**2*(
l./ZK5)**.3
GlJ TC! ( 1 0 , 2 0 , 1 0 , 4 0 r 5 0 ) , I W T C O N
HT70=170.*WTFAC+ZK4**.9*ZK5**.
35
kTYO=WT70
GO
60
[email protected]~WTFAC~ZY4**.9~ZK5~.+.~5
WTSi?=WT70
GO TO 6 0
~T70=22C.*WTFAC*ZK4+~.7*2K5*~.4+ZC~(~.0/3.5)
WT;3n= WT70
G O Tn 6 0
VTFhC=WTFAC*ZK4**.7+ZK5**.4
[email protected]+WTFAC+ZC*( 5.0/3.5)
x
20
30
40
08/49/14
[email protected]*WTFAC+ZC
G O TO 6 0
59 W T 7 0 = 2 2 0 . * W T F A C + Z K 4 * * . ? + Z U 5 * * . 4 + Z C * [
WTS0=190.*WTFAC*ZK4**.7*ZK5**.3
6 C R FTlJRh!
[email protected]/3.5)
F Nr)
FIGURE 3A. FORTRAN I V LISTING (CONTINUED)
66
FC)?TRAIV I V2 0 .G1 L E V E L
D A T E9 8=/ 4752/ 01 34 1
COST
oon 1
0002
0003
0904
0005
0006
On07
0008
9009
5
l
c
!
no1 c)
0011
001 2
0013
On14
001 5
00 16
001 7
0014
on19
0020
0071
0072
0021
0024
0075
0026
no2 7
C02R
0029
0030
3031
20
I 00
40
50
60
70
90
110
120
130
143
0031
0Q3-3
903L
0035
0034
0037
?no
1000
FIGURE 3A. FORTRAN
IV
67
LISTING (CONTINUED)
DA.TE _=
0035
0006
0007
0010
FIGURE 3A. FORTRAN I V LISTING (CONTINUED)
68
08/48/14
FORTRAY
I 7‘3.1
V S
LEVEL
QEVTHT
? A T E 0 8=/ 4792/ 01 34 1
0011
@012
0013
OC14
001 5
OC16
on1 7
0 0 1p
001 cl
On20
00?1
0027
0973
0024
0025
cn2h
0077
002 R
002 9
on 3 0
0031
0032
3 3 33
[email protected]
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044
0045
0046
0047
o n 4 ~
0049
0050
on51
0052
On53
0054
OQ55
0056
0057
0058
0059
3060
0061
0062
FIGURE 3A. FORTRAN IV LISTING(CONTINUED)
69
.
..
F 3 R T p A1NV .LGF V E L
20,l
-9EVTHT
DATE = 72031
0063
0064
OC65
0066
0067
OObR
0049
0 0 70
9071
0072
0073
0074
00 75
0076
On77
0078
0079
0080
0081
0087
003-4
0034
OC95
0086
0087
039.9
F I G U R € 3A. F O R T R A N I V L I S T I N G ( C O N T I N U E D )
70
08/49/14
z o ....~
. EOR TRA_N ...I V.G..L.EVEI
"
0901
.
...
C
c
C
..._
..
.
UNLNT
.
SUBRCIUTINE U N I N T ( N I YA,
XAv
RFWRITTEN
SFPTEMRER
18,
U N I V A R I A TTEA R LREO U T I NW
E I TSHF P E R A T E
c
.c
C
c
.
.
.
-. .
...
X I YI
D A T E .= 7 2 0 3 1
.
08/48/14
- ,
L)
1967
ARRAYS FOR X
AND Y
-
S 66
.
.
T H IR' S
OUTIN
I NET F R P O L A T E S
OVER A 4 P O I N T I N T E S V A LU S I N G
A
V A R I A T I O V OF 2 N D
DEGRFE
INTERPOLATION
TO PRODUCE A C O N T I N U I T Y
OF SLOPE
RETWFEN
ADJACENT
INTERVALS.
0 0 02
0 0.93
0004
0005
0006
0007
9008
0009
00 10
0011
0012
001 3
0 0 14
0015
0016
0017
0018
0 0 19
0020
0021
0072
0023
0074
0025
0026
0027
0078
00Z9
0030
'00 31
0032
0033
0034
0035
C036
FIGURE 3A. FORTRAN I V LISTING (CONTINUED)
71
FI?RTP.AY
IV
G LEVEL
S U B R n U T I NRFI Q U A(DT c
FNTTY
91QllD
C
C
C
DATE = 72031
R IOUAD
20.1
09/48/14
I t X I t Y I t Zt K )
(Tt
It
XI
9
YIP Zt
K)
TYTS ROIJTINE IYTFRPOLATFS
OVER
A 4 P r 3 I N ITN T F P . V AU
L SIYG
A
V A R I A T I f l Q ( I F 2Nl) O F G K E F I U T E R P O L A T I O M TO P R l D U C F A C O N T I N U I T Y
OF S L O P E RFTki€EN
ADJACFNT
INTEPVALS.
P(511 Y(4),C14)
l)Ib'FNSIfl%
T(l.)tXCI4)9
D(41,
C
C
FOIJIVAL€NCE
( X C l 1 )Dt ( 1 1 1
c
TABLE SFT
T'TI <
C
C
c
IJD
Y T A R L F \IJYBtR
# NUMqFR ( I F ?X<
VALUES
# V I J Y R E R OF X Y < VALUFS
ZO. FOP U N I V 1 K I A T TF A B L F <
rl VAI-UFS O F %X< I N ASC.EUDING
ORDER
TYI&1<
T%1&2<
TrI&3<
C
C.
C
C
100
C
195
11?
C
c
7 "!I
7 10
27P
NX = T ( I + l )
NY = T ( I + 7 )
J1 = 1+3
J 7 = J1 + Y X - 1
x = XI
SEAKCH I N X SFYSF
L = O
GO T P
lOQ0
Q t T l J Q N H E Q E F2.DY
SFARCH
r)F X
Y = KX
JX = J X 1
THE ~ O L L O W I h ! ? C O D E P U T S X A N D / O R
DE 1 1 " J = l p ' t
XCtJ) = TlJX1)
JX1 = JXl+l
GFT CPFFF.
IN
Y 5FNSF
50 TI? Z r ) 9 r ?
q E T l I / l V H E R F d 1 T tC
. li r F F FT.E SFTOIRJ U I V A R E
I F (RIY)
-3OOp210,3I70
7=?.
J Y = JX+NX
QC! 221? J = 1 t 4
I = Z + r l J )*T(.JY)
JY = JY+1
GO
T3
Y VALiIES
I N XC
BLOCK
139 H I V A R T A T F
Y Q W
c
C
390
C
qnr)
C
? I V j Q I A T E TA?LF
L=l
x = YI
J1 = J2+1
J7 = J1 + N Y - l
SFADCH I N
Y SENSF
G 3 T n 1033
K
J X l !I SCISSCRIPT C)F 1 S T Y
= K+3%KY
1 N T F P D " L A T F 1% X SENSF
HASF
Y C . ?F C C L .
SUSSCRIPT
JY
=
JZ+1
+ lJY-I-?)*QY
DO 5 5 0 V = 1 , 4
JX
= JY
Y ( U ) = 0.
Qfi
520 J=1 7 4
Y I V I = Y I Y I + ClJ)*T(JX)
JX = J)I+YV
-
c
520
Yn. O F YS
+ JXl-J1
FIGURE 3A. FORTRAN I V LISTING (CONTINUED)
72
FORTRAN
I V G LFVEL
550
003 8
R IQUAD
20.1
JY
DATE = 7 2 0 3 1
= JY+l
C
C
OC3 9
0040
0041.
0042
0043
G E T CDEFF. IY Y SFNSE
GO T O 105
2 = 0.
OD 7 0 0 J = l r 4
r! = Z + C ( J ) * Y I J )
R ETU9N
600
700
9999
C.
S F A i C HR 9 U T I Y E
C
C
0046
0047
004a
0049
0050
005 1
0052
0053
0054
9055
0056
0057
005 8
0059
0060
006 1
0042
0063
KX = 0
1000
0044
@045
- I N P U TJ l rJ 2 1 X
-OUTPUT P A t R R t K X t J X 1
DO 1010 J=J1, J 2
X) 1010~1050~1050
I F( T ( J ) 1010 CONTINUE
C
9 F F HIGH ENn
X = T( J21
YX = 2
C
1 l S F LAST
4
P n l Y T S A N D CU%VF D
1 0 2J0X l
= J2-3
RA = 0.
GO
TO
1690
C
TFST F O P
OFF L O N F Y D ,
F I RISNTT E R V A L ,
I F ( J1 -0J513- 1 1
1O R 0
7
1090
lORO
IF(TlJ)-X) 10AZ~lOY0~1082
10132 K X = 1
X = T(J1)
LO90 J X l = J 1
R A = 1.
GO TO 1 4 0 0
c
TFST
FOR L 4 S T INTERVAL
Nr?, Y E S , NO
11 00
( JI F
- J2)
15on,~0~0.~~00
1500 J X 1 = J - 2
RA = lT(J) - X ) / ( T ( J ) - T(J-1) 1
1600 R B = 1. - 4A
-
,
OTHER
1100
c
C
0064
RFTIJRY R A C K T O M A I N BODY
I F ( L ) 500, 100, 5 0 0
0065
0066
0061
006A
0069
0070
0071
0072
0073
0074
0075
0076
FIGURE 3A. FORTRAN IV LISTING (CONCLUDED)
NASA-Langley, 1972
-2
73
"
Was this manual useful for you? yes no
Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Download PDF

advertisement