Instruction Manual


Add to my manuals
136 Pages

advertisement

Instruction Manual | Manualzz

5 3 5

5 3 5

1/4 DIN PROCESS CONTROLLER

USER'S MANUAL

M535 V5, © MAY 2002

Table of Contents

Table of Contents

PAGE

CHAPTER 1

INTRODUCTION .............................................................................. 1

535 Modes ........................................................................................ 1

Order Code, Packaging Information .................................................. 2

Where To Go Next ............................................................................ 2

Text formatting in this manual ............................................................ 2

CHAPTER 2

BASIC INTERFACE ......................................................................... 5

Displays ............................................................................................ 5

Icons (Lit) .......................................................................................... 5

Keys .................................................................................................. 6

Basic Operating Procedures ............................................................. 7

Alarm Operation ................................................................................ 8

CHAPTER 3

INSTALLATION ............................................................................. 11

Mounting the Controller ................................................................... 11

Wiring ............................................................................................. 12

AC Power Input ...................................................................... 13

Process Variable Input ........................................................... 13

Digital Input(s) ........................................................................ 16

1. Digital Inputs with a Switch or Relay ............................... 16

2. Digital Inputs with an Open Collector .............................. 16

Remote Setpoint Option ......................................................... 16

Output Modules ...................................................................... 17

1. Mechanical Relay Output ............................................... 17

2. Solid State Relay (Triac) Output ..................................... 17

3. DC Logic (SSR Drive) Output ......................................... 18

4. Milliamp Output .............................................................. 18

5. Position Proportioning Output ......................................... 18

Serial Communications ........................................................... 19

Limit Control ........................................................................... 20

CHAPTER 4

HARDWARE SET UP ..................................................................... 21

Hardware Input Types ..................................................................... 21

The Process Variable ...................................................................... 21

The Remote Setpoint ...................................................................... 22

Mechanical Relays .......................................................................... 22

Accessing and changing jumpers .................................................... 23

Adding and Changing output modules ............................................. 24

Special Communications Module .................................................... 26

CHAPTER 5

SOFTWARE CONFIGURATION .................................................... 27

Menus ............................................................................................. 27

Parameters ..................................................................................... 28

Configuration and Operation ........................................................... 29

Where to Go Next ............................................................................ 29

About This Manual:

Throughout this User’s Manual information appears along the margins (NOTE:, CAUTION! and

WARNING!). Please heed these safety and good practice notices for the protection of you and your equipment.

535 User's Manual Table of Contents i

ii

Table of Contents

CHAPTER 5

CONTROLLER SET UP (cont’d)

PAGE

Text Formatting in This Manual .......................................................... 29

Software Menus and Parameters ...................................................... 30

CONFIG. ................................................................................. 30

PV1 INPUT ............................................................................. 34

PV2 INPUT ............................................................................. 36

CUST. LINR. ........................................................................... 38

CONTROL .............................................................................. 39

ALARMS ................................................................................. 41

REM. SETPT. .......................................................................... 46

RETRANS. .............................................................................. 47

SELF TUNE ............................................................................ 48

SPECIAL ................................................................................ 50

SECURITY .............................................................................. 51

SER. COMM. .......................................................................... 52

Parameter Value Charts ................................................................... 50

CHAPTER 6

TUNING .......................................................................................... 63

Overview ......................................................................................... 63

TUNING Menu Parameters ............................................................... 64

TUNING Parameter Value Chart ....................................................... 68

Self Tune Messages and Troubleshooting ......................................... 70

CHAPTER 7

APPLICATIONS .............................................................................. 71

A. Control Type ................................................................................ 71

B. Alarms ......................................................................................... 72

C. Duplex Control ............................................................................. 76

Duplex with reverse and direct acting outputs ............................ 77

Duplex with direct and reverse acting outputs ............................ 77

Duplex with 2 reverse acting outputs ......................................... 78

Duplex with a gap between outputs ........................................... 78

Duplex with overlapping outputs and output limits ...................... 79

Duplex with various relative gain settings ................................... 79

Duplex with one ON/OFF output ............................................... 80

Duplex with two ON/OFF outputs .............................................. 80

D. Slidewire Position Proportioning Control ........................................ 81

E. Velocity Position Proportioning Control .......................................... 82

F. Staged Outputs ............................................................................ 83

G. Retransmission ............................................................................ 83

H. Digital Inputs ................................................................................ 84

I. Remote Setpoint .......................................................................... 86

J. Multiple Setpoints ......................................................................... 87

K. Multiple Sets of PID Values ........................................................... 87

L. Powerback .................................................................................. 88

M. Self Tune—Powers POWERTUNE® ............................................ 89

Pretune by Itself ....................................................................... 89

Pretune TYPE 1 and Adaptive Tune .......................................... 91

Pretune TYPE 2 or TYPE 3 and Adaptvie Tune .......................... 91

Adaptive Tune by Itself ............................................................. 92

Self Tune with Multiple Sets of PID ............................................ 94

Self Tune with Time Proportioning Outputs ................................ 94

Table of Contents 535 User's Manual

CHAPTER 7

APPLICATIONS (cont’d)

PAGE

Self Tune with Control Valves ................................................... 94

N. Ramp-to-Setpoint ......................................................................... 94

O. Input Linearization ........................................................................ 95

Thermocouple and RTD Linearization ....................................... 95

Square Root Linearization ........................................................ 95

Custom Linearization ............................................................... 96

P. Load Line ..................................................................................... 97

Q. Security ....................................................................................... 97

R. Reset Inhibition ............................................................................ 98

S. Process Variable Reading Correction ............................................ 98

T. Serial Communications ................................................................ 99

U. Cascade Control ........................................................................ 100

V. Ratio Control .............................................................................. 103

APPENDIX 1

MENU FLOWCHARTS .................................................................. A-1

APPENDIX 2

PARTS LIST .................................................................................. A-3

APPENDIX 3

TROUBLESHOOTING .................................................................. A-5

APPENDIX 4

CALIBRATION .............................................................................. A-7

Preparation for all Input Calibrations ................................................. A-8

Thermocouple Cold Junction Calibration ........................................... A-9

Analog Milliamp Input Calibration ...................................................... A-9

Milliamp Output Calibration ............................................................ A-10

Reset Menu Data .......................................................................... A-11

Hardware Scan ............................................................................. A-12

Slidewire Test ............................................................................... A-12

Quick Calibration Procedure .......................................................... A-12

APPENDIX 5

SPECIFICATIONS ........................................................................ A-13

APPENDIX 6

GLOSSARY ................................................................................. A-17

APPENDIX 7

ISOLATION BLOCK DIAGRAM ................................................... A-23

Table of Contents

535 User's Manual Table of Contents iii

iv

Table of Contents

List of Figures

FIGURE DESCRIPTION PAGE

Figure 2.1 ....... Operator Interface ............................................................... 5

Figure 2.2 ....... Before and After Acknowledging an Alarm ............................ 8

Figure 3.1 ....... Instrument Panel & Cutout Dimensions ............................... 11

Figure 3.2 ....... Attaching mounting collar ................................................... 11

Figure 3.3 ....... All 535 Terminal Assignments ............................................ 12

Figure 3.4 ....... AC Power Input Terminals ................................................. 13

Figure 3.5 ....... Process Variable Terminals ............................................... 13

Figure 3.6 ....... PV1 and PV2 Wiring for Milliamp, RTD and Voltage Inputs ... 14

Figure 3.7 ....... PV1 and PV2 Wiring for Milliamp Inputs with Internal and

External Power Supply ...................................................... 15

Figure 3.8 ....... Digital input Wiring with a Switch or Relay ............................ 16

Figure 3.9 ....... Digital Input Wiring with an Open Collector .......................... 16

Figure 3.10 ..... Remote Setpoint Terminals ................................................ 16

Figure 3.11 ..... Mechanical Relay Output Wiring ......................................... 17

Figure 3.12 ..... SSR Relay Output Wiring ................................................... 17

Figure 3.13 ..... DC Logic Output Wiring ..................................................... 18

Figure 3.14 ..... Milliamp Output Wiring ....................................................... 18

Figure 3.15 ..... Position Proportioning Output Wiring .................................. 18

Figure 3.16 ..... Serial Communications Terminals ...................................... 19

Figure 3.17 ..... 535 Wiring with Limit Control .............................................. 20

Figure 4.1 ....... Location of Printed Circuit Boards for Hardware

Configuration .................................................................... 21

Figure 4.2 ....... The Microcontroller Circuit Board, the Option Board, and the

Power Supply Board .......................................................... 22

Figure 4.3 ....... Representation of Module .................................................. 25

Figure 4.4 ....... Install Communications Module onto

Microcontroller Board ........................................................ 26

Figure 5.1 ....... Menu Flowchart for Set Up ................................................. 27

Figure 5.2 ....... Independent vs. Dependent Parameters ............................. 28

Figure 5.3 ....... Configuration Flowchart ..................................................... 28

Figure 6.1 ....... Access the Tuning Menu Block .......................................... 63

Figure 7.1 ....... Alarm Examples ................................................................ 75

Figure 7.2 ....... Duplex with reverse and direct acting outputs ...................... 77

Figure 7.3 ....... Duplex with direct and reverse acting outputs ...................... 77

Figure 7.4 ....... Duplex with two reverse acting outputs ............................... 78

Figure 7.5 ....... Duplex with a gap between outputs ..................................... 78

Figure 7.6 ....... Duplex with overlapping outputs and output limits ................ 79

Figure 7.7 ....... Duplex with various relative gain settings ............................ 79

Figure 7.8 ....... Duplex with one ON/OFF output ......................................... 80

Figure 7.9 ....... Duplex with two ON/OFF outputs ....................................... 80

Figure 7.10 ..... Staged Outputs Example ................................................... 83

Figure 7.11 ..... Combinations of Closed Digital Inputs for Each Setpoint (based on BCD logic) .................................................................... 84

Figure 7.12 ..... Pretune TYPE 1, 2 and 3 with Adaptive Tune ....................... 90

Figure 7.13 ..... Noise Band Calculation Example ........................................ 92

Table of Contents 535 User's Manual

FIGURE DESCRIPTION PAGE

Figure 7.14 ..... Noise Band Values for Temperature Inputs ......................... 93

Figure 7.15 ..... Deadtime and Time Constant ............................................. 93

Figure 7.16 ..... Square Root Linearization Formula .................................... 95

Figure 7.17 ..... 15-point Linearization Curve ............................................... 96

Figure 7.18 ..... Load Line Example ............................................................ 97

Figure 7.19 ..... Heat Exchanger Control Loop for Steam Supply ................ 100

Figure 7.20 ..... Cascade Control of Product Temperature ......................... 101

Figure 7.21 ..... Ratio Control in Mixing Application .................................... 103

Figure A4.1 ..... 535 Rear Terminals for Calibration ........................................ 7

Figure A4.2 ..... Flowchart Calibration Menus ................................................ 7

Figure A4.3 ..... Jumper Locations on the Microcontroller Circuit Board ........... 8

Figure A4.4 ..... Input Calibration Wiring ........................................................ 8

Figure A4.5 ..... Thermocouple/Cold Junction Calibration Wiring .................... 9

Figure A4.6 ..... Analog mA Input Calibration Wiring ..................................... 10

Figure A4.7 ..... Analog mA Input Jumper Positions ..................................... 10

Figure A4.8 ..... Milliamp Output Calibration Wiring ...................................... 11

Figure A4.9 ..... Output Module Menu Cycle ................................................ 11

Figure A4.10 ... Slidewire Test Wiring ......................................................... 12

Table of Contents

535 User's Manual Table of Contents v

Table of Contents vi Table of Contents 535 User's Manual

Introduction

CHAPTER 1

INTRODUCTION

From its surge-resistant power supply to its rugged construction, the 535 process controller is designed to ensure the integrity of your process with maximum reliability — hour after hour, day after day. The isolated inputs and outputs guard against the dangers of electrical interference, the front face meets

NEMA 4X standards for watertight operation and exposure to corrosive environments, and the solid metal housing and sturdy rubber keys enhance durability and ESD protection.

The 535 has been engineered to be the industry’s most user–friendly process controller. With three digital display areas — two offering up to 9 characters of true alphanumerics — the 535 effectively eliminates the cryptic messages that could confuse even the most experienced operator. The bright, crisp display is vacuum fluorescent, and offers much better readability than any other display technology. Additional operator–friendly features include: custom programmable alarm messages, illuminated keys, and an easy–to–use menu system.

The 535 is the most accurate instrument in its class. With a sampling rate of ten times per second, it is ideal for demanding pressure and flow applications.

The 535 also offers a universal process input and modular, field interchangeable outputs that allow more flexibility than ever before. The RS-485 serial communications interface allows the controller to utilize sophisticated software routines and high speed hardware to provide exceptionally fast and accurate transmission of data. The 535 also offers sophisticated control algorithms, including Moore Industries’ exclusive Adaptive Tune which constantly analyzes your process and makes modifications to the tuning parameters to ensure you’re always under control.

Thank you for selecting the 535

Process Controller — the most sophisticated instrument in its class.

It will provide you with years of reliable, trouble-free performance.

Specifications and information subject to change without notice.

535 User’s Manual Chapter 1 1

2

Introduction

535 MODES

There are three operating modes for the 535 controller:

OPERATION, the default mode of the controller. When the 535 is operating, you can change setpoints, select manual control and change output level, acknowledge alarms and monitor conditions.

SET UP, also referred to as configuration. Here you set up the basic functions of the instrument such as input and output assignments, alarm types and special functions.

TUNING, where you configure control function parameters for Proportional,

Integral and Derivation (PID). Use periodically to optimize the control performance of the instrument.

ORDER CODE, PACKAGING INFORMATION

Compare the product number to the ordering code on page 3 to determine the outputs and options installed on the 535. The product number is printed on the label on the top of the controller case.

Included with this 535 are:

• a 535 User’s Manual

• mounting hardware

• 1 sheet of Engineering unit adhesive labels

WHERE TO GO NEXT

• To become more familiar with the 535 interface, continue to Chapter 2.

• For important hardware installation guidelines, see Chapters 3 and 4.

• For a detailed description of all the software menus and parameters of the

535, follow through Chapters 5 and 6. Appendix 1 can be used as a basic guideline to these parameters.

TEXT FORMATTING IN THIS MANUAL

Feature

KEYS

Format

SET PT or

DISPLAY

SET PT DISPLAY

ICONS

MENUS

PARAMETERS

PARAMETER VALUES

DISPLAY MESSAGES

OUT, ALM

CONFIG., TUNING,

CYCLE TM:1, MIN.OUT2

OFF, SETPOINT, LAST OUT.

TOO HOT, OUT%,

Chapter 1 535 User’s Manual

Introduction

535 – 0 0

Output 1: Control

None

Mechanical Relay (5 amp)

Analog (milliamp)

Solid State Relay (triac) (1 amp)

DC Logic (SSR drive)

Output 2: Control, Alarm, or Retransmission

None

Mechanical Relay (5 amp)

Analog (milliamp)

Solid State Relay (triac) (1 amp)

DC Logic (SSR drive)

Order

Code

0

1

2

3

4

0

1

2

3

4

Output 3: Control, Alarm, Retransmission, or Loop Power

None 0

Mechanical Relay (5 amp) 1

Analog (milliamp)

Solid State Relay (triac) (1 amp)

DC Logic (SSR drive)

Loop Power

2

3

4

5

Output 4: Alarm, Retransmission, or Loop Power

None

Mechanical Relay (0.5 amp, 24 V)

Analog (milliamp)

Solid State Relay (triac) (0.5 amp, 24 V)

DC Logic (SSR drive)

Loop Power

0

1

2

3

4

5

Options

Enter “0” if not desired

Slidewire Feedback for Position

Proportioning Output

24 VAC/24 VDC Operation

Slidewire and 24 VAC/24 VDC

Remote Setpoint

Profile Controller Option

Remote Setpoint and Profile

Set of Five Digital Inputs

Certification

Five Digital Inputs and Certification

Serial Communications

Enter “0” if not desired

RS-485 Serial Communications S

B

C

E

A

F

G

D

H

J

Note 1 : Capability for position proportioning output is specifed by ordering 535-11xxAxxx00, 535-33xxAxxx00, or 535-44xxAxxx00. Note 2 : Capability for velocity proportioning output is specifed by ordering 535-11xxxxxx00, 535-33xxxxxx00, or 535-44xxxxxx00. Note 3: Up to two outputs may be used for alarms. Note 4: All outputs are interchangeable modules. Note 5: The mechanical relay and solid state relay modules are derated to 0.5 amp at 24 Vac when used as the fourth output.

535 User’s Manual Chapter 1 3

Introduction

4 Chapter 1 535 User’s Manual

Operation

CHAPTER 2

BASIC INTERFACE

Icons

OUT

1 2

ALM

1 2

535

Displays:

1st

2nd

3rd

Location for identification label

Figure 2.1

Operator Interface

MANUAL DISPLAY SET PT

ACK MENU FAST

Keys

DISPLAYS

The display strategy of the 535 Process Controller is the same for all control modes.

1st Display (five 7-segment digits)

• For the process variable value.

2nd Display (nine 14-segment digits)

• For the setpoint, deviation, output level or valve position (if available)

• In TUNING or SET UP mode, for the parameter name.

• Upon power up, indicates the current setpoint.

3rd Display (nine 14-segment digits)

• For alarm messages, loop name, errors, etc.

• In TUNING or SET UP mode, the value or choice of parameter shown in the 2nd display.

ICONS (LIT)

OUT Indicates either 1) relay output is energized; or 2) analog output is greater than 0%.

OUT

1

ALM1 Indicates the respective alarm (one) is active.

ALM2 Indicates the respective alarm (two) is active.

ALM

1

OUT

2

ALM

2

OUT

1 2

ALM

1 2

535 User's Manual Chapter 2, Controller Operation 5

6

Operation

FAST

KEYS

FAST: Has no independent function. Press to modify the function of another key (see below).

MANUAL

MANUAL : Press to toggle between manual and automatic control.

When lit, indicates the unit is under manual control.

SET PT

SET PT : Press to select the active SP.

When lit, indicates that a setpoint other than the primary (e.g., RSP, SP2) is active.

DISPLAY

DISPLAY : Press to toggle through values in the 2nd display for setpoint, ramping setpoint, deviation, PV1, PV2, output and valve position (each, if available).

In Tuning or Set Up mode, press to return controller to Operation mode (display will show current setpoint).

FAST

FAST

+

+

ACK

MENU

FAST + MENU

▲ : Press to increase the value or selection of displayed parameter.

FAST+ ▲ : Press to scroll through values at a faster rate.

▼ : Press to decrease the value or selection of displayed parameter.

FAST+ ▼ : Press to scroll through values at a faster rate.

ACK : Press to acknowledge (an) alarm(s).

When lit, indicates there is an acknowledgeable alarm.

MENU : In Operation Mode, press to access the Tuning Menu.

In Set Up or Tuning mode, press to advance through a menu’s parameters.

(Use FAST+MENU to advance to the next menu.)

When lit, indicates the controller is in Set Up mode.

FAST+MENU : Press to access the Set Up menus.

In Set Up mode, press to advance through menus. (Use MENU by itself to access the parameters of a particular menu.)

Chapter 2, Controller Operation 535 User's Manual

Operation

BASIC OPERATING PROCEDURES

Use the following as a quick guide to key operating functions of the 535.

To select /change a setpoint

1. Use DISPLAY key to toggle display to SetPoint.

2. Use SET PT key to toggle to active setpoint.

Before the newly selected setpoint is made active, there is a two-second delay to prevent any disruptive bumps. If the setpoint displayed is ramping, RAMPING will show the 3rd display.

3. To change value, press ▲ or ▼ .

To change from auto to manual control (bumpless transfer)

1. When in automatic control, press the MANUAL key at any time, except while in the TUNING mode.

2. The MANUAL key will light in red, and the 2nd display will immediately change to indicate current output level.

To change from manual to auto

1. When in manual control, press MANUAL at any time except while in the

TUNING or SET UP mode.

2. The 2nd display will not change, and the MANUAL key will no longer be lit once control changes.

To change manual output values

1. Make sure the controller is under manual control.

2. Use the DISPLAY key to toggle 2nd display to output level.

3. Use the ▲ or ▼ key to change the value.

To override security

If a locked operation is attempted, SECURITY appears in the 2nd display for two seconds).

1. Use the ▲ and ▼ keys to quickly enter the security code, which will show in the 3rd display. The starting value is 0.

Note: Two seconds of key inactivity will clear the display.

2. If the code is correct, CORRECT appears in the 3rd display. The display will clear after two seconds, allowing full access.

4. If code is incorrect, INCORRECT appears in the 3rd display. INCORRECT will disappear after two seconds, and a new security code can then be entered.

5. The controller will revert back to full security lock after one minute of key inactivity.

To display control output value

1. Toggle DISPLAY key until the 2nd display shows OUT followed by the output percentage. This value is the PID output.

• In duplex applications, this value does not directly refer to the output signal (refer to the Chapter 7 section on Duplex Control for details.)

• For on/off outputs, the output value shown is either ON or OFF.

• For duplex applications with two on/off outputs, the OUT tag is not shown. In this case, the status of both outputs is shown in the following manner: 1:ON 2:OFF (1 and 2 are the respective outputs).

NOTE:

See the glossary in Appendix 6 for explanation of ramping and target setpoint. Also refer to the applications in Chapter 7.

535 User's Manual Chapter 2, Controller Operation 7

Operation

To display the active PID set

1. Press MENU to reach Tuning Mode.

2. In TUNING Mode, press MENU to reach the correct Menu parameter.

3. The active PID set will have an asterisk (*) on both sides of the value.

NOTE:

All alarms are software alarms unless tied to an output relay in the SET UP mode. See Chapters 5 and 7 for details on alarms.

ALARM OPERATION

Alarms may be used in systems to provide warnings of unsafe conditions. All

535 operators must know how the alarms are configured, the consequences of acknowledging an alarm and how to react to alarm conditions.

Alarm Indication

• lit icons ALM 1 and/or ALM 2

• lit ACK key

• displayed alarm message

Acknowledgable alarms meet the first two of these conditions.

Non-acknowledgable alarms only meet the first condition (only icon is lit).

BEFORE

535

AFTER

535

OUT

1

ALM

1

OUT

1

Figure 2.2

Before and After Acknowledging an Alarm

MANUAL DISPLAY SET PT

ACK MENU FAST

MANUAL DISPLAY SET PT

ACK MENU FAST

NOTE:

Powering down the 535 acknowledges/clears all latched alarms. When powering up, all alarms will be reinitialized.

To acknowledge an alarm(s):

1. To acknowledge Alarm 1, press ACK once.

2. To acknowledge Alarm 2, press ACK twice.

3. If both alarms are activated, press ACK once to acknowledge Alarm 1, then again to acknowledge Alarm 2.

4. The message and alarm icon dissappear.

Latching Alarms

If an alarm is set up to be latching (for details, see Chapter 5) then, in general, it must be acknowledged in order to clear the alarm and release the relay (if applicable). A non-latching alarm will clear itself as soon as the process leaves the alarm condition.

8 Chapter 2, Controller Operation 535 User's Manual

Limit Sequence

An alarm can be configured to be both latching and non-acknowledgeable. In this case, the alarm is acknowledgeable only after the process has left the alarm condition. This is similar to the function of a limit controller.

More on Alarms

For more details on how to set up alarms and for examples of various ways alarms can be set up, refer to the section on Alarms in Chapter 7.

Operation

535 User's Manual Chapter 2, Controller Operation 9

Operation

10 Chapter 2, Controller Operation 535 User's Manual

Install / Wire

CHAPTER 3

INSTALLATION

MOUNTING THE CONTROLLER

The 535 front face is NEMA 4X rated (waterproof). To obtain a waterproof seal between the controller and the panel, follow these directions:

1. The 535 fits in a standard 1/4 DIN cutout. Mount the 535 in any panel with a thickness from .06 in. to .275 in. (1.5 mm to 7.0 mm).

2. Figure 3.1 shows the controller and panel dimensions. The panel cutout must be precise, and the edges free from burrs and waves.

Figure 3.1

Instrument Panel & Cutout

Dimensions

7.180 (182.37) OVERALL LENGTH

PANEL

1.180 (29.97)

3.622 (92.00) MIN.

3.653 (92.80) MAX.

OUT

1 2

ALM

1 2

3.770 (95.76)

535

MANUAL DISPLAY SET PT

ACK MENU FAST s t

FRONT

BEZEL

GASKET

6.000 (152.40)

SIDE

3. Place bezel gasket around the controller case (starting at the back of controller). Then, slide the gasket against the back of the bezel.

4. With the bezel gasket in place, insert the 535 into the panel cutout from the front of the panel.

5. Slide the mounting collar over the back of the case, as shown in Figure 3.2.

The collar clip edges will lock with matching edges on the controller case.

Mounting Clip

CUTOUT

Figure 3.2

Attaching mounting collar

Front Panel

Mounting Collar

535 User's Manual

Collar Screws (1 of 4)

Chapter 3 11

Install / Wire

CAUTION!

The enclosure into which the 535

Controller is mounted must be grounded according to CSA standard C22.2 No. 0.4.

WARNING!

Avoid electrical shock. Do not connect AC power wiring at the source distribution panel until all wiring connections are complete.

6. Insert the four mounting collar screws from the rear of the collar. Gradually tighten the screws (using a Phillips #2 screwdriver) to secure the controller against the panel.

7. If there is difficulty with any of the mounting requirements, apply a bead of caulk or silicone sealant behind the panel around the perimeter of the case.

WIRING

Powers 535 controllers are thoroughly tested, calibrated and “burned in” at the factory, so the controller is ready to install. Before beginning, read this chapter thoroughly and take great care in planning a system. A properly designed system can help prevent problems such as electrical noise disturbances and dangerous extreme conditions.

1. For improved electrical noise immunity, install the 535 as far away as possible from motors, relays and other similar noise generators.

2. Do not run low power (sensor input) lines in the same bundle as AC power lines. Grouping these lines in the same bundle can create electrical noise interference.

3. All wiring and fusing should conform to the National Electric Code and to any locally applicable codes.

4. An excellent resource about good wiring practices is the IEEE Standard

No. 518-1982 and is available from IEEE, Inc., 345 East 47th Street, New

York, NY 10017, (212) 705-7900.

Diagrams on the next three pages serve as guides for wiring different types of process inputs. The shaded areas on the diagrams show which rear terminals are used for that type of wiring.

Figure 3.3

All 535 Terminal Assignments

Actual 535 device only has top and bottom numbers of each column of terminals marked.

WARNING!

ELECTRIC SHOCK HAZARD!

Terminals 1 and 2 carry live power.

DO NOT touch these terminals when power is on.

WARNING!

Terminal 9 must be grounded to avoid potential shock hazard, and improved noise immunity to your system.

12 Chapter 3

L1 1

L2/N

2

OUT 1– 3

OUT 1+ 4

OUT 2–

5

OUT 2+

6

OUT 3– 7

OUT 3+ 8

TOP (as viewed from back of controller)

9

10

11

EARTH

GND

S/W 1

S/W 2

DIN

GND

17

DIN 1

18

DIN 2 19

12 S/W 3

13 RSP–

DIN 3

DIN 4

20

21

14 RSP+

DIN 5

22

15 OUT 4–

COLD

JUNC–

23

16 OUT 4+

COLD

JUNC+

24

25 not used

26

COMM–

27 COMM+

28

PV2–

29 PV2+

30

RTD 3RD

31 PV1–

32 PV1+

535 User's Manual

Install / Wire

AC Power Input

Terminals 1 and 2 are for power. Terminal 9 is the earth ground.

Use a 0.5 Amp, 250 V, fast-acting fuse in line with your AC power connection.

TOP

NOTE:

When wiring to a 240 Volt system, an additional 0.5 Amp, 250V, fast-acting fuse is required on L2.

POWER

1

2

9 EARTH/

GROUND

10

17

18

25

26

3 11 19 27

Figure 3.4

AC Power Input Terminals

4

5

6

7

12

13

14

15

20

21

22

23

28

29

30

31

CAUTION!

Do not run low power (sensor input) lines in the same bundle as AC power lines. Grouping these lines in the same bundle can create electrical noise interference.

8 16 24 32

Screws must be tight to ensure good electrical connection

Process Variable Input

The 535 accommodates the following types of process variable inputs:

• Thermocouple Input

• RTD Input

• Voltage Input

• Milliamp Input with External Power Supply

• Milliamp Input with Internal Power Supply

Each type of input can be wired for PV1 (terminals 31 and 32) or for PV2 (terminals 28 and 29).

Figure 3.5

Process Variable Terminals 1

7

8

5

6

2

3

4

9

10

11

12

13

14

15

16

17

21

22

23

24

18

19

20

25

26

27

28

PV 2–

29 PV 2+

30 RTD 3rd

31

PV 1–

32

PV 1+

535 User's Manual Chapter 3 13

Install / Wire

NOTE:

Typically, in the U.S., negative leads are red.

Figure 3.6

PV1 and PV2 Wiring for Milliamp,

RTD and Voltage Inputs.

For PV1

THERMOCOUPLE INPUT

30

31

32

+

2-WIRE RTD

Jumper wire

30

31

32

RTD

3-WIRE RTD

30

31

32

Third leg of RTD

Same color

4-WIRE RTD

30

31

32

Third leg of RTD

Same color

Same color

DO NOTconnect 4th leg

VOLTAGE INPUT

31 –

32

+

+ Transmitter

14 Chapter 3

For PV2

THERMOCOUPLE INPUT

28

+

29

2-WIRE RTD

28

29

30

RTD

Jumper wire

3-WIRE RTD

Same color

28

29

30

RTD

Third leg of RTD

4-WIRE RTD

Same color

28

29

30

Third leg of RTD

Do NOT connect

4th leg

VOLTAGE INPUT

28 –

29

+

+ Transmitter

535 User's Manual

For PV1

MILLIAMP INPUT

2-wire transmitter with separate power supply

31

32

– External +

Power Supply

– Transmitter +

MILLIAMP INPUT

2-wire transmitter with loop power supply

15

16

+

2-wire

31 –

32

+

MILLIAMP INPUT

4-wire transmitter with loop power supply

15

16

+

Input power for transmitter

+

+

4-20 mA output from transmitter

31 –

32 +

Install / Wire

For PV2

MILLIAMP INPUT

2-wire transmitter with separate power supply

28

29

– External +

Power Supply

– Transmitter +

MILLIAMP INPUT

2-wire transmitter with loop power supply

15

16

+

2-wire

transmitter

+

28 –

29

+

MILLIAMP INPUT

4-wire transmitter with loop power supply

15

16

+

Input power for transmitter

+

+

4-20 mA output from transmitter

28 –

29 +

Figure 3.7

PV1 and PV2 Wiring for Milliamp

Inputs with Internal and External

Power Supply

NOTE:

To use loop power, there must be a loop power module installed in the

3rd or 4th output socket. Compare the controller product number with the order code in Chapter 1 to determine if the 535 has a loop power module installed. To install a loop power module, refer to

Chapter 4.

535 User's Manual Chapter 3 15

Install / Wire

Figure 3.8

Digital input Wiring with a Switch or

Relay

Digital Input(s)

Digital inputs can be activated in three ways: a switch (signal type), closure of a relay, or an open collector transistor. Digital inputs are only functional when that option is installed (via hardware) The controller detects the hardware and supplies the appropriate software menu.

1. Digital Inputs with a switch or relay

Wire the switch/relay between terminal 17 and the specific digital input terminal (Figure 3.8).

5

6

3

4

1

2

7

8

S

9

10

11

12

13

14

15

16

DIN

GND

DIN 1

DIN 2

DIN 3

DIN 4

DIN 5 b i h

17

18

19

20

21

22

23

24 l i l i

25

26

27

28

29

30

31

32

Figure 3.9

Digital Input Wiring with an Open

Collector

DIN

GND

DIN 1

DIN 2

DIN 3

DIN 4

DIN 5

17

18

19

20

21

22

25

26

27

28

29

30

DIN

GND

DIN 1

DIN 2

DIN 3

DIN 4

DIN 5

17

18

19

20

21

22

25

26

27

28

29

30

DIN

GND

DIN 1

DIN 2

DIN 3

DIN 4

DIN 5

17

18

19

20

21

22

25

26

27

28

29

30

DIN

GND

DIN 1

DIN 2

DIN 3

DIN 4

DIN 5

17

18

19

20

21

22

25

26

27

28

29

30

2. Digital Inputs with an Open Collector

An open collector is also called a transistor. Wire the transistor between terminal 17 and the specified digital input terminal (Figure 3.9)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

DIN

GND

DIN 1

DIN 2

DIN 3

DIN 4

DIN 5

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

Screws must be tight to ensure electrical connection

DIN

GND

DIN 1

DIN 2

DIN 3

DIN 4

DIN 5

17

18

19

20

21

22

25

26

27

28

29

30

DIN

GND

DIN 1

DIN 2

DIN 3

DIN 4

DIN 5

17

18

19

20

21

22

25

26

27

28

29

30

DIN

GND

DIN 1

DIN 2

DIN 3

DIN 4

DIN 5

17

18

19

20

21

22

25

26

27

28

29

30

DIN

GND

DIN 1

DIN 2

DIN 3

DIN 4

DIN 5

17

18

19

20

21

22

25

26

27

28

29

30

Remote Setpoint Option

Use terminals 13 and 14 to connect the remote setpoint signal (see Figure 3.10).

Figure 3.10

Remote Setpoint Terminals

Source

+

+

13

14

16 Chapter 3 535 User's Manual

Install / Wire

OUTPUT MODULES

The 535 output modules are used for control, alarms and retransmission. The four output module types are: Mechanical Relay, Solid State Relay (Triac),

DC Logic (SSR Drive) and Analog (Milliamp)

To install these modules, plug them into any of the four output sockets on the printed circuit boards (refer to Chapter 4). The wiring is the same whether the modules are used for control, alarm or retransmission.

The diagrams on the next two pages are a guide for properly connecting the various outputs. To find out which module(s) have been installed in the controller, compare the product number on the controller label with the section

Order Code in Chapter 1. This section also includes a diagram of how to wire a position proportioning output, a special application using two mechanical or two solid state relays.

1. Mechanical Relay Output

• Output 1 is always Control 1.

• Outputs 1, 2 and 3 are jumper selectable for normally open and normally closed on the power supply circuit board.

• Output 4 is always configured for normally open and has reduced voltage and current ratings (see Specifications).

NOTE:

Refer to Figure 4.2 for location of the corresponding jumpers.

Second input jumper connector on the option board must be in either mA

(milliamp) or V (voltage) position.

3

4

Line Power

Load

Terminals used with Output

Module 1

Terminals used with Output

Module 2

Terminals used with Output

Module 3

Terminals used with Output

Module 4

3

4

5

6

7

8

15

16

Figure 3.11

Mechanical Relay Output wiring

Recommend use of both MOV and snubber

3

4

2. Solid State Relay (Triac) Output

• Output 1 is always Control 1.

• Respective jumper J1, J2 or J3 must be set to normally open for SSR

(Triac) output.

• Output 4 is always configured for normally open and has reduced voltage and current ratings (see Specifications).

Line Power

-

+

-

Load

+

Terminals used with Output

Module 1

Terminals used with Output

Module 2

Terminals used with Output

Module 3

Terminals used with Output

Module 4

3

4

5

6

7

8

15

16

Figure 3.12

SSR Relay Output Wiring

Recommend use of both MOV and snubber

535 User's Manual Chapter 3 17

Install / Wire

Figure 3.13

DC Logic Output Wiring

Figure 3.14

Milliamp Output Wiring

Figure 3.15

Position Proportioning Output

Wiring

18

4

3. DC Logic (SSR Drive) Output

• Output 1 is always Control 1.

• Respective jumper J1, J2 or J3 must be set to normally open for DC

Logic output.

• Output 4 is always configured for normally open.

Terminals used with Output

Module 1

Terminals used with Output

Module 2

Terminals used with Output

Module 3

Terminals used with Output

Module 4

3 _

+

_

+

Load

3

4

5

6

7

8

15

16

3

4

4. Milliamp Output

• Output 1 is always Control 1.

• Respective jumper J1, J2 or J3 must be set to normally open for

Milliamp output.

_

+

Load

Terminals used with Output

Module 1

Terminals used with Output

Module 2

Terminals used with Output

Module 3

Terminals used with Output

Module 4

3

4

5

6

7

8

15

16

5. Position Proportioning Output

(with or without Slidewire Feedback)

Electric Motor Actuator

CCW

Winding

CW

Winding

CCW

Slidewire Wiper

0–1050 Ohm

CW

POSITION

PROPORTIONING

OUTPUT

10

11

12

Actuator

Supply

Current

3

COM

4 5

CCW COM

6

CW

Chapter 3 535 User's Manual

Install / Wire

• Mechanical relay or solid state relay modules must be installed in output sockets 1 and 2.

• When using velocity control (no slidewire feedback), there are no connections at terminals 10, 11 and 12.

• Use of the slidewire feedback is optional

Serial Communications

A twisted shielded pair of wires should be used to interconnect the host and field units. Belden #9414 foil shield or #8441 braid shield 22-gauge wire are acceptable for most applications. The foil shielded wire has superior noise rejection characteristics. The braid shielded wire has more flexibility. The maximum recommended length of the RS 485 line is 4000 feet. Termination resistors are required at the host and the last device on the line. Some RS 485 cards/converters already have a terminating resistor. We recommend using our RS-232/RS-485 converter. The communication protocol is asynchronous

.

bidirectional half-duplex, hence the leads are labelled Comm + and Comm –

PC or other host

Twisted, shielded

535

Terminals

Comm – 26

Figure 3.16

Serial Communications Terminals

To "Comm –" terminal of next Moore Industries device

RS-485 port Comm +

27

To "Comm +" terminal of next Moore Industries device

Use a 60 to 100 Ohm terminating resistor connected to the two data terminals of the final device on the line.

CAUTION

The shield needs to be connected continuously but only tied to one ground at the host.

Failure to follow these proper wiring practices could result in transmission errors and other communications problems.

535 User's Manual Chapter 3 19

Install / Wire

Limit Control

Temperature applications where abnormally high or low temperature conditions pose potential hazards for damage to equipment, product and operator. For such applications, we recommend the use of an FM-approved temperature

limit device in conjunction with the process controller. This wiring example illustrates a typical application using the 535 Process Controller with a 353 Limit

Controller.

Figure 3.17

535 Wiring with Limit Control

EARTH GROUND

535 PROCESS

CONTROLLER

CONTROLLER

AC POWER

0.5 AMP, 250 V,

FAST ACTING

FUSE

L1

L 2

L1

L2

LOAD

POWER

FAST ACTING

FUSE

MERCURY

RELAY

FOR CONTROL

1

4

5

2

3

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

T.C.

INPUT

HIGH LIMIT

MECHANICAL

CONTACTOR

COIL

HEAT

LOAD

L2

RELAY/

CONTACTOR

COIL POWER

PROCESS SENSOR

LIMIT SENSOR

+

T/C INPUT

-

1

2

3

20

19

18

FAST

ACTING

FUSE

L1

4 17 L 2

INDICATOR ON

WHEN LIMIT TRIPS 5

6

16

N.O.

15

OPTIONAL

MOMENTARY SWITCH

MANUAL RESET

FOR LIMIT CONTROL

7

8

9

14

13

12

10 11

353 LIMIT CONTROLLER

LIMIT CONTROLLER

AC POWER

L2 L1

FUSE

20 Chapter 3 535 User's Manual

Hardware Set Up

CHAPTER 4

HARDWARE SET UP

Hardware configuration determines the available outputs as well as the type of input signal. The 535 controller comes factory set with the following:

• All specified modules and options installed (for details, refer to the Order

Code in Chapter 1).

• Process variable and remote setpoint set to accept a milliamp input.

• Relay outputs set to normally open.

Altering the factory configuration of the 535, requires accessing the circuit boards, and locating the jumpers and output modules (see Figure 4.1).

1. With the power off, loosen the four front screws, and remove them.

2. Slide chassis out of the case by pulling firmly on the bezel.

NOTE: Hardware configuration of the controller is available at the factory;

Consult a Moore Industries application engineer for details.

FRONT FACE

MICROCONTROLLER

BOARD

POWER SUPPLY

BOARD

Figure 4.1

Location of Printed Circuit Boards for

Hardware Configuration

OPTION BOARD

A detailed view of the circuit boards appears in Figure 4.2.

After configuring the hardware, or if no changes are necessary, continue setting up the process as needed.

HARDWARE INPUT TYPES

The Process Variable

The 535 accepts several different types of process variable signals. Set a jumper location to specify the type of input signal. Set the signal range in the software

(see Chapter 5 for software menus, or Chapter 7 for applications).

The jumpers for the process variable are located on the Microcontroller Circuit

Board (see Figure 4.2). The factory default is Milliamp. Locations are marked as follows:

V Voltage

Milliamp MA

TC ▼

TC ▲

Thermocouple with downscale burnout

Thermocouple with upscale burnout

RTD RTD

NOTE: Thermocouple downscale and upscale burnout offers a choice in which direction the controller would react in the event of thermocouple failure. For example, in heat applications, typically, it is desirable to fail upscale (TC s) so that the system does not apply more heat.

535 User's Manual Chapter 4

21

Hardware Set Up

NOTE:

Changing the jumpers means moving the jumper connector. The jumper connector slips over the pins, straddling two rows of pins. The printed circuit boards are labeled next to the jumpers.

The Remote Setpoint

Figure 4.2 shows the location of the remote setpoint jumper. The factory de-

fault is milliamp. Choose from the following settings:

V Remote setpoint with voltage signal (jumper removed)

MA Remote setpoint with milliamp signal (jumper installed)

Mechanical Relays

There are three output module sockets on the Power Supply Circuit Board, and one output module on the Option Board (see Figure 4.2). The mechanical relay on the Power Supply Board may be configured for either normally open (NO) or normally closed (NC). A jumper located next to each socket determines this configuration. All relay outputs are factory set to NO (normally open).

EPROM

P1

P2

TB2

Figure 4.2

(from the top) The Microcontroller

Circuit Board, the Option Board, and the Power Supply Board

BATTERY

5-Pin Connector

Female 22-Pin Connector Female 22-Pin Connector

Remote Setpoint Jumper

Male 22-Pin

Connector

Output 4

4

Male 22-Pin

Connector

Male 34-Pin

Connector

V

MA

TC t

TC s

RTD

TB1

22

Chapter 4

5-Pin Connector

Female 34-Pin Connector

Module

Retention

Plate over Outputs 1,2,3

3

2

1

Jumpers

NO and NC

535 User's Manual

Hardware Set Up

ACCESSING AND CHANGING JUMPERS

Follow these instructions to change jumpers for the Process Variable, Remote

Setpoint and Digital Inputs:

Equipment needed: Needle-nose pliers (optional)

Phillips screwdriver (#2)

Wrist grounding strap

1. With power off, loosen two front screws, and remove them.

2. Side the chassis out of the case by pulling firmly on the bezel.

3. Use Figure 4.2 to locate the jumper connector to change.

4. Using the needle nose pliers (or fingers), pull straight up on the connector and remove it from its pins, as shown in Photo 4. Be careful not to bend the pins.

CAUTION!!

Static discharge can cause damage to equipment. Always use a wrist grounding strap when handling electronics to prevent static discharge.

4. Remove Jumpers

5. Find the new location of the jumper connector (again, refer to Figure 3.2).

Carefully place it over the pins, then press connector straight down. Make sure it is seated firmly on the pins.

6. Make any other jumper changes as needed. To alter output modules, please refer to the next section, starting with Step #3.

7. To reassemble the controller, properly orient the chassis with board opening on top. Align the circuit boards into the grooves on the top and bottom of the case. Press firmly on the front face assembly until the chassis is all the way into the case.

If it is difficult to slide the chassis in all the way, make sure the screws have been removed (they can block proper alignment), and that the chassis is properly oriented.

8. Carefully insert and align screws. Tighten them until the bezel is seated firmly against the gasket. Do not overtighten.

535 User's Manual Chapter 4

23

Hardware Set Up

ADDING AND CHANGING OUTPUT MODULES

The 535 has provisions for four output modules. A controller ordered with output module options already has the modules properly installed. Follow these instructions to add modules, change module type(s) or change module location(s).

Equipment needed: Wrist grounding strap

Phillips screwdriver (#2)

Small flat blade screwdriver

Wire cutters

1. With power off, loosen two front screws, and remove them.

2. Side the chassis out of the case by pulling firmly on the bezel.

3. Use a flat screwdriver to carefully pry apart the clips that hold the front face assembly to the chassis, as in Photo 3. Separate the printed circuit board assembly from the front face assembly. Use care not to break the clips or scratch the circuit boards.

4. As shown in Photo 4, carefully pry apart, using hands or a small flat screwdriver, the smaller Option board and the Power Supply board (the one with

3 modules).

5. To change modules 1, 2 or 3:

Output modules 1, 2, and 3 are firmly held in place by a retention plate and tie wrap. Carefully snip the tie wrap with a wire cutter. To prevent damage to the surface mount components, ALWAYS snip the tie wrap on TOP of the Retention Plate, as shown in Photo 5.

Remove the retention plate.

24

3. Pry Clips 4. Separate Boards 5. Remove Retention Plate

Chapter 4 535 User's Manual

Hardware Set Up

6. To change module 4:

Output Module 4 (on the Option board) is also held in place by a tie wrap.

Snip tie wrap to remove module as shown in Photo 6.

7. Figure 4.3 shows a representation of an output module. Inspect the module(s) to make sure that the pins are straight.

8. To install any module, align its pins with the holes in the circuit board, and carefully insert the module in the socket. Press down on the module until it is firmly seated; refer to Photo 8.

Figure 4.3

Representation of Module

6. Snip Tie Wrap 8. Add/Change Module

9. Replace tie wraps for all the modules (the Retention Plate and Output

Module 4) with new ones before reassembling the controller.

Failure to use the tie wraps may result in loosening of the module and eventual failure. All separately ordered modules should come with a tie wrap.

Extra sets of tie wraps are available by ordering Part #535-665.

10. Rejoin the circuit boards by aligning the pins of their connectors, then squeezing the board(s) together. Make sure that all three printed circuit boards are properly seated against one another; check along side edges for gaps. Make sure the cable assemblies are not pinched.

11. To reattach the board assembly to the front face assembly, align the boards

(with the open area on top) into the slots of the font face assembly. The clips should snap into place.

12. To reassemble the controller, properly orient the chassis with board opening on top. Align the circuit boards into the grooves on the top and bottom of the case. Press firmly on the front face assembly until the chassis is all the way into the case.

If it is difficult to slide the chassis in all the way, make sure the screws have been removed (they can block proper alignment), and that the chassis is properly oriented.

13. Carefully insert and align screws. Tighten them until the bezel is seated firmly against the gasket. Do not overtighten.

NOTE: For greatest accuracy, calibrate all milliamp modules added for retransmission as per the instructions in

Appendix 2.

SPECIAL COMMUNICATIONS MODULE

A special communications module is available for the 535; see order code in

Chapter 1 for details.

535 User's Manual Chapter 4

25

Hardware Set Up

Figure 4.4

Install Communications Module onto Microcontroller Board

Equipment needed: Wrist grounding strap

Phillips screwdriver (#2)

Small flat blade screwdriver

1. Before installing the communications module, set up the hardware wiring for the application. See Chapter 4 for details.

2. With power off, loosen two front screws, and remove them.

3. Slide the chassis out of the case by pulling firmly on the bezel. Do not detach the board assembly form the front face of the controller.

4. Orient the Communications Module as shown, and attach it to Connectors

P1 and P2 as shown in Figure 4.4.

5. To reassemble the controller, properly orient the chassis with board opening on top. Align the circuit boards into the grooves on the top and bottom

Insert module onto connectors

Front of controller

(circuits boards still attached to front face)

EPROM

P1

P2

BATTERY REMOTE SP

CONFIGURATION

TB2

V

MA

TCt

TCs

RTD of the case. Press firmly on the front face assembly until the chassis is all the way into the case.

If it is difficult to slide the chassis in all the way, make sure the screws have been removed (they can block proper alignment), and that the chassis is properly oriented.

6. Carefully insert and align screws. Tighten them until the bezel is seated firmly against the gasket. Do not overtighten.

26

Chapter 4 535 User's Manual

Controller Set Up

CHAPTER 5

SOFTWARE CONFIGURATION

The software configuration menus of the 535 contain user-selected variables that define the action of the controller. Read through this section before making any parameter adjustments to the controller.

Figure 5.1

Menu Flowchart for Set Up

When initially setting up the controller, cycle through all the parameters in each Menu.

Press the MENU+FAST to advance to the next Menu.

Press MENU to advance to the next parameter (this also sets the value for the current parameter.

Use arrow keys to select a value).

Use the arrows keys to enter numerical values, and/or move through the selection group.

This is a Menu.

Its name will show in the 2nd display.

press:

MENU/FAST

CONFIG.

press:

MENU press:

INDICATOR

(D) press MENU/FAST

Go to next Menu Block:

This is a menu Parameter.

The name shows in the 3rd display.

In this manual, independent parameters appear as white text on black, and dependent parameters appear as black text on white.

This is a parameter Value.

These values appear in the 3rd display, replacing the parameter name.

In this manual, parameter graphics indicate the default (factory) setting.

If the default value is dependent on other variables, (D) is shown.

MENUS

In Set Up mode, there are 13 sets of options that control different aspects of 535 operation; in Tuning mode, there is one. Each set of options is called a menu.

When traversing the two modes, the menu names appear in the 2nd display.

CONFIG Mode selection and input/output hardware assignments

PV1 INPUT 1st process variable input options

PV2 INPUT 2nd process variable input options

CUST. LINR. Linearization curve options for PV1 input.

CONTROL Control options

ALARMS Alarm options

REM. SETPT. Controller remote setpoint options

RETRANS.

Retransmission output options

SELF TUNE Self tune algorithm options

SPECIAL Special feature options

SECURITY Security functions

SER.COMM. Serial Communications options (requires comm. board) and

TUNING Tuning parameters configuration (see Chapter 6)

CAUTION!

All software changes occur in real time; always perform set up functions under manual operation.

NOTE: For information about the

Tuning menu/mode, refer to Chapter 6.

For more information about set up parameters and 535 applications, refer to Chapter 7.

535 User's Manual Chapter 5 27

Controller Set Up

TUNE PT.

AUTOMATIC

CONTACT 1

MANUAL

Figure 5.2

Independent vs. Dependent

Parameters

PARAMETERS

Within each menu are parameters for particular control functions. Select values for each parameter depending on the specific application. Use the MENU key to access parameters for a particular menu; the parameter name will replace the menu name in the 2nd display, and the parameter value will show in the 3rd display.

This chapter outlines all the available parameters for the 535. Some parameters are independent of any special configuration, and others are dependent on the individual configuration. This manual displays these two types of parameters differently; refer to Figure 5.2. A special feature of the 535, called Smart

Menus, determines the correct parameters to display for the specific configuration, so not all the listed parameters will appear.

Figure 5.3

Configuration Flowchart

28 or to return to

OPERATION mode

MANUAL

OPERATION

+ for SET UP

mode

for

TUNING mode or for

OPERATION mode

SET UP

CONFIG

PV1 INPUT

PV2 INPUT

CUST. LINR.

CONTROL

ALARMS

REM. SETPT.

RETRANS.

SELF TUNE

SPECIAL

SECURITY

SER. COMM.

TUNING

+ for SET UP mode

+ to toggle through the 12 menu blocks in SET UP mode

Chapter 5 535 User's Manual

Controller Set Up

CONFIGURATION AND OPERATION

Figure 5.3 shows the relationships among the different modes of the 535 and the configuration menus:

SET UP menus can only be accessed from manual control. To transfer the

535 from automatic to manual control, press MANUAL.

• To access the SET UP menus, hold down FAST and press MENU. The

MENU key will illuminate; and CONFIG will appear in the 2nd display.

• To access the parameters for a particular menu, press MENU.

• To select a parameter value, use ▲ and ▼ . Press MENU to advance to the next parameter, or FAST+MENU to advance to the next menu.

• To advance to the next menu, press FAST+MENU.

TUNING mode (and the TUNING menu) can be accessed from either automatic or manual control. To access the tuning menu, press MENU .

• To return controller to manual control, press DISPLAY or SET PT.

A key to these functions (as shown below) appears at the bottom of every page in the menu section of this chapter.

Access Set Up

FAST + MENU

Return to Operation

DISPLAY

Next menu

FAST + MENU

Next parameter

MENU

Next value

▲ ▼

WHERE TO GO NEXT

• For information about all the software menus and parameters, continue reading this chapter. Refer to Appendix D for a quick-reference flowchart of all menus and parameters.

• For information about the installed options on the 535, compare the product label on top of the controller to the order code in Chapter 1.

• To mount the controller and configure the wiring of the 535 for inputs and outputs, see Chapter 3.

• To alter the output module and jumper configuration of the controller, see

Chapter 4.

• For more information about applications for the 535, see Chapter 6.

• For more information about the Tuning function of the 535, see Chapter 7.

Access Tuning

MENU

Return to Operation

DISPLAY

535 User's Manual Chapter 5 29

Controller Set Up

CONFIG.

SOFTWARE MENUS AND PARAMETERS

CONFIG.

CTRL. TYPE

STANDARD

LINE FREQ

60 Hz

PV SOURCE

PV1

NOTE:

PV1 and PV2 can be of different types and different range.

1. CTRL. TYPE

Defines the type of control output(s).

D STANDARD

• POS. PROP.

• STAGED

• DUPLEX

Standard control output, no special algorithms

Position proportioning control output

Staged outputs

Duplex outputs

2. LINE FREQ

Defines the power source frequency.

• 50 HZ

D 60 HZ

3. PV SOURCE

Defines how the PV input is derived from PV1 and PV2.

D PV1

• 1/2:SWITCH

• 1/2:BACKUP

• PV1–PV2

• PV1+PV2

• AVG. PV

• HI SELECT

• LO SELECT

Use PV1

Use PV1 until contact/com selects PV2

Use PV2 if PV1 is broken

Use PV1–PV2

Use PV1+PV2

Use the average of PV1 and PV2

Use PV1 or PV2 (whichever is greater)

Use PV1 or PV2 (whichever is less)

REM. SETPT.

DISABLED

OUTPUT 2

OFF

4. REM. SETPT.

Selects function of the remote setpoint.

D DISABLED

• ENABLED

5. OUTPUT 2

Defines the function of the second output.

• ALM.RLY:ON

• ALM.RLY:OFF

• RETRANS.

• COMM. ONLY

D OFF

Retransmission

Output addressable through communication

Completely deactivates the output

30

Access Set Up

FAST

+

MENU

Return to Operation

DISPLAY

Next menu

FAST

+ MENU

Chapter 5

Next parameter

MENU

Next value

▲ ▼

Access Tuning

MENU

Return to Operation

DISPLAY

535 User's Manual

Controller Set Up

6. OUTPUT 3

Defines the function of the third output.

• ALM.RLY:ON

• ALM.RLY:OFF

• RETRANS.

• COMM. ONLY

Retransmission

Output addressable through communications

D OFF

7.

OUTPUT 4

Completely deactivates the output

Defines the function of the fourth output.

• ALM.RLY:ON

• ALM.RLY:OFF

• RETRANS.

• COMM. ONLY

D OFF

Retransmission

Output addressable through communications

Completely deactivates the output

8. ANLG. RNG.:1

Defines the output signal for the first output.

D 4–20 mA

• 0–20 mA

• 20–4 mA

• 20–0 mA

9. ANLG. RNG.:2

Defines the output signal for the second output.

D 4–20 mA

• 0–20 mA

• 20–4 mA

• 20–0 mA

10. ANLG. RNG.:3

Defines the output signal for the third output.

D 4–20 mA

• 0–20 mA

• 20–4 mA

• 20–0 mA

11. ANLG. RNG.:4

Defines the output signal for the fourth output.

D 4–20 mA

• 0–20 mA

• 20–4 mA

• 20–0 mA

OUTPUT 3

OFF

OUTPUT 4

OFF

ANLG.RNG.:1

4-20 mA

ANLG.RNG.:2

4-20mA

ANLG.RNG.:3

4-20mA

ANLG.RNG.:4

4-20mA

Access Set Up

FAST

+

MENU

Return to Operation

DISPLAY

535 User's Manual

Next menu

FAST

+ MENU

Next parameter

MENU

Next value

▲ ▼

Chapter 5

Access Tuning

MENU

Return to Operation

DISPLAY

31

Controller Set Up

CONTACT 1

MANUAL

CONTACT 2

REM.SETPT.

12. CONTACT 1

Defines the operation of the first digital input.

• SETPT. 1–8

• REM. SETPT.

D MANUAL

• 2ND. SETPT.

• 2ND. PID

• ALARM ACK.

• RST. INHBT.

• D.A./R.A.

• STOP A/T

• LOCK. MAN.

• UP KEY

• DOWN KEY

• DISP KEY

• FAST KEY

• MENU KEY

• COMM. ONLY

• PV2.SWITCH

Assigns the first four digital inputs to select setpoints 1 through 8 via BCD signal

Makes the remote setpoint active

Trips the controller to manual control

Makes the second setpoint active

Makes the second set of PID values active

Acknowledges alarms

Deactivates the reset term

Switches the control action

Suspends the adaptive tune function

Locks controller in manual control

Remote ▲ function

Remote ▼ function

Toggle between SP DEV or OUT%

Activates FAST key

Activates MENU key.

Status readable only through communications

Switches between PV1 and PV2

13. CONTACT 2

Defines the operation of the second digital input.

D REM. SETPT.

• MANUAL

• 2ND. SETPT.

• 2ND. PID

• ALARM ACK.

• RST. INHBT.

• D.A./R.A.

• STOP A/T

• LOCK. MAN.

• UP KEY

• DOWN KEY

• DISP KEY

• FAST KEY

• MENU KEY

• COMM. ONLY

• PV2.SWITCH

Makes the remote setpoint active

Trips the controller to manual control

Makes the second setpoint active

Makes the second set of PID values active

Acknowledges alarms

Deactivates the reset term

Switches the control action

Suspends the adaptive tune function

Locks controller in manual control

Remote ▲ function

Remote ▼ function

Toggle between SP DEV or OUT%

Activates FAST key

Activates MENU key.

Status readable only through communications

Switches between PV1 and PV2

32

Access Set Up

FAST

+

MENU

Return to Operation

DISPLAY

Next menu

FAST

+ MENU

Chapter 5

Next parameter

MENU

Next value

▲ ▼

Access Tuning

MENU

Return to Operation

DISPLAY

535 User's Manual

Controller Set Up

14. CONTACT 3

Defines the operation of the third digital input.

• REM. SETPT.

• MANUAL

D 2ND. SETPT.

• 2ND. PID

• ALARM ACK.

• RST. INHBT.

• D.A./R.A.

• STOP A/T

• LOCK. MAN.

• UP KEY

• DOWN KEY

• DISP KEY

• FAST KEY

• MENU KEY

• COMM. ONLY

• PV2.SWITCH

Makes the remote setpoint active

Trips the controller to manual control

Makes the second setpoint active

Makes the second set of PID values active

Acknowledges alarms

Deactivates the reset term

Switches the control action

Suspends the adaptive tune function

Locks controller in manual control

Remote ▲ function

Remote ▼ function

Toggle between SP DEV or OUT%

Activates FAST key

Activates MENU key.

Status readable only through communications

Switches between PV1 and PV2

15. CONTACT 4

Defines the operation of the fourth digital input.

• REM. SETPT.

• MANUAL

• 2ND. SETPT.

D 2ND. PID

• ALARM ACK.

• RST. INHBT.

• D.A./R.A.

• STOP A/T

• LOCK. MAN.

• UP KEY

• DOWN KEY

• DISP KEY

• FAST KEY

• MENU KEY

• COMM. ONLY

• PV2.SWITCH

Makes the remote setpoint active

Trips the controller to manual control

Makes the second setpoint active

Makes the second set of PID values active

Acknowledges alarms

Deactivates the reset term

Switches the control action

Suspends the adaptive tune function

Locks controller in manual control

Remote ▲ function

Remote ▼ function

Toggle between SP DEV or OUT%

Activates FAST key

Activates MENU key.

Status readable only through communications

Switches between PV1 and PV2

CONTACT 3

2ND. SETPT.

CONTACT 4

2ND. PID

Access Set Up

FAST

+

MENU

Return to Operation

DISPLAY

535 User's Manual

Next menu

FAST

+ MENU

Next parameter

MENU

Next value

▲ ▼

Chapter 5

Access Tuning

MENU

Return to Operation

DISPLAY

33

Controller Set Up

CONTACT 5

ALARM ACK.

LOOP NAME

LOOP ONE

16. CONTACT 5

This defines the operation of the fifth digital input.

• REM. SETPT.

• MANUAL

• 2ND. SETPT.

• 2ND. PID

D ALARM ACK.

• RST. INHBT.

• D.A./R.A.

• STOP A/T

• LOCK. MAN.

• UP KEY

• DOWN KEY

• DISP KEY

• FAST KEY

• MENU KEY

• COMM. ONLY

Makes the remote setpoint active

Trips the controller to manual control

Makes the second setpoint active

Makes the second set of PID values active

Acknowledges alarms

Deactivates the reset term

Switches the control action

Suspends the adaptive tune function

Locks controller in manual control

Remote ▲ function

Remote ▼ function

Toggle between SP DEV or OUT%

Activates FAST key

Activates MENU key.

Status readable only through communications

17. LOOP NAME

A 9-character message associated with the loop. The first character of the 3rd display will be flashing. To enter message, press ▲ and ▼ keys to scroll through character set. Press FAST key to enter the selection and move to next digit. Press MENU key to advance to next parameter.

D LOOP ONE

PV INPUT PV1 INPUT

PV1 TYPE

J T/C

CAUTION!

Set parameter values in the presented order—dependent parameters are dynamically related and changing values of one can alter the value of another.

For example, if SP LO LIM. is set to 0, and then thermocouple type is changed to B T/C, the SP LO LIM. value will change to 104° (the low limit of a type B thermocouple).

1. PV1 TYPE

Specifies the particular sensor range or input range for PV1.

T/C RTD

D J T/C

• E T/C

• K T/C

• B T/C

• N T/C

• R T/C

• S T/C

• T T/C

• W T/C

• W5 T/C

• PLAT.II T/C

D DIN RTD

• JIS RTD

• SAMA RTD

VOLTAGE

D 1-5 V

• 0-5 V

• 0-10 mV

• 0-30 mV

• 0-60 mV

• 0-100 mV

• +/– 25 mV

CURRENT (mA)

D 4-20mA

• 0-20mA

34

Access Set Up

FAST

+

MENU

Return to Operation

DISPLAY

Next menu

FAST

+ MENU

Chapter 5

Next parameter

MENU

Next value

▲ ▼

Access Tuning

MENU

Return to Operation

DISPLAY

535 User's Manual

Controller Set Up

2. DEG. F/C/K

Selects the PV1 temperature units if using a thermocouple or RTD.

D FAHR.

• CELSIUS

• KELVIN

3. DECIMAL

Specifies the PV1 decimal point position.

D XXXXX

• XXXX.X

• XXX.XX

• XX.XXX

• X.XXXX

4. LINEARIZE

Specifies if the PV1 input is to be linearized. NOTE: T/C’s and RTD’s are automatically linearized.

D NONE

• SQR. ROOT

• CUSTOM

Square root linearization is activated.

15-point custom linearization curve is activated.

5. LOW RANGE

Specifies the engineering unit value corresponding to the lowest PV1 input value, e.g. 4 mA.

R –9999 to 99999 Max. is HI RANGE

D Dependent on the input selection

6. HI RANGE

Specifies the engineering unit value corresponding to the highest PV1 input value, e.g., 20mA.

R -9999 to 99999 Min. is LOW RANGE

D Dependent on the input selection

7. SP LO LIM.

Defines the lowest setpoint value that can be entered from the front panel only.

R –9999 to 99999 Max. is SP HI LIM. Min. is LOW RANGE

D Dependent on the LOW RANGE value.

8. SP HI LIM.

Defines the highest setpoint value that can be entered from the front panel only.

R –9999 to 99999

D Dependent on HI RANGE

Min. is SP LO. LIM. Maximum is HI RANGE

DEG. F/C/K

FAHR

DECIMAL

XXXXX

LINEARIZE

NONE

LOW RANGE

(D)

HI RANGE

(D)

SP LO LIM.

(D)

SP HI LIM.

(D)

Access Set Up

FAST

+

MENU

Return to Operation

DISPLAY

535 User's Manual

Next menu

FAST

+ MENU

Next parameter

MENU

Next value

▲ ▼

Chapter 5

Access Tuning

MENU

Return to Operation

DISPLAY

35

Controller Set Up

SP RAMP

OFF

FILTER

0

OFFSET

0

GAIN

1.000

RESTORE

LAST MODE

PV2 INPUT

PV2 SETUP

SAME.AS.PV1

9. SP RAMP

Defines the rate of change for setpoint changes.

D OFF

R 1 to 99999 units per hour

Deactivates this function

10. FILTER

Specifies the setting for the low pass PV1 input filter.

R 0 to 120 seconds

D 0 seconds

11. OFFSET

Defines the offset to PV1 in engineering units.

R –9999 to 99999

D 0

12. GAIN

Defines the gain to PV1.

R 0.100 to 10.000

D 1.000

13. RESTORE

Defines the control mode when a broken PV1 signal is restored.

D LAST MODE

• MANUAL

• AUTOMATIC

PV2 INPUT

1. PV2 SETUP

Defines function of PV2

D SAME.AS.PV1

• NOT PV1

All PV2 parameters are set to the same values as PV1 (no further parameters will appear)

Enables user to enter different values for the following PV2 parameters

36

Access Set Up

FAST

+

MENU

Return to Operation

DISPLAY

Next menu

FAST

+ MENU

Chapter 5

Next parameter

MENU

Next value

▲ ▼

Access Tuning

MENU

Return to Operation

DISPLAY

535 User's Manual

Controller Set Up

2. PV2 TYPE

Selects the particular sensor or input range for PV2

T/C RTD

D J T/C

• E T/C

• K T/C

• B T/C

• N T/C

• R T/C

• S T/C

• T T/C

• W T/C

• W5 T/C

• PLAT.II T/C

D DIN RTD

• JIS RTD

• SAMA RTD

VOLTAGE

D 1-5 V

• 0-5 V

• 0-10 mV

• 0-30 mV

• 0-60 mV

• 0-100 mV

• +/– 25 mV

CURRENT (mA)

D 4-20mA

• 0-20mA

3. DECIMAL

Specifies the PV2 decimal point position.

D XXXXX

• XXXX.X

• XXX.XX

• XX.XXX

• X.XXXX

4. LINEARIZE

Specifies if the PV2 input is to be linearized. Thermocouples and RTD’s are automatically linearized.

D NONE

• SQR. ROOT Square root linearization is activated.

5. LOW RANGE

Specifies the engineering unit value corresponding to the lowest PV2 input value, e.g. 4 mA.

R –9999 to 99999 Max. is HI RANGE

D Dependent on the input selection

6. HI RANGE

Specifies the engineering unit value corresponding to the highest PV2 input value, e.g. 20 mA.

R -9999 to 99999 Min. is LOW RANGE

D Dependent on the input selection

7. FILTER

Setting for the low pass PV2 input filter.

R 0 to 120 seconds

D 0 seconds

Access Set Up

FAST

+

MENU

Return to Operation

DISPLAY

535 User's Manual

Next menu

FAST

+ MENU

Next parameter

MENU

Next value

▲ ▼

Chapter 5

PV2 TYPE

J/TC

DECIMAL

XXXXX

LINEARIZE

NONE

LOW RANGE

(D)

HI RANGE

(D)

FILTER

0

Access Tuning

MENU

Return to Operation

DISPLAY

37

Controller Set Up

1ST. INPUT

(D)

1ST. PV

0

XTH INPUT

(D)

XTH PV

0

OFFSET

0

GAIN

1.000

RESTORE

LAST MODE

CUST. LINR.

8. OFFSET

Defines the offset to PV2 in engineering units.

R –9999 to 99999

D 0

9. GAIN

Defines the gain for PV2.

R 0.100 to 10.000

D 1.000

10. RESTORE

Defines the control mode when a broken PV2 signal is restored.

D LAST MODE

• MANUAL

• AUTOMATIC

CUST. LINR.

Defines a custom linearization curve for PV1, if selected. Points 1 and 15 are fixed to the low and high end of the input range and require only setting a corresponding PV value. Points 2 through 14 (the Xth points) require setting both the input and PV values.

It is not necessary to use all 15 points. Whenever the XTH INPUT becomes the high end of the range, that will be the last point in the linearization table.

1. 1ST. INPUT

Specifies the input signal corresponding to the first point.

D The low end of the appropriate input range (e.g. 4.00 mA)

2. 1ST. PV

Specifies the engineering unit value corresponding to the first point.

R –9999 to 99999

D 0

3. XTH. INPUT

Specifies the input signal corresponding to the XTH point (X is 2 to 14).

R Any value greater than the first input

D The low end of the appropriate input range (e.g. 4.00 mA)

4. XTH. PV

Specifies the unit value corresponding to the XTH point (X is 2 to 14).

R –9999 to 99999

D 0

38

Access Set Up

FAST

+

MENU

Return to Operation

DISPLAY

Next menu

FAST

+ MENU

Chapter 5

Next parameter

MENU

Next value

▲ ▼

Access Tuning

MENU

Return to Operation

DISPLAY

535 User's Manual

Controller Set Up

5. 15TH. INPT.

Specifies the input signal corresponding to the 15th point.

R –9999 to 99999 Minimum is [XTH-1] INPUT

D The high end of the appropriate input range (e.g. 20.00 mA)

6. 15TH. PV

Specifies the engineering unit value corresponding to the 15th point.

R –9999 to 99999

D 0

CONTROL

For configuring the choices for the control algorithm.

1. ALGORITHM

Defines the type of control algorithm.

D PID

• PI

• PD

• P

• ON/OFF

• PID:ON/OFF For Duplex applications using PID for the first output and on/off for the second output

2. D. SOURCE

Selects the variable for the derivative action.

D PV

• DEVIATION

Derivative term will not react when setpoint changes

Derivative term will react when setpoint changes

3. ACTION:1

Defines the action of the first control output.

• DIRECT

D REVERSE

4. PV BREAK

Defines the manual output level if the process variable input is lost. Choose values based on the process type.

Standard Control

• –5 to 105%

D 0

On/Off Control Velocity Prop Control

• ON

D OFF •

• CW

CCW

D OUTS. OFF

5. LOW OUT.

Defines the lowest output value that can be achieved in automatic control.

R 0 – 100%

D 0%

Max is HIGH OUT

Access Set Up

FAST

+

MENU

Return to Operation

DISPLAY

535 User's Manual

Next menu

FAST

+ MENU

Next parameter

MENU

Next value

▲ ▼

Chapter 5

15TH INPT.

(D)

15TH PV

0

CONTROL

ALGORITHM

PID

D. SOURCE

PV

ACTION:1

REVERSE

PV BREAK

(D)

LOW OUT

0

Access Tuning

MENU

Return to Operation

DISPLAY

39

Controller Set Up

HIGH OUT.

100

ACTION:2

DIRECT

P.P. TYPE

(D)

CCW TIME

60

CW TIME

60

MIN. TIME

0.1

S/W RANGE

100

OPEN F/B

(D)

6. HIGH OUT.

Defines the highest output value that can be achieved in automatic control.

R 0 – 100%

D 100%

Min is LOW OUT

7. ACTION:2

Defines the action of the second control output.

D DIRECT

• REVERSE

8. P.P. TYPE

Defines the type of position proportioning algorithm. Choose values based on the process.

Feedback option installed

D SLIDEWIRE

• VELOCITY

Feedback option not installed

• SLIDEWIRE

D VELOCITY

9. CCW TIME

Defines the time it takes a motor to fully stroke counter clockwise.

R 1 to 200 seconds

D 60 seconds

10. CW TIME

Defines the time it takes a motor to fully stroke clockwise .

R 1 to 200 seconds

D 60 seconds

11. MIN. TIME

Defines the minimum amount of time the controller must specify for the motor to be on before it takes action.

R 0.1 to 10.0 seconds

D 0.1 seconds

12. S/W RANGE

Specifies the full range resistance of the slide (e.g., 100 ohms)

R 0–1050 Ohms

D 100 Ohms

13. OPEN F/B

Defines the feedback ohm value corresponding to full open (100% output).

R 0 to S/W RANGE

D Dependent on S/W RANGE value

40

Access Set Up

FAST

+

MENU

Return to Operation

DISPLAY

Next menu

FAST

+ MENU

Chapter 5

Next parameter

MENU

Next value

▲ ▼

Access Tuning

MENU

Return to Operation

DISPLAY

535 User's Manual

Controller Set Up

14. CLOSE F/B

Defines the feedback ohm value corresponding to full close (0% output).

R 0 to S/W RANGE

D 100 Ohms

15. OUT1 STOP

This defines the stopping point for control output 1 when staging outputs.

R 1 to 100%

D 50%

16. OUT2 STRT.

Defines the starting point for control output 2 when staging outputs.

R 0 to 99%

D 50%

ALARMS

1. ALM. TYPE:1

Defines the type of alarm for alarm 1.

• HIGH ALRM.

• LOW ALARM

• HIGH/LOW Separate High & Low alarm setpoints in one alarm

• BAND

• DEVIATION

• MANUAL

• REMOTE SP

• RATE

D OFF

Causes an alarm when in manual control

Causes an alarm when in Remote Setpoint

Selects a rate-of-change alarm

Deactivates the first alarm

2. ALM. SRC:1

Selects the source of the value being monitored by HIGH, LOW or HIGH/LOW alarm 1.

D PV

• SP

• RAMP SP

• DEVIATION

• OUTPUT

• PV2

CLOSE F/B

100

OUT1 STOP

50

OUT2 STRT.

50

ALARMS

ALM. TYPE:1

OFF

ALM. SRC:1

PV

Access Set Up

FAST

+

MENU

Return to Operation

DISPLAY

535 User's Manual

Next menu

FAST

+ MENU

Next parameter

MENU

Next value

▲ ▼

Chapter 5

Access Tuning

MENU

Return to Operation

DISPLAY

41

Controller Set Up

ALARM SP:1

0.0%

HIGH SP:1

0.0%

LOW SP:1

0.0%

DEADBAND:1

2

ALM.:1 OUT

NONE

LATCHING:1

NONE

3. ALARM SP:1

Specifies the alarm set point for alarm 1 (except HIGH/LOW)

For HIGH or LOW alarms:

If ALM.SRC.:1 = OUTPUT

R 0.0% to 100.0%

D 0.0%

For BAND alarms:

R 1 to 99999

D 0

For DEVIATION or RATE alarms:

R -9999 to 99999

D 0

If ALM.SRC.:1 = any other type

R LOW RANGE to HI RANGE

D 0

4A. HIGH SP:1

Specifies the high alarm set point for alarm 1 of type HIGH/LOW.

If ALM.SRC.:1 = OUTPUT

R 0.0% to 100.0%

D 0.0%

If ALM.SRC.:1 = any other type

R LOW RANGE to HI RANGE

D 0

4B. LOW SP:1

Specifies the low alarm set point for alarm 1 of type HIGH/LOW.

If ALM.SRC.:1 = OUTPUT

R 0.0% to 100.0%

D 0.0%

If ALM.SRC.:1 = any other type

R LOW RANGE to HI RANGE

D 0

5. DEADBAND:1

Defines the deadband for alarm 1.

If ALM.SRC.:1 = OUTPUT

R 0.1% to 100.0%

D 2

6. ALM.:1 OUT.

Selects the output number for alarm 1.

D NONE

• 2

• 3

• 4

If ALM.SRC.:1 = any other type

R 1 to 99999

D 2

7. LATCHING:1

Defines the latching sequence of alarm 1.

D LATCH

• NO LATCH

42

Access Set Up

FAST

+

MENU

Return to Operation

DISPLAY

Next menu

FAST

+ MENU

Chapter 5

Next parameter

MENU

Next value

▲ ▼

Access Tuning

MENU

Return to Operation

DISPLAY

535 User's Manual

Controller Set Up

8. ACK.:1

Defines whether alarm 1 may be acknowledged.

D ENABLED

• DISABLED

Allows the alarm to be acknowledged

Prevents the alarm from being acknowledged while in alarm condition

9. POWER UP:1

Defines how alarm 1 will be treated on power up.

D NORMAL

• ALARM

• DELAYED

Alarm depends on process variable

Always power up in alarm regardless of PV

Must leave alarm condition and reenter before activating the alarm

10. MESSAGE:1

A 9-character message associated with alarm 1. To enter message: The first character of third display will be flashing. Press the ▲ and keys to scroll through the character set. Press FAST key to advance to subsequent characters. Press the MENU to advance to next parameter.

D ALARM 1.

11. ALM. TYPE:2

Defines the type of alarm for alarm 2.

• HIGH ALRM.

• LOW ALARM

• HIGH/LOW Separate High & Low alarm setpoints in one alarm

• BAND

• DEVIATION

• MANUAL

• REMOTE SP

• RATE

D OFF

Causes an alarm when in manual control

Causes an alarm when in Remote Setpoint

Selects a rate-of-change alarm

Deactivates the first alarm

12. ALM. SRC:2

Selects the source of the value being monitored by HIGH, LOW or HIGH/LOW alarm 2.

D PV

• SP

• RAMP SP

• DEVIATION

• OUTPUT

• PV2

ACK.:1

ENABLED

POWER UP:1

NORMAL

MESSAGE:1

ALARM 1

ALM. TYPE:2

OFF

ALM.SRC.:2

PV

Access Set Up

FAST

+

MENU

Return to Operation

DISPLAY

535 User's Manual

Next menu

FAST

+ MENU

Next parameter

MENU

Next value

▲ ▼

Chapter 5

Access Tuning

MENU

Return to Operation

DISPLAY

43

Controller Set Up

ALARM SP:2

(D)

HIGH SP:2

0.0%

LOW SP:2

0.0%

DEADBAND:2

2

ALM.:2 OUT.

NONE

LATCHING:2

LATCH

13. ALARM SP:2

Specifies the alarm set point for alarm 2 (except HIGH/LOW)

For HIGH or LOW alarms:

If ALM.SRC.:2 = OUTPUT

R 0.0% to 100.0%

D 0.0%

For BAND alarms:

R 1 to 99999

D 0

For DEVIATION or RATE alarms:

R -9999 to 99999

D 0

If ALM.SRC.:2 = any other type

R LOW RANGE to HI RANGE

D 0

14A. HIGH SP:2

Specifies the high alarm set point for alarm 2 of type HIGH/LOW.

If ALM.SRC.:2 = OUTPUT

R 0.0% to 100.0%

D 0.0%

If ALM.SRC.:2 = any other type

R LOW RANGE to HI RANGE

D 0

14B. LOW SP:2

Specifies the low alarm set point for alarm 2 of type HIGH/LOW.

If ALM.SRC.:2 = OUTPUT

R 0.0% to 100.0%

D 0.0%

If ALM.SRC.:2 = any other type

R LOW RANGE to HI RANGE

D 0

15. DEADBAND:2

Defines the deadband for alarm 2.

If ALM.SRC.:2 = OUTPUT

R 0.1% to 100.0%

D 2

16. ALM.:2 OUT.

Selects the output number for alarm 2.

D NONE

• 2

• 3

• 4

If ALM.SRC.:2 = any other type

R 1 to 99999

D 2

17. LATCHING:2

Defines the latching sequence of alarm 2.

D LATCH

• NO LATCH

44

Access Set Up

FAST

+

MENU

Return to Operation

DISPLAY

Next menu

FAST

+ MENU

Chapter 5

Next parameter

MENU

Next value

▲ ▼

Access Tuning

MENU

Return to Operation

DISPLAY

535 User's Manual

Controller Set Up

18. ACK.:2

Defines whether alarm 2 may be acknowledged.

D ENABLED

• DISABLED

Allows the alarm to be acknowledged

Prevents the alarm from being acknowledged while in alarm condition

19. POWER UP:2

Defines how alarm 2 will be treated on power up.

D NORMAL

• ALARM

• DELAYED

Alarm depends on process variable

Always power up in alarm regardless of process variable

Must leave alarm condition and reenter before activating the alarm

20. MESSAGE:2

A 9-character message associated with alarm 2. To enter message: The first character of third display will be flashing. Press the ▲ and keys to scroll through the character set. Press FAST key to advance to subsequent characters. Press MENU to advance to next parameter.

D ALARM 2.

21. FAULT

Defines whether either of the alarm relays will trip if a fault condition (lost process variable) is detected. Only appears if at least one alarm relay is installed.

D OFF

• ALARM 1

• ALARM 2

22. OUTPUT

Defines whether a rate-of-change alarm is interpreted as a lost or broken process variable (causing a trip to manual output).

• P.V. BREAK

D NO ACTION

23. RATE TIME

Defines the time period over which a rate-of-change alarm condition is determined.

R 1 to 3600 seconds

D 5 seconds

ACK.:2

ENABLED

POWER UP:2

NORMAL

MESSAGE:2

ALARM 2

FAULT

OFF

OUTPUT

NO ACTION

RATE TIME

5

Access Set Up

FAST

+

MENU

Return to Operation

DISPLAY

535 User's Manual

Next menu

FAST

+ MENU

Next parameter

MENU

Next value

▲ ▼

Chapter 5

Access Tuning

MENU

Return to Operation

DISPLAY

45

Controller Set Up

REM. SETPT.

RSP. TYPE

1-5 4-20

RSP:LO RNG.

0

RSP:HI RNG.

1000

RSP:LOW

(D)

RSP:HIGH

(D)

TRACKING

NO

BIAS LOW

-1000

BIAS HIGH

1000

REM. SETPT.

This menu appears only if parameter REM. SETPT (of the CONFIG. menu) =

ENABLED.

1. TYPE V/mA

Specifies the type of input signal that will be used for remote setpoint.

D 1-5 /4-20

• 0-5/0-20

1–5 volt or 4–20 mA remote setpoint

0–5 volt or 0–20 mA remote setpoint

2. RSP:LO RNG.

Specifies the engineering unit value corresponding to the lowest remote setpoint input value, e.g. 4 mA.

R -9999 to 99999

D 0

3. RSP:HI RNG.

Specifies the engineering unit value corresponding to the highest remote setpoint input value, e.g. 20 mA.

R –9999 to 99999

D 1000

4. RSP: LOW

Defines the lowest setpoint value to be accepted from the remote setpoint source.

R –9999 to 99999.

D Dependent on RSP:LO.RNG. value.

5. RSP: HIGH

Defines the highest setpoint value from a remote setpoint source.

R –9999 to 99999

D Dependent on RSP:HI.RNG. value

6. TRACKING

Defines whether the local setpoints 1 to 8 will track the remote setpoint.

D NO

• YES

7. BIAS LOW

Defines the lowest bias value that may be entered.

R –9999 to 99999.

D –1000

Maximum value is BIAS HIGH.

8. BIAS HIGH

Defines the highest bias value that may be entered.

R –9999 to 99999.

D 1000

Minimum value is BIAS LOW.

46

Access Set Up

FAST

+

MENU

Return to Operation

DISPLAY

Next menu

FAST

+ MENU

Chapter 5

Next parameter

MENU

Next value

▲ ▼

Access Tuning

MENU

Return to Operation

DISPLAY

535 User's Manual

Controller Set Up

9. RSP FIXED

Defines what happens if remote setpoint is lost while it is active and then is restored.

• REMOTE SP

D LOCAL

Returns to remote setpoint when it is restored

Local setpoint remains active when RSP is restored

RETRANS.

1. TYPE:2

Defines what is to be retransmitted for output 2

D PV

• SETPOINT

• RAMP SP

• CTRL. OUT

This refers to the linearized process variable

This is the target setpoint

This is the ramping, or actual setpoint, when the setpoint is ramping

This is the control output value

2. LOW RANGE:2

Defines the low end of the range for output 2 in engineering units. Does not appear for type CTRL.OUT.

R –9999 to 99999

D Dependent on the process variable range

3. HI RANGE:2

Defines the high end of the range for output 2 in engineering units. Does not appear for type CTRL.OUT.

R –9999 to 99999

D Dependent on the process variable range

4. TYPE:3

Defines what is to be retransmitted for output 3

D PV

• SETPOINT

• RAMP SP

• CTRL. OUT

This refers to the linearized process variable

This is the target setpoint

This is the ramping, or actual setpoint, when the setpoint is ramping

This is the control output value

5. LOW RANGE:3

Defines the low end of the range for output 3 in engineering units. Does not appear for type CTRL.OUT.

R –9999 to 99999

D Dependent on the process variable range

RSP: FIXED

LOCAL

RETRANS.

TYPE:2

PV

LO RANGE:2

(D)

HI RANGE:2

(D)

TYPE:3

PV

LO RANGE:3

(D)

Access Set Up

FAST

+

MENU

Return to Operation

DISPLAY

535 User's Manual

Next menu

FAST

+ MENU

Next parameter

MENU

Next value

▲ ▼

Chapter 5

Access Tuning

MENU

Return to Operation

DISPLAY

47

Controller Set Up

HI RANGE:3

(D)

TYPE:4

PV

LO RANGE:4

(D)

HI RANGE:4

(D)

SELF TUNE

TYPE

DISABLED

PRETUNE

TYPE 1

TUNE PT.

AUTOMATIC

6.

HI RANGE:3

Defines the high end of the range for output 3 in engineering units. Does not appear for type CTRL.OUT.

R –9999 to 99999

D Dependent on the process variable range

7.

TYPE:4

Defines what is to be retransmitted for output 4

D PV

• SETPOINT

• RAMP SP

• CTRL. OUT

This refers to the linearized process variable

This is the target setpoint

This is the ramping, or actual setpoint, when the setpoint is ramping

This is the control output value

8.

LOW RANGE:4

Defines the low end of the range for output 4 in engineering units. Does not appear for type CTRL.OUT.

R –9999 to 99999

D Dependent on the process variable range

9.

HI RANGE:4

Defines the high end of the range for output 4 in engineering units. Does not appear for type CTRL.OUT.

R –9999 to 99999

D Dependent on the process variable range

SELF TUNE

1.

TYPE

Defines the type of self tuning algorithm that is available.

• PRETUNE

• ADAPTIVE

• BOTH

D DISABLED

Allows the operator to initiate Pretune only

Allows the operator to initiate Adaptive Tune only

Allows the operator to initiate both Pretune and

Adaptive Tune

Both Pretune and Adaptive Tune are disabled

2.

PRETUNE

Defines the type of pretune algorithm that is available.

D TYPE 1

• TYPE 2

• TYPE 3

Normally used with slower thermal processes

Normally used with faster fluid or pressure processes

Normally used with level control applications

3.

TUNE PT.

Defines the PV value at which the output will switch off during a TYPE 1 pretune.

Helps prevent overshoot.

R Any value in PV input range

D AUTOMATIC (Controller defines this point, low end for Automatic)

48

Access Set Up

FAST

+

MENU

Return to Operation

DISPLAY

Next menu

FAST

+ MENU

Chapter 5

Next parameter

MENU

Next value

▲ ▼

Access Tuning

MENU

Return to Operation

DISPLAY

535 User's Manual

Controller Set Up

4. OUT. STEP

Defines the output step size in absolute percent during a TYPE 2 or TYPE 3 pretune.

R –50% to 50.0%

D 10.0%

5. LOW LIMIT

Defines the lower most limit the process variable can reach during pretune before aborting.

R Any value in the process variable range

D Dependent on the process variable range

6. HI LIMIT

Defines the upper most limit the process variable can reach during pretune before aborting.

R Any value in the process variable range

D Dependent on the process variable range

7. TIMEOUT

This defines the execution time limit for pretune before aborting.

R 8 to 1500 minutes

D 1500 minutes

8. MODE

Defines the control mode after pretune is completed or aborted.

• MANUAL

D AUTOMATIC

9. NOISE BND.

Defines the noise band to be used by the adaptive tuning algorithm.

R 0.1% to 10% of the process variable range

D 0.2%

10. RESP. TIME

Defines response time to be used by the adaptive tuning algorithm.

R 10 to 32000 seconds

D 7200 seconds

11. DEAD TIME

Defines the amount of time required for process to begin to respond to an output change (used by POWERBACK algorithm).

R 0.1 seconds to 7200.0 seconds

D 0.1 seconds

OUT.STEP

10.0

LOW LIMIT

(D)

HI LIMIT

(D)

TIMEOUT

1500

MODE

AUTOMATIC

NOISE BND.

0.2

RESP. TIME

60

DEAD TIME

0.1

Access Set Up

FAST

+

MENU

Return to Operation

DISPLAY

535 User's Manual

Next menu

FAST

+ MENU

Next parameter

MENU

Next value

▲ ▼

Chapter 5

Access Tuning

MENU

Return to Operation

DISPLAY

49

Controller Set Up

SPECIAL

AUTO. TRIP

OFF

TRIP DEV.

(D)

DES. OUTPT.

(D)

POWER UP

LAST MODE

PWR.UP:OUT.

(D)

SPECIAL

1. AUTO. TRIP

Defines the condition under which the 535 will automatically trip to automatic control from manual control upon start up.

D OFF

• RISING PV

• FALLNG. PV

Deactivates this function

Will trip when a rising process variable is within the specified deviation from the setpoint

Will trip when a falling process variable is within the specified deviation from the setpoint

2. TRIP DEV.

Defines the deviation from setpoint at which the controller will trip to automatic.

For AUTO. TRIP = RISING PV

R -99999 to 0

D 0

For AUTO. TRIP = FALLING PV

R 0 to 99999

D 0

3. DES. OUTPT.

If a digital input is defined to trip the controller to manual mode, this designates the output value after the trip. LAST OUT means that the output value will be equal to the last output value while in automatic. Choose values based on the process.

Standard Control On/Off Control Velocity Prop Control

• –5 to 105%

D LAST OUT

• ON

D OFF

• CW

• CCW

D OUTS. OFF

4. POWER UP

Defines the control mode upon power up.

D LAST MODE

• PRETUNE

Will power up in the same mode prior to power down

Will Pretune on every power up.

(Recommended for TYPE 1 pretune only.)

• MANUAL

• AUTOMATIC

5. PWR. UP:OUT.

Defines the output of the controller if powering up in manual mode. “LAST OUT” means that the output value will be equal to the last output value while in automatic. Choose values based on the process.

Standard Control

• –5 to 105%

D LAST OUT

On/Off Control

• ON

D OFF

Velocity Prop Control

• CW

• CCW

D OUTS. OFF

50

Access Set Up

FAST

+

MENU

Return to Operation

DISPLAY

Next menu

FAST

+ MENU

Chapter 5

Next parameter

MENU

Next value

▲ ▼

Access Tuning

MENU

Return to Operation

DISPLAY

535 User's Manual

Controller Set Up

6. PWR. UP:SP

Defines the setpoint upon power up.

D LAST SP

• LOCAL

• REMOTE

Powers up with the same setpoint (local or remote) that was active prior to power down

Powers up using primary local setpoint

Powers up using remote setpoint, if available

7. NO. OF SP

Defines the number of local setpoints (up to 8) to be stored for selection by BCD

(binary coded decimal), digital inputs, or front SET PT key.

R 1 through 8

D 1

SECURITY

For configuring the security function.

1. SEC. CODE

Defines the security code temporarily unlocking the instrument.

R –9999 to 99999

D 0

2. SP ADJUST

Defines lockout status setpoint changes.

D UNLOCKED

• LOCKED

3. AUTO./MAN.

Defines lockout status of the MANUAL key.

D UNLOCKED

• LOCKED

4. SP SELECT

Defines lockout status of the SET PT key.

D UNLOCKED

• LOCKED

5. ALARM ACK.

Defines lockout status of the ACK key.

D UNLOCKED

• LOCKED

6. TUNING

Defines lockout status of the tuning parameters.

D UNLOCKED

• LOCKED

Access Set Up

FAST

+

MENU

Return to Operation

DISPLAY

535 User's Manual

Next menu

FAST

+ MENU

Next parameter

MENU

Next value

▲ ▼

Chapter 5

PWR. UP:SP

LAST SP

NO. OF SP

1

SECURITY

SEC. CODE

0

SP ADJUST

UNLOCKED

AUTO./MAN.

UNLOCKED

SP SELECT

UNLOCKED

ALARM ACK

UNLOCKED

TUNING

UNLOCKED

Access Tuning

MENU

Return to Operation

DISPLAY

51

Controller Set Up

CONFIGURE

UNLOCKED

SER. COMM.

STATION

1

BAUD RATE

9600

CRC

YES

SHED TIME

OFF

SHED MODE

LAST MODE

SHED OUT.

(D)

52

Access Set Up

FAST

+

MENU

Return to Operation

DISPLAY

7. CONFIGURE

Defines lockout status of the configuration parameters.

D UNLOCKED

• LOCKED

SER. COMM.

1. STATION

Defines the unit’s station address.

R 1 to 99

• OFF

D 1

Disables the communications function

2. BAUD RATE

Defines the baud rate.

• 1200 BPS

• 2400 BPS

• 4800 BPS

D 9600 BPS

• 19200 BPS

3. CRC

Defines whether CRC (cyclic redundancy check) is being calculated.

D YES

• NO

4. SHED TIME

Defines the time interval between communications activity before the controller determines that communications is lost (“sheds”).

R 1 to 512 seconds

D OFF

5. SHED MODE

Defines the state of the controller if communications is lost (“sheds”).

D LAST MODE Remain in automatic or manual control (last mode before losing communications)

• MANUAL Trip to manual control

• AUTOMATIC Trip to automatic control

6. SHED OUT.

Defines the output if the unit sheds and trips to manual control. Choose values based on the process.

Standard Control

• –5 to 105%

D LAST OUT

On/Off Control

• ON

D OFF

Velocity Prop Control

• CW

• CCW

D OUTS. OFF

Next menu

FAST

+ MENU

Chapter 5

Next parameter

MENU

Next value

▲ ▼

Access Tuning

MENU

Return to Operation

DISPLAY

535 User's Manual

Controller Set Up

7. SHED SP

Defines the setpoint status if communications is lost.

D LAST SP

• DESIG. SP

Continues to use setpoint that was active prior to losing communications

Goes to a designated setpoint value if communications is lost.

8. DESIG. SP

Defines the value of the designated setpoint if communications is lost.

R Any value in the process variable range

D Dependent on the process variable range

SHED SP

LAST SP

DESIG. SP

(D)

Access Set Up

FAST

+

MENU

Return to Operation

DISPLAY

535 User's Manual

Next menu

FAST

+ MENU

Next parameter

MENU

Next value

▲ ▼

Chapter 5

Access Tuning

MENU

Return to Operation

DISPLAY

53

Controller Set Up

PARAMETER VALUE CHARTS

This section of value charts is provided for logging in the actual parameter values and selections for the process. It is recommended that these pages be photocopied so there will always be a master.

CONFIG

Parameter

1. CTRL. TYPE

2 LINE FREQ.

3 PV SOURCE

4 REM. SETPT.

5 OUTPUT 2

6 OUTPUT 3

7 OUTPUT 4

8 ANLG.RNG.:1

9 ANLG.RNG.:2

10 ANLG.RNG.:3

11 ANLG.RNG.:4

12 CONTACT 1

13 CONTACT 2

14 CONTACT 3

15 CONTACT 4

16 CONTACT 5

17 LOOP NAME

Description

Defines fundamental controller Set Up

Defines the power source frequency

Defines how PV input is derived from PV1 and PV2

Selects function of the remote setpoint

Function of the second output

Function of the third output

Function of the fourth output

Output signal for the first output

Output signal for the second output

Output signal for the third output

Output signal for the fourth output

Operation of the first digital input

Operation of the second digital input

Operation of the third digital input

Operation of the fourth digital input

Operation of the fifth digital input

Nine character message associated with control loop

Values

54 Chapter 5 535 User's Manual

Controller Set Up

PV1 INPUT

Parameter

1 PV1 TYPE

2 DEG. F/C/K

3 DECIMAL

4 LINEARIZE

5 LOW RANGE

6 HI RANGE

7 SP LO LIM.

8 SP HI LIM.

9 SP RAMP

10 FILTER

11 OFFSET

12 GAIN

13 RESTORE

Description

PV1 sensor or range to be used

PV1 temperature engineering unit

PV1 decimal point position

Type of PV1 input linearization

Engineering unit value for lowest PV1 input value

Engineering unit value for highest PV1 input value

Lowest setpoint value that can be entered

Highest setpoint value that can be entered

Rate of change for setpoint changes

Setting for the low pass PV1 input filter (in seconds)

Offset to PV1 in engineering units

Gain to PV1

Control mode when a broken PV1 is restored

Value

PV2 INPUT

Parameter

1 PV2 SETUP

2 PV2 TYPE

3 DECIMAL

4 LINEARIZE

5 LOW RANGE

6 HI RANGE

7 FILTER

8 OFFSET

9 GAIN

10 RESTORE

Description

Makes PV2 input parameters match PV1, or user definable.

PV2 sensor or range to be used

PV2 decimal point position

Type of PV2 input linearization

Engineering unit value for lowest PV2 input value

Engineering unit value for highest PV2 input value

Setting for the low pass PV2 input filter (in seconds)

Offset to the PV2 in engineering units

Gain to PV2

Control mode when a broken PV2 is restored

Value

535 User's Manual Chapter 5 55

Controller Set Up

ALARMS

Parameter

1 ALM. TYPE:1

2 ALM. SRC.:1

3 ALARM SP:1

4A HIGH SP:1

4A LOW SP:1

5 DEADBAND:1

6 ALM.:1 OUT.

7 LATCHING:1

8 ACK.:1

9 POWER UP:1

10 MESSAGE:1

11 ALM. TYPE:2

12 ALM. SRC.:2

13 ALARM SP:2

14A HIGH SP:2

14B LOW SP:2

15 DEADBAND :2

16 ALM.:2 OUT.

17 LATCHING :2

18 ACK.:2

19 POWER UP:2

20 MESSAGE:2

21 FAULT

22 OUTPUT

23 RATE TIME

Description

Type of alarm for alarm 1

Source of value monitored by HIGH, LOW or HIGH/LOW

alarm 1

Alarm setpoint for alarm 1 (except for HIGH/LOW)

High alarm setpoint for HIGH/LOW alarm 1

Low alarm setpoint for HIGH/LOW alarm 1

Deadband for alarm 1

Output number for alarm 1

Latching sequence for alarm 1

Whether alarm 1 may be acknowledged

How alarm 1 will be treated upon power up

Nine character message associated with alarm 1

Type of alarm for alarm 2

Source of value monitored by HIGH, LOW or HIGH/LOW alarm 2

Alarm setpoint for alarm 2 (except for HIGH/LOW)

High alarm setpoint for HIGH/LOW alarm 2

Low alarm setpoint for HIGH/LOW alarm 2

Deadband for alarm 2

Output number for alarm 2

Latching sequence for alarm 2

Whether alarm 2 may be acknowledged

How alarm 2 will be treated upon power up

Nine character message associated with alarm 2

Alarm relay status if fault condition is detected

Output if the rate-of-change alarm is tripped

Time period over which a rate-of-change alarm is determined

Value

56 Chapter 5 535 User's Manual

Controller Set Up

CUST. LINR.

20 9th PV

21 10th INPUT

22 10th PV

23 11th INPUT

24 11th PV

25 12th INPUT

26 12th PV

27 13th INPUT

28 13th PV

29 14th INPUT

30 14th PV

31 15th INPUT

32 15th PV

Parameter

1 1st INPUT

2 1st PV

3 Xth INPUT

4 Xth PV

5 2nd INPUT

6 2nd PV

7 3rd INPUT

8 3rd PV

9 4th INPUT

10 4th PV

11 5th INPUT

12 5th PV

13 6th INPUT

14 6th PV

15 7th INPUT

16 7th PV

17 8th INPUT

18 8th PV

19 9th INPUT

535 User's Manual

Description

Input signal for the 1st point (of the 15 point curve)

Engineering unit value for the 1st point

Input signal for the Xth Point (of the 15 point curve)

Engineering unit value for the Xth point

Input signal for the 2nd point (of the 15 point curve)

Engineering unit value for the 2nd point

Input signal for the 3rd point (of the 15 point curve)

Engineering unit value for the 3rd point

Input signal for the 4th point (of the 15 point curve)

Engineering unit value for the 4th point

Input signal for the 5th point (of the 15 point curve)

Engineering unit value for the 5th point

Input signal for the 6th point (of the 15 point curve)

Engineering unit value for the 6th point

Input signal for the 7th point (of the 15 point curve)

Engineering unit value for the 7th point

Input signal for the 8th point (of the 15 point curve)

Engineering unit value for the 8th point

Input signal for the 9th point (of the 15 point curve)

Engineering unit value for the 9th point

Input signal for the 10th point (of the 15 point curve)

Engineering unit value for the 10th point

Input signal for the 11th point (of the 15 point curve)

Engineering unit value for the 11th point

Input signal for the 12th point (of the 15 point curve)

Engineering unit value for the 12th point

Input signal for the 13th point (of the 15 point curve)

Engineering unit value for the 13th point

Input signal for the 14th point (of the 15 point curve)

Engineering unit value for the 14th point

Input signal for the15th point (of the 15 point curve)

Engineering unit value for the 15th point

Chapter 5

Value

57

Controller Set Up

CONTROL

Parameter

1 ALGORITHM

2 D. SOURCE

3 ACTION:1

4 PV BREAK

5 LOW OUT.

6 HIGH OUT.

7 ACTION:2

8 P.P. TYPE

9 CCW TIME

10 CW TIME

11 MIN. TIME

12 S/W RANGE

13 OPEN F/B

14 CLOSE F/B

15 OUT1 STOP

16 OUT2 STRT

Description

Control algorithm used

Variable used to determine the derivative value

Action of the first control output

Output level if the process variable input is lost

Lowest output value that can be achieved in automatic control

Highest output value that can be achieved in automatic control

Action of the second control output

Type of position proportioning algorithm

Time it takes a motor to fully stroke in the CCW direction

Time it takes a motor to fully stroke in the CW direction

Minimum time for the motor to be on before taking action

Full range resistance of the slidewire

Feedback ohm value when the valve is open

Feedback ohm value when the valve is closed

Stopping point for control output 1 when staging outputs

Starting point for control output 2 when staging outputs

Value

58 Chapter 5 535 User's Manual

Controller Set Up

ALARMS

Parameter

1 ALM. TYPE:1

2 ALM. SRC.:1

3

4

7

8

ALARM SP:1

DEADBAND:1

5 ALM.:1 OUT.

6 LATCHING:1

ACK.:1

POWER UP:1

9 MESSAGE:1

10 ALM. TYPE:2

11 ALM. SRC.:2

12 ALARM SP:2

13 DEADBAND :2

14 ALM.:2 OUT.

15 LATCHING :2

16 ACK.:2

17 POWER UP:2

18 MESSAGE:2

19 FAULT

20 OUTPUT

21 RATE TIME

Description

Type of alarm for alarm 1

Source of value being monitored by HIGH or LOW alarm 1

Alarm setpoint alarm 1

Dead band for alarm 1

Output number for alarm 1

Latching sequence for alarm 1

Whether alarm 1 may be acknowledged

How alarm 1 will be treated upon power up

Nine character mesage associated with alarm 1

Type of alarm for alarm 2

Source of value being monitored by HIGH or LOW alarm 2

Alarm setpoint for alarm 2

Dead band for alarm 2

Output number for alarm 2

Latching sequence for alarm 2

Whether alarm 2 may be acknowledged

How alarm 2 will be treated upon power up

Nine character message associated with alarm 2

Alarm status if a fault condition is detected

Output if the rate-of-change alarm is tripped

Time period over which a rate-of-change will be determined

Value

535 User's Manual Chapter 5 59

Controller Set Up

REM. SETPT.

Parameter

1 TYPE V/mA

2 RSP: LO RNG.

3 RSP: HI RNG.

4 RSP: LOW

5 RSP: HIGH

6 TRACKING

7 BIAS LOW

8 BIAS HIGH

9 RSP FIXED

Description

Input signal to be used for remote setpoint

Eng. unit value for low remote setpoint input value

Eng. unit value for high remote setpoint input value

Lowest accepted setpoint value from remote setpoint source

Highest accepted setpoint value from remote setpoint source

Whether the local setpoint will track the remote setpoint

Lowest bias value that may be entered

Highest bias value that may be entered

Status upon restoration of lost remote setpoint

Values

RETRANS.

Parameter

1 TYPE:2

2 LOW RANGE:2

3 HI RANGE:2

4 TYPE:3

5 LOW RANGE:3

6 HI RANGE:3

7 TYPE:4

8 LOW RANGE:4

9 HI RANGE:4

Description

What is to be retransmitted for retransmission output 2

Low end of range in eng. units for retransmission output 2

High end of range in eng. units for retransmission output 2

What is to be retransmitted for retransmission output 3

Low end of range in eng. units for retransmission output 3

High end of range in engl units for retransmission output 3

What is to be retransmitted for retransmission output 4

Low end of range in eng. units for retransmission output 4

High end of range in eng. units for retransmission output 4

Values

60 Chapter 5 535 User's Manual

Controller Set Up

SELF TUNE

Parameter

1 TYPE

2 PRETUNE

3 TUNE PT.

4 OUT. STEP

5 LOW LIMIT

6 HI LIMIT

7 TIMEOUT

8 MODE

9 NOISE BND.

10 RESP. TIME

11 DEAD TIME

Description

Type of self tuning algorithm that is available

Output step size in absolute percent

TYPE 1: Defines the PV value at which the output switches off

TYPE 2 & 3: Defines output step size in absolute percent

Lower limit PV can reach during Pretune before aborting

Upper limit PV can reach during Pretune before aborting

Execution time limit for Pretune before aborting

Control mode after Pretune is completed or aborted

Noise band to be used by adaptive tuning algorithm

Response time to be used by adaptive tune

Time required to wait before responding to output change

Value

SPECIAL

Parameter

1 AUTO. TRIP

Description

How controller automatically trips to auto control for

2 TRIP DEV.

manual

Deviation from setpoint at which controller will trip to auto

3 DES. OUTPT.

4 POWER UP

Output value on a trip to manual

Control mode upon power up

5 PWR. UP:OUT.

Output of the controller is powering up in manual control

6 PWR. UP: SP

7 NO. OF SP

Setpoint upon power up

#of setpoints stored for selection by digital input or SET

PT key

Value

535 User's Manual Chapter 5 61

Controller Set Up

SECURITY

Parameter

1 SEC. CODE

2 SP ADJUST

3 AUTO./MAN.

4 SP SELECT

5 ALARM ACK.

6 TUNING

7 CONFIGURE

Description

Security code for temporarily unlocking the instrument

Lockout status for setpoint changes

Lockout status of the MANUAL key

Lockout status of the SET PT key

Lockout status of the ACK key

Lockout status for adjustment of tuning parameters

Lockout status for Set Up parameters

Values

SER COMM.

Parameter

1 STATION

2 BAUD RATE

3 CRC

4 SHED TIME

5 SHED MODE

6 SHED OUT.

7 SHED SP

8 DESIG. SP

Description

The unit’s station address

Baud rate

Whether CRC is being calculated

Time between communications before controller sheds

State of the controller if communications is lost (sheds)

Output if the unit sheds

Setpoint status if communications is lost

Value of the setpoint if controller sheds

Values

62 Chapter 5 535 User's Manual

Tuning

CHAPTER 6

TUNING

OVERVIEW

The self tuning function of the 535 consists of two distinct components —

Pretune and Adaptive Tune. In addition, you may choose from three types of Pretune:

TYPE 1 - for slow thermal processes.

TYPE 2 - for fast fluid or pressure processes.

TYPE 3 - for level control applications.

You choose the type of Pretune in the SELF TUNE menu.

The Pretune and Adaptive Tune components may be used separately or together.

On the following pages is the step by step guide to the TUNING menu parameters.

NOTE:

For more information about Pretune and Adaptive Tune, refer to the section on Tuning applications in Chapter 7.

or to return to

OPERATION mode

OPERATION

Either Manual or

Automatic Control for TUNING mode

+ for SET

UP mode or for OPERATION mode

SET UP

SELF TUNE

TUNING

+ for SET

UP mode

Figure 6.1

Access the Tuning Menu Block

Access Set Up

FAST

+

MENU

Return to Operation

DISPLAY

535 User's Manual

Next menu

FAST

+ MENU

Next parameter

MENU

Next value

▲ ▼

Chapter 6

Access Tuning

MENU

Return to Operation

DISPLAY

63

Tuning

TUNING

ADAPTIVE

DISABLED

PRETUNE

NO

POWR. BACK

DISABLED

PROP. BND.:1

50.0

RESET:1

20

RATE:1

1

MAN. RST.:1

0

CYCLE TM.:1

15.0

TUNING

1. ADAPTIVE

Activates the self tune algorithm (upon transfer to automatic control).

D DISABLED

• ENABLED

2. PRETUNE

Activates the pretune algorithm (if unit is under manual control).

To initiate the Pretune cycle, press the ▲ or ▼ . Confirm by pressing ACK within two seconds.

D NO

3. POWR. BACK

Reduces setpoint overshoot at power up or after setpoint changes.

D DISABLED

• ENABLED

4. PROP. BND.:1

Defines the proportional band for PID set 1.

R 0.1 to 999.0%

D 50.0%

5. RESET:1

Defines the integral time for PID set 1.

R 1 to 9999 seconds

D 20 seconds

6. RATE:1

Defines the derivative time for PID set 1.

R 0 to 600 seconds

D 1 second

7. MAN. RST.:1 (or LOADLINE:1)

Defines the manual reset for PID set 1. If using automatic reset, then this specifies the load line out value.

R 0 to 100%

D 0%

8. CYCLE TM.:1

Defines the cycle time for control output 1 when using a time proportioning output.

R 0.3 to 120.0 seconds

D 15.0 seconds

64

Access Set Up

FAST

+

MENU

Return to Operation

DISPLAY

Next menu

FAST

+ MENU

Chapter 6

Next parameter

MENU

Next value

▲ ▼

Access Tuning Return to Operation

MENU DISPLAY

535 User's Manual

Tuning

9. DEADBAND:1

Defines the dead band for control output 1 when using on/off control.

R 1 to 99999 in engineering units

D 2

10. P. PROP. D.B.

Defines the dead band setting for a slidewire position proportioning output.

R 0.5 to 10.0%

D 2.0%

11. A. PID OFST.:1

For duplex applications, defines the offset for the first output.

R –50.0% to 50.0%

D 0.0%

11B. ON OFST.:1

For On/Off applications, defines the offset for the first output.

R -9999 to 99999 in engineering units

D 0

12A. PID OFST.:2

For duplex applications, defines the offset for the second output.

R –50.0% to 50.0%

D 0.0%

12B. ON OFST.:2

For On/Off applications, defines the offset for the second output.

R -9999 to 99999 in engineering units

D 0

13. REL. GAIN:2

Defines the adjustment factor for the second output’s proportional band. It is multiplied by the effective gain of output 1 to obtain the second output's proportional band.

R 0.1 to 10.0

D 1.0

14. CYCLE TM.:2

Defines the cycle time for control output 2 when using a time proportioning output.

R 0.3 to 120.0 seconds.

D 15.0 seconds

DEADBAND:1

2

P.PROP.D.B.

2.0

PID OFST.:1

0

ON/OFST.:1

0

PID OFST.:2

0

ON/OFST.:2

0

REL. GAIN:2

1.0

CYCLE TM.:2

15.0

Access Set Up

FAST

+

MENU

Return to Operation

DISPLAY

535 User's Manual

Next menu

FAST

+ MENU

Next parameter

MENU

Next value

▲ ▼

Chapter 6

Access Tuning

MENU

Return to Operation

DISPLAY

65

Tuning

DEADBAND:2

2

RSP RATIO

1.00

RSP BIAS

(D)

NO. OF PID

1

PID TRIP

SP VALUE

TRIP:1

(D)

15. DEADBAND:2

Defines the dead band for control output 2 when using on/off control.

R 1 to 99999 in engineering units

D 2

16. RSP RATIO

Defines the multiplier applied to the remote set point.

R -99.99 to 99.99

D 1.00

17. RSP BIAS

Defines the bias (additive term) applied to the remote set point.

R Any value in engineering units (minimum is BIAS LOW; maximum is

BIAS HIGH)

D Dependent on the BIAS LOW and BIAS HIGH values

18. NO. OF PID

Defines the number of PID sets that will be stored and available for use.

R 1 to 8

• SP NUMBER

• PV NUMBER

For numbers>1, PID TRIP defines tripping between the PID sets

Number of PID sets = number of local setpoints

(specified in NO. OF SP). Each PID set has a respective SP NUMBER.

PID Set = the process variable (PV1 or PV2) used when PV SOURCE = 1/2: SWITCH or PV SOURCE =

1/2 :BACKUP

D 1

19. PID TRIP

For NO. OF PID > 1, defines the variable used to select the various PID sets.

• PV VALUE

D SP VALUE

• DEV. VALUE

PID set selection based on process variable

PID set selection based on setpoint

PID set selection based on deviation from setpoint

20. TRIP:1

Defines the value that triggers a change to the primary set (#1) of PID values.

R The process variable range

D Dependent on the process variable range

FOR EACH SET OF PID 2 THROUGH 8, you need to set up the following group of parameters (X represents the PID set number). Set up the parameters as they appear for each set of PID. The controller designates the values for the active PID parameter in the third display with an “*” on either side.

66

Access Set Up

FAST

+

MENU

Return to Operation

DISPLAY

Next menu

FAST

+ MENU

Chapter 6

Next parameter

MENU

Next value

▲ ▼

Access Tuning Return to Operation

MENU DISPLAY

535 User's Manual

Tuning

21. PROP. BND.:X

Defines the proportional band for PID set X.

R 0.1 to 999.0%

D 50.0%

22. RESET:X

Defines the integral time for PID set X.

R 1 to 9999 seconds (increments of 1)

D 20 seconds

23. RATE:X

Defines the derivative time for PID set X.

R 0 to 600 seconds

D 1 seconds

24. MAN. RST.:X (or LOADLINE:X)

Defines the manual reset (or load line) for PID set X.

R 0 to 100%

D 0%

25. TRIP:X

This defines the value that triggers a change to the Xth set of PID values.

R The process variable range

D Dependent on the process variable range

PROP.BND.:X

(D)

RESET:X

(D)

RATE:X

1

MAN.RST.:X

0

TRIP:X

(D)

Access Set Up

FAST

+

MENU

Return to Operation

DISPLAY

535 User's Manual

Next menu

FAST

+ MENU

Next parameter

MENU

Next value

▲ ▼

Chapter 6

Access Tuning

MENU

Return to Operation

DISPLAY

67

Tuning

TUNING

Parameter

1. ADAPTIVE

2. PRETUNE

3. POWR. BACK

4. PROP. BND.:1

5. RESET:1

6. RATE:1

7. MAN. RST.:1

8. CYCLE TM.:1

9. DEADBAND:1

10. P. PROP. D.B.

11A. PID OFST.:1

11B. ON OFST.:1

12A. PID OFST.:2

12B. ON OFST.:2

13. REL. GAIN:2

14. CYCLE TM.:2

15. DEADBAND:2

16. RSP RATIO

17. RSP BIAS

18. NO. OF PID

19. PID TRIP

20. TRIP:1

21. PROP. BND.:2

22. RESET:2

23. RATE:2

24. MAN. RST.:2

25. TRIP:2

26. PROP. BND.:3

27. RESET:3

28. RATE:3

29. MAN. RST.:3

Definition

Activates the self tune algorithm.

Activates the pretune algorithm.

Reduces setpoint overshoot.

Defines the proportional band for PID set 1.

Defines the integral time for PID set 1.

Defines the derivative time for PID set 1.

Defines the manual reset for PID set 1.

Defines the cycle time for control output 1.

Defines the dead band for control output 1.

Defines the dead band setting for a slidewire output.

For duplex applications, defines the offset for the first output.

For On/Off applications, defines the offset for the first output.

For duplex applications, defines the offset for the 2nd output.

For On/Off applications, defines the offset for the 2nd output.

Defines the adjustment factor for the output 2 prop. band.

Defines the cycle time for control output 2.

Defines the dead band for control output 2.

Defines the multiplier applied to the remote set point.

Defines the bias (additive term) applied to the remote set point.

Defines the number of stored and available PID sets.

Defines the variable used to select the various PID sets.

Defines the value that triggers a change to primary PID set.

Defines the proportional band for PID set 2.

Defines the integral time for PID set 2.

Defines the derivative time for PID set 2.

Defines the manual reset (or load line) for PID set 2.

Defines the value that triggers a change to the 2nd PID set.

Defines the proportional band for PID set 3.

Defines the integral time for PID set 3.

Defines the derivative time for PID set 3.

Defines the manual reset (or load line) for PID set 3.

Values

68 Chapter 6 535 User's Manual

30. TRIP:3

31. PROP. BND.:4

32. RESET:4

33. RATE:4

34. MAN. RST.:4

35. TRIP:4

36. PROP. BND.:5

37. RESET:5

38. RATE:5

39. MAN. RST.:5

40. TRIP:5

41. PROP. BND.:6

42. RESET:6

43. RATE:6

44. MAN. RST.6

45. TRIP:6

46. PROP. BND.:7

47. RESET:7

48. RATE:7

49. MAN. RST.:7

50. TRIP:7

51. PROP. BND.:8

52. RESET:8

53. RATE:8

54. MAN. RST.:8

55. TRIP:8

Defines the value that triggers a change to the 3rd PID set.

Defines the proportional band for PID set 4.

Defines the integral time for PID set 4.

Defines the derivative time for PID set 4.

Defines the manual reset (or load line) for PID set 4.

This defines the value that triggers a change to the 4th PID set.

Defines the proportional band for PID set 5.

Defines the integral time for PID set 5.

Defines the derivative time for PID set 5.

Defines the manual reset (or load line) for PID set 5.

This defines the value that triggers a change to the 5th PID set.

Defines the proportional band for PID set 6.

Defines the integral time for PID set 6.

Defines the derivative time for PID set 6.

Defines the manual reset (or load line) for PID set 6.

This defines the value that triggers a change to the 6th PID set.

Defines the proportional band for PID set 7.

Defines the integral time for PID set 7.

Defines the derivative time for PID set 7.

Defines the manual reset (or load line) for PID set 7.

This defines the value that triggers a change to the 7th PID set.

Defines the proportional band for PID set 8.

Defines the integral time for PID set 8.

Defines the derivative time for PID set 8.

Defines the manual reset (or load line) for PID set 8.

This defines the value that triggers a change to the 8th PID set.

Tuning

535 User's Manual Chapter 6 69

Tuning

SELF TUNE MESSAGES AND TROUBLESHOOTING

Refer to Chapter 7 for more information on the Self Tune function of the 535 controller.

When the Pretune function terminates, one of the following messages will appear:

Message

A

Pretune

Type

Conclusion/Problem

A

Corrective Action

A

COMPLETED

ABORTED

LIMIT ERR.

TIME OUT

NOISE ERR.

INPUT ERR.

OUT. ERROR

DATA ERR.

ZERO ERR.

DEV. ERROR

RETRY

1

2, 3

1, 2, 3

1

2, 3

1, 2, 3

1, 2, 3

1, 2, 3

1, 2, 3

1, 2, 3

1, 2, 3

1, 2, 3

1, 2, 3

2,3

2,3

1

1, 2, 3

PRETUNE has generated initial PID and the Dead Time values.

PRETUNE has generated initial PID, Response Time,

Noise Band and the Dead Time values.

User has aborted PRETUNE before completion.

The Process Variable went beyond the HI LIMIT or LOW

LIMIT.

The Process Variable went beyond the HI LIMIT or LOW

LIMIT.

The initial Process Variable was near or beyond the HI

LIMIT or LOW LIMIT.

TIMEOUT limit was reached before PRETUNE completed.

Too much PV noise was detected.

PV or Cold Junction break detected during PRETUNE.

Change the HI LIMIT and LOW LIMIT, or the HIGH OUT and LOW OUT, and run PRETUNE again.

Change the HI LIMIT and LOW LIMIT, or the OUT.STEP

size, and run PRETUNE again.

Change the manual output percentage, or the HI LIMIT and

LOW LIMIT, and run PRETUNE again.

Set a longer TIMEOUT period and/or increase the

OUT.STEP size, and run PRETUNE again.

Eliminate the noise source (if possible) or increase the

OUT.STEP and run PRETUNE again.

Check the described conditions and make corrections or repairs.

PV HIGH or PV LOW detected during PRETUNE.

SLIDEWIRE break detected during PRETUNE.

REMOTE SP break detected during PRETUNE.

The initial control output is outside the high and low limits defined in the Control Menu.

The PV moved too quickly to be Analyzed.

One or more model parameters are calculated to be zero.

The initial PV is too close to the TUNE PT.

The Process Variable went beyond the HI LIMIT or LOW

LIMIT

Change the manual output percent and run PRETUNE again.

Increase the OUT.STEP size and run PRETUNE again.

Increase the OUT.STEP size and run PRETUNE again.

Move Tune PT. (or the set point if TUNE PT. is automatic) farther from the process variable and run PRETUNE again.

Check if any PID values are generated and if they are acceptable. If not, eliminate noise sources (if possible) and run PRETUNE again.

If Pretune and Adaptive Tune do not generate optimal PID values for control, check the following menu entries:

Message

A

RESPONSE

TIME

NOISE BAND

Potential Problem

A

Adaptive Tune cannot run if RESPONSE TIME is inaccurate

Adaptive Tune cannot compensate for PV oscillation due to hysteresis of output device (e.g., a sticky valve).

PRETUNE Pretune does not develop optimum PID parameters.

Corrective Action

A

Run TYPE 2 or TYPE 3 Pretune to obtain the correct value, or enter it manually.

Set NOISE BAND large enough to prevent Adaptive Tune from acting on the oscillation. If oscillation is not acceptable, consider replacing valve.

Wrong Pretune TYPE selected. Refer to Chapter 7, the

Section on Self Tune.

70 Chapter 6 535 User's Manual

Applications

CHAPTER 7

APPLICATIONS

The 535 controller provides a variety of user-programmable control features and capabilities. The following topics are included in this chapter:

NOTE: Controller capabilities depend upon the specified hardware option.

A. Control Type ......................................... 71

B. Alarms ................................................. 72

C. Duplex Control ...................................... 76

D. Slidewire Position Proportioning Control .. 81

E. Velocity Position Proportioning Control .... 82

F. Staged Outputs .................................... 83

G. Retransmission .................................... 83

H. Digital Inputs ......................................... 84

I. Remote Setpoint ................................... 86

J. Multiple Setpoints .................................. 87

K. Multiple Sets of PID Values .................... 87

L. Powerback ........................................... 88

M. Self Tune—POWERTUNE® ................. 89

N. Ramp-to-Setpoint ................................. 94

O. Input Linearization ................................. 95

P. Load Line ............................................. 97

Q. Security ............................................... 97

R. Reset Inhibition ..................................... 98

S. Process Variable Reading Correction ..... 98

T. Serial Communications ......................... 99

U. Cascade Control ................................. 100

V. Ratio Control ...................................... 103

A. CONTROL TYPE

Software Configuration

1. Go to the CONTROL menu.

2. For the parameter ALGORITHM, select the type of 535 control:

• ON-OFF

“Crude” control similar to a household thermostat. Used primarily on slow, stable processes where moderate deviation (cycling) around setpoint is tolerable. Only available with SSR, SSR Drive, and relay outputs.

• P

Proportional only control. Provides much better control than on/off.

Used on processes that are less stable or require tighter control, but have few load variations and do not require a wide range of setpoints.

• PI

Proportional plus integral control. In addition to proportional control, it compensates for control errors due to wide range of setpoints or load requirements. The integral term works to eliminate offsets.

• PD

Proportional plus derivative control. In addition to proportional control, it compensates for control errors due to fast load variations.

• PID

Proportional plus integral plus derivative control. In addition to proportional control, it compensates for changes in setpoint, load requirements and process variations.

• PID/ON-OFF

Only available with Duplex control. First output uses the PID algorithm, while second output uses on/off control.

3. For algorithms using the derivative function (D), choose the conditions for the derivative term:

535 User's Manual Chapter 7 71

Applications

Scroll to parameter D. SOURCE

• For derivative action based on error, or deviation from setpoint, choose

DEVIATION

• For derivative action based on process variable changes, choose PV.

NOTE: Specifying a variable other than the setpoint (SP) to HIGH

ALARM and LOW ALARM allows for greater flexibility in creating alarm and control strategies.

B. ALARMS

The 535 controller has two extremely flexible and powerful software alarms.

The number of available outputs limits how alarms are linked to relays. A Global

Alarm feature allows all alarms to be assigned to the same relay.

The 535 indicates an alarm condition by:

• Lighting up the alarm icon(s)

• Displaying a custom message in the 3rd display

• Illuminating the ACK key (if the alarm is acknowledgeable)

Software Configuration

1. Access the ALARM menu.

2. Set values for the following parameters. All possible values are shown.

ALM.TYPE:1 and ALM. TYPE:2

Specifies the type of alarm to implement. Selection includes:

• HIGH ALARM

High process variable alarm. Occurs when the process variable exceeds the alarm setpoint.

• LOW ALARM

Low process variable alarm. Occurs when the process variable goes below the alarm setpoint.

• HIGH/LOW

Combination of high and low alarms. Occurs when the PV exceeds the individually set high or low setpoint.

• BAND

Creates a band centered around the control setpoint, that is twice the alarm setpoint. Alarm occurs when the process variable travels outside of this band. The alarm is dependent on the control setpoint.

As the control setpoint changes, the band adjusts accordingly.

For example, if the control setpoint is 500 and the alarm setpoint is

25, then the band extends from 475 to 525.

• DEVIATION

Similar to the band alarm but creates a band only on one side of the control setpoint. Alarm occurs when the process variable deviates from the control setpoint by an amount greater than the alarm setpoint. This alarm is dependent on the control setpoint; as the control setpoint changes, the alarm point changes.

For example, if the control setpoint is 500 and the alarm setpoint is

+50, then an alarm occurs when the process variable exceeds 550.

In order for an alarm to occur when the process variable drops below 450, select an alarm setpoint of –50.

72 Chapter 7 535 User's Manual

• MANUAL

Alarm occurs when the controller is put into manual mode of operation. This may be useful for security purposes or to alert the operator that 535 is no longer under automatic control.

• RATE

Alarm occurs when the process variable changes at a rate greater than what is specified by the alarm setpoint and time base. This alarm helps to anticipate problems before the process variable can reach an undesirable level.

For example, if the alarm setpoint is 10 with a time base of 5 seconds, an alarm occurs whenever a change in process variable greater than 10 occurs in 5 seconds.

ALM.SRC.:1 and ALM.SRC.:2

For HIGH , LOW or HIGH/LOW alarms, specifies the variable (source) upon which a selected alarm is based. Selection includes:

• PV

• PV2

• SP

• RAMP SP

• DEVIATION

• OUTPUT

ALARM SP:1 and ALARM SP:2

Defines the point at which an alarm occurs. For a RATE (rate of change) alarm, it specifies the amount of change (per RATE TIME period) that must occur before the alarm activates. A negative value specifies a negative rate-of-change. Does not apply to HIGH/LOW alarms.

HIGH SP:1 and HIGH SP:2

For a HIGH/LOW alarm, defines the high setpoint at which an alarm occurs.

LOW SP:1 and LOW SP:2

For a HIGH/LOW alarm, defines the low setpoint at which an alarm occurs.

DEADBAND:1 and DEADBAND:2

Specifies the range through which the process variable must travel before leaving an alarm condition (see alarm examples at the end of this section). Prevents frequent alarm oscillation or “chattering” if the process variable has stabilized around the alarm point.

ALM.1 OUT and ALM.2 OUT

For any enabled alarm, selects the output number to which the selected alarm will be assigned. It is possible to assign both alarms to the same output relay, thus creating a “global” alarm application.

LATCHING:1 and LATCHING:2

A latching (YES) alarm will remain active after leaving the alarm condition unless it is acknowledged. A non-latching (NO) alarm will return to the non-alarm state when leaving the alarm condition without being acknowledged.

535 User's Manual Chapter 7

Applications

73

Applications

74

Alarm Parameters Reference

For Alarm 1

Parameter Description

ALM. TYPE:1 Type

ALM. SRC.:1 Source

ALARM SP:1 Setpoint

HIGH SP:1

LOW SP:1

High setpoint

Low setpoint

DEADBAND:1 Deadband

ALM.:1 OUT.

Output number

LATCHING:1 Latching sequence

ACK.:1 Acknowledging

POWER UP:1 Status on power up

MESSAGE:1 Message

For Alarm 2

Parameter Description

ALM. TYPE:2 Type

ALM. SRC.:2 Source

ALARM SP:2 Setpoint

HIGH SP:2 High setpoint

LOW SP:2 Low setpoint

DEADBAND:2 Deadband

ALM.:2 OUT.

Output number

LATCHING:2 Latching sequence

ACK.:2 Acknowledging

POWER UP:2 Status on power up

MESSAGE:2 Message

For either alarm

(depending on choices)

Parameter

FAULT

Description

Fault assignment

OUTPUT Output action for rate

RATE TIME Time base for rate

ACK.:1 and ACK.:2

For any enabled alarm, enables or disables operator use of the ACK key to acknowledge an alarm at any time, even if the control process is still in the alarm condition.

A latching alarm can always be acknowledged when it is out of the alarm condition. When either alarm is available to be acknowledged, the ACK key will be illuminated. If both alarms are acknowledgeable, pressing

ACK will first acknowledge alarm #1. Pressing ACK a second time will acknowledge alarm #2.

POWER UP:1 and POWER UP:2

For any enabled alarm, selects the alarm condition upon power up.

Choices are:

• NORMAL

Controller will power up in alarm only if it is in alarm condition.

• ALARM:

Controller always powers up in alarm regardless of system’s alarm condition. This is an excellent way to activate an alarm if there has been a power failure.

• DELAYED

Controller will never power up in alarm, regardless of system’s alarm condition. The system must leave and reenter the alarm condition before the alarm will activate. This is typically used to avoid alarms during start up.

MESSAGE:1 and MESSAGE:2

Allows user to specify a nine-character message to be displayed when the respective alarm is active. If both alarms are active or any other diagnostic message is present, the messages will alternate.

FAULT

Activates an alarm if the process variable signal is lost. Assign this function to either Alarm 1 or Alarm 2 (not both). This action is in addition to the selected alarm type (additive alarm function).

OUTPUT

For a RATE alarm, selects the output action. Use to obtain early indication of a possible break in the process variable signal. Select PV BREAK to have rate-of-change alarm take the same action as a detection of a break in the process variable signal (where it trips to manual control at a predetermined output).

RATE TIME

For RATE alarms, defines the time period over which a discrete change in process variable must occur for the rate alarm to be activated. The amount of change is defined by the alarm setpoint. The rate-of-change is defined as the amount of change divided by the time period.

Example

A. If the alarm setpoint is set to 10 and the time base is set to 1 second, the rate of change is 10 units per second.

B. If the alarm setpoint is set to 100 and the time base set to 10, the rate of change is also 10 units per second.

Chapter 7 535 User's Manual

Applications

In example A, the process variable would only have to experience a ten unit change over a short period of time, while in Example B, it would require a 100 unit change over a ten second period. Example A is much more sensitive than Example B. In general, for a given rate-of-change, the shorter the time period, the more sensitive the rate alarm.

BAND ALARM

Figure 7.1

Alarm Examples

HIGH PROCESS VARIABLE ALARM

DB

IN ALARM

CONDITION

IN ALARM

CONDITION

C.SP

+ A.SP

IN ALARM

CONDITION

PV

PV

DB

C.SP

A.SP

DB

TIME

C.SP

- A.SP

RELAY

ENERGIZED

ICON OFF

NO ALARM

RELAY

DE-ENERGIZED

ICON ON

RELAY

ENERGIZED

ICON OFF

CANNOT

ACKNOWLEDGE

NO ALARM

RELAY

DE-ENERGIZED

ICON ON

CANNOT

ACKNOWLEDGE

PARAMETER SETTINGS:

OUTPUT N = ALM.RLY:OFF (N = 2 to 4)

ALM. TYPE:1 = BAND

ALM.:1 OUT. = N (N= 2 to 4)

LATCHING = NO LATCH

ACK.:1 = DISABLED

DEVIATION ALARM

IN ALARM

CONDITION

C.SP

TIME

RELAY

DE-ENERGIZED

ICON OFF

NO ALARM

RELAY

ENERGIZED

ICON ON

MAY

ACKNOWLEDGE

RELAY

DE-ENERGIZED

ICON OFF

NO ALARM

PARAMETER SETTINGS:

OUTPUT N = ALM.RLY:ON (N = 2 to 4)

ALM. TYPE:1 = HIGH ALRM.

ALM.:1 OUT. = N (N = 2 to 4)

LATCHING = NO LATCH

ACK.:1 = ENABLED

POWER UP ALARM

A.SP

PV

DB

DB

RELAY

DE-ENERGIZED

ICON OFF

NO ALARM

PV

TIME

RELAY

ENERGIZED

ICON ON

MAY

ACKNOWLEDGE

MUST

ACKNOWLEDGE

TO SHUT OFF

ICON AND

DE-ENERGIZE

RELAY

C.SP

+ A.SP

UNIT

POWER UP

ALARM

CONDITION

TIME

RELAY

ENERGIZED

ICON ON

MAY

ACKNOWLEDGE

RELAY

ENERGIZED

ICON ON

RELAY

ENERGIZED

ICON ON

CANNOT

ACKNOWLEDGE

MAY

ACKNOWLEDGE

PARAMETER SETTINGS:

OUTPUT N = ALM.RLY:ON (N = 2 to 4)

ALM. TYPE:1 = DEVIATION

ALM.:1 OUT. = N (N = 2 to 4)

LATCHING = LATCH

ACK.:1 = ENABLED

ALARM SP:1 = (<0)

535 User's Manual

PARAMETER SETTINGS:

OUTPUT N = ALM.RLY:ON (N = 2 to 4)

ALM. TYPE:1 = HIGH ALM.

ALM.:1 OUT. = N (N = 2 to 4)

LATCHING:1 = LATCH

ACK.:1 = DISABLED

POWER UP:1 = ALARM

Chapter 7 75

Applications

NOTE: The duplex output states vary depending upon:

1. Control Type (PID, On/Off, etc.)

2. Control Action (DA, RA)

3. Output Limits

4. Output Gap or Overlay, and

5. Ouput 2 Relative Gain and PID%

Output.

Please refer to the output state examples in this section to confirm that the configuration is appropriate for the process.

NOTE: Set manual reset/load line parameters to 50% when using Duplex control (MAN. RST.:X parameter is in the TUNING menu.)

C. DUPLEX CONTROL

The Duplex control algorithm enables two discrete control outputs for the control loop. Duplex control is commonly used for applications that require both heating and cooling or when 2 control elements are needed to achieve the desired result.

Hardware Configuration

• The controller must have two output modules assigned to the loop (any combination of output modules).

Software Configuration

1. Go to the CONFIG. menu.

Set CTRL.TYPE to DUPLEX.

2. To use different algorithms for each output (PID for the first, and On/Off for the second):

Go to the CONTROL menu.

Set ALGORITHM to PID:ON/OFF.

3. To make the control action for each output independent of the other:

Go to the CONTROL menu.

Set ACTION:1 or ACTION:2 to either DIRECT or REVERSE action based on the diagrams in the output examples section (Figures 7.2 through 7.8).

4. Go to the TUNING menu.

Set values for PID OFST:1 (or ON OFST:1) and PID OFST:2 (or ON

OFST:2). These parameters allow the user to independently offset the point at which output 1 and output 2 become active. PID OFSET units are in percent (%) of control output; ON OFST is in engineering units. The settings can be used to make sure there is a dead band, i.e., no controller output around setpoint. They can also be used to overlap output 1 and output 2 so that both are “on” in a small band around setpoint.

5. Set MAN. RESET (manual reset) term to 50%. This causes the PID output to be 50% when there is zero error. This term is still active as a “load line” setting when using automatic reset (integral), so set it to 50% whether using automatic reset or not.

6. REL. GAIN (relative gain) changes the gain of Output 2 relative to Output

1. Note that the relative gain can limit the maximum output available for

Output 2 when using PID control.

7. Go to the CONTROL menu.

Set LOW OUT. and HIGH OUT. to limit the maximum or minimum outputs from Output 1 and Output 2. The actual limitation on the outputs is dependent on the offset settings, the relative gain setting and the control action.

Duplex Output State Examples

The following Duplex examples represent a variety of ways this function can be set up. PID control examples show the PID output percentage on the horizontal axis, and On/Off control examples show the process variable on the horizontal axis. The vertical axes are the output of each physical output. Most of these examples use the first output as heating and the second output as cooling.

When using PID control, the 535 controller actually displays the PID output.

To relate this output to the actual physical output, locate the PID output on the

76 Chapter 7 535 User's Manual

Applications horizontal axis. Draw a vertical line at that point. At the intersection of this vertical line and the respective output line, draw a horizontal line. The physical output is the value where this horizontal line intersects the respective axis.

The illustrations assumes a manual reset/load line term of 50%. Therefore, at zero error (process variable equals setpoint) the PID output is 50%.

Duplex with reverse and direct acting outputs

A reverse acting output 1 and a direct acting output 2 with: no offset, no restrictive outputs limits, and a neutral relative gain with PID control.

PARAMETER SETTINGS

ACTION:1 = REVERSE

ACTION:2 = DIRECT

PID OFST.:1 = 0

PID OFST.:2 = 0

LOW OUT = 0

HIGH OUT = 100

REL. GAIN = 1.0

Out 1

100%

Out 2

100%

Out 1 Out 2

Figure 7.2

Duplex with Reverse and Direct

Acting Outputs

0%

100% 50%

PID OUTPUT

0%

0%

Duplex with direct and reverse acting outputs

A reverse acting output 1 and a direct acting output 2 with: no offset, no restrictive output limits, and a neutral relative gain with PID control.

PARAMETER SETTINGS

ACTION:1 = DIRECT

ACTION:2 = REVERSE

PID OFST.:1 = 0

PID OFST.:2 = 0

LOW OUT = 0

HIGH OUT = 100

REL. GAIN = 1.0

Out 1

(Heat)

100%

Out 1

Out 2 Out 1

Out 2

Out 2

(Cool)

100%

Figure 7.3

Duplex with Direct and Reverse

Acting Outputs

0%

100% 50%

PID OUTPUT

0%

0%

535 User's Manual Chapter 7 77

Applications

Figure 7.4

Duplex with Two Reverse Acting

Outputs

Duplex with 2 reverse acting outputs

Two reverse acting outputs with: no offset, no restrictive output limits, and a neutral relative gain with PID control.

PARAMETER SETTINGS

ACTION:1 = REVERSE

ACTION:2 = REVERSE

PID OFST.:1 = 0

PID OFST.:2 = 0

LOW OUT = 0

HIGH OUT = 100

REL. GAIN = 1.0

Out 1

(Heat)

100%

Out 1 Out 2

Out 2

(Cool)

100%

0%

100% 50%

PID OUTPUT

0%

0%

Duplex with a gap between outputs

A reverse acting output 1 and a direct acting output 2 react with: a positive offset for output 1 and a negative offset for output 2 (assume no restrictive output limits and a neutral relative gain with PID control).

On the graph, a positive offset refers to an offset to the left of 50%; a negative offset is to the right of 50%.

Figure 7.5

Duplex with a Gap Between Outputs

PARAMETER SETTINGS

ACTION:1 = REVERSE

ACTION:2 = DIRECT

PID OFST.:1 = + VALUE

PID OFST.:2 = – VALUE

LOW OUT = 0

HIGH OUT = 100

REL. GAIN = 1.0

Out 1

(Heat)

100%

Out 2

(Cool)

100%

Out 1 Out 2

0%

100%

Offset 1

50%

PID OUTPUT

Offset 2

0%

0%

78 Chapter 7 535 User's Manual

Applications

Duplex with overlapping outputs and output limits

A reverse acting output 1 and a direct acting output 2 with: a negative offset for output 1, a positive offset for output 2, and restrictive high and low output limits with PID control.

This combination of offsets results in an overlap where both outputs are active simultaneously when the PID output is around 50%.

The output limits are applied directly to the PID output. This in turn limits the actual output values. In this example, the high output maximum limits the maximum value for output 1, while the low output minimum limits the maximum value for output 2. The value the actual outputs are limited to depends on offset settings, control action and relative gain setting with PID control.

PARAMETER SETTINGS

ACTION:1 = REVERSE

ACTION:2 = DIRECT

PID OFST.:1 = – VALUE

PID OFST.:2 = + VALUE

LOW OUT = 10%

HIGH OUT = 85%

REL. GAIN = 1.0

Out 1

(Heat)

100%

Out 2

(Cool)

100%

Out 1 Out 2

Figure 7.6

Duplex with Overlapping Outputs and Output Limits

0%

100%

85%

50%

PID OUTPUT

10%

0%

0%

Duplex with various relative gain settings

A reverse acting output 1 and a direct acting output 2 with: various relative gain settings (assume no offset or restrictive outputs) with PID control.

PARAMETER SETTINGS

ACTION:1 = REVERSE

ACTION:2 = DIRECT

PID OFST.:1 = 0

PID OFST.:2 = 0

LOW OUT = 0

HIGH OUT = 100

REL. GAIN ❶ = 2.0

REL. GAIN

= 1.0

REL. GAIN ❸ = 0.5

Out 1

(Heat)

100%

Out 1

Out 2

Out 2

(Cool)

100%

50%

Figure 7.7

Duplex with Various Relative Gain

Settings

0%

100% 50%

PID OUTPUT

25%

0%

0%

535 User's Manual Chapter 7 79

Applications

Figure 7.8

Duplex with One ON/OFF Output

Notice that the relative gain setting does not affect output 1. In this example, a relative gain setting of 2.0 (curve 1) results in output 2 reaching its maximum value at a PID output of 25%. A relative gain setting of 1.0 results in output 2 reaching its maximum value at a PID output of 0%. A relative gain setting of 0.5

results in output 2 reaching a maximum of 50% at a PID output of 0%.

Duplex with one ON/OFF output

A reverse acting output 1 and a direct acting, on/off output 2 with a positive offset.

Relative gain does not apply when using duplex with an on/off output. The deadband setting for output 2 works the same as the deadband in single on/off control (the deadband effect for output 2 is not illustrated here).

PARAMETER SETTINGS

ACTION:1 = REVERSE

ACTION:2 = DIRECT

PID OFST.:1 = 0

ON OFST.:2 = + VALUE

LOW OUT = 0

HIGH OUT = 100

Out 1

(Heat)

100%

Out 1 Out 2

Out 2

(Cool)

ON

0%

100% 50%

PID OUTPUT

OFF

Out 2 Offset from Setpoint

0% in Engineering Units

Figure 7.9

Duplex with Two ON/OFF Outputs

Duplex with two ON/OFF outputs

A reverse acting on/off output 1 and a direct acting on/off output 2 with a negative offset for output 1 and a positive offset for output 2.

Note that here the horizontal axis is expressed in terms of process variable rather than PID output.

PARAMETER SETTINGS

ACTION:1 = REVERSE

ACTION:2 = DIRECT

ON OFST.:1 = – VALUE

ON OFST.:2 = + VALUE

Out 1

(Heat)

ON

Out 2

(Cool)

ON

Out 1

Out 2

80 Chapter 7

OFF

Low

Range

Offset 1 SP Offset 2

PROCESS VARIABLE

OFF

High

Range

535 User's Manual

Applications

D. SLIDEWIRE POSITION PROPORTIONING CONTROL

Slidewire position proportioning utilizes a slidewire feedback signal to determine the actual position of the actuator being controlled.

Hardware Configuration

• The controller must have the Slidewire Feedback option installed. Refer to the order code in Chapter 1 for more information.

• The controller must have mechanical relays, solid state relays or DC logic modules installed in the first two output sockets.

• The Slidewire does NOT have to be wired to the controller in order to set up position proportioning.

Software Configuration

1. To configure the controller before wiring the slidewire feedback signal to the controller, complete these steps: a. Go to the CONTROL menu.

b. Set a value for PV BREAK.

c. Go to the SPECIAL menu.

d. Set a value for DES. OUTPT.

e. Set a value for PWR.UP:OUT.

f.

Go to SER. COMM. menu.

g. Set a value for SHED OUT.

2. Place the controller under manual control.

3. Go to the CONFIG. menu.

4. Set CTRL. TYPE to POS. PROP (position proportioning).

5. Set P.P. TYPE to SLIDEWIRE.

6. Go to the CONTROL menu.

7. For S/W RANGE, specify the full range resistance of the slidewire from endto-end. With a 100 ohm slidewire, this parameter should be set to 100.

8. Scroll to OPEN F/B (Open feedback). Enter the ohm value when the actuator is fully open (0 to 1050 ohms).

9. Scroll to CLOSE F/B (Closed feedback). Enter the ohm value when the actuator is fully closed (0 to 1050 ohms).

10. Measure the actual slidewire value at the terminals (10 and 11).

As an alternative, set up these two parameters dynamically. Before entering Set Up set the manual output at 100%. Enter Set Up and change the

OPEN F/B value until the actuator just reaches its full open position.

Exit Set Up and set the manual output to 0%. Enter configuration and change the CLOSE F/B value until the actuator just reaches its full closed position.

11. Set the parameter P. PROP. D.B., which is used to eliminate cycling of the motor. A low deadband setting may result in motor overspin or cycling. A high deadband will result in reduction of sensitivity. To set: a. Go to the TUNING menu.

b. Set P. PROP. D.B. to .5%.

c. Place controller under Manual control.

d. Change the output percentage and observe if the valve stabilizes at the new value.

CAUTION!

The relay in socket 1 drives the motor counterclockwise and the relay in output socket 2 drives the motor clockwise.

This is important for:

• Wiring the outputs

• Selecting the control ACTION:1 parameter, or

• Determining the normally open or normally closed relays,

The configuration choices influence the way the position proportioning algorithm works.

NOTE: OPEN F/B and CLOSE F/B values are always reference to the

CCW end of the Slidewire.

NOTE: P.PROP.D.B. can only be configured if the Slidewire Feedback is wired to the controller.

535 User's Manual Chapter 7 81

Applications e. If the valve oscillates, increase the P.PROP.D.B. value by 0.5%; repeat until oscillation stops.

12. Set the parameter S/W BREAK to define the output value for when the slidewire breaks.

NOTE: Adaptive tuning is not available with velocity position proportioning control.

E. VELOCITY POSITION PROPORTIONING CONTROL

Velocity position proportioning does not utilize direct feedback. It estimates the position of the actuator, based on time and the speed of the actuator.

In automatic control mode, the controller will display “CW” to refer to energizing of the clockwise relay, and “CCW” to refer to energizing of the counterclockwise relay. A blank display means that both relays are de-energized.

In manual control mode, the display is blank unless an output change is being made. Use the ▲ and ▼ keys to change the output; the relay is only energized while the keys are being pressed. The display indicates the percentage change in valve position in real time. The rate of change is dependent on the values entered for CCW TIME and CW TIME.

The controller will transfer to manual control due to a lost process variable (PV.

BREAK), a digital input closure (DES.OUTPT.), a power-up sequence

(PWR.UP:OUT.), or lost communications (SHED OUT). In these cases, the output can be set to: remain at its last value with both relays de-energized (OUTS

OFF); rotate fully counterclockwise (CCW); or rotate fully clockwise (CW). CCW and CW will energize the respective relay for a period two times that of the CCW

TIME or CW TIME.

Hardware Configuration

• The controller must have mechanical relay, solid state relay or DC logic modules installed in the first two output sockets.

Refer to the section on Chapter 1 for more information.

Software Configuration

1. Go to CONFIG. menu.

Set CTRL. TYPE to POS. PROP.

2. Go to the CONTROL menu.

Set P.P. TYPE to VELOCITY.

3. Set CCW TIME to the amount of time (in seconds) it takes for the actuator to fully rotate in the counterclockwise direction.

Set CW TIME to the amount of time (in seconds) it takes for the actuator to fully rotate in the clockwise direction.

Loads on the valve may affect the time required, therefore, it is best to measure these values when the valve is in service. As an alternative, enter the values specified by the actuator manufacturer and then make adjustments later.

5. Set MIN. TIME to the minimum amount of time the controller must specify for the motor to be on before it takes any action.

6. Set values for PV. BREAK, DES. OUTPT., PWR.UP:OUT. and SHED OUT.

82 Chapter 7 535 User's Manual

Applications

F. STAGED OUTPUTS

With staged outputs, one analog output can vary its signal (e.g., 4-20 mA) over a portion of the PID output range. The second analog output then varies its signal over another portion of the PID output range. This is an excellent method to stage two control valves or two pumps using standard control signal ranges.

20 mA

Figure 7.10

Staged Outputs Example

OUT1 STOP was set to 33% and

OUT2 STRT. was set to 50%.

Output 1

Output 2

4 mA

0% 33% 50% 100% PID Output

Hardware Configuration

• The controller must have analog output modules installed in the first two output sockets.

Software Configuration

1. Go to the CONFIG. menu.

Set CTRL. TYPE to STAGED.

2. Go to the CONTROL menu.

3. For OUT1 STOP, specify where the first output reaches 100%.

4. For OUT2 START, specify where the second output begins.

G. RETRANSMISSION

The retransmission feature may be used to transmit a milliamp signal corresponding to the process variable, target setpoint, control output, or actual setpoint to another device. A common application is to use it to record one of these variables with a recorder.

Hardware Configuration

• There must be an analog module installed in output socket 2, 3 or 4.

Software Configuration

Up to two outputs can be configured for retransmission. The menu will scroll through the configuration parameters for specified value “X” (2, 3 or 4).

1. Go to the CONFIG. menu.

2. For OUTPUT:2, OUTPUT:3 and OUTPUT:4 parameters, set one or two of them to RETRANS.

3. Go to the RETRANS. menu.

4. Set the corresponding parameter, TYPE:X, for the first retransmission output to define what is being transmitted: the process variable, setpoint, ramping setpoint or output.

535 User's Manual Chapter 7

NOTE: For an analog output module for retransmission that was not factoryinstalled, calibrate the output for maximum accuracy. Refer to

Appendix 4 for details on calibration.

83

Applications

5. Set parameters LOW RANGE:X and HIGH RANGE:X for the first retransmission output, to define the range of the transmitted signal in engineering units. This can be useful in matching the input range of the receiving device.

6. For any other retransmission output, continue to scroll through this menu and set the TYPE:X, LOW RANGE:X and HIGH RANGE:X for the second retransmission output.

NOTE: To take advantage of multiple setpoints, make sure that the SP

NUMBER parameter in the SPECIAL menu is set to a value greater than 1.

H. DIGITAL INPUTS

Digital inputs can be activated in three ways: A switch (signal type)—the recommended type, a relay, or an open collector transistor.

Digital inputs are only functional when that option is installed (via hardware).

The controller detects the hardware type, and supplies the appropriate software menus (see the section on parameters in Chatper 5). There are 14 contact types for the up to 5 digital inputs.

Hardware Configuration

• This optional feature is only available if ordered originally from the factory,

Product #535xxxxxxDx00. The (up to ) five digital inputs share a common ground.

Software Configuration

1. Go to the CONFIG. menu.

2. Set parameters CONTACT:1 through CONTACT:5 (only those available will shown) by assigning the desired function to each output. Choices are:

• SETPT 1-8

(For CONTACT:1 only) Allows the controller to use the first four digital inputs to select a setpoint (see Figure 7.11). If the state of these inputs remains constant, the controller will continue to use the selected setpoint unless overridden. Override the set of digital inputs by selecting a different setpoint (by using SET PT key or through communications), or by using the fifth digital input to select the remote or

2nd setpoint. To “rearm” this set of digital inputs, the DIN combination must change.

Figure 7.11

Combinations of Closed Digital

Inputs for Each Setpoint (based on

BCD logic)

X=closed contact

0=open contact

Setpoints

SP

SP2

SP3

SP4

SP5

SP6

SP7

SP8

DIN 1

X

O

X

O

X

O

X

O

DIN 2

O

X

X

O

O

X

X

O

DIN 3

O

O

O

X

X

X

X

O

DIN 4

O

O

O

O

O

O

O

X

REM. SETPT.

Closing input changes active setpoint to remote setpoint. Opening reverts controller to previous setpoint. Override by selecting a different setpoint via the SET PT key, a communications command, or

84 Chapter 7 535 User's Manual

Applications other digital inputs.

• MANUAL

Closing input trips the controller to manual. Opening input reverts controller to automatic. Override by using MANUAL key, a communications command, or “trip to automatic” function.

• 2ND. SETPT.

Closing input changes active setpoint to the 2nd local setpoint. Opening input reverts controller to previous setpoint digital input. Override by selecting a different setpoint via the SET PT key, a communications command, or other digital inputs.

• 2ND. PID

Closing input changes active set of PID values to 2nd set. Opening input bases active set of PID on rules defined in PID TRIP and TRIP:1 to TRIP:8. Override input only by directly linking PID set to the active setpoint and changing the active setpoint.

• ALARM ACK.

Closing input acknowledges all active alarms. Opening input “rearms” the controller. If the digital input remains closed, it does not continue to immediately acknowledge alarms as they become active.

• RST. INHBT.

Reset Inhibition. Closing input deactivates “I” (integral) term, regardless of the PID values being used. Opening input activates “I” term

(if applicable).

• D.A./R.A.

Direct Acting/Reverse Acting. Closing input reverses action of the first control output (from direct to reverse, or reverse to direct). Opening reinstates original action.

• STOP A/T

Closing input temporarily disables Adaptive Tuning. Opening input enables it.

• LOCK. MAN.

Closing contact places the controller in manual control at the designated output percentage. All locked manual contacts must be opened in order to return controller to automatic control.

• UP KEY / DOWN KEY

Closing the contact mimics the designated ▲ or ▼ key. Useful if controller is mounted behind a window; contact push-buttons can be used to change setpoint values.

• DISP. KEY

Closing contact mimics the DISPLAY key; scroll through display of the Setpoint, Deviation % and Output%.

• FAST KEY

Closing contact mimics the FAST key . Use in conjunction with ▲ ,

▼ , DISPLAY and MENU keys.

• MENU KEY

Closing contact mimics the MENU key. In OPERATION Mode, provides entry to TUNING menu. In SET UP or TUNING Mode, ad-

NOTE: The second display does not change when tripping to manual from a closed digital input.

NOTE: Only alarms configured to be acknowledged are affected by this digital input.

535 User's Manual Chapter 7 85

Applications

NOTE: There is a one-second delay before a closed digital input takes action.

vances through the menus.

• COMM. ONLY

Makes input status readable through communications (but has no effect on the controller itself).

• PV2.SWITCH

(only applicable for PV SOURCE = 1/2:SWITCH). Closing contact causes the 535 to use PV2 as the PV input (instead of PV1).

Basic Operating Procedures

1. If more than one digital input closes and their actions conflict, the last digital input that closed has priority.

For example, if one digital input closes and selects 2nd setpoint, and then another digital input closes and selects a remote setpoint, the remote setpoint takes precedence.

2. Any digital input can be overridden by: another digital input, a keyboard operation, or an automatic function. If a closed digital input is overridden, then it must be opened in order to be rearmed.

For example, if one digital input closes and selects the 2nd setpoint, and then a different setpoint is selected through the keyboard, the keyboard selection takes precedence.

86

I. REMOTE SETPOINT

Remote setpoint limits are the same as setpoint limits.

Hardware Configuration

• The optional feature is available only if ordered originally from the factory,

Product #535-xxxxxBxx00 or #535-xxxxxExx00). Refer to the order code in Chapter 1.

• Before configuring the software, make sure the corresponding jumper is set properly. Refer to Chapter 4 to check or change jumper positions.

Software Configuration

1. Go to the REM. SETPT. menu.

2. RSP TYPE defines the input signal range (e.g. 4-20 mA).

3. RSP:LO. RNG. and RSP: HI RNG. define the range of the remote setpoint in engineering units. The correct range will be dependent on the source of the remote setpoint signal.

4. RSP:LOW and RSP:HIGH set limits on the remote setpoint value in engineering units.

5. TRACKING determines whether or not the controller will revert to a local setpoint if the remote setpoint signal is lost. This prevents a process upset due to a sudden change in setpoint.

6. BIAS LOW and BIAS HIGH set limits on an operator entered bias value.

7. RSP FIXED determines the signal to which the controller will revert when a lost RSP is restored (fixed). Options are to stay in local or automatically return to remote setpoint.

8. To bias or ratio the remote setpoint value: a. Go to the TUNING menu.

b. Set RSP BIAS and RSP RATIO values.

Chapter 7 535 User's Manual

Basic Operating Procedures

After configuring the hardware and software, select the remote input by:

• pressing the SET PT key until RSP shows in the display

• using a digital input

J. MULTIPLE SETPOINTS

The 535 can store up to eight local setpoints and use a remote setpoint. One application of this feature is configuring the controller to restrict operators to discrete setpoint choices. The 535 can also store multiple sets of PID parameters (see next section).

Software Configuration

1. Go to the SPECIAL menu.

2. Set NO. OF SP to the number of local setpoints desired.

3. Use the SET PT key to scroll to each local setpoint and set it to the desired value with the ▲ or ▼ keys.

4. To link the PID sets to the corresponding local setpoint:

Go to the TUNING menu.

Set NO. OF PID to SP NUMBER.

For details on multiple sets of PID, refer to the next section in this chapter.

Basic Operating Procedures

To select a set point, toggle the SET PT key to scroll through the setpoints. The displayed setpoint becomes active after two second of key inactivity.

The digital inputs can also be used to select the active setpoints. A single digital input may be used for selecting the second setpoint, SP2. A set of four digital inputs may be used, to select up to 8 setpoints (see the section in this Chapter on Digital Inputs).

The SET PT key is lit when a setpoint other than the primary local setpoint is active.

K. MULTIPLE SETS OF PID VALUES

The 535 has the ability to store up to eight sets of PID values. This can be a valuable feature for operating the controller under conditions which require different tuning parameters for optimal control. There are various methods of selecting which set should be active. These methods are explained in this section.

Software Configuration

1. Go to the TUNING menu.

2. NO.OF PID is the desired number of PID sets to be stored. SP VALUE automatically sets this value equal to the number of stored local setpoints

(each PID set will be active when its respective local setpoint is active).

3. PID TRIP determines which variable selects the various PID sets: process variable, setpoint or deviation from setpoint.

4. TRIP:X defines the point (in the PV range) at which that set of PID values become active.

535 User's Manual Chapter 7

Applications

87

88

Applications

Basic Operating Procedures

A PID set can be selected in one of four ways.

• For NO. OF PID = PV NUMBER, the PID set (1 or 2) is selected when

PV1 or PV2 is used.

• For NO. OF PID = SP NUMBER, the active set of PID values is the same as the active setpoint. For example, if SP3 is active, then PID set #3 will be active.

• When using PID trip values, a PID set becomes active when the variable exceeds its trip point.

For example, if PID TRIP = SETPOINT, and TRIP:2 = 500, the second set of PID values becomes active when the setpoint exceeds 500, and remains active until the setpoint drops below 500 or exceeds the next highest trip point. The PID set with the lowest trip point is also active when the trip variable is less than the trip value. (The user can set the lowest trip point = the low end of the process variable range, but this is not required.)

• A digital input can be set to trip to the second set of PID upon closure, which overrides a selection based on trip points.

Using with Adaptive and Pretune

The 535 can be programmed to automatically set the PID values using the

Pretune and Adaptive Tuning functions. For both functions, the tuned set of

PID is that which is active upon initiation of the tuning function.

The controller cannot trip to other PID sets (based on trip point or the digital input contact) until Adaptive Tuning is disabled. However, if the PID set is tied to the corresponding local setpoint, the active PID set values will change with the local setpoint.

Each PID set has 5 parameters that control its function—proportional band, reset, rate, manual reset (or loadline), and trip point. For each set (2 thru 8), these values have to be manually set.

1. Press MENU to access the TUNING menu.

2. Set values for parameters 1 thru 20 (these include the first PID set)

3. Press MENU to access these parameters for each additional PID set

(2 through 8): PROP. BND, RESET, RATE, MAN. RST. and TRIP.

L. POWERBACK

POWERBACK is a proprietary algorithm which, when invoked by the user, reduces or eliminates setpoint overshoot at power up or after setpoint changes.

Powerback monitors the process variable to make predictive adjustments to control parameters, which in turn helps to eliminate overshoot of the Setpoint.

Software Configuration

1. Go to the TUNING menu.

2. Set POWR.BACK parameter to ENABLED.

3. Go to the SELF TUNE menu.

4. For DEAD TIME, set the value (time) that the controller should wait before invoking an output change. This value is typically the dead time of the process. Or, let Pretune calculate the dead time, then complete just steps 1 and 2 above.

Chapter 7 535 User's Manual

Applications

M. SELF TUNE—POWERTUNE®

The Self Tune function of the 535 consists of two distinct components, Pretune and Adaptive Tune. These components may be used independently or in conjunction with one another. For best results, we recommend using them together.

Pretune

This algorithm has three versions. Choose the type that most closely matches the process to optimize the calculation of the PID parameters. The three Pretune types are:

• TYPE 1 Normally used for slow thermal processes

• TYPE 2 Normally used for fast fluid or pressure processes

• TYPE 3 Normally used for level control applications

Pretune is an on-demand function. Upon initiation, there is a five second period during which the controller monitors the activity of the process variable. Then the control output is manipulated and the response of the process variable is monitored. From this information, the initial Proportional Band, Reset and Rate

(P, I and D values) and dead time are calculated. When using TYPE 2 or TYPE

3 Pretune, the Noise Band (NOISE BND.) and Response Time (RESP. TIME) will also be calculated.

In order to run this algorithm, the process must fulfill these requirements:

• The process must be stable with the output in the manual mode;

• For tuning a non-integrating process, the process must be able to reach a stabilization point after a manual step change; and

• The process should not be subject to load changes while Pretune operates.

If these conditions are not fulfilled, set the Adaptive Tune to run by itself.

Adaptive Tune

Adaptive Tune continuously monitors the process and natural disturbances and makes adjustments in the tuning parameters to compensate for these changes.

In order to make accurate calculations, Adaptive Tune needs noise band and response time values. Pretune TYPE 2 and TYPE 3 automatically calculate these values. These values may also be entered or changed manually in the

SELF TUNE menu. For Pretune TYPE 1, Noise Band and Response Time parameters must be entered manually.

Figure 7.12 illustrates the relationship between Pretune and Adaptive Tune

Software Configurations

Pretune by Itself

1. Go to the SELF TUNE menu (press MENU+FAST)

2. Set the TYPE parameter to PRETUNE.

3. Set the PRETUNE type to the one that best matches the process (see above section).

4. The next parameter, TUNE PT., appears only for TYPE 1 pretune. This parameter sets the PV point at which the output will switch off. In thermal processes, this will help prevent overshoot. The default is AUTOMATIC.

CAUTION!

Disable Adative Tuning before altering process conditions (e.g., for shutdown, tank draining, etc.). Otherwise, the 535 will attempt to adapt the Tuning parameters to the temporary process conditions.

Adaptive Tune can be disabled via digital input (if applicable—see Digital

Inputs in this chapter), or via menus:

1. Go to the TUNING menu.

2. Go to parameter ADAPTIVE.

Change the value to DISABLED.

535 User's Manual Chapter 7 89

Applications

Figure 7.12

Pretune TYPE 1, 2 and

3 with Adaptive Tune

100%

70%

50%

CONTROL

OUTPUT

30%

900

700

500

300

PV

0

5. Set the value for OUT STEP. This parameter defines the size of bump to be used. The resulting disturbance must change the process variable by an amount that significantly exceeds the peak-to-peak process noise, but does not travel beyond the “normal” process variable range.

6. The next two parameters, LOW LIMIT and HI LIMIT, set the process variable boundaries. If these boundaries are exceeded during the Pretune, the pretune cycle will abort and return to manual control at the output level prior to the initiation of pretune.

High Out Limit

Low Out Limit

TYPE 1 Pretune/Adaptive Control

• A to B is ON/OFF control to determine initial PID values.

• B is Pretune completed, so Adaptive PID control beings if ENABLED.

Note: Noise Band and Resp. Time must be entered before

enabling Adaptive TUne)

SP

A

PRETUNE

TIME

B

ADAPTIVE

100%

70%

50%

CONTROL

OUTPUT

30%

900

700

500

300

PV

Out Step

0

A

NOISE

B

Pretune

BUMP

C

TIME

ADAPTIVE

100%

70%

50%

CONTROL

OUTPUT

30%

900

PV

700

500

300

0

A

NOISE

B

Pretune

BUMP

C

Out Step

ADAPTIVE

TIME

SP

SP

TYPE 2 Pretune/Adaptive Control

• A to B is a 5 second noise band measurement.

• B to C is an open loop bump test to determine initial PID values

and response time.

• C is Pretune completed, so Adaptive PID control begins if ENABLED.

TYPE 3 Pretune/Adaptive Control

• A to B is a 5 second noise band measurement.

• B to C is an impulse to determine initial PID values and response

time.

• C is Pretune completed, so Adaptive PID control begins if ENABLED.

90 Chapter 7 535 User's Manual

7. The next parameter, TIMEOUT, defines the maximum time in minutes within which pretune must complete its calculations before it is aborted.

The first time a pretune is performed, set TIMEOUT to its maximum value.

Make note of the length of the pretune cycle. Then, adjust TIMEOUT to a value about twice the pretune time.

The purpose of this parameter is to prevent a Pretune cycle from continuing for an excessive time if a problem develops. The value has no impact on the PID values being calculated.

8. Next is MODE. This defines what mode the controller will enter when pretune is completed. Select MANUAL if there will be a need to review PID parameters before attempting to control with them; the default AUTOMATIC.

9. RESP. TIME defines the amount of damping for the process. The choices include FAST (results in approximately 20% overshoot), MEDIUM (results in approximately 10% overshoot), and SLOW (<1%).

10. Place the controller under manual control.

11. Access the TUNING menu (press MENU).

Set the first parameter, ADAPTIVE, to DISABLED.

12. Activate the next parameter, PRETUNE.

13. Press ACK to begin Pretuning.

The 3rd display will show the message EXECUTING.

14. When Pretune is complete, the 3rd display will show COMPLETED for two seconds and then return to the current menu display.

Pretune TYPE 1 & Adaptive Tune

1. Go to the SELF TUNE menu.

2. Set TYPE to BOTH.

3. Set PRETUNE to TYPE 1.

4. Set a value for OUTSTEP.

5. Set NOISE BND parameter.

6. Set the RESP. TIME parameter.

7. Make sure that the process is reasonably stable and place the controller under manual control.

8. Press MENU to access the TUNING menu.

Set ADAPTIVE to ENABLED. The Adaptive Tuning cycle does not begin the controller is under automatic control.

9. Activate the next parameter, PRETUNE.

10. Press ACK to begin Pretuning.

The 3rd display will show the message EXECUTING.

11. When Pretune is complete, the 3rd display will show COMPLETED for two seconds and then return to the current menu display.

The controller will automatically transfer to automatic control upon completion of Pretune if set to do so, or upon manual transfer.

Figure 7.12 illustrates the operation of Pretune TYPE 1 with Adaptive Tune.

Pretune TYPE 2 or 3 & Adaptive Tune

1. Go to the SELF TUNE menu.

2. Set the TYPE parameter to BOTH.

535 User's Manual Chapter 7

Applications

91

Applications

NOTE: Adaptive tuning is not available for velocity position proportional control.

3. Set the PRETUNE parameter to TYPE 2 or TYPE 3.

4. DO NOT Enter values for NOISE BND and RESP TIME. The Pretune algorithm will calculate these values.

2. Make sure that the process is reasonably stable and place the controller under manual control.

3. Press MENU to access the TUNING menu.

4. Set parameter ADAPTIVE to ENABLED. The Adaptive Tuning cycle does not begin. The controller is under automatic control.

4. Activate the next parameter, PRETUNE.

5. Press ACK to begin Pretuning.

The 3rd display will show the message EXECUTING.

6. When Pretune is complete, the 3rd display will show COMPLETED for two seconds and then return to the current menu display.

The controller will automatically transfer to automatic control upon completion of Pretune if set to do so, or upon manual transfer.

Figure 7.12 illustrates the operation of Pretunes TYPE 2 and TYPE 3 with

Adaptive Tune.

CAUTION!

If the process conditions are temporarily changed, (e.g., during process shutdown, draining of a tank, etc.) disable adaptive tuning.

Otherwise, the controller will attempt to adapt its tuning parameters to the temporary process conditions.

Disable adaptive tuning by:

1. In the TUNING menu, change

ADAPTIVE to DISABLED through the keypad; or

2. Closing the appropriate digital input

(see Digital Input section in this chapter).

Adaptive Tune by Itself

1. Go to the SELF TUNE menu.

2. Set the TYPE parameter to ADAPTIVE.

3. Press MENU to access the TUNING menu.

4. Set the ADAPTIVE parameter to ENABLED. The Adaptive Tuning cycle does not begin. The controller is under automatic control.

If Pretune results are poor or process conditions do not allow Pretune to run, the Adaptive Tune parameters can be manually configured. Proper setting of the noise band and response time parameters will yield excellent adaptive control without running the Pretune function.

1. Go to the SELF TUNE menu.

2. Set NOISE BND.

The noise band is chosen to distinguish between disturbances which affect the process and process variable “noise.” The controller functions to compensate for disturbances (i.e., load changes), but it cannot compensate

752

(407 – 402)

NOISE BAND =

[ 752 – (–352) ]

X 100 = .5%

Figure 7.13

Noise Band Calculation Example

PROCESS

VARIABLE

Type T

Thermocouple

Range

–328

°

F TO 752

°

F

409

408

407

406

405

404

403

402

401

400

–328

0 40 80

92 Chapter 7

120

TIME

160 200

(SECONDS)

240

535 User's Manual

Applications for process noise. Attempting to do this will result in degraded controller performance. The Noise Band is the distance the process deviates from the setpoint due to noise in percentage of full scale.

Figure 7.13 shows a typical process variable response in a steady-state situation. In this example, the process noise is within a band of about 0.5% of full scale.

A noise band that is too small will result in tuning parameter values based on noise rather than the effects of load (and setpoint) changes. If the noise band is set too small, then Adaptive Tune will attempt to retune the controller too often. This may result in the controller tuning cycling between desirable system tuning and overly sluggish tuning. While the result may be better than that achieved with a non-adaptive controller, this frequent retuning is not desirable.

If the noise band is set too large, the process variable will remain within the noise band, and the controller will not retune itself. With too large a noise band, important disturbances will be ignored, and the controller will be indifferent to sluggish and oscillatory behavior.

Noise band settings are generally between 0.1% and 1.0%, with most common settings of 0.2% or 0.3%. Figure 7.14 shows the conversion of peak-to-peak noise to an appropriate noise band for each T/C type & RTD.

B

0 0.1

1 0.1

2 0.1

3 0.1

4 0.1

5 0.2

6 0.2

7 0.2

8 0.2

9 0.3

10 0.3

E

0.4

0.4

0.4

0.2

0.3

0.3

0.1

0.1

0.1

0.2

0.2

J K

0.1

0.1

0.1

0.1

0.1

0.1

0.2

0.1

0.2

0.1

0.2

0.2

0.3

0.2

0.3

0.2

0.4

0.3

0.4

0.3

0.4

0.3

INPUT TYPE

N R/S

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.2

0.2

0.2

0.2

0.3

0.2

0.3

0.3

0.3

0.3

0.4

0.3

T W/WS PLATINEL RTD

0.1

0.1

0.1

0.1

0.2

0.1

0.3

0.1

0.4

0.1

0.5

0.1

0.6

0.1

0.6

0.2

0.7

0.2

0.8

0.2

0.9

0.2

0.1

0.1

0.1

0.2

0.2

0.2

0.3

0.3

0.4

0.4

0.4

0.4

0.5

0.5

0.3

0.3

0.4

0.1

0.1

0.1

0.2

0.2

0.1°RTD

0.9

1.0

1.1

0.6

0.7

0.8

0.1

0.1

0.2

0.3

0.5

Figure 7.14

Noise Band Values for

Temperature Inputs

3. Set RESP. TIME.

The response time is the most critical value in Adaptive Tuning. Response time represents the time lag from a change in valve position (controller output) to a specific amount of change in process variable. Specifically,

Response Time is equal to the Deadtime of the process plus one Time

Constant. The Deadtime is the time between initiation of an input change and the start of an observable response in the process variable. The Time

Constant is the interval of time between the start of that observable response and the point where the process variable reaches 63% of its final value. (See

Figure 7.15).

Example

After a stimulus (e.g., valve movement), if it takes 300 seconds for a process to reach 63% of its new (expected) value, the response time is 300 seconds.

If the response time is set too short, the process will be unstable and cycle

DT

Time ➜

DT =

τ =

RT =

RT

τ

63% of Final PV

Dead Time

Time Constant

Final PV

Response Time

Figure 7.15

Deadtime and Time Constant

535 User's Manual Chapter 7 93

94

Applications around the setpoint. If the Response Time is set too long, response to an off-setpoint condition will be sluggish. It is generally better to use too long a response time than too short.

Self Tuning with Multiple Sets of PID

For both Pretune and Adaptive Tune, the tuned set of PID is that which is active upon initiation of the tuning function.

The controller cannot trip to other PID sets (based on trip point or the digital input contact) until Adaptive Tuning is disabled. However, if the PID set is tied to the corresponding local setpoint, the active PID set values will change with the local setpoint.

Each PID set has 5 parameters that control its function—proportional band, reset, rate, manual reset (or loadline), and trip point. For each set (2 thru 8), these values have to be manually set.

1. Press MENU to access the TUNING menu.

2. Set values for parameters 1 thru 20 (these include the first PID set).

3. Press MENU to access these parameters for each additional PID set (2 through 8): PROP. BND, RESET, RATE, MAN. RST. and TRIP.

Self Tune with Time Proportioning Outputs

When using either the Pretune or the Adaptive Tune with a time proportioning output, use as short of a cycle time as possible within the constraint of maintaining a reasonable life on relays, contacts or heating elements.

Self Tune with Control Valves

In many systems utilizing a control valve, the point at which the control valve begins to stroke does not coincide with 0% output, and the point at which it completes its stroke doesn’t coincide with 100%. The parameters LOW OUT and HIGH OUT in the CONTROL menu specify the limits on the output. Set these limits to correspond with the starting and stopping point of the valve’s stroke. This prevents a form of “windup” and thus provides the adaptive control algorithm with the most accurate information.

For example, in manual the control output was slowly increased and it was noted that the control valve started to stroke at 18% and at 91% it completed its stroke.

In this case LOW OUT should be set at 18% and HIGH OUT at 91%.

Note that when output limits are used, the full output range from -5 to 105% is available in manual control.

N. RAMP-TO-SETPOINT

The 535 contains a ramp-to-setpoint function that may be used at the user’s discretion. This function is especially useful in processes where the rate-ofchange of the setpoint must be limited.

When the ramping function is activated, the controller internally establishes a series of setpoints between the original setpoint and the new target setpoint.

These interim setpoints are referred to as the actual setpoint . Either setpoint may be viewed by the user. When the setpoint is ramping, RAMPING will be shown in the 3rd display when the actual (ramping) setpoint is displayed.

Chapter 7 535 User's Manual

Applications

When the target setpoint is being shown, RAMPING will not appear. Pressing the DISPLAY key will scroll the 2nd display as follows:

• From the target setpoint to the actual (ramping) setpoint;

• To the deviation from setpoint;

• To the output level; and

• Back to the target setpoint.

Note that when ramping, the deviation indication is with respect to the target setpoint.

The ramp-to-setpoint function is triggered by one of three conditions:

1. Upon power up, if the 535 powers up in automatic control, then the setpoint will ramp from the process variable value to the setpoint value at the specified rate.

2. On a transfer from manual to automatic control the setpoint will ramp from the process variable value to the setpoint value at the specified rate.

3. On any setpoint change, the setpoint will ramp from the current setpoint to the new target setpoint. When triggered, the display will automatically change to indicate the ramping setpoint.

Software Configuration

1. Go to the PV INPUT menu.

2. Set the SP RAMP parameter to the desired rate of change.

O. INPUT LINEARIZATION

Thermocouple and RTD Linearization

For a thermocouple or RTD input, the incoming signal is automatically linearized.

The 535 has lookup tables that it uses to provide an accurate reading of the temperature being sensed.

Square Root Linearization

Many flow transmitters generate a nonlinear signal corresponding to the flow being measured. To linearize this signal for use by the 535, the square root of

PV = Low Range +

[

(Hi Range – Low Range) (V input

- V low

/ (V high

– V low

)

]

Hi Range is the high end of the process variable.

Low Range is the low end of the process variable.

V

input

V

V high

is the actual voltage or current value of the input.

is the high end of the input signal range (e.g. 5 volts or 20 mA).

low

is the low end of the input signal range (e.g. 1 volt or 4 mA).

Example :

PV range is 0 – 1000.

Input signal range is 1–5 volts.

Input signal is 3 volts.

Therefore PV = 0 +

[

(1000 – 0) (3-1) / (5–1)

]

= 1000 .5 = 707

Figure 7.16

Square Root Linearization Formula

535 User's Manual Chapter 7 95

Applications

Figure 7.17

15-point Linearization Curve the signal must be calculated. The 535 has the capability to perform this square root linearization.

For the first 1% of the input span, the input is treated in a linear fashion. Then it is a calculated value, using the formula in Figure 7.16.

Hardware Configuration

• A voltage or milliamp input must be installed on the controller.

Software Configuration

1. Go to the PV INPUT menu.

2. Set LINEARIZE to SQR. ROOT.

Custom Linearization

Custom linearization allows virtually any nonlinear signal to be linearized using a 15-point straight line approximation curve (see Figure 7.17). Typical

15th

10th

5th

1st

1st 5th 10th

INPUT VALUE in milliamps or voltage

15th applications are linearizing signals from nonlinear transducers, or controlling volume based on level readings for irregularly-shaped vessels. To define the function, enter data point pairs—the engineering units corresponding to a particular voltage or current input.

Software Configuration

1. Go to the PV INPUT menu.

2. Set the parameter LINEARIZE to CUSTOM.

3. Go to the CUST. LINR. menu.

4. Enter values for the 1ST INPUT and 1ST PV data points. All the input parameters define the actual milliamp or voltage input. All the PV parameters define the corresponding process variable value in engineering units.

It is not necessary to use all 15 points. Whenever the XTH INPUT becomes the high end of the input range, that will be the last point in the table.

Once the various points are defined, the values between the points are

96 Chapter 7 535 User's Manual

Applications interpolated using a straight line relationship between the points. The only limitation is that the resulting linearization curve must be either ever-increasing or ever-decreasing.

P. LOAD LINE

Load line is a manual reset superimposed on the automatic reset action.

Adjusting the MAN. RST. tuning constant shifts the controller proportional band

100%

LO

AD LINE 20%

LO

AD LINE 50%

LO

AD LINE 80%

50%

Figure 7.18

Load Line Example

0 20% 40% 60% 80% 100%

Process Variable Location (% of Controller Span) with respect to the setpoint.

When used with a proportional only or proportional/derivative control algorithm, the MAN. RST. parameter (located in the TUNING menu) is in effect “manual reset”.

However, when the automatic reset term is present, the reset action gradually shifts the proportional band to eliminate offset between the setpoint and the process. In this case, load line provides an initial shift at which the reset action begins. Load line is adjusted by observing the percent output required to control the process and then adjusting the load line to that value. This minimizes the effect of momentary power outages and transients. Load line may also be adjusted to give the best response when bringing the load to the desired level from a “cold” start.

Q. SECURITY

The 535 security system is easily customized to fit a system’s needs.

Software Configuration

1. Go to the SECURITY menu.

2. SEC. CODE defines the security password (range from -9999 to 99999).

The rest of the security parameters can be selectively locked out.

3. SP ADJUST prevents the operator from using the ▲ and ▼ and keys to change the setpoint value. It does not prevent the operator from changing setpoints via the SET PT key.

4. AUTO./MAN. locks out the MANUAL key preventing the operator from transferring between automatic control and manual control.

NOTE: SEC CODE does not appear unless all functions are unlocked.

535 User's Manual Chapter 7 97

Applications

NOTE: Lock out CONFIGURE for full security. If left unlocked, the operator will have access to the security code.

NOTE: The security function is compromised if the security code is left at zero (0).

NOTE: Security does not prevent the operation from the digital inputs or serial communications.

5. SP SELECT locks out the SET PT key. This prevents the operator from changing among the various local setpoints or changing to remote setpoint.

It does not prevent the operator from changing the setpoint value via the ▲ and ▼ keys.

6. ALARM ACK. locks out the ACK key, preventing an operator from acknowledging any alarms.

7. TUNING locks out modification to the parameters in the TUNING menu, preventing unauthorized changes to the tuning parameters or the activation/ deactivation of the self tuning algorithm.

8. CONFIGURE allows access to the configuration menus, but prevents any unauthorized changes to the configuration parameters. If locked out, the security code is not accessible.

Basic Operating Procedures

The security feature can be overridden. When a locked function is attempted, the operator will have the opportunity to enter the security code. If the correct security code is entered, the operator has full access. The security feature is

reactivated after one minute of keypad inactivity. If the security code is forgtton, the security feature can still be overridden.

• The security override code is

62647 .

Store this number in a secure place and blacken out the code in this manual to limit access.

R. RESET INHIBITION

Reset Inhibition is useful in some systems either at the start-up of a process or when a sustained offset of process variable from setpoint exists. In conditions like these, the continuous error signal may cause the process temperature to greatly overshoot setpoint. Any of the digital inputs may be set up so that the contact closure disables the reset action (sets it to zero).

Software Configuration

1. Go to the CONFIG. menu.

2. Set corresponding parameter(s) CONTACT:1 to CONTACT:5 to RST.

INHBT.

NOTE: PV GAIN is only available if using a linear voltage or current input.

S. PROCESS VARIABLE READING CORRECTION

Conditions extraneous to the controller, an aging thermocouple, out of calibration transmitter, lead wire resistance, etc.—can cause the display to indicate a value other than the actual process value. The PV OFFSET and PV

GAIN parameters can be used to compensate for these extraneous conditions.

NOTE: This feature is provided as a convenience only. Correcting the cause of the erroneous reading is recommended.

1. Go to the PV INPUT menu.

2. Set PV OFFSET. This parameter either adds or subtracts a set value from the process variable reading in engineering units. For example, if the thermocouple was always reading 3° too high, the parameter could be set to “–

3” to compensate.

3. Set PV GAIN. This multiplies the deviation from the low end of the process variable range by the gain factor and then adds it to the value of the low end

98 Chapter 7 535 User's Manual

of the range to arrive at the adjusted process variable value.

For example, if the process variable range is 50 to 650 and the process variable reading is 472, a PV GAIN of .995 would yield an adjusted process variable equal to [(472 – 50) x .995] + 50 = 470.

With a combination of both offset and gain factors, just about any inaccuracy in the sensor or transmitter can be compensated.

T. SERIAL COMMUNICATIONS

The serial communications option enables the 535 to communicate with a supervisory device, such as a personal computer or programmable logic controller.

The communications standard utilized is RS-485 which provides a multi-drop system that communicates at a high rate over long distances. Typical limitations are 32 instruments per pair of wires over a distance up to 4000 feet.

The 535 uses a proprietary protocol which provides an extremely fast and accurate response to any command. Cyclic redundancy checking (CRC) virtually ensures the integrity of any data read by the 535. Through communications, there is access to every Set up, Tuning and Operating parameter. For details on the 535 protocol, contact a Moore Industries application engineer.

Hardware Configuration

• This optional feature is only available if ordered originally from the factory.

The circuitry for communications is contained on a modular circuit board that plugs into the Microcontroller Circuit Board, Refer to the order code in

Chapter 1 for details.

Software Configuration

1. Access the SER. COMM. menu.

2. STATION specifies the unit’s station address. It is the only way one 535 can be distinguished from another. Each 535 on the same RS-485 interface must have a unique station address.

3. Choose a BAUD RATE from 1,200 to 19,200. In general, select the highest value. However, every instrument on the RS-485 interface must be set to the same baud rate.

4. CRC indicates the cyclic redundancy checking feature. If the host supports it, activating this option is recommended.

5. When the 535 senses that communications is lost, it can go to a predetermined state (called “shedding”). The SHED TIME parameter sets the length of time that communications can be interrupted before the controller sheds. Since the 535 is a stand-alone controller, it does not depend on communications to operate. Therefore, if the “shed” feature is not needed, set it to OFF.

6. SHED MODE designates the mode to which the controller goes after it sheds. Setting this to MANUAL brings up the following parameters.

7. Use SHED OUT to specify an output level if the unit sheds and trips to manual control.

8. To specify a control setpoint (in case the host is supervising the setpoint) if the 535 sheds, Set SHED SP to DESIG. SP and then, set the parameter

535 User's Manual Chapter 7

Applications

99

Applications

Figure 7.19

Heat Exchanger Control Loop for

Steam Supply

DESIG. SP to the desired setpoint.

U. CASCADE CONTROL

While a single 535 Controller is effective in maintaining many control systems, others require more sophisticated control schemes. Figure 7.19, shows a sample control set up with a 535 controller. Cascade control is often used to control a process more precisely. In cascade control, a second variable is monitored in addition to the primary controlled variable. This second variable is one that more quickly reflects any changes in the process environment.

Cascade control involves installing one feedback loop within another, as in

Figure 7.20. This second loop, based on steam pressure, is called the inner or secondary feedback loop. The outer or primary feedback loop is based on the temperature of the liquid in the heat exchanger. However, instead of directly positioning the steam valve, the output of the primary 535 controller is now used to adjust the setpoint of the secondary 535 controller, which then positions the valve.

Cascade Control is typically used for the following:

• A slow responding process with a significant lag time

• A process requiring more advanced or tighter control

• A process where two PID control loops need to interact to achieve optimum control. Cascade control is commonly implemented in temperature control applications where the main control variable is affected by another variable, i.e., pressure.

Example

In Figure 7.19 we have a 535 set up to control a heat exchanger. In a PIDequipped heat exchanger, pressure in the steam shell more quickly reflects fluctuations in the steam supply than does the process liquid’s temperature.

535 raw materials

OUT

1 2

ALM

1 2

MIXER

MANUAL DISPLAY SET PT

ACK MENU FAST

HEAT

EXCHANGER steam

100 Chapter 7 temperature sensor

535 User's Manual

Applications

Why? In this example, with PID control, the average temperature of the liquid in the heat exchanger is 80°, but can vary by as much as five degrees because the steam supply itself is not constant. Fluctuations in the pressure of the steam supply cause fluctuations in the temperature of the steam within the heat exchanger. So, the process liquid’s temperature begins to rise, but it takes several minutes for the increased heat from the steam to travel through the process liquid to reach the temperature sensor. By the time the sensor registers the higher value and calls for a decrease in steam, the process liquid near the walls is already at an even higher temperature. Although the steam supply is reduced, the process liquid’s temperature continues to rise for a period of time.

This delay in the transfer of heat prevents the 535 controller from controlling the temperature more precisely.

The solution to the problem is illustrated in Figure 7.20. Have the PID controller position the steam valve, but add a sensor by means of another 535 controller

1

2

OUT 1–

3

OUT 1+

4

5

6

7

8

12

13

14

15

16

9

10

11

UNIT 1

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

PV 1–

32

PV 1+

1

2

OUT 1– 3

OUT 1+ 4

5

6

7

8 raw materials

9

10

11

12

13

RSP–

14

RSP+

15

16

17

18

19

20

21

22

23

24

UNIT 2

MIXER

25

26

27

28

29

30

RTD 3RD

31

PV 1–

32

PV 1+

Figure 7.20

Cascade Control of Product

Temperature

HEAT

EXCHANGER steam

pressure sensor temperature sensor that will monitor the steam pressure. The pressure control system now creates a second feedback control loop, which “cascades” from the first.

Hardware Configuration

• Configure Unit 1 for a 4-20mA output (analog module for control).

535 User's Manual Chapter 7 101

Applications

• Configure Unit 2 for the optional Remote Setpoint (see Chapter 4).

Software Configuration

1. For Unit #1 a. In CONFIG. menu, set CTRL. TYPE to STANDARD.

b. In PV INPUT menu, set the PV TYPE parameter.

If type is V/mA, set LOW RANGE and HI RANGE parameters to match the transmitter range.

2. For Unit #2 a. Set the RSP input jumper in the mA position on the Microcontroller

Circuit Board (see Chapter 4).

b. Go to the REM. SETPT menu.

c. Set RSP:LO. RNG. to 0. Set RSP:HI.RNG. to 100. This will set the range of the remote setpoint to 0 TO 100 (to correspond to the 0% to

100% output range of Unit #1).

d. Wire the control output of Unit #1 to the remote setpoint input of Unit

#2 as shown in Figure 7.20.

e. When in operation, Unit #2 must be under remote setpoint control.

Tuning Cascade Control

1. The secondary loop is controlled by Unit #2, which does most of the work in controlling the process. Put the secondary loop/Unit #2 under Manual control, and perform a Pretune on it. Once that Pretune is completed, put the Unit #2 under Automatic control.

2. The primary loop is controlled by Unit #1, which controls disturbances or load changes in the process. Now place the primary loop/Unit #1 into Manual and perform a Pretune on this loop. Once this Pretune is complete, the Cascade Control Loop is completely tuned. Place Unit #1 into Automatic control to allow the system to control to the desired Setpoint of the Primary loop.

102 Chapter 7 535 User's Manual

Applications

V. RATIO CONTROL

Ratio Control is employed in mixing applications that require the materials to be mixed to a desired ratio.

For example: A given process requires Material A to be blended with Material

B in a 2:1 ratio. Material B is uncontrolled or wild. Flow sensors/transmitters are used to measure the flow rate of each stream. The flow signal for Material

A is wired to the process variable input, and the flow signal for Material B is wired to the remote setpoint input of the 535.

For this example, as shown in Figure 7.21, we would set RSP RATIO to 2.0. If the flow of Material B is measured at 50 gallons/minute, the effective remote setpoint value would be 2 times 50, or 100. The 535 controller would try to maintain the flow of Material A at 100. As the flow of Material B changes, the setpoint would change accordingly, always in a 2:1 ratio.

AC+

1

AC– 2

OUT 1– 3

OUT 1+

4

5

6

7

8

9 EARTH GND

10

11

12

13 RSP–

14

RSP+

15

16

17

18

19

20

21

22

23

24

BOTTOM (As viewed from rear)

25

26

27

28

29

30

31

PV 1–

32

PV 1+

Figure 7.21

Ratio Control in Mixing Applicatoin flow sensor

MATERIAL A

CONTROLLED STREAM

MATERIAL B flow sensor

WILD STREAM

MIXER

Hardware Configuration

• Set the process variable jumper and remote setpoint jumper to mA. Make sure that both inputs are set up to accept the corresponding signal from the flow transmitters.

• Wire as in Figure 7.21.

Software Configuration

1. Make sure that the range of both inputs matches the range of the corresponding transmitter:

535 User's Manual Chapter 7 103

Applications a. Go to the PV INPUT menu.

b. Set the HI. RANGE and LOW RANGE parameters.

c. Go to the REM. SETPT. menu.

d. Set the RSP:HI RNG. and RSP:LO RNG. parameters.

2. Adjust the ratio between the two streams: a. Go to the TUNING menu.

b. Set the RSP RATIO parameter. The value of this parameter will be multiplied by the remote setpoint signal to yield the effective remote setpoint.

104 Chapter 7 535 User's Manual

Menu Flowcharts

SET UP

CONFIG.

PV1 INPUT

PV2 INPUT

CUST. LINR.

CONTROL

ALARMS

REM. SET PT.

RETRANS.

SELF TUNE

SPECIAL

SECURITY

SER. COMM.

535 User's Manual

CTRL. TYPE

OUTPUT 4

CONTACT 2

APPENDIX 1

MENU FLOWCHARTS

LINE FREQ.

PV SOURCE REM. SETPT.

ANLG. RNG.:2

CONTACT 3

ANLG. RNG.:1

CONTACT 4

ANLG. RNG.:3

CONTACT 5

PV1 TYPE

SP LO LIM.

RESTORE

DEG. F/C/K

SP HI LIM.

DECIMAL

SP RAMP

LINEARIZE

FILTER

PV2 SETUP

FILTER

PV2 TYPE

OFFSET

DECIMAL

GAIN

LINEARIZE

RESTORE

OUTPUT 2

ANLG.RNG.: 4

LOOP NAME

LOW RANGE

OFFSET

LOW RANGE

OUTPUT 3

CONTACT 1

HI RANGE

GAIN

HI RANGE

TYPE:2

TYPE:4

TYPE

TIMEOUT

AUTO. TRIP

NO. OF SP

SEC. CODE

CONFIGURE

STATION

SHED SP

1ST. INPUT

ALGORITHM

ACTION:2

OPEN F/B

ALM. TYPE:1

ALM.:1 OUT.

ALM.SRC.:2

ALM.:2 OUT.

OUTPUT

TYPE V/MA

BIAS LOW

1ST. PV

D. SOURCE

P.P. TYPE

CLOSE F/B

ALM.SRC.:1

LATCHING:1

ALARM SP:2

LATCHING:2

RATE TIME

RSP:LO RNG.

BIAS HIGH

LOW RANGE:2

LOW RANGE:4

PRETUNE

MODE

TRIP DEV.

XTH. INPUT

ACTION: 1

CCW TIME

OUT1STOP

ALARM SP:1

ACK.:1

HIGH SP:2

ACK.:2

RSP:HI RNG.

RSP FIXED

HI RANGE:2

HI RANGE:4

TUNE PT.

NOISE BND.

DES. OUTPT.

XTH. PV

PV BREAK

CW TIME

OUT2STRT.

HIGH SP:1

POWER UP:1

LOW SP:2

POWER UP:2

RSP:LOW

TYPE:X

OUT. STEP

RESP. TIME

POWER UP

15TH. INPUT*

LOW OUT.

MIN. TIME

LOW SP:1

MESSAGE:1

LATCHING:2

MESSAGE:2

RSP:HIGH

LOW RANGE:3

LOW LIMIT

DEAD TIME

PWR. UP:OUT.

15TH. PV*

HIGH OUT.

S/W RANGE

DEADBAND:1

ALM. TYPE:2

DEADBAND:2

FAULT

TRACKING

HI RANGE:3

HI LIMIT

PWR. UP:SP

SP ADJUST

BAUD RATE

DESIG. SP

AUTO./MAN.

CRC

SP SELECT

SHED TIME

ALARM ACK.

SHED MODE

TUNING

SHED OUT.

Appendix 1 A-1

Menu Flowcharts

TUNING ADAPTIVE

PRETUNE POWR. BACK PROP BND,:1

MAN. RST.:1

REL. GAIN:2

PID TRIP

PROP. BND.:2

PROP. BND.:3

PROP. BND.:4

PROP. BND.:5

PROP. BND.:6

PROP. BND.:7

PROP. BND.:8

CYCLE TM.:1

CYCLE TM.:2

DEADBAND:1

DEADBAND:2

P. PROP.D.B.

RSP RATIO

TRIP:1

RATE:2 MAN. RST.:2 RESET:2

RESET:3 RATE:2

RATE:4

MAN. RST.:3

MAN. RST.:4 RESET:4

RESET:5

RESET:6

RESET:7

RESET:8

RATE:5

RATE:6

RATE:7

RATE:8

MAN. RST.:5

MAN. RST.:6

MAN. RST.:2

MAN. RST.:8

RESET:1

PID OFST.:1

RSP BIAS

TRIP:2

TRIP:3

TRIP:4

TRIP:5

TRIP:6

TRIP:7

TRIP:8

RATE:1

PID OFST.:2

NO. OF PID

A-2 Appendix 1 535 User's Manual

Parts List

APPENDIX 2

PARTS LIST

OPERATOR

INTERFACE

ASSEMBLY shown with bezel insert in place

CIRCUIT

BOARD SUPPORT

(BEZEL INSERT)

CIRCUIT BOARDS BEZEL

GASKET

ITEM

Output Modules

Mechanical Relay Module

Analog (milliamp Module)

Solid State Relay Module

DC Logic (SSR Drive) Module

Loop Power Module

RS-485 Communications Module

Operator Interface Assembly

Repair/Replacement Parts

Power Supply Circuit Board

Microcontroller Circuit Board

Option Circuit Board w/no Options

Option Circuit Board w/Set of 5 Digital Contacts

Option Circuit Board w/Slidewire Feedback

Option Circuit Board w/set of 5 Digital Contacts & Slidewire Feedback

EPROM without Remote Setpoint Option

EPROM with Remote Setpoint Option

Lithium Battery

Jumper Kit: Set of All Jumper Connectors

Gasket Kit: 1 Panel Gasket & 1 Bezel Gasket

Mounting Kit: Mounting Collar & 4 screws

Bezel Retention Screw Kit

Module Retention Kit for Outputs 1-3 ( Includes Retention Plate)

Module Retention Kit for Output 4: Set of 5 Tie Wraps

Circuit Board Support (Bezel Insert)

Engineering unit labels (1 sheet)

535 User's Manual

CONTROLLER BODY shown with mounting collar in place

PART #

535 600

535 601

535 602

535 603

535 604

535 705

535 632

535 730

535 731

535 720

535 721

535 722

535 723

535 740

535 741

093 044

535 660

535 662

535 761

535 663

535 664

535 665

535 075

535 106

Appendix 2

MOUNTING

COLLAR

A-3

Parts List

A-4 Appendix 2 535 User's Manual

Troubleshooting

APPENDIX 3

TROUBLESHOOTING

SYMPTOM

Display will not light up

Improper/Lost PV reading

• Voltage/current

Improper/Lost PV reading

• Thermocouple

Improper/Lost PV reading

• RTD

No control output

Can’t switch to auto control

Erratic display

PROBLEM SOLUTION

Defective power source

Improper wiring

Blown in-line fuse

Unit not inserted in case properly; or, screws have not been tightened.

Input jumper selection improperly set

Input range improperly selected in software

Reverse polarity

If controller powered, improperly wired

Loop power module not installed

Defective transmitter

Transmitter signal out of range

Defective thermocouple

Input jumper selection improperly set

Wrong TC type selected in software

Improper wiring

Defective RTD

Input jumper selection improperly set

Improper wiring

Output wiring and module location do not match

Check power source and wiring

Correct wiring

Check wiring, replace fuse

Remove unit from case (and remove bezel screws), then reinsert unit and properly tighten screws.

Move jumper to proper location

Select proper range

Check and correct sensor wiring

Check and correct wiring

Install module

Replace transmitter

Select proper range in software

Replace thermocouple

Select Proper input

Select proper thermocouple type in software

Wire properly

Replace RTD

Move jumper connector to proper location

Wire properly

Check and correct wiring or module location

Set jumper connector to proper location If SSR, SSR Drive of Milliamp output, jumpers J1,

J2 and J3 are not set properly

Software configuration does not match hardware

PID values not set properly

Input sensor signal is not connected or valid

Resetting action due to electrical noise on powerline

PID values not set properly

Reconfigure software to match hardware

Set PID values properly

See PV LOST message

Filter power line.

Retune controller

535 User's Manual Appendix 3 A-5

A-6

Troubleshooting

Message

DEFAULTS

LOST CAL. or

ERROR: BAD CAL. DATA

PV1 UNDER or

PV1 OVER or

PV2 UNDER or

PV2 OVER or

LOST PV1 or

LOST PV2

LOST RSP

COMM SHED

ERROR: ROM CHECKSUM

OUT1 CONF or

OUT2 CONF

LOST F/B

LOST CJC

ERROR: BAD EEPROM

NEEDS CAL.

ERROR: BAD MODEL NUM.

CAL.ERROR

SEE.MANUAL

When does it occur?

What to do:

Whenever the memory is cleared and all parameters revert to factory default settings.

This may be done by purposely clearing the memory or when the unit is powered up for the first time or if the software version is changed.

Indicates that the calibration data has been lost.

Occurs if all the memory has been erased.

Entering the Set Up mode and changing a parameter will clear the message. If due to something other than the user purposely clearing the memory, call factory for assistance.

Problem should never happen. Must correct the situation and recalibrate. Call factory for assistance.

When the process variable value travels slightly outside the boundaries of the instrument span.

Does not apply to thermocouple or RTD inputs.

May not need to do anything. May want to check the transmitter accuracy and check to see if range of transmitter matches the range of the controller.

When the controller senses a lost process variable signal or the input signal travels well beyond the instrument span.

When the remote setpoint is in use and the controller senses that the signal has been lost or has traveled well outside the range.

When the communications is lost for longer than the communications shed time.

On power up a problem with the EPROM is detected. Controller locks up until fixed.

Upon power up, controller senses that the modules needed for control as determined by software configuration are not present.

The slidewire feedback is sensed as lost.

The cold junction is sensed as lost.

During power up an EEPROM failure is detected. Controller locks up until fixed.

When the controller is powered up with default calibration data (input and output accuracy specifications may not be met).

During power up, a discrepancy was found between the EEPROM's and controller's model numbers. Controller locks up until fixed.

During cold junction calibration, a discrepancy was found between the controller type and the case type.

Check wiring and sensor/transmitter.

Check wiring and remote setpoint source.

Check communications wiring, etc. To clear message, must make an auto/manual change.

This is a fatal error and requires an EPROM change.

Call factory for assistance.

Must power down and install correct module combination or must reconfigure the controller to match the current module combination.

Check the slidewire wiring.

Call factory for assistance.

This is a fatal error and requires and EPROM change.

Call factory for assistance.

Enter calibration menu and recalibrate the controller.

Call factory for assistance.

This is a fatal error and requires an EPROM or

EEPROM change. Call factory for assistance.

Install the 535 chassis into the actual case with which it was shipped, then run calibration again. If you experience further problems, call factory for assistance.

Appendix 3 535 User's Manual

Calibration

APPENDIX 4

CALIBRATION

• To maintain optimum performance, once a year calibrate the analog input, the cold junction and milliamp output (when used). To achieve published accuracy specifications, follow directions carefully and use calibrated instruments of like quality to those suggested.

• If the controller is moved into an alternate case, or the hardware configuration is changed, and the thermocouple input is needed, recalibrate the cold junction for maximum accuracy. Failure to do so may result in small junction temperature (0.6°C/1.1°F).

Access the parts of the calibration menu as shown in Figure A4.2.

1

OUT 1-

2

3

OUT 1+

4

OUT 2-

5

OUT 2+

6

OUT 3-

7

OUT 3+

8

9

10

11

12

13

14

15

OUT 4–

16

OUT 4+

17

18

19

20

21

22

– 23

+ 24

25

26

27

28 PV2–

29 PV2+

30

31 PV1–

32 PV1+

Figure A4.1

535 Rear Terminals for Calibration

CALIBRATE

ANALOG IN

PRESS ACK

CAL. VREF

5.0000

PRESS MENU CAL. 120mV, etc.

PRESS ACK

PRESS MENU

Figure A4.2

Flowchart Calibration Menus

CALIBRATE

ANA. mA IN

PRESS ACK

SET BOTH

JUMPER=mA

Power Down

Move Jumpers

Power Up

PV1=20mA

PRESS ACK

Attach 20mA to PV1

Press ACK

PV2=20mA

PRESS ACK

Attach 20mA to PV2

Press ACK

CALIBRATE

COLD JUNC.

PRESS ACK

PV= –150 C

PRESS ACK

PRESS ACK mA CALIB.

COMPLETED

If mA calibration values are

OK.

mA CALIB.

FAILED

If mA calibration values are out of range.

CALIBRATE

ANLG. OUT

PRESS ACK

OUTPUT "X"

4 mA

PRESS MENU

OUTPUT X, etc

PRESS ACK

RESET

SKIPPED

RESET

MENU DATA

PRESS MENU

HARDWARE

SCAN

PRESS ACK PUSH MENU

TO RESET

After two seconds

PRESS

MENU before two seconds

PRESS ACK

DISPLAY ONLY

PRESS MENU

RESET

COMPLETED

SLIDEWIRE

TEST

PRESS MENU

PRESS ACK

SLIDEWIRE

____%

PRESS ACK

535 User's Manual Appendix 4 A-7

Calibration

Figure A4.3

Jumper Locations on the

Microcontroller Circuit Board

CALIBRATION

JUMPERS—

SELECT V

AND TC▲

PV INPUT

JUMPER

CONFIGURATION

P1

P2

V

MA

TC▼

TC▲

RTD

TB2

V

MA

TC▼

TC▲

RTD

TB1

Jumper locations for

Analog,Thermocouple and Milliamp calibration

S'Y

Figure A4.4

Input Calibration Wiring

21

22

23

24

17

18

19

20

25

26

27

28

29

30

31

Hook-up wires to multimeter

PV1–

32

PV1+

WARNING!

ELECTRIC SHOCK HAZARD!

Terminals 1 and 2 carry live power. DO

NOT touch these terminals when power is on.

A-8

Preparation for all Input Calibrations

Equipment for analog input calibration:

• Precision 5-1/2 or 6-1/2 digit multimeter, e.g., Fluke 8842 ® or HP3478A ®

(a 4-1/2 digit meter will sacrifice accuracy)

• Four small pieces of wire

• Test leads with clips

• #2 Phillips screwdriver

Additional equipment for thermocouple input:

• Precision thermocouple calibrator, e.g., Micromite II ® by Thermo Electric

Instruments

• Special limits grade, Type T thermocouple wire

1. Disconnect power to the instrument.

2. Remove chassis from case.

3. On the Microcontroller Circuit Board, locate jumper locations marked PV1 and

2nd near the edge connector. Reposition both jumper connectors in the 2nd location onto pins for V and TC ▲ as shown in Figure A4.3.

4. Connect hook up wires between terminals 31 and 32 and the multimeter as shown in Figure A4.4.

Set the meter for DC volts.

5. Reinsert chassis into the case and apply power.

The 2nd and 3rd display should read CALIBRATE ANALOG IN.

6. Allow the controller to warm up for at least 30 minutes.

7. Press the ACK key to get to the first step/parameter.

The 2nd display should show CAL. VREF; the 3rd display should show a value close to 5.0000.

8. The multimeter should read a value in the range 4.9750 - 5.0250.

Use the ▲ and ▼ (and FAST) keys on the controller until the display on the controller matches the meter reading.

Appendix 4 535 User's Manual

Calibration

9. Press MENU key.

The 2nd display should show CAL. 120mV. The 3rd display should show a value close to 120.000. Match controller display to multimeter value using

▲ and ▼ keys.

10. Press MENU four more times. Each time, match the displays of the controller and the multimeter. Press ACK when done.

The 2nd display should show CALIBRATE; the 3rd display should show ANA.

mA IN.

11. Turn off power to the unit.

12. For thermocouple input, proceed to the Thermocouple Cold Junction Calibration.

13. For milliamp input , proceed to Analog Milliamp Input Calibration.

14. For milliamp output calibration, let the controller warm up for 10 minutes, then skip to step 5 of Milliamp Output Calibration.

15. If calibration is complete, place all the jumpers back in their original positions

(as specified in Chapter 3).

THERMOCOUPLE COLD JUNCTION CALIBRATION

1. Connect the two pairs of T/C wire to terminals 28, 29, 31 and 32 as shown in

Figure A4.5. Make sure the T/C wires are floating (disconnect from the multimeter also), and are not touching each other.

2. Turn on power to the unit and let controller warm up for 30 minutes in the normal horizontal position: while the unit is warming up, the rear face of the controller should be vertical, not horizontal.

3. Press the MENU key until the display indicates CALIBRATE COLD JUNC.

4. Press the ACK key. The display should show PV = -150 C PRESS ACK.

5. Connect both pairs of T/C wires in parallel—do not daisy chain—to a Type T thermocouple calibrator. (Both pairs must be connected or the calibration will not be accurate.)

6. Set the thermocouple calibrator to an output value of -150° C for a Type T thermocouple and allow the calibrator to stabilize for a few minutes.

7. Press ACK to initiate calibration of the cold junction.

8. For milliamp output calibration, proceed to Milliamp Output Calibration. Let the controller warm up for 10 minutes, then skip to step 5.

9. If calibration is complete, power down, then place all the jumpers in their original positions (as specified in Chapter 3).

17

18

19

20

21

22

23

24

25

26

Type T thermocouple wires (floating)

27

– red

28

+ blue

29

30

31

32

– red

+ blue

Figure A4.5

Thermocouple/Cold Junction

Calibration Wiring

ANALOG MILLIAMP INPUT CALIBRATION

1. Remove the thermocouple wires (if present) from terminals 28, 29, 31 and 32.

Replace them with pieces of wire that will be connected to a 20 milliamp input current (see Figure A4.6). Make sure terminal screws are securely tightened, but do not connect the wires yet (leave inputs floating).

2. Turn on power to the unit.

3. Press MENU until the display indicates CALIBRATE ANA. mA IN, then press ACK.

If the display shows PV1=20mA PRESS ACK, move ahead to step #8.

4. The controller will display SET BOTH JUMPER=mA.

5. Power down the controller and remove chassis from the case.

535 User's Manual Appendix 4 A-9

Calibration

RATION

ERS—

ECT V

TCs

PUT

PER

RATION

21

22

23

24

17

18

19

20

P1

P2

V

MA

TCt

TCs

RTD

TB2

V

MA

TCt

TCs

RTD

TB1

25

26

27

28

Wires to 20mA current (floating)

PV2–

29

PV2+

30

31

PV1–

32

PV1+

Figure A4.6

Analog mA Input Calibration Wiring

Figure A4.7

Analog mA Input Jumper Positions

6. Remove both input jumper connectors from the pins in the 2nd position. Place one of the jumpers on the PV1 position mA pins, and place the other jumper on the 2nd position mA pins, as shown in Figure A4.7.

7. Reinsert the chassis into the case and apply power. The controller should display PV1=20mA PRESS ACK to indicate it is ready to calibrate the PV1 milliamp input.

8. Connect a precision 20mA input to the PV1 terminals (31 is PV1-, 32 is PV1+).

Make sure the terminal connections are fastened tightly and that a 20mA current is flowing through PV1. Do not connect the 20mA current to PV2 yet.

9. Let the controller warm up for at least 10 minutes (keep in normal horizontal position). Make sure the current is flowing, then press ACK to calibrate the PV1 input.

10. If the controller briefly displays PV2=20mA INPUT, PV1 calibration was successful. Move on to step 12.

11. If the controller briefly displays mA CALIB. FAILED, PV1 calibration was not successful.

Check the 20mA connections, and return to step #3 to recalibrate the PV1 input.

12. Remove the 20mA input from the PV1 terminals, and attach it to the PV2 terminals (see Figure A4.6).

Make sure the terminal connections are fastened tightly and that a 20mA current is flowing through PV2.

13. Let the controller warm up for an additional 5 minutes (keep in the normal horizontal position). Make sure the current is flowing, then press ACK to calibrate the PV2 input.

14. If the controller briefle displays mA CALIB. COMPLETED, PV2 calibration was successful and the analog milliamp calibration procedure has been completed.

If calibration is complete, power down. Place the jumpers into their original positions (see Chapter 4).

15. If the controller briefly displays mA CALIB. FAILED, PV2 calibration was not successful. Check the 20mA connections, and return to step #3 to recalibrate the PV1 and PV2 inputs.

MILLIAMP OUTPUT CALIBRATION

If the controller uses milliamp outputs, it is usually not necessary to calibrate them.

If the milliamp outputs are being used for accurate retransmission of data, it is recommended that each output with an analog module be calibrated annually to maintain optimal performance.

Equipment needed:

• Precision 5-1/2 digit multimeter, e.g., Fluke 8842 ® or HP3478A ® ( 4-1/2 digit meters sacrifice accuracy)

• Two small pieces of wire for every milliamp output

• Test leads with banana clips

• #2 Phillips screwdriver

1. Disconnect power to the instrument.

2. Remove chassis from case.

A-10 Appendix 4 535 User's Manual

Calibration

3. On the Microcontroller Circuit Board locate jumper locations marked PV1 and

2nd near the edge connector. Reposition both jumper connectors in the 2nd location onto pins for V and TC ▲ , as shown in Figure A4.3.

4. Reinsert chassis into the case and apply power.

5. Allow controller to warm up for at least 30 minutes.

The 2nd and 3rd displays should read CALIBRATE ANALOG. IN.

(CALIBRATE Menu, ANALOG. IN section).

Press MENU three times to reach the CALIBRATE ANLG. OUT Menu.

6. Connect hook up wires to the terminals for the corresponding milliamp output modules.

Output 1 uses terminals 3 and 4.

Output 2 uses terminals 5 and 6

Output 3 uses terminals 7 and 8 (shown in Figure A4.8)

Output 4 uses terminals 15 and 16.

Attach the test leads from the multimeter to the wires, and then plug the test leads into the meter. Set the meter for DC milliamp.

7. Press ACK. The 2nd display will read OUTPUT1, OUTPUT2, OUTPUT3 or

OUTPUT4 (depending on the module installation).

8. Press MENU to scroll to the output to be calibrated (see Figure A4.9). The 3rd display should read 4 mA.

The multimeter should read a value close to 4.00.

9. Wait one minute. Use ▲ and ▼ (and FAST) on the controller to change the meter’s display to exactly 4.00 mA.

10. Press MENU. The 3rd display should read 20 mA.

11. Let this setting stabilize for 5 minutes. Use ▲ and ▼ (and FAST) on the controller to change the meter’s display to exactly 20mA.

12. To calibrate another analog output:

Move the wires and test leads to the new output terminals.

Press MENU until the 3rd display shows 4mA for the corresponding output in the 2nd display. Repeat step 9-11.

13. To complete calibration, press ACK key, disconnect the power and place the jumper connectors back into their original position.

RESET MENU DATA

+

OUT 1–

OUT 1+

OUT 2–

OUT 2+

OUT 3–

OUT 3+

Connect to multi-meter

TO OTHER

CALIBRATION

MENU

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

EACH OUTPUT WILL GO

THROUGH THIS CYCLE

Figure A4.9

Output Module Menu Cycle

OUT 4–

OUT 4+

Figure A4.8

Milliamp Output Calibration Wiring

OUTPUT "X"

4 mA

PRESS MENU

OUTPUT "X"

20 mA

PRESS MENU

PRESS ACK

PRESS ACK

Resets all parameter values back to their factory default values (except for calibration information). Refer to the flowchart in Figure A4.2.

1. Disconnect power to the instrument.

2. Remove chassis from case.

3. On the Microcontroller Circuit Board, set jumpers at the 2nd PV location to V and TC ▲ .

4. Press MENU key until the display shows RESET MENU DATA.

5. Press the ACK key.

6. Press MENU key within two seconds to reset the menu data.

If successful, RESET COMPLETED will appear in the display.

If failed, RESET SKIPPED will appear instead.

7. To try again, press ACK key, and then press MENU key within two seconds.

8. When complete, return jumpers to their original positions.

535 User's Manual Appendix 4 A-11

Calibration

1

6

7

8

2

3

4

5

Figure A4.10

Slidewire Test Wiring

9

10

11

12

13

14

15

16

CCW

WIPER

CW

A-12

HARDWARE SCAN

Use this read-only feature to identify the output hardware and installed options of the controller.

1. Set the jumpers to V and TC ▲ (see Figure A4.3).

2. Power up the controller.

3. Press MENU until HARDWARE SCAN is displayed.

4. Press ACK to initiate the hardware display.

5. When complete, return jumpers to their original positions.

SLIDEWIRE TEST

If the slidewire option is installed, use the following to test its function:

1. Press MENU to scroll to the SLIDEWIRE TEST menu (refer to Figure A4.2)

2. Attach a 100 to 1000 ohms potentiometer to terminals 10, 11 and 12 as shown in Figure A4.10.

3. Moving the potentiometer from one end to the other should display from “0%” to “100%” on the controller.

4. If the error message OPEN appears, check the connectors and try again.

5. Press ACK to exit.

QUICK CALIBRATION PROCEDURE

This procedure may benefit users that have ISO or other standards requiring periodic calibration verification. It enables verification and modification of the PV input without entering the “Factory Configuration” mode.

1. Power down the 545 controller and place the input jumpers in the desired position (refer to Figure A4.2 and Figure A4.7).

2. Replace the process variable (PV1 or PV2) input signal with a suitable milliamp calibration device.

3. Apply power and allow controller to warm up for 30 minutes.

4. Place controller in manual mode. Then press MENU and FAST together to reach the PV1 INPUT or PV2 INPUT menu.

5. Press MENU until the OFFSET parameter appears in the 2nd display.

6. Adjust the calibration device to an output signal equal to the 0% range value for the particular input sensor (for example, 4mA for a 4-20 mA input).

7. Verify value indicated in the 1st display is equal to the 0% range value for the particular input sensor. If incorrect use the ▲ and ▼ keys to scroll to the correct value.

8. For linear voltage or mA input: Press MENU until the PV GAIN parameter appears in the 2nd display.

For thermocouple or RTD input: go to step 9.

9. Adjust the calibration device to an output signal equal to the 100% range value for the particular sensor.

10. Verify that the value shown in the 1st display is equal to 100% of the range value for the particular input sensor. If the value is not correct, use the ▲ and

▼ keys to scroll to the correct value.

11. Repeat steps 4 through 10 to verify all values.

12. Press DISPLAY to return to the Operation mode.

Appendix 4 535 User's Manual

Specifications

APPENDIX 5

SPECIFICATIONS

ACCURACY TYPICAL MAXIMUM

LINEAR (Voltage) ± 0.025% of full scale ± 0.100% of full scale

(Current) ± 0.050% of full scale ± 0.150% of full scale

RTD 1.0°

0.1°

± 0.050% of span

± 0.095% of span

± 0.150% of span

± 0.225% of span

THERMOCOUPLE

J, K, N, E (> 0°C) ± 0.060% of span

J, K, N, E (< 0°C) ± 0.150% of span

T (> 0°C) ± 0.100% of span

T (< 0°C)

R, S (> 500°C)

± 0.250% of span

± 0.150% of span

± 0.150% of span

± 0.375% of span

± 0.250% of span

± 0.625% of span

± 0.375% of span

R, S (< 500°C)

B (> 500°C)

B (< 500°C)

± 0.375% of span

± 0.150% of span

± 0.500% of span

± 0.925% of span

± 0.375% of span

± 1.000% of span

W, W5 & Platinel II ± 0.125% of span ± 0.325% of span

Display accuracy is ± 1 digit. These accuracy specifications are at reference conditions (25°C) and only apply for NIST ranges.

Detailed accuracy information is available upon request.

CONTROL ALGORITHM

PID, P with manual reset, PI, PD with manual reset, and On-Off are selectable from the front panel. Duplex outputs each use the same algorithm, except On-Off may be used with PID. The PID algorithm used is non-interacting.

TUNING PARAMETERS

Proportional Band: 0.1 to 999% of input range

Integral: 1 to 9999 seconds/repeat

Derivative: 0 to 600 seconds

Manual Reset/Load Line: 0 to 100% output

Cycle Time: 0.3 to 120 seconds

On-Off Deadband: up to 15% of input range (in eng. units)

Up to eight sets of PID values may be stored in memory and selected automatically, based on setpoint value, process variable value, or the corresponding local setpoint (SP1–SP8).

SELF TUNING OF PID VALUES

POWERTUNE ® On-demand “pretune”: This is an open loop algorithm that may be used on its own to calculate PID variables, or it can be used to provide preliminary PID values, as well as process identification information to be used by the adaptive tune.

Three pretune types are available: TYPE 1 for slow thermal processes; TYPE 2 for fast fluid or pressure applications; and TYPE

3 for level control applications.

Adaptive tune: Our exclusive POWERTUNE ® adaptive tuning algorithm automatically adjusts the PID values whenever a process upset occurs. Preliminary information may be input manually or automatically calculated by our pretune algorithm.

OVERSHOOT PROTECTION

POWERBACK is Powers’ proprietary, user-invoked, setpoint overshoot protection algorithm. When invoked, POWERBACK reduces or eliminates setpoint overshoot at power up or after setpoint changes. POWERBACK monitors the process variable to make predictive adjustments to the control parameters, a feature that helps eliminate overshoot of setpoint.

ISOLATION

Inputs and outputs are grouped into the following blocks:

Block 1: process variable

Block 2 :

Block 3: outputs 1, 2, and 4 communications, set of five digital inputs, output 3

(Earth Ground)

Block 4: remote setpoint

Each block is electrically isolated from the other blocks to withstand a HIPOT potential of 500 Vac for 1 minute or 600 Vac for 1 second, with the exception of blocks 1 and 4, which are isolated to withstand a HIPOT potential of 50 volts peak for 1 minute between each other. Inputs and outputs are not isolated from other inputs and outputs within the same block.

CONTROLLER ARCHITECTURE

The 535 Controller hardware can be configured as follows:

Inputs: One universal process variable input is standard. Available options include: remote setpoint, slidewire feedback and 5 digital inputs.

Outputs: Four outputs are available. See Ordering Information.

RS-485 Communications: Available as option with any configuration.

PROCESS VARIABLE INPUTS - 2 PROCESS VARIABLES

AVAILABLE

Universal input type. Any input type may be selected in the field.

Selection of input type (thermocouple, RTD, voltage or current) via jumper. Selection of particular sensor or range is via front panel.

THERMOCOUPLES RANGE °F

B

E

J

K

N

104 to 3301

–454 to 1832

–346 to 1832

–418 to 2500

–328 to 2372

R

S

T

W

W5

Platinel II

32 to 3182

32 to 3182

–328 to 752

32 to 4172

32 to 4172

–148 to 2550

RANGE °C

40 to 1816

–270 to 1000

–210 to 1000

–250 to 1371

–200 to 1300

0 to 1750

0 to 1750

–200 to 400

0 to 2300

0 to 2300

–100 to 1399

Specifications and information subject to change without notice.

535 User's Manual Appendix 5

(Continued on following page)

A-13

Specifications

RTDs

100 Pt. (DIN)

100 Pt. (JIS)

100 Pt. (SAMA)

Voltage DC

Millivolts DC

RANGE °F

–328 to 1562

–328.0 to 545.0

–328 to 1202

–328.0 to 545.0

–328 to 1202

–328.0 to 545.0

TRANSMITTER SIGNALS

Milliamps DC

INPUT RANGE

4 to 20

0 to 20

1 to 5

0 to 5

0 to 10

0 to 30

0 to 60

0 to 100

–25 to 25

RANGE °C

–200 to 850

–200.0 to 285.0

–200 to 650

–200.0 to 285.0

–200 to 650

–200.0 to 285.0

LINEARIZATION

Thermocouple and RTD inputs are automatically linearized.

Transmitter inputs may be linearized with a square root function or user-definable 15-point straight line linearization function.

INPUT IMPEDANCE

Current Input: 250 ohms

Voltage Input: 1 Mohms

Thermocouples: 10 Mohms

RTDs: 10 Mohms

UPDATE RATE

Input is sampled and output updated 10 times per second. Display is updated five times per second.

TRANSMITTER LOOP POWER

Isolated 24 Vdc (nominal) loop power supply is available if a loop power module is installed in an output socket not used for control. Capacity is 25 mA.

INPUT SIGNAL FAILURE PROTECTION

When input is lost, output is commanded to a predetermined output

(–5 to 105%). Thermocouple burnout is selectable for upscale or downscale.

INPUT FILTER

Single pole lowpass digital filter with selectable time constant from

0 to 120 seconds.

CALIBRATION

Comes fully calibrated from the factory and continuously calibrates itself for component aging due to temperature and time, except for the reference voltage. Field calibration can be easily performed in the field with a precision multimeter and thermocouple simulator.

Process variable offset and gain factors are provided to correct for sensor errors.

OUTPUT MODULES

The controller can have a total of four control outputs, alarm outputs and/or loop power modules installed. There are five types of output modules which can be configured to suit your particular application.

The modules may be ordered factory-installed, or they may be installed in the field.

Analog module: Either 0–20 mA or 4–20 mA (front panel selectable) into a load up to 1000. Accuracy ± 5µA @ 25°C.

Mechanical relay module: SPDT electromechanical relay.

Resistive load rated at 5 amps at 120/240 VAC. Normally open or normally closed selection is made by jumper. Output 4 is rated at

0.5 amps at 24 VAC and is always normally open.

Solid state relay (triac) module: Resistive load rated at 1 amp at

120/240 VAC. Output 4 is rated at 0.5 amps at 24 VAC. These outputs are normally open.

DC logic (SSR drive) module: “ON” voltage is 17 Vdc (nominal).

“OFF” voltage is less than 0.5 Vdc. (Current limited to 40mA.)

Loop power supply module: Current is limited to 25 mA @ 24V

(nominally loading).

CONTROL OUTPUTS

Up to two output modules may be designated for control. Any combination of output modules, with the exception of the loop power supply module, may be used.

Duplex control is available if output modules are installed in the first and second output sockets.

Position proportioning control with feedback is available if mechanical or solid state relay modules are installed in the first two output sockets, and the slidewire feedback option is installed.

Slidewire feedback range is 0 to 1050 ohms.

“Velocity” position proportioning control is available by installing mechanical or solid state relay modules in the first two output sockets. A special algorithm controls an electric actuator without the slidewire feedback signal.

Staged (split range) outputs are available if analog modules are installed in the first and second output sockets. This algorithm will allow the output range to be split between the two outputs.

RETRANSMISSION OUTPUT

Based on available outputs (any socket not used for control), up to two different variables can be simultaneously programmed for retransmission. Each precise, 16-bit resolution output may be scaled for any range. Variable selection includes: PV, SP, RAMP

SP, and OUTPUT.

ALARMS

The 535 controller has two software alarms. High and low alarms may be sourced to the PV, SP, RAMP SP, DEVIATION and OUTPUT. If an alarm is tripped, the alarm message will show, the ACK key will illuminate (if acknowledgeable) and the

ALM icon will light. If the alarm is tied to the first available noncontrol output, the “1” below the ALM icon will light. Similarly, if the alarm is tied to the second non-control output, the “2” below the ALM will light. The availability of outputs determines how many alarms can be tied to relays.

Up to two alarm outputs are available if an associated mechanical, solid state relay or DC logic module is installed in any output socket not used for control.

Global Alarm feature allows one or more of the internal software alarms to be tied to the same single, physical output. The acknowledge key is active for alarms associated with either loop.

A-14 Appendix 5 535 User's Manual

Specifications

DIGITAL INPUTS

A set of five external dry contacts or open collector transistor driven inputs are available. Each can be configured to perform one of the following functions:

• Select remote setpoint •Select either direct or reverse control action

• Select manual control

• Select second local setpoint •Disable adaptive tuning

• Select a second set of

PID values

•Addressable through serial communications only

• Acknowledge alarms

• Simulate ▲ and ▼ keys

•Inhibit the reset term

•Lock controller in manual mode

• Simulate DISPLAY, FAST and MENU keys

•Select PV1 or PV2

In addition, if the set of five digital inputs is installed, four may be designated to select one of eight local setpoints (and associated PID set, if desired) via a binary coded decimal (BCD) input.

SETPOINT SELECTION

A remote setpoint input is available. Signal is 0–20/4–20 mADC or

0–5/1–5 VDC (jumper selectable). Signal may be ratioed and biased.

Eight local setpoints may be stored in memory.

Setpoint selection is made via SET PT key or digital contact(s).

FAULT OUTPUT

One of the alarm outputs may be designated to also energize if the input signal is lost.

SERIAL COMMUNICATIONS

Isolated serial communications is available using an RS-485 interface. Baud rates of up to 19,600 are selectable. The protocol supports CRC data checking. If communications is lost, a time-out feature will command the controller to a particular control mode and specific setpoint or output if desired. Outputs 2–4 and digital inputs can act as “host-controlled” I/O independent of the controller’s function. The PV may be sourced via this interface.

May be installed in the field.

DIGITAL DISPLAYS

Upper display: five-digit, seven-segment. Used exclusively for displaying the process variable value. Height is 15 mm (0.6 in.).

2nd display: nine-character, 14-segment alphanumeric. Used for displaying setpoint, deviation, output value, slidewire position

(actual valve position) and configuration information. Height is

6mm (0.25 in.).

3rd display: nine-character, 14-segment alphanumeric. Used for indicating which loop is displayed and for displaying alarm messages and configuration information.

Height is 6mm (0.25 in.).

All displays are vacuum fluorescent. Color is blue-green.

STATUS INDICATORS

There are two types of indicators: icons and illuminated keys.

ALM 1 and ALM 2 icons: alarm 1 and alarm 2 status.

OUT 1 and OUT 2 icons: control output 1 and control output 2 status.

MAN key illuminated: controller is in manual control mode.

ACK key illuminated: alarm may be acknowledged.

SET PT key illuminated: setpoint other than primary local setpoint is active.

MENU key illuminated: controller is in configuration mode.

DIMENSIONS

Meets 1/4 DIN designation as specified in DIN standard number

43 700.

See diagram for details.

MOUNTING

Panel-mounted.

WIRING CONNECTIONS

29 screw terminals in the rear of the instrument.

POWER CONSUMPTION

15 VA at 120 VAC, 60 Hz (typical).

WEIGHT

Approximately 1 kg (2.2 lbs.).

AMBIENT TEMPERATURE

Operative Limits: 0 to 50°C (32 to 122°F).

Storage Limits: –40 to 70°C (–40 to 158°F).

RELATIVE HUMIDITY

10 to 90%, non-condensing.

VOLTAGE AND FREQUENCY

Universal power supply: 90 to 250 VAC, 48 to 62 Hz.

NOISE IMMUNITY

Common mode rejection (process input): >120 dB.

Normal mode rejection (process input): >80 dB.

AC line is double filtered and transient protected. Snubbers are provided for each relay output.

CONSTRUCTION

Case: extruded, non-perforated black anodized aluminum with ABS plastic sleeve.

Bezel: black plastic ABS.

Chassis assembly: plug-in type.

Keys: silicone rubber with diffusion printed graphics.

NEMA rating: front panel conforms to NEMA 4X when instrument is properly installed.

AGENCY APPROVALS

R

LR 84603

Memory Retention

( Heavy Industrial)

(Available as an option)

Lithium battery maintains all programming for approximately ten years.

Security

There are two levels of access: restricted and full.

A configurable code is used to enter the full access level. Functions not available in the restricted level are configurable.

(Continued on following page)

535 User's Manual Appendix 5 A-15

Specifications

A-16 Appendix 5 535 User's Manual

Glossary

APPENDIX 6

GLOSSARY

adaptive control: Control in which automatic means are used to change the type or influence (or both) of control parameters in such a way as to improve the performance of the control system.

adaptive tune: A component of the

535 self tune function which continuously monitors the process and natural disturbances and makes adjustments in the tuning parameters to compensate for or improve the performance of the control system.

alarm: A condition, generated by a controller, indicating that the process has exceeded or fallen below the set or limit point.

alarm, band: A type of alarm set up where a band is created around the control setpoint.

alarm, deviation: An alarm similar to a band alarm except it only creates a band on one side of the alarm setpoint.

alarm, fault: An indication that becomes active upon loss of process variable. Fault alarm operates in addition to other alarm assignments.

alarm, global: The single physical output to which one or more internal software alarms are tied.

alarm, high process variable: A type of alarm that is set up to occur when the process variable goes above the alarm setpoint.

alarm, low process variable: A type of alarm that is set up to occur when the process variable goes below the alarm setpoint.

alarm, manual: A type of alarm set up to occur when the controller is put into manual mode of operation.

alarm, power up: A type of alarm that determines alarm condition on power up of the controller.

alarm, rate-of-change: A type of alarm set up to occur when there is an excessive change in the process variable (PV) value.

baud rate: Any of the standard transmission rates for sending or receiving binary coded data.

bezel: The flat portion surrounding the face of the controller, which holds the keys and display.

bump: A sudden increase in the output power initiated by the controller in order to determine the system response during a self tune procedure.

binary coded decimal (BCD): A notation in which the individual decimal digits are represented by a group of binary bits, e.g., in the 8-4-

2-1 coded decimal notation each decimal digit is represented by four binary bits.

calibration: The act of adjustment or verification of the controller unit by comparison of the unit’s reading and standards of known accuracy and stability.

cascade control: Control in which the output of one controller is the setpoint for another controller.

closed loop: Control system that has a sensing device for process variable feedback.

cold junction: Point of connection between thermocouple metals and the electronic instrument.

configuration: Also called “set up,” selection of hardware devices and software routines that function together.

cold junction compensation:

Electronic means used to compensate for the effect of temperature at the cold junction.

contact: In hardware, a set of conductors that can be brought into contact by electromechanical action and thereby produce switching. In software, a symbolic set of points whose open or closed condition depends on the logic status assigned to them by internal or external conditions.

control action: The slope of the output of the instrument in reference to the input, e.g., direct output increases on rise of input. Typical cooling response or reverse output decreases on rise of input (typical heating response).

control action, derivative (rate)

(D): The part of the control algorithm that reacts to rate of change of the process variable.

control action, integral (reset) (I):

The part of the control algorithm that reacts to offset between setpoint and process variable.

control action, proportional (P):

Control action in which there is a continuous linear relation between the output and the input.

control action, proportional plus

derivative (PD): A control algorithm that provides proportional control with the addition of derivative action to compensate for rapid changes in process variable.

535 User's Manual Appendix 6 A-17

Glossary

control action, proportional plus

integral (PI): A control algorithm that provides proportional control with the addition of integral action to compensate for offsets between setpoint and process variable.

control action, proportional plus

integral plus derivative (PID): A control algorithm that provides proportional control with both integral and derivative action.

control, adaptive: (see adaptive control)

control algorithm: A mathematical representation of the control action to be performed.

control, cascade: (see cascade control)

control output: The end product which is at some desired value that is the result of having been processed or manipulated.

control mode, automatic: A user selected method of operation where the controller determines the control output.

control mode, manual: A user selected method of operation where the operator determines the control output.

control parameters: User defined values that specify how the process is to be controlled.

controlled variable: A process variable which is to be controlled at some desired value by means of manipulating another process variable.

CRC (cyclic redundancy check):

An error checking technique in which a checking number is generated by taking the remainder after dividing all the bits in a block

(in serial form) by a predetermined binary number.

CSA: Acronym for Canadian

Standards Association.

cycle time: The time necessary to complete a full ON-through-OFF period in a time proportioning control system.

damping: The decrease in amplitude of an oscillation due to the dissipation of energy.

damped, 1/4 amplitude: The loss of one-quarter of the amount of amplitude with every oscillation.

dead band: A temperature band between heating and cooling functions; the range through which an input can be varied without initiating observable change in output.

dead time: The interval of time between initiation of an input change or stimulus and the start of the resulting observable response.

default settings: Parameters selections that have been made at the factory.

derivative: Anticipatory action that senses the rate of change of temperature, and compensates to minimize overshoot and undershoot. Also “rate.”

derivative action: (See control action, derivative)

deviation: The difference between the value of the controlled variable and the value at which it is being controlled.

digital input: Used in this manual to indicate the status of a dry contact; also called “gate”.

DIN: Deutsche Industrial Norms, a

German agency that sets standard for engineering units and dimensions.

display, 1st: The top, largest display of controller face that is used to display the process variable value.

display, 2nd: The middle display of the controller face used to indicate: in OPERATION Mode the setpoint, deviation or output; in

TUNING or SET UP Mode - the parameter or parameter menu.

display, 3rd: The bottom display of the controller face that is used to indicate: in OPERATION Mode the setpoint, deviation or output; in

TUNING or SET UP Mode - the parameter or parameter menu.

disturbance: An undesired change that takes place in a process that tends to affect adversely the value of a controlled variable.

duty cycle: Percentage of “load

ON time” relative to total cycle time.

earth ground: A terminal used on the 535 to ensure, by means of a special connection, the grounding

(earthing) of part of the controller.

engineering unit: Terms of data measurement such as degrees

Celsius, pounds, grams, etc.

feedback: Process signal used in control as a measure of response to control action; the part of a closed-loop system which automatically brings back information about the condition under control.

A-18 Appendix 6 535 User's Manual

Glossary

FM: Factory Mutual Research

Corporation; an organization which sets safety standards.

gain: The ratio of the change in output to the change in input which caused it.

heat/cool control: Control method where the temperature of the end product is maintained by controlling two final elements using two of the

535 outputs.

hysteresis: In ON/OFF control, the temperature change necessary to change the output from full ON to full OFF.

hunting: Oscillation or fluctuation of process temperature between setpoint and process variable.

icons: Indicators on the face of the controller.

input: Process variable information being supplied to the instrument.

integral: Control action that automatically eliminates offset, or

“droop”, between setpoint and actual process temperature. Also “reset.”

internal voltage reference: A precision voltage source within the

535 controller, used to establish internal calibration.

isolation: Electrical separation of sensor from high voltage circuitry.

Allows for application of grounded or ungrounded sensing element.

offset: Adjustment to actual input temperature and to the temperature values the controller uses tor display and control.

JIS: Japanese Industrial Standards.

Also Japanese Industrial Standards

Committee (JISC). Establishes standards on equipment and components.

jumper: A wire that connects or bypasses a portion of a circuit on the printed circuit board.

jumper connectors: The connecting device that straddles a jumper to connect or bypass a portion of a circuit on a printed circuit board.

linearization: A function the 535 uses to automatically linearize a nonlinear signal, either from thermocouple or RTD temperature sensors, through the use of look up tables. The relationship that exists between two variables when the ratio of the value of one variable to the corresponding value of the other is constant over an entire range of possibilities.

linearization, custom: Userdefinable linearization.

linearization, square root: A function the 535 uses to linearize a non-linear signal corresponding to the flow being measured by flow transmitters.

load line out: A start up output value which is to bring initial output closer to actual steady state output.

Ioop power: An internal 24-volt current limited power supply used to power 2 or 4 wire transmitter on the input of the controller.

load: The demand for input to a process.

low pass input filter: A method to block fast acting signals (typically noise), while allowing slow acting signals (actual process variable) to pass.

manipulated variable: A quantity or condition which is varied so as to change the value of the controlled variable. (see also control output)

mechanical relay: (see relay)

menu: (see menu block)

menu block: Groups of parameters arranged in the software.

microcontroller: A large scale integrated circuit that has all the functions of a computer, including memory and input/output systems.

NEMA 4X: A National Electrical

Manufacturers Association standard for specifying a product’s resistance to water and corrosion.

normally open: A switched output

(i.e, relay, etc.) whose unpowered state has no connection.

normally closed: A switched output

(i.e., relay) whose unpowered state provides connection.

noise: An unwanted component of a signal or variable.

noise band: A measurement of the amount of random process “noise” affecting the measurement of the process variable.

offset: The difference in temperature between the setpoint and the actual process temperature.

ON/OFF control: Control of temperature about a setpoint by turning the output full ON below setpoint and full OFF above setpoint in the heat mode.

open loop: Control system with no sensory feedback.

optimization: The act of controlling a process at its maximum possible level of performance, usually as expressed in economic terms.

output modules: Plug in devices that provide power handling to enable process control. These

535 User's Manual Appendix 6 A-19

Glossary

modules are either binary (on/off) such as a relay, or analog

(continuously variable) for current loop control.

output: Action in response to difference between setpoint and process variable.

overshoot: Condition where temperature exceeds setpoint due to initial power up or process changes.

P control: Proportioning control.

parameter(s): A user-defined variable that specifies how a particular function in the 535 will operate.

PD control: Proportioning control with rate action.

PI control: Proportioning control with auto-reset.

PID control: Proportioning control with auto-reset and rate.

position proportioning: A type of control output that utilizes two relays to control an electric motorized actuator.

POWERBACK®: Powers proprietary algorithm which monitors the PV to make predictive judgements to control parameters in order to reduce or eliminate overshoot at powerup or after setpoint changes.

POWERTUNE®: The Powers exclusive special self-tuning function. Consists of an on-demand pretune that calculates PID values or provide preliminary PID values and process information for the second tuning function. Second tuning function is an adaptive tuning algorithm that automatically adjusts

PID values whenever a process upset or setpoint change occurs.

pretune algorithm: A method by which the 535 controller initiates an output value change, monitors the manner of the corresponding process variable change, and then determines the appropriate PID control parameters.

primary loop: The outer loop in a cascade system.

process variable: In the treatment of material, any characteristic or measurable attribute whose value changes with changes in prevailing conditions. Common variables are level, pressure and temperature.

proportional band: The change in input required to produce a full range change in output due to proportional control action.

ramping: (see setpoint, ramping)

rate: Anticipatory action that senses the rate of change of temperature and compensates to minimize overshoot. Also “derivative.”

rate action: The derivative function of a controller.

rate time: The time interval over which the system temperature is sampled for the derivative function.

regulate: The act of maintaining a controlled variable at or near its setpoint in the face of load disturbances.

relay (mechanical): An electromechanical device that completes or interrupts a circuit by physically moving electrical contacts into contact with each other.

relay (solid state): A solid state switching device which completes or interrupts a circuit electrically with no moving parts.

reset: Control action that automatically eliminates offset, or

“droop,” between setpoint and actual process temperature. Also “integral.”

reset term: (see reset)

RTD: Resistance Temperature

Detector. Resistive sensing device displaying resistance versus temperature characteristics.

Displays positive temperature coefficient.

relative gain: An open-loop gain determined with all other manipulated variables constant, divided by the same gain determined with all other controlled variables constant.

retransmission: a feature on the

535 which allows the transmission of a milliamp signal corresponding to the process variable, target setpoint or actual setpoint to another device, typically a chart recorder.

sample interval: The time interval between measurements or observations of a variable.

secondary loop: The inner loop of a cascade system.

self tune: A method of automatically calculating and inserting optimum

PID parameters by testing system response and timing.

serial communications: The sending or receiving of binary coded data to a supervisory device such as a personal computer of programmable logic controller.

setpoint: An input variable which sets the desired value of a controlled variable.

setpoint, actual: The desired value of a controlled variable that the controller is currently acting upon.

A-20 Appendix 6 535 User's Manual

Glossary

setpoint, deviation from: The difference of the number of units between the current process variable and the setpoint.

thermocouple: Temperature sensing device that is constructed of two dissimilar metals wherein a measurable, predictable voltage is generated corresponding to temperature.

setpoint, ramping: A setpoint which is determined by the ramp function of the controller where over time the controller variable reaches a desired value.

setpoint, target: The end point of the ramp function.

set up: Also called configuration, selection of hardware devices and software routines that function together.

sheds: In serial communications, when the signal is lost.

slidewire position proportioning:

An output algorithm that utilizes a slidewire feedback signal to determine the actual position of the actuator being controller.

solid state relay: (see relay, solid state)

thermocouple break protection:

Fail-safe operation that assures desired output upon an open thermocouple condition.

thermocouple upscale burnout ( ▲ ):

Jumper position that determines whether, when a thermocouple fails, its output is replaced by a millivoltage which will match the thermocouple’s maximum value. The jumper connector should be placed in the TC

▲ position.

thermocouple downscale burnout ( ▼ ):

Jumper position that determines whether, when a thermocouple fails, its output is replaced be a millivoltage which will match the thermocouple’s minimum value. The jumper connector should be placed in the TC

▼ position.

SSR drive: A D.C. on/off signal output for controlling a solid state relay.

three mode control: (See control action PID)

staged outputs: The set up of two analog outputs, where one analog output varies its signal over a portion of the PID output range, and the second analog output then varies its signal over the remainder of the PID output range.

static discharge: Undesirable current resulting from the discharge of electrostatic energy.

time proportioning control: A control algorithm that expresses output power (0–100%) as a function of percent ON versus percent OFF within a preset cycle time.

time proportioning output: A controller output assigned by software to facilitate time proportional control (typically a relay, SSR, or

SSR Drive output).

station address: The unique identifier assigned to a device for communications.

tracking: A function that defines whether the local setpoint will track the remote setpoint. When the controller is transferred to a local setpoint, that local setpoint value will match the remote process value when the transfer occurs.

transmitter (2-wire): A device used to transmit data via a two wire current loop. A two-wire transmitter is loop powered.

transmitter (4-wire): A device used to transmit data via a current loop or a DC voltage. A 4-wire transmitter uses 2 wires for data and 2 wires for power.

triac: Solid state switching device used to switch alternating current signals on and off. Triac circuits are sometimes referred to as solid state relays (SSR).

trip point: Value which determines when that set of PID values becomes active.

velocity position proportioning:

This is a control technique where valve position is determined by calculating the amount of time it takes to open/close a valve by moving the valve for a portion of that time.

windup: Saturation of the integral mode of a controller developing during times when control cannot be achieved, which causes the controlled variable to overshoot its setpoint when the obstacle to control is removed.

wild stream: In mixing applications that require materials to be mixed to a desired ratio, this is the one part of the material that is uncontrolled.

535 User's Manual Appendix 6 A-21

Glossary

A-22 Appendix 6 535 User's Manual

Isolation Block Diagram

APPENDIX 7

ISOLATION BLOCK DIAGRAM

PV1

Input

Multiplexer

PV2

Input

RSP

Input

Slidewire

Input

Power

Supply

+V

CPU

Output 1

ISO Ground

Referenced

Output 2

ISO Ground

Referenced

Output 3

ISO Ground

Referenced

Output 4

ISO Ground

Referenced

+Vd

Digital

Inputs 1-5

Line

L

N

G

ISO

+Ve

RS485 Serial

Communications

Interface

E

E

Isolated output ground

E

Earth referenced ground

Internal ground

1. Each of the three ground circuits are isolated from each other to withstand a potential of 500 volts for 1 minute, or 600 volts for 1 second.

2. RSP, Slidewire and the PV inputs are isolated to withstand 50 volts peak between each other for 1 minute.

3. Milliamp, Loop Power and SSR Drive modules in output positions 1, 2, and 4 are not isolated from each other.

+V +V

Milliamp Module

535 User's Manual

Mechanical Relay

SSR Driver

Appendix 7

Loop Power SSR Output

A-23

Isolation Block Diagram

A-24 Appendix 7 535 User's Manual

RETURN PROCEDURES

To return equipment to Moore Industries for repair, follow these four steps:

1. Call Moore Industries and request a Returned Material Authorization (RMA) number.

Warranty Repair –

If you are unsure if your unit is still under warranty, we can use the unit’s serial number to verify the warranty status for you over the phone. Be sure to include the RMA number on all documentation.

Non-Warranty Repair –

If your unit is out of warranty, be prepared to give us a Purchase Order number when you call. In most cases, we will be able to quote you the repair costs at that time. The repair price you are quoted will be a “Not To Exceed” price, which means that the actual repair costs may be less than the quote. Be sure to include the RMA number on all documentation.

2.

Provide us with the following documentation: a) A note listing the symptoms that indicate the unit needs repair b) Complete shipping information for return of the equipment after repair c) The name and phone number of the person to contact if questions arise at the factory

3.

Use sufficient packing material and carefully pack the equipment in a sturdy shipping container.

4.

Ship the equipment to the Moore Industries location nearest you.

The returned equipment will be inspected and tested at the factory. A Moore Industries representative will contact the person designated on your documentation if more information is needed.

The repaired equipment, or its replacement, will be returned to you in accordance with the shipping instructions furnished in your documentation.

WARRANTY DISCLAIMER

THE COMPANY MAKES NO EXPRESS, IMPLIED OR STATUTORY WARRAN-

TIES (INCLUDING ANY WARRANTY OF MERCHANTABILITY OR OF FITNESS

FOR A PARTICULAR PURPOSE) WITH RESPECT TO ANY GOODS OR SER-

VICES SOLD BY THE COMPANY. THE COMPANY DISCLAIMS ALL WARRAN-

TIES ARISING FROM ANY COURSE OF DEALING OR TRADE USAGE, AND

ANY BUYER OF GOODS OR SERVICES FROM THE COMPANY ACKNOWL-

EDGES THAT THERE ARE NO WARRANTIES IMPLIED BY CUSTOM OR

USAGE IN THE TRADE OF THE BUYER AND OF THE COMPANY, AND THAT

ANY PRIOR DEALINGS OF THE BUYER WITH THE COMPANY DO NOT IM-

PLY THAT THE COMPANY WARRANTS THE GOODS OR SERVICES IN ANY

WAY.

ANY BUYER OF GOODS OR SERVICES FROM THE COMPANY AGREES

WITH THE COMPANY THAT THE SOLE AND EXCLUSIVE REMEDIES FOR

BREACH OF ANY WARRANTY CONCERNING THE GOODS OR SERVICES

SHALL BE FOR THE COMPANY, AT ITS OPTION, TO REPAIR OR REPLACE

THE GOODS OR SERVICES OR REFUND THE PURCHASE PRICE. THE

COMPANY SHALL IN NO EVENT BE LIABLE FOR ANY CONSEQUENTIAL OR

INCIDENTAL DAMAGES EVEN IF THE COMPANY FAILS IN ANY ATTEMPT

TO REMEDY DEFECTS IN THE GOODS OR SERVICES , BUT IN SUCH CASE

THE BUYER SHALL BE ENTITLED TO NO MORE THAN A REFUND OF ALL

MONIES PAID TO THE COMPANY BY THE BUYER FOR PURCHASE OF THE

GOODS OR SERVICES.

ANY CAUSE OF ACTION FOR BREACH OF ANY WARRANTY BY THE

COMPANY SHALL BE BARRED UNLESS THE COMPANY RECEIVES

FROM THE BUYER A WRITTEN NOTICE OF THE ALLEGED DEFECT OR

BREACH WITHIN TEN DAYS FROM THE EARLIEST DATE ON WHICH THE

BUYER COULD REASONABLY HAVE DISCOVERED THE ALLEGED DE-

FECT OR BREACH, AND NO ACTION FOR THE BREACH OF ANY WAR-

RANTY SHALL BE COMMENCED BY THE BUYER ANY LATER THAN

TWELVE MONTHS FROM THE EARLIEST DATE ON WHICH THE BUYER

COULD REASONABLY HAVE DISCOVERED THE ALLEGED DEFECT OR

BREACH.

RETURN POLICY

For a period of thirty-six (36) months from the date of shipment, and under normal conditions of use and service, Moore Industries ("The

Company") will at its option replace, repair or refund the purchase price for any of its manufactured products found, upon return to the Company (transportation charges prepaid and otherwise in accordance with the return procedures established by The Company), to be defective in material or workmanship. This policy extends to the original Buyer only and not to Buyer's customers or the users of Buyer's products, unless Buyer is an engineering contractor in which case the policy shall extend to Buyer's immediate customer only. This policy shall not apply if the product has been subject to alteration, misuse, accident, neglect or improper application, installation, or operation. THE COMPANY

SHALL IN NO EVENT BE LIABLE FOR ANY INCIDENTAL OR CONSE-

QUENTIAL DAMAGES.

The Interface Solution Experts • www.miinet.com

United States • [email protected]

Tel: (818) 894-7111 • FAX: (818) 891-2816

Belgium • [email protected]

Tel: 03/448.10.18 • FAX: 03/440.17.97

China • [email protected]

Tel: 86-21-68406724 • FAX: 86-21-50623585

Australia • [email protected]

Tel: (02) 8536-7200 • FAX: (02) 9525-7296

The Netherlands • [email protected]

Tel: (0)344-617971 • FAX: (0)344-615920

United Kingdom • [email protected]

Tel: 01293 514488 • FAX: 01293 536852

advertisement

Was this manual useful for you? Yes No
Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Related manuals