CL - Profinet
Instruction manual
Universal Fieldbus-Gateway
UNIGATE® CL - Profinet
Art.-Nr.: V3587E
Deutschmann Automation GmbH & Co. KG Carl-Zeiss-Str. 8 D-65520 Bad Camberg
Tel:+49-(0)6434-9433-0 Hotline: +49-(0)6434-9433-33 Fax: +49-(0)6434-9433-40
Internet: http://www.deutschmann.de
Deutschmann Automation GmbH & Co. KG
1
Information on CE marking of the module . . . . . . . . . . . . . . . 8
1.1
1.2
1.3
1.4
1.5
2
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
8
8
8
8
8
. . . . . . . . . . . . . . 9
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
EU Machinery Directive . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
UNIGATE CL software flow-chart . . . . . . . . . . . . . . . . . . . . . 11
UNIGATE application diagram . . . . . . . . . . . . . . . . . . . . . . 12
Configuration mode (config mode) . . . . . . . . . . . . . . . . . . . . 13
Test mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Data exchange mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
RS-interfaces at the UNIGATE CL . . . . . . . . . . . . . . . . . . . . 14
Buffer sizes at the UNIGATE CL . . . . . . . . . . . . . . . . . . . . . 14
Framing Check . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Initiation of the SSI-interface . . . . . . . . . . . . . . . . . . . . . . . 15
Hardware-wiring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Overview of the Debug-interface . . . . . . . . .
Starting in the Debug-mode . . . . . . . . . . . .
Communication parameter for the Debug-interface
Possibilities with the Debug-interface . . . . . . .
Commands of the Debug-interface . . . . . . . .
Mode of operation of the system
8.1
8.2
8.3
8.4
8.5
9
.
.
.
.
.
The Debug-interface . . . . . . . . . . . . . . . . . . . . . . . . . . 17
7.1
7.2
7.3
7.4
7.5
8
.
.
.
.
.
SSI-interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
6.1
6.2
7
.
.
.
.
.
RS-interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.1
5.2
5.3
6
.
.
.
.
.
Operation modes of the Gateway . . . . . . . . . . . . . . . . . . . 13
4.1
4.2
4.3
5
.
.
.
.
.
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.1
3.2
4
.
.
.
.
.
Information for the machine manufacturers
2.1
2.2
3
EU Directive EMC . . . . .
Scope of application . . . .
Note installation guidelines
Installation of the unit . . .
Working on switch cabinets
General explanation .
Interfaces . . . . . .
Data exchange . . .
Possible data lengths
Startup phase . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
17
17
17
17
17
. . . . . . . . . . . . . . . . . . . 18
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
18
18
18
18
18
Generating a Script . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
9.1
9.2
9.3
9.4
9.5
9.6
What is a Script? . . . . . . . . . . .
Memory efficiency of the programs . .
What can you do with a Script device?
Independence of buses . . . . . . . .
Further settings at the Gateway . . . .
The use of the Protocol Developer . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
19
19
19
19
19
19
10 Implemented protocols in UNIGATE CL with Universal Script . . . . 21
10.1 Protokoll: Transparent . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
10.1.1 Data structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.12.10
UNIGATE fieldbus gateway UNIGATE CL - Profinet V. 2.3
3
Deutschmann Automation GmbH & Co. KG
10.2 Protocol: Universal 232 . . . . . . . . . . . . . . . . . . . . . . . . . . 21
10.2.1 Data structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
10.2.2 Fieldbus parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
10.2.3 RS232 parameter table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
10.2.3.1 Start character (232 Start character) . . . . . . . . . . . . . . . . . . . . . . . . . 22
10.2.3.2 Length 232 (232 Length) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
10.2.3.3 End character (232 End character) . . . . . . . . . . . . . . . . . . . . . . . . . . 22
10.2.4 Communication sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
10.3 Protocol: 3964(R) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
10.3.1 Data structure 3964R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
10.3.2 Protocol definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
10.3.3 Data communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
10.3.3.1
10.3.3.2
10.3.3.3
10.3.3.4
10.3.3.5
Initiation of data communication by the low-priority user .
Conflicts . . . . . . . . . . . . . . . . . . . . . . . . . .
Timeout times . . . . . . . . . . . . . . . . . . . . . . .
Retries . . . . . . . . . . . . . . . . . . . . . . . . . . .
Initiation of data communication by the high-priority user .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
23
23
23
23
23
10.3.4 Protocol type 3964 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
10.4 Protocol: MODBUS-RTU . . . . . . . . . . . . . . . . . . . . . . . . . 24
10.4.1 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
10.4.2 UNIGATE as MODBUS-Master . . . . . . . . . . . . . . . . . . . . . . . . . 24
10.4.2.1 Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
10.4.2.2 Data structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
10.4.2.3 Communication sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
10.4.3 UNIGATE as MODBUS-Slave . . . . . . . . . . . . . . . . . . . . . . . . . . 25
10.4.3.1 Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
10.4.3.2 Data structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
10.4.3.3 Communication sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
10.4.4 UNIGATE as Modbus-ASCII Master . . . . . . . . . . . . . . . . . . . . . . . 26
10.5 The trigger byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
10.6 The length byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
11 FTP-Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
11.1 FTP-Server (Fido-hardware, from S/N: xxxx1000 on)
. . . . . . . . . . 27
11.1.1 Script-update via FTP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
11.1.2 System configuration update via FTP . . . . . . . . . . . . . . . . . . . . . . 27
11.2 FTP-Server (Hynet-hardware, up to S/N: xxxx0999) . . . . . . . . . . . 27
11.2.1 Script-update via FTP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
11.2.2 System configuration update via FTP . . . . . . . . . . . . . . . . . . . . . . 27
12 WEB-Server
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
12.1 WEB-Server (Fido-hardware, from S/N: xxxx1000 on) . . . . . . . . . . 28
12.2 WEB-Server (Hynet-hardware, up to S/N: xxxx0999) . . . . . . . . . . . 29
13 Hardware ports, switches and LEDs . . . . . . . . . . . . . . . . . . 30
13.1 Device labeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
13.2 Connectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
13.2.1 Connector to the external device (RS-interface) . . . . . . . . . . . . . . . . . 30
13.2.2 Connector supply voltage and DEBUG-interface . . . . . . . . . . . . . . . . 31
13.2.3 Profinet-connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4
UNIGATE fieldbus gateway UNIGATE CL - Profinet V. 2.3
3.12.10
Deutschmann Automation GmbH & Co. KG
13.2.4 Power supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
13.3 LEDs
13.3.1
13.3.2
13.3.3
13.3.4
13.3.5
13.3.6
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
LED "(Profinet) Power" . . . . . . . . .
LED "Link / Activity" . . . . . . . . . . .
LED "(Profinet) State" . . . . . . . . . .
LED "Power" . . . . . . . . . . . . . .
LED "State" . . . . . . . . . . . . . . .
LEDs 1 / 2 / 4 / 8 (Error No. / Select ID)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
31
31
32
32
32
32
13.4 Switches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
13.4.1 Termination Rx 422 + Tx 422 (serial interface) . . . . . . . . . . . . . . . . . 32
13.4.2 Rotary coding switches S4 + S5 (serial interface) . . . . . . . . . . . . . . . 33
13.5 The Debug cable for UNIGATE SC . . . . . . . . . . . . . . . . . . . . 33
14 Error handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
14.1 Error handling at UNIGATE CL . . . . . . . . . . . . . . . . . . . . . . 34
15 Installation guidelines . . . . . . . . . . . . . . . . . . . . . . . . . 35
15.1 Installation of the module . . . . . . . . . . . . . . . . . . . . . . . . . 35
15.1.1 Mounting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
15.1.2 Removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
15.2 Wiring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
15.2.1 Connection systems
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
15.2.1.1 Power supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
15.2.1.2 Equipotential bonding connection. . . . . . . . . . . . . . . . . . . . . . . . . . . 35
15.2.2 Profinet-IO communication interface . . . . . . . . . . . . . . . . . . . . . . 36
15.2.3 Line routing, shield and measures to combat interference voltage . . . . . . . 36
15.2.4 General information on line routing . . . . . . . . . . . . . . . . . . . . . . . 36
15.2.4.1 Shielding of lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
16 Technical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
16.1 Device data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
16.1.1 Interface data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
17 Commissioning guide
17.1
17.2
17.3
17.4
17.5
17.6
17.7
17.8
17.9
17.10
17.11
17.12
. . . . . . . . . . . . . . . . . . . . . . . . . 40
Note . . . . . . . . . . . . . . . . . . . . . . .
Components . . . . . . . . . . . . . . . . . . .
Installation . . . . . . . . . . . . . . . . . . . .
Dimensional drawing UNIGATE CL - Profinet-IO
Commissioning . . . . . . . . . . . . . . . . .
Profinet address-assignment . . . . . . . . . .
Profinet connection . . . . . . . . . . . . . . .
Connection to the process device . . . . . . . .
Shield connection . . . . . . . . . . . . . . . .
Connecting the supply voltage . . . . . . . . .
Project planning . . . . . . . . . . . . . . . . .
Literature . . . . . . . . . . . . . . . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
40
40
40
40
40
41
41
41
41
41
41
41
18 Servicing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
18.1 Returning a device . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
18.2 Downloading PC software . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.12.10
UNIGATE fieldbus gateway UNIGATE CL - Profinet V. 2.3
5
Deutschmann Automation GmbH & Co. KG
19 Annex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
19.1 Explanations of the abbreviations . . . . . . . . . . . . . . . . . . . . . 43
19.2 Hexadecimal table . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
20 Declaration of conformity . . . . . . . . . . . . . . . . . . . . . . . . 45
20.1 EC declaration of conformity . . . . . . . . . . . . . . . . . . . . . . . 45
6
UNIGATE fieldbus gateway UNIGATE CL - Profinet V. 2.3
3.12.10
Deutschmann Automation GmbH & Co. KG
Disclaimer of liability
We have checked the contents of the document for conformity with the hardware and software
described. Nevertheless, we are unable to preclude the possibility of deviations so that we are
unable to assume warranty for full compliance. The information given in the publication is,
however, reviewed regularly. Necessary amendments are incorporated in the following editions.
We would be pleased to receive any improvement proposals which you may have.
Copyright
Copyright (C) Deutschmann Automation GmbH & Co. KG 1997 – 2010. All rights reserved.
This document may not be passed on nor duplicated, nor may its contents be used or disclosed
unless expressly permitted. Violations of this clause will necessarily lead to compensation in
damages. All rights reserved, in particular rights of granting of patents or registration of
utility-model patents.
Art.-No.: V3587E
3.12.10
UNIGATE fieldbus gateway UNIGATE CL - Profinet V. 2.3
7
Information on CE marking of the module
1
Deutschmann Automation GmbH & Co. KG
Information on CE marking of the module
1.1
EU Directive EMC
The following applies to the module described in this User Manual:
Products which bear the CE mark comply with the requirements of EU Directive „Electromagnetic
Compatibility“ and the harmonized European Standards (EN) listed therein.
The EU Declarations of Conformity are available at the following location for perusal by the
responsible authorities in accordance with the EU Directive, Article 10:
Deutschmann Automation GmbH & Co. KG, Carl-Zeiss-Straße 8, 65520 Bad Camberg, Germany.
1.2
Scope of application
The modules are designed for use in the industrial sector and comply with the following
requirements.
Scope of application
Industry
1.3
Requirement applicable to
Emitted interference
Interference immunity
EN 55011, cl. A (2007)
EN 61000-6-2 (2005)
Note installation guidelines
The module complies with the requirements if you
1. comply with the installation guidelines described in the User Manual when installing and
operating the module.
2. also follow the rules below on installation of the equipment and on working on switch cabinets.
1.4
Installation of the unit
Modules must be installed in electrical equipment rooms/areas or in enclosed housings (e.g.
switch boxes made of metal or plastic). Moreover, you must earth the unit and the switch box
(metal box) or at least the top-hat rail (plastic box) onto which the module has been snapped.
1.5
Working on switch cabinets
In order to protect the modules against static electrical discharge, the personnel must discharge
themselves electrostatically before opening switch cabinets or switch boxes.
8
UNIGATE fieldbus gateway UNIGATE CL - Profinet V. 2.3
3.12.10
Deutschmann Automation GmbH & Co. KG
2
2.1
Information for the machine manufacturers
Information for the machine manufacturers
Introduction
The UNIGATE module does not constitute a machine as defined by the EU "Machinery“
Directive. Consequently, the module does not have a Declaration of Conformity in relation to the
EU Machinery Directive.
2.2
EU Machinery Directive
The EU Machinery Directive stipulates the requirements applicable to a machine. The term
"machine" is taken to mean a totality of connected parts or fixtures (see also EN 292-1, Paragraph 3.1)
The module is a part of the electrical equipment of the machine and must thus be included by the
machine manufacturer in the Declaration of Conformity process.
3.12.10
UNIGATE fieldbus gateway UNIGATE CL - Profinet V. 2.3
9
Introduction
3
Deutschmann Automation GmbH & Co. KG
Introduction
The UNIGATE CL-Profinet module serves to adapt a serial port to Profinet networks. Talking of
Profinet is automatically connected with the 100 Mb/s-version, full-duplex and switched Ethernet.
The terminal unit’s protocol is converted in the UNIGATE via a Script.
The module CL-Profinet essentially consists of the following hardware components:
• Electrically isolated Profinet-interface
• Processor “Fido 1100“ (from S//N: xxxx1000 on)
32-bit-processor “HyNet32s“ (up to S/N: xxxx0999)
• RAM and FLASH
• Optionally electrically isolated on the RS-side
• Serial interface (RS232, RS485 and RS422) to the device connected externally
10
UNIGATE fieldbus gateway UNIGATE CL - Profinet V. 2.3
3.12.10
Deutschmann Automation GmbH & Co. KG
3.1
Introduction
UNIGATE CL software flow-chart
3.12.10
UNIGATE fieldbus gateway UNIGATE CL - Profinet V. 2.3
11
Introduction
3.2
Deutschmann Automation GmbH & Co. KG
UNIGATE application diagram
The following graph shows a typical connection scheme.
12
UNIGATE fieldbus gateway UNIGATE CL - Profinet V. 2.3
3.12.10
Deutschmann Automation GmbH & Co. KG
4
4.1
Operation modes of the Gateway
Operation modes of the Gateway
Configuration mode (config mode)
The configuration mode serves to configure the Gateway. The following adjustments are possible
in this mode.
• Loading a Script
• Updating the firmware
The Gateway will be starting in this mode in case both switches S4 as well as S5 are set on position "F" when switching on the Gateway. Right after switching on the Gateway in the configuration mode it will be sending its starting message, that looks analog with the following message:
"RS-PN-SC (232/422/485) V1.0[28] (c)dA Switch=0xFF Script(8k)="Leer" Author="Deutschmann
Automation GmbH" Version="1.0" Date=21.08.2001 SN=47110001“.
In the configuration mode the Gateway always operates with the settings 9600 Bauds, no Parity,
8 Databits and 1 Stopbit, the RS-State LED will always be flashing red, the "Error No/Select ID"
LEDs are of no account for the user. All software revisions contain the configuration mode.
4.2
Test mode
Setting of the test mode
The test mode is set by bringing the switches S4 and S5 in position "E". All other switches will not
be taken into consideration for the setting of the test mode. Now the Gateway has to be restarted
with these settings (by a short disconnection from the power supply).
In the test mode the Gateway always operates with the settings 9600 baud, no parity, 8 databits
and 1 stopbit.
The test mode may be helpful to integrate the Gateway in the relevant environment, for instance
to test the parameters of the RS-interfaces.
Mode of operation of the test mode
After the restart in the test mode the Gateway will be sending the values 0-15 in hexadecimal
representation ("0".."F") in ASCII-coding on the serial side every second. Simultaneously the
same values are issued binary on the fieldbus-interface.
In this mode the State-LED on the RS-side will be flashing red, the "Error No/Select ID" LEDs will
be displaying the value in a binary way, that is issued that moment. Additionally each character
that is received at one of the interfaces will also be output at the same interface as a local echo.
On the fieldbus-side only the first byte will be used for the local echo, that means on receiving as
well as on transmitting only the first byte of the bus data is looked at, the other bus data do not
change compared to the last data.
4.3
Data exchange mode
The Gateway has to be in the data exchange mode, so that a data exchange between the
RS-side of the Gateway and the fieldbus is possible. As long as the Gateway is not in the configuration mode or the test mode, the data exchange mode is active. In the data exchange mode
the Gateway will execute the downloaded Script.
3.12.10
UNIGATE fieldbus gateway UNIGATE CL - Profinet V. 2.3
13
RS-interface
5
5.1
Deutschmann Automation GmbH & Co. KG
RS-interface
RS-interfaces at the UNIGATE CL
The UNIGATE CL - Profinet-IO has the interfaces RS232, RS422 and RS485 available. The
hardware always features a DEBUG-interface, see chapter 7.
5.2
Buffer sizes at the UNIGATE CL
UNIGATE CL features at the serial side a buffer with the size of 1024 bytes for input data and
output data each.
The FIFO of the application interface (RS-interface) can be changed in any Gateway form Script
revision 26 on, that is capable for Script. For it please check in the Protocol Developer under
"Device Control" - "Hardware".
5.3
Framing Check
The length of the stop bit received by the Gateway is checked through the function "Framing
Check". Here the stop bit generated by the Gateway is always long enough, so that connected
participants can evaluate the stop bit.
Please be aware that the function "Framing Check" becomes effective only in case of 8 data bit
and the setting "No parity".
An error is detected and indicated by the Error LEDs in case the stop bit does not show the
length 1 bit during the activated check.
The possible setting for this parameter can be controlled by the Script (see online help from Protocol Developer). The presetting for the "Stop Bit Framing Check" is "enabled".
14
UNIGATE fieldbus gateway UNIGATE CL - Profinet V. 2.3
3.12.10
Deutschmann Automation GmbH & Co. KG
6
SSI-interface
SSI-interface
The UNIGATE also supports the connection of applications or products, that communicate via
SSI.
6.1
Initiation of the SSI-interface
The required Script (example_SSI), the firmware- (Cust0023) and Protocol Developer-extension
(Cust_ssi.xml) are available free of charge from our website at www.deutschmann.de, as well as
the softwaretool Protocol Developer and the configuration software WINGATE.
• In the Protocol Developer (see chapter 7, The Debug-interface) the ConfigFile "Cust_ssi.xml"
has to be added. At Options -> Settings -> ConfigFiles.
• Load the Script "example_SSI.dss" into the Protocol Developer.
• The encoder type has to be defined in the Script itself under "Set number of bits" and "Set
typ" (default = 12-Bit-Single-Turn-Gray):
// Set number of bits (1..16 = Single Turn, 17..32 = Multi Turn)
moveconst (bAnzBit, 12);
// i.e. 12 Bit single turn
// Set typ
// Values of bTyp:
// 0 = Reserved
// 1 = Output-value without change (i.e. binary encoder)
// 2 = Output-value changed from Gray to Binary (i.e. Gray encoder)
// >2 = Reserved
moveconst ( wTyp, 2);
// i.e. 12 Bit Gray
• Load the Script into the device. Open WINGATE and activate the device in the configuation
mode (see also chapter 4.1 "Configuration mode (config mode)") - an actuation message
appears, that looks in line with the following (example CL-PB):
Special Firmware (23) not loaded
RS-PBV1-CL (232/422/485) V7.31[30] (c)dA Switch=0x02FF Script(8k)="SSI"
Author="Deutschmann Automation" Version="V 1.0" Date=20.03.2008 SN=47110002 ID=2
Konfigmode...
The note "Special Firmware (23) not loaded" means that the firmware-extension is not yet
loaded. The extension is loaded through Extras -> Firmware Script Extension. Select the file
"Cust0023 (Cmd 23 + 24 for SSI).hex" and choose "write extension".
• Re-start the device -> now only the device’s actual actuation message appears and not the
note any more.
• Bring the device into the data exchange mode (see also chapter 4.3 "Data exchange mode")
-> DONE!
6.2
Hardware-wiring
The clock wires of the SSI-interface are placed onto the Tx-wires of the RS422-interface and the
data wires onto the Rx-wires at the UNIGATE CL.
3.12.10
UNIGATE fieldbus gateway UNIGATE CL - Profinet V. 2.3
15
SSI-interface
Deutschmann Automation GmbH & Co. KG
X1 (3pin + 4pin screw-plug-connector):
Pin no.
1
2
3
4
5
6
7
16
Name
Rx 232
Tx 232
AP-GND
Rx 422+
Rx 422Tx 422+
Tx 422-
Function at SSI
n. c.
n. c.
n. c.
SSI DAT+
SSI DATSSI CLK+
SSI CLK-
UNIGATE fieldbus gateway UNIGATE CL - Profinet V. 2.3
3.12.10
Deutschmann Automation GmbH & Co. KG
7
7.1
The Debug-interface
The Debug-interface
Overview of the Debug-interface
The UNIGATE® IC features a Debug-interface, that allows a step-by-step processing of a Script.
Normally this interface is only required for the development of a Script.
7.2
Starting in the Debug-mode
When applying power to the UNIGATE® (power up) the firmware will output the binary character
0 (0x00) after a self-test was carried out on this interface. If the UNIGATE® receives an
acknowledgement via this interface within 500 ms, it is in the Debug-mode. The
acknowledgement is the ASCII-character O (0x4F).
With the start in the Debug-mode the further execution of Script commands will be put to a stop.
7.3
Communication parameter for the Debug-interface
The Debug-interface is always operating with 9600 baud, no parity, 8 data bit, 1 stop bit. It is not
possible to change this parameter in the Protocol Developer. Please consider the fact that these
settings have to be in accordance with those of the PC-COM-interface and that the flow control
(protocol) has to be set on „none“ there.
7.4
Possibilities with the Debug-interface
Usually the Protocol Developer is connected to the Debug-interface. With it a step-by-step processing of a Script, monitoring jumps and decisions and looking at memory areas is possible.
Moreover breakpoints can be set. It basically possesses all characteristics a software-development tool is typically supposed to have. However, it is also possible to carry out a Scrip-update
via this interface.
From Script version [27] on you can also output data with the Script command
"SerialOutputToDebugInterface". Please also pay attention to the remark in the manual ’Protocol
Developer’.
7.5
Commands of the Debug-interface
The commands for the use of the Debug-interface are described in the instruction manual Protocol Developer.
3.12.10
UNIGATE fieldbus gateway UNIGATE CL - Profinet V. 2.3
17
Mode of operation of the system
8
8.1
Deutschmann Automation GmbH & Co. KG
Mode of operation of the system
General explanation
Communication can be split into seven layers, Layer 1 to Layer 7, in accordance with the
ISO/OSI model.
The Deutschmann Automation Gateways convert Layers 1 and 2 of the customized bus system
(RS485 / RS232 / RS422) to the corresponding Fieldbus system. Layers 3 and 4 are being covered by the UDP/IP-protocol, TCP/IP-protocol. The Layers 5 and 6 are blank. Layer 7 is converted in accordance with chapter 8.3.
8.2
Interfaces
The Gateway features the RS232-, RS422- and RS485-interfaces.
8.3
Data exchange
All data is transferred by the Gateway in dependence of the downloaded Script.
8.4
Possible data lengths
The table below shows the maximum transferable data:
Input data
Output data
8.5
max. 512 bytes
max. 1440 bytes
max. 512 bytes
max. 1440 bytes
(Hynet-hardware, up to S/N: xxxx0999)
(Fido-hardware, from S/N: xxxx1000 on)
(Hynet-hardware, up to S/N: xxxx0999)
(Fido-hardware, from S/N: xxxx1000 on)
variable: here maximum value
variable: here maximum value
Startup phase
The Gateway is parameterized and configured by the Profinet-IO-controller during the startup
phase. Only after a correct termination of the startup phase the data exchange with external
devices will take place.
18
UNIGATE fieldbus gateway UNIGATE CL - Profinet V. 2.3
3.12.10
Deutschmann Automation GmbH & Co. KG
9
9.1
Generating a Script
Generating a Script
What is a Script?
A Script is a sequence of commands, that are executed in that exact order. Because of the fact
that also mechanisms are given that control the program flow in the Script it is also possible to
assemble more complex processes from these simple commands.
The Script is memory-oriented. It means that all variables always refer to one memory area.
While developing a Script you do not have to take care of the memory management though. The
Protocol Developer takes on this responsibility for you.
9.2
Memory efficiency of the programs
A Script command can carry out e. g. a complex checksum like a CRC-16 calculation via data.
For the coding of this command only 9 byte are required as memory space (for the command
itself). This is only possible when these complex commands are contained in a library.
A further advantage of this library is, that the underlying functions have been in practical use for a
couple of years and therefore can be described as ’void of errors’. As these commands are also
present in the native code for the controller, at this point also the runtime performance of the
Script is favorable.
9.3
What can you do with a Script device?
Our Script devices are in the position to process a lot of commands. In this case a command is
always a small firmly outlined task. All commands can be put into classes or groups. A group of
commands deals with the communication in general. This group’s commands enable the Gateway to send and receive data on the serial side as well as on the bus-side.
9.4
Independence of buses
Basically the Scripts do not depend on the bus, they are supposed to operate on. It means that a
Script which was developed on a Profibus Gateway can also be operated on an Interbus without
changes, since the functioning of these buses is very similar. In order to also process this Script
on an Ethernet Gateway, perhaps further adjustments have to be made in the Script, so that the
Script can be executed reasonably.
There are no fixed rules how which Scripts have to operate properly. When writing a Script you
should take into account on which target hardware the Script is to be executed, so the necessary
settings for the respective buses can be made.
9.5
Further settings at the Gateway
Most devices require no further adjustments, except for those made in the Script itself.
9.6
The use of the Protocol Developer
The software tool Protocol Developer can be downloaded from our website
http://www.deutschmann.de
It is a tool for an easy generation of a Script for our Script Gateways. Its operation is exactly
aimed at this use. After starting the program the Script that was loaded the last time is loaded
again, provided that it is not the first start.
3.12.10
UNIGATE fieldbus gateway UNIGATE CL - Profinet V. 2.3
19
Generating a Script
Deutschmann Automation GmbH & Co. KG
Typical for Windows Script commands can be added by means of the mouse or the keyboard. As
far as defined and required for the corresponding command, the dialog to the corresponding
command is displayed, and after entering the values the right text is automatically added to the
Script. The insertion of new commands by the Protocol Developer is carried out in a way that
existing commands will not be overwritten. Generally a new command is inserted in front of the
one where the cursor is positioned. Of course the commands can also be written by means of the
keyboard or already written commands can also be modified.
20
UNIGATE fieldbus gateway UNIGATE CL - Profinet V. 2.3
3.12.10
Deutschmann Automation GmbH & Co. KG
Implemented protocols in UNIGATE CL with Universal Script
10 Implemented protocols in UNIGATE CL with Universal
Script
UNIGATE CL is supplied with the Script “Universal Script Deutschmann“. The configuration of
the protocols is carried out by means of the software WINGATE.
Attention:
The "Universal Script" will get lost and has to be input again if a Reset
Device is carried out.
The Script can be found on the Deutschmann Support-CD in the folder
\Software\ProtocolDeveloper\Example\Universal\
10.1 Protokoll: Transparent
The data is transferred bidirectional from the UNIGATE.
10.1.1 Data structure
On the RS-entry side the timeout time of 2 ms is firmly set. If no more data is received within the
timeout period, then the data that has been received so far is transferred to the bus.
If less data is received through Rx then configured by the GSDML-file (I/O-length), then the rest
is complemented with ZERO.
Too much data received will be cut off.
10.2 Protocol: Universal 232
The protocol designation "Universal 232" and the relation to the
"RS232-interface" in the description have eveloped over the years. The
protocol also works with RS422 and RS485 though!
10.2.1 Data structure
10.2.2 Fieldbus parameters
Trigger byte: See "The trigger byte", Chapter 10.5‚ on page 26
Length byte: See "The length byte", Chapter 10.6‚ on page 26
3.12.10
UNIGATE fieldbus gateway UNIGATE CL - Profinet V. 2.3
21
Implemented protocols in UNIGATE CL with Universal Script
Deutschmann Automation GmbH & Co. KG
10.2.3 RS232 parameter table
10.2.3.1 Start character (232 Start character)
If this character is defined, the gateway evaluates only the data at the RS232 interface following
this start character. Each transmission from the gateway via the RS232 interface is initiated with
the start character in this case.
10.2.3.2 Length 232 (232 Length)
If this byte is activated, the gateway, at the receive end, awaits as many bytes of useful data as
specified in this byte by the RS232 transmitter. At the transmission end, the gateway then sets
this byte to the number of useful data items transmitted by it. If byte "Length232" is not defined,
the gateway, on reception at the RS232 interface, waits for the end criterion if this is defined. If no
end criterion is defined either, as many characters as can be transferred in the fieldbus transmit
buffer are read in via the RS232 interface.
As a special case for this parameter also a length byte with additional Timeout monitoring can be
set in WINGATE. In that case the received characters will be discarded at a Timeout.
Attention:
If "Timeout“ is selected as end character, then this byte has no significance.
10.2.3.3 End character (232 End character)
If this character is defined, the gateway receives data from the RS232 interface up to this character. The "Timeout" criterion can be defined as a special case. In this case, the gateway continues
to receive characters until a defined pause occurs. In the special case "Timeout" the "Length
232-byte" has no significance. At the transmit end, the gateway inserts the end character, if
defined, as the last character of a transmission.
10.2.4 Communication sequence
The useful data (data area) arriving via the fieldbus is copied in accordance with chapter 10.2.1
transparently into the RS232 data field and transferred via the RS interface, whereby the protocol
is supplemented in accordance with the configuration (start character, end character...). NO
acknowledgement is issued !
If the "Trigger byte“ (see chapter 10.5) is active, data is sent only on a change of this byte. If the
"Length byte" (see chapter 10.6) is active, only as many of the following bytes as specified there
are transferred.
Receive data at the RS interface is evaluated in accordance with the configured protocol, and the
data field (data area (see chapter 10.2.1)) is sent to the fieldbus Master. If more characters have
been received than the fieldbus block length, the trailing bytes are truncated and an Rx Overrun
is indicated. If less have been received, padding with 0 occurs. If the "Length byte" is active, the
number of received useful data items is entered there. If the, "Trigger byte" is active, this is incremented by one after each complete reception operation at the RS interface.
10.3 Protocol: 3964(R)
The 3964 protocol is used to transfer data between two serial devices. One partner must be a
high-priority partner and the other must be a low-priority partner in order to resolve initialisation
conflicts.
22
UNIGATE fieldbus gateway UNIGATE CL - Profinet V. 2.3
3.12.10
Deutschmann Automation GmbH & Co. KG
Implemented protocols in UNIGATE CL with Universal Script
10.3.1 Data structure 3964R
10.3.2 Protocol definitions
The telegram format is as follows:
STX
Data
DLE
ETX
BCC
• The received net data is forwarded (transparently) in both directions unchanged.
Attention: The DLE-doubling is excluded from it; that means one DLE (10H) on the bus-side is
sent on the RS-side twice. A double DLE on the RS-side is only sent once to the bus-master.
• Data blocking is not scheduled.
• The net data length is restricted to 236 bytes per telegram.
• Communication always runs between high-priority and low-priority communication partners.
10.3.3 Data communication
10.3.3.1 Initiation of data communication by the low-priority user
If the low-priority user also receives an STX in response to a transmitted STX, it interrupts its
transmit request, reverts to Receive mode and acknowledges the received STX with DLE.
A DLE in the data string is duplicated and included in the checksum. The BCC is computed from
XORing all characters.
10.3.3.2 Conflicts
10.3.3.3 Timeout times
The timeout times are preset by the definition of the 3964R protocol and cannot be overwritten !!!
tq = acknowledgement timeout time (2 s).
The acknowledgement timeout time is started after transmission of control character STX. If no
positive acknowledgement arrives within the acknowledgement timeout time, the job is repeated
(max. 2 x). If it has not been possible to complete the job positively after two repetitions, the
high-priority device nevertheless attempts to establish contact with the low-priority partner by
transmitting STX (cycle corresponds to tq).
tz = character timeout time ( 200 ms)
If the 3964 R driver receives data, it monitors arrival of the individual characters within period tz.
If no character is received within the timeout time, the protocol terminates transfer. No
acknowledgement is sent to the coupling partner.
10.3.3.4 Retries
In the event of negative acknowledgement or timeout, a telegram transmitted by the high-priority
user is repeated twice. After this, the gateway signals communication as disturbed but still
attempts to re-establish the connection.
10.3.3.5 Initiation of data communication by the high-priority user
In the case of a negative acknowledgement or timeout, a telegram transmitted by the external
device is repeated twice before a fault is signalled.
3.12.10
UNIGATE fieldbus gateway UNIGATE CL - Profinet V. 2.3
23
Implemented protocols in UNIGATE CL with Universal Script
Deutschmann Automation GmbH & Co. KG
10.3.4 Protocol type 3964
The difference to protocol type 3964R is:
1. tq = acknowledge monitoring time
2. The checksum byte BCC is missing.
10.4 Protocol: MODBUS-RTU
10.4.1 Notes
→
For reasons of simplicity, "MODBUS-RTU“ is referred to as "MODBUS“ in the text below.
→
The terms "input“ and "output“ are always viewed from the gateway’s point of view,
i.e. fieldbus input data is the data sent by the fieldbus Master to the gateway.
10.4.2 UNIGATE as MODBUS-Master
10.4.2.1 Preparation
Before data exchange is commenced, the parameters "Baud rate", "Parity", "Start bits", "Stop
bits" and "Data bits" and, if applicable, the "Trigger byte" and the "Length byte" must be set.
In addition, a "Response time" which corresponds to the maximum time up to which the Modbus
Slave responds after a request must be set. UNIGATE multiplies the value entered in WINGATE
by 10 ms.
Since the Modbus operates with a variable data format - dependent on the required function and
data length - but since the fieldbus requires a fixed data length, this must be preset by means of
a selection in the GSDML file (input and output are identical). This length should be selected by
the user such that the longest Modbus request resp. response can be processed.
The user can choose whether the fieldbus requests are forwarded to the Modbus in case of a
change (On Change) or on request (On Trigger).
In "Change" mode, detection of a change is based on the fact that the fieldbus data is compared
with that of the last transmission, and a request is issued by the Modbus only in the case of a
change.
The mode "Modbus request on demand" necessitates the first byte in the fieldbus containing a
trigger byte (see chapter 10.5). This byte is not transferred to the Modbus and serves only to start
a Modbus transmission. For this purpose, the gateway constantly monitors this trigger byte and
sends data to the Modbus only when this byte has changed. In the reverse direction (to the fieldbus), the gateway transfers the number of received Modbus data records in this byte, i.e. this
byte is incremented by the gateway after each data record.
If the "Length byte“ is activated (see chapter 10.6), the gateway transfers only the number of
bytes specified there. The number of received Modbus data items is saved in the direction of the
fieldbus Master. The length always refers to bytes "Address" to "Dat n" (inclusive in each case),
always without CRC checksum.
24
UNIGATE fieldbus gateway UNIGATE CL - Profinet V. 2.3
3.12.10
Deutschmann Automation GmbH & Co. KG
Implemented protocols in UNIGATE CL with Universal Script
10.4.2.2 Data structure
10.4.2.3 Communication sequence
The gateway always acts as the Slave with respect to the fieldbus and always acts as the Master
at the Modbus end. Thus, data exchange must always be started by the fieldbus Master. The
gateway fetches this data which must be structured in accordance with chapter "Data structure“,
from the fieldbus Master, determines the valid length of the Modbus data if the length byte is not
activated, adds the CRC checksum and sends this data record as a request on the Modbus.
The response of the selected Slave is then sent to the fieldbus Master by the gateway - without
CRC checksum. If no response occurs within the stipulated "Response time", the gateway signals a "TIMEOUT ERROR".
10.4.3 UNIGATE as MODBUS-Slave
10.4.3.1 Preparation
Before data exchange is commenced, the parameters "Trigger byte" and "Length byte", "Baud
rate", "Parity", "Start bits", "Stop bits" and "Data bits" must be set.
At the rotary switch on the RS-side the MODBUS-ID has to be set, under which the gateway is
addressed in the Modbus.
Since the Modbus operates with a variable data format - dependent on the required function and
data length - but since the fieldbus requires a fixed data length, this must be preset by means of
a selection in the GSDML file. This length should be selected by the user such that the longest
Modbus request resp. response can be processed.
10.4.3.2 Data structure
10.4.3.3 Communication sequence
The gateway always acts as the Slave with respect to the fieldbus and also acts as Slave at the
Modbus end. A data exchange is always initiated by the MODBUS-Master via the RS-interface. If
the Modbus-address (1st Byte) which is sent out by the Modbus-Master is identical with the
address set on the gateway, the gateway sends the received data (without Modbus-address and
CRC-check sum) to the fieldbus-master (look picture above). With it the gateway optionally completes as an introduction a Trigger byte and a Length byte.
3.12.10
UNIGATE fieldbus gateway UNIGATE CL - Profinet V. 2.3
25
Implemented protocols in UNIGATE CL with Universal Script
Deutschmann Automation GmbH & Co. KG
The fieldbus-master detects when it has to analyse a record via the Trigger byte which is incremented by the gateway at every inquiry. The number of the following Modbus-data is to be found
in the length byte.
Now the fieldbus-master has to analyse the Modbus-inquiry and it has to send back the answer
in the same format (optionally with the leading Trigger byte and Length byte) via the fieldbus to
the gateway.
The gateway then takes this answer and completes the Modbus-address and the CRC and
sends the data to the Modbus-Master via the RS-interface. With it the data exchange is completed and the gateway waits for a new inquiry from the Modbus-Master.
10.4.4 UNIGATE as Modbus-ASCII Master
On request!
-> For the description see chapter 10.4.2 "UNIGATE as MODBUS-Master"
10.5 The trigger byte
Since the data is always transferred cyclically on Profinet, the gateway must detect when the
user wishes to send new data via the serial interface. This is normally done by the gateway comparing the data to be transferred via Profinet with the old data stored internally - data exchange
on change (data exchange -> On Change). In many cases however, this cannot be used as the
criterion, e.g. whenever the same data is to be sent. For this reason, the user can set control of
transmission via a trigger byte (data exchange -> On Trigger). In this mode, the gateway always
sends (and only then) when the trigger byte is changed.
Accordingly, the application program in the control in Normal mode cannot detect whether the
gateway has received several identical telegrams. If Trigger-Byte mode is activated, the gateway
increments the trigger byte each time a telegram has been received.
The first byte in the Profinet input/output data buffer is used as the trigger byte if this mode is activated.
10.6 The length byte
The user can configure whether the transmit length is also to be stored as a byte in the input/output data area (Fieldbus lengthbyte -> active). In transmit direction, as many bytes as specified in
this byte are sent. On reception of a telegram the gateway enters the number of characters
received.
26
UNIGATE fieldbus gateway UNIGATE CL - Profinet V. 2.3
3.12.10
Deutschmann Automation GmbH & Co. KG
FTP-Server
11 FTP-Server
11.1 FTP-Server (Fido-hardware, from S/N: xxxx1000 on)
This UNIGATE features an integrated FTP-Server, that can be accessed with the file system.
The FTP-Server is password protected and can be addressed via the user name "deutschmann“
and the password “deutschmann“.
11.1.1 Script-update via FTP
The dcs-file generated by the Protocol Developer has to be stored as "script.dcs" by the FTP on
the Gateway. Then disconnect the FTP-connection and only after that switch off the device. The
Gateway recognizes that file during startup, transfers the contained Script and then deletes the
file "script.dcs".
11.1.2 System configuration update via FTP
A WINGATE gwc-file has to be stored on the Gateway as "SYSTEM.GWC" via FTP. Then disconnect the FTP-connection and only after that switch off the device. The Gateway recognizes
this file during startup, transfers the new configuration and then deletes the file "system.gwc”.
11.2 FTP-Server (Hynet-hardware, up to S/N: xxxx0999)
This UNIGATE features an integrated FTP-Server, that can be accessed with the file system.
The FTP-Server is password protected and can be addressed via the user name "deutschmann“
and the password “deutschmann“.
The following files that are located there on this file system MUST NOT be deleted or changed in
no case since they are mandatory for the system:
- project.hex
- ftp_accounts.txt
- script.sys
The remaining files belong to the WEB-Server. Further information can be found in the
corresponding chapter "WEB-Server".
11.2.1 Script-update via FTP
The dcs-file generated by the Protocol Developer has to be stored as "script.dcs" by the FTP on
the Gateway (subdirectory "flash"). When the Gateway starts up, it identifies, converts and integrates this file into the file "script.sys", where the Script is usually filed and then deletes the file
"script.dcs".
11.2.2 System configuration update via FTP
A WINGATE gwc-file has to be stored on the Gateway (subdirectory "flash") as "SYSTEM.GWC"
via FTP. When the Gateway is startet, it identifies this file, transfers the new configuration and
then deletes the file "SYSTEM.GWC".
3.12.10
UNIGATE fieldbus gateway UNIGATE CL - Profinet V. 2.3
27
WEB-Server
Deutschmann Automation GmbH & Co. KG
12 WEB-Server
12.1 WEB-Server (Fido-hardware, from S/N: xxxx1000 on)
This Gateway also contains a web server by default. In the initial state the UNIGATE‘s file system
contains an HTML start page, that presents system parameters of the device.
The web page can be changed by the customer as desired or it can be replaced by an individual
web page. Via FTP it can then be written into the file system.
The "Server-Side-Includes"-functionality (SSI) is available in order to be able to generate dynamic web pages, that, for instance present process data or pass on form inputs to the process.
Data exchange through Server-Side-Includes (SSI)
The web-server only searches the file index.html and files with the endings "shtml" or "sml" for
SSI-instuctions. SSI-instructions are being ignored in all other HTML-files.
If a Client requests a web page that contains SSI-instructions, then the web server replaces the
instructions by the values that correspond to the instructions and sends the generated page to
the Client. The other way round those values, that have been entered through HTML-forms and
that are transfered to the web server with the „POST” method and together with a variable
name, are copied into the corresponding Script buffer.
SSI-instructions are listed within HTML comments and have the following syntax:
<!--#exec="Kommando"-->
The following commands are supported:
Command
DisplayFWVersion
DisplayBLVersion
DisplaySerial
DisplayMacID
DisplayDeviceName
DisplayStationName
DisplayStationType
DisplayVendorID
DisplayDeviceID
DisplayIP
DisplaySubnet
DisplayGateway
Instruction (incl.comment) is replaced by
Firmware version
Bootloader version
Serial number
Ethernet MAC-address
Device name
Station type
Vendor ID
Device ID
UNIGATE‘s IP-address
IP-subnet mask
IP-address of the default Gateway
The following command is reqired for the exchange of any process data between Script in the
Gateway and web page:
DisplayScriptVar,Variablenname
The interaction between Gateway Script and HTML page can be taken best from the example
HTML page "ssi.shtml" and the example Script "example_Set_HTML_String.dss". Both can be
found in the download area on our homepage at www.deutschmann.de.
28
UNIGATE fieldbus gateway UNIGATE CL - Profinet V. 2.3
3.12.10
Deutschmann Automation GmbH & Co. KG
WEB-Server
12.2 WEB-Server (Hynet-hardware, up to S/N: xxxx0999)
This Gateway also contains a WEB-Server by default. In the initial state there is a welcome page
on the Flashdisk, that presents the device’s system parameters.
The WEB-pages can be changed by the customer as desired and via FTP they can be written on
the Flashdisk.
The "Server-Side-Include"-functionality is made available in order to be able to generate dynamic
WEB-pages that display process data on the WEB-page or pass on data from the WEB-page to
the process, which means that placeholders are used for the process data on the HTML-page.
Data exchange through Server-Side-Include (SSI)
In case the UNIGATE detects the variable’s placeholder, that is described by a variable’s name
(see below), it places the corresponding String at the variable’s place. The other way round
Strings, that are passed on via „POST“ by the HTML-page with the corresponding variable name,
are copied in to the corresponding Script buffer.
The Syntax looks as follows:
<?--#exec cmd_argument='xxxxx'-->
For xxxxx the following expressions are possible:
- DisplayFWVersion
- DisplayBLVersion
- DisplaySerial
- DisplayMacID
- DisplayStationName
- DisplayStationType
- DisplayVendorID
- DisplayDeviceID
- DisplayIP
- DisplaySubnet
- DisplayGateway
These expressions are self-explanatory and they reflect the corresponding values that have
been preset by the Firmware.
The following expression is required for the exchange of any process data between the Script in
the Gateway and the WEB-page:
- DisplayScriptVar,Variablenname
A good exmple for the interaction between Gateway-Script and HTML-page ca be taken from the
Example-HTML-page "ssi.html" and the Example-Script "example_Set_HTML_String.dss", that
can both be found in the download area on our homepage at www.deutschmann.de.
3.12.10
UNIGATE fieldbus gateway UNIGATE CL - Profinet V. 2.3
29
Hardware ports, switches and LEDs
Deutschmann Automation GmbH & Co. KG
13 Hardware ports, switches and LEDs
13.1 Device labeling
Picture 1: Terminal labeling and termination
Picture 2: Front panel: Rotary switches and LEDs
13.2 Connectors
13.2.1 Connector to the external device (RS-interface)
The serial interface is available at the plug accessible on the upper side of the device.
Pin assignment X1 (3-pole and 4-pole screw-type plug connector)
Pin No.
1
2
3
4
5
6
7
Name
Rx 232
Tx 232
AP-GND
Rx 422+ (485+)
Rx 422- (485-)
Tx 422+ (485+)
Tx 422- (485-)
Function
Receive signal
Transmit signal
Application Ground
Receive signal
Receive signal
Transmit signal
Transmit signal
For the operation at a 485-interface the two pins labeled "485-" have to
be connected together.
Also the two pins "485+".
30
UNIGATE fieldbus gateway UNIGATE CL - Profinet V. 2.3
3.12.10
Deutschmann Automation GmbH & Co. KG
Hardware ports, switches and LEDs
13.2.2 Connector supply voltage and DEBUG-interface
Pin assignment X2 (4-pole screw-plug connector, on the bottom side, at the back)
Pin No.
1
2
3
4
Name
UB (Pwr)
0 V (Pwr)
Rx-Debug
Tx-Debug
Function
10..33 V supply voltage / DC
0 V supply voltage / DC
Receive signal Debug
Transmit signal Debug
Attention:
At isolated devices (option GT) Ground for the DEBUG-Interface must be
connected with pin 3 (AP-GND) of the RS-interface!
At devices that are not isolated also the 0V (Pwr)-signal can be used as
reference.
13.2.3 Profinet-connector
The plug (labeled: RJ45 Profinet-IO) for the connection to Profinet is available on the bottom side
of the device.
Pin assignment X3 (RJ45)
Pin No.
1
2
3
4
5
6
7
8
Name
TD+
TDRD+
Function
Transmission line +
Transmission line Receive line +
RD-
Receive line -
13.2.4 Power supply
The device must be powered with 10-33 VDC, The voltage supply is made through the 4-pole
screw-plug connector at the device’s bottom side.
Please note that the devices of the series UNIGATE should not be operated with AC voltage.
13.3 LEDs
The Gateway UNIGATE CL - Profinet features 9 LEDs with the following significance:
LED (Profinet) Power
LED Link / Activity
LED (Profinet) State
LED Power
LED State
LEDs 1 / 2 / 4 / 8 (Error No. / Select ID)
green
green
red/green
green
red/green
green
Supply voltage Profinet (total device)
Ethernet-link pulse found / network data traffic
Interface state Profinet
Supply voltage serial interface
User-defined / general Gateway error
User-defined / general Gateway error
13.3.1 LED "(Profinet) Power"
This LED is connected directly to the supply voltage of the Profinet-side.
13.3.2 LED "Link / Activity"
This LED is directly controlled by the Profinet-processor and shines when the gateway is in an
operable network (link-pulses are received) and it flickers when network data traffic takes place.
3.12.10
UNIGATE fieldbus gateway UNIGATE CL - Profinet V. 2.3
31
Hardware ports, switches and LEDs
Deutschmann Automation GmbH & Co. KG
13.3.3 LED "(Profinet) State"
Off
Lights green
Flashes green
Flashes green/red
Lights red
Waiting for Script command "Bus Start"
Connection with IO-controller available, data exchange active
Profinet initialized. Waiting for connection with IO-controller
Error while initializing Profinet
Profinet-hardware error
13.3.4 LED "Power"
This LED is connected directly to the (optionally also electrically isolated) supply voltage of the
serial interface (RS232/422/485).
13.3.5 LED "State"
Lights green
Flashes green
Flashes green/red
Lights red
Flashes red
Controllable via Script
Controllable via Script
Controllable via Script
General Gateway error (see LEDs Error No.), controllable via Script
UNIGATE is in the configuration / test mode, controllable via Script
13.3.6 LEDs 1 / 2 / 4 / 8 (Error No. / Select ID)
If these 4 LEDs flash and LED “State“ simultaneously lights red, the error number is displayed in
binary notation (conversion table, see Annex) in accordance with the table in chapter "Error
handling". Additionally these LEDs are controllable via Script:
13.4 Switches
The Gateway features 4 switches with the following functions:
Termination Rx 422
Termination Tx 422
Rotary coding switch S4
Rotary coding switch S5
switchable Rx 422-terminating resistor for the serial interface
switchable Tx 422- or RS485-terminating resistor for the serial
interface
ID High for serial interface i. e. configmode
ID Low for serial interface i. e. configmode
13.4.1 Termination Rx 422 + Tx 422 (serial interface)
If the Gateway is operated as the physically first or last device in an RS485-bus or as 422, there
must be a bus termination at this Gateway. In order to do this the termination switch is set to position ON. The resistor (150 Ω) integrated in the Gateway is activated. In all other cases, the switch
remains in position OFF.
Please refer to the general RS485 literature for further information on the subject of bus terminations.
If the integrated resistor is used, please allow for the fact that this also activates a pull-down
resistor (390 Ω) to ground and a pull-up resistor (390 Ω) to VCC.
At RS48 only the Tx 422-switch must be set to ON.
The Rx 422-switch has to be on OFF.
32
UNIGATE fieldbus gateway UNIGATE CL - Profinet V. 2.3
3.12.10
Deutschmann Automation GmbH & Co. KG
Hardware ports, switches and LEDs
13.4.2 Rotary coding switches S4 + S5 (serial interface)
These two switches can be read out through the Script command "Get (RS_Switch, Destination)"
and the value can be used for further functions. This value is read in when the Gateway is
switched on or always after a Script command has been executed. The switch positions "EE"
(testmode) and "FF" (config mode) are not possible for RS422- or RS485-operation.
13.5 The Debug cable for UNIGATE SC
As accessory a pre-configured Debug cable is available. The Debug cable connects the Gateway to Debug and RS.
3.12.10
UNIGATE fieldbus gateway UNIGATE CL - Profinet V. 2.3
33
Error handling
Deutschmann Automation GmbH & Co. KG
14 Error handling
14.1 Error handling at UNIGATE CL
If the Gateway detects an error, the error is signalled by the “State“ LED lighting red and, simultaneously, the error number being indicated by means of LEDs “Error No.“ as shown in the table
below. A distinction can be made between two error categories:
Serious errors (1-5): In this case, the Gateway must be switched off and switched back on again.
If the error occurs again, the Gateway must be exchanged and returned for repair.
Warnings (6-15): These warnings are displayed for one minute simply for information purposes
and are then automatically reset. If such warnings occur frequently, please inform After-Sales
Service.
For user-defined errors the flash frequency is 0.5 hertz. The error is displayed as long as defined
by "Set Warning Time".
In the configuration mode these displays are not valid and only meant for internal use.
LED8
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
LED4
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
LED2
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
LED1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
Error no.
resp. ID
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
Error description
Reserved
Hardware fault
EEROM error
Internal memory error
Fieldbus hardware error
Script error
Reserved
RS-transmit buffer overflow
RS-receive buffer overflow
RS timeout
General fieldbus error
Parity-or frame-check-error
Reserved
Fieldbus configuration error
Fieldbus data buffer overflow
Reserved
Table 1: Error handling at UNIGATE CL
34
UNIGATE fieldbus gateway UNIGATE CL - Profinet V. 2.3
3.12.10
Deutschmann Automation GmbH & Co. KG
Installation guidelines
15 Installation guidelines
15.1 Installation of the module
The module with the dimensions 23 x 111 x 115 mm (W x H x D) has been developed for switch
cabinet use (IP 20) and can thus be mounted only on a standard mounting channel (deep
DIN-rail to EN 50022).
15.1.1 Mounting
• Engage the module from the top in the top-hat rail and swivel it down so that the module
engages in position.
• Other modules may be rowed up to the left and right of the module.
• There must be at least 5 cm clearance for heat dissipation above and below the module.
• The standard mounting channel must be connected to the equipotential bonding strip of the
switch cabinet. The connection wire must feature a cross-section of at least 10 mm².
15.1.2 Removal
• First disconnect the power supply and signal lines.
• Then push the module up and swivel it out of the top-hat rail.
Vertical installation
The standard mounting channel may also be mounted vertically so that the module is mounted
turned through 90°.
15.2 Wiring
15.2.1 Connection systems
The following connection systems must resp. may be used when wiring the module:
• Standard screw-type/plug connection (power supply + RS)
• 8-pin RJ45-plug-in connection (Profinet-IO-connection)
a) In the case of standard screw-type terminals, one lead can be clamped per connection point. It
is best to then use a screwdriver with a blade width of 3.5 mm to firmly tighten the screw.
Permitted cross-sections of the line:
• Flexible line with wire-end ferrule:
• Solid conductor:
• Tightening torque:
1 x 0.25 ... 1.5 mm²
1 x 0.25 ... 1.5 mm²
0.5 ... 0.8 Nm
b) The plug-in connection terminal strip is a combination of standard screw-type terminal and
plug connector. The plug connection section is coded and can thus not be plugged on the
wrong way round.
15.2.1.1 Power supply
The device must be powered with 10...33 V DC.
• Connect the supply voltage to the 4-pole plug-in screw terminal in accordance with the labelling
on the device.
15.2.1.2 Equipotential bonding connection
The connection to the potential equalization automatically takes place it is put on the DIN-rail.
3.12.10
UNIGATE fieldbus gateway UNIGATE CL - Profinet V. 2.3
35
Installation guidelines
Deutschmann Automation GmbH & Co. KG
15.2.2 Profinet-IO communication interface
This interface is located on the module in the form of a 8-pin RJ45 socket on the bottom side of
the housing.
• Plug the Profinet-connector onto the RJ45 socket labelled "RJ45 Profinet-IO" until it snaps in.
• Please make sure that the length of the line to the adjacent Ethernet participants does not fall
below 0.6 m.
15.2.3 Line routing, shield and measures to combat interference voltage
This chapter deals with line routing in the case of bus, signal and power supply lines, with the aim
of ensuring an EMC-compliant design of your system.
15.2.4 General information on line routing
- Inside and outside of cabinets
In order to achieve EMC-compliant routing of the lines, it is advisable to split the lines into the following line groups and to lay these groups separately.
⇒ Group A:
⇒ Group B:
⇒ Group C:
• shielded bus and data lines (e. g. for RS232C and printers etc.)
• shielded analogue lines
• unshielded lines for DC voltages ≥ 60 V
• unshielded lines for AC voltage ≥ 25 V
• coaxial lines for monitors
• unshielded lines for DC voltages ≥ 60 V and ≥ 400 V
• unshielded lines for AC voltage ≥ 24 V and ≥ 400 V
• unshielded lines for DC voltages > 400 V
The table below allows you to read off the conditions for laying the line groups on the basis of the
combination of the individual groups.
Group A
Group B
Group C
Group A
1
2
3
Group B
2
1
3
Group C
3
3
1
Table 3: Line laying instructions as a function of the combination of line groups
1) Lines may be laid in common bunches or cable ducts.
2) Lines must be laid in separate bunches or cable ducts (without minimum clearance).
3) Lines must be laid in separate bunches or cable ducts inside cabinets but on separate cable
racks with at least 10 cm clearance outside of cabinets but inside buildings.
15.2.4.1 Shielding of lines
Shielding is intended to weaken (attenuate) magnetic, electrical or electromagnetic interference
fields.
Interference currents on cable shields are discharged to earth via the shielding bus which is connected conductively to the chassis or housing. A low-impedance connection to the PE wire is
particularly important in order to prevent these interference currents themselves becoming an
interference source.
36
UNIGATE fieldbus gateway UNIGATE CL - Profinet V. 2.3
3.12.10
Deutschmann Automation GmbH & Co. KG
Installation guidelines
Wherever possible, use only lines with braided shield. The coverage density of the shield should
exceed 80%. Avoid lines with foil shield since the foil can be damaged very easily as the result of
tensile and compressive stress on attachment. The consequence is a reduction in the shielding
effect.
In general, you should always connect the shields of cables at both ends. The only way of
achieving good interference suppression in the higher frequency band is by connecting the
shields at both ends.
The shield may also be connected at one end only in exceptional cases. However, this then
achieves only an attenuation of the lower frequencies. Connecting the shield at one end may be
more favorable if
• it is not possible to lay an equipotential bonding line
• analogue signals (a few mV resp. mA) are to be transmitted
• foil shields (static shields) are used.
In the case of data lines for serial couplings, always use metallic or metallized plugs and connectors. Attach the shield of the data line to the plug or connector housing.
If there are potential differences between the earthing points, a compensating current may flow
via the shield connected at both ends. In this case, you should lay an additional equipotential
bonding line.
Please note the following points when shielding:
• Use metal cable clips to secure the shield braiding. The clips must surround the shield over a
large area and must have good contact.
• Downstream of the entry point of the line into the cabinet, connect the shield to a shielding bus.
Continue the shield as far as the module, but do not connect it again at this point!
3.12.10
UNIGATE fieldbus gateway UNIGATE CL - Profinet V. 2.3
37
Technical data
Deutschmann Automation GmbH & Co. KG
16 Technical data
16.1 Device data
The technical data of the module is given in the table below.
No. Parameter
1
Location
2
Enclosure
Data
Switch cabinet
IP20
4
5
Service life
Housing size
6
7
8
Installation position
Weight
Operating temperature
10 years
23 x 111 x 115 mm
(screw-plug-connector included)
23 x 100 x 115 mm
(screw-plug connector not included)
Any
150 g
0ºC ... +55ºC
9
-40 ºC ... +70 ºC
11
Storage/transport
temperature
Atmospheric pressure
during operation
during transport
Installation altitude
12
Relative humidity
Max. 80 %
14
External
power supply
Current consumption at 24
VDC
Reverse voltage protection
Short-circuit protection
Overload protection
Undervoltage detection
(USP)
Emergency power supply
10...33 V DC
10
15
17
18
19
20
21
795 hPa ... 1080 hPa
660 hPa ... 1080 hPa
2000 m
4000 m
Typ. 120 mA
max 150 mA
Yes
Yes
Poly-switch
≤ 9 V DC
≥ 5 ms
Explanations
DIN-rail mounting
Protection against foreign
bodies and water to IEC 529
(DIN 40050)
WxHxD
Unrestricted
Restricted Ambient temperature ≤ 40ºC
No condensation,
no corrosive atmosphere
Standard power supply unit to
DIN 19240
But does not function!
Thermal fuse
Device fully operable
Table: Technical data of the module
38
UNIGATE fieldbus gateway UNIGATE CL - Profinet V. 2.3
3.12.10
Deutschmann Automation GmbH & Co. KG
Technical data
16.1.1 Interface data
The table below lists the technical data of the interfaces and ports on the device. The data has
been taken from the corresponding Standards.
Interface designation
No. Physical interface
1
Standard
2
Transmission mode
3
4
5
Transmission method
Number of users : - Transmitters
- Receivers
Cable length: - Maximum
Profinet-IO
Ethernet 100 BaseT
Symmetrical
asynchronous
serial
full-duplex
RS232-C
RS232-C
DIN 66020
Asymmetrical
asynchronous
serial
full-duplex
RS485/RS422
RS485/RS422
EIA Standard
Symmetrical
asynchronous
serial
half-duplex
full-duplex at RS422
→ Difference signal
Multimaster CSMA/CD
512
512
100 m
→ Level
Master / slave
1
1
15 m
→ Difference signal
Master / slave
32
32
1200 m
no
<93.75 kBd→1200 m
312, kBd→500 m
625 kBd→250 m
Point-to-point
120 kBit/s
2.4 k/B
4.8 k/B
9.6 kBit/s
19.2 kBit/s
38.4 kBit/s
3 ... 7 kΩ
± 25 V
± 15 V
±5V
3 ... 7 Ω
± 15 V
±3V
Line
625 kBaud
2.4 kBit/s
4.8 kBit/s
9.6 kBit/s
19.2 kBit/s
57.6 kB
312.5 kB
625 kB
54 Ω
- 7 V ... 12 V
±5V
± 1.5 V
12 Ω
- 7 V ... 12 V
± 0.2 V
+ 3 ... + 15 V
0
- 0.2 ... + 0.2 V
0
- 3 ... –15 V
1
+ 1.5 ... +5 V
1
- Depending on
baud rate
6
7
Bus topology
Data rate: - Maximum
- Standard
8
Transmitter: - Load
100 Ω
- Maximum voltage
- Signal, unloaded
- Signal, loaded
Receiver: - Input resistance
100 Ω
- Maximum input signal
- Sensitivity
Transmit range (SPACE):
- Voltage level
- Logic level
Transmit pause (MARK):
- Voltage level
- Logic level
9
10
11
Star
100 Mbit/s
Table: Technical data of the interfaces at the module
3.12.10
UNIGATE fieldbus gateway UNIGATE CL - Profinet V. 2.3
39
Commissioning guide
Deutschmann Automation GmbH & Co. KG
17 Commissioning guide
17.1 Note
Only trained personnel following the safety regulations may commission the UNIGATE.
17.2 Components
You will require the following components to commission the UNIGATE:
• UNIGATE
• Connection cable from gateway to the process
• Connector for Profinet connection to the Gateway
• Ethernet cable (this cable is generally available on site!)
• 10..33 V DC power supply (DIN 19240)
• Type file or GSD file (that is based on the XML-oriented Standard GSDML) and user manual (a
sample file as well as the user manual can be ordered separately or downloaded free of charge
from our homepage at www.deutschmann.de).
17.3 Installation
The UNIGATE CL - Profinet module features protection type IP20 and is thus suitable for switch
cabinet use. The device is designed for snapping onto a 35 mm DIN-rail.
17.4 Dimensional drawing UNIGATE CL - Profinet-IO
17.5 Commissioning
It is essential that you perform the following steps during commissioning in order to ensure that
the module operates correctly:
40
UNIGATE fieldbus gateway UNIGATE CL - Profinet V. 2.3
3.12.10
Deutschmann Automation GmbH & Co. KG
Commissioning guide
17.6 Profinet address-assignment
During normal operation (data exchange mode - see chapter 4) the IP-address is assigned to the
gateway by the Profinet-IO-controller (PLC). For it the gateway has a device name (UNIGATE PN) that is used to communicate with the gateway.
17.7 Profinet connection
Connect the device to the Profinet at the interface labelled "RJ45 Profinet-IO".
17.8 Connection to the process device
Please also read the manual for the process device when commissioning the process device.
17.9 Shield connection
Earth the top-hat rail onto which the module has been snapped.
17.10 Connecting the supply voltage
Please connect 10..33 DC voltage to the terminals provided for this.
17.11 Project planning
Use any project planning tool for project planning.
If the required GSD file was not supplied with your project planning tool, a sample file can be
found on the Internet (www.deutschmann.de).
17.12 Literature
We recommend the book "Der Schnelleinstieg in PROFINET", author M. Popp and K. Weber, to
help you quickly get to grips with the subject of Profinet. The book (in German) can be ordered
from the Profibus User Organisation, Order No. 4.181.
Address:
Profibus Nutzerorganisation e.V.
Haid-und-Neu-Str. 7
D-76131 Karlsruhe
Germany
Tel: 0721 9658 590
3.12.10
UNIGATE fieldbus gateway UNIGATE CL - Profinet V. 2.3
41
Servicing
Deutschmann Automation GmbH & Co. KG
18 Servicing
Should questions which are not covered in this Manual crop up, please contact us directly.
Please note down the following information before calling:
• Device designation
• Serial number (S/N)
• Article number
• Error number and error description
You can reach us during hotline hours which are as follows
Monday to Thursday from 8 am to midday and from 1 pm to 4 pm, Friday from 8 am to midday.
Deutschmann Automation GmbH & Co. KG
Carl-Zeiss-Straße 8
D-65520 Bad-Camberg
Germany
Central office and sales department
Technical hotline
+49-(0)6434-9433-0
+49-(0)6434-9433-33
Fax sales department
Fax technical hotline
+49-(0)6434-9433-40
+49-(0)6434-9433-44
E-mail technical hotline
[email protected]
18.1 Returning a device
If you return a device, we require as comprehensive a fault/error description as possible. We
require the following information in particular:
• What error number was displayed?
• What is the supply voltage (±0.5 V) with Gateway connected?
• What were you last doing or what last happened on the device (programming, error on
power-up, ...)?
The more precise information a fault/error description you provide, the more exactly we will be
able to pinpoint the possible causes.
18.2 Downloading PC software
You can download current information and software free of charge from our Internet server.
http://www.deutschmann.de
42
UNIGATE fieldbus gateway UNIGATE CL - Profinet V. 2.3
3.12.10
Deutschmann Automation GmbH & Co. KG
Annex
19 Annex
19.1
Explanations of the abbreviations
General
CL
CX
GT
GY
=
=
=
=
Product group CL (Compact Line)
Product group CX
Galvanic separation RS-side
Housing color gray
RS
SC
232/485
232/422
DB
D9
PL
PD
AG
EG
=
=
=
=
=
=
=
=
=
=
Product group RS
Product group SC (Script)
Interface RS232 and RS485 switchable
Interface RS232 and RS422 switchable
Additional RS232 DEBUG-interface
Connection of the RS through 9-pin D-SUB instead of 5-pin screw-plug connector
Board only without DIN-rail module and without housing cover
Board only without DIN-rail module and with housing cover
Gateway installed in a die-cast aluminum housing
Gateway installed in a stainless steel housing
IC
16
5V
3.3V
=
=
=
=
Product group IC (IC-design DIL32)
Script memory expanded to 16KB
Operating voltage 5V
Operating voltage 3.3V
Fieldbus
ASI
CO
C4
C4X
=
=
=
=
DN
EC
EI
FE
FEX
=
=
=
=
=
IB
IBL
LN62
LN512
MPI
PL
PN
PBDP
PBDPL
=
=
=
=
=
=
=
=
=
PBDPX
=
AS-Interface (AS-i)
CANopen
CANopen V4
CANopen V4-version X (see comparison table UNIGATE® IC for the respective
product)
DeviceNet
EtherCAT
Ethernet/IP
Ethernet 10/100 MBit
Ethernet 10/100 MBit-version X (see comparison table UNIGATE® IC for the
respective product)
Interbus
Interbus
LONWorks62
LONWorks512
Siemens MPI®
Powerlink
Profinet-IO
ProfibusDP
ProfibusDP-version L (see comparison table UNIGATE® IC for the respective
product)
ProfibusDP-version X (see comparison table UNIGATE® IC for the respective
product)
ProfibusDPV0
ProfibusDPV1
Serial RS232/485/422
PBDPV0 =
PBDPV1 =
RS
=
3.12.10
UNIGATE fieldbus gateway UNIGATE CL - Profinet V. 2.3
43
Annex
Deutschmann Automation GmbH & Co. KG
19.2 Hexadecimal table
Hex
Decimal
Binary
0
0
0000
1
1
0001
2
2
0010
3
3
0011
4
4
0100
5
5
0101
6
6
0110
7
7
0111
8
8
1000
9
9
1001
A
10
1010
B
11
1011
C
12
1100
D
13
1101
E
14
1110
F
15
1111
44
UNIGATE fieldbus gateway UNIGATE CL - Profinet V. 2.3
3.12.10
Deutschmann Automation GmbH & Co. KG
Declaration of conformity
20 Declaration of conformity
20.1 EC declaration of conformity
3.12.10
UNIGATE fieldbus gateway UNIGATE CL - Profinet V. 2.3
45
Declaration of conformity
46
Deutschmann Automation GmbH & Co. KG
UNIGATE fieldbus gateway UNIGATE CL - Profinet V. 2.3
3.12.10
Was this manual useful for you? yes no
Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Download PDF

advertisement