Advantech CANopen User Manual

Advantech CANopen User Manual
CANopen Library User Manual
V1.03
June 2010
-1-
Table of Contents
1.
Introduction......................................................................................................................................... 1
1.1.
CANopen architecture ........................................................................................................ 1
1.2.
Object Dictionary setting .................................................................................................... 3
1.2.1.
Service Data Objects (SDO) ....................................................................................... 4
1.2.2.
Process Data Objects (PDO)....................................................................................... 4
1.2.3.
SYNC setting .............................................................................................................. 6
1.2.4.
Heartbeat ..................................................................................................................... 7
1.3.
Reference ............................................................................................................................ 8
2. Advantech CANopen Protocol Library .............................................................................................. 9
2.1.
Overview............................................................................................................................. 9
2.2.
Object Diagram................................................................................................................. 10
2.3.
Runtime Environment........................................................................................................11
2.4.
API Functions ................................................................................................................... 12
2.4.1.
Overview................................................................................................................... 12
2.4.2.
Flow chart ................................................................................................................. 14
2.4.3.
Definition and Structures .......................................................................................... 16
2.4.4.
Error codes ................................................................................................................ 18
2.4.5.
acoapi Functions ....................................................................................................... 23
3. Advantech CANopen Examples ....................................................................................................... 74
3.1.
Overview........................................................................................................................... 74
3.2.
Example usage .................................................................................................................. 74
4. Advantech CANopen Network Utility ............................................................................................. 76
4.1.
Overview........................................................................................................................... 76
4.2.
Configure CANopen Network .......................................................................................... 77
4.2.1.
Create CANopen Network........................................................................................ 77
4.2.2.
Create slave node ...................................................................................................... 78
4.2.3.
Configure Node......................................................................................................... 79
4.2.4.
Import EDS File........................................................................................................ 79
4.2.5.
Create new data type................................................................................................. 79
4.2.6.
Configure the communication parameters ................................................................ 80
4.2.7.
Create and configure SDO ........................................................................................ 82
4.2.8.
Create and configure PDO ........................................................................................ 82
4.2.9.
Create manufacture variable ..................................................................................... 85
4.2.10. Save the configuration .............................................................................................. 86
4.3.
Manger CANopen network............................................................................................... 87
4.3.1.
Enter run mode.......................................................................................................... 87
4.3.2.
Monitor Node Data ................................................................................................... 88
4.3.3.
Control Network ....................................................................................................... 90
4.3.4.
Exit Run Mode.......................................................................................................... 92
APPENDIX............................................................................................................................................... 93
-2-
1. Introduction
1.1. CANopen architecture
CANopen, application layer communication protocol based on CAN bus, is widely used in distributed
industrial automation system, medical system, maritime system, etc. CANopen is made up of a series
of sub-protocol sets which can be divided into two parts. The first part is communication sub-protocol
set that defines the basic communication modes and objects of all the devices. This part consists of
DS-301, DS-302, DS-305, etc., among which DS-301 mainly describes specifications and definitions
of CANopen application layer communication objects and other protocols are supplements to
CANopen network on the basis of DS-301. The other part, device sub-protocol set, defines the
function and data definition of standard devices which are of different types. These sub-protocols
contain DS-401, DS-402, etc. Each device of CANopen describes its property and functions in
standard Electronic Data Sheets (EDS) files. CANopen devices must strictly take the definitions in EDS
files as their specifications and support perfect device exchange.
Application Layer
Device Profiles
CiA 401: Device profile for generic I/O modules
CiA 402: Device profile for drives and motion control (servo controller, stepper
motor controller, frequency inverter)
…
LSS (DS305)
CANopen DS-301,
DSP-302…
(NodeId, baud rate, Identity Object 1018h)
CAN Bus Driver Interface
CAN Bus
Basic communication objects of CANopen are:
OD (Object Dictionary), generated from the devices’ EDS files, and describes all properties and
communication objects of the device. It’s the core definition of CANopen devices. Object Dictionary is
-1-
composed of sequential object lists. Each object applies a 16-bit index as its addressing. Each object
can be made up of several elements or a single element uses an 8-bit sub-index as its addressing.
SDO (Service Data Object) can access and configure Object Dictionary in remote nodes via index and
sub-index of Object Dictionary. The object that requests to access is regarded as Client, and the
object which is requested is Server. The length of request messages and response messages remains
8 bytes, including SDO command (1 byte), index of the object to be accessed (2 bytes), sub-index of
the object to be accessed (1 byte) and 4 bytes of data to be transmitted. The SDO protocol can
transmit data of any size. If the data is over 4 bytes, the message will be segmented into several
parts.
The term SDO Read means SDO upload protocol, the client of a SDO uploads data from the server.
SDO Write means SDO download protocol; the client of a SDO downloads data to the server.
PDO (Process Data Object) is used for high speed data exchange. The length of transmitted data is
limited to 1-8 bytes. PDO contains many transmitting trigger ways, such as cycle transmitting
(synchronized, time driven), triggered by remote frame, triggered by particular events, etc.
NMT (Network Management) belongs to master-slave mode. One NMT master can correspond to
several NMT Slaves. NMT master detects status of each node of the network and completes status
conversion. It supports the function of monitoring the device’s status by heartbeat, Node guarding or
Life guarding. The diagram in Figure 1 illustrates the major states a slave node can be in. Starts the
CANopen network or power on a node, it goes into NMT state Initialisation. At the end of initialization
the slave node tries to transmit its boot-up message to NMT master to report that boot-up has been
finished and has entered pre-operation status. An NMT master can switch individual slave node or all
nodes back and forth between the three major states: Pre-operational, Operational, and Stopped.
Initialisation
Pre-Operational
Stopped
Operational
-2-
Figure 1: State diagram of a node
SYNC (Synchronization) makes the devices in the network possess synchronous capability. Only one
node can produces the SYNC signal in a system as SYNC producer, which can be NMT master or other
slave node. It is the time period in microseconds with which the SYNC signal occurs; the node has this
value available in the OD entry [1006h, 00h].
Heartbeat or Node Guarding is a method to detect the node is live or not, and retrieves the status
of a node. Recommend using heartbeat instead of node guarding less bandwidth, is more flexible. The
node as heartbeat producer transmits heartbeat message cyclically, consisting of a 1-byte the current
NMT state the node is in.
EMCY (Emergency) will be triggered if fatal errors occur inside the device, similar to error interrupt
mode.
The relation between NMT states and communication objects shows in Table 1: NMT states and
communication objects. It defines the communication objects can be serviced in the appropriate NMT
state if the CANopen devices support. For example: the PDO is a critical message can be transmitted
only in NMT state Operational otherwise can not.
Table 1: NMT states and communication objects
State
Object
Pre-operational
Operational
PDO
Stopped
V
SDO
V
V
SYNC
V
V
TIME
V
V
EMCY
V
V
NMT
V
V
V
1.2. Object Dictionary setting
The object dictionary is generated from the EDS file, describes all properties and communication
object of the CANopen device. It is the core that the behavior of the CANopen device depends on.
Detail information reference CiA DS301 [1] Communication profile. This section describes how to
-3-
configure the Object Dictionary for a node to be a SDO client or SDO server, can transmit/receive PDO
message, and send SYNC message and heartbeat.
1.2.1. Service Data Objects (SDO)
Generally in CANopen network, each node implements only one SDO server (object 1200h) that
handles read and write request its object dictionary from other nodes as SDO client. SDO client
defined at object 1280h to 12FFh.
1.2.2. Process Data Objects (PDO)
PDO can be distinguishing between Transmit Process Data Object (TPDO) and Receive Process Data
Object (RPDO). One node produces a PDO, which is a TPDO for that node. Other nodes receive the
PDO, which is an RPDO (consumer).
The communication parameters for a TPDO are at object dictionary of index 1800h to 19FFh
(indicating which CAN message is used for the PDO and how is it triggered), but index 1804h – 19FFh
default are disabled by CiA DS301 [1]. And the mapping parameters are at index 1A00h to 1BFFh.
acoapi library supports above 4 PDOs up to 512 PDOs. The COB-ID of above 4 PDOs can be
self-defined and/or using CAN2.0B CAN message format that means the 29-bit of COB-ID could be 1,
and lower 7 bit is defined as NodeId.
The transmit trigger method is defined in sub-index 02h transmission type. The value is 0-240 and
252 means that the PDO is transferred synchronously and cyclically. The transmission type 254
means that defined by manufacturer specific (manufacturer specific part of the object dictionary), 255
-4-
means defined by device profile. In transmission type 254 and 255 that can use event timer for trigger
in an elapsed timer that are in sub-index 05h of the TPDO, and also support Change-Of-State (COS)
transmission method simply transmits a TPDO message if the process data is in changes else not
transmits even the event timer or inhibited timer is expired .
PDO Parameters
Sub-index 00h
Number of sub-index
01h
COB-ID, 180h + NODE-ID
02h
Transmission type: 0-255
03h
Inhibit time, multiple of 100 μs
04h
Reserved
05h
Event timer, multiple of 1 ms
0: disable
For example: A node that node identifier is 2h, another node is 5h. Figure 2: PDO Linking illustrates
the relation of the PDO linking that Node 2h transmits TPDO_1 to Node 5h, Node 5h receives the PDO
as RPDO and update the data to object dictionary of specified index and sub-index.
Node 2h OD
[6000h,03]
[2010h,21]
Node 2h
Node 5h
TPDO_1
RPDO_1
TPDO_2
RPDO_2
TPDO_3
RPDO_3
Node 5h OD
[6000h,03]
[2010h,21]
Figure 2: PDO Linking
Following is the example to describe how to set the value to the PDO in object dictionary.

TPDO setting example
A node with node identifier 0x02, the PDO is transmitted on synchrony. It contains 6 bytes of data:
DataX (2 bytes) and DataY (4 bytes). DataX is defined at index 6000h sub-index 03h. DataY is defined
at index 0x2010 sub-index 21h. The result of object dictionary setting about TPDO1 is shown in Table
2: TPDO1 setting example.
Table 2: TPDO1 setting example
Index [1800h]
Sub-index 00h
01h
value
description
2
0x182
180h + Node-ID 0x2
-5-
02h
Index [1A00h]
Sub-index 00h
01h
200
the PDO is transmitted every reception of <200> SYNC
value
description
2
write the number of data embedded in the PDO (1byte)
0x60000308
Where to find of data embedded and the size. (8 bytes)
Format: index(2 bytes) – sub-index(1 byte) – size in bits(1 byte)
DataX is at object [6000h, 03h] with 8 bits
02h
0x20102120
where to find the second data embedded an the size (8bytes)
DataY is at object [2010h, 21h] with 32 bits

RPDO setting example
Another node 0x05 needs to be configured to directly listen for the TPDO1 transmitted by node 0x02.
RPDO1 of node 0x05 should be used to receive TPDO1 of node 0x02.
Table 3: RPDO setting example
Index [1400h]
Sub-index 00h
value
description
2
01h
0x182
180h + Node-ID 0x2
02h
200
the PDO is transmitted every reception of <200> SYNC
value
description
2
write the number of data embedded in the PDO (1byte)
0x60000308
Where to find of data embedded and the size. (8 bytes)
Index [1600h]
Sub-index 00h
01h
Format: index(2 bytes) – sub-index(1 byte) – size in bits(1 byte)
DataX is at object [6000h, 03h] with 8 bits
02h
0x20102120
where to find the second data embedded an the size (8bytes)
DataY is at object [2010h, 21h] with 32 bits
1.2.3. SYNC setting
A node as SYNC producer broadcasts the synchronization object periodically, which provides the basic
network synchronization. The time period in μs between SYNC is defined at index 1006h
Communication cycle period of object dictionary. And mandatory if the node generates the SYNC
object, the allow bit 30 at object 1005h must to be set.
Table 4: SYNC COB-ID (1005h) setting example
Index [1005h]
DefaultValue
value
description
0x00000080
Example: 11-bit SYNC COB-ID is 80h.
or
Bit 30 set to 0 means the node does not generate the SYNC object.
0x40000080
Bit 30 set to 1 means the node generates the SYNC object.
Table 5: Communicate Cycle Period (1006h) setting example
-6-
Index [1006h]
value
0
DefaultValue
or
t
description
The time period is 0 means do not transmit the SYNC object. Other
value in μs means the node generate the SYNC object in every <t> μs
if allow bit 30 is set at index 1005h.
Example: DefaultValue=0x001E8480, transmit every 2 seconds
1.2.4. Heartbeat
According to CiA DS301 [1], a CANopen node must support either heartbeat or node guarding protocol
that can be monitoring the node is live or not. The heartbeat protocol is preferred since with the less
bandwidth, so that the producer heartbeat time at index 1017h must be implemented.
Table 6: Producer Heartbeat Time (1017h) setting example
Index [1017h]
value
description
The time period is 0 means disable transmission of heartbeat message
DefaultValue
0
by the node. Other value specifies in milliseconds the time between
or
transmissions of heartbeat messages.
t
Example: DefaultValue=0x1388, the node transmits the heartbeat
message every 5 seconds.
Other nodes (heartbeat consumers) can monitor the node whether the heartbeat is transmitted in
specified time as heartbeat consumer time. If the heartbeat is not received within the heartbeat
consumer time, a heartbeat error event will be trigger. The index 1016h of object dictionary specifies
the maximum time to wait for a heartbeat from a specific node, which maximum 7Fh nodes. The
consumer heartbeat time should be greater than the producer heartbeat time.
Table 7: Consumer Heartbeat Time (1016h) setting example
Index [1016h]
Sub-index 00h
01h
value
Description
1
Number of entries
0x005A1122
Consumer heartbeat time
The format is: bit 0-15 heartbeat consumer time, bit 16-23 monitored
02h – 7Fh
node id, bit 24-31 reserved (set to 0).
Example: DefaultValue=0x00051B58, This node must receives the
heartbeat message from the node 5h within 7 seconds, else trigger a
heartbeat error event for node 5.
-7-
1.3. Reference
1 [CiADS301] CANopen Application Layer and Communication Profile, CiA Draft Standard Proposal
301 Version 4.2, 7. Dec 2007
2 [CiADS203-1] CAN Application Layer for Industrial Application, CiA/DS203-1, Feb 1996
3 [CiADS306] Electronic data sheet specification for CANopen, CiA Draft Standard 306 Version 1.3, 01
Jan 2005
-8-
2. Advantech CANopen Protocol Library
2.1. Overview
Advantech CANopen Protocol Library (acoapi) provides a C application programming interface (API)
for accessing the CANopen network protocol stack of nodes. It is easy to use, configure, start and
monitor the CANopen devices careless CAN bus, developer just focused on CANopen application
functionality. The acoapi library architecture is shown in Figure 3, at present, the library practices the
specification DSP 301 v4.2 [1] defined by CiA, communication profile.
Advantech or vendors CANopen Tool, Utility, Manager
Advantech CANopen Protocol Library
Advantech CANopen C-API DLL
Advantech CAN Bus Driver
CAN Bus
Figure 3: Advantech CANopen Protocol Architecture
Base on the acoapi library to develop a CANopen node as master or slaves, the functionality of slaves
and of a master specified by CANopen can configure and manage remote nodes is covered by the
library:

Read and write object dictionary (local or by SDO)

Control or monitor the node NMT state (NMT master)

PDO transmission mode: on request, by SYNC, time driven, event driven

Support 512 TPDOs and 512 RPDOs

SYNC producer and consumer

Heartbeat producer and consumer
-9-

Emergency objects
The acoapi library uses event-driven to notify the application to complete the tasks, indicate that an
event has occurred. For example: Notify the application when the NMT state of a master/slave node
has changed that can decide to do something in state changing, notify SYNC message received or
transmitted, or PDO frame transmitted, the CANopen node object dictionary of object index and
sub-index data has changed, etc.
2.2. Object Diagram
The acoapi library references CiA DS203-1 NMT Service Specification [2] to deal with the CANopen
network aspect. Figure 4: The NMT model illustrates the NMT model of a CANopen network the acoapi
library implemented.
Figure 4: The NMT model
There are three objects to model a CANopen network:

The network object
The network object represents the set of all modules in a CANopen network that must include one
node, called master node, and at most 126 node objects specified by CiA DS301 [1] (totally 127
nodes in CANopen network). It administers whole the life cycle of a CANopen network through
the master. In other word, the network object exists in master side.
- 10 -

The remote node object
Each slave node is managed by the NMT master is represented by a remote node object on the
network object.

The node object
A CANopen device in the network is considered as a node. The role of node can be master or slave
depended on its capability. Each node has uniquely node identifier in the network defined in CiA
DS301 [1].
For each slave there must exist one remote node object with the same node identifier on the network
object that master node in. A slave node object and the remote node object that has the same node
identifier are called peers. A unique node identifier is assigned to a slave node object and its peer by
the master (network object). Master in the network object communicates with each remote node
object via CANopen protocol to its peer slave node.
2.3. Runtime Environment
Windows 2000
Windows xp (32 bit and 64 bit)
Windows 2003 (32 bit and 64 bit)
Windows vista (32 bit and 64 bit)
Window 7 (32 bit and 64 bit)
- 11 -
2.4. API Functions
2.4.1. Overview
The acoapi DLL implements a set of functions which together provide CANopen functionality. Each
function of first parameter is an object handles that pointer to master/slave node, remote node or
network object. Network object is in master side for management the CANopen network; it must need
a master node for creating a CANopen network and at most 126 remote slave nodes included, totally
nodes is 127 in CANopen network. Remote slave node can be inserted to network object first before
starting network, or inserted later if receiving the slave node boot-up message.
Table 8: acoapi function list
Function
Description
Network object (Master side)
acoCreateNetwork
Create a CANopen network topology, must input a Master Node
acoFreeNetwork
Free network object instance and remote nodes
acoStartNetwork
Start network, all nodes will be into Operational state
acoStopNetwork
Stop network, all nodes will be into Stop state
acoStartRemoteNode
Start a remote node by NodeId
acoStopRemoteNode
Stop a remote node by NodeId
acoGetRemoteNodeId
Get node id of remote object
acoGetRemoteNodeState
Get the node state of remote object
acoGetRemoteNodeCount
Get remote nodes count
acoGetRemoteNode
Get remote node handle by NodeId
acoGetRemoteNodebyPos
Get Remote node handle by position
acoRemoteNodeExist
Check the Remote node is already exist in network object
acoNetworkAddSlave
Add a Remote node into network object
acoNetworkRemoveSlave
Remove a Remote node from network object
acoNetworkSetState
Send a NMT message to a Slave to change its state
acoReqNodeGuard
Request a Slave node the Node Guard message
acoRegBootupEvent
Register an event while receiving slave boot-up frame
acoNetworkReadSDO
Send SDO frame in async mode to read the object dictionary of remote
slave node, it will call specified callback function after receiving the remote
slave’s response
acoNetworkWriteSDO
Send SDO frame in async mode to write the data to the object dictionary of
remote slave node, it will call specified callback function after completing
- 12 -
the process
Node
acoCreateNode
Create a node (Master/Slave) according
acoFreeNode
Free a node and close the CAN port
acoOpenCANPort
open the CAN port
acoCloseCANPort
Close the CAN port
acoSetBaudrate
Change the CAN port by specified baud rate.
acoNodeImportEDS
Import the device profile and assign the node id
acoGetNodeId
Get the node Id of the node object
acoSetNodeId
Set the node id of the node object
acoGetNodeState
Get the state of the node
acoStartNode
Start a slave node into Pre-Operational state that waiting NMT message
acoStopNode
Stop a slave node into Stop state
acoGetNodeRole
Get node role (Master or Slave) by node handle
acoGetODentry
Read local object dictionary info (SDO upload) or read remote slave node of
OD by SDO in sync method
acoSetODentry
Write data to local object dictionary (SDO download) or write remote slave
node of OD by SDO in sync method
acoReadSDO
A slave node reads other slave node of OD by sending SDO frame in async
mode
acoWriteSDO
A slave node writes the data to other slave node of OD by sending SDO
frame in async mode
acoRegODDataChangedEvent
Register an event for the entry [index, subindex] of Object Dictionary
changed
acoUnRegODDataChangedEvent
Un-register an event for the entry changed
acoRegGeneralEvent
Register a call back function that for a general event
acoRegEmcyEvent
Register an event for slave received EMCY message
acoSendEmcy
Slave sends emergency message actively
acoSendData
Transmit a specified data to other nodes
acoRegHeartbeatEvent
Registers a callback function that will be called while receiving a heartbeat
message
acoRegHeartbeatErrorEvent
Registers a callback function that will be called while detecting a heartbeat
error or node guard error occurs
acoRegRecvPDOEvent
Registers an event is for receiving a PDO message.
acoSendPDOwithCOS
Send TPDOs if any data has changed (Change-Of-State), only transmission
type 255 (0xFF) is supported yet.
- 13 -
2.4.2. Flow chart

Master side
acoCreateNode
acoNodeImportEDS
acoCreateNetwork
acoNetworkAddSlave
Regist Event
acoRegHeartbeatErrorEvent
acoRegBootupEvent
acoRegODDataChangedEvent
acoRegGeneralEvent
acoOpenCANPort
acoSetNodeId
acoStartNetwork
Run state
acoStopNetwork
acoNetworkRemoveSl
ave
acoGetNodeId
acoGetNodeState
acoGetNodeRole
acoReadSDO
acoWriteSDO
acoGetODentry
acoSetODentry
acoSendData
acoReqNodeGuard
acoStartRemoteNode
acoStopRemoteNode
acoRemoteNodeExist
acoGetRemoteNodebyPos
acoGetRemoteNode
acoGetRemoteNodeCount
acoFreeNetwork
acoCloseCANPort
acoFreeNode
- 14 -

Slave side
acoCreateNode
acoNodeImportEDS
Regist Event
acoRegHeartbeatErrorEvent
acoRegODDataChangedEvent
acoRegGeneralEvent
acoOpenCANPort
acoSetNodeId
acoStartNode
acoGetNodeId
acoSetNodeId
acoGetNodeState
acoGetNodeRole
acoGetODentry
acoSetODentry
acoSendData
Run state
acoStopNode
acoCloseCANPort
acoFreeNode
- 15 -
2.4.3. Definition and Structures
Definition
Description
UNS8
A 8-bit unsigned char
UNS16
A 16-bit unsigned short integer
UNS32
A 32-bit unsigned long integer
NODEID_t
Type definition of node identifier
HACONODE
Pointer to slave node object
HACOMASTER
Pointer to master node object
HACOREMOTE
Pointer to remote node object
HACONODEOBJ
Pointer to a node object, may be slave node object, master node object or remote
node object
HACONETWORK
Pointer to network object
CBROADCAST_NODEID
Node identifier is 0 for broadcast CANopen message
CINVALID_NODEID
-1 indicates invalid node identifier
MAX_PORTNAME
Maximum length of CAN port name
Object Dictionary Data Types
ACODT_BOOLEAN
0x01, Boolean
ACODT_INT8
0x02, a 8-bit integer
ACODT_INT16
0x03, a 16-bit integer
ACODT_INT32
0x04, a 32-bit integer
ACODT_UINT8
0x05, a 8-bit unsigned integer
ACODT_UINT16
0x06, a 16-bit unsigned integer
ACODT_UINT32
0x07, a 32-bit unsigned integer
ACODT_REAL32
0x08, a 32-bit real
ACODT_VISIBLE_STRING
0x09, visible string
ACODT_OCTET_STRING
0x0A, octet string
ACODT_UNICODE_STRING
0x0B, Unicode string
ACODT_TIME_OF_DAY
0x0C, TIME_OF_DAY structure
ACODT_TIME_DIFFERENCE
0x0D, TIME_DIFFERENCE structure
ACODT_DOMAIN
0x0F, domain, an arbitrary large block of data
ACODT_INT24
0x10, a 24-bit integer
ACODT_REAL64
0x11, a 64-bit real
ACODT_INT40
0x12, a 40-bit integer
ACODT_INT48
0x13, a 48-bit integer
- 16 -
ACODT_INT56
0x14, a 56-bit integer
ACODT_INT64
0x15, a 64-bit integer
ACODT_UINT24
0x16, a 24-bit unsigned integer
ACODT_UINT40
0x18, a 40-bit unsigned integer
ACODT_UINT48
0x19, a 48-bit unsigned integer
ACODT_UINT56
0x1A, a 56-bit unsigned integer
ACODT_UINT64
0x1B, a 64-bit unsigned integer
Enumerate and structures
enum enum_nodeRole {
The role of a node object:
Slave
= 0x00,
Slave node object
Master
= 0x01,
Master node object
RemoteNode
= 0x02,
Remote node object
UnknownRole = 0x0F,
Unknown node object
};
typedef enum enum_nodeRole e_nodeRole;
enum enum_acoNodeState {
The NMT state of a node:
ns_Initialisation
= 0x00,
NMT state Initialisation,
ns_Stopped
= 0x04,
NMT state Stoppped,
ns_Operational
= 0x05,
NMT state Operational,
ns_Pre_operational
= 0x7F,
NMT state Pre-operational,
ns_Unknown_state
= 0x0F
Unknown state
};
typedef enum enum_acoNodeState e_acoNodeState;
enum enum_GeneralEventType {
Identity a general event that with the same function
definition:
et_STATE_INITIALIZE
= 0x00,
the node enter NMT state Initialisation,
et_STATE_PREOPERATIONAL = 0x01,
the node enter NMT state Pre-operational,
et_STATE_OPERATIONAL
= 0X02,
the node enter NMT state Operational,
et_STATE_STOPPED
= 0x03,
the node enter NMT state Stopped,
et_POST_SYNC
= 0x04,
the node transmitted or received a sync frame,
et_POST_PDO
= 0x05,
the node transmitted a PDO frame
};
typedef enum enum_GeneralEventType e_GeneralEventType;
Application-defined callback function
Notify application-defined when a special event has occurs
typedef void (*TCOnGeneralEvent)( HACONODE hNode , LPVOID pvArg );
- 17 -
Notify if the value with specified object index and sub-index of object dictionary has changed
typedef UNS32 (*TCOnODDataChangedEvent)
(HACONODE hNode, UNS16 wIndex, UNS8 SubIndex, UNS8 DataType, UNS32 DataLen, void * pData ,
LPVOID pvArg);
Notify if SDO READ request is responded or timeout occurs.
Typedef void (*TCOnReadSDOResult)
( HACONODEOBJ hNode, NODEID_t NodeId, UNS16 wIndex, UNS8 SubIndex,
UNS8 dataType, UNS32 dataLen, void* pData, UNS32 abortCode , LPVOID pvArg);
Notify if SDO WRITE request is responded or timeout occurs.
Typedef void (*TCOnWriteSDOResult)
( HACONODEOBJ hNode, NODEID_t NodeId, UNS16 wIndex, UNS8 SubIndex, UNS32 abortCode ,
LPVOID pvArg);
Notify if the slave node receives the emergency message from other nodes
typedef void (*TCOnPostEmcyEvent)
(HACONODE hNode, NODEID_t NodeID, UNS16 errCode, UNS8 errReg, UNS8 errManufacField[5],
LPVOID pvArg);
Notify while not receive heartbeat message within the consumer heartbeat time.
Typedef void (*TCOnHeartbeatErrorEvent)(HACONODE hNode, NODEID_t NodeId , LPVOID pvArg);
Notify while receiving a heartbeat message from heartbeat producer (remote slave nodes.)
typedef void (*TCOnHeartbeatEvent)
(HACONODE hNode, NODEID_t NodeId, e_acoNodeState currState , LPVOID pvArg);
Notify while master receiving a slave boot up message.
Typedef void (*TCOnBootupEvent)(HACONODE hNode, NODEID_t NodeId , LPVOID pvArg);
Notify while receiving a PDO message from another node.
typedef void (*TCOnRecvPDOEvent)
(HACONODE hNode, int rpdoIndex, UNS32 cobId, UNS8 bRTR, UNS8 size, void *pData, LPVOID pvArg);
2.4.4. Error codes
acoapi error codes
Table 9: acoapi error codes
Definition
Value
Description
ACOERR_SUCCESS
0
Success
ERROR_INVALID_DATA
13
The data or input parameter is invalid or NULL
ERROR_OUTOFMEMORY
14
Not enough memory to allocate
- 18 -
ACOERR_INVALID_EDS_CONTENT
0x25100001
Wrong EDS file content
ACOERR_SDO_READ_FAILED
0x25100002
SDO read operation failed. Ex: no SDO entry in EDS
ACOERR_SDO_WRITE_FAILED
0x25100003
SDO write operation failed
ACOERR_STATE_CHANGED_FAILED
0x25100004
Fail to change node state
ACOERR_INVALID_MASTER
0x25100005
Master node is not exist
ACOERR_INVALID_NODEID
0x25100006
Invalid node id, for example: node id is over
NMT_MAX_NODE_ID
ACOERR_INVALID_NODE
0x25100007
Invalid node object handle
ACOERR_REMOTE_NODEID_EXIST
0x25100008
The ID of remote node is exist
ACOERR_REMOTE_STATE_OPER
0x25100009
Remote node is in operational state that can not do this
operation
ACOERR_CANPORT_NOT_OPEN
0x2510000A
CAN port can not open
ACOERR_NOT_SUPPORT
0x2510000B
Do not support the function
ACOERR_REMOTE_NODES_OVER
0x2510000C
Remote nodes count is over the limit in list, maximum
nodes are 127
ACOERR_NODEID_EXIST
0x2510000D
The node id is exist in list
ACOERR_EMCY_FAILED
0x2510000E
Generate a emergency code failed
ACOERR_LICENSE_INVALID
0x2510000F
License failed. The acoapi library only supports Advantech
allowed products
ACOERR_TIMER_FULL
0x25100010
The timer is full that can not set alarm.
ACOERR_PDO_IN_INHIBIT_TIME
0x25100011
The TPDO exist inhibit time that can not transmit PDO
immediately.
ACOERR_PDO_COBID_29BIT
0x25100012
The 29-bit COB-ID should be 1.
ACOERR_PDO_TRANS_EVENT_INVALID
0x25100013
The transmission type of PDO is invalid to send. It should
be 255 for COS.
ACCERR_EXCEPTION
0x25100014
Exception occurs.
ACCERR_PDO_TRANS_FAILED
0x25100015
Can not transmit PDO, the node could be not in
Operational state, PDO offset invalid, or the object
dictionary of PDO data invalid.
SDO abort codes
SDO abort codes please see DS 301 v4.02 p.48.
Table 10: SDO abort codes
Definition
Value
Description
- 19 -
ACOOD_SUCCESSFUL
0x00000000
Success
ACOOD_UNSUPPORT_OBJECT
0x06010000
Unsupported access to an object
ACOOD_READ_NOT_ALLOWED
0x06010001
Attempt to read a write-only object
ACOOD_WRITE_NOT_ALLOWED
0x06010002
Attempt to write a read-only object
ACOOD_NO_SUCH_OBJECT
0x06020000
Object does not exist in the Object Dictionary
ACOOD_NOT_MAPPABLE
0x06040041
Object cannot be mapped to the PDO
ACOOD_LENGTH_EXCEED
0x06040042
The number and length of the objects to be mapped
would exceed PDO length
ACOOD_PARAM_INCOMPATIBILITY
0x06040043
General parameter incompatibility
ACOOD_INTERNAL_INCOMPATIBILITY
0x06040047
General internal incompatibility in the device
ACOOD_HW_ERROR
0x06060000
Access failed due to hardware error
ACOOD_LENGTH_DATA_INVALID
0x06070010
Data type does not match. Length of service parameter
does not match
ACOOD_LENGTH_DATA_TOO_HIGH
0x06070012
Data type does not match. Length of service parameter
is too high
ACOOD_LENGTH_DATA_TOO_LOW
0x06070013
Data type does not match. Length of service parameter
is too low.
ACOOD_NO_SUCH_SUBINDEX
0x06090011
Subindex does not exist
ACOOD_VALUE_RANGE_EXCEED
0x06090030
Value range of parameter exceeded (write access only)
ACOOD_VALUE_TOO_HIGH
0x06090031
Value of parameter written is too high
ACOOD_VALUE_TOO_LOW
0x06090032
Value of parameter written is too low
ACOOD_INVALID_MAX_VALUE
0x06090036
Maximum value is less than the minimum value.
ACOSDOABT_TOGGLE_NOT_ALTERNED
0x05030000
ACOSDOABT_TIMED_OUT
0x05040000
ACOSDOABT_UNKNOW_COMMAND
0x05040001
Client/Server command specifier not valid or unknown
ACOSDOABT_INVALID_BLOCK_SIZE
0x05040002
Invalid block size (block mode)
ACOSDOABT_INVALIC_SEQ_NUM
0x05040003
Invalid sequence number (block mode)
ACOSDOABT_CRC_ERROR
0x05040004
CRC error (block mode)
ACOSDOABT_OUT_OF_MEMORY
0x05040005
Size data exceed SDO_MAX_LENGTH_TRANSFERT
ACOSDOABT_GENERAL_ERROR
0x08000000
Error size of SDO message
ACOSDOABT_DATA_TRANS_STORE_ERROR
0x08000020
Data cannot be transferred or stored to the application.
ACOSDOABT_LOCAL_CTRL_ERROR
0x08000021
Data cannot be transferred or stored to the application
because of local control
- 20 -
Emergency error codes
Emergency error codes please see DS 301 v4.02 p.60.
Table 11: Emergency error codes
Definition
Value
Description
ACOEMCYERR_RESEST
0x0000
Error reset or No error
ACOEMCYERR_GENERIC
0x1000
Start code of Generic error
ACOEMCYERR_CURRENT
0x2000
Start code of Current
ACOEMCYERR_CURRENT_DEVICE_INPUT
0x2100
Current, device input side
ACOEMCYERR_CURRENT_DEVICE_INSIDE
0x2200
Current inside the device
ACOEMCYERR_CURRENT_DEVICE_OUTPUT
0x2300
Current, device output side
ACOEMCYERR_VOLTAGE
0x3000
Start code of Voltage
ACOEMCYERR_VOLTAGE_MAINS
0x3100
Main Voltage
ACOEMCYERR_VOLTAGE_INSIDE_DEVICE
0x3200
Voltage inside the device
ACOEMCYERR_VOLTAGE_OUTPUT
0x3300
Output voltage
ACOEMCYERR_TEMPERATURE
0x4000
Temperature
ACOEMCYERR_TEMPERATURE_AMBIENT
0x4100
Ambient temperature
ACOEMCYERR_TEMPERATURE_DEVICE
0x4200
Device temperature
ACOEMCYERR_DEVICE_HW
0x5000
Device hardware
ACOEMCYERR_DEVICE_SW
0x6000
Device software
ACOEMCYERR_DEVICE_SW_INTERNAL
0x6100
Internal software
ACOEMCYERR_DEVICE_SW_USER
0x6200
User software
ACOEMCYERR_DEVICE_SW_DATA
0x6300
Data set
ACOEMCYERR_ADDITIONAL_MODULES
0x7000
Additional modules
ACOEMCYERR_MONITOR
0x8000
Monitoring
ACOEMCYERR_MONITOR_COMMUN
0x8100
Start code of Monitoring Communication
ACOEMCYERR_MONITOR_CAN_OVERRUN
0x8110
CAN Overrun (Objects lost)
ACOEMCYERR_MONITOR_PASSIVE_MODE
0x8120
CAN in Error Passive Mode
ACOEMCYERR_MONITOR_GUARD
0x8130
Life guard error or heartbeat error
ACOEMCYERR_MONITOR_RECOVER_BUSOFF
0x8140
Recovered from bus off
ACOEMCYERR_MONITOR_COBID_COLLISION
0x8150
Transmit COB-ID collision
ACOEMCYERR_PROTOCOL
0x8200
Start code of Protocol error
ACOEMCYERR_PDO_LENGTH_INVALID
0x8210
PDO not processed due to length error
ACOEMCYERR_PDO_LENGTH_EXCEEDED
0x8220
PDO length exceeded
ACOEMCYERR_EXTERNAL
0x9000
External error
- 21 -
ACOEMCYERR_ADDITIONAL_FUNC
0xF000
Additional functions
ACOEMCYERR_DEVICE_SPECIFIC
0xFF00
Device specific
- 22 -
2.4.5. acoapi Functions
acoCreateNode
Create Master or Slave CANopen node.
HACONODE acoCreateNode(
char *pCANDriverName
);
Parameters
pCANDriverName
[in] Input the CAN driver dll path and name. (Ignore)
Return Values
If the function succeeds, the return value is the master or slave node object handle. If the function fails, the return
value is NULL. The generality of failed reason could be allocating memory failed. Could call GetLastError() to get
the error code.
Remarks
Use the acoFreeNode() function to close an node object handle.
Example
HACONODE hSlaveNode = NULL;
hSlaveNode = acoCreateNode(NULL);
if (hSlaveNode)
printf(“Create Node SUCCESS.”);
else
printf(“Create Node failed: %x”, GetLastError());
acoFreeNode
Free the handle of a node that created by acoCreateNode(), the function will close the CAN port first if it is
opening .
void acoFreeNode(
- 23 -
HACONODE hNode
);
Parameters
hNode
[in] Pointer to the Master or Slave node object handle that returned by acoCreateNode()
Return Values
None
Example
extern HACONODE hSlaveNode;
acoFreeNode(hSlaveNode);
hSlaveNode = NULL;
acoOpenCANPort
Open the CAN port by specified port name and then set the baud rate. Should be open the CAN port first before
start the CANopen network.
UNS32 acoOpenCANPort(
HACONODE hNode,
char *pPortName,
int kbits
);
Parameters
hNode
[in] Pointer to the Master or Slave node object handle that is the returned by acoCreateNode()
pPortName
[in] Specifies the CAN port name that is null-terminated string to open. For example, specify CAN1 , CAN2 as
the CAN port.
kbits
[in] The baud rate (Kbits) of the CAN port. According to CiA Draft Standard 301 [1] recommend bit rates are
listed below:
Target value
Setting value
10 Kbit/s
10
- 24 -
20 Kbit/s
20
50 Kbit/s
50
125 Kbit/s
125
250 Kbit/s
250
500 Kbit/s
500
800 Kbit/s
800
1000 Kbit/s
1000
Return Values
If the function succeeds, the return value is ACOERR_SUCCESS. If the function fails, please reference acoapi error
codes.
Remarks
Use the acoCloseCANPort() function to close the CAN port.
Example
UNS32 ret;
HACONODE hSlaveNode;
//Use acoOpenCANPort() to set CAN port name and baud rate.
hSlaveNode = acoCreateNode(NULL);
if (hSlaveNode)
{
printf("Create Node SUCCESS.");
if (acoNodeImportEDS(hSlaveNode, “\\slavedict-ok.eds”, 0x02) == ACOERR_SUCCESS)
{
printf("Import EDS file ok.");
// should be ImportEDS first than OpenCANPort
if ((ret = acoOpenCANPort(hSlaveNode, "CAN1:", 1000)) == ACOERR_SUCCESS)
printf("Open CAN1 ok.");
else
printf("Open CAN1 failed. %x", ret);
}else
printf("Import EDS file failed.");
}
- 25 -
acoCloseCANPort
Close the CAN port.
UNS32 acoCloseCANPort(
HACONODE hNode
);
Parameters
hNode
[in] Pointer to the Master or Slave node object handle that is the returned by acoCreateNode()
Return Values
If the function succeeds, the return value is ACOERR_SUCCESS. If the function fails, please reference acoapi error
codes.
Example
extern HACONODE hSlaveNode;
if(hSlaveNode)
{
acoStopNode(hSlaveNode);
acoCloseCANPort(hSlaveNode);
acoFreeNode(hSlaveNode);
hSlaveNode = NULL;
}
acoSetBaudrate
Set the CAN port baud rate.
UNS32 acoSetBaudrate(
HACONODE hNode,
int kbits
);
Parameters
hNode
[in] Pointer to the Master or Slave node object handle that is the returned by acoCreateNode()
- 26 -
kbits
[in] The baud rate (Kbits) of the CAN port. According to CiA Draft Standard 301 [1] recommend bit rates are
listed below:
Target value
Setting value
10 Kbit/s
10
20 Kbit/s
20
50 Kbit/s
50
125 Kbit/s
125
250 Kbit/s
250
500 Kbit/s
500
800 Kbit/s
800
1000 Kbit/s
1000
Return Values
If the function succeeds, the return value is ACOERR_SUCCESS. If the function fails, please reference acoapi error
codes.
acoNodeImportEDS
Import the device profile for this node object handle and assign the node id.
UNS32 acoNodeImportEDS(
HACONODE hNode,
char * pProfile,
NODEID_t * pNodeId
);
Parameters
hNode
[in] Pointer to the Master or Slave node object handle that is the returned by acoCreateNode().
pProfile
[in] Device profile path and file name.
pNodeId
[in, out] Specified the node id, or return the Id if included in Profile. Also can be changed by acoSetNodeId().
Maximum the number of node id is 127.
- 27 -
Return Values
If the function succeeds, the return value is ACOERR_SUCCESS. If the function fails, the returns value is acoapi
error codes.
Remarks
EDS describes the behavior of CANopen device with respect to the contents of object dictionary. Its content should
be conforming to CANopen standard, necessary to avoid incomplete or erroneous data sheets. Else the working
model of the device in CANopen network may not running well as you expected. Use external test tool called
CANchkEDS.exe to check the valid content of EDS first before importing EDS, or use a configuration utility to
modify the content.
Example
Reference acoOpenCANPort() example.
acoGetNodeId
Get node identifier of the Master or Slave node object handle.
NODEID_t acoGetNodeId(
HACONODE hNode
);
Parameters
hNode
[in] Pointer to the Master or Slave node object handle that is the returned by acoCreateNode()
Return Values
Return the node identifier of the node object handle that be set by acoNodeImportEDS() or acoSetNodeId().
Return CINVALID_NODEID if node identifier does not set yet.
Remarks
Use acoGetRemoteNodeId() to get remote slave node identifier.
The node identifier is unique identifier for each CANopen device in the network, a value in the range of [1..127]
specified by CiA DS-301.
Example
extern HACONODE hSlaveNode;
- 28 -
UNS32 NodeId;
if (hSlaveNode)
NodeId = acoGetNodeId(hSlaveNode);
acoSetNodeId
Assign a unique node identifier to the Master or Slave node object handle.
UNS32 acoSetNodeId(
HACONODE hNode,
NODEID_t NodeId
);
Parameters
hNode
[in] Pointer to the Master or Slave node object handle that returned by acoCreateNode().
NodeId
[in] Specified a unique node identifier in a range of [1..127].
Return Values
If the function succeeds, the return value is ACOERR_SUCCESS. If the function fails, please reference acoapi error
codes.
Remarks
The node identifier is unique identifier for each CANopen device in the network, a value in the range of [1..127]
specified by CiA DS-301.
Changing the node identifier, the related COB-ID included Node-ID of object dictionary will be updated too.
Example
extern HACONODE hSlaveNode;
UNS32 NodeId;
if (hSlaveNode)
{
if(acoSetNodeId(hSlaveNode, 0x02) == ACOERR_SUCCESS)
{
NodeId = acoGetNodeId(hSlaveNode);
}
- 29 -
}
acoGetNodeState
Get the NMT state of the Master or Slave node object handle.
e_acoNodeState acoGetNodeState(
HACONODE hNode
);
Parameters
hNode
[in] Pointer to the Master or Slave node object handle that returned by acoCreateNode().
Return Values
Return the NMT state of the Master or Slave node object handle.
Remarks
The NMT state of the Slave node will be auto into Pre-Operational state after calling acoStartNode(). Later the
state of the Slave node can be changed by receiving the NMT messages from a NMT master. If using
acoRegGeneralEvent() function to register a state changed event function, the event will be called by notify the
state has been changed and understand which current state is in.
Use acoGetRemoteNodeState() to get remote slave node of NMT state.
Example
extern HACONODE hSlaveNode;
e_acoNodeState NodeState;
if (hSlaveNode)
{
NodeState = acoGetNodeState(hSlaveNode);
if(NodeState == ns_Operational)
{
printf("The node'state is in Operational state.");
}
else if(NodeState == ns_Pre_operational)
{
printf("The node'state is Pre_operational.");
}
- 30 -
}
acoStartNode
Start the Slave node into Initialization and then Pre-Operational state to join the CANopen network.
UNS32 acoStartNode(
HACONODE hNode
);
Parameters
hNode
[in] Pointer to the Slave node object handle that returned by acoCreateNode().
Return Values
If the function succeeds, the return value is ACOERR_SUCCESS. If the function fails, please reference acoapi error
codes.
Remarks
Before starting the Slave node, calls acoImportEDS() to import EDS of device profile and calls acoOpenCANPort()
to open CAN port is necessary. The Slave node transmits a boot-up message to signal that it has entered the state
Pre-operational after Initializing, then it joins the CANopen network. Depending on NMT state machine, the Slave
node later waits the NMT command specifier from NMT master to switch its state.
Uses acoStopNode() function to enter the Stop state by local control.
Master node auto started by acoStartNetwork() and stopped by acoStopNetwork() that does not necessary to call
acoStartNode() or acoStopNode().
Example
HACONODE hSlaveNode=NULL;
//Use acoOpenCANPort() to set CAN port name and baud rate.
hSlaveNode = acoCreateNode(NULL);
if (hSlaveNode)
{
printf("Create Node SUCCESS.");
if (acoNodeImportEDS(hSlaveNode, “\\slavedict-ok.eds”, 0x02) == ACOERR_SUCCESS)
{
printf("Import EDS file ok.");
- 31 -
// should be ImportEDS first than OpenCANPort
if (acoOpenCANPort(hSlaveNode, "CAN1:", 1000) == ACOERR_SUCCESS)
{
printf("Open CAN1 ok.");
if (acoStartNode(hSlaveNode) == ACOERR_SUCCESS)
printf("StartNode success!");
else
{
printf("StartNode failed!");
acoCloseCANPort(hSlaveNode);
acoFreeNode(hSlaveNode);
hSlaveNode = NULL;
}
}
else
{
printf("Open CAN1 failed.");
acoFreeNode(hSlaveNode);
hSlaveNode = NULL;
}
}
else
{
printf("Import EDS file failed.");
acoFreeNode(hSlaveNode);
hSlaveNode = NULL;
}
}
acoStopNode
Stop the slave node into Stop state by local control.
UNS32 acoStopNode(
HACONODE hNode
);
Parameters
- 32 -
hNode
[in] Pointer to the Slave node object handle that returned by acoCreateNode().
Return Values
If the function succeeds, the return value is ACOERR_SUCCESS. If the function fails, please reference acoapi error
codes.
Remarks
The Slave node can be call acoStopNode() that enter into Stop state by local control. But also in CANopen network
that means NMT master can transmit any NMT command to switch its state. Use acoCloseCANPort() function that
can exit the CANopen network without receiving any CAN frames.
Master node is stopped by acoStopNetwork() function that does not necessary to call acoStartNode() or
acoStopNode().
Example
extern HACONODE hSlaveNode;
If(hSlaveNode)
{
acoStopNode(hSlaveNode);
acoCloseCANPort(hSlaveNode);
acoFreeNode(hSlaveNode);
hSlaveNode = NULL;
}
acoGetNodeRole
Identifier the role of a node is Master, Slave or remote node.
e_nodeRole acoGetNodeRole(
HACONODEOBJ hNode
);
Parameters
hNode
[in] Pointer to the Master or Slave node object handle that returned by acoCreateNode() or pointer to remote
node object handle that returned by acoNetworkAddSlave().
Return Values
- 33 -
Return the node role: Master, Slave, Remote Node or unknown role.
Example
extern HACONODE hSlaveNode;
if (acoGetNodeRole(hSlaveNode) == Master)
{
//To do.
}
else if (acoGetNodeRole(hSlaveNode) == Slave)
{
//To do.
}
acoGetODentry
Read an entry with specified index and sub-index from the local object dictionary. This function is a synchronous
method, it returns the result until completed or timeout occurs.
UNS32 acoGetODentry(
HACONODE hNode,
UNS16 wIndex,
UNS8 SubIndex,
UNS8 *pDataType,
UNS32 *pDataLen,
void* pData
);
Parameters
hNode
[in] Pointer to the Master or Slave node object handle that returned by acoCreateNode()
wIndex, SubIndex
[in] Which index (16bits) and sub-index (8bits) of entry in the object dictionary want to read.
pDataType
[out] the data type of the [index, sub-index] value. See data type constant in acodef.h.
pDataLen
- 34 -
[in, out] Input is the memory size of the pData allocated; output is the real data length of pData. The input data
length should be equal to the length of [index, sub-index] value in object dictionary or zero for retrieving the
data as expect.
pData
[out] the data of [index, sub-index] value in object dictionary. If input is NULL, do not output the value, return
current data type and data length that the entry [index, sub-index] is.
Return Values
If the function succeeds, the return value is ACOOD_SUCCESSFUL. If the function fails, please reference acoapi
error codes and SDO abort codes.
Remarks
According to the content of object dictionary, need to check access type before reading the entry. Does not allow
to read the entry if the access type of [index, sub-index] is write-only (WO). Retrieve the data if the [index,
sub-index] permission of access type is read-only (RO) or read-write (RW).
Use acoSetODentry() function to write the data of [index, sub-index] in local object dictionary.
Asynchronous method, acoReadSDO() and acoWriteSDO() function is to read/write the data of [index, sub-index]
to remote object dictionary.
Example
extern HACONODE hSlaveNode;
UNS32 ret;
UNS8 data[16]={0};
UNS8 DataType=0;
UNS32 DataLen=8;
ret = acoGetODentry(hSlaveNode, 0x1017, 0, &DataType, &DataLen, &data);
if (ACOOD_SUCCESSFUL == ret)
printf ("ReadObjDict succ: DataType=%x, DataLen=%d ", DataType, DataLen);
else
printf ("ReadObjDict failed: %X", ret);
acoSetODentry
Write an entry to the local object dictionary. This function is a synchronous method, it is blocked and returns the
result until the operation is complete or timeout occurs.
UNS32 acoSetODentry(
- 35 -
HACONODE hNode,
UNS16 wIndex,
UNS8 SubIndex,
UNS8 DataType,
UNS32 DataLen,
void* pData
);
Parameters
hNode
[in] Pointer to the Master or Slave node object handle that returned by acoCreateNode().
wIndex, SubIndex
[in] Which index (16bits) and sub-index (8bits) of entry in the object dictionary want to write.
DataType
[in] the data type of the pData value. See data type constant in acodef.h.
DataLen
[in] the data length of the pData.
pData
[in] data
Return Values
If the function succeeds, the return value is ACOOD_SUCCESSFUL. If the function fails, please reference acoapi
error codes and SDO abort codes.
Remarks
According to the content of object dictionary, need to check access type before writing data to the entry. Does not
allow to update data of the entry if the access type of [index, sub-index] is read-only (RO). Can be writeable if the
[index, sub-index] permission of access type is write-only (WO) or read-write (RW).
Use acoGetODentry() function to read the data of [index, sub-index] in local object dictionary.
Synchronous read/write object dictionary means that the method is blocked until the operation is complete, and
then the method returns its data. Recommend that use synchronous method is well access in the local object
dictionary, but use asynchronous method is better by access remote object dictionary. Reference acoReadSDO()
and acoWriteSDO() functions.
Example
extern HACONODE hSlaveNode;
- 36 -
UNS32 ret;
UNS8 data=255;
UNS8 DataType=ACODT_UINT8;
UNS32 DataLen=sizeof(data);
ret = acoSetODentry(hSlaveNode, 0x1800, 2, DataType, DataLen, &data);
if (ACOOD_SUCCESSFUL == ret)
printf ("WriteObjDict succ: DataType=%x, DataLen=%d, Data=%x ", DataType, DataLen, data);
else
printf ("WriteObjDict failed: %X", ret);
acoReadSDO
Read an entry with specified index and sub-index from remote object dictionary of specified node identifier through
SDO protocol. This function is an asynchronous method, it starts a task is returned immediately without waiting for
a result. When the task finishes, the library notifies the application that the message was successfully processed
and pass the result to the callback function.
UNS32 acoReadSDO (
HACONODE hNode,
NODEID_t NodeId,
UNS16 wIndex,
UNS8 SubIndex,
UNS8 DataType,
TCOnReadSDOResult pf
);
Parameters
hNode
[in] Pointer to the Master or Slave node object handle that returned by acoCreateNode()
NodeId
[in] specified a SDO server node identifier, read its object dictionary
wIndex, SubIndex
[in] Which index (16bits) and sub-index (8bits) of entry in the object dictionary want to read.
DataType
[in] the data type of the [index, sub-index] value. See data type constant in acodef.h.
pf
- 37 -
[in] Pointer to the application-defined function of type TCOnReadSDOResult; represents the starting address of
the function. The function will be executed if SDO request is responded or timeout occurs.
Return Values
If the function succeeds, the return value is ACOOD_SUCCESSFUL. If the function fails, please reference acoapi
error codes or SDO abort codes.
Remarks
Asynchronous read/write object dictionary means that the function does not block the procedure, return
immediately. Application can continue doing other work. To be informed the callback function when receiving the
SDO responded or timeout occurs, pass the result of entry [index, sub-index] of object dictionary whose node
identifier is NodeId to the callback function, application would get the value of entry and SDO abort code to
understand the result of SDO request. If the operation is success, the abort code is ACOOD_SUCCESSFUL;
otherwise, SDO abort code is returned that defined by CiA DS-301 v4.02. The node with specified node identifier
must have the capability of SDO server; it is described in index 1200h – 127Fh of EDS.
According to the content of object dictionary, also need to check access type before reading the entry in remote
object dictionary. Does not allow to read the entry if the access type of [index, sub-index] is write-only (WO).
Retrieve the data if the [index, sub-index] permission of access type is read-only (RO) or read-write (RW).
Use acoWriteSDO() function to write the data of entry [index, sub-index] to remote object dictionary which
specific node identifier.
A synchronous method, reference acoGetODentry() and acoSetODentry(). acoNetworkReadSDO() and
acoNetworkWriteSDO() are for network object to request the remote slave node.
Example
extern HACONODE hSlaveNode;
void OnReadSDOResult(
HACONODEOBJ hNode, NODEID_t NodeId,
UNS16 wIndex, UNS8 bSubIndex, UNS8 dataType, UNS32 dataLen, void *pData, UNS32 abortCode,
LPVOID pvArg)
{
if (ACOOD_SUCCESSFUL == abortCode) {
UNS8 *ptr = (UNS8 *)pData;
printf("ReadSDOResult: succ: [%04x:%02x] DataLen=%d, Data=%02x" \
, wIndex, bSubIndex, dataLen, *ptr);
} else
printf("ReadSDOResult failed: %x", abortCode);
- 38 -
}
UNS32 ret;
UNS8 DataType=ACODT_UINT8;
NODEID_t OtherNode=0x05;
//*** access Object Dictionary: async method
ret = acoReadSDO(hSlaveNode, OtherNode, 0x1800, 0x02, DataType, OnReadSDOResult, NULL);
if (ACOOD_SUCCESSFUL == ret)
printf ("acoReadSDO succ.");
else
printf ("acoReadSDO failed: %X", ret);
acoWriteSDO
Write the value at the index and sub-index to remote object dictionary of the node whose node identifier is NodeId
through SDO protocol. This function is an asynchronous method, it starts a task is returned immediately without
waiting for a result. When the task finishes, the function notifies the application that the message was successfully
processed and pass the result to the callback function.
UNS32 acoWriteSDO (
HACONODE hNode,
NODEID_t NodeId,
UNS16 wIndex,
UNS8 SubIndex,
UNS8 DataType,
UNS32 DataLen,
void* pData
TCOnWriteSDOResult pf
);
Parameters
hNode
[in] Pointer to the Master or Slave node object handle that returned by acoCreateNode()
NodeId
[in] specified a SDO server node identifier, write to its object dictionary
wIndex, SubIndex
- 39 -
[in] Which index (16bits) and sub-index (8bits) of entry in the object dictionary want to write.
DataType
[in] the data type of the pData value. See data type constant in acodef.h.
DataLen
[in] the data length of pData.
pData
[in] the data of [index, sub-index] value.
pf
[in] Pointer to the application-defined function of type TCOnWriteSDOResult; represents the starting address of
the function. The function will be executed if SDO request is responded or timeout occurs.
Return Values
If the function succeeds, the return value is ACOOD_SUCCESSFUL. If the function fails, please reference acoapi
error codes and SDO abort codes.
Remarks
Asynchronous read/write object dictionary means that the function does not block the procedure, return
immediately. Application can continue doing other work. To be informed the callback function when receiving the
SDO responded or timeout occurs, pass the result to the callback function, application would get the SDO abort
code to understand the result of SDO request. If the operation is success, the abort code is ACOOD_SUCCESSFUL;
otherwise, SDO abort code is returned defined by CiA DS-301 v4.02. The node with specified node identifier must
have the capability of server SDO; it is described in index 1200h – 127Fh of EDS.
According to the content of object dictionary, also need to check access type before writing the data to the entry
in remote object dictionary. Does not allow to write the entry if the access type of [index, sub-index] is read-only
(RO). Access type should be write-only (WO) or read-write (RW).
Use acoReadSDO() function to read the data of entry [index, sub-index] from remote object dictionary which
specific node identifier.
A synchronous method, reference acoGetODentry() and acoSetODentry(). acoNetworkReadSDO() and
acoNetworkWriteSDO() are for network object to request the remote slave node.
Example
void OnWriteSDOResult(
HACONODEOBJ hNode, NODEID_t NodeId,
UNS16 wIndex, UNS8 bSubIndex, UNS32 abortCode, LPVOID pvArg)
{
- 40 -
if (ACOOD_SUCCESSFUL == abortCode) {
UNS8 *ptr = (UNS8 *)pData;
printf("WriteSDOResult: succ: [%04x:%02x] ", wIndex, bSubIndex);
} else
printf("WriteSDOResult failed: [%04x:%02x] err: %x", wIndex, bSubIndex, abortCode);
}
void main()
{
UNS32 ret;
UNS8 transType=0x255;
UNS8 DataType=ACODT_UINT8;
NODEID_t OtherNode=0x05, NodeId=0x02;
HACONODE hSlaveNode = acoCreateNode(NULL);
if (ACOERR_SUCCESS == (ret = acoNodeImportEDS(hSlaveNode, “slave.eds”, &NodeId)) )
{
if (ACOERR_SUCCESS == (ret = acoOpenCANPort(hSlaveNode, “CAN1:”, 1000)))
{
// should be ImportEDS first than OpenCANPort
if (ACOERR_SUCCESS == (ret = acoStartNode(hSlaveNode)))
{
//*** access Object Dictionary: async method
ret = acoWriteSDO(hSlaveNode, OtherNode, 0x1800, 0x02,
DataType, sizeof(transType), &transType, OnWriteSDOResult, NULL);
if (ACOOD_SUCCESSFUL == ret)
printf ("acoWriteSDO succ.");
else
printf ("acoWriteSDO failed: %X", ret);
}
acoStopNode(hSlaveNode);
acoCloseCANPort(hSlaveNode);
}
acoFreeNode(hSlaveNode);
hSlaveNode = NULL;
}
}
- 41 -
acoRegODDataChangedEvent
Register an event for the local object dictionary entry; event will be called while the data of entry [index, sub-index]
is changed, pass the changed data of the entry to the application-defined function.
UNS32 acoRegODDataChangedEvent(
HACONODE hNode,
UNS16 wIndex,
UNS8 SubIndex,
TCOnODDataChangedEvent cb,
LPVOID pvArg
);
Parameters
hNode
[in] Pointer to the Master or Slave node object handle that returned by acoCreateNode().
wIndex, SubIndex
[in] Which index (16bits) and sub-index (8bits) of entry in the object dictionary want to monitor.
cb
[in] Pointers to the application-defined function to execute by the library while the data of the entry [index,
sub-index] of the object dictionary being changed.
pvArg
[in] Pointer to the data to be passed to the callback function or pointer to NULL; the type is a void that allows
the application to declare, define, and initialize a structure or argument to hold any information.
Return Values
If the function succeeds, the return value is ACOERR_SUCCESS. If the function fails, please reference acoapi error
codes.
Remarks
Application can monitor the data of local object dictionary with specific index and sub-index through register a
callback function without polling. If the data is changed without respect to by local or by remote SDO Client,
application can get notify and to do something. But if register too many callback function for the data changed, it
decreases the program efficiency.
Use acoUnRegODDataChangedEvent() to un-register the callback function.
Example
- 42 -
UNS32 OnODDataChanged(HACONODE hNode, UNS16 wIndex, UNS8 SubIndex,
UNS8 DataType, UNS32 DataLen, void * pData, LPVOID pvArg)
{
//To do.
Return 0;
}
void RegNodeEvents(void)
{
acoRegODDataChangedEvent(hSlaveNode, 0x1800, 0x02, OnODDataChanged, NULL);
}
acoUnRegODDataChangedEvent
Un-register an event for the local object dictionary entry, do not get notify if the data is changed.
UNS32 acoUnRegODDataChangedEvent(
HACONODE hNode,
UNS16 wIndex,
UNS8 SubIndex
);
Parameters
hNode
[in] Pointer to the Master or Slave node object handle that returned by acoCreateNode().
wIndex, SubIndex
[in] Which index and subindex of the object dictionary
Return Values
If the function succeeds, the return value is ACOERR_SUCCESS. If the function fails, please reference acoapi error
codes.
Example
void UnRegNodeEvent()
{
acoUnRegODDataChangedEvent(hSlaveNode, 0x1800, 0x02);
}
- 43 -
acoRegGeneralEvent
Register a callback function for general event that the node is in state changed, after transmitting or receiving
SYNC message or after transmitting PDO message synchronously.
UNS32 acoRegGeneralEvent(
HACONODE hNode,
e_GeneralEventType et,
TCOnGeneralEvent cb,
LPVOID pvArg
);
Parameters
hNode
[in] Pointer to the Master or Slave node object handle that returned by acoCreateNode().
et
[in] which event type being trigger an callback function. The event type can be node in initialization state,
preoperational state, and operational state, stop state, post SYNC and post PDO.
Notify event type
Description
et_STATE_INITIALIZE
the node is into NMT state Initialisation
et_STATE_PREOPERATIONAL
the node is into NMT state Pre-operational
et_STATE_OPERATIONAL
the node is into NMT state Operational
et_STATE_STOPPED
the node is into NMT state Stopped
et_STATE_SYNC
the node transmits or receives a sync frame
et_STATE_POST_PDO
the node transmits a PDO frame
cb
[in] Pointer to the application-defined function to be called by the library while specific the event is triggered.
typedef void (*TCOnGeneralEvent)( HACONODE hNode, LPVOID pvArg );
hNode argument is pointer to Master or Slave node object handle; indicates which the node enters this event.
pvArg argument [in] pointer to an argument that is passed through from the callback function.
pvArg
[in] Pointer to the data to be passed to the callback function or pointer to NULL; the type is a void that allows
the application to declare, define, and initialize a structure or argument to hold any information.
Return Values
If the function succeeds, the return value is ACOERR_SUCCESS. If the function fails, please reference acoapi error
codes.
- 44 -
Remarks
Master or Slave node can be aware its current state by notify automatically, do not need to call acoGetNodeState().
In application-defined NMT state-changed event callback function, application can do something in the state. For
example, Master can change transmission type of slave Transmit PDO as it’s expects in state pre-operational
callback function.
Example
extern HACONODE hSlaveNode;
void DoStateInitialization(HACONODE hNode, LPVOID pvArg)
{
//To do.
}
void DoStatePreoperational(HACONODE hNode, LPVOID pvArg)
{
//To do.
}
void DoStateOperational(HACONODE hNode, LPVOID pvArg)
{
//To do.
}
void DoStateStop(HACONODE hNode, LPVOID pvArg)
{
//To do.
}
void RegNodeEvents(void)
{
acoRegGeneralEvent(hSlaveNode, et_STATE_INITIALIZE, DoStateInitialization, NULL);
acoRegGeneralEvent(hSlaveNode, et_STATE_PREOPERATIONAL, DoStatePreoperational, NULL);
acoRegGeneralEvent(hSlaveNode, et_STATE_OPERATIONAL, DoStateOperational, NULL);
acoRegGeneralEvent(hSlaveNode, et_STATE_STOPPED, DoStateStop, NULL);
}
acoSendData
Transmit a raw message to other nodes.
UNS32 acoSendData(
- 45 -
HACONODE hNode,
UNS32 CobId,
bool bRTR,
UNS32 dataLen,
void * pData
);
Parameters
hNode
[in] Pointer to the Master or Slave node object handle that returned by acoCreateNode().
CobId
[in] Specified Cob-ID of the CAN message. The format of Cob-ID is defined by CiA DS-301 v4.02:
10
7
6
Function Code
0
Node-ID
bRTR
[in] Identify the message is Remote Transmission Request or not
dataLen
[in] the length of the pData, maximum length is 8 in CAN message.
pData
[in] the value to be sent
Return Values
If the function succeeds, the return value is ACOERR_SUCCESS. If the function fails, please reference acoapi error
codes.
Example
// Send NMT Node Guarding to Node 2
acoSendData(hSlaveNode, 0x702, 0, 0, NULL);
acoSendEmcy
Transmit an emergency message from an emergency producer on the CANopen device. Emergency objects are
triggered by occurrence of a CANopen device internal error situation, and the error register (1001h) are specified;
- 46 -
the messages shall contain the error field with pre-defined error and additional information.
UNS32 acoSendEmcy(
HACONODE hNode,
UNS16 errCode,
UNS8 errRegMask,
UNS16 addInfo
);
Parameters
hNode
[in] Pointer to the Master or Slave node object handle that returned by acoCreateNode().
errCode
[in] emergency error codes
errRegMask
[in] This value is filled in at the location of object 1001h (error register). That means it must include object
1001h in EDS.
Bit
M/O
Meaning
0
M
Generic error
1
O
Current
2
O
Voltage
3
O
Temperature
4
O
Communication error (overrun, error state)
5
O
Device profile specific
6
O
Reserved (always 0)
7
O
Manufacturer-specific
addInfo
[in] Application-specific additional information is defined by other profile specifications.
Return Values
If the function succeeds, the return value is ACOERR_SUCCESS. If the function fails, please reference acoapi error
codes.
Remarks
If CAN device internal triggers an error interrupt, acoapi library transmits an emergency message with FF00h
device specific error in errCodes, 11h communication error in error register. May use
acoRegODDataChangedEvent() to monitor object 1001h, 00h to understand whether emergency object is
- 47 -
triggered and CAN device internal error occurs. The new error codes will be filled in at the top of the array of error
codes (object 1003h) if supported.
After transmitting an emergency message, need to use acoResetEmcy() function to reset error, the CANopen
device enters the error free state and transmit an ‘reset error / no error’ emergency object. For example, a node
generates a temperature emergency (measured temperature exceeds the limits), only when the temperature has
returned within limits the node transmit another emergency message, this time clearing/resetting the
temperature emergency.
Use acoRegEmcyEvent() to register an event for the emergency consumer that the callback function will be called
if receiving a EMCY message.
Example
// Send emergency message active: temperature
acoSendEmcy (hSlaveNode, 0x4200, 0x08, 0);
acoResetEmcy
Deletes specific error code and clears corresponding bits in Error register. If all errors are clear, the CANopen
device enters the error Free State.
UNS32 acoResetEmcy(
HACONODE hNode,
UNS16 errCode
);
Parameters
hNode
[in] Pointer to the Master or Slave node object handle that returned by acoCreateNode().
errCode
[in] emergency error codes
Return Values
If the function succeeds, the return value is ACOERR_SUCCESS. If the function fails, please reference acoapi error
codes.
Remarks
After transmitting an emergency message, need to use acoResetEmcy() function to reset error, the CANopen
device enters the error free state and transmit an ‘reset error / no error’ emergency object.
- 48 -
Example
// clear error 0x4200: temperature error
acoResetEmcy (hSlaveNode, 0x4200);
acoRegEmcyEvent
One or more emergency consumers (master or slaves) register an event for trigger if receiving an emergency
message from emergency producer (other nodes.)
UNS32 acoRegEmcyEvent(
HACONODE hNode,
TCOnPostEmcyEvent pf,
LPVOID pvArg
);
Parameters
hNode
[in] Pointer to the Master or Slave node object handle that returned by acoCreateNode().
pf
[in] Pointer to the application-defined function of type TCOnPostEmcyEvent; represents the starting address of
the function. The function would to be called by the library while the node receives an emergency message.
TCOnPostEmcyEvent is a placeholder for the application-defined function name.
typedef void (*TCOnPostEmcyEvent)(HACONODE hNode, NODEID_t NodeID, UNS16 errCode, UNS8 errReg,
UNS8 errManufacField[5], LPVOID pvArg);
hNode argument [in] is the pointer to the node object handle is the same as hNode argument of
acoRegEmcyEvent() as a emergency consumer. NodeID argument [in] is the node identifier that which the
slave node producers the emergency message. errCode, errReg and errManufacField argument [in] is
emergency error codes and error register that the slave node producers. pvArg argument [in] pointer to an
argument that is passed through from the callback function.
pvArg
[in] Pointer to the data to be passed to the callback function or pointer to NULL; the type is a void that allows
the application to declare, define, and initialize a structure or argument to hold any information.
Return Values
If the function succeeds, the return value is ACOERR_SUCCESS. If the function fails, please reference acoapi error
codes.
- 49 -
Example
void DoRecvEmcyEvent(HACONODE hNode, NODEID_t NodeID, UNS16 errCode, UNS8 errReg, UNS8
errManufacField[5], LPVOID pvArg)
{
printf("Receives an emergency message from Node[%d]: %04x %02x\r\n"), NodeID, errCode, errReg);
}
acoRegEmcyEvent(mp_hSlaveNode, DoRecvEmcyEvent, NULL);
acoRegHeartbeatEvent
Heartbeat consumer (the node) registers an event for trigger if receiving a heartbeat message from heartbeat
producer (remote slave nodes.)
UNS32 acoRegHeartbeatEvent (
HACONODE hNode,
TCOnHeartbeatEvent cb,
LPVOID pvArg
);
Parameters
hNode
[in] Pointer to the Master or Slave node object handle that returned by acoCreateNode().
cb
[in] Pointer to the application-defined function of type TCOnHeartbeatEvent; represents the starting address of
the function. The function would to be called by the library while master node receives a heartbeat message.
typedef void (*TCOnHeartbeatEvent)(HACONODE hNode, NODEID_t NodeId, e_acoNodeState currState,
LPVOID pvArg);
hNode argument [in] is the pointer to the node object handle as a heartbeat consumer. NodeID argument [in]
is the node identifier that which the remote slave node producers the heartbeat message, currState argument
[in] is the current NMT state of the remote slave node. pvArg argument [in] pointer to an argument that is
passed through from the callback function.
pvArg
[in] Pointer to the data to be passed to the callback function or pointer to NULL; the type is a void that allows
the application to declare, define, and initialize a structure or argument to hold any information.
Return Values
- 50 -
If the function succeeds, the return value is ACOERR_SUCCESS. If the function fails, please reference acoapi error
codes.
Remarks
A heartbeat producer transmits a heartbeat message cyclically; so the application-defined function would be called
cyclically. Therefore, be carefully using this function that may cause the system decrease the efficiency.
Through heartbeat message, can know the remote node it’s presently NMT state, generally used in NMT master
node.
The heartbeat producer time and heartbeat consumer time can be configurable via object dictionary (EDS). The
heartbeat protocol starts if the time value unequal to 0.
Example
extern HACONODE hMasterNode;
void DoHeartbeatEvent(HACONODE hNode, NODEID_t NodeId, e_acoNodeState currState, LPVOID pvArg)
{
printf(“The remote node [%02x] is in state %x.”, NodeId, currState);
}
acoRegHeartbeatEvent(hMasterNode, DoHeartbeatEvent, NULL);
acoRegHeartbeatErrorEvent
Register an event for heartbeat error in network object; event will be called while not receive heartbeat message
within the heartbeat consumer time.
UNS32 acoRegHeartbeatErrorEvent(
HACONODE hNode,
TCOnHeartbeatErrorEvent cb,
LPVOID pvArg
);
Parameters
hNode
[in] Pointer to the Master or Slave node object handle that returned by acoCreateNode().
cb
- 51 -
[in] Pointer to the application-defined function of type TCOnHeartbeatErrorEvent; represents the starting
address of the function. The function would to be called by the library while master node not receives a
heartbeat message within heartbeat consumer time, timeout occurs.
typedef void (*TCOnHeartbeatErrorEvent)(HACONODE hNode, NODEID_t NodeId, LPVOID pvArg);
hNode argument [in] is the pointer to the node object handle as a heartbeat consumer. NodeID argument [in]
indicates is the node identifier that does not receive a heartbeat message from the node within the heartbeat
consumer time. pvArg argument [in] pointer to an argument that is passed through from the callback function.
pvArg
[in] Pointer to the data to be passed to the callback function or pointer to NULL; the type is a void that allows
the application to declare, define, and initialize a structure or argument to hold any information.
Return Values
If the function succeeds, the return value is ACOERR_SUCCESS. If the function fails, please reference acoapi error
codes.
Remarks
The configuration of about heartbeat consumer must be in object dictionary of object 1016h and sub-index 01h
above, so that the node just could be a heartbeat consumer. The value of heartbeat consumer time indicates the
expected heartbeat cycle times. If the heartbeat time is equal to 0, no heartbeat error event will be triggered. If
the heartbeat time is unequal 0, a heartbeat error event will be generated if the heartbeat is not received within
the heartbeat consumer time.
Example
extern HACONODE hMasterNode;
// CALLBACK function for Heartbeat error
void DoHeartbeatErrorEvent(HACONODE hNode, unsigned char id, LPVOID pvArg)
{
printf("Node[%x] Heartbeat error!", id);
}
//Register callback function for Heartbeat error event
acoRegHeartbeatErrorEvent(hMasterNode, DoHeartbeatErrorEvent, NULL);
- 52 -
acoRegRecvPDOEvent
Register a event is for receiving a PDO message; This function should be called every time a PDO has received
from foreign nodes.
UNS32 acoRegRecvPDOEvent(
HACONODE hNode,
TCOnRecvPDOEvent cb,
LPVOID pvArg
);
Parameters
hNode
[in] Pointer to the Master or Slave node object handle that returned by acoCreateNode().
cb
[in] Pointer to the application-defined function of type TCOnRecvPDOEvent; represents the starting address of
the function. The function would to be called by the library while the node receives a PDO message.
typedef void (*TCOnRecvPDOEvent)(HACONODE hNode, int rpdoIndex, UNS32 cobId, UNS8 bRTR, UNS8 size,
void *pData, LPVOID pvArg);
hNode argument [in] is the pointer to the node object handle. rpdoIndex argument [in] indicates Which RPDO
offset [0..511] of the object dictionary [1400..15FF] to received. cobId argument [in] indicates the COB-ID of
the RPDO message. bRTR argument [in] is the RTR flag of RPDO message. size argument [in] is the data length
of pData in bytes. pData argument [in] is the data of RPDO message. pvArg argument [in] pointer to an
argument that is passed through from the callback function.
pvArg
[in] Pointer to the data to be passed to the callback function or pointer to NULL; the type is a void that allows
the application to declare, define, and initialize a structure or argument to hold any information.
Return Values
If the function succeeds, the return value is ACOERR_SUCCESS. If the function fails, please reference acoapi error
codes.
Remarks
Example
extern HACONODE hMasterNode;
- 53 -
// CALLBACK function for RPDO
void OnRecvPDOEvent(HACONODE hNode, int rpdoIndex, UNS32 cobId, UNS8 bRTR, UNS8 size, void *pData,
LPVOID pvArg)
{
int i, j;
unsigned char *ptr = (unsigned char *)pData;
printf("RPDO[%d]: %04X; ", rpdoIndex+1, cobId);
for (i=0; i<size; i++)
printf("%02X ", ptr[i]);
}
//Register callback function for receiving PDO event
acoRegRecvPDOEvent(hMasterNode, OnRecvPDOEvent, NULL);
acoSendPDOwithCOS
Send PDOs if any data has changed (Change-Of-State), only transmission type 255 (0xFF) is supported yet. This
function should be called every time a PDO has changed and sent to foreign nodes immediately.
UNS32 acoSendPDOwithCOS(
HACONODE hNode,
int tpdoIndex
);
Parameters
hNode
[in] Pointer to the Master or Slave node object handle that returned by acoCreateNode().
tpdoIndex
[in] Which TPDO offset [0..511] of the object dictionary [1800..19FF] to be sent if the data has changed, or -1
for all TPDO.
Return Values
If the function succeeds, the return value is ACOERR_SUCCESS. If the function fails, please reference acoapi error
codes.
Remarks
- 54 -
The change-of-state transmission method simply transmits a TPDO message if the process data in it changes and
transmission type is 255 (0xFF). But it could be affected by inhibited time if it exists. Even the data has been
changed but it may not send the TPDO until the inhibit time expired. So if the process data actually changes
several times while the timer is running not all of these changes will be transmitted, that means potentially some
process data is lost.
Example
// Send PDO immediately if transmission type is 255
int tpdoOffset = 0;
ret = acoSendPDOwithCOS(hSlaveNode, tpdoOffset);
acoCreateNetwork
Create a CANOpen network object in NMT master with the requested attributes.
HACONETWORK acoCreateNetwork(
HACOMASTER hMasterNode
);
Parameters
hMasterNode
[in] Assign a Master node for this CANopen network. A node created by acoCreateNode().
Return Values
If the function succeeds, the return value is a network object handle. If the function fails, the return value is NULL.
The generality of failed reason could be allocating memory failed.
Network object includes a Master node and remote node set. Master node should be ready first before creating
network object. Use acoFreeNetwork() to free network object.
Example
void DoBootupEvent(HACONODE hNode, NODEID_t id);
HACONETWORK hNetworkObj;
HACOMASTER
hMasterNode;
NODEID_t
MasterNode=0x01;
hMasterNode = acoCreateNode(NULL);
if (hMasterNode == NULL)
return;
- 55 -
if (ACOERR_SUCCESS == acoNodeImportEDS(hMasterNode, “Master.eds”, &MasterNode))
{
hNetworkObj = acoCreateNetwork(hMasterNode);
if (hNetworkObj)
{
// register some events
acoRegBootupEvent(hNetworkObj, DoBootupEvent);
if (ACOERR_SUCCESS == acoOpenCANPort(hMasterNode, “CAN1:”, 1000))
{
acoStartNetwork(hNetworkObj);
// do something…
acoStopNetwork(hNetworkObj);
}
acoFreeNetwork(hNetworkObj);
}
}
acoFreeNode(hMasterNode);
void DoBootupEvent(HACONODE hNode, NODEID_t id)
{
if (!acoRemoteNodeExist(hNetworkObj, id))
{ // not exist in list
HACOREMOTE pRemoteNode = acoNetworkAddSlave(hNetworkObj, id, NULL);
if (pRemoteNode)
{
// change RxPDO setting to receive Slave's PDO
UINT32 cobid=0x180 + id;
acoSetODentry(hMasterNode, 0x1400, 0x01, ACODT_UINT32, sizeof(cobid), &cobid);
}
}
// Start remote slave node into Operational state
acoStartRemoteNode(pNetworkObj, id);
}
acoFreeNetwork
Free CANopen network object and its remote nodes list. Before release the network object, it will stop all remote
- 56 -
nodes first by broadcasting NMT stop message and then stop the master node.
void acoFreeNetwork(
HACONETWORK hNetworkObject
);
Parameters
hNetworkObject
[in] Pointer to network object handle that return by acoCreateNetwork().
Return Values
None
acoStartNetwork
Start the CANopen network to operation, start master node enter NMT state Operational and then start all remote
nodes in remote list by broadcasting NMT start remote node message.
UNS32 acoStartNetwork(
HACONETWORK hNetworkObject
);
Parameters
hNetworkObject
[in] Pointer to network object handle that returned by acoCreateNetwork().
Return Values
If the function succeeds, the return value is ACOERR_SUCCESS. If the function fails, please reference acoapi error
codes.
Remarks
Start CANopen network, master firstly enter NMT state Operational, and continue to demand other remote slave
nodes enter NMT state Operational if online. Offline remote slave nodes can be demanded if receiving the boot up
message, reference acoRegBootupEvent(). Call acoStartRemoteNode() only start remote slave node.
All of nodes must be in NMT state Operational can transmit PDO object. In other words, any process data can be
transferred the node must be in state Operational; else the process data can not be transferred.
Use acoStopNetwork() to stop CANopen network.
Table 12: NMT states and communication objects
- 57 -
State
Object
Pre-operational
PDO
Operational
Stopped
V
SDO
V
V
SYNC
V
V
TIME
V
V
EMCY
V
V
NMT
V
V
V
Example
Reference to acoCreateNetwork() example.
acoStopNetwork
Stop the CANopen network, stop all remote nodes in remote list by broadcasting NMT stop message and then stop
master node, all of nodes would be enter NMT state Stopped.
UNS32 acoStartNetwork(
HACONETWORK hNetworkObject
);
Parameters
hNetworkObject
[in] Pointer to network object handle that returned by acoCreateNetwork().
Return Values
If the function succeeds, the return value is ACOERR_SUCCESS. If the function fails, please reference acoapi error
codes.
Example
Reference to acoCreateNetwork() example.
acoGetRemoteNodeCount
Return the number of remote nodes in network object of remote node list.
UNS32 acoGetRemoteNodeCount(
HACONETWORK hNetworkObject
- 58 -
);
Parameters
hNetworkObject
[in] Pointer to network object handle that returned by acoCreateNetwork().
Return Values
Return the number of remote nodes in network object.
acoGetRemoteNode
Get remote node object handle by specified node identifier in remote node list.
HACOREMOTE acoGetRemoteNode(
HACONETWORK hNetworkObject,
NODEID_t NodeId
);
Parameters
hNetworkObject
[in] Pointer to network object handle that returned by acoCreateNetwork().
NodeId
[in] the node identifier of remote node.
Return Values
If the remote node with specified node identifier is exist in network object of remote node set, return value is
remote node handle. If it is not existing, return value is NULL.
Remarks
According to remote node object handle, use acoGetRemoteNodeId() function to get node identifier or use
acoGetRemoteNodeState() to get the current state of the remote node.
acoGetRemoteNodebyPos
Get remote node object at a specified position in remote node list.
HACOREMOTE acoGetRemoteNodebyPos(
HACONETWORK hNetworkObject,
- 59 -
size_t _Pos
);
Parameters
hNetworkObject
[in] Pointer to network object handle that returned by acoCreateNetwork().
_Pos
[in] the index number of the remote node. The base is 0.
Return Values
The return value specifies the remote node object in the remote node list of position. If the position is over the
number of remote nodes, return value is NULL.
Example
extern HACONETWORK hNetworkObj;
void DoMasterInitialization(HACOMASTER hMaster)
{
// Update Master Local Object Dictionary : RPDO 0x1400~0x1403
// to Receive TPDO which node id allowed
UNS32 CcobID[] = {0x200, 0x300, 0x400, 0x500};
for (unsigned int i=0; i<min(4, acoGetRemoteNodeCount(hNetworkObj)); i++)
{
HACOREMOTE hRemote = acoGetRemoteNodebyPos(hNetworkObj, i);
UNS32 cob=CcobID[i] + acoGetRemoteNodeId(hRemote);
acoSetODentry(hMaster, 0x1400+i, 1, ACODT_UINT32, sizeof(cob), &cob);
}
}
acoGetRemoteNodeId
Get node identifier of the remote node object handle.
NODEID_t acoGetRemoteNodeId(
HACOREMOTE hRemoteNode
);
Parameters
- 60 -
hRemoteNode
[in] Pointer to remote node object handle.
Return Values
Return the node identifier of the remote node object handle that be set by acoNetworkAddSlave(). Return
CINVALID_NODEID if remote node object is invalid.
Remarks
The node identifier is unique identifier for each CANopen device in the network, a value in the range of [1..127]
specified by CiA DS-301.
Example
Reference to acoGetRemoteNodebyPos() example.
acoRemoteNodeExist
Check the node identifier whether exist in remote node list or not.
BOOL acoRemoteNodeExist(
HACONETWORK hNetworkObject,
NODEID_t NodeId
);
Parameters
hNetworkObject
[in] Pointer to network object handle that returned by acoCreateNetwork().
NodeId
[in] Specified a unique node identifier in a range of [1..127].
Return Values
Nonzero indicates the remote node with specified node identifier exists in remote node list of network object. Zero
indicates the node identifier does not exist in remote node list.
Example
Reference to acoCreateNetwork() example.
- 61 -
acoNetworkAddSlave
NMT master creates a remote node object with the requested attributes and inserts it to the remote node set of the
network object.
HACOREMOTE acoNetworkAddSlave(
HACONETWORK hNetworkObject,
NODEID_t NodeId,
char *pFileName
);
Parameters
hNetworkObject
[in] Pointer to network object handle that returned by acoCreateNetwork().
NodeId
[in] a node identifier.
pFileName
[in] Device profile path and file name of remote slave node, it can be NULL.
Return Values
If the function succeeds, the return value is a remote node object handle. If the function fails, the return value is
NULL, Call GetLastError() to get error code.
Remarks
The node identifier should be a unique value in a range of [1..127] defined by CiA DS-301. So that the maximum
count of the remote nodes in network object is 126, one node identifier is reserved for Master node. If the number
is over the limit, get error code.
Inserting a node to remote node list, the remote node list in network object would re-sort by node identifier so that
the memory location would be rearranged. If the application keeps the pointer of the remote node, that caused to
pointer to different remote node. Therefore, recommends that call acoGetRemoteNode() or
acoGetRemoteNodebyPos() each time to retrieve the current pointer of the remote node object from the list, do
not keep the pointer of the remote node.
Example
Reference to acoCreateNetwork() example.
- 62 -
acoNetworkRemoveSlave
NMT master removes the remote node object identified by NodeId from the remote node list of the network object.
NMT master demands the remote node would be enter the NMT state Stopped and then remove it from list.
UNS32 acoNetworkRemoveSlave(
HACONETWORK hNetworkObject,
NODEID_t NodeId
);
Parameters
hNetworkObject
[in] Pointer to network object handle that returned by acoCreateNetwork().
NodeId
[in] a node identifier in a range of [1..127].
Return Values
If the function succeeds, the return value is ACOERR_SUCCESS. If the function fails, please reference acoapi error
codes.
Remarks
Before removing the remote node from list in network object, firstly transmitting NMY message to the remote
slave node entered NMT state Stopped and then remote it from list. The remote node list in network object would
re-sort by node identifier so that the memory location would be rearranged. If the application keeps the pointer of
the remote node, that caused to pointer to different remote node. Therefore, recommends that call
acoGetRemoteNode() or acoGetRemoteNodebyPos() each time to retrieve the current pointer of the remote node
object from the list, do not keep the pointer of the remote node.
Example
extern HACONETWORK hNetworkObj;
// remove node identifier 0x02 from list
acoNetworkRemoveSlave(hNetworkObj, 0x02);
acoNetworkSetState
NMT master change the remote slave node to new state by NMT message. Node identifier is 0 means
- 63 -
broadcasting NMT message to all remote slave nodes to change its state.
UNS32 acoNetworkSetState(
HACONETWORK hNetworkObject,
NODEID_t NodeId,
e_acoNodeState newState
);
Parameters
hNetworkObject
[in] Pointer to network object handle that returned by acoCreateNetwork().
NodeId
[in] the remote slave node identifier in range [0..127], 0 means all remote slave nodes.
newState
[in] the new NMT state.
Return Values
If the function succeeds, the return value is ACOERR_SUCCESS. If the function fails, please reference acoapi error
codes.
Example
extern HACONETWORK hNetworkObj;
// Set remote node 0x02 to NMT state Operational
acoNetworkSetState(hNetworkObj, 0x02, ns_Operational);
acoGetRemoteNodeState
Get the NMT state of the specified remote node object handle that kept in NMT master side, not really remote slave
node state.
e_acoNodeState acoGetRemoteNodeState(
HACOREMOTE hRemoteNode
);
Parameters
hNetworkObject
[in] Pointer to network object handle that returned by acoCreateNetwork().
- 64 -
Return Values
Return the currently NMT state of the remote node. If return value is ns_Unknown_state, indicates the remote
slave node may be offline that can not response any message or just request its node guard message and waiting
its NMT state.
acoReqNodeGuard
NMT master request the remote slave node an extra a node guard message. If the slave replies the node guard
message, the state of the remote node will be updated in network object.
UNS32 acoReqNodeGuard(
HACONETWORK hNetworkObject,
NODEID_t NodeId
);
Parameters
hNetworkObject
[in] Pointer to network handle that created by acoCreateNetwork().
NodeId
[in] the remote slave node identifier in range [0..127], 0 means all remote slave nodes.
Return Values
If the function succeeds, the return value is ACOERR_SUCCESS. If the function fails, please reference acoapi error
codes.
Remarks
NMT master application transmit guarding requests single to remote slave node or all nodes, the state of asked
remote nodes in network object would be into ns_Unknown_state state, update the newly state until the guarding
is achieved if the slave node supports node guarding protocol. For a later a cycle of CAN message, Call
acoGetRemoteNodeState() to get the latest state of remote slave node.
The state of remote slave nodes update cyclically if the device supports the heartbeat mechanism, does not need
to request the node guarding alone. The heartbeat mechanism for a device is established by cyclically transmitting
the heartbeat message by the heartbeat producer. If the heartbeat cycle fails for the heartbeat producer, the
heartbeat consumer will be informed the event, reference acoRegHeartbeatErrorEvent().
Example
extern HACONETWORK hNetworkObj;
- 65 -
extern HACOREMOTE hRemoteNode;
//Set remote node to Operational
acoReqNodeGuard (hNetworkObj, 0x02);
// wait a moment for the guarding message responsed
Sleep(1000L);
e_acoNodeState NodeState = acoGetRemoteNodeState(hRemoteNode);
switch(NodeState)
{
case ns_Initialisation:
printf("Remote node state: Initialisation");
break;
case ns_Pre_operational:
printf("Remote node state: Pre_operational");
break;
case ns_Operational:
printf("Remote node state: Operational");
break;
case ns_Stopped:
printf("Remote node state: Stopped");
break;
default:
printf("Remote node state: invalid state");
break;
}
acoStartRemoteNode
The NMT master uses the NMT service start remote node specified by node identifier to change the NMT state.
The state of the remote slave node shall be entering NMT state Operational.
UNS32 acoStartRemoteNode(
HACONETWORK hNetworkObject,
NODEID_t NodeId
);
Parameters
hNetworkObject
- 66 -
[in] Pointer to network handle that created by acoCreateNetwork().
NodeId
[in] the remote slave node identifier in a range [0..127]. CBROADCAST_NODEID (0) means broadcast NMT
start remote node message to all online remote nodes.
Return Values
If the function succeeds, the return value is ACOERR_SUCCESS. If the function fails, please reference acoapi error
codes.
Remarks
By broadcasting NMT start remote node message, all remote slave nodes shall be enter NMT state Operational
even if the remote node is not exist in the remote node list of network object. Therefore, application needs to
maintain the remote node list in the network object by self. The service start remote node is unconfirmed, can not
get really the NMT state after starting, application can use other method to know which state the remote node in,
for example: heartbeat protocol.
Need to use acoStartNetwork() firstly to start CANopen network and master node. Use acoStopRemoteNode() to
stop a remote node.
Example
extern HACONETWORK hNetworkObj;
//Start remote node 0x02
acoStartRemoteNode(hNetworkObj, 0x02);
acoStopRemoteNode
The NMT master uses the NMT service stop remote node specified node specified to change NMT state. The state
of the remote slave node shall be entering NMT state Stopped.
UNS32 acoStopRemoteNode(
HACONETWORK hNetworkObject,
NODEID_t NodeId
);
Parameters
hNetworkObject
- 67 -
[in] Pointer to network handle that created by acoCreateNetwork().
NodeId
[in] the remote slave node identifier in a range [0..127]. CBROADCAST_NODEID (0) means broadcast NMT
start remote node message to all online remote nodes.
Return Values
If the function succeeds, the return value is ACOERR_SUCCESS. If the function fails, please reference acoapi error
codes.
Example
extern HACONETWORK hNetworkObj;
//Start remote node 0x02
acoStopRemoteNode(hNetworkObj, 0x02);
acoRegBootupEvent
Register an event for receiving Slave boot up message in network object; event will be called while master
receiving a slave boot up message.
UNS32 acoRegBootupEvent(
HACONETWORK hNetworkObject,
TCOnBootupEvent cb,
LPVOID pvArg
);
Parameters
hNetworkObject
[in] Pointer to network handle that created by acoCreateNetwork().
cb
[in] Pointer to the application-defined function of type TCOnBootupEvent; represents the starting address of
the function. Library will call this function while the master receiving a slave node boot up frame.
typedef void (*TCOnBootupEvent)(HACONODE hNode, NODEID_t NodeId, LPVOID pvArg);
hNode argument [in] is the pointer to the master node object handle. NodeID argument [in] is the slave node
with the node identifier transmits a boot-up message. pvArg argument [in] pointer to an argument that is
passed through from the callback function.
pvArg
- 68 -
[in] Pointer to the data to be passed to the callback function or pointer to NULL; the type is a void that allows
the application to declare, define, and initialize a structure or argument to hold any information.
Return Values
If the function succeeds, the return value is ACOERR_SUCCESS. If the function fails, please reference acoapi error
codes.
Remarks
The NMT slave transmits a boot-up message to indicate the state transition occurred from the NMT state
Initialisation to the NMT state Pre-operational. It is ready to CANopen network. In application-defined function,
Master can change the object dictionary settings of remote slave node by SDO request, or request the remote
slave node enter the NMT state Operational to start operation.
Example
Reference acoCreateNetwork() example.
acoNetworkReadSDO
Read an entry with specified index and sub-index from remote object dictionary of specified node identifier through
SDO protocol. This function is an asynchronous method, it starts a task is returned immediately without waiting for
a result. When the task finishes, the library notifies the application that the message was successfully processed
and pass the result to the callback function.
UNS32 acoNetworkReadSDO(
HACONETWORK hNetworkObject,
NODEID_t NodeId,
UNS16 wIndex,
UNS8 SubIndex,
UNS8 DataType,
TCOnReadSDOResult pf
);
Parameters
hNetworkObject
[in] Pointer to network handle that created by acoCreateNetwork().
NodeId
[in] specified a SDO server node identifier, read its object dictionary
- 69 -
wIndex, SubIndex
[in] Which index (16bits) and sub-index (8bits) of entry in the object dictionary want to read.
DataType
[in] the data type of the [index, sub-index] value. See data type constant in acodef.h.
pf
[in] Pointer to the application-defined function of type TCOnReadSDOResult; represents the starting address of
the function. The function will be executed if SDO request is responded or timeout occurs.
Return Values
If the function succeeds, the return value is ACOERR_SUCCESS. If the function fails, please reference acoapi error
codes.
Remarks
This asynchronous function is for the master node asks other remote slave node the value of object dictionary with
object index and sub-index. The application-defined function of type TCOnReadSDOResult will be called if
receiving the responded value of specified wIndex and sub-index from the remote slave node as SDO server.
Therefore, SDO parameters should be described in both master node and remote slave node at object dictionary
of object 1280h to 12FFh SDO client parameter, and object 1200h to 127Fh SDO server parameter. Else there is
not receiving any responded message from the remote slave node.
typedef void (*TCOnReadSDOResult)( HACONODEOBJ hNode, NODEID_t NodeId, UNS16 wIndex, UNS8
SubIndex, UNS8 dataType, UNS32 dataLen, void* pData, UNS32 abortCode);
hNode argument [in] is the pointer to the remote slave node object handle with node identifier is NodeID. NodeID
argument [in] is the remote slave node identifier. wIndex and SubIndex arguments [in] indicate which object to
be read. dataType argument [in] indicates the data type of the pData. dataLen argument [in] is the data length of
pData. pData argument [in] is the data of object [index, sub-index]. abortCode argument is the return value,
ACOOD_SUCCESSFUL means success, else get fails, reference acoapi error codes and SDO abort codes.
Reference acoReadSDO() and acoWriteSDO().
Example
extern HACONETWORK hNetworkObj;
void OnReadSDOResult(
HACONODEOBJ hNode, NODEID_t NodeId,
UNS16 wIndex, UNS8 bSubIndex, UNS8 dataType, UNS32 dataLen, void *pData, UNS32 abortCode)
{
if (ACOOD_SUCCESSFUL == abortCode) {
- 70 -
UNS8 *ptr = (UNS8 *)pData;
printf("ReadSDOResult: succ: Remote node [%02x] object [%04x:%02x] DataLen=%d, Data=%02x"
, NodeId, wIndex, bSubIndex, dataLen, *ptr);
} else
printf("ReadSDOResult failed: %x", abortCode);
}
//*** access Object Dictionary: async method
acoNetworkReadSDO(hNetworkObj, 0x02, 0x1800, 0x02, ACODT_UINT8, OnReadSDOResult);
acoNetworkWriteSDO
Write the value at the index and sub-index to remote object dictionary of the node whose node identifier is NodeId
through SDO protocol. This function is an asynchronous method, it starts a task is returned immediately without
waiting for a result. When the task finishes, the function notifies the application that the message was successfully
processed and pass the result to the callback function.
UNS32 acoNetworkWriteSDO(
HACONETWORK hNetworkObject,
NODEID_t NodeId,
UNS16 wIndex,
UNS8 SubIndex,
UNS8 DataType,
UNS32 DataLen,
void *pData,
TCOnWriteSDOResult pf
);
Parameters
hNetworkObject
[in] Pointer to network handle that created by acoCreateNetwork().
NodeId
[in] specified a SDO server node identifier, write to its object dictionary
wIndex, SubIndex
[in] Which index (16bits) and sub-index (8bits) of entry in the object dictionary want to write.
DataType
[in] the data type of the pData value. See data type constant in acodef.h.
- 71 -
DataLen
[in] the data length of pData.
pData
[in] the data of [index, sub-index] value.
pf
[in] Pointer to the application-defined function of type TCOnWriteSDOResult; represents the starting address of
the function. The function will be executed if SDO request is responded or timeout occurs.
Return Values
If the function succeeds, the return value is ACOOD_SUCCESSFUL. If the function fails, please reference acoapi
error codes and SDO abort codes.
Remarks
This asynchronous function is for the master node writes the value of object dictionary with object index and
sub-index to other remote slave node. The application-defined function of type TCOnWriteSDOResult will be called
if receiving the responded from the remote slave node as SDO server. Therefore, SDO parameters should be
described in both master node and remote slave node at object dictionary of object 1280h to 12FFh SDO client
parameter, and object 1200h to 127Fh SDO server parameter. Else there is not receiving any responded message
from the remote slave node.
typedef void (*TCOnWriteSDOResult)( HACONODEOBJ hNode, NODEID_t NodeId, UNS16 wIndex, UNS8
SubIndex, UNS32 abortCode);
hNode argument [in] is the pointer to the remote slave node object handle with node identifier is NodeID. NodeID
argument [in] is the remote slave node identifier. wIndex and SubIndex arguments [in] indicate which object to
be write. abortCode argument is the return value, ACOOD_SUCCESSFUL means success, else get fails, reference
acoapi error codes and SDO abort codes.
Reference acoReadSDO() and acoWriteSDO().
Example
extern HACONETWORK hNetworkObj;
void OnWriteSDOResult(
HACONODEOBJ hNode, UNS8 NodeId, UNS16 wIndex, UNS8 bSubIndex, UNS32 abortCode)
{
if (ACOOD_SUCCESSFUL == abortCode) {
printf("WriteSDOResult: succ: RemoteNode[%02x] object [%04x:%02x] \n\r" \
, NodeId, wIndex, bSubIndex);
- 72 -
} else
printf ("WriteSDOResult failed: %X", abortCode);
}
UNS8 data=255;
//*** access Object Dictionary: async method
ret = acoNetworkWriteSDO(hNetworkObj, 0x02, 0x1800, 2,
ACODT_UINT8, sizeof(data), &data, OnWriteSDOResult);
- 73 -
3. Advantech CANopen Examples
3.1. Overview
Advantech CANopen provides C#, VB.NET, VC.NET, VC and BCB examples for your reference.
The C#, VB.NET, VC.NET examples are developed by Microsoft Visual Studio 2005.
The VC examples are developed by VC6.0.
The BCB examples are developed by Borland C++ Builder 6.0
There are tow examples for each language :acoMaster and acoSlave.
acoMaster example use MasterDict-1-ok.eds as its EDS file.
acoSlave example use SlaveDict-1-ok.eds as its EDS file.
3.2. Example usage
When user installs the advantech windows CANopen package, all examples will be installed in
C:\Program Files\Advantech\Advantech CANopen by default.
Click the acoMaster to run the acoMaster example.
- 74 -
Figure 5: Master Example Main Window
Click the acoSlave to run the acoSlave example.
Figure 6: Slave Example Main Window
- 75 -
4. Advantech CANopen Network Utility
4.1. Overview
The Advantech CANopen network utility is a utility to configure CANopen network node, to control and
monitor the whole CANopen network. The main functions of Advantech CANopen Network Utility can
be described as follows.

An EDS file editor:configure network nodes, export EDS file that needed by CANopen library API
when user develop application based on CANopen library.

CANopen network manger: user can use the utility to create a CANopen network and do a simple
test, it can also to control and monitor the CANopen network.
The following picture is the main window of this utility.
Figure 7: Main frame of utility
- 76 -
4.2. Configure CANopen Network
4.2.1. Create CANopen Network
Firstly, Create the CANopen network, Click the “File->New CANopen NetWork” menu item, the utility
will display a wizard to create network, user only need to input network name, master node device,
master node id, network baud rate. These setting can also be changed after network is created.
Figure 8: Step 1 of Create Network Wizard
If user wants to set more about new network before create network, click the “Advanced Setting”
button, advanced setting dialog support create network From EDS File, and user also can set the SDO,
PDO number for master node, the setting dialog as follows.
Figure 9: Step 2 of Create Network Wizard
Click “OK” button, a new CANopen network will be created according to the user’s setting. The left
view of the utility shows the structure of the new network as follows.
- 77 -
Figure 10: CANopen Network Tree View
When create CANopen network, only the master node is create in new network, user should to add
slave node.
4.2.2. Create slave node
Select the “Slave Nodes” node, right click the mouse, a menu will display as follows.
Figure 11: Add Slave Node Menu
There are two ways to create slave node, from EDS file or create empty slave node.
When clicking the “Add Slave Node”, the following dialog will be displayed.
- 78 -
Figure 12: Add Save Node Dialog
User input the name and node id, click “OK”, and then the empty slave node will be created and add
to network.
When clicking the “Add Slave Node from EDS File”, user should give an EDS file path then the slave
node will be created according to EDS file and add to network.
4.2.3. Configure Node
After create network and add slave node, user can configure them further, for example, create new
data type, add communication parameters, PDO, SDO and so on, modify the setting, even import
another EDS file for the master node or slave node. After finishing the configuration, the network
configuration can be saved; each port configuration can export to EDS file.
4.2.4. Import EDS File
Figure 13: Import EDS File for Master Node and Slave Node
User can import EDS file to configure each CAN node. After import EDS file, the original configuration
is replace by the new EDS file.
4.2.5. Create new data type
User can define new data type and use it when adding manufacture data, select the “Data Type” tree
node of the CAN port, right click the mouse, and then click the “Create New Type” menu item.
- 79 -
Figure 14: Create New Data Type Menu
User can input the new data type name and index, the index value must be between 0x40 and
0xFFF.For example, we create a new data type named “AI” in index 0x40.
Figure 15: Create New Data Type
Click “OK” button,new data type is created.
Right click mouse and choose “Add New Variable” menu to add data member to the new data type. For
example, add AI1, AI2, AI3, AI3 variables to AI.
Figure 16: add data member to new data type
How to use the new data type will be introduced in later section.
4.2.6. Configure the communication parameters
Select the “Communication Parameters” tree node, right click the mouse and click “Add/Remove
Communication” menu item.
- 80 -
Figure 17: Add/Remove Communication Menu Item
Then a dialog displays and user can add or remove the communication parameters.
Figure 18: Add/Remove Communication Dialog
Click “OK”, the select communication parameters will be added to CANopen network, user then can to
configure them.
- 81 -
Figure 19: configure communication parameters
4.2.7. Create and configure SDO
User can add SDO server or SDO client by click “Add SDO Server” or “Add SDO Client”, and then user
need to configure the new SDO Server and SDO Client.
Figure 20: Add SDO Client and SDO Server Menu
Figure 21: Configure SDO Parameter
4.2.8. Create and configure PDO
User can add transmit PDO or receive PDO by click “Add Receive PDO” or “Add Transmit PDO” menu
- 82 -
item,and then user need to configure the new PDO to meet the user’s requirement.
Figure 22: Add PDO Menu Item
The following picture is the PDO parameters configuration window.
Figure 23: PDO Configuration
The following picture is the mapping data configuration window.
- 83 -
Figure 24: Add PDO Mapping Variable
User can remove PDO by click “Remove this PDO” menu item, and also can change PDO parameters
number by click “PDO parameter Configuration”.
Figure 25: PDO Parameter Configuration Menu Item
The following picture is the dialog to add or remove the PDO parameters.
- 84 -
Figure 26: PDO Parameter Configuration Dialog
4.2.9. Create manufacture variable
User can add manufacture data by “Add Mapping Variable” menu item. The following dialog will
display.
Figure 27: Add Manufacture Data variable
User can add variable, array and record data.
If add record, the new data type created by user can be used here.
Manufacture data’s index must be between 0x2000 to 0x5FFF, they often will be used by PDO.
- 85 -
Figure 28: Add Manufacture Data Variable
4.2.10. Save the configuration
After finished configuration, user can save the whole network by “File->Save Project” or “File Save
Project As” menu item. The saved project file can also be opened by utility for later use if need.
If user only needs to save one node setting, “Export EDS file” is the way. The EDS file is also need for
CANopen application development based on acoapi library, so user can edit and export the EDS file in
the utility for later use.
The export EDS file can be imported if needed.
Figure 33: Import and Export EDS File
- 86 -
Figure 34: Save the Network Configuration
4.3. Manger CANopen network
4.3.1. Enter run mode
Utility can enter run mode to manger the CANopen network, it control and monitor the whole CANopen
network by sending CANopen messages to slaves through Master node, that is to say, We can get
slave node state, node id, PDO data value, read and write the local or remote object dictionary.
Click “Run” menu item to enter the run mode and start the whole CANopen network after
configuration.
Figure 35: Enter Run Mode
The main window of running mode is as follows.
- 87 -
Figure 36: Run Mode Main Window
4.3.2. Monitor Node Data
Then user can select master node or slave node to monitor its data.
The following picture is the slave node monitor view. We can see its state and PDO data.
Please note that the utility can only control the network through master node, user should run slave
node application to communicate with the utility if necessary, for example to run acoSlave example in
the slave node, and then the utility can communication with slave node opened by acoSlave. Utility
can also communicate with other manufacture CAN device base on CANopen protocol.
The following picture is slave node monitor view.
- 88 -
Figure 37: Run Mode Slave Node Window
The following picture is Master node monitor view.
- 89 -
Figure 38: Run Mode Master Node Window
From above Figure, we can see left-top view of the utility show the CANopen network topology
structure, when use select one node, its node id and status will be shown as follows.
Figure 39: Node State View
The right view display the selected node PDO Mapping data value,if any data changed, this monitor
view will update the data value in time.
4.3.3. Control Network
Master Node can send message to any node in the network by “send message” function tab. The entire
node in the network (Master or slave) can read value from object dictionary by “Read Value” function
- 90 -
in second tab and write value to node object dictionary by “Write Value” function in third tab page.
The following picture is send message tab.
Figure 40: Send Message View
The following picture is read value tab. User can read the local or remote object dictionary as follows,
only input the index and sub index then click the “Read” button.
Figure 41: Read Message View
The following picture is write value tab. User can write the local or remote object dictionary as follows,
only input the index and sub index then click the “Write” button.
Figure 42: Write Message View
User can use the menu to change the remote node state.
Figure 43: Change slave node state
- 91 -
4.3.4. Exit Run Mode
Click “Network->Exit Run Mode” to exit run mode, then it will return configuration mode, user can
configure the network again.
Figure 44: Exit Run Mode
- 92 -
APPENDIX
This appendix describes all the Objects and Data types supported by Advantech CANopen stack.
Data type support list
Data Type according to Object Dictionary Data Types of CANopen DS 301 v4.02 p.80.
Data Type
Value
Comment
BOOLEAN
0x01
Boolean,1-bit
INT8
0x02
a 8-bit integer
INT16
0x03
a 16-bit integer
INT32
0x04
a 32-bit integer
UINT8
0x05
a 8-bit unsigned integer
UINT16
0x06
a 16-bit unsigned integer
UINT32
0x07
a 32-bit unsigned integer
REAL32
0x08
a 32-bit real
COB-ID support list
COB-ID according to pre-defined connection of CANopen DS 301 v4.02 p.77.
Object
COB-IDs
Index
NMT
0
-
SYNC
128(80h)
1005h
EMERGENCY
129 (81h) – 255 (FFh)
1014h
TxPDO1
385 (181h) – 511 (1FFh)
1800h
RxPDO1
513 (201h) – 639 (27Fh)
1400h
TxPDO2
641 (281h) – 767 (2FFh)
1801h
RxPDO2
769 (301h) – 895 (37Fh)
1401h
TxPDO3
897 (381h) – 1023 (3FFh)
1802h
RxPDO3
1025 (401h) – 1151 (47Fh)
1402h
TxPDO4
1153 (481h) – 1279 (4FFh)
1803h
RxPDO4
1281 (501h) – 1407 (57Fh)
1403h
SDO Server
1409 (581h) – 1535 (5FFh)
1200h
SDO Client
1537 (601h) – 1663 (67Fh)
1200h
NMT Error Control
1793 (701h) – 1919 (77Fh)
-
- 93 -
Object Support list
Object according to Overview Object Dictionary Entries for Communication of CANopen DS 301 v4.02
p.84.
Object List
Default Value
Value Range
[1000] Device Type
0
ro
[1001] Error Register
0
ro
[100C] Guard time
0
ro
[100D] Life time factor
0
ro
[1018sub0] number of entries
4
ro
[1018sub1] Vendor ID
0x251
ro
[1018sub2] Product Code
0xE2AE
ro
[1018sub3] Revision Number
0xA005
ro
[1018sub4] Serial Number
0
ro
0
rw, Read:0 –0xfe;
[1018] Identity
[1003] Pre-defined Error Field
[1003sub1] number of errors
Write:0
[1003sub1] Standard Error Field
NO
ro
[1005] SYNC COB ID
0x80
rw,0x80, 0x40000080
[1006] Communication / Cycle Period
0
rw, >1 millisecond
[1014] COB-ID EMCY
$NODEID+0x80
ro
[1016sub0] number of errors Time 1
NO
ro, 1–127
[1016sub1] To [1016sub7F]
0
rw,
0
rw
[1016] Consumer Heartbeat Time
[1017] Producer Heartbeat Time
[1200] Server SDO Parameter
[1200sub0] Number of Entries
1 SDO Server
2
ro
- 94 -
[1200sub1] COBID Client to Server
0x600 + $NODEID
ro
[1200sub2] COBID Server to Client
0x580 + $NODEID
ro
[1280h - 12FFh] Client SDO Parameter
[1280h - 12FFh sub0] number of
127 SDO Clients
3
ro
0x80000000
rw, 0x601-0x67F
0x80000000
rw, 0x581-0x5FF
No
rw, 0x1-0x7F
entries
[1280h - 12FFh sub1] COBID Client
to Server
[1280h - 12FFh sub2] COBID
Server to Client
[1280h - 12FFh sub3] NODEID of
the SDO Server
[1400-15FF] RxPDO Parameter
[1400-15FF sub0] largest sub-index
512 RxPDO
5
ro
1400h: 200h + $Node-ID,
rw,1400h: 200h +$Node-ID,
supported
[1400-15FF sub1] COB-ID used by PDO
80000200h+$Node-ID
1401h: 300h + $Node-ID,
rw, 1401h: 300h +
$Node-ID,
80000300h+$Node-ID
1402h: 400h + $Node-ID,
rw, 1402h: 400h +
$Node-ID,
80000400h+$Node-ID
1403h: 500h +$ Node-ID
rw, 1403h: 500h +
$Node-ID,
80000500h+$Node-ID
……
……
[1400-15FF sub2] transmission type
NO
rw
[1400-15FF sub3] inhibit time
0
rw
[1400-15FF sub4] compatibility entry
0
rw
[1400-15FF03sub5] event timer
0
rw
[1600-17FF] RxPDO Mapping
512 RxPDO
- 95 -
[1600-17FF sub0] number of mapped
NO
rw,1-40h
NO
rw
application objects in PDO
[1600-17FFsub1h–40h] PDO
mapping for the nth application object to
be mapped
[1800-19FF] TxPDO Parameter
[1800-19FF sub0] largest sub-index
512 TxPDO
5
ro
1800h: 180h + $Node-ID,
rw 1800h: 180h +
supported
[1800-19FF sub1] COB-ID used by
$Node-ID,
PDO
80000180h+$Node-ID
1801h: 280h + $Node-ID,
rw 1801h: 280h +
$Node-ID,
80000280h+$Node-ID
1802h: 380h + $Node-ID,
rw 1802h: 380h +
$Node-ID,
80000380h+$Node-ID
1803h: 480h + $Node-ID
rw 1803h: 480h +
$Node-ID,
80000480h+$Node-ID
……
[1800-19FF sub2] transmission type
……
NO
rw
0
rw
[1800-19FF sub4] reserved
0
rw
[1800-19FF sub5] event timer
0
rw
[1800-19FF sub3] inhibit time
[1A00-1BFF] transmit PDO mapping
512 TxPDO
[1A00-1BFF sub0]
NO
ro, 1-40h
[1A00-1BFF sub1h–40h]
NO
ro
- 96 -
Was this manual useful for you? yes no
Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Download PDF

advertisement