ABB ACS355 series User manual

Add to my manuals
406 Pages

advertisement

ABB ACS355 series User manual | Manualzz
ABB general machinery drives
User’s manual
ACS355 drives
List of related manuals
Drive manuals and guides
ACS355 user’s manual
ACS355 drives with IP66/67 / UL Type 4x enclosure
supplement
ACS355 Common DC application guide
Code (English)
3AUA0000066143 1)
3AUA0000066066 1)
3AUA0000070130 4)
Option manuals and guides
FCAN-01 CANopen adapter module user’s manual
3AFE68615500
FDNA-01 DeviceNet adapter module user’s manual
3AFE68573360
FECA-01 EtherCAT adapter module user’s manual
3AUA0000068940
FENA-01 Ethernet adapter module Modbus/TCP protocol 3AUA0000022989
manual
FMBA-01 Modbus adapter module user’s manual
3AFE68586704
FLON-01 LONWORKS® adapter module user’s manual
3AUA0000041017
FPBA-01 PROFIBUS DP adapter module user’s manual 3AFE68573271
FRSA-00 RS-485 adapter board user’s manual
3AFE68640300
MFDT-01 FlashDrop user’s manual
3AFE68591074
MPOT-01 potentiometer module instructions for
3AFE68591082
installation and use
MREL-01 relay output extension module user’s manual 3AUA0000035974
MTAC-01 pulse encoder interface module user’s manual 3AFE68591091
MUL1-R1 installation instructions for ACS150, ACS310, 3AFE68642868
ACS350 and ACS355
MUL1-R3 installation instructions for ACS310, ACS350 3AFE68643147
and ACS355
MUL1-R4 installation instructions for ACS350 and
3AUA0000025916
ACS355
SREA-01 Ethernet adapter module quick start-up guide 3AUA0000042902
SREA-01 Ethernet adapter module user’s manual
3AUA0000042896
1)
1)
1)
1)
1)
1)
1)
1)
1)
1), 3)
1)
1)
1), 3)
1), 3)
1), 3)
1)
2)
Maintenance manuals and guides
Guide for capacitor reforming in ACS50, ACS55, ACS150, 3AFE68735190
ACS310, ACS350, ACS355, ACS550 and ACH550
1)
2)
3)
Delivered as a printed copy with the drive or optional equipment
Delivered in PDF format with the drive or optional equipment
Multilingual
Available from your local ABB representative
Manuals are available in PDF format on the Internet (unless otherwise noted). See
section Document library on the Internet on the inside of the back cover.
4)
User’s Manual
ACS355
Table of contents
1. Safety
4. Mechanical installation
6. Electrical installation
8. Start-up, control with I/O
and ID run
© 2010 ABB Oy. All Rights Reserved.
3AUA0000066143 Rev A
EN
EFFECTIVE: 2010-01-01
Table of contents 5
Table of contents
List of related manuals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1. Safety
What this chapter contains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Use of warnings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Safety in installation and maintenance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Electrical safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
General safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Safe start-up and operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Electrical safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Safety
General safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
17
17
18
18
19
20
20
20
2. Introduction to the manual
What this chapter contains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Applicability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Target audience . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Purpose of the manual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Contents of this manual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Related documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Categorization by frame size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Quick installation and commissioning flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
21
21
21
21
22
23
23
24
3. Operation principle and hardware description
What this chapter contains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Operation principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Product overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Power connections and control interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Type designation label . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Type designation key . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
25
25
26
26
27
28
29
4. Mechanical installation
What this chapter contains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Checking the installation site . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Requirements for the installation site . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Required tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Unpacking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Checking the delivery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Installing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Install the drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Fasten clamping plates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Attach the optional fieldbus module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
31
31
32
33
33
34
34
35
35
6 Table of contents
5. Planning the electrical installation
What this chapter contains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Implementing the AC power line connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Selecting the supply disconnecting device (disconnecting means) . . . . . . . . . . . . . . . . . . . .
European union . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Other regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Checking the compatibility of the motor and drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Selecting the power cables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
General rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Alternative power cable types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Motor cable shield . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Additional US requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Selecting the control cables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
General rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Relay cable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Control panel cable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Routing the cables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Control cable ducts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Protecting the drive, input power cable, motor and motor cable in short circuit situations and
against thermal overload . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Protecting the drive and input power cable in short-circuit situations . . . . . . . . . . . . . . .
Protecting the motor and motor cable in short-circuit situations . . . . . . . . . . . . . . . . . . .
Protecting the drive, motor cable and input power cable against thermal overload . . . . .
Protecting the motor against thermal overload . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Implementing the Safe torque off (STO) function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Using residual current devices (RCD) with the drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Using a safety switch between the drive and the motor . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Implementing a bypass connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Protecting the contacts of relay outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
37
37
37
38
38
38
38
38
39
39
40
40
40
41
41
41
42
43
43
43
43
44
44
44
44
44
45
6. Electrical installation
What this chapter contains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Checking the insulation of the assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Input power cable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Motor and motor cable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Checking the compatibility with IT (ungrounded) and corner-grounded TN systems . . . . . . .
Connecting the power cables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Connection diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Connection procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Connecting the control cables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
I/O terminals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Default I/O connection diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Connection procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
47
47
47
47
48
48
49
49
50
51
51
54
56
7. Installation checklist
Checking the installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Table of contents 7
8. Start-up, control with I/O and ID run
What this chapter contains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
How to start up the drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
How to start up the drive without a control panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
How to perform a manual start-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
How to perform a guided start-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
How to control the drive through the I/O interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
How to perform the ID run . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ID run procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
59
59
60
61
66
68
69
69
9. Control panels
What this chapter contains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
About control panels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Applicability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Basic control panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Output mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Reference mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Parameter mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Copy mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Basic control panel alarm codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Assistant control panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Output mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Parameters mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Assistants mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Changed parameters mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Fault logger mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Time and date mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Parameter backup mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
I/O settings mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
10. Application macros
What this chapter contains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Overview of macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Summary of the I/O connections of the application macros . . . . . . . . . . . . . . . . . . . . . . . . .
ABB standard macro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Default I/O connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3-wire macro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Default I/O connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Alternate macro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Default I/O connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Motor potentiometer macro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Default I/O connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
109
109
111
112
112
113
113
114
114
115
115
8 Table of contents
Hand/Auto macro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Default I/O connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
PID control macro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Default I/O connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Torque control macro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Default I/O connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
User macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
116
116
117
117
118
118
119
11. Program features
What this chapter contains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Start-up assistant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Default order of the tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
List of the tasks and the relevant drive parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Contents of the assistant displays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Local control vs. external control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Local control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
External control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Block diagram: Start, stop, direction source for EXT1 . . . . . . . . . . . . . . . . . . . . . . . . . .
Block diagram: Reference source for EXT1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Reference types and processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Reference trimming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Programmable analog inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Programmable analog output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Programmable digital inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Programmable relay output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Frequency input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Transistor output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Actual signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Motor identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
121
121
121
122
123
124
125
125
126
126
126
127
127
128
128
128
129
129
130
130
130
131
131
131
131
132
132
132
133
133
133
133
133
133
134
134
134
134
134
135
135
Table of contents 9
Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Power loss ride-through . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DC magnetizing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Maintenance trigger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DC hold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Speed compensated stop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Flux braking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Flux optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Acceleration and deceleration ramps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Critical speeds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Constant speeds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Custom U/f ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Speed controller tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Speed control performance figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Torque control performance figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Scalar control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
IR compensation for a scalar controlled drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Programmable protection functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
AI<Min . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Panel loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
External fault . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Stall protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Motor thermal protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Underload protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Earth fault protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Incorrect wiring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Input phase loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Pre-programmed faults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Overcurrent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DC overvoltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DC undervoltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Drive temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Short circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Internal fault . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Operation limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
135
136
136
136
136
137
137
137
137
137
137
138
139
139
139
139
139
140
140
140
140
141
141
141
142
142
143
143
143
144
144
144
144
144
144
145
145
145
145
146
146
146
147
147
147
147
147
147
147
147
147
10 Table of contents
Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Power limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Automatic resets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Supervisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Parameter lock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
PID control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Process controller PID1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
External/Trim controller PID2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Block diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Sleep function for the process PID (PID1) control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Motor temperature measurement through the standard I/O . . . . . . . . . . . . . . . . . . . . . . . . .
Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Control of a mechanical brake . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Operation time scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
State shifts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Jogging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Timed functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Sequence programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
State shifts
.........................................................
Example 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Example 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Safe torque off (STO) function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
147
148
148
148
148
148
148
148
149
149
149
149
149
150
152
152
153
154
154
154
155
156
156
157
157
158
159
160
161
162
162
163
164
165
165
165
165
165
165
166
166
166
167
168
169
170
174
12. Actual signals and parameters
What this chapter contains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
Table of contents 11
Terms and abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Fieldbus addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Fieldbus equivalent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Default values with different macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Actual signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
01 OPERATING DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
03 FB ACTUAL SIGNALS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
04 FAULT HISTORY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10 START/STOP/DIR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
11 REFERENCE SELECT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
12 CONSTANT SPEEDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
13 ANALOG INPUTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
14 RELAY OUTPUTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
15 ANALOG OUTPUTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
16 SYSTEM CONTROLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
18 FREQ IN & TRAN OUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
19 TIMER & COUNTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
20 LIMITS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
21 START/STOP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
22 ACCEL/DECEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
23 SPEED CONTROL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
24 TORQUE CONTROL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
25 CRITICAL SPEEDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
26 MOTOR CONTROL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
29 MAINTENANCE TRIG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30 FAULT FUNCTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31 AUTOMATIC RESET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32 SUPERVISION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33 INFORMATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34 PANEL DISPLAY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
35 MOTOR TEMP MEAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
36 TIMED FUNCTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
40 PROCESS PID SET 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
41 PROCESS PID SET 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
42 EXT / TRIM PID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
43 MECH BRK CONTROL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
50 ENCODER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
51 EXT COMM MODULE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
52 PANEL COMM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
53 EFB PROTOCOL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
54 FBA DATA IN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
55 FBA DATA OUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
84 SEQUENCE PROG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
98 OPTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
99 START-UP DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
175
175
176
176
178
178
181
183
185
185
187
192
197
199
202
203
209
210
214
218
223
227
230
231
232
237
238
246
248
250
251
256
258
261
271
272
274
275
276
277
278
280
280
281
294
294
13. Fieldbus control with embedded fieldbus
What this chapter contains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301
System overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301
12 Table of contents
Setting up communication through the embedded Modbus . . . . . . . . . . . . . . . . . . . . . . . . .
Drive control parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Fieldbus control interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Control word and Status word . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Actual values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Fieldbus references . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Reference selection and correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Fieldbus reference scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Reference handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Actual value scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Modbus mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Register mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Function codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Exception codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Communication profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ABB drives communication profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DCU communication profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
303
304
307
307
307
307
308
308
310
311
311
312
312
314
314
315
315
320
14. Fieldbus control with fieldbus adapter
What this chapter contains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
System overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Setting up communication through a fieldbus adapter module . . . . . . . . . . . . . . . . . . . . . . .
Drive control parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Fieldbus control interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Control word and Status word . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Actual values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Communication profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Fieldbus references . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Reference selection and correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Fieldbus reference scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Reference handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Actual value scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
325
325
327
328
330
330
331
331
331
332
332
334
334
334
15. Fault tracing
What this chapter contains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Alarm and fault indications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
How to reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Fault history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Alarm messages generated by the drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Alarms generated by the basic control panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Fault messages generated by the drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Embedded fieldbus faults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
No master device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Same device address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Incorrect wiring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
335
335
335
335
336
337
341
344
352
352
352
352
Table of contents 13
16. Maintenance and hardware diagnostics
What this chapter contains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Maintenance intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Cooling fan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Replacing the cooling fan (frame sizes R1…R4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Reforming the capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Power connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Control panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Cleaning the control panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Changing the battery in the assistant control panel . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LEDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
353
353
354
354
355
355
355
356
356
356
356
17. Technical data
What this chapter contains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Sizing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Derating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Power cable sizes and fuses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Dimensions, weights and free space requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Dimensions and weights
...............................................
Free space requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Losses, cooling data and noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Losses and cooling data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Terminal and lead-through data for the power cables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Terminal and lead-through data for the control cables . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Electric power network specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Motor connection data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Control connection data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Brake resistor connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Common DC connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Degrees of protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Ambient conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Applicable standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
CE marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Compliance with the European EMC Directive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Compliance with EN 61800-3:2004 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Category C1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Category C2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Category C3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
UL marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
UL checklist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
C-Tick marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
TÜV NORD Safety Approved mark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
357
358
359
359
359
361
363
363
363
364
364
365
366
366
367
367
369
370
370
370
370
371
372
372
373
373
373
373
373
374
374
375
375
376
376
14 Table of contents
RoHS marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376
Compliance with the Machinery Directive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376
Patent protection in the USA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377
18. Dimension drawings
Frame sizes R0 and R1, IP20 (cabinet installation) / UL open . . . . . . . . . . . . . . . . . . . . . . .
Frame sizes R0 and R1, IP20 / NEMA 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Frame size R2, IP20 (cabinet installation) / UL open . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Frame size R2, IP20 / NEMA 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Frame size R3, IP20 (cabinet installation) / UL open . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Frame size R3, IP20 / NEMA 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Frame size R4, IP20 (cabinet installation) / UL open . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Frame size R4, IP20 / NEMA 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
380
381
382
383
384
385
386
387
19. Appendix: Resistor braking
What this chapter contains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Planning the braking system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Selecting the brake resistor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Selecting the brake resistor cables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Placing the brake resistor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Protecting the system in brake circuit fault situations . . . . . . . . . . . . . . . . . . . . . . . . . .
Electrical installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Start-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
389
389
389
391
392
392
392
392
20. Appendix: Extension modules
What this chapter contains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Extension modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Technical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
MTAC-01 pulse encoder interface module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
MREL-01 output relay module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
MPOW-01 auxiliary power module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Electrical installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Technical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
393
393
393
394
396
396
396
397
397
397
398
21. Appendix: Safe torque off (STO)
What this appendix contains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Program features, settings and diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Operation of the STO function and its diagnostics function . . . . . . . . . . . . . . . . . . . . . .
STO status indications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
STO function activation and indication delays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Start-up and commissioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Technical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
STO components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
399
399
400
400
401
402
402
403
403
403
Table of contents 15
Data related to safety standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404
Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404
Maintenance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404
Further information
Product and service inquiries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Product training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Providing feedback on ABB Drives manuals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Document library on the Internet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
405
405
405
405
16 Table of contents
Safety 17
Safety
What this chapter contains
The chapter contains safety instructions which you must follow when installing,
operating and servicing the drive. If ignored, physical injury or death may follow, or
damage may occur to the drive, motor or driven equipment. Read the safety
instructions before you work on the drive.
Use of warnings
Warnings caution you about conditions which can result in serious injury or death
and/or damage to the equipment, and advise on how to avoid the danger. The
following warning symbols are used in this manual:
Electricity warning warns of hazards from electricity which can cause
physical injury and/or damage to the equipment.
General warning warns about conditions, other than those caused by
electricity, which can result in physical injury and/or damage to the equipment.
18 Safety
Safety in installation and maintenance
These warnings are intended for all who work on the drive, motor cable or motor.
„ Electrical safety
WARNING! Ignoring the following instructions can cause physical injury or
death, or damage to the equipment.
Only qualified electricians are allowed to install and maintain the drive!
•
•
Never work on the drive, motor cable or motor when input power is applied. After
disconnecting the input power, always wait for 5 minutes to let the intermediate
circuit capacitors discharge before you start working on the drive, motor or motor
cable.
Always ensure by measuring with a multimeter (impedance at least 1 Mohm) that
1. there is no voltage between the drive input phases U1, V1 and W1 and the
ground
2. there is no voltage between terminals BRK+ and BRK- and the ground.
Do not work on the control cables when power is applied to the drive or to the
external control circuits. Externally supplied control circuits may carry dangerous
voltage even when the input power of the drive is switched off.
•
Do not make any insulation or voltage withstand tests on the drive.
•
Disconnect the internal EMC filter when installing the drive on an IT system (an
ungrounded power system or a high-resistance-grounded [over 30 ohms] power
system), otherwise the system will be connected to ground potential through the
EMC filter capacitors. This may cause danger or damage the drive. See page 48.
Note: When the internal EMC filter is disconnected, the drive is not EMC
compatible without an external filter.
•
Disconnect the internal EMC filter when installing the drive on a corner-grounded
TN system, otherwise the drive will be damaged. See page 48. Note: When the
internal EMC filter is disconnected, the drive is not EMC compatible without an
external filter.
•
All ELV (extra low voltage) circuits connected to the drive must be used within a
zone of equipotential bonding, ie within a zone where all simultaneously
accessible conductive parts are electrically connected to prevent hazardous
voltages appearing between them. This is accomplished by a proper factory
grounding.
Note:
•
Even when the motor is stopped, dangerous voltage is present at the power
circuit terminals U1, V1, W1 and U2, V2, W2 and BRK+ and BRK-.
Safety 19
Permanent magnet motor drives
These are additional warnings concerning permanent magnet motor drives. Ignoring
the instructions can cause physical injury or death, or damage to the equipment.
WARNING! Do not work on the drive when the permanent magnet motor is
rotating. Also, when the supply power is switched off and the inverter is
stopped, a rotating permanent magnet motor feeds power to the intermediate circuit
of the drive and the supply connections become live.
Before installation and maintenance work on the drive:
•
Stop the motor.
•
Ensure that there is no voltage on the drive power terminals according to step 1 or
2, or if possible, according to the both steps.
1. Disconnect the motor from the drive with a safety switch or by other means.
Measure that there is no voltage present on the drive input or output terminals
(U1, V1, W1, U2, V2, W2, BRK+, BRK-).
2. Ensure that the motor cannot rotate during work. Make sure that no other
system, like hydraulic crawling drives, is able to rotate the motor directly or
through any mechanical connection like felt, nip, rope, etc. Measure that there
is no voltage present on the drive input or output terminals (U1, V1, W1, U2,
V2, W2, BRK+, BRK-). Ground the drive output terminals temporarily by
connecting them together as well as to the PE.
„ General safety
WARNING! Ignoring the following instructions can cause physical injury or
death, or damage to the equipment.
•
The drive is not field repairable. Never attempt to repair a malfunctioning drive;
contact your local ABB representative or Authorized Service Center for
replacement.
•
Make sure that dust from drilling does not enter the drive during the installation.
Electrically conductive dust inside the drive may cause damage or lead to
malfunction.
•
Ensure sufficient cooling.
20 Safety
Safe start-up and operation
These warnings are intended for all who plan the operation, start up or operate the
drive.
„ Electrical safety
Permanent magnet motor drives
These warnings concern permanent magnet motor drives. Ignoring the instructions
can cause physical injury or death, or damage to the equipment.
WARNING! It is not recommended to run the permanent magnet motor over
1.2 times the rated speed. Motor overspeed may lead to overvoltage which
may permanently damage the drive.
„ General safety
WARNING! Ignoring the following instructions can cause physical injury or
death, or damage to the equipment.
•
Before adjusting the drive and putting it into service, make sure that the motor and
all driven equipment are suitable for operation throughout the speed range
provided by the drive. The drive can be adjusted to operate the motor at speeds
above and below the speed provided by connecting the motor directly to the
power line.
•
Do not activate automatic fault reset functions if dangerous situations can occur.
When activated, these functions will reset the drive and resume operation after a
fault.
•
Do not control the motor with an AC contactor or disconnecting device
(disconnecting means); use instead the control panel start and stop keys
and
or external commands (I/O or fieldbus). The maximum allowed number of
charging cycles of the DC capacitors (ie power-ups by applying power) is two per
minute and the maximum total number of chargings is 15 000.
Note:
•
If an external source for start command is selected and it is ON, the drive will start
immediately after an input voltage break or fault reset unless the drive is
configured for 3-wire (a pulse) start/stop.
•
When the control location is not set to local (LOC not shown on the display), the
stop key on the control panel will not stop the drive. To stop the drive using the
control panel, first press the LOC/REM key LOC
.
REM and then the stop key
Introduction to the manual 21
Introduction to the manual
What this chapter contains
The chapter describes applicability, target audience and purpose of this manual. It
describes the contents of this manual and refers to a list of related manuals for more
information. The chapter also contains a flowchart of steps for checking the delivery,
installing and commissioning the drive. The flowchart refers to chapters/sections in
this manual.
Applicability
The manual is applicable to the ACS355 drive firmware version 5.02b or later. See
parameter 3301 FIRMWARE on page 250.
Target audience
The reader is expected to know the fundamentals of electricity, wiring, electrical
components and electrical schematic symbols.
The manual is written for readers worldwide. Both SI and imperial units are shown.
Special US instructions for installations in the United States are given.
Purpose of the manual
This manual provides information needed for planning the installation, installing,
commissioning, using and servicing the drive.
22 Introduction to the manual
Contents of this manual
The manual consists of the following chapters:
•
Safety (page 17) gives safety instructions you must follow when installing,
commissioning, operating and servicing the drive.
•
Introduction to the manual (this chapter, page 21) describes applicability, target
audience, purpose and contents of this manual. It also contains a quick
installation and commissioning flowchart.
•
Operation principle and hardware description (page 25) describes the operation
principle, layout, power connections and control interfaces, type designation label
and type designation information in short.
•
Mechanical installation (page 31) tells how to check the installation site, unpack,
check the delivery and install the drive mechanically.
•
Planning the electrical installation (page 37) tells how to check the compatibility of
the motor and the drive and select cables, protections and cable routing.
•
Electrical installation (page 47) tells how to check the insulation of the assembly
and the compatibility with IT (ungrounded) and corner-grounded TN systems as
well as connect power cables and control cables.
•
Installation checklist (page 57) contains a checklist for checking the mechanical
and electrical installation of the drive.
•
Start-up, control with I/O and ID run (page 59) tells how to start up the drive as
well as how to start, stop, change the direction of the motor rotation and adjust the
motor speed through the I/O interface.
•
Control panels (page 73) describes the control panel keys, LED indicators and
display fields and tells how to use the panel for control, monitoring and changing
the settings.
•
Application macros (page 109) gives a brief description of each application macro
together with a wiring diagram showing the default control connections. It also
explains how to save a user macro and how to recall it.
•
Program features (page 121) describes program features with lists of related user
settings, actual signals, and fault and alarm messages.
•
Actual signals and parameters (page 175) describes actual signals and
parameters. It also lists the default values for the different macros.
•
Fieldbus control with embedded fieldbus (page 301) tells how the drive can be
controlled by external devices over a communication network using embedded
fieldbus.
•
Fieldbus control with fieldbus adapter (page 325) tells how the drive can be
controlled by external devices over a communication network using a fieldbus
adapter.
•
Fault tracing (page 335) tells how to reset faults and view fault history. It lists all
alarm and fault messages including the possible cause and corrective actions.
Introduction to the manual 23
•
Maintenance and hardware diagnostics (page 353) contains preventive
maintenance instructions and LED indicator descriptions.
•
Technical data (page 357) contains technical specifications of the drive, eg
ratings, sizes and technical requirements as well as provisions for fulfilling the
requirements for CE and other marks.
•
Dimension drawings (page 379) shows dimension drawings of the drive.
•
Appendix: Resistor braking (page 389) tells how to select the brake resistor.
•
Appendix: Extension modules (page 393) describes the MPOW-01 auxiliary
power extension module. It mentions the MREL-01 relay output extension module
and MTAC-01 pulse encoder interface module briefly; readers are referred to the
corresponding user’s manual.
•
Appendix: Safe torque off (STO) (page 399) describes STO features, installation
and technical data.
•
Further information (inside of the back cover, page 405) tells how to make product
and service inquiries, get information on product training, provide feedback on
ABB Drives manuals and find documents on the Internet.
Related documents
See List of related manuals on page 2 (inside of the front cover).
Categorization by frame size
The ACS355 is manufactured in frame sizes R0…R4. Some instructions and other
information which only concern certain frame sizes are marked with the symbol of the
frame size (R0…R4). To identify the frame size of your drive, see the table in section
Ratings on page 358.
24 Introduction to the manual
Quick installation and commissioning flowchart
Task
See
Identify the frame size of your drive: R0…R4.
Operation principle and hardware description:
Type designation key on page 29
Technical data: Ratings on page 358
Plan the installation: select the cables, etc.
Check the ambient conditions, ratings and
required cooling air flow.
Planning the electrical installation on page 37
Technical data on page 357
Unpack and check the drive.
Mechanical installation: Unpacking on page
33
If the drive will be connected to an IT
(ungrounded) or corner-grounded system,
check that the internal EMC filter is not
connected.
Operation principle and hardware description:
Type designation key on page 29
Electrical installation: Checking the
compatibility with IT (ungrounded) and cornergrounded TN systems on page 48
Install the drive on a wall or in a cabinet.
Mechanical installation on page 31
Route the cables.
Planning the electrical installation: Routing the
cables on page 41
Check the insulation of the input cable and the Electrical installation: Checking the insulation
motor and the motor cable.
of the assembly on page 47
Connect the power cables.
Electrical installation: Connecting the power
cables on page 49
Connect the control cables.
Electrical installation: Connecting the control
cables on page 51
Check the installation.
Installation checklist on page 57
Commission the drive.
Start-up, control with I/O and ID run on page
59
Operation principle and hardware description 25
Operation principle and
hardware description
What this chapter contains
The chapter briefly describes the operation principle, layout, type designation label
and type designation information. It also shows a general diagram of power
connections and control interfaces.
Operation principle
The ACS355 is a wall or cabinet mountable drive for controlling asynchronous AC
induction motors and permanent magnet synchronous motors.
The figure below shows the simplified main circuit diagram of the drive. The rectifier
converts three-phase AC voltage to DC voltage. The capacitor bank of the
intermediate circuit stabilizes the DC voltage. The inverter converts the DC voltage
back to AC voltage for the AC motor. The brake chopper connects the external brake
resistor to the intermediate DC circuit when the voltage in the circuit exceeds its
maximum limit.
Rectifier
U1
AC supply
Capacitor
bank
Inverter
U2
V1
V2
W1
W2
M
3~
Brake chopper
BRK-
BRK+ / Common DC terminals
AC motor
26 Operation principle and hardware description
Product overview
„ Layout
The layout of the drive is presented below. The construction of the different frame
sizes R0…R4 varies to some extent.
1
Covers on (R0 and R1)
2
3a
Covers off (R0 and R1)
3b
5
7
6
10
4
8
9
8
3c
12
11
13
14
17
2
1
2
3
4
5
6
7
8
9
Cooling outlet through top cover
Mounting holes
Panel cover (a) / basic control panel (b) /
assistant control panel (c)
Terminal cover (or optional potentiometer
unit MPOT-01)
Panel connection
Option connection
STO (Safe torque off) connection
FlashDrop connection
Power OK and Fault LEDs. See section
LEDs on page 356.
17
15
16
10 EMC filter grounding screw (EMC).
Note: The screw is on the front in frame
size R4.
11 Varistor grounding screw (VAR)
12 Fieldbus adapter (serial communication)
connection
13 I/O connections
14 Input power connection (U1, V1, W1),
brake resistor connection (BRK+, BRK-)
and motor connection (U2, V2, W2).
15 I/O clamping plate
16 Clamping plate
17 Clamps
Operation principle and hardware description 27
„ Power connections and control interfaces
The diagram gives an overview of connections. I/O connections are parameterable.
See chapter Application macros on page 109 for I/O connections for the different
macros and chapter Electrical installation on page 47 for installation in general.
8
1 SCR
S1
2 AI1
Analog input 1
0…10 V
3 GND mA
Reference voltage
+10 V DC, max. 10 mA
4 +10V
V
AO 7
AI1
AI2
Screen
GND 8
ON
6 GND
9 +24 V
Aux. voltage output
+24 V DC, max. 200 mA
10 GND
11
DCOM
12 DI1
13 DI2
PROGRAMMABLE
DIGITAL INPUTS
PROGRAMMABLE RELAY
AND DIGITAL OUTPUTS
ROCOM
16 DI5
6
10
Digital/frequency output,
PNP transistor type
30 V DC, max. 100 mA
EMC
EMC filter grounding screw
VAR
Varistor grounding screw
PE
Common DC
U2
U1
or
brake
V1
V2
chopper
W1 BRK+ BRK- W2
PE
L1
L2
L3
3-phase
power
supply,
200…480
V AC
Relay output
250 V AC / 30 V DC / 6 A
X1C:STO
OUT1 1
2
OUT2
3
IN1
4
IN2
Extension modules
6 MPOW-01
MREL-01
MTAC-01
15 DI4
Fieldbus adapter
17
RONC 18
RONO
19
DOSRC
20
DOOUT
21
DOGND
22
14 DI3
DI5 can also be used
as a frequency input
Analog output
0…20 mA
1 2
5 AI2
Analog input 2
FlashDrop
Control panel
(RJ-45)
Modbus RTU
(RS-232)
Input
choke
EMC
filter
M
3~
Output
choke
t°
Brake resistor
AC motor
28 Operation principle and hardware description
Type designation label
The type designation label is attached to the left side of the drive. An example label
and explanation of the label contents are shown below.
ACS355-03E-08A8-4
IP20 / UL Open type 2
lllllllllllllllllllllllllllllllllllllll
UL Type 1 with MUL1 option S/N MYYWWRXXXX
llllllllllllllllllllllllllllllllllllllll
4 kW (5 HP)
U1
3~380…480 V
3AUA0000058189
I1 3 13.6 A
RoHS
f1
48…63 Hz
U2 3~0…U1 V
I2
8.8 A (150% 1/10 min)
f2
0…600 Hz
1
2
3
4
1
4
5
6
Type designation, see section Type designation key on page 29
Degree of protection by enclosure (IP and UL/NEMA)
Nominal ratings, see section Ratings on page 358.
Serial number of format MYYWWRXXXX, where
M:
Manufacturer
YY:
09, 10, 11, … for 2009, 2010, 2011, …
WW:
01, 02, 03, … for week 1, week 2, week 3, …
R:
A, B, C, … for product revision number
XXXX:
Integer starting every week from 0001
5 ABB MRP code of the drive
6 CE marking and C-Tick, C-UL US, RoHS and TÜV NORD marks (the label of your drive
shows the valid markings)
Operation principle and hardware description 29
Type designation key
The type designation contains information on the specifications and configuration of
the drive. You find the type designation on the type designation label attached to the
drive. The first digits from the left express the basic configuration, for example
ACS355-03E-09A7-4. The optional selections are given after that, separated by +
signs, for example +J404. The explanations of the type designation selections are
described below.
ACS355-03E-09A7-4+J404+...
ACS355 product series
1-phase/3-phase
01 = 1-phase input
03 = 3-phase input
Configuration
E = EMC filter connected, 50 Hz frequency
U = EMC filter disconnected, 60 Hz frequency
Output current rating
In format xxAy, where xx indicates the integer part and y the fractional part,
eg 09A7 means 9.7 A.
For more information, see section Ratings on page 358.
Input voltage range
2 = 200…240 V AC
4 = 380…480 V AC
Options
B063 = IP66/IP67/UL Type 4x enclosure
(product variant)
J400 = ACS-CP-A assistant control panel 1)
J404 = ACS-CP-C basic control panel 1)
J402 = MPOT-01 potentiometer
K451 = FDNA-01 DeviceNet
K454 = FPBA-01 PROFIBUS DP
K457 = FCAN-01 CANopen
K458 = FMBA-01 Modbus RTU
K466 = FENA-01 EtherNet/IP / Modbus TCP/IP
K452 = FLON-01 LonWorks
K469
H376
F278
C169
=
=
=
=
FECA-01 EtherCAT
Cable gland kit (IP66/IP67/UL Type 4x)
Input switch kit
Pressure compensation valve
Extension modules
G406 = MPOW-01 auxiliary power module
L502 = MTAC-01 pulse encoder module
L511 = MREL-01 relay output module
1) The ACS355 is compatible with panels that have the following panel revisions and panel
firmware versions. To find out the revision and firmware version of your panel, see page 74.
Panel type
Type code
Panel revision
Basic control panel
ACS-CP-C
M or later
Panel firmware
version
1.13 or later
Assistant control panel
Assistant control panel (Asia)
ACS-CP-A
ACS-CP-D
F or later
Q or later
2.04 or later
2.04 or later
Note that unlike the other panels, the ACS-CP-D is ordered with a separate material code.
30 Operation principle and hardware description
Mechanical installation 31
Mechanical installation
What this chapter contains
The chapter tells how to check the installation site, unpack, check the delivery and
install the drive mechanically.
Checking the installation site
The drive may be installed on the wall or in a cabinet. Check the enclosure
requirements for the need to use the NEMA 1 option in wall installations (see chapter
Technical data on page 357).
The drive can be installed in three different ways, depending on the frame size:
a) back mounting (all frame sizes)
b) side mounting (frame sizes R0…R2)
c) DIN rail mounting (all frame sizes).
The drive must be installed in an upright position.
Check the installation site according to the requirements below. Refer to chapter
Dimension drawings on page 379 for frame details.
„ Requirements for the installation site
Operation conditions
See chapter Technical data on page 357 for the allowed operation conditions of the
drive.
Wall
The wall should be as close to vertical and even as possible, of non-flammable
material and strong enough to carry the weight of the drive.
32 Mechanical installation
Floor
The floor/material below the installation should be non-flammable.
Free space around the drive
The required free space for cooling above and below the drive is 75 mm (3 in). No
free space is required on the sides of the drive, so drives can be mounted
immediately next to each other.
Required tools
To install the drive, you need the following tools:
•
screwdrivers (as appropriate for the mounting hardware used)
•
wire stripper
•
tape measure
•
drill (if the drive will be installed with screws/bolts)
•
mounting hardware: screws or bolts (if the drive will be installed with screws/
bolts). For the number of screws/bolts, see With screws on page 34.
Mechanical installation 33
Unpacking
The drive (1) is delivered in a package that also contains the following items (frame
size R1 shown in the figure):
•
plastic bag (2) including clamping plate (also used for I/O cables in frame sizes
R3 and R4), I/O clamping plate (for frame sizes R0…R2), fieldbus option ground
plate, clamps and screws
•
panel cover (3)
•
mounting template, integrated into the package (4)
•
user’s manual (5)
•
possible options (fieldbus, potentiometer, extension module, all with instructions,
basic control panel or assistant control panel).
1
4
5
2
3
Checking the delivery
Check that there are no signs of damage. Notify the shipper immediately if damaged
components are found.
Before attempting installation and operation, check the information on the type
designation label of the drive to verify that the drive is of the correct type. See section
Type designation label on page 28.
34 Mechanical installation
Installing
The instructions in this manual cover drives with the IP20 degree of protection. To
comply with NEMA 1, use the MUL1-R1, MUL1-R3 or MUL1-R4 option kit, which is
delivered with multilingual installation instructions (3AFE68642868, 3AFE68643147
or 3AUA0000025916, respectively).
„ Install the drive
Install the drive with screws or on a DIN rail as appropriate.
Note: Make sure that dust from drilling does not enter the drive during the installation.
With screws
1. Mark the hole locations using for example the mounting template cut out from the
package. The locations of the holes are also shown in the drawings in chapter
Dimension drawings on page 379. The number and location of the holes used
depend on how the drive is installed:
a) back mounting (frame sizes R0…R4): four holes
b) side mounting (frame sizes R0…R2): three holes; one of the bottom holes is
located in the clamping plate.
2. Fix the screws or bolts to the marked locations.
3. Position the drive onto the screws on the wall.
4. Tighten the screws in the wall securely.
On DIN rail
1. Click the drive to the rail.
To detach the drive, press the release lever on top of the drive (1b).
1
1b
Mechanical installation 35
„ Fasten clamping plates
Note: Make sure that you do not throw the clamping plates away as they are required
for proper grounding of the power and control cables as well as the fieldbus option.
1. Fasten the clamping plate (A) to the plate at the bottom of the drive with the
provided screws.
2. For frame sizes R0…R2, fasten the I/O clamping plate (B) to the clamping plate
with the provided screws.
5
8
6
4
C
B
7
1
2
4
7
2
1
A
3
„ Attach the optional fieldbus module
3. Connect the power and control cables as instructed in chapter Electrical
installation on page 47.
4. Place the fieldbus module on the option ground plate (C) and tighten the
grounding screw on the left corner of the fieldbus module. This fastens the
module to the option ground plate.
5. If the terminal cover is not already removed, push the recess in the cover and
simultaneously slide the cover off the frame.
6. Snap the fieldbus module attached to the option ground plate in position so that
the module is plugged to the connection on the drive front and the screw holes in
the option ground plate and the I/O clamping plate are aligned.
7. Fasten the option ground plate to the I/O clamping plate with the provided screws.
8. Slide the terminal cover back in place.
36 Mechanical installation
Planning the electrical installation 37
Planning the electrical
installation
What this chapter contains
The chapter contains the instructions that you must follow when checking the
compatibility of the motor and drive, and selecting cables, protections, cable routing
and way of operation for the drive.
Note: The installation must always be designed and made according to applicable
local laws and regulations. ABB does not assume any liability whatsoever for any
installation which breaches the local laws and/or other regulations. Furthermore, if the
recommendations given by ABB are not followed, the drive may experience problems
that the warranty does not cover.
Implementing the AC power line connection
See the requirements in section Electric power network specification on page 367.
Use a fixed connection to the AC power line.
WARNING! As the leakage current of the device typically exceeds 3.5 mA, a
fixed installation is required according to IEC 61800-5-1.
Selecting the supply disconnecting device (disconnecting
means)
Install a hand-operated supply disconnecting device (disconnecting means) between
the AC power source and the drive. The disconnecting device must be of a type that
can be locked to the open position for installation and maintenance work.
38 Planning the electrical installation
„ European union
To meet the European Union Directives, according to standard EN 60204-1, Safety of
Machinery, the disconnecting device must be one of the following types:
•
a switch-disconnector of utilization category AC-23B (EN 60947-3)
•
a disconnector having an auxiliary contact that in all cases causes switching
devices to break the load circuit before the opening of the main contacts of the
disconnector (EN 60947-3)
•
a circuit breaker suitable for isolation in accordance with EN 60947-2.
„ Other regions
The disconnecting device must conform to the applicable safety regulations.
Checking the compatibility of the motor and drive
Check that the 3-phase AC induction motor and the drive are compatible according to
the rating table in section Ratings on page 358. The table lists the typical motor power
for each drive type.
Only one permanent magnet synchronous motor can be connected to the inverter
output.
Selecting the power cables
„ General rules
Dimension the input power and motor cables according to local regulations.
•
The input power and the motor cables must be able to carry the corresponding
load currents. See section Ratings on page 358 for the rated currents.
•
The cable must be rated for at least 70 °C maximum permissible temperature of
the conductor in continuous use. For US, see section Additional US requirements
on page 40.
•
The conductivity of the PE conductor must be equal to that of the phase
conductor (same cross-sectional area).
•
600 V AC cable is accepted for up to 500 V AC.
•
Refer to chapter Technical data on page 357 for the EMC requirements.
A symmetrical shielded motor cable (see the figure below) must be used to meet the
EMC requirements of the CE and C-Tick marks.
A four-conductor system is allowed for input cabling, but a shielded symmetrical
cable is recommended.
Compared to a four-conductor system, the use of a symmetrical shielded cable
reduces electromagnetic emission of the whole drive system as well as motor bearing
currents and wear.
Planning the electrical installation 39
„ Alternative power cable types
Power cable types that can be used with the drive are presented below.
Motor cables
(recommended for input cables also)
Symmetrical shielded cable: three phase
conductors, a concentric or otherwise
symmetrically constructed PE conductor
and a shield
PE
conductor
and shield
Note: A separate PE conductor is required
if the conductivity of the cable shield is not
sufficient for the purpose.
Shield
Shield
PE
PE
Allowed as input cables
Shield
A four-conductor system: three phase
conductors and a protective conductor
PE
PE
„ Motor cable shield
To function as a protective conductor, the shield must have the same cross-sectional
area as the phase conductors when they are made of the same metal.
To effectively suppress radiated and conducted radio-frequency emissions, the shield
conductivity must be at least 1/10 of the phase conductor conductivity. The
requirements are easily met with a copper or aluminium shield. The minimum
requirement of the motor cable shield of the drive is shown below. It consists of a
concentric layer of copper wires. The better and tighter the shield, the lower the
emission level and bearing currents.
Insulation jacket
Copper wire screen
Cable core
40 Planning the electrical installation
„ Additional US requirements
Type MC continuous corrugated aluminium armor cable with symmetrical grounds or
shielded power cable is recommended for the motor cables if metallic conduit is not
used.
The power cables must be rated for 75 °C (167 °F).
Conduit
Where conduits must be coupled together, bridge the joint with a ground conductor
bonded to the conduit on each side of the joint. Bond the conduits also to the drive
enclosure. Use separate conduits for input power, motor, brake resistors and control
wiring. Do not run motor wiring from more than one drive in the same conduit.
Armored cable / shielded power cable
Six-conductor (three phases and three ground) type MC continuous corrugated
aluminium armor cable with symmetrical grounds is available from the following
suppliers (trade names in parentheses):
•
Anixter Wire & Cable (Philsheath)
•
BICC General Corp (Philsheath)
•
Rockbestos Co. (Gardex)
•
Oaknite (CLX).
Shielded power cable is available from the following suppliers:
•
Belden
•
LAPPKABEL (ÖLFLEX)
•
Pirelli.
Selecting the control cables
„ General rules
All analog control cables and the cable used for the frequency input must be shielded.
Use a double-shielded twisted pair cable (Figure a, for example JAMAK by Draka NK
Cables) for analog signals. Employ one individually shielded pair for each signal. Do
not use common return for different analog signals.
Planning the electrical installation 41
A double-shielded cable is the best alternative for low-voltage digital signals, but a
single-shielded or unshielded twisted multipair cable (Figure b) is also usable.
However, for frequency input, always use a shielded cable.
a
b
Double-shielded twisted
multipair cable
Single-shielded twisted
multipair cable
Run analog and digital signals in separate cables.
Relay-controlled signals, providing their voltage does not exceed 48 V, can be run in
the same cables as digital input signals. It is recommended that the relay-controlled
signals are run as twisted pairs.
Never mix 24 V DC and 115/230 V AC signals in the same cable.
„ Relay cable
The cable type with braided metallic screen (for example ÖLFLEX by LAPPKABEL)
has been tested and approved by ABB.
„ Control panel cable
In remote use, the cable connecting the control panel to the drive must not exceed
3 m (10 ft). The cable type tested and approved by ABB is used in control panel
option kits.
Routing the cables
Route the motor cable away from other cable routes. Motor cables of several drives
can be run in parallel installed next to each other. It is recommended that the motor
cable, input power cable and control cables are installed on separate trays. Avoid
long parallel runs of motor cables with other cables to decrease electromagnetic
interference caused by the rapid changes in the drive output voltage.
Where control cables must cross power cables make sure that they are arranged at
an angle as near to 90 degrees as possible.
The cable trays must have good electrical bonding to each other and to the grounding
electrodes. Aluminium tray systems can be used to improve local equalizing of
potential.
42 Planning the electrical installation
A diagram of the cable routing is shown below.
Motor cable
Drive
min. 300 mm (12 in)
Motor cable
Input power cable
min. 200 mm (8 in)
Power cable
90°
min. 500 mm (20 in)
Control cables
„ Control cable ducts
24 V 230 V
Not allowed unless the 24 V cable is
insulated for 230 V or insulated with an
insulation sleeving for 230 V.
24 V 230 V
Lead 24 V and 230 V control cables in
separate ducts inside the cabinet.
Planning the electrical installation 43
Protecting the drive, input power cable, motor and motor
cable in short circuit situations and against thermal
overload
„ Protecting the drive and input power cable in short-circuit situations
Arrange the protection according to the following guidelines.
Circuit diagram
Distribution
board
Input cable
1)
M
3~
I>
2)
Drive
Short-circuit protection
Protect the drive and input
cable with fuses or a
circuit breaker. See
footnotes 1) and 2).
M
3~
1)
Size the fuses according to instructions given in chapter Technical data on page 357. The
fuses will protect the input cable in short-circuit situations, restrict drive damage and prevent
damage to adjoining equipment in case of a short-circuit inside the drive.
2)
Circuit breakers which have been tested by ABB with the ACS350 can be used. Fuses must
be used with other circuit breakers. Contact your local ABB representative for the approved
breaker types and supply network characteristics.
WARNING! Due to the inherent operating principle and construction of circuit
breakers, independent of the manufacturer, hot ionized gases may escape
from the breaker enclosure in case of a short-circuit. To ensure safe use, special
attention must be paid to the installation and placement of the breakers. Follow the
manufacturer’s instructions.
„ Protecting the motor and motor cable in short-circuit situations
The drive protects the motor and motor cable in a short-circuit situation when the
motor cable is dimensioned according to the nominal current of the drive. No
additional protection devices are needed.
„ Protecting the drive, motor cable and input power cable against
thermal overload
The drive protects itself and the input and motor cables against thermal overload
when the cables are dimensioned according to the nominal current of the drive. No
additional thermal protection devices are needed.
44 Planning the electrical installation
WARNING! If the drive is connected to multiple motors, a separate thermal
overload switch or a circuit breaker must be used for protecting each cable and
motor. These devices may require a separate fuse to cut off the short-circuit current.
„ Protecting the motor against thermal overload
According to regulations, the motor must be protected against thermal overload and
the current must be switched off when overload is detected. The drive includes a
motor thermal protection function that protects the motor and switches off the current
when necessary. It is also possible to connect a motor temperature measurement to
the drive. The user can tune both the thermal model and the temperature
measurement function further by parameters.
The most common temperature sensors are:
•
motor sizes IEC180…225: thermal switch (for example Klixon)
•
motor sizes IEC200…250 and larger: PTC or Pt100.
For more information on the thermal model, see section Motor thermal protection on
page 145. For more information on the temperature measurement function, see
section Motor temperature measurement through the standard I/O on page 155.
Implementing the Safe torque off (STO) function
See Appendix: Safe torque off (STO) on page 399.
Using residual current devices (RCD) with the drive
ACS355-01x drives are suitable to be used with residual current devices of Type A,
ACS355-03x drives with residual current devices of Type B. For ACS355-03x drives,
other measures for protection in case of direct or indirect contact, such as separation
from the environment by double or reinforced insulation or isolation from the supply
system by a transformer, can also be applied.
Using a safety switch between the drive and the motor
It is recommended to install a safety switch between the permanent magnet motor
and the drive output.This is needed to isolate the motor from the drive during
maintenance work on the drive.
Implementing a bypass connection
WARNING! Never connect the supply power to the drive output terminals U2,
V2 and W2. Power line voltage applied to the output can result in permanent
damage to the drive.
Planning the electrical installation 45
If frequent bypassing is required, employ mechanically connected switches or
contactors to ensure that the motor terminals are not connected to the AC power line
and drive output terminals simultaneously.
Protecting the contacts of relay outputs
Inductive loads (relays, contactors, motors) cause voltage transients when switched
off.
Equip inductive loads with noise attenuating circuits (varistors, RC filters [AC] or
diodes [DC]) in order to minimize the EMC emission at switch-off. If not suppressed,
the disturbances may connect capacitively or inductively to other conductors in the
control cable and form a risk of malfunction in other parts of the system.
Install the protective component as close to the inductive load as possible. Do not
install protective components at the I/O terminal block.
Varistor
Drive
relay
output
230 V AC
RC filter
Drive
relay
output
230 V AC
Diode
24 V DC
Drive
relay
output
46 Planning the electrical installation
Electrical installation 47
Electrical installation
What this chapter contains
The chapter tells how to check the insulation of the assembly and the compatibility
with IT (ungrounded) and corner-grounded TN systems as well as connect power
cables and control cables.
WARNING! The work described in this chapter may only be carried out by a
qualified electrician. Follow the instructions in chapter Safety on page 17.
Ignoring the safety instructions can cause injury or death.
Make sure that the drive is disconnected from the input power during
installation. If the drive is already connected to the input power, wait for
5 minutes after disconnecting the input power.
Checking the insulation of the assembly
„ Drive
Do not make any voltage tolerance or insulation resistance tests (for example hi-pot
or megger) on any part of the drive as testing can damage the drive. Every drive has
been tested for insulation between the main circuit and the chassis at the factory.
Also, there are voltage-limiting circuits inside the drive which cut down the testing
voltage automatically.
„ Input power cable
Check the insulation of the input power cable according to local regulations before
connecting to the drive.
48 Electrical installation
„ Motor and motor cable
Check the insulation of the motor and motor cable as follows:
1. Check that the motor cable is connected to the motor and disconnected from the
drive output terminals U2, V2 and W2.
2. Measure the insulation resistance between each phase
conductor and the Protective Earth conductor using a
U1 M
V1
measuring voltage of 500 V DC. The insulation resistance
3~
W1
ohm
PE
of an ABB motor must exceed 100 Mohm (reference value
at 25 °C or 77 °F). For the insulation resistance of other
motors, please consult the manufacturer’s instructions.
Note: Moisture inside the motor casing will reduce the insulation resistance. If
moisture is suspected, dry the motor and repeat the measurement.
Checking the compatibility with IT (ungrounded) and
corner-grounded TN systems
WARNING! Disconnect the internal EMC filter when installing the drive on an
IT system (an ungrounded power system or a high-resistance-grounded [over
30 ohms] power system), otherwise the system will be connected to ground potential
through the EMC filter capacitors. This may cause danger or damage the drive.
Disconnect the internal EMC filter when installing the drive on a corner-grounded TN
system, otherwise the drive will be damaged
Note: When the internal EMC filter is disconnected, the drive is not EMC compatible
without an external filter.
1. If you have an IT (ungrounded) or corner-grounded TN system, disconnect the
internal EMC filter by removing the EMC screw. For 3-phase U-type drives (with
type designation ACS355-03U-), the EMC screw is already removed at the factory
and replaced by a plastic one.
EMC screw in R0…R2.
In R3, the screw is a little further up.
1
EMC
EMC screw in R4, IP20
(behind cover in R4, NEMA 1)
VAR
1
EMC
Electrical installation 49
Connecting the power cables
„ Connection diagram
Drive
PE
INPUT
U1 V1 W1
BRK+ BRK-
OUTPUT
U2 V2 W2
1)
For alternatives,
see section
Selecting the
supply
disconnecting
device
(disconnecting
means) on page
37.
2)
PE
U1
Optional brake
resistor or
Common DC 3)
L1
L2
V1
W1
3~
Motor
L3
1)
Ground the other end of the PE conductor at the distribution board.
2)
Use a separate grounding cable if the conductivity of the cable shield is insufficient (smaller
than the conductivity of the phase conductor) and there is no symmetrically constructed
grounding conductor in the cable. See section Selecting the power cables on page 38.
3)
For more information on Common DC, see ACS355 Common DC application guide
(3AUA0000070130 [EN]).
Note:
Do not use an asymmetrically constructed motor cable.
If there is a symmetrically constructed grounding conductor in the motor cable in addition to
the conductive shield, connect the grounding conductor to the grounding terminal at the drive
and motor ends.
Route the motor cable, input power cable and control cables separately. For more
information, see section Routing the cables on page 41.
Grounding of the motor cable shield at the motor end
For minimum radio frequency interference:
• ground the cable by twisting the shield as follows:
flattened width > 1/5 · length
• or ground the cable shield 360 degrees at the leadthrough of the motor terminal box.
b > 1/5 · a
a
b
50 Electrical installation
„ Connection procedure
1. Fasten the grounding conductor (PE) of the input power cable under the
grounding clamp. Connect the phase conductors to the U1, V1 and W1 terminals.
Use a tightening torque of 0.8 N·m (7 lbf·in) for frame sizes R0…R2, 1.7 N·m
(15 lbf·in) for R3 and 2.5 N·m (22 lbf·in) for R4.
2. Strip the motor cable and twist the shield to form as short a pigtail as possible.
Fasten the twisted shield under the grounding clamp. Connect the phase
conductors to the U2, V2 and W2 terminals. Use a tightening torque of 0.8 N·m
(7 lbf·in) for frame sizes R0…R2, 1.7 N·m (15 lbf·in) for R3 and 2.5 N·m (22 lbf·in)
for R4.
3. Connect the optional brake resistor to the BRK+ and BRK- terminals with a
shielded cable using the same procedure as for the motor cable in the previous
step.
4. Secure the cables outside the drive mechanically.
1
3
1
2
2
Electrical installation 51
Connecting the control cables
„ I/O terminals
The figure below shows the I/O terminals. Tightening torque is 0.4 N·m / 3.5 lbf·in.
X1C:STO
1 2 3 4
X1A:
X1B:
1: SCR
17: ROCOM
2: AI1
18: RONC
3: GND
19: RONO
4: +10 V
20: DOSRC
5: AI2
21: DOOUT
6: GND
22: DOGND
7: AO
X1C:STO
8: GND
9: +24 V
1: OUT1
10: GND
2: OUT2
11: DCOM
3: IN1
12: DI1
4: IN2
13: DI2
14: DI3
15: DI4
16: DI5 digital or frequency input
S1: Selects voltage or current as
the signal types for analog
inputs AI1 and AI2.
1 2 3 4 5 6 7 8 17 18 19
AI1
AI2
S1
mA
V
9 10 11 12 13 14 15 16 20 21 22
X1A
X1B
Voltage and current selection for analog inputs
Switch S1 selects voltage (0 [2]…10 V / -10…10 V) or current (0 [4]…20 mA /
-20…20 mA) as the signal types for analog inputs AI1 and AI2. The factory settings
are unipolar voltage for AI1 (0 [2]…10 V) and unipolar current for AI2 (0 [4]…20 mA),
which correspond to the default usage in the application macros. The switch is
located to the left of I/O terminal 9 (see the I/O terminal figure above).
ON
1
2
AI1
AI2
S1
Top position (ON): I (0 [4]…20 mA, default for AI2; or -20…20 mA)
Bottom position (OFF): U (0 [2]…10 V, default for AI1; or -10…10 V)
52 Electrical installation
Voltage and current connection for analog inputs
Bipolar voltage (-10…10 V) and current (-20…20 mA) are also possible. If a bipolar
connection is used instead of a unipolar one, see section Programmable analog
inputs on page 130 for how to set parameters accordingly.
Unipolar voltage
Bipolar voltage
SCR
AI
GND
+10V
1…10 kohm
Unipolar/Bipolar current
SCR
AI
GND
+10 V GND -10 V
SCR
AI
GND
Use external power supply.
PNP and NPN configuration for digital inputs
You can wire the digital input terminals in either a PNP or NPN configuration.
PNP connection (source)
X1
9 +24V
10 GND
11 DCOM
12 DI1
13 DI2
14 DI3
15 DI4
16 DI5
NPN connection (sink)
X1
9 +24V
10 GND
11 DCOM
12 DI1
13 DI2
14 DI3
15 DI4
16 DI5
External power supply for digital inputs
For using an external +24 V supply for the digital inputs, see the figure below.
PNP connection (source)
X1
9 +24V
10
GND
0 V DC
11 DCOM
+24 V DC
12 DI1
13 DI2
14 DI3
15 DI4
16 DI5
+24 V DC
0 V DC
NPN connection (sink)
X1
9 +24V
10 GND
11 DCOM
12 DI1
13 DI2
14 DI3
15 DI4
16 DI5
Frequency input
If DI5 is used as a frequency input, see section Frequency input on page 133 for how
to set parameters accordingly.
Electrical installation 53
Connection examples of two-wire and three-wire sensors
Hand/Auto, PID control, and Torque control macros (see section Application macros,
pages 116, 117 and 118, respectively) use analog input 2 (AI2). The macro wiring
diagrams on these pages use an externally powered sensor (connections not shown).
The figures below give examples of connections using a two-wire or three-wire
sensor/transmitter supplied by the drive auxiliary voltage output.
Note: Maximum capability of the auxiliary 24 V (200 mA) output must not be
exceeded.
Two-wire sensor/transmitter
-
P
I
4…20 mA
+
X1A
5
AI2
6
GND
…
9
10
Process actual value measurement or reference,
0(4)…20 mA, Rin = 100 ohm
+24V Auxiliary voltage output, non-isolated,
GND +24 V DC, max. 200 mA
Note: The sensor is supplied through its current output and the drive feeds the supply
voltage (+24 V). Thus the output signal must be 4…20 mA, not 0…20 mA.
Three-wire sensor/transmitter
OUT (0)4…20 mA
P
I
-
+
X1A
5
AI2
6
GND
…
9
10
Process actual value measurement or reference,
0(4)…20 mA, Rin = 100 ohm
+24V Auxiliary voltage output, non-isolated,
GND +24 V DC, max. 200 mA
54 Electrical installation
„ Default I/O connection diagram
The default connection of the control signals depends on the application macro in
use, which is selected with parameter 9902 APPLIC MACRO.
The default macro is the ABB standard macro. It provides a general purpose I/O
configuration with three constant speeds. Parameter values are the default values
given in section Default values with different macros on page 176. For information on
other macros, see chapter Application macros on page 109.
The default I/O connections for the ABB standard macro are given in the figure below.
1…10 kohm
max. 500 ohm
4)
X1A
1 SCR
2 AI1
3 GND
4 +10V
5 AI2
6 GND
7 AO
8 GND
9 +24V
10 GND
11 DCOM
12 DI1
13 DI2
14 DI3
15 DI4
16 DI5
X1B
17 ROCOM
18 RONC
19 RONO
20 DOSRC
21 DOOUT
22 DOGND
X1C:STO
1 OUT1
2 OUT2
3 IN1
4 IN2
Signal cable shield (screen)
Output frequency reference: 0…10 V 1)
Analog input circuit common
Reference voltage: +10 V DC, max. 10 mA
Not in use by default. 0…10 V
Analog input circuit common
Output frequency value: 0…20 mA
Analog output circuit common
Auxiliary voltage output: +24 V DC, max. 200 mA
Auxiliary voltage output common
Digital input common
Stop (0) / Start (1)
Forward (0) / Reverse (1)
Constant speed selection 2)
Constant speed selection 2)
Acceleration and deceleration selection 3)
Relay output 1
No fault [Fault (-1)]
Digital output, max. 100 mA
No fault [Fault (-1)]
STO (Safe torque off) connection
Electrical installation 55
1)
AI1 is used as a speed reference if vector
mode is selected.
2)
See parameter group 12 CONSTANT
SPEEDS:
DI3 DI4 Operation (parameter)
0
0
Set speed through AI1
1
0
Speed 1 (1202)
0
1
Speed 2 (1203)
1
1
Speed 3 (1204)
3)
0 = ramp times according to parameters
2202 and 2203.
1 = ramp times according to parameters
2205 and 2206.
4)
360 degree grounding under a clamp.
Tightening torque = 0.4 N·m / 3.5 lbf·in.
56 Electrical installation
„ Connection procedure
1. Remove the terminal cover by simultaneously pushing the recess and sliding the
cover off the frame.
2. Analog signals: Strip the outer insulation of the analog signal cable 360 degrees
and ground the bare shield under the clamp.
3. Connect the conductors to the appropriate terminals. Use a tightening torque of
0.4 N·m (3.5 lbf·in).
4. Twist the grounding conductors of each pair in the analog signal cable together
and connect the bundle to the SCR terminal (terminal 1).
5. Digital signals: Strip the outer insulation of the digital signal cable 360 degrees
and ground the bare shield under the clamp.
6. Connect the conductors of the cable to the appropriate terminals. Use a tightening
torque of 0.4 N·m (3.5 lbf·in).
7. For double-shielded cables, twist also the grounding conductors of each pair in
the cable together and connect the bundle to the SCR terminal (terminal 1).
8. Secure all cables outside the drive mechanically.
9. Unless you need to install the optional fieldbus module (see section Attach the
optional fieldbus module on page 35), slide the terminal cover back in place.
10. Connect STO conductors to the appropriate terminals. Use a tightening torque of
0.4 N·m (3.5 lbf·in).
2
10
3
1
4
6
2
Installation checklist 57
Installation checklist
Checking the installation
Check the mechanical and electrical installation of the drive before start-up. Go
through the checklist below together with another person. Read chapter Safety on
page 17 of this manual before you work on the drive.
Check
MECHANICAL INSTALLATION
The ambient operating conditions are allowed. (See Mechanical installation: Checking the
installation site on page 31 as well as Technical data: Losses, cooling data and noise on
page 364 and Ambient conditions on page 371.)
The drive is fixed properly on an even vertical non-flammable wall. (See Mechanical
installation on page 31.)
The cooling air will flow freely. (See Mechanical installation: Free space around the drive
on page 32.)
The motor and the driven equipment are ready for start. (See Planning the electrical
installation: Checking the compatibility of the motor and drive on page 38 as well as
Technical data: Motor connection data on page 367.)
ELECTRICAL INSTALLATION (See Planning the electrical installation on page 37 and
Electrical installation on page 47.)
For ungrounded and corner-grounded systems: The internal EMC filter is disconnected
(EMC screw removed).
The capacitors are reformed if the drive has been stored over a year.
The drive is grounded properly.
The input power voltage matches the drive nominal input voltage.
The input power connections at U1, V1 and W1 are OK and tightened with the correct
torque.
58 Installation checklist
Check
Appropriate input power fuses and disconnector are installed.
The motor connections at U2, V2 and W2 are OK and tightened with the correct torque.
The motor cable, input power cable and control cables are routed separately.
The external control (I/O) connections are OK.
Safe torque off (STO) connections, operation and reaction are OK.
The input power voltage cannot be applied to the output of the drive (with a bypass
connection).
Terminal cover and, for NEMA 1, hood and connection box, are in place.
Start-up, control with I/O and ID run 59
Start-up, control with I/O and
ID run
What this chapter contains
The chapter tells how to:
•
perform the start-up
•
start, stop, change the direction of the motor rotation and adjust the speed of the
motor through the I/O interface
•
perform an Identification run for the drive.
Using the control panel to do these tasks is explained briefly in this chapter. For
details on how to use the control panel, refer to chapter Control panels on page 73.
How to start up the drive
WARNING! The start-up may only be carried out by a qualified
electrician.
The safety instructions given in chapter Safety on page 17 must be followed during
the start-up procedure.
The drive will start up automatically at power-up if the external run command is on
and the drive is in the remote control mode.
Check that the starting of the motor does not cause any danger. De-couple the
driven machine if:
•
there is a risk of damage in case of incorrect direction of rotation, or
•
an ID run needs to be performed during the drive start-up. ID run is essential only
in applications that require the ultimate in motor control accuracy.
60 Start-up, control with I/O and ID run
•
Check the installation. See the checklist in chapter Installation checklist on page
57.
How you start up the drive depends on the control panel you have, if any.
•
If you have no control panel, follow the instructions given in section How to start
up the drive without a control panel on page 60.
•
If you have a basic control panel (ACS-CP-C), follow the instructions given in
section How to perform a manual start-up on page 61.
•
If you have an assistant control panel (ACS-CP-A, ACS-CP-D), you can either
run the Start-up assistant (see section How to perform a guided start-up on page
66) or perform a manual start-up (see section How to perform a manual start-up
on page 61).
The Start-up assistant, which is included in the assistant control panel only, guides
you through all essential settings to be done. In the manual start-up, the drive
gives no guidance; you go through the very basic settings by following the
instructions given in section How to perform a manual start-up on page 61.
„ How to start up the drive without a control panel
POWER-UP
Apply input power and wait for a moment.
Check that the red LED is not lit and the green LED is lit but not blinking.
The drive is now ready for use.
Start-up, control with I/O and ID run 61
„ How to perform a manual start-up
For the manual start-up, you can use the basic control panel or the assistant control
panel. The instructions below are valid for both control panels, but the displays shown
are the basic control panel displays, unless the instruction applies to the assistant
control panel only.
Before you start, ensure that you have the motor nameplate data on hand.
POWER-UP
Apply input power.
The basic control panel powers up into the Output
mode.
The assistant control panel asks if you want to run
EXIT
the Start-up assistant. If you press
, the Startup assistant is not run, and you can continue with
manual start-up in a similar manner as described
below for the basic control panel.
00
.
REM
OUTPUT
FWD
REM
CHOICE
Do you want to
use the start-up
assistant?
Yes
No
00:00
OK
EXIT
MANUAL ENTRY OF START-UP DATA (parameter group 99)
If you have an assistant control panel, select the
REM
PAR EDIT
language (the basic control panel does not
9901 LANGUAGE
support languages). See parameter 9901 for the
ENGLISH
values of the available language alternatives.
[0]
For instructions on how to set parameters with the
assistant control panel, see section Assistant control
panel on page 87.
Select the motor type (9903).
• 1 (AM): Asynchronous motor
CANCEL 00:00
REM
SAVE
9903
PAR
• 2 (PMSM): Permanent magnet motor.
FWD
Setting of parameter 9903 is shown below as an
example of parameter setting with the basic control
panel. You find more detailed instructions in section
Basic control panel on page 75.
1. To go to the Main menu, press
if the bottom line
REM
shows OUTPUT; otherwise press
repeatedly
until you see MENU at the bottom.
2. Press keys
press
.
/
until you see “PAr”, and
3. Find the appropriate parameter group with keys
/
and press
.
4. Find the appropriate parameter in the group with
keys
/
.
REM
REM
REM
rEF
-019901
9903
MENU
FWD
PAR
FWD
PAR
FWD
PAR
FWD
Hz
62 Start-up, control with I/O and ID run
5. Press and hold
for about two seconds until the
parameter value is shown with SET under the value. REM
1
2
9903
9902
PAR SET FWD
6. Change the value with keys
/
. The value
changes faster while you keep the key pressed
REM
down.
7. Save the parameter value by pressing
.
REM
Select the application macro (parameter 9902)
according to how the control cables are
connected.
REM
PAR SET FWD
PAR
FWD
PAR
FWD
The default value 1 (ABB STANDARD) is suitable in
most cases.
Select the motor control mode (parameter 9904).
1 (VECTOR: SPEED) is suitable in most cases.
2 (VECTOR: TORQ) is suitable for torque control
applications.
3 (SCALAR: FREQ) is recommended
• for multimotor drives when the number of the motors
connected to the drive is variable
• when the nominal current of the motor is less than
20% of the nominal current of the drive
• when the drive is used for test purposes with no motor
connected.
3 (SCALAR: FREQ) is not recommended for permanent
magnet motors.
Enter the motor data from the motor nameplate.
Asynchronous motor nameplate example:
ABB Motors
3
motor
V
690 Y
400 D
660 Y
380 D
415 D
440 D
Cat. no
6312/C3
M2AA 200 MLA 4
IEC 200 M/L 55
No
Ins.cl. F
Hz
kW
r/min
A
1475
32.5
30
50
56
1475
50
30
50
1470
34
30
1470
59
30
50
1475
54
50
30
35
59
1770
60
3GAA 202 001 - ADA
cos
0.83
0.83
0.83
0.83
0.83
0.83
6210/C3
IP 55
IA/IN t E/s
380 V
supply
voltage
180
IEC 34-1
REM
9904
PAR
FWD
Note: Set the motor data to
exactly the same value as on
the motor nameplate. For
example, if the motor nominal
speed is 1440 rpm on the
nameplate, setting the value of
parameter 9908 MOTOR NOM
SPEED to 1500 rpm results in
the wrong operation of the drive.
Start-up, control with I/O and ID run 63
Permanent magnet motor nameplate example:
• motor nominal voltage (parameter 9905).
For permanent magnet motors, enter the back emf
voltage at nominal speed here. Otherwise use
nominal voltage and perform ID run.
If the voltage is given as voltage per rpm, eg 60 V per
1000 rpm, the voltage for 3000 rpm nominal speed is
3 · 60 V = 180 V.
REM
PAR
• motor nominal current (parameter 9906)
Allowed range: 0.2…2.0 · I2N A
9905
REM
• motor nominal frequency (parameter 9907)
REM
• motor nominal speed (parameter 9908)
REM
• motor nominal power (parameter 9909)
REM
FWD
9906
9907
9908
9909
PAR
FWD
PAR
FWD
PAR
FWD
PAR
FWD
64 Start-up, control with I/O and ID run
Select the motor identification method (parameter 9910).
The default value 0 (OFF/IDMAGN) using the identification magnetization is
suitable for most applications. It is applied in this basic start-up procedure. Note
however that this requires that parameter 9904 is set to 1 (VECTOR: SPEED) or
2 (VECTOR: TORQ).
If your selection is 0 (OFF/IDMAGN), move to the next step.
Value 1 (ON) should be selected if:
• the operation point is near zero speed, and/or
• operation at torque range above the motor nominal torque over a wide speed
range and without any measured speed feedback is required.
If you decide to perform the ID run (value 1 [ON]), continue by following the
separate instructions given on page 69 in section How to perform the ID run and
then return to step DIRECTION OF THE MOTOR ROTATION on page 64.
IDENTIFICATION MAGNETIZATION WITH ID RUN SELECTION 0 (OFF/IDMAGN)
Press key LOC
REM to switch to local control (LOC
shown on the left).
Press
to start the drive. The motor model is
now calculated by magnetizing the motor for 10 to
15 s at zero speed.
DIRECTION OF THE MOTOR ROTATION
Check the direction of the motor rotation.
• If the drive is in remote control (REM shown on
the left), switch to local control by pressing LOC
REM .
LOC
xxx
.
SET FWD
• To go to the Main menu, press
if the bottom
line shows OUTPUT; otherwise press
repeatedly until you see MENU at the bottom.
• Press keys
/
until you see “rEF” and
press
.
• Increase the frequency reference from zero to a
small value with key
.
• Press
to start the motor.
• Check that the actual direction of the motor is
the same as indicated on the display (FWD
means forward and REV reverse).
• Press
to stop the motor.
To change the direction of the motor rotation:
forward
direction
reverse
direction
Hz
Start-up, control with I/O and ID run 65
• Invert the phases by changing the value of
parameter 9914 to the opposite, ie from 0 (NO)
to 1 (YES), or vice versa.
LOC
9914
PAR
FWD
• Verify your work by applying input power and
repeating the check as described above.
SPEED LIMITS AND ACCELERATION/DECELERATION TIMES
Set the minimum speed (parameter 2001).
LOC
Set the maximum speed (parameter 2002).
Set the acceleration time 1 (parameter 2202).
Note: Set also acceleration time 2 (parameter
2205) if two acceleration times will be used in the
application.
Set the deceleration time 1 (parameter 2203).
LOC
LOC
LOC
Note: Set also deceleration time 2 (parameter
2206) if two deceleration times will be used in the
application.
2001
2002
2202
PAR
FWD
PAR
FWD
PAR
FWD
2203
PAR
SAVING A USER MACRO AND FINAL CHECK
The start-up is now completed. However, it might LOC
be useful at this stage to set the parameters
required by your application and save the settings
as a user macro as instructed in section User
macros on page 119.
Check that the drive state is OK.
FWD
9902
Basic control panel: Check that there are no faults
or alarms shown on the display.
If you want to check the LEDs on the front of the
drive, switch first to remote control (otherwise a
fault is generated) before removing the panel and
verifying that the red LED is not lit and the green
LED is lit but not blinking.
Assistant control panel: Check that there are no
faults or alarms shown on the display and that the
panel LED is green and does not blink.
The drive is now ready for use.
PAR
FWD
66 Start-up, control with I/O and ID run
„ How to perform a guided start-up
To be able to perform the guided start-up, you need the assistant control panel.
Guided start-up is applicable to AC induction motors.
Before you start, ensure that you have the motor nameplate data on hand.
POWER-UP
Apply input power. The control panel first asks if you
want to use the Start-up assistant.
OK
• Press
(when Yes is highlighted) to run the
Start-up assistant.
EXIT
• Press
if you do not want to run the Start-up
assistant.
OK
• Press key
to highlight No and then press
if you want to make the panel ask (or not ask) the
question about running the Start-up assistant again
the next time you switch on the power to the drive.
REM
CHOICE
Do you want to
use the start-up
assistant?
Yes
No
00:00
OK
EXIT
CHOICE
REM
Show start-up
assistant on
next boot?
Yes
No
00:00
EXIT
OK
SELECTING THE LANGUAGE
If you decided to run the Start-up assistant, the
REM
PAR EDIT
display then asks you to select the language. Scroll to 9901 LANGUAGE
the desired language with keys
/
and press
ENGLISH
SAVE
to accept.
[0]
If you press
EXIT
, the Start-up assistant is stopped.
EXIT
00:00
SAVE
STARTING THE GUIDED SET-UP
The Start-up assistant now guides you through the
REM
PAR EDIT
set-up tasks, starting with the motor set-up. Set the
9905 MOTOR NOM VOLT
motor data to exactly the same value as on the motor
220 V
nameplate.
Scroll to the desired parameter value with keys
SAVE
/
and press
to accept and continue
with the Start-up assistant.
EXIT
00:00
SAVE
EXIT
Note: At any time, if you press
, the Start-up
assistant is stopped and the display goes to the
Output mode.
The basic start-up is now completed. However, it
might be useful at this stage to set the parameters
required by your application and continue with the
application set-up as suggested by the Start-up
assistant.
REM
CHOICE
Do you want to
continue with
application setup?
Continue
Skip
00:00
OK
EXIT
Start-up, control with I/O and ID run 67
Select the application macro according to which the
control cables are connected.
REM
PAR EDIT
9902 APPLIC MACRO
ABB STANDARD
[1]
EXIT
Continue with the application set-up. After completing
a set-up task, the Start-up assistant suggests the next
one.
OK
• Press
(when Continue is highlighted) to
continue with the suggested task.
00:00
SAVE
REM
CHOICE
Do you want to
continue with
EXT1 reference setup?
Continue
Skip
00:00
OK
EXIT
• Press key
to highlight Skip and then press
OK
to move to the following task without doing the
suggested task.
• Press
EXIT
to stop the Start-up assistant.
DIRECTION OF THE MOTOR ROTATION
to switch to local control (LOC shown
Press key
on the left).
• If the drive is in remote control (REM shown on the LOC
status line), switch to local control by pressing LOC
REM .
LOC
REM
• If you are not in the Output mode, press
repeatedly until you get there.
EXIT
xx.xHz
xx.x Hz
x .x A
xx.x %
00:00
DIR
MENU
• Increase the frequency reference from zero to a
small value with key
.
• Press
to start the motor.
• Check that the actual direction of the motor is the
same as indicated on the display ( means forward
and reverse).
• Press
to stop the motor.
forward
direction
To change the direction of the motor rotation:
• Invert the phases by changing the value of
parameter 9914 to the opposite, ie from 0 (NO) to
1 (YES), or vice versa.
LOC
• Verify your work by applying input power and
repeating the check as described above.
[1]
CANCEL
FINAL CHECK
After the whole set-up is completed, check that there
are no faults or alarms shown on the display and the
panel LED is green and does not blink.
The drive is now ready for use.
reverse
direction
PAR EDIT
9914 PHASE INVERSION
YES
00:00
SAVE
68 Start-up, control with I/O and ID run
How to control the drive through the I/O interface
The table below instructs how to operate the drive through the digital and analog
inputs when:
•
the motor start-up is performed, and
•
the default (standard) parameter settings are valid.
Displays of the basic control panel are shown as an example.
PRELIMINARY SETTINGS
If you need to change the direction of rotation, check
that parameter 1003 DIRECTION is set to 3
(REQUEST).
See section Default I/O
Ensure that the control connections are wired
connection diagram on page 54.
according to the connection diagram given for the
ABB standard macro.
Ensure that the drive is in remote control. Press key In remote control, the panel
LOC
display shows text REM.
REM to switch between remote and local control.
STARTING AND CONTROLLING THE SPEED OF THE MOTOR
Start by switching digital input DI1 on.
Basic control panel: Text FWD starts flashing fast and
stops after the setpoint is reached
Assistant control panel: The arrow starts rotating. It is
dotted until the setpoint is reached.
Regulate the drive output frequency (motor speed) by
adjusting the voltage of analog input AI1.
REM
OUTPUT
REM
OUTPUT
00
.
Hz
500
.
Hz
FWD
FWD
CHANGING THE DIRECTION OF THE MOTOR ROTATION
Reverse direction: Switch digital input DI2 on.
REM
OUTPUT
Forward direction: Switch digital input DI2 off.
REM
OUTPUT
STOPPING THE MOTOR
Switch digital input DI1 off. The motor stops.
Basic control panel: Text FWD starts flashing slowly.
REM
Assistant control panel: The arrow stops rotating.
OUTPUT
500
.
500
.
Hz
REV
Hz
FWD
00
.
FWD
Hz
Start-up, control with I/O and ID run 69
How to perform the ID run
The drive estimates motor characteristics automatically when the drive is started for
the first time and after any motor parameter (group 99 START-UP DATA) is changed.
This is valid when parameter 9910 ID RUN has value 0 (OFF/IDMAGN).
In most applications there is no need to perform a separate ID run. The ID run should
be selected if:
•
vector control mode is used (parameter 9904 = 1 [VECTOR: SPEED] or
2 [VECTOR: TORQ]), and
•
operation point is near zero speed and/or
•
operation at torque range above the motor nominal torque, over a wide speed
range, and without any measured speed feedback (ie without a pulse encoder) is
needed or
•
permanent magnet motor is used and the back emf voltage is unknown.
Note: If motor parameters (group 99 START-UP DATA) are changed after the ID run,
it must be repeated.
„ ID run procedure
The general parameter setting procedure is not repeated here. For basic control
panel, see page 75 and for assistant control panel, see page 87 in chapter Control
panels. The ID run cannot be performed without a control panel.
PRE-CHECK
WARNING! The motor will run at up to approximately 50…80% of the
nominal speed during the ID run. The motor will rotate in the forward
direction. Ensure that it is safe to run the motor before performing the ID run!
De-couple the motor from the driven equipment
If parameter values (group 01 OPERATING DATA to group 98 OPTIONS) are
changed before the ID run, check that the new settings meet the following
conditions:
2001 MINIMUM SPEED < 0 rpm
2002 MAXIMUM SPEED > 80% of the motor rated speed
2003 MAX CURRENT > I2N
2017 MAX TORQUE 1 > 50% or 2018 MAX TORQUE 2 > 50%, depending on
which limit is in use according to parameter 2014 MAX TORQUE SEL.
Check that the Run enable signal is on (parameter 1601).
Ensure that the panel is in local control (LOC shown at the top). Press key LOC
REM to
switch between local and remote control.
70 Start-up, control with I/O and ID run
ID RUN WITH THE BASIC CONTROL PANEL
Change parameter 9910 ID RUN to 1 (ON). Save LOC
the new setting by pressing
.
9910
1
00
.
PAR
LOC
FWD
PAR SET FWD
If you want to monitor actual values during the ID
run, go to the Output mode by pressing
repeatedly until you get there.
Press
to start the ID run. The panel keeps
switching between the display that was shown
when you started the run and the alarm display
presented on the right.
In general, it is recommended not to press any
control panel keys during the ID run. However, you
can stop the ID run at any time by pressing
.
After the ID run is completed, the alarm display is
not shown any more.
LOC
OUTPUT
Hz
FWD
A2019
LOC
FWD
F0011
LOC
FWD
If the ID run fails, the fault display presented on
the right is shown.
ID RUN WITH THE ASSISTANT CONTROL PANEL
Change parameter 9910 ID RUN to 1 (ON). Save
REM
PAR EDIT
SAVE
the new setting by pressing
.
9910 ID RUN
ON
[1]
CANCEL
If you want to monitor actual values during the ID
EXIT
run, go to the Output mode by pressing
repeatedly until you get there.
In general, it is recommended not to press any
control panel keys during the ID run. However, you
can stop the ID run at any time by pressing
.
LOC
SAVE
50.0Hz
LOC
0.0 Hz
0.0 A
0.0 %
00:00
DIR
Press
to start the ID run. The panel keeps
switching between the display that was shown
when you started the run Run and the alarm
display presented on the right.
00:00
MENU
ALARM
ALARM 2019
ID RUN
00:00
Start-up, control with I/O and ID run 71
After the ID run is completed, the alarm display is
not shown any more.
LOC
If the ID run fails, the fault display presented on
the right is shown.
ID RUN FAIL
FAULT
FAULT 11
00:00
72 Start-up, control with I/O and ID run
Control panels 73
Control panels
What this chapter contains
The chapter describes the control panel keys, LED indicators and display fields. It
also instructs in using the panel in control, monitoring and changing the settings.
About control panels
Use a control panel to control the ACS355, read status data, and adjust parameters.
The drive works with either of two different control panel types:
•
Basic control panel – This panel (described in section Basic control panel on page
75) provides basic tools for manual entry of parameter values.
•
Assistant control panel – This panel (described in section Assistant control panel
on page 87) includes pre-programmed assistants to automate the most common
parameter setups. The panel provides language support. It is available with
different language sets.
Applicability
The manual is applicable to panels with the panel revisions and the panel firmware
versions given in the table below.
Panel type
Type code
Panel revision
Basic control panel
ACS-CP-C
M or later
Panel firmware
version
1.13 or later
Assistant control panel
Assistant control panel (Asia)
ACS-CP-A
ACS-CP-D
F or later
Q or later
2.04 or later
2.04 or later
74 Control panels
To find out the panel revision, see the label on the back of the panel. An example
label and explanation of the label contents are shown below.
1
2
ABB Oy, ACS-CP-A
S/N M0935E0001 RoHS 3
1 Panel type code
2 Serial number of format MYYWWRXXXX, where
M:
Manufacturer
YY:
09, 10, 11, …, for 2009, 2010, 2011, …
WW:
01, 02, 03, … for week 1, week 2, week 3, …
R:
A, B, C, … for panel revision
XXXX:
Integer starting every week from 0001
3 RoHS mark (the label of your drive shows the valid markings)
To find out the panel firmware version of your assistant control panel, see page 91.
For the basic control panel, see page 78.
See parameter 9901 LANGUAGE to find out the languages supported by the different
assistant control panels.
Control panels 75
Basic control panel
„ Features
The basic control panel features:
•
numeric control panel with an LCD display
•
copy function – parameters can be copied to the control panel memory for later
transfer to other drives or for backup of a particular system.
76 Control panels
„ Overview
The following table summarizes the key functions and displays on the basic control
panel.
No. Use
1
LCD display – Divided into five areas:
a. Upper left – Control location:
LOC: drive control is local, that is, from the
control panel
REM: drive control is remote, such as the drive
I/O or fieldbus.
b. Upper right – Unit of the displayed value.
c. Center – Variable; in general, shows parameter
and signal values, menus or lists. Shows also
fault and alarm codes.
d. Lower left and center – Panel operation state:
OUTPUT: Output mode
PAR: Parameter mode
MENU: Main menu.
FAULT : Fault mode.
1a LOC
1c
1d OUTPUT
2
6
11
.
A
FWD
4
5
8
1b
1e
3
7
9
e. Lower right – Indicators:
FWD (forward) / REV (reverse): direction of the motor rotation
Flashing slowly: stopped
Flashing rapidly: running, not at setpoint
Steady: running, at setpoint
SET : Displayed value can be modified (in the Parameter and Reference modes).
2
RESET/EXIT – Exits to the next higher menu level without saving changed values.
Resets faults in the Output and Fault modes.
3
MENU/ENTER – Enters deeper into menu level. In the Parameter mode, saves the
displayed value as the new setting.
4
Up –
• Scrolls up through a menu or list.
• Increases a value if a parameter is selected.
• Increases the reference value in the Reference mode.
• Holding the key down changes the value faster.
5
Down –
• Scrolls down through a menu or list.
• Decreases a value if a parameter is selected.
• Decreases the reference value in the Reference mode.
• Holding the key down changes the value faster.
6
LOC/REM – Changes between local and remote control of the drive.
7
DIR – Changes the direction of the motor rotation.
8
STOP – Stops the drive in local control.
9
START – Starts the drive in local control.
Control panels 77
„ Operation
You operate the control panel with the help of menus and keys. You select an option,
eg operation mode or parameter, by scrolling the
and
arrow keys until the
option is visible in the display and then pressing the
key.
With the
changes.
key, you return to the previous operation level without saving the made
The basic control panel has five panel modes: Output mode, Reference mode,
Parameter mode, Copy mode and Fault mode. The operation in the first four modes
is described in this chapter. When a fault or alarm occurs, the panel goes
automatically to the Fault mode showing the fault or alarm code. You can reset the
fault or alarm in the Output or Fault mode (see chapter Fault tracing on page 335).
After the power is switched on, the panel is in the
Output mode, where you can start, stop, change the
direction, switch between local and remote control and
monitor up to three actual values (one at a time). To do
other tasks, go first to the Main menu and select the
appropriate mode.
REM
OUTPUT
491
.
PAr
Hz
FWD
REM
MENU
FWD
How to do common tasks
The table below lists common tasks, the mode in which you can perform them and the page
number where the steps to do the task are described in detail.
Task
How to find out the panel firmware version
How to switch between local and remote control
How to start and stop the drive
How to change the direction of the motor rotation
Mode
At power up
Any
Any
Any
Page
78
78
78
79
How to browse the monitored signals
Output
80
How to set the speed, frequency or torque reference
Reference
81
How to change the value of a parameter
How to select the monitored signals
How to reset faults and alarms
Parameter
Parameter
Output, Fault
82
83
335
How to copy parameters from the drive to the control panel
How to restore parameters from the control panel to the drive
Copy
Copy
86
86
78 Control panels
How to find out the panel firmware version
Step Action
Display
1.
If the power is switched on, switch it off.
2.
Keep key
pressed down while you switch on the
power and read the panel firmware version shown on
the display.
When you release the
key, the panel goes to the
Output mode.
X.X X
How to start, stop and switch between local and remote control
You can start, stop and switch between local and remote control in any mode. To be
able to start or stop the drive, the drive must be in local control.
Step Action
1.
Display
• To switch between remote control (REM shown on
the left) and local control (LOC shown on the left),
press LOC
REM .
Note: Switching to local control can be disabled
with parameter 1606 LOCAL LOCK.
After pressing the key, the display briefly shows
message “LoC” or “rE”, as appropriate, before
returning to the previous display.
LOC
OUTPUT
LOC
491
.
Hz
FWD
LoC
FWD
The very first time the drive is powered up, it is in
remote control (REM) and controlled through the
drive I/O terminals. To switch to local control (LOC)
and control the drive using the control panel, press
LOC
REM . The result depends on how long you press
the key:
• If you release the key immediately (the display
flashes “LoC”), the drive stops. Set the local
control reference as instructed on page 81.
• If you press the key for about two seconds
(release when the display changes from “LoC”
to “LoC r”), the drive continues as before. The
drive copies the current remote values for the
run/stop status and the reference, and uses
them as the initial local control settings.
• To stop the drive in local control, press
.
Text FWD or REV on the bottom
line starts flashing slowly.
• To start the drive in local control, press
.
Text FWD or REV on the bottom
line starts flashing rapidly. It
stops flashing when the drive
reaches the setpoint.
Control panels 79
How to change the direction of the motor rotation
You can change the direction of the motor rotation in any mode.
Step Action
1.
2.
If the drive is in remote control (REM shown on the
left), switch to local control by pressing LOC
REM . The
display briefly shows message “LoC” before
returning to the previous display.
To change the direction from forward (FWD shown at
the bottom) to reverse (REV shown at the bottom), or
vice versa, press
.
Note: Parameter 1003 DIRECTION must be set to 3
(REQUEST).
Display
LOC
OUTPUT
LOC
OUTPUT
491
.
Hz
491
.
Hz
FWD
REV
80 Control panels
„ Output mode
In the Output mode, you can:
•
monitor actual values of up to three group 01 OPERATING DATA signals, one
signal at a time
•
start, stop, change the direction and switch between local and remote control.
You get to the Output mode by pressing
the bottom.
until the display shows text OUTPUT at
The display shows the value of one group 01
OPERATING DATA signal. The unit is shown on the
right. Page 83 tells how to select up to three signals to
be monitored in the Output mode. The table below
shows how to view them one at a time.
REM
OUTPUT
491
.
Hz
FWD
How to browse the monitored signals
Step Action
1.
If more than one signals have been selected to be
monitored (see page 83), you can browse them in
the Output mode.
To browse the signals forward, press key
repeatedly. To browse them backward, press key
repeatedly.
Display
REM
OUTPUT
REM
OUTPUT
REM
OUTPUT
491
.
05
.
107
.
Hz
FWD
A
FWD
FWD
%
Control panels 81
„ Reference mode
In the Reference mode, you can:
•
set the speed, frequency or torque reference
•
start, stop, change the direction and switch between local and remote control.
How to set the speed, frequency or torque reference
Step
1.
2.
3.
Action
Go to the Main menu by pressing
if you are in
the Output mode, otherwise by pressing
repeatedly until you see MENU at the bottom.
If the drive is in remote control (REM shown on the
left), switch to local control by pressing LOC
REM . The
display briefly shows “LoC” before switching to local
control.
Note: With group 11 REFERENCE SELECT, you
can allow the reference modification in remote
control (REM).
If the panel is not in the Reference mode (“rEF” not
visible), press key
or
until you see “rEF”
and then press
. Now the display shows the
current reference value with SET under the value.
Display
REM
PAr
MENU
LOC
PAr
MENU
LOC
FWD
rEF
491
.
MENU
LOC
FWD
FWD
Hz
SET FWD
4.
• To increase the reference value, press
.
• To decrease the reference value, press
.
The value changes immediately when you press the
key. It is stored in the drive permanent memory and
restored automatically after power switch-off.
LOC
500
.
SET FWD
Hz
82 Control panels
„ Parameter mode
In the Parameter mode, you can:
•
view and change parameter values
•
select and modify the signals shown in the Output mode
•
start, stop, change the direction and switch between local and remote control.
How to select a parameter and change its value
Step Action
1.
2.
Display
Go to the Main menu by pressing
if you are in
the Output mode, otherwise by pressing
repeatedly until you see MENU at the bottom.
If the panel is not in the Parameter mode (“PAr” not
visible), press key
or
until you see “PAr”
and then press
. The display shows the number
of one of the parameter groups.
LOC
rEF
MENU
LOC
PAr
-01-
MENU
LOC
FWD
PAR
3.
Use keys
and
parameter group.
to find the desired
LOC
Press
. The display shows one of the
parameters in the selected group.
LOC
Use keys
parameter.
and
to find the desired
LOC
7.
Press and hold
for about two seconds until the
display shows the value of the parameter with SET
underneath indicating that changing of the value is
now possible.
Note: When SET is visible, pressing keys
and
simultaneously changes the displayed value to
the default value of the parameter.
Use keys
and
to select the parameter
value. When you have changed the parameter value,
SET starts flashing.
• To save the displayed parameter value, press
.
• To cancel the new value and keep the original,
press
.
FWD
1103
PAR
6.
FWD
1101
PAR
5.
FWD
-11PAR
4.
FWD
FWD
1
LOC
PAR SET FWD
2
LOC
PAR SET FWD
LOC
1103
PAR
FWD
Control panels 83
How to select the monitored signals
Step Action
1.
2.
3.
You can select which signals are monitored in the
Output mode and how they are displayed with group
34 PANEL DISPLAY parameters. See page 82 for
detailed instructions on changing parameter values.
By default, the display shows three signals.
Signal 1: 0102 SPEED for macros 3-wire, Alternate,
Motor potentiometer, Hand/Auto and PID control;
0103 OUTPUT FREQ for macros ABB standard and
Torque control
Signal 2: 0104 CURRENT
Signal 3: 0105 TORQUE.
To change the default signals, select up to three
signals from group 01 OPERATING DATA to be
shown.
Signal 1: Change the value of parameter 3401
SIGNAL1 PARAM to the index of the signal
parameter in group 01 OPERATING DATA
(= number of the parameter without the leading
zero), eg 105 means parameter 0105 TORQUE.
Value 100 means that no signal is displayed.
Repeat for signals 2 (3408 SIGNAL2 PARAM) and 3
(3415 SIGNAL3 PARAM). For example, if 3401 = 0
and 3415 = 0, browsing is disabled and only the
signal specified by 3408 appears in the display. If all
three parameters are set to 0, ie no signals are
selected for monitoring, the panel displays text “n.A”.
Specify the decimal point location, or use the decimal
point location and unit of the source signal (setting 9
[DIRECT]). Bar graphs are not available for basic
control panel. For details, see parameter 3404.
Signal 1: parameter 3404 OUTPUT1 DSP FORM
Signal 2: parameter 3411 OUTPUT2 DSP FORM
Signal 3: parameter 3418 OUTPUT3 DSP FORM.
Select the units to be displayed for the signals. This
has no effect if parameter 3404/3411/3418 is set to 9
(DIRECT). For details, see parameter 3405.
Signal 1: parameter 3405 OUTPUT1 UNIT
Signal 2: parameter 3412 OUTPUT2 UNIT
Signal 3: parameter 3419 OUTPUT3 UNIT.
Display
LOC
103
104
105
PAR SET FWD
LOC
PAR SET FWD
LOC
PAR SET FWD
LOC
9
PAR SET FWD
LOC
3
PAR SET FWD
84 Control panels
Step Action
4.
Select the scalings for the signals by specifying the
minimum and maximum display values. This has no
effect if parameter 3404/3411/3418 is set to 9
(DIRECT). For details, see parameters 3406 and
3407.
Signal 1: parameters 3406 OUTPUT1 MIN and 3407
OUTPUT1 MAX
Signal 2: parameters 3413 OUTPUT2 MIN and 3414
OUTPUT2 MAX
Signal 3: parameters 3420 OUTPUT3 MIN and 3421
OUTPUT3 MAX.
Display
LOC
00
.
5000
.
Hz
PAR SET FWD
LOC
PAR SET FWD
Hz
Control panels 85
„ Copy mode
The basic control panel can store a full set of drive parameters and up to three user
sets of drive parameters to the control panel. Uploading and downloading can be
performed in local control. The control panel memory is non-volatile.
In the Copy mode, you can do the following:
•
Copy all parameters from the drive to the control panel (uL – Upload). This
includes all defined user sets of parameters and internal (not adjustable by the
user) parameters such as those created by the ID run.
•
Restore the full parameter set from the control panel to the drive (dL A –
Download all). This writes all parameters, including the internal non-useradjustable motor parameters, to the drive. It does not include the user sets of
parameters.
Note: Only use this function to restore a drive, or to transfer parameters to
systems that are identical to the original system.
•
Copy a partial parameter set from the control panel to a drive (dL P – Download
partial). The partial set does not include user sets, internal motor parameters,
parameters 9905…9909, 1605, 1607, 5201, nor any group 51 EXT COMM
MODULE and 53 EFB PROTOCOL parameters.
The source and target drives and their motor sizes do not need to be the same.
•
Copy user set 1 parameters from the control panel to the drive (dL u1 – Download
user set 1). A user set includes group 99 START-UP DATA parameters and the
internal motor parameters.
The function is only shown on the menu when user set 1 has been first saved
using parameter 9902 APPLIC MACRO (see section User macros on page 119)
and then uploaded to panel.
•
Copy user set 2 parameters from the control panel to the drive (dL u2 – Download
user set 2). As dL u1 – Download user set 1 above.
•
Copy user set 3 parameters from the control panel to the drive (dL u3 – Download
user set 2). As dL u1 – Download user set 1 above.
•
Start, stop, change the direction and switch between local and remote control.
86 Control panels
How to upload and download parameters
For the upload and download functions available, see above. Note that the drive has
to be in local control for uploading and downloading.
Step Action
1.
2.
Display
Go to the Main menu by pressing
if you are in
the Output mode, otherwise by pressing
repeatedly until you see MENU at the bottom. – If
REM is shown on the left, press first LOC
REM to switch to
local control.
If the panel is not in the Copy mode (“CoPY” not
visible), press key
or
until you see
“CoPY”.
Press
.
LOC
PAr
MENU
LOC
CoPY
MENU
LOC
uL
MENU
3.
To upload all parameters (including user sets) from
the drive to the control panel, step to “uL” with keys
and
.
Press
. During the transfer, the display shows
the transfer status as a percentage of completion.
LOC
uL
MENU
LOC
FWD
FWD
FWD
FWD
uL 50
%
FWD
To perform downloads, step to the appropriate
operation (here “dL A”, Download all, is used as an
example) with keys
and
.
Press
. During the transfer, the display shows
the transfer status as a percentage of completion.
LOC
dL A
MENU
LOC
FWD
dL 50
%
FWD
„ Basic control panel alarm codes
In addition to the faults and alarms generated by the drive (see chapter Fault tracing
on page 335), the basic control panel indicates control panel alarms with a code of
form A5xxx. See section Alarms generated by the basic control panel on page 341 for
a list of the alarm codes and descriptions.
Control panels 87
Assistant control panel
„ Features
The assistant control panel features:
•
alphanumeric control panel with an LCD display
•
language selection for the display
•
Start-up assistant to ease drive commissioning
•
copy function – parameters can be copied to the control panel memory for later
transfer to other drives or for backup of a particular system.
•
context sensitive help
•
real time clock.
88 Control panels
„ Overview
The following table summarizes the key functions and displays on the assistant
control panel
No. Use
1
2
Status LED – Green for normal operation. If LED is
flashing, or red, see section LEDs on page 356.
LCD display – Divided into three main areas:
f. Status line – variable, depending on the mode of
operation, see section Status line on page 89.
g. Center – variable; in general, shows signal and
parameter values, menus or lists. Shows also
faults and alarms.
h. Bottom line – shows current functions of the two
soft keys and, if enabled, the clock display.
1
2a LOC
2b
2c
3
7
49.1Hz
49.1 Hz
0. 5 A
10. 7 %
00:00
DIR
MENU
5
6
9
4
8
10
3
Soft key 1 – Function depends on the context. The
text in the lower left corner of the LCD display
indicates the function.
4
Soft key 2 – Function depends on the context. The text in the lower right corner of the
LCD display indicates the function.
5
Up –
• Scrolls up through a menu or list displayed in the center of the LCD display.
• Increments a value if a parameter is selected.
• Increments the reference value if the upper right corner is highlighted.
Holding the key down changes the value faster.
6
Down –
• Scrolls down through a menu or list displayed in the center of the LCD display.
• Decrements a value if a parameter is selected.
• Decrements the reference value if the upper right corner is highlighted.
Holding the key down changes the value faster.
7
LOC/REM – Changes between local and remote control of the drive.
8
Help – Displays context sensitive information when the key is pressed. The information
displayed describes the item currently highlighted in the center of the display.
9
STOP – Stops the drive in local control.
Control panels 89
Status line
The top line of the LCD display shows the basic status information of the drive.
LOC
1
2
No. Field
1 Control location
49.1Hz
LOC
4
1
Alternatives
LOC
REM
2
State
Rotating arrow
Dotted rotating arrow
Stationary arrow
Dotted stationary arrow
3
4
Panel operation
mode
Reference value or
number of the
selected item
2
MAIN MENU
1
3
4
Significance
Drive control is local, that is, from the
control panel.
Drive control is remote, such as the drive
I/O or fieldbus.
Forward shaft direction
Reverse shaft direction
Drive is running at setpoint.
Drive is running but not at setpoint.
Drive is stopped.
Start command is present, but the motor is
not running, eg because start enable is
missing.
• Name of the current mode
• Name of the list or menu shown
• Name of the operation state, eg PAR
EDIT.
• Reference value in the Output mode
• Number of the highlighted item, eg
mode, parameter group or fault.
„ Operation
You operate the control panel with menus and keys. The keys include two contextsensitive soft keys, whose current function is indicated by the text shown in the
display above each key.
You select an option, eg operation mode or parameter, by scrolling the
and
arrow keys until the option is highlighted (in reverse video) and then pressing
the relevant soft key. With the right soft key
you usually enter a mode, accept an
option or save the changes. The left soft key
is used to cancel the made changes
and return to the previous operation level.
The assistant control panel has nine panel modes: Output mode, Parameter mode,
Assistants mode, Changed parameters mode, Fault logger mode, Time and date
mode, Parameter backup mode, I/O settings mode and Fault mode. The operation in
the first eight modes is described in this chapter. When a fault or alarm occurs, the
panel goes automatically to the Fault mode showing the fault or alarm. You can reset
it in the Output or Fault mode (see chapter Fault tracing on page 335).
90 Control panels
Initially, the panel is in the Output mode, where you can
start, stop, change the direction, switch between local and
remote control, modify the reference value and monitor up
to three actual values.
To do other tasks, go first to the Main menu and select the
appropriate mode on the menu. The status line (see
section Status line on page 89) shows the name of the
current menu, mode, item or state.
LOC
49.1Hz
49.1 Hz
0.5 A
10.7 %
DIR
LOC
00:00
MENU
MAIN MENU
PARAMETERS
ASSISTANTS
CHANGED PAR
EXIT
00:00
ENTER
How to do common tasks
The table below lists common tasks, the mode in which you can perform them and
the page number where the steps to do the task are described in detail.
Task
How to get help
How to find out the panel version
How to adjust the display contrast
How to switch between local and remote control
How to start and stop the drive
How to change the direction of the motor rotation
How to set the speed, frequency or torque reference
How to change the value of a parameter
How to select the monitored signals
How to do guided tasks (specification of related parameter sets)
with assistants
Mode
Any
At power up
Output
Any
Any
Output
Output
Parameters
Parameters
Assistants
Page
91
91
94
92
93
93
94
95
96
98
How to view and edit changed parameters
Changed
parameters
100
How to view faults
Fault logger
How to reset faults and alarms
Output, Fault
How to show/hide the clock, change date and time formats, set the Time and date
clock and enable/disable automatic clock transitions according to
the daylight saving changes
101
335
102
How to copy parameters from the drive to the control panel
Parameter
backup
105
How to restore parameters from the control panel to the drive
Parameter
backup
105
How to view backup information
Parameter
backup
106
How to edit and change parameter settings related to I/O terminals I/O settings
107
1
Control panels 91
How to get help
Step Action
1.
Display
Press ? to read the context-sensitive help text for the
item that is highlighted.
LOC
PAR GROUPS
10
01 OPERATING DATA
03 FB ACTUAL SIGNALS
04 FAULT HISTORY
10 START/STOP/DIR
11 REFERENCE SELECT
00:00
SEL
EXIT
If help text exists for the item, it is shown on the display.
LOC
HELP
This group defines
external sources
(EXT1 and EXT2) for
commands that enable
start, stop and
00:00
EXIT
2.
If the whole text is not visible, scroll the lines with keys
and
.
LOC
HELP
external sources
(EXT1 and EXT2) for
commands that enable
start, stop and
direction changes.
00:00
EXIT
3.
After reading the text, return to the previous display by
EXIT
pressing
.
LOC
PAR GROUPS
10
01 OPERATING DATA
03 FB ACTUAL SIGNALS
04 FAULT HISTORY
10 START/STOP/DIR
11 REFERENCE SELECT
00:00
SEL
EXIT
How to find out the panel version
Step Action
1.
If the power is switched on, switch it off.
2.
Keep key ? pressed down while you switch on the
power and read the information. The display shows the
following panel information:
Panel SW: panel firmware version
ROM CRC: panel ROM check sum
Flash Rev: flash content version
Flash content comment.
When you release the ? key, the panel goes to the
Output mode.
Display
PANEL VERSION INFO
Panel SW:
x.xx
Rom CRC:
xxxxxxxxxx
Flash Rev:
x.xx
xxxxxxxxxxxxxxxxxxxxx
92 Control panels
How to start, stop and switch between local and remote control
You can start, stop and switch between local and remote control in any mode. To be
able to start or stop the drive, the drive must be in local control.
Step Action
1.
Display
• To switch between remote control (REM shown on the
status line) and local control (LOC shown on the status
line), press LOC
REM .
Note: Switching to local control can be disabled with
parameter 1606 LOCAL LOCK.
LOC
MESSAGE
Switching to the
local control mode.
00:00
The very first time the drive is powered up, it is in
remote control (REM) and controlled through the drive
I/O terminals. To switch to local control (LOC) and
control the drive using the control panel, press LOC
REM .
The result depends on how long you press the key:
• If you release the key immediately (the display
flashes “Switching to the local control mode”), the
drive stops. Set the local control reference as
instructed on page 94.
• If you press the key for about two seconds, the drive
continues as before. The drive copies the current
remote values for the run/stop status and the
reference, and uses them as the initial local control
settings.
• To stop the drive in local control, press
.
The arrow ( or ) on the
status line stops rotating.
• To start the drive in local control, press
.
The arrow ( or ) on the
status line starts rotating. It
is dotted until the drive
reaches the setpoint.
Control panels 93
„ Output mode
In the Output mode, you can:
•
monitor actual values of up to three signals in group 01 OPERATING DATA
•
change the direction of the motor rotation
•
set the speed, frequency or torque reference
•
adjust the display contrast
•
start, stop, change the direction and switch between local and remote control.
You get to the Output mode by pressing
EXIT
repeatedly.
The top right corner of the
49.1Hz LOC
5.0Hz
LOC
Hz50%
display shows the reference
49.1 Hz
value. The center can be
0.4 A
0.5 A
configured to show up to three
24.4 %
10.7 %
00:00
00:00
MENU
MENU
DIR
DIR
signal values or bar graphs. If
just one or two signals are
selected for display, the number and name of each displayed signal are shown in
addition to the value or bar graph. See page 96 for instructions on selecting and
modifying the monitored signals.
How to change the direction of the motor rotation
Step Action
1.
If you are not in the Output mode, press
until you get there.
Display
EXIT
repeatedly
REM
49.1Hz
49.1 Hz
0.5 A
10.7 %
DIR
2.
If the drive is in remote control (REM shown on the status
line), switch to local control by pressing LOC
REM . The display
briefly shows a message about changing the mode and
then returns to the Output mode.
LOC
To change the direction from forward ( shown on the
status line) to reverse ( shown on the status line), or
DIR
vice versa, press
.
Note: Parameter 1003 DIRECTION must be set to 3
(REQUEST).
LOC
MENU
49.1Hz
49.1 Hz
0.5 A
10.7 %
DIR
3.
00:00
00:00
MENU
49.1Hz
49.1 Hz
0.5 A
10.7 %
DIR
00:00
MENU
94 Control panels
How to set the speed, frequency or torque reference
Step Action
1.
Display
If you are not in the Output mode, press
until you get there.
EXIT
repeatedly
49.1Hz
REM
49.1 Hz
0.5 A
10.7 %
DIR
2.
3.
If the drive is in remote control (REM shown on the status
line), switch to local control by pressing LOC
REM . The display
briefly shows a message about changing the mode and
then returns to the Output mode.
Note: With group 11 REFERENCE SELECT, you can
allow the reference modification in remote control.
LOC
• To increase the highlighted reference value shown in
the top right corner of the display, press
. The
value changes immediately. It is stored in the drive
permanent memory and restored automatically after
power switch-off.
• To decrease the value, press
.
LOC
00:00
MENU
49.1Hz
49.1 Hz
0.5 A
10.7 %
DIR
00:00
MENU
50.0Hz
50.0 Hz
0.5 A
10.7 %
DIR
00:00
MENU
How to adjust the display contrast
Step Action
1.
Display
If you are not in the Output mode, press
until you get there.
EXIT
repeatedly
49.1Hz
LOC
49.1 Hz
0.5 A
10.7 %
DIR
2.
• To increase the contrast, press keys
simultaneously.
• To decrease the contrast, press keys
simultaneously.
MENU
MENU
and
and
00:00
MENU
49.1Hz
LOC
49.1 Hz
0.5 A
10.7 %
DIR
00:00
MENU
Control panels 95
„ Parameters mode
In the Parameters mode, you can:
•
view and change parameter values
•
start, stop, change the direction and switch between local and remote control.
How to select a parameter and change its value
Step Action
1.
Display
MENU
Go to the Main menu by pressing
if you are in the
EXIT
Output mode, otherwise by pressing repeatedly
until
you get to the Main menu.
LOC
MAIN MENU
PARAMETERS
ASSISTANTS
CHANGED PAR
00:00
EXIT
1
ENTER
2.
Go to the Parameters mode by selecting PARAMETERS
on the menu with keys
and
, and pressing
ENTER
.
LOC
PAR GROUPS
01
01 OPERATING DATA
03 FB ACTUAL SIGNALS
04 FAULT HISTORY
10 START/STOP/DIR
11 REFERENCE SELECT
00:00
SEL
EXIT
3.
Select the appropriate parameter group with keys
and
.
LOC
PAR GROUPS
99
99 START-UP DATA
01 OPERATING DATA
03 FB ACTUAL SIGNALS
04 FAULT HISTORY
10 START/STOP/DIR
00:00
SEL
EXIT
Press
4.
SEL
.
Select the appropriate parameter with keys
and
. The current value of the parameter is shown
below the selected parameter.
Press
EDIT
.
LOC
PARAMETERS
9901 LANGUAGE
ENGLISH
9902 APPLIC MACRO
9903 MOTOR TYPE
9904 MOTOR CTRL MODE
00:00
EDIT
EXIT
LOC
PARAMETERS
9901 LANGUAGE
9902 APPLIC MACRO
ABB STANDARD
9903 MOTOR TYPE
9904 MOTOR CTRL MODE
00:00
EDIT
EXIT
LOC
PAR EDIT
9902 APPLIC MACRO
ABB STANDARD
[1]
CANCEL
5.
Specify a new value for the parameter with keys
and
.
Pressing the key once increments or decrements the
value. Holding the key down changes the value faster.
Pressing the keys simultaneously replaces the displayed
value with the default value.
LOC
00:00
SAVE
PAR EDIT
9902 APPLIC MACRO
3-WIRE
[2]
CANCEL
00:00
SAVE
96 Control panels
Step Action
6.
Display
SAVE
• To save the new value, press
.
• To cancel the new value and keep the original, press
CANCEL
.
LOC
PARAMETERS
9901 LANGUAGE
9902 APPLIC MACRO
3-WIRE
9903 MOTOR TYPE
9904 MOTOR CTRL MODE
00:00
EDIT
EXIT
How to select the monitored signals
Step Action
1.
2.
3.
Display
You can select which signals are monitored in the Output
mode and how they are displayed with group 34 PANEL
DISPLAY parameters. See page 95 for detailed
instructions on changing parameter values.
By default, the display shows three signals.
Signal 1: 0102 SPEED for macros 3-wire, Alternate,
Motor potentiometer, Hand/Auto and PID control;
0103 OUTPUT FREQ for macros ABB standard and
Torque control
Signal 2: 0104 CURRENT
Signal 3: 0105 TORQUE.
To change the default signals, select up to three signals
from group 01 OPERATING DATA to be shown.
Signal 1: Change the value of parameter 3401 SIGNAL1
PARAM to the index of the signal parameter in group 01
OPERATING DATA (= number of the parameter without
the leading zero), eg 105 means parameter 0105
TORQUE. Value 0 means that no signal is displayed.
Repeat for signals 2 (3408 SIGNAL2 PARAM) and 3
(3415 SIGNAL3 PARAM).
LOC
Select how you want the signals to be displayed: as a
decimal number or a bar graph. For decimal numbers,
you can specify the decimal point location, or use the
decimal point location and unit of the source signal
(setting 9 [DIRECT]). For details, see parameter 3404.
Signal 1: parameter 3404 OUTPUT1 DSP FORM
Signal 2: parameter 3411 OUTPUT2 DSP FORM
Signal 3: parameter 3418 OUTPUT3 DSP FORM.
LOC
Select the units to be displayed for the signals. This has
no effect if parameter 3404/3411/3418 is set to 9
(DIRECT). For details, see parameter 3405.
Signal 1: parameter 3405 OUTPUT1 UNIT
Signal 2: parameter 3412 OUTPUT2 UNIT
Signal 3: parameter 3419 OUTPUT3 UNIT.
LOC
PAR EDIT
3401 SIGNAL1 PARAM
OUTPUT FREQ
[103]
CANCEL 00:00
LOC
SAVE
PAR EDIT
3408 SIGNAL2 PARAM
CURRENT
[104]
CANCEL 00:00
LOC
SAVE
PAR EDIT
3415 SIGNAL3 PARAM
TORQUE
[105]
CANCEL 00:00
SAVE
PAR EDIT
3404 OUTPUT1 DSP FORM
DIRECT
[9]
CANCEL 00:00
SAVE
PAR EDIT
3405 OUTPUT1 UNIT
Hz
[3]
CANCEL 00:00
SAVE
Control panels 97
Step Action
4.
Select the scalings for the signals by specifying the
minimum and maximum display values. This has no
effect if parameter 3404/3411/3418 is set to 9 (DIRECT).
For details, see parameters 3406 and 3407.
Signal 1: parameters 3406 OUTPUT1 MIN and 3407
OUTPUT1 MAX
Signal 2: parameters 3413 OUTPUT2 MIN and 3414
OUTPUT2 MAX
Signal 3: parameters 3420 OUTPUT3 MIN and 3421
OUTPUT3 MAX.
Display
LOC
PAR EDIT
3406 OUTPUT1 MIN
0.0 Hz
CANCEL
LOC
00:00
SAVE
PAR EDIT
3407 OUTPUT1 MAX
500.0 Hz
CANCEL
00:00
SAVE
98 Control panels
„ Assistants mode
When the drive is first powered up, the Start-up assistant guides you through the
setup of the basic parameters. The Start-up assistant is divided into assistants, each
of which is responsible for the specification of a related parameter set, for example
Motor set-up or PID control. The Start-up assistant activates the assistants one after
the other. You may also use the assistants independently. For more information on
the tasks of the assistants, see section Start-up assistant on page 121.
In the Assistants mode, you can:
•
use assistants to guide you through the specification of a set of basic parameters
•
start, stop, change the direction and switch between local and remote control.
How to use an assistant
The table below shows the basic operation sequence which leads you through
assistants. The Motor set-up assistant is used as an example.
Step Action
1.
Display
MENU
Go to the Main menu by pressing
if you are in the
EXIT
Output mode, otherwise by pressing repeatedly
until
you get to the Main menu.
LOC
MAIN MENU
PARAMETERS
ASSISTANTS
CHANGED PAR
EXIT
00:00
1
ENTER
2.
Go to the Assistants mode by selecting ASSISTANTS on
ENTER
the menu keys
and
, and pressing
.
LOC
ASSISTANTS
1
Start-up assistant
Motor Set-up
Application
Speed control EXT1
Speed control EXT2
00:00
SEL
EXIT
3.
Select the assistant with keys
and
, and
SEL
press
.
If you select any other assistant than the Start-up
assistant, it guides you through the task of specification
of its parameter set as shown in steps 4. and 5. below.
After that you can select another assistant on the
Assistants menu or exit the Assistants mode. The Motor
set-up assistant is used here as an example.
LOC
If you select the Start-up assistant, it activates the first
assistant, which guides you through the task of
specification of its parameter set as shown in steps 4.
and 5. below. The Start-up assistant then asks if you
want to continue with the next assistant or skip it – select
the appropriate answer with keys
and
, and
SEL
press
. If you choose to skip, the Start-up assistant
asks the same question about the next assistant, and so
on.
LOC
CHOICE
Do you want to
continue with
application setup?
Continue
Skip
00:00
OK
EXIT
PAR EDIT
9905 MOTOR NOM VOLT
200 V
EXIT
00:00
SAVE
Control panels 99
Step Action
4.
• To specify a new value, press keys
Display
and
.
LOC
PAR EDIT
9905 MOTOR NOM VOLT
240 V
EXIT
5.
00:00
SAVE
• To ask for information on the requested parameter,
press key ? . Scroll the help text with keys
and
EXIT
. Close the help by pressing
.
LOC
HELP
Set as given on the
motor nameplate.
Voltage value must
correspond to motor
D/Y connection.
00:00
EXIT
• To accept the new value and continue to the setting of
SAVE
the next parameter, press
.
EXIT
• To stop the assistant, press
.
LOC
PAR EDIT
9906 MOTOR NOM CURR
1.2 A
EXIT
00:00
SAVE
100 Control panels
„ Changed parameters mode
In the Changed parameters mode, you can:
•
view a list of all parameters that have been changed from the macro default
values
•
change these parameters
•
start, stop, change the direction and switch between local and remote control.
How to view and edit changed parameters
Step
1.
Action
Display
MENU
Go to the Main menu by pressing
if you are in the
EXIT
Output mode, otherwise by pressing repeatedly
until
you get to the Main menu.
MAIN MENU
LOC
PARAMETERS
ASSISTANTS
CHANGED PAR
EXIT
2.
3.
Go to the Changed parameters mode by selecting
CHANGED PAR on the menu with keys
and
ENTER
and pressing
.
,
Select the changed parameter on the list with keys
and
. The value of the selected parameter is shown
EDIT
below it. Press
to modify the value.
00:00
LOC
CHANGED PAR
1202 CONST SPEED 1
10.0 Hz
1203 CONST SPEED 2
1204 CONST SPEED 3
9902 APPLIC MACRO
00:00
EDIT
EXIT
LOC
PAR EDIT
1202 CONST SPEED 1
10.0 Hz
CANCEL 00:00
4.
5.
Specify a new value for the parameter with keys
and
.
Pressing the key once increments or decrements the
value. Holding the key down changes the value faster.
Pressing the keys simultaneously replaces the displayed
value with the default value.
SAVE
• To accept the new value, press
. If the new value
is the default value, the parameter is removed from the
list of changed parameters.
• To cancel the new value and keep the original, press
CANCEL
.
ENTER
LOC
SAVE
PAR EDIT
1202 CONST SPEED 1
15.0 Hz
CANCEL 00:00
SAVE
CHANGED PAR
LOC
1202 CONST SPEED 1
15.0 Hz
1203 CONST SPEED 2
1204 CONST SPEED 3
9902 APPLIC MACRO
00:00
EDIT
EXIT
1
Control panels 101
„ Fault logger mode
In the Fault logger mode, you can:
•
view the drive fault history of maximum ten faults (after a power off, only the three
latest faults are kept in the memory)
•
see the details of the three latest faults (after a power off, the details of only the
most recent fault is kept in the memory)
•
read the help text for the fault
•
start, stop, change the direction and switch between local and remote control.
How to view faults
Step Action
1.
Display
MENU
Go to the Main menu by pressing
if you are in the
EXIT
Output mode, otherwise by pressing repeatedly
until
you get to the Main menu.
LOC
PARAMETERS
ASSISTANTS
CHANGED PAR
EXIT
2.
MAIN MENU
00:00
1
ENTER
Go to the Fault logger mode by selecting FAULT
LOGGER on the menu with keys
and
, and
ENTER
pressing
. The display shows the fault log starting
with the latest fault.
The number on the row is the fault code according to
which the causes and corrective actions are listed in
chapter Fault tracing on page 335.
LOC
FAULT LOGGER 1
10: PANEL LOSS
19.03.05 13:04:57
6:
DC UNDERVOLT
7:
AI1 LOSS
3.
To see the details of a fault, select it with keys
DETAIL
, and press
.
and
LOC
PANEL LOSS
DI STATUS AT FLT
00000 bin
FAULT TIME 1
13:04:57
FAULT TIME 2
00:00
DIAG
EXIT
4.
To show the help text, press
keys
and
.
After reading the help, press
previous display.
. Scroll the help text with
LOC
DIAGNOSTICS
Check: comm lines
and connections,
parameter 3002,
parameters in groups
10 and 11.
00:00
OK
EXIT
DIAG
OK
to return to the
EXIT
00:00 DETAIL
102 Control panels
„ Time and date mode
In the Time and date mode, you can:
•
show or hide the clock
•
change date and time display formats
•
set the date and time
•
enable or disable automatic clock transitions according to the daylight saving
changes
•
start, stop, change the direction and switch between local and remote control.
The assistant control panel contains a battery to ensure the function of the clock
when the panel is not powered by the drive.
How to show or hide the clock, change display formats, set the date and time
and enable or disable clock transitions due to daylight saving changes
Step Action
1.
Display
MENU
Go to the Main menu by pressing
if you are in the
EXIT
Output mode, otherwise by pressing repeatedly
until
you get to the Main menu.
LOC
MAIN MENU
PARAMETERS
ASSISTANTS
CHANGED PAR
EXIT
00:00
1
ENTER
2.
Go to the Time and date mode by selecting TIME &
DATE on the menu with keys
and
, and
ENTER
pressing
.
LOC
TIME & DATE
1
CLOCK VISIBILITY
TIME FORMAT
DATE FORMAT
SET TIME
SET DATE
00:00
SEL
EXIT
3.
• To show (hide) the clock, select CLOCK VISIBLILITY
SEL
on the menu, press
, select Show clock (Hide
SEL
clock) and press
, or, if you want to return to the
EXIT
previous display without making changes, press
.
LOC
CLOCK VISIB
Show clock
Hide clock
EXIT
• To specify the date format, select DATE FORMAT on
SEL
the menu, press
and select a suitable format.
OK
CANCEL
Press
to save or
to cancel your changes.
00:00
• To specify the time format, select TIME FORMAT on
SEL
the menu, press
and select a suitable format.
OK
CANCEL
Press
to save or
to cancel your changes.
SEL
LOC
DATE FORMAT
dd.mm.yy
mm/dd/yy
dd.mm.yyyy
mm/dd/yyyy
CANCEL 00:00
1
OK
LOC
TIME FORMAT
24-hour
12-hour
CANCEL 00:00
1
SEL
1
Control panels 103
Step Action
• To set the time, select SET TIME on the menu and
SEL
press
. Specify the hours with keys
and
OK
, and press
.Then specify the minutes. Press
OK
CANCEL
to save or
to cancel your changes.
Display
LOC
SET TIME
15:41
CANCEL
00:00
OK
• To set the date, select SET DATE on the menu and
SEL
press
. Specify the first part of the date (day or
month depending on the selected date format) with
OK
keys
and
, and press
. Repeat for the
OK
second part. After specifying the year, press
. To
CANCEL
cancel your changes, press
.
LOC
• To enable or disable the automatic clock transitions
according to the daylight saving changes, select
SEL
DAYLIGHT SAVING on the menu and press
.
Pressing ? opens the help that shows the beginning
and end dates of the period during which daylight
saving time is used in each country or area whose
daylight saving changes you can select to be followed.
Scroll the help text with keys
and
.
• To disable automatic clock transitions according to
the daylight saving changes, select Off and press
SEL
.
• To enable automatic clock transitions, select the
country or area whose daylight saving changes are
SEL
followed and press
.
• To return to the previous display without making
EXIT
changes, press
.
LOC
DAYLIGHT SAV 1
Off
EU
US
Australia1:NSW,Vict..
Australia2:Tasmania..
00:00
SEL
EXIT
SET DATE
19.03.05
CANCEL
00:00
OK
LOC
HELP
EU:
On: Mar last Sunday
Off: Oct last Sunday
US:
EXIT
00:00
104 Control panels
„ Parameter backup mode
The Parameter backup mode is used to export parameters from one drive to another
or to make a backup of the drive parameters. Uploading to the panel stores all drive
parameters, including up to three user sets, to the assistant control panel. The full set,
partial parameter set (application) and user sets can then be downloaded from the
control panel to another drive or the same drive. Uploading and downloading can be
performed in local control.
The control panel memory is non-volatile and does not depend on the panel battery.
In the Parameter backup mode, you can:
•
Copy all parameters from the drive to the control panel (UPLOAD TO PANEL).
This includes all defined user sets of parameters and internal (not adjustable by
the user) parameters such as those created by the ID run.
•
View the information about the backup stored to the control panel with UPLOAD
TO PANEL (BACKUP INFO). This includes eg the type and rating of the drive
where the backup was made. It is useful to check this information when you are
going to copy the parameters to another drive with DOWNLOAD FULL SET to
ensure that the drives match.
•
Restore the full parameter set from the control panel to the drive (DOWNLOAD
FULL SET). This writes all parameters, including the internal non-user-adjustable
motor parameters, to the drive. It does not include the user sets of parameters.
Note: Only use this function to restore a drive from a backup or to transfer
parameters to systems that are identical to the original system.
•
Copy a partial parameter set (part of the full set) from the control panel to a drive
(DOWNLOAD APPLICATION). The partial set does not include user sets, internal
motor parameters, parameters 9905…9909, 1605, 1607, 5201, nor any group 51
EXT COMM MODULE and 53 EFB PROTOCOL parameters.
The source and target drives and their motor sizes do not need to be the same.
•
Copy user set 1 parameters from the control panel to the drive (DOWNLOAD
USER SET1). A user set includes group 99 START-UP DATA parameters and the
internal motor parameters.
The function is only shown on the menu when user set 1 has been first saved
using parameter 9902 APPLIC MACRO (see section User macros on page 119)
and then uploaded to the control panel with UPLOAD TO PANEL.
•
Copy user set 2 parameters from the control panel to the drive (DOWNLOAD
USER SET2). As DOWNLOAD USER SET1 above.
•
Copy user set 3 parameters from the control panel to the drive (DOWNLOAD
USER SET3). As DOWNLOAD USER SET1 above.
•
Start, stop, change the direction and switch between local and remote control.
Control panels 105
How to upload and download parameters
For the upload and download functions available, see above. Note that the drive has
to be in local control for uploading and downloading.
Step Action
1.
Display
MENU
Go to the Main menu by pressing
if you are in the
EXIT
Output mode, otherwise by pressing repeatedly
until
you get to the Main menu. – If REM is shown on the
status line, press first LOC
REM to switch to local control.
LOC
MAIN MENU
PARAMETERS
ASSISTANTS
CHANGED PAR
EXIT
00:00
1
ENTER
2.
Go to the Par backup mode by selecting PAR BACKUP
on the menu with keys
and
, and pressing
ENTER
.
PAR BACKUP
1
LOC
UPLOAD TO PANEL
BACKUP INFO
DOWNLOAD FULL SET
DOWNLOAD APPLICATION
DOWNLOAD USER SET1
00:00
SEL
EXIT
3.
• To copy all parameters (including user sets and
internal parameters) from the drive to the control
panel, select UPLOAD TO PANEL on the Par backup
SEL
menu with keys
and
, and press
.
During the transfer, the display shows the transfer
ABORT
status as a percentage of completion. Press
if you
want to stop the operation.
LOC
PAR BACKUP
Copying parameters
50%
After the upload is completed, the display shows a
OK
message about the completion. Press
to return to
the Par backup menu.
ABORT
LOC
MESSAGE
Parameter upload
successful
OK
• To perform downloads, select the appropriate
operation (here DOWNLOAD FULL SET is used as an
example) on the Par backup menu with keys
SEL
and
, and press
. The display shows the
transfer status as a percentage of completion. Press
ABORT
if you want to stop the operation.
After the download is completed, the display shows a
OK
message about the completion. Press
to return to
the Par backup menu.
00:00
00:00
LOC
PAR BACKUP
Downloading
parameters (full
set)
ABORT
50%
00:00
LOC
MESSAGE
Parameter download
successfully
completed.
OK
00:00
106 Control panels
How to view information about the backup
Step Action
1.
Display
MENU
Go to the Main menu by pressing
if you are in the
EXIT
Output mode, otherwise by pressing repeatedly
until
you get to the Main menu.
LOC
MAIN MENU
PARAMETERS
ASSISTANTS
CHANGED PAR
EXIT
00:00
1
ENTER
2.
Go to the Par backup mode by selecting PAR BACKUP
on the menu with keys
and
, and pressing
ENTER
.
LOC
PAR BACKUP
1
UPLOAD TO PANEL
BACKUP INFO
DOWNLOAD FULL SET
DOWNLOAD APPLICATION
DOWNLOAD USER SET1
00:00
SEL
EXIT
3.
Select BACKUP INFO on the Par backup menu with keys
SEL
and
, and press
. The display shows the
following information about the drive where the backup
was made:
DRIVE TYPE:
type of the drive
DRIVE RATING: rating of the drive in format XXXYZ,
where
XXX: Nominal current rating. If
present, an “A” indicates a decimal
point, eg 9A7 means 9.7 A.
Y:
2 = 200 V
4 = 400 V
Z:
i = European loading package
n = US loading package
FIRMWARE:
firmware version of the drive.
You can scroll the information with keys
and
.
LOC
BACKUP INFO
DRIVE TYPE
ACS355
3304 DRIVE RATING
9A74i
3301 FIRMWARE
00:00
EXIT
4.
Press
EXIT
to return to the Par backup menu.
LOC
BACKUP INFO
ACS355
3304 DRIVE RATING
9A74i
3301 FIRMWARE
241A hex
00:00
EXIT
LOC
PAR BACKUP
1
UPLOAD TO PANEL
BACKUP INFO
DOWNLOAD FULL SET
DOWNLOAD APPLICATION
DOWNLOAD USER SET1
00:00
SEL
EXIT
Control panels 107
„ I/O settings mode
In the I/O settings mode, you can:
•
check the parameter settings related to any I/O terminal
•
edit the parameter setting. For example, if “1103: REF1” is listed under Ain1
(Analog input 1), that is, parameter 1103 REF1 SELECT has value AI1, you can
change its value to eg AI2. You cannot, however, set the value of parameter 1106
REF2 SELECT to AI1.
•
start, stop, change the direction and switch between local and remote control.
How to edit and change parameter settings related to I/O terminals
Step Action
1.
Display
MENU
Go to the Main menu by pressing
if you are in the
EXIT
Output mode, otherwise by pressing repeatedly
until
you get to the Main menu.
MAIN MENU
LOC
PARAMETERS
ASSISTANTS
CHANGED PAR
00:00
EXIT
1
ENTER
2.
Go to the I/O settings mode by selecting I/O SETTINGS
on the menu with keys
and
, and pressing
ENTER
.
LOC
I/O SETTINGS 1
DIGITAL INPUTS (DI)
ANALOG INPUTS (AI)
RELAY OUTPUTS (ROUT)
ANALOG OUTPUTS (AOUT)
PANEL
00:00
SEL
EXIT
3.
Select the I/O group, eg DIGITAL INPUTS, with keys
SEL
and
, and press
. After a brief pause, the
display shows the current settings for the selection.
LOC
I/O SETTINGS
-DI11001:START/STOP (E1)
-DI21001:DIR (E1)
-DI300:00
EXIT
4.
Select the setting (line with a parameter number) with
EDIT
keys
and
, and press
.
LOC
PAR EDIT
1001 EXT1 COMMANDS
DI1,2
[2]
CANCEL
5.
6.
Specify a new value for the setting with keys
and
.
Pressing the key once increments or decrements the
value. Holding the key down changes the value faster.
Pressing the keys simultaneously replaces the displayed
value with the default value.
SAVE
• To save the new value, press
.
• To cancel the new value and keep the original, press
CANCEL
.
LOC
00:00
SAVE
PAR EDIT
1001 EXT1 COMMANDS
DI1P,2P
[3]
CANCEL
00:00
SAVE
LOC
I/O SETTINGS
-DI11001:START PLS(E1)
-DI21001:STOP PLS (E1)
-DI300:00
EXIT
108 Control panels
Application macros 109
Application macros
What this chapter contains
The chapter describes the application macros. For each macro, there is a wiring
diagram showing the default control connections (digital and analog I/O). The chapter
also explains how to save a user macro and how to recall it.
Overview of macros
Application macros are pre-programmed parameter sets. While starting up the drive,
the user typically selects one of the macros - the one that is best suited for the
purpose - with parameter 9902 APPLIC MACRO, makes the essential changes and
saves the result as a user macro.
The ACS355 has seven standard macros and three user macros. The table below
contains a summary of the macros and describes suitable applications.
Macro
Suitable applications
ABB standard
Ordinary speed control applications where no, one, two or three constant
speeds are used. Start/stop is controlled with one digital input (level start
and stop). It is possible to switch between two acceleration and
deceleration times.
3-wire
Ordinary speed control applications where no, one, two or three constant
speeds are used. The drive is started and stopped with push buttons.
Alternate
Speed control applications where no, one, two or three constant speeds
are used. Start, stop and direction are controlled by two digital inputs
(combination of the input states determines the operation).
Motor
potentiometer
Speed control applications where no or one constant speed is used. The
speed is controlled by two digital inputs (increase / decrease / keep
unchanged).
110 Application macros
Macro
Suitable applications
Hand/Auto
Speed control applications where switching between two control devices is
needed. Some control signal terminals are reserved for one device, the
rest for the other. One digital input selects between the terminals (devices)
in use.
PID control
Process control applications, for example different closed loop control
systems such as pressure control, level control and flow control. It is
possible to switch between process and speed control: Some control
signal terminals are reserved for process control, others for speed control.
One digital input selects between process and speed control.
Torque control
Torque control applications. It is possible to switch between torque and
speed control: Some control signal terminals are reserved for torque
control, others for speed control. One digital input selects between torque
and speed control.
User
The user can save the customized standard macro, ie the parameter
settings including group 99 START-UP DATA, and the results of the motor
identification run into the permanent memory, and recall the data at a later
time.
For example, three user macros can be used when switching between
three different motors is required.
Application macros 111
Summary of the I/O connections of the application macros
The following table gives the summary of the default I/O connections of all application
macros.
Input/
output
Macro
ABB
standard
3-wire
Freq. ref.
Speed ref. Speed ref. -
Speed ref. Speed ref. Speed ref.
(Hand)
(Hand) /
(Speed)
Proc. ref.
(PID)
AI2
(0…20 mA)
-
-
-
Speed ref. Process
(Auto)
value
Torque
ref.
(Torque)
AO
Output
freq.
Speed
Speed
Speed
Speed
Speed
DI1
Stop/Start Start
(pulse)
Start (fwd) Stop/Start Stop/Start
(Hand)
Stop/Start Stop/Start
(Hand)
(Speed)
DI2
Fwd/Rev
Stop
(pulse)
Start (rev) Fwd/Rev
Hand/PID Fwd/Rev
DI3
Const.
speed
input 1
Fwd/Rev
Const.
speed
input 1
Speed ref. Hand/Auto Const.
up
speed 1
Speed/
Torque
DI4
Const.
speed
input 2
Const.
speed
input 1
Const.
speed
input 2
Speed ref. Fwd/Rev
down
(Auto)
Const.
speed 1
DI5
Ramp pair Const.
selection speed
input 2
Ramp pair Const.
selection speed 1
Stop/Start
(Auto)
Stop/Start Ramp pair
(PID)
selection
RO
Fault (-1)
Fault (-1)
Fault (-1)
Fault (-1)
Fault (-1)
Fault (-1)
Fault (-1)
DO
Fault (-1)
Fault (-1)
Fault (-1)
Fault (-1)
Fault (-1)
Fault (-1)
Fault (-1)
AI1
(0…10 V)
Alternate Motor
Hand/Auto PID
potentiom.
control
Fwd/Rev
(Hand)
Speed
Run
enable
Torque
control
112 Application macros
ABB standard macro
This is the default macro. It provides a general purpose I/O configuration with three
constant speeds. Parameter values are the default values given in section
Parameters on page 185.
If you use other than the default connections presented below, see section I/O
terminals on page 51.
„ Default I/O connections
1…10 kohm
max. 500 ohm
4)
1)
2)
X1A
1 SCR
2 AI1
3 GND
4 +10V
5 AI2
6 GND
7 AO
8 GND
9 +24V
10 GND
11 DCOM
12 DI1
13 DI2
14 DI3
15 DI4
16 DI5
X1B
17 ROCOM
18 RONC
19 RONO
20 DOSRC
21 DOOUT
22 DOGND
Signal cable shield (screen)
Output frequency reference: 0…10 V 1)
Analog input circuit common
Reference voltage: +10 V DC, max. 10 mA
Not in use by default. 0…10 V
Analog input circuit common
Output frequency value: 0…20 mA
Analog output circuit common
Auxiliary voltage output: +24 V DC, max. 200 mA
Auxiliary voltage output common
Digital input common
Stop (0) / Start (1)
Forward (0) / Reverse (1)
Constant speed selection 2)
Constant speed selection 2)
Acceleration and deceleration selection 3)
AI1 is used as a speed reference if vector
mode is selected.
See parameter group 12 CONSTANT
SPEEDS:
DI3 DI4 Operation (parameter)
0
0
Set speed through AI1
1
0
Speed 1 (1202)
0
1
Speed 2 (1203)
1
1
Speed 3 (1204)
Relay output 1
No fault [Fault (-1)]
Digital output, max. 100 mA
No fault [Fault (-1)]
3)
0 = ramp times according to parameters
2202 and 2203.
1 = ramp times according to parameters
2205 and 2206.
4)
360 degree grounding under a clamp.
Tightening torque = 0.4 N·m / 3.5 lbf·in.
Safe torque off connections (X1C:STO; not
shown in the diagram) are jumpered by default.
Application macros 113
3-wire macro
This macro is used when the drive is controlled using momentary push-buttons. It
provides three constant speeds. To enable the macro, set the value of parameter
9902 APPLIC MACRO to 2 (3-WIRE).
For the parameter default values, see section Default values with different macros on
page 176. If you use other than the default connections presented below, see section
I/O terminals on page 51.
Note: When the stop input (DI2) is deactivated (no input), the control panel start and
stop buttons are disabled.
„ Default I/O connections
1…10 kohm
max. 500 ohm
2)
1)
X1A
1 SCR
2 AI1
3 GND
4 +10V
5 AI2
6 GND
7 AO
8 GND
9 +24V
10 GND
11 DCOM
12 DI1
13 DI2
14 DI3
15 DI4
16 DI5
X1B
17 ROCOM
18 RONC
19 RONO
20 DOSRC
21 DOOUT
22 DOGND
See parameter group 12 CONSTANT
SPEEDS:
DI3 DI4 Operation (parameter)
0
0
Set speed through AI1
1
0
Speed 1 (1202)
0
1
Speed 2 (1203)
1
1
Speed 3 (1204)
Signal cable shield (screen)
Motor speed reference: 0…10 V
Analog input circuit common
Reference voltage: +10 V DC, max. 10 mA
Not in use by default. 0…10 V
Analog input circuit common
Motor speed value: 0…20 mA
Analog output circuit common
Auxiliary voltage output: +24 V DC, max. 200 mA
Auxiliary voltage output common
Digital input common
Start (pulse )
Stop (pulse )
Forward (0) / Reverse (1)
Constant speed selection 1)
Constant speed selection 1)
Relay output 1
No fault [Fault (-1)]
Digital output, max. 100 mA
No fault [Fault (-1)]
2)
360 degree grounding under a clamp.
Tightening torque = 0.4 N·m / 3.5 lbf·in.
Safe torque off connections (X1C:STO; not
shown in the diagram) are jumpered by default.
114 Application macros
Alternate macro
This macro provides an I/O configuration adapted to a sequence of DI control signals
used when alternating the rotation direction of the motor. To enable the macro, set the
value of parameter 9902 APPLIC MACRO to 3 (ALTERNATE).
For the parameter default values, see section Default values with different macros on
page 176. If you use other than the default connections presented below, see section
I/O terminals on page 51.
„ Default I/O connections
1…10 kohm
max. 500 ohm
3)
1)
X1A
1 SCR
2 AI1
3 GND
4 +10V
5 AI2
6 GND
7 AO
8 GND
9 +24V
10 GND
11 DCOM
12 DI1
13 DI2
14 DI3
15 DI4
16 DI5
X1B
17 ROCOM
18 RONC
19 RONO
20 DOSRC
21 DOOUT
22 DOGND
See parameter group 12 CONSTANT
SPEEDS:
DI3 DI4 Operation (parameter)
0
0
Set speed through AI1
1
0
Speed 1 (1202)
0
1
Speed 2 (1203)
1
1
Speed 3 (1204)
Signal cable shield (screen)
Motor speed reference: 0…10 V
Analog input circuit common
Reference voltage: +10 V DC, max. 10 mA
Not in use by default. 0…10 V
Analog input circuit common
Motor speed value: 0…20 mA
Analog output circuit common
Auxiliary voltage output: +24 V DC, max. 200 mA
Auxiliary voltage output common
Digital input common
Start forward: If DI1 = DI2, the drive stops.
Start reverse
Constant speed selection 1)
Constant speed selection 1)
Acceleration and deceleration selection 2)
Relay output 1
No fault [Fault (-1)]
Digital output, max. 100 mA
No fault [Fault (-1)]
2)
0 = ramp times according to parameters
2202 and 2203.
1 = ramp times according to parameters
2205 and 2206.
3) 360 degree grounding under a clamp.
Tightening torque = 0.4 N·m / 3.5 lbf·in.
Safe torque off connections (X1C:STO; not
shown in the diagram) are jumpered by default.
Application macros 115
Motor potentiometer macro
This macro provides a cost-effective interface for PLCs that vary the speed of the
motor using only digital signals. To enable the macro, set the value of parameter 9902
APPLIC MACRO to 4 (MOTOR POT).
For the parameter default values, see section Default values with different macros on
page 176. If you use other than the default connections presented below, see section
I/O terminals on page 51.
„ Default I/O connections
max. 500 ohm
2)
1)
X1A
1 SCR
2 AI1
3 GND
4 +10V
5 AI2
6 GND
7 AO
8 GND
9 +24V
10 GND
11 DCOM
12 DI1
13 DI2
14 DI3
15 DI4
16 DI5
X1B
17 ROCOM
18 RONC
19 RONO
20 DOSRC
21 DOOUT
22 DOGND
Signal cable shield (screen)
Not in use by default. 0…10 V
Analog input circuit common
Reference voltage: +10 V DC, max. 10 mA
Not in use by default. 0…10 V
Analog input circuit common
Motor speed value: 0…20 mA
Analog output circuit common
Auxiliary voltage output: +24 V DC, max. 200 mA
Auxiliary voltage output common
Digital input common
Stop (0) / Start (1)
Forward (0) / Reverse (1)
Speed reference up 1)
Speed reference down 1)
Constant speed 1: parameter 1202
Relay output 1
No fault [Fault (-1)]
Digital output, max. 100 mA
No fault [Fault (-1)]
If DI3 and DI4 are both active or inactive, the 2) 360 degree grounding under a clamp.
speed reference is unchanged.
Tightening torque = 0.4 N·m / 3.5 lbf·in.
The existing speed reference is stored
Safe torque off connections (X1C:STO; not
during stop and power down.
shown in the diagram) are jumpered by default.
116 Application macros
Hand/Auto macro
This macro can be used when switching between two external control devices is
needed. To enable the macro, set the value of parameter 9902 APPLIC MACRO to
5 (HAND/AUTO).
For the parameter default values, see section Default values with different macros on
page 176. If you use other than the default connections presented below, see section
I/O terminals on page 51.
Note: Parameter 2108 START INHIBIT must remain in the default setting 0 (OFF).
„ Default I/O connections
1…10 kohm
max. 500 ohm
1)
1)
2)
X1A
1 SCR
2 AI1
3 GND
4 +10V
5 AI2
6 GND
7 AO
8 GND
9 +24V
10 GND
11 DCOM
12 DI1
13 DI2
14 DI3
15 DI4
16 DI5
X1B
17 ROCOM
18 RONC
19 RONO
20 DOSRC
21 DOOUT
22 DOGND
Signal cable shield (screen)
Motor speed reference (Hand): 0…10 V
Analog input circuit common
Reference voltage: +10 V DC, max. 10 mA
Motor speed reference (Auto): 0…20 mA 2)
Analog input circuit common
Motor speed value: 0…20 mA
Analog output circuit common
Auxiliary voltage output: +24 V DC, max. 200 mA
Auxiliary voltage output common
Digital input common
Stop (0) / Start (1) (Hand)
Forward (0) / Reverse (1) (Hand)
Hand (0) / Auto (1) control selection
Forward (0) / Reverse (1) (Auto)
Stop (0) / Start (1) (Auto)
Relay output 1
No fault [Fault (-1)]
Digital output, max. 100 mA
No fault [Fault (-1)]
360 degree grounding under a clamp.
Tightening torque = 0.4 N·m / 3.5 lbf·in.
The signal source is powered externally. See Safe torque off connections (X1C:STO; not
the manufacturer’s instructions. To use
shown in the diagram) are jumpered by default.
sensors supplied by the drive aux. voltage
output, see page 53.
Application macros 117
PID control macro
This macro provides parameter settings for closed-loop control systems such as
pressure control, flow control, etc. Control can also be switched to speed control
using a digital input. To enable the macro, set the value of parameter 9902 APPLIC
MACRO to 6 (PID CONTROL).
For the parameter default values, see section Default values with different macros on
page 176. If you use other than the default connections presented below, see section
I/O terminals on page 51.
Note: Parameter 2108 START INHIBIT must remain in the default setting 0 (OFF).
„ Default I/O connections
1…10 kohm
max. 500 ohm
2)
1)
2)
3)
X1A
1 SCR
2 AI1
3 GND
4 +10V
5 AI2
6 GND
7 AO
8 GND
9 +24V
10 GND
11 DCOM
12 DI1
13 DI2
14 DI3
15 DI4
16 DI5
X1B
17 ROCOM
18 RONC
19 RONO
20 DOSRC
21 DOOUT
22 DOGND
Signal cable shield (screen)
Motor speed ref. (Hand) / Proc. ref. (PID): 0…10 V 1)
Analog input circuit common
Reference voltage: +10 V DC, max. 10 mA
Process actual value: 4…20 mA 3)
Analog input circuit common
Motor speed value: 0…20 mA
Analog output circuit common
Auxiliary voltage output: +24 V DC, max. 200 mA
Auxiliary voltage output common
Digital input common
Stop (0) / Start (1) (Hand)
Hand (0) / PID (1) control selection
Constant speed 1: parameter 1202
Run enable
Stop (0) / Start (1) (PID)
Hand: 0…10 V -> speed reference.
PID: 0…10 V -> 0…100% PID setpoint.
Relay output 1
No fault [Fault (-1)]
Digital output, max. 100 mA
No fault [Fault (-1)]
sensors supplied by the drive aux. voltage
output, see page 53.
Tightening torque = 0.4 N·m / 3.5 lbf·in.
360 degree grounding under a clamp.
The signal source is powered externally. See Safe torque off connections (X1C:STO; not
the manufacturer’s instructions. To use
shown in the diagram) are jumpered by default.
118 Application macros
Torque control macro
This macro provides parameter settings for applications that require torque control of
the motor. Control can also be switched to speed control using a digital input. To
enable the macro, set the value of parameter 9902 APPLIC MACRO to 8 (TORQUE
CTRL).
For the parameter default values, see section Default values with different macros on
page 176. If you use other than the default connections presented below, see section
I/O terminals on page 51.
„ Default I/O connections
1…10 kohm
max. 500 ohm
3)
1)
2)
3)
X1A
1 SCR
2 AI1
3 GND
4 +10V
5 AI2
6 GND
7 AO
8 GND
9 +24V
10 GND
11 DCOM
12 DI1
13 DI2
14 DI3
15 DI4
16 DI5
X1B
17 ROCOM
18 RONC
19 RONO
20 DOSRC
21 DOOUT
22 DOGND
Signal cable shield (screen)
Motor speed reference (Speed): 0…10 V
Analog input circuit common
Reference voltage: +10 V DC, max. 10 mA
Motor torque reference (Torque): 4…20 mA 4)
Analog input circuit common
Motor speed value: 0…20 mA
Analog output circuit common
Auxiliary voltage output: +24 V DC, max. 200 mA
Auxiliary voltage output common
Digital input common
Stop (0) / Start (1) (Speed)
Forward (0) / Reverse (1) 1)
Speed (0) / Torque (1) control selection
Constant speed 1: parameter 1202
Acceleration and deceleration selection 2)
Speed control: Changes rotation direction.
Torque control: Changes torque direction.
0 = ramp times according to parameters
2202 and 2203.
1 = ramp times according to parameters
2205 and 2206.
360 degree grounding under a clamp.
Relay output 1
No fault [Fault (-1)]
Digital output, max. 100 mA
No fault [Fault (-1)]
4)
The signal source is powered externally. See
the manufacturer’s instructions. To use
sensors supplied by the drive aux. voltage
output, see page 53.
Tightening torque = 0.4 N·m / 3.5 lbf·in.
Safe torque off connections (X1C:STO; not
shown in the diagram) are jumpered by default.
Application macros 119
User macros
In addition to the standard application macros, it is possible to create three user
macros. The user macro allows the user to save the parameter settings, including
group 99 START-UP DATA, and the results of the motor identification into the
permanent memory and recall the data at a later time. The panel reference is also
saved if the macro is saved and loaded in local control. The remote control setting is
saved into the user macro, but the local control setting is not.
The steps below show how to create and recall User macro 1. The procedure for the
other two macros is identical, only the parameter 9902 APPLIC MACRO values are
different.
To create User macro 1:
•
Adjust the parameters. Perform the motor identification if it is needed in the
application but it is not done yet.
•
Save the parameter settings and the results of the motor identification to the
permanent memory by changing parameter 9902 APPLIC MACRO to -1 (USER
S1 SAVE).
•
Press
SAVE
(assistant control panel) or
MENU
ENTER
(basic control panel) to save.
To recall User macro 1:
•
Change parameter 9902 APPLIC MACRO to 0 (USER S1 LOAD).
•
Press
SAVE
(assistant control panel) or
MENU
ENTER
(basic control panel) to load.
The user macro can also be switched through digital inputs (see parameter 1605
USER PAR SET CHG).
Note: User macro load restores the parameter settings, including group 99 STARTUP DATA and the results of the motor identification. Check that the settings
correspond to the motor used.
Hint: The user can for example switch the drive between three motors without having
to adjust the motor parameters and to repeat the motor identification every time the
motor is changed. The user needs only to adjust the settings and perform the motor
identification once for each motor and then to save the data as three user macros.
When the motor is changed, only the corresponding user macro needs to be loaded,
and the drive is ready to operate.
120 Application macros
Program features 121
Program features
What this chapter contains
The chapter describes program features. For each feature, there is a list of related
user settings, actual signals, and fault and alarm messages.
Start-up assistant
„ Introduction
The Start-up assistant (requires the assistant control panel) guides the user through
the start-up procedure, helping to enter the requested data (parameter values) to the
drive. The Start-up assistant also checks that the entered values are valid, ie within
the allowed range.
The Start-up assistant calls other assistants, each of which guides the user through
the task of specifying a related parameter set. At the first start, the drive suggests
entering the first task, Language select, automatically. The user may activate the
tasks either one after the other as the Start-up assistant suggests, or independently.
The user may also adjust the drive parameters in the conventional way without using
the assistant at all.
See section Assistants mode on page 98 for how to start the Start-up assistant or
other assistants.
122 Program features
„ Default order of the tasks
Depending on the selection made in the Application task (parameter 9902 APPLIC
MACRO), the Start-up assistant decides which consequent tasks it suggests. The
default tasks are shown in the table below.
Application selection
ABB STANDARD
3-WIRE
ALTERNATE
MOTOR POT
HAND/AUTO
PID CONTROL
TORQUE CTRL
Default tasks
Language select, Motor set-up, Application, Option modules, Speed
control EXT1, Speed control EXT2, Start/Stop control, Timed
functions, Protections, Output signals
Language select, Motor set-up, Application, Option modules, Speed
control EXT1, Speed control EXT2, Start/Stop control, Timed
functions, Protections, Output signals
Language select, Motor set-up, Application, Option modules, Speed
control EXT1, Speed control EXT2, Start/Stop control, Timed
functions, Protections, Output signals
Language select, Motor set-up, Application, Option modules, Speed
control EXT1, Speed control EXT2, Start/Stop control, Timed
functions, Protections, Output signals
Language select, Motor set-up, Application, Option modules, Speed
control EXT1, Speed control EXT2, Start/Stop control, Timed
functions, Protections, Output signals
Language select, Motor set-up, Application, Option modules, PID
control, Speed control EXT2, Start/Stop control, Timed functions,
Protections, Output signals
Language select, Motor set-up, Application, Option modules, Speed
control EXT2, Start/Stop control, Timed functions, Protections,
Output signals
Program features 123
„ List of the tasks and the relevant drive parameters
Depending on the selection made in the Application task (parameter 9902 APPLIC
MACRO), the Start-up assistant decides which consequent tasks it suggests.
Name
Language select
Description
Selecting the language
Set parameters
9901
Motor set-up
9904…9909
9910
Application
Setting the motor data
Performing the motor identification. (If the
speed limits are not in the allowed range:
Setting the limits.)
Selecting the application macro
Option modules
Activating the option modules
9902, parameters
associated to the macro
Group 35 MOTOR TEMP
MEAS, group 52 PANEL
COMM
9802
1103
Speed control EXT1 Selecting the source for the speed
reference
(If AI1 is used: Setting analog input AI1
limits, scale, inversion)
Setting the reference limits
Setting the speed (frequency) limits
Setting the acceleration and deceleration
times
Speed control EXT2 Selecting the source for the speed
reference
(If AI1 is used: Setting analog input AI1
limits, scale, inversion)
Setting the reference limits
1107, 1108
Torque control
Selecting the source for the torque
reference
1106
(If AI1 is used: Setting analog input AI1
limits, scale, inversion)
(1301…1303, 3001)
Setting the reference limits
1107, 1108
PID control
(1301…1303, 3001)
1104, 1105
2001, 2002 (2007, 2008)
2202, 2203
1106
(1301…1303, 3001)
Setting the torque ramp up and ramp down 2401, 2402
times
1106
Selecting the source for the process
reference
(If AI1 is used: Setting analog input AI1
(1301…1303, 3001)
limits, scale, inversion)
Setting the reference limits
Setting the speed (frequency) limits
Setting the source and limits for the
process actual value
1107, 1108
2001, 2002 (2007, 2008)
4016, 4018, 4019
124 Program features
Name
Start/Stop control
Protections
Output signals
Timed functions
Description
Selecting the source for start and stop
signals of the two external control
locations, EXT1 and EXT2
Selecting between EXT1 and EXT2
Defining the direction control
Set parameters
1001, 1002
Defining the start and stop modes
Selecting the use of Run enable signal
Setting the current and torque limits
2101…2103
1601
2003, 2017
Selecting the signals indicated through
relay output RO1 and, if MREL-01 relay
output extension module is in use,
RO2…RO4.
Selecting the signals indicated through
analog output AO
Setting the minimum, maximum, scaling
and inversion
Group 14 RELAY
OUTPUTS
Setting the timed functions
Selecting the timed start/stop control for
external control locations EXT1 and EXT2
Selecting timed EXT1/EXT2 control
Activation of timed constant speed 1
Selecting timed function status indicated
through relay output RO1 or, if MREL-01
relay output extension module is in use,
RO2…RO4.
Selecting timed PID1 parameter set 1/2
control
1102
1003
Group 15 ANALOG
OUTPUTS
36 TIMED FUNCTIONS
1001, 1002
1102
1201
1401…1403, 1410
4027
„ Contents of the assistant displays
There are two types of displays in the Start-up assistant: Main displays and
information displays. The main displays prompt the user to feed in information. The
assistant steps through the main displays. The information displays contain help texts
for the main displays. The figure below shows a typical example of both and
explanations of the contents.
Main display
REM
1
2
PAR EDIT
9905 MOTOR NOM VOLT
220 V
CANCEL
1
2
Information display
Parameter
Feed-in field
00:00
SAVE
LOC
HELP
Set exactly as given
on the motor
nameplate
If connected to
multiple motors
00:00
EXIT
Help text …
… help text continued
Program features 125
Local control vs. external control
The drive can receive start, stop and direction commands and reference values from
the control panel or through digital and analog inputs. Embedded fieldbus or an
optional fieldbus adapter enables control over an open fieldbus link. A PC equipped
with the DriveWindow Light 2 PC tool can also control the drive.
Local control
Drive
External control
Panel
connection (X2)
Control panel
or
PC tool
Panel
connection (X2)
or
FBMA adapter
connected to X3
Embedded
fieldbus
(Modbus*)
Fieldbus adapter
connection (X3)
Fieldbus
adapter
Standard I/O
Potentiometer
* With SREA-01 Ethernet adapter module it is possible to use Modbus TCP/IP with the
Ethernet. For more information, see SREA-01 Ethernet adapter module user’s manual
(3AUA0000042896 [English]).
„ Local control
The control commands are given from the control panel keypad when the drive is in
local control. LOC indicates local control on the panel display.
Assistant control panel
LOC
Basic control panel
49.1Hz
49.1 Hz
0.5 A
10.7 %
DIR
00:00
LOC
OUTPUT
491
.
Hz
FWD
MENU
The control panel always overrides the external control signal sources when used in
local control.
126 Program features
„ External control
When the drive is in external (remote) control, the commands are given through the
standard I/O terminals (digital and analog inputs) and/or the fieldbus interface. In
addition, it is also possible to set the control panel as the source for the external
control.
External control is indicated with REM on the panel display.
Assistant control panel
Basic control panel
49.1Hz
REM
49.1 Hz
0.5 A
10.7 %
DIR
00:00
REM
OUTPUT
491
.
Hz
FWD
MENU
The user can connect the control signals to two external control locations, EXT1 or
EXT2. Depending on the user selection, either one is active at a time. This function
operates on a 2 ms time level.
„ Settings
Panel key
LOC/REM
Parameter
1102
1001/1002
1103/1106
Additional information
Selection between local and external (remote) control
Selection between EXT1 and EXT2
Start, stop, direction source for EXT1/EXT2
Reference source for EXT1/EXT2
„ Diagnostics
Actual signal
0111/0112
Additional information
EXT1/EXT2 reference
Program features 127
„ Block diagram: Start, stop, direction source for EXT1
The figure below shows the parameters that select the interface for start, stop, and
direction for external control location EXT1.
DI1
DI5
Embedded fieldbus
Fieldbus adapter
DI1
Select
EXT1
Start/stop/
direction
DI5
Fieldbus selection
See chapters
COMM
Fieldbus control with
embedded fieldbus
on page 301 and
Fieldbus control with
fieldbus adapter on
page 325.
Control panel
KEYPAD
Timed function
TIMED FUNC 1…4
Timer/Counter
START/STOP
Sequence
programming
SEQ PROG
1001
„ Block diagram: Reference source for EXT1
The figure below shows the parameters that select the interface for the speed
reference of external control location EXT1.
AI1
AI2
DI3
DI4
DI5
Embedded fieldbus
Fieldbus adapter
AI1, AI2, DI3, DI4, DI5
Fieldbus selection
See chapters
Fieldbus control with COMM
embedded fieldbus
on page 301 and
Fieldbus control with
fieldbus adapter on
page 325.
Frequency input
FREQ INPUT
Control panel
KEYPAD
Sequence
programming
SEQ PROG
Select
EXT1
Reference
REF1
(Hz/rpm)
1103
128 Program features
Reference types and processing
The drive can accept a variety of references in addition to the conventional analog
input and control panel signals.
•
The drive reference can be given with two digital inputs: One digital input
increases the speed, the other decreases it.
•
The drive can form a reference out of two analog input signals by using
mathematical functions: addition, subtraction, multiplication and division.
•
The drive can form a reference out of an analog input signal and a signal received
through a serial communication interface by using mathematical functions:
addition and multiplication.
•
The drive reference can be given with frequency input.
•
In external control location EXT1/2, the drive can form a reference out of an
analog input signal and a signal received through Sequence programming by
using a mathematical function: addition.
It is possible to scale the external reference so that the signal minimum and
maximum values correspond to a speed other than the minimum and maximum
speed limits.
„ Settings
Parameter
Group 11 REFERENCE SELECT
Group 20 LIMITS
Group 22 ACCEL/DECEL
Group 24 TORQUE CONTROL
Group 32 SUPERVISION
Additional information
External reference source, type and scaling
Operating limits
Speed reference acceleration/deceleration ramps
Torque reference ramp times
Reference supervision
„ Diagnostics
Actual signal
Additional information
0111/0112
Group 03 FB ACTUAL SIGNALS
REF1/REF2 reference
References in different stages of the reference
processing chain
Program features 129
Reference trimming
In reference trimming, the external reference is corrected depending on the
measured value of a secondary application variable. The block diagram below
illustrates the function.
1105 REF1 MAX /
1108 REF2 MAX 2)
Switch3)
Switch
Select
2 (DIRECT)
max.
freq
REF1
1
(Hz/rpm) / (PROPORTION
AL)
REF2 (%)1)
0 (NOT SEL)
0
max.
speed
9904
MOTOR CTRL
MODE
Switch
4230
4233
TRIM 1)
SELECTION
PID2
Add
REF’
4231 TRIM SCALE
max.
torque
PID2 ref
PID2 act
REF1 (Hz/rpm) /
REF2 (%)1)
Mul.
Mul.
Switch
PID2
output
4232 CORRECTION SRC
REF1 (Hz/rpm) / REF2 (%) = Drive reference before trimming
REF’ = Drive reference after trimming
max. speed = par. 2002 (or 2001 if the absolute value is greater)
max. freq = par. 2008 (or 2007 if the absolute value is greater)
max. torque = par. 2014 (or 2013 if the absolute value is greater)
PID2 ref = par. 4210
PID2 act = par. 4214…4221
1) Note: Torque reference trimming is only for external reference REF2 (%)
2) REF1 or REF2 depending on which is active. See parameter 1102.
3) When par. 4232 = PID2REF, the maximum trimming reference is defined by parameter
1105 when REF1 is active and by parameter 1108 when REF2 is active.
When par. 4232 = PID2OUTPUT, the maximum trimming reference is defined by parameter
2002 if parameter 9904 value is VECTOR: SPEED or VECTOR: TORQ and by parameter
2008 value if parameter 9904 value is SCALAR: FREQ.
„ Settings
Parameter
Additional information
1102
4230 …4232
4201 …4229
REF1/2 selection
Trimming function settings
PID control settings
Group 20 LIMITS
Drive operation limits
130 Program features
„ Example
The drive runs a conveyor line. It is speed controlled but the line tension also needs
to be taken into account: If the measured tension exceeds the tension setpoint, the
speed will be slightly decreased, and vice versa.
To accomplish the desired speed correction, the user
•
activates the trimming function and connects the tension setpoint and the
measured tension to it.
•
tunes the trimming to a suitable level.
Speed controlled conveyor line
Tension measurement
Drive rollers (pull)
Simplified block diagram
Add
Speed reference
PID
Trimmed speed
reference
Tension
measurement
Tension
setpoint
Programmable analog inputs
The drive has two programmable analog voltage/current inputs. The inputs can be
inverted, filtered and the maximum and minimum values can be adjusted. The update
cycle for the analog input is 8 ms (12 ms cycle once per second). The cycle time is
shorter when information is transferred to the application program (8 ms -> 2 ms).
„ Settings
Parameter
Additional information
Group 11 REFERENCE SELECT
Group 13 ANALOG INPUTS
3001, 3021, 3022, 3107
AI as reference source
Analog input processing
AI loss supervision
Group 35 MOTOR TEMP MEAS
AI in motor temperature measurement
Groups 40 PROCESS PID SET 1
…42 EXT / TRIM PID
AI as PID process control reference or actual value
source
Program features 131
Parameter
8420, 8425, 8426
8430, 8435, 8436
Additional information
AI as Sequence programming reference or trigger
signal
…
8490, 8495, 8496
„ Diagnostics
Actual signal
0120, 0121
1401
Additional information
Analog input values
AI1/A2 signal loss through RO 1
1402/1403/1410
AI1/A2 signal loss through RO 2…4. With option
MREL-01 only.
Alarm
AI1 LOSS / AI2 LOSS
AI1/AI2 signal below limit 3021 AI1 FAULT LIMIT /
3022 AI2 FAULT LIMIT
Fault
AI1 LOSS / AI2 LOSS
PAR AI SCALE
AI1/AI2 signal below limit 3021 AI1 FAULT LIMIT /
3022 AI2 FAULT LIMIT
Incorrect AI signal scaling (1302 < 1301 or 1305 <
1304)
Programmable analog output
One programmable current output (0…20 mA) is available. Analog output signal can
be inverted, filtered and the maximum and minimum values can be adjusted. The
analog output signals can be proportional to motor speed, output frequency, output
current, motor torque, motor power, etc. The update cycle for the analog output is
2 ms.
Analog output can be controlled with Sequence programming. It is also possible to
write a value to an analog output through a serial communication link.
„ Settings
Parameter
Group 15 ANALOG OUTPUTS
Group 35 MOTOR TEMP MEAS
Additional information
AO value selection and processing
AO in motor temperature measurement
8423/8433/…/8493
AO control with Sequence programming
„ Diagnostics
Actual signal
0124
Additional information
AO value
0170
Fault
AO control values defined by Sequence programming
132 Program features
Actual signal
PAR AO SCALE
Additional information
Incorrect AO signal scaling (1503 < 1502)
Programmable digital inputs
The drive has five programmable digital inputs. The update time for the digital inputs
is 2 ms.
One digital input (DI5) can be programmed as a frequency input. See section
Frequency input on page 133.
„ Settings
Parameter
Additional information
Group 10 START/STOP/DIR
Group 11 REFERENCE SELECT
Group 12 CONSTANT SPEEDS
DI as start, stop, direction
DI in reference selection, or reference source
DI in constant speed selection
Group 16 SYSTEM CONTROLS
2209
3003
Group 35 MOTOR TEMP MEAS
3601
3622
4010/4110/4210
4022/4122
DI as external Run enable, fault reset or user macro
change signal
DI as timer or counter control signal source
DI as torque limit source
DI as external emergency stop command source
DI as acceleration and deceleration ramp selection
signal
DI as zero ramp force signal
DI as external fault source
DI in motor temperature measurement
DI as timed function enable signal source
DI as booster activation signal source
DI as PID controller reference signal source
DI as sleep function activation signal in PID1
4027
4228
Group 84 SEQUENCE PROG
DI as PID1 parameter set 1/2 selection signal source
DI as external PID2 function activation signal source
DI as Sequence programming control signal source
Group 19 TIMER & COUNTER
2013, 2014
2109
2201
„ Diagnostics
Actual signal
0160
0414
Additional information
DI status
DI status at the time the latest fault occurred
Program features 133
Programmable relay output
The drive has one programmable relay output. It is possible to add three additional
relay outputs with the optional MREL-01 relay output extension module. For more
information, see MREL-01 relay output extension module user's manual
(3AUA0000035974 [English]).
With a parameter setting it is possible to choose what information to indicate through
the relay output: Ready, running, fault, alarm, etc. The update time for the relay
output is 2 ms.
A value can be written to a relay output through a serial communication link.
„ Settings
Parameter
Group 14 RELAY OUTPUTS
Additional information
RO value selections and operation times
8423
RO control with Sequence programming
„ Diagnostics
Actual signal
0134
0162
0173
Additional information
RO Control word through fieldbus control
RO 1 status
RO 2…4 status. With option MREL-01 only.
Frequency input
Digital input DI5 can be programmed as a frequency input. Frequency input
(0…16000 Hz) can be used as the external reference signal source. The update time
for the frequency input is 50 ms. Update time is shorter when information is
transferred to the application program (50 ms -> 2 ms).
„ Settings
Parameter
Additional information
Group 18 FREQ IN & TRAN OUT
Frequency input minimum and maximum values and
filtering
1103/1106
4010, 4110, 4210
External reference REF1/2 through frequency input
Frequency input as PID reference source
„ Diagnostics
Actual signal
Additional information
0161
Frequency input value
134 Program features
Transistor output
The drive has one programmable transistor output. The output can be used either as
a digital output or frequency output (0…16000 Hz). The update time for the
transistor/frequency output is 2 ms.
„ Settings
Parameter
Group 18 FREQ IN & TRAN OUT
Additional information
Transistor output settings
8423
Transistor output control with Sequence programming
„ Diagnostics
Actual signal
0163
Additional information
Transistor output status
0164
Transistor output frequency
Actual signals
Several actual signals are available:
•
Drive output frequency, current, voltage and power
•
Motor speed and torque
•
Intermediate circuit DC voltage
•
Active control location (LOCAL, EXT1 or EXT2)
•
Reference values
•
Drive temperature
•
Operating time counter (h), kWh counter
•
Digital I/O and analog I/O status
•
PID controller actual values.
Three signals can be shown simultaneously on the assistant control panel display
(one signal on the basic control panel display). It is also possible to read the values
through the serial communication link or through the analog outputs.
„ Settings
Parameter
1501
Additional information
Selection of an actual signal to AO
1808
Group 32 SUPERVISION
Selection of an actual signal to frequency output
Actual signal supervision
Group 34 PANEL DISPLAY
Selection of an actual signals to be displayed on the
control panel
Program features 135
„ Diagnostics
Actual signal
Groups 01 OPERATING DATA …
04 FAULT HISTORY
Additional information
Lists of actual signals
Motor identification
The performance of vector control is based on an accurate motor model determined
during the motor start-up.
A motor Identification magnetization is automatically performed the first time the start
command is given. During this first start-up, the motor is magnetized at zero speed
for several seconds to allow the motor model to be created. This identification method
is suitable for most applications.
In demanding applications a separate Identification run (ID run) can be performed.
„ Settings
Parameter 9910 ID RUN
136 Program features
Power loss ride-through
If the incoming supply voltage is cut off, the drive will continue to operate by utilizing
the kinetic energy of the rotating motor. The drive will be fully operational as long as
the motor rotates and generates energy to the drive. The drive can continue the
operation after the break if the main contactor remained closed.
Uinput power
fout UDC
TM
(N·m) (Hz) (Vdc)
160
80
520
120
60
390
80
40
260
40
20
130
0
0
0
UDC
fout
TM
1.6
4.8
8
11.2
14.4
t (s)
UDC = Intermediate circuit voltage of the drive, fout = Output frequency of the drive,
TM = Motor torque
Loss of supply voltage at nominal load (fout = 40 Hz). The intermediate circuit DC voltage
drops to the minimum limit. The controller keeps the voltage steady as long as the input
power is switched off. The drive runs the motor in generator mode. The motor speed falls but
the drive is operational as long as the motor has enough kinetic energy.
„ Settings
Parameter 2006 UNDERVOLT CTRL
DC magnetizing
When DC magnetizing is activated, the drive automatically magnetizes the motor
before starting. This feature guarantees the highest possible break-away torque, up
to 180% of the motor nominal torque. By adjusting the premagnetizing time, it is
possible to synchronize the motor start and eg a mechanical brake release. The
Automatic start feature and DC magnetizing cannot be activated at the same time.
„ Settings
Parameters 2101 START FUNCTION and 2103 DC MAGN TIME
Program features 137
Maintenance trigger
A maintenance trigger can be activated to show a notice on the panel display when
eg drive power consumption has exceeded the defined trigger point.
„ Settings
Parameter group 29 MAINTENANCE TRIG
DC hold
With the motor DC hold feature, it is possible
to lock the rotor at zero speed. When both the
reference and the motor speed fall below the
preset DC hold speed, the drive stops the
motor and starts to inject DC into the motor.
When the reference speed again exceeds the
DC hold speed, the normal drive operation
resumes.
„ Settings
Motor speed
DC hold
DC hold
speed
t (s)
Speed reference
DC hold
speed
t (s)
Parameters 2101…2106
Speed compensated stop
Speed compensation stop is available eg for
applications where a conveyer needs to travel
a certain distance after receiving the stop
command. At maximum speed, the motor is
stopped normally along the defined
deceleration ramp. Below maximum speed,
stop is delayed by running the drive at current
speed before the motor is ramped to a stop.
As shown in the figure, the distance travelled
after the stop command is the same in both
cases, ie area A equals area B.
Motor speed
Stop command
Max.
speed
area A = area B
A
Used
speed
Speed compensation can be restricted to forward or reverse rotating direction.
„ Settings
Parameter 2102 STOP FUNCTION
B
t (s)
138 Program features
Flux braking
The drive can provide greater deceleration by raising the level of magnetization in the
motor. By increasing the motor flux, the energy generated by the motor during
braking can be converted to motor thermal energy.
TBr
(%)
TN
Motor speed
TBr = Braking torque
TN = 100 N·m
60
No Flux braking
Flux braking
40
20
Flux braking
No Flux braking
t (s)
Braking torque (%)
f (Hz)
50 Hz / 60 Hz
Rated
motor power
Flux braking
100
7.5 kW
2 2.2 kW
3 0.37 kW
1
1
80
60
2
40
3
20
f (Hz)
0
0
5
10
15
Braking torque (%)
20
25
30
35
40
45
35
40
45
No Flux braking
100
80
1
60
40
2
3
20
f (Hz)
0
0
5
10
15
20
25
30
Program features 139
The drive monitors the motor status continuously, also during the Flux braking.
Therefore, Flux braking can be used both for stopping the motor and for changing the
speed. The other benefits of Flux braking are:
•
The braking starts immediately after a stop command is given. The function does
not need to wait for the flux reduction before it can start the braking.
•
The cooling of the motor is efficient. The stator current of the motor increases
during the Flux braking, not the rotor current. The stator cools much more
efficiently than the rotor.
„ Settings
Parameter 2602 FLUX BRAKING
Flux optimization
Flux optimization reduces the total energy consumption and motor noise level when
the drive operates below the nominal load. The total efficiency (motor and the drive)
can be improved by 1% to 10%, depending on the load torque and speed.
„ Settings
Parameter 2601 FLUX OPT ENABLE
Acceleration and deceleration ramps
Two user-selectable acceleration and
deceleration ramps are available. It is possible to
adjust the acceleration/deceleration times and
the ramp shape. Switching between the two
ramps can be controlled through a digital input or
fieldbus.
Motor speed
Linear
S-curve
The available ramp shape alternatives are
Linear and S-curve.
Linear shape is suitable for drives requiring
steady or slow acceleration/deceleration.
t (s)
2
S-curve shape is ideal for conveyors carrying fragile loads, or other applications
where a smooth transition is required when changing the speed.
„ Settings
Parameter group 22 ACCEL/DECEL
Sequence programming offers eight additional ramp times. See section Sequence
programming on page 166.
140 Program features
Critical speeds
Critical speeds function is available for applications where it is necessary to avoid
certain motor speeds or speed bands because of eg mechanical resonance
problems. The user can define three critical speeds or speed bands.
„ Settings
Parameter group 25 CRITICAL SPEEDS
Constant speeds
It is possible to define seven positive constant speeds. Constant speeds are selected
with digital inputs. Constant speed activation overrides the external speed reference.
Constant speed selections are ignored if
•
torque control is active, or
•
PID reference is being followed, or
•
drive is in local control mode.
This function operates on a 2 ms time level.
„ Settings
Parameter
Group 12 CONSTANT SPEEDS
1207
1208
Additional information
Constant speed settings
Constant speed 6. Used also for jogging function. See
section Jogging on page 161.
Constant speed 7. Used also for fault functions (see group
30 FAULT FUNCTIONS) and for jogging function (see
section Jogging on page 161).
Program features 141
Custom U/f ratio
The user can define a U/f curve (output voltage as a function of frequency). This
custom ratio is used only in special applications where linear and squared U/f ratio
are not sufficient (eg when motor break-away torque needs to be boosted).
Voltage (V)
Custom U/f ratio
Par. 2618
Par. 2616
Par. 2614
Par. 2612
Par. 2610
Par. 2603
Par. 2611
Par. 2613
Par. 2615
Par. 2617
Par. 9907
f (Hz)
Note: The U/f curve can be used in scalar control only, ie when 9904 MOTOR CTRL
MODE setting is SCALAR: FREQ.
Note: The voltage and the frequency points of the U/f curve must fulfill the following
requirements:
2610 < 2612 < 2614 < 2616 < 2618 and
2611 < 2613 < 2615 < 2617 < 9907
WARNING! High voltage at low frequencies may result in poor performance or
motor damage (overheating).
„ Settings
Parameter
2605
Additional information
Custom U/f ratio activation
2610…2618
Custom U/f ratio settings
„ Diagnostics
Fault
PAR CUSTOM U/F
Additional information
Incorrect U/f ratio
142 Program features
Speed controller tuning
It is possible to manually adjust the controller gain, integration time and derivation
time, or let the drive perform a separate speed controller Autotune run (parameter
2305 AUTOTUNE RUN). In Autotune run, the speed controller is tuned based on the
load and inertia of the motor and the machine. The figure below shows speed
responses at a speed reference step (typically, 1 to 20%).
n
nN (%)
A
B
C
D
t
A: Undercompensated
B: Normally tuned (autotuning)
C: Normally tuned (manually). Better dynamic performance than with B
The figure below is a simplified block diagram of the speed controller. The controller
output is the reference for the torque controller.
Derivative
acceleration
Speed
reference
+
-
Error
value
Proportional,
integral
+
+
Torque
+ reference
Derivative
Calculated actual speed
Note: The speed controller can be used in vector control, ie when 9904 MOTOR
CTRL MODE setting is VECTOR: SPEED or VECTOR: TORQ.
„ Settings
Parameter groups 23 SPEED CONTROL and 20 LIMITS
Program features 143
„ Diagnostics
Actual signal 0102 SPEED
Speed control performance figures
The table below shows typical performance figures for speed control.
T (%)
TN
Speed
control
Static
accuracy
Dynamic
accuracy
No pulse
encoder
20% of motor
nominal slip
< 1% s with
100% torque
step
With pulse
encoder
2% of motor
nominal slip
< 1% s with
100% torque
step
Tload
100
t (s)
nact-nref
nN
Area < 1% s
TN = rated motor torque
nN = rated motor speed
nact = actual speed
Torque control performance figures
The drive can perform precise torque control without any speed feedback from the
motor shaft. The table below shows typical performance figures for torque control.
Torque
control
Non-linearity
Torque step
rise time
No pulse
encoder
± 5% with
nominal
torque
With pulse
encoder
± 5% with
nominal
torque
(± 20% at the
most
demanding
operating
point)
< 10 ms with < 10 ms with
nominal
nominal
torque
torque
T (%)
TN
100
Tref
Tact
90
10
t (s)
< 5 ms
TN = rated motor torque
Tref = torque reference
144 Program features
Scalar control
It is possible to select scalar control as the motor control method instead of vector
control. In the scalar control mode, the drive is controlled with a frequency reference.
It is recommended to activate the scalar control mode in the following special
applications:
•
In multimotor drives: 1) if the load is not equally shared between the motors,
2) if the motors are of different sizes, or 3) if the motors are going to be changed
after the motor identification.
•
If the nominal current of the motor is less than 20% of the nominal output current
of the drive.
•
When the drive is used for test purposes with no motor connected.
The scalar control mode is not recommended for permanent magnet motors.
In the scalar control mode, some standard features are not available.
„ Settings
Parameter 9904 MOTOR CTRL MODE
IR compensation for a scalar controlled drive
IR compensation is active only when the motor
control mode is scalar (see section Scalar
control on page 144). When IR compensation is
activated, the drive gives an extra voltage boost
to the motor at low speeds. IR compensation is
useful in applications that require high breakaway torque. In vector control, no IR
compensation is possible/needed.
Motor voltage
IR compensation
No compensation
f (Hz)
„ Settings
Parameter 2603 IR COMP VOLT
Programmable protection functions
„ AI<Min
AI<Min function defines the drive operation if an analog input signal falls below the
set minimum limit.
Settings
Parameters 3001 AI<MIN FUNCTION, 3021 AI1 FAULT LIMIT and 3022 AI2 FAULT
LIMIT
Program features 145
„ Panel loss
Panel loss function defines the operation of the drive if the control panel selected as
the control location for the drive stops communicating.
Settings
Parameter 3002 PANEL COMM ERR
„ External fault
External faults (1 and 2) can be supervised by defining one digital input as a source
for an external fault indication signal.
Settings
Parameters 3003 EXTERNAL FAULT 1 and 3004 EXTERNAL FAULT 2
„ Stall protection
The drive protects the motor in a stall situation. It is possible to adjust the supervision
limits (frequency, time) and choose how the drive reacts to the motor stall condition
(alarm indication / fault indication & drive stop / no reaction).
Settings
Parameters 3010 STALL FUNCTION, 3011 STALL FREQUENCY and 3012 STALL
TIME
„ Motor thermal protection
The motor can be protected against overheating by activating the Motor thermal
protection function.
The drive calculates the temperature of the motor on the basis of the following
assumptions:
•
The motor is in the ambient temperature of 30 °C when power is applied to the
drive.
•
Motor temperature is calculated using either the user-adjustable or automatically
calculated motor thermal time constant and motor load curve (see the figures
below). The load curve should be adjusted if the ambient temperature exceeds
30 °C
146 Program features
.
Motor
load
100%
150
t
P 3007 100 =
127%
Temp.
rise
100%
P 3008 50
63%
Output current relative (%) to
motor nominal current
Break point
Motor load curve
Zero speed load
f
t
}
Motor thermal time constant
P 3009
Settings
Parameters 3005…3009
Note: It is also possible to use the motor temperature measurement function. See
section Motor temperature measurement through the standard I/O on page 155.
„ Underload protection
Loss of motor load may indicate a process malfunction. The drive provides an
underload function to protect the machinery and process in such a serious fault
condition. Supervision limits - underload curve and underload time - can be specified
as well as the action taken by the drive upon the underload condition (alarm
indication / fault indication & drive stop / no reaction).
Settings
Parameters 3013…3015
„ Earth fault protection
The Earth fault protection detects earth faults in the motor or motor cable. The
protection can be selected to be active during start and run or during start only.
An earth fault in the input power line does not activate the protection.
Settings
Parameter 3017 EARTH FAULT
„ Incorrect wiring
Defines the operation when incorrect input power cable connection is detected.
Program features 147
Settings
Parameter 3023 WIRING FAULT
„ Input phase loss
Input phase loss protection circuits supervise the input power cable connection status
by detecting intermediate circuit ripple. If a phase is lost, the ripple increases.
Settings
Parameter 3016 SUPPLY PHASE
Pre-programmed faults
„ Overcurrent
The overcurrent trip limit for the drive is 325% of the drive nominal current.
„ DC overvoltage
The DC overvoltage trip limit is 420 V (for 200 V drives) and 840 V (for 400 V drives).
„ DC undervoltage
The DC undervoltage trip limit is adaptive. See parameter 2006 UNDERVOLT CTRL.
„ Drive temperature
The drive supervises the IGBT temperature. There are two supervision limits: Alarm
limit and fault trip limit.
„ Short circuit
If a short circuit occurs, the drive will not start and a fault indication is given.
„ Internal fault
If the drive detects an internal fault, the drive is stopped and a fault indication is given.
Operation limits
The drive has adjustable limits for speed, current (maximum), torque (maximum) and
DC voltage.
„ Settings
Parameter group 20 LIMITS
148 Program features
Power limit
Power limitation is used to protect the input bridge and the DC intermediate circuit.
If the maximum allowed power is exceeded, the drive torque is automatically limited.
Maximum overload and continuous power limits depend on the drive hardware.
For specific values, see chapter Technical data on page 357.
Automatic resets
The drive can automatically reset itself after overcurrent, overvoltage, undervoltage,
external and “analog input below a minimum” faults. The Automatic resets must be
activated by the user.
„ Settings
Parameter
Group 31 AUTOMATIC RESET
Additional information
Automatic reset settings
„ Diagnostics
Alarm
AUTORESET
Additional information
Automatic reset alarm
Supervisions
The drive monitors whether certain user selectable variables are within the userdefined limits. The user may set limits for speed, current etc. The supervision status
can be indicated through relay or digital output.
The supervision functions operate on a 2 ms time level.
„ Settings
Parameter group 32 SUPERVISION
„ Diagnostics
Actual signal
Additional information
1401
1402/1403/1410
Supervision status through RO 1
Supervision status through RO 2…4. With option
MREL-01 only.
1805
Supervision status through DO
8425, 8426 / 8435, 8436 /…/8495, Sequence programming state change according to
8496
supervision functions
Program features 149
Parameter lock
The user can prevent parameter adjustment by activating the parameter lock.
„ Settings
Parameters 1602 PARAMETER LOCK and 1603 PASS CODE
PID control
There are two built-in PID controllers in the drive:
•
Process PID (PID1) and
•
External/Trim PID (PID2).
The PID controller can be used when the motor speed needs to be controlled based
on process variables such as pressure, flow or temperature.
When the PID control is activated, a process reference (setpoint) is connected to the
drive instead of a speed reference. An actual value (process feedback) is also
brought back to the drive. The drive compares the reference and the actual values,
and automatically adjusts the drive speed in order to keep the measured process
quantity (actual value) at the desired level (reference).
The control operates on a 2 ms time level.
„ Process controller PID1
PID1 has two separate sets of parameters (40 PROCESS PID SET 1, 41 PROCESS
PID SET 2). Selection between parameter sets 1 and 2 is defined by a parameter.
In most cases when there is only one transducer signal wired to the drive, only
parameter set 1 is needed. Two different parameter sets (1 and 2) are used eg when
the load of the motor changes considerably in time.
„ External/Trim controller PID2
PID2 (42 EXT / TRIM PID) can be used in two different ways:
•
External controller: Instead of using additional PID controller hardware, the user
can connect PID2 output through drive analog output or fieldbus controller to
control a field instrument like a damper or a valve.
•
Trim controller: PID2 can be used to trim or fine tune the reference of the drive.
See section Reference trimming on page 129.
150 Program features
„ Block diagrams
The figure below shows an application example: The controller adjusts the speed of a
pressure boost pump according to the measured pressure and the set pressure
reference.
Example:
Pressure boost pump
A C T
P A R
F U N C
R E S E T
R E F
PID
%ref
A C S 6 0 0
Drive
L O C
PID control block diagram
D R IV E
E N T E R
Actual values
R E M
4014
3
2
0 ...1 0 b a r
4 ...2 0 m A
4021
AI1
AI2
3
IMOT
.
..
ref
4001 k
4002 ti
4003 td
i
4004 dFiltT
4005 errVInv
PIDmax oh1
PIDmin ol1
…
%ref = 4010
Switch
Frequency
reference
Speed
reference
9904 = 0
SEQ PROG
Panel ref2
AI
…
AI
Current
Torque
Power
COMM ACT
AI2+SEQ
Panel ref2
AI
…
AI2+SEQ
Panel ref1
AI
…
Panel ref2
AI
Current
Torque
Power
COMM ACT
n
n
n
n
n
4010/4110*
PID1 ref
select
4014…4021/
4114…4121*
PID act
selection
1106
EXT2 ref
select
1103
EXT1 ref
select
500%
-500%
Limiter
4014…4021/
4141…4121*
PID act
selection
4012,4013/
4112,4113*
Limiter
PID ACT
value
Group 12
Constant
speed
Group 12
1106
Switch
1107
Limiter
Panel ref1
1102
EXT1/EXT2
switch
1101
Local ref
switch
LOC/REM
switch
Const speed 7
Average speed
Control panel
REM
LOC
Group 30
Alarm
speed
*Parameter 4027 selects between PID parameter set 1 and 2, ie group 40 and 41.
Group
40/41*
PID1 Out
1104
1106
Switch
Limiter
PID1 Out
Panel ref2
PID1
controller
Group
40/41*
Constant
speed
PID ACT
value
PID1
controller
Speed
ref
Program features 151
The following figure presents the speed/scalar control block diagram for process
controller PID1.
152 Program features
„ Settings
Parameter
Additional information
1101
Local control mode reference type selection
1102
1106
1107
EXT1/EXT2 selection
PID1 activation
REF2 minimum limit
1501
9902
Groups 40 PROCESS PID SET
1…41 PROCESS PID SET 2
Group 42 EXT / TRIM PID
PID2 output (external controller) connection to AO
PID control macro selection
PID1 settings
PID2 settings
„ Diagnostics
Actual signal
Additional information
0126/0127
0128/0129
0130/0131
0132/0133
0170
PID 1/2 output value
PID 1/2 setpoint value
PID 1/2 feedback value
PID 1/2 deviation
AO value defined by Sequence programming
Program features 153
Sleep function for the process PID (PID1) control
The sleep function operates on a 2 ms time level.
The block diagram below illustrates the sleep function enable/disable logic. The sleep
function can be put into use only when the PID control is active.
Switch
Output
frequency
Motor
speed
4023
9904
MOTOR CTRL
MODE
Compare
Select
NOT SEL
1
1<2 INTERNAL
DI1
.
.
4022
2
.
%refActive
PIDCtrlActive
modulating
And
Delay
t
&
Set/Reset
S
4024
1)
S/R
R
Or
5320 (B1)
5320 (B2)
Compare
0132
1
4025
2
1>2
NOT SEL
INTERNAL
DI1
.
.
.
Select
Or
Delay
t
4022
<1
4026
StartRq
<1
1) 1 = Activate sleeping
0 = Deactivate sleeping
Motor speed: Actual speed of the motor
%refActive: The % reference (EXT REF2) is in use. See parameter 1102 EXT1/EXT2 SEL.
PIDCtrlActive: Parameter 9902 APPLIC MACRO = PID CONTROL.
modulating: Drive IGBT control is operating.
154 Program features
„ Example
The time scheme below visualizes the operation of the sleep function.
Motor speed
td = Sleep delay (4024)
t<td
td
Control panel
display:
Sleep level
(4023)
PID SLEEP
Stop
Actual value
Start
t
Wake-up delay
(4026)
Wake-up deviation
(4025)
t
Sleep function for a PID controlled pressure boost pump (when parameter 4022
SLEEP SELECTION is set to INTERNAL): The water consumption falls at night. As a
consequence, the PID process controller decreases the motor speed. However, due
to natural losses in the pipes and the low efficiency of the centrifugal pump at low
speeds, the motor does not stop but keeps rotating. The sleep function detects the
slow rotation, and stops the unnecessary pumping after the sleep delay has passed.
The drive shifts into sleep mode, still monitoring the pressure. The pumping restarts
when the pressure falls under the allowed minimum level and the wake-up delay has
passed.
„ Settings
Parameter
Additional information
9902
4022…4026, 4122…4126
PID control activation
Sleep function settings
„ Diagnostics
Parameter
Additional information
1401
1402/1403/1410
PID sleep function status through RO 1
PID sleep function status through RO 2…4. With option
MREL-01 only.
Additional information
Sleep mode
Alarm
PID SLEEP
Program features 155
Motor temperature measurement through the standard I/O
This section describes the temperature measurement of one motor when the drive
I/O terminals are used as the connection interface.
Motor temperature can be measured using PT100 or PTC sensors connected to
analog input and output.
One sensor
Motor
Three sensors
AI1
AI1
Motor
GND
T
T
T
GND
T
AO
AO
GND
3.3 nF
GND
3.3 nF
WARNING! According to IEC 664, the connection of the motor temperature
sensor requires double or reinforced insulation between motor live parts and
the sensor. Reinforced insulation entails a clearance and creepage distance of 8 mm
(400/500 V AC equipment).
If the assembly does not fulfill the requirement, the I/O board terminals must be
protected against contact and they may not be connected to other equipment, or the
temperature sensor must be isolated from the I/O terminals.
156 Program features
It is also possible to monitor motor temperature by connecting a PTC sensor and
a thermistor relay between the +24 V DC voltage supply offered by the drive and a
digital input. The figure below displays the connection.
Par. 3501 = THERM(0) or THERM(1)
Thermistor
relay
DI1…5
+24 V DC
T
Motor
WARNING! According to IEC 664, the connection of the motor thermistor to
the digital input requires double or reinforced insulation between motor live
parts and the thermistor. Reinforced insulation entails a clearance and creeping
distance of 8 mm (400/500 V AC equipment).
If the thermistor assembly does not fulfill the requirement, the other I/O terminals of
the drive must be protected against contact, or a thermistor relay must be used to
isolate the thermistor from the digital input.
„ Settings
Parameter
Additional information
Group 13 ANALOG INPUTS
Group 15 ANALOG OUTPUTS
Group 35 MOTOR TEMP MEAS
Analog input settings
Analog output settings
Motor temperature measurement settings
Other
At the motor end the cable shield should be earthed through, eg a 3.3 nF capacitor. If this is not
possible, the shield is to be left unconnected.
„ Diagnostics
Actual signal
0145
Additional information
Motor temperature
Alarm/Fault
MOTOR TEMP/MOT OVERTEMP
Additional information
Excessive motor temp
Program features 157
Control of a mechanical brake
The mechanical brake is used for holding the motor and driven machinery at zero
speed when the drive is stopped, or not powered.
„ Example
The figure below shows a brake control application example.
WARNING! Make sure that the machinery into which the drive with brake
control function is integrated fulfills the personnel safety regulations. Note that
the frequency converter (a Complete Drive Module or a Basic Drive Module, as
defined in IEC 61800-2), is not considered a safety device mentioned in the
European Machinery Directive and related harmonized standards. Thus, the
personnel safety of the complete machinery must not be based on a specific
frequency converter feature (such as the brake control function), but it has to be
implemented as defined in the application specific regulations.
Power supply
Brake control logic is integrated
in the drive application
program. The user has to take
care of the power supply and
wiring.
Brake on/off control is through
relay output RO.
230 VAC
Emergency
brake
M
Motor
Mechanical brake
X1B
17 ROCOM
18 RONC
19 RONO
158 Program features
„ Operation time scheme
The time scheme below illustrates the operation of the brake control function. See
also section State shifts on page 159.
Start command
1
4
External speed
reference
Inverter modulating
Motor magnetized
tmd
2
Open brake command
(RO/DO)
Internal speed
reference (actual
motor speed)
Ioutput / Torque
tod
3
ncs
Is/Ts
7
Imem/Tmem
tcd
Is/Ts
Imem/Tmem
tmd
tod
ncs
tcd
Brake open current/torque (parameter 4302 BRAKE OPEN LVL or
current/torque from parameter 0179 BRAKE TORQUE MEM)
Brake close current/torque (saved in parameter 0179 BRAKE TORQUE MEM)
Motor magnetizing delay (parameter 4305 BRAKE MAGN DELAY)
Brake open delay (parameter 4301 BRAKE OPEN DLY)
Brake close speed (parameter 4303 BRAKE CLOSE LVL)
Mechanical brake close delay
t
Program features 159
„ State shifts
From any state
(rising edge)
1)
NO
MODULATION
0/0/1
2)
OPEN
BRAKE
1/1/0
3)
A
RELEASE RFG
INPUT
5)
1/1/0
4)
RFG INPUT
TO ZERO
1/1/1
7)
6)
CLOSE
BRAKE
8)
State (Symbol
NN
0/1/1
A
RFG = Ramp function
generator in the speed control
loop (reference handling).
9)
X/Y/Z )
- NN: State name
- X/Y/Z: State outputs/operations
X = 1 Open the brake. The relay output set to brake on/off control energizes.
Y = 1 Forced start. The function keeps the internal Start on until the brake is closed in
spite of the status of the external Start signal.
Z = 1 Ramp in zero. Forces the used speed reference (internal) to zero along a ramp.
State change conditions (Symbol
1)
2)
3)
4)
5)
6)
7)
8)
9)
)
Brake control active 0 -> 1 OR Inverter is modulating = 0
Motor magnetised = 1 AND Drive running = 1
Brake is open AND Brake open delay passed AND Start = 1
Start = 0
Start = 0
Start = 1
Actual motor speed < Brake close speed AND Start = 0
Start = 1
Brake is closed AND Brake close delay passed = 1 AND Start = 0
160 Program features
„ Settings
Parameter
1401/1805
Additional information
Mechanical brake activation through RO 1 / DO
1402/1403/1410
Mechanical brake activation through RO 2…4. With
option MREL-01 only.
Zero speed delay
Brake function settings
2112
Group 43 MECH BRK CONTROL
Program features 161
Jogging
The jogging function is typically used to control a cyclical movement of a machine
section. One push button controls the drive through the whole cycle: When it is on,
the drive starts, accelerates to a preset speed at a preset rate. When it is off, the drive
decelerates to zero speed at a preset rate.
The figure and table below describe the operation of the drive. They also represent
how the drive shifts to normal operation (= jogging inactive) when the drive start
command is switched on. Jog cmd = State of the jogging input, Start cmd = State of
the drive start command.
The function operates on a 2 ms time level
Speed
1
2
Phase Jog
cmd
1-2
1
2-3
3-4
1
0
4-5
5-6
0
1
6-7
7-8
1
x
8-9
x
9-10
10-11
11-12
0
0
x
12-13
x
13-14
1
14-15
15-16
1
0
3
4
5
6
7
8
9
10 11
12 13 14 15 16
t
Start Description
cmd
0 Drive accelerates to the jogging speed along the acceleration ramp of the
jogging function.
0 Drive runs at the jogging speed.
0 Drive decelerates to zero speed along the deceleration ramp of the
jogging function.
0 Drive is stopped.
0 Drive accelerates to the jogging speed along the acceleration ramp of the
jogging function.
0 Drive runs at the jogging speed.
1 Normal operation overrides the jogging. Drive accelerates to the speed
reference along the active acceleration ramp.
1 Normal operation overrides the jogging. Drive follows the speed
reference.
0 Drive decelerates to zero speed along the active deceleration ramp.
0 Drive is stopped.
1 Normal operation overrides the jogging. Drive accelerates to the speed
reference along the active acceleration ramp.
1 Normal operation overrides the jogging. Drive follows the speed
reference.
0 Drive decelerates to the jogging speed along the deceleration ramp of the
jogging function.
0 Drive runs at the jogging speed.
0 Drive decelerates to zero speed along the deceleration ramp of the
jogging function.
x = state can be either 1 or 0
Note: The jogging is not operational when the drive start command is on.
162 Program features
Note: The jogging speed overrides the constant speeds.
Note: The jogging uses ramp stop even if parameter 2102 STOP FUNCTION
selection is COAST.
Note: The ramp shape time is set to zero during the jogging (ie linear ramp).
Jogging function uses constant speed 7 as jogging speed and
acceleration/deceleration ramp pair 2.
It is also possible to activate jogging function 1 or 2 through fieldbus. Jogging
function 1 uses constant speed 7 and jogging function 2 uses constant speed 6. Both
functions use acceleration/deceleration ramp pair 2.
„ Settings
Parameter
1010
Additional information
Jogging activation
1208
1208/1207
Jogging speed
Jogging speed for jogging function 1/2 activated through
fieldbus
Zero speed delay
Acceleration and deceleration times
Acceleration and deceleration ramp shape time: Set to
zero during the jogging (ie linear ramp).
2112
2205, 2206
2207
„ Diagnostics
Actual signal
0302
Additional information
Jogging 1/2 activation through fieldbus
1401
1402/1403/1410
Jogging function status through RO 1
Jogging function status through RO 2…4. With option
MREL-01 only.
1805
Jogging function status through DO
Program features 163
Timed functions
A variety of drive functions can be time controlled, eg start/stop and EXT1/EXT2
control. The drive offers
•
four start and stop times (START TIME 1…START TIME 4, STOP TIME 1…STOP
TIME 4)
•
four start and stop days (START DAY 1…START DAY 4, STOP DAY 1…STOP
DAY 4)
•
four timed functions for collecting the selected time periods 1…4 together (TIMED
FUNC 1 SRC…TIMED FUNC 4 SRC)
•
booster time (an additional booster time connected to timed functions).
A timed function can be connected to multiple time periods:
Time period 1
3602 START TIME 1
3603 STOP TIME 1
3604 START DAY 1
3605 STOP DAY 1
Time period 2
3606 START TIME 2
3607 STOP TIME 2
3608 START DAY 2
3609 STOP DAY 2
Time period 3
3610 START TIME 3
3611 STOP TIME 3
3612 START DAY 3
3613 STOP DAY 3
Time period 4
3614 START TIME 4
3615 STOP TIME 4
3616 START DAY 4
3617 STOP DAY 4
Booster
3622 BOOSTER SEL
3623 BOOSTER TIME
Timed function 1
3626 TIMED FUNC 1 SRC
Timed function 2
3627 TIMED FUNC 2 SRC
Timed function 3
3628 TIMED FUNC 3 SRC
Timed function 4
3629 TIMED FUNC 4 SRC
164 Program features
A parameter which is triggered by a timed function can be connected to only one
timed function at a time.
Timed function 1
3626 TIMED FUNC 1 SRC
Timed function 2
3627 TIMED FUNC 2 SRC
1001 EXT1 COMMANDS
1002 EXT2 COMMANDS
1102 EXT1/EXT2 SEL
1201 CONST SPEED SEL
1209 TIMED MODE SEL
1401 RELAY OUTPUT 1
1402 RELAY OUTPUT 2, 1403 RELAY OUTPUT 3,
1410 RELAY OUTPUT 4 (with option MREL-01 only)
1805 DO SIGNAL
4027 PID 1 PARAM SET
4228 ACTIVATE
8402 SEQ PROG START
8406 SEQ LOGIC VAL 1
8425/35/45/55/65/75/85/95 ST1 TRIG TO ST 2 …
ST8 TRIG TO ST 2
8426/36/46/56/66/76/86/96 ST1 TRIG TO ST N …
ST8 TRIG TO ST N
You can use the Timed functions assistant for easy configuring. For more information
on the assistants, see section Assistants mode on page 98.
„ Example
Air conditioning is active on weekdays from 8:00 to 15:30 (8 a.m to 3:30 p.m) and on
Sundays from 12:00 to 15:00 (12 to 3 p.m). By pressing the extension time switch,
the air-conditioning is on for an extra hour.
Parameter
3601 TIMERS ENABLE
3602 START TIME 1
Setting
DI1
08:00:00
3603 STOP TIME 1
3604 START DAY 1
3605 STOP DAY 1
15:30:00
MONDAY
FRIDAY
3606 START TIME 2
3607 STOP TIME 2
3608 START DAY 2
12:00:00
15:00:00
SUNDAY
3609 STOP DAY 2
3622 BOOSTER SEL
3623 BOOSTER TIME
SUNDAY
DI5 (cannot be the same as parameter 3601 value)
01:00:00
3626 TIMED FUNC 1 SRC
T1+T2+B
Program features 165
„ Settings
Parameter
36 TIMED FUNCTIONS
Additional information
Timed functions settings
1001, 1002
1102
1201
Timed start/stop control
Timed EXT1/EXT2 selection
Timed constant speed 1 activation
1209
1401
Timed speed selection
Timed function status indicated through relay output RO 1
1402/1403/1410
Timed function status indicated through relay output RO 2…4.
With option MREL-01 only.
1805
4027
4228
Timed function status indicated through digital output DO
Timed PID1 parameter set 1/2 selection
Timed external PID2 activation
8402
8425/8435/…/8495
8426/8436/…/8496
Timed Sequence programming activation
Sequence programming state change trigger with timed
function
Timer
Drive start and stop can be controlled with timer functions.
„ Settings
Parameter
1001, 1002
Group 19 TIMER & COUNTER
Additional information
Start/stop signal sources
Timer for start and stop
„ Diagnostics
Actual signal
Additional information
0165
Start/stop control time count
Counter
Drive start and stop can be controlled with counter functions. The counter function
can also be used as state change trigger signal in Sequence programming. See
section Sequence programming on page 166.
„ Settings
Parameter
1001, 1002
Group 19 TIMER & COUNTER
Additional information
Start/Stop signal sources
Timer for start and stop
8425, 8426 / 8435, 8436 /…/8495,
8496
Counter signal as state change trigger in Sequence
programming
166 Program features
„ Diagnostics
Actual signal
0166
Additional information
Start/stop control pulse count
Sequence programming
The drive can be programmed to perform a sequence where the drive shifts typically
through 1…8 states. User defines the operation rules for the whole sequence and for
each state. The rules of a particular state are effective when the Sequence program is
active and the program has entered the state. The rules to be defined for each state
are:
•
Run, stop and direction commands for the drive (forward/reverse/stop)
•
Acceleration and deceleration ramp time for the drive
•
Source for the drive reference value
•
State duration
•
RO/DO/AO status
•
Signal source for triggering the shift to the next state
•
Signal source for triggering the shift to any state (1…8).
Every state can also activate drive outputs to give an indication to external devices.
Sequence programming allows state transitions either to the next state or to a
selected state. State change can be activated with eg timed functions, digital inputs
and supervision functions.
Sequence programming can be applied in simple mixer applications as well as in
more complicated traverse applications.
The programming can be done with control panel or with a PC tool. The drive is
supported by version 2.91 or later of the DriveWindow Light 2 PC tool which includes
a graphical Sequence programming tool.
Note: By default all Sequence programming parameters can be changed even when
the Sequence programming is active. It is recommended that after the Sequence
programming parameters are set, parameters are locked with parameter 1602
PARAMETER LOCK.
„ Settings
Parameter
1001/1002
1102
Additional information
Start, stop and direction commands for EXT1/EXT2
EXT1/EXT2 selection
1106
1201
REF2 source
Constant speed deactivation. Constant speed always
overrides the Sequence programming reference.
Sequence programming output through RO 1
1401
Program features 167
Parameter
1402/1403/1410
1501
1601
Additional information
Sequence programming output through relay output RO 2…4.
With option MREL-01 only.
Sequence programming output through AO
Run enable activation/deactivation
1805
Sequence programming output through DO
Group 19 TIMER & COUNTER State change according to counter limit
Group 32 SUPERVISION
Timed state change
2201…2207
Group 32 SUPERVISION
4010/4110/4210
Acceleration/deceleration and ramp time settings
Supervision settings
Sequence programming output as PID reference signal
Group 84 SEQUENCE PROG
Sequence programming settings
„ Diagnostics
Actual signal
Additional information
0167
0168
0169
0170
0171
Sequence programming status
Sequence programming active state
Current state time counter
Analog output PID reference control values
Executed sequence counter
168 Program features
„ State shifts
Sequence programming
ENABLE
STATE 1
(par. 8420…8424)
Go to state N (par 8426, 8427)*
State N
State N
Go to state 4 (par 8445)*
0168 = 4 (State 4)
Go to state 5 (par 8455)*
0168 = 5 (State 5)
Go to state 6 (par 8465)*
0168 = 6 (State 6)
Go to state 7 (par 8475)*
STATE 7
(par. 8480…8484)
Go to state N (par 8486, 8487)*
State N
0168 = 3 (State 3)
STATE 6
(par. 8470…8474)
Go to state N (par 8476, 8477)*
State N
Go to state 3 (par 8435)*
STATE 5
(par. 8460…8464)
Go to state N (par 8466, 8467)*
State N
0168 = 2 (State 2)
STATE 4
(par. 8450…8454)
Go to state N (par 8456, 8457)*
State N
Go to state 2 (par 8425)*
STATE 3
(par. 8440…8444)
Go to state N (par 8446, 8447)*
State N
0168 = 1 (State 1)
STATE 2
(par. 8430…8434)
Go to state N (par 8436, 8437)*
0168 = 7 (State 7)
Go to state 8 (par 8485)*
STATE 8
(par. 8490…8494)
Go to state N (par 8496, 8497)*
0167 bit 0 = 1
0168 = 8 (State 8)
Go to state 1 (par 8495)*
State N
*State change to state N has a
higher priority than state change to
the next state.
NN
X NN = State
X = Actual signal
State change
Program features 169
„ Example 1
ST1
ST2
ST3
ST4
ST3
50 Hz
0 Hz
-50 Hz
DI1
DI2
Seq. start
State change trigger
Sequence programming is activated by digital input DI1.
ST1: Drive is started in reverse direction with -50 Hz reference and 10 s ramp time.
State 1 is active for 40 s.
ST2: Drive is accelerated to 20 Hz with 60 s ramp time. State 2 is active for 120 s.
ST3: Drive is accelerated to 25 Hz with 5 s ramp time. State 3 is active until the
Sequence programming is disabled or until booster start is activated by DI2.
ST4: Drive is accelerated to 50 Hz with 5 s ramp time. State 4 is active for 200 s and
after that the state shifts back to state 3.
Parameter
Setting
Additional information
1002 EXT2 COMMANDS
SEQ PROG
Start, stop, direction commands for EXT2
1102 EXT1/EXT2 SEL
EXT2
EXT2 activation
1106 REF2 SELECT
SEQ PROG
Sequence programming output as REF2
1601 RUN ENABLE
NOT SEL
Deactivation of Run enable
2102 STOP FUNCTION
RAMP
Ramp stop
2201 ACC/DEC 1/2 SEL
SEQ PROG
Ramp as defined by parameter 8422/…/8452.
8401 SEQ PROG ENABLE ALWAYS
Sequence programming enabled
8402 SEQ PROG START
DI1
Sequence programming activation through
digital input (DI1)
8404 SEQ PROG RESET
DI1(INV)
Sequence programming reset (ie reset to state
1, when DI1 signal is lost (1 -> 0)
170 Program features
ST1
Par.
ST2
Setting
Par.
ST3
Setting
Par.
ST4
Setting
Par.
Setting
Additional
information
8420 ST1 REF 100%
SEL
8430 40%
8440 50%
8450 100%
State
reference
8421 ST1
COMMANDS
START
REV
8431 START
FRW
8441 START
FRW
8451 START
FRW
Run, direction
and stop
command
8422 ST1
RAMP
10 s
8432 60 s
8442 5 s
8452 5 s
Ramp time
8434 120 s
8444
8454 200 s
State change
delay
8424 ST1
40 s
CHANGE DLY
8425 ST1 TRIG CHANGE 8435 CHANGE 8445 DI2
TO ST 2
DLY
DLY
8455
8426 ST1 TRIG NOT SEL 8436 NOT SEL 8446 NOT SEL 8456 CHANGE State change
trigger
TO ST N
DLY
8427 ST1
STATE N
-
8437 -
8447 -
8457 STATE 3
„ Example 2
ST1
ST2
ST4 ST2 ST4
ST2 (error:
acceleration
ST2 ST4
too slow) ST8
AI1 + 15%
ST3
AI1 + 10%
ST3
ST3
AI1
ST8
ERROR
AI1 - 10%
ST5
AI1 - 15%
DI1
RO
ST5
Seq. start
ST5
Error
Drive is programmed for traverse control with 30 sequences.
Sequence programming is activated by digital input DI1
ST1: Drive is started in forward direction with AI1 (AI1 + 50% - 50%) reference and
ramp pair 2. State shifts to the next state when reference is reached. All relay and
analog outputs are cleared.
Program features 171
ST2: Drive is accelerated with AI1 + 15% (AI1 + 65% - 50%) reference and 1.5 s
ramp time. State shifts to the next state when reference is reached. If reference is not
reached within 2 s, state shifts to state 8 (error state).
ST3: Drive is decelerated with AI1 + 10% (AI1 + 60% - 50%) reference and 0 s ramp
time1). State shifts to the next state when reference is reached. If reference is not
reached within 0.2 s, state shifts to state 8 (error state).
ST4: Drive is decelerated with AI1 - 15% (AI1 + 35% -50%) reference and 1.5 s ramp
time. State shifts to the next state when reference is reached. If reference is not
reached within 2 s, state shifts to state 8 (error state).2)
ST5: Drive is accelerated with AI1 -10% (AI1 + 40% -50%) reference and 0 s ramp
time1). State shifts to the next state when reference is reached. Sequence counter
value is increased by 1. If sequence counter elapses, state shifts to state 7 (sequence
completed).
ST6: Drive reference and ramp times are the same as in state 2. Drive state shifts
immediately to state 2 (delay time is 0 s).
ST7 (sequence completed): Drive is stopped with ramp pair 1. Digital output DO is
activated. If Sequence programming is deactivated by the falling edge of digital input
DI1, state machine is reset to state 1. New start command can be activated by digital
input DI1 or by digital inputs DI4 and DI5 (both inputs DI4 and DI5 must be
simultaneously active).
ST8 (error state): Drive is stopped with ramp pair 1. Relay output RO is activated. If
Sequence programming is deactivated by the falling edge of digital input DI1, state
machine is reset to state 1. New start command can be activated by digital input DI1
or by digital inputs DI4 and DI5 (both inputs DI4 and DI5 must be simultaneously
active).
1)
0 second ramp time = drive is accelerated/decelerated as rapidly as possible.
2)
State reference must be between 0…100%, ie scaled AI1 value must be between
15…85%. If AI1 = 0, reference = 0% + 35% -50% = -15% < 0%.
172 Program features
Parameter
Setting
Additional information
1002 EXT2 COMMANDS
SEQ PROG
Start, stop, direction commands for EXT2
1102 EXT1/EXT2 SEL
EXT2
EXT2 activation
1106 REF2 SELECT
AI1+SEQ
PROG
Sequence programming output as REF2
1201 CONST SPEED SEL
NOT SEL
Deactivation of constant speeds
1401 RELAY OUTPUT 1
SEQ PROG
Relay output RO 1 control as defined by
parameter 8423/…/8493
1601 RUN ENABLE
NOT SEL
Deactivation of Run enable
1805 DO SIGNAL
SEQ PROG
Digital output DO control as defined by
parameter 8423/…/8493
2102 STOP FUNCTION
RAMP
Ramp stop
2201 ACC/DEC 1/2 SEL
SEQ PROG
Ramp as defined by parameter 8422/…/8452.
2202 ACCELER TIME 1
1s
Acceleration/deceleration ramp pair 1
2203 DECELER TIME 1
0s
2205 ACCELER TIME 2
20 s
2206 DECELER TIME 2
20 s
2207 RAMP SHAPE 2
5s
Shape of the acceleration/deceleration ramp 2
3201 SUPERV 1 PARAM
171
Sequence counter (signal 0171 SEQ CYCLE
CNTR) supervision
3202 SUPERV 1 LIM LO
30
Supervision low limit
3203 SUPERV 1 LIM HI
30
Supervision high limit
Acceleration/deceleration ramp pair 2
8401 SEQ PROG ENABLE EXT2
Sequence programming enabled
8402 SEQ PROG START
DI1
Sequence programming activation through
digital input (DI1)
8404 SEQ PROG RESET
DI1(INV)
Sequence programming reset (ie reset to
state 1, when DI1 signal is lost (1 -> 0)
8406 SEQ LOGIC VAL 1
DI4
Logic value 1
8407 SEQ LOGIC OPER 1 AND
Operation between logic value 1 and 2
8408 SEQ LOGIC VAL 2
DI5
Logic value 2
8415 CYCLE CNT LOC
ST5 TO NEXT
Sequence counter activation, ie sequence
count increases every time the state changes
from state 5 to state 6.
8416 CYCLE CNT RST
STATE 1
Sequence counter reset during state transition
to state 1
Program features 173
ST1
Par.
ST2
Setting
Par.
Setting
ST3
Par.
Setting
ST4
Par.
Setting
Additional
information
8420 ST1 REF 50%
SEL
8430 65%
8440 60%
8450 35%
State
reference
8421 ST1
COMMANDS
START
FRW
8431 START
FRW
8441 START
FRW
8451 START
FRW
Run, direction
and stop
commands
8422 ST1
RAMP
-0.2
(ramp
pair 2)
8432 1.5 s
8442 0 s
8452 1.5 s
Acceleration/
deceleration
ramp time
8443 AO=0
8453 AO=0
Relay, digital
and analog
output control
8444 0.2 s
8454 2 s
State change
delay
8423 ST1 OUT R=0,D=0, 8433
CONTROL
AO=0
8424 ST1
0s
CHANGE DLY
AO=0
8434 2 s
8425 ST1 TRIG ENTER 8435 ENTER 8445 ENTER 8455 ENTER
TO ST 2
SETPNT
SETPNT
SETPNT
SETPNT
8426 ST1 TRIG NOT SEL 8436 CHANGE 8446 CHANGE 8456 CHANGE State change
trigger
TO ST N
DLY
DLY
DLY
8427 ST1
STATE N
STATE 1 8437 STATE 8 8447 STATE 8 8457 STATE 8
ST5
Par.
ST6
Setting
Par.
Setting
ST7
Par.
Setting
ST8
Par.
Setting
Additional
information
8460 ST5 REF 40%
SEL
8470 65%
8480 0%
8490 0%
State
reference
8461 ST5
COMMANDS
START
FRW
8471 START
FRW
8481 DRIVE
STOP
8491 DRIVE
STOP
Run, direction
and stop
commands
8462 ST5
RAMP
0s
8472 1.5 s
8482 -0.1
(ramp
pair 1)
8492 -0.1
(ramp
pair 1)
Acceleration/
deceleration
ramp time
8463 ST5 OUT AO=0
CONTROL
8473
8483 DO=1
8493 RO=1
Relay, digital
and analog
output control
8464 ST5
0.2 s
CHANGE DLY
8474 0 s
8484 0 s
8494 0 s
State change
delay
AO=0
8465 ST5 TRIG ENTER 8475 NOT SEL 8485 NOT SEL 8495 LOGIC
TO ST6
SETPNT
VAL
8466 ST5 TRIG SUPRV1 8476 CHANGE 8486 LOGIC
TO ST N
OVER
DLY
VAL
8467 ST5
STATE N
8496 NOT SEL State change
trigger
STATE 7 8477 STATE 2 8487 STATE 1 8497 STATE 1
174 Program features
Safe torque off (STO) function
See Appendix: Safe torque off (STO) on page 399.
Actual signals and parameters 175
Actual signals and parameters
What this chapter contains
The chapter describes the actual signals and parameters and gives the fieldbus
equivalent values for each signal/parameter. It also contains a table of the default
values for the different macros.
Terms and abbreviations
Term
Actual signal
Def
Parameter
FbEq
E
U
Definition
Signal measured or calculated by the drive. Can be monitored by the user.
No user setting possible. Groups 01…04 contain actual signals.
Parameter default value
A user-adjustable operation instruction of the drive. Groups 10…99 contain
parameters.
Note: Parameter selections are shown on the basic control panel as integer
values. Eg parameter 1001 EXT1 COMMANDS selection COMM is shown as
value 10 (which is equal to the fieldbus equivalent FbEq).
Fieldbus equivalent: The scaling between the value and the integer used in
serial communication.
Refers to types 01E- and 03E- with European parametrization
Refers to types 01U- and 03U- with US parametrization
Fieldbus addresses
For FCAN-01 CANopen adapter, FDNA-01 DeviceNet adapter, FECA-01 EtherCAT
adapter, FENA-01 Ethernet adapter, FMBA-01 Modbus adapter, FLON-01
LonWorks® adapter, and FPBA-01 PROFIBUS DP adapter, see the user’s manual of
the adapter.
176 Actual signals and parameters
Fieldbus equivalent
Example: If 2017 MAX TORQUE 1 (see page 217) is set from an external control
system, an integer value of 1000 corresponds to 100.0%. All the read and sent values
are limited to 16 bits (-32768…32767).
Default values with different macros
When application macro is changed (parameter 9902 APPLIC MACRO), the software
updates the parameter values to their default values. The table below shows the
parameter default values for different macros. For other parameters, the default
values are the same for all macros (shown in the parameter list starting on page 185).
Index Name/
Selection
9902 APPLIC
MACRO
1001 EXT1
COMMANDS
1002 EXT2
COMMANDS
1003 DIRECTION
ABB
STANDARD
1=
ABB
STANDARD
2 = DI1,2
0 = NOT
SEL
3=
REQUEST
0 = EXT1
3-WIRE
2=
3-WIRE
4=
DI1P,2P,3
0 = NOT
SEL
3=
REQUEST
0 = EXT1
ALTERNA
TE
3=
ALTERNAT
E
9 = DI1F,2R
MOTOR
POT
4=
MOTOR
POT
2 = DI1,2
HAND/
AUTO
5=
HAND/AUT
O
2 = DI1,2
PID
CONTROL
6=
PID
CONTROL
1 = DI1
TORQUE
CONTROL
7=
TORQUE
CTRL
2 = DI1,2
0 = NOT
SEL
3=
REQUEST
0 = EXT1
0 = NOT
SEL
3=
REQUEST
0 = EXT1
21 = DI5,4
20 = DI5
2 = DI1,2
3=
REQUEST
3 = DI3
1=
3=
FORWARD REQUEST
3 = DI3
2 = DI2
1102 EXT1/EXT2
SEL
1103 REF1 SELECT 1 = AI1
1 = AI1
1 = AI1
1106 REF2 SELECT 2 = AI2
2 = AI2
2 = AI2
12 =
1 = AI1
DI3U,4D(N
C)
2 = AI2
2 = AI2
1201 CONST
SPEED SEL
1304 MINIMUM AI2
1501 AO1
CONTENT SEL
1601 RUN ENABLE
9 = DI3,4
10 = DI4,5
9 = DI3,4
5 = DI5
1.0%
103
1.0%
102
1.0%
102
1.0%
102
0 = NOT
SEL
20.0%
102
0 = NOT
SEL
5 = DI5
0 = NOT
SEL
5 = DI5
103
0 = NOT
SEL
0 = NOT
SEL
102
102
0 = NOT
SEL
0 = NOT
SEL
102
0 = NOT
SEL
0 = NOT
SEL
102
0 = NOT
SEL
102
102
103
102
102
102
102
102
102
3=
SCALAR:
FREQ
1=
VECTOR:
SPEED
1=
VECTOR:
SPEED
1=
VECTOR:
SPEED
1=
VECTOR:
SPEED
1=
VECTOR:
SPEED
2=
VECTOR:
TORQ
2201 ACC/DEC 1/2
SEL
3201 SUPERV 1
PARAM
3401 SIGNAL1
PARAM
9904 MOTOR CTRL
MODE
1 = AI1
1 = AI1
19 =
PID1OUT
3 = DI3
2 = AI2
20.0%
102
20.0%
102
4 = DI4
0 = NOT
SEL
5 = DI5
4 = DI4
Note: It is possible to control several functions with one input (DI or AI), and there is a
chance of mismatch between these functions. In some cases it is desired to control
several functions with one input.
For example in the ABB standard macro, DI3 and DI4 are set to control constant
speeds. On the other hand, it is possible to select value 6 (DI3U,4D) for parameter
Actual signals and parameters 177
1103 REF1 SELECT. That would mean a mismatched duplicate functionality for DI3
and DI4: either constant speed or acceleration and deceleration. The function that is
not required must be disabled. In this case the constant speed selection must be
disabled by setting parameter 1201 CONST SPEED SEL to NOT SEL or to values
not related to DI3 and DI4.
Remember to also check the default values of the selected macro when configuring
the drive inputs.
178 Actual signals and parameters
Actual signals
Actual signals
No. Name/Value
Description
FbEq
01 OPERATING
DATA
Basic signals for monitoring the drive (read-only)
0101 SPEED & DIR
Calculated motor speed in rpm. A negative value indicates 1 = 1 rpm
reverse direction.
Calculated motor speed in rpm
1 = 1 rpm
Calculated drive output frequency in Hz. (Shown by default 1 = 0.1 Hz
on the panel Output mode display.)
0102 SPEED
0103 OUTPUT
FREQ
0104 CURRENT
Measured motor current in A. (Shown by default on the
panel Output mode display.)
1 = 0.1 A
0105 TORQUE
Calculated motor torque in percent of the motor nominal
torque
Measured motor power in kW
1 = 0.1%
0106 POWER
0107 DC BUS
VOLTAGE
Measured intermediate circuit voltage in V DC
1 = 0.1
kW
1=1V
0109 OUTPUT
VOLTAGE
0110 DRIVE TEMP
0111 EXTERNAL
REF 1
Calculated motor voltage in V AC
1=1V
0112
0113
0114
0115
0120
0121
Measured IGBT temperature in °C
External reference REF1 in rpm or Hz. Unit depends on
parameter 9904 MOTOR CTRL MODE setting.
EXTERNAL
External reference REF2 in percent. Depending on the use,
REF 2
100% equals the maximum motor speed, nominal motor
torque, or maximum process reference.
CTRL
Active control location. (0) LOCAL; (1) EXT1; (2) EXT2. See
LOCATION
section Local control vs. external control on page 125.
RUN TIME (R) Elapsed drive running time counter (hours). Runs when the
drive is modulating. The counter can be reset by pressing
the UP and DOWN keys simultaneously when the control
panel is in the Parameter mode.
KWH
kWh counter. The counter value is accumulated till it
COUNTER (R) reaches 65535 after which the counter rolls over and starts
again from 0. The counter can be reset by pressing UP and
DOWN keys simultaneously when the control panel is in the
Parameter mode.
AI 1
Relative value of analog input AI1 in percent
AI 2
Relative value of analog input AI2 in percent
0124 AO 1
Value of analog output AO in mA
0126 PID 1 OUTPUT Output value of the process PID1 controller in percent
0127 PID 2 OUTPUT Output value of the PID2 controller in percent
0128 PID 1 SETPNT Setpoint signal (reference) for the process PID1 controller.
Unit depends on parameter 4006 UNITS, 4007 UNIT
SCALE and 4027 PID 1 PARAM SET settings.
1 = 0.1 °C
1 = 0.1 Hz
/ 1 rpm
1 = 0.1%
1=1
1=1h
1 = 1 kWh
1 = 0.1%
1 = 0.1%
1 = 0.1
mA
1 = 0.1%
1 = 0.1%
-
Actual signals and parameters 179
Actual signals
No. Name/Value
Description
FbEq
0129 PID 2 SETPNT Setpoint signal (reference) for the PID2 controller. Unit
depends on parameter 4106 UNITS and 4107 UNIT SCALE
settings.
0130 PID 1 FBK
Feedback signal for the process PID1 controller. Unit
depends on parameter 4006 UNITS, 4007 UNIT SCALE
and 4027 PID 1 PARAM SET settings.
0131 PID 2 FBK
0132 PID 1
DEVIATION
0133 PID 2
DEVIATION
Feedback signal for the PID2 controller. Unit depends on
parameter 4106 UNITS and 4107 UNIT SCALE settings.
Deviation of the process PID1 controller, ie the difference
between the reference value and the actual value. Unit
depends on parameter 4006 UNITS, 4007 UNIT SCALE
and 4027 PID 1 PARAM SET settings.
-
Deviation of the PID2 controller, ie the difference between
the reference value and the actual value. Unit depends on
parameter 4106 UNITS and 4107 UNIT SCALE settings.
-
0134 COMM RO
WORD
1=1
0135
1=1
0136
0137
0138
0139
0140
Relay output Control word through fieldbus (decimal). See
parameter 1401 RELAY OUTPUT 1.
COMM VALUE Data received from fieldbus
1
COMM VALUE Data received from fieldbus
2
PROCESS
Process variable 1 defined by parameter group 34 PANEL
VAR 1
DISPLAY
PROCESS
Process variable 2 defined by parameter group 34 PANEL
VAR 2
DISPLAY
PROCESS
Process variable 3 defined by parameter group 34 PANEL
VAR 3
DISPLAY
RUN TIME
Elapsed drive running time counter (thousands of hours).
Runs when the drive is modulating. Counter cannot be
reset.
-
0141 MWH
COUNTER
1=1
1 = 0.01
kh
MWH counter. The counter value is accumulated till it
1=1
reaches 65535 after which the counter rolls over and starts MWh
again from 0. Cannot be reset.
0142 REVOLUTION
CNTR
Motor revolution counter (millions of revolutions). The
counter can be reset by pressing UP and DOWN keys
simultaneously when the control panel is in the Parameter
mode.
0143 DRIVE ON
Drive control board power-on time in days. Counter cannot
TIME HI
be reset.
0144 DRIVE ON
Drive control board power-on time in 2 second ticks (30
TIME LO
ticks = 60 seconds). Counter cannot be reset.
0145 MOTOR TEMP Measured motor temperature. Unit depends on the sensor
type selected by group 35 MOTOR TEMP MEAS
parameters.
0146 MECH ANGLE Calculated mechanical angle
1=1
Mrev
1=1
days
1=2s
1=1
1=1
180 Actual signals and parameters
Actual signals
No. Name/Value
0147 MECH REVS
0148 Z PLS
DETECTED
Description
FbEq
Mechanical revolutions, ie the motor shaft revolutions
1=1
calculated by the encoder
Encoder zero pulse detector. 0 = not detected, 1 = detected. 1 = 1
0150 CB TEMP
Temperature of the drive control board in degrees Celsius
(0.0…150.0 °C).
1 = 0.1 °C
0158 PID COMM
VALUE 1
Data received from fieldbus for PID control (PID1 and PID2) 1 = 1
0159 PID COMM
Data received from fieldbus for PID control (PID1 and PID2) 1 = 1
VALUE 2
0160 DI 1-5 STATUS Status of digital inputs.
Example: 10000 = DI1 is on, DI2…DI5 are off.
0161 PULSE INPUT Value of frequency input in Hz
FREQ
0162 RO STATUS
Status of relay output 1. 1 = RO is energized, 0 = RO is deenergized.
0163 TO STATUS
Status of transistor output, when transistor output is used as
a digital output.
0164 TO
Transistor output frequency, when transistor output is used
FREQUENCY as a frequency output.
0165 TIMER VALUE Timer value of timed start/stop. See parameter group 19
TIMER & COUNTER.
0166 COUNTER
Pulse counter value of counter start/stop. See parameter
VALUE
group 19 TIMER & COUNTER.
0167 SEQ PROG
Status word of the Sequence programming:
STS
Bit 0 = ENABLED (1 = enabled)
Bit 1 = STARTED
Bit 2 = PAUSED
1 = 1 Hz
1=1
1=1
1 = 1 Hz
1 = 0.01 s
1=1
1=1
Bit 3 = LOGIC VALUE (logic operation defined by
parameters 8406…8410).
0168 SEQ PROG
STATE
Active state of the Sequence programming. 1…8 = state
1…8.
0169 SEQ PROG
Current state time counter of the Sequence programming
TIMER
0170 SEQ PROG AO Analog output control values defined by the Sequence
VAL
programming. See parameter 8423 ST1 OUT CONTROL.
0171 SEQ CYCLE
Executed sequence counter of the Sequence programming.
CNTR
See parameters 8415 CYCLE CNT LOC and 8416 CYCLE
CNT RST.
0172 ABS TORQUE Calculated absolute value of the motor torque in percent of
the motor nominal torque
1=1
1=2s
1 = 0.1%
1=1
1 = 0.1%
Actual signals and parameters 181
Actual signals
No. Name/Value
0173 RO 2-4
STATUS
Description
Status of the relays in the MREL-01 relay output extension
module. See MREL-01 relay output extension module
user's manual (3AUA0000035974 [English]).
Example: 100 = RO 2 is on, RO 3 and RO 4 are off.
FbEq
0179 BRAKE
Vector control: Torque value (0…180% of the motor nominal 1 = 0.1%
TORQUE MEM torque) saved before the mechanical brake is taken in use.
Scalar control: Current value (0…180% of the motor
nominal current) saved before the mechanical brake is
taken in use.
This torque or current is applied when the drive is started.
See parameter 4307 BRK OPEN LVL SEL.
0180 ENC
Monitors the synchronization of the measured position with 1 = 1
SYNCHRONIZ the estimated position for permanent magnet motors. 0 =
ED
NOT SYNC, 1 = SYNC.
03 FB ACTUAL
SIGNALS
Data words for monitoring the fieldbus communication
(read-only). Each signal is a 16-bit data word.
Data words are displayed on the panel in hexadecimal
format.
0301 FB CMD
A 16-bit data word. See section DCU communication profile
WORD 1
on page 320.
0302 FB CMD
A 16-bit data word. See section DCU communication profile
WORD 2
on page 320
0303 FB STS WORD A 16-bit data word. See section DCU communication profile
1
on page 320.
0304 FB STS WORD A 16-bit data word. See section DCU communication profile
2
on page 320
0305 FAULT WORD A 16-bit data word. For the possible causes and remedies
1
and fieldbus equivalents, see chapter Fault tracing on page
335.
Bit 0 = OVERCURRENT
Bit 1 = DC OVERVOLT
Bit 2 = DEV OVERTEMP
Bit 3 = SHORT CIRC
Bit 4 = Reserved
Bit 5 = DC UNDERVOLT
Bit 6 = AI1 LOSS
Bit 7 = AI2 LOSS
Bit 8 = MOT OVERTEMP
Bit 9 = PANEL LOSS
Bit 10 = ID RUN FAIL
Bit 11 = MOTOR STALL
Bit 12 = CB OVERTEMP
Bit 13 = EXT FAULT 1
182 Actual signals and parameters
Actual signals
No.
Name/Value
0306 FAULT WORD
2
Description
Bit 14 = EXT FAULT 2
Bit 15 = EARTH FAULT
A 16-bit data word. For the possible causes and remedies
and fieldbus equivalents, see chapter Fault tracing on page
335.
Bit 0 = UNDERLOAD
Bit 1 = THERM FAIL
Bit 2…3 = Reserved
Bit 4 = CURR MEAS
Bit 5 = SUPPLY PHASE
Bit 6 = ENCODER ERR
0307 FAULT WORD
3
Bit 7 = OVERSPEED
Bit 8…9 = Reserved
Bit 10 = CONFIG FILE
Bit 11 = SERIAL 1 ERR
Bit 12 = EFB CON FILE. Configuration file reading error.
Bit 13 = FORCE TRIP
Bit 14 = MOTOR PHASE
Bit 15 = OUTP WIRING
A 16-bit data word. For the possible causes and remedies
and fieldbus equivalents, see chapter Fault tracing on page
335.
Bit 0…2 Reserved
Bit 3 = INCOMPATIBLE SW
Bit 4 = SAFE TORQUE OFF
Bit 5 = STO1 LOST
Bit 6 = STO2 LOST
Bit 7…10 Reserved
Bit 11 = CB ID ERROR
Bit 12 = DSP STACK ERROR
Bit 13 = DSP T1 OVERLOAD…DSP T3 OVERLOAD
Bit 14 = SERF CORRUPT / SERF MACRO
Bit 15 = PAR PCU 1 / PAR PCU 2 / PAR HZRPM / PAR AI
SCALE / PAR AO SCALE / PAR FBUSMISS / PAR
CUSTOM U/F
0308 ALARM WORD A 16-bit data word. For the possible causes and remedies
1
and fieldbus equivalents, see chapter Fault tracing on page
335.
An alarm can be reset by resetting the whole alarm word:
Write zero to the word.
Bit 0 = OVERCURRENT
Bit 1 = OVERVOLTAGE
FbEq
Actual signals and parameters 183
Actual signals
No.
Name/Value
Description
Bit 2 = UNDERVOLTAGE
Bit 3 = DIR LOCK
FbEq
Bit 4 = IO COMM
Bit 5 = AI1 LOSS
Bit 6 = AI2 LOSS
Bit 7 = PANEL LOSS
Bit 8 = DEVICE OVERTEMP
Bit 9 = MOTOR TEMP
Bit 10 = UNDERLOAD
Bit 11 = MOTOR STALL
Bit 12 = AUTORESET
Bit 13…15 = Reserved
0309 ALARM WORD A 16-bit data word. For the possible causes and remedies
2
and fieldbus equivalents, see chapter Fault tracing on page
335.
An alarm can be reset by resetting the whole alarm word:
Write zero to the word.
Bit 0 = Reserved
Bit 1 = PID SLEEP
Bit 2 = ID RUN
Bit 3 = Reserved
Bit 4 = START ENABLE 1 MISSING
Bit 5 = START ENABLE 2 MISSING
Bit 6 = EMERGENCY STOP
Bit 7 = ENCODER ERROR
Bit 8 = FIRST START
Bit 9 = INPUT PHASE LOSS
Bit 10…11 = Reserved
Bit 12 = MOTOR BACK EMF
04 FAULT HISTORY
0401 LAST FAULT
Bit 13 = SAFE TORQUE OFF
Bit 14…15 = Reserved
Fault history (read-only)
Code of the latest fault. See chapter Fault tracing on page 1 = 1
335 for the codes. 0 = Fault history is clear (on panel display
= NO RECORD).
0402 FAULT TIME 1 Day on which the latest fault occurred.
1=1
days
Format: Date if the real time clock is operating. / The
number of days elapsed after the power-on if the real time
clock is not used, or was not set.
184 Actual signals and parameters
Actual signals
No. Name/Value
Description
FbEq
0403 FAULT TIME 2 Time at which the latest fault occurred.
1=2s
Format on the assistant control panel: Real time (hh:mm:ss)
if the real time clock is operating. / Time elapsed after the
power-on (hh:mm:ss minus the whole days stated by signal
0402 FAULT TIME 1) if real time clock is not used, or was
not set.
Format on the basic control panel: Time elapsed after
power-on in 2 second ticks (minus the whole days stated by
signal 0402 FAULT TIME 1). 30 ticks = 60 seconds. Eg
value 514 equals 17 minutes and 8 seconds (= 514/30).
0404 SPEED AT FLT
0405 FREQ AT FLT
0406 VOLTAGE AT
FLT
0407 CURRENT AT
FLT
0408 TORQUE AT
FLT
0409 STATUS AT
FLT
0412 PREVIOUS
FAULT 1
0413 PREVIOUS
FAULT 2
0414 DI 1-5 AT FLT
Motor speed in rpm at the time the latest fault occurred
Frequency in Hz at the time the latest fault occurred
Intermediate circuit voltage in V DC at the time the latest
fault occurred
Motor current in A at the time the latest fault occurred
1 = 1 rpm
1 = 0.1 Hz
1 = 0.1 V
1 = 0.1 A
Motor torque in percent of the motor nominal torque at the 1 = 0.1%
time the latest fault occurred
Drive status in hexadecimal format at the time the latest
fault occurred
Fault code of the 2nd latest fault. See chapter Fault tracing 1 = 1
on page 335 for the codes.
Fault code of the 3rd latest fault. See chapter Fault tracing 1 = 1
on page 335 for the codes.
Status of digital inputs DI1…5 at the time the latest fault
occurred (binary).
Example: 10000 = DI1 is on, DI2…DI5 are off.
Actual signals and parameters 185
Parameters
All parameters
No. Name/Value
Description
Def/FbEq
10 START/STOP/DIR The sources for external start, stop and direction control
1001 EXT1
COMMANDS
Defines the connections and the source for the start, stop
DI1,2
and direction commands for external control location 1
(EXT1).
Note: Start signal must be reset if the drive has been
stopped through STO (Safe torque off) input (see parameter
3025 STO OPERATION) or emergency stop selection (see
parameter 2109 EMERG STOP SEL).
NOT SEL
DI1
No start, stop and direction command source
0
Start and stop through digital input DI1. 0 = stop, 1 = start. 1
Direction is fixed according to parameter 1003 DIRECTION
(setting REQUEST = FORWARD).
DI1,2
Start and stop through digital input DI1. 0 = stop, 1 = start. 2
Direction through digital input DI2. 0 = forward, 1 = reverse.
To control direction, parameter 1003 DIRECTION setting
must be REQUEST.
DI1P,2P
Pulse start through digital input DI1. 0 -> 1: Start. (In order to 3
start the drive, digital input DI2 must be activated prior to the
pulse fed to DI1.)
Pulse stop through digital input DI2. 1 -> 0: Stop. Direction
of rotation is fixed according to parameter 1003 DIRECTION
(setting REQUEST = FORWARD).
Note: When the stop input (DI2) is deactivated (no input),
the control panel start and stop keys are disabled.
Pulse start through digital input DI1. 0 -> 1: Start. (In order to 4
start the drive, digital input DI2 must be activated prior to the
pulse fed to DI1.)
Pulse stop through digital input DI2. 1 -> 0: Stop. Direction
through digital input DI3. 0 = forward, 1 = reverse. To control
direction, parameter 1003 DIRECTION setting must be
REQUEST.
DI1P,2P,3
Note: When the stop input (DI2) is deactivated (no input),
the control panel start and stop keys are disabled.
DI1P,2P,3P
Pulse start forward through digital input DI1. 0 -> 1: Start
5
forward. Pulse start reverse through digital input DI2. 0 -> 1:
Start reverse. (In order to start the drive, digital input DI3
must be activated prior to the pulse fed to DI1/DI2). Pulse
stop through digital input DI3. 1 -> 0: Stop. To control the
direction, parameter 1003 DIRECTION setting must be
REQUEST.
Note: When the stop input (DI3) is deactivated (no input),
the control panel start and stop keys are disabled.
186 Actual signals and parameters
All parameters
No.
Name/Value
KEYPAD
DI1F,2R
Description
Start, stop and direction commands through control panel
when EXT1 is active. To control the direction, parameter
1003 DIRECTION setting must be REQUEST.
Start, stop and direction commands through digital inputs
DI1 and DI2.
DI1
0
1
0
1
COMM
TIMED FUNC 1
TIMED FUNC 2
TIMED FUNC 3
TIMED FUNC 4
DI5
DI5,4
TIMER STOP
DI2
0
0
1
1
Def/FbEq
8
9
Operation
Stop
Start forward
Start reverse
Stop
Parameter 1003 DIRECTION setting must be REQUEST.
Fieldbus interface as the source for the start and stop
commands, ie control word 0301 FB CMD WORD 1 bits
0…1. The control word is sent by the fieldbus controller
through the fieldbus adapter or embedded fieldbus
(Modbus) to the drive. For the control word bits, see section
DCU communication profile on page 320.
Timed start/stop control. Timed function 1 active = start,
timed function 1 inactive = stop. See parameter group 36
TIMED FUNCTIONS.
See selection TIMED FUNC 1.
See selection TIMED FUNC 1.
See selection TIMED FUNC 1.
Start and stop through digital input DI5. 0 = stop, 1 = start.
Direction is fixed according to parameter 1003 DIRECTION
(setting REQUEST = FORWARD).
Start and stop through digital input DI5. 0 = stop, 1 = start.
Direction through digital input DI4. 0 = forward, 1 = reverse.
To control direction, parameter 1003 DIRECTION must be
REQUEST.
Stop when timer delay defined by parameter 1901 TIMER
DELAY has passed. Start with timer start signal. Source for
the signal is selected by parameter 1902 TIMER START.
TIMER START Start when timer delay defined by parameter 1901 TIMER
DELAY has passed. Stop when timer is reset by parameter
1903 TIMER RESET.
COUNTER
Stop when counter limit defined by parameter 1905
STOP
COUNTER LIMIT has been exceeded. Start with counter
start signal. Source for the signal is selected by parameter
1911 CNTR S/S COMMAND.
COUNTER
Start when counter limit defined by parameter 1905
START
COUNTER LIMIT has been exceeded. Stop with counter
stop signal. Source for the signal is selected by parameter
1911 CNTR S/S COMMAND.
10
11
12
13
14
20
21
22
23
24
25
Actual signals and parameters 187
All parameters
No.
Name/Value
SEQ PROG
1002 EXT2
COMMANDS
Description
Start, stop and direction commands through Sequence
programming. See parameter group 84 SEQUENCE
PROG.
Defines the connections and the source for the start, stop
and direction commands for external control location 2
(EXT2).
Def/FbEq
26
NOT SEL
FORWARD
See parameter 1001 EXT1 COMMANDS.
Enables the control of rotation direction of the motor, or fixes REQUES
the direction.
T
Fixed to forward
1
REVERSE
REQUEST
Fixed to reverse
Control of rotation direction allowed
1003 DIRECTION
1010 JOGGING SEL Defines the signal that activates the jogging function. See
section Control of a mechanical brake on page 157.
DI1
Digital input DI1. 0 = jogging inactive, 1 = jogging active.
DI2
See selection DI1.
DI3
See selection DI1.
DI4
See selection DI1.
DI5
See selection DI1.
COMM
Fieldbus interface as the source for jogging 1 or 2
activation, ie control word 0302 FB CMD WORD 2 bits 20
and 21. The control word is sent by the fieldbus controller
through the fieldbus adapter or embedded fieldbus
(Modbus) to the drive. For the control word bits, see section
DCU communication profile on page 320.
NOT SEL
Not selected
DI1(INV)
Inverted digital input DI1. 1 = jogging inactive, 0 = jogging
active.
DI2(INV)
See selection DI1(INV).
DI3(INV)
See selection DI1(INV).
DI4(INV)
DI5(INV)
See selection DI1(INV).
See selection DI1(INV).
11 REFERENCE
SELECT
Panel reference type, external control location selection and
external reference sources and limits
1101 KEYPAD REF
SEL
Selects the type of the reference in local control mode.
REF1(Hz/rpm)
REF2(%)
1102 EXT1/EXT2
SEL
2
3
NOT SEL
1
2
3
4
5
6
0
-1
-2
-3
-4
-5
REF1(Hz/
rpm)
1
Frequency reference in rpm. Frequency reference (Hz) if
parameter 9904 MOTOR CTRL MODE setting is SCALAR:
FREQ.
%-reference
2
Defines the source from which the drive reads the signal
EXT1
that selects between the two external control locations,
EXT1 or EXT2.
188 Actual signals and parameters
All parameters
No.
Name/Value
EXT1
Def/FbEq
0
DI1
DI2
Description
EXT1 active. The control signal sources are defined by
parameters 1001 EXT1 COMMANDS and 1103 REF1
SELECT.
Digital input DI1. 0 = EXT1, 1 = EXT2.
See selection DI1.
DI3
DI4
DI5
See selection DI1.
See selection DI1.
See selection DI1.
3
4
5
EXT2
EXT2 active. The control signal sources are defined by
parameters 1002 EXT2 COMMANDS and 1106 REF2
SELECT.
7
COMM
Fieldbus interface as the source for EXT1/EXT2 selection,
ie control word 0301 FB CMD WORD 1 bit 5 (with ABB
drives profile 5319 EFB PAR 19 bit 11). The control word is
sent by the fieldbus controller through the fieldbus adapter
or embedded fieldbus (Modbus) to the drive. For the control
word bits, see sections DCU communication profile on page
320 and ABB drives communication profile on page 315.
Timed EXT1/EXT2 control selection. Timed function 1 active
= EXT2, timed function 1 inactive = EXT1. See parameter
group 36 TIMED FUNCTIONS.
See selection TIMED FUNC 1.
See selection TIMED FUNC 1.
See selection TIMED FUNC 1.
Inverted digital input DI1. 1 = EXT1, 0 = EXT2.
See selection DI1(INV).
See selection DI1(INV).
8
TIMED FUNC 1
TIMED FUNC 2
TIMED FUNC 3
TIMED FUNC 4
DI1(INV)
DI2(INV)
DI3(INV)
1
2
9
10
11
12
-1
-2
-3
DI4(INV)
See selection DI1(INV).
-4
DI5(INV)
See selection DI1(INV).
-5
1103 REF1 SELECT Selects the signal source for external reference REF1. See AI1
section Block diagram: Reference source for EXT1 on page
127.
KEYPAD
AI1
AI2
Control panel
Analog input AI1
Analog input AI2
0
1
2
Actual signals and parameters 189
All parameters
No.
Name/Value
AI1/JOYST
Description
Def/FbEq
Analog input AI1 as joystick. The minimum input signal runs 3
the motor at the maximum reference in the reverse
direction, the maximum input at the maximum reference in
the forward direction. Minimum and maximum references
are defined by parameters 1104 REF1 MIN and 1105 REF1
MAX.
Note: Parameter 1003 DIRECTION must be set to
REQUEST.
Speed ref
(REF1)
par. 1301 = 20%, par 1302 = 100%
1105
1104
0
AI1
-1104
-1105
2 V / 4 mA
AI2/JOYST
DI3U,4D(R)
DI3U,4D
6
10 V / 20 mA
1104 -2%
-1104
+2%
Hysteresis 4%
of full scale
WARNING! If parameter 1301 MINIMUM AI1 is set to
0 V and analog input signal is lost (ie 0 V), the
rotation of the motor is reversed to the maximum reference.
Set the following parameters to activate a fault when analog
input signal is lost:
Set parameter 1301 MINIMUM AI1 to 20% (2 V or 4 mA).
Set parameter 3021 AI1 FAULT LIMIT to 5% or higher.
Set parameter 3001 AI<MIN FUNCTION to FAULT.
See selection AI1/JOYST.
4
Digital input DI3: Reference increase. Digital input DI4:
5
Reference decrease. Stop command resets the reference to
zero. Parameter 2205 ACCELER TIME 2 defines the rate of
the reference change.
Digital input DI3: Reference increase. Digital input DI4:
6
Reference decrease. The program stores the active speed
reference (not reset by a stop command). When the drive is
restarted, the motor ramps up at the selected acceleration
rate to the stored reference. Parameter 2205 ACCELER
TIME 2 defines the rate of the reference change.
COMM
COMM+AI1
Fieldbus reference REF1
8
Summation of fieldbus reference REF1 and analog input AI. 9
See section Reference selection and correction on page
308.
COMM*AI1
Multiplication of fieldbus reference REF1 and analog input
AI1. See section Reference selection and correction on
page 308.
10
190 Actual signals and parameters
All parameters
No.
Name/Value
Description
Def/FbEq
DI3U,4D(RNC) Digital input DI3: Reference increase. Digital input DI4:
11
Reference decrease. Stop command resets the reference to
zero.
The reference is not saved if the control source is changed
(from EXT1 to EXT2, from EXT2 to EXT1 or from LOC to
REM). Parameter 2205 ACCELER TIME 2 defines the rate
of the reference change.
DI3U,4D(NC)
Digital input DI3: Reference increase. Digital input DI4:
Reference decrease.
The program stores the active speed reference (not reset by
a stop command). The reference is not saved if the control
source is changed (from EXT1 to EXT2, from EXT2 to EXT1
or from LOC to REM). When the drive is restarted, the motor
ramps up at the selected acceleration rate to the stored
reference. Parameter 2205 ACCELER TIME 2 defines the
rate of the reference change.
AI1+AI2
Reference is calculated with the following equation:
REF = AI1(%) + AI2(%) - 50%
AI1*AI2
Reference is calculated with the following equation:
REF = AI1(%) · (AI2(%) / 50%)
AI1-AI2
Reference is calculated with the following equation:
REF = AI1(%) + 50% - AI2(%)
AI1/AI2
Reference is calculated with the following equation:
REF = AI1(%) · (50% / AI2 (%))
KEYPAD(RNC) Defines the control panel as the reference source. Stop
command resets the reference to zero (the R stands for
reset). The reference is not saved if the control source is
changed (from EXT1 to EXT2, from EXT2 to EXT1).
KEYPAD(NC) Defines the control panel as the reference source. Stop
command does not reset the reference to zero. The
reference is stored. The reference is not saved if the control
source is changed (from EXT1 to EXT2, from EXT2 to
EXT1).
12
DI4U,5D
DI4U,5D(NC)
FREQ INPUT
See selection DI3U,4D.
See selection DI3U,4D(NC).
Frequency input
30
31
32
SEQ PROG
Sequence programming output. See parameter 8420 ST1
REF SEL.
Addition of analog input AI1 and Sequence programming
output
Addition of analog input AI2 and Sequence programming
output
Defines the minimum value for external reference REF1.
Corresponds to the minimum setting of the used source
signal.
33
AI1+SEQ
PROG
AI2+SEQ
PROG
1104 REF1 MIN
14
15
16
17
20
21
34
35
0.0 Hz /
1 rpm
Actual signals and parameters 191
All parameters
No.
Name/Value
Description
Def/FbEq
0.0…500.0 Hz / Minimum value in rpm. Hz if parameter 9904 MOTOR CTRL 1 = 0.1 Hz
0…30000 rpm MODE setting is SCALAR: FREQ.
/ 1 rpm
Example: Analog input AI1 is selected as the reference
source (value of parameter 1103 is AI1). The reference
minimum and maximum correspond to the 1301 MINIMUM
AI1 and 1302 MAXIMUM AI1 settings as follows:
REF (Hz/rpm)
REF1 MAX
(1105)
REF1 MIN
(1104)
-REF1 MIN
(1104)
1302
AI1 signal (%)
1301
1301
1302
-REF1 MAX
(1105)
1105 REF1 MAX
Defines the maximum value for external reference REF1.
Corresponds to the maximum setting of the used source
signal.
0.0…500.0 Hz / Maximum value in rpm. Hz if parameter 9904 MOTOR
0…30000 rpm CTRL MODE setting is SCALAR: FREQ. See the example
for parameter 1104 REF1 MIN.
1106 REF2 SELECT Selects the signal source for external reference REF2.
KEYPAD
See parameter 1103 REF1 SELECT.
AI1
See parameter 1103 REF1 SELECT.
AI2
See parameter 1103 REF1 SELECT.
E: 50.0 Hz
U: 60.0 Hz
1 = 0.1 Hz
/ 1 rpm
AI2
0
1
2
AI1/JOYST
AI2/JOYST
DI3U,4D(R)
See parameter 1103 REF1 SELECT.
See parameter 1103 REF1 SELECT.
See parameter 1103 REF1 SELECT.
3
4
5
DI3U,4D
COMM
COMM+AI1
See parameter 1103 REF1 SELECT.
See parameter 1103 REF1 SELECT.
See parameter 1103 REF1 SELECT.
COMM*AI1
DI3U,4D(RNC)
DI3U,4D(NC)
AI1+AI2
See parameter 1103 REF1 SELECT.
See parameter 1103 REF1 SELECT.
See parameter 1103 REF1 SELECT.
See parameter 1103 REF1 SELECT.
6
8
9
10
AI1*AI2
AI1-AI2
AI1/AI2
See parameter 1103 REF1 SELECT.
See parameter 1103 REF1 SELECT.
See parameter 1103 REF1 SELECT.
15
16
17
PID1OUT
PID controller 1 output. See parameter groups
40 PROCESS PID SET 1 and 41 PROCESS PID SET 2.
19
11
12
14
192 Actual signals and parameters
All parameters
No.
Name/Value
Description
KEYPAD(RNC) See parameter 1103 REF1 SELECT.
KEYPAD(NC) See parameter 1103 REF1 SELECT.
Def/FbEq
20
21
DI4U,5D
DI4U,5D(NC)
FREQ INPUT
See parameter 1103 REF1 SELECT.
See parameter 1103 REF1 SELECT.
See parameter 1103 REF1 SELECT.
30
31
32
SEQ PROG
AI1+SEQ
PROG
See parameter 1103 REF1 SELECT.
See parameter 1103 REF1 SELECT.
33
34
See parameter 1103 REF1 SELECT.
35
Defines the minimum value for external reference REF2.
Corresponds to the minimum setting of the used source
signal.
Value in percent of the maximum frequency / maximum
speed / nominal torque. See the example for parameter
1104 REF1 MIN for correspondence to the source signal
limits.
Defines the maximum value for external reference REF2.
Corresponds to the maximum setting of the used source
signal.
Value in percent of the maximum frequency / maximum
speed / nominal torque. See the example for parameter
1104 REF1 MIN for correspondence to the source signal
limits.
Constant speed selection and values. See section Constant
speeds on page 140.
Activates the constant speeds or selects the activation
signal.
No constant speed in use
Speed defined by parameter 1202 CONST SPEED 1 is
activated through digital input DI1. 1 = active, 0 = inactive.
Speed defined by parameter 1202 CONST SPEED 1 is
activated through digital input DI2. 1 = active, 0 = inactive.
Speed defined by parameter 1202 CONST SPEED 1 is
activated through digital input DI3. 1 = active, 0 = inactive.
Speed defined by parameter 1202 CONST SPEED 1 is
activated through digital input DI4. 1 = active, 0 = inactive.
Speed defined by parameter 1202 CONST SPEED 1 is
activated through digital input DI5. 1 = active, 0 = inactive.
0.0%
AI2+SEQ
PROG
1107 REF2 MIN
0.0…100.0%
1108 REF2 MAX
0.0…100.0%
12 CONSTANT
SPEEDS
1201 CONST
SPEED SEL
NOT SEL
DI1
DI2
DI3
DI4
DI5
1 = 0.1%
100.0%
1 = 0.1%
DI3,4
0
1
2
3
4
5
Actual signals and parameters 193
All parameters
No.
Name/Value
DI1,2
Description
Constant speed selection through digital inputs DI1 and
DI2.1 = DI active, 0 = DI inactive.
Def/FbEq
7
DI1 DI2 Operation
0 0 No constant speed
1 0 Speed defined by par. 1202 CONST SPEED 1
0 1 Speed defined by par. 1203 CONST SPEED 2
1 1 Speed defined by par. 1204 CONST SPEED 3
DI2,3
See selection DI1,2.
8
DI3,4
DI4,5
DI1,2,3
See selection DI1,2.
9
See selection DI1,2.
10
Constant speed selection through digital inputs DI1, DI2 and 12
DI3. 1 = DI active, 0 = DI inactive.
DI DI2 DI3 Operation
0 0 0 No constant speed
1 0 0 Speed defined by par. 1202 CONST SPEED 1
0 1 0 Speed defined by par. 1203 CONST SPEED 2
1 1 0 Speed defined by par. 1204 CONST SPEED 3
0 0 1 Speed defined by par. 1205 CONST SPEED 4
1 0 1 Speed defined by par. 1206 CONST SPEED 5
0 1 1 Speed defined by par. 1207 CONST SPEED 6
1 1 1 Speed defined by par. 1208 CONST SPEED 7
DI3,4,5
See selection DI1,2,3.
TIMED FUNC 1 External speed reference, speed defined by parameter
1202 CONST SPEED 1 or speed defined by parameter
1203 CONST SPEED 2 is used, depending on the selection
of parameter 1209 TIMED MODE SEL and the state of
timed function 1. See parameter group 36 TIMED
FUNCTIONS.
TIMED FUNC 2 See selection TIMED FUNC 1.
TIMED FUNC 3 See selection TIMED FUNC 1.
13
15
TIMED FUNC 4 See selection TIMED FUNC 1.
TIMED
External speed reference or speed defined by parameter
FUN1&2
1202 CONST SPEED 1 … 1205 CONST SPEED 4 is used,
depending on the selection of parameter 1209 TIMED
MODE SEL and the state of timed functions 1 and 2. See
parameter group 36 TIMED FUNCTIONS.
DI1(INV)
Speed defined by parameter 1202 CONST SPEED 1 is
activated through inverted digital input DI1. 0 = active, 1 =
inactive.
DI2(INV)
Speed defined by parameter 1202 CONST SPEED 1 is
activated through inverted digital input DI2. 0 = active, 1 =
inactive.
18
19
16
17
-1
-2
194 Actual signals and parameters
All parameters
No.
Name/Value
DI3(INV)
DI4(INV)
DI5(INV)
DI1,2(INV)
Description
Speed defined by parameter 1202 CONST SPEED 1 is
activated through inverted digital input DI3. 0 = active, 1 =
inactive.
Speed defined by parameter 1202 CONST SPEED 1 is
activated through inverted digital input DI4. 0 = active, 1 =
inactive.
Def/FbEq
-3
-4
Speed defined by parameter 1202 CONST SPEED 1 is
-5
activated through inverted digital input DI5. 0 = active, 1 =
inactive.
Constant speed selection through inverted digital inputs DI1 -7
and DI2. 1 = DI active, 0 = DI inactive.
DI1 DI2 Operation
1 1 No constant speed
0 1 Speed defined by par. 1202 CONST SPEED 1
1 0 Speed defined by par. 1203 CONST SPEED 2
0 0 Speed defined by par. 1204 CONST SPEED 3
DI2,3(INV)
See selection DI1,2(INV).
-8
DI3,4(INV)
DI4,5(INV)
DI1,2,3(INV)
See selection DI1,2(INV).
-9
See selection DI1,2(INV).
-10
Constant speed selection through inverted digital inputs DI1, -12
DI2 and DI3. 1 = DI active, 0 = DI inactive.
DI DI2 DI3 Operation
1 1 1 No constant speed
0 1 1 Speed defined by par. 1202 CONST SPEED 1
1 0 1 Speed defined by par. 1203 CONST SPEED 2
0 0 1 Speed defined by par. 1204 CONST SPEED 3
1 1 0 Speed defined by par. 1205 CONST SPEED 4
0 1 0 Speed defined by par. 1206 CONST SPEED 5
1 0 0 Speed defined by par. 1207 CONST SPEED 6
0 0 0 Speed defined by par. 1208 CONST SPEED 7
DI3,4,5(INV)
1202 CONST
SPEED 1
0.0…500.0 Hz
1203 CONST
SPEED 2
See selection DI1,2,3(INV).
Defines constant speed (or drive output frequency) 1.
Speed in rpm. Output frequency in Hz if parameter 9904
MOTOR CTRL MODE setting is SCALAR: FREQ.
Defines constant speed (or drive output frequency) 2.
0.0…500.0 Hz / Speed in rpm. Output frequency in Hz if parameter 9904
0…30000 rpm MOTOR CTRL MODE setting is SCALAR: FREQ.
1204 CONST
Defines constant speed (or drive output frequency) 3.
SPEED 3
0.0…500.0 Hz / Speed in rpm. Output frequency in Hz if parameter 9904
0…30000 rpm MOTOR CTRL MODE setting is SCALAR: FREQ.
-13
E: 5.0 Hz
U: 6.0 Hz
1 = 0.1 Hz
/ 1 rpm
E: 10.0 Hz
U: 12.0 Hz
1 = 0.1 Hz
/ 1 rpm
E: 15.0 Hz
U: 18.0 Hz
1 = 0.1 Hz
/ 1 rpm
Actual signals and parameters 195
All parameters
No. Name/Value
1205 CONST
SPEED 4
Description
Defines constant speed (or drive output frequency) 4.
0.0…500.0 Hz / Speed in rpm. Output frequency in Hz if parameter 9904
0…30000 rpm MOTOR CTRL MODE setting is SCALAR: FREQ.
1206 CONST
Defines constant speed (or drive output frequency) 5.
SPEED 5
0.0…500.0 Hz / Speed in rpm. Output frequency in Hz if parameter 9904
0…30000 rpm MOTOR CTRL MODE setting is SCALAR: FREQ.
1207 CONST
SPEED 6
Defines constant speed (or drive output frequency) 6.
0.0…500.0 Hz / Speed in rpm. Output frequency in Hz if parameter 9904
0…30000 rpm MOTOR CTRL MODE setting is SCALAR: FREQ. Constant
speed 6 is used also as jogging speed. See section Control
of a mechanical brake on page 157.
1208 CONST
Defines constant speed (or drive output frequency) 7.
SPEED 7
Constant speed 7 is used also as jogging speed (see
section Control of a mechanical brake on page 157) or with
fault functions (3001 AI<MIN FUNCTION and 3002 PANEL
COMM ERR).
0.0…500.0 Hz / Speed in rpm. Output frequency in Hz if parameter 9904
0…30000 rpm MOTOR CTRL MODE setting is SCALAR: FREQ. Constant
speed 7 is used also as jogging speed. See section Control
of a mechanical brake on page 157.
Def/FbEq
E: 20.0 Hz
U: 24.0 Hz
1 = 0.1 Hz
/ 1 rpm
E: 25.0 Hz
U: 30.0 Hz
1 = 0.1 Hz
/ 1 rpm
E: 40.0 Hz
U: 48.0 Hz
1 = 0.1 Hz
/ 1 rpm
E: 50.0 Hz
U: 60.0 Hz
1 = 0.1 Hz
/ 1 rpm
196 Actual signals and parameters
All parameters
No. Name/Value
1209 TIMED MODE
SEL
EXT/CS1/2/3
Description
Def/FbEq
Selects timed function activated speed. Timed function can CS1/2/3/4
be used to change between the external reference and
constant speeds when parameter 1201 CONST SPEED
SEL selection is TIMED FUNC 1 … TIMED FUNC 4 or
TIMED FUN1&2.
When parameter 1201 CONST SPEED SEL = TIMED
1
FUNC 1 … TIMED FUNC 4, this timed function selects an
external speed reference or constant speed. 1 = timed
function active, 0 = timed function inactive.
Timed function 1…4 Operation
0
External reference
1
Speed defined by par. 1202 CONST
SPEED 1
When parameter 1201 CONST SPEED SEL = TIMED
FUN1&2, timed functions 1 and 2 select an external speed
reference or constant speed. 1 = timed function active, 0 =
timed function inactive.
Timed
Timed Operation
function 1 function 2
0
0
External reference
1
0
Speed defined by par. 1202 CONST
SPEED 1
0
1
Speed defined by par. 1203 CONST
SPEED 2
1
1
Speed defined by par. 1204 CONST
SPEED 3
Actual signals and parameters 197
All parameters
No.
Name/Value
CS1/2/3/4
Description
When parameter 1201 CONST SPEED SEL = TIMED
FUNC 1 … TIMED FUNC 4, this timed function selects a
constant speed. 1 = timed function active, 0 = timed
function inactive.
Def/FbEq
2
Timed function 1…4 Operation
0
Speed defined by parameter 1202
CONST SPEED 1
1
Speed defined by parameter 1203
CONST SPEED 2
When parameter 1201 CONST SPEED SEL = TIMED
FUN1&2, timed functions 1 and 2 select a constant speed.
1 = timed function active, 0 = timed function inactive.
Timed
Timed Operation
function 1 function 2
0
0
Speed defined by parameter 1202
CONST SPEED 1
1
0
Speed defined by parameter 1203
CONST SPEED 2
0
1
Speed defined by parameter 1204
CONST SPEED 3
1
1
Speed defined by parameter 1205
CONST SPEED 4
13 ANALOG INPUTS Analog input signal processing
1301 MINIMUM AI1 Defines the minimum %-value that corresponds to minimum 1.0%
mA/(V) signal for analog input AI1. When used as a
reference, the value corresponds to the reference minimum
setting.
0…20 mA = 0…100%
4…20 mA = 20…100%
-10…10 mA = -50…50%
Example: If AI1 is selected as the source for external
reference REF1, this value corresponds to the value of
parameter 1104 REF1 MIN.
Note: MINIMUM AI1 value must not exceed MAXIMUM AI1
value.
-100.0…100.0% Value in percent of the full signal range.
1 = 0.1%
Example: If the minimum value for analog input is 4 mA, the
percent value for 0…20 mA range is:
(4 mA / 20 mA) · 100% = 20%
198 Actual signals and parameters
All parameters
No. Name/Value
Description
Def/FbEq
1302 MAXIMUM AI1 Defines the maximum %-value that corresponds to
100.0%
maximum mA/(V) signal for analog input AI1. When used as
a reference, the value corresponds to the reference
maximum setting.
0…20 mA = 0…100%
4…20 mA = 20…100%
-10…10 mA = -50…50%
Example: If AI1 is selected as the source for external
reference REF1, this value corresponds to the value of
parameter 1105 REF1 MAX.
-100.0…100.0% Value in percent of the full signal range.
Example: If the maximum value for analog input is 10 mA,
the percent value for 0…20 mA range is:
(10 mA / 20 mA) · 100% = 50%
1303 FILTER AI1
Defines the filter time constant for analog input AI1, ie the
time within which 63% of a step change is reached.
%
1 = 0.1%
0.1 s
Unfiltered signal
100
63
Filtered signal
t
Time constant
0.0…10.0 s
1304 MINIMUM AI2
Filter time constant
1 = 0.1 s
Defines the minimum %-value that corresponds to minimum 1.0%
mA/(V) signal for analog input AI2. See parameter 1301
MINIMUM AI1.
-100.0…100.0% See parameter 1301 MINIMUM AI1.
1 = 0.1%
1305 MAXIMUM AI2 Defines the maximum %-value that corresponds to
maximum mA/(V) signal for analog input AI2. See
parameter 1302 MAXIMUM AI1.
-100.0…100.0% See parameter 1302 MAXIMUM AI1.
100.0%
1306 FILTER AI2
Defines the filter time constant for analog input AI2. See
parameter 1303 FILTER AI1.
0.1 s
Filter time constant
1 = 0.1 s
0.0…10.0 s
1 = 0.1%
Actual signals and parameters 199
All parameters
No. Name/Value
Description
Def/FbEq
14 RELAY OUTPUTS Status information indicated through relay output, and relay
operating delays.
Note: Relay outputs 2…4 are available only if the MREL-01
relay output extension module is connected to the drive.
See MREL-01 relay output extension module user's manual
(3AUA0000035974 [English]).
1401 RELAY
OUTPUT 1
NOT SEL
READY
RUN
FAULT(-1)
FAULT
ALARM
REVERSED
STARTED
SUPRV1
OVER
SUPRV1
UNDER
SUPRV2
OVER
SUPRV2
UNDER
SUPRV3
OVER
Selects a drive status indicated through relay output RO 1.
The relay energizes when the status meets the setting.
Not used
Ready to function: Run enable signal on, no fault, supply
voltage within acceptable range and emergency stop signal
off.
Running: Start signal on, Run enable signal on, no active
fault.
Inverted fault. Relay is de-energized on a fault trip.
Fault
Alarm
FAULT(-1)
0
1
2
3
4
5
Motor rotates in reverse direction.
The drive has received start command. Relay is energized
even if Run enable signal is off. Relay is de-energized when
drive receives a stop command or a fault occurs.
Status according to supervision parameters 3201…3203.
See parameter group 32 SUPERVISION.
See selection SUPRV1 OVER.
6
7
Status according to supervision parameters 3204…3206.
See parameter group 32 SUPERVISION.
See selection SUPRV2 OVER.
10
Status according to supervision parameters 3207…3209.
See parameter group 32 SUPERVISION.
See selection SUPRV3 OVER.
12
8
9
11
SUPRV3
UNDER
AT SET POINT Output frequency is equal to the reference frequency.
13
FAULT(RST)
Fault. Automatic reset after the autoreset delay. See
parameter group 31 AUTOMATIC RESET.
15
FLT/ALARM
EXT CTRL
REF 2 SEL
Fault or alarm
Drive is under external control.
External reference REF 2 is in use.
16
17
18
CONST FREQ A constant speed is in use. See parameter group 12
CONSTANT SPEEDS.
19
REF LOSS
OVERCURRE
NT
20
21
Reference or active control location is lost.
Alarm/Fault by overcurrent protection function
14
200 Actual signals and parameters
All parameters
No.
Name/Value
Description
OVERVOLTAG Alarm/Fault by overvoltage protection function
E
Def/FbEq
22
DRIVE TEMP Alarm/Fault by drive overtemperature protection function
UNDERVOLTA Alarm/Fault by undervoltage protection function
GE
AI1 LOSS
Analog input AI1 signal is lost.
23
24
25
AI2 LOSS
Analog input AI2 signal is lost.
26
MOTOR TEMP Alarm/Fault by motor overtemperature protection function. 27
See parameter 3005 MOT THERM PROT.
STALL
Alarm/Fault by stall protection function. See parameter 3010 28
STALL FUNCTION.
UNDERLOAD
Alarm/Fault by underload protection function. See
parameter 3013 UNDERLOAD FUNC.
29
PID SLEEP
PID sleep function. See parameter group 40 PROCESS PID 30
SET 1 / 41 PROCESS PID SET 2.
FLUX READY Motor is magnetized and able to supply nominal torque.
33
USER MACRO User macro 2 is active.
34
2
COMM
Fieldbus control signal 0134 COMM RO WORD. 0 = de35
energize output, 1 = energize output.
0134 Binary
RO4
RO3
RO2
value
(MREL) (MREL) (MREL)
0
00000
0
0
0
1
00001
0
0
0
2
00010
0
0
0
3
00011
0
0
0
4
00100
0
0
1
5…30
…
…
…
…
31
11111
1
1
1
COMM(-1)
DO
RO1
0
0
1
1
0
…
1
0
1
0
1
0
…
1
Fieldbus control signal 0134 COMM RO WORD. 0 = deenergize output, 1 = energize output.
0134 Binary
RO4
RO3
RO2
value
(MREL) (MREL) (MREL)
0
00000
1
1
1
1
00001
1
1
1
2
00010
1
1
1
3
00011
1
1
1
4
00100
1
1
0
5…30
…
…
…
…
31
11111
0
0
0
DO
RO1
1
1
0
0
1
…
0
1
0
1
0
1
…
0
36
TIMED FUNC 1 Timed function 1 is active. See parameter group 36 TIMED 37
FUNCTIONS.
TIMED FUNC 2 Timed function 2 is active. See parameter group 36 TIMED 38
FUNCTIONS.
Actual signals and parameters 201
All parameters
No.
Name/Value
Description
TIMED FUNC 3 Timed function 3 is active. See parameter group 36 TIMED
FUNCTIONS.
TIMED FUNC 4 Timed function 4 is active. See parameter group 36 TIMED
FUNCTIONS.
M.TRIG FAN
Cooling fan running time counter is triggered. See
parameter group 29 MAINTENANCE TRIG.
M.TRIG REV
Revolutions counter is triggered. See parameter group 29
MAINTENANCE TRIG.
Def/FbEq
39
M.TRIG RUN
Run time counter is triggered. See parameter group 29
MAINTENANCE TRIG.
43
M.TRIG MWH
MWh counter is triggered. See parameter group 29
MAINTENANCE TRIG.
Relay output control with Sequence programming. See
parameter 8423 ST1 OUT CONTROL.
On/Off control of a mechanical brake. See parameter group
43 MECH BRK CONTROL.
Jogging function active. See parameter 1010 JOGGING
SEL.
STO (Safe torque off) has been triggered.
STO (Safe torque off) is inactive and the drive operates
normally.
See parameter 1401 RELAY OUTPUT 1. Available only if
the MREL-01 relay output extension module is connected to
the drive.
See parameter 1401 RELAY OUTPUT 1. Available only if
the MREL-01 relay output extension module is connected to
the drive.
Defines the operation delay for relay output RO 1.
44
SEQ PROG
MBRK
JOG ACTIVE
STO
STO(-1)
1402 RELAY
OUTPUT 2
1403 RELAY
OUTPUT 3
1404 RO 1 ON
DELAY
0.0…3600.0 s
Delay time. The figure below illustrates the operation (on)
and release (off) delays for relay output RO.
40
41
42
50
51
52
57
58
NOT SEL
NOT SEL
0.0 s
1 = 0.1 s
Control event
Relay status
1404 On delay
1405 RO 1 OFF
DELAY
0.0…3600.0 s
1405 Off delay
Defines the release delay for relay output RO 1.
0.0 s
Delay time. See the figure for parameter 1404 RO 1 ON
DELAY.
1 = 0.1 s
202 Actual signals and parameters
All parameters
No. Name/Value
1406 RO 2 ON
DELAY
Description
See parameter 1404 RO 1 ON DELAY.
Def/FbEq
0.0 s
1407 RO 2 OFF
DELAY
1408 RO 3 ON
DELAY
See parameter 1405 RO 1 OFF DELAY.
0.0 s
See parameter 1404 RO 1 ON DELAY.
0.0 s
1409 RO 3 OFF
DELAY
1410 RELAY
OUTPUT 4
See parameter 1405 RO 1 OFF DELAY.
0.0 s
1413 RO 4 ON
DELAY
1414 RO 4 OFF
DELAY
15 ANALOG
OUTPUTS
See parameter 1401 RELAY OUTPUT 1. Available only if
NOT SEL
the MREL-01 relay output extension module is connected to
the drive.
See parameter 1404 RO 1 ON DELAY.
0.0 s
See parameter 1405 RO 1 OFF DELAY.
0.0 s
Selection of the actual signals to be indicated through
analog output and output signal processing.
Connects a drive signal to analog output AO.
1501 AO1
103
CONTENT SEL
x…x
Parameter index in group 01 OPERATING DATA. Eg 102 =
0102 SPEED.
1502 AO1
Defines the minimum value for the signal selected with
CONTENT MIN parameter 1501 AO1 CONTENT SEL.
AO minimum and maximum correspond to the 1504
MINIMUM AO1 and 1505 MAXIMUM AO1 settings as
follows:
AO (mA)
1505
1504
1504
1502
x…x
1503 AO1
CONTENT
MAX
AO (mA)
1505
1503 AO
content
1503
1502 AO
content
Setting range depends on the parameter 1501 AO1
CONTENT SEL setting.
Defines the maximum value for the signal selected with
parameter 1501 AO1 CONTENT SEL. See the figure for
parameter 1502 AO1 CONTENT MIN.
x…x
Setting range depends on the parameter 1501 AO1
CONTENT SEL setting.
1504 MINIMUM AO1 Defines the minimum value for the analog output signal AO.
See the figure for parameter 1502 AO1 CONTENT MIN.
0.0…20.0 mA Minimum value
-
0.0 mA
1=
0.1 mA
Actual signals and parameters 203
All parameters
No. Name/Value
1505 MAXIMUM
AO1
0.0…20.0 mA
1506 FILTER AO1
0.0…10.0 s
16 SYSTEM
CONTROLS
1601 RUN ENABLE
NOT SEL
DI1
DI2
DI3
DI4
DI5
COMM
DI1(INV)
Description
Def/FbEq
Defines the maximum value for the analog output signal AO. 20.0 mA
See the figure for parameter 1502 AO1 CONTENT MIN.
Maximum value
1=
0.1 mA
Defines the filter time constant for analog output AO, ie the 0.1 s
time within which 63% of a step change is reached. See the
figure for parameter 1303 FILTER AI1.
Filter time constant
1 = 0.1 s
Parameter view, Run enable, parameter lock etc.
Selects a source for the external Run enable signal.
Allows the drive to start without an external Run enable
signal.
External signal required through digital input DI1. 1 = Run
enable. If Run enable signal is switched off, the drive will not
start or coasts to stop if it is running.
See selection DI1.
See selection DI1.
See selection DI1.
See selection DI1.
Fieldbus interface as the source for inverted Run enable
signal (Run disable), ie control word 0301 FB CMD WORD
1 bit 6 (with ABB drives profile 5319 EFB PAR 19 bit 3). The
control word is sent by the fieldbus controller through the
fieldbus adapter or embedded fieldbus (Modbus) to the
drive. For the control word bits, see sections DCU
communication profile on page 320 and ABB drives
communication profile on page 315.
NOT SEL
0
1
2
3
4
5
7
DI2(INV)
External signal required through inverted digital input DI1. 0 -1
= Run enable. If Run enable signal is switched on, the drive
will not start or coasts to stop if it is running.
See selection DI1(INV).
-2
DI3(INV)
See selection DI1(INV).
-3
DI4(INV)
DI5(INV)
See selection DI1(INV).
See selection DI1(INV).
-4
-5
1602 PARAMETER
LOCK
LOCKED
OPEN
Selects the state of the parameter lock. The lock prevents OPEN
parameter changing from the control panel.
Parameter values cannot be changed from the control
0
panel. The lock can be opened by entering the valid code to
parameter 1603 PASS CODE.
The lock does not prevent parameter changes made by
macros or fieldbus.
The lock is open. Parameter values can be changed.
1
204 Actual signals and parameters
All parameters
No.
Name/Value
NOT SAVED
1603 PASS CODE
Description
Parameter changes from the control panel are not stored
into the permanent memory. To store changed parameter
values, set parameter 1607 PARAM SAVE value to
SAVE….
Def/FbEq
2
Selects the pass code for the parameter lock (see
parameter 1602 PARAMETER LOCK).
0
0…65535
Pass code. Setting 358 opens the lock. The value reverts
back to 0 automatically.
1604 FAULT RESET Selects the source for the fault reset signal. The signal
SEL
resets the drive after a fault trip if the cause of the fault no
longer exists.
KEYPAD
Fault reset only from the control panel
DI1
Reset through digital input DI1 (reset on the rising edge of
DI1) or from the control panel
DI2
See selection DI1.
DI3
See selection DI1.
DI4
See selection DI1.
DI5
See selection DI1.
START/STOP Reset along with the stop signal received through a digital
input, or from the control panel.
Note: Do not use this option when start, stop and direction
commands are received through fieldbus communication.
COMM
Fieldbus interface as the source for the fault reset signal, ie
control word 0301 FB CMD WORD 1 bit 4 (with ABB drives
profile 5319 EFB PAR 19 bit 7). The control word is sent by
the fieldbus controller through the fieldbus adapter or
embedded fieldbus (Modbus) to the drive. For the control
word bits, see sections DCU communication profile on page
320 and ABB drives communication profile on page 315.
DI1(INV)
Reset through inverted digital input DI1 (reset on the falling
edge of DI1) or from the control panel
DI2(INV)
See selection DI1(INV).
DI3(INV)
DI4(INV)
DI5(INV)
See selection DI1(INV).
See selection DI1(INV).
See selection DI1(INV).
1=1
KEYPAD
0
1
2
3
4
5
7
8
-1
-2
-3
-4
-5
Actual signals and parameters 205
All parameters
No. Name/Value
1605 USER PAR
SET CHG
NOT SEL
DI1
DI2
DI3
DI4
DI5
DI1,2
Description
Enables the change of the User parameter set through a
digital input. See parameter 9902 APPLIC MACRO. The
change is only allowed when the drive is stopped. During
the change, the drive will not start.
Note: Always save the User parameter set with parameter
9902 after changing any parameter setting, or reperforming
the motor identification. The last settings saved by the user
are loaded into use whenever the power is switched off and
on again or the parameter 9902 setting is changed. Any
unsaved changes will be lost.
Note: The value of this parameter is not included in the
User parameter sets. A setting once made remains despite
User parameter set change.
Note: Selection of User parameter set 2 can be supervised
through relay outputs RO 1…4 and digital output DO. See
parameters 1401 RELAY OUTPUT 1 … 1403 RELAY
OUTPUT 3, 1410 RELAY OUTPUT 4 and 1805 DO
SIGNAL.
User parameter set change is not possible through a digital
input. Parameter sets can be changed only from the control
panel.
User parameter set control through digital input DI1. Falling
edge of digital input DI1: User parameter set 1 is loaded into
use. Rising edge of digital input DI1: User parameter set 2 is
loaded into use.
See selection DI1.
See selection DI1.
See selection DI1.
See selection DI1.
User parameter set selection through digital inputs DI1 and
DI2. 1 = DI active, 0 = DI inactive.
DI1
0
1
0
DI2
0
0
1
Def/FbEq
NOT SEL
0
1
2
3
4
5
7
User parameter set
User parameter set 1
User parameter set 2
User parameter set 3
DI2,3
DI3,4
See selection DI1,2.
See selection DI1,2.
8
9
DI4,5
DI1(INV)
See selection DI1,2.
User parameter set control through inverted digital input
DI1. Falling edge of inverted digital input DI1: User
parameter set 2 is loaded into use. Rising edge of inverted
digital input DI1: User parameter set 1 is loaded into use.
10
-1
DI2(INV)
DI3(INV)
See selection DI1(INV).
See selection DI1(INV).
-2
-3
206 Actual signals and parameters
All parameters
No.
Name/Value
DI4(INV)
DI1,2(INV)
Description
Def/FbEq
See selection DI1(INV).
-4
User parameter set selection through inverted digital inputs -7
DI1 and DI2. 1 = DI inactive, 0 =DI active.
DI1
1
0
1
DI2
1
1
0
User parameter set
User parameter set 1
User parameter set 2
User parameter set 3
DI2,3(INV)
See selection DI1,2.
-8
DI3,4(INV)
See selection DI1,2.
-9
See selection DI1,2.
Disables entering local control mode or selects the source
for the local control mode lock signal. When local lock is
active, entering the local control mode is disabled
(LOC/REM key of the panel).
Local control is allowed.
Local control mode lock signal through digital input DI1.
Rising edge of digital input DI1: Local control disabled.
Falling edge of digital input DI1: Local control allowed.
See selection DI1.
See selection DI1.
See selection DI1.
See selection DI1.
Local control is disabled.
Fieldbus interface as the source for the local lock, ie control
word 0301 FB CMD WORD 1 bit 14. The control word is
sent by the fieldbus controller through the fieldbus adapter
or embedded fieldbus (Modbus) to the drive. For the control
word bits, see section DCU communication profile on page
320.
-10
NOT SEL
DI4,5(INV)
1606 LOCAL LOCK
NOT SEL
DI1
DI2
DI3
DI4
DI5
ON
COMM
0
1
2
3
4
5
7
8
Note: This setting applies only for the DCU profile.
DI1(INV)
DI2(INV)
Local lock through inverted digital input DI1. Rising edge of -1
inverted digital input DI1: Local control allowed. Falling edge
of inverted digital input DI1: Local control disabled.
See selection DI1(INV).
-2
DI3(INV)
DI4(INV)
DI5(INV)
See selection DI1(INV).
See selection DI1(INV).
See selection DI1(INV).
-3
-4
-5
Saves the valid parameter values to the permanent
memory.
DONE
1607 PARAM SAVE
Note: A new parameter value of a standard macro is saved
automatically when changed from the panel but not when
altered through a fieldbus connection.
DONE
Saving completed
0
Actual signals and parameters 207
All parameters
No.
Name/Value
SAVE…
1608 START
ENABLE 1
Description
Saving in progress
Selects the source for the Start enable 1 signal.
Def/FbEq
1
NOT SEL
Note: Functionality of the Start enable signal is different
from the Run enable signal.
Example: External damper control application using Start
enable and Run enable. Motor can start only after the
damper is fully open.
Drive started
Start/Stop
command
(group 10)
Start enable
signals
(1608 and 1609)
Relay
deenergized
Relay energized
Started
output status
(group 14)
Damper open
Damper
closed
Damper
closed
Damper
closing
time
Damper
opening
time
Damper
status
Run enable signal
from the damper end
switch when the
damper is fully
opened. (1601)
Motor
speed
Motor
status
Acceleration
time (2202)
NOT SEL
DI1
Deceleration
time (2203)
DI2
Start enable signal is on.
0
External signal required through digital input DI1. 1 = Start 1
enable. If Start enable signal is switched off, the drive will
not start or it coasts to stop if it is running and alarm START
ENABLE 1 MISSING (2021) is activated
See selection DI1.
2
DI3
DI4
See selection DI1.
See selection DI1.
3
4
DI5
See selection DI1.
5
208 Actual signals and parameters
All parameters
No.
Name/Value
COMM
Description
Def/FbEq
Fieldbus interface as the source for the inverted Start
7
enable (Start disable) signal, ie control word 0302 FB CMD
WORD 2 bit 18 (bit 19 for Start enable 2). The control word
is sent by the fieldbus controller through the fieldbus
adapter or embedded fieldbus (Modbus) to the drive. For
the control word bits, see section DCU communication
profile on page 320.
Note: This setting applies only for the DCU profile.
DI1(INV)
External signal required through inverted digital input DI1. 0 -1
= Start enable. If Start enable signal is switched off, the
drive will not start or it coasts to stop if it is running and
alarm START ENABLE 1 MISSING (2021) is activated.
See selection DI1(INV).
-2
See selection DI1(INV).
-3
DI2(INV)
DI3(INV)
DI4(INV)
DI5(INV)
1609 START
ENABLE 2
1610 DISPLAY
ALARMS
NO
YES
1611 PARAMETER
VIEW
DEFAULT
FLASHDROP
1612 FAN
CONTROL
See selection DI1(INV).
See selection DI1(INV).
Selects the source for the Start enable 2 signal. See
parameter 1608 START ENABLE 1.
See parameter 1608 START ENABLE 1.
Activates/deactivates alarms OVERCURRENT (2001),
OVERVOLTAGE (2002), UNDERVOLTAGE (2003) and
DEVICE OVERTEMP (2009). For more information, see
chapter Fault tracing on page 335.
Alarms are inactive.
Alarms are active.
Selects the parameter view, ie which parameters are shown.
Note: This parameter is visible only when it is activated by
the optional FlashDrop device. FlashDrop is designed for
fast copying of parameters to unpowered drives. It allows for
easy customization of the parameter list, eg selected
parameters can be hidden. For more information, see
MFDT-01 FlashDrop user’s manual (3AFE68591074
[English]).
FlashDrop parameter values are activated by setting
parameter 9902 APPLIC MACRO to 31 (LOAD FD SET).
Complete long and short parameter lists
-4
-5
NOT SEL
NO
0
1
DEFAULT
0
FlashDrop parameter list. Does not include short parameter 1
list. Parameters which are hidden by the FlashDrop device
are not visible.
Selects the fan to be switched on and off automatically or
AUTO
keeps the fan on all the time.
When the drive is used in ambient temperatures of 35 °C
and above, it is recommended to have the cooling fan
always on (selection ON).
Actual signals and parameters 209
All parameters
No.
Name/Value
AUTO
ON
18 FREQ IN & TRAN
OUT
1801 FREQ INPUT
MIN
1802
1803
1804
1805
1806
1807
Description
Def/FbEq
Automatic fan control. The fan is switched on when the drive 0
is modulating. After the drive has stopped, the fan stays on
until the temperature of the drive has dropped below 55 °C.
The fan then remains switched off until either the drive is
started or the temperature increases above 65 °C.
If the control board is powered from an external 24 V power
supply, the fan is switched off.
Fan always on
Frequency input and transistor output signal processing.
Defines the minimum input value when DI5 is used as a
frequency input. See section Frequency input on page 133.
0…16000 Hz
Minimum frequency
FREQ INPUT Defines the maximum input value when DI5 is used as a
MAX
frequency input. See section Frequency input on page 133.
0…16000 Hz
Maximum frequency
FILTER FREQ Defines the filter time constant for frequency input, ie the
IN
time within which 63% of a step change is reached. See
section Frequency input on page 133.
0.0…10.0 s
Filter time constant
TO MODE
Selects the operation mode for the transistor output TO.
See section Transistor output on page 134.
DIGITAL
Transistor output is used as a digital output DO.
FREQUENCY Transistor output is used as a frequency output FO.
DO SIGNAL
Selects a drive status indicated through digital output DO.
See parameter 1401 RELAY OUTPUT 1.
DO ON DELAY Defines the operation delay for digital output DO.
0.0…3600.0 s Delay time
DO OFF
Defines the release delay for digital output DO.
DELAY
0.0…3600.0 s Delay time
1808 FO CONTENT
SEL
x…x
Selects a drive signal to be connected to frequency output
FO.
Parameter index in group 01 OPERATING DATA. Eg 102 =
0102 SPEED.
1
0 Hz
1 = 1 Hz
1000 Hz
1 = 1 Hz
0.1 s
1 = 0.1 s
DIGITAL
0
1
FAULT(-1)
0.0 s
1 = 0.1 s
0.0 s
1 = 0.1 s
104
210 Actual signals and parameters
All parameters
No. Name/Value
1809 FO CONTENT
MIN
Description
Def/FbEq
Defines the minimum frequency output FO signal value.
Signal is selected with parameter 1808 FO CONTENT SEL.
FO minimum and maximum correspond to 1811 MINIMUM
FO and 1812 MAXIMUM FO settings as follows:
FO
FO
1812
1812
1811
1811
1809
x…x
1810 FO CONTENT
MAX
x…x
1811 MINIMUM FO
10…16000 Hz
1812 MAXIMUM FO
10…16000 Hz
1813 FILTER FO
0.0…10.0 s
19 TIMER &
COUNTER
1810 FO
content
1809
1810 FO
content
Setting range depends on parameter 1808 FO CONTENT
SEL setting.
-
Defines the maximum frequency output FO signal value.
Signal is selected with parameter 1808 FO CONTENT SEL.
See parameter 1809 FO CONTENT MIN.
Setting range depends on parameter 1808 FO CONTENT
SEL setting.
Defines the minimum value for frequency output FO.
Minimum frequency. See parameter 1809 FO CONTENT
MIN.
Defines the maximum value for frequency output FO.
Maximum frequency. See parameter 1809 FO CONTENT
MIN.
Defines the filter time constant for frequency output FO, ie
the time within which 63% of a step change is reached.
-
Filter time constant
Timer and counter for start and stop control
1901 TIMER DELAY Defines the time delay for the timer.
0.01…120.00 s Delay time
10 Hz
1 = 1 Hz
1000 Hz
1 = 1 Hz
0.1 s
1 = 0.1 s
10.00 s
1 = 0.01 s
1902 TIMER START Selects the source for the timer start signal.
NOT SEL
DI1(INV)
Timer start through inverted digital input DI1. Timer start on -1
the falling edge of digital input DI1.
Note: Timer start is not possible when reset is active
(parameter 1903 TIMER RESET).
DI2(INV)
DI3(INV)
DI4(INV)
See selection DI1(INV).
See selection DI1(INV).
See selection DI1(INV).
-2
-3
-4
DI5(INV)
NOT SEL
See selection DI1(INV).
No start signal
-5
0
Actual signals and parameters 211
All parameters
No.
Name/Value
DI1
DI2
Description
Def/FbEq
Timer start through digital input DI1. Timer start on the rising 1
edge of digital input DI1.
Note: Timer start is not possible when reset is active
(parameter 1903 TIMER RESET).
See selection DI1.
2
DI3
DI4
DI5
See selection DI1.
See selection DI1.
See selection DI1.
START
External start signal, eg start signal through fieldbus
1903 TIMER RESET Selects the source for the timer reset signal.
DI1(INV)
Timer reset through inverted digital input DI1. 0 = active, 1 =
inactive.
DI2(INV)
See selection DI1(INV).
DI3(INV)
DI4(INV)
DI5(INV)
NOT SEL
DI1
DI2
DI3
DI4
DI5
START
3
4
5
6
NOT SEL
-1
-2
See selection DI1(INV).
See selection DI1(INV).
See selection DI1(INV).
No reset signal
Timer reset through digital input DI1. 1 = active, 0 = inactive.
See selection DI1.
See selection DI1.
See selection DI1.
See selection DI1.
Timer reset at start. Start signal source is selected by
parameter 1902 TIMER START.
Time reset at start (inverted), ie timer is reset when start
signal is deactivated. Start signal source is selected by
parameter 1902 TIMER START.
External reset, eg reset through fieldbus
Selects the source for the counter enable signal.
-3
-4
-5
0
1
2
3
4
5
6
DI2(INV)
DI3(INV)
DI4(INV)
8
DISABLE
D
Counter enable signal through inverted digital input DI1. 0 = -1
active, 1 = inactive.
See selection DI1(INV).
-2
See selection DI1(INV).
-3
See selection DI1(INV).
-4
DI5(INV)
DISABLED
See selection DI1(INV).
No counter enable
-5
0
DI1
Counter enable signal through digital input DI1. 1 = active, 0 1
= inactive.
DI2
DI3
DI4
See selection DI1.
See selection DI1.
See selection DI1.
START (INV)
RESET
1904 COUNTER
ENABLE
DI1(INV)
7
2
3
4
212 Actual signals and parameters
All parameters
No.
Name/Value
DI5
ENABLED
1905 COUNTER
LIMIT
0…65535
1906 COUNTER
INPUT
Description
See selection DI1.
Counter enabled
Def/FbEq
5
6
Defines the counter limit.
1000
Limit value
1=1
Selects the input signal source for the counter.
PLS IN(DI
5)
PLS IN(DI 5)
Digital input DI5 pulses. When a pulse is detected, the
counter value increases by 1.
ENC W/O DIR Encoder pulse edges. When a rising or a falling edge is
detected, the counter value increases by 1.
ENC WITH DIR Encoder pulse edges. The direction of rotation is taken into
account. When a rising or a falling edge is detected and the
direction of rotation is forward, the counter value increases
by 1. When the direction of rotation is reverse, the counter
value decreases by 1.
FILTERED DI5 Filtered digital input DI5 pulses. When a pulse is detected,
the counter value increases by 1.
Note: Due to filtering, the maximum input signal frequency
is 50 Hz.
1907 COUNTER
Selects the source for the counter reset signal.
RESET
DI1(INV)
Counter reset through inverted digital input DI1. 0 = active, 1
= inactive.
DI2(INV)
See selection DI1(INV).
DI3(INV)
See selection DI1(INV).
1
2
3
4
NOT SEL
-1
-2
-3
DI4(INV)
DI5(INV)
See selection DI1(INV).
See selection DI1(INV).
-4
-5
NOT SEL
No reset signal
0
DI1
Counter reset through digital input DI1. 1 = active, 0 =
inactive.
1
DI2
DI3
DI4
See selection DI1.
See selection DI1.
See selection DI1.
2
3
4
DI5
AT LIMIT
See selection DI1.
Reset at the limit defined by parameter 1905 COUNTER
LIMIT
Counter reset at start/stop command. Source for the
start/stop is selected by parameter 1911 CNTR S/S
COMMAND.
Counter reset at start/stop command (inverted), ie counter is
reset when start/stop command is deactivated. Start signal
source is selected by parameter 1902 TIMER START.
5
6
STRT/STP
CMD
S/S CMD(INV)
7
8
Actual signals and parameters 213
All parameters
No.
Name/Value
RESET
1908 COUNTER
RES VAL
0…65535
1909 COUNT
DIVIDER
Description
Reset enabled
Defines the value for the counter after reset.
Def/FbEq
9
0
Counter value
Defines the divider for the pulse counter.
1=1
0
0…12
1910 COUNT
DIRECTION
DI1(INV)
Pulse counter divider N. Every 2N bit is counted.
Defines the source for the counter direction selection.
1=1
UP
Counter direction selection through inverted digital input
DI1. 1 = counts up, 0 = counts down.
See selection DI1(INV).
See selection DI1(INV).
-1
See selection DI1(INV).
See selection DI1(INV).
Counts up
Counter direction selection through digital input DI1. 0 =
counts up, 1 = counts down.
See selection DI1.
See selection DI1.
-4
-5
0
1
See selection DI1.
See selection DI1.
Counts down
Selects the source for the drive start/stop command when
parameter 1001 EXT1 COMMANDS value is set to
COUNTER START / COUNTER STOP.
4
5
6
NOT SEL
DI2(INV)
DI3(INV)
DI4(INV)
DI5(INV)
UP
DI1
DI2
DI3
DI4
DI5
DOWN
1911 CNTR S/S
COMMAND
-2
-3
2
3
DI1(INV)
Start/stop command through inverted digital input DI1.
-1
When parameter 1001 EXT1 COMMANDS value is
COUNTER STOP: 0 = start. Stop when counter limit defined
by parameter 1905 COUNTER LIMIT has been exceeded.
When parameter 1001 value is COUNTER START: 0 =
stop. Start when counter limit defined by parameter 1905
has been exceeded.
DI2(INV)
DI3(INV)
DI4(INV)
See selection DI1(INV).
See selection DI1(INV).
See selection DI1(INV).
-2
-3
-4
DI5(INV)
NOT SEL
See selection DI1(INV).
Not start/stop command source
-5
0
214 Actual signals and parameters
All parameters
No.
Name/Value
DI1
DI2
Description
Def/FbEq
Start/stop command through digital input DI1.
1
When parameter 1001 EXT1 COMMANDS value is
COUNTER STOP: 1 = start. Stop when counter limit defined
by parameter 1905 COUNTER LIMIT has been exceeded.
When parameter 1001 value is COUNTER START: 1 =
stop. Start when counter limit defined by parameter 1905
has been exceeded.
See selection DI1.
2
DI3
DI4
DI5
See selection DI1.
See selection DI1.
See selection DI1.
3
4
5
ACTIVATE
20 LIMITS
External start/stop command, eg through fieldbus
Drive operation limits.
Speed values are used in vector control and frequency
values are used in scalar control. The control mode is
selected by parameter 9904 MOTOR CTRL MODE.
6
2001 MINIMUM
SPEED
Defines the allowed minimum speed.
0 rpm
A positive (or zero) minimum speed value defines two
ranges, one positive and one negative.
A negative minimum speed value defines one speed range.
Speed
Speed
2001 value is > 0
2002
2001 value is < 0
Allowed
2002
speed range
Allowed
speed range
2001
t
t
0
0
-(2001)
Allowed
speed range
2001
-(2002)
-30000…
30000 rpm
2002 MAXIMUM
SPEED
Minimum speed
1 = 1 rpm
Defines the allowed maximum speed. See parameter 2001 E: 1500 rpm
MINIMUM SPEED.
/
U: 1800 rpm
Maximum speed
1 = 1 rpm
Defines the allowed maximum motor current.
1.8 · I2N A
0…30000 rpm
2003 MAX
CURRENT
0.0…1.8 · I2N A Current
1 = 0.1 A
Actual signals and parameters 215
All parameters
No. Name/Value
2005 OVERVOLT
CTRL
DISABLE
ENABLE
Description
Def/FbEq
Activates or deactivates the overvoltage control of the
ENABLE
intermediate DC link.
Fast braking of a high inertia load causes the voltage to rise
to the overvoltage control limit. To prevent the DC voltage
from exceeding the limit, the overvoltage controller
automatically decreases the braking torque.
Note: If a brake chopper and resistor are connected to the
drive, the controller must be off (selection DISABLE) to
allow chopper operation.
Overvoltage control deactivated
Overvoltage control activated
2006 UNDERVOLT Activates or deactivates the undervoltage control of the
CTRL
intermediate DC link.
If the DC voltage drops due to input power cut off, the
undervoltage controller will automatically decrease the
motor speed in order to keep the voltage above the lower
limit. By decreasing the motor speed, the inertia of the load
will cause regeneration back into the drive, keeping the DC
link charged and preventing an undervoltage trip until the
motor coasts to stop. This will act as a power-loss ridethrough functionality in systems with a high inertia, such as
a centrifuge or a fan. See section Motor identification on
page 135.
DISABLE
Undervoltage control deactivated
ENABLE(TIME) Undervoltage control activated. The undervoltage control is
active for 500 ms.
ENABLE
Undervoltage control activated. No operation time limit.
2007 MINIMUM
FREQ
Defines the minimum limit for the drive output frequency.
A positive (or zero) minimum frequency value defines two
ranges, one positive and one negative.
A negative minimum frequency value defines one speed
range.
0
1
ENABLE(
TIME)
0
1
2
0.0 Hz
Note: MINIMUM FREQ < MAXIMUM FREQ.
f
2008
f
2008 value is < 0
Allowed
frequency range
0
2008
t
2007
0
-(2007)
2007
2007 value is > 0
Allowed
frequency range
t
Allowed
frequency range
-(2008)
-500.0…500.0 Hz Minimum frequency
1 = 0.1 Hz
216 Actual signals and parameters
All parameters
No. Name/Value
2008 MAXIMUM
FREQ
0.0…600.0 Hz
2013 MIN TORQUE
SEL
MIN TORQUE
1
DI1
Description
Defines the maximum limit for the drive output frequency.
Maximum frequency
Selects the minimum torque limit for the drive.
Value defined by parameter 2015 MIN TORQUE 1
Def/FbEq
E: 50.0 Hz
U: 60.0 Hz
1 = 0.1 Hz
MIN
TORQUE
1
0
Digital input DI1. 0 = parameter 2015 MIN TORQUE 1
value. 1 = parameter 2016 MIN TORQUE 2 value.
See selection DI1.
1
3
4
5
7
DI2(INV)
See selection DI1.
See selection DI1.
See selection DI1.
Fieldbus interface as the source for the torque limit 1/2
selection, ie control word 0301 FB CMD WORD 1 bit 15.
The control word is sent by the fieldbus controller through
the fieldbus adapter or embedded fieldbus (Modbus) to the
drive. For the control word bits, see section DCU
communication profile on page 320.
Minimum torque limit 1 is defined by parameter 2015 MIN
TORQUE 1 and minimum torque limit 2 is defined by
parameter 2016 MIN TORQUE 2.
Note: This setting applies only for the DCU profile.
Inverted digital input DI1. 1 = value of parameter 2015 MIN
TORQUE 1 1. 0 = value of parameter 2016 MIN TORQUE
2.
See selection DI1(INV).
DI3(INV)
DI4(INV)
DI5(INV)
See selection DI1(INV).
See selection DI1(INV).
See selection DI1(INV).
DI2
DI3
DI4
DI5
COMM
DI1(INV)
2014 MAX TORQUE Selects the maximum torque limit for the drive.
SEL
2
-1
-2
-3
-4
-5
MAX
TORQUE
1
MAX TORQUE Value of parameter 2017 MAX TORQUE 1
1
DI1
Digital input DI1. 0 = parameter 2017 MAX TORQUE 1
value. 1 = parameter 2018 MAX TORQUE 2 value.
DI2
See selection DI1.
1
DI3
DI4
DI5
3
4
5
See selection DI1.
See selection DI1.
See selection DI1.
2
Actual signals and parameters 217
All parameters
No.
Name/Value
COMM
EXT2
DI1(INV)
Description
Def/FbEq
Fieldbus interface as the source for the torque limit 1/2
7
selection, ie control word 0301 FB CMD WORD 1 bit 15.
The control word is sent by the fieldbus controller through
the fieldbus adapter or embedded fieldbus (Modbus) to the
drive. For the control word bits, see section DCU
communication profile on page 320.
Maximum torque limit 1 is defined by parameter 2017 MAX
TORQUE 1 and maximum torque limit 2 is defined by
parameter 2018 MAX TORQUE 2.
Note: This setting applies only for the DCU profile.
Value of signal 0112 EXTERNAL REF 2
11
Inverted digital input DI1. 1 = parameter 2017 MAX
TORQUE 1 value. 0 = parameter 2018 MAX TORQUE 2
value.
DI2(INV)
DI3(INV)
DI4(INV)
DI5(INV)
2015 MIN TORQUE
1
See selection DI1(INV).
See selection DI1(INV).
See selection DI1(INV).
See selection DI1(INV).
Defines minimum torque limit 1 for the drive. See parameter
2013 MIN TORQUE SEL.
-600.0…0.0% Value in percent of the motor nominal torque
2016 MIN TORQUE Defines minimum torque limit 2 for the drive. See parameter
2
2013 MIN TORQUE SEL.
-600.0…0.0% Value in percent of the motor nominal torque
2017 MAX TORQUE Defines maximum torque limit 1 for the drive. See
1
parameter 2014 MAX TORQUE SEL.
0.0…600.0%
Value in percent of the motor nominal torque
2018 MAX TORQUE Defines maximum torque limit 2 for the drive. See
2
parameter 2014 MAX TORQUE SEL.
0.0…600.0%
-1
-2
-3
-4
-5
-300%
1 = 0.1%
-300%
1 = 0.1%
300%
1 = 0.1%
300%
Value in percent of the motor nominal torque
1 = 0.1%
Selects the brake chopper control.
INBUILT
INBUILT
When using the drive in a Common DC bus system, the
parameter must be set to EXTERNAL. When in Common
DC, the drive cannot feed or receive more power than PN.
Internal brake chopper control.
0
EXTERNAL
Note: Ensure the brake resistor(s) is installed and the
overvoltage control is switched off by setting parameter
2005 OVERVOLT CTRL to selection DISABLE.
External brake chopper control.
1
2020 BRAKE
CHOPPER
Note: The drive is compatible only with ABB ACS-BRK-X
brake units.
Note: Ensure the brake unit is installed and the overvoltage
control is switched off by setting parameter 2005
OVERVOLT CTRL to selection DISABLE.
218 Actual signals and parameters
All parameters
No. Name/Value
2021 MAX SPEED
SEL
Description
Maximum speed source for torque control
Def/FbEq
PAR 2002
PAR 2002
EXT REF 1
21 START/STOP
2101 START
FUNCTION
Value of parameter 2002 MAXIMUM SPEED
Value of signal 0111 EXTERNAL REF 1
Start and stop modes of the motor
Selects the motor starting method.
0
1
AUTO
DC MAGN
AUTO
The drive starts the motor instantly from zero frequency if
1
parameter 9904 MOTOR CTRL MODE setting is SCALAR:
FREQ. If flying start is required use selection SCAN START.
If parameter 9904 MOTOR CTRL MODE value is VECTOR:
SPEED or VECTOR: TORQ, the drive pre-magnetizes the
motor with DC current before the start. The pre-magnetizing
time is defined by parameter 2103 DC MAGN TIME. See
selection DC MAGN.
For permanent magnet motors, flying start is used if the
motor is rotating.
The drive pre-magnetizes the motor with DC current before 2
the start. The pre-magnetizing time is defined by parameter
2103 DC MAGN TIME.
If parameter 9904 MOTOR CTRL MODE value is VECTOR:
SPEED or VECTOR: TORQ, DC magnetizing guarantees
the highest possible break-away torque when the premagnetizing is set long enough.
Note: Starting the drive connected to a rotating motor is not
possible when DC MAGN is selected. When a permanent
magnet motor is used, alarm MOTOR BACK EMF (2029) is
generated.
WARNING! The drive will start after the set premagnetizing time has passed even if the motor
magnetization is not completed. In applications where a full
break-away torque is essential, always ensure that the
constant magnetizing time is long enough to allow
generation of full magnetization and torque.
Actual signals and parameters 219
All parameters
No.
Name/Value
Description
Def/FbEq
TORQ BOOST Torque boost should be selected if a high break-away
4
torque is required. Used only when parameter 9904
MOTOR CTRL MODE setting is SCALAR: FREQ.
The drive pre-magnetizes the motor with DC current before
the start. The pre-magnetizing time is defined by parameter
2103 DC MAGN TIME.
Torque boost is applied at start. Torque boost is stopped
when output frequency exceeds 20 Hz or when it is equal to
the reference value. See parameter 2110 TORQ BOOST
CURR.
Note: Starting the drive connected to a rotating motor is not
possible when TORQ BOOST is selected.
SCAN START
SCAN +
BOOST
WARNING! The drive will start after the set premagnetizing time has passed although the motor
magnetization is not completed. In applications where a full
break-away torque is essential, always ensure that the
constant magnetizing time is long enough to allow
generation of full magnetization and torque.
Frequency scanning flying start (starting the drive
6
connected to a rotating motor). Based on frequency
scanning (interval 2008 MAXIMUM FREQ…2007 MINIMUM
FREQ) to identify the frequency. If frequency identification
fails, DC magnetization is used (see selection DC MAGN).
Combines scanning start (starting the drive connected to a 7
rotating motor) and torque boost. See selections SCAN
START and TORQ BOOST. If frequency identification fails,
torque boost is used.
Used only when parameter 9904 MOTOR CTRL MODE
setting is SCALAR: FREQ.
2102 STOP
FUNCTION
COAST
Selects the motor stop function.
COAST
Stop by cutting off the motor power supply. The motor
1
coasts to stop.
RAMP
Stop along a ramp. See parameter group 22
2
ACCEL/DECEL.
SPEED COMP Speed compensation is used for constant distance braking. 3
Speed difference (between used speed and maximum
speed) is compensated by running the drive with current
speed before the motor is stopped along a ramp. See
section Acceleration and deceleration ramps on page 139.
220 Actual signals and parameters
All parameters
No.
Name/Value
Description
Def/FbEq
SPEED COMP Speed compensation is used for constant distance braking if 4
FWD
the direction of rotation is forward. Speed difference
(between used speed and maximum speed) is
compensated by running the drive with current speed before
the motor is stopped along a ramp. See section
Acceleration and deceleration ramps on page 139.
If the direction of rotation is reverse, the drive is stopped
along a ramp.
SPEED COMP Speed compensation is used for constant distance braking if
REV
the direction of rotation is reverse. Speed difference
(between used speed and maximum speed) is
compensated by running the drive with current speed before
the motor is stopped along a ramp. See section
Acceleration and deceleration ramps on page 139.
If the direction of rotation is forward, the drive is stopped
along a ramp.
2103 DC MAGN
Defines the pre-magnetizing time. See parameter 2101
TIME
START FUNCTION. After the start command, the drive
automatically pre-magnetizes the motor for the defined time.
0.00…10.00 s Magnetizing time. Set this value long enough to allow full
motor magnetization. Too long a time heats the motor
excessively.
2104 DC HOLD CTL Activates the DC hold or DC braking function.
NOT SEL
Inactive
5
0.30 s
1 = 0.01 s
NOT SEL
0
Actual signals and parameters 221
All parameters
No.
Name/Value
DC HOLD
Description
Def/FbEq
DC hold function active. DC hold is not possible if parameter 1
9904 MOTOR CTRL MODE setting is SCALAR: FREQ.
When both the reference and the motor speed drop below
the value of parameter 2105 DC HOLD SPEED, the drive
will stop generating sinusoidal current and start to inject DC
into the motor. The current is set by parameter 2106 DC
CURR REF. When the reference speed exceeds parameter
2105 value, normal drive operation continues.
Motor speed
DC hold
t
Ref
DC hold speed
DC BRAKING
2105 DC HOLD
SPEED
0…360 rpm
t
Note: DC hold has no effect if the start signal is switched
off.
Note: Injecting DC current into the motor causes the motor
to heat up. In applications where long DC hold times are
required, externally ventilated motors should be used. If the
DC hold period is long, the DC hold cannot prevent the
motor shaft from rotating if a constant load is applied to the
motor.
DC current braking function active.
2
If parameter 2102 STOP FUNCTION is set to COAST, DC
braking is applied after the start command is removed.
If parameter 2102 STOP FUNCTION is set to RAMP, DC
braking is applied after the ramp.
Defines the DC hold speed. See parameter 2104 DC HOLD 5 rpm
CTL.
Speed
1 = 1 rpm
2106 DC CURR REF Defines the DC hold current. See parameter 2104 DC
HOLD CTL.
0…100%
Value in percent of the motor nominal current (parameter
9906 MOTOR NOM CURR)
2107 DC BRAKE
Defines the DC brake time.
TIME
0.0…250.0 s
Time
30%
1 = 1%
0.0 s
1 = 0.1 s
222 Actual signals and parameters
All parameters
No. Name/Value
Description
2108 START INHIBIT Sets the Start inhibit function on or off. If the drive is not
actively started and running, the Start inhibit function
ignores a pending start command in any of the following
situations and a new start command is required:
Def/FbEq
OFF
• a fault is reset.
• Run enable signal activates while the start command is
active. See parameter 1601 RUN ENABLE.
• control mode changes from local to remote.
• external control mode switches from EXT1 to EXT2 or
from EXT2 to EXT1.
OFF
ON
Disabled
Enabled
2109 EMERG STOP Selects the source for the external emergency stop
SEL
command.
The drive cannot be restarted before the emergency stop
command is reset.
0
1
NOT SEL
DI2
Note: The installation must include emergency stop devices
and any other safety equipment that may be needed.
Pressing the stop key on the drive’s control panel does
NOT:
• generate an emergency stop of the motor
• separate the drive from dangerous potential.
Emergency stop function is not selected
0
Digital input DI1. 1 = stop along the emergency stop ramp. 1
See parameter 2208 EMERG DEC TIME. 0 = emergency
stop command reset.
See selection DI1.
2
DI3
DI4
DI5
See selection DI1.
See selection DI1.
See selection DI1.
3
4
5
DI1(INV)
Inverted digital input DI. 0 = stop along the emergency stop
ramp. See parameter 2208 EMERG DEC TIME. 1 =
emergency stop command reset
See selection DI1(INV).
See selection DI1(INV).
See selection DI1(INV).
-1
NOT SEL
DI1
DI2(INV)
DI3(INV)
DI4(INV)
-2
-3
-4
DI5(INV)
See selection DI1(INV).
-5
2110 TORQ BOOST Defines the maximum supplied current during torque boost. 100%
CURR
See parameter 2101 START FUNCTION.
15…300%
Value in percent
1 = 1%
2111 STOP SIGNAL Defines the stop signal delay time when parameter 2102
DLY
STOP FUNCTION is set to SPEED COMP.
0…10000 ms
Delay time
0 ms
1 = 1 ms
Actual signals and parameters 223
All parameters
No. Name/Value
2112 ZERO SPEED
DELAY
Description
Def/FbEq
Defines the delay for the Zero speed delay function. The
0.0 =
function is useful in applications where a smooth and quick NOT SEL
restarting is essential. During the delay the drive knows
accurately the rotor position.
No Zero speed delay
With Zero speed delay
Speed
Speed
Speed controller
switched off: Motor
coasts to stop.
Zero speed
t
Speed controller
remains live. Motor is
decelerated to true 0
speed.
Zero speed
Delay
t
No Zero speed delay
The drive receives a stop command and decelerates along
a ramp. When the motor actual speed falls below an internal
limit (called Zero speed), the speed controller is switched
off. The inverter modulation is stopped and the motor coasts
to standstill.
With Zero speed delay
The drive receives a stop command and decelerates along
a ramp. When the actual motor speed falls below an internal
limit (called Zero speed), the zero speed delay function
activates. During the delay the functions keeps the speed
controller live: The inverter modulates, motor is magnetized
and the drive is ready for a quick restart.
0.0 = NOT SEL Delay time. If parameter value is set to zero, Zero speed
0.0…60.0 s
delay function is disabled.
22 ACCEL/DECEL
Acceleration and deceleration times
1 = 0.1 s
2201 ACC/DEC 1/2
SEL
DI5
NOT SEL
Defines the source from which the drive reads the signal
that selects between the two ramp pairs,
acceleration/deceleration pair 1 and 2.
Ramp pair 1 is defined by parameters 2202…2204.
Ramp pair 2 is defined by parameters 2205…2207.
Ramp pair 1 is used.
0
DI1
DI2
DI3
Digital input DI1. 1 = ramp pair 2, 0 = ramp pair 1.
See selection DI1.
See selection DI1.
1
2
3
DI4
DI5
See selection DI1.
See selection DI1.
4
5
224 Actual signals and parameters
All parameters
No.
Name/Value
COMM
Description
Def/FbEq
Fieldbus interface as the source for ramp pair 1/2 selection, 7
ie control word 0301 FB CMD WORD 1 bit 10. The control
word is sent by the fieldbus controller through the fieldbus
adapter or embedded fieldbus (Modbus) to the drive. For
the control word bits, see section DCU communication
profile on page 320.
Note: This setting applies only for the DCU profile.
SEQ PROG
Sequence programming ramp defined by parameter 8422
ST1 RAMP (or 8423/…/8492)
Inverted digital input DI1. 0 = ramp pair 2, 1 = ramp pair 1.
See selection DI1(INV).
DI1(INV)
DI2(INV)
DI3(INV)
DI4(INV)
DI5(INV)
2202 ACCELER
TIME 1
0.0…1800.0 s
See selection DI1(INV).
See selection DI1(INV).
See selection DI1(INV).
Defines the acceleration time 1, ie the time required for the
speed to change from zero to the speed defined by
parameter 2008 MAXIMUM FREQ (in scalar control) / 2002
MAXIMUM SPEED (in vector control). The control mode is
selected by parameter 9904 MOTOR CTRL MODE.
• If the speed reference increases faster than the set
acceleration rate, the motor speed will follow the
acceleration rate.
• If the speed reference increases slower than the set
acceleration rate, the motor speed will follow the
reference signal.
• If the acceleration time is set too short, the drive will
automatically prolong the acceleration in order not to
exceed the drive operating limits.
Actual acceleration time depends on parameter 2204 RAMP
SHAPE 1 setting.
Time
10
-1
-2
-3
-4
-5
5.0 s
1 = 0.1 s
Actual signals and parameters 225
All parameters
No. Name/Value
2203 DECELER
TIME 1
Description
Def/FbEq
Defines the deceleration time 1, ie the time required for the 5.0 s
speed to change from the value defined by parameter 2008
MAXIMUM FREQ (in scalar control) / 2002 MAXIMUM
SPEED (in vector control) to zero. The control mode is
selected by parameter 9904 MOTOR CTRL MODE.
• If the speed reference decreases slower than the set
deceleration rate, the motor speed will follow the
reference signal.
• If the reference changes faster than the set deceleration
rate, the motor speed will follow the deceleration rate.
• If the deceleration time is set too short, the drive will
automatically prolong the deceleration in order not to
exceed drive operating limits.
If a short deceleration time is needed for a high inertia
application, the drive should be equipped with a brake
resistor.
Actual deceleration time depends on parameter 2204
RAMP SHAPE 1 setting.
0.0…1800.0 s Time
2204 RAMP SHAPE Selects the shape of the acceleration/deceleration ramp 1.
1
The function is deactivated during emergency stop and
jogging.
0.0 = LINEAR 0.0: Linear ramp. Suitable for steady acceleration or
0.1…1000.0 s deceleration and for slow ramps.
0.1…1000.0 s: S-curve ramp. S-curve ramps are ideal for
conveyors carrying fragile loads, or other applications where
a smooth transition is required when changing from one
speed to another. The S-curve consists of symmetrical
curves at both ends of the ramp and a linear part in
between.
A rule of thumb:
A suitable relation between the ramp shape time and the
acceleration ramp time is 1/5.
Speed
Linear ramp: Par. 2204 = 0 s
Max
S-curve ramp:
Par. 2204 > 0 s
t
Par. 2202
Par. 2204
1 = 0.1 s
0.0 =
LINEAR
1 = 0.1 s
226 Actual signals and parameters
All parameters
No. Name/Value
2205 ACCELER
TIME 2
0.0…1800.0 s
2206 DECELER
TIME 2
Description
Def/FbEq
Defines the acceleration time 2, ie the time required for the 60.0 s
speed to change from zero to the speed defined by
parameter 2008 MAXIMUM FREQ (in scalar control) / 2002
MAXIMUM SPEED (in vector control). The control mode is
selected by parameter 9904 MOTOR CTRL MODE.
See parameter 2202 ACCELER TIME 1.
Acceleration time 2 is used also as jogging acceleration
time. See parameter 1010 JOGGING SEL.
Time
1 = 0.1 s
Defines the deceleration time 2, ie the time required for the 60.0 s
speed to change from the value defined by parameter 2008
MAXIMUM FREQ (in scalar control) / 2002 MAXIMUM
SPEED (in vector control) to zero. The control mode is
selected by parameter 9904 MOTOR CTRL MODE.
See parameter 2203 DECELER TIME 1.
Deceleration time 2 is used also as jogging deceleration
time. See parameter 1010 JOGGING SEL.
0.0…1800.0 s Time
2207 RAMP SHAPE Selects the shape of the acceleration/deceleration ramp 2.
2
The function is deactivated during emergency stop.
During jogging, parameter value is set to zero (ie linear
ramp). See 1010 JOGGING SEL.
0.0 = LINEAR See parameter 2204 RAMP SHAPE 1.
0.1…1000.0 s
2208 EMERG DEC Defines the time within which the drive is stopped if an
TIME
emergency stop is activated. See parameter 2109 EMERG
STOP SEL.
0.0…1800.0 s Time
2209 RAMP INPUT 0 Defines the source for forcing the ramp input to zero.
NOT SEL
Not selected
DI1
1 = 0.1 s
0.0 =
LINEAR
1 = 0.1 s
1.0 s
1 = 0.1 s
NOT SEL
0
DI2
Digital input DI1. 1 = ramp input is forced to zero. Ramp
output will ramp to zero according to the used ramp time.
See selection DI1.
1
2
DI3
DI4
DI5
See selection DI1.
See selection DI1.
See selection DI1.
3
4
5
COMM
Fieldbus interface as the source for forcing ramp input to
zero, ie control word 0301 FB CMD WORD 1 bit 13 (with
ABB drives profile 5319 EFB PAR 19 bit 6). The control
word is sent by the fieldbus controller through the fieldbus
adapter or embedded fieldbus (Modbus) to the drive. For
the control word bits, see sections DCU communication
profile on page 320 and ABB drives communication profile
on page 315.
7
Actual signals and parameters 227
All parameters
No.
Name/Value
DI1(INV)
DI2(INV)
DI3(INV)
Description
Inverted digital input DI1. 0 = ramp input is forced to zero.
Ramp output will ramp to zero according to the used ramp
time.
See selection DI1(INV).
See selection DI1(INV).
-2
-3
DI4(INV)
DI5(INV)
See selection DI1(INV).
See selection DI1(INV).
-4
-5
23 SPEED
CONTROL
2301 PROP GAIN
Def/FbEq
-1
Speed controller variables. See section Speed controller
tuning on page 142.
Note: These parameters do not affect drive operation in
scalar control, ie when parameter 9904 MOTOR CTRL
MODE setting is SCALAR: FREQ.
Defines a relative gain for the speed controller. High gain
5.00
may cause speed oscillation.
The figure below shows the speed controller output after an
error step when the error remains constant.
%
Error
value
Controller
output =
Kp · e
Gain = Kp = 1
TI = Integration time = 0
TD= Derivation time = 0
Controller output
e = Error
value
t
Note: For automatic setting of the gain, use autotune run
(parameter 2305 AUTOTUNE RUN).
0.00…200.00
Gain
1 = 0.01
228 Actual signals and parameters
All parameters
No. Name/Value
Description
Def/FbEq
2302 INTEGRATION Defines an integration time for the speed controller. The
0.50 s
TIME
integration time defines the rate at which the controller
output changes when the error value is constant. The
shorter the integration time, the faster the continuous error
value is corrected. Too short an integration time makes the
control unstable.
The figure below shows the speed controller output after an
error step when the error remains constant.
%
Controller output
Kp · e
Gain = Kp = 1
TI = Integration time > 0
TD= Derivation time = 0
Kp · e
e = Error value
t
TI
Note: For automatic setting of the integration time, use
autotune run (parameter 2305 AUTOTUNE RUN).
0.00…600.00 s Time
1 = 0.01 s
Actual signals and parameters 229
All parameters
No. Name/Value
2303 DERIVATION
TIME
Description
Def/FbEq
Defines the derivation time for the speed controller.
0 ms
Derivative action boosts the controller output if the error
value changes. The longer the derivation time, the more the
speed controller output is boosted during the change. If the
derivation time is set to zero, the controller works as a PI
controller, otherwise as a PID controller.
The derivation makes the control more responsive for
disturbances.
The figure below shows the speed controller output after an
error step when the error remains constant.
%
Δe
K p · TD ·
Ts
Controller
output
Kp · e
Kp · e
Error value
e = Error value
TI
t
Gain = Kp = 1
TI = Integration time > 0
TD= Derivation time > 0
Ts= Sample time period = 2 ms
Δe = Error value change between two samples
0.…10000 ms
Time
1 = 1 ms
230 Actual signals and parameters
All parameters
No. Name/Value
Description
Def/FbEq
2304 ACC
Defines the derivation time for acceleration/(deceleration)
0.00 s
COMPENSATI compensation. In order to compensate inertia during
ON
acceleration, a derivative of the reference is added to the
output of the speed controller. The principle of a derivative
action is described for parameter 2303 DERIVATION TIME.
Note: As a general rule, set this parameter to the value
between 50 and 100% of the sum of the mechanical time
constants of the motor and the driven machine. (The speed
controller Autotune run does this automatically, see
parameter 2305 AUTOTUNE RUN.)
The figure below shows the speed responses when a high
inertia load is accelerated along a ramp.
Acceleration
compensation
No acceleration
compensation
%
%
t
t
Speed reference
Actual speed
0.00…600.00 s Time
2305 AUTOTUNE
Start automatic tuning of the speed controller. Instructions:
RUN
• Run the motor at a constant speed of 20 to 40% of the
rated speed.
• Change the autotuning parameter 2305 to ON.
Note: The motor load must be connected to the motor.
1 = 0.01 s
OFF
OFF
No autotuning
0
ON
Activates the speed controller autotuning. The drive
• accelerates the motor
1
• calculates values for proportional gain, integration time
and acceleration compensation (parameter 2301 PROP
GAIN, 2302 INTEGRATION TIME and 2304 ACC
COMPENSATION values).
24 TORQUE
CONTROL
2401 TORQ RAMP
UP
Setting is automatically reverted to OFF.
Torque control variables
Defines the torque reference ramp up time, ie the minimum 0.00 s
time for the reference to increase from zero to the nominal
motor torque.
0.00…120.00 s Time
1 = 0.01 s
Actual signals and parameters 231
All parameters
No. Name/Value
2402 TORQ RAMP
DOWN
Description
Defines the torque reference ramp down time, ie the
minimum time for the reference to decrease from the
nominal motor torque to zero.
0.00…120.00 s Time
25 CRITICAL
Speed bands within which the drive is not allowed to
SPEEDS
operate.
2501 CRIT SPEED
Activates/deactivates the critical speeds function. The
SEL
critical speed function avoids specific speed ranges.
Example: A fan has vibrations in the range of 18 to 23 Hz
and 46 to 52 Hz. To make the drive to jump over the
vibration speed ranges:
• Activate the critical speeds function.
• Set the critical speed ranges as in the figure below.
Def/FbEq
0.00 s
1 = 0.01 s
OFF
foutput (Hz)
1
2
3
4
52
46
23
18
1
2
3
4
Par. 2502 = 18 Hz
Par. 2503 = 23 Hz
Par. 2504 = 46 Hz
Par. 2505 = 52 Hz
freference (Hz)
OFF
ON
2502 CRIT SPEED 1
LO
Inactive
Active
Defines the minimum limit for critical speed/frequency range
1.
0.0…500.0 Hz / Limit in rpm. Limit in Hz if parameter 9904 MOTOR CTRL
0…30000 rpm MODE setting is SCALAR: FREQ. The value cannot be
above the maximum (parameter 2503 CRIT SPEED 1 HI).
0
1
0.0 Hz /
1 rpm
1 = 0.1 Hz
/ 1 rpm
2503 CRIT SPEED 1 Defines the maximum limit for critical speed/frequency
HI
range 1.
0.0 Hz /
1 rpm
0.0…500.0 Hz / Limit in rpm. Limit in Hz if parameter 9904 MOTOR CTRL
0…30000 rpm MODE setting is SCALAR: FREQ. The value cannot be
below the minimum (parameter 2502 CRIT SPEED 1 LO).
2504 CRIT SPEED 2 See parameter 2502 CRIT SPEED 1 LO.
LO
1 = 0.1 Hz
/ 1 rpm
0.0…500.0 Hz / See parameter 2502.
0…30000 rpm
2505 CRIT SPEED 2 See parameter 2503 CRIT SPEED 1 HI.
HI
0.0…500.0 Hz / See parameter 2503.
0…30000 rpm
0.0 Hz /
1 rpm
1 = 0.1 Hz
/ 1 rpm
0.0 Hz /
1 rpm
1 = 0.1 Hz
/ 1 rpm
232 Actual signals and parameters
All parameters
No. Name/Value
Description
2506 CRIT SPEED 3 See parameter 2502 CRIT SPEED 1 LO.
LO
0.0…500.0 Hz / See parameter 2502.
0…30000 rpm
2507 CRIT SPEED 3 See parameter 2503 CRIT SPEED 1 HI.
HI
0.0…500.0 Hz / See parameter 2503.
0…30000 rpm
26 MOTOR
CONTROL
2601 FLUX OPT
ENABLE
OFF
ON
2602 FLUX
BRAKING
OFF
ON
Def/FbEq
0.0 Hz /
1 rpm
1 = 0.1 Hz
/ 1 rpm
0.0 Hz /
1 rpm
1 = 0.1 Hz
/ 1 rpm
Motor control variables
Activates/deactivates the flux optimization function. Flux
optimization reduces the total energy consumption and
motor noise level when the drive operates below the
nominal load. The total efficiency (motor and the drive) can
be improved by 1% to 10%, depending on the load torque
and speed. The disadvantage of this function is that the
dynamic performance of the drive is weakened.
Inactive
Active
Activates/deactivates the Flux braking function. See section
Flux braking on page 138.
Inactive
Active
OFF
0
1
OFF
0
1
Actual signals and parameters 233
All parameters
No. Name/Value
2603 IR COMP
VOLT
Description
Def/FbEq
Defines the output voltage boost at zero speed (IR
Type
compensation). The function is useful in applications with a dependent
high break-away torque when vector control cannot be
applied.
To prevent overheating, set IR compensation voltage as low
as possible.
Note: The function can be used only when parameter 9904
MOTOR CTRL MODE setting is SCALAR: FREQ.
The figure below illustrates the IR compensation.
Typical IR compensation values:
0.37 0.75 2.2 4.0 7.5
PN (kW)
200…240 V units
IR comp (V) 8.4 7.7 5.6 8.4 N/A
380…480 V units
IR comp (V) 14 14 5.6 8.4 7
Motor
voltage
A
A = IR compensated
B = No compensation
2603
B
f (Hz)
2604
0.0…100.0 V
2604 IR COMP
FREQ
0…100%
2605 U/F RATIO
Voltage boost
1 = 0.1 V
Defines the frequency at which the IR compensation is 0 V. 80%
See the figure for parameter 2603 IR COMP VOLT
Note: If parameter 2605 U/F RATIO is set to USER
DEFINED, this parameter is not active. The IR
compensation frequency is set by parameter 2610 USER
DEFINED U1.
Value in percent of the motor frequency
1 = 1%
Selects the voltage to frequency (U/f) ratio below the field
weakening point. For scalar control only.
LINEAR
LINEAR
SQUARED
Linear ratio for constant torque applications.
Squared ratio for centrifugal pump and fan applications.
With squared U/f ratio the noise level is lower for most
operating frequencies. Not recommended for permanent
magnet motors.
1
2
USER
DEFINED
Custom ratio defined by parameters 2610…2618. See
section Custom U/f ratio on page 141.
3
234 Actual signals and parameters
All parameters
No. Name/Value
2606 SWITCHING
FREQ
Description
Defines the switching frequency of the drive. Higher
switching frequency results in lower acoustic noise.
In multimotor systems, do not change the switching
frequency from the default value.
See also parameter 2607 SWITCH FREQ CTRL and
section Switching frequency derating, I2N on page 360.
4 kHz
Def/FbEq
4 kHz
1 = 1 kHz
8 kHz
12 kHz
16 kHz
2607 SWITCH FREQ Selects the control method for the switching frequency.
ON
CTRL
Selection has no effect if parameter 2606 SWITCHING
(LOAD)
FREQ is 4 kHz.
ON
Drive maximum current is automatically derated according 1
to the selected switching frequency (see parameter 2607
SWITCH FREQ CTRL and section Switching frequency
derating, I2N on page 360) and adapted according to the
drive temperature.
It is recommended to use this selection when a specific
switching frequency is required with maximum performance.
fsw limit
16 kHz
Drive
temperature
4 kHz
80…100 °C *
100…120 °C *
T
* Temperature depends on the drive output frequency.
Actual signals and parameters 235
All parameters
No.
Name/Value
ON (LOAD)
Description
Def/FbEq
The drive is started with 4 kHz switching frequency to gain 2
maximum output during the start. After start-up, the
switching frequency is controlled towards the selected value
(parameter 2607 SWITCH FREQ CTRL) if the output
current or the temperature allows.
This selection provides adaptive switching frequency
control. Adaptation decreases the output performance in
some cases.
fsw limit
16 kHz
Drive current I2N
Drive
temperature
4 kHz
80…100 °C *
50% **
100…120 °C *
100% **
T
* Temperature depends on the drive output frequency.
** Short term overloading is allowed with each switching
frequency depending on actual loading.
2608 SLIP COMP
RATIO
0…200%
2609 NOISE
SMOOTHING
DISABLE
ENABLE
0%
Defines the slip gain for the motor slip compensation
control. 100% means full slip compensation, 0% means no
slip compensation. Other values can be used if a static
speed error is detected despite the full slip compensation.
Can be used only in scalar control (ie when parameter 9904
MOTOR CTRL MODE setting is SCALAR: FREQ).
Example: 35 Hz constant speed reference is given to the
drive. Despite the full slip compensation (SLIP COMP
RATIO = 100%), a manual tachometer measurement from
the motor axis gives a speed value of 34 Hz. The static
speed error is 35 Hz - 34 Hz = 1 Hz. To compensate the
error, the slip gain should be increased.
Slip gain
1 = 1%
Enables the noise smoothing function. Noise smoothing
distributes the acoustic motor noise over a range of
frequencies instead of a single tonal frequency resulting in
lower peak noise intensity. A random component with an
average of 0 Hz is added to the switching frequency set by
parameter 2606 SWITCHING FREQ.
Note: Parameter has no effect if parameter 2606
SWITCHING FREQ is set to 16 kHz.
Disabled
Enabled
DISABLE
0
1
236 Actual signals and parameters
All parameters
No. Name/Value
2610 USER
DEFINED U1
Def/FbEq
19% of
UN
2611
1=1V
10.0 Hz
2612
2613
2614
Description
Defines the first voltage point of the custom U/f curve at the
frequency defined by parameter 2611 USER DEFINED F1.
See section Custom U/f ratio on page 141.
0…120% of UN V Voltage
USER
Defines the first frequency point of the custom U/f curve.
DEFINED F1
0.0…500.0 Hz Frequency
USER
Defines the second voltage point of the custom U/f curve at
DEFINED U2
the frequency defined by parameter 2613 USER DEFINED
F2. See section Custom U/f ratio on page 141.
0…120% of UN V Voltage
USER
Defines the second frequency point of the custom U/f curve.
DEFINED F2
0.0…500.0 Hz Frequency
USER
Defines the third voltage point of the custom U/f curve at the
DEFINED U3
frequency defined by parameter 2615 USER DEFINED F3.
See section Custom U/f ratio on page 141.
0…120% of UN V
2615 USER
DEFINED F3
0.0…500.0 Hz
2616 USER
DEFINED U4
Voltage
Defines the third frequency point of the custom U/f curve.
Frequency
Defines the fourth voltage point of the custom U/f curve at
the frequency defined by parameter 2617 USER DEFINED
F4. See section Custom U/f ratio on page 141.
0…120% of UN V Voltage
2617 USER
Defines the fourth frequency point of the custom U/f curve.
DEFINED F4
0.0…500.0 Hz
Frequency
2618 FW VOLTAGE
Defines the voltage of the U/f curve when frequency is equal
to or exceeds the motor nominal frequency (9907 MOTOR
NOM FREQ). See section Custom U/f ratio on page 141.
0…120% of UN V Voltage
2619 DC
Enables or disables the DC voltage stabilizer. The DC
STABILIZER
stabilizer is used to prevent possible voltage oscillations in
the drive DC bus caused by motor load or weak supply
network. In case of voltage variation, the drive tunes the
frequency reference to stabilize the DC bus voltage and
therefore the load torque oscillation.
DISABLE
Disabled
ENABLE
Enabled
1 = 0.1 Hz
38% of
UN
1=1V
20.0 Hz
1 = 0.1 Hz
47.5% of
UN
1=1V
25.0 Hz
1 = 0.1 Hz
76% of
UN
1=1V
40.0 Hz
1 = 0.1 Hz
95% of
UN
1=1V
DISABLE
0
1
Actual signals and parameters 237
All parameters
No. Name/Value
2621 SMOOTH
START
Description
Def/FbEq
Selects the forced current vector rotation mode at low
NO
speeds. When the smooth start mode is selected, the rate of
acceleration is limited by the acceleration and deceleration
ramp times (parameters 2202 and 2203). If the process
driven by the permanent magnet motor has high inertia,
slow ramp times are recommended.
Can be used for permanent magnet motors only.
NO
YES
2622 SMOOTH
START CUR
Disabled
0
Enabled
1
Current used in the current vector rotation at low speeds.
50%
Increase the smooth start current if the application requires
high pull-up torque. Decrease the smooth start current if
motor shaft swinging needs to be minimized. Note that
accurate torque control is not possible in the current vector
rotation mode.
10…100%
2623 SMOOTH
START FRQ
Can be used for permanent magnet motors only.
Value in percent of the motor nominal current
Output frequency up to which the current vector rotation is
used.
Can be used for permanent magnet motors only.
Value in percent of the motor nominal frequency
Maintenance triggers
2…100%
29 MAINTENANCE
TRIG
2901 COOLING FAN Defines the trigger point for the drive cooling fan run time
TRIG
counter. Value is compared to parameter 2902 COOLING
FAN ACT value.
0.0…6553.5 kh Time. If parameter value is set to zero, the trigger is
disabled.
2902 COOLING FAN Defines the actual value for the cooling fan run time counter.
ACT
When parameter 2901 COOLING FAN TRIG has been set
to a non zero value, the counter starts. When the actual
value of the counter exceeds the value defined by
parameter 2901, a maintenance notice is displayed on the
panel.
0.0…6553.5 kh Time. Parameter is reset by setting it to zero.
2903 REVOLUTION
TRIG
Defines the trigger point for the motor revolution counter.
Value is compared to parameter 2904 REVOLUTION ACT
value.
1 = 1%
10%
1 = 1%
0.0 kh
1 = 0.1 kh
0.0 kh
1 = 0.1 kh
0 Mrev
0…65535 Mrev Millions of revolutions. If parameter value is set to zero, the 1 =
trigger is disabled.
1 Mrev
238 Actual signals and parameters
All parameters
No. Name/Value
2904 REVOLUTION
ACT
Description
Defines the actual value for the motor revolution counter.
When parameter 2903 REVOLUTION TRIG has been set to
a non zero value, the counter starts. When the actual value
of the counter exceeds the value defined by parameter
2903, a maintenance notice is displayed on the panel.
0…65535 Mrev Millions of revolutions. Parameter is reset by setting it to
zero.
2905 RUN TIME
TRIG
Defines the trigger point for the drive run time counter. Value
is compared to parameter 2906 RUN TIME ACT value.
0.0…6553.5 kh Time. If parameter value is set to zero, the trigger is
disabled.
2906 RUN TIME
Defines the actual value for the drive run time counter.
ACT
When parameter 2905 RUN TIME TRIG has been set to a
non zero value, the counter starts. When the actual value of
the counter exceeds the value defined by parameter 2905, a
maintenance notice is displayed on the panel.
0.0…6553.5 kh Time. Parameter is reset by setting it to zero.
2907 USER MWh
Defines the trigger point for the drive power consumption
TRIG
counter. Value is compared to parameter 2908 USER MWh
ACT value.
0.0…
Megawatt hours. If parameter value is set to zero, the trigger
6553.5 MWh
is disabled.
2908 USER MWh
Defines the actual value of the drive power consumption
ACT
counter. When parameter 2907 USER MWh TRIG has been
set to a non zero value, the counter starts. When the actual
value of the counter exceeds the value defined by
parameter 2907, a maintenance notice is displayed on the
panel.
00.0…
Megawatt hours. Parameter is reset by setting it to zero.
6553.5 MWh
30 FAULT
FUNCTIONS
Programmable protection functions
3001 AI<MIN
FUNCTION
Defines the drive response if the analog input (AI) signal
drops below the fault limits and AI is used
Def/FbEq
0 Mrev
1=
1 Mrev
0.0 kh
1 = 0.1 kh
0.0 kh
1 = 0.1 kh
0.0 MWh
1=
0.1 MWh
0.0 MWh
1=
0.1 MWh
NOT SEL
• as the active reference source (group 11 REFERENCE
SELECT)
• as the process or external PID controllers' feedback or
setpoint source (group 40 PROCESS PID SET 1,
41 PROCESS PID SET 2 or 42 EXT / TRIM PID) and the
corresponding PID controller is active.
3021 AI1 FAULT LIMIT and 3022 AI2 FAULT LIMIT set the
fault limits.
NOT SEL
Protection is inactive.
0
Actual signals and parameters 239
All parameters
No.
Name/Value
FAULT
CONST SP 7
Description
Def/FbEq
The drive trips on fault AI1 LOSS (0007) / AI2 LOSS (0008) 1
and the motor coasts to stop. Fault limit is defined by
parameter 3021 AI1 FAULT LIMIT / 3022 AI2 FAULT LIMIT.
The drive generates alarm AI1 LOSS (2006) / AI2 LOSS
2
(2007) and sets the speed to the value defined by
parameter 1208 CONST SPEED 7. Alarm limit is defined by
parameter 3021 AI1 FAULT LIMIT / 3022 AI2 FAULT LIMIT.
WARNING! Make sure that it is safe to continue
operation in case the analog input signal is lost.
LAST SPEED The drive generates alarm AI1 LOSS (2006) / AI2 LOSS
(2007) and freezes the speed to the level the drive was
operating at. The speed is determined by the average
speed over the previous 10 seconds. Alarm limit is defined
by parameter 3021 AI1 FAULT LIMIT / 3022 AI2 FAULT
LIMIT.
WARNING! Make sure that it is safe to continue
operation in case the analog input signal is lost.
3002 PANEL COMM Selects how the drive reacts to a control panel
ERR
communication break.
Note: When either of the two external control locations are
active, and start, stop and/or direction are through the
control panel – 1001 EXT1 COMMANDS / 1002 EXT2
COMMANDS = 8 (KEYPAD) – the drive follows the speed
reference according to the configuration of the external
control locations, instead of the value of the last speed or
parameter 1208 CONST SPEED 7.
FAULT
Drive trips on fault PANEL LOSS (0010) and the motor
coasts to stop.
CONST SP 7
The drive generates alarm PANEL LOSS (2008) and sets
the speed to the speed defined by parameter 1208 CONST
SPEED 7.
3
FAULT
1
2
WARNING! Make sure that it is safe to continue
operation in case of a panel communication break.
LAST SPEED
The drive generates alarm PANEL LOSS (2008) and
freezes the speed to the level the drive was operating at.
The speed is determined by the average speed over the
previous 10 seconds.
3
WARNING! Make sure that it is safe to continue
operation in case of a panel communication break.
3003 EXTERNAL
FAULT 1
NOT SEL
DI1
Selects an interface for an external fault 1 signal.
NOT SEL
Not selected
External fault indication through digital input DI1. 1: Fault
trip on EXT FAULT 1 (0014). Motor coasts to stop. 0: No
external fault.
0
1
240 Actual signals and parameters
All parameters
No.
Name/Value
DI2
DI3
Description
See selection DI1.
See selection DI1.
Def/FbEq
2
3
DI4
DI5
DI1(INV)
4
5
-1
DI2(INV)
See selection DI1.
See selection DI1.
External fault indication through inverted digital input DI1. 0:
Fault trip on EXT FAULT 1 (0014). Motor coasts to stop. 1:
No external fault.
See selection DI1(INV).
DI3(INV)
DI4(INV)
DI5(INV)
See selection DI1(INV).
See selection DI1(INV).
See selection DI1(INV).
-3
-4
-5
Selects an interface for an external fault 2 signal.
NOT SEL
3004 EXTERNAL
FAULT 2
-2
See parameter 3003 EXTERNAL FAULT 1.
3005 MOT THERM
PROT
NOT SEL
FAULT
ALARM
3006 MOT THERM
TIME
Selects how the drive reacts when the motor
overtemperature is detected.
Protection is inactive.
The drive trips on fault MOT OVERTEMP (0009) when the
temperature exceeds 110 °C, and the motor coasts to stop.
The drive generates alarm MOTOR TEMP (2010) when the
motor temperature exceeds 90 °C.
Defines the thermal time constant for the motor thermal
model, ie the time within which the motor temperature has
reached 63% of the nominal temperature with steady load.
For thermal protection according to UL requirements for
NEMA class motors, use the rule of thumb: Motor thermal
time = 35 · t6. t6 (in seconds) is specified by the motor
manufacturer as the time the motor can safely operate at six
times its rated current.
FAULT
0
1
2
500 s
Thermal time for a Class 10 trip curve is 350 s, for a Class
20 trip curve 700 s, and for a Class 30 trip curve 1050 s.
Motor load
t
Temp. rise
100%
63%
t
}
Par. 3006
256…9999 s
Time constant
1=1s
Actual signals and parameters 241
All parameters
No. Name/Value
3007 MOT LOAD
CURVE
Description
Def/FbEq
Defines the load curve together with parameters 3008
100%
ZERO SPEED LOAD and 3009 BREAK POINT FREQ.
With the default value 100%, motor overload protection is
functioning when the constant current exceeds 127% of the
parameter 9906 MOTOR NOM CURR value.
The default overloadability is at the same level as what
motor manufacturers typically allow below 30 °C (86 °F)
ambient temperature and below 1000 m (3300 ft) altitude.
When the ambient temperature exceeds 30 °C (86 °F) or
the installation altitude is over 1000 m (3300 ft), decrease
the parameter 3007 value according to the motor
manufacturer’s recommendation.
Example: If the constant protection level needs to be 115%
of the motor nominal current, set parameter 3007 value to
91% (= 115/127·100%).
150
Par. 3007
100 =
127%
Par. 3008
50
Output current relative (%) to
9906 MOTOR NOM CURR
f
Par. 3009
50.…150%
3008 ZERO SPEED
LOAD
25.…150%
Allowed continuous motor load relative to the nominal motor 1 = 1%
current
Defines the load curve together with parameters 3007 MOT 70%
LOAD CURVE and 3009 BREAK POINT FREQ.
Allowed continuous motor load at zero speed in percent of 1 = 1%
the nominal motor current
242 Actual signals and parameters
All parameters
No. Name/Value
Description
Def/FbEq
3009 BREAK POINT Defines the load curve together with parameters 3007 MOT 35 Hz
FREQ
LOAD CURVE and 3008 ZERO SPEED LOAD.
Example: Thermal protection trip times when parameters
3006…3008 have default values.
IO = Output current
IN = Nominal motor current
fO = Output frequency
fBRK = Break point frequency
A = Trip time
IO/IN
A
3.5
3.0
60 s
2.5
90 s
2.0
180 s
300 s
1.5
600 s
∞
1.0
0.5
fO/fBRK
0
0
1…250 Hz
0.2
0.4
0.6
0.8
Drive output frequency at 100% load
1.0
1.2
1 = 1 Hz
Actual signals and parameters 243
All parameters
No. Name/Value
3010 STALL
FUNCTION
Description
Selects how the drive reacts to a motor stall condition. The
protection wakes up if the drive has operated in a stall
region (see the figure below) longer than the time set by
parameter 3012 STALL TIME.
Def/FbEq
NOT SEL
In vector control the user defined limit = 2017 MAX
TORQUE 1 / 2018 MAX TORQUE 2 (applies for positive
and negative torques).
In scalar control the user defined limit = 2003 MAX
CURRENT.
The control mode is selected by parameter 9904 MOTOR
CTRL MODE.
Torque (%) /
Current (A)
Stall region
0.95 · User defined limit
f
Par. 3011
NOT SEL
FAULT
ALARM
3011 STALL
FREQUENCY
0.5…50.0 Hz
3012 STALL TIME
10…400 s
3013 UNDERLOAD
FUNC
NOT SEL
Protection is inactive.
The drive trips on fault MOTOR STALL (0012) and the
motor coasts to stop.
The drive generates alarm MOTOR STALL (2012).
Defines the frequency limit for the stall function. See
parameter 3010 STALL FUNCTION.
Frequency
Defines the time for the stall function. See parameter 3010
STALL FUNCTION.
Time
0
1
2
20.0 Hz
1 = 0.1 Hz
20 s
1=1s
Selects how the drive reacts to underload. The protection
NOT SEL
wakes up if:
• the motor torque falls below the curve selected by
parameter 3015 UNDERLOAD CURVE,
• output frequency is higher than 10% of the nominal motor
frequency and
• the above conditions have been valid longer than the time
set by parameter 3014 UNDERLOAD TIME.
Protection is inactive.
0
244 Actual signals and parameters
All parameters
No.
Name/Value
FAULT
Def/FbEq
1
ALARM
3014 UNDERLOAD
TIME
Description
The drive trips on fault UNDERLOAD (0017) and the motor
coasts to stop.
Note: Set parameter value to FAULT only after the drive ID
run is performed! If FAULT is selected, the drive may
generate an UNDERLOAD fault during ID run.
The drive generates alarm UNDERLOAD (2011).
Defines the time limit for the underload function. See
parameter 3013 UNDERLOAD FUNC.
10…400 s
3015 UNDERLOAD
CURVE
Time limit
Selects the load curve for the underload function. See
parameter 3013 UNDERLOAD FUNC.
1=1s
1
TM
2
20 s
TM = nominal torque of the motor
ƒN = nominal frequency of the motor (9907)
(%)
Underload curve types
80
3
70%
60
2
50%
40
1
20
0
1…5
3016 SUPPLY
PHASE
5
30%
4
fN
2.4 · fN
f
Number of the load curve type in the figure
Selects how the drive reacts to supply phase loss, ie when
DC voltage ripple is excessive.
The drive trips on fault SUPPLY PHASE (0022) and the
motor coasts to stop when the DC voltage ripple exceeds
14% of the nominal DC voltage.
1=1
FAULT
LIMIT/ALARM
Drive output current is limited and alarm INPUT PHASE
LOSS (2026) is generated when the DC voltage ripple
exceeds 14% of the nominal DC voltage.
There is a 10 s delay between the activation of the alarm
and the output current limitation. The current is limited until
the ripple drops under the minimum limit, 0.3 · Ihd.
1
ALARM
The drive generates alarm INPUT PHASE LOSS (2026)
when the DC ripple exceeds 14% of the nominal DC
voltage.
2
FAULT
0
Actual signals and parameters 245
All parameters
No. Name/Value
Description
Def/FbEq
3017 EARTH FAULT Selects how the drive reacts when an earth (ground) fault is ENABLE
detected in the motor or the motor cable.
Note: Disabling earth (ground) fault may void the warranty.
DISABLE
ENABLE
START ONLY
3018 COMM FAULT
FUNC
NOT SEL
FAULT
CONST SP 7
LAST SPEED
3019 COMM FAULT
TIME
0.0…600.0 s
3021 AI1 FAULT
LIMIT
No action
The drive trips on fault EARTH FAULT (0016) when the
earth fault is detected during run.
The drive trips on fault EARTH FAULT (0016) when the
earth fault is detected before run.
Selects how the drive reacts in a fieldbus communication
break. The time delay is defined by parameter 3019 COMM
FAULT TIME.
Protection is inactive.
0
1
Protection is active. The drive trips on fault SERIAL 1 ERR
(0028) and coasts to stop.
Protection is active. The drive generates alarm IO COMM
(2005) and sets the speed to the value defined by
parameter 1208 CONST SPEED 7.
WARNING! Make sure that it is safe to continue
operation in case of a communication break.
Protection is active. The drive generates alarm IO COMM
(2005) and freezes the speed to the level the drive was
operating at. The speed is determined by the average
speed over the previous 10 seconds.
WARNING! Make sure that it is safe to continue
operation in case of a communication break.
Defines the time delay for the fieldbus communication break
supervision. See parameter 3018 COMM FAULT FUNC.
Delay time
1
2
NOT SEL
0
2
3
3.0 s
1 = 0.1 s
Defines a fault level for analog input AI1. If parameter 3001 0.0%
AI<MIN FUNCTION is set to FAULT, the drive trips on fault
AI1 LOSS (0007) when the analog input signal falls below
the set level.
Do not set this limit below the level defined by parameter
1301 MINIMUM AI1.
0.0…100.0%
3022 AI2 FAULT
LIMIT
Value in percent of the full signal range
1 = 0.1%
Defines a fault level for analog input AI2. If parameter 3001 0.0%
AI<MIN FUNCTION is set to FAULT, the drive trips on fault
AI2 LOSS (0008) when the analog input signal falls below
the set level.
Do not set this limit below the level defined by parameter
1304 MINIMUM AI2.
0.0…100.0%
Value in percent of the full signal range
1 = 0.1%
246 Actual signals and parameters
All parameters
No. Name/Value
Description
3023 WIRING FAULT Selects how the drive reacts when incorrect input power and
motor cable connection is detected (ie the input power cable
is connected to the motor connection of the drive).
Note: Disabling wiring fault (ground fault) may void the
warranty.
DISABLE
No action
ENABLE
The drive trips on fault OUTP WIRING (0035).
Def/FbEq
ENABLE
3025 STO
OPERATION
ONLY
ALARM
1
2
Selects how the drive reacts when the drive detects that the
STO (Safe torque off) function is active.
ONLY FAULT
The drive trips on fault SAFE TORQUE OFF (0044).
ALARM&FAUL The drive generates alarm SAFE TORQUE OFF (2035)
T
when stopped and trips on fault SAFE TORQUE OFF
(0044) when running.
NO & FAULT
The drive gives no indication to the user when stopped and
trips on fault SAFE TORQUE OFF (0044) when running.
ONLY ALARM The drive generates alarm SAFE TORQUE OFF (2035).
3026 POWER FAIL
START
ALARM
FAULT
NO
31 AUTOMATIC
RESET
Note: The start signal must be reset (toggled to 0) if STO
(Safe torque off) has been used while the drive has been
running.
Selects how the drive reacts when the control board is
externally powered by the MPOW-01 option module (see
Appendix: Extension modules on page 393) and start is
requested by the user.
The drive generates alarm UNDERVOLTAGE (2003).
The drive trips on fault DC UNDERVOLT (0006).
The drive gives no indication to the user.
Automatic fault reset. Automatic resets are possible only for
certain fault types and when the automatic reset function is
activated for that fault type.
0
1
3
4
ALARM
1
2
3
3101 NR OF TRIALS Defines the number of automatic fault resets the drive
0
performs within the time defined by parameter 3102 TRIAL
TIME.
If the number of automatic resets exceeds the set number
(within the trial time), the drive prevents additional automatic
resets and remains stopped. The drive must be reset from
the control panel or from a source selected by parameter
1604 FAULT RESET SEL.
Example: Three faults have occurred during the trial time
defined by parameter 3102. Last fault is reset only if the
number defined by parameter 3101 is 3 or more.
Trial time
X
X X
t
X = Automatic reset
Actual signals and parameters 247
All parameters
No.
Name/Value
0…5
3102 TRIAL TIME
Description
Number of the automatic resets
Defines the time for the automatic fault reset function. See
parameter 3101 NR OF TRIALS.
1.0…600.0 s
3103 DELAY TIME
Time
1 = 0.1 s
Defines the time that the drive will wait after a fault before
0.0 s
attempting an automatic reset. See parameter 3101 NR OF
TRIALS. If delay time is set to zero, the drive resets
immediately.
0.0…120.0 s
3104 AR
OVERCURRE
NT
Time
Activates/deactivates the automatic reset for the
overcurrent fault. Automatically resets fault
OVERCURRENT (0001) after the delay set by parameter
3103 DELAY TIME.
DISABLE
ENABLE
3105 AR
OVERVOLTAG
E
Inactive
Active
Activates/deactivates the automatic reset for the
intermediate link overvoltage fault. Automatically resets fault
DC OVERVOLT (0002) after the delay set by parameter
3103 DELAY TIME.
DISABLE
Inactive
ENABLE
Active
3106 AR
Activates/deactivates the automatic reset for the
UNDERVOLTA intermediate link undervoltage fault. Automatically resets
GE
fault DC UNDERVOLT (0006) after the delay set by
parameter 3103 DELAY TIME.
DISABLE
Inactive
ENABLE
Active
3107 AR AI<MIN
Activates/deactivates the automatic reset for AI<MIN
(analog input signal under the allowed minimum level) faults
AI1 LOSS (0007) and AI2 LOSS (0008). Automatically
resets the fault after the delay set by parameter 3103
DELAY TIME.
Def/FbEq
1=1
30.0 s
1 = 0.1 s
DISABLE
0
1
DISABLE
0
1
DISABLE
0
1
DISABLE
DISABLE
ENABLE
Inactive
0
Active
1
WARNING! The drive may restart even after a long
stop if the analog input signal is restored. Ensure that
the use of this feature will not cause danger.
3108 AR EXTERNAL Activates/deactivates the automatic reset for faults EXT
DISABLE
FLT
FAULT 1 (0014) and EXT FAULT 2 (0015). Automatically
resets the fault after the delay set by parameter 3103
DELAY TIME.
DISABLE
ENABLE
Inactive
Active
0
1
248 Actual signals and parameters
All parameters
No. Name/Value
32 SUPERVISION
3201 SUPERV 1
PARAM
Description
Signal supervision. Supervision status can be monitored
with relay or transistor output. See parameter groups 14
RELAY OUTPUTS and 18 FREQ IN & TRAN OUT.
Selects the first supervised signal. Supervision limits are
defined by parameters 3202 SUPERV 1 LIM LO and 3203
SUPERV 1 LIM HI.
Example 1: If 3202 SUPERV 1 LIM LO < 3203 SUPERV 1
LIM HI
Case A = 1401 RELAY OUTPUT 1 value is set to SUPRV1
OVER. Relay energizes when value of the signal selected
with 3201 SUPERV 1 PARAM exceeds the supervision limit
defined by 3203 SUPERV 1 LIM HI. The relay remains
active until the supervised value drops below the low limit
defined by 3202 SUPERV 1 LIM LO.
Case B = 1401 RELAY OUTPUT 1 value is set to SUPRV1
UNDER. Relay energizes when value of the signal selected
with 3201 SUPERV 1 PARAM drops below the supervision
limit defined by 3202 SUPERV 1 LIM LO. The relay remains
active until the supervised value rises above the high limit
defined by 3203 SUPERV 1 LIM HI.
Value of supervised parameter
HI par. 3203
LO par. 3202
t
Case A
Energized (1)
0
t
Case B
Energized (1)
0
t
Def/FbEq
103
Actual signals and parameters 249
All parameters
No.
Name/Value
Description
Example 2: If 3202 SUPERV 1 LIM LO > 3203 SUPERV 1
LIM HI
Def/FbEq
The lower limit 3203 SUPERV 1 LIM HI remains active until
the supervised signal exceeds the higher limit 3202
SUPERV 1 LIM LO, making it the active limit. The new limit
remains active until the supervised signal drops below the
lower limit 3203 SUPERV 1 LIM HI, making it the active
limit.
Case A = 1401 RELAY OUTPUT 1 value is set to SUPRV1
OVER. Relay is energized whenever the supervised signal
exceeds the active limit.
Case B = 1401 RELAY OUTPUT 1 value is set to SUPRV1
UNDER. Relay is de-energized whenever the supervised
signal drops below the active limit.
Value of supervised parameter
Active limit
HI par. 3203
LO par. 3202
t
Case A
Energized (1)
0
t
Case B
Energized (1)
0
0, x…x
t
Parameter index in group 01 OPERATING DATA. Eg 102 = 1 = 1
0102 SPEED. 0 = not selected.
3202 SUPERV 1 LIM Defines the low limit for the first supervised signal selected LO
by parameter 3201 SUPERV 1 PARAM. Supervision wakes
up if the value is below the limit.
x…x
Setting range depends on parameter 3201 setting.
3203 SUPERV 1 LIM Defines the high limit for the first supervised signal selected HI
by parameter 3201 SUPERV 1 PARAM. Supervision wakes
up if the value is above the limit.
x…x
Setting range depends on parameter 3201 setting.
3204 SUPERV 2
PARAM
Selects the second supervised signal. Supervision limits are 104
defined by parameters 3205 SUPERV 2 LIM LO and 3206
SUPERV 2 LIM HI. See parameter 3201 SUPERV 1
PARAM.
x…x
Parameter index in group 01 OPERATING DATA. Eg 102 = 1 = 1
0102 SPEED.
250 Actual signals and parameters
All parameters
No. Name/Value
Description
3205 SUPERV 2 LIM Defines the low limit for the second supervised signal
LO
selected by parameter 3204 SUPERV 2 PARAM.
Supervision wakes up if the value is below the limit.
x…x
Setting range depends on parameter 3204 setting.
3206 SUPERV 2 LIM Defines the high limit for the second supervised signal
HI
selected by parameter 3204 SUPERV 2 PARAM.
Supervision wakes up if the value is above the limit.
x…x
Setting range depends on parameter 3204 setting.
3207 SUPERV 3
PARAM
Selects the third supervised signal. Supervision limits are
defined by parameters 3208 SUPERV 3 LIM LO and 3209
SUPERV 3 LIM HI. See parameter 3201 SUPERV 1
PARAM.
x…x
Parameter index in group 01 OPERATING DATA. Eg 102 =
0102 SPEED.
3208 SUPERV 3 LIM Defines the low limit for the third supervised signal selected
LO
by parameter 3207 SUPERV 3 PARAM. Supervision wakes
up if the value is below the limit.
x…x
Setting range depends on parameter 3207 setting.
3209 SUPERV 3 LIM Defines the high limit for the third supervised signal selected
HI
by parameter 3207 SUPERV 3 PARAM. Supervision wakes
up if the value is above the limit.
x…x
Setting range depends on parameter 3207 setting.
33 INFORMATION
3301 FIRMWARE
0000…FFFF
hex
3302 LOADING
PACKAGE
Firmware package version, test date etc.
Displays the version of the firmware package.
Eg 241A hex
2201…22FF
hex
3303 TEST DATE
2201 hex = ACS355-0nE2202 hex = ACS355-0nUDisplays the test date.
Date value in format YY.WW (year, week)
Displays the version of the loading package.
Def/FbEq
-
-
105
1=1
-
-
-
type
dependent
00.00
3304 DRIVE RATING Displays the drive current and voltage ratings.
0000 hex
0000…FFFF
Value in format XXXY hex:
hex
XXX = Nominal current of the drive in amperes. An “A”
indicates decimal point. For example if XXX is 9A8, nominal
current is 9.8 A.
Y = Nominal voltage of the drive:
1 = 1-phase 200…240 V
2 = 3-phase 200…240 V
4 = 3-phase 380…480 V
3305 PARAMETER Displays the version of the parameter table used in the
TABLE
drive.
Actual signals and parameters 251
All parameters
No.
Name/Value
0000…FFFF
hex
34 PANEL DISPLAY
3401 SIGNAL1
PARAM
Description
Eg 400E hex
Def/FbEq
Selection of actual signals to be displayed on the panel
Selects the first signal to be displayed on the control panel
in the Output mode.
Assistant control panel
LOC
0137
0138
0139
3404 3405
15.0Hz
15.0 Hz
3.7 A
17.3 %
DIR
0 = NOT
SELECTED
101…180
3402 SIGNAL1 MIN
103
00:00
MENU
Parameter index in group 01 OPERATING DATA. Eg 102 = 1 = 1
0102 SPEED. If value is set to 0, no signal is selected.
Defines the minimum value for the signal selected by
parameter 3401 SIGNAL1 PARAM.
-
Display
value
3407
3406
3402
x…x
3403
Source
value
Note: Parameter is not effective if parameter 3404
OUTPUT1 DSP FORM setting is DIRECT.
Setting range depends on parameter 3401 setting.
3403 SIGNAL1 MAX Defines the maximum value for the signal selected by
parameter 3401 SIGNAL1 PARAM. See the figure for
parameter 3402 SIGNAL1 MIN.
Note: Parameter is not effective if parameter 3404
OUTPUT1 DSP FORM setting is DIRECT.
x…x
Setting range depends on parameter 3401 setting.
-
-
252 Actual signals and parameters
All parameters
No. Name/Value
Description
3404 OUTPUT1 DSP Defines the format for the displayed signal (selected by
FORM
parameter 3401 SIGNAL1 PARAM).
+/-0
Signed/Unsigned value. Unit is selected by parameter 3405
OUTPUT1
UNIT.
+/-0.0
Example: PI (3.14159)
+/-0.00
+/-0.000
+0
+0.0
+0.00
+0.000
BAR METER
DIRECT
3404 value
+/-0
+/-0.0
+/-0.00
+/-0.000
+0
+0.0
+0.00
+0.000
Display
+3
+ 3.1
+ 3.14
+ 3.142
3
3.1
3.14
3.142
Range
-32768…+32767
0…65535
Def/FbEq
DIRECT
0
1
2
3
4
5
6
7
NO UNIT
A
Bar graph
Direct value. Decimal point location and units of measure
are the same as for the source signal.
Note: Parameters 3402, 3403 and 3405…3407 are not
effective.
Selects the unit for the displayed signal selected by
parameter 3401 SIGNAL1 PARAM.
Note: Parameter is not effective if parameter 3404
OUTPUT1 DSP FORM setting is DIRECT.
Note: Unit selection does not convert values.
No unit selected
ampere
0
1
V
Hz
%
volt
hertz
percent
2
3
4
s
h
rpm
second
hour
revolutions per minute
5
6
7
kh
°C
lb ft
kilohour
celsius
pounds per foot
8
9
10
mA
mV
kW
milliampere
millivolt
kilowatt
11
12
13
W
kWh
°F
watt
kilowatt hour
fahrenheit
14
15
16
hp
horsepower
17
3405 OUTPUT1
UNIT
8
9
Hz
Actual signals and parameters 253
All parameters
No.
Name/Value
MWh
m/s
Description
megawatt hour
meters per second
Def/FbEq
18
19
m3/h
dm3/s
bar
cubic meters per hour
cubic decimeters per second
bar
20
21
22
kPa
GPM
kilopascal
gallons per minute
23
24
PSI
CFM
ft
pounds per square inch
cubic feet per minute
foot
25
26
27
MGD
inHg
FPM
kb/s
kHz
ohm
ppm
pps
l/s
l/min
l/h
m3/s
m3/m
kg/s
kg/m
millions of gallons per day
inches of mercury
feet per minute
kilobytes per second
kilohertz
ohm
pulses per minute
pulses per second
liters per second
liters per minute
liters per hour
cubic meters per second
cubic meters per minute
kilograms per second
kilograms per minute
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
kg/h
mbar
Pa
kilograms per hour
millibar
pascal
43
44
45
GPS
gal/s
gal/m
gallons per second
gallons per second
gallons per minute
46
47
48
gal/h
ft3/s
gallons per hour
cubic feet per second
49
50
ft3/m
ft3/h
lb/s
cubic feet per minute
cubic feet per hour
pounds per second
51
52
53
lb/m
lb/h
FPS
pounds per minute
pounds per hour
feet per second
54
55
56
ft/s
feet per second
57
254 Actual signals and parameters
All parameters
No.
Name/Value
inH2O
in wg
Description
inches of water
inches of water gauge
Def/FbEq
58
59
ft wg
lbsi
ms
feet on water gauge
pounds per squared inch
millisecond
60
61
62
Mrev
d
millions of revolutions
days
63
64
inWC
m/min
Nm
inches of water column
meters per minute
Newton meter
65
66
67
thousand cubic meters per hour
reference in percentage
actual value in percentage
deviation in percentage
load in percentage
set point in percentage
feedback in percentage
output current (in percentage)
output voltage
output frequency
output torque
DC voltage
Sets the minimum display value for the signal selected by
parameter 3401 SIGNAL1 PARAM. See parameter 3402
SIGNAL1 MIN.
Note: Parameter is not effective if parameter 3404
OUTPUT1 DSP FORM setting is DIRECT.
Setting range depends on parameter 3401 setting.
Sets the maximum display value for the signal selected by
parameter 3401 SIGNAL1 PARAM. See parameter 3402
SIGNAL1 MIN.
Note: Parameter is not effective if parameter 3404
OUTPUT1 DSP FORM setting is DIRECT.
Setting range depends on parameter 3401 setting.
68
117
118
119
120
121
122
123
124
125
126
127
-
Selects the second signal to be displayed on the control
panel in the Output mode. See parameter 3401 SIGNAL1
PARAM.
104
Km3/h
%ref
%act
%dev
% LD
% SP
%FBK
Iout
Vout
Fout
Tout
Vdc
3406 OUTPUT1 MIN
x…x
3407 OUTPUT1
MAX
x…x
3408 SIGNAL2
PARAM
0 = NOT
SELECTED
101…180
-
-
Parameter index in group 01 OPERATING DATA. Eg 102 = 1 = 1
0102 SPEED. If value is set to 0, no signal is selected.
Actual signals and parameters 255
All parameters
No. Name/Value
3409 SIGNAL2 MIN
Description
Defines the minimum value for the signal selected by
parameter 3408 SIGNAL2 PARAM. See parameter 3402
SIGNAL1 MIN.
x…x
Setting range depends on parameter 3408 setting.
3410 SIGNAL2 MAX Defines the maximum value for the signal selected by
parameter 3408 SIGNAL2 PARAM. See parameter 3402
SIGNAL1 MIN.
x…x
Setting range depends on parameter 3408 setting.
Def/FbEq
-
-
-
3411 OUTPUT2 DSP Defines the format for the displayed signal selected by
FORM
parameter 3408 SIGNAL2 PARAM.
DIRECT
See parameter 3404 OUTPUT1 DSP FORM.
3412 OUTPUT2
Selects the unit for the displayed signal selected by
UNIT
parameter 3408 SIGNAL2 PARAM.
See parameter 3405 OUTPUT1 UNIT.
3413 OUTPUT2 MIN Sets the minimum display value for the signal selected by
parameter 3408 SIGNAL2 PARAM. See parameter 3402
SIGNAL1 MIN.
x…x
Setting range depends on parameter 3408 setting.
3414 OUTPUT2
Sets the maximum display value for the signal selected by
MAX
parameter 3408 SIGNAL2 PARAM. See parameter 3402
SIGNAL1 MIN.
x…x
Setting range depends on parameter 3408 setting.
3415 SIGNAL3
Selects the third signal to be displayed on the control panel
PARAM
in the Output mode. See parameter 3401 SIGNAL1
PARAM.
0 = NOT
Parameter index in group 01 OPERATING DATA. Eg 102 =
SELECTED
0102 SPEED. If value is set to 0, no signal is selected.
101…180
-
3416 SIGNAL3 MIN
Defines the minimum value for the signal selected by
parameter 3415. See parameter 3402 SIGNAL1 MIN.
x…x
Setting range depends on parameter 3415 SIGNAL3
PARAM setting.
3417 SIGNAL3 MAX Defines the maximum value for the signal selected by
parameter 3415 SIGNAL3 PARAM. See parameter 3402
SIGNAL1 MIN.
x…x
Setting range depends on parameter 3415 SIGNAL3
PARAM setting.
3418 OUTPUT3 DSP Defines the format for the displayed signal selected by
FORM
parameter 3415 SIGNAL3 PARAM.
See parameter 3404 OUTPUT1 DSP FORM.
3419 OUTPUT3
UNIT
Selects the unit for the displayed signal selected by
parameter 3415 SIGNAL3 PARAM.
See parameter 3405 OUTPUT1 UNIT.
-
-
105
1=1
-
DIRECT
-
256 Actual signals and parameters
All parameters
No. Name/Value
Description
3420 OUTPUT3 MIN Sets the minimum display value for the signal selected by
parameter 3415 SIGNAL3 PARAM. See parameter 3402
SIGNAL1 MIN.
x…x
Setting range depends on parameter 3415 SIGNAL3
PARAM setting.
3421 OUTPUT3
Sets the maximum display value for the signal selected by
MAX
parameter 3415 SIGNAL3 PARAM. See parameter 3402
SIGNAL1 MIN.
x…x
Setting range depends on parameter 3415 setting.
35 MOTOR TEMP
MEAS
3501 SENSOR
TYPE
NONE
1 x PT100
2 x PT100
3 x PT100
Motor temperature measurement. See section Motor
temperature measurement through the standard I/O on
page 155.
Activates the motor temperature measurement function and
selects the sensor type. See also parameter group 15
ANALOG OUTPUTS.
The function is inactive.
The function is active. The temperature is measured with
one Pt 100 sensor. Analog output AO feeds constant current
through the sensor. The sensor resistance increases as the
motor temperature rises, as does the voltage over the
sensor. The temperature measurement function reads the
voltage through analog input AI1/2 and converts it to
degrees centigrade.
The function is active. Temperature is measured using two
Pt 100 sensors. See selection 1 x PT100.
The function is active. Temperature is measured using three
Pt 100 sensors. See selection 1 x PT100.
Def/FbEq
-
-
-
NONE
0
1
2
3
Actual signals and parameters 257
All parameters
No.
Name/Value
PTC
Description
Def/FbEq
The function is active. The temperature is supervised using 4
one PTC sensor. Analog output AO feeds constant current
through the sensor. The resistance of the sensor increases
sharply as the motor temperature rises over the PTC
reference temperature (Tref), as does the voltage over the
resistor. The temperature measurement function reads the
voltage through analog input AI1/2 and converts it into
ohms. The figure below shows typical PTC sensor
resistance values as a function of the motor operating
temperature.
Temperature
Normal
Excessive
Resistance
0…1.5 kohm
> 4 kohm
ohm
4000
1330
550
100
T
THERM(0)
THERM(1)
3502 INPUT
SELECTION
AI1
The function is active. Motor temperature is monitored using
a PTC sensor (see selection PTC) connected to drive
through a normally closed thermistor relay connected to a
digital input. 0 = motor overtemperature.
The function is active. Motor temperature is monitored using
a PTC sensor (see selection PTC) connected to drive
through a normally open thermistor relay connected to a
digital input. 1 = motor overtemperature.
Selects the source for the motor temperature measurement
signal.
Analog input AI1. Used when PT100 or PTC sensor is
selected for the temperature measurement.
5
6
AI1
1
AI2
Analog input AI2. Used when PT100 or PTC sensor is
selected for the temperature measurement
2
DI1
Digital input DI1. Used when parameter 3501 SENSOR
TYPE value is set to THERM(0)/THERM(1).
Digital input DI2. Used when parameter 3501 SENSOR
TYPE value is set to THERM(0)/THERM(1).
3
DI2
4
258 Actual signals and parameters
All parameters
No.
Name/Value
DI3
DI4
DI5
3503 ALARM LIMIT
x…x
3504 FAULT LIMIT
Description
Digital input DI3. Used when parameter 3501 SENSOR
TYPE value is set to THERM(0)/THERM(1).
Digital input DI4. Used when parameter 3501 SENSOR
TYPE value is set to THERM(0)/THERM(1).
Digital input DI5. Used when parameter 3501 SENSOR
TYPE value is set to THERM(0)/THERM(1).
Defines the alarm limit for motor temperature measurement.
Alarm MOTOR TEMP (2010) indication is given when the
limit is exceeded. When parameter 3501 SENSOR TYPE
value is set to THERM(0)/THERM(1): 1 = alarm.
Alarm limit
Def/FbEq
5
6
7
0
-
Defines the fault trip limit for motor temperature
measurement. The drive trips on fault MOT OVERTEMP
(0009) when the limit is exceeded. When parameter 3501
SENSOR TYPE value is set to THERM(0)/THERM(1): 1 =
fault.
Fault limit
Enables current feed from analog output AO. Parameter
setting overrides parameter group 15 ANALOG OUTPUTS
settings.
With PTC the output current is 1.6 mA.
With Pt 100 the output current is 9.1 mA.
Disabled
Enabled
0
1
Time periods 1 to 4 and booster signal. See section Timed
functions on page 163.
Selects the source for the timed function enable signal.
NOT SEL
NOT SEL
Timed function is not selected.
0
DI1
Digital input DI. Timed function enable on the rising edge of 1
DI1.
DI2
DI3
DI4
See selection DI1.
See selection DI1.
See selection DI1.
2
3
4
DI5
ACTIVE
DI1(INV)
5
7
-1
DI2(INV)
See selection DI1.
Timed function is always enabled.
Inverted digital input DI1. Timed function enable on the
falling edge of DI1.
See selection DI1(INV).
DI3(INV)
DI4(INV)
DI5(INV)
See selection DI1(INV).
See selection DI1(INV).
See selection DI1(INV).
-3
-4
-5
x…x
3505 AO
EXCITATION
DISABLE
ENABLE
36 TIMED
FUNCTIONS
3601 TIMERS
ENABLE
0
DISABLE
-2
Actual signals and parameters 259
All parameters
No. Name/Value
Description
3602 START TIME 1 Defines the daily start time 1. The time can be changed in
2-second steps.
00:00:00…
hours:minutes:seconds.
23:59:58
Example: If parameter value is set to 07:00:00, timed
function 1 is activated at 7:00 (7 a.m).
Def/FbEq
00:00:00
3603 STOP TIME 1
00:00:00
00:00:00…
23:59:58
3604 START DAY 1
MONDAY
TUESDAY
WEDNESDAY
Defines the daily stop time 1. The time can be changed in
2-second steps.
hours:minutes:seconds.
Example: If parameter value is set to 18:00:00, timed
function 1 is deactivated at 18:00 (6 p.m).
Defines the start day 1.
MONDAY
Example: If parameter value is set to MONDAY, timed
function 1 is active from Monday midnight (00:00:00).
1
2
3
THURSDAY
FRIDAY
SATURDAY
SUNDAY
3605 STOP DAY 1
Defines the stop day 1.
See parameter 3604 START DAY 1.
Example: If parameter is set to FRIDAY, timed function 1 is
deactivated on Friday midnight (23:59:58).
3606 START TIME 2 See parameter 3602 START TIME 1.
See parameter 3602 START TIME 1.
3607 STOP TIME 2 See parameter 3603 STOP TIME 1.
See parameter 3603 STOP TIME 1.
3608 START DAY 2 See parameter 3604 START DAY 1.
3609 STOP DAY 2
See parameter 3604 START DAY 1.
See parameter 3605 STOP DAY 1.
See parameter 3605 STOP DAY 1.
3610 START TIME 3 See parameter 3602 START TIME 1.
See parameter 3602 START TIME 1.
3611 STOP TIME 3 See parameter 3603 STOP TIME 1.
3612 START DAY 3
3613 STOP DAY 3
See parameter 3603 STOP TIME 1.
See parameter 3604 START DAY 1.
See parameter 3604 START DAY 1.
See parameter 3605 STOP DAY 1.
See parameter 3605 STOP DAY 1.
3614 START TIME 4 See parameter 3602 START TIME 1.
See parameter 3602 START TIME 1.
3615 STOP TIME 4
See parameter 3603 STOP TIME 1.
4
5
6
7
MONDAY
260 Actual signals and parameters
All parameters
No.
Name/Value
3616 START DAY 4
3617 STOP DAY 4
3622 BOOSTER
SEL
NOT SEL
DI1
DI2
DI3
DI4
DI5
DI1(INV)
DI2(INV)
DI3(INV)
DI4(INV)
DI5(INV)
3623 BOOSTER
TIME
00:00:00…
23:59:58
Description
See parameter 3603 STOP TIME 1.
See parameter 3604 START DAY 1.
Def/FbEq
See parameter 3604 START DAY 1.
See parameter 3605 STOP DAY 1.
See parameter 3605 STOP DAY 1.
Selects the source for the booster activation signal.
NOT SEL
No booster activation signal
0
Digital input DI1. 1 = active, 0 = inactive.
See selection DI1.
See selection DI1.
1
2
3
See selection DI1.
See selection DI1.
Inverted digital input DI1. 0 = active, 1 = inactive.
See selection DI1(INV).
See selection DI1(INV).
See selection DI1(INV).
See selection DI1(INV).
Defines the time inside which the booster is deactivated
after the booster activation signal is switched off.
hours:minutes:seconds
Example: If parameter 3622 BOOSTER SEL is set to DI1
and 3623 BOOSTER TIME is set to 01:30:00, the booster is
active for 1 hour and 30 minutes after digital input DI is
deactivated.
4
5
-1
-2
-3
-4
-5
00:00:00
Booster active
DI
Booster time
3626 TIMED FUNC 1 Selects the time periods for TIMED FUNC 1 SRC. Timed
SRC
function can consist of 0…4 time periods and a booster.
NOT SEL
No time periods selected
T1
Time period 1
NOT SEL
0
1
T2
T1+T2
T3
Time period 2
Time periods 1 and 2
Time period 3
2
3
4
T1+T3
T2+T3
Time periods 1 and 3
Time periods 2 and 3
5
6
T1+T2+T3
Time periods 1, 2 and 3
7
Actual signals and parameters 261
All parameters
No.
Name/Value
T4
T1+T4
Description
Time period 4
Time periods 1 and 4
Def/FbEq
8
9
T2+T4
T1+T2+T4
T3+T4
Time periods 2 and 4
Time periods 1, 2 and 4
Time periods 4 and 3
10
11
12
T1+T3+T4
T2+T3+T4
Time periods 1, 3 and 4
Time periods 2, 3 and 4
13
14
T1+T2+T3+T4
BOOSTER
T1+B
Time periods 1, 2, 3 and 4
Booster
Booster and time period 1
15
16
17
Booster and time period 2
Booster and time periods 1 and 2
Booster and time period 3
Booster and time periods 1 and 3
Booster and time periods 2 and 3
Booster and time periods 1, 2 and 3
Booster and time period 4
Booster and time periods 1 and 4
Booster and time periods 2 and 4
Booster and time periods 1, 2 and 4
Booster and time periods 3 and 4
Booster and time periods 1, 3 and 4
Booster and time periods 2, 3 and 4
Booster and time periods 1, 2, 3 and 4
See parameter 3626 TIMED FUNC 1 SRC.
18
19
20
21
22
23
24
25
26
27
28
29
30
31
T2+B
T1+T2+B
T3+B
T1+T3+B
T2+T3+B
T1+T2+T3+B
T4+B
T1+T4+B
T2+T4+B
T1+T2+T4+B
T3+T4+B
T1+T3+T4+B
T2+T3+T4+B
T1+2+3+4+B
3627 TIMED FUNC 2
SRC
See parameter 3626 TIMED FUNC 1 SRC.
3628 TIMED FUNC 3 See parameter 3626 TIMED FUNC 1 SRC.
SRC
See parameter 3626 TIMED FUNC 1 SRC.
3629 TIMED FUNC 4 See parameter 3626 TIMED FUNC 1 SRC.
SRC
See parameter 3626 TIMED FUNC 1 SRC.
40 PROCESS PID
SET 1
Process PID (PID1) control parameter set 1. See section
PID control on page 149.
4001 GAIN
Defines the gain for the process PID controller. High gain
may cause speed oscillation.
0.1…100.0
1.0
Gain. When value is set to 0.1, the PID controller output
1 = 0.1
changes one-tenth as much as the error value. When value
is set to 100, the PID controller output changes one hundred
times as much as the error value.
262 Actual signals and parameters
All parameters
No. Name/Value
Description
Def/FbEq
4002 INTEGRATION Defines the integration time for the process PID1 controller. 60.0 s
TIME
The integration time defines the rate at which the controller
output changes when the error value is constant. The
shorter the integration time, the faster the continuous error
value is corrected. Too short an integration time makes the
control unstable.
A = Error
B = Error value step
C = Controller output with gain = 1
D = Controller output with gain = 10
A
B
D (4001 = 10)
C (4001 = 1)
t
4002
0.0 = NOT SEL Integration time. If parameter value is set to zero, integration 1 = 0.1 s
0.1…3600.0 s (I-part of the PID controller) is disabled.
Actual signals and parameters 263
All parameters
No. Name/Value
4003 DERIVATION
TIME
Description
Def/FbEq
Defines the derivation time for the process PID controller.
0.0 s
Derivative action boosts the controller output if the error
value changes. The longer the derivation time, the more the
speed controller output is boosted during the change. If the
derivation time is set to zero, the controller works as a PI
controller, otherwise as a PID controller.
The derivation makes the control more responsive for
disturbances.
The derivative is filtered with a 1-pole filter. Filter time
constant is defined by parameter 4004 PID DERIV FILTER.
Error
Process error value
100%
0%
PID output
Gain
4001
t
D-part of controller output
t
4003
0.0…10.0 s
4004 PID DERIV
FILTER
0.0…10.0 s
4005 ERROR
VALUE INV
NO
YES
4006 UNITS
0…68
4007 UNIT SCALE
Derivation time. If parameter value is set to zero, the
derivative part of the PID controller is disabled.
1 = 0.1 s
Defines the filter time constant for the derivative part of the
process PID controller. Increasing the filter time smooths
the derivative and reduces noise.
Filter time constant. If parameter value is set to zero, the
derivative filter is disabled.
Selects the relationship between the feedback signal and
drive speed.
Normal: A decrease in feedback signal increases drive
speed. Error = Reference - Feedback
Inverted: A decrease in feedback signal decreases drive
speed. Error = Feedback - Reference
Selects the unit for PID controller actual values.
1.0 s
1 = 0.1 s
NO
0
1
%
See parameter 3405 OUTPUT1 UNIT selections in the
given range.
Defines the decimal point location for PID controller actual
values.
1
264 Actual signals and parameters
All parameters
No.
Name/Value
0…4
Description
Example: PI (3.141593)
4007 value
0
1
2
3
4
4008 0% VALUE
Def/FbEq
1=1
Entry
00003
00031
00314
03142
31416
Display
3
3.1
3.14
3.142
3.1416
Defines together with parameter 4009 100% VALUE the
scaling applied to the PID controller’s actual values.
Units (4006)
Scale (4007)
0.0
+1000%
4009
4008
0%
100%
Internal
scale (%)
-1000%
x…x
KEYPAD
Unit and range depend on the unit and scale defined by
parameters 4006 UNITS and 4007 UNIT SCALE.
Defines together with parameter 4008 0% VALUE the
100.0
scaling applied to the PID controller’s actual values.
Unit and range depend on the unit and scale defined by
parameters 4006 UNITS and 4007 UNIT SCALE.
Selects the source for the process PID controller reference AI1
signal.
Control panel
0
AI1
Analog input AI1
1
AI2
COMM
Analog input AI2
Fieldbus reference REF2
2
8
COMM+AI1
Summation of fieldbus reference REF2 and analog input
AI1. See section Reference selection and correction on
page 308.
Multiplication of fieldbus reference REF2 and analog input
AI1. See section Reference selection and correction on
page 308.
9
4009 100% VALUE
x…x
4010 SET POINT
SEL
COMM*AI1
10
DI3U,4D(RNC) Digital input DI3: Reference increase. Digital input DI4:
11
Reference decrease. Stop command resets the reference to
zero. The reference is not saved if the control source is
changed from EXT1 to EXT2, from EXT2 to EXT1 or from
LOC to REM.
Actual signals and parameters 265
All parameters
No.
Name/Value
DI3U,4D(NC)
AI1+AI2
AI1*AI2
AI1-AI2
AI1/AI2
INTERNAL
DI4U,5D(NC)
FREQ INPUT
SEQ PROG
OUT
4011 INTERNAL
SETPNT
x…x
4012 SETPOINT
MIN
Description
Digital input DI3: Reference increase. Digital input DI4:
Reference decrease. The program stores the active
reference (not reset by a stop command). The reference is
not saved if the control source is changed from EXT1 to
EXT2, from EXT2 to EXT1 or from LOC to REM.
Reference is calculated with the following equation:
REF = AI1(%) + AI2(%) - 50%
Def/FbEq
12
Reference is calculated with the following equation:
REF = AI1(%) · (AI2(%) / 50%)
Reference is calculated with the following equation:
REF = AI1(%) + 50% - AI2(%)
Reference is calculated with the following equation:
REF = AI1(%) · (50% / AI2 (%))
A constant value defined by parameter 4011 INTERNAL
SETPNT.
See selection DI3U,4D(NC).
Frequency input
Sequence programming output. See parameter group 84
SEQUENCE PROG.
Selects a constant value as process PID controller
reference, when parameter 4010 SET POINT SEL value is
set to INTERNAL.
Unit and range depend on the unit and scale defined by
parameters 4006 UNITS and 4007 UNIT SCALE.
Defines the minimum value for the selected PID reference
signal source. See parameter 4010 SET POINT SEL.
15
14
16
17
19
31
32
33
40
0.0%
-500.0…500.0% Value in percent.
1 = 0.1%
Example: Analog input AI1 is selected as the PID reference
source (value of parameter 4010 is AI1). The reference
minimum and maximum correspond to the 1301 MINIMUM
AI1 and 1302 MAXIMUM AI1 settings as follows:
Ref
Ref
4013
(MAX)
MAX > MIN
MIN > MAX
4013
(MAX)
4012
(MIN)
1301
4013 SETPOINT
MAX
4012
(MIN)
1302 AI1 (%)
1301
1302 AI1 (%)
Defines the maximum value for the selected PID reference
signal source. See parameters 4010 SET POINT SEL and
4012 SETPOINT MIN.
-500.0…500.0% Value in percent
100.0%
1 = 0.1%
266 Actual signals and parameters
All parameters
No. Name/Value
4014 FBK SEL
Description
Def/FbEq
Selects the process actual value (feedback signal) for the
ACT1
process PID controller: The sources for the variables ACT1
and ACT2 are further defined by parameters 4016 ACT1
INPUT and 4017 ACT2 INPUT.
ACT1
ACT1-ACT2
ACT1+ACT2
ACT1
Subtraction of ACT1 and ACT2
Addition of ACT1 and ACT2
1
2
3
ACT1*ACT2
ACT1/ACT2
MIN(ACT1,2)
Multiplication of ACT1 and ACT2
Division of ACT1 and ACT2
Selects the smaller of ACT1 and ACT2
4
5
6
MAX(ACT1,2)
sqrt(ACT1-2)
sqA1+sqA2
Selects the higher of ACT1 and ACT2
Square root of the subtraction of ACT1 and ACT2
Addition of the square root of ACT1 and the square root of
ACT2
7
8
9
sqrt(ACT1)
COMM FBK 1
COMM FBK 2
4015 FBK
MULTIPLIER
10
11
12
0.000
AI1
AI2
Square root of ACT1
Signal 0158 PID COMM VALUE 1 value
Signal 0159 PID COMM VALUE 2 value
Defines an extra multiplier for the value defined by
parameter 4014 FBK SEL. Parameter is used mainly in
applications where feedback value is calculated from
another variable (eg flow from pressure difference).
Multiplier. If parameter value is set to zero, no multiplier is
used.
Defines the source for actual value 1 (ACT1). See also
parameter 4018 ACT1 MINIMUM.
Uses analog input 1 for ACT1
Uses analog input 2 for ACT1
1
2
CURRENT
TORQUE
POWER
Uses current for ACT1
Uses torque for ACT1
Uses power for ACT1
3
4
5
COMM ACT 1
COMM ACT 2
FREQ INPUT
Uses value of signal 0158 PID COMM VALUE 1 for ACT1
Uses value of signal 0159 PID COMM VALUE 2 for ACT1
Frequency input
6
7
8
Defines the source for actual value ACT2. See also
parameter 4020 ACT2 MINIMUM.
AI2
-32.768…
32.767
4016 ACT1 INPUT
4017 ACT2 INPUT
See parameter 4016 ACT1 INPUT.
1 = 0.001
AI2
Actual signals and parameters 267
All parameters
No. Name/Value
4018 ACT1
MINIMUM
Description
Sets the minimum value for ACT1.
Scales the source signal used as the actual value ACT1
(defined by parameter 4016 ACT1 INPUT). For parameter
4016 values 6 (COMM ACT 1) and 7 (COMM ACT 2)
scaling is not done.
Par
4016
1
2
3
4
5
Source
Analog input 1
Analog input 2
Current
Torque
Power
Source min.
1301 MINIMUM AI1
1304 MINIMUM AI2
0
-2 · nominal torque
-2 · nominal power
Def/FbEq
0%
Source max.
1302 MAXIMUM AI1
1305 MAXIMUM AI2
2 · nominal current
2 · nominal torque
2 · nominal power
A = Normal; B = Inversion (ACT1 minimum > ACT1
maximum)
ACT1 (%)
ACT1 (%)
4019
A
4018
Source max.
Source min.
Source signal
4018
B
4019
Source min.
Source max.
Source signal
-1000…1000% Value in percent
1 = 1%
4019 ACT1
Defines the maximum value for variable ACT1 if an analog 100%
MAXIMUM
input is selected as a source for ACT1. See parameter 4016
ACT1 INPUT. The minimum (4018 ACT1 MINIMUM) and
maximum settings of ACT1 define how the voltage/current
signal received from the measuring device is converted to a
percentage value used by the process PID controller.
See parameter 4018 ACT1 MINIMUM.
-1000…1000% Value in percent
1 = 1%
4020 ACT2
MINIMUM
See parameter 4018 ACT1 MINIMUM.
-1000…1000% See parameter 4018.
4021 ACT2
See parameter 4019 ACT1 MAXIMUM.
MAXIMUM
-1000…1000% See parameter 4019.
4022 SLEEP
SELECTION
NOT SEL
0%
1 = 1%
100%
1 = 1%
Activates the sleep function and selects the source for the NOT SEL
activation input. See section Sleep function for the process
PID (PID1) control on page 153.
No sleep function selected
0
268 Actual signals and parameters
All parameters
No.
Name/Value
DI1
Description
Def/FbEq
The function is activated/deactivated through digital input
1
DI1.1 = activation, 0 = deactivation.
The internal sleep criteria set by parameters 4023 PID
SLEEP LEVEL and 4025 WAKE-UP DEV are not effective.
The sleep start and stop delay parameters 4024 PID SLEEP
DELAY and 4026 WAKE-UP DELAY are effective.
DI2
DI3
See selection DI1.
See selection DI1.
2
3
DI4
DI5
INTERNAL
See selection DI1.
See selection DI1.
Activated and deactivated automatically as defined by
parameters 4023 PID SLEEP LEVEL and 4025 WAKE-UP
DEV.
The function is activated/deactivated through inverted digital
input DI1. 1 = deactivation, 0 = activation.
The internal sleep criteria set by parameters 4023 PID
SLEEP LEVEL and 4025 WAKE-UP DEV are not effective.
The sleep start and stop delay parameters 4024 PID SLEEP
DELAY and 4026 WAKE-UP DELAY are effective.
See selection DI1(INV).
See selection DI1(INV).
See selection DI1(INV).
See selection DI1(INV).
4
5
7
DI1(INV)
DI2(INV)
DI3(INV)
DI4(INV)
DI5(INV)
-1
-2
-3
-4
-5
Actual signals and parameters 269
All parameters
No. Name/Value
4023 PID SLEEP
LEVEL
Description
Defines the start limit for the sleep function. If the motor
speed is below a set level (4023) longer than the sleep
delay (4024), the drive shifts to the sleeping mode: The
motor is stopped and the control panel shows alarm
message PID SLEEP (2018).
Parameter 4022 SLEEP SELECTION must be set to
INTERNAL.
Wake-up delay
(4026)
PID process feedback
PID ref
Def/FbEq
0.0 Hz /
0 rpm
t
Wake-up level
deviation (4025)
t
PID output level
tsd = Sleep delay
(4024)
t < tsd
Control
panel:
tsd
PID SLEEP
Sleep level
(4023)
Stop
Start
t
0.0…500.0 Hz / Sleep start level
0…30000 rpm
4024 PID SLEEP
Defines the delay for the sleep start function. See parameter
DELAY
4023 PID SLEEP LEVEL. When the motor speed falls below
the sleep level, the counter starts. When the motor speed
exceeds the sleep level, the counter is reset.
0.0…3600.0 s Sleep start delay
1 = 0.1 Hz
1 rpm
60.0 s
1 = 0.1 s
270 Actual signals and parameters
All parameters
No. Name/Value
Description
Def/FbEq
4025 WAKE-UP DEV Defines the wake-up deviation for the sleep function. The
0
drive wakes up if the process actual value deviation from
the PID reference value exceeds the set wake-up deviation
(4025) longer than the wake-up delay (4026). Wake-up level
depends on parameter 4005 ERROR VALUE INV settings.
If parameter 4005 is set to 0:
Wake-up level = PID reference (4010) - Wake-up deviation
(4025).
If parameter 4005 is set to 1:
Wake-up level = PID reference (4010) + Wake-up deviation
(4025)
PID reference
Wake-up level
when 4005 = 1
4025
4025
t
Wake-up level
when 4005 = 0
SET 1
See also figures for parameter 4023 PID SLEEP LEVEL.
Unit and range depend on the unit and scale defined by
parameters 4026 WAKE-UP DELAY and 4007 UNIT
SCALE.
Defines the wake-up delay for the sleep function. See
parameter 4023 PID SLEEP LEVEL.
Wake-up delay
Defines the source from which the drive reads the signal
that selects between PID parameter set 1 and 2.
PID parameter set 1 is defined by parameters 4001…4026.
PID parameter set 2 is defined by parameters 4101…4126.
PID SET 1 is active.
0
DI1
DI2
DI3
Digital input DI1. 1 = PID SET 2, 0 = PID SET 1.
See selection DI1.
See selection DI1.
1
2
3
DI4
DI5
See selection DI1.
See selection DI1.
4
5
x…x
4026 WAKE-UP
DELAY
0.00…60.00 s
4027 PID 1 PARAM
SET
0.50 s
1 = 0.01 s
SET 1
SET 2
PID SET 2 is active.
7
TIMED FUNC 1 Timed PID SET 1/2 control. Timed function 1 inactive = PID 8
SET 1, timed function 1 active = PID SET 2. See parameter
group 36 TIMED FUNCTIONS.
TIMED FUNC 2 See selection TIMED FUNC 1.
TIMED FUNC 3 See selection TIMED FUNC 1.
9
10
TIMED FUNC 4 See selection TIMED FUNC 1.
DI1(INV)
Inverted digital input DI1. 0 = PID SET 2, 1 = PID SET 1.
11
-1
Actual signals and parameters 271
All parameters
No.
Name/Value
DI2(INV)
DI3(INV)
Description
See selection DI1(INV).
See selection DI1(INV).
Def/FbEq
-2
-3
DI4(INV)
DI5(INV)
See selection DI1(INV).
See selection DI1(INV).
-4
-5
41 PROCESS PID
SET 2
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
Process PID (PID1) control parameter set 2. See section
PID control on page 149.
GAIN
See parameter 4001 GAIN.
INTEGRATION See parameter 4002 INTEGRATION TIME.
TIME
DERIVATION
See parameter 4003 DERIVATION TIME.
TIME
PID DERIV
See parameter 4004 PID DERIV FILTER.
FILTER
ERROR
See parameter 4005 ERROR VALUE INV.
VALUE INV
UNITS
See parameter 4006 UNITS.
UNIT SCALE
See parameter 4007 UNIT SCALE.
0% VALUE
See parameter 4008 0% VALUE.
100% VALUE See parameter 4009 100% VALUE.
SET POINT
See parameter 4010 SET POINT SEL.
SEL
4111 INTERNAL
SETPNT
4112 SETPOINT
MIN
4113 SETPOINT
MAX
See parameter 4011 INTERNAL SETPNT.
4114 FBK SEL
4115 FBK
MULTIPLIER
4116 ACT1 INPUT
See parameter 4014 FBK SEL.
See parameter 4015 FBK MULTIPLIER.
4117 ACT2 INPUT
4118 ACT1
MINIMUM
See parameter 4017 ACT2 INPUT.
See parameter 4018 ACT1 MINIMUM.
4119 ACT1
MAXIMUM
4120 ACT2
MINIMUM
See parameter 4019 ACT1 MAXIMUM.
4121 ACT2
MAXIMUM
See parameter 4021 ACT2 MAXIMUM.
4122 SLEEP
SELECTION
4123 PID SLEEP
LEVEL
4124 PID SLEEP
DELAY
See parameter 4022 SLEEP SELECTION.
See parameter 4012 SETPOINT MIN.
See parameter 4013 SETPOINT MAX.
See parameter 4016 ACT1 INPUT.
See parameter 4020 ACT2 MINIMUM.
See parameter 4023 PID SLEEP LEVEL.
See parameter 4024 PID SLEEP DELAY.
272 Actual signals and parameters
All parameters
No. Name/Value
4125 WAKE-UP DEV
4126 WAKE-UP
DELAY
42 EXT / TRIM PID
Description
See parameter 4025 WAKE-UP DEV.
See parameter 4026 WAKE-UP DELAY.
4204 PID DERIV
FILTER
4205 ERROR
VALUE INV
See parameter 4004 PID DERIV FILTER.
4206
4207
4208
4209
4210
See parameter 4006 UNITS.
See parameter 4007 UNIT SCALE.
See parameter 4008 0% VALUE.
See parameter 4009 100% VALUE.
See parameter 4010 SET POINT SEL.
Def/FbEq
External/Trim PID (PID2) control. See section PID control
on page 149.
4201 GAIN
See parameter 4001 GAIN.
4202 INTEGRATION See parameter 4002 INTEGRATION TIME.
TIME
4203 DERIVATION
See parameter 4003 DERIVATION TIME.
TIME
UNITS
UNIT SCALE
0% VALUE
100% VALUE
SET POINT
SEL
4211 INTERNAL
SETPNT
4212 SETPOINT
MIN
4213 SETPOINT
MAX
4214 FBK SEL
4215 FBK
MULTIPLIER
See parameter 4005 ERROR VALUE INV.
See parameter 4011 INTERNAL SETPNT.
See parameter 4012 SETPOINT MIN.
See parameter 4013 SETPOINT MAX.
See parameter 4014 FBK SEL.
See parameter 4015 FBK MULTIPLIER.
4216 ACT1 INPUT
4217 ACT2 INPUT
See parameter 4016 ACT1 INPUT.
See parameter 4017 ACT2 INPUT.
4218 ACT1
MINIMUM
4219 ACT1
MAXIMUM
4220 ACT2
MINIMUM
See parameter 4018 ACT1 MINIMUM.
4221 ACT2
MAXIMUM
4228 ACTIVATE
See parameter 4021 ACT2 MAXIMUM.
See parameter 4019 ACT1 MAXIMUM.
See parameter 4020 ACT2 MINIMUM.
NOT SEL
NOT SEL
Selects the source for the external PID function activation
signal. Parameter 4230 TRIM MODE must be set to NOT
SEL.
No external PID control activation selected
DI1
DI2
Digital input DI1. 1 = active, 0 = inactive.
See selection DI1.
1
2
0
Actual signals and parameters 273
All parameters
No.
Name/Value
DI3
DI4
Description
See selection DI1.
See selection DI1.
Def/FbEq
3
4
DI5
DRIVE RUN
ON
See selection DI1.
Activation at drive start. Start (drive running) = active.
Activation at drive power-up. Power-up (drive powered) =
active.
5
7
8
TIMED FUNC 1 Activation by a timed function. Timed function 1 active = PID 9
control active. See parameter group 36 TIMED
FUNCTIONS.
TIMED FUNC 2 See selection TIMED FUNC 1.
10
TIMED FUNC 3 See selection TIMED FUNC 1.
TIMED FUNC 4 See selection TIMED FUNC 1.
DI1(INV)
Inverted digital input DI1. 0 = active, 1 = inactive.
DI2(INV)
DI3(INV)
DI4(INV)
DI5(INV)
4229 OFFSET
See selection DI1(INV).
See selection DI1(INV).
See selection DI1(INV).
See selection DI1(INV).
Defines the offset for the external PID controller output.
When PID controller is activated, controller output starts
from the offset value. When PID controller is deactivated,
controller output is reset to the offset value.
Parameter 4230 TRIM MODE must be set to NOT SEL.
0.0…100.0%
Value in percent
4230 TRIM MODE
Activates the trim function and selects between the direct
and proportional trimming. With trimming it is possible to
combine a corrective factor to the drive reference. See
section Reference trimming on page 129.
NOT SEL
No trim function selected
PROPORTION Active. The trimming factor is proportional to the rpm/Hz
AL
reference before trimming (REF1).
DIRECT
Active. The trimming factor is relative to a fixed maximum
limit used in the reference control loop (maximum speed,
frequency or torque).
4231 TRIM SCALE
Defines the multiplier for the trimming function. See section
Reference trimming on page 129.
-100.0…100.0% Multiplier
11
12
-1
-2
-3
-4
-5
0.0%
1 = 0.1%
NOT SEL
0
1
2
0.0%
1 = 0.1%
4232 CORRECTION Selects the trim reference. See section Reference trimming PID2REF
SRC
on page 129.
PID2REF
PID2 reference selected by parameter 4210 (ie signal 0129 1
PID 2 SETPNT value)
PID2OUTPUT PID2 output, ie signal 0127 PID 2 OUTPUT value
2
274 Actual signals and parameters
All parameters
No. Name/Value
4233 TRIM
SELECTION
SPEED/FREQ
TORQUE
43 MECH BRK
CONTROL
4301 BRAKE OPEN
DLY
0.00…2.50 s
4302 BRAKE OPEN
LVL
0.0…180.0%
4303 BRAKE
CLOSE LVL
0.0…100.0%
4304 FORCED
OPEN LVL
Description
Selects whether the trimming is used for correcting the
speed or torque reference. See section Reference trimming
on page 129.
Speed reference trimming
Torque reference trimming (only for REF2 (%))
Control of a mechanical brake. See section Control of a
mechanical brake on page 157.
Def/FbEq
SPEED/F
REQ
Defines the brake open delay (= the delay between the
internal open brake command and the release of the motor
speed control). The delay counter starts when the motor
current/torque/speed has risen to the level required at brake
release (parameter 4302 BRAKE OPEN LVL or 4304
FORCED OPEN LVL) and the motor has been magnetized.
Simultaneously with the start of the counter, the brake
function energizes the relay output controlling the brake and
the brake starts opening.
Delay time
Defines the motor starting torque/current at brake release.
After start the drive current/torque is frozen to the set value,
until the motor is magnetized.
Value in percent of the nominal torque TN (in vector control)
or the nominal current I2N (in scalar control).
The control mode is selected by parameter 9904 MOTOR
CTRL MODE.
Defines the brake close speed. After stop the brake is
closed when drive speed falls below the set value.
Value in percent of the nominal speed (in vector control) or
the nominal frequency (in scalar control). The control mode
is selected by parameter 9904 MOTOR CTRL MODE.
0.20 s
Defines the speed at brake release. Parameter setting
overrides parameter 4302 BRAKE OPEN LVL setting. After
start, the drive speed is frozen to the set value, until the
motor is magnetized.
The purpose of this parameter is to generate enough start
torque to prevent the motor rotating into the wrong direction
because of the motor load.
0.0 = NOT SEL Value in percent of the maximum frequency (in scalar
0.0…100.0%
control) or the maximum speed (in vector control). If
parameter value is set to zero, the function is disabled. The
control mode is selected by parameter 9904 MOTOR CTRL
MODE.
4305 BRAKE MAGN Defines motor magnetizing time. After start drive
DELAY
current/torque/speed is frozen to the value defined by
parameter 4302 BRAKE OPEN LVL or 4304 FORCED
OPEN LVL for the set time.
0
1
1 = 0.01 s
100%
1 = 0.1%
4.0%
1 = 0.1%
0.0 =
NOT SEL
1 = 0.1%
0 = NOT
SEL
Actual signals and parameters 275
All parameters
No.
Name/Value
0 = NOT SEL
0…10000 ms
4306 RUNTIME
FREQ LVL
Description
magnetizing time. If parameter value is set to zero, the
function is disabled.
Defines the brake close speed. When frequency falls below
the set level during run, the brake is closed. The brake is reopened when the requirements set by parameters
4301…4305 are met.
Def/FbEq
1 = 1 ms
0.0 =
NOT SEL
0.0 = NOT SEL Value in percent of the maximum frequency (in scalar
1 = 0.1%
0.0…100.0%
control) or the maximum speed (in vector control). If
parameter value is set to zero, the function is disabled. The
control mode is selected by parameter 9904 MOTOR CTRL
MODE.
4307 BRK OPEN
Selects the torque (in vector control) or current (in scalar
PAR 4302
LVL SEL
control) applied at brake release.
PAR 4302
Value of parameter 4302 BRAKE OPEN LVL used.
1
MEMORY
Torque value (in vector control) or current value (in scalar
2
control) saved in parameter 0179 BRAKE TORQUE MEM
used.
Useful in applications where initial torque is needed to
prevent unintended movement when the mechanical brake
is released.
50 ENCODER
Encoder connection.
For more information, see MTAC-01 pulse encoder interface
module user’s manual (3AFE68591091 [English]).
5001 PULSE NR
States the number of encoder pulses per one revolution.
1024 ppr
32…16384 ppr Pulse number in pulses per round (ppr)
1 = 1 ppr
5002 ENCODER
Enables the encoder.
DISABLE
ENABLE
DISABLE
Disabled
0
ENABLE
5003 ENCODER
FAULT
FAULT
ALARM
Enabled
Defines the operation of the drive if a failure is detected in
communication between the pulse encoder and the pulse
encoder interface module, or between the module and the
drive.
1
FAULT
The drive trips on fault ENCODER ERR (0023).
The drive generates alarm ENCODER ERROR (2024).
1
2
5010 Z PLS ENABLE Enables the encoder zero (Z) pulse. Zero pulse is used for
position reset.
DISABLE
DISABLE
ENABLE
5011 POSITION
RESET
Disabled
Enabled
Enables the position reset.
0
1
DISABLE
Disabled
Enabled
0
1
DISABLE
ENABLE
276 Actual signals and parameters
All parameters
No. Name/Value
51 EXT COMM
MODULE
Description
Def/FbEq
The parameters need to be adjusted only when a fieldbus
adapter module (optional) is installed and activated by
parameter 9802 COMM PROT SEL. For more details on the
parameters, refer to the manual of the fieldbus module and
chapter Fieldbus control with fieldbus adapter on page 325.
These parameter settings will remain the same even though
the macro is changed.
Note: In adapter module the parameter group number is 1.
5101 FBA TYPE
Displays the type of the connected fieldbus adapter module.
NOT DEFINED Fieldbus module is not found, or it is not properly
0
connected, or parameter 9802 COMM PROT SEL setting is
not EXT FBA.
PROFIBUS-DP Profibus adapter module
1
CANopen
DEVICENET
5102 FB PAR 2
…
…
5126 FB PAR 26
5127 FBA PAR
REFRESH
DONE
REFRESH
5128 FILE CPI FW
REV
CANopen adapter module
DeviceNet adapter module
These parameters are adapter module-specific. For more
information, see the module manual. Note that not all of
these parameters are necessarily visible.
Validates any changed adapter module configuration
parameter settings. After refreshing, the value reverts
automatically to DONE.
Refreshing done
32
37
0
Refreshing
1
Displays the parameter table revision of the fieldbus adapter
module mapping file stored in the memory of the drive.
Format is xyz where:
• x = major revision number
• y = minor revision number
• x = correction letter.
0000…FFFF
hex
5129 FILE CONFIG
ID
0…65535
5130 FILE CONFIG
REV
0…65535
5131 FBA STATUS
IDLE
EXECUT INIT
Parameter table revision
1=1
Displays the drive type code of the fieldbus adapter module
mapping file stored in the memory of the drive.
Drive type code of fieldbus adapter module mapping file
1=1
Displays the fieldbus adapter module mapping file revision
stored in the memory of the drive in decimal format.
Example: 1 = revision 1.
Mapping file revision
1=1
Displays the status of the fieldbus adapter module
communication.
Adapter is not configured.
Adapter is initializing.
0
1
Actual signals and parameters 277
All parameters
No.
Name/Value
TIME OUT
CONFIG
ERROR
Description
Def/FbEq
A time-out has occurred in the communication between the 2
adapter and the drive.
Adapter configuration error: The major or minor revision
3
code of the common program revision in the fieldbus
adapter module is not the revision required by the module
(see parameter 5132 FBA CPI FW REV) or mapping file
upload has failed more than three times.
OFF-LINE
ON-LINE
RESET
Adapter is off-line.
Adapter is on-line.
Adapter is performing a hardware reset.
Displays the common program revision of the adapter
module in format axyz, where:
• a = major revision number
• xy = minor revision numbers
• z = correction letter.
Example: 190A = revision 1.90A
Common program revision of the adapter module
5133 FBA APPL FW Displays the application program revision of the adapter
REV
module in format axyz, where:
• a = major revision number
• xy = minor revision numbers
• z = correction letter.
Example: 190A = revision 1.90A
Application program revision of the adapter module
52 PANEL COMM
Communication settings for the control panel port on the
drive
4
5
6
5132 FBA CPI FW
REV
1=1
1=1
5201 STATION ID
Defines the address of the drive. Two units with the same
address are not allowed on-line.
1
1…247
5202 BAUD RATE
1.2 kb/s
Address
Defines the transfer rate of the link.
1.2 kbit/s
1=1
9.6 kb/s
1=
0.1 kbit/s
2.4 kb/s
4.8 kb/s
9.6 kb/s
2.4 kbit/s
4.8 kbit/s
9.6 kbit/s
19.2 kb/s
38.4 kb/s
57.6 kb/s
19.2 kbit/s
38.4 kbit/s
57.6 kbit/s
115.2 kb/s
5203 PARITY
8 NONE 1
115.2 kbit/s
Defines the use of parity and stop bit(s). The same setting
must be used in all on-line stations.
8 data bits, no parity bit, one stop bit
0
8 NONE 2
8 data bits, no parity bit, two stop bits
1
8 NONE 1
278 Actual signals and parameters
All parameters
No.
Name/Value
8 EVEN 1
8 ODD 1
5204 OK
MESSAGES
0…65535
5205 PARITY
ERRORS
0…65535
Description
8 data bits, even parity indication bit, one stop bit
8 data bits, odd parity indication bit, one stop bit
Def/FbEq
2
3
Number of valid messages received by the drive. During
normal operation, this number increases constantly.
Number of messages
Number of characters with a parity error received from the
Modbus link. If the number is high, check that the parity
settings of the devices connected on the bus are the same.
Note: High electromagnetic noise levels generate errors.
Number of characters
0
5206 FRAME
ERRORS
Number of characters with a framing error received by the
Modbus link. If the number is high, check that the
communication speed settings of the devices connected on
the bus are the same.
Note: High electromagnetic noise levels generate errors.
0…65535
Number of characters
5207 BUFFER
Number of characters which overflow the buffer, ie number
OVERRUNS
of characters which exceed the maximum message length,
128 bytes.
0…65535
Number of characters
5208 CRC ERRORS Number of messages with an CRC (cyclic redundancy
check) error received by the drive. If the number is high,
check CRC calculation for possible errors.
Note: High electromagnetic noise levels generate errors.
0…65535
Number of messages
53 EFB PROTOCOL Embedded fieldbus link settings. See chapter Fieldbus
control with embedded fieldbus on page 301.
5302 EFB STATION Defines the address of the device. Two units with the same
ID
address are not allowed on-line.
0…247
Address
5303 EFB BAUD
Defines the transfer rate of the link.
RATE
1.2 kb/s
1.2 kbit/s
2.4 kb/s
4.8 kb/s
9.6 kb/s
2.4 kbit/s
4.8 kbit/s
9.6 kbit/s
19.2 kb/s
38.4 kb/s
57.6 kb/s
19.2 kbit/s
38.4 kbit/s
57.6 kbit/s
115.2 kb/s
5304 EFB PARITY
8 NONE 1
1=1
0
1=1
0
1=1
0
1=1
0
1=1
1
1=1
9.6 kb/s
1=
0.1 kbit/s
115.2 kbit/s
Defines the use of parity and stop bit(s) and the data length. 8 NONE 1
The same setting must be used in all on-line stations.
No parity bit, one stop bit, 8 data bits
0
Actual signals and parameters 279
All parameters
No.
Name/Value
8 NONE 2
8 EVEN 1
Description
No parity bit, two stop bits, 8 data bits
Even parity indication bit, one stop bit, 8 data bits
Def/FbEq
1
2
Odd parity indication bit, one stop bit, 8 data bits
Selects the communication profile. See section
Communication profiles on page 315.
ABB drives limited profile
3
ABB DRV
LIM
0
DCU PROFILE
ABB DRV
FULL
5306 EFB OK
MESSAGES
DCU profile
ABB drives profile
1
2
Number of valid messages received by the drive. During
normal operation, this number increases constantly.
0
0…65535
5307 EFB CRC
ERRORS
Number of messages
Number of messages with an CRC (cyclic redundancy
check) error received by the drive. If the number is high,
check CRC calculation for possible errors.
Note: High electromagnetic noise levels generate errors.
Number of messages
Selects an actual value to be mapped to Modbus register
40005.
Parameter index
Selects an actual value to be mapped to Modbus register
40006.
Parameter index
Selects an actual value to be mapped to Modbus register
40007.
Parameter index
Selects an actual value to be mapped to Modbus register
40008.
Parameter index
1=1
0
8 ODD 1
5305 EFB CTRL
PROFILE
ABB DRV LIM
0…65535
5310 EFB PAR 10
0…65535
5311 EFB PAR 11
0…65535
5312 EFB PAR 12
0…65535
5313 EFB PAR 13
0…65535
1=1
0
1=1
0
1=1
0
1=1
0
1=1
5314 EFB PAR 14
Selects an actual value to be mapped to Modbus register
40009.
0
0…65535
5315 EFB PAR 15
Parameter index
Selects an actual value to be mapped to Modbus register
40010.
Parameter index
1=1
0
0…65535
1=1
5316 EFB PAR 16
Selects an actual value to be mapped to Modbus register
40011.
0
0…65535
5317 EFB PAR 17
Parameter index
Selects an actual value to be mapped to Modbus register
40012.
Parameter index
1=1
0
0…65535
1=1
280 Actual signals and parameters
All parameters
No. Name/Value
5318 EFB PAR 18
0…65535
5319 EFB PAR 19
0000…FFFF
hex
Description
For Modbus: Sets an additional delay before the drive
begins transmitting response to the master request.
Delay in milliseconds
ABB drives profile (ABB DRV LIM or ABB DRV FULL)
Control word. Read only copy of the fieldbus Control word.
ABB drives profile (ABB DRV LIM or ABB DRV FULL)
Status word. Read only copy of the fieldbus Status word.
0000…FFFF
hex
54 FBA DATA IN
Status word
Data from the drive to the fieldbus controller through a
fieldbus adapter. See chapter Fieldbus control with fieldbus
adapter on page 325.
Note: In adapter module the parameter group number is 3.
5401 FBA DATA IN 1 Selects data to be transferred from the drive to the fieldbus
controller.
0
Not in use
1…6
Control and status data words
5401 setting
1
2
3
4
5
6
Data word
Control word
REF1
REF2
Status word
Actual value 1
Actual value 2
Parameter index
5402 FBA DATA IN 2
…
…
5410 FBA DATA IN
10
55 FBA DATA OUT
See 5401 FBA DATA IN 1.
…
See 5401 FBA DATA IN 1.
5501 FBA DATA
OUT 1
Selects data to be transferred from the fieldbus controller to
the drive.
0
1=1
0000 hex
Control word
5320 EFB PAR 20
101…9999
Def/FbEq
0
Data from the fieldbus controller to the drive through a
fieldbus adapter. See chapter Fieldbus control with fieldbus
adapter on page 325.
Note: In adapter module the parameter group number is 2.
Not in use
0000 hex
Actual signals and parameters 281
All parameters
No.
Name/Value
1…6
Description
Control and status data words
5501 setting
1
2
3
4
5
6
101…9999
5502 FBA DATA
OUT 2
…
…
5510 FBA DATA
OUT 10
84 SEQUENCE
PROG
8401 SEQ PROG
ENABLE
DISABLED
EXT2
EXT1
EXT1&EXT2
ALWAYS
Def/FbEq
Data word
Control word
REF1
REF2
Status word
Actual value 1
Actual value 2
Drive parameter
See 5501 FBA DATA OUT 1.
…
See 5501 FBA DATA OUT 1.
Sequence programming. See section Sequence
programming on page 166.
Enables Sequence programming.
If Sequence programming enable signal is lost, the
Sequence programming is stopped, Sequence
programming state (0168 SEQ PROG STATE) is set to 1
and all timers and outputs (RO/TO/AO) are set to zero.
Disabled
Enabled in external control location 2 (EXT2)
Enabled in external control location 1 (EXT1)
Enabled in external control locations 1 and 2 (EXT1 and
EXT2)
Enabled in external control locations 1 and 2 (EXT1 and
EXT2) and in local control (LOCAL)
DISABLE
D
0
1
2
3
4
282 Actual signals and parameters
All parameters
No. Name/Value
8402 SEQ PROG
START
DI1(INV)
DI2(INV)
DI3(INV)
DI4(INV)
DI5(INV)
NOT SEL
DI1
Description
Selects the source for the Sequence programming
activation signal.
When Sequence programming is activated, the
programming starts from the previously used state.
If Sequence programming activation signal is lost, the
Sequence programming is stopped and all timers and
outputs (RO/TO/AO) are set to zero. Sequence
programming state (0168 SEQ PROG STATE) remains
unchanged.
If start from the first Sequence programming state is
required, the Sequence programming must be reset by
parameter 8404 SEQ PROG RESET. If start from the first
Sequence programming state is always required, reset and
start signal sources (8404 and 8402 SEQ PROG START)
must be through the same digital input.
Note: The drive will not start if no Run enable signal is
received (1601 RUN ENABLE).
Sequence programming activation through inverted digital
input DI1. 0 = active, 1 = inactive.
See selection DI1(INV).
See selection DI1(INV).
See selection DI1(INV).
See selection DI1(INV).
No Sequence programming activation signal
Sequence programming activation through digital input DI1.
1 = active, 0 = inactive.
Def/FbEq
NOT SEL
-1
-2
-3
-4
-5
0
1
DI2
DI3
See selection DI1.
See selection DI1.
2
3
DI4
See selection DI1.
4
DI5
See selection DI1.
DRIVE START Sequence programming activation at drive start
5
6
TIMED FUNC 1 Sequence programming is activated by timed function 1.
See parameter group 36 TIMED FUNCTIONS.
TIMED FUNC 2 See selection TIMED FUNC 1.
7
TIMED FUNC 3 See selection TIMED FUNC 1.
TIMED FUNC 4 See selection TIMED FUNC 1.
RUNNING
Sequence programming is always active.
9
10
11
8403 SEQ PROG
PAUSE
8
Selects the source for the Sequence programming pause
NOT SEL
signal. When Sequence programming pause is activated, all
timers and outputs (RO/TO/AO) are frozen. Sequence
programming state transition is possible only by parameter
8405 SEQ ST FORCE.
Actual signals and parameters 283
All parameters
No.
Name/Value
DI1(INV)
DI2(INV)
Description
Def/FbEq
Pause signal through inverted digital input DI1. 0 = active, 1 -1
= inactive.
See selection DI1(INV).
-2
DI3(INV)
DI4(INV)
DI5(INV)
See selection DI1(INV).
See selection DI1(INV).
See selection DI1(INV).
-3
-4
-5
NOT SEL
DI1
No pause signal
Pause signal through digital input DI1. 1 = active, 0 =
inactive.
See selection DI1.
See selection DI1.
0
1
4
5
6
NOT SEL
DI2(INV)
DI3(INV)
DI4(INV)
DI5(INV)
NOT SEL
DI1
See selection DI1.
See selection DI1.
Sequence programming pause enabled
Selects the source for the Sequence programming reset
signal. Sequence programming state (0168 SEQ PROG
STATE) is set to the first state and all timers and outputs
(RO/TO/AO) are set to zero.
Reset is possible only when Sequence programming is
stopped.
Reset through inverted digital input DI1. 0 = active, 1 =
inactive.
See selection DI1(INV).
See selection DI1(INV).
See selection DI1(INV).
See selection DI1(INV).
No reset signal
Reset through digital input DI1. 1 = active, 0 = inactive.
-2
-3
-4
-5
0
1
DI2
See selection DI1.
2
DI3
DI4
See selection DI1.
See selection DI1.
3
4
DI5
RESET
See selection DI1.
Reset. After reset parameter value is automatically set to
NOT SEL.
Forces the Sequence programming to a selected state.
5
6
DI2
DI3
DI4
DI5
PAUSED
8404 SEQ PROG
RESET
DI1(INV)
8405 SEQ ST
FORCE
2
3
-1
STATE 1
Note: State is changed only when Sequence programming
is paused by parameter 8403 SEQ PROG PAUSE and this
parameter is set to the selected state.
STATE 1
STATE 2
STATE 3
State is forced to state 1.
State is forced to state 2.
State is forced to state 3.
1
2
3
STATE 4
State is forced to state 4.
4
284 Actual signals and parameters
All parameters
No.
Name/Value
STATE 5
STATE 6
Description
State is forced to state 5.
State is forced to state 6.
Def/FbEq
5
6
7
8
NOT SEL
DI1(INV)
State is forced to state 7.
State is forced to state 8.
Defines the source for the logic value 1. Logic value 1 is
compared to logic value 2 as defined by parameter 8407
SEQ LOGIC OPER 1.
Logic operation values are used in state transitions. See
parameter 8425 ST1 TRIG TO ST 2 / 8426 ST1 TRIG TO
ST N selection LOGIC VAL.
Logic value 1 through inverted digital input DI1
-1
DI2(INV)
DI3(INV)
DI4(INV)
See selection DI1(INV).
See selection DI1(INV).
See selection DI1(INV).
-2
-3
-4
DI5(INV)
NOT SEL
DI1
DI2
DI3
DI4
DI5
SUPRV1
OVER
See selection DI1(INV).
No logic value
Logic value 1 through digital input DI1
See selection DI1.
See selection DI1.
See selection DI1.
See selection DI1.
Logic value according to supervision parameters
3201…3203. See parameter group 32 SUPERVISION.
Logic value according to supervision parameters
3204…3206. See parameter group 32 SUPERVISION.
Logic value according to supervision parameters
3207…3209. See parameter group 32 SUPERVISION.
See selection SUPRV1 OVER.
-5
0
1
2
3
4
5
6
See selection SUPRV2 OVER.
10
STATE 7
STATE 8
8406 SEQ LOGIC
VAL 1
SUPRV2
OVER
SUPRV3
OVER
SUPRV1
UNDER
SUPRV2
UNDER
7
8
9
SUPRV3
See selection SUPRV3 OVER.
UNDER
TIMED FUNC 1 Logic value 1 is activated by timed function 1. See
parameter group 36 TIMED FUNCTIONS. 1 = timed
function active.
12
TIMED FUNC 2 See selection TIMED FUNC 1.
TIMED FUNC 3 See selection TIMED FUNC 1.
TIMED FUNC 4 See selection TIMED FUNC 1.
13
14
15
8407 SEQ LOGIC
OPER 1
Selects the operation between logic value 1 and 2. Logic
operation values are used in state transitions. See
parameter 8425 ST1 TRIG TO ST 2 / 8426 ST1 TRIG TO
ST N selection LOGIC VAL.
11
NOT SEL
Actual signals and parameters 285
All parameters
No.
Name/Value
NOT SEL
AND
OR
XOR
8408 SEQ LOGIC
VAL 2
Description
Logic value 1 (no logic comparison)
Logic function: AND
Def/FbEq
0
1
Logic function: OR
Logic function: XOR
See parameter 8406 SEQ LOGIC VAL 1.
2
3
NOT SEL
NOT SEL
See parameter 8406.
Selects the operation between logic value 3 and the result
of the first logic operation defined by parameter 8407 SEQ
LOGIC OPER 1.
Logic value 2 (no logic comparison)
0
AND
OR
XOR
Logic function: AND
Logic function: OR
Logic function: XOR
1
2
3
See parameter 8406 SEQ LOGIC VAL 1.
NOT SEL
8409 SEQ LOGIC
OPER 2
8410 SEQ LOGIC
VAL 3
8411 SEQ VAL 1
HIGH
0.0…100.0%
8412 SEQ VAL 1
LOW
0.0…100.0%
8413 SEQ VAL 2
HIGH
0.0…100.0%
8414 SEQ VAL 2
LOW
0.0…100.0%
8415 CYCLE CNT
LOC
See parameter 8406.
Defines the high limit for the state change when parameter
8425 ST1 TRIG TO ST 2 is set to eg AI 1 HIGH 1.
Value in percent
Defines the low limit for the state change when parameter
8425 ST1 TRIG TO ST 2 is set to eg AI 1 LOW 1.
Value in percent
Defines the high limit for the state change when parameter
8425 ST1 TRIG TO ST 2 is set to eg AI 2 HIGH 1.
Value in percent
Defines the low limit for the state change when parameter
8425 ST1 TRIG TO ST 2 is set to eg AI 2 LOW 1.
Value in percent
NOT SEL
0.0%
1 = 0.1%
0.0%
1 = 0.1%
0.0%
1 = 0.1%
0.0%
1 = 0.1%
Activates the cycle counter for Sequence programming.
Example: When parameter is set to ST6 TO NEXT, the
cycle count (0171 SEQ CYCLE CNTR) increases every
time the state changes from state 6 to state 7.
NOT SEL
NOT SEL
ST1 TO NEXT
Disabled
From state 1 to state 2
0
1
ST2 TO NEXT
ST3 TO NEXT
ST4 TO NEXT
From state 2 to state 3
From state 3 to state 4
From state 4 to state 5
2
3
4
ST5 TO NEXT
ST6 TO NEXT
ST7 TO NEXT
From state 5 to state 6
From state 6 to state 7
From state 7 to state 8
5
6
7
ST8 TO NEXT
From state 8 to state 1
8
286 Actual signals and parameters
All parameters
No.
Name/Value
ST1 TO N
Description
From state 1 to state n. State n is defined by parameter
8427 ST1 STATE N.
From state 2 to state n. State n is defined by parameter
8427 ST1 STATE N.
From state 3 to state n. State n is defined by parameter
8427 ST1 STATE N.
From state 4 to state n. State n is defined by parameter
8427 ST1 STATE N.
Def/FbEq
9
ST5 TO N
From state 5 to state n. State n is defined by parameter
8427 ST1 STATE N.
13
ST6 TO N
14
DI2(INV)
DI3(INV)
DI4(INV)
DI5(INV)
NOT SEL
DI1
From state 6 to state n. State n is defined by parameter
8427 ST1 STATE N.
From state 7 to state n. State n is defined by parameter
8427 ST1 STATE N.
From state 8 to state n. State n is defined by parameter
8427 ST1 STATE N.
Selects the source for the cycle counter reset signal (0171
SEQ CYCLE CNTR).
Reset through inverted digital input DI1. 0 = active, 1 =
inactive.
See selection DI1(INV).
See selection DI1(INV).
See selection DI1(INV).
See selection DI1(INV).
No reset signal
Reset through digital input DI1. 1 = active, 0 = inactive.
-2
-3
-4
-5
0
1
DI2
DI3
DI4
See selection DI1.
See selection DI1.
See selection DI1.
2
3
4
DI5
STATE 1
See selection DI1.
Reset during state transition to state 1. Counter is reset,
when the state has been reached.
Reset during state transition to state 2. Counter is reset,
when the state has been reached.
Reset during state transition to state 3. Counter is reset,
when the state has been reached.
Reset during state transition to state 4. Counter is reset,
when the state has been reached.
5
6
ST2 TO N
ST3 TO N
ST4 TO N
ST7 TO N
ST8 TO N
8416 CYCLE CNT
RST
DI1(INV)
STATE 2
STATE 3
STATE 4
10
11
12
15
16
NOT SEL
-1
7
8
9
STATE 5
Reset during state transition to state 5. Counter is reset,
when the state has been reached.
10
STATE 6
Reset during state transition to state 6. Counter is reset,
when the state has been reached.
11
Actual signals and parameters 287
All parameters
No.
Name/Value
STATE 7
STATE 8
SEQ PROG
RST
8420 ST1 REF SEL
COMM
AI1/AI2
AI1-AI2
AI1*AI2
AI1+AI2
DI4U,5D
DI3U,4D
Description
Reset during state transition to state 7. Counter is reset,
when the state has been reached.
Reset during state transition to state 8. Counter is reset,
when the state has been reached.
Reset signal source defined by parameter 8404 SEQ PROG
RESET
Selects the source for the Sequence programming state 1
reference. Parameter is used when parameter 1103 REF1
SELECT or 1106 REF2 SELECT is set to SEQ PROG /
AI1+SEQ PROG / AI2+SEQ PROG.
Note: Constant speeds in group 12 CONSTANT SPEEDS
overwrite the selected Sequence programming reference.
0136 COMM VALUE 2. For scaling, see Fieldbus reference
scaling on page 310.
Reference is calculated with the following equation:
REF = AI1(%) · (50% / AI2 (%))
Reference is calculated with the following equation:
REF = AI1(%) + 50% - AI2(%)
Reference is calculated with the following equation:
REF = AI1(%) · (AI2(%) / 50%)
Reference is calculated with the following equation:
REF = AI1(%) + AI2(%) - 50%
Digital input DI4: Reference increase. Digital input DI5:
Reference decrease.
Digital input DI3: Reference increase. Digital input DI4:
Reference decrease.
Def/FbEq
12
13
14
0.0%
-1.3
-1.2
-1.1
-1.0
-0.9
-0.8
-0.7
DI3U,4DR
Digital input DI3: Reference increase. Digital input DI4:
Reference decrease.
AI2 JOY
Analog input AI2 as joystick. The minimum input signal runs -0.5
the motor at the maximum reference in the reverse
direction, the maximum input at the maximum reference in
the forward direction. Minimum and maximum references
are defined by parameters 1104 REF1 MIN and 1105 REF1
MAX. See parameter 1103 REF1 SELECT selection
AI1/JOYST for more information.
AI1 JOY
AI2
AI1
See selection AI2 JOY.
Analog input AI2
Analog input AI1
-0.4
-0.3
-0.2
Control panel
Constant speed
Selects the start, stop and direction for state 1. Parameter
1002 EXT2 COMMANDS must be set to SEQ PROG.
Note: If change of direction of rotation is required,
parameter 1003 DIRECTION must be set to REQUEST.
-0.1
1 = 0.1%
KEYPAD
0.0 …100.0%
8421 ST1
COMMANDS
-0.6
DRIVE
STOP
288 Actual signals and parameters
All parameters
No.
Name/Value
DRIVE STOP
START FRW
START REV
8422 ST1 RAMP
-0.2/-0.1/
0.0…1800.0 s
8423 ST1 OUT
CONTROL
Description
Drive coast or ramps to stop depending on parameter 2102
STOP FUNCTION setting.
Direction or rotation is fixed to forward. If the drive is not
already running, it is started according to parameter 2101
START FUNCTION settings.
Direction or rotation is fixed to reverse. If the drive is not
already running, it is started according to parameter 2101
START FUNCTION settings.
Selects the acceleration/deceleration ramp time for
Sequence programming state 1, ie defines the rate of the
reference change.
Time
When value is set to -0.2, ramp pair 2 is used. Ramp pair 2
is defined by parameters 2205…2207.
When value is set to -0.1, ramp pair 1 is used. Ramp pair 1
is defined by parameters 2202…2204.
With ramp pair 1/2, parameter 2201 ACC/DEC 1/2 SEL
must be set to SEQ PROG. See also parameters
2202…2207.
Selects the relay, transistor and analog output control for
Sequence programming state 1.
The relay/transistor output control must be activated by
setting parameter 1401 RELAY OUTPUT 1 / 1805 DO
SIGNAL to SEQ PROG. Analog output control must be
activated by parameter group 15 ANALOG OUTPUTS.
Analog output control values can be monitored with signal
0170 SEQ PROG AO VAL.
Def/FbEq
0
1
2
0.0 s
1 = 0.1 s
AO=0
R=0,D=1,AO=0 Relay output is de-energized (opened), transistor output is
energized and analog output is cleared.
-0.7
R=1,D=0,AO=0 Relay output is energized (closed), transistor output is deenergized and analog output is cleared.
-0.6
R=0,D=0,AO=0 Relay and transistor outputs are de-energized (opened) and -0.5
analog output value is set to zero.
RO=0,DO=0
RO=1,DO=1
DO=1
RO=1
Relay and transistor outputs are de-energized (opened) and
analog output control is frozen to the previously set value.
Relay and transistor outputs are energized (closed) and
analog output control is frozen to the previously set value.
Transistor output is energized (closed) and relay output is
de-energized. Analog output control is frozen to the
previously set value.
Transistor output is de-energized (opened) and relay output
is energized. Analog output control is frozen to the
previously set value.
-0.4
-0.3
-0.2
-0.1
Actual signals and parameters 289
All parameters
No.
Name/Value
AO=0
0.1…100.0%
Description
Def/FbEq
Analog output value is set to zero. Relay and transistor
0.0
outputs are frozen to the previously set value.
Value written to signal 0170 SEQ PROG AO VAL. Value can
be connected to control analog output AO by setting
parameter 1501 AO1 CONTENT SEL value to 170 (ie signal
0170 SEQ PROG AO VAL). AO value is frozen to this value
until it is zeroed.
8424 ST1 CHANGE
DLY
Defines the delay time for state 1. When delay has elapsed, 0.0 s
state transition is allowed. See parameters 8425 ST1 TRIG
TO ST 2 and 8426 ST1 TRIG TO ST N.
0.0…6553.5 s
8425 ST1 TRIG TO
ST 2
1 = 0.1 s
NOT SEL
DI1
DI2
DI3
DI4
Delay time
Selects the source for the trigger signal which changes the
state from state 1 to state 2.
Note: State change to state N (8426 ST1 TRIG TO ST N)
has a higher priority than state change to the next state
(8425 ST1 TRIG TO ST 2).
Trigger through inverted digital input DI1. 0 = active, 1 =
inactive.
See selection DI1(INV).
See selection DI1(INV).
See selection DI1(INV).
See selection DI1(INV).
No trigger signal. If parameter 8426 ST1 TRIG TO ST N
setting is also NOT SEL, the state is frozen and can be reset
only with parameter 8402 SEQ PROG START.
Trigger through digital input DI1. 1 = active, 0 = inactive.
See selection DI1.
See selection DI1.
See selection DI1.
DI5
See selection DI1.
5
AI 1 LOW 1
State change when AI1 value < par. 8412 SEQ VAL 1 LOW 6
value.
AI 1 HIGH 1
State change when AI1 value > par. 8411 SEQ VAL 1 HIGH 7
value.
AI 2 LOW 1
State change when AI2 value < par. 8412 SEQ VAL 1 LOW
value.
State change when AI2 value > par. 8411 SEQ VAL 1 HIGH
value.
State change when AI1 or AI2 value < par. 8412 SEQ VAL 1
LOW value.
State change when AI1 value < par. 8412 SEQ VAL 1 LOW
value and AI2 value > par. 8411 SEQ VAL 1 HIGH value.
DI1(INV)
DI2(INV)
DI3(INV)
DI4(INV)
DI5(INV)
NOT SEL
AI 2 HIGH 1
AI1 OR 2 LO1
AI1LO1AI2HI1
-1
-2
-3
-4
-5
0
1
2
3
4
8
9
10
11
290 Actual signals and parameters
All parameters
No.
Name/Value
Description
AI1LO1 ORDI5 State change when AI1 value < par. 8412 SEQ VAL 1 LOW
value or when DI5 is active.
AI2HI1 ORDI5 State change when AI2 value > par. 8411 SEQ VAL 1 HIGH
value or when DI5 is active.
AI 1 LOW 2
State change when AI1 value < par. 8414 SEQ VAL 2 LOW
value.
AI 1 HIGH 2
State change when AI1 value > par. 8413 SEQ VAL 2 HIGH
value.
Def/FbEq
12
13
14
15
AI 2 LOW 2
State change when AI2 value < par. 8414 SEQ VAL 2 LOW 16
value.
AI 2 HIGH 2
State change when AI2 value > par. 8413 SEQ VAL 2 HIGH
value.
State change when AI1 or AI2 value < par. 8414 SEQ VAL 2
LOW value.
State change when AI1 value < par. 8414 SEQ VAL 2 LOW
value and AI2 value > par. 8413 SEQ VAL 2 HIGH value.
State change when AI1 value < par. 8414 SEQ VAL 2 LOW
value or when DI5 is active.
State change when AI2 value > par. 8413 SEQ VAL 2 HIGH
value or when DI5 is active.
Trigger with timed function 1. See parameter group 36
TIMED FUNCTIONS.
See selection TIMED FUNC 1.
See selection TIMED FUNC 1.
See selection TIMED FUNC 1.
State change after delay time defined by parameter 8424
ST1 CHANGE DLY has elapsed.
17
DI1 OR DELAY State change after DI1 activation or after delay time defined
by parameter 8424 ST1 CHANGE DLY has elapsed.
DI2 OR DELAY See selection DI1 OR DELAY.
DI3 OR DELAY See selection DI1 OR DELAY.
DI4 OR DELAY See selection DI1 OR DELAY.
27
AI1 OR 2 LO2
AI1LO2AI2HI2
AI1LO2 ORDI5
AI2HI2 ORDI5
TIMED FUNC 1
TIMED FUNC 2
TIMED FUNC 3
TIMED FUNC 4
CHANGE DLY
18
19
20
21
22
23
24
25
26
28
29
30
DI5 OR DELAY See selection DI1 OR DELAY.
31
AI1HI1 ORDLY State change when AI1 value > par. 8411 SEQ VAL 1 HIGH 32
value or after delay time defined by parameter 8424 ST1
CHANGE DLY has elapsed.
AI2LO1 ORDLY State change when AI1 value < par. 8412 SEQ VAL 1 LOW 33
value or after delay time defined by parameter 8424 ST1
CHANGE DLY has elapsed.
AI1HI2 ORDLY State change when AI1 value > par. 8413 SEQ VAL 2 HIGH 34
value or after delay time defined by parameter 8424 ST1
CHANGE DLY has elapsed.
Actual signals and parameters 291
All parameters
No.
Name/Value
Description
AI2LO2 ORDLY State change when AI2 value < par. 8414 SEQ VAL 2 LOW
value or after delay time defined by parameter 8424 ST1
CHANGE DLY has elapsed.
SUPRV1
Logic value according to supervision parameters
OVER
3201…3203. See parameter group 32 SUPERVISION.
SUPRV2
Logic value according to supervision parameters
OVER
3204…3206. See parameter group 32 SUPERVISION.
SUPRV3
Logic value according to supervision parameters
OVER
3207…3209. See parameter group 32 SUPERVISION.
SUPRV1
See selection SUPRV1 OVER.
UNDER
SUPRV2
See selection SUPRV2 OVER.
UNDER
SUPRV3
See selection SUPRV3 OVER.
UNDER
SPV1OVRORD State change according to supervision parameters
LY
3201…3203 or when delay time defined by parameter 8424
ST1 CHANGE DLY has elapsed. See parameter group 32
SUPERVISION.
SPV2OVRORD State change according to supervision parameters
LY
3204…3206 or when delay time defined by parameter 8424
ST1 CHANGE DLY has elapsed. See parameter group 32
SUPERVISION.
SPV3OVRORD State change according to supervision parameters
LY
3207…3209 or when delay time defined by parameter 8424
ST1 CHANGE DLY has elapsed. See parameter group 32
SUPERVISION.
Def/FbEq
35
SPV1UNDORD See selection SPV1OVRORDLY.
LY
45
SPV2UNDORD See selection SPV2OVRORDLY.
LY
46
36
37
38
39
40
41
42
43
44
SPV3UNDORD See selection SPV3OVRORDLY.
47
LY
CNTR OVER
State change when counter value exceeds the limit defined 48
by par. 1905 COUNTER LIMIT. See parameters
1904…1911.
CNTR UNDER State change when counter value is below the limit defined 49
by par. 1905 COUNTER LIMIT. See parameters
1904…1911.
LOGIC VAL
State change according to logic operation defined by
50
parameters 8406…8410
ENTER
State change when drive output frequency/speed enters the 51
SETPNT
reference area (ie the difference is less than or equal to 4%
of the maximum reference).
292 Actual signals and parameters
All parameters
No.
Name/Value
AT SETPOINT
AI1 L1 & DI5
AI2 L2 & DI5
AI1 H1 & DI5
AI2 H2 & DI5
Description
State change when drive output frequency/speed equals the
reference value (= is within tolerance limits, ie the error is
less than or equal to 1% of the maximum reference).
State change when AI1 value < par. 8412 SEQ VAL 1 LOW
and when DI5 is active.
State change when AI2 value < par. 8414 SEQ VAL 2 LOW
value and when DI5 is active.
State change when AI1 value > par. 8411 SEQ VAL 1 HIGH
value and when DI5 is active.
State change when AI2 value > par. 8413 SEQ VAL 2 HIGH
value and when DI5 is active.
Def/FbEq
52
53
54
55
56
AI1 L1 & DI4
State change when AI1 value < par. 8412 SEQ VAL 1 LOW 57
value and when DI4 is active.
AI2 L2 & DI4
State change when AI2 value < par. 8414 SEQ VAL 2 LOW
value and when DI4 is active.
State change when AI1 value > par. 8411 SEQ VAL 1 HIGH
value and when DI4 is active.
State change when AI2 value > par. 8413 SEQ VAL 2 HIGH
value and when DI4 is active.
State change when delay time defined by parameter 8424
ST1 CHANGE DLY has elapsed and DI1 is active.
State change when delay time defined by parameter 8424
ST1 CHANGE DLY has elapsed and DI2 is active.
State change when delay time defined by parameter 8424
ST1 CHANGE DLY has elapsed and DI3 is active.
State change when delay time defined by parameter 8424
ST1 CHANGE DLY has elapsed and DI4 is active.
State change when delay time defined by parameter 8424
ST1 CHANGE DLY has elapsed and DI5 is active.
State change when delay time defined by parameter 8424
ST1 CHANGE DLY has elapsed and AI2 value > par. 8413
SEQ VAL 2 HIGH value.
AI1 H1 & DI4
AI2 H2 & DI4
DLY AND DI1
DLY AND DI2
DLY AND DI3
DLY AND DI4
DLY AND DI5
DLY & AI2 H2
58
59
60
61
62
63
64
65
66
DLY & AI2 L2
State change when delay time defined by parameter 8424
ST1 CHANGE DLY has elapsed and AI2 value < par. 8414
SEQ VAL 2 LOW value.
67
DLY & AI1 H1
State change when delay time defined by parameter 8424
ST1 CHANGE DLY has elapsed and AI1 value > par. 8411
SEQ VAL 1 HIGH value.
State change when delay time defined by parameter 8424
ST1 CHANGE DLY has elapsed and AI1 value < par. 8412
SEQ VAL 1 LOW value.
0135 COMM VALUE 1 bit 0. 1 = state change.
68
0135 COMM VALUE 1 bit 1. 1 = state change.
71
DLY & AI1 L1
COMM VAL1
#0
COMM VAL1
#1
69
70
Actual signals and parameters 293
All parameters
No.
Name/Value
COMM VAL1
#2
Description
0135 COMM VALUE 1 bit 2. 1 = state change.
Def/FbEq
72
COMM VAL1
#3
COMM VAL1
#4
0135 COMM VALUE 1 bit 3. 1 = state change.
73
0135 COMM VALUE 1 bit 4. 1 = state change.
74
COMM VAL1
#5
COMM VAL1
#6
COMM VAL1
#7
0135 COMM VALUE 1 bit 5. 1 = state change.
75
0135 COMM VALUE 1 bit 6. 1 = state change.
76
0135 COMM VALUE 1 bit 7. 1 = state change.
77
AI2H2DI4SV1O State change according to supervision parameters
3201…3203 when AI2 value > par. 8413 SEQ VAL 2 HIGH
value and DI4 is active.
AI2H2DI5SV1O State change according to supervision parameters
3201…3203 when AI2 value > par. 8413 SEQ VAL 2 HIGH
value and DI5 is active.
STO
State change when STO (Safe torque off) has been
triggered.
STO(-1)
State change when STO (Safe torque off) becomes inactive
and the drive operates normally.
8426 ST1 TRIG TO Selects the source for the trigger signal which changes the
ST N
state from state 1 to state N. State N is defined with
parameter 8427 ST1 STATE N.
Note: State change to state N (8426 ST1 TRIG TO ST N)
has a higher priority than state change to the next state
(8425 ST1 TRIG TO ST 2).
8427 ST1 STATE N
78
79
80
81
NOT SEL
See parameter 8425 ST1 TRIG TO ST 2.
Defines the state N. See parameter 8426 ST1 TRIG TO ST STATE 1
N.
STATE 1
STATE 2
STATE 3
State 1
State 2
State 3
1
2
3
STATE 4
STATE 5
STATE 6
State 4
State 5
State 6
4
5
6
STATE 7
STATE 8
8430 ST2 REF SEL
State 7
State 8
7
8
…
8497 ST8 STATE N
See parameters 8420…8427.
294 Actual signals and parameters
All parameters
No. Name/Value
98 OPTIONS
9802 COMM PROT
SEL
Description
External serial communication activation
Activates the external serial communication and selects the
interface.
NOT SEL
No communication
STD MODBUS Embedded fieldbus. Interface: EIA-485 provided by optional
FMBA-01 Modbus adapter connected to drive terminal X3.
See chapter Fieldbus control with embedded fieldbus on
page 301.
EXT FBA
The drive communicates through a fieldbus adapter module
connected to drive terminal X3. See also parameter group
51 EXT COMM MODULE.
See chapter Fieldbus control with fieldbus adapter on page
325.
MODBUS
Embedded fieldbus. Interface: RS-232 (ie control panel
RS232
connector). See chapter Fieldbus control with fieldbus
adapter on page 325.
99 START-UP DATA
9901 LANGUAGE
Def/FbEq
NOT SEL
0
1
4
10
Language selection. Definition of motor set-up data.
Selects the display language used on the assistant control
panel.
Note: With the ACS-CP-D assistant control panel, the
following languages are available: English (0), Chinese (1),
Korean (2) and Japanese (3).
ENGLISH
British English
ENGLISH (AM) American English
DEUTSCH
German
ITALIANO
Italian
ESPAÑOL
Spanish
PORTUGUES Portuguese
0
1
2
3
4
5
NEDERLANDS Dutch
FRANÇAIS
French
DANSK
Danish
6
7
8
SUOMI
SVENSKA
RUSSKI
Finnish
Swedish
Russian
9
10
11
POLSKI
TÜRKÇE
CZECH
Polish
Turkish
Czech
12
13
14
Hungarian
Greek
Selects the application macro. See chapter Application
macros on page 109.
15
16
ABB
STANDA
RD
MAGYAR
ELLINIKA
9902 APPLIC
MACRO
ENGLISH
Actual signals and parameters 295
All parameters
No.
Name/Value
ABB
STANDARD
Description
Standard macro for constant speed applications
Def/FbEq
1
3-WIRE
ALTERNATE
3-wire macro for constant speed applications
Alternate macro for start forward and start reverse
applications
Motor potentiometer macro for digital signal speed control
applications
Hand/Auto macro to be used when two control devices are
connected to the drive:
• Device 1 communicates through the interface defined by
external control location EXT1.
2
3
MOTOR POT
HAND/AUTO
4
5
• Device 2 communicates through the interface defined by
external control location EXT2.
EXT1 or EXT2 is active at a time. Switching between
EXT1/2 through digital input.
PID CONTROL PID control. For applications in which the drive controls a
6
process value, eg pressure control by the drive running the
pressure boost pump. Measured pressure and the pressure
reference are connected to the drive.
TORQUE
Torque control macro
8
CTRL
LOAD FD SET FlashDrop parameter values as defined by the FlashDrop
31
file. Parameter view is selected by parameter 1611
PARAMETER VIEW.
FlashDrop is an optional device for fast copying of
parameters to unpowered drives. FlashDrop allows easy
customization of the parameter list, eg selected parameters
can be hidden. For more information, see MFDT-01
FlashDrop user’s manual (3AFE68591074 [English]).
USER S1
User 1 macro loaded into use. Before loading, check that
0
LOAD
the saved parameter settings and the motor model are
suitable for the application.
USER S1
SAVE
Save User 1 macro. Stores the current parameter settings
and the motor model.
-1
USER S2
LOAD
User 2 macro loaded into use. Before loading, check that
the saved parameter settings and the motor model are
suitable for the application.
-2
USER S2
SAVE
Save User 2 macro. Stores the current parameter settings
and the motor model.
-3
USER S3
LOAD
User 3 macro loaded into use. Before loading, check that
the saved parameter settings and the motor model are
suitable for the application.
-4
USER S3
SAVE
Save User 3 macro. Stores the current parameter settings
and the motor model.
-5
296 Actual signals and parameters
All parameters
No. Name/Value
Description
9903 MOTOR TYPE Selects the motor type.
Cannot be changed while the drive is running.
AM
PMSM
Asynchronous motor. Three-phase AC voltage-supplied
induction motor with squirrel cage rotor.
Permanent magnet motor. Three-phase AC voltagesupplied synchronous motor with permanent magnet rotor
and sinusoidal back emf voltage.
9904 MOTOR CTRL Selects the motor control mode.
MODE
VECTOR:
SPEED
VECTOR:
TORQ
SCALAR:
FREQ
Sensorless vector control mode.
Reference 1 = speed reference in rpm.
Def/FbEq
AM
1
2
SCALAR:
FREQ
1
Reference 2 = speed reference in percent. 100% is the
absolute maximum speed, equal to the value of parameter
2002 MAXIMUM SPEED (or 2001 MINIMUM SPEED if the
absolute value of the minimum speed is greater than the
maximum speed value).
Vector control mode.
2
Reference 1 = speed reference in rpm.
Reference 2 = torque reference in percent. 100% equals
nominal torque.
Scalar control mode.
3
Reference 1 = frequency reference in Hz.
Reference 2 = frequency reference in percent. 100% is the
absolute maximum frequency, equal to the value of
parameter 2008 MAXIMUM FREQ (or 2007 MINIMUM
FREQ if the absolute value of the minimum speed is greater
than the maximum speed value).
Actual signals and parameters 297
All parameters
No. Name/Value
9905 MOTOR NOM
VOLT
Description
Defines the nominal motor voltage. For asynchronous
motors, must be equal to the value on the motor rating plate.
For permanent magnet motors, the nominal voltage is the
back emf voltage at nominal speed.
If the voltage is given as voltage per rpm, eg 60 V per
1000 rpm, the voltage for 3000 rpm nominal speed is
3 · 60 V = 180 V.
The drive cannot supply the motor with a voltage greater
than the input power voltage.
Note that the output voltage is not limited by the nominal
motor voltage but increased linearly up to the value of the
input voltage.
Output voltage
Def/FbEq
200 V
units:
230 V
400 V
E units:
400 V
400 V
U units:
460 V
Input voltage
9905
9907
200 V units:
115…345 V
400 V E units:
200…600 V
400 V U units:
230…690 V
9906 MOTOR NOM
CURR
0.2…2.0 · I2N
Output frequency
WARNING! Never connect a motor to a drive which is
connected to power line with voltage level higher than
the rated motor voltage.
Voltage.
1=1 V
Note: The stress on the motor insulations is always
dependent on the drive supply voltage. This also applies to
the case where the motor voltage rating is lower than the
rating of the drive and the supply of the drive.
Defines the nominal motor current. Must be equal to the
value on the motor rating plate.
I2N
Current
1 = 0.1 A
9907 MOTOR NOM
FREQ
Defines the nominal motor frequency, ie the frequency at
E: 50.0 Hz
which the output voltage equals the motor nominal voltage: U: 60.0 Hz
Field weakening point = Nom. frequency · Supply voltage /
Motor nom. voltage
10.0…500.0 Hz Frequency
1 = 0.1 Hz
9908 MOTOR NOM
SPEED
Defines the nominal motor speed. Must be equal to the
value on the motor rating plate.
50…30000 rpm Speed
9909 MOTOR NOM Defines the nominal motor power. Must equal the value on
POWER
the motor rating plate.
0.2…3.0 · PN kW Power
Type
dependent
1 = 1 rpm
PN
1=
0.1 kW /
0.1 hp
298 Actual signals and parameters
All parameters
No. Name/Value
9910 ID RUN
OFF/IDMAGN
ON
Description
Def/FbEq
This parameter controls a self-calibration process called the OFF/IDM
AGN
Motor ID run. During this process, the drive operates the
motor and makes measurements to identify motor
characteristics and create a model used for internal
calculations.
0
The Motor ID run process is not run. Identification
magnetization is performed, depending on parameter 9904
MOTOR CTRL MODE. In identification magnetization, the
motor model is calculated at first start by magnetizing the
motor for 10 to 15 s at zero speed (motor not rotating,
except that a permanent magnet motor can rotate a fraction
of a revolution). The model is recalculated always at start
after motor parameter changes.
• Parameter 9904 = 1 (VECTOR: SPEED) or 2 (VECTOR:
TORQ): Identification magnetization is performed.
• Parameter 9904 = 3 (SCALAR: FREQ): Identification
magnetization is not performed.
ID run. Guarantees the best possible control accuracy. The 1
ID run takes about one minute. An ID run is especially
effective when:
• vector control mode is used (parameter 9904 = 1
[VECTOR: SPEED] or 2 [VECTOR: TORQ]), and
• operation point is near zero speed and/or
• operation requires a torque range above the motor
nominal torque, over a wide speed range, and without
any measured speed feedback (ie without a pulse
encoder).
Note: The motor must be de-coupled from the driven
equipment.
Note: Check the direction of rotation of the motor before
starting the ID run. During the run, the motor will rotate in
the forward direction.
Note: If motor parameters are changed after ID run, repeat
the ID run.
WARNING! The motor will run at up to approximately
50…80% of the nominal speed during the ID run.
ENSURE THAT IT IS SAFE TO RUN THE MOTOR
BEFORE PERFORMING THE ID RUN!
9912 MOTOR NOM Calculated motor nominal torque in N·m (calculation is
0
TORQUE
based on parameter 9909 MOTOR NOM POWER and 9908
MOTOR NOM SPEED values).
0…3000.0 N·m Read-only
1=
0.1 N·m
Actual signals and parameters 299
All parameters
No. Name/Value
Description
9913 MOTOR POLE Calculated motor pole pair number (calculation is based on
PAIRS
parameter 9907 MOTOR NOM FREQ and 9908 MOTOR
NOM SPEED values).
Read-only
9914 PHASE
Inverts two phases in the motor cable. This changes the
INVERSION
direction of the motor rotation without having to exchange
the positions of two motor cable phase conductors at the
drive output terminals or at the motor connection box.
NO
Phases not inverted
YES
Phases inverted
Def/FbEq
0
1=1
NO
0
1
300 Actual signals and parameters
Fieldbus control with embedded fieldbus 301
Fieldbus control with
embedded fieldbus
What this chapter contains
The chapter describes how the drive can be controlled by external devices over a
communication network using embedded fieldbus.
System overview
The drive can be connected to an external control system through a fieldbus adapter
or embedded fieldbus. For fieldbus adapter control, see chapter Fieldbus control with
fieldbus adapter on page 325.
The embedded fieldbus supports Modbus RTU protocol. Modbus is a serial,
asynchronous protocol. Transaction is half-duplex.
The embedded fieldbus can be connected with either RS-232 (control panel
connector X2) or EIA-485 (terminal X1 of the optional FMBA-01 Modbus adapter
connected to drive terminal X3). The maximum length of the communication cable
with RS-232 is restricted to 3 meters. For more information on the FMBA-01 Modbus
adapter module, see FMBA-01 Modbus adapter module user’s manual
(3AFE68586704 [English]).
RS-232 is designed for a point-to-point application (a single master controlling one
slave). EIA-485 is designed for a multipoint application (a single master controlling
one or more slaves).
302 Fieldbus control with embedded fieldbus
Fieldbus controller
Fieldbus
Other
devices
Drive
RS-232 1)
panel connector
X3
FMBA-01
Modbus adapter
EIA-485 1)
X1
Data flow
Control word (CW)
References
Status word (SW)
Actual values
Parameter R/W
requests/responses
1)
Embedded fieldbus
(Modbus) connection is
either RS-232 or EIA-485.
Process I/O (cyclic)
Service messages (acyclic)
The drive can be set to receive all of its control information through the fieldbus
interface, or the control can be distributed between the fieldbus interface and other
available sources, eg digital and analog inputs.
Fieldbus control with embedded fieldbus 303
Setting up communication through the embedded Modbus
Before configuring the drive for fieldbus control, the FMBA-01 Modbus adapter (if
used) must be mechanically and electrically installed according to the instructions
given in section Attach the optional fieldbus module on page 35, and the module
manual.
The communication through the fieldbus link is initialized by setting parameter 9802
COMM PROT SEL to STD MODBUS or MODBUS RS232. The communication
parameters in group 53 EFB PROTOCOL must also be adjusted. See the table below.
Parameter
Alternative
settings
COMMUNICATION INITIALIZATION
9802 COMM PROT NOT SEL
SEL
STD MODBUS
EXT FBA
MODBUS RS232
Setting for
fieldbus control
STD MODBUS
Initializes embedded fieldbus
(with EIA-485)
communication.
MODBUS RS232
(with RS-232)
ADAPTER MODULE CONFIGURATION
5302 EFB STATION 0…247
Any
ID
5303 EFB BAUD
RATE
5304 EFB PARITY
Function/Information
1.2 kbit/s
2.4 kbit/s
4.8 kbit/s
9.6 kbit/s
19.2 kbit/s
38.4 kbit/s
57.6 kbit/s
115.2 kbit/s
8 NONE 1
8 NONE 2
8 EVEN 1
8 ODD 1
Defines the station ID address of
the RS-232/EIA-485 link. No two
stations on line may have the
same address.
Defines the communication
speed of the RS-232/EIA-485
link.
Selects the parity setting. The
same settings must be used in all
on-line stations.
5305 EFB CTRL
PROFILE
ABB DRV LIM
DCU PROFILE
ABB DRV FULL
Any
Selects the communication profile
used by the drive. See section
Communication profiles on
page 315.
5310 EFB PAR 10
…
…
5317 EFB PAR 17
0…65535
Any
Selects an actual value to be
mapped to Modbus register 400xx.
After the configuration parameters in group 53 EFB PROTOCOL have been set, the
drive control parameters (shown in section Drive control parameters on page 304)
must be checked and adjusted when necessary.
The new settings will take effect when the drive is next powered up, or when
parameter 5302 EFB STATION ID setting is cleared and reset.
304 Fieldbus control with embedded fieldbus
Drive control parameters
After the Modbus communication has been set up, the drive control parameters listed
in the table below should be checked and adjusted when necessary.
The Setting for fieldbus control column gives the value to use when the Modbus
interface is the desired source or destination for that particular signal. The
Function/Information column gives a description of the parameter.
Parameter
Setting for Function/Information
fieldbus
control
Modbus register
address
CONTROL COMMAND SOURCE SELECTION
ABB DRV
1001 EXT1
COMM
Enables 0301 FB CMD WORD 1 bits
COMMANDS
0…1 (STOP/START) when EXT1 is
selected as the active control
location.
1002 EXT2
COMM
Enables 0301 FB CMD WORD 1 bits
COMMANDS
0…1 (STOP/START) when EXT2 is
selected as the active control
location.
1003 DIRECTION
1010 JOGGING
SEL
1102 EXT1/EXT2
SEL
1103 REF1
SELECT
1106 REF2
SELECT
DCU
40031
bits 0…1
40031
bits 0…1
FORWARD Enables the rotation direction control
40031
REVERSE as defined by parameters 1001 and
bit 2
REQUEST 1002. The direction control is
explained in section Reference
handling on page 311.
COMM
Enables jogging 1 or 2 activation
40032
through 0302 FB CMD WORD 2 bits
bits
20…21 (JOGGING 1 / JOGGING 2).
20…21
COMM
Enables EXT1/EXT2 selection
40001
40031
through 0301 FB CMD WORD 1 bit 5 bit 11
bit 5
(EXT2); with the ABB drives profile
5319 EFB PAR 19 bit 11 (EXT CTRL
LOC).
40002 for REF1
COMM
Fieldbus reference REF1 is used
COMM+AI1 when EXT1 is selected as the active
COMM*AI1 control location. See section Fieldbus
references on page 308 for
information on the alternative
settings.
COMM
Fieldbus reference REF2 is used
40003 for REF2
COMM+AI1 when EXT2 is selected as the active
COMM*AI1 control location. See section Fieldbus
references on page 308 for
information on the alternative
settings.
Fieldbus control with embedded fieldbus 305
Parameter
Setting for Function/Information
fieldbus
control
Modbus register
address
OUTPUT SIGNAL SOURCE SELECTION
1401 RELAY
COMM
Enables relay output RO control by
OUTPUT 1
COMM(-1) signal 0134 COMM RO WORD.
1501 AO1
135
Directs the contents of the fieldbus
CONTENT
reference 0135 COMM VALUE 1 to
SEL
analog output AO.
ABB DRV DCU
40134 for signal
0134
40135 for signal
0135
SYSTEM CONTROL INPUTS
1601 RUN
COMM
ENABLE
ABB DRV DCU
40001
40031
bit 3
bit 6
1604 FAULT
RESET SEL
COMM
1606 LOCAL
LOCK
COMM
1607 PARAM
SAVE
DONE
SAVE…
1608 START
ENABLE 1
COMM
1609 START
ENABLE 2
COMM
Enables the control of the inverted
Run enable signal (Run disable)
through 0301 FB CMD WORD 1 bit 6
(RUN_DISABLE); with the ABB
drives profile 5319 EFB PAR 19 bit 3
(INHIBIT OPERATION).
Enables fault reset through the
fieldbus 0301 FB CMD WORD 1 bit 4
(RESET); with the ABB drives profile
5319 EFB PAR 19 bit 7 (RESET).
Local control mode lock signal
through 0301 FB CMD WORD 1 bit
14 (REQ_LOCALLOC)
Saves parameter value changes
(including those made through
fieldbus control) to permanent
memory.
Inverted Start enable 1 (Start disable)
through 0302 FB CMD WORD 2 bit
18 (START_DISABLE1)
Inverted Start enable 2 (Start disable)
through 0302 FB CMD WORD 2 bit
19 (START_DISABLE2)
LIMITS
40001
bit 7
40031
bit 4
-
40031
bit 14
41607
-
40032
bit 18
-
40032
bit 19
ABB DRV DCU
2013 MIN
TORQUE
SEL
COMM
2014 MAX
TORQUE
SEL
COMM
2201 ACC/DEC
1/2 SEL
COMM
Minimum torque limit 1/2 selection
through 0301 FB CMD WORD 1 bit
15 (TORQLIM2)
Maximum torque limit 1/2 selection
through 0301 FB CMD WORD 1 bit
15 (TORQLIM2)
Acceleration/deceleration ramp pair
selection through 0301 FB CMD
WORD 1 bit 10 (RAMP_2)
-
40031
bit 15
-
40031
bit 15
-
40031
bit 10
306 Fieldbus control with embedded fieldbus
Parameter
Setting for Function/Information
fieldbus
control
2209 RAMP
INPUT 0
COMM
Modbus register
address
Ramp input to zero through 0301 FB 40001
CMD WORD 1 bit 13 (RAMP_IN_0); bit 6
with the ABB drives profile 5319 EFB
PAR 19 bit 6 (RAMP_IN_ ZERO)
40031
bit 13
COMMUNICATION FAULT FUNCTIONS
3018 COMM
NOT SEL
Determines the drive action in case
FAULT FUNC FAULT
the fieldbus communication is lost.
CONST SP
7
LAST
SPEED
3019 COMM
0.1…
Defines the time between the
FAULT TIME 600.0 s
communication loss detection and
the action selected with parameter
3018 COMM FAULT FUNC.
ABB DRV DCU
43018
PID CONTROLLER REFERENCE SIGNAL SOURCE SELECTION
4010/ SET POINT COMM
PID control reference (REF2)
4110/ SEL
COMM+AI1
4210
COMM*AI1
ABB DRV DCU
40003 for REF2
43019
Fieldbus control with embedded fieldbus 307
Fieldbus control interface
The communication between a fieldbus system and the drive consists of 16-bit input
and output data words (with the ABB drives profile) and 32-bit input and output words
(with the DCU profile).
„ Control word and Status word
The Control word (CW) is the principal means of controlling the drive from a fieldbus
system. The Control word is sent by the fieldbus controller to the drive. The drive
switches between its states according to the bit-coded instructions of the Control
word.
The Status word (SW) is a word containing status information, sent by the drive to the
fieldbus controller.
„ References
References (REF) are 16-bit signed integers. A negative reference (eg reverse
direction of rotation) is formed by calculating the two’s complement from the
corresponding positive reference value. The contents of each reference word can be
used as the speed, frequency, torque or process reference.
„ Actual values
Actual values (ACT) are 16-bit words containing selected values of the drive.
308 Fieldbus control with embedded fieldbus
Fieldbus references
„ Reference selection and correction
Fieldbus reference (called COMM in signal selection contexts) is selected by setting a
reference selection parameter – 1103 REF1 SELECT or 1106 REF2 SELECT – to
COMM, COMM+AI1 or COMM*AI1. When parameter 1103 or 1106 is set to COMM,
the fieldbus reference is forwarded as such without correction. When parameter 1103
or 1106 is set to COMM+AI1 or COMM*AI1, the fieldbus reference is corrected using
analog input AI1 as shown in the following examples for the ABB drives profile.
Setting
COMM
+AI1
When COMM > 0
COMM(%) · (MAX-MIN) + MIN
+ (AI(%) - 50%) · (MAX-MIN)
Corrected
reference (rpm)
Max. limit
1500
When COMM < 0
COMM(%) · (MAX-MIN) - MIN
+ (AI(%) - 50%) · (MAX-MIN)
COMM
REF (%)
Min. limit
AI = 100%
750
50
100
COMM
REF (%)
Max limit
1200
Corrected
reference (rpm)
Min. limit
AI = 100%
AI = 50%
AI = 0%
0
0
50
100
-100
-50
0
0
-300
AI = 100%
AI = 50%
AI = 0%
Min limit
COMM
REF (%)
-1500
Max. limit
COMM
REF (%)
1500
300
0
-750
AI = 0%
Min. limit
Corrected
reference (rpm)
750
0
AI = 50%
AI = 50%
0
-50
AI = 100%
AI = 0%
0
-100
Max. limit
-750
-1200
-1500
Corrected
reference (rpm)
Maximum limit is defined by parameter 1105 REF1 MAX / 1108 REF2 MAX.
Minimum limit is defined by parameter 1104 REF1 MIN / 1107 REF2 MIN.
Fieldbus control with embedded fieldbus 309
Setting
When COMM > 0
COMM COMM(%) · (AI(%) / 50%) · (MAX-MIN) +
*AI1
MIN
Corrected
reference (rpm)
Max. limit
1500
AI = 100%
When COMM < 0
COMM(%) · (AI(%) / 50%) · (MAX-MIN) MIN
COMM
REF (%)
Min. limit
-100
-50
0
AI = 0%
AI = 50%
-750
750
0
0
0
AI = 0%
50
100
Min. limit
COMM
REF (%)
AI = 50%
AI = 100%
Max. limit
-1500
Corrected
reference (rpm)
Corrected
reference (rpm)
COMM
REF (%)
1500
Ma.x limit
1200
Min. limit
-100
-50
0
AI = 0%
0
-300
AI = 100%
750
AI = 50%
AI = 0%
300
0
0
50
100
Min. limit
Max. limit
AI = 50%
AI = 100%
-750
-1200
COMM
REF (%)
-1500
Corrected
reference (rpm)
Maximum limit is defined by parameter 1105 REF1 MAX / 1108 REF2 MAX.
Minimum limit is defined by parameter 1104 REF1 MIN / 1107 REF2 MIN.
310 Fieldbus control with embedded fieldbus
„ Fieldbus reference scaling
Fieldbus references REF1 and REF2 are scaled for the ABB drives profile as shown
in the following table.
Note: Any correction of the reference (see section Reference selection and
correction on page 310) is applied before scaling.
Reference Range
Reference
type
Speed or
frequency
REF1
-32767
…
+32767
REF2
-32767 Speed or
…
frequency
+32767
Torque
PID
reference
Scaling
Remarks
-20000 = -(par. 1105)
0=0
+20000 = (par. 1105)
(20000 corresponds to 100%)
Final reference limited by
1104/1105. Actual motor
speed limited by 2001/2002
(speed) or 2007/2008
(frequency).
-10000 = -(par. 1108)
0=0
+10000 = (par. 1108)
(10000 corresponds to 100%)
Final reference limited by
1107/1108. Actual motor
speed limited by 2001/2002
(speed) or 2007/2008
(frequency).
Final reference limited by
2015/2017 (torque 1) or
2016/2018 (torque 2).
-10000 = -(par. 1108)
0=0
+10000 = (par. 1108)
(10000 corresponds to 100%)
-10000 = -(par. 1108)
Final reference limited by
0=0
4012/4013 (PID set 1) or
+10000 = (par. 1108)
4112/4113 (PID set 2).
(10000 corresponds to 100%)
Note: The settings of parameters 1104 REF1 MIN and 1107 REF2 MIN have no
effect on the reference scaling.
Fieldbus control with embedded fieldbus 311
„ Reference handling
The control of rotation direction is configured for each control location (EXT1 and
EXT2) using the parameters in group 10 START/STOP/DIR. Fieldbus references are
bipolar, ie they can be negative or positive. The following diagrams illustrate how
group 10 parameters and the sign of the fieldbus reference interact to produce the
reference REF1/REF2.
Direction determined by
the sign of COMM
Par. 1003
DIRECTION =
FORWARD
Direction determined by digital
command, eg digital input,
control panel
Resultant
REF1/2
Resultant
REF1/2
Max. ref.
Max. ref.
Fieldbus
ref. 1/2
-100%
-163%
100%
163%
Fieldbus
ref. 1/2
-100%
-163%
–[Max. ref.]
Par. 1003
DIRECTION =
REVERSE
100%
163%
–[Max. ref.]
Resultant
REF1/2
Resultant
REF1/2
Max. ref.
-163%
Fieldbus -100%
ref. 1/2
163%
100%
Max. ref.
-163%
Fieldbus -100%
ref. 1/2
–[Max. ref.]
Par. 1003
DIRECTION =
REQUEST
–[Max. ref.]
Resultant
REF1/2
Resultant
REF1/2
Max. ref.
Max. ref.
-163%
Fieldbus -100%
ref. 1/2
163%
100%
100%
163%
–[Max. ref.]
Fieldbus
ref. 1/2
-100%
-163%
–[Max. ref.]
Direction
command:
FORWARD
100%
163%
Direction
command:
REVERSE
„ Actual value scaling
The scaling of the integers sent to the master as Actual values depends on the
selected function. See chapter Actual signals and parameters on page 175.
312 Fieldbus control with embedded fieldbus
Modbus mapping
The following Modbus function codes are supported by the drive.
Function
Code
Additional information
hex (dec)
Read Multiple 03 (03)
Reads the contents of registers in a slave device.
Holding
Parameter sets, control, status and reference values are mapped
Registers
as holding registers.
Write Single
Holding
Register
06 (06)
Diagnostics
08 (08)
Write Multiple
Holding
Registers
10 (16)
Read/Write
Multiple
Holding
Registers
17 (23)
Writes to a single register in a slave device.
Parameter sets, control, status and reference values are mapped
as holding registers.
Provides a series of tests for checking the communication between
the master and the slave devices, or for checking various internal
error conditions within the slave.
The following subcodes are supported:
00 Return Query Data: The data passed in the request data field is
to be returned in the response. The entire response message
should be identical to the request.
01 Restart Communications Option: The slave device serial line
port must be initialized and restarted, and all of its communication
event counters cleared. If the port is currently in Listen Only Mode,
no response is returned. If the port is not currently in Listen Only
Mode, a normal response is returned before the restart.
04 Force Listen Only Mode: Forces the addressed slave device to
Listen Only Mode. This isolates it from the other devices on the
network, allowing them to continue communicating without
interruption from the addressed remote device. No response is
returned. The only function that will be processed after this mode is
entered is the Restart Communications Option function (subcode
01).
Writes to the registers (1 to approximately 120 registers) in a slave
device.
Parameter sets, control, status and reference values are mapped
as holding registers.
Performs a combination of one read operation and one write
operation (function codes 03 and 10) in a single Modbus
transaction. The write operation is performed before the read
operation.
„ Register mapping
The drive parameters, Control/Status word, references and actual values are mapped
to the area 4xxxx so that:
•
40001…40099 are reserved for drive control/status, reference and actual values.
•
40101…49999 are reserved for drive parameters 0101…9999 (eg 40102 is
parameter 0102). In this mapping, the thousands and hundreds correspond to the
Fieldbus control with embedded fieldbus 313
group number, while the tens and ones correspond to the parameter number
within a group.
The register addresses that do not correspond with drive parameters are invalid.
If there is an attempt to read or write invalid addresses, the Modbus interface returns
an exception code to the controller. See Exception codes on page 314.
The following table gives information on the contents of the Modbus addresses
40001…40012 and 40031…40034.
Modbus register
40001 Control word
Access Information
R/W
Control word. Supported only by the ABB drives profile,
ie when 5305 EFB CTRL PROFILE setting is ABB DRV
LIM or ABB DRV FULL. Parameter 5319 EFB PAR 19
shows a copy of the Control word in hexadecimal
format.
40002 Reference 1
R/W
40003 Reference 2
R/W
40004 Status word
R
40005 Actual 1…8
…
40012
40031 Control word LSW
R
R/W
40032 Control word MSW R/W
External reference REF1. See section Fieldbus
references on page 308.
External reference REF2. See section Fieldbus
references on page 308.
Status word. Supported only by the ABB drives profile,
ie when 5305 EFB CTRL PROFILE setting is ABB DRV
LIM or ABB DRV FULL. Parameter 5320 EFB PAR 20
shows a copy of the Control word in hexadecimal
format.
Actual value 1…8. Use parameter 5310… 5317 to
select an actual value to be mapped to Modbus register
40005…40012.
0301 FB CMD WORD 1, ie the least significant word of
the DCU profile 32-bit Control word.
Supported only by the DCU profile, ie when 5305 EFB
CTRL PROFILE setting is DCU PROFILE.
0302 FB CMD WORD 2, ie the most significant word of
the DCU profile 32-bit Control word.
Supported only by the DCU profile, ie when 5305 EFB
CTRL PROFILE setting is DCU PROFILE.
40033 Status word LSW
R
0303 FB STS WORD 1, ie the least significant word of
the DCU profile 32-bit Status word.
Supported only by the DCU profile, ie when 5305 EFB
CTRL PROFILE setting is DCU PROFILE.
40034 ACS355 Status
word MSW
R
0304 FB STS WORD 2, ie the most significant word of
the DCU profile 32-bit Status word.
Supported only by the DCU profile, ie when 5305 EFB
CTRL PROFILE setting is DCU PROFILE.
Note: Parameter writes through standard Modbus are always volatile, ie modified
values are not automatically stored to the permanent memory. Use parameter 1607
PARAM SAVE to save all changed values.
314 Fieldbus control with embedded fieldbus
„ Function codes
Supported function codes for the holding 4xxxx register:
Code
hex
(dec)
03
(03)
06
(06)
10
(16)
17
(23)
Function name
Additional information
Read 4X Register Reads the binary contents of registers (4X references) in a slave
device.
Preset single 4X Presets a value into a single register (4X reference). When
register
broadcast, the function presets the same register reference in all
attached slaves.
Preset multiple 4X Presets values into a sequence of registers (4X references). When
registers
broadcast, the function presets the same register references in all
attached slaves.
Read/Write 4X
registers
Performs a combination of one read operation and one write
operation (function codes 03 and 10) in a single Modbus
transaction. Write operation is performed before the read
operation.
Note: In the Modbus data message, register 4xxxx is addressed as xxxx -1. For
example register 40002 is addressed as 0001.
„ Exception codes
Exception codes are serial communication responses from the drive. The drive
supports the standard Modbus exception codes listed in the following table.
Code
01
02
03
Name
Illegal Function
Illegal Data Address
Illegal Data Value
Description
Unsupported command
Address does not exist or is read/write protected.
Incorrect value for the drive:
• Value is outside minimum or maximum limits.
• Parameter is read-only.
• Message is too long.
• Parameter write is not allowed when start is active.
• Parameter write is not allowed when factory macro is
selected.
Drive parameter 5318 EFB PAR 18 holds the most recent exception code.
Fieldbus control with embedded fieldbus 315
Communication profiles
The embedded fieldbus supports three communication profiles:
•
DCU communication profile (DCU PROFILE)
•
ABB drives limited communication profile (ABB DRV LIM)
•
ABB drives full communication profile (ABB DRV FULL).
The DCU profile extends the control and status interface to 32 bits, and it is the
internal interface between the main drive application and the embedded fieldbus
environment. The ABB drives limited profile is based on the PROFIBUS interface.
The ABB drives full profile (ABB DRV FULL) supports two Control word bits not
supported by the ABB DRV LIM implementation.
Modbus
network
Embedded fieldbus
RS-232/EIA-485
Drive
ABB DRV LIM /
ABB DRV FULL
ABB drives profile
Data conversion
DCU profile
Actual values
selected by
parameters
5310…5317
DCU PROFILE
DCU profile
Control/Status word
Data conversion
for REF1/2
DCU profile
Actual values
selected by
parameters
5310…5317
„ ABB drives communication profile
Two implementations of the ABB drives communication profile are available: ABB
drives full and ABB drives limited. The ABB drives communication profile is active
when parameter 5305 EFB CTRL PROFILE is set to ABB DRV FULL or ABB DRV
LIM. The Control word and Status word for the profile are described below.
The ABB drives communication profiles can be used through both EXT1 and EXT2.
The Control word commands are in effect when parameter 1001 EXT1 COMMANDS
or 1002 EXT2 COMMANDS (whichever control location is active) is set to COMM.
316 Fieldbus control with embedded fieldbus
Control word
The table below and the state diagram on page 319 describe the Control word
content for the ABB drives profile. The upper case boldface text refers to the states
shown in the diagram.
Bit
ABB drives profile Control word, parameter 5319 EFB PAR 19
Name
Value
Comments
0
OFF1 CONTROL 1
0
1
OFF2 CONTROL 1
0
2
OFF3 CONTROL 1
0
3
4
5
6
7
Continue operation (OFF3 inactive).
Emergency stop, drive stops within time defined by par.
2208. Enter OFF3 ACTIVE; proceed to SWITCH-ON
INHIBITED.
WARNING! Ensure motor and driven machine can be
stopped using this stop mode.
INHIBIT
1
Enter OPERATION ENABLED. (Note: The Run enable
OPERATION
signal must be active; see parameter 1601. If par. 1601 is
set to COMM, this bit also activates the Run enable signal.)
0
Inhibit operation. Enter OPERATION INHIBITED.
Note: Bit 4 is supported only by ABB DRV FULL profile.
RAMP_OUT_
1
Enter RAMP FUNCTION GENERATOR: OUTPUT
ZERO
ENABLED.
(ABB DRV FULL) 0
Force Ramp function generator output to zero.
Drive ramps to stop (current and DC voltage limits in force).
RAMP_HOLD
RAMP_IN_
ZERO
RESET
1
0
1
0
0=>1
0
8…
9
Enter READY TO OPERATE.
Stop along currently active deceleration ramp (2203/2206).
Enter OFF1 ACTIVE; proceed to READY TO SWITCH ON
unless other interlocks (OFF2, OFF3) are active.
Continue operation (OFF2 inactive).
Emergency OFF, drive coast to stop.
Enter OFF2 ACTIVE; proceed to SWITCH-ON INHIBITED.
Not in use
Enable ramp function.
Enter RAMP FUNCTION GENERATOR: ACCELERATOR
ENABLED.
Halt ramping (Ramp function generator output held).
Normal operation. Enter OPERATING.
Force Ramp function generator input to zero.
Fault reset if an active fault exists. Enter SWITCH-ON
INHIBITED. Effective if par. 1604 is set to COMM.
Continue normal operation.
Fieldbus control with embedded fieldbus 317
ABB drives profile Control word, parameter 5319 EFB PAR 19
Bit
10
11
Name
Value
Comments
Note: Bit 10 is supported only by ABB DRV FULL.
REMOTE_CMD 1
Fieldbus control enabled.
(ABB DRV FULL) 0
/ 0 or reference =/ 0: Retain last Control word
Control word =
and reference.
Control word = 0 and reference = 0: Fieldbus control
enabled.
Reference and deceleration/acceleration ramp are locked.
EXT CTRL LOC 1
Select external control location EXT2. Effective if par. 1102
is set to COMM.
0
Select external control location EXT1. Effective if par. 1102
is set to COMM.
12… Reserved
15
Status word
The table below and the state diagram on page 319 describe the Status word content
for the ABB drives profile. The upper case boldface text refers to the states shown in
the diagram.
ABB drives profile (EFB) Status word, parameter 5320 EFB PAR 20
Bit Name
Value
STATE/Description
(Correspond to states/boxes in the state diagram)
0
RDY_ON
1
READY TO SWITCH ON
0
NOT READY TO SWITCH ON
1
RDY_RUN
1
READY TO OPERATE
0
OFF1 ACTIVE
2
RDY_REF
3
TRIPPED
4
OFF_2_STA
5
OFF_3_STA
6
7
1
0
0…1
OPERATION ENABLED
OPERATION INHIBITED
FAULT. See chapter Fault tracing on page 335.
0
1
0
No fault
OFF2 inactive
OFF2 ACTIVE
1
0
SWC_ON_INHIB 1
ALARM
0
1
0
OFF3 inactive
OFF3 ACTIVE
SWITCH-ON INHIBITED
Switch-on inhibit not active
Alarm. See chapter Fault tracing on page 335.
No alarm
318 Fieldbus control with embedded fieldbus
ABB drives profile (EFB) Status word, parameter 5320 EFB PAR 20
Bit Name
Value
STATE/Description
(Correspond to states/boxes in the state diagram)
8
AT_SETPOINT
1
OPERATING. Actual value equals reference value (= is
within tolerance limits, ie in speed control the difference
between the output speed and the speed reference is less
than or equal to 4/1%* of the nominal motor speed).
0
9
REMOTE
1
0
10
ABOVE_LIMIT
1
0
11
EXT CTRL LOC
12
EXT RUN
ENABLE
13… Reserved
15
1
0
1
0
* Asymmetric hysteresis: 4% when speed enters the
reference area, 1% when speed exits the reference area.
Actual value differs from reference value (= is outside
tolerance limits).
Drive control location: REMOTE (EXT1 or EXT2)
Drive control location: LOCAL
Supervised parameter value exceeds the supervision high
limit. Bit value is 1 until the supervised parameter value falls
below the supervision low limit. See parameter group 32
SUPERVISION.
Supervised parameter value falls below the supervision low
limit. Bit value is 0 until the supervised parameter value
exceeds the supervision high limit. See parameter group 32
SUPERVISION.
External control location EXT2 selected
External control location EXT1 selected
External Run enable signal received
No external Run enable received
Fieldbus control with embedded fieldbus 319
State diagram
The state diagram below describes the start-stop function of Control word (CW) and
Status word (SW) bits for the ABB drives profile.
From any state
Emergency Off
OFF2 (CW Bit 1=0)
Emergency Stop
OFF3 (CW Bit2=0)
(SW Bit5=0)
From any state
From any state
OFF3
ACTIVE
OFF2
ACTIVE
(SW Bit 4=0)
Fault
FAULT
(SW Bit3=1)
(CW Bit7=1)**
n(f)=0 / I=0
From any state
OFF1 (CW Bit0=0)
(SW Bit1=0)
INPUT POWER OFF
OFF1
ACTIVE
n(f)=0 / I=0
Power ON
(SW Bit6=1)
(CW Bit0=0)
A B* C D
NOT READY
TO SWITCH ON
(CW Bit3 =0)
(SW Bit2 =0)
SWITCH-ON
INHIBITED
(SW Bit0=0)
(CW xxxx x1*xx xxxx x110)
OPERATION
INHIBITED
READY TO
SWITCH ON
(SW Bit0=1)
(CW= xxxx x1*xx xxxx x111)
OPERATION INHIBITED
B* C* D*
READY TO
OPERATE
(CW Bit4=0)*
(CW Bit3=1 and
SW Bit12=1)
OPERATION
ENABLED
C D
State
(CW Bit5=0)
State change
Path described in example
CW = Control word
D
SW = Status word
(CW Bit6=0)
RFG = Ramp function generator
I = Par. 0104 CURRENT
f = Par. 0103 OUTPUT FREQ
n = Speed
* Supported only by ABB DRV FULL
profile.
** State transition also occurs if the fault
is reset from any other source (eg digital
input).
(SW Bit1=1)
(SW Bit2=1)
A
(CW=xxxx x1*xx xxx1* 1111
ie Bit4=1)*
RFG OUTPUT
ENABLED*
B*
(CW=xxxx x1*xx xx11* 1111
ie Bit5=1)
RFG: ACCELERATOR
ENABLED
C
(CW=xxxx x1*xx x111* 1111
ie Bit6=1)
OPERATING
D
(SW Bit8=1)
320 Fieldbus control with embedded fieldbus
„ DCU communication profile
Because the DCU profile extends the control and status interface to 32 bits, two
different signals are needed for both the control words (0301 and 0302) and status
words (0303 and 0304).
Control words
The following tables describe the Control word content for the DCU profile.
Bit
Name
0
STOP
1
DCU profile Control word, parameter 0301 FB CMD WORD 1
Value
Information
START
1
0
1
Stop according to either the stop mode parameter (2102) or
the stop mode requests (bits 7 and 8).
Note: Simultaneous STOP and START commands result in
a stop command.
No operation
Start
0
1
0
-> 1
other
1
0
1
Note: Simultaneous STOP and START commands result in
a stop command.
No operation
Reverse direction. The direction is defined by using the
XOR operation on bit 2 and 31 (= sign of the reference)
values.
Forward direction
Enter local control mode.
Enter external control mode.
Reset.
No operation
Switch to external control EXT2.
Switch to external control EXT1.
Activate Run disable.
0
Activate Run enable.
STPMODE_R
1
Stop along currently active deceleration ramp (bit 10). Bit 0
value must be 1 (STOP).
8
STPMODE_EM
0
1
0
No operation
Emergency stop. Bit 0 value must be 1 (STOP).
No operation
9
STPMODE_C
10
RAMP_2
1
0
1
1
Coast to stop. Bit 0 value must be 1 (STOP).
No operation
Use acceleration/deceleration ramp pair 2 (defined by
parameters 2205…2207).
Use acceleration/deceleration ramp pair 1 (defined by
parameters 2202…2204).
Force ramp output to zero.
0
No operation
2
REVERSE
3
LOCAL
4
RESET
5
EXT2
6
RUN_DISABLE
7
0
1
0
11
RAMP_OUT_0
Fieldbus control with embedded fieldbus 321
DCU profile Control word, parameter 0301 FB CMD WORD 1
Bit
Name
Value
Information
12
RAMP_HOLD
1
0
Halt ramping (Ramp function generator output held).
No operation
13
RAMP_IN_0
14
1
0
REQ_LOCALLOC 1
Force ramp input to zero.
No operation
Enable local lock. Entering the local control mode is
disabled (LOC/REM key of the panel).
15
0
1
TORQLIM2
0
Bit
16
17
18
No operation
Use minimum/maximum torque limit 2 (defined by
parameters 2016 and 2018).
Use minimum/maximum torque limit 1 (defined by
parameters 2015 and 2017).
DCU profile Control word, parameter 0302 FB CMD WORD 2
Name
Value
Information
FBLOCAL_CTL 1
Fieldbus local mode for Control word requested.
Example: If the drive is in remote control and the
start/stop/direction command source is DI for external
control location 1 (EXT1): by setting bit 16 to value 1, the
start/stop/direction is controlled by the fieldbus command
word.
0
No fieldbus local mode
FBLOCAL_REF 1
Fieldbus local mode Control word for reference requested.
See the example for bit 16 (FBLOCAL_CTL).
0
No fieldbus local mode
START_DISABL 1
No Start enable
E1
0
Enable start. Effective if parameter 1608 setting is COMM.
19
START_DISABL
E2
1
0
No Start enable
Enable start. Effective if parameter 1609 setting is COMM.
21
JOGGING 1
1
Activate jogging 1. Effective if parameter 1010 setting is
COMM. See section Jogging on page 161.
JOGGING 2
0
1
Jogging 1 disabled
Activate jogging 2. Effective if parameter 1010 setting is
COMM. See section Jogging on page 161.
Jogging 2 disabled
20
0
22… Reserved
26
27
REF_CONST
1
0
Constant speed reference request.
This is an internal control bit. Only for supervision.
No operation
322 Fieldbus control with embedded fieldbus
DCU profile Control word, parameter 0302 FB CMD WORD 2
Bit
28
Name
REF_AVE
Value
1
Information
Average speed reference request.
This is an internal control bit. Only for supervision.
No operation
0
29
LINK_ON
1
30
0
REQ_STARTINH 1
0
31
Reserved
Master detected on fieldbus link.
This is an internal control bit. Only for supervision.
Fieldbus link is down.
Start inhibit
No start inhibit
Status words
The following tables describe the Status word content for the DCU profile.
Bit
0
1
2
3
4
5
DCU profile Status word, parameter 0303 FB STS WORD 1
Name
Value
Status
READY
1
Drive is ready to receive start command.
0
Drive is not ready.
ENABLED
1
External Run enable signal received.
0
No external Run enable signal received.
STARTED
1
Drive has received start command.
0
Drive has not received start command.
RUNNING
1
Drive is modulating.
0
Drive is not modulating.
ZERO_SPEED
1
Drive is at zero speed.
0
Drive has not reached zero speed.
ACCELERATE
1
Drive is accelerating.
6
DECELERATE
0
1
0
7
AT_SETPOINT
1
Drive is at setpoint. Actual value equals reference
value (ie is within tolerance limits).
8
LIMIT
0
1
0
Drive has not reached setpoint.
Operation is limited by group 20 LIMITS settings.
Operation is within group 20 LIMITS settings.
9
SUPERVISION
1
REV_REF
0
1
A supervised parameter (group 32 SUPERVISION) is
outside its limits.
All supervised parameters are within limits.
Drive reference is in reverse direction.
0
1
0
Drive reference is in forward direction.
Drive is running in reverse direction.
Drive is running in forward direction.
10
11
REV_ACT
Drive is not accelerating.
Drive is decelerating.
Drive is not decelerating.
Fieldbus control with embedded fieldbus 323
DCU profile Status word, parameter 0303 FB STS WORD 1
Bit
Name
Value
Status
12
PANEL_LOCAL
1
0
Control is in control panel (or PC tool) local mode.
Control is not in control panel local mode.
13
FIELDBUS_LOCAL
14
EXT2_ACT
1
0
1
Control is in fieldbus local mode
Control is not in fieldbus local mode.
Control is in EXT2 mode.
FAULT
0
1
Control is in EXT1 mode.
Drive is in a fault state.
0
Drive is not in a fault state.
15
DCU profile Status word, parameter 0304 FB STS WORD 2
Value
Status
Bit
Name
16
ALARM
1
0
An alarm is on.
No alarms are on.
17
NOTICE
18
DIRLOCK
19
LOCALLOCK
20
CTL_MODE
21
JOGGING ACTIVE
1
0
1
0
1
0
1
0
1
0
A maintenance request is pending.
No maintenance request
Direction lock is ON. (Direction change is locked.)
Direction lock is OFF.
Local mode lock is ON. (Local mode is locked.)
Local mode lock is OFF.
Drive is in vector control mode.
Drive is in scalar control mode.
Jogging function is active.
Jogging function is not active.
REQ_CTL
1
Control word requested from fieldbus
REQ_REF1
0
1
No operation
Reference 1 requested from fieldbus
0
1
0
Reference 1 is not requested from fieldbus.
Reference 2 requested from fieldbus
Reference 2 is not requested from fieldbus.
External PID reference 2 requested from fieldbus
External PID reference 2 is not requested from
fieldbus.
Start inhibit from fieldbus
No start inhibit from fieldbus
22… Reserved
25
26
27
28
REQ_REF2
29
REQ_REF2EXT
1
0
30
ACK_STARTINH
1
0
31
Reserved
324 Fieldbus control with embedded fieldbus
Fieldbus control with fieldbus adapter 325
Fieldbus control with
fieldbus adapter
What this chapter contains
The chapter describes how the drive can be controlled by external devices over a
communication network through fieldbus adapter.
System overview
The drive can be connected to an external control system through a fieldbus adapter
or embedded fieldbus. For embedded fieldbus control, see chapter Fieldbus control
with embedded fieldbus on page 301.
Fieldbus adapter is connected to drive terminal X3.
326 Fieldbus control with fieldbus adapter
Fieldbus
controller
Drive
Fieldbus
Other
devices
X3
Fieldbus
adapter
Data flow
Control word (CW)
References
Status word (SW)
Actual values
Parameter R/W
requests/responses
Process I/O (cyclic)
Service messages (acyclic)
The drive can be set to receive all of its control information through the fieldbus
interface, or the control can be distributed between the fieldbus interface and other
available sources, eg digital and analog inputs.
The drive can communicate to a control system through a fieldbus adapter using eg
the following serial communication protocols. Other protocols may be available;
contact your local ABB representative.
•
PROFIBUS-DP (FPBA-01 adapter)
•
CANopen (FCAN-01 adapter)
•
DeviceNet™ (FDNA-01 adapter)
•
Ethernet (FENA-01 adapter)
•
Modbus RTU (FMBA-01 adapter. See chapter Fieldbus control with embedded
fieldbus on page 301.)
The drive detects automatically which fieldbus adapter is connected to drive terminal
X3 (with the exception of FMBA-01). The DCU profile is always used in
communication between the drive and the fieldbus adapter (see section Fieldbus
control interface on page 330). The communication profile on the fieldbus network
depends on the type and settings of the connected adapter.
The default profile settings are protocol dependent (eg vendor-specific profile (ABB
drives) for PROFIBUS and industry-standard drive profile (AC/DC Drive) for
DeviceNet).
Fieldbus control with fieldbus adapter 327
Setting up communication through a fieldbus adapter
module
Before configuring the drive for fieldbus control, the adapter module must be
mechanically and electrically installed according to the instructions given in section
Attach the optional fieldbus module on page 35, and the module manual.
The communication between the drive and the fieldbus adapter module is activated
by setting parameter 9802 COMM PROT SEL to EXT FBA. The adapter-specific
parameters in group 51 EXT COMM MODULE must also be set. See the table below.
Parameter
Alternative
settings
Setting for
Function/Information
fieldbus control
COMMUNICATION INITIALIZATION
9802
COMM PROT
SEL
NOT SEL
EXT FBA
STD MODBUS
EXT FBA
MODBUS RS232
ADAPTER MODULE CONFIGURATION
5101 FBA TYPE
-
-
5102
…
5126
5127
-
FB PAR 2
…
FB PAR 26
FBA PAR
REFRESH
Initializes the communication
between the drive and the
fieldbus adapter module.
Displays the type of the
fieldbus adapter module.
These parameters are adapter module-specific. For more
information, see the module manual. Note that not all of these
parameters are necessarily used.
(0) DONE
(1) REFRESH
Validates any changed
adapter module
configuration parameter
settings.
Note: In adapter module, the parameter group number is A (group 1) for group 51 EXT
COMM MODULE.
TRANSMITTED DATA SELECTION
5401 FBA DATA IN 1
0
…
…
1…6
5410 FBA DATA OUT 101…9999
10
Defines the data transmitted
from the drive to the fieldbus
controller.
5501
…
5510
Defines the data transmitted
from the fieldbus controller to
the drive.
FBA DATA OUT 1 0
…
1…6
FBA DATA OUT 101…9999
10
Note: In adapter module, the parameter group number is C (group 3) for group 54 FBA DATA
IN and B (group 2) for group 55 FBA DATA OUT.
After the module configuration parameters in groups 51 EXT COMM MODULE, 54
FBA DATA IN and 55 FBA DATA OUT have been set, the drive control parameters
(shown in section Drive control parameters on page 328) must be checked and
adjusted when necessary.
328 Fieldbus control with fieldbus adapter
The new settings will take effect when the drive is next powered up, or when
parameter 5127 FBA PAR REFRESH is activated.
Drive control parameters
After the fieldbus communication has been set up, the drive control parameters listed
in the table below should be checked and adjusted where necessary.
The Setting for fieldbus control column gives the value to use when the fieldbus
interface is the desired source or destination for that particular signal. The
Function/Information column gives a description of the parameter.
Parameter
Setting for
fieldbus control
Function/Information
CONTROL COMMAND SOURCE SELECTION
1001 EXT1
COMM
Selects the fieldbus as the source for the start
COMMANDS
and stop commands when EXT1 is selected as
the active control location.
1002 EXT2
COMM
Selects the fieldbus as the source for the start
COMMANDS
and stop commands when EXT2 is selected as
the active control location.
1003 DIRECTION
FORWARD
Enables the rotation direction control as defined
REVERSE
by parameters 1001 and 1002. The direction
REQUEST
control is explained in section Reference
handling on page 311.
1010 JOGGING SEL COMM
Enables jogging 1 or 2 activation through the
fieldbus.
1102 EXT1/EXT2
COMM
Enables EXT1/EXT2 selection through the
SEL
fieldbus.
1103 REF1 SELECT
COMM
COMM+AI1
COMM*AI1
1106 REF2 SELECT
COMM
COMM+AI1
COMM*AI1
OUTPUT SIGNAL SOURCE SELECTION
1401 RELAY
COMM
OUTPUT 1
COMM(-1)
1501 AO1 CONTENT 135 (ie 0135
SEL
COMM VALUE 1)
Fieldbus reference REF1 is used when EXT1 is
selected as the active control location. See
section Reference selection and correction on
page 332.
Fieldbus reference REF2 is used when EXT2 is
selected as the active control location. See
section Reference selection and correction on
page 332.
Enables relay output RO control by signal 0134
COMM RO WORD.
Directs the contents of fieldbus reference 0135
COMM VALUE 1 to analog output AO.
SYSTEM CONTROL INPUTS
1601 RUN ENABLE
COMM
Selects the fieldbus interface as the source for
the inverted Run enable signal (Run disable).
Fieldbus control with fieldbus adapter 329
Parameter
Setting for
fieldbus control
Function/Information
1604 FAULT RESET
SEL
COMM
1606 LOCAL LOCK
COMM
1607
DONE
SAVE…
Selects the fieldbus interface as the source for
the fault reset signal.
Selects the fieldbus interface as the source for
the local lock signal.
Saves parameter value changes (including
those made through fieldbus control) to the
permanent memory.
Selects the fieldbus interface as the source for
the inverted Start enable 1 (Start disable) signal.
Selects the fieldbus interface as the source for
the inverted Start enable 2 (Start disable) signal.
PARAM SAVE
1608 START
ENABLE 1
COMM
1609 START
ENABLE 2
COMM
LIMITS
2013 MIN TORQUE
SEL
COMM
2014 MAX TORQUE
SEL
COMM
2201 ACC/DEC 1/2
SEL
COMM
2209 RAMP INPUT 0 COMM
COMMUNICATION FAULT FUNCTIONS
3018 COMM FAULT NOT SEL
FUNC
FAULT
CONST SP 7
LAST SPEED
3019 COMM FAULT
TIME
0.1 … 60.0 s
Selects the fieldbus interface as the source for
the minimum torque limit 1/2 selection.
Selects the fieldbus interface as the source for
the maximum torque limit 1/2 selection.
Selects the fieldbus interface as the source for
acceleration/deceleration ramp pair 1/2
selection
Selects the fieldbus interface as the source for
forcing ramp input to zero.
Determines the drive action in case the fieldbus
communication is lost.
Defines the time between the communication
loss detection and the action selected with
parameter 3018 COMM FAULT FUNC.
PID CONTROLLER REFERENCE SIGNAL SOURCE SELECTION
4010/ SET POINT
COMM
PID control reference (REF2)
4110/ SEL
COMM+AI1
4210
COMM*AI1
330 Fieldbus control with fieldbus adapter
Fieldbus control interface
The communication between a fieldbus system and the drive consists of 16-bit input
and output data words. The drive supports at the maximum the use of 10 data words
in each direction.
Data transformed from the drive to the fieldbus controller is defined by parameter
group 54 FBA DATA IN and data transformed from the fieldbus controller to the drive
is defined by parameter group 55 FBA DATA OUT.
Fieldbus network
Fieldbus module
Fieldbusspecific
interface
Data in
select
DATA IN
1
…
10
Start, stop,
dir select
4 = Status word 1)
5 = ACT1 1)
6 = ACT2 1)
Par. 0101…9914
NOT SEL
…
2)
COMM
1001/1002
5401/…/5410
DATA
OUT
1
…
10
Data out
select
REF1 select
1 = Control word 1)
2 = REF1 1)
3 = REF2 1)
Par. 0101…9914
KEYPAD
…
2) COMM
1103
5501/…/5510
1)
2)
Some fieldbus adapters map this data automatically. For
the use of virtual addresses, see the user's manual of
the appropriate fieldbus adapter.
See also other COMM selection parameters.
REF2 select
KEYPAD
…
2)
COMM
1106
„ Control word and Status word
The Control word (CW) is the principal means of controlling the drive from a fieldbus
system. The Control word is sent by the fieldbus controller to the drive. The drive
switches between its states according to the bit-coded instructions of the Control
word.
The Status word (SW) is a word containing status information, sent by the drive to the
fieldbus controller.
Fieldbus control with fieldbus adapter 331
„ References
References (REF) are 16-bit signed integers. A negative reference (indicating
reversed direction of rotation) is formed by calculating the two’s complement from the
corresponding positive reference value. The contents of each reference word can be
used as speed or frequency reference.
„ Actual values
Actual values (ACT) are 16-bit words containing information on selected operations of
the drive.
Communication profile
The communication between the drive and the fieldbus adapter supports the DCU
communication profile. The DCU profile extends the control and status interface to 32
bits.
Fieldbus
network
Fieldbus adapter
Industry standard drive
profile (eg PROFIdrive)
Drive
1)
Data conversion
Select
ABB drives
1)
Data conversion
2)
Transparent 16
Optional reference,
actual value scaling
Transparent 32
1)
2)
DCU profile
Selection through fieldbus adapter configuration parameters (parameter group 51 EXT
COMM MODULE)
For the DCU profile Control and Status word contents, see section DCU
communication profile on page 320.
332 Fieldbus control with fieldbus adapter
Fieldbus references
„ Reference selection and correction
Fieldbus reference (called COMM in signal selection contexts) is selected by setting a
reference selection parameter – 1103 REF1 SELECT or 1106 REF2 SELECT – to
COMM, COMM+AI1 or COMM*AI1. When parameter 1103 or 1106 is set to COMM,
the fieldbus reference is forwarded as such without correction. When parameter 1103
or 1106 is set to COMM+AI1 or COMM*AI1, the fieldbus reference is corrected using
analog input AI1 as shown in the following examples for the DCU profile.
With the DCU profile the fieldbus reference type can be Hz, rpm or percent. In the
following examples the reference is in rpm.
Setting
When COMM > 0 rpm
When COMM < 0 rpm
COMM COMM/1000 + (AI(%) - 50%) · (MAX-MIN) COMM/1000 + (AI(%) - 50%) · (MAX-MIN)
+AI1
Corrected
reference (rpm)
Max. limit
1500
COMM
-1500000
REF
Min. limit
AI = 100%
750
0
750000 1500000
AI = 0%
Min. limit
COMM
REF
Max limit
Corrected
reference (rpm)
Min. limit
AI = 100%
AI = 50%
AI = 0%
300
0
0
750000 1500000
-750000
0
0
-300
AI = 100%
AI = 50%
AI = 0%
Min limit
COMM
REF
-1500
Max. limit
COMM
-1500000
REF
1500
750
0
-7500
AI = 50%
Corrected
reference (rpm)
1200
0
AI = 100%
AI = 50%
AI = 0%
0
-750000
Max. limit
-750
-1200
-1500
Corrected
reference (rpm)
Maximum limit is defined by parameter 1105 REF1 MAX / 1108 REF2 MAX.
Minimum limit is defined by parameter 1104 REF1 MIN / 1107 REF2 MIN.
Fieldbus control with fieldbus adapter 333
Setting
COMM
*AI1
When COMM > 0 rpm
(COMM/1000) · (AI(%) / 50%)
Corrected
reference (rpm)
Max. limit
1500
AI = 100%
When COMM < 0 rpm
(COMM/1000) · (AI(%) / 50%)
COMM
-1500000 -750000
REF
Min. limit
AI = 0%
0
AI = 50%
-750
750
0
0
0
AI = 0%
750000 1500000
Min. limit
Max. limit
AI = 50%
AI = 100%
-1500
COMM
REF
Corrected
reference (rpm)
Corrected
reference (rpm)
COMM
-1500000
REF
1500
Ma.x limit
1200
Min. limit
-750000
0
AI = 0%
0
-300
AI = 100%
750
AI = 50%
AI = 0%
300
0
0
Min. limit
Max. limit
AI = 50%
AI = 100%
-750
-1200
COMM
750000 1500000 REF
-1500
Corrected
reference (rpm)
Maximum limit is defined by parameter 1105 REF1 MAX / 1108 REF2 MAX.
Minimum limit is defined by parameter 1104 REF1 MIN / 1107 REF2 MIN.
334 Fieldbus control with fieldbus adapter
„ Fieldbus reference scaling
Fieldbus references REF1 and REF2 are scaled for the DCU profile as shown in the
following table.
Note: Any correction of the reference (see section Reference selection and
correction on page 332) is applied before scaling.
Reference Range
Scaling
Remarks
REF1
Reference
type
-214783648 Speed or
…
frequency
+214783647
1000 = 1 rpm / 1 Hz
Final reference limited by
1104/1105. Actual motor speed
limited by 2001/2002 (speed) or
2007/2008 (frequency).
-214783648 Speed or
…
frequency
+214783647
1000 = 1%
Final reference limited by
1107/1108. Actual motor speed
limited by 2001/2002 (speed) or
2007/2008 (frequency).
Final reference limited by
2015/2017 (torque 1) or
2016/2018 (torque 2).
Final reference limited by
4012/4013 (PID set 1) or
4112/4113 (PID set 2).
REF2
Torque
1000 = 1%
PID
reference
1000 = 1%
Note: The settings of parameters 1104 REF1 MIN and 1107 REF2 MIN have no
effect on the reference scaling.
„ Reference handling
Reference handling is the same for the ABB drives profile (embedded fieldbus) and
DCU profile. See section Reference handling on page 311.
„ Actual value scaling
The scaling of the integers sent to the master as Actual values depends on the
selected function. See chapter Actual signals and parameters on page 175.
Fault tracing 335
Fault tracing
What this chapter contains
The chapter tells how to reset faults and view fault history. It also lists all alarm and
fault messages including the possible cause and corrective actions.
Safety
WARNING! Only qualified electricians are allowed to maintain the drive. Read
the safety instructions in chapter Safety on page 17 before you work on the
drive.
Alarm and fault indications
Fault is indicated with a red LED. See section LEDs on page 356.
An alarm or fault message on the panel display indicates abnormal drive status.
Using the information given in this chapter, most alarm and fault causes can be
identified and corrected. If not, contact an ABB representative.
The four digit code number in parenthesis after the fault is for the fieldbus
communication. See chapters Fieldbus control with embedded fieldbus on page 301
and Fieldbus control with fieldbus adapter on page 325.
How to reset
RESET
EXIT
The drive can be reset either by pressing the keypad key
(basic control panel) or
RESET
(assistant control panel), through digital input or fieldbus, or by switching the
supply voltage off for a while. The source for the fault reset signal is selected by
336 Fault tracing
parameter 1604 FAULT RESET SEL. When the fault has been removed, the motor
can be restarted.
Fault history
When a fault is detected, it is stored in the fault history. The latest faults are stored
together with the time stamp.
Parameters 0401 LAST FAULT, 0412 PREVIOUS FAULT 1 and 0413 PREVIOUS
FAULT 2 store the most recent faults. Parameters 0404…0409 show drive operation
data at the time the latest fault occurred. The assistant control panel provides
additional information about the fault history. See section Fault logger mode on page
101 for more information.
Fault tracing 337
Alarm messages generated by the drive
CODE ALARM
CAUSE
WHAT TO DO
2001
OVERCURRENT
Output current limit
controller is active.
0308 bit 0
(programmable fault
function 1610)
Check motor load.
Check acceleration time (2202 and
2205).
Check motor and motor cable
(including phasing).
Check ambient conditions. Load
capacity decreases if installation site
ambient temperature exceeds 40 °C.
See section Derating on page 359.
2002
OVERVOLTAGE
DC overvoltage
controller is active.
0308 bit 1
(programmable fault
function 1610)
Check deceleration time (2203 and
2206).
Check input power line for static or
transient overvoltage.
2003
UNDERVOLTAGE
DC undervoltage
controller is active.
0308 bit 2
(programmable fault
function 1610)
Check input power supply.
2004
DIR LOCK
0308 bit 3
Check parameter 1003 DIRECTION
settings.
2005
IO COMM
Fieldbus
communication break
0308 bit 4
(programmable fault
function 3018, 3019)
Check status of fieldbus
communication. See chapter Fieldbus
control with embedded fieldbus on
page 301, chapter Fieldbus control
with fieldbus adapter on page 325 or
appropriate fieldbus adapter manual.
Check fault function parameter
settings.
Check connections.
Check if master can communicate.
2006
AI1 LOSS
0308 bit 5
(programmable fault
function 3001, 3021)
Analog input AI1 signal
has fallen below limit
defined by parameter
3021 AI1 FAULT
LIMIT.
Check fault function parameter
settings.
Check for proper analog control signal
levels.
Check connections.
2007
AI2 LOSS
0308 bit 6
(programmable fault
function 3001, 3022)
Analog input AI2 signal
has fallen below limit
defined by parameter
3022 AI2 FAULT
LIMIT.
Check fault function parameter
settings.
Check for proper analog control signal
levels.
Check connections.
Change of direction is
not allowed.
338 Fault tracing
CODE ALARM
CAUSE
WHAT TO DO
2008
PANEL LOSS
0308 bit 7
(programmable fault
function 3002)
Control panel selected
as active control
location for drive has
ceased
communicating.
Check panel connection.
Check fault function parameters.
Check control panel connector.
Refit control panel in mounting
platform.
If drive is in external control mode
(REM) and is set to accept start/stop,
direction commands or references
through control panel:
Check group 10 START/STOP/DIR
and 11 REFERENCE SELECT
settings.
2009
DEVICE
OVERTEMP
0308 bit 8
Drive IGBT
temperature is
excessive. Alarm limit
is 120 °C.
Check ambient conditions. See also
section Derating on page 359.
Check air flow and fan operation.
Check motor power against drive
power.
2010
MOTOR TEMP
0308 bit 9
(programmable fault
function
3005…3009 / 3503)
Motor temperature is
Check motor ratings, load and cooling.
too high (or appears to Check start-up data.
be too high) due to
Check fault function parameters.
excessive load,
insufficient motor
power, inadequate
cooling or incorrect
start-up data.
Measured motor
temperature has
exceeded alarm limit
set by parameter 3503
ALARM LIMIT.
Check value of alarm limit.
Check that actual number of sensors
corresponds to value set by parameter
3501 SENSOR TYPE.
Let motor cool down. Ensure proper
motor cooling: Check cooling fan,
clean cooling surfaces, etc.
2011
UNDERLOAD
0308 bit 10
(programmable fault
function
3013…3015)
Motor load is too low
due to eg release
mechanism in driven
equipment.
Check for problem in driven
equipment.
Check fault function parameters.
Check motor power against drive
power.
2012
MOTOR STALL
0308 bit 11
(programmable fault
function
3010…3012)
Motor is operating in
stall region due to eg
excessive load or
insufficient motor
power.
Check motor load and drive ratings.
Check fault function parameters.
2013
AUTORESET
0308 bit 12
Automatic reset alarm
Check parameter group 31
AUTOMATIC RESET settings.
PID SLEEP
0309 bit 1
Sleep function has
entered sleeping
mode.
See parameter groups 40 PROCESS
PID SET 1… 41 PROCESS PID SET
2.
ID RUN
0309 bit 2
Motor Identification run This alarm belongs to normal start-up
is on.
procedure. Wait until drive indicates
that motor identification is completed.
1)
2018
1)
2019
Fault tracing 339
CODE ALARM
CAUSE
WHAT TO DO
2021
START ENABLE 1
MISSING
0309 bit 4
No Start enable 1
signal received
Check parameter 1608 START
ENABLE 1 settings.
Check digital input connections.
Check fieldbus communication
settings.
2022
START ENABLE 2
MISSING
0309 bit 5
No Start enable 2
signal received
Check parameter 1609 START
ENABLE 2 settings.
Check digital input connections.
Check fieldbus communication
settings.
2023
EMERGENCY
STOP
0309 bit 6
Drive has received
emergency stop
command and ramps
to stop according to
ramp time defined by
parameter 2208
EMERG DEC TIME.
Check that it is safe to continue
operation.
Return emergency stop push button to
normal position.
2024
ENCODER ERROR
0309 bit 7
(programmable fault
function 5003)
Communication fault
between pulse
encoder and pulse
encoder interface
module or between
module and drive.
Check pulse encoder and its wiring,
pulse encoder interface module and
its wiring and parameter group 50
ENCODER settings.
2025
FIRST START
0309 bit 8
Motor identification
magnetization is on.
This alarm belongs to
normal start-up
procedure.
Wait until drive indicates that motor
identification is completed.
2026
INPUT PHASE
LOSS
0309 bit 9
(programmable fault
function 3016)
Intermediate circuit DC
voltage is oscillating
due to missing input
power line phase or
blown fuse.
Alarm is generated
when DC voltage
ripple exceeds 14% of
nominal DC voltage.
Check input power line fuses.
Check for input power supply
imbalance.
Check fault function parameters.
2029
MOTOR BACK EMF Permanent magnet
motor is rotating, start
0309 bit 12
mode 2 (DC MAGN) is
selected with
parameter 2101
START FUNCTION,
and run is requested.
Drive warns that
rotating motor cannot
be magnetized with
DC current.
If start to rotating motor is required,
select start mode 1 (AUTO) with
parameter 2101 START FUNCTION.
Otherwise drive starts after motor has
stopped.
340 Fault tracing
CODE ALARM
CAUSE
WHAT TO DO
2035
STO (Safe torque off)
requested and it
functions correctly.
Parameter 3025 STO
OPERATION is set to
react with alarm.
If this was not expected reaction to
safety circuit interruption, check
cabling of safety circuit connected to
STO terminals X1C.
If different reaction is required, change
value of parameter 3025 STO
OPERATION.
Note: Start signal must be reset
(toggled to 0) if STO has been used
while drive has been running.
1)
SAFE TORQUE
OFF
0309 bit 13
Even when the relay output is configured to indicate alarm conditions (eg parameter 1401
RELAY OUTPUT 1 = 5 (ALARM) or 16 (FLT/ALARM)), this alarm is not indicated by a relay
output.
Fault tracing 341
Alarms generated by the basic control panel
The basic control panel indicates control panel alarms with a code, A5xxx.
ALARM CODE CAUSE
WHAT TO DO
5001
Drive is not responding.
Check panel connection.
5002
Incompatible
communication profile
Contact your local ABB representative.
5010
Corrupted panel parameter Retry parameter upload.
backup file
Retry parameter download.
5011
Drive is controlled from
another source.
Change drive control to local control mode.
5012
Direction of rotation is
locked.
Enable change of direction. See parameter
1003 DIRECTION.
5013
Panel control is disabled
because start inhibit is
active.
Start from panel is not possible. Reset
emergency stop command or remove 3-wire
stop command before starting from panel.
See section 3-wire macro on page 113 and
parameters 1001 EXT1 COMMANDS, 1002
EXT2 COMMANDS and 2109 EMERG STOP
SEL.
5014
Panel control is disabled
because of drive fault.
Reset drive fault and retry.
5015
Panel control is disabled
because local control
mode lock is active.
Deactivate local control mode lock and retry.
See parameter 1606 LOCAL LOCK.
5018
Parameter default value is
not found.
Contact your local ABB representative.
5019
Writing non-zero
parameter value is
prohibited.
Only parameter reset is allowed.
5020
Parameter or parameter
group does not exist or
parameter value is
inconsistent.
Contact your local ABB representative.
5021
Parameter or parameter
group is hidden.
Contact your local ABB representative.
5022
Parameter is write
protected.
Parameter value is read-only and cannot be
changed.
5023
Parameter change is not
allowed when drive is
running.
Stop drive and change parameter value.
5024
Drive is executing a task.
Wait until task is completed.
5025
Software is being uploaded Wait until upload/download is complete.
or downloaded.
5026
Value is at or below
minimum limit.
Contact your local ABB representative.
5027
Value is at or above
maximum limit.
Contact your local ABB representative.
5028
Invalid value
Contact your local ABB representative.
342 Fault tracing
ALARM CODE CAUSE
WHAT TO DO
5029
Memory is not ready.
Retry.
5030
Invalid request
Contact your local ABB representative.
5031
Drive is not ready for
operation, eg due to low
DC voltage.
Check input power supply.
5032
Parameter error
Contact your local ABB representative.
5040
Parameter download error.
Selected parameter set is
not in current parameter
backup file.
Perform upload function before download.
5041
Parameter backup file
does not fit into memory.
5042
Parameter download error.
Selected parameter set is
not in current parameter
backup file.
Contact your local ABB representative.
Perform upload function before download.
5043
No start inhibit
5044
Parameter backup file
restoring error
Check that file is compatible with drive.
5050
Parameter upload aborted
Retry parameter upload.
5051
File error
Contact your local ABB representative.
5052
Parameter upload has
failed.
Retry parameter upload.
5060
Parameter download
aborted
Retry parameter download.
5062
Parameter download has
failed.
Retry parameter download.
5070
Panel backup memory
write error
Contact your local ABB representative.
5071
Panel backup memory
read error
Contact your local ABB representative.
5080
Operation is not allowed
because drive is not in
local control mode.
Switch to local control mode.
5081
Operation is not allowed
because of active fault.
Check cause of fault and reset fault.
5083
Operation is not allowed
because parameter lock is
on.
Check parameter 1602 PARAMETER LOCK
setting.
5084
Operation is not allowed
because drive is
performing a task.
Wait until task is completed and retry.
5085
Parameter download from
source to destination drive
has failed.
Check that source and destination drive types
are same, ie ACS355. See type designation
label of the drive.
5086
Parameter download from
source to destination drive
has failed.
Check that source and destination drive type
designations are the same. See type
designation labels of the drives.
Fault tracing 343
ALARM CODE CAUSE
WHAT TO DO
5087
Parameter download from
source to destination drive
has failed because
parameter sets are
incompatible.
Check that source and destination drive
information are same. See parameters in group
33 INFORMATION.
5088
Operation has failed
because of drive memory
error.
Contact your local ABB representative.
5089
Download has failed
because of CRC error.
Contact your local ABB representative.
5090
Download has failed
because of data
processing error.
Contact your local ABB representative.
5091
Operation has failed
because of parameter
error.
Contact your local ABB representative.
5092
Parameter download from
source to destination drive
has failed because
parameter sets are
incompatible.
Check that source and destination drive
information are same. See parameters in group
33 INFORMATION.
344 Fault tracing
Fault messages generated by the drive
CODE FAULT
CAUSE
WHAT TO DO
0001
OVERCURRENT
(2310)
0305 bit 0
Output current has
exceeded trip level.
Check motor load.
Check acceleration time (2202 and
2205).
Check motor and motor cable
(including phasing).
Check ambient conditions. Load
capacity decreases if installation site
ambient temperature exceeds 40 °C.
See section Derating on page 359.
0002
DC OVERVOLT
(3210)
0305 bit 1
Excessive
intermediate circuit DC
voltage. DC
overvoltage trip limit is
420 V for 200 V drives
and 840 V for 400 V
drives.
Check that overvoltage controller is on
(parameter 2005 OVERVOLT CTRL).
Check input power line for static or
transient overvoltage.
Check brake chopper and resistor (if
used). DC overvoltage control must be
deactivated when brake chopper and
resistor is used.
Check deceleration time (2203, 2206).
Retrofit frequency converter with
brake chopper and brake resistor.
0003
DEV OVERTEMP
(4210)
0305 bit 2
Drive IGBT
temperature is
excessive. Fault trip
limit is 135 °C.
Check ambient conditions. See also
section Derating on page 359.
Check air flow and fan operation.
Check motor power against drive
power.
0004
SHORT CIRC
(2340)
0305 bit 3
Short circuit in motor
cable(s) or motor
Check motor and motor cable.
0006
DC UNDERVOLT
(3220)
0305 bit 5
Intermediate circuit DC
voltage is not sufficient
due to missing input
power line phase,
blown fuse, rectifier
bridge internal fault or
too low input power.
Check that undervoltage controller is
on (parameter 2006 UNDERVOLT
CTRL).
Check input power supply and fuses.
0007
AI1 LOSS
(8110)
0305 bit 6
(programmable fault
function 3001, 3021)
Analog input AI1 signal
has fallen below limit
defined by parameter
3021 AI1 FAULT
LIMIT.
Check fault function parameter
settings.
Check for proper analog control signal
levels.
Check connections.
0008
AI2 LOSS
(8110)
0305 bit 7
(programmable fault
function 3001, 3022)
Analog input AI2 signal
has fallen below limit
defined by parameter
3022 AI2 FAULT
LIMIT.
Check fault function parameter
settings.
Check for proper analog control signal
levels.
Check connections.
Fault tracing 345
CODE FAULT
CAUSE
0009
Motor temperature is
Check motor ratings, load and cooling.
too high (or appears to Check start-up data.
be too high) due to
Check fault function parameters.
excessive load,
insufficient motor
power, inadequate
cooling or incorrect
start-up data.
MOT OVERTEMP
(4310)
0305 bit 8
(programmable fault
function
3005…3009 / 3504)
WHAT TO DO
Measured motor
temperature has
exceeded fault limit set
by parameter 3504
FAULT LIMIT.
Check value of fault limit.
Check that actual number of sensors
corresponds to value set by parameter
3501 SENSOR TYPE.
Let motor cool down. Ensure proper
motor cooling: Check cooling fan,
clean cooling surfaces, etc.
0010
PANEL LOSS
(5300)
0305 bit 9
(programmable fault
function 3002)
Control panel selected
as active control
location for drive has
ceased
communicating.
Check panel connection.
Check fault function parameters.
Check control panel connector.
Refit control panel in mounting
platform.
If drive is in external control mode
(REM) and is set to accept start/stop,
direction commands or references
through control panel:
Check group 10 START/STOP/DIR
and 11 REFERENCE SELECT
settings.
0011
ID RUN FAIL
(FF84)
0305 bit 10
Motor ID run is not
completed
successfully.
Check motor connection.
Check start-up data (group 99 STARTUP DATA).
Check maximum speed (parameter
2002). It should be at least 80% of
motor nominal speed (parameter
9908).
Ensure ID run has been performed
according to instructions in section
How to perform the ID run on page 69.
0012
MOTOR STALL
(7121)
0305 bit 11
(programmable fault
function
3010…3012)
Motor is operating in
stall region due to eg
excessive load or
insufficient motor
power.
Check motor load and drive ratings.
Check fault function parameters.
0014
EXT FAULT 1
External fault 1
(9000)
0305 bit 13
(programmable fault
function 3003)
Check external devices for faults.
Check parameter 3003 EXTERNAL
FAULT 1 setting.
346 Fault tracing
CODE FAULT
CAUSE
WHAT TO DO
0015
EXT FAULT 2
External fault 2
(9001)
0305 bit 14
(programmable fault
function 3004)
Check external devices for faults.
Check parameter 3004 EXTERNAL
FAULT 2 setting.
0016
EARTH FAULT
Drive has detected
earth (ground) fault in
(2330)
motor or motor cable.
0305 bit 15
(programmable fault
function 3017)
Check motor.
Check motor cable. Motor cable length
must not exceed maximum
specifications. See section Motor
connection data on page 367.
Note: Disabling earth fault (ground
fault) may damage drive.
0017
UNDERLOAD
(FF6A)
0306 bit 0
(programmable fault
function
3013…3015)
Motor load is too low
due to eg release
mechanism in driven
equipment.
Check for problem in driven
equipment.
Check fault function parameters.
Check motor power against drive
power.
0018
THERM FAIL
(5210)
0306 bit 1
Drive internal fault.
Thermistor used for
drive internal
temperature
measurement is open
or short-circuited.
Contact your local ABB
representative.
0021
CURR MEAS
(2211)
0306 bit 4
Drive internal fault.
Current measurement
is out of range.
Contact your local ABB
representative.
0022
SUPPLY PHASE
(3130)
0306 bit 5
(programmable fault
function 3016)
Intermediate circuit DC
voltage is oscillating
due to missing input
power line phase or
blown fuse.
Trip occurs when DC
voltage ripple exceeds
14% of nominal DC
voltage.
Check input power line fuses.
Check for input power supply
imbalance.
Check fault function parameters.
0023
ENCODER ERR
(7301)
0306 bit 6
(programmable fault
function 5003)
Communication fault
between pulse
encoder and pulse
encoder interface
module or between
module and drive.
Check pulse encoder and its wiring,
pulse encoder interface module and
its wiring and parameter group 50
ENCODER settings.
Fault tracing 347
CODE FAULT
CAUSE
WHAT TO DO
0024
OVERSPEED
(7310)
0306 bit 7
Motor is turning faster
than highest allowed
speed due to
incorrectly set
minimum/maximum
speed, insufficient
braking torque or
changes in load when
using torque
reference.
Operating range limits
are set by parameters
2001 MINIMUM
SPEED and 2002
MAXIMUM SPEED (in
vector control) or 2007
MINIMUM FREQ and
2008 MAXIMUM
FREQ (in scalar
control).
Check minimum/maximum frequency
settings.
Check adequacy of motor braking
torque.
Check applicability of torque control.
Check need for brake chopper and
resistor(s).
0027
CONFIG FILE
(630F)
0306 bit 10
Internal configuration
file error
Contact your local ABB
representative.
0028
SERIAL 1 ERR
Fieldbus
communication break
(7510)
0306 bit 11
(programmable fault
function 3018, 3019)
Check status of fieldbus
communication. See chapter Fieldbus
control with embedded fieldbus on
page 301, chapter Fieldbus control
with fieldbus adapter on page 325 or
appropriate fieldbus adapter manual.
Check fault function parameter
settings.
Check connections.
Check if master can communicate.
0029
EFB CON FILE
(6306)
0306 bit 12
Configuration file
reading error
Contact your local ABB
representative.
0030
FORCE TRIP
(FF90)
0306 bit 13
Trip command
received from fieldbus
See appropriate communication
module manual.
0034
MOTOR PHASE
(FF56)
0306 bit 14
Motor circuit fault due
to missing motor
phase or motor
thermistor relay (used
in motor temperature
measurement) fault.
Check motor and motor cable.
Check motor thermistor relay (if used).
348 Fault tracing
CODE FAULT
CAUSE
WHAT TO DO
0035
OUTP WIRING
(FF95)
0306 bit 15
(programmable fault
function 3023)
Incorrect input power
Check input power connections.
and motor cable
connection (ie input
power cable is
connected to drive
motor connection).
Fault can be
erroneously declared if
drive is faulty or input
power is delta
grounded system and
motor cable
capacitance is large.
0036
INCOMPATIBLE
SW
(630F)
0307 bit 3
Loaded software is not Contact your local ABB
compatible.
representative.
0037
CB OVERTEMP
(4110)
0305 bit 12
Drive control board
overheated. Fault trip
limit is 95 °C.
Check for excessive ambient
temperature.
Check for fan failure.
Check for obstructions in air flow.
Check the dimensioning and cooling
of cabinet.
0044
SAFE TORQUE
OFF
(FFA0)
0307 bit 4
STO (Safe torque off)
requested and it
functions correctly.
Parameter 3025 STO
OPERATION is set to
react with fault.
If this was not expected reaction to
safety circuit interruption, check
cabling of safety circuit connected to
STO terminals X1C.
If different reaction is required, change
value of parameter 3025 STO
OPERATION.
Reset fault before starting.
0045
STO1 LOST
(FFA1)
0307 bit 5
STO (Safe torque off)
input channel 1 has
not de-energized, but
channel 2 has.
Opening contacts on
channel 1 might have
been damaged or
there is a short circuit.
Check STO circuit cabling and
opening of contacts in STO circuit.
0046
STO2 LOST
(FFA2)
0307 bit 6
STO (Safe torque off)
input channel 2 has
not de-energized, but
channel 1 has.
Opening contacts on
channel 2 might have
been damaged or
there is a short circuit.
Check STO circuit cabling and
opening of contacts in STO circuit.
Fault tracing 349
CODE FAULT
0101
SERF CORRUPT
(FF55)
0307 bit 14
0103
SERF MACRO
(FF55)
0307 bit 14
0201
DSP T1
OVERLOAD
(6100)
0307 bit 13
CAUSE
WHAT TO DO
Drive internal error
Write down fault code and contact
your local ABB representative.
0202
DSP T2
OVERLOAD
(6100)
0307 bit 13
0203
DSP T3
OVERLOAD
(6100)
0307 bit 13
0204
DSP STACK
ERROR
(6100)
0307 bit 12
0206
CB ID ERROR
(5000)
0307 bit 11
1000
PAR HZRPM
(6320)
0307 bit 15
Incorrect
speed/frequency limit
parameter setting
Check parameter settings. Check that
following applies:
• 2001 MINIMUM SPEED <
2002 MAXIMUM SPEED
• 2007 MINIMUM FREQ <
2008 MAXIMUM FREQ
• 2001 MINIMUM SPEED /
9908 MOTOR NOM SPEED,
2002 MAXIMUM SPEED /
9908 MOTOR NOM SPEED,
2007 MINIMUM FREQ /
9907 MOTOR NOM FREQ and
2008 MAXIMUM FREQ /
9907 MOTOR NOM FREQ are
within range.
1003
PAR AI SCALE
(6320)
0307 bit 15
Incorrect analog input
AI signal scaling
Check parameter group 13 ANALOG
INPUTS settings. Check that following
applies:
• 1301 MINIMUM AI1 <
1302 MAXIMUM AI1
• 1304 MINIMUM AI2 <
1305 MAXIMUM AI2.
350 Fault tracing
CODE FAULT
CAUSE
WHAT TO DO
1004
PAR AO SCALE
(6320)
0307 bit 15
Incorrect analog output Check parameter group 15 ANALOG
AO signal scaling
OUTPUTS settings. Check that
following applies:
• 1504 MINIMUM AO1 <
1505 MAXIMUM AO1.
1005
PAR PCU 2
(6320)
0307 bit 15
Incorrect motor
nominal power setting
Check parameter 9909 MOTOR NOM
POWER setting. Following must
apply:
• 1.1 < (9906 MOTOR NOM CURR ·
9905 MOTOR NOM VOLT · 1.73 /
PN) < 3.0
Where PN = 1000 · 9909 MOTOR
NOM POWER (if units are in kW)
or PN = 746 · 9909 MOTOR NOM
POWER (if units are in hp).
1006
PAR EXT RO
(6320)
0307 bit 15
Incorrect relay output
extension parameters
Check parameter settings. Check that
following applies:
• Output relay extension module
MREL-01 is connected to drive.
• 1402 RELAY OUTPUT 2, 1403
RELAY OUTPUT 3 and 1410
RELAY OUTPUT 4 have non-zero
values.
See MREL-01 relay output extension
module user's manual
(3AUA0000035974 [English]).
1007
PAR FBUSMISS
(6320)
0307 bit 15
Fieldbus control has
not been activated.
Check fieldbus parameter settings.
See chapter Fieldbus control with
fieldbus adapter on page 325.
1009
PAR PCU 1
(6320)
0307 bit 15
Incorrect motor
nominal
speed/frequency
setting
Check parameter settings. Following
must apply:
• 1 < (60 · 9907 MOTOR NOM FREQ
/ 9908 MOTOR NOM SPEED) < 16
• 0.8 < 9908 MOTOR NOM SPEED /
(120 · 9907 MOTOR NOM FREQ /
Motor poles) < 0.992
1015
PAR CUSTOM U/F
(6320)
0307 bit 15
Incorrect voltage to
frequency (U/f) ratio
voltage setting.
Check parameter 2610 USER
DEFINED U1 … 2617 USER
DEFINED F4 settings.
Fault tracing 351
CODE FAULT
CAUSE
WHAT TO DO
1017
Only two of the
following can be used
simultaneously:
MTAC-01 encoder
module, frequency
input signal or
frequency output
signal.
Disable frequency output, frequency
input or encoder:
• change transistor output to digital
mode (value of parameter 1804 TO
MODE = 0 [DIGITAL]), or
• change frequency input selection to
other value in parameter groups
11 REFERENCE SELECT,
40 PROCESS PID SET 1,
41 PROCESS PID SET 2 and
42 EXT / TRIM PID, or
• disable (parameter 5002
ENCODER ENABLE) and remove
MTAC-01 encoder module.
PAR SETUP 1
(6320)
0307 bit 15
352 Fault tracing
Embedded fieldbus faults
Embedded fieldbus faults can be traced by monitoring group 53 EFB PROTOCOL
parameters. See also fault/alarm SERIAL 1 ERR (0028).
„ No master device
If there is no master device on line, parameter 5306 EFB OK MESSAGES and 5307
EFB CRC ERRORS values remain unchanged.
What to do:
•
Check that the network master is connected and properly configured.
•
Check the cable connection.
„ Same device address
If two or more devices have the same address, parameter 5307 EFB CRC ERRORS
value increases with every read/write command.
What to do:
•
Check the device addresses. No two devices on line may have the same address.
„ Incorrect wiring
If the communication wires are swapped (terminal A on one device is connected to
terminal B on another device), parameter 5306 EFB OK MESSAGESS value remains
unchanged and parameter 5307 EFB CRC ERRORS increases.
What to do:
•
Check the RS-232/EIA-485 interface connection.
Maintenance and hardware diagnostics 353
Maintenance and hardware
diagnostics
What this chapter contains
The chapter contains preventive maintenance instructions and LED indicator
descriptions.
Maintenance intervals
If installed in an appropriate environment, the drive requires very little maintenance.
The table lists the routine maintenance intervals recommended by ABB.
Maintenance
Interval
Instruction
Reforming of capacitors
Every year when
stored
Check of dustiness, corrosion
and temperature
Every year
Replacement of the cooling fan
(frame sizes R1…R4)
Every three years
See Cooling fan on page 354.
Check and tightening of the
power terminals
Every six years
See Power connections on page 355.
Replacement of the battery in
the assistant control panel
Every ten years
See Changing the battery in the
assistant control panel on page 356.
Testing of Safe torque off (STO) Every year
operation and reaction
See Capacitors on page 355.
See Appendix: Safe torque off (STO)
on page 399.
Consult your local ABB Service representative for more details on the maintenance.
On the Internet, go to http://www.abb.com/drives and select Drive Services –
Maintenance and Field Services.
354 Maintenance and hardware diagnostics
Cooling fan
The drive’s cooling fan has a life span of minimum 25 000 operating hours. The
actual life span depends on the drive usage and ambient temperature. Automatic fan
on/off control increases the life span (see parameter 1612 FAN CONTROL).
When the assistant control panel is in use, the Notice handler assistant informs when
the definable value of the operating hour counter is reached (see parameter 2901
COOLING FAN TRIG). This information can also be passed to the relay output (see
group 14 RELAY OUTPUTS) regardless of the used panel type.
Fan failure can be predicted by the increasing noise from the fan bearings. If the drive
is operated in a critical part of a process, fan replacement is recommended once
these symptoms start appearing. Replacement fans are available from ABB. Do not
use other than ABB specified spare parts.
„ Replacing the cooling fan (frame sizes R1…R4)
Only frame sizes R1…R4 include a fan; frame size R0 has natural cooling.
WARNING! Read and follow the instructions in chapter Safety on page
17. Ignoring the instructions can cause physical injury or death, or
damage to the equipment.
1. Stop the drive and disconnect it from the AC power source.
2. Remove the hood if the drive has the NEMA 1 option.
3. Lever the fan holder off the drive frame with eg a screwdriver and lift the hinged
fan holder slightly upward from its front edge.
4. Free the fan cable from the clip.
5. Disconnect the fan cable.
6. Remove the fan holder from the hinges.
6
3
5
4
Maintenance and hardware diagnostics 355
7. Install the new fan holder including the fan in reverse order.
7
8. Restore power.
Capacitors
„ Reforming the capacitors
The capacitors must be reformed if the drive has been stored for a year. See section
Type designation label on page 28 for how to find out the manufacturing time from the
serial number. For information on reforming the capacitors, refer to Guide for
capacitor reforming in ACS50, ACS55, ACS150, ACS310, ACS350, ACS355,
ACS550 and ACH550 (3AFE68735190 [English]), available on the Internet (go to
http://www.abb.com and enter the code in the Search field).
Power connections
WARNING! Read and follow the instructions in chapter Safety on page
17. Ignoring the instructions can cause physical injury or death, or
damage to the equipment.
1. Stop the drive and disconnect it from the power line. Wait for five minutes to let the
drive DC capacitors discharge. Ensure by measuring with a multimeter
(impedance at least 1 Mohm) that there is no voltage present.
2. Check the tightness of the power cable connections. Use the tightening torques
given in section Terminal and lead-through data for the power cables on page
366.
3. Restore power.
356 Maintenance and hardware diagnostics
Control panel
„ Cleaning the control panel
Use a soft damp cloth to clean the control panel. Avoid harsh cleaners which could
scratch the display window.
„ Changing the battery in the assistant control panel
A battery is only used in assistant control panels that have the clock function
available and enabled. The battery keeps the clock operating in memory during
power interruptions.
The expected life for the battery is greater than ten years. To remove the battery, use
a coin to rotate the battery holder on the back of the control panel. Replace the
battery with type CR2032.
Note: The battery is NOT required for any control panel or drive functions, except the
clock.
LEDs
There is a green and a red LED on the front of the drive. They are visible through the
panel cover but invisible if a control panel is attached to the drive. The assistant
control panel has one LED. The table below describes the LED indications.
Where
LED off
No power
On the front of
the drive.
If a control panel
is attached to the
drive, switch to
remote control
(otherwise a fault
will be
generated), and
then remove the
panel to be able
to see the LEDs.
At the top left
corner of the
assistant control
panel
Panel has no
power or no
drive
connection.
LED lit and steady
LED blinking
Green
Power supply on
the board OK
Green
Drive in an alarm
state
Red
Drive in a fault
state. To reset
the fault, press
RESET from the
control panel or
switch off the
drive power.
Red
Drive in a fault state.
To reset the fault,
switch off the drive
power.
Green
Drive in a normal Green
state
Drive in an alarm
state
Red
Drive in a fault
state. To reset
the fault, press
RESET from the
control panel or
switch off the
drive power.
-
Red
Technical data 357
Technical data
What this chapter contains
The chapter contains the technical specifications of the drive, eg ratings, sizes and
technical requirements as well as provisions for fulfilling the requirements for CE and
other marks.
358 Technical data
Ratings
Type
Input
Output
ACS355I1N
I1N (480 V)
I2N
I2,1 min/10 min 2) I2max
x = E/U 1)
A
A
A
A
A
1-phase UN = 200…240 V (200, 208, 220, 230, 240 V)
01x-02A4-2
6.1
2.4
3.6
4.2
kW
hp
0.37
0.5
R0
01x-04A7-2
01x-06A7-2
01x-07A5-2
8.2
11.7
13.1
0.75
1.1
1.5
1
1.5
2
R1
R1
R2
01x-09A8-2 21.0
9.8
14.7
3-phase UN = 200…240 V (200, 208, 220, 230, 240 V)
03x-02A4-2
4.3
2.4
3.6
17.2
2.2
3
R2
4.2
0.37
0.5
R0
03x-03A5-2
03x-04A7-2
03x-06A7-2
6.1
7.6
11.8
-
3.5
4.7
6.7
5.3
7.1
10.1
6.1
8.2
11.7
0.55
0.75
1.1
0.75
1
1.5
R0
R1
R1
03x-07A5-2
03x-09A8-2
03x-13A3-2
03x-17A6-2
03x-24A4- 2
03x-31A0-2
03x-46A2-2
12.0
14.3
21.7
24.8
41
50
69
-
7.5
9.8
13.3
17.6
24.4
31
46.2
11.3
14.7
20.0
26.4
36.6
46.5
69.3
13.1
17.2
23.3
30.8
42.7
54.3
80.9
1.5
2.2
3
4
5.5
7.5
11.0
2
3
4
5
7.5
10
15
R1
R2
R2
R2
R3
R4
R4
3-phase UN = 380…480 V (380, 400, 415, 440, 460, 480 V)
03x-01A2-4
2.2
1.8
1.2
1.8
03x-01A9-4
3.6
3.0
1.9
2.9
03x-02A4-4
4.1
3.4
2.4
3.6
03x-03A3-4
6.0
5.0
3.3
5.0
2.1
3.3
4.2
5.8
0.37
0.55
0.75
1.1
0.5
0.75
1
1.5
R0
R0
R1
R1
03x-04A1-4
03x-05A6-4
6.9
9.6
5.8
8.1
4.1
5.6
6.2
8.4
7.2
9.8
1.5
2.2
2
3
R1
R1
03x-07A3-4
11.6
9.7
7.3
11.0
12.8
3
4
R1
03x-08A8-4
03x-12A5-4
03x-15A6-4
13.6
18.8
22.1
11.4
15.8
18.6
8.8
12.5
15.6
13.2
18.8
23.4
15.4
21.9
27.3
4
5.5
7.5
5
7.5
10
R1
R3
R3
03x-23A1-4
03x-31A0-4
03x-38A0-4
30.9
52
61
26.0
43.7
51.2
23.1
31
38
34.7
46.5
57
40.4
54.3
66.5
11
15
18.5
15
20
25
R3
R4
R4
03x-44A0-4
67
56.3
44
66
77.0
22.0
30
R4
1)
2)
11.4
16.1
16.8
-
4.7
6.7
7.5
7.1
10.1
11.3
Frame
size
PN
E = EMC filter connected (metal EMC filter screw installed),
U = EMC filter disconnected (plastic EMC filter screw installed), US parametrization.
Overloading not allowed through Common DC connection.
00353783.xls J
Technical data 359
„ Definitions
Input
I1N
I1N (480 V)
Output
I2N
I2,1 min/10 min
I2max
PN
R0…R4
continuous rms input current (for dimensioning cables and fuses)
continuous rms input current (for dimensioning cables and fuses) for drives
with 480 V input voltage
continuous rms current. 50% overload is allowed for one minute every ten
minutes.
maximum (50% overload) current allowed for one minute every ten minutes
maximum output current. Available for two seconds at start, otherwise as long
as allowed by the drive temperature.
typical motor power. The kilowatt ratings apply to most IEC 4-pole motors. The
horsepower ratings apply to most NEMA 4-pole motors. This is also the
maximum load through the Common DC connection and must not be
exceeded.
ACS355 is manufactured in frame sizes R0…R4. Some instructions and other
information that only concern certain frame sizes are marked with the symbol
of the frame size (R0…R4).
„ Sizing
Drive sizing is based on the rated motor current and power. To achieve the rated
motor power given in the table, the rated current of the drive must be higher than or
equal to the rated motor current. Also the rated power of the drive must be higher
than or equal to compared to the rated motor power. The power ratings are the same
regardless of the supply voltage within one voltage range.
Note 1: The maximum allowed motor shaft power is limited to 1.5 · PN. If the limit is
exceeded, motor torque and current are automatically restricted. The function
protects the input bridge of the drive against overload.
Note 2: The ratings apply at ambient temperature of 40 °C (104 °F) for I2N.
Note 3: It is important to check that in Common DC systems the power flowing
through the common DC connection does not exceed PN.
„ Derating
I2N: The load capacity decreases if the installation site ambient temperature exceeds
40 °C (104 °F), the altitude exceeds 1000 meters (3300 ft) or the switching frequency
is changed from 4 kHz to 8, 12 or 16 kHz.
Temperature derating, I2N
In the temperature range +40 °C…+50 °C (+104 °F…+122 °F), the rated output
current (I2N) is decreased by 1% for every additional 1 °C (1.8 °F). The output current
is calculated by multiplying the current given in the rating table by the derating factor.
Example: If the ambient temperature is 50 °C (+122 °F), the derating factor is
100% - 1 % · 10 °C = 90% or 0.90. The output current is then 0.90 · I2N.
°C
360 Technical data
Altitude derating, I2N
In altitudes 1000…2000 m (3300…6600 ft) above sea level, the derating is 1% for
every 100 m (330 ft).
For 3-phase 200 V drives, the maximum altitude is 3000 m (9800 ft) above sea level.
In altitudes 2000…3000 m (6600…9800 ft), the derating is 2% for every 100 m
(330 ft).
Switching frequency derating, I2N
The drive derates itself automatically when parameter 2607 SWITCH FREQ CTRL =
1 (ON).
Switching
frequency
8 kHz
12 kHz
UN = 200…240 V
No derating
I2N derated to 90%.
I2N derated to 80%.
16 kHz
I2N derated to 75%.
4 kHz
Drive voltage rating
UN = 380…480 V
No derating
I2N derated to 75% for R0 or to 80% for R1…R4.
I2N derated to 50% for R0 or to 65% for R1…R4
and maximum ambient temperature derated to
30 °C (86 °F).
I2N derated to 50% and maximum ambient
temperature derated to 30 °C (86 °F).
When parameter 2607 SWITCH FREQ CTRL = 2 (ON (LOAD)), the drive controls the
switching frequency towards the selected switching frequency 2606 SWITCHING
FREQ if the drive’s internal temperature allows.
Technical data 361
Power cable sizes and fuses
Cable dimensioning for rated currents (I1N) is shown in the table below together with
the corresponding fuse types for short-circuit protection of the input power cable. The
rated fuse currents given in the table are the maximums for the mentioned fuse
types. If smaller fuse ratings are used, check that the fuse rms current rating is larger
than the rated I1N current given in section Ratings on page 358. If 150% output power
is needed, multiply current I1N by 1.5. See also section Selecting the power cables on
page 38.
Check that the operating time of the fuse is below 0.5 seconds. The operating
time depends on the fuse type, the supply network impedance as well as the crosssectional area, material and length of the supply cable. In case the 0.5 seconds
operating time is exceeded with the gG or T fuses, ultra rapid (aR) fuses will in most
cases reduce the operating time to an acceptable level.
Note: Larger fuses must not be used when the input power cable is selected
according to this table.
Type
ACS355-
Fuses
gG
Size of copper conductor in cablings
UL Class
Supply
Motor
PE
Brake
T (600 V) (U1, V1, W1) (U2, V2, W2)
(BRK+, BRK-)
x = E/U
A
A
mm2 AWG mm2 AWG mm2 AWG mm2 AWG
1-phase UN = 200…240 V (200, 208, 220, 230, 240 V)
01x-02A4-2
10
10
2.5
14
0.75
18
2.5
14
2.5
14
01x-04A7-2
16
20
2.5
14
0.75
18
2.5
14
2.5
14
1)
25
2.5
10
1.5
14
2.5
10
2.5
12
01x-06A7-2 16/20
01x-07A5-2 20/25 1)
30
2.5
10
1.5
14
2.5
10
2.5
12
1)
01x-09A8-2 25/35
35
6
10
2.5
12
6
10
6
12
3-phase UN = 200…240 V (200, 208, 220, 230, 240 V)
03x-02A4-2
10
10
2.5
14
0.75
18
2.5
14
2.5
14
03x-03A5-2
10
10
2.5
14
0.75
18
2.5
14
2.5
14
03x-04A7-2
10
15
2.5
14
0.75
18
2.5
14
2.5
14
03x-06A7-2
16
15
2.5
12
1.5
14
2.5
12
2.5
12
03x-07A5-2
16
15
2.5
12
1.5
14
2.5
12
2.5
12
03x-09A8-2
16
20
2.5
12
2.5
12
2.5
12
2.5
12
03x-13A3-2
25
30
6
10
6
10
6
10
2.5
12
03x-17A6-2
25
35
6
10
6
10
6
10
2.5
12
03x-24A4- 2
63
60
10
8
10
8
10
8
6
10
03x-31A0-2
80
80
16
6
16
6
16
6
10
8
03x-46A2-2
100
100
25
2
25
2
16
4
10
8
362 Technical data
Type
ACS355-
Fuses
Size of copper conductor in cablings
UL Class
Supply
Motor
PE
Brake
T (600 V) (U1, V1, W1) (U2, V2, W2)
(BRK+, BRK-)
x = E/U
A
A
mm2 AWG mm2 AWG mm2 AWG mm2 AWG
3-phase UN = 380…480 V (380, 400, 415, 440, 460, 480 V)
03x-01A2-4
10
10
2.5
14
0.75
18
2.5
14
2.5
14
03x-01A9-4
10
10
2.5
14
0.75
18
2.5
14
2.5
14
03x-02A4-4
10
10
2.5
14
0.75
18
2.5
14
2.5
14
03x-03A3-4
10
10
2.5
12
0.75
18
2.5
12
2.5
12
03x-04A1-4
16
15
2.5
12
0.75
18
2.5
12
2.5
12
03x-05A6-4
16
15
2.5
12
1.5
14
2.5
12
2.5
12
03x-07A3-4
16
20
2.5
12
1.5
14
2.5
12
2.5
12
03x-08A8-4
20
25
2.5
12
2.5
12
2.5
12
2.5
12
03x-12A5-4
25
30
6
10
6
10
6
10
2.5
12
03x-15A6-4
35
35
6
8
6
8
6
8
2.5
12
03x-23A1-4
50
50
10
8
10
8
10
8
6
10
03x-31A0-4
80
80
16
6
16
6
16
6
10
8
03x-38A0-4
100
100
16
4
16
4
16
4
10
8
03x-44A0-4
100
100
25
4
25
4
16
4
10
8
1)
gG
If 50% overload capacity is needed, use the larger fuse alternative.
00353783.xls J
Technical data 363
Dimensions, weights and free space requirements
„ Dimensions and weights
Frame
size
Dimensions and weights
H1
IP20 (cabinet) / UL open
H3
W
H2
D
Weight
R0
mm
169
in
6.65
mm
202
in
7.95
mm
239
in
9.41
mm
70
in
2.76
mm
161
in
6.34
kg
1.2
lb
2.6
R1
R2
R3
169
169
169
6.65
6.65
6.65
202
202
202
7.95
7.95
7.95
239
239
236
9.41
9.41
9.29
70
105
169
2.76
4.13
6.65
161
165
169
6.34
6.50
6.65
1.2
1.7
2.9
2.6
3.7
6.4
R4
181
7.13
202
7.95
244
9.61
260
10.24
169
6.65
5.1
11.2
00353783.xls J
Frame
size
Dimensions and weights
H4
R0
R1
R2
R3
R4
mm
257
257
257
260
270
in
10.12
10.12
10.12
10.24
10.63
IP20 / NEMA 1
H5
W
mm
in
mm
in
280 11.02 70
2.76
280 11.02 70
2.76
282 11.10 105 4.13
299 11.77 169 6.65
320 12.60 260 10.24
D
mm
169
169
169
177
177
in
6.65
6.65
6.65
6.97
6.97
Weight
kg
lb
1.6
3.5
1.6
3.5
2.1
4.6
3.5
7.7
5.7
12.6
00353783.xls J
Symbols
IP20 (cabinet) / UL open
H1
height without fastenings and clamping plate
H2
height with fastenings, without clamping plate
H3
height with fastenings and clamping plate
IP20 / NEMA 1
H4
height with fastenings and connection box
H5
height with fastenings, connection box and hood
„ Free space requirements
Frame
size
R0…R4
Free space required
Below
On the sides
Above
mm
75
in
3
mm
75
in
3
mm
0
in
0
00353783.xls J
364 Technical data
Losses, cooling data and noise
„ Losses and cooling data
Frame size R0 has natural convection cooling. Frame sizes R1…R4 are provided
with an internal fan. The air flow direction is from bottom to top.
The table below specifies the heat dissipation in the main circuit at nominal load and
in the control circuit with minimum load (I/O and panel not in use) and maximum load
(all digital inputs in the on state and the panel, fieldbus and fan in use). The total heat
dissipation is the sum of the heat dissipation in the main and control circuits.
Type
Heat dissipation
Air flow
ACS355x = E/U
Main circuit
Control circuit
Rated /1N and /2N
Min
Max
W
W
W
1-phase UN = 200…240 V (200, 208, 220, 230, 240 V)
01x-02A4-2
25
6.1
22.7
01x-04A7-2
46
9.5
26.4
01x-06A7-2
71
9.5
26.4
01x-07A5-2
73
10.5
27.5
01x-09A8-2
96
10.5
27.5
3-phase UN = 200…240 V (200, 208, 220, 230, 240 V)
03x-02A4-2
19
6.1
03x-03A5-2
31
6.1
03x-04A7-2
38
9.5
03x-06A7-2
60
9.5
03x-07A5-2
62
9.5
03x-09A8-2
83
10.5
m3/h
ft3/min
24
24
21
21
14
14
12
12
22.7
22.7
26.4
26.4
26.4
27.5
24
24
21
21
14
14
12
12
03x-13A3-2
112
10.5
27.5
52
31
03x-17A6-2
152
10.5
27.5
52
31
03x-24A4- 2
03x-31A0-2
03x-46A2-2
250
270
430
16.6
33.4
33.4
35.4
57.8
57.8
71
96
96
42
57
57
Technical data 365
Type
Heat dissipation
ACS355x = E/U
Main circuit
Rated /1N and /2N
W
Air flow
Control circuit
Min
Max
W
W
3-phase UN = 380…480 V (380, 400, 415, 440, 460, 480 V)
03x-01A2-4
11
6.6
24.4
m3/h
ft3/min
-
-
03x-01A9-4
03x-02A4-4
03x-03A3-4
16
21
31
6.6
9.8
9.8
24.4
28.7
28.7
13
13
8
8
03x-04A1-4
03x-05A6-4
03x-07A3-4
40
61
74
9.8
9.8
14.1
28.7
28.7
32.7
13
19
24
8
11
14
03x-08A8-4
03x-12A5-4
03x-15A6-4
94
130
173
14.1
12.0
12.0
32.7
31.2
31.2
24
52
52
14
31
31
03x-23A1-4
03x-31A0-4
03x-38A0-4
03x-44A0-4
266
350
440
530
16.6
33.4
33.4
33.4
35.4
57.8
57.8
57.8
71
96
96
96
42
57
57
57
00353783.xls J
„ Noise
Frame
size
R0
R1
R2
Noise level
dBA
<30
50…62
50…62
R3
R4
50…62
<62
00353783.xls J
366 Technical data
Terminal and lead-through data for the power cables
Frame
size
Max. cable
diameter for NEMA 1
U1, V1, W1, BRK+ and
U2, V2, W2
BRK-
U1, V1, W1, U2, V2, W2,
PE
BRK+ and BRKTerminal size Tightening Clamp size Tightening
torque
torque
R0
mm
16
in
0.63
mm
16
in
0.63
mm2
4.0/6.0
R1
R2
R3
16
16
29
0.63
0.63
1.14
16
16
16
0.63
0.63
0.63
4.0/6.0
4.0/6.0
10.0/16.0
10
10
6
0.8
0.8
1.7
7
7
15
25
25
25
3
3
3
1.2
1.2
1.2
11
11
11
R4
35
1.38
29
1.14
25.0/35.0
2
2.5
22
25
3
1.2
11
AWG N·m lbf·in mm2 AWG N·m lbf·in
10
0.8
7
25
3
1.2
11
00353783.xls J
Terminal and lead-through data for the control cables
Conductor size
Min/Max
Min/Max
2
mm
AWG
0.25/1.5
24/16
Tightening torque
N·m
0.5
lbf·in
4.4
Technical data 367
Electric power network specification
Voltage (U1)
200/208/220/230/240 V AC 1-phase for 200 V AC drives
200/208/220/230/240 V AC 3-phase for 200 V AC drives
380/400/415/440/460/480 V AC 3-phase for 400 V AC drives
±10% variation from converter nominal voltage is allowed as default.
Short-circuit capacity
Maximum allowed prospective short-circuit current at the input power
connection as defined in IEC 60439-1 and UL 508C is 100 kA. The
drive is suitable for use in a circuit capable of delivering not more
than 100 kA rms symmetrical amperes at the drive maximum rated
voltage.
50/60 Hz ± 5%, maximum rate of change 17%/s
Max. ±3% of nominal phase to phase input voltage
Frequency
Imbalance
Motor connection data
Motor type
Asynchronous induction motor or synchronous permanent
magnet motor
Voltage (U2)
Short-circuit protection
(IEC 61800-5-1,
UL 508C)
Frequency
Frequency resolution
Current
Power limit
0 to U1, 3-phase symmetrical, Umax at the field weakening point
The motor output is short-circuit proof by IEC 61800-5-1 and
UL 508C.
Field weakening point
Switching frequency
Speed control
Torque control
Maximum
recommended
motor cable length
0…600 Hz
0.01 Hz
See section Ratings on page 358.
1.5 · PN
10…600 Hz
4, 8, 12 or 16 kHz (in scalar control)
See section Speed control performance figures on page 143.
See section Torque control performance figures on page 143.
Operational functionality and motor cable length
The drive is designed to operate with optimum performance with the
following maximum motor cable lengths. The motor cable lengths may
be extended with output chokes as shown in the table.
Frame
size
Maximum motor cable length
m
Standard drive, without external options
R0
30
R1…R4
With external output chokes
R0
R1…R4
ft
100
50
165
60
195
100
330
Note: In multimotor systems, the calculated sum of all motor cable
lengths must not exceed the maximum motor cable length given in
the table.
368 Technical data
EMC compatibility and motor cable length
To comply with the European EMC Directive (standard
IEC/EN 61800-3), use the following maximum motor cable lengths
for 4 kHz switching frequency.
All frame
sizes
Maximum motor cable length, 4 kHz
m
With internal EMC filter
Second environment
30
(category C3 1))
With optional external EMC filter
ft
100
Second environment
(category C3 1))
30 (at least) 2)
100 (at least) 2)
First environment
(category C2 1))
30 (at least) 2)
100 (at least) 2)
1)
2)
First environment
10 (at least) 2)
30 (at least) 2)
1)
(category C1 )
See the terms in section Definitions on page 373.
Maximum motor cable length is determined by the drive’s
operational factors. Contact your local ABB representative for the
exact maximum lengths when using external EMC filters.
Note 1: The internal EMC filter must be disconnected by removing
the EMC screw (see the figure on page 48) while using the low
leakage current EMC filter (LRFI-XX).
Note 2: Radiated emissions are according to C2 with and without an
external EMC filter.
Note 3: Category C1 with conducted emissions only. Radiated
emissions are not compatible when measured with standard
emission measurement setup and should be checked or measured
on cabinet and machine installations case by case.
Technical data 369
Control connection data
Analog inputs
X1A: 2 and 5
(AI1 and AI2)
Voltage signal,
unipolar
bipolar
Current signal, unipolar
bipolar
Potentiometer reference
value (X1A: 4)
Resolution
Accuracy
0 (2)…10 V, Rin = 675 kohm
-10…10 V, Rin = 675 kohm
0 (4)…20 mA, Rin = 100 ohm
-20…20 mA, Rin = 100 ohm
10 V ± 1%, max. 10 mA, R < 10 kohm
0.1%
±2%
Analog output
X1A: 7
(AO)
0 (4)…20 mA, load < 500 ohm
Auxiliary voltage
X1A: 9
24 V DC ± 10%, max. 200 mA
Digital inputs
X1A: 12…16
(DI1…DI5)
Voltage
Type
Input impedance,
X1A: 12…15
X1A: 16
12…24 V DC with internal or external
supply. Max. voltage for digital inputs
30 V DC.
PNP and NPN
Rin = 2 kohm
Rin = 4 kohm
Frequency input
X1A: 16
(DI5)
X1A: 16 can be used either as a digital or as a frequency input.
Frequency
Pulse train 0…10 kHz with 50% duty
cycle. 0…16 kHz between two
ACS355 drives.
Relay output
X1B: 17…19
(RO 1)
Type
Max. switching voltage
Max. switching current
Max. continuous current
NO + NC
250 V AC / 30 V DC
0.5 A / 30 V DC; 5 A / 230 V AC
2 A rms
Digital output
X1B: 20…21
(DO)
Type
Max. switching voltage
Max. switching current
Transistor output PNP
30 V DC
100 mA / 30 V DC, short-circuit
protected
10 Hz …16 kHz
1 Hz
0.2%
Frequency
Resolution
Accuracy
Frequency output
X1B: 20…21
(FO)
X1A: 20…21 can be used either as a digital or as a frequency output.
STO interface
X1C: 23…26
See Appendix: Safe torque off (STO) on page 399.
370 Technical data
Brake resistor connection
Short-circuit protection The brake resistor output is conditionally short-circuit proof by
(IEC 61800-5-1,
IEC/EN 61800-5-1 and UL 508C. For correct fuse selection, contact
IEC 60439-1, UL 508C) your local ABB representative. Rated conditional short-circuit current
as defined in IEC 60439-1 and the Short-circuit test current by
UL 508C is 100 kA.
Common DC connection
Maximum power through common DC connection is equal to the
drive nominal power. See ACS355 Common DC application guide
(3AUA0000070130 [English]).
Efficiency
Approximately 95 to 98% at nominal power level, depending on the
drive size and options
Degrees of protection
IP20 (cabinet installation) / UL open: Standard enclosure. The drive
must be installed in a cabinet to fulfil the requirements for shielding
from contact.
IP20 / NEMA 1: Achieved with an option kit (MUL1-R1, MUL1-R3 or
MUL1-R4) including a hood and a connection box.
Technical data 371
Ambient conditions
Environmental limits for the drive are given below. The drive is to be used in a heated indoor
controlled environment.
Operation
Storage
Transportation
installed for
in the protective
in the protective
stationary use
package
package
Installation site altitude 0…2000 m (6600 ft) above sea level
(above 1000 m
[3300 ft], see section
Derating on page
359)
Air temperature
-10 … +50 °C
-40 … +70 °C ±2%
-40 … +70 °C ±2%
(14 … 122 °F).
(-40 … +158 °F ±2%) (-40 … +158 °F ±2%)
No frost allowed. See
section Derating on
page 359.
Relative humidity
Contamination levels
(IEC 60721-3-3,
IEC 60721-3-2,
IEC 60721-3-1)
0 … 95%
Max. 95%
Max. 95%
No condensation allowed. Maximum allowed relative humidity is
60% in the presence of corrosive gases.
No conductive dust allowed.
According to
According to
According to
IEC 60721-3-3,
IEC 60721-3-1,
IEC 60721-3-2,
chemical gases:
chemical gases:
chemical gases:
Class 3C2
Class 1C2
Class 2C2
solid particles:
solid particles:
solid particles:
Class 3S2.
Class 1S2
Class 2S2
Note: The drive must
be installed in clean
air according to
enclosure
classification.
Note: Cooling air
must be clean, free
from corrosive
materials and
electrically conductive
dust.
Sinusoidal vibration
(IEC 60721-3-3)
Tested according to
IEC 60721-3-3,
mechanical
conditions: Class 3M4
2…9 Hz, 3.0 mm
(0.12 in)
9…200 Hz, 10 m/s2
(33 ft/s2)
-
Shock
(IEC 60068-2-27,
ISTA 1A)
Free fall
Not allowed
According to ISTA 1A.
Max. 100 m/s2
(330 ft/s2), 11 ms
76 cm (30 in)
Not allowed
According to ISTA 1A.
Max. 100 m/s2
(330 ft/s2), 11 ms
76 cm (30 in)
372 Technical data
Materials
Drive enclosure
Package
Disposal
• PC/ABS 2 mm, PC+10%GF 2.5…3 mm and PA66+25%GF
1.5 mm, all in color NCS 1502-Y (RAL 9002 / PMS 420 C)
• hot-dip zinc coated steel sheet 1.5 mm, thickness of coating
20 micrometers
• extruded aluminium AlSi.
Corrugated cardboard.
The drive contains raw materials that should be recycled to preserve
energy and natural resources. The package materials are
environmentally compatible and recyclable. All metal parts can be
recycled. The plastic parts can either be recycled or burned under
controlled circumstances, according to local regulations. Most
recyclable parts are marked with recycling marks.
If recycling is not feasible, all parts excluding electrolytic capacitors
and printed circuit boards can be landfilled. The DC capacitors
contain electrolyte, which is classified as hazardous waste within the
EU. They must be removed and handled according to local
regulations.
For further information on environmental aspects and more detailed
recycling instructions, please contact your local ABB distributor.
Applicable standards
•
•
•
•
•
•
•
EN ISO 13849-1:
2008
IEC/EN 60204-1:
2006
IEC/EN 62061:
2005
IEC/EN 61800-3:
2004
IEC/EN 61800-5-1:
2007
IEC/EN 61800-5-2:
2007
UL 508C
The drive complies with the following standards:
Safety of machinery - Safety related parts of control systems - Part 1:
general principles for design
Safety of machinery. Electrical equipment of machines. Part 1:
General requirements. Provisions for compliance: The final
assembler of the machine is responsible for installing
- an emergency-stop device
- a supply disconnecting device.
Safety of machinery – Functional safety of safety-related electrical,
electronic and programmable electronic control systems
Adjustable speed electrical power drive systems. Part 3: EMC
requirements and specific test methods
Adjustable speed electrical power drive systems – Part 5-1: Safety
requirements – Electrical, thermal and energy
Adjustable speed electrical power drive systems – Part 5-2: Safety
requirements. Functional.
UL Standard for Safety, Power Conversion Equipment, third edition
Technical data 373
CE marking
The CE mark is attached to the drive to verify that the drive follows the provisions of
the European Low Voltage and EMC Directives.
„ Compliance with the European EMC Directive
The EMC Directive defines the requirements for immunity and emissions of electrical
equipment used within the European Union. The EMC product standard
(EN 61800-3:2004) covers requirements stated for drives. See section Compliance
with EN 61800-3:2004 on page 373.
Compliance with EN 61800-3:2004
„ Definitions
EMC stands for Electromagnetic Compatibility. It is the ability of electrical/electronic
equipment to operate without problems within an electromagnetic environment.
Likewise, the equipment must not disturb or interfere with any other product or
system within its locality.
First environment includes establishments connected to a low-voltage network which
supplies buildings used for domestic purposes.
Second environment includes establishments connected to a network not directly
supplying domestic premises.
Drive of category C1: drive of rated voltage less than 1000 V, intended for use in the
first environment.
Drive of category C2: drive of rated voltage less than 1000 V and intended to be
installed and commissioned only by a professional when used in the first
environment.
Note: A professional is a person or organization having necessary skills in installing
and/or commissioning power drive systems, including their EMC aspects.
Category C2 has the same EMC emission limits as the earlier class first environment
restricted distribution. EMC standard IEC/EN 61800-3 does not any more restrict the
distribution of the drive, but the using, installation and commissioning are defined.
Drive of category C3: drive of rated voltage less than 1000 V, intended for use in the
second environment and not intended for use in the first environment.
Category C3 has the same EMC emission limits as the earlier class second
environment unrestricted distribution.
„ Category C1
The emission limits are complied with the following provisions:
374 Technical data
1. The optional EMC filter is selected according to the ABB documentation and
installed as specified in the EMC filter manual.
2. The motor and control cables are selected as specified in this manual.
3. The drive is installed according to the instructions given in this manual.
4. For the maximum motor cable length with 4 kHz switching frequency, see page
368.
WARNING! In a domestic environment, this product may cause radio inference, in
which case supplementary mitigation measures may be required.
„ Category C2
The emission limits are complied with the following provisions:
1. The optional EMC filter is selected according to the ABB documentation and
installed as specified in the EMC filter manual.
2. The motor and control cables are selected as specified in this manual.
3. The drive is installed according to the instructions given in this manual.
4. For the maximum motor cable length with 4 kHz switching frequency, see page
368.
WARNING! In a domestic environment, this product may cause radio inference, in
which case supplementary mitigation measures may be required.
„ Category C3
The immunity performance of the drive complies with the demands of
IEC/EN 61800-3, second environment (see page 373 for IEC/EN 61800-3
definitions).
The emission limits are complied with the following provisions:
1. The internal EMC filter is connected (the metal screw at EMC is in place) or the
optional EMC filter is installed.
2. The motor and control cables are selected as specified in this manual.
3. The drive is installed according to the instructions given in this manual.
4. With the internal EMC filter: motor cable length 30 m (100 ft) with 4 kHz switching
frequency. For the maximum motor cable length with an optional external EMC
filter, see page 368.
WARNING! A drive of category C3 is not intended to be used on a low-voltage public
network which supplies domestic premises. Radio frequency interference is expected
if the drive is used on such a network.
Technical data 375
Note: It is not allowed to install a drive with the internal EMC filter connected on IT
(ungrounded) systems. The supply network becomes connected to ground potential
through the EMC filter capacitors which may cause danger or damage the drive.
Note: It is not allowed to install a drive with the internal EMC filter connected on a
corner-grounded TN system as this would damage the drive.
UL marking
See the type designation label for the valid markings of your drive.
The UL mark is attached to the drive to verify that it meets UL requirements.
„ UL checklist
Input power connection – See section Electric power network specification on page
367.
Disconnecting device (disconnecting means) – See Selecting the supply
disconnecting device (disconnecting means) on page 37.
Ambient conditions – The drives are to be used in a heated indoor controlled
environment. See section Ambient conditions on page 371 for specific limits.
Input cable fuses – For installation in the United States, branch circuit protection
must be provided in accordance with the National Electrical Code (NEC) and any
applicable local codes. To fulfil this requirement, use the UL classified fuses given in
section Power cable sizes and fuses on page 361.
For installation in Canada, branch circuit protection must be provided in accordance
with Canadian Electrical Code and any applicable provincial codes. To fulfil this
requirement, use the UL classified fuses given in section Power cable sizes and
fuses on page 361.
Power cable selection – See section Selecting the power cables on page 38.
Power cable connections – For the connection diagram and tightening torques, see
section Connecting the power cables on page 49.
Overload protection – The drive provides overload protection in accordance with
the National Electrical Code (US).
Braking – The drive has an internal brake chopper. When applied with appropriately
sized brake resistors, the brake chopper will allow the drive to dissipate regenerative
energy (normally associated with quickly decelerating a motor). Brake resistor
selection is discussed in Appendix: Resistor braking on page 389.
376 Technical data
C-Tick marking
See the type designation label for the valid markings of your drive.
C-Tick marking is required in Australia and New Zealand. A C-Tick mark is attached
to the drive to verify compliance with the relevant standard (IEC 61800-3:2004 –
Adjustable speed electrical power drive systems – Part 3: EMC product standard
including specific test methods), mandated by the Trans-Tasman Electromagnetic
Compatibility Scheme.
The Trans-Tasman Electromagnetic Compatibility Scheme (EMCS) was introduced
by the Australian Communication Authority (ACA) and the Radio Spectrum
Management Group (RSM) of the New Zealand Ministry of Economic Development
(NZMED) in November 2001. The aim of the scheme is to protect the radio frequency
spectrum by introducing technical limits for emission from electrical/electronic
products.
For fulfilling the requirements of the standard, see section Compliance with
EN 61800-3:2004 on page 373.
TÜV NORD Safety Approved mark
The presence of the TÜV NORD Safety Approved mark verifies that the drive has
been evaluated and certified by TÜV NORD according to the following standards for
the realization of the Safe torque off function (STO): IEC 61508-1:1998,
IEC 61508-2:2000; SIL3, IEC 62061:2005 and ISO 13849-1:2006. See Appendix:
Safe torque off (STO).
RoHS marking
The RoHS mark is attached to the drive to verify that the drive follows the provisions
of the European RoHS Directive. RoHS = the restriction of the use of certain
hazardous substances in electrical and electronic equipment.
Compliance with the Machinery Directive
The drive is intended to be incorporated into machinery to constitute machinery
covered by Machinery Directive (2006/42/EC) and does therefore not in every
respect comply with the provisions of the directive. For more information, see the
Declaration of Incorporation by ABB Drives.
Technical data 377
Patent protection in the USA
This product is protected by one or more of the following US patents:
4,920,306
5,654,624
6,175,256
6,313,599
6,552,510
6,859,374
6,972,976
7,034,510
7,084,604
7,215,099
7,274,573
7,372,696
7,515,447
D512,026
D548,183S
5,301,085
5,799,805
6,184,740
6,316,896
6,597,148
6,922,883
6,977,449
7,036,223
7,098,623
7,221,152
7,279,802
7,388,765
7,560,894
D512,696
D573,090S
Other patents pending.
5,463,302
5,940,286
6,195,274
6,335,607
6,600,290
6,940,253
6,984,958
7,045,987
7,102,325
7,227,325
7,280,938
7,408,791
D503,931
D521,466
5,521,483
5,942,874
6,229,356
6,370,049
6,741,059
6,934,169
6,985,371
7,057,908
7,109,780
7,245,197
7,330,095
7,417,408
D510,319
D541,743S
5,532,568
5,952,613
6,252,436
6,396,236
6,774,758
6,956,352
6,992,908
7,059,390
7,164,562
7,250,739
7,349,814
7,446,268
D510,320
D541,744S
5,589,754
6,094,364
6,265,724
6,448,735
6,844,794
6,958,923
6,999,329
7,067,997
7,176,779
7,262,577
7,352,220
7,456,615
D511,137
D541,745S
5,612,604
6,147,887
6,305,464
6,498,452
6,856,502
6,967,453
7,023,160
7,082,374
7,190,599
7,271,505
7,365,622
7,508,688
D511,150
D548,182S
378 Technical data
Dimension drawings 379
Dimension drawings
Dimension drawings of the ACS355 are shown below. The dimensions are given in
millimeters and [inches].
380 Dimension drawings
Frame sizes R0 and R1, IP20 (cabinet installation) / UL open
Frame sizes R0 and R1, IP20 (cabinet installation) / UL open
3AUA0000067784-A
Extension modules add 26 mm (1.02 in) to the depth measure.
1)
1)
R1 and R0 are identical except for the fan at the top of R1.
Dimension drawings 381
Frame sizes R0 and R1, IP20 / NEMA 1
Frame sizes R0 and R1, IP20 / NEMA 1
3AUA0000067785-A
Extension modules add 26 mm (1.02 in) to the depth measure.
1)
1)
R1 and R0 are identical except for the fan at the top of R1.
Frame size R2, IP20 (cabinet installation) / UL open
Extension modules add 26 mm (1.02 in) to the depth measure.
3AUA0000067782-A
1)
1)
382 Dimension drawings
Frame size R2, IP20 (cabinet installation) / UL open
Frame size R2, IP20 / NEMA 1
Extension modules add 26 mm (1.02 in) to the depth measure.
3AUA0000067783-A
1)
1)
Dimension drawings 383
Frame size R2, IP20 / NEMA 1
Frame size R3, IP20 (cabinet installation) / UL open
Extension modules add 26 mm (1.02 in) to the depth measure.
3AUA0000067786-A
1)
1)
384 Dimension drawings
Frame size R3, IP20 (cabinet installation) / UL open
Frame size R3, IP20 / NEMA 1
Extension modules add 26 mm (1.02 in) to the depth measure.
3AUA0000067787-A
1)
1)
Dimension drawings 385
Frame size R3, IP20 / NEMA 1
Frame size R4, IP20 (cabinet installation) / UL open
Extension modules add 26 mm (1.02 in) to the depth measure.
3AUA0000067836-A
1)
1)
386 Dimension drawings
Frame size R4, IP20 (cabinet installation) / UL open
Frame size R4, IP20 / NEMA 1
Extension modules add 26 mm (1.02 in) to the depth measure.
3AUA0000067883-A
1)
1)
Dimension drawings 387
Frame size R4, IP20 / NEMA 1
388 Dimension drawings
Appendix: Resistor braking 389
Appendix: Resistor braking
What this chapter contains
The chapter tells how to select the brake resistor and cables, protect the system,
connect the brake resistor and enable resistor braking.
Planning the braking system
„ Selecting the brake resistor
ACS355 drives have an internal brake chopper as standard equipment. The brake
resistor is selected using the table and equations presented in this section.
1. Determine the required maximum braking power PRmax for the application. PRmax
must be smaller than PBRmax given in the table on page 390 for the used drive
type.
2. Calculate resistance R with Equation 1.
3. Calculate energy ERpulse with Equation 2.
4. Select the resistor so that the following conditions are met:
•
The rated power of the resistor must be greater than or equal to PRmax.
•
Resistance R must be between Rmin and Rmax given in the table for the used
drive type.
•
The resistor must be able to dissipate energy ERpulse during the braking
cycle T.
390 Appendix: Resistor braking
Equations for selecting the resistor:
Eq. 1. UN = 200…240 V: R =
150000
PRmax
UN = 380…415 V: R =
450000
PRmax
UN = 415…480 V: R =
615000
PRmax
ton
PRmax
PRave
T
Eq. 2. ERpulse = PRmax · ton
Eq. 3. PRave = PRmax ·
where
R
PRmax
PRave
ERpulse
ton
T
ton
T
For conversion, use 1 hp = 746 W.
= selected brake resistor value (ohm)
= maximum power during the braking cycle (W)
= average power during the braking cycle (W)
= energy conducted into the resistor during a single braking pulse (J)
= length of the braking pulse (s)
= length of the braking cycle (s).
Resistor types shown in the table are pre-dimensioned resistors using the maximum
braking power with cyclic braking shown in the table. Resistors are available from
ABB. Information is subject to change without further notice.
Type
ACS355-
Rmin Rmax
PBRmax
Selection table by resistor type
CBR-V / CBT-H
Braking time 2)
x = E/U 1) ohm ohm
kW
hp
160 210 260 460 660 560
1-phase UN = 200…240 V (200, 208, 220, 230, 240 V)
01x-02A4-2 70
390 0.37
0.5
01x-04A7-2 40
200 0.75
1
90
45
01x-06A7-2
01x-07A5-2
01x-09A8-2
28
19
14
40
30
30
130
100
70
1.1
1.5
2.2
1.5
2
3
s
3-phase UN = 200…240 V (200, 208, 220, 230, 240 V)
03x-02A4-2 70
390 0.37
0.5
03x-03A5-2 70
260 0.55
0.75
90
60
03x-04A7-2
03x-06A7-2
03x-07A5-2
40
40
30
200
130
100
0.75
1.1
1.5
1
1.5
2
42
29
19
03x-09A8-2
03x-13A3-2
03x-17A6-2
30
30
30
70
50
40
2.2
3.0
4.0
3
4
5
14
16
12
03x-24A4- 2
03x-31A0-2
03x-46A2-2
18
7
7
25
19
13
5.5
7.5
11.0
7.5
10
15
45
35
23
Appendix: Resistor braking 391
Type
Rmin Rmax
PBRmax
Selection table by resistor type
ACS355-
CBR-V / CBT-H
x = E/U 1) ohm ohm
kW
hp
160 210 260 460 660 560
3-phase UN = 380…480 V (380, 400, 415, 440, 460, 480 V)
03x-01A2-4 200 1180 0.37
0.5
Braking time 2)
s
90
03x-01A9-4
03x-02A4-4
03x-03A3-4
175
165
150
800
590
400
0.55
0.75
1.1
0.75
1
1.5
90
60
37
03x-04A1-4
03x-05A6-4
03x-07A3-4
130
100
70
300
200
150
1.5
2.2
3.0
2
3
4
27
17
29
03x-08A8-4
03x-12A5-4
03x-15A6-4
70
40
40
110
80
60
4.0
5.5
7.5
5
7.5
10
20
15
10
03x-23A1-4
03x-31A0-4
03x-38A0-4
03x-44A0-4
30
16
13
13
40
29
23
19
11
15
18.5
22.0
15
20
25
30
10
16
13
10
1)
2)
E = EMC filter connected (metal EMC filter screw installed),
U = EMC filter disconnected (plastic EMC filter screw installed), US
parametrization.
Braking time = maximum allowed braking time in seconds at PBRmax every
120 seconds, at 40 °C ambient temperature.
00353783.xls J
Symbols
Rmin
= minimum allowed brake resistor that can be connected to the brake chopper
= maximum allowed brake resistor that allows PBRmax
Rmax
PBRmax = maximum braking capacity of the drive, must exceed the desired braking power.
Ratings by resistor type
Nominal power (W)
Resistance (ohm)
CBR-V
CBR-V
CBR-V
CBR-V
CBR-V
CBT-H
160
280
70
210
360
200
260
450
40
460
790
80
660
1130
33
560
2200
18
WARNING! Never use a brake resistor with a resistance below the minimum
value specified for the particular drive. The drive and the internal chopper are
not able to handle the overcurrent caused by the low resistance.
„ Selecting the brake resistor cables
Use a shielded cable with the conductor size specified in section Power cable sizes
and fuses on page 361. The maximum length of the resistor cable(s) is 5 m (16 ft).
392 Appendix: Resistor braking
„ Placing the brake resistor
Install all resistors in a place where they will cool.
WARNING! The materials near the brake resistor must be non-flammable. The
surface temperature of the resistor is high. Air flowing from the resistor is of
hundreds of degrees Celsius. Protect the resistor against contact.
„ Protecting the system in brake circuit fault situations
Protecting the system in cable and brake resistor short-circuit situations
For short-circuit protection of the brake resistor connection, see Brake resistor
connection on page 370. Alternatively, a two-conductor shielded cable with the same
cross-sectional area can be used.
Protecting the system in brake resistor overheating situations
The following setup is essential for safety – it interrupts the main supply in fault
situations involving chopper shorts:
•
Equip the drive with a main contactor.
•
Wire the contactor so that it opens if the resistor thermal switch opens (an
overheated resistor opens the contactor).
Below is a simple wiring diagram example.
L1 L2 L3
Fuses
Q Thermal switch of the resistor
1
3
5
2
4
6
K1
ACS355
U1 V1 W1
Electrical installation
For the brake resistor connections, see the power connection diagram of the drive on
page 49.
Start-up
To enable resistor braking, switch off the drive’s overvoltage control by setting
parameter 2005 OVERVOLT CTRL to 0 (DISABLE).
Appendix: Extension modules 393
Appendix: Extension
modules
What this chapter contains
The appendix describes common features and mechanical installation of the optional
extension modules for the ACS355: MPOW-01 auxiliary power module, MTAC-01
pulse encoder interface module and MREL-01 output relay module.
The appendix also describes specific features and electrical installation for the
MPOW-01; for information on the MTAC-01 and MREL-01, refer to the corresponding
user’s manual.
Extension modules
„ Description
Extension modules have similar enclosures and they are mounted between the
control panel and the drive. Therefore only one extension module can be used for a
drive. ACS355 IP66/67 / UL Type 4X drives are not compatible with extension
modules due to space restrictions.
The following optional extension modules are available for the ACS355. The drive
automatically identifies the module, which is ready for use after the installation and
power-up.
•
MTAC-01 pulse encoder interface module
•
MREL-01 output relay module
•
MPOW-01 auxiliary power module.
394 Appendix: Extension modules
Generic extension module layout
Grounding stand-off
Panel port adapter
„ Installation
Checking the delivery
The option package contains:
•
extension module
•
grounding stand-off with an M3 × 12 screw
•
panel port adapter (fixed to the MPOW-01 module at the factory).
Installing the extension module
WARNING! Follow the safety instructions given in chapter Safety on page 17.
To install the extension module:
1. If not already off, remove input power from the drive.
2. Remove the control panel or panel cover. See how to remove the panel cover in
step 1. on page 56.
3. Remove the grounding screw in the top left corner of the drive’s control panel slot
and install the grounding stand-off in its place.
4. For the MREL-01 and MTAC-01, ensure that the panel port adapter is attached to
either the panel port of the drive or the mate part of the extension module. The
adapter of the MPOW-01 is already fixed to the extension module at the factory.
5. Gently and firmly install the extension module to the drive’s panel slot directly from
the front.
Note: Signal and power connections to the drive are automatically made through a
6-pin connector.
Appendix: Extension modules 395
6. Ground the extension module by inserting the screw removed from the drive in
the top left corner of the extension module. Tighten the screw using a torque of
0.8 N·m (7 lbf·in).
Note: Correct insertion and tightening of the screw is essential for fulfilling the EMC
requirements and proper operation of the extension module.
7. Install the control panel or panel cover on the extension module.
8. Electrical installation is module-specific. For MPOW-01, see section Electrical
installation on page 397. For MTAC-01, see MTAC-01 pulse encoder interface
module user’s manual (3AFE68591091 [English]), and for MREL-01, see
MREL-01 relay output extension module user’s manual (3AUA0000035957
[English]).
3
6
5
4
396 Appendix: Extension modules
„ Technical data
Dimensions
Extension module dimensions are shown in the figure below.
64 [2.52]
45 [1.79]
118 [4.63]
70 [2.77]
Generic extension module specifications
•
Enclosure degree of protection: IP20
•
All materials are UL/CSA-approved.
•
When used with ACS355 drives, the extension modules comply with EMC
standard EN/IEC 61800-3:2004 for electromagnetic compatibility and
EN/IEC 61800-5-1:2005 for electrical safety requirements.
MTAC-01 pulse encoder interface module
See MTAC-01 pulse encoder interface module user’s manual (3AFE68591091
[English]) delivered with this option.
MREL-01 output relay module
See MREL-01 relay output extension module user’s manual (3AUA0000035957
[English]) delivered with this option.
Appendix: Extension modules 397
MPOW-01 auxiliary power module
„ Description
The MPOW-01 auxiliary power module is used in installations where the drive's
control part is required to be powered during network failures and maintenance
interruptions. The MPOW-01 provides auxiliary voltages to the control panel, fieldbus
and I/O.
Note: If you change any of the drive parameters when the drive is powered
through the MPOW-01, you have to force parameter saving with parameter 1607
PARAM SAVE by setting the value to (1) SAVE…; otherwise all changed data
will be lost.
„ Electrical installation
Wiring
•
Use 0.5…1.5 mm2 (20…16 AWG) shielded cable.
•
Connect the control wires according to the diagram in section Terminal
designations below. Use a tightening torque of 0.8 N·m (7 lbf·in).
Terminal designations
The diagram below shows the MPOW-01 terminals and how the MPOW-01 module is
connected to the external power supply and how the modules are daisy chained.
External
power supply
SCR
MPOW-01
SCR
+
+24 V DC or 24 V AC ± 10%
Terminal SCR is internally connected
to the analog ground (AGND) of the
drive.
+
GND
SCR
+
SCR
SCR
Next
MPOW-01
All terminals are connected together
inside the module allowing daisy
chaining of the signals.
398 Appendix: Extension modules
„ Technical data
Specifications
•
Input voltage: +24 V DC or 24 V AC ± 10%
•
Maximum load 1200 mA rms
•
Power losses with maximum load 6 W
•
Designed lifetime of the MPOW-01 module is 50 000 hours in the specified
ambient conditions of the drive (see section Ambient conditions on page 371).
Appendix: Safe torque off (STO) 399
Appendix: Safe torque off
(STO)
What this appendix contains
The appendix describes the basics of the Safe torque off function (STO) for the
ACS355. In addition, application features and technical data for the safety system
calculation are presented.
Basics
The drive supports the Safe torque off (STO) function according to standards
EN 61800-5-2; EN/ISO 13849-1:2006, IEC/EN 60204-1:1997; EN 61508:2002,
EN 1037:1996, and IEC 62061:2005 (SILCL 3). The function also corresponds to an
uncontrolled stop in accordance with category 0 of IEC 60204-1.
The STO may be used where power removal is required to prevent an unexpected
start. The function disables the control voltage of the power semiconductors of the
drive output stage, thus preventing the inverter from generating the voltage required
to rotate the motor (see the diagram below). With this function, short-time operations
(like cleaning) and/or maintenance work on non-electrical parts of the machinery can
be performed without switching off the power supply to the drive.
400 Appendix: Safe torque off (STO)
ACS355
+24 V
X1C:1 OUT1
X1C:2 OUT2
Safety circuit
(switch,
relays, etc.)
X1C:3 IN1
X1C:4 IN2
UDC+
Control
circuit
Output stage
(1 phase
shown)
UDC-
U2/V2/W2
Notes:
• The contacts of the safety circuit
must open/close within 200 ms of
each other.
• The maximum cable length
between the drive and the safety
switch is 25 m (82 ft).
WARNING! The STO function does not disconnect the voltage of the main and
auxiliary circuits from the drive. Therefore maintenance work on electrical parts
of the drive or the motor can only be carried out after isolating the drive system from
the main supply.
Note: It is not recommended to stop the drive using the STO. If a running drive is
stopped with this function, the drive will trip and stop by coasting. If this is not
acceptable eg, it causes danger, the drive and machinery must be stopped using the
appropriate stopping mode before using this function.
Note: Permanent magnet motor drives in case of a multiple IGBT power
semiconductor failure: In spite of the activation of the STO function, the drive system
can produce an alignment torque which maximally rotates the motor shaft by 180/p
degrees, where p denotes the pole pair number.
Program features, settings and diagnostics
„ Operation of the STO function and its diagnostics function
When both STO inputs are energized, the STO function is in the standby state and
the drive operates normally. If either of the STO inputs is de-energized, the STO
function awakes, stops the drive and disables start. Start is possible only after the
Appendix: Safe torque off (STO) 401
STO inputs have been energized, and any of the drive reactions have been reset.
Drive event can be parametrized according to the table below.
Parameter
3025 STO
OPERATION
Selection values
(1) ONLY FAULT
Explanation
Drive event on successful STO operation is fault
SAFE TORQUE OFF. The fault bit is updated.
(2) ALARM&FAULT Drive event on successful STO operation is alarm
SAFE TORQUE OFF when stopped and fault SAFE
TORQUE OFF when running. Fault and alarm bits
are updated.
(3) NO & FAULT
Drive event on successful STO operation is no alarm
when stopped and fault SAFE TORQUE OFF when
running. The fault bit is updated.
Default:
Drive event on successful STO operation is alarm
SAFE TORQUE OFF. The alarm bit is updated. Start
(4) ONLY ALARM
command must be toggled to continue running the
drive.
If the operation delay between the inputs is excessive or only one STO input is deenergized, an event is always considered a fault (STO1 LOST or STO2 LOST). This
event cannot be changed. De-energizing of only one STO input is not considered
normal operation since the safety integrity level would decrease if only one channel is
used.
STO status indications
When both STO inputs are energized, the STO function is in the standby state and
the drive operates normally. If either of the STO inputs or both are de-energized, the
STO function is executed in a safe manner and corresponding reaction is updated
according to the table below.
STO event
Description
Status
Fault 0045
SAFE TORQUE
OFF
STO1 LOST
STO functions correctly and the
fault must be reset before starting.
STO input channel 1 has not deenergized, but channel 2 has.
Opening contacts on channel 1
might have been damaged or there
is a short circuit.
0307 FAULT WORD 3
bit 4
0307 FAULT WORD 3
bit 5
Fault 0046
STO2 LOST
Alarm 2035
SAFE TORQUE
OFF
STO input channel 2 has not de0307 FAULT WORD 3
energized, but channel 1 has.
bit 6
Opening contacts on channel 2
might have been damaged or there
is a short circuit.
STO functions correctly.
0309 ALARM WORD 2
bit 13
Fault 0044
Fault name
402 Appendix: Safe torque off (STO)
„ STO function activation and indication delays
STO activation delay is below 1 ms. STO indication delay (time from the deenergization of any STO input to the updating of the status bit) is 200 ms.
Note: If any STO channel is toggled very fast, it is possible that the drive trips to
overcurrent or short circuit.
Installation
Connect the cables as shown in the diagram below.
Safe PLC
ACS355
OUT
X1C: OUT1
X1C: OUT2
13 23 31
Y1 Y2
Safety relay
14 24 32
A1 A2
X1C:3 IN1
X1C:4 IN2
GND
STO input channels can be also supplied with an external power supply. The required
supply current is maximum 15 mA for each STO channel, and the voltage
requirement is 24 V DC +/-10%. The negative terminal of the power supply must be
connected to the analog ground (AGND) of the drive.
ACS355
+24 V DC external
power supply
-
AGND
X1C:1 OUT1
X1C:2 OUT2
X1C:3 IN1
X1C:4 IN2
Safe PLC
+
OUT
13 23 31
Y1 Y2
Safety relay
14 24 32
A1 A2
GND
STO can also be daisy-chained from drive to drive, so that several drives are behind
one safety switch. If STO outputs (OUT1 and OUT2) are used to supply the STO
circuit, maximum five drives can be supplied. The number of drives depends on the
Appendix: Safe torque off (STO) 403
24 V auxiliary voltage load (I/O, panel load, used fieldbus or STO circuits; max.
200 mA) of the drive supplying the STO circuit (see section Control connection data
on page 369). When using external supply, all analog grounds (AGND) of the drives
must be chained together.
Note: Daisy chaining lowers the total system safety integrity level, which needs to be
calculated case by case for each system.
Start-up and commissioning
Always test the operation and reaction of the STO function before commissioning.
Technical data
„ STO components
STO safety relay type
General requirements
Output requirements
No. of current paths
Switching voltage capability
Switching current capability
Maximum switching delay
between contacts
Example 1
Type and manufacturer
Approvals
IEC 61508 and/or EN/ISO 13849-1
2 independent paths (one for each STO path)
30 V DC per contact
100 mA per contact
200 ms
Simple SIL3 approved safety relay
PSR-SCP- 24UC/ESP4/2X1/1X2 by Phoenix Contacts
EN 954-1, cat 4; IEC 61508, SIL3
Example 2
Type and manufacturer
Programmable safety logic
PNOZ Multi M1p by Pilz
Approvals
EN 954-1, cat 4; IEC 61508, SIL3; and ISO 13849-1, PL e
STO connection
Input for external STO
supply
24 V DC ± 10%, load 25 mA
Input impedance
Rin = 2 kohm
Load
Output
12 mA / channel
Maximum load 200 mA depending on I/O load
STO cable
Type
Conductor size
Maximum length
Tightening torque
2×2 cables, low voltage, single shielded, twisted pair cable
1.5…0.25 mm2 (16…24 AWG)
Max. 25 m between STO inputs and the operating contact
0.5 N·m (4.4 lbf·in)
404 Appendix: Safe torque off (STO)
„ Data related to safety standards
SIL
IEC 61508
3
PFH
HFT
SFF
EN/ISO 13849-1
PL
e
6.48E-09
(6.48 FIT)
1
91%
IEC 62061
SILCL 3
Category 3
MTTFd
DCavg
470 years
18%
„ Abbreviations
Abbreviation
CCF
Reference
EN/ISO 13849-1
Description
Common Cause Failure (%)
DCavg
FIT
HFT
EN/ISO 13849-1
IEC 61508
Diagnostic Coverage Average
Failure In Time: 1E-9 hours
Hardware Fault Tolerance
MTTFd
EN/ISO 13849-1
PFHd
PL
SFF
SIL
STO
IEC 61508
EN/ISO 13849-1
IEC 61508
IEC 61508
EN 61800-5-2
Mean Time To dangerous Failure: (The total number of
life units) / (the number of dangerous, undetected
failures) during a particular measurement interval under
stated conditions
Probability of Dangerous Failures per Hour
Performance Level: Corresponds SIL, Levels a-e
Safe Failure Fraction (%)
Safety Integrity Level
Safe Torque Off
Maintenance
Test the operation and reaction of the STO function every year.
Further information
Product and service inquiries
Address any inquiries about the product to your local ABB representative, quoting
the type designation and serial number of the unit in question. A listing of ABB sales,
support and service contacts can be found by navigating to www.abb.com/drives and
selecting Sales, Support and Service network.
Product training
For information on ABB product training, navigate to www.abb.com/drives and select
Training courses.
Providing feedback on ABB Drives manuals
Your comments on our manuals are welcome. Go to www.abb.com/drives and select
Document Library – Manuals feedback form (LV AC drives).
Document library on the Internet
You can find manuals and other product documents in PDF format on the Internet.
Go to www.abb.com/drives and select Document Library. You can browse the library
or enter selection criteria, for example a document code, in the search field.
ABB Oy
Drives
P.O. Box 184
FI-00381 HELSINKI
FINLAND
Telephone +358 10 22 11
Fax
+358 10 22 22681
www.abb.com/drives
ABB Inc.
Automation Technologies
Drives & Motors
16250 West Glendale Drive
New Berlin, WI 53151
USA
Telephone 262 785-3200
800-HELP-365
Fax
262 780-5135
www.abb.com/drives
ABB Beijing Drive Systems Co. Ltd.
No. 1, Block D, A-10 Jiuxianqiao Beilu
Chaoyang District
Beijing, P.R. China, 100015
Telephone +86 10 5821 7788
Fax
+86 10 5821 7618
www.abb.com/drives
3AUA0000066143 Rev A (EN) EFFECTIVE: 2010-01-01
Contact us

advertisement

Was this manual useful for you? Yes No
Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Related manuals

Download PDF

advertisement