ArmorStart® Distributed Motor Controller USER MANUAL Bulletin 280G/281G, 284G 3 Important User Information Because of the variety of uses for the products described in this publication, those responsible for the application and use of this control equipment must satisfy themselves that all necessary steps have been taken to assure that each application and use meets all performance and safety requirements, including any applicable laws, regulations, codes and standards. The illustrations, charts, sample programs and layout examples shown in this guide are intended solely for purposes of example. Since there are many variables and requirements associated with any particular installation, Rockwell Automation does not assume responsibility or liability (to include intellectual property liability) for actual use based upon the examples shown in this publication. Rockwell Automation publication SGI-1.1, Safety Guidelines for the Application, Installation and Maintenance of Solid-State Control (available from your local Allen-Bradley sales office), describes some important differences between solid-state equipment and electromechanical devices that should be taken into consideration when applying products such as those described in this publication. Reproduction of the contents of this copyrighted publication, in whole or part, without written permission of Rockwell Automation, is prohibited. Throughout this manual we use notes to make you aware of safety considerations: ATTENTION ! Identifies information about practices or circumstances that can lead to personal injury or death, property damage or economic loss Attention statements help you to: • identify a hazard • avoid a hazard • recognize the consequences IMPORTANT Identifies information that is critical for successful application and understanding of the product. Trademark List ArmorStart and ControlLogix are registered trademarks of Rockwell Automation, Inc. ArmorConnect, DeviceLogix, PLC, RSNetWorx, RSLogix 5000, and SLC are trademarks of Rockwell Automation, Inc. DeviceNet and the DeviceNet logo are trademarks of the Open Device Vendors Association (ODVA). ControlNet is a trademark of ControlNet International, LTD. 4 European Communities (EC) Directive Compliance If this product has the CE mark it is approved for installation within the European Union and EEA regions. It has been designed and tested to meet the following directives. Low Voltage and EMC Directives This product is tested to meet Council Directive 73/23/EEC Low Voltage and 89/336/EEC and Council Directive 89/336/EC Electromagnetic Compatibility (EMC) by applying the following standard(s): • Bulletin 280/281: EN 60947-4-1 — Low-voltage switchgear and controlgear — Part 4-1:Contactors and motor-starters — Electromechanical contactors and motor-starters. • Bulletin 283: EN 60947-4-2 — Low-voltage switchgear and controlgear — Part 4-2: AC semiconductor motor controllers and starters. • Bulletin 284: EN 61800-3 — Adjustable speed electronic power drive systems — Part 3: EMC product standard including specific test methods. This product is intended for use in an industrial environment. Table of Contents Table of Contents Chapter 1 Product Overview Introduction ....................................................................................1-1 Description .....................................................................................1-1 Safety ArmorStart............................................................................1-1 Operation .......................................................................................1-2 Mode of Operation ..........................................................................1-2 Bulletin 280G/281G — Full-Voltage Start ................................1-2 Bulletin 284G — Sensorless Vector Control..............................1-2 Description of Features ..................................................................1-3 Overload Protection .................................................................1-3 LED Status Indication ..............................................................1-5 Fault Diagnostics .....................................................................1-5 Inputs ......................................................................................1-6 Gland Plate Entrance ...............................................................1-6 ArmorStart with DeviceNet Network Capabilities ......................1-6 DeviceLogix™ ........................................................................1-6 Peer to Peer Communications (ZIP) ..........................................1-6 EMI Filter..................................................................................1-6 Dynamic Brake Resistor ...........................................................1-7 Control Brake Contactor ..........................................................1-7 Chapter 2 Installation and Wiring Receiving .......................................................................................2-1 Unpacking ......................................................................................2-1 Inspecting ......................................................................................2-1 Storing ...........................................................................................2-1 General Precautions .......................................................................2-2 Precautions for Bulletin 280G/281G Applications .............................2-2 Precautions for Bulletin 284G Applications ......................................2-2 Dimensions ....................................................................................2-4 Bulletin 280G/281G ..................................................................2-4 Bulletin 284G ...........................................................................2-6 Bulletin 1000............................................................................2-8 Wiring ..........................................................................................2-13 Power, Control, Safety Monitor Inputs, and Ground Wiring ......................................................................2-13 Terminal Designations ..................................................................2-14 Dimensions for Safety Products.....................................................2-15 Bulletin 280G Safety Product ..................................................2-15 Bulletin 281G Safety Product ..................................................2-16 Bulletin 284G Safety Product ..................................................2-17 Bulletin 1000 Safety Product ..................................................2-19 Safety Terminal Designations .......................................................2-26 ArmorConnect Power Media .........................................................2-29 Description ............................................................................2-29 ArmorStart with ArmorConnect Connectivity ..........................2-30 Terminal Designations............................................................2-30 ArmorStart Safety with ArmorConnect Connectivity ...............2-31 Terminal Designations............................................................2-31 ArmorConnect Cable Ratings .................................................2-31 Branch Circuit Protection Requirements for ArmorConnect Three-Phase Power Media .............................2-32 Group Motor Installations for USA and Canada Markets ................2-32 i ii Table of Contents Wiring and Workmanship Guidelines ............................................2-32 DeviceNet Network Installation .....................................................2-33 Other DeviceNet System Design Considerations ....................2-34 Electromagnetic Compatibility (EMC) ............................................2-35 General Notes (Bulletin 284G only) ........................................2-35 Grounding .............................................................................2-35 Wiring ...................................................................................2-35 Chapter 3 Bulletin 280G/281G Programmable Parameters Chapter 4 Bulletin 284G Programmable Parameters for Sensorless Vector Controllers Chapter 5 DeviceNet™ Commissioning Introduction ....................................................................................3-1 Parameter Programming .........................................................3-1 Parameter Group Listing .................................................................3-2 DeviceLogix™ Group .....................................................................3-2 DeviceNet Group ............................................................................3-7 Starter Protection Group ...............................................................3-10 User I/O ........................................................................................3-14 Misc. Group .................................................................................3-14 ZIP Parameters ............................................................................3-16 Starter Display .............................................................................3-23 Starter Setup ................................................................................3-24 Introduction ....................................................................................4-1 Parameter Programming .........................................................4-1 Parameter Group Listing .................................................................4-2 DeviceLogix™ Group .....................................................................4-3 DeviceNet Group ............................................................................4-8 Starter Protection Group ...............................................................4-12 User I/O ........................................................................................4-15 Miscellaneous Group ....................................................................4-16 Drive DeviceNet Group ..................................................................4-18 Display Group................................................................................4-20 Basic Program Group ....................................................................4-25 Advanced Program Group..............................................................4-28 Clear Type 1 Fault and Restart ......................................................4-42 Clear an Overvoltage, Undervoltage, or Heatsink OvrTmp Fault without Restarting the Drive ..........................................................4-42 How Step Logic Works .................................................................4-55 Step Logic Settings .......................................................................4-55 Establishing a DeviceNet Node Address ..........................................5-1 Node Commissioning using Hardware ............................................5-1 Node Commissioning using Software .............................................5-2 Building and Registering an EDS File ..............................................5-3 Table of Contents iii Using the Node Commissioning Tool Inside RSNetWorx for DeviceNet ................................................................................. 5-5 System Configuration ................................................................... 5-6 Using Automap feature with default Input and Output (I/O) Assemblies (Bulletin 280G/281G).................................................... 5-7 Default Input and Output (I/O) Assembly Formats (Bulletin 280G/281G) ...................................................................... 5-7 Setting the Motor FLA and Overload Trip Class (Bulletin 280G/281G) ...................................................................... 5-8 Using Automap feature with default Input and Output (I/O) Assemblies (Bulletin 284G) ............................................................. 5-9 Default Input and Output (I/O) Assembly Formats (Bulletin 284G) .... 5-9 Setting the Motor FLA (Bulletin 284G) ........................................... 5-10 193-DCNT Product Overview ........................................................ 5-11 User Manual .......................................................................... 5-11 Bill of Material ....................................................................... 5-11 Accessories ........................................................................... 5-11 Tools Menu............................................................................ 5-12 Node Comissioning................................................................ 5-12 Chapter 6 Explicit Messaging on DeviceNet™ Logic Controller Application Example with Explicit Messaging ..................................................................................... 6-1 Programming the 1747-SLC .......................................................... 6-2 I/O Mapping ............................................................................ 6-2 Explicit Messaging with SLC .......................................................... 6-3 Setting up the Data File ................................................................. 6-4 Sequence of Events ....................................................................... 6-5 Programming the 1756-ControlLogix ............................................. 6-8 I/O Mapping ............................................................................ 6-8 Explicit Messaging with ControlLogix ............................................. 6-9 Setting Up the MSG Instruction ...................................................... 6-9 Chapter 7 Using DeviceLogix™ DeviceLogix Programming ............................................................. 7-1 DeviceLogix Programming Example ............................................... 7-2 ArmorStart Fault Bit, Status Bit, Outputs and Produced Network Bits in the DeviceLogix Ladder Editor ....................................................... 7-5 Chapter 8 ArmorStart® ZIP Configuration Overview ....................................................................................... 8-1 ZIP Parameter Overview ................................................................ 8-1 Data Production ............................................................................. 8-3 Data Consumption ......................................................................... 8-3 Mapping Consumed Data to the DeviceLogix Data Table. ............... 8-3 Finding ZIP bits in Device Logix Editor........................................... 8-12 iv Table of Contents Chapter 9 Diagnostics Overview ........................................................................................9-1 Protection Programming ..........................................................9-1 Fault Display ..................................................................................9-1 Clear Fault .....................................................................................9-2 Fault Codes ....................................................................................9-2 Fault Definitions .............................................................................9-3 Short Circuit ............................................................................9-3 Overload Trip ...........................................................................9-3 Phase Loss ..............................................................................9-3 Phase Short..............................................................................9-3 Ground Fault ............................................................................9-3 Stall .........................................................................................9-3 Control Power ..........................................................................9-3 I/O Fault ..................................................................................9-3 Over Temperature ...................................................................9-3 Phase Imbalance .....................................................................9-3 Over Current.............................................................................9-4 DeviceNet™ Power Loss .........................................................9-4 Internal Communication Fault...................................................9-4 DC Bus Fault ............................................................................9-4 EEPROM Fault .........................................................................9-4 Hardware Fault ........................................................................9-4 Restart Retries .........................................................................9-4 Miscellaneous Faults ................................................................9-4 Chapter 10 Troubleshooting Introduction ..................................................................................10-1 Bulletin 280G/281G Troubleshooting .............................................10-2 Bulletin 284G Troubleshooting.......................................................10-5 Fault Definitions .....................................................................10-5 Operation and Troubleshooting of the DB1- Dynamic Brake....10-7 Internal Drive Faults .............................................................10-10 DeviceNet Troubleshooting Procedures ......................................10-14 Control Module Replacement (Bulletin 280G/281G) .....................10-15 Control Module Replacement (Bulletin 284G)...............................10-16 Base Module Replacement (Bulletin 280G/281G).........................10-17 Base Module Replacement (Bulletin 284G) ..................................10-19 Appendix A Specifications Bulletin 280G/281G Specifications ..................................................A-1 Bulletin 284G Specifications............................................................A-6 ArmorConnect™ Three-Phase Power Media ................................A-11 Patchcords ............................................................................A-11 Power Tees & Reducer ..........................................................A-12 Power Receptacles ................................................................A-13 Appendix B Bulletin 280G/281G CIP Information Electronic Data Sheets ...................................................................B-1 DOL Type Product Codes and Name Strings ...................................B-1 DOL Reversing Type Product Codes and Name String .....................B-2 DeviceNet Objects ..........................................................................B-2 Table of Contents Identity Object — CLASS CODE 0x0001 .........................................B-3 Identity Objects ..............................................................................B-3 Message Router — CLASS CODE 0x0002 ......................................B-3 DeviceNet Object — CLASS CODE 0x0003 .....................................B-4 Assembly Object — CLASS CODE 0x0004 .....................................B-5 Custom Parameter Based “Word-wise” I/O Assemblies ..........................................................B-5 “Word-wise” Bit-Packed Assemblies ..............................................B-6 Standard Distributed Motor Controller I/O Assemblies .....................B-7 Standard Distributed Motor Controller Output (Consumed) Assemblies ..........................................................B-7 Standard Distributed Motor Controller Input (Produced) Assemblies ............................................................B-8 Connection Object — CLASS CODE 0x0005 .................................B-10 Discrete Input Point Object — CLASS CODE 0x0008 ...................B-14 Discrete Output Point Object — CLASS CODE 0x0009 ..................B-15 Discrete Output Point Object Special Requirements ......................B-16 DOP Instances 1 and 2 Special Behavior ...............................B-16 Parameter Object — CLASS CODE 0x000F ..................................B-18 Parameter Group Object — CLASS CODE 0x0010 ........................B-19 Discrete Input Group Object — CLASS CODE 0x001D ..................B-20 Discrete Output Group Object — CLASS CODE 0x001E ................B-21 Control Supervisor Object -CLASS CODE 0x0029 ..........................B-22 Acknowledge Handler Object — CLASS CODE 0x002b .................B-23 Overload Object — CLASS CODE 0x002c .....................................B-24 DeviceNet Interface Object -CLASS CODE 0x00B4 ........................B-25 Appendix C Bulletin 284G CIP Information Electronic Data Sheets ...................................................................C-1 VFD Type Product Codes and Name Strings ....................................C-1 DeviceNet Objects ..........................................................................C-2 Identity Object — CLASS CODE 0x0001 .........................................C-2 Identity Objects ..............................................................................C-3 Message Router — CLASS CODE 0x0002 ......................................C-3 DeviceNet Object — CLASS CODE 0x0003 .....................................C-4 Assembly Object — CLASS CODE 0x0004 .....................................C-5 Custom Parameter Based “Word-wise” I/O Assemblies ..........................................................C-6 “Word-wise” Bit-Packed Assemblies ..............................................C-6 Standard Distributed Motor Controller I/O Assemblies .....................C-8 Standard Distributed Motor Controller Output (Consumed) Assemblies ..........................................................C-8 Standard Distributed Motor Controller Input (Produced) Assemblies ............................................................C-9 Inverter Type Distributed Motor Controller Input (Produced) Assemblies ...........................................................C-10 PowerFlex Native Assemblies .................................................C-11 Connection Object — CLASS CODE 0x0005 .................................C-13 Discrete Input Point Object — CLASS CODE 0x0008 ...................C-18 Discrete Output Point Object — CLASS CODE 0x0009 ..................C-19 v vi Table of Contents Discrete Output Point Object Special Requirements ......................C-20 DOP Instances 3 and 4 Special Behavior ...............................C-20 DOP Instances 1, 2, 9, and 10 Special Behavior ....................C-22 Parameter Object — CLASS CODE 0x000F ..................................C-24 Parameter Group Object — CLASS CODE 0x0010 ........................C-25 Discrete Input Group Object — CLASS CODE 0x001D ..................C-26 Discrete Output Group Object — CLASS CODE 0x001E ................C-27 Control Supervisor Object -CLASS CODE 0x0029 ..........................C-28 Acknowledge Handler Object — CLASS CODE 0x002b .................C-29 DeviceNet Interface Object -CLASS CODE 0x00B4 ........................C-30 Appendix D Group Motor Installations Application of ArmorStart® Controllers in Group Installation ...........D-1 Appendix E Accessories IP67 Dynamic Brake Resistor ..........................................................E-3 Appendix F Safety I/O Module and TÜV Requirements ArmorStart Safety-Related Parts...................................................... F-1 ArmorBlock Guard I/O Modules ....................................................... F-2 Specifications .......................................................................... F-2 ArmorBlock Guard I/O Recommended Compatible Cables and Connectors.................................................................... F-3 Safety-Related Specifications.......................................................... F-6 Maintenance and Internal Part Replacement.................................... F-6 Troubleshooting .............................................................................. F-7 Appendix G Renewal Parts Renewal Parts.................................................................................G-1 Appendix H PID Setup Exclusive Control.............................................................................H-1 Trim Control ....................................................................................H-2 PID Reference and Feedback...........................................................H-3 PID Deadband .................................................................................H-3 PID Preload .....................................................................................H-4 PID Limits .......................................................................................H-4 PID Gains ........................................................................................H-4 Guidelines For Adjusting PID Gains ..................................................H-5 Appendix I Step Logic, Basic Logic and Timer/ Counter Functions Step Logic Using Timed Steps .......................................................... I-2 Step Logic Using Basic Logic Functions............................................ I-3 Timer Function................................................................................. I-4 Counter Function.............................................................................. I-4 Step Logic Parameters ..................................................................... I-5 Chapter 1 Product Overview Introduction This chapter provides a brief overview of the features and functionality of the Bulletin 280G/281G and 284G ArmorStart® Distributed Motor Controllers. Description The ArmorStart Distributed Motor Controllers are integrated, preengineered, starters with Bulletin 280G/281G for full-voltage and reversing applications and Bulletin 284G for variable frequency AC drives applications. The ArmorStart offers a robust IP67/NEMA Type 4 enclosure design, which is suitable for water wash down environments. The modular “plug and play” design offers simplicity in wiring the installation. The quick disconnects for the I/O, communications, and motor connections reduce the wiring time and eliminate wiring errors. The ArmorStart offers as standard, six DC inputs to be used with sensors for monitoring and controlling the application process. The ArmorStart’s LED status indication and built-in diagnostics capabilities allow ease of maintenance and troubleshooting. The ArmorStart Distributed Motor Controller offers short circuit protection per UL508 and IEC 60947. The ArmorStart is rated for local-disconnect service by incorporating the Bulletin 140 Motor Protector as the local-disconnect, eliminating the need for additional components. The ArmorStart Distributed Motor Controllers are suitable for group motor installations. Safety ArmorStart The safety version of the ArmorStart provides a safety solution integrated into DeviceNet Safety installations. The Bulletin 280/281/ 284 Safety ArmorStart achieves Category 4 functionality by using redundant contactors. The Safety ArmorStart offers a quick connects via the gland plate to the 1732DS-IB8XOBV4 safety I/O module. The Bulletin 1732DS Safety I/O inputs will monitor the status of the safety rated contactors inside the ArmorStart. The Bulletin 1732DS Safety I/O outputs to provide 24V DC power for control power to the ArmorStart. Note: The Bulletin 280/281/284 Safety ArmorStart is suitable for safety applications up to Safety Category 4PL e (TÜV assessment per ISO 13849-1:2008). TÜV compliance letter is available upon request. Note: For additional information regarding the 1732DS-IB8XOBV4 safety I/O module, see publication 1791DS-UM001*-EN-P. 1-2 Product Overview Operation The ArmorStart Distributed Motor Controllers can operate threephase squirrel-cage induction motors as follows: Bulletin 280G/281G: up to 10 Hp (7.5 kW) @ 460V AC, 50/60 Hz. Bulletin 284G: up to 5 Hp (3.0 kW) @ 460V AC. Bulletin 1000: 7.5 Hp (5.5 kW), 10 Hp (7.5 kW) and 15 Hp (11 kW) @ 460V AC, 50/60 Hz. The ArmorStart Distributed Motor Controller will accept a control power input of 120V AC. Mode of Operation Bulletin 280G/281G Full-Voltage Start This method is used in applications requiring across-the-line starting, in which full inrush current and locked-rotor torque are realized. The ArmorStart Bulletin 280G offers full-voltage starting and the Bulletin 281G offers full-voltage starting for reversing applications. 100% Percent Voltage Time (seconds) Bulletin 284G Sensorless Vector Control • Sensorless Vector Control provides exceptional speed regulation and very high levels of torque across the entire speed range of the drive • The Autotune feature allows the Bulletin 284G ArmorStart Distributed Motor Controller to adapt to individual motor characteristics. • To select this method of operation, select V for the Mode of Operation listed in the catalog structure. See Publication 280-SG001*. 1-3 Product Overview Description of Features Overload Protection The ArmorStart Distributed Motor Controller incorporates, as standard, electronic motor overload protection. This overload protection is accomplished electronically with an I2t algorithm. The ArmorStart’s overload protection is programmable via the communication network, providing the user with flexibility. The Bulletin 280G/281G overload trip class can be selected for class 10, 15, 20 protection. Ambient insensitivity is inherent in the electronic design of the overload. Figure 1.1 Overload Trip Curves ClassClass 10 Overload Curves 10 Class 15 Overload Class 15 Curves 10000 Cold 100 Hot 10 Approximate Trip Time (sec) 1000 1 Cold 100 Hot 1 0 100 200 300 400 500 600 700 0 % of Full Load Current Multiples 100 200 300 400 500 600 700 Multiples%for of Full Load Current Class 20 Overload Curves Class 20 10000 Approximate Trip Time (sec) Approximate Trip Time (sec) 10000 Cold 100 Hot 1 0 100 200 300 400 500 600 % of Full Load Current Multiples 700 Product Overview The Bulletin 284G ArmorStart Distributed Motor Controller incorporates, as standard, electronic motor overload protection. This overload protection is accomplished electronically with an I2t algorithm. The ArmorStart’s overload protection is programmable via the communication network providing the user with flexibility. Programming the Motor OL Current parameter provides class 10 overload protection for the Bulletin 284G Distributed Motor Controller. Ambient insensitivity is inherent in the electronic design of the overload. % of P132 (Motor NP Hertz) % of P133 (Motor OL Current) % of P132 (Motor NP Hertz) % of P133 (Motor OL Current) Figure 1.2 Overload Trip Curves % of P133 (Motor OL Current) 1-4 % of P132 (Motor NP Hertz) 1-5 Product Overview LED Status Indication The LED Status Indication provides 4 status LEDs and a Reset button. The LEDs provide status indication for the following: • POWER LED The LED is illuminated solid green when control power is present and with the proper polarity • RUN LED This LED is illuminated solid green when a start command and control power are present • NETWORK LED This bi-color (red/green) LED indicates the status of the communication link • FAULT LED Indicates Controller Fault (Trip) condition The “Reset Button” acts as a local trip reset. Figure 1.3 Status Indication and Reset Fault Diagnostics Fault diagnostics capabilities built in the ArmorStart Distributed Motor Controller help you pinpoint a problem for easy troubleshooting and quick re-starting. Fault Indication Available on Bulletin: 280G/281G 284G Fault Indication Available on Bulletin: 280G/281G 284G • Short Circuit X X • Phase Imbalance X • Overload X X • Miscellaneous Fault X • Phase Loss X X • Brake Fuse Detection X • Control Power Loss X X • Internal Comm. Fault X • Control Power Fuse Detection X X • DC Bus Fault X • I/O Fault X X • Ground Fault X • Over Temperature X X • Overcurrent X • DeviceNet™ Power Loss X X • Restart Retries X • EEprom Fault X X • Stall X • Hardware Fault X X • Phase Short X 1-6 Product Overview Inputs The inputs are single-keyed (2 inputs per connector), which are sourced from DeviceNet power (24V DC), with LED status indication. Gland Plate Entrance The ArmorStart product offers connectivity to the ArmorConnect™ power media. Receptacles are provided for connectivity to both threephase and control power media. ArmorStart with DeviceNet Network Capabilities The ArmorStart Distributed Motor Controller delivers advanced capabilities to access parameter settings and provides fault diagnostics, and remote start-stop control. DeviceNet is the communication protocol, provided with the ArmorStart Bulletin 280G/281G or 284G Distributed Motor Controller. DeviceLogix™ DeviceLogix is a stand-alone Boolean program that resides within the ArmorStart Distributed Motor Controller. DeviceLogix is programmed using Boolean math operations, such as, AND, OR, NOT, Timers, Counters, and Latches. DeviceLogix can run as a standalone application, independent of the network. However, 24V DC must be supplied at the DeviceNet connector to power the inputs. Peer to Peer Communications (ZIP) The zone control capabilities of ArmorStart Distributed Motor Controllers is ideal for large horsepower (0.5…15 Hp) motored conveyors. The ArmorStart Distributed Motor Controllers have builtin DeviceNet communications, DeviceLogix technology, and the added Zone Interlocking Parameters (ZIP) which allow one ArmorStart to receive data directly, from up to four other DeviceNet nodes, without going through a network scanner. These direct communications between conveyor zones are beneficial in a merge, diverter, or accumulation conveyor application. EMI Filter (Bulletin 284G only) The EMI Filter is required if the Bulletin 284G ArmorStart Distributed Motor Controller must be CE-compliant. A shielded 4-conductor patchcord or cordset no longer than 14 meters, must be used to comply with the CE requirement. Product Overview 1-7 Dynamic Brake Resistor (Bulletin 284G only) The IP67 Dynamic Brake Resistor plug and play design offers simplicity in writing and installation. The factory installed option of DB1 must be selected in order to have the quick disconnect connectivity. The cable length of the IP67 Dynamic Brake Resistor is available in two lengths, 0.5 meter and 1 meter. See Appendix G, Accessories, for available IP67 Dynamic Brake Resistors. Note: The IP67 Dynamic Brake Resistor is used only with the -DB1 factory-installed option. Control Brake Contactor An internal contactor is used to switch the electromechanical motor brake On/Off. The motor brake is powered from the control voltage circuit. 1-8 Notes: Product Overview Chapter 2 Installation and Wiring Receiving It is the responsibility of the user to thoroughly inspect the equipment before accepting the shipment from the freight company. Check the item(s) received against the purchase order. If any items are damaged, it is the responsibility of the user not to accept delivery until the freight agent has noted the damage on the freight bill. Should any concealed damage be found during unpacking, it is again the responsibility of the user to notify the freight agent. The shipping container must be left intact and the freight agent should be requested to make a visual inspection of the equipment. Unpacking Remove all packing material, wedges, or braces from within and around the starter. Remove all packing material from device(s). Inspecting After unpacking, check the nameplate catalog number(s) against the purchase order. Storing The controller should remain in its shipping container prior to installation. If the equipment is not to be used for a period of time, it must be stored according to the following instructions in order to maintain warranty coverage. • Store in a clean, dry location. • Store within an ambient temperature range of –25…+85 °C (–13…+185 °F). • Store within a relative humidity range of 0…95%, noncondensing. • Do not store equipment where it could be exposed to a corrosive atmosphere. • Do not store equipment in a construction area. 2-2 Installation and Wiring General Precautions In addition to the precautions listed throughout this manual, the following statements, which are general to the system, must be read and understood. ATTENTION ! ATTENTION ! ATTENTION ! The controller contains ESD (electrostatic discharge)-sensitive parts and assemblies. Static control precautions are required when installing, testing, servicing, or repairing the assembly. Component damage may result if ESD control procedures are not followed. If you are not familiar with static control procedures, refer to Publication 8000-4.5.2, Guarding against Electrostatic Discharge, or any other applicable ESD protection handbooks. An incorrectly applied or installed controller can damage components or reduce product life. Wiring or application errors, such as undersizing the motor, incorrect or inadequate AC supply, or excessive ambient temperatures, may result in malfunction of the system. Only personnel familiar with the controller and associated machinery should plan or implement the installation, startup, and subsequent maintenance of the system. Failure to do this may result in personal injury and/or equipment damage. Precautions for Bulletin 280G/281G Applications ATTENTION ! ATTENTION ! To prevent electrical shock, open disconnect prior to connecting and disconnecting cables. Risk of shock - environment rating may not be maintained with open receptacles. Only qualified personnel familiar with adjustable frequency AC drives and associated machinery should plan or implement the installation, startup, and subsequent maintenance of the system. Failure to do this may result in personal injury and/or equipment damage. Installation and Wiring 2-3 Precautions for Bulletin 284G Applications ATTENTION ! ATTENTION ! The drive contains high voltage capacitors which take time to discharge after removal of mains supply. Before working on drive, ensure isolation of mains supply from line inputs (R, S, T [L1, L2, L3]). Wait three minutes for capacitors to discharge to safe voltage levels. Failure to do so may result in personal injury or death. Darkened display LEDs are not an indication that capacitors have discharged to safe voltage levels. Risk of shock-environment rating may not be maintained with open receptacles. Only qualified personnel familiar with adjustable frequency AC drives and associated machinery should plan or implement the installation, startup, and subsequent maintenance of the system. Failure to do this may result in personal injury and/or equipment damage. 2-4 Installation and Wiring Dimensions for Bulletin 280G/281G Dimensions are shown in millimeters (inches). Dimensions are not intended to be used for manufacturing purposes. All dimensions are subject to change. Figure 2.1 Dimensions for IP67/NEMA Type 4 with ArmorConnect Connectivity Installation and Wiring 2-5 Figure 2.2 Bulletin 280G/281G ArmorStart® with DeviceNet™ Communication Protocol Local Disconnect LED Status Indication 6 Inputs (Micro/M12) DeviceNet Connection (Mini/M18) Control Power Receptacle Ground Terminal 3-Phase Power Receptacle Motor Connection Control Brake 2-6 Installation and Wiring Dimensions for Bulletin 284G Dimensions are shown in millimeters (inches). Dimensions are not intended to be used for manufacturing purposes. All dimensions are subject to change. Figure 2.3 Dimensions for 2 Hp (1.5 kW) and below @ 460V AC, IP67/NEMA Type 4 with ArmorConnect connectivity Installation and Wiring Dimensions for Bulletin 284G, Continued 2-7 Dimensions are shown in millimeters (inches). Dimensions are not intended to be used for manufacturing purposes. All dimensions are subject to change. Figure 2.4 Dimensions for 3 Hp (2.2 kW) and above @ 460V AC, IP67/NEMA Type 4 with ArmorConnect connectivity 2-8 Installation and Wiring Dimensions for Bulletin 1000 Dimensions are shown in millimeters (inches). Dimensions are not intended to be used for manufacturing purposes. All dimensions are subject to change. Figure 2.5 Dimensions for 7.5 Hp (5.5 kW) and 10 Hp (7.5 kW) @ 460V AC, IP67/NEMA Type 4 with ArmorConnect Connectivity Installation and Wiring Dimensions for Bulletin 1000, Continued 2-9 Dimensions are shown in millimeters (inches). Dimensions are not intended to be used for manufacturing purposes. All dimensions are subject to change. Figure 2.6 Dimensions for 15 Hp (11 kW) @ 460V AC, IP67/NEMA Type 4 with ArmorConnect Connectivity 2-10 Installation and Wiring Figure 2.7 Bulletin 284G ArmorStart Local Disconnect LED Status Indication 6 Inputs (Micro/M12) Control Brake Connector DeviceNet Connection (Mini/M18) Control Power Receptacle Ground Terminal 3-Phase Receptacle Dynamic Brake Connector Motor Connector Installation and Wiring Figure 2.8 Bulletin 1000 ArmorStart 2-11 2-12 Installation and Wiring Figure 2.9 Bulletin 1000 ArmorStart Installation and Wiring Wiring 2-13 Power, Control, and Ground Wiring Table 2.1 provides the power, control, safety inputs, and ground wire capacities, and the tightening torque requirements. The power, control, ground, and safety monitor terminals will accept a maximum of two wires per terminal. Table 2.1 Power, Control, Safety Input, Ground Wire Size, and Torque Specifications Terminals Wire Size Torque Wire Strip Length Power and Ground Primary/Secondary Terminal: 1.5…4.0 mm2 (#16 …#10 AWG) Primary Terminal: 10.8 lb.-in. (1.2 N•m) Secondary Terminal: 4.5 lb.-in (0.5 N•m) 0.35 in. (9 mm) Control and Safety Inputs 1.0 mm2…4.0 mm2 (#18…#10 AWG) 6.2 lb.-in (0.7 N•m) 0.35 in. (9 mm) 2-14 Installation and Wiring Terminal Designations for Bulletins 280G, 281G, and 284G As shown in the next figure, the ArmorStart Distributed Motor Controller contains terminals for power, control, and ground wiring. Access can be gained by removing the terminal access cover plate. Figure 2.10 ArmorStart Power, Control and Terminals Table 2.2 Power, Control, and Ground Terminal Designations Terminal Designations No. of Poles Description A1 (+) 2 Control Power Input A2 (-) 2 Control Power Common PE 2 Ground 1/L1 2 Line Power Phase A 3/L3 2 Line Power Phase B 5/L5 2 Line Power Phase C Installation and Wiring Dimensions for Bulletin 280G Safety Product 2-15 Dimensions are shown in millimeters (inches). Dimensions are not intended to be used for manufacturing purposes. All dimensions are subject to change. Figure 2.11 Dimensions for Bulletin 280G Safety Product 2-16 Installation and Wiring Dimensions for Bulletin 281G Safety Product Dimensions are shown in millimeters (inches). Dimensions are not intended to be used for manufacturing purposes. All dimensions are subject to change. Figure 2.12 Dimensions for Bulletin 281G Safety Product Installation and Wiring Dimensions for Bulletin 284G Safety Product 2-17 Dimensions are shown in millimeters (inches). Dimensions are not intended to be used for manufacturing purposes. All dimensions are subject to change. Figure 2.13 Dimensions for 2 Hp (1.5 kW) and below @ 460V AC, IP67/NEMA Type 4 with ArmorConnect connectivity 2-18 Installation and Wiring Dimensions for Bulletin 284G Safety Product, Continued Dimensions are shown in millimeters (inches). Dimensions are not intended to be used for manufacturing purposes. All dimensions are subject to change. Figure 2.14 Dimensions for 3 Hp (2.2 kW) and 5 Hp (3.0 kW) and below @ 460V AC, IP67/NEMA Type 4 with ArmorConnect connectivity Installation and Wiring Dimensions for Bulletin 1000 Safety Product 2-19 Dimensions are shown in millimeters (inches). Dimensions are not intended to be used for manufacturing purposes. All dimensions are subject to change. Figure 2.15 Dimensions for 7.5 Hp (5.5 kW) and 10 Hp (7.5 kW) @ 460V AC, IP67/NEMA Type 4 with ArmorConnect Connectivity 2-20 Installation and Wiring Dimensions for Bulletin 1000 Safety Product, Continued Dimensions are shown in millimeters (inches). Dimensions are not intended to be used for manufacturing purposes. All dimensions are subject to change. Figure 2.16 Dimensions for 15 Hp @ 460V AC, IP67/NEMA Type 4 with ArmorConnect Connectivity Installation and Wiring 2-21 Figure 2.17 Bulletin 280G Safety ArmorStart Local Disconnect LED Status Indication 6 Inputs (Micro/M12) DeviceNet Connection (Mini/M18) A1/A2 SM Control Power Receptacle 3-Phase Power Receptacle Motor Connection Control Brake 2-22 Installation and Wiring Figure 2.18 Bulletin 281G Safety ArmorStart Local Disconnect LED Status Indication 6 Inputs (Micro/M12) DeviceNet Connection (Mini/M18) Control Brake SM A1/A2 Control Power 3-Phase Power Receptacle Motor Connection Installation and Wiring 2-23 Figure 2.19 Bulletin 284G Safety ArmorStart Local Disconnect LED Status Indication 6 Inputs (Micro/M12) DeviceNet Connection (Mini/M18) Control Brake A1/A2 SM Control Power Motor Connection 3-Phase Power Receptacle Dynamic Brake 2-24 Installation and Wiring Figure 2.20 Bulletin 1000 Safety ArmorStart Installation and Wiring Figure 2.21 Bulletin 1000 ArmorStart 2-25 2-26 Installation and Wiring Safety Terminal Designations As shown in the next figure, the ArmorStart Distributed Motor Controller contains terminals for power, safety I/O inputs, control, and ground wiring. Access can be gained by removing the terminal access cover plate. Figure 2.22 Bulletin 280G ArmorStart Safety Power, Control and Terminals Table 2.3 Power, Control, Safety Monitor, and Ground Terminal Designations Terminal Designations No. of Poles Description SM1 2 Safety I/O Input SM2 2 Safety I/O Input A1 (+) 2 Control Power Input A2 (-) 2 Control Power Common PE 2 Ground 1/L1 2 Line Power Phase A 3/L3 2 Line Power Phase B 5/L5 2 Line Power Phase C Installation and Wiring Safety Terminal Designations, Continued 2-27 As shown in the next figure, the ArmorStart Distributed Motor Controller contains terminals for power, safety I/O inputs, control, and ground wiring. Access can be gained by removing the terminal access cover plate. Figure 2.23 Bulletin 281G ArmorStart Safety Power, Control and Terminals Table 2.4 Power, Control, Safety Monitor, and Ground Terminal Designations Terminal Designations No. of Poles Description SM1 2 Safety I/O Input SM2 2 Safety I/O Input A1 (+) 2 Control Power Input A2 (-) 2 Control Power Common PE 2 Ground 1/L1 2 Line Power Phase A 3/L3 2 Line Power Phase B 5/L5 2 Line Power Phase C 2-28 Installation and Wiring Safety Terminal Designations, Continued As shown in the next figure, the ArmorStart Distributed Motor Controller contains terminals for power, safety I/O inputs, control, and ground wiring. Access can be gained by removing the terminal access cover plate. Figure 2.24 ArmorStart Safety 2 Hp Power, Control and Terminals Table 2.5 Power, Control, Safety Monitor, and Ground Terminal Designations Terminal Designations No. of Poles Description SM1 2 Safety I/O Input SM2 2 Safety I/O Input A1 (+) 2 Control Power Input A2 (-) 2 Control Power Common PE 2 Ground 1/L1 2 Line Power Phase A 3/L3 2 Line Power Phase B 5/L5 2 Line Power Phase C Installation and Wiring ArmorConnect Power Media 2-29 Description The ArmorConnect power media offers both three-phase and control power cable system of cord sets, patch cords, receptacles, tees, reducers and accessories to be utilized with the ArmorStart Distributed Motor Controller. These cable system components allow quick connection of ArmorStart Distributed Motor Controllers, there by reducing installation time. They provide for repeatable, reliable connection of the three-phase and control power to the ArmorStart Distributed Motor Controller and motor by providing a plug-and-play environment that also avoids system mis-wiring. When specifying power media for use with the ArmorStart Distributed Motor Controllers (Bulletin 280G/281G and 284G) use only the Bulletin 280 ArmorConnect power media. Figure 2.25 Three-Phase Power System Overview Enclosure PLC Bulletin 1492FB Branch Circuit Protective Device Bulletin 1606 Power Supply 1606-XLSDNET4 DeviceNet Power Supply Bulletin 280/281 ArmorStart Bulletin 280/281 ArmorStart RESET Bulletin 284 ArmorStart RESET ➊ Three-Phase Power Trunk- PatchCord cable with integral female or male connector on each end Example Part Number: 280-PWR35A-M* ➋ Three-Phase Drop Cable- PatchCord cable with integral female or male connector on each end Example Part Number: 280-PWR35A-M* ➌ Three-Phase Power Tee and Reducer Tee connects to a single drop line to trunk with quick change connectors – Part Number: 280-T35 Reducing Tee connects to a single drop line (Mini) to trunk (Quick change) connector – Part Number: 280-RT35 ➍ Three-Phase Power Receptacles Female receptacles are a panel mount connector with flying leads – Part Number: 280-M35F-M1 2-30 Installation and Wiring Figure 2.26 Control Power Media System Overview Enclosure PLC Bulletin 1492FB Branch Circuit Protective Device Bulletin 1606 Power Supply 1606-XLSDNET4 DeviceNet Power Supply Bulletin 280/281 ArmorStart Bulletin 280/281 ArmorStart RESET Bulletin 284 ArmorStart RESET ➏ Control Power Media Patchcords - PatchCord cable with integral female or male connector on each end Example Part Number: 889N-F3AFNU-*F ➐ Control Power Tees - The Control Power tee (Part Number: 898N-33PB-N4KF) is used with a patchcord to connect to the ArmorStart Distributed Motor Controller. ➑ Control Power Receptacles - Female receptacles are a panel mount connector with flying leads – Part Number: 888N-D3AF1-*F 2-31 Installation and Wiring ArmorStart with ArmorConnect Connectivity Ground Terminal Control Power Receptacle Three-Phase Power Receptacle Terminal Designations Terminal Designations Description Color Code A1 (+) Control Power Input Black A2 (-) Control Power Common White PE Ground Green/Yellow 1/L1 Line Power - Phase A Black 3/L2 Line Power - Phase B White 5/L3 Line Power - Phase C Red ArmorConnect Cable Ratings The ArmorConnect power media cables are rated per UL Type TC 600V 90 °C Dry 75 °C Wet, Exposed Run (ER) or MTW 600V 90 °C or STOOW 105 °C 600V - CSA STOOW 600V FT2. 2-32 Installation and Wiring ArmorStart Safety with ArmorConnect Connectivity A1/A2 -24V DC Control Power rm 1732DS Safety I/O Module Outu Safety Monitor Input from 1732DS Safey I/O Module Inpt 120V AC Aux. Powr for Conto Brake Ground Terminal Three-Phase Power Recepale Terminal Designations Terminal Designations Description Color Code SM1 Safety Monitor Input Brown SM2 Safety Monitor Input White A1 (+) Control Power Input Brown A2 (-) Control Power Common Blue PE Ground Green/Yellow 1/L1 Line Power - Phase A Black 3/L2 Line Power - Phase B White 5/L3 Line Power - Phase C Red ArmorConnect Cable Ratings The ArmorConnect power media cables are rated per UL Type TC 600V 90 °C Dry 75 °C Wet, Exposed Run (ER) or MTW 600V 90 °C or STOOW 105 °C 600V - CSA STOOW 600V FT2. Installation and Wiring 2-33 Branch Circuit Protection Requirements for ArmorConnect Three-Phase Power Media When using ArmorConnect three-phase power media, fuses can be used for the motor branch circuit protective device, for the group motor installations. The following fuse types are recommended: Class CC, T, or J type fuses. A 100 A circuit breaker (Allen-Bradley140 H-Frame) can be used for the motor branch protective device, for the group motor installations when using only the following ArmorConnect Power Media components: 280-M35M-M1, 280-M35F-M1, 280-T35, and 280-PWRM35*-M*. Maximum Ratings Group Motor Installations for USA and Canada Markets Voltage (V) 480Y/277 Sym. Amps RMS 65 kA Fuse 100 A Circuit Breaker 100 A The ArmorStart Distributed Motor Controllers are listed for use with each other in group installations per NFPA 79, Electrical Standard for Industrial Machinery. When applied according to the group motor installation requirements, two or more motors, of any rating or controller type, are permitted on a single branch circuit. Group Motor Installation has been successfully used for many years in the USA and Canada. Note: For additional information regarding group motor installations with the ArmorStart Distributed Motor Controller, see Appendix D. Wiring and Workmanship Guidelines In addition to conduit and seal-tite raceway, it is acceptable to utilize cable that is dual rated Tray Cable, Type TC-ER and Cord, STOOW, for power and control wiring on ArmorStart installations. In the USA and Canada installations, the following guidance is outlined by the NEC and NFPA 79. 2-34 Installation and Wiring In industrial establishments where the conditions of maintenance and supervision ensure that only qualified persons service the installation, and where the exposed cable is continuously supported and protected against physical damage using mechanical protection, such as struts, angles, or channels, Type TC tray cable that complies with the crush and impact requirements of Type MC (Metal Clad) cable and is identified for such use with the marking Type TC-ER (Exposed Run)* shall be permitted between a cable tray and the utilization equipment or device as open wiring. The cable shall be secured at intervals not exceeding 1.8 m (6 ft) and installed in a “good workmanlike” manner. Equipment grounding for the utilization equipment shall be provided by an equipment grounding conductor within the cable. *Historically cable meeting these crush and impact requirements were designated and marked “Open Wiring”. Cable so marked is equivalent to the present Type TC-ER and can be used. While the ArmorStart is intended for installation in factory floor environments of industrial establishments, the following must be taken into consideration when locating the ArmorStart in the application: Cables, including those for control voltage including 24V DC and communications, are not to be exposed to an operator or building traffic on a continuous basis. Location of the ArmorStart to minimize exposure to continual traffic is recommended. If location to minimize traffic flow is unavoidable, other barriers to minimize inadvertent exposure to the cabling should be considered. Routing cables should be done in such a manner to minimize inadvertent exposure and/or damage. Additionally, if conduit or other raceways are not used, it is recommended that strain relief fittings be utilized when installing the cables for the control and power wiring through the conduit openings. The working space around the ArmorStart may be minimized as the ArmorStart does not require examination, adjustment, servicing or maintenance while energized. In lieu of this service, the ArmorStart is meant to be unplugged and replaced after proper lockout/tag-out procedures have been employed. DeviceNet Network Installation The ArmorStart Distributed Motor Controller contains the equivalent of 30 in. (0.76 m) of DeviceNet drop cable's electrical characteristics and therefore 30 in. of drop cable must be included in the DeviceNet drop cable budget for each ArmorStart in addition to actual drop cable required for the installation. Other DeviceNet System Design Considerations The separation of the control power and DeviceNet power is recommended as a good design practice. This minimizes the load on the DeviceNet supply, and prevents transients which may be present on the control power system from influencing the communication controls. Installation and Wiring Electromagnetic Compatibility (EMC) 2-35 The following guidelines are provided for EMC installation compliance. General Notes (Bulletin 284G only) • The motor Cable should be kept as short as possible in order to avoid electromagnetic emission as well as capacitive currents • Conformity of the drive with CE EMC requirements does not guarantee an entire machine installation complies with CE EMC requirements. Many factors can influence total machine/ installation compliance. • Using an EMI filter with any drive rating, may result in relatively high ground leakage currents. Therefore, the filter must only be used in installations and solidly grounded (bonded) to the building power distribution ground. Grounding must not rely on flexible cables and should not include any form of plug or socket that would permit inadvertent disconnection. Some local codes may require redundant ground connections. The integrity of all connections should be periodically checked. Grounding Connect a grounding conductor to the terminal provided as standard on each ArmorStart Distributed Motor Controller. Refer to Table 2.2 for grounding provision location. There is also an externally available ground terminal. Refer to Figure 2.2 and Figure 2.7. Wiring Wire in an industrial control application can be divided into three groups: power, control, and signal. The following recommendations for physical separation between these groups is provided to reduce the coupling effect. • Minimum spacing between different wire groups in the same tray should be 6 in. (16 cm). • Wire runs outside an enclosure should be run in conduit or have shielding/armor with equivalent attenuation. • Different wire groups should be run in separate conduits. • Minimum spacing between conduits containing different wire groups should be 3 in. (8 cm). 2-36 Notes: Installation and Wiring Chapter 3 Bulletin 280G/281G Programmable Parameters Introduction This chapter describes each programmable parameter and its function. Parameter Programming Each Distributed Motor Controller type will have a common set of parameters followed by a set of parameters that pertain to the individual starter type. Refer to Chapter 5, DeviceNet™ Commissioning for instructions in using RSNetWorx™ for DeviceNet to modify parameter settings. Important: Resetting the Factory Default Values Parameter 47, Set to Defaults, allows the installer to reset all parameters to the factory default values. It also resets the MAC ID to its factory default after DeviceNet Power is cycled if switches are set >63. Important: Parameter setting changes downloaded to the ArmorStart™ take effect immediately, even during a “running” status. Important: Parameter setting changes made in a configuration tool such as RSNetWorx for DeviceNet do not take effect in the ArmorStart until the installer applies or downloads the new settings to the device. 3-2 Bulletin 280G/281G Programmable Parameters Parameter Group Listing The Bulletin 280G/281G ArmorStart contains eight parameter groups. The parameters shown in the DeviceLogix, DeviceNet, Starter Protection, User I/O, Misc. Parameter, ZIP Parameters, Starter Display and Starter Setup, are discussed in this chapter. Table 3.1 DeviceLogix DeviceNet Starter Protection 22 Breaker Type User I/O Parameter Group Listing Misc. ZIP Parameters Starter Display 101 Phase A Current Starter Setup 1 Hdw Inputs 10 Autobaud Enable 30 Off-to-On Delay 45 Keypad Mode 67 AutoRun Zip 2 Network Inputs 11 Consumed IO Assy 23 PrFltResetMode 31 On-to-Off Delay 46 Keypad Disable 68 Zone Produced EPR 102 Phase B Current 106 FLA Setting 107 Overload Class 3 Network Outputs 12 Produced IO Assy 24 Pr Fault Enable 32 In Sink/Source 47 Set To Defaults 69 Zone Produced PIT 103 Phase C Current 108 OL Reset Level 4 Trip Status 13 Prod Assy Word 0 25 Pr Fault Reset 56 Base Enclosure 70 Zone #1 MacId 104 Average Current 5 Starter Status 14 Prod Assy Word 1 26 StrtrDN FltState 57 Base Option 71 Zone #2 MacId 105% Therm Utilized 6 DNet Status 15 Prod Assy Word 2 27 StrtrDN FltValue 58 Wiring Option 72 Zone #3 MacId 7 Starter Command 16 Prod Assy Word 3 28 StrtrDN IdlState 59 Starter Enclosure 73 Zone #4 MacId 8 Network Override 17 Consumed IO Size 29 StrtrDN IdlValue 60 Starter Options 9 Comm Override 18 Produced IO Size 61 Last PR Fault 19 Starter COS Mask 62 Warning Status 74 Zone #1 Health 75 Zone #2 Health 76 Zone #3 Health 20 Net Out COS Mask 77 Zone #4 Health 21 DNet Voltage 78 Zone #1 Mask 79 Zone #2 Mask 80 Zone #3 Mask 81 Zone #4 Mask 82 Zone #1 Offset 83 Zone #2 Offset 84 Zone #3 Offset 85 Zone #4 Offset 86 Zone #1 EPR 87 Zone #2 EPR 88 Zone #3 EPR 89 Zone #4 EPR 90 Zone #1 Control 91 Zone #2 Control 92 Zone #3 Control 93 Zone #4 Control 94 Zone #1 Key 95 Zone #2 Key 96 Zone #3 Key 97 Zone #4 Key 98 Device Value Key 99 Zone Ctrl Enable DeviceLogix™ Group Hdw Inputs This parameter provides status of hardware inputs Parameter Number 1 Access Rule GET Data Type WORD Group DeviceLogix Units — Minimum Value 0 Maximum Value 15 Default Value 0 3-3 Bulletin 280G/281G Programmable Parameters Bit Function 5 4 3 2 1 0 — — — — — X Input 0 — — — — X — Input 1 — — — X — — Input 2 — — X — — — Input 3 — X — — — — Input 4 X — — — — — Input 5 Network Inputs Parameter Number 2 Access Rule GET This parameter provides status of network inputs Data Type WORD Group DeviceLogix Units — Minimum Value 0 Maximum Value 65535 Default Value 0 Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 Function 0 — — — — — — — — — — — — — — — X Net Input 0 — — — — — — — — — — — — — — X — Net Input 1 — — — — — — — — — — — — — X — — Net input 2 — — — — — — — — — — — — X — — — Net Input 3 — — — — — — — — — — — X — — — — Net Input 4 — — — — — — — — — — X — — — — — Net Input 5 — — — — — — — — — X — — — — — — Net Input 6 — — — — — — — — X — — — — — — — Net Input 7 — — — — — — — X — — — — — — — — Net Input 8 — — — — — — X — — — — — — — — — Net Input 9 — — — — — X — — — — — — — — — — Net Input 10 — — — — X — — — — — — — — — — — Net Input 11 — — — X — — — — — — — — — — — — Net Input 12 — — X — — — — — — — — — — — — — Net Input 13 — X — — — — — — — — — — — — — — Net Input 14 X — — — — — — — — — — — — — — — Net Input 15 Network Outputs This parameter provides status of network outputs Parameter Number 3 Access Rule GET Data Type WORD Group DeviceLogix Units — Minimum Value 0 Maximum Value 32767 Default Value 0 3-4 Bulletin 280G/281G Programmable Parameters Bit 14 13 12 11 10 9 8 7 6 5 4 3 2 1 Function 0 — — — — — — — — — — — — — — X Net Output 0 — — — — — — — — — — — — — X — Net Output 1 — — — — — — — — — — — — X — — Net Output 2 — — — — — — — — — — — X — — — Net Output 3 — — — — — — — — — — X — — — — Net Output 4 — — — — — — — — — X — — — — — Net Output 5 — — — — — — — — X — — — — — — Net Output 6 — — — — — — — X — — — — — — — Net Output 7 — — — — — — X — — — — — — — — Net Output 8 — — — — — X — — — — — — — — — Net Output 9 — — — — X — — — — — — — — — — Net Output 10 — — — X — — — — — — — — — — — Net Output 11 — — X — — — — — — — — — — — — Net Output 12 — X — — — — — — — — — — — — — Net Output 13 X — — — — — — — — — — — — — — Net Output 14 Trip Status Parameter Number 4 Access Rule GET This parameter provides trip identification Data Type WORD Group DeviceLogix Setup Units — Minimum Value 0 Maximum Value 16383 Default Value 0 Bit 13 12 11 10 9 8 7 6 5 4 3 2 Function 1 0 — — — — — — — — — — — — — X — — — — — — — — — — — — X — — — — — — — — — — — — X — — — — — — — — — — — — X — — — Reserved — — — — — — — — — X — — — — Reserved — — — — — — — — X — — — — — — — — — — — — X — — — — — — — — — — — — X — — — — — — — Over Temperature — — — — — X — — — — — — — — Phase Imbalance — — — — X — — — — — — — — — Dnet Power Loss — — — X — — — — — — — — — — Reserved — — X — — — — — — — — — — — Reserved — X — — — — — — — — — — — — EEprom X — — — — — — — — — — — — — HW Fault Short Circuit Overload Phase Loss Control Power I/O Fault 3-5 Bulletin 280G/281G Programmable Parameters Starter Status Parameter Number 5 Access Rule GET This parameter provides the status of the starter Data Type WORD Group DeviceLogix Units — Minimum Value 0 Maximum Value 16383 Default Value 0 Bit 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Function — — — — — — — — — — — — — X Tripped — — — — — — — — — — — — X — Warning — — — — — — — — — — — X — — Running Fwd — — — — — — — — — — X — — — Running Rev — — — — — — — — — X — — — — — — — — — — — — X — — — — — — — — — — — — X — — — — — — — — — — — — X — — — — — — — — — — — — X — — — — — — — — Reserved — — — — X — — — — — — — — — Reserved — — — X — — — — — — — — — — — — X — — — — — — — — — — — — X — — — — — — — — — — — — X — — — — — — — — — — — — — DNet Status This parameter provides status of the DeviceNet connection Ready Net Ctl Status Reserved At Reference Reserved Keypad Hand HOA Status 140M On Parameter Number 6 Access Rule GET Data Type WORD Group DeviceLogix Units — Minimum Value 0 Maximum Value 32, 767 Default Value 0 3-6 Bulletin 280G/281G Programmable Parameters Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Function: — — — — — — — — — — — — — — — X Explicit Connection — — — — — — — — — — — — — — X — I/O Connection — — — — — — — — — — — — — X — — Explicit Fault — — — — — — — — — — — — X — — — I/O Fault — — — — — — — — — — — X — — — — I/O Idle — — — — — — — — X X — — — — — Reserved — — — — — — — X — — — — — — — — X ZIP 1 Cnxn — — — — — — X — — — — — — — — — ZIP 1 Flt — — — — — X — — — — — — — — — — ZIP 2 Cnxn — — — — X — — — — — — — — — — — ZIP 2 Flt — — — X — — — — — — — — — — — — ZIP 3 Cnxn — — X — — — — — — — — — — — — — ZIP 3 Flt — X — — — — — — — — — — — — — — ZIP 4 Cnxn X — — — — — — — — — — — — — — — ZIP 4 Flt Starter Command The parameter provides the status of the starter command. Parameter Number 7 Access Rule GET Data Type WORD Group DeviceLogix Units — Minimum Value 0 Maximum Value 255 Default Value 0 Bit 6 5 4 3 2 1 — — — — — — — X Run Fwd — — — — — — X — Run Rev — — — — — X — — Fault Reset — — — — X — — — Reserved — — — X — — — — Reserved — — X — — — — — Reserved — X — — — — — — Reserved X — — — — — — — Reserved Network Override This parameter allows for the local logic to override a Network fault 0 = Disable 1 = Enable 0 Function: 7 Parameter Number 8 Access Rule GET/SET Data Type BOOL Group DeviceLogix Units — Minimum Value 0 Maximum Value 1 Default Value 0 3-7 Bulletin 280G/281G Programmable Parameters Comm Override This parameter allows for local logic to override the absence of an I/O connection 0 = Disable 1 = Enable DeviceNet Group Autobaud Enable When this parameter is enabled, the device will attempt to determine the network baud rate and set its baud rate to the same, provided network traffic exists. At least one node with an established baud rate must exist on the network for autobaud to occur. 0 = Disable 1 = Enable Consumed I/O Assy This parameter selects the format of the I/O data consumed. Enter a Consumed I/O assembly instance number to select a data format. Produced I/O Assy This parameter selects the format of the I/O data produced. Enter a Produces I/O assembly instance number to select a data format. Parameter Number 9 Access Rule GET/SET Data Type BOOL Group DeviceLogix Units — Minimum Value 0 Maximum Value 1 Default Value 0 Parameter Number 10 Access Rule GET/SET Data Type BOOL Group DeviceNet Units — Minimum Value 0 Maximum Value 1 Default Value 1 Parameter Number 11 Access Rule GET/SET Data Type USINT Group DeviceNet Units — Minimum Value 0 Maximum Value 187 Default Value 160 Parameter Number 12 Access Rule GET/SET Data Type USINT Group DeviceNet Units — Minimum Value 0 Maximum Value 190 Default Value 161 3-8 Bulletin 280G/281G Programmable Parameters Prod Assy Word 0 This parameter is used to build bytes 0-1 for produced assembly 120 Produced Assy Word 1 This parameter is used to build bytes 2-3 for produced assembly 120 Prod Assy Word 2 This parameter is used to build bytes 4-5 for produced assembly 120 Prod Assy Word 3 This parameter is used to build bytes 6-7 for produced assembly 120 Consumed I/O Size This parameter reflects the consumed I/O data size in bytes. Parameter Number 13 Access Rule GET/SET Data Type USINT Group DeviceNet Units — Minimum Value 0 Maximum Value 108 Default Value 1 Parameter Number 14 Access Rule GET/SET Data Type USINT Group DeviceNet Units — Minimum Value 0 Maximum Value 108 Default Value 4 Parameter Number 15 Access Rule GET/SET Data Type USINT Group DeviceNet Units — Minimum Value 0 Maximum Value 108 Default Value 5 Parameter Number 16 Access Rule GET/SET Data Type USINT Group DeviceNet Units — Minimum Value 0 Maximum Value 108 Default Value 6 Parameter Number 17 Access Rule GET Data Type USINT Group DeviceNet Units — Minimum Value 0 Maximum Value 8 Default Value 1 3-9 Bulletin 280G/281G Programmable Parameters Produced I/O Size This parameter reflects the produced I/O data size in bytes. Starter COS Mask This parameter allows the installer to define the change-ofstate conditions that will result in a change-of-state message being produced Parameter Number 18 Access Rule GET Data Type USINT Group DeviceNet Units — Minimum Value 0 Maximum Value 8 Default Value 2 Parameter Number 19 Access Rule GET/SET Data Type WORD Group DeviceNet Units — Minimum Value 0 Maximum Value 16383 Default Value 16149 ➊ 16157 ➋ Bulletin 280G products. Bulletin 281G products. ➊ ➋ Bit 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Function — — — — — — — — — — — — — X Tripped — — — — — — — — — — — — X — Warning — — — — — — — — — — X — — Running Fwd — — — — — — — — — — X — — — Running Rev — — — — — — — — — X — — — — Ready — — — — — — — — X — — — — — NET Ctl Status — — — — — — — X — — — — — — 140M On — — — — — — X — — — — — — — Reserved — — — — — X — — — — — — — — Input 0 — — — — X — — — — — — — — — Input 1 — — — X — — — — — — — — — — Input 2 — — X — — — — — — — — — — — Input 3 — X — — — — — — — — — — — — Input 4 X — — — — — — — — — — — — — Input 5 3-10 Bulletin 280G/281G Programmable Parameters Net Out COS Mask This parameter sets the bits that will trigger a COS message when network outputs change state. Parameter Number 20 Access Rule GET/SET Data Type WORD Group DeviceNet Units — Minimum Value 0 Maximum Value 32767 Default Value 0 Bit Function 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 — — — — — — — — — — — — — — X Net Output 0 — — — — — — — — — — — — — X — Net Output 1 — — — — — — — — — — — — X — — Net Output 2 — — — — — — — — — — — X — — — Net Output 3 — — — — — — — — — — X — — — — Net Output 4 — — — — — — — — — X — — — — — Net Output 5 — — — — — — — — X — — — — — — Net Output 6 — — — — — — — X — — — — — — — Net Output 7 — — — — — — X — — — — — — — — Net Output 8 — — — — — X — — — — — — — — — Net Output 9 — — — — X — — — — — — — — — — Net Output 10 — — — X — — — — — — — — — — — Net Output 11 — — X — — — — — — — — — — — — Net Output 12 — X — — — — — — — — — — — — — Net Output 13 X — — — — — — — — — — — — — — Net Output 14 Dnet Voltage This parameter provides the voltage measurement for the DeviceNet network Starter Protection Group Breaker Type This parameter identifies the Bulletin 140M used in this product 0 = 140M-D8N-C10 1 = 140M-D8N-C25 Parameter Number 21 Access Rule GET Data Type UINT Group DeviceNet Units xx.xx Volts Minimum Value 0 Maximum Value 6500 Default Value 0 Parameter Number 22 Access Rule GET/SET Data Type BOOL Group Starter Protection Units — Minimum Value 0 Maximum Value 1 Default Value 0 3-11 Bulletin 280G/281G Programmable Parameters PrFlt Reset Mode Parameter Number 23 Access Rule GET/SET This parameter configures the Protection Fault reset mode. 0= Manual 1= Automatic Pr Fault Enable Data Type BOOL Group Starter Protection Units — Minimum Value 0 Maximum Value 1 Default Value 0 Parameter Number 24 Access Rule GET/SET Data Type WORD Group Starter Protection Setup Units — This parameter enables the Protection Fault by setting the bit to 1 Minimum Value 0 Maximum Value 16383 Default Value 12419 Bit 13 12 11 10 9 8 7 0 — — — — — — — — — — — — — X — — — — — — — — — — — — X — — — — — — — — — — — — X — — — — — — — — — — — — X — — — Reserved — — — — — — — — — X — — — — Reserved — — — — — — — — X — — — — — — — — — — — — X — — — — — — — — — — — — X — — — — — — — Over Temperature — — — — — X — — — — — — — — Phase Imbalance — — — — X — — — — — — — — — Dnet Power Loss — — — X — — — — — — — — — — Reserved — — X — — — — — — — — — — — Reserved — X — — — — — — — — — — — — Eeprom X — — — — — — — — — — — — — HW Fault This parameter resets the Protection Fault on a transition of 0-->1. 5 4 3 2 Function 1 Pr Fault Reset 6 Short Circuit Overload Phase Loss Control Power I/O Fault Parameter Number 25 Access Rule GET/SET Data Type BOOL Group Starter Protection Units — Minimum Value 0 Maximum Value 1 Default Value 0 3-12 Bulletin 280G/281G Programmable Parameters StrtrDN FltState This parameter in conjunction with Parameter 27 defines how the starter will respond when a DeviceNet fault occurs. When set to “1”, hold to last state occurs. When set to “0”, will go to DnFlt Value on DN faults as determined by Parameter 27. StrtrDN FltValue This parameter determines how the starter will be commanded in the event of a Device Net fault. 0 = OFF 1 = ON StrtrDN IdlState This parameter in conjunction with Parameter 29 defines how the starter will respond when a DeviceNet network is idle. When set to “1”, hold to last state occurs. When set to “0”, will go to DnIdl Value on DN Idle as determined by Parameter 29. StrtrDN IdlValue This parameter determines the state that starter assumes when the network is idle and Parameter 28 is set to “0” 0 = OFF 1 = ON Parameter Number 26 Access Rule GET/SET Data Type BOOL Group Starter Protection Units — Minimum Value 0 Maximum Value 1 Default Value 0 Parameter Number 27 Access Rule GET Data Type BOOL Group Starter Protection Units — Minimum Value 0 Maximum Value 1 Default Value 0 Parameter Number 28 Access Rule GET/SET Data Type BOOL Group Starter Protection Units — Minimum Value 0 Maximum Value 1 Default Value 0 Parameter Number 29 Access Rule GET Data Type BOOL Group Starter Protection Units — Minimum Value 0 Maximum Value 1 Default Value 0 3-13 Bulletin 280G/281G Programmable Parameters Last PR Fault 0 = None 1 = Hardware Short Circuit 2 = Software Short Circuit 3 = Motor Overload 4 = Reserved 5 = Phase Loss 6 – 12 = Reserved 13 = Control Power Loss 14 = Control Power Fuse 15 = I/O Short 16 = Reserved 17 = Overtemp 18= Reserved 19 = Phase Imbalance 20 = Reserved 21 = DNet Power Loss 22 = Internal Comm 23-26 = Reserved 27 = MCB EEPROM 28 = Base EEPROM 29 = Reserved 30 = Wrong Base 31 = Wrong CTs 32-100 = Reserved Warning Status Parameter Number 61 Access Rule GET Data Type UINT Group Starter Protection Units — MinimumValue 0 Maximum Value 100 Default Value 0 Parameter Number 62 Access Rule GET This parameter warns the Data Type user of a condition, without Group faulting Units WORD Starter Protection — MinimumValue 0 Maximum Value 65535 Default Value 0 Bit 15 14 13 12 11 10 9 X X X X X X X 8 X 7 X 6 X 5 X 4 X 3 X 2 X 1 X 0 X Warning reserved reserved Phase Loss reserved reserved Control Power IO Warning reserved Phase Imbalance DeviceNet reserved reserved reserved Hardware reserved reserved 3-14 Bulletin 280G/281G Programmable Parameters User I/O Off-to-On Delay This parameter allows the installer to program a time duration before an input is reported “ON” On-to-Off Delay This parameter allows the installer to program a time duration before an input is reported “OFF” In Sink/Source This parameter allows the installer to program the inputs to be sink or source. 0=Sink 1=Source Misc. Group Keypad Mode This parameter selects if the keypad operation is maintained or momentary 0= Maintained 1= Momentary Keypad Disable This parameter disables all keypad function except for the “OFF” and “RESET” buttons 0=Not Disabled 1=Disabled Parameter Number 30 Access Rule GET/SET Data Type UINT Group User I/O Units ms Minimum Value 0 Maximum Value 65.000 Default Value 0 Parameter Number 31 Access Rule GET/SET Data Type UINT Group User I/O Units ms Minimum Value 0 Maximum Value 65.000 Default Value 0 Parameter Number 32 Access Rule GET/SET Data Type BOOL Group User I/ Units — Minimum Value 0 Maximum Value 1 Default Value 0 Parameter Number 45 Access Rule GET/SET Data Type BOOL Group Misc. Units — Minimum Value 0 Maximum Value 1 Default Value 0 Parameter Number 46 Access Rule GET/SET Data Type BOOL Group Misc. Units — Minimum Value 0 Maximum Value 1 Default Value 0 3-15 Bulletin 280G/281G Programmable Parameters Set to Defaults This parameter if set to 1 will set the device to the factory defaults 0=No Operation 1=Set to Defaults Base Enclosure Indicates the ArmorStart Base unit enclosure rating Bit 0 = IP67 Bit 1 = Nema 4X Bit 2 = SIL3/CAT4 Bit 3-15 = Reserved Base Options Indicates the options for the ArmorStart Base unit Bit 0 = Reserved Bit 1 = Reserved Bit 2 = CP Fuse Detect Bits 3-7 = Reserved Bit 8 = 10A Base Bit 9 = 25A Base Bit 10-15 = Reserved Wiring Options Bit 0 = Conduit Bit 1 = Round Media Bits 2-15 = 28xG Bits 3-15 = Reserved Starter Enclosure Bit 0 = IP67 Bit 1 = NEMA 4x Bit 2 = SIL3/CAT4 Bits 3-15 reserved Parameter Number 47 Access Rule GET/SET Data Type BOOL Group Misc. Units — Minimum Value 0 Maximum Value 1 Default Value 0 Parameter Number 56 Access Rule GET Data Type WORD Group Misc. Units — MinimumValue 0 Maximum Value 65535 Default Value 0 Parameter Number 57 Access Rule GET Data Type WORD Group Misc. Units — MinimumValue 0 Maximum Value 65535 Default Value 0 Parameter Number 58 Access Rule GET Data Type WORD Group Misc. Units — MinimumValue 0 Maximum Value 65535 Default Value 0 Parameter Number 59 Access Rule GET Data Type WORD Group Misc. Units — MinimumValue 0 Maximum Value 65535 Default Value — 3-16 Bulletin 280G/281G Programmable Parameters Starter Option Bit 0 = HOA Keypad Bit 1 = Safety Monitor Bit 2 = Source Brake Bits 4-15 = Reserved ZIP Parameters AutoRun Zip Enables ZIP data production on power up 0=Disable 1=Enable Zone Produced EPR The Expected Packet Rate in msec. Defines the rate at which ZIP data is produced. Defaults to 75 msec. Zone Produced PIT The Production Inhibit Time in msec. Defines the minimum time between Change of State data production Zone #1 MAC ID The node address of the device whose data is to be consumed for zone 1 Parameter Number 60 Access Rule GET Data Type WORD Group Misc. Units — MinimumValue 0 Maximum Value 66535 Default Value — Parameter Number 67 Access Rule Get/Set Data Type BOOL Group ZIP Parameters Units MinimumValue 0 Maximum Value 1 Default Value 0 Parameter Number 68 Access Rule GET/SET Data Type UINT Group Zip Parameter Units msec MinimumValue 0 Maximum Value 65535 Default Value 75 Parameter Number 69 Access Rule GET/SET Data Type UINT Group ZIP Parameters Units msec MinimumValue 0 Maximum Value 65535 Default Value 75 Parameter Number 70 Access Rule GET/SET Data Type USINT Group ZIP Parameters Units — MinimumValue 0 Maximum Value 64 Default Value 64 3-17 Bulletin 280G/281G Programmable Parameters Zone #2 MAC ID The node address of the device whose data is to be consumed for zone 2 Zone #3 MAC ID The node address of the device whose data is to be consumed for zone 3 Zone #4 MAC ID The node address of the device whose data is to be consumed for zone 4 Zone #1 Health Read Only consumed connection status for zone 1 0 = Healthy 1 = Unhealthy Zone #2 Health Read Only consumed connection status for zone 2 0 = Healthy 1 = Unhealthy Parameter Number 71 Access Rule GET/SET Data Type USINT Group ZIP Parameters Units — MinimumValue 0 Maximum Value 64 Default Value 64 Parameter Number 72 Access Rule GET/SET Data Type USINT Group ZIP Parameters Units — MinimumValue 0 Maximum Value 64 Default Value 64 Parameter Number 73 Access Rule GET/SET Data Type USINT Group Misc. Option Units — MinimumValue 0 Maximum Value 64 Default Value 64 Parameter Number 74 Access Rule GET Data Type BOOL Group ZIP Parameters Units — MinimumValue 0 Maximum Value 1 Default Value 0 Parameter Number 75 Access Rule GET Data Type BOOL Group ZIP Parameters Units — MinimumValue 0 Maximum Value 1 Default Value 0 3-18 Bulletin 280G/281G Programmable Parameters Zone #3 Health Read Only consumed connection status for zone 3 0 = Healthy 1 = Unhealthy Zone #4 Health Read Only consumed connection status for zone 4 0 = Healthy 1 = Unhealthy Zone #1 Mask Bit enumerated consumed data mask for zone 1. Each bit represents a byte in consumed data up to 8 bytes in length. If a mask bit is set, the corresponding consumed data byte is placed in the DeviceLogix data table Zone #2 Mask Bit enumerated consumed data mask for zone 2. Each bit represents a byte in consumed data up to 8 bytes in length. If a mask bit is set, the corresponding consumed data byte is placed in the DeviceLogix data table Zone #3 Mask Bit enumerated consumed data mask for zone 3. Each bit represents a byte in consumed data up to 8 bytes in length. If a mask bit is set, the corresponding consumed data byte is placed in the DeviceLogix data table Parameter Number 76 Access Rule GET Data Type BOOL Group ZIP Parameters Units — MinimumValue 0 Maximum Value 1 Default Value 0 Parameter Number 77 Access Rule GET Data Type BOOL Group ZIP Parameters Units — MinimumValue 0 Maximum Value 1 Default Value 0 Parameter Number 78 Access Rule GET/SET Data Type BYTE Group ZIP Parameters Units — MinimumValue 0 Maximum Value 255 Default Value 0 Parameter Number 79 Access Rule GET/SET Data Type BYTE Group ZIP Parameters Units — MinimumValue 0 Maximum Value 255 Default Value 0 Parameter Number 80 Access Rule GET/SET Data Type BYTE Group ZIP Parameters Units — MinimumValue 0 Maximum Value 255 Default Value 0 3-19 Bulletin 280G/281G Programmable Parameters Zone #4 Mask Bit enumerated consumed data mask for zone 4. Each bit represents a byte in consumed data up to 8 bytes in length. If a mask bit is set, the corresponding consumed data byte is placed in the DeviceLogix data table Zone #1 Offset The byte offset into the ZIP data portion of the DeviceLogix data table to place the chosen consumed data bytes for zone 1. Zone #2 Offset The byte offset into the ZIP data portion of the DeviceLogix data table to place the chosen consumed data bytes for zone 2. Zone #3 Offset The byte offset into the ZIP data portion of the DeviceLogix data table to place the chosen consumed data bytes for zone 3. Zone #4 Offset The byte offset into the ZIP data portion of the DeviceLogix data table to place the chosen consumed data bytes for zone 4. Parameter Number 81 Access Rule GET/SET Data Type BYTE Group ZIP Parameters Units — MinimumValue 0 Maximum Value 255 Default Value 0 Parameter Number 82 Access Rule GET/SET Data Type UINT Group ZIP Parameters Units — MinimumValue 0 Maximum Value 7 Default Value 0 Parameter Number 83 Access Rule GET/SET Data Type UNIT Group ZIP Parameters Units — MinimumValue 0 Maximum Value 7 Default Value 0 Parameter Number 84 Access Rule GET/SET Data Type UNIT Group ZIP Parameters Units — MinimumValue 0 Maximum Value 1 Default Value 0 Parameter Number 85 Access Rule GET/SET Data Type UNIT Group ZIP Parameters Units — MinimumValue 0 Maximum Value 1 Default Value 0 3-20 Bulletin 280G/281G Programmable Parameters Zone #1 EPR The Expected Packet Rate in msec. for the zone 1 consuming connection. If consumed data is not received in 4 times this value, the zone connection will time out and “Zone #1 Health” will report 1 = Not Healthy. Zone #2 EPR The Expected Packet Rate in msec. for the zone 1 consuming connection. If consumed data is not received in 4 times this value, the zone connection will time out and “Zone #2 Health” will report 1 = Not Healthy. Zone #3 EPR The Expected Packet Rate in msec. for the zone 1 consuming connection. If consumed data is not received in 4 times this value, the zone connection will time out and “Zone #3 Health” will report 1 = Not Healthy. Zone #4 EPR The Expected Packet Rate in msec. for the zone 1 consuming connection. If consumed data is not received in 4 times this value, the zone connection will time out and “Zone #4 Health” will report 1 = Not Healthy. Parameter Number 86 Access Rule GET/SET Data Type UINT Group ZIP Parameters Units msec MinimumValue 0 Maximum Value 65535 Default Value 75 Parameter Number 87 Access Rule GET/SET Data Type UNIT Group ZIP Parameters Units msec MinimumValue 0 Maximum Value 65535 Default Value 75 Parameter Number 88 Access Rule GET/SET Data Type UNIT Group ZIP Parameters Units msec MinimumValue 0 Maximum Value 65535 Default Value 75 Parameter Number 89 Access Rule GET/SET Data Type UNIT Group ZIP Parameters Units msec MinimumValue 0 Maximum Value 65535 Default Value 75 3-21 Bulletin 280G/281G Programmable Parameters Zone #1 Control Zone 1 Control Word. Default Bit 0 and Bit 1 set, all other bits clear. Bit0=Security Enable 1=Enable data security Bit1=COS Cnxn 1=Consume DNet Group 2 COS messages Bit2=Poll Cnxn 1=Consume DNet Group 2 Poll Response msgs. Bit3=Strobe Cnxn 1=Consume DNet Group 2 Strobe Response msgs. Bit4=Multicast Poll 1=Consume Multicast Poll Response messages. Zone #2 Control Zone 2 Control Word. Default Bit 0 and Bit 1 set, all other bits clear. Bit0=Security Enable 1=Enable data security Bit1=COS Cnxn 1=Consume DNet Group 2 COS messages Bit2=Poll Cnxn 1=Consume DNet Group 2 Poll Response msgs. Bit3=Strobe Cnxn 1=Consume DNet Group 2 Strobe Response msgs. Bit4=Multicast Poll 1=Consume Multicast Poll Response messages Zone #3 Control Zone 3 Control Word. Default Bit 0 and Bit 1 set, all other bits clear. Bit0=Security Enable 1=Enable data security Bit1=COS Cnxn 1=Consume DNet Group 2 COS messages Bit2=Poll Cnxn 1=Consume DNet Group 2 Poll Response msgs. Bit3=Strobe Cnxn 1=Consume DNet Group 2 Strobe Response msgs. Bit4=Multicast Poll 1=Consume Multicast Poll Response messages Parameter Number 90 Access Rule GET/SET Data Type BYTE Group ZIP Parameters Units — MinimumValue 0 Maximum Value 255 Default Value 3 Parameter Number 91 Access Rule GET/SET Data Type BYTE Group ZIP Parameters Units — MinimumValue 0 Maximum Value 255 Default Value 3 Parameter Number 92 Access Rule GET/SET Data Type BYTE Group ZIP Parameters Units — MinimumValue 0 Maximum Value 255 Default Value 3 3-22 Bulletin 280G/281G Programmable Parameters Zone #4 Control Zone 3 Control Word. Default Bit 0 and Bit 1 set, all other bits clear. Bit0=Security Enable 1=Enable data security Bit1=COS Cnxn 1=Consume DNet Group 2 COS messages Bit2=Poll Cnxn 1=Consume DNet Group 2 Poll Response msgs. Bit3=Strobe Cnxn 1=Consume DNet Group 2 Strobe Response msgs. Bit4=Multicast Poll 1=Consume Multicast Poll Response messages Zone #1 Key When the “Security Enable” bit for zone 1 is enabled, this value must match the value of the Device Value Key parameter in the device whose data is being consumed for zone 1. Zone #2 Key When the “Security Enable” bit for zone 2 is enabled, this value must match the value of the Device Value Key parameter in the device whose data is being consumed for zone 2. Zone #3 Key When the “Security Enable” bit for zone 3 is enabled, this value must match the value of the Device Value Key parameter in the device whose data is being consumed for zone 3. Parameter Number 93 Access Rule GET/SET Data Type BYTE Group ZIP Parameters Units — MinimumValue 0 Maximum Value 255 Default Value 3 Parameter Number 94 Access Rule GET/SET Data Type UINT Group ZIP Parameters Units — MinimumValue 0 Maximum Value 65535 Default Value 0 Parameter Number 95 Access Rule GET/SET Data Type UINT Group ZIP Parameters Units — MinimumValue 0 Maximum Value 65535 Default Value 0 Parameter Number 96 Access Rule GET/SET Data Type UINT Group ZIP Parameters Units — MinimumValue 0 Maximum Value 65535 Default Value 0 3-23 Bulletin 280G/281G Programmable Parameters Zone #4 KEY When the “Security Enable” bit for zone 4 is enabled, this value must match the value of the Device Value Key parameter in the device whose data is being consumed for zone 4 Device Value Key This value is produced in the last 2 bytes of data when one of the ZIP assemblies is chosen for data production. Zone Ctrl Enable Global enable for ZIP peer-topeer messaging. This parameter must be disabled before any changes to the ZIP configuration for the device can be made. 0=Disable 1=Enable Starter Display Phase A Current This parameter provides the current of Phase A measured n increments of 1/10th of an ampere Phase B Current This parameter provides the current of Phase B measured in increments of 1/10th of an ampere Parameter Number 97 Access Rule GET/SET Data Type UINT Group ZIP Parameters Units — MinimumValue 0 Maximum Value 65535 Default Value 0 Parameter Number 98 Access Rule GET/SET Data Type UINT Group ZIP Parameters Units — MinimumValue 0 Maximum Value 65535 Default Value 0 Parameter Number 99 Access Rule GET/SET Data Type BOOL Group ZIP Parameters Units — MinimumValue 0 Maximum Value 1 Default Value 0 Parameter Number 101 Access Rule GET/SET Data Type INT Group Starter Display Units xx.x Amps Minimum Value 0 Maximum Value 32767 Default Value 0 Parameter Number 102 Access Rule GET/SET Data Type INT Group Starter Display Units xx.x Amps Minimum Value 0 Maximum Value 32767 Default Value 0 3-24 Bulletin 280G/281G Programmable Parameters Phase C Current This parameter provides the current of Phase C measured in increments of 1/10th of an ampere Average Current This parameter provides the average current measured in increments of 1/10th of an ampere % Therm Utilized This parameter displays the % Thermal Capacity used Starter Setup FLA Setting The motor’s full load current rating is programmed in this parameter Table 3.2 Parameter Number 103 Access Rule GET/SET Data Type INT Group Starter Display Units xx.x Amps Minimum Value 0 Maximum Value 32767 Default Value 0 Parameter Number 104 Access Rule GET/SET Data Type INT Group Starter Display Units xx.x Amps Minimum Value 0 Maximum Value 32767 Default Value 0 Parameter Number 105 Access Rule GET/SET Data Type USINT Group Starter Display Units % FLA Minimum Value 0 Maximum Value 100 Default Value 0 Parameter Number 106 Access Rule GET/SET Data Type INT Group Starter Setup Units xx.x Amps Minimum Value See Table 3.2 Maximum Value See Table 3.2 Default Value See Table 3.2 FLA Setting Ranges and Default Values (with indicated setting precision) FLA Current Range (A) Default Value Minimum Value Maximum Value 0.5 2.5 0.5 1.1 5.5 1.1 3.2 16.0 3.2 3-25 Bulletin 280G/281G Programmable Parameters Overload Class This parameter allows the installer to select the overload class 1= Overload Class 10 2= Overload Class 15 3= Overload Class 20 OL Reset Level This parameter allows the installer select the % Thermal Capacity which an overload can be cleared Parameter Number 107 Access Rule GET/SET Data Type USINT Group Starter Setup Units xx.x Amps Minimum Value 1 Maximum Value 3 Default Value 1 Parameter Number 108 Access Rule GET/SET Data Type USINT Group Starter Setup Units % FLA Minimum Value 0 Maximum Value 100 Default Value 75 3-26 Notes Bulletin 280G/281G Programmable Parameters Chapter 4 Bulletin 284G Programmable Parameters for Sensorless Vector Controllers This chapter describes each programmable parameter and its function for Bulletin 284G Sensorless Vector Controllers. Parameter Programming Each Distributed Motor Controller type will have a common set of parameters followed by a set of parameters that pertain to the individual starter type. Refer to Chapter 5, DeviceNet™ Commissioning, for instructions in using RSNetworx™ for DeviceNet™ to modify parameter settings. Important: Resetting the Factory Default Values Parameter 47, Set to Defaults, allows the installer to reset all parameter to the factory default values. It also resets the MAC ID to its factory default after DeviceNet Power is cycled if switches are set >63. Important: Parameter setting changes downloaded to the ArmorStart® take effect immediately, even during a running status. Important: Parameter setting changes made in a configuration tool such as RSNetworx for DeviceNet do not take effect in the ArmorStart until the installer applies or downloads the new settings to the device. 1 4-2 Bulletin 284G Programmable Parameters for Sensorless Vector Controllers Parameter Group Listing The Bulletin 284G ArmorStart contains ten parameter groups. The parameters shown in the DeviceLogix™, DeviceNet , Starter Protection , User I/O , Misc. Parameter , Drive DeviceNet , Display Group, ZIP Parameters, Basic Program, and Advanced Program will be discussed in this chapter. Table 4.1 DeviceLogix 1 Hdw Inputs 2 Network Inputs 3 Network Outputs 4 Trip Status 5 Starter Status 6 DNet Status 7 Starter Command 8 Network Override 9 Comm Override DeviceNet 10 Autobaud Enable 11 Consumed IO Assy 12 Produced IO Assy 13 Prod Assy Word 0 14 Prod Assy Word 1 15 Prod Assy Word 2 16 Prod Assy Word 3 17 Consumed IO Size 18 Produced IO Size 19 Starter COS Mask 20 Net Out COS Mask 21 DNet Voltage Starter Protection 22 Breaker Type 23 PrFltResetMode 24 Pr Fault Enable 25 Pr Fault Reset 26 StrtrDN FltState 27 StrtrDN FltValue 28 StrtrDN IdlState 29 StrtrDN IdlValue 61 LAST Pr Fault 62 Warning Status Display Group ZIP Parameters Basic Program 101 Output Freq 102 Commanded Freq 103 Output Current 104 Output Voltage 105 DC Bus Voltage 106 Drive Status 107 Fault 1 Code 108 Fault 2 Code 109 Fault 3 Code 110 Process Display 112 Control Source 113 Contrl In Status 114 Dig In Status 115 Comm Status 116 Control SW Ver 117 Drive Type 118 Elapsed Run Time 119 Testpoint Data 120 Analog In 0…10V 121 Analog In 4…20 mA 122 Output Power 123 Output Power Fctr 124 Drive Temp 125 Counter Status 126 Timer Status 127 Timer Stat Fract 128 Stp Logic Status 129 Torque Current 67 AutoRun Zip 68 Zone Produced EPR 69 Zone Produced PIT 70 Zone #1 MacId 71 Zone #2 MacId 72 Zone #3 MacId 73 Zone #4 MacId 74 Zone #1 Health 75 Zone #2 Health 76 Zone #3 Health 77 Zone #4 Health 78 Zone #1 Mask 79 Zone #2 Mask 80 Zone #3 Mask 81 Zone #4 Mask 82 Zone #1 Offset 83 Zone #2 Offset 84 Zone #3 Offset 85 Zone #4 Offset 86 Zone #1 EPR 87 Zone #2 EPR 88 Zone #3 EPR 89 Zone #4 EPR 90 Zone #1 Control 91 Zone #2 Control 92 Zone #3 Control 93 Zone #4 Control 94 Zone #1 Key 95 Zone #2 Key 96 Zone #3 Key 97 Zone #4 Key 98 Device Value Key 99 Zone Ctrl Enable 131 Motor NP Volts 132 Motor NP Hertz 133 Motor OL Current 134 Minimum Freq 135 Maximum Freq 136 Start Source 137 Stop Mode 138 Speed Reference 139 Accel Time 1 140 Decel Time 1 141 Reset To Defalts 142 Reserved 143 Motor OL Ret . Paramerer Group Listing User I/O Miscellaneous 30 Off-to-On Delay 31 On-to-Off Delay 32 In Sink/Source 45 Keypad Mode 46 Keypad Disable 47 Set To Defaults 56 Base Enclosure 57 Base Options 58 Wiring Options 59 Starter Enclosure 60 Starter Options 151 Digital In1 Sel 152 Digital In2 Sel 153 Digital In3 Sel 154 Digital In4 Sel 155 Relay Out Sel 156 Relay Out Level 157 Relay Out LevelF 158 Opto Out1 Sel 159 Opto Out1 Level 160 Opto Out1 LevelF 161 Opto Out2 Sel 162 Opto Out2 Level 163 DB Threshold 164 Opto Out Logic 165 Analog Out Sel 166 Analog Out High 167 Accel Time 2 168 Decel Time 2 169 Internal Freq 170 Preset Freq 0 171 Preset Freq 1 172 Preset Freq 2 173 Preset Freq 3 174 Preset Freq 4 175 Preset Freq 5 176 Preset Freq 6 177 Preset Freq 7 178 Jog Frequency 179 Jog Accel/Decel 180 DC Brake Time 181 DC Brake Level 182 DB Resistor Sel 183 S Curve % 184 Boost Select 185 Start Boost 186 Break Voltage 187 Break Frequency 188 Maximum Voltage 189 Current Limit 1 190 Motor OL Select 191 PWM Frequency 192 Auto Rstrt Tries 193 Auto Rstrt Delay 194 Start At PowerUp 195 Reverse Disable 196 Flying Start En 197 Compensation 198 SW Current Trip 199 Process Factor 200 Fault Clear 201 Program Lock 202 Testpoint Sel 203 Comm Data Rate 204 Comm Node Addr 205 Comm Loss Action 206 Comm Loss Time 207 Comm Format 208 Language 209 Anlg Out Setpt 210 Anlg In 0…10V Lo 211 Anlg In 0…10V Hi 212 Anlg In 4…20 mA Lo 213 Anlg In4…20 mA Hi 214 Slip Hertz @ FLA 215 Process Time Lo 216 Process Time Hi 217 Bus Reg Mode 218 Current Limit 2 219 Skip Frequency 220 Skip Freq Band 221 Stall Fault Time 222 Analog In Loss 223 10V Bipolar Enbl 224 Var PWM Disable 225 Torque Perf Mode 226 Motor NP FLA Drive DeviceNet 48 Drive Control 49 Drvin PrFltState 50 Drvin PrFltValue 51 Drvin DNFltState 52 Drvin DNFltValue 53 Drvin DNFltState 54 Drvin DNFltValue 55 High Speed Enable Advanced Program 227 Autotune 228 IR Voltage Drop 229 Flux Current Ref 230 PID Trim Hi 231 PID Trim Lo 232 PID Ref Sel 233 PID Feedback Sel 234 PID Prop Gain 235 PID Integ Time 236 PID Diff Rate 237 PID Setpoint 238 PID Deadband 239 PID Preload 240 Stp Logic 0 241 Stp Logic 1 242 Stp Logic 2 243 Stp Logic 3 244 Stp Logic 4 245 Stp Logic 5 246 Stp Logic 6 247 Stp Logic 7 248 Reserved 249 Reserved 250 Stp Logic Time 0 251 Stp Logic Time 1 252 Stp Logic Time 2 253 Stp Logic Time 3 254 Stp Logic Time 4 255 Stp Logic Time 5 256 Stp Logic Time 6 257 Stp Logic Time 7 258 Reserved 259 Reserved 260 EM Brk Off Delay 261 EM Brk On Delay 262 MOP Reset Sel 4-3 Bulletin 284G Programmable Parameters for Sensorless Vector Controllers DeviceLogix Group This parameter is not available with the Bulletin 284A. Parameter Number Access Rule Data Type Group Units Minimum Value Maximum Value Default Value Hdw Inputs This parameter provides status of hardware inputs. 1 GET WORD DeviceLogix — 0 15 0 Bit 5 4 3 2 1 0 — — — — — X — — — — X — — — — X — — — — X — — — — X — — — — X — — — — — Parameter Number Access Rule Data Type Group Units Minimum Value Maximum Value Default Value Network Inputs This parameter provides status of network inputs. Function Input 0 Input 1 Input 2 Input 3 Input 4 Input 5 2 GET WORD DeviceLogix — 0 65535 0 Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 — — — — — — — — — — — — — — — X — — — — — — — — — — — — — — X — — — — — — — — — — — — — — X — — — — — — — — — — — — — — X — — — — — — — — — — — — — — X — — — — — — — — — — — — — — X — — — — — — — — — — — — — — X — — — — — — — — — — — — — — X — — — — — — — — — — — — — — X — — — — — — — — — — — — — — X — — — — — — — — — — — — — — X — — — — — — — — — — — — — — X — — — — — — — — — — — — — — X — — — — — — — — — — — — — — X — — — — — — — — — — — — — — X — — — — — — — — — — — — — — X — — — — — — — — — — — — — — — Function Net Input 0 Net Input 1 Net input 2 Net Input 3 Net Input 4 Net Input 5 Net Input 6 Net Input 7 Net Input 8 Net Input 9 Net Input 10 Net Input 11 Net Input 12 Net Input 13 Net Input 14 Net Input 15 4-4 Bulletin 284G Programmable Parameters for Sensorless Vector Controllers Parameter Number Access Rule Data Type Group Units Minimum Value Maximum Value Default Value Network Outputs This parameter provides status of network outputs. 3 GET WORD DeviceLogix — 0 32767 0 Bit 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 — — — — — — — — — — — — — — X — — — — — — — — — — — — — X — — — — — — — — — — — — — X — — — — — — — — — — — — — X — — — — — — — — — — — — — X — — — — — — — — — — — — — X — — — — — — — — — — — — — X — — — — — — — — — — — — — X — — — — — — — — — — — — — X — — — — — — — — — — — — — X — — — — — — — — — — — — — X — — — — — — — — — — — — — X — — — — — — — — — — — — — X — — — — — — — — — — — — — X — — — — — — — — — — — — — X — — — — — — — — — — — — — — Function Net Output 0 Net Output 1 Net Output 2 Net Output 3 Net Output 4 Net Output 5 Net Output 6 Net Output 7 Net Output 8 Net Output 9 Net Output 10 Net Output 11 Net Output 12 Net Output 13 Net Output 14 4-5 Bulletin 284G Programmable Parameters for Sensorless Vector Controllers Parameter Number Access Rule Data Type Group Units Minimum Value Maximum Value Default Value Trip Status This parameter provides trip identification. 4 GET WORD DeviceLogix — 0 65535 0 Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 — — — — — — — — — — — — — — — X — — — — — — — — — — — — — — X — — — — — — — — — — — — — — X — — — — — — — — — — — — — — X — — — — — — — — — — — — — — X — — — — — — — — — — — — — — X — — — — — — — — — — — — — — X — — — — — — — — — — — — — — — — — — — — X — — — — — — — — — — — — — — X — — — — — — — — — — — — — — X — — — — — — — — — — — — — — X — — — — — — — — — — — — — — X — — — — — — — — — — — — — — X — — — — — — — — — — — — — — X — — — — — — — — — — — — — — X — — — — — — — — — — — — — — — X — — — — — — — ➊ Indicates DB1 Comm Fault for Bulletin 284G. Function Short Circuit Overload Phase Short Ground Fault Stall Control Power IO Fault Overtemperature Over Current Dnet Power Loss Internal Comm ➊ DC Bus Fault EEprom HW Fault Restart Retries Misc. Fault 4-6 Bulletin 284G Programmable Parameters for Sensorless Vector Controllers Parameter Number Access Rule Data Type Group Units Minimum Value Maximum Value Default Value Starter Status This parameter provides the status of the starter. 5 GET WORD DeviceLogix — 0 65535 0 Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 — — — — — — — — — — — — — — — X — — — — — — — — — — — — — — X — — — — — — — — — — — — — — X — — — — — — — — — — — — — — X — — — — — — — — — — — — — — X — — — — — — — — — — — — — — X — — — — — — — — — — — — — — X — — — — — — — — — — — — — — X — — — — — — — — — — — — — — X — — — — — — — — — — — — — — X — — — — — — — — — — — — — — X — — — — — — — — — — — — — — X — — — — — — — — — — — — — — X — — — — — — — — — — — — — — X — — — — — — — — — — — — — — X — — — — — — — — — — — — — — X — — — — — — — — — — — — — — — ➊ Refers to Control Brake contactor status. Function Tripped Warning Running Fwd Running Rev Ready Net Ctl Status Net Ref Status At Reference DrvOpto1 DrvOpto2 Keypad Jog Keypad Hand HOA Status 140M On Contactor 1 ➊ Reserved 4-7 Bulletin 284G Programmable Parameters for Sensorless Vector Controllers Parameter Number Access Rule Data Type Group Units Minimum Value Maximum Value Default Value Dnet Status This parameter provides status of the DeviceNet connection. 6 GET WORD DeviceLogix — 0 31 0 Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 — — — — — — — — — — — — — X — — — — — — — — — — — — X — — — — — — — — — — — — X — — — — — — — — — — — — X — — — — — — — — — — — — X — — — — — — — — — — — — X — — — — — — — — — — — — X — — — — — — — — — — — — X — — — — — — — — — — — — X — — — — — — — — — — — — — X — — — — — — — — — — — — — X — — — — — — — — — — — — X — — — — — — — — — — — — X — — — — — — — — — — — — X — — — — — — — — — — — — X — — — — — — — — — — — — X — — — — — — — — — — — — — Starter Command This parameter provides the command the starter. Function Exp Cnxn IO Cnxn Exp Flt IO Flt IO Idle Reserved ZIP 1 Cnxn ZIP 1 Flt ZIP 2 Cnxn ZIP 2 Flt ZIP 3 Cnxn ZIP 3 Flt ZIP 4 Cnxn ZIP 4 Flt Parameter Number 7 Access Rule GET/SET Data Type WORD Group DeviceLogix Units — Minimum Value 0 Maximum Value 255 Default Value 0 Bit 7 6 5 4 3 2 1 0 — — — — — — — X — — — — — — X — — — — — — X — — — — — — X — — — — — — X — — — — — — X — — — — — — X — — — — — — X — — — — — — — Function Run Fwd Run Rev Fault Reset Jog Fwd Jog Rev Reserved Reserved Reserved 4-8 Bulletin 284G Programmable Parameters for Sensorless Vector Controllers Network Override This parameter allows for the local logic to override a Network fault. 0 = Disable 1 = Enable Parameter Number Access Rule Data Type Group Units Minimum Value Maximum Value Default Value 8 GET/SET BOOL DeviceLogix — 0 1 0 Comm Override This parameter allows for local logic to override a loss of an I/O connection. 0 = Disable 1 = Enable Parameter Number Access Rule Data Type Group Units Minimum Value Maximum Value Default Value 9 GET/SET BOOL DeviceLogix — 0 1 0 Autobaud Enable When this parameter is enabled, the device will attempt to determine the network baud rate and set its baud rate to the same, provided network traffic exists. At least one node with an established baud rate must exist on the network for autobaud to occur. 0 = Disable 1 = Enable Parameter Number Access Rule Data Type Group Units Minimum Value Maximum Value Default Value 10 GET/SET BOOL DeviceNet — 0 1 1 Consumed I/O Assy This parameter selects the format of the I/O data consumed Parameter Number Access Rule Data Type Group Units Minimum Value Maximum Value Default Value 11 GET/SET USINT DeviceNet — 0 188 164 Produced I/O Assy This parameter selects the format of the I/O data produced. Parameter Number 12 Access Rule GET/SET Data Type USINT Group DeviceNet Units — DeviceNet Group Minimum Value 0 Maximum Value 190 Default Value 165 4-9 Bulletin 284G Programmable Parameters for Sensorless Vector Controllers Prod Assy Word 0 This parameter is used to build bytes 0-1 for produced assembly 120. Parameter Number Access Rule Data Type Group Units Minimum Value Maximum Value Default Value 13 GET/SET USINT DeviceNet — 0 262 1 Produced Assy Word 1 This parameter is used to build bytes 2-3 for produced assembly 120 Parameter Number Access Rule Data Type Group Units Minimum Value Maximum Value Default Value 14 GET/SET USINT DeviceNet — 0 262 4 Prod Assy Word 2 This parameter is used to build bytes 4-5 for produced assembly 120. Parameter Number Access Rule Data Type Group Units Minimum Value Maximum Value Default Value 15 GET/SET USINT DeviceNet — 0 262 5 Prod Assy Word 3 This parameter is used to build bytes 6-7 for produced assembly 120. Parameter Number Access Rule Data Type Group Units Minimum Value Maximum Value Default Value 16 GET/SET USINT DeviceNet — 0 262 6 Consumer I/O Size This parameter maps to the Scanner Tx Size. Parameter Number 17 Access Rule GET Data Type USINT Group DeviceNet Units — Minimum Value 0 Maximum Value 8 Default Value 4 4-10 Bulletin 284G Programmable Parameters for Sensorless Vector Controllers Parameter Number Produced I/O Size This parameter maps to the Scanners Rx Size. Starter COS Mask This parameter allows the installer to define the change-of-state conditions that will result in a change-of-state message being produced. 18 Access Rule GET Data Type USINT Group DeviceNet Units — Minimum Value 0 Maximum Value 8 Default Value 4 Parameter Number Access Rule Data Type Group Units Minimum Value Maximum Value Default Value 19 GET/SET WORD DeviceNet — 0 16383 16383 Bit 13 12 11 10 9 8 7 6 5 4 3 2 1 0 — — — — — — — — — — — — — X — — — — — — — — — — — — X — — — — — — — — — — — — X — — — — — — — — — — — — X — — — — — — — — — — — — X — — — — — — — — — — — — X — — — — — — — — — — — — X — — — — — — — — — — — — X — — — — — — — — — — — — X — — — — — — — — — — — — X — — — — — — — — — — — — X — — — — — — — — — — — — X — — — — — — — — — — — — X — — — — — — — — — — — — X — — — — — — — — — — — — — Function Tripped Warning Running Fwd Running Rev Ready Net Ctl Status 140M On At Reference User Input 0 User Input 1 User Input 2 User Input 3 User Input 4 User Input 5 4-11 Bulletin 284G Programmable Parameters for Sensorless Vector Controllers Net Out COS Mask This parameter sets the bit that will trigger a COS message on the network output. Parameter Number Access Rule Data Type Group Units Minimum Value Maximum Value Default Value 20 GET/SET WORD DeviceNet — 0 32767 0 Bit Function 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 — — — — — — — — — — — — — — X Net Output 0 — — — — — — — — — — — — — X — Net Output 1 — — — — — — — — — — — — X — — Net Output 2 — — — — — — — — — — — X — — — Net Output 3 — — — — — — — — — — X — — — — Net Output 4 — — — — — — — — — X — — — — — Net Output 5 — — — — — — — — X — — — — — — Net Output 6 — — — — — — — X — — — — — — — Net Output 7 — — — — — — X — — — — — — — — Net Output 8 — — — — — X — — — — — — — — — Net Output 9 — — — — X — — — — — — — — — — Net Output 10 — — — X — — — — — — — — — — — Net Output 11 — — X — — — — — — — — — — — — Net Output 12 — X — — — — — — — — — — — — — Net Output 13 X — — — — — — — — — — — — — — Net Output 14 Dnet Voltage This parameter provides the voltage measurement for the DeviceNet network. Parameter Number Access Rule Data Type Group Units Minimum Value Maximum Value Default Value 21 GET UINT DeviceNet V 0 6500 0 4-12 Bulletin 284G Programmable Parameters for Sensorless Vector Controllers Starter Protection Group Breaker Type This parameter identifies the Bulletin 140M used in this product. 0 = 140M-D8N-C10 1 = 140M-D8N-C25 Parameter Number Access Rule Data Type Group Units Minimum Value Maximum Value Default Value 22 GET BOOL Starter Protection — 0 1 — PrFlt Reset Mode This parameter is the Protection Fault reset mode. 0 = Manual 1 = Automatic Parameter Number Access Rule Data Type Group Units Minimum Value Maximum Value Default Value 23 GET/SET BOOL Starter Protection — 0 1 0 Pr Fault Enable This parameter enables the Protection Fault by setting the bit to 1. Parameter Number Access Rule Data Type Group Units Minimum Value Maximum Value Default Value 24 GET/SET WORD Starter Protection — 0 65535 64927 Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 — — — — — — — — — — — — — — — X — — — — — — — — — — — — — — X — — — — — — — — — — — — — — X — — — — — — — — — — — — — — X — — — — — — — — — — — — — — X — — — — — — — — — — — — — — X — — — — — — — — — — — — — — X — — — — — — — — — — — — — — X — — — — — — — — — — — — — — X — — — — — — — — — — — — — — X — — — — — — — — — — — — — — X — — — — — — — — — — — — — — X — — — — — — — — — — — — — — X — — — — — — — — — — — — — — X — — — — — — — — — — — — — — X — — — — — — — — — — — — — — X — — — — — — — — — — — — — — — Function Short Circuit Overload Phase Short Ground Fault Stall Control Power IO Fault Overtemperature Over Current Dnet Power Loss Internal Comm DC Bus Fault EEprom HW Fault Restart Retries Misc. Fault 4-13 Bulletin 284G Programmable Parameters for Sensorless Vector Controllers Pr Fault Reset This parameter resets the Protection Fault on a transition 0 > 1. Parameter Number Access Rule Data Type Group Units Minimum Value Maximum Value Default Value 25 GET/SET BOOL Starter Protection — 0 1 0 StrtrDN FltState This parameter in conjunction with Parameter 27 defines how the starter will respond when a DeviceNet fault occurs. When set to 1, hold to last state occurs. When set to 0, will go to DnFlt Value on DN faults as determined by Parameter 27. Parameter Number Access Rule Data Type Group Units Minimum Value Maximum Value Default Value 26 GET/SET BOOL Starter Protection — 0 1 0 StrtrDN FltValue This parameter determines if the starter will be commanded in the event of a DevceNet fault. 0 = OFF 1 = ON Parameter Number Access Rule Data Type Group Units Minimum Value Maximum Value Default Value 27 GET/SET BOOL Starter Protection — 0 1 0 StrtrDN IdlState This parameter in conjunction with Parameter 29 defines how the starter will respond when a DeviceNet network is idle. When set to 1, hold to last state occurs. When set to 0, will go to DnFlt Value on DN faults as determined by Parameter 29. 0 = Go to Idle Value 1 = Hold Last State Parameter Number 28 Access Rule GET/SET Data Type BOOL Group Starter Protection Units — StrtrDN IdlValue This parameter determines the state that starter assumes when the network is idle and Parameter 28 is set to 0. 0 = OFF 1 = ON Minimum Value 0 Maximum Value 1 Default Value 0 Parameter Number 29 Access Rule GET/SET Data Type BOOL Group Starter Protection Units — Minimum Value 0 Maximum Value 1 Default Value 0 4-14 Bulletin 284G Programmable Parameters for Sensorless Vector Controllers Last PR Fault 1 =Hdw Short Ckt 2 = Reserved 3 =Motor Overload (PF Fault Code 7) 4 =Drive Overload (PF Fault Code 64) 5 = Phase U to Gnd (PF Fault Code 38) 6 = Phase V to Gnd (PF Fault Code 39) 7 = Phase W to Gnd (PF Fault Code 40) 8 = Phase UV Short (PF4 Fault Code 41) 9 = Phase UW Short (PF Fault Code 42) 10 = Phase VW Short (PF Fault Code 43) 11 = Ground Fault (PF Fault Code 13) 12 = Stall (PF Fault Code 6) 13 = Control Pwr Loss 14 = Control Pwr Fuse 15 = Input Short 16 = Output Fuse 17 = Over Temp 18 = Heatsink OvrTmp (PF Fault Code 8) 19 = HW OverCurrent (PF Fault Code 12) 20 = SW OverCurrent (PF Fault Code 63) 21 = DNet Power Loss 22 = Internal Comm 23 = Drive Comm Loss (PF Fault Code 81) 24 = Power Loss (PF Fault Code 3) 25 = Under Voltage (PF Fault Code 4) 26 = Over Voltage (PF Fault Code 5) 27 = MCB EEPROM 28 = Base EEPROM 29 =Drive EEPROM (PF Fault Code 100) 30 = Wrong Base 31 = Fan RPM 32 = Power Unit (PF Fault Code 70) 33 = Drive IO Brd (PF Fault Code122) 34 = Restart Retries (PF Fault Code 33) 35 = Drive Aux In Flt (PF Fault Code 2) 36 = Analog Input (PF Fault Code 29) 37 = Drv Param Reset (PF Fault Code 48) 38 = SCV Autotune (PF Fault Code 80) 39 = Source Brake 40 = Reserved 41 = DB1 Comm 42 = DB1 Fault 43 = DB Switch Short Warning Status This parameter warns the user of a condition, without faulting Parameter Number 61 Access Rule GET Data Type UINT Group Starter Protection Units — Minimum Value 0 Maximum Value 45 Default Value 0 Parameter Number Access Rule Data Type Group Units Minimum Value Maximum Value Default Value 62 GET WORD Starter Protection — 0 65535 0 4-15 Bulletin 284G Programmable Parameters for Sensorless Vector Controllers User I/O Group Off-to-On Delay This parameter allows the installer to program a time duration before being reported ON. On-to-Off Delay This parameter allows the installer to program a time duration before being reported OFF. In Sink/Source This parameter allows the installer to program the inputs to be sink or source. 0 = Sink 1 = Source Parameter Number 30 Access Rule GET/SET Data Type UINT Group User I/O Units ms Minimum Value 0 Maximum Value 65.000 Default Value 0 Parameter Number Access Rule Data Type Group Units Minimum Value Maximum Value Default Value 31 GET/SET UINT User I/O ms 0 65.000 0 Parameter Number Access Rule Data Type Group Units Minimum Value Maximum Value Default Value 32 GET/SET BOOL User I/O — 0 1 0 4-16 Bulletin 284G Programmable Parameters for Sensorless Vector Controllers Miscellaneous Group Keypad Mode This parameter selects if the keypad operation is maintained or momentary. 0 = Maintained 1 = Momentary Parameter Number 45 Access Rule GET/SET Data Type BOOL Group Misc. Units — Minimum Value 0 Maximum Value 1 Default Value 0 Keypad Disable This parameter disables all keypad function except for the OFF and RESET buttons. 0 = Not Disabled 1 = Disabled Parameter Number Access Rule Data Type Group Units Minimum Value Maximum Value Default Value 46 GET/SET BOOL Misc. — 0 1 0 Set to Defaults This parameter if set to 1 will set the device to the factory defaults. 0 = No Operation 1 = Set to Defaults Parameter Number Access Rule Data Type Group Units Minimum Value Maximum Value Default Value 47 GET/SET BOOL Misc. — 0 1 0 Base Enclosure Parameter Number Access Rule Data Type Group Units Minimum Value Maximum Value Default Value 56 GET WORD Misc. — 0 15 0 Parameter Number Access Rule Data Type Group Units Minimum Value Maximum Value 57 GET WORD Misc. — 0 15 Default Value 0 Indicates the ArmorStart Base unit enclosure rating 0 = IP67 1 = Nema 4X 2 = SIL3/CAT4 3-15 = Reserved Base Options Indicates the options for the ArmorStart Base unit Bit 0 = Reserved Bit 1 = Reserved Bit 2 = CP Fuse Detect Bits 3-7 = Reserved Bit 8 = 10A Base Bit 9 = 25A Base Bit 10-15 = Reserved 4-17 Bulletin 284G Programmable Parameters for Sensorless Vector Controllers Wiring Options Bit 0 = Conduit Bit 1 = Round Media Bits 2 = 28xG Bits 3-15 = Reserved Starter Enclosure Bit 0 = IP67 Bit 1 = NEMA 4x Bit 2 = SIL3/CAT4 Bits 3-15 reserved Starter Option Bit 0 = Reserved Bit 1 = Reserved Bit 2 = Reserved Bit 3 = Control Brake Bit 4 = Dynamic Brake Bit 5 = Reserved Bit 6 = Reserved Bit 7 = Reserved Bits 8-15 = Reserved Parameter Number Access Rule Data Type Group Units Minimum Value Maximum Value Default Value 58 GET WORD Misc. — 0 15 0 Parameter Number Access Rule Data Type Group Units Minimum Value Maximum Value Default Value 59 GET WORD Misc. — 0 15 0 Parameter Number Access Rule Data Type Group Units Minimum Value Maximum Value 60 GET WORD Misc. — 0 66535 Default Value 0 4-18 Bulletin 284G Programmable Parameters for Sensorless Vector Controllers Drive DeviceNet Group Parameter Number Access Rule Data Type Group Units Minimum Value Maximum Value Default Value Drive Control This parameter provides the status of drive parameters. 48 GET WORD Drive DeviceNet — 0 4095 0 Bit 11 10 9 8 7 6 5 4 3 2 1 0 Function — — — — — — — — — — — X Accel 1 En — — — — — — — — — — X — Accel 2 En — — — — — — — — — X — — Decel 1 En — — — — — — — — X — — — Decel 3 En — — — — — — — X — — — — Freq Sel 0 — — — — — — X — — — — — Freq Sel 1 — — — — — X — — — — — — Freq Sel 2 — — — — X — — — — — — — Reserved — — — X — — — — — — — — Drv In 1 — — X — — — — — — — — — Drv In 2 — X — — — — — — — — — — Drv In 3 X — — — — — — — — — — — Drv In 4 Drvin PrFltState This parameter, in conjunction with Parameter 50, defines how the Drive Digital Inputs 1…4 will respond when a protection trip occurs. When set to 1, Drive Digital Inputs 1…4 continue to operate as command via the network. When set to 0, Drive Digital Inputs 1…4 will open or close as determined by setting in Parameter 50. 0 = Go to PrFlt Value 1 = Ignore PrFlt Parameter Number Access Rule Data Type Group Units Minimum Value Maximum Value Default Value 49 GET/SET BOOL Drive DeviceNet — 0 1 0 Drvin PrFltValue This parameter determines the state of Drive Digital Inputs 1…4, assumes when a trip occurs and Parameter 49 is set to 0. 0 = Open 1 = Close Parameter Number Access Rule Data Type Group Units Minimum Value Maximum Value Default Value 50 GET/SET BOOL Drive DeviceNet — 0 1 0 4-19 Bulletin 284G Programmable Parameters for Sensorless Vector Controllers Drvin DNFltState This parameter, in conjunction with Parameter 52, defines how the Drive Digital Inputs 1…4 will respond when a DeviceNet fault occurs. When set to 1, Drive Digital Inputs 1…4 hold to last state occurs. When set to 0, will go to DnFlt Value on DN faults as determined by Parameter 52. 0 = Go to Fault Value 1 = Hold Last State Parameter Number Access Rule Data Type Group Units Minimum Value Maximum Value Default Value 51 GET/SET BOOL Drive DeviceNet — 0 1 0 Drvin DNFlt Value This parameter determines the state of Drive Digital Inputs 1…4 when a DeviceNet Fault occurs and Parameter 51 is set to 0. 0 = OFF 1 = ON Parameter Number Access Rule Data Type Group Units Minimum Value Maximum Value Default Value 52 GET/SET BOOL Drive DeviceNet — 0 1 0 Drvin DNIdlState This parameter, in conjunction with Parameter 54, defines how the Drive Digital Input 1…4 will respond when a DeviceNet network is idle. When set to 1, hold to last state occurs. When set to 0, will go to DnFlt Value on DN faults as determined by Parameter 54. 0 = Go to Fault Value 1 = Hold Last State Parameter Number Access Rule Data Type Group Units Minimum Value Maximum Value Default Value 53 GET/SET BOOL Drive DeviceNet — 0 1 0 StrtrDN IdlValue This parameter determines the state that Drive Digital Inputs 1…4 assume when the network is idle and Parameter 53 is set to 0. 0 = OFF 1 = ON Parameter Number Access Rule Data Type Group Units Minimum Value Maximum Value Default Value 54 GET/SET BOOL Drive DeviceNet — 0 1 0 High Speed En 0 = Disabled 1 = Enabled Parameter Number 55 Access Rule GET/SET Data Type BOOL Group Drive DeviceNet Units — Minimum Value 0 Maximum Value 1 Default Value 0 4-20 Bulletin 284G Programmable Parameters for Sensorless Vector Controllers Display Group Output Freq Output frequency present at T1, T2, T3. Parameter Number Related Parameters Access Rule Data Type Group Units Minimum Value Maximum Value Default Value 101 102, 110, 134, 135, 138 GET UINT Display Group 0.1 Hz 0.0 400.0 Hz Read Only Commanded Freq Value of the active frequency command. Displays the commanded frequency even if the drive is not running. Parameter Number Related Parameters Access Rule Data Type Group Units Minimum Value Maximum Value Default Value 102 101, 113, 134, 135, 138 GET UINT Display Group 0.1 Hz 0.0 400.0 Hz Read Only Output Current Output Current present at T1, T2, T3. Parameter Number Access Rule Data Type Group Units Minimum Value Maximum Value Default Value 103 GET UINT Display Group 0.01 0.00 Drive rated amps x 2 Read Only Output Voltage Output Current present at T1, T2, T3. Parameter Number Related Parameters Access Rule Data Type Group Units Minimum Value Maximum Value Default Value 104 131, 184, 188 GET UINT Display Group 1V AC 0 230V, 460V, or 600V AC Read Only DC Bus Voltage Present DC Bus voltage level. Parameter Number Access Rule Data Type Group Units Minimum Value Maximum Value Default Value 105 GET UINT Display Group 1V DC Based on Drive Rating Read Only 4-21 Bulletin 284G Programmable Parameters for Sensorless Vector Controllers Drive Status Present operating condition of the drive. Bit 0 = running Bit 1 = Forward Bit 2 = Accelerating Bit 3 = Decelerating Parameter Number 106 Related Parameter 195 Access Rule GET Data Type Byte Group Display Group Units — Minimum Value 0 Maximum Value 1 Default Value Read Only Fault 1 Code A code that represents drive fault. The code will appear in this parameter as the most recent fault that has occurred. Parameter Number Access Rule Data Type Group Units Minimum Value Maximum Value Default Value 107 GET UINT Display Group — F122 F2 Read Only Fault 2 Code A code that represents a drive fault. The code will appear in this parameter as the second most recent fault that has occurred. Parameter Number Access Rule Data Type Group Units Minimum Value Maximum Value Default Value 108 GET UINT Display Group — F122 F2 Read Only Fault 3 Code A code that represents a drive fault. The code will appear in this parameter as the third most recent fault that has occurred. Parameter Number Access Rule Data Type Group Units Minimum Value Maximum Value Default Value 109 GET UINT Display Group — F122 F2 Read Only Process Display The output frequency scaled by the process factor (Parameter 199). Parameter Number Related Parameter Access Rule Data Type Group Units Minimum Value Maximum Value Default Value 110 101. 199 GET LINT Display Group 0.01…1 0.00 9999 Read Only 4-22 Bulletin 284G Programmable Parameters for Sensorless Vector Controllers Parameter Number Access Rule Data Type Group Units Minimum Value Maximum Value 112 136, 138, 151…154 (Digital Inx Sel) must be set to 4, 169, 170…177 (Preset Freq X), 240…247 (Step Logic Control) GET UINT Display Group 1 0 9 Default Value 5 Contrl In Status Status of the control terminal block control inputs: Bit 0 = Start/Run FWD input Bit 1 = Direction/Run REV Input Bit 2 = Stop Input Bit 3 = Dynamic Brake Transistor On Parameter Number Related Parameter Access Rule Data Type Group Units Minimum Value Maximum Value Default Value 113 102, 134, 135 GET UINT Display Group 1 0 1 0 Dig In Status Status of the control terminal block digital inputs: Bit 0 = Digital IN 1 Sel Bit 1 = Digital IN 2 Sel Bit 2 = Digital IN 3 Sel Bit 3 = Digital IN 4 Sel Parameter Number Related Parameter Access Rule Data Type Group Units Minimum Value Maximum Value Default Value 114 151…154 GET UINT Display Group 1 0 1 0 Comm Status Status of communications ports: Bit 0 = Receiving Data Bit 1 = Transmitting Data Bit 2 = RS485 Bit 3 = Communication Error Parameter Number Related Parameter Access Rule Data Type Group Units Minimum Value Maximum Value Default Value 115 203…207 GET UINT Display Group 1 0 1 0 Control Source Displays the source of the Start Command and Speed Reference. Valid Start Commands for the Bulletin 284G ArmorStart are the following: 2 = 2-wire 3 = 2-wire Level Sensitive 4 = 2-wire High Speed 5 = RS485 (DSI) Port 9 = Jog Valid Speed Commands for the Bulletin 284G ArmorStart are the following: 1 = Internal Frequency 2 = 0…10V Input/Remote Potentiometer 4 = Preset Freq X 5 = RS485 (DSI) port 6 = Step Logic Control 9 = Jog Freq Related Parameters 4-23 Bulletin 284G Programmable Parameters for Sensorless Vector Controllers Control SW Ver Main Control Board software version for AC Drive. Parameter Number Access Rule Data Type Group Units Minimum Value Maximum Value Default Value 116 GET UINT Display Group 0.01 1.00 99.99 Read Only Drive Type Used by Rockwell Automation field service personnel. Parameter Number Access Rule Data Type Group Units Minimum Value Maximum Value Default Value 117 GET UINT Display Group 1 1001 9999 Read Only Elapsed Run Time Accumulated time drive is outputting power. Time is displayed in 10 hour increments. Parameter Number Access Rule Data Type Group Units Minimum Value Maximum Value Default Value 118 GET UINT Display Group 1 = 10 hrs 0 9999 Read Only Testpoint Data The present value of the function selected in Parameter 202. Parameter Number Related Parameter Access Rule Data Type Group Units Minimum Value Maximum Value Default Value 119 202 GET UINT Display Group 1 Hex 0 FFFF Read Only Analog In 0…10V The percent value of the voltage at I/O terminal 13 (100% = 10V). Parameter Number Related Parameter Access Rule Data Type Group Units Minimum Value Maximum Value Default Value 120 210, 211 GET UINT Display Group 0.1% 0.0% 100.0% Read Only Parameter Number 121 Analog In 4…20 mA This parameter is not available for use with the Bulletin 284G ArmorStart Distributed Motor Controller. 4-24 Bulletin 284G Programmable Parameters for Sensorless Vector Controllers Output Power The output power present at T1, T2, and T3. Output Power Fctr The angle in electrical degrees between motor voltage and current. Parameter Number Access Rule Data Type Group Units Minimum Value Maximum Value Default Value 122 GET UINT 0.00 Drive rated power X 2 Read Only Parameter Number 123 Display Group Access Rule GET Data Type UINT Group Display Group Units 0.1° Minimum Value 0.0° Maximum Value 180.0° Default Value Read Only Drive Temp Present operating temperature of the drive power section. Parameter Number Access Rule Data Type Group Units Minimum Value Maximum Value Default Value 124 GET UINT Display Group 1°C 0 120 Read Only Counter Status The current value of the counter when counter is enabled. Parameter Number Access Rule Data Type Group Units Minimum Value Maximum Value Default Value 125 GET UINT Display Group 1 0 9999 Read Only Timer Status The current value of the timer when timer is enabled. Parameter Number Access Rule Data Type Group Units Minimum Value Maximum Value Default Value 126 GET UINT Display Group 0.1 sec 0 9999 Read Only 4-25 Bulletin 284G Programmable Parameters for Sensorless Vector Controllers Stp Logic Status When Parameter 138 (Speed Reference) is set to 6 Stp Logic, this parameter will display the current step of step logic as defined by Parameters 240…247 (Stp Logic X). Torque Current The current value of the motor torque current. Parameter Number 128 Access Rule GET Data Type UINT Group Display Group Units 1 Minimum Value 0 Maximum Value 8 Default Value Read Only Parameter Number 129 Related Parameters Access Rule GET Data Type UINT Group Display Group Units 0.01 Minimum Value 0.00 Maximum Value Drive Rated Amps x 2 Default Value Read Only Parameter Number Related Parameters Access Rule Data Type Group Units Minimum Value Maximum Value Default Value 131 104, 184, 185…187 GET/SET UINT Basic Program 1V AC 20 240V, 460V, or 600V AC Based on Drive Rating Parameter Number Related Parameters Access Rule Data Type Group Units Minimum Value Maximum Value Default Value 132 184, 185…187, and 190 GET/SET UINT Basic Program 1 Hz 15 400 60 Hz Basic Program Group Motor NP Volts Stop drive before changing this parameter. Set to the motor name plate rated volts. Motor NP Hertz Set to the motor nameplate rated frequency. Stop drive before changing this parameter. 4-26 Bulletin 284G Programmable Parameters for Sensorless Vector Controllers Motor OL Current Set to the maximum allowable current. The drive fault on an F7 Motor Over load if the value of this parameter is exceeded by 150% for 60 seconds. Parameter Number Related Parameter Access Rule Data Type Group Units Minimum Value Maximum Value Default Value Minimum Freq Sets the lowest frequency the drive will output continuously. Parameter Number Related Parameter Access Rule Data Type Group Units Minimum Value Maximum Value Default Value Maximum Freq Stop drive before changing this parameter. Sets the Highest frequency the drive will output continuously. Start Source Stop drive before changing this parameter. Sets the control scheme used to start the Bulletin 284G ArmorStart. 2 = 2-wire 3 = 2-wire Level Sensitive 4 = 2-wire High Speed 5 = RS485 (DSI) Port Parameter Number 133 155, 158, 161, 189, 190, 198, 214, 218 GET/SET UINT Basic Program 0.1 A 0.0 Drive rated amps x 2 Based on Drive Rating 134 101, 102, 113, 135, 185, 186, 187, 210, 212 GET/SET UINT Basic Program 0.1 Hz 0.0 400 0.0 Access Rule Data Type Group Units Minimum Value Maximum Value Default Value 135 101, 102, 113, 134, 135, 178, 185, 186, 187, 211, 213 GET/SET UINT Basic Program 0.1 Hz 0.0 400 60.0 Parameter Number Related Parameters Access Rule Data Type Group Units Minimum Value Maximum Value Default Value 136 112 and 137 GET/SET UINT Basic Program — 0 5 5 Related Parameter 4-27 Bulletin 284G Programmable Parameters for Sensorless Vector Controllers Stop Mode Valid Stop Mode for the Bulletin 284G ArmorStart are the following: 0 = Ramp, CF Ramp to Stop. Stop command clears active fault. 1 = Coast, CF Coast to Stop. Stop command clears active fault. 2 = DC Brake,CF DC Injection Braking Stop. Stop command clears active fault. 3 = DCBrkAuto, CF DC injection Braking with Auto Shutoff. Standard DC Injection Braking for value set in Parameter 180 (DC Brake Time) or Drive shuts off if the drive detects that the motor is stopped. Stop command clears active fault 4 = Ramp Ramp to Stop 5 = Coast Coast to Stop 6 = DC Brake DC Injection Braking Stop 7 = DC BrakeAuto DC Injection Stop with Auto Shutoff. Standard DC Injection Braking for value set in Parameter 180 (DC Brake Time) or Drive shuts off if current limit is exceeded 8 = Ramp + EM B, CF Ramp to Stop with EM Brake Control. Stop command clears active fault. 9 = Ramp + EM Brk Ramp to Stop with EM Brake Control. Speed Reference Valid Speed References for the Bulletin 284G ArmorStart are the following: 1 = Internal Freq 2 = 0…10V Input 4 = Preset Freq 5 = Comm port 6 = Stp Logic 9 = Jog Freq Note: Option 2 must be selected when using 0…10V Analog Input. Accel Time 1 Sets the rate of acceleration for all speed increases. Maximum Freq- = Accel Rate ------------------------------------Accel Time Parameter Number 137 Related Parameters 136, 180, 181, 182, 205, 260, 261 Access Rule GET/SET Data Type UINT Group Basic Program Units — Minimum Value 0 Maximum Value 9 Default Value 9 Parameter Number 138 101, 102, 112, 139, 140, 151, 152, 153, 154, 169, 170…173, 174…177, 210, 211, 213, 232, 240…247, and 250…257 GET/SET UINT Basic Program — 0 7 5 Related Parameters Access Rule Data Type Group Units Minimum Value Maximum Value Default Value Parameter Number 139 Related Parameters 138, 140, 151, 152, 153, 154, 167, 170…173, 174…177, and 240…247 Access Rule GET/SET Data Type UINT Group Basic Program Units 0.1 sec Minimum Value 0.0 sec Maximum Value 600.0 sec Default Value 10.0 sec 4-28 Bulletin 284G Programmable Parameters for Sensorless Vector Controllers Decel Time 1 Sets the rate of deceleration for all speed decreases. Maximum Freq- = Decel Rate ------------------------------------Decel Time Reset To Defaults Stop drive before changing this parameter. Resets all parameter values to factory defaults. 0 = Ready/Idle (Default) 1 = Factory Rset Motor OL Ret Enables/disables the Motor overload Retention function. When Enabled, the value held in the motor overload counter is saved at power-down and restored at powerup. A change to this parameter setting resets the counter. 0 = Disabled (Default) 1 = Enabled Parameter Number Access Rule Data Type Group Units Minimum Value Maximum Value Default Value 140 138, 139, 151, 152, 153, 154, 168, 170…173, 174…177, and 240…247 GET/SET UINT Basic Program 0.1 sec 0.1 sec 600.0 sec 10.0 sec Parameter Number 141 Access Rule GET/SET Data Type BOOL Group Basic Program Group Units — Related Parameters Minimum Value 1 Maximum Value 1 Default Value 0 Parameter Number 143 Access Rule GET/SET Data Type BOOL Group Basic Program Group Units — Minimum Value 0 Maximum Value 1 Default Value 0 Parameter Number 151, 152, 153, 154 112, 114, 138…140, 167, 168, 170…173, 174…177, 178, 179, 240…247 GET/SET UINT Advanced Program Group Advanced Program Group 151 (Digital In 1 SEL) 152 (Digital In 2 SEL) 153 (Digital In 3 SEL) 154 (Digital In 4 SEL) Stop drive before changing this parameter. Selects the function for the digital inputs. Related Parameters Access Rule Data Type Group Units Minimum Value Maximum Value Default Value See Table 4.2 for details Bulletin 284G Programmable Parameters for Sensorless Vector Controllers Table 4.2 Options 0 Not Used 1 Acc & Dec2 2 Jog 3 Aux Fault Preset Freq (Parameters 151 and 152 Default) Local (Parameter 153 Default) Comm Port Clear Fault RampStop,CF CoastStop,CF DCInjStop,CF Jog Forward (Parameter 154 Default) 4 5 6 7 8 9 10 11 12 Jog Reverse 13 10V In Ctrl 14 15 16 17 18 19 20 21 22 20MA In Ctrl PID Disable MOP Up MOP Down Timer Start Counter In Reset Timer Reset Countr Rset Tim&Cnt 23 Logic In1 24 Logic In2 25 Current Lmt2 26 Anlg Invert 4-29 Digital Inputs Options Description Terminal has no function but can be read over network communication via Parameter 114 (Dig In Status). • When active, Parameter 167 (Accel Time 2) and Parameter 168 (Decel Time 2) are used for all ramp rates except Jog. • Can only be tied to one input. • When input is present, drive accelerates according to the value set in Parameter 179 (Jog Accel/Decel) and ramps to the value set in Parameter 178 (Jog Frequency). • When the input is removed, drive ramps to a stop according to the value set in Parameter 179 (Jog Accel/ Decel). • A valid Start command will override this input. When enable, an F2 Auxiliary Input fault will occur when the input is removed. Refer to Parameters 170…173 and 174…177. Option not valid for Bulletin 284G ArmorStart. This option is the default setting. When active, clears active fault. Causes drive to immediately ramp to stop regardless of how Parameter 137 (Stop Mode) is set. Causes drive to immediately ramp to stop regardless of how Parameter 137 (Stop Mode) is set. Causes drive to immediately begin a DC Injection stop regardless of how Parameter 137 (Stop Mode) is set. Drive accelerates to Parameter 178 (Jog Frequency) according to Parameter 179 (Jog Accel/Decel) and ramps to stop when input becomes inactive. A valid start will override this command. Drive accelerates to Parameter 178 (Jog Frequency) according to Parameter 179 (Jog Accel/Decel) and ramps to stop when input becomes inactive. A valid start will override this command. Option with Factory Installed option — A10 (0…10V Analog Input). Selects 0…10V or +/-10V as the frequency reference. Start source is not changed. Option not valid for Bulletin 284G ArmorStart. Disabled PID function. Drive uses the next valid non-PID speed reference. Increases the value of Parameter 169 (internal Freq) at a rate 2 Hz per second. Default of Parameter 169 is 60 Hz. Decreases the value of Parameter 169 (internal Freq) at a rate 2 Hz per second. Default of Parameter 169 is 60 Hz. Clears and starts the timer function. May be used to control the relay or opto outputs. Starts the counter function. May be used to control the relay or opto outputs. Clears the active timer. Clears the active counter. Clear active timer and counter. Logic Function input number 1. May be used to control the relay or opto outputs (see Parameters 155, 158, 161 options 11…14). May be used in conjunction with Step Logic Parameters 240…247 (Stp Logic X). Logic Function input number 1. May be used to control the relay or opto outputs (see Parameters 155, 158, 161 options 11…14). May be used in conjunction with Step Logic Parameters 240…247 (Stp Logic X). When active, Parameter 218 (Current Limit 2) determines the drive current limit level. Inverts the scaling of analog input levels set in parameter 210 (Anlg In 0…10V LO) and parameter 211 (Anlg In 0…10 HI). 4-30 Bulletin 284G Programmable Parameters for Sensorless Vector Controllers 155 (Relay Out Sel) Sets the condition that changes the state of the output relay contacts. Parameter Number Related Parameters Access Rule Data Type Group Units Minimum Value Maximum Value Default Value 155 133, 156, 192, 240…247, 250…257, 260, 261 GET/SET UINT Advanced Program Group — 0 22 22 Table 4.3 Options 1 2 3 4 Ready/Fault (Default) At Frequency MotorRunning Reverse Motor Overld 5 Ramp Reg 6 Above Freq 7 Above Cur 8 Above DCVolt 9 10 11 12 13 14 15 16 17 Retries Exst Above Anlg V Logic In 1 Logic In 2 Logic In 1 & 2 Logic In 1 or 2 StpLogic Out Timer Out Counter Out 18 Above PF Ang 19 Anlg In Loss 20 ParamControl 21 NonRec Fault 22 EM Brk Cntrl 0 Description Relay changes state when power is applied. This indicates the drive is ready for operation. Relay returns drive to shelf state when power is removed or a fault occurs. Drive reached commanded frequency. Motor is receiving power from drive. Drive is commanded to run in reverse direction. Motor overload condition exists. Ramp regulator is modifying the programmed accel/decal times to avoid overcurrent or overvoltage fault from occurring. Drive exceeds the frequency (Hz) value set in Parameter 156 (Relay Out Level) Use Parameter 156 to set threshold. Drive exceeds the current (% Amps) value set in Parameter 156 (Relay Out Level) Use Parameter 156 to set threshold. Drive exceeds the DC bus voltage value set in Parameter 156 (Relay Out Level). Use Parameter 156 to set threshold. Value set in Parameter 192 (Auto Rstrt Tries) is exceeded. Option not valid for Bulletin 284G ArmorStart. An input is programmed as Logic In 1 and is active. An input is programmed as Logic In 2 and is active. Both Logic inputs are programmed and active. One or both Logic inputs are programmed and one or both is active. Drive enters Step Logic step with Digit 3 of Command Word (Parameters 240…247). Timer has reached value set in Parameter 156 (Relay Out Level). Use Parameter 156 to set threshold. Counter has reached value set in Parameter 156 (Relay Out Level). Use Parameter 156 to set threshold. Power factor angle has exceeded the value set in Parameter 156 (Relay Out Level). Use Parameter 156 to set threshold. Analog input loss has occurred. Program parameter 122 (Analog In Los) for desired action when loss occurs Enables the output to be controlled over the network communications by writing to Parameter 156 (Relay Out Level) (0 = Off, 1 = ON). Value set in Parameter 192 (Auto Rstrt Tries) is exceeded. EM Brake is energized. Program Parameter 260 (EM Brk Off Delay) and Parameter 262 (EM Brk On Delay) for desired action. 4-31 Bulletin 284G Programmable Parameters for Sensorless Vector Controllers Relay Out Level Sets the trip point for the digital output relay if the value of Parameter 155 (Relay Out Sel) is 6, 7, 8, 10, 16, 17, 18, or 20. Parameters 155 Setting Parameter 156 Min./Max. 6 7 8 10 16 17 18 20 0/400 Hz 0/180% 0/815V 0/100% 0.1/9999 sec 1/9999 counts 1/180° 0/1 158 (Opto Out1 Sel) 161 (Opto Out2 Sel) Determines the operation of the programmable opto outputs. Parameter Number 156 Related Parameters 155, 158, 161 Access Rule GET/SET Data Type UINT Group Advanced Program Group Units 0.1 Minimum Value 0.0 Maximum Value 9999 Default Value 0.0 Parameter Number 158, 161 133, 156, 192, 240…247, 250…257 GET/SET UINT Advanced Program Group Related Parameters Access Rule Data Type Group Units Minimum Value Maximum Value Default Value Table 4.4 Parameter 158 and 161 Options Options Description 3 4 Ready/Fault (Default) At Frequency (Parameter 161 Default) MotorRunning (Parameter 158Default) Reverse Motor Overld 5 Ramp Reg 6 Above Freq 7 Above Cur 8 Above DCVolt 9 10 11 12 13 14 Retries Exst Above Anlg V Logic In 1 Logic In 2 Logic In 1 & 2 Logic In 1 or 2 0 1 2 See Table 4.4 for details Opto outputs are active when power is applied. This indicates the drive is ready for operation. Opto outputs are inactive when power is removed or a fault occurs. Drive reached commanded frequency. Motor is receiving power from drive. Drive is commanded to run in reverse direction. Motor overload condition exists. Ramp regulator is modifying the programmed accel/decal times to avoid overcurrent or overvoltage fault from occurring. Drive exceeds the frequency (Hz) value set in Parameter 159 (Opto Out 1 Level) or Parameter 162 (Opto Output 2 Level) Use Parameter 159 or 162 to set threshold. Drive exceeds the current (% Amps) value set in Parameter 159 (Opto Out 1 Level) or Parameter 162 (Opto Output 2 Level). Use Parameter 159 or 162 to set threshold. Important: Value for Parameter 159 or 162 must entered in percent of the drive rated output current. Drive exceeds the DC bus voltage value set in Parameter 159 (Opto Out 1 Level). Use Parameter 159 or 162 to set threshold. Value set in Parameter 192 (Auto Rstrt Tries) is exceeded. Option not valid for Bulletin 284G ArmorStart. An input is programmed as Logic In 1 and is active. An input is programmed as Logic In 2 and is active. Both Logic inputs are programmed and active. One or both Logic inputs are programmed and one or both is active. 4-32 Bulletin 284G Programmable Parameters for Sensorless Vector Controllers Options Description 15 StpLogic Out 16 Timer Out 17 Counter Out 18 Above PF Ang 19 Anlg In Loss 20 ParamControl Drive enters Step Logic step with Digit 3 of Command Word (Parameters 240…247). Timer has reached value set in Parameter 159 (Opto Out 1 Level) or Parameter 162 (Opto Output 2 Level). Use Parameter 159 or 162 to set threshold. Counter has reached value set in Parameter 159 (Opto Out 1 Level) or Parameter 162 (Opto Output 2 Level). Use Parameter 159 or 162 to set threshold. Power factor angle has exceeded the value set in Parameter 159 (Opto Out 1 Level) or Parameter 162 (Opto Output 2 Level). Use Parameter 159 or 162 to set threshold. Analog input loss has occurred. Program parameter 122 (Analog In Los) for desired action when loss occurs Enables the output to be controlled over the network communications by writing to Parameter 159 (Opto Out 1 Level) or Parameter 162 (Opto Output 2 Level) (0 = Off, 1 = ON). Value set in Parameter 192 (Auto Rstrt Tries) is exceeded. ATTENTION Parameter 192 (Auto Rstrt Tries) is not enabled. A nonresettable fault has occurred. 21 NonRec Fault 22 EM Brk Cntrl ! EM Brake is energized. Program Parameter 260 (EM Brk Off Delay) and Parameter 262 (EM Brk On Delay) for desired action. 159 (Opto Out1 Level) 162 (Opto Out2 Level) Sets the trip point for the digital output relay if the value of Parameter 158 (Opto Out1 Sel) or Parameter 161 (Opto Out2 Sel) is 6, 7, 8, 10, 16, 17, 18, or 20. Parameters 158 and 161 Setting Parameters 159 and 161 Min./Max. 6 7 8 10 16 17 18 20 0/400 Hz 0/180% 0/815V 0/100% 0.1/9999 sec 1/9999 counts 1/180° 0/1 Opto Out Logic Determines the logic (Normally Open/N.O. or Normally Closed/N.C.) of the opto outputs. Option Opto Out1 Logic Opto Out2 Logic 0 1 2 3 N.O. (Normally Open) N.C. (Normally Closed) N.O. (Normally Open) N.C. (Normally Closed) N.O. (Normally Open) N.O. (Normally Open) N.C. (Normally Closed) N.C. (Normally Closed) Parameter Number 159 162 Access Rule GET/SET Data Type UINT Group Advanced Program Group Units — Minimum Value 0.0 Maximum Value 9999 Default Value 0.0 Parameter Number 164 Access Rule GET/SET Data Type UINT Group Advanced Program Group Units 1 Minimum Value 0 Maximum Value 3 Default Value 0 4-33 Bulletin 284G Programmable Parameters for Sensorless Vector Controllers Analog Out Sel Sets the analog output signal (0…10V). The output is used to provide a signal that is proportional to several drives Table 4.5 Options 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 OutFreq 0…10 OutCurr 0…10 OutVolt 0…10 OutPowr 0…10 TstData 0…10 OutFreq 0…20 OutCurr 0…20 OutVolt 0…20 OutPowr 0…20 TstData 0…20 OutFreq 4…20 OutCurr 4…20 OutVolt 4…20 OutPowr 4…20 TstData 4…20 OutTorq 0…10 OutTorq 0…20 OutTorq 4…20 Setpnt 0…10 Setpnt 0…20 Setpnt 4…20 Parameter Number Related Parameters Access Rule Data Type Group Units Minimum Value Maximum Value Default Value 165 135, 166 GET/SET UINT Advanced Program Group See Table for details Analog Output Options Output Range Minimum Output Value Maximum Output Value A066 (Analog Out High) DIP Switch Position Related Parameter 0…10V 0…10V 0…10V 0…10V 0…10V 0…20 mA 0…20 mA 0…20 mA 0…20 mA 0…20 mA 4…20 mA 4…20 mA 4…20 mA 4…20 mA 4…20 mA 0…10V 0…20 mA 4…20 mA 0…10V 0…20 mA 4…20 mA 0V = 0 Hz 0V = 0 Amps 0V = 0 Volts 0V = 0 kW 0V = 0000 0 mA = 0 Hz 0 mA = 0 Amps 0 mA = 0 Volts 0 mA = 0 kW 0 mA = 0000 4 mA = 0 Hz 4 mA = 0 Amps 4 mA = 0 Volts 4 mA = 0 kW 4 mA = 0000 0V = 0 Amps 0 mA = 0 Amps 4 mA = 0 Amps 0V = 0% 0 mA = 0% 4 mA = 0% P035 (Maximum Freq) 200% Drive Rated Output Current 120% Drive Rated Output Volts 200% Drive Rated Power 65535 (Hex FFFF) P035 (Maximum Freq) 200% Drive Rated Output Current 120% Drive Rated Output Volts 200% Drive Rated Power 65535 (Hex FFFF) P035 (Maximum Freq) 200% Drive Rated Output Current 120% Drive Rated Output Volts 200% Drive Rated Power 65535 (Hex FFFF) 200% Drive Rated FLA 200% Drive Rated FLA 200% Drive Rated FLA 100.0% Setpoint Setting 100.0% Setpoint Setting 100.0% Setpoint Setting 0…10V 0…10V 0…10V 0…10V 0…10V 0…20 mA 0…20 mA 0…20 mA 0…20 mA 0…20 mA 0…20 mA 0…20 mA 0…20 mA 0…20 mA 0…20 mA 0…10V 0…20 mA 0…20 mA 0…10V 0…20 mA 0…20 mA 101 103 104 122 119 101 103 104 122 119 101 103 104 122 119 129 129 129 209 209 209 Note: Only options 5…14, 16, 17, 19, and 20 are not valid options. Analog Out High Scales the maximum output value for parameter 165 source setting Parameter Number Access Rule Data Type Group Units Minimum Value Maximum Value Default Value 166 GET/SET UINT Advanced Program Group % 0% 800% 100% 4-34 Bulletin 284G Programmable Parameters for Sensorless Vector Controllers Accel Time 2 When active, sets the rate of acceleration for all speed increases except for jog. Maximum Freq- = Accel Rate ------------------------------------Accel Time ce ler at Ac on ati Speed er cel De ion Parameter 135 (Maximum Freq) 0 Param. 0 139 or 167 (Accel Time x) Time Param. 140 or 168 (Decel Time x) Decel Time 2 When active, sets the rate of deceleration for all speed decreases except for jog. Maximum Freq- = Decel Rate ------------------------------------Decel Time Parameter Number Access Rule Data Type Group Units Minimum Value Maximum Value 167 139, 151, 152, 153, 154, 170…173, 174…177, 240…247 GET/SET UINT Advanced Program Group 0.1 sec 0.0 600.0 Default Value 20.0 Parameter Number 168 140, 151, 152, 153, 154, 170…173, 174…177, 240…247 GET/SET Related Parameters Related Parameters Access Rule era n tio Ac era cel cel Speed De tio n Parameter 135 (Maximum Freq) 0 Param. 0 139 or 167 (Accel Time x) Time Param. 140 or 168 (Decel Time x) Internal Freq Provide the frequency command to drive when Parameter 138 (Speed Reference) is set to 1 Internal Freq. When enabled, this parameter will change the frequency command in real time. Data Type UINT Group Advanced Program Group Units 0.1 sec Minimum Value 0.0 Maximum Value 600.0 Default Value 20.0 Parameter Number Related Parameters Access Rule Data Type Group Units Minimum Value Maximum Value Default Value 169 138, 162 GET/SET UINT Advanced Program Group 0.1 Hz 0.0 400.0 60.0 Bulletin 284G Programmable Parameters for Sensorless Vector Controllers Parameter Number Related Parameters 170 (Preset Freq 0) ➊ 171 (Preset Freq 1) 172 (Preset Freq 2) 173 (Preset Freq 3) 174 (Preset Freq 4) 175 (Preset Freq 5) 176 (Preset Freq 6) 177 (Preset Freq 7) 4-35 Access Rule Data Type Group Units Minimum Value Maximum Value Default Value 170…173, 174…177 138, 139, 140, 151, 152, 152, 153, 167, 168, 240…247, 250…257 GET/SET UINT Advanced Program Group 0.1 Hz 0.0 400.0 See Table 4.A 170 Default ➊ 171 Default 172 Default 173 Default 174 Default 175 Default 176 Default 177 Default Min./Max. Display 0.0 Hz 5.0 Hz 10.0 Hz 20.0 Hz 30.0 Hz 40.0 Hz 50.0 Hz 60.0 Hz 0.0/400.0 Hz 0.1 Hz . Table 4.A 170…177 Preset Freq Options Values Provides a fixed frequency command value when 151…153 (Digital Inx Sel) is set to 4 Preset Frequencies. Input State of Digital In 1 (I/O Terminal 05 when Parameter 151 = 4) Input State of Digital In 2 (I/O Terminal 06 when Parameter 152 = 4) Input State of Digital In 3 (I/O Terminal 07 when Parameter 153 = 4) Frequency Source Accel/Decel Parameter Used ➋ 0 1 0 1 0 1 0 1 0 0 1 1 0 0 1 1 0 0 0 0 1 1 1 1 170 (Preset Freq 0) 171 (Preset Freq 1) 172 (Preset Freq 2) 173 (Preset Freq 3) 174 (Preset Freq 4) 175 (Preset Freq 5) 176 (Preset Freq 6) 177 (Preset Freq 7) (Accel Time 1)/(Decel Time 1) (Accel Time 1)/(Decel Time 1) (Accel Time 2)/(Decel Time 2) (Accel Time 2)/(Decel Time 2) (Accel Time 3)/(Decel Time 3) (Accel Time 3)/(Decel Time 3) (Accel Time 4)/(Decel Time 4) (Accel Time 4)/(Decel Time 4) ➊ To activate 170 (Preset Freq 0) set 138 (Speed Reference) to option 4 Preset Freq. ➋ When a Digital Input is set to Accel 2 & Decel 2, and the input is active, that input overrides the settings in this table. Jog Frequency Sets the output frequency when the jog command is issued. Parameter Number Related Parameters Access Rule Data Type Group Units Minimum Value Maximum Value Default Value 178 135, 151, 152, 153, 154, 179 GET/SET UINT Advanced Program Group 0.1 Hz 0.0 400.0 10.0 4-36 Bulletin 284G Programmable Parameters for Sensorless Vector Controllers Jog Accel/Decel Sets the acceleration and deceleration time when a jog command is issued. Parameter Number Related Parameters Access Rule Data Type Group Units Minimum Value Maximum Value Default Value 179 178, 151, 152, 153, 154 GET/SET UINT Advanced Program Group 0.1 sec 0.1 600.0 10.0 DC Brake Time Sets the length of time that DC brake current is injected into the motor. Refer to Parameter 181 DC Brake Level. Parameter Number Related Parameters Access Rule Data Type Group Units Minimum Value Default Value 180 137, 181 GET/SET UINT Advanced Program Group 0.1 sec 0.0 99.9 (Setting of 99.9 = Continuous) 0.0 Parameter Number Related Parameters Access Rule Data Type Group Units Minimum Value Maximum Value Default Value 181 137, 180 GET/SET UINT Advanced Program Group 0.1 A 0.0 Drive rated amps X 1.8 Drive rated amps X 0.05 Maximum Value DC Brake Level Defines the maximum DC brake current, in amps, applied to the motor when Parameter 137 (Stop Mode) is set to either Ramp or DC Brake. ATTENTION ! • If a hazard of injury due to movement of equipment or material exists, an auxiliary mechanical braking device must be used. • This feature should not be used with synchronous or permanent magnet motors. Motors may be demagnetized during braking. 4-37 Bulletin 284G Programmable Parameters for Sensorless Vector Controllers DB Resistor Sel Stop drive before changing this parameter. Enables/disables external dynamic braking. Parameter Number 182 Related Parameters 137 Access Rule GET/SET Data Type UINT Group Advanced Program Group Setting Min./Max. Units 1 0 1 2 3…99 Disabled Normal RA Res (5% Duty Cycle) No Protection (100% Duty Cycle) x% Duty Cycle Limited (3…99% of Duty Cycle) Minimum Value 0 Maximum Value 99 Default Value 0 Parameter Number Access Rule Data Type Group Units Minimum Value Maximum Value Default Value 183 GET/SET UINT Advanced Program Group 1% 0 100 0% disabled Parameter Number 184 104, 131, 132, 185, 186, 187, 225 GET/SET UINT Advanced Program Group — 0 14 8 S Curve % Sets the percentage of acceleration or deceleration time that is applied to ramp as S Curve. Time is added, half at the beginning and half at the end of the ramp. Figure 4.2 Boost Select Sets the boost voltage (% of Parameter 131 [Motor NP Volts]) and redefines the Volts per Hz curve. Active when Parameter 225 (Torque Perf Mode) = 0V/Hz Drive may add additional voltage unless Option 5 is selected. See Table 4.6 for details Related Parameters Access Rule Data Type Group Units Minimum Value Maximum Value Default Value Bulletin 284G Programmable Parameters for Sensorless Vector Controllers Table 4.6 Boost Select Options Options Description 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Custom V/Hz 30.0, VT 35.0, VT 40.0, VT 45.0, VT 0.0 no IR 0.0 2.5, CT (Default for 5 Hp/4.0 kW Drive) 5.0, CT Default 7.5,CT 10.0,CT 12.5,CT 15.0,CT 17.5,CT 20.0,CT 100 Figure 4.1 1/2 (Motor NP Volts) 1/2 (Motor NP Hertz) 50 % Parameter 131 (Motor NP Volts) 4-38 Settings 5...14 0 4 3 2 1 50 % Parameter 132 (Motor NP Hertz) 100 Variable Torque (Typical fan/pump curves) Constant Torque Bulletin 284G Programmable Parameters for Sensorless Vector Controllers Start Boost Sets the boost voltage (% of Parameter 131 [Motor NP Volts]) and redefines the Volts per Hz curve when Parameter 184 (Boost Select) = 0 Custom V/Hz and Parameter 225 (Torque Perf Mode) = 0V/Hz. Parameter Number Related Parameters Access Rule Data Type Group Units Minimum Value Maximum Value Default Value 185 131, 132, 134, 135, 184, 186, 187, 188, 225 GET/SET UINT Advanced Program Group 1.1% 0.0% 25.0% 2.5% Figure 4.3 Parameter 188 (Maximum Voltage) Parameter 186 (Start Boost) Parameter 186 (Break Voltage) Voltage Parameter 131 (Motor NP Volts) Parameter 187 (Break Frequency) Parameter 134 (Minimum Freq) Parameter 132 (Motor NP Hertz) Frequency 4-39 Parameter 135 (Maximum Freq) 4-40 Bulletin 284G Programmable Parameters for Sensorless Vector Controllers Brake Voltage Sets the frequency where brake voltage is applied when Parameter 184 (Boost Select) = 0 Custom V/Hz and Parameter 225 (Torque Perf Mode) = 0V/Hz. Parameter Number 186 Related Parameters 131, 132, 134, 135, 184, 185, 187, 188, 225 Access Rule GET/SET Data Type UINT Group Advanced Program Group Units 1.1% Minimum Value 0.0% Maximum Value 100.0% Default Value 25.0% Parameter Number Access Rule Data Type Group Units Minimum Value Maximum Value Default Value 187 131, 132, 134, 135, 184, 185, 186, 188, 225 GET/SET UINT Advanced Program Group 0.1 Hz 0.0 Hz 400.0 Hz 15.0 Hz Maximum Voltage Sets the highest voltage the drive will output. Parameter Number Related Parameters Access Rule Data Type Group Units Minimum Value Maximum Value Default Value 188 104, 185, 186, 187 GET/SET UINT Advanced Program Group 1V AC 20V AC Drive Rated Volts Drive Rated Volts Current Limit 1 Maximum output current allowed before current limiting occurs Parameter Number Related Parameters Access Rule Data Type Group Units Minimum Value Maximum Value Default Value 189 133, 218 GET/SET UINT Advanced Program Group 0.1 A 0.1 A Drive rated amps X 1.8 Drive rated amps X 1.5 Brake Frequency Sets the frequency where brake frequency is applied when Parameter 184 (Boost Select) = 0 Custom V/Hz and Parameter 225 (Torque Perf Mode) = 0V/Hz. Related Parameters 4-41 Bulletin 284G Programmable Parameters for Sensorless Vector Controllers Motor OL Select Drive provides Class 10 motor overload protection. Setting 0…2 select the derating factor for I2t overload function. 0 = No Derate 1 = Min. Derate 2 = Max. Derate Parameter Number Related Parameters Access Rule Data Type Group Units Minimum Value Maximum Value Default Value 190 132, 133 GET/SET UINT Advanced Program Group 1 0 2 0 % of P132 (Motor NP Hertz) PWM Frequency Sets the carrier frequency the PWM output waveform. The Figure 4.5 provides derating guidelines based on the PWM frequency setting. Figure 4.5 % of P133 (Motor OL Current) % of P132 (Motor NP Hertz) % of P133 (Motor OL Current) % of P133 (Motor OL Current) Figure 4.4 Overload Trip Curves % of P132 (Motor NP Hertz) Parameter Number 191 Related Parameters 224 Access Rule GET/SET Data Type UINT Group Advanced Program Group Units 0.l Hz Minimum Value 2.0 Hz Maximum Value 16.0 Hz Default Value 4.0 Hz 4-42 Bulletin 284G Programmable Parameters for Sensorless Vector Controllers Auto Rstrt Tries Set the maximum number of times the drive attempts to reset a fault and restart. Parameter Number Related Parameter Access Rule Data Type Group Units Minimum Value Maximum Value Default Value 192 155, 158, 161, 193 GET/SET UINT Advanced Program Group 1 0 9 0 Clear a Type 1 Fault and Restart the Drive 1. Set Parameter 192 (Auto Rstrt Tries) to a value other than 0. 2. Set Parameter 193 (AutoRstrt Delay) to a value other than 0. Clear an Overvoltage, Undervoltage, or Heatsink OvrTmp Fault without Restarting the Drive 1. Set Parameter 192 (Auto Rstrt Tries) to a value other than 0. 2. Set Parameter 193 (AutoRstrt Delay) to 0. ATTENTION Equipment damage and/or personal injury may result if this parameter is used in an inappropriate application. Do not use this function without considering applicable local, national, and international codes, standards, regulations, or industry guidelines. ! Auto Rstrt Delay Sets time between restart attempts when Parameter 192 (Auto Rstrt Tries) is set to a value other than zero. Parameter Number Related Parameters Access Rule Data Type Group Units Minimum Value Maximum Value Default Value 193 192 GET/SET UINT Advanced Program Group 0.1 sec 0.0 300.0 sec 1.0 sec 4-43 Bulletin 284G Programmable Parameters for Sensorless Vector Controllers Parameter Number Related Parameters Access Rule Data Type Group Units Minimum Value Maximum Value 194 192 GET/SET UINT Advanced Program Group — 0 1 Default Value 0 Parameter Number Related Parameters Access Rule Data Type Group Units Minimum Value Maximum Value Default Value 195 106 GET/SET UINT Advanced Program Group — 0 1 0 Flying Start En Sets the condition that allows the drive to reconnect to a spinning motor at actual RPM. 0 = Disabled 1 = Enabled Parameter Number Access Rule Data Type Group Units Minimum Value Maximum Value Default Value 196 GET/SET UINT Advanced Program Group — 0 1 0 Compensation Enables/disables correction options that may improve problems with motor instability 0 = Disabled 1 = Electrical (Default) Some drive/motor combinations have inherent instabilities which are exhibited as non-sinusoidal motor currents. This setting attempts to correct this condition 2 = Mechanical Some motor/load combinations have mechanical resonances which can be excited by the drive current regulator. This setting slows down the current regulator response and attempts to correct this condition. 3 = Both Parameter Number Access Rule Data Type Group Units Minimum Value Maximum Value 197 GET/SET UINT Advanced Program Group — 0 3 Default Value 1 Start at PowerUp Stop drive before changing this parameter. Enables/disables a feature that allows a Start or Run command to automatically cause the drive to resume running at command speed after the drive input is restored. Requires a digital input configured Run or Start and a valid start contact. This parameter will not function if Parameter 136 (Start Source) is set to 4 2-W High Speed. 0 = Disabled 1 = Enabled ATTENTION Equipment damage and/or personal injury may result if this parameter is used in an inappropriate application. Do not use this function without considering applicable local, national, and international codes, standards, regulations, or industry guidelines. ! Reverse Disable Stop drive before changing this parameter. Enables/disables the function that allows the direction of the motor rotation to be changed. The reverse command may come from a digital command or serial command. All reverse inputs including two-wire Run Reverse will be ignored with reverse disabled. 0 = Disabled 1 = Enabled 4-44 Bulletin 284G Programmable Parameters for Sensorless Vector Controllers SW Current Trip Enables/disables a software instantaneous (within 100 ms) current trip. Parameter Number Related Parameters Access Rule Data Type Group Units Minimum Value Maximum Value Default Value 198 133 GET/SET UINT Advanced Program Group 0.1 A 0.0 Drive rated amps x 2 0.0 (Disabled) Process Factor Scales the output frequency value displayed by Parameter 110 (Process Display). Output Freq x Process Factor = Process Display Parameter Number Related Parameters Access Rule Data Type Group Units Minimum Value Maximum Value Default Value 199 110 GET/SET UINT Advanced Program Group 0.1 0.1 999.9 30.0 Fault Clear Parameter Number Access Rule Data Type Group Units Minimum Value Maximum Value Default Value 200 GET/SET UINT Advanced Program Group — 0 2 0 Program Lock Protects parameters against change by unauthorized personnel. 0 = Unlocked 1 = Locked Parameter Number Access Rule Data Type Group Units Minimum Value Maximum Value Default Value 201 GET/SET UINT Advanced Program Group — 0 1 0 Testpoint Sel Used by Rockwell Automation field service personnel. Parameter Number Related Parameters Access Rule Data Type Group Units Minimum Value Maximum Value Default Value 202 119 GET/SET UINT Advanced Program Group 1 Hex 0 FFFF 400 Stop drive before changing this parameter. Resets a fault and clears the fault queue. Used primarily to clear a fault over network communications. 0 = Ready/Idle (Default) 1 = Reset Fault 2 = Clear Buffer (Parameters 107…109 [Fault x Code]) 4-45 Bulletin 284G Programmable Parameters for Sensorless Vector Controllers Comm Data Rate This parameter is not available for use with the ArmorStart Distributed Motor Controller. Parameter Number 203 CommNode Addr This parameter is not available for use with the ArmorStart Distributed Motor Controller. Parameter Number 204 Parameter Number 205 Related Parameters 115, 137, 206 Access Rule GET/SET Comm Loss Action Selects the drive’s response to a loss of the communication connection or excessive communication errors. 0 = Fault (Default) Drive will fault on an F81 Comm Loss and coast to stop 1 = Coast Stop Stops drive via coast to stop 2 = Stop Stops via Parameter 137 (Stop Mode) setting 3 = Continu Last Drive continues operating at communication commanded speed saved in RAM Data Type UINT Group Advanced Program Group Units — Minimum Value 0 Maximum Value 3 Default Value 0 Parameter Number Related Parameters Access Rule Data Type Group Units Minimum Value Maximum Value Default Value 206 115, 205 GET/SET UINT Advanced Program Group 0.1 sec 0.1 sec 60.0 sec 15.0 sec Comm Format This parameter is not available for use with the ArmorStart Distributed Motor Controller. Parameter Number 207 Language This parameter is not available for use with the ArmorStart Distributed Motor Controller. Parameter Number 208 Parameter Number Related Parameter Access Rule Data Type Group Units Minimum Value Maximum Value Default Value 209 165 GET/SET UINT Advanced Program Group 0.1% 0.0% 100.0% 0.0% Comm Loss Time Sets the time that the drive remain in communication loss before implanting the option selected in Parameter 205 (Comm Loss Action). Anlg Out Setpnt When parameter 165 (Analog Out Sel) is set to option 18, this sets the percentage of the analog output desired 4-46 Bulletin 284G Programmable Parameters for Sensorless Vector Controllers Anlg In 0…10V Lo Stop drive before changing this parameter. Sets the analog input level that corresponds to parameter 134 (Minimum Freq) if a 0…10V input is used by parameter 138 (Speed Reference) Parameter Number Related Parameter Access Rule Data Type Group Units Minimum Value Maximum Value Default Value 210 121, 134, 138, 222 GET/SET UINT Advanced Program Group 0.1% 0.0% 100.0% 0.0% Figure 4.6 Parameter 135 [Maximum Freq] e nc e fer d ee Re Sp Parameter 134 [Minimum Freq] 0 0 Parameter 210 [Anlg In 0-10V Lo] Parameter 211 [Anlg In 0-10V Hi] Sets the analog input level that corresponds to parameter 135 (Maximum Freq) if a 0…10V input is used by parameter 138 (Speed Reference). Analog inversion can be accomplished by setting this value smaller than parameter 210 (Anlg In 0…10V Lo). Parameter Number Related Parameter Access Rule Data Type Group Units Minimum Value Maximum Value Default Value 211 121, 135, 138, 222, 223 GET/SET UINT Advanced Program Group 0.1% 0.0% 100.0% 0.0% Anlg In4…20MA LO This parameter is not available for use with the ArmorStart Distributed Motor Controller. Parameter Number 212 Anlg In4…20 mA HI This parameter is not available for use with the ArmorStart Distributed Motor Controller. Parameter Number 213 Anlg In 0…10V HI Stop drive before changing this parameter. 4-47 Bulletin 284G Programmable Parameters for Sensorless Vector Controllers Slip Hertz @ FLA Compensates for the inherent slip in an induction motor. This frequency is added to the commanded output frequency based on motor current. Process Time Lo Scales the time value when the drive is running at Parameter 134 (Minimum Freq). When set to a value other than zero, Parameter 110 (Process Display) indicates the duration of the process. Process Time Hi Scales the time value when the drive is running at Parameter 135 (Maximum Freq). When set to a value other than zero, Parameter 110 (Process Display) indicates the duration of the process. Bus Reg Mode Enables the bus regulator. 0 = Disable 1 = Enabled Parameter Number Related Parameter Access Rule Data Type Group Units Minimum Value Maximum Value Default Value 214 133 GET/SET UINT Advanced Program Group 0.1 Hz 0.0 Hz 10.0 Hz 2.0 Hz Parameter Number 215 Related Parameters 110, 134 Access Rule GET/SET Data Type UNIT Group Advanced Setup Units Hz Minimum Value 0.00 Maximum Value 99.99 Default Value 0.00 Parameter Number 216 Related Parameters 110, 135 Access Rule GET/SET Data Type UNIT Group Advanced Setup Units Hz Minimum Value 0.00 Maximum Value 99.99 Default Value 0.00 Parameter Number 217 Related Parameters Access Rule GET/SET Data Type UNIT Group Advanced Setup Units — Minimum Value 0 Maximum Value 1 Default Value 1 4-48 Bulletin 284G Programmable Parameters for Sensorless Vector Controllers Current Limit 2 Maximum output current allowed before current limiting occurs. This parameter is only active if Parameters 151, 152, 153, and 154 (Digital Inx Sel) is set to 25 Current Lmt2 and is active. Parameter Number Related Parameters Access Rule Data Type Group Units Minimum Value Maximum Value Default Value 218 133, 151, 152, 153, 154, 189 GET/SET UINT Advanced Program Group 0.1 A 0.1 A Drive rated amps x 1.8 Drive rated amps x 1.5 Skip Frequency Sets the frequency at which the drive will not operate. Parameter Number Related Parameters Access Rule Data Type Group Units Minimum Value Maximum Value Default Value 219 220 GET/SET UINT Advanced Program Group 0.1 hz 0.0 400.0 Hz 0.0 Hz Skip Frq Band Determines the brand width around Parameter 219 (Skip Frequency). Parameter 220 (Skip Frquency) is split applying 1/2 above and 1/2 below the actual skip frequency. A setting of 0.0 disables this parameter. Parameter Number Related Parameters Access Rule Data Type Group Units Minimum Value Maximum Value Default Value 220 219 GET/SET UINT Advanced Program Group 0.1 Hz 0.0 Hz 30.0 Hz 0.0 Hz Figure 4.7 Bulletin 284G Programmable Parameters for Sensorless Vector Controllers 4-49 Stall Fault Time Sets for the fault time that the drive will remain in stall mode before a fault is issued. 0 = 60 sec (Default) 1 = 120 sec 2 = 240 sec 3 = 360 sec 4 = 480 sec 5 = Flt Disabled Parameter Number Access Rule Data Type Group Units Minimum Value Maximum Value Default Value 221 GET/SET UINT Advanced Program Group — 0 5 0 Analog In Loss Selects drive action when an input signal loss is detected. Signal loss is defined as an analog signal less than 1V. The signal loss event ends and normal operation resumes when the input signal level is greater than or equal to 1.5V. If using a 0…10V analog input, set parameter 210 (Anlg In 0…10V Lo) to a minimum of 20% (i.e., 2 volts). Parameter Number Related Parameters Access Rule Data Type Group Units Minimum Value Maximum Value Default Value 222 210, 211, 232 GET/SET UINT Advanced Program Group Parameter Number Related Parameters Access Rule Data Type Group Units Minimum Value Maximum Value Default Value 223 138, 211 GET/SET UINT Advanced Program Group — 0 1 0 See Table 4.7 for details Table 4.7 Options 0 1 2 3 4 5 6 Description Disabled (Default) Fault (F29) Stop Zero Ref Min Freq Ref Max Freq Ref Int Freq Ref F29 Analog Input Loss Uses P037 (Stop Mode) Drive runs at zero speed reference Drive runs at minimum frequency Drive runs at maximum frequency Drive runs at internal frequency 10V Bipolar Enbl Enables/disables bipolar control. In bipolar mode, direction is commanded by the sign of the reference. Options 0 = Unipolar In (Default) 0…10V only 1 = Bipolar In +/- 10V 4-50 Bulletin 284G Programmable Parameters for Sensorless Vector Controllers Var PWM Disable Stop drive before changing this parameter. Enables/disables a feature that varies the carrier frequency for the PWM output waveform defined by Parameter 191 (PWM Frequency). 0 = Enabled 1 = Disabled Disabling this feature when low frequency condition exists may result in IGBT stress and nuisance tripping. Torque Perf Mode Stop drive before changing this parameter. Enables/disables sensorless vector control operation. 0 = V/Hz 1 = Sensrls Vect Motor NP FLA Set to the motor nameplate full load amps. Parameter Number Related Parameters Access Rule Data Type Group Units Minimum Value Maximum Value Default Value 224 191 GET/SET UINT Advanced Program Group — 0 1 0 Parameter Number Related Parameters Access Rule Data Type Group Units Minimum Value Maximum Value Default Value 225 184, 185, 186, 187, 227 GET/SET UINT Advanced Program Group — 0 1 1 Parameter Number Related Parameters Access Rule Data Type Group Units Minimum Value Maximum Value Default Value 226 227 GET/SET UINT Advanced Program Group 0.1 A 0.1 Drive rated amps x 2 Drive rated amps 4-51 Bulletin 284G Programmable Parameters for Sensorless Vector Controllers Autotune Parameter Number 227 Related Parameters 225, 226, 228, 229 Access Rule GET/SET Data Type UINT Group Advanced Program Group Units — Minimum Value 0 Maximum Value 3 Default Value 0 Stop drive before changing this parameter. Provides an automatic method for setting Parameter 228 (IR Voltage Drop) and Parameter 229 (Flux Current Ref), which affect sensorless vector performance. Parameter 226 (Motor NP FLA) must be set to the motor nameplate full load amps before running the Autotune procedure. Provides an automatic method for setting A128 (IR Voltage Drop) and A129 (Flux Current Ref), which affect sensorless vector performance. Parameter A126 (Motor NP FLA) must be set to the motor nameplate full load amps before running the Autotune procedure. 0 = Ready/Idle (Default) 1 = Static Tune 2 = Rotate Tune Ready (0) — Parameter returns to this setting following a Static Tune or Rotate Tune. Static Tune (1) — A temporary command that initiates a non-rotational motor stator resistance test for the best possible automatic setting of A128 (IR Voltage Drop). A start command is required following initiation of this setting. The parameter returns to Ready (0) following the test, at which time another start transition is required to operate the drive in normal mode. Used when motor cannot be uncoupled from the load. Rotate Tune (2) — A temporary command that initiates a Static Tune followed by a rotational test for the best possible automatic setting of A129 (Flux Current Ref). A start command is required following initiation of this setting. The parameter returns to Ready (0) following the test, at which time another start transition is required to operate the drive in normal mode. Important: Used when motor is uncoupled from the load. Results may not be valid if a load is coupled to the motor during this procedure. ATTENTION Rotation of the motor in an undesired direction can occur during this procedure. To guard against possible injury and/ or equipment damage, it is recommended that the motor be disconnected from the load before proceeding. ! If the Autotune routine fails, an F80 SVC Autotune fault is displayed. 4-52 Bulletin 284G Programmable Parameters for Sensorless Vector Controllers IR Voltage Drop Value of volts dropped across the resistance of the motor stator. Parameter Number Related Parameters Access Rule Data Type Group Units Minimum Value Maximum Value Default Value 228 227 GET/SET UINT Advanced Program Group 0.1V AC 0.0 230 Based on Drive Rating Flux Current Ref Value of amps for full motor flux. Parameter Number Related Parameter Access Rule Data Type Group Units Minimum Value Maximum Value Default Value 229 227 GET/SET UINT Advanced Program Group 0.01 A 0.00 Motor NP Volts Based on Drive Rating PID Trim Hi Sets the maximum positive value that is added to a PID reference when PID trim is used. Parameter Number Access Rule Data Type Group Units Minimum Value Maximum Value Default Value 230 GET/SET UINT Advanced Program Group 0.1 0.0 400.0 60.0 PID Trim Lo Sets the minimum positive value that is added to a PID reference when PID trim is used. Parameter Number Access Rule Data Type Group Units Minimum Value Maximum Value Default Value 231 GET/SET UINT Advanced Program Group 0.1 0.0 400.0 0.1 PID Ref Select Parameter Number Related Parameters Access Rule Data Type Group Units Minimum Value Maximum Value 232 138, 222 GET/SET UINT Advanced Program Group — 0 9 Default Value 0 Stop drive before changing this parameter. Enables/disables PID mode and selects the source of the PID reference. Valid PID Ref Select for the Bulletin 284G ArmorStart are the following: 0 = PID Disable 1 = PID Setpoint 4 = Comm Port 5 = Setpnt Trim 8 = Comm, Trim Bulletin 284G Programmable Parameters for Sensorless Vector Controllers 4-53 PID Feedback Sel Valid PID Feedback Sel command for the Bulletin 284G ArmorStart is the following; 2 = Comm Port Parameter Number Access Rule Data Type Group Units Minimum Value Maximum Value Default Value 233 GET/SET UINT Advanced Program Group — 0 2 0 PID Prop Gain Sets the value for the PID proportional component when the PID mode is enabled by Parameter 232 (PID Ref Sel). Parameter Number Access Rule Data Type Group Units Minimum Value Maximum Value Default Value 234 GET/SET UINT Advanced Program Group 0.01 0.00 99.99 0.01 PID Integ Time Sets the value for the PID integral component when the PID mode is enabled by Parameter 232 (PID Ref Sel). Parameter Number Access Rule Data Type Group Units Minimum Value Maximum Value Default Value 235 GET/SET UINT Advanced Program Group 0.1 sec 0.0 sec 999.9 sec 0.1 sec PID Diff Rate Sets the value for the PID differential component when the PID mode is enabled by Parameter 232 (PID Rel Sel). Parameter Number Access Rule Data Type Group Units Minimum Value Maximum Value Default Value 236 GET/SET UINT Advanced Program Group 0.01 (1/sec) 0.00 (1/sec) 99.99 (1/sec) 0.01 (1/sec) PID Setpoint Provides an internal fixed value for process setpoint when the PID mode is enabled by Parameter 232 (PID Ref Sel). Parameter Number Access Rule Data Type Group Units Minimum Value Maximum Value Default Value 237 GET/SET UINT Advanced Program Group 0.1% 0.0% 10.0% 0.0% 4-54 Bulletin 284G Programmable Parameters for Sensorless Vector Controllers PID Deadband Sets the lower limit of the PID output. Parameter Number Access Rule Data Type Group Units Minimum Value Maximum Value Default Value 238 GET/SET UINT Advanced Program Group 0.1% 0.0% 10.0% 0.0% PID Preload Sets the value used to preload the integral component on start or enable. Parameter Number Access Rule Data Type Group Units Minimum Value Maximum Value Default Value 239 GET/SET UINT Advanced Program Group 0.0 Hz 0.0 Hz 400.0 Hz 0.0 Hz A240 (Stp Logic 0) A241 (Stp Logic 1) A242 (Stp Logic 2) A243 (Stp Logic 3) A244 (Stp Logic 4) A245 (Stp Logic 5) A246 (Stp Logic 6) A247 (Stp Logic 7) Parameter Number Access Rule Data Type Group Units Minimum Value Maximum Value 240…247 GET/SET UINT Advanced Program Group — 0001 baFF Default Value 00F1 Stop drive before changing this parameter. Parameters 240…247 are only active if 138 (Speed Reference) is set to 6 Stp Logic. These parameters can be used to create a custom profile of frequency commands. Each step can be based on time, status of a Logic input, or a combination of time and the status of a Logic input. Digits 0…3 for each (Stp Logic x) parameter must be programmed according to the desired profile. A Logic input is established by setting a digital input, Parameters 151…154 (Digital Inx Sel), to 23 Logic In1 and/or 24 Logic In2. A time interval between steps can be programmed using Parameters 250…257 (Stp Logic Time x). See Table 4.8 for related parameters. The speed for any step is programmed using Parameters 170…177 (Preset Freq x). Bulletin 284G Programmable Parameters for Sensorless Vector Controllers 4-55 Table 4.8 Step Logic Parameter (Active when 138 = 6 Stp Logic) Related Preset Frequency Parameter (Can be activated independent of Step Logic Parameters) Related Step Logic Time Parameter (Active when 240…247 Digit 0 or 1 are set to 1, b, C, d, or E) 240 (Stp Logic 0) 241 (Stp Logic 1) 242 (Stp Logic 2) 243 (Stp Logic 3) 244 (Stp Logic 4) 245 (Stp Logic 5) 246 (Stp Logic 6) 247 (Stp Logic 7) 170 (Preset Freq 0) 171 (Preset Freq 1) 172 (Preset Freq 2) 173 (Preset Freq 3) 174 (Preset Freq 4) 175 (Preset Freq 5) 176 (Preset Freq 6) 177 (Preset Freq 7) 250 (Stp Logic Time 0) 251 (Stp Logic Time 1) 252 (Stp Logic Time 2) 253 (Stp Logic Time 3) 254 (Stp Logic Time 4) 255 (Stp Logic Time 5) 256 (Stp Logic Time 6) 257 (Stp Logic Time 7) How Step Logic Works The step logic sequence begins with a valid start command. A normal sequence always begins with 240 (Stp Logic 0). Digit 0: Logic For Next Step — This digit defines the logic for the next step. When the condition is met the program advances to the next step. Step 0 follows Step 7. Example: Digit 0 is set 3. When Logic In2 becomes active, the program advances to the next step. Digit 1: Logic to Jump to a Different Step — For all settings other than F, when the condition is met, the program overrides Digit 0 and jumps to the step defined by Digit 2. Digit 2: Different Step to Jump — When the condition for Digit 1 is met, the Digit 2 setting determines the next step or to end the program. Digit 3: Step Settings — This digit defines what accel/decel profile the speed command will follow and the direction of the command for the current step. In addition, if a relay or opto output (Parameters 155, 158, and 161) is set to 15 StpLogic Out, this parameter can control the status of that output. Any Step Logic parameter can be programmed to control a relay or opto output, but you cannot control different outputs based on the condition of different Step Logic commands. Step Logic Settings The logic for each function is determined by the four digits for each step logic parameter. The following is a listing of the available settings for each digit. Refer to Appendix J for details. 4-56 Bulletin 284G Programmable Parameters for Sensorless Vector Controllers Table 4.9 Digit 3 Settings Required Setting Accel/Decel Parameter Used Step Logic Output State Commanded Direction 0 1 2 3 4 5 6 7 8 9 A b Accel/Decel 1 Accel/Decel 1 Accel/Decel 1 Accel/Decel 1 Accel/Decel 1 Accel/Decel 1 Accel/Decel 2 Accel/Decel 2 Accel/Decel 2 Accel/Decel 2 Accel/Decel 2 Accel/Decel 2 Off Off Off On On On Off Off Off On On On FWD REV No Output FWD REV No Output FWD REV No Output FWD REV No Output Table 4.10 Digit 2 Settings 0 1 2 3 4 5 6 7 8 9 A Jump to Step 0 Jump to Step 1 Jump to Step 2 Jump to Step 3 Jump to Step 4 Jump to Step 5 Jump to Step 6 Jump to Step 7 End Program (Normal Stop) End Program (Coast to Stop) End Program and Fault (F2) Table 4.11 Digit 1 and Digit 0 Settings 0 1 2 3 4 5 6 7 8 9 A b C d E F Skip Step (Jump Immediately) Step Based on (Stp Logic Time x) Step if Logic In1 is Active Step if Logic In2 is Active Step if Logic In1 is Not Active Step if Logic In12 is Not Active Stop if either Logic In1 and Logic In2 is Active Stop if both Logic In1 and Logic In2 is Active Stop if neither Logic In1 and Logic In2 is Active Step if Logic In1 is Active and Logic In2 is Not Active Step if Logic In2 is Active and Logic In1 is Not Active Step after (Stp Logic Time x) and Logic In1 is Active Step after (Stp Logic Time x) and Logic In2 is Active Step after (Stp Logic Time x) and Logic In1 is Not Active Step after (Stp Logic Time x) and Logic In2 is Not Active Do Not Stop/Ignore Digit 2 Settings 4-57 Bulletin 284G Programmable Parameters for Sensorless Vector Controllers A250 (Stp Logic Time 0) A251 (Stp Logic Time 1) A252 (Stp Logic Time 2) A253 (Stp Logic Time 3) A254 (Stp Logic Time 4) A255 (Stp Logic Time 5) A256 (Stp Logic Time 6) A257 (Stp Logic Time 7) Sets the time to remain in each step if the corresponding StpLogic command is set to Step after Time. EM Brk Off Delay Sets the time the drive will remain at minimum frequency before ramping to the commanded frequency and energizing the brake coil relay when Parameter 137 (Stop Mode) is set to option 8 or 9. Parameter Number Access Rule Data Type Group Units Minimum Value Maximum Value Default Value 250…257 138, 155, 158, 161, 171…177, 240…247 GET/SET UINT Advanced Program Group 0.1 sec 0.0 sec 999.9 sec 30.0 sec Related Parameters Parameter Number 260 Related Parameters 137 Access Rule GET/SET Data Type UNIT Group Advanced Setup Units 0.01 sec Minimum Value 0.01 sec Maximum Value 10 sec Default Value 0.0 sec Frequency Ra l 260 [EM Brk Off Delay] Ac ce mp 261 [EM Brk On Delay] De Ra mp ce l Minimum Freq Start Commanded EM Brk Energized (Off) Time Stop Commanded EM Brk On Delay Sets the time the drive will remain at minimum frequency before stopping and deenergizing the brake coil relay when Parameter 137 (Stop Mode) is set to option 8 or 9. EM Brk De-Energized (On) Drive Stops Parameter Number 261 Related Parameters 137 Access Rule GET/SET Data Type UNIT Group Advanced Setup Units 0.01 sec Minimum Value 0.01 sec Maximum Value 10.00 sec Default Value 0.0 sec 4-58 Bulletin 284G Programmable Parameters for Sensorless Vector Controllers MOP Reset Sel Sets the drive to save the current MOP Reference command. 0 = Zero MOP Ref This option clamps Parameter 169 (Internal Freq) at 0.0 Hz when drive is not running. 1 = Save MOP Ref (Default) Reference is saved in Parameter 169 (Internal Freq). DB Threshold Sets the DC bus Voltage Threshold for Dynamic Brake operation. If the DC bus voltage falls below the value set in this parameter, the Dynamic Brake will not turn on. Lower values will make the Dynamic Braking function more responsive, but may result in nuisance Dynamic Brake activation. Parameter Number 262 Related Parameters 169 Access Rule Get/Set Data Type UINT Group Advanced Program Group Units — Minimum Value 0 Maximum Value 1 Default Value 0 Parameter Number 263 Access Rule GET/SET Data Type UINT Group Advanced Program Group Units — Minimum Value 0.0% Maximum Value 110.0% Default Value 100% 5 Chapter DeviceNet™ Commissioning This chapter refers to Bulletin 280G/281G and 284G products. Establishing a DeviceNet Node Address The ArmorStart® is shipped with a default node address of 63 and Autobaud enabled. Each device on a DeviceNet network must have a unique node address or MAC ID which can be set to a value from 0 to 63. Keep in mind that most DeviceNet systems use address 0 for the master device (Scanner) and node address 63 should be left vacant for introduction of new slave devices. The ArmorStart offers two methods for node commissioning as shown below. The node address for a device can be changed using software or by setting hardware switches that reside on the back of the control module. While both methods yield the same result, it is good practice to choose one method and deploy it throughout the system. The ArmorStart is shipped with the hardware rotary switches set to a value of (99). If the switches are set to a value (64) or above, the device will automatically configure itself to the software node address. If the switches are set to a value of (63) or less, the device will be at the node address designated by the switch configuration. To set an address using the hardware rotary switches, simply set the switches to the desired node address and cycle power to the unit. The Device will re-start at the new address. Figure 5.1 Rotary Node Address Configuration See Detail A LSD Detail A MSD Node Commissioning using Hardware 5-2 DeviceNet™ Commissioning Node Commissioning using Software To set the node address of the ArmorStart using software or other handheld tools, leave the hardware switches in there default position (99) or insure that they are set to something greater than (63). With the hardware switches set, use the software or handheld tool to change the address. To begin the configuration of ArmorStart using software, execute the RSNetWorx™ software and complete the following procedure. You must use RSNetWorx Revision 3.21 Service Pack 2 or later. 1. Go on-line using RSNetWorx for DeviceNet. This can be accomplished by selecting the Network menu, and then choosing Online. 2. Choose the appropriate DeviceNet PC interface. In this example, a 1784-PCIDS module is chosen. Other common DeviceNet interfaces are the 1770-KFD, and 1784-PCD. Note: DeviceNet drivers must be configured using RSLinx prior to being available to RSNetWorx. 3. Click OK. 4. RSNetWorx will notify the user to upload or download devices before viewing configuration. Click OK. 5. RSNetWorx will now browse the network and display all of the nodes it has detected on the network. For some versions of RSNetWorx software the ArmorStart EDS files and icon may not be included and will show up as an “Unregistered Device”. If the screen appears like the example below, continue with Building and Registering an EDS file. 6. If RSNetWorx recognizes the device as an ArmorStart, skip ahead to the following section Changing the Node address (MAC ID) DeviceNet™ Commissioning Building and Registering an EDS File 5-3 The EDS file defines how RSNetWorx for DeviceNet will communicate to the ArmorStart. Follow the steps below to build and register the EDS file. To register a device you must first obtain the EDS file from the following web page: http://www.ab.com/networks/eds After obtaining the files do the following: 1. Right mouse click on the “Unrecognized Device” icon and choose Register Device from the menu. 2. Click Next. The following screen appears: 3. Choose “Register an EDS file(s)” as shown above and then click the Next button. 4. Choose to “Register a single file” and specify the file name or use the Browse button to locate the EDS file on your computer. If connected to the Internet you may use the Download EDS file button to automatically search for the correct EDS file. 5-4 DeviceNet™ Commissioning 5. Click the Next button. 6. The following screen will display any warning or errors if a problem occurs while registering the file. If a problem occurs insure that you have the correct file and try again. Click the Next button when no errors occur. 7. Select an alternative icon by highlighting the new device and clicking Change Icon. Once you have selected an icon, choose OK and then click the Next button 8. When asked if you would like to register this device, click the Next button. DeviceNet™ Commissioning 5-5 9. Click the Finish button. After a short while RSNetWorx will update your online screen by replacing the unrecognized device with the name and icon given by the EDS file you have just registered. Using the Node Commissioning Tool Inside RSNetWorx for DeviceNet 1. Choose “Node Commissioning” from the “Tools” menu at the top of the screen. 2. Clicking on Browse… will prompt a screen similar to the one below to appear. 3. Select the ArmorStart located at node 63, and then click OK. The node commissioning screen will have the “Current Device Settings” entries completed. It will also provide the current network baud rate in the “New ArmorStart Settings” area. Do not change the baud rate unless you absolutely sure that this value needs to be changed. 4. Enter the desired node address in the “New Device Settings” section. In this example, the new node address is 5. Click Apply to apply the new node address. 5-6 DeviceNet™ Commissioning 5. When the new node address has been successfully applied, the “Current Device Settings” section of the window is updated as follows. If an error occurs, check to make sure the device is properly powered up and connected to the network. 6. Click Close to exit the node commissioning tool. 7. Choose “Single Pass Browse” from the “Network” menu to update RSNetWorx and verify that the node address is set correctly. System Configuration Selection of produced and consumed I/O assemblies (sometimes referred to as input and output assemblies) define the format of I/O message data that is exchanged between the ArmorStart and other devices on the network. The consumed information is generally used to command the state of its outputs, and produced information typically contains the state of the inputs and the current fault status of the device. The default consumed and produced assemblies are shown below; for additional formats refer to Appendix B, page B-1. The ArmorStart default configuration varies depending on the type of starter. Choosing the size and format of the I/O data that is exchanged by the ArmorStart is done by choosing a consumed assembly instance number. This instance number is written to the Consumed IO Assy parameter. The different instances/formats allow user programming flexibility and network optimization. Important: The Consumed and Produced IO Assy parameter values can not be changed while the ArmorStart is online with a scanner. Any attempts to change the value of this parameter while online with a scanner will result in the error message “Object State Conflict”. 5-7 DeviceNet™ Commissioning Using Automap feature with default Input and Output (I/O) Assemblies (Bulletin 280G/281G) The Automap feature available in all Rockwell Automation scanners will automatically map the information as shown below. If manual mapping is not required, the information below can be used to map a device based on the default configuration. Table 5.1 Default Input and Output (I/O) Assemblies Default Default Input and Output (I/O) Assembly Formats (Bulletin 280G/ 281G) Message type Polled Consumed data size 1 byte (Rx) Produced data size 2 bytes (Tx) The I/O assembly format for the ArmorStart is identified by the value in parameter 11 (Consumed IO Assy.) and parameter 12 (Produced IO Assy.). These values determine the amount and arrangement of the information communicated to the master scanner. The tables below identify the default information produced and consumed by the standard starter. For additional formats and advance configurations please reference Table B.13 on page B-5. Table 5.2 Instance 160 — Default Consumed Data for Standard Distributed Motor Controller (1 byte) Byte Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 0 Not Used Not Used Not Used Not Used Not Used Fault Reset Run Rev Run Fwd Table 5.3 Instance 161 — Default Produced Data for Standard Distributed Motor Controller (2 bytes) Byte Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 0 Not Used 140M On Not Used Ready Running Rev Running Fwd Warning Tripped 1 Not Used Not Used User In 5 User In 4 User In 3 User In 2 User In 1 User In 0 5-8 DeviceNet™ Commissioning Setting the Motor FLA and Overload Trip Class (Bulletin 280G/ 281G) The product should now be configured and communicating on the network. The last step is to program the motor FLA setting (parameter# 106) and overload trip class (parameter# 107). This can be accomplished by using software such as RSNetWorx for DeviceNet or another handheld DeviceNet tool. Using the software, access the device parameters screen as shown below. Notice that by default the motor FLA is set to the minimum FLA setting for the device and the overload trip class is set to 10. Select FLA setting (parameter #106) and enter a value that corresponds to the FLA of the motor connected to the ArmorStart. Make sure the single radio button is selected and then select Download to Device. Select Overload Class (parameter #107) and choose the overload trip class to be used with the motor connected to the ArmorStart. The ArmorStart can be set up for trip class 10, 15, or 20. Make sure the Single radio button is selected and then select Download to Device. The proper motor protection is now in place. Figure 5.2 RSNetWorx Parameter Screen 5-9 DeviceNet™ Commissioning Using Automap feature with default Input and Output (I/O) Assemblies (Bulletin 284G) The Automap feature available in all Rockwell Automation scanners will automatically map the information as shown below. If manual mapping is not required, the information below can be used to map a device based on the default configuration. Table 5.4 Default Input and Output (I/O) Assemblies Default Default Input and Output (I/O) Assembly Formats (Bulletin 284G) Message type Polled Consumed data size 4 bytes (Rx) Produced data size 2 bytes (Tx) The I/O assembly formats for the ArmorStart are identified by the value in Parameter 11 (Consumed IO Assy.) and Parameter 12 (Produced IO Assy.). These values determine the amount and arrangement of the information communicated to the master scanner. The tables below identify the default information produced and consumed by Bulletin 284G devices. For additional formats and advance configurations please reference the user manual: Defaults for Bulletin 284G Distributed Motor Controllers Table 1 Instance 164 — Default Consumed Inverter Type Distributed Starter (4 bytes) Byte Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 0 Not Used Not Used Not Used Jog Rev Jog Fwd Fault Reset Run Rev Run Fwd 1 Drive In 4 Drive In 3 Drive In 2 Drive Decel Rate 2 In 1 Enable Decel Rate 1 Enable Accel Rate 2 Enable Accel Rate 1 Enable 2 Comm Frequency Command (Low) (xxx.x Hz) 3 Comm Frequency Command (High) (xxx.x Hz) Table 2 Instance 165 — Default Produced Inverter Type Distributed Starter (4 bytes) Byte Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 0 At Reference 140M On Net Ctl Status Ready Running Rev Running Fwd Warning Tripped 1 Reserved Contactor 1 ➊ Input 5 Input 4 Input 3 Input 2 Input 1 Input 0 2 Output Frequency (Low) (xxx.x Hz) 3 Output Frequency (High) (xxx.x Hz) ➊ Refers to control brake contactor status.. 5-10 DeviceNet™ Commissioning Setting the Motor FLA (Bulletin 284G) The product should now be configured and communicating on the network. The last step is to program the proper motor OL current setting (Parameter 133). This can be accomplished by using software such as RSNetWorx for DeviceNet or a handheld DeviceNet tool. Use the software to access the device parameters screen. By default the motor OL current is set to the minimum motor OL current setting for the device. Set this parameter to the desired value and download to the device. Select Motor OL Current (Parameter 133) and enter a value that corresponds to the FLA of the motor connected to the ArmorStart. Make sure the Single radio button is selected and then select Download to Device. The proper motor protection is now in place. Figure 6 RSNetWorx Parameter Screen 5-11 DeviceNet™ Commissioning 193-DNCT Product Overview The 193-DNCT product is a handheld device that can be used to commission, configure, program, and monitor other devices on a DeviceNet™ network. In addition, the 193-DNCT can be used to upload, store, and later download complete device configurations for DeviceNet™ devices via the network. The 193-DNCT also has the capability to present DeviceNet™ physical layer diagnostics and network bandwidth statistics to the user. User Manual For additional information regarding the 193-DNCT, refer to the User Manual, 193-UM009*. Bill of Material The 193-DNCT product package includes the following items: Item Description Quantity 193-DNCT DeviceNet™ Configuration Terminal 193-CB1 1 m DNCT Cable with color-coded bare leads 193-QR002_-EN-P DeviceNet™ Configuration Terminal Quick Reference 1 1 1 Accessories Description 1 m DNCT Cable with color-coded bare lead 1 m DNCT Cable with microconnector (male) Door mount bezel kit Mini-Mini-Micro Tee for connection to ArmorStart 5-pin connector ATTENTION ! Catalog No. 193-CB1 193-CM1 193-DNCT-BZ1 1485P-P1R5-MN5R1 1787-PLUG10R The Bulletin 193 DeviceNet™ Configuration Terminal should only be used on a DeviceNet™ network. 5-12 DeviceNet™ Commissioning Tools Menu The Tools Menu gives the user access to the Node Commissioning screen, a Class Instance Attribute editor, and a graphical parameter chart recorder screen. The Tools Menu is shown below: Node Commissioning Pressing Enter while the NodeComm item is selected in the Tools Menu invokes the Node Commissioning screen. Node commissioning allows the operator to change the Mac ID and/or the baud rate for the currently selected device. Currently selected item This only appears if one of the fields has been changed. Pressing Enter here will reset the DeviceNet™ HIM after writing any changes to the device Chapter 6 Explicit Messaging on DeviceNet™ Logic Controller Application Example with Explicit Messaging This chapter is designed to demonstrate programming and explicit message examples for both the SLC™ family of programmable controllers and ControlLogix® family of programmable controllers. The examples will show how to develop a program for simple control and use a simple explicit message to retrieve data that is not automatically acquired based on the input and output assembly of the device. The user of the device can use this example as a guide in developing, their own programs. Below is the RSNetWorx™ view of the simple network used in this example. Figure 6.1 Simple Network To assist in the development of the example the network will consist only of the ArmorStart® and scanner. Therefore the only mapped information in the scanner will be the ArmorStart. Refer to Chapter 5, DeviceNet™ Commissioning for assistance in mapping. 6-2 Explicit Messaging on DeviceNet™ Programming the 1747-SLC I/O Mapping The following example will utilize the Standard Distributed Motor Controller and the factory default input and output assembly of 160 and 161. Refer to Appendix B, Bulletin 280G/281G CIP Information for additional assembly formats. The default input and output assemblies are shown in the table below with the corresponding data size. Table 6.1 Message Type (I/O Assembly) Data Size (bytes) Instance 160 – Consumed (output) 1 (Rx) Instance 161 – Produced (input) 2 (Tx) If a different I/O assembly is selected, the data size may change. It is important to understand that the I/O assembly selected here will directly affect the input and output mapping in the scanner’s scanlist and the amount of Programmable Logic Controller (PLC) memory reserved for this information. Table 6.2 Example SLC Input Addressing (Produced Assembly) ) Instance 161 Default Produced Standard Distributed Motor Controller Byte 0 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Address I:1.23 I:1.22 I:1.21 I:1.20 I:1.19 I:1.18 I:1.17 I:1.16 Data Reserved Reserved Reserved Ready Running Rev Running Fwd Warning Tripped Byte 1 Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Address I:1.31 I:1.30 I:1.29 I:1.28 I:1.27 I:1.26 I:1.25 I:1.24 Data Reserved Reserved 140M On HOA User In 3 User In 2 User In 1 User In 0 Table 6.3 Example SLC Output Addressing (Consumed Assembly) ) Instance 160 Default Consumed Standard Distributed Motor Controller Byte Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Address O:1.23 O:1.22 O:1.21 O:1.20 O:1.19 O:1.18 O:1.17 O:1.16 Data Reserved Reserved Reserved Reserved Reserved Fault Reset Run Rev Run Fwd The example PLC program for the SLC will use the “Tripped” and the “140M On” bit from the produced assembly and the “Fault Reset”, “User Out A”, and “Run Fwd” bit from the consumed assembly. Explicit Messaging on DeviceNet™ Explicit Messaging with SLC 6-3 The 1747-SDN module uses the M0 and M1 file areas for data transfer. Only words 224 through 256 are used to execute the Explicit Message Request and Response function. The minimum data size for the explicit message request is 6 words and the maximum is 32 words. The following tables illustrate the standard format of the explicit message request and response. Table 6.4 Explicit Message Request (Get_Attribute_Single) ) Bit location within Word 15 … 8 7…0 TXID COMMAND Word - 0 PORT SIZE Word - 1 MAC ID Word - 2 SERVICE Table 6.5 CLASS Word - 3 INSTANCE Word - 4 ATTRIBUTE Word - 5 Explicit Message Response (Get_Attribute_Single) Bit location within Word 15 … 8 7…0 TXID STATUS Word - 0 PORT SIZE Word - 1 SERVICE MAC ID Word - 2 DATA Word - 3 • Transmission ID (TXID): The scanner uses this value to track the transaction to completion, and returns the value with the response that matches the request downloaded by the SLC-500 processor. The TXID data size is one byte. • Command: This code instructs the scanner how to administer the request. A listing of these codes can be found in the 1747-SDN User Manual, Publication 1747-5.8. The Command data size is one byte. • Status: The Status code provides the communication module’s status and its response. • Port: The physical channel of the scanner where the transaction is to be routed. The port setting can be zero (channel A) or one (channel B). The Port data size is one byte. Please note that the 1747-SDN has only one channel, and so this value is always set to zero. 6-4 Explicit Messaging on DeviceNet™ Setting up the Data File • Size: This identifies the size of the transaction body in bytes. The transaction body begins at word 3. The maximum size is 58 bytes. The Size data size is one byte. • Service: This code specifies the type of request being delivered. The Service data size is one byte. • MAC ID: The DeviceNet™ network node address of the device for which the transaction is intended is identified here. The slave device must be listed in the scanner module’s scan list and be on-line for the explicit message transaction to be completed. • Class: The desired DeviceNet class is specified here. • Instance: This code identifies the specific instance within the object class towards which the transaction is directed. The value zero is reserved to denote that the transaction is directed towards the class itself versus a specific instance within the class. • Attribute: This code identifies the specific characteristic of the object towards which the transaction is directed. The attribute data size is one word. The following table lists the most common transaction types (get information and set information), and the appropriate service, class, instance, and attribute that corresponds to the type. Table 6.6 Common Configuration Examples for ArmorStart Transaction Type Service ➊ Class ➊ Instance ➊ Attribute ➊ Get_Attribute_Single 0x0E 0x0F Par. # ➋ 1➌ Set_Attribute_Single 0x10 0x0F Par. # ➋ 1➌ The numeric values are in a hexadecimal format. ➋ This is the actual parameter number. ➌ The code “1” specifies the value of the instance (parameter). ➊ 6-5 Explicit Messaging on DeviceNet™ Sequence of Events Use the following sequence of events as a guide for establishing explicit messages in your SLC ladder logic. 1. Put the explicit message request data into an integer (N) file of the SLC-500 processor. 2. Use the file copy instruction (COP) to copy the explicit message request data entered in step 1 to the M0 File, words 224 through 256. 3. Use the examine-if-closed instruction (XIC) to monitor bit 15 of the scanner’s module status register for an indication that it has received a response from the ArmorStart. 4. Copy the data from the M1 file, words 224 through 256, into a file in the SLC-500 processor using the file copy instruction (COP). The following example shows the exact data format to perform a “Get Attribute Single” request. This message will specifically access parameter 104, Average Current. The first three words are shown segmented into two bytes, corresponding to the upper and lower bytes shown in the explicit message request table (Table 6.4). Note: The data in the table is shown in a hexadecimal format. Therefore parameter 104 decimal is equal to 68 hexadecimal (0x68). Table 6.7 TXID Word N7:x Command Port 0 01 Size Service 1 01 00 Word N7:x Status 06 Port 10 01 0E Size 00 04 MAC ID 12 06 0E Class Instance Attribute 3 4 5 6 7 000F 0068 0001 — — Get_Attribute_Single Response Service 11 xx MAC ID 2 Table 6.8 TXID Get_Attribute_Single Request 04 Data 13 14 15 16 17 x — — — — Figure 6.2 SLC Example of Ladder Logic Program 6-6 Explicit Messaging on DeviceNet™ If a trip condition exists, momentarily setting B3:0.1 will reset the fault. B3:0.0 will need to be re-initiated to start the “run Fwd” Explicit Messaging on DeviceNet™ 6-7 6-8 Explicit Messaging on DeviceNet™ Programming the 1756-ControlLogix I/O Mapping The following example will use the standard distributed motor controller and the factory default input and output assembly of 160 and 161. Refer to Appendix B for additional assembly formats. The default input and output assembly will again be used in the following example. Note: The addressing is different between the SLC 1747 and ControlLogix 1756 program. It is important that the user understand how to create and use “tags” in order to properly follow the example. Please see the RSLogix™ 5000 programming manual for additional help with defining tags. The tables below list the data configuration for the ControlLogix platform and include the tag name as used in the example program. Table 6.9 Example ControlLogix Input Addressing (Produced Assembly) ) Instance 161 Default Produced Standard Distributed Motor Controller Byte 0 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Address Local:1:I. Data[1].7 Local:1:I. Data[1].6 Local:1:I. Data[1].5 Local:1:I. Data[1].4 Local:1:I. Data[1].3 Local:1:I. Data[1].2 Local:1:I. Data[1].1 Local:1:I. Data[1].0 Tag Name — — — — — — Status_ warning Status_ tripped Data reserved reserved reserved Ready Running Rev Running Fwd Warning Tripped Byte 1 Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Address Local:1:I. Data[1].15 Local:1:I. Data[1].14 Local:1:I. Data[1].13 Local:1:I. Data[1].12 Local:1:I. Data[1].11 Local:1:I. Data[1].10 Local:1:I. Data[1].9 Local:1:I. Data[1].8 Tag Name — 140M On — — — — — — Data reserved reserved User In 5 User In 4 User In 3 User In 2 User In 1 User In 0 Table 6.10 Example ControlLogix Output Address (Consumed Assembly) ) Instance 160 Default Consumed Standard Distributed Motor Controller Byte 0 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Address Local:1:O. Data[1].7 Local:1:O. Data[1].6 Local:1:O. Data[1].5 Local:1:O. Data[1].4 Local:1:O. Data[1].3 Local:1:O. Data[1].2 Local:1:O. Data[1].1 Local:1:O. Data[1].0 Tag Name — — — — — Control_fault Reset — — Data reserved reserved reserved reserved reserved Fault Reset Run Rev Run Fwd Explicit Messaging on DeviceNet™ 6-9 Explicit Messaging with ControlLogix The ControlLogix platform requires significantly less structure to initiate an explicit message. The explicit message Request and Response is configured within the MSG function. The MSG function can be found in the Input/Output tab of RSLogix 5000. Notice that in the ControlLogix program example, rung 6 is the only required logic to complete the explicit message request. Setting Up the MSG Instruction A tag name must be given to the MSG function before the rest of the information can be defined. In this example a tag was created with the name explicit_mess. After the instruction has been named, click on the gray box to define the rest of the instruction. The following example shows the exact data format to perform a Get Attribute Single request. This message will specifically access parameter 104, Average Current. See Table 6.6 on page 6-4 for additional configurations. Figure 6.3 Message Configuration • Message Type Select CIP Generic from pull down menu to configure an explicit message. • Destination Element This is the tag name of the location you are going to place the response information. In this example a tag was created with the name explicit_data. 6-10 Explicit Messaging on DeviceNet™ • Service Type The pull down menu has several options, however only the Get Attribute Single is used for this example. The Class, Instance, and Attribute define the actual information being requested. Additional configurations of these parameters can be found in Appendix B. • Class In this example the value is “F” • Instance In this example the value is “104” • Attribute In this example the value is “1” After the above information has been entered, click on the communication tab. • Path The path will define the route the message will take to get to the device it is intended for. In this example the path is Scanner,2,4; where scanner is the name of the 1756-DNB in the rack, 2 represents the DeviceNet port, and 4 represents the physical node address of the ArmorStart. Figure 6.4 Scanner Path Explicit Messaging on DeviceNet™ Figure 6.5 ControlLogix Example of Ladder Logic Program 6-11 6-12 Notes Explicit Messaging on DeviceNet™ Chapter 7 Using DeviceLogix™ DeviceLogix is a stand-alone Boolean program that resides within the ArmorStart®. The program is embedded in the product software so that there is no additional module required to use this technology; RSNetWorx™ for DeviceNet™ is required to program the device. In addition to the actual programming, DeviceLogix can be configured to operate under specific situations. It is important to note that the DeviceLogix program will only run if the logic has been enabled. This can be done within the “Logic Editor” of RSNetWorx. The operation configuration is accomplished by setting the “Network Override” and “Communication Override” parameter. The following information describes the varying levels of operation: DeviceLogix Programming • If both overrides are disabled and the logic is enabled, the ONLY time DeviceLogix will run is if there is an active I/O connection with a master, i.e. the master is in Run mode. At all other times DeviceLogix will be running the logic, but will NOT control the state of the outputs. • If the Network Override is enabled and the logic is enabled then DeviceLogix controls the state of the outputs when the PLC is in Run mode and if a network fault such as Duplicate MAC ID or Module Bus off condition occurs. • If the Communications Override is enabled and the logic is enabled, the device does not need any I/O connection to run the logic. As long as there is control power and a DeviceNet power source connected to the device, the logic will control the state of the outputs. DeviceLogix has many applications and the implementation is typically only limited to the imagination of the programmer. Keep in mind that the application of DeviceLogix is only designed to handle simple logic routines. DeviceLogix is programmed using simple Boolean math operators such as AND, OR, NOT, timers, counters, and latches. Decision making is done by combining these Boolean operations with any of the available I/O. The inputs and outputs used to interface with the logic can come from the network or from the device hardware. Hardware I/O is the physical Inputs and Outputs located on the device such as push buttons and pilot lights that are connected to the ArmorStart. 7-2 Using DeviceLogix™ There are many reasons to use the DeviceLogix functionality, but some of the most common are listed below: DeviceLogix Programming Example • Increased system reliability • Fast update times (1 - 2 ms possible) • Improved diagnostics and reduced troubleshooting • Operation independent of PLC or Network status • Continue to run process in the event of network interruptions • Critical operations can be safely shutdown through local logic The following example will show how to program a simple logic routine to interface the ArmorStart with a remote hard-wired startstop station. In this case the I/O is wired as shown in the table. Table 7.1 Hardware Bit Assignments and Description for the ArmorStart Input Table Output Table Bit Description Bit Description Input 0 Start Button Run Fwd Contactor Coil Input 1 Stop Button N/A N/A Input 2 N/A — — Input 3 N/A — — Important: Before programming logic, it is important to decide on the conditions under which the logic will run. As defined earlier, the conditions can be defined by setting parameter 8 (Network Override) and parameter 9 (Comm. Override) to the desired value. 1. While in RSNetWorx for DeviceNet, Double click on the ArmorStart. 2. Click on the “DeviceLogix” tab. If you are on-line with a device a dialog box will appear asking you to upload or download. Click on “Upload.” 3. Click the Start Logic Editor button. 4. If programming off-line continue to step 5, otherwise click on the “Edit” button. Click “Yes” when asked if you want to Enter Edit Mode. Once in edit mode the entire list of Function Blocks will be displayed in the toolbar. 5. Left Click on the “RSL” function block. This is a reset dominate latch. 6. Move the cursor into the grid, and left click to drop the function onto the grid. Using DeviceLogix™ 7-3 7. From the toolbar, Click on the “Discrete Input” button and select Input 0 from the pull-down menu. This is the remote start button based on the example I/O table. 8. Place the input to the left of the RSL function. To drop the input on the page, left click on the desired position. 9. Place the mouse cursor over the tip of Input 0. The tip will turn green. Click on the tip when it turns green. 10. Move the mouse cursor toward the input of the RSL function. A line will follow the cursor. When a connection can be made, the tip of the RSL function will also turn green. Click the on Input and the line will be drawn from Input 0 to the Set Input of the RSL function. Note: If this was not a valid connection, one of the pin tips would have turned red rather than green. Left double clicking on the unused portion of the grid or pressing the “Esc” key at any time will cancel the connection process. 11. From the toolbar, Click on the “Discrete Input” button and select Input 1 from the pull-down menu. This is the remote stop button based on the example I/O table. 12. Place the input to the left of the RSL function. 13. Connect the input to the reset input of the RSL latch. 7-4 Using DeviceLogix™ 14. From the toolbar, Click on the “Discrete Output” button and select “Run Fwd” from the pull-down menu. Run Fwd is the relay controlling the coil of the contactor. Click OK. 15. Move the cursor into the grid and place the Output to the right of the RSL function block. 16. Connect the output of the “RSL” function block to Run Fwd. 17. Click on the “Verify” button located in the toolbar or select “Logic Verify” from the “Tools” pull-down menu. 18. Click on the “Edit” button to toggle out of edit mode if online with a device. 19. Go to the pull-down menu in the right corner of the toolbar and select “Download”. 20. Note: Ensure that the PLC key switch is in the Program position. If in any other position, the download will not occur and an error will be generated. 21. Press “OK” when told the download was successful. 22. Now from the same pull-down menu select “Logic Enable On.” 23. The ArmorStart is now programmed and the logic is Active. Using DeviceLogix™ ArmorStart Fault Bit, Status Bit, Outputs and Produced Network Bits in the DeviceLogix Ladder Editor 7-5 All ArmorStart Distributed Motor Starters support DeviceLogix. When using the DeviceLogix ladder editor to program logic for an ArmorStart, the bit names that are associated with fault bits, status bits, outputs and produced network bits when using the original DeviceLogix function block editor are not presented by the ladder editor. Instead, these bits are numbered. Fault bits such as “Overload Trip” are tagged “FB0, FB1, FB2, etc. Status bits such as “Running Fwd” are tagged SB0, SB1, SB2, etc. Outputs such as “Run Reverse” are tagged DOP0, DOP1 etc. Produced Network Bits such as “Fault Reset” are tagged PNB0, PNB1, etc. The following steps provide information to program ArmorStart DeviceLogix programs with the ladder editor. 1. Bulletin 280G and 281G ArmorStart Status Bits The screen capture below shows how to choose status bits in the ladder editor. The following list contains the status bit definitions for Bulletin 280G and 281G ArmorStart units: ArmorStart Revision 2.xxx (280G and 281G) 0 = Tripped 1 = Warning 2 = Running Fwd 3 = Running Rev 4 = Ready 5 = Net Ctl Status 6 = Keypad Hand 7 = HOA Status 8 = 140M On 9 = Explicit Msg Cnxn Exists 10 = IO Cnxn Exists 11 = Explicit Cnxn Fault 12 = IO Cnxn Fault 13 = IO Cnxn Idle 14 = Current Flowing 15 = Keypad Hand Direction 16 = ZIP1 Cnxn 17 = ZIP1 Fault 18 = ZIP2 Cnxn 19 = ZIP2 Fault 20 = ZIP3 Cnxn 21 = ZIP3 Fault 22 = ZIP4 Cnxn 23 = ZIP4 Fault 7-6 Using DeviceLogix™ 2. Bulletin 280G and 281G ArmorStart Fault Bits The screen capture below how to choose fault bits in the ladder editor. The following list contains the fault bit definitions for Bulletin 280G and 281G ArmorStart units: ArmorStart Revision 2.xxx (280G and 281G) 0 = Short Circuit 1 = Overload 2 = Phase Loss 3 = Control Power 4 = IO Fault 5 = Over Temp 6 = Phase Imbalance 7 = DNet Power Loss 8 = EEprom 9 = HW Flt 10 = PL Warning 11 = CP Warning 12 = IO Warning 13 = Phase Imbal Warn 14 = DN Warning 15 = HW Warning Using DeviceLogix™ 7-7 3. Bulletin 280G and 281G ArmorStart Produced Network Bits The screen capture below shows how to choose Produced Network Bits in the ladder editor. The following table contains the produced network bit definitions for Bulletin 280G and 281G ArmorStart units: ArmorStart Revision 2.xxx (280G and 281G) 0 = Net Output 0 1 = Net Output 1 2 = Net Output 2 3 = Net Output 3 4 = Net Output 4 5 = Net Output 5 6 = Net Output 6 7 = Net Output 7 8 = Net Output 8 9 = Net Output 9 10 = Net Output 10 11 = Net Output 11 12 = Net Output 12 13 = Net Output 13 14 = Net Output 14 15 = Fault Reset 16 = Motion Disable 17 = Keypad Disable 7-8 Using DeviceLogix™ 4. Bulletin 284G ArmorStart Status Bits The following table contains the status bit definitions for Bulletin 284G ArmorStart: Power Flex 40 Revision 2.00x (284G) 0 = Tripped 1 = Warning 2 = Running Fwd 3 = Running Rev 4 = Ready 5 = Net Ctl Status 6 = Net Ref Status 7 = At Reference 8 = Drive Opto 1 9 = Drive Opto 2 10 = Keypad Jog 11= Keypad Hand 12 = HOA Status 13 = 140M On 14 = Contactor 1 15 = Contactor 2 16 = Explicit Msg Cnxn Exists 17 = IO Cnxn Exists 18 = Explicit Cnxn Fault 19 = IO Cnxn Fau 20 = IO Cnxn Idle 21 = Keypad Hand Direction 22 = ZIP1 Cnxn 23 = ZIP1 Fault 24 = ZIP2 Cnxn 25 = ZIP2 Fault 26 = ZIP3 Cnxn 27 = ZIP3 Fault 28 = ZIP4 Cnxn 29 = ZIP4 Fault Using DeviceLogix™ 5. Bulletin 284G ArmorStart Fault Bits The screen capture below shows how to choose Fault Bits in the ladder editor. The following table contains the fault bit definitions for Bulletin 284G ArmorStart: ArmorStart Revision 2.xxx (284G) 0 = Short Circuit 1 = Overload 2 = Phase Short 3 = Ground Fault 4 = Stall 5 = Control Power 6 = IO Fault 7 = Over Temp 8 = Phase Over Current 9 = DNet Power Loss 10 = Internal Comm 11 = DC Bus Fault 12 = EEprom 13 = HW Flt 14 = Reset Retries 15 = Misc. Fault 16 = CP Warning 17 = IO Warning 18 = DN Warning 19 = HW Warning 7-9 7-10 Using DeviceLogix™ 6. Bulletin 284G ArmorStartProduced Network Bits The screen capture below shows how to choose Produced Network Bits in the ladder editor. The following table contains the produced network bit definitions for Bulletin 284G ArmorStart units: ArmorStart Revision 2.xxx (284G) 0 = Net Output 0 1 = Net Output 1 2 = Net Output 2 3 = Net Output 3 4 = Net Output 4 5 = Net Output 5 6 = Net Output 6 7 = Net Output 7 8 = Net Output 8 9 = Net Output 9 10 = Net Output 10 11 = Net Output 11 12 = Net Output 12 13 = Net Output 13 14 = Net Output 14 15 = Fault Reset 16 = Accel 1 17 = Accel 2 18 = Decel 1 19 = Decel 2 20 = Freq Select 1 21 = Freq Select 2 22 = Freq Select 3 23 = Motion Disable 24 = Keypad Disable Chapter 8 ArmorStart® ZIP Configuration Overview This chapter describes the steps necessary to configure the Zone Interlocking Parameters (ZIP) to configure peer-to-peer communication between an ArmorStart and another ZIP enabled device such as another ArmorStart or a 1977-ZCIO module. First, an overview of the ZIP parameter set is presented. Then the steps necessary to enable peer-to-peer data production are described. Next, the steps necessary to enable peer-to-peer data consumption are described. Finally, the steps necessary to map the consumed peer-topeer data to the DeviceLogix™ data table for use in local logic are described. ZIP Parameter Overview Each ArmorStart can consume ZIP data from up to 4 other devices. The 4 devices are referred to as “zones” of data and these zones are numbered from 1 to 4. The following parameters are used to configure a device for ZIP peer-to-peer communication: 8-2 ArmorStart® ZIP Configuration Param # Parameter Name 67 AutoRun ZIP 68 69 70 71 72 73 74 Zone ProducedEPR Zone ProducedPIT Zone #1 MacId Zone #2 MacId Zone #3 MacId Zone #4 MacId Zone #1 Health 75 Zone #2 Health 76 Zone #3 Health 77 Zone #4 Health 78 Zone #1 Mask 79 Zone #2 Mask 80 Zone #3 Mask 81 Zone #4 Mask 82 83 84 85 86 Zone #1 Offset Zone #2 Offset Zone #3 Offset Zone #4 Offset Zone #1 EPR 87 Zone #2 EPR 88 Zone #3 EPR 89 Zone #4 EPR 90 Zone #1 Control 91 Zone #2 Control 92 Zone #3 Control 93 Zone #4 Control 94 Zone #1 Key 95 Zone #2 Key 96 Zone #3 Key 97 Zone #4 Key 98 99 Device Value Key Zone Ctrl Enable Parameter Description Enables ZIP data production on power up 0=Disable; 1=Enable The Expected Packet Rate in msec. Defines the rate of at which ZIP data is produced. Defaults to 75 msec. The Production Inhibit Time in msec. Defines the minimum time between Change of State data production The node address of the device whose data is to be consumed for zone 1 The node address of the device whose data is to be consumed for zone 2 The node address of the device whose data is to be consumed for zone 3 The node address of the device whose data is to be consumed for zone 4 Read Only consumed connection status for zone 1 0=Healthy; 1=Not Healthy Read Only consumed connection status for zone 2 0=Healthy; 1=Not Healthy Read Only consumed connection status for zone 3 0=Healthy; 1=Not Healthy Read Only consumed connection status for zone 4 0=Healthy; 1=Not Healthy Bit enumerated consumed data mask for zone 1. Each bit represents a byte in consumed data up to 8 bytes in length. If a mask bit is set, the corresponding consumed data byte is placed in the DeviceLogix data table Bit enumerated consumed data mask for zone 2. Each bit represents a byte in consumed data up to 8 bytes in length. If a mask bit is set, the corresponding consumed data byte is placed in the DeviceLogix data table Bit enumerated consumed data mask for zone 3. Each bit represents a byte in consumed data up to 8 bytes in length. If a mask bit is set, the corresponding consumed data byte is placed in the DeviceLogix data table Bit enumerated consumed data mask for zone 4. Each bit represents a byte in consumed data up to 8 bytes in length. If a mask bit is set, the corresponding consumed data byte is placed in the DeviceLogix data table The byte offset into the ZIP data portion of the DeviceLogix data table to place the chosen consumed data bytes for zone 1. The byte offset into the ZIP data portion of the DeviceLogix data table to place the chosen consumed data bytes for zone 2. The byte offset into the ZIP data portion of the DeviceLogix data table to place the chosen consumed data bytes for zone 3. The byte offset into the ZIP data portion of the DeviceLogix data table to place the chosen consumed data bytes for zone 4. The Expected Packet Rate in msec. for the zone 1 consuming connection. If consumed data is not received in 4 times this value, the zone connection will time out and “Zone #1 Health” will report 1 = Not Healthy. The Expected Packet Rate in msec. for the zone 2 consuming connection. If consumed data is not received in 4 times this value, the zone connection will time out and “Zone #2 Health” will report 1 = Not Healthy The Expected Packet Rate in msec. for the zone 3 consuming connection. If consumed data is not received in 4 times this value, the zone connection will time out and “Zone #3 Health” will report 1 = Not Healthy The Expected Packet Rate in msec. for the zone 4 consuming connection. If consumed data is not received in 4 times this value, the zone connection will time out and “Zone #4 Health” will report 1 = Not Healthy Zone 1 Control Word. Default Bit 1 set, all other bits clear. Bit0=Security Enable 1=Enable data security Bit1=COS Cnxn 1=Consume DNet Group 2 COS messages Bit2=Poll Cnxn 1=Consume DNet Group 2 Poll Response msgs. Bit3=Strobe Cnxn 1=Consume DNet Group 2 Strobe Response msgs. Bit4=Multicast Poll 1=Consume Multicast Poll Response messages. Zone 2 Control Word. Default Bit 1 set, all other bits clear. Bit0=Security Enable 1=Enable data security Bit1=COS Cnxn 1=Consume DNet Group 2 COS messages Bit2=Poll Cnxn 1=Consume DNet Group 2 Poll Response msgs. Bit3=Strobe Cnxn 1=Consume DNet Group 2 Strobe Response msgs. Bit4=Multicast Poll 1=Consume Multicast Poll Response messages. Zone 3 Control Word. Default Bit 1 set, all other bits clear. Bit0=Security Enable 1=Enable data security Bit1=COS Cnxn 1=Consume DNet Group 2 COS messages Bit2=Poll Cnxn 1=Consume DNet Group 2 Poll Response msgs. Bit3=Strobe Cnxn 1=Consume DNet Group 2 Strobe Response msgs. Bit4=Multicast Poll 1=Consume Multicast Poll Response messages. Zone 4 Control Word. Default Bit 1 set, all other bits clear. Bit0=Security Enable 1=Enable data security Bit1=COS Cnxn 1=Consume DNet Group 2 COS messages Bit2=Poll Cnxn 1=Consume DNet Group 2 Poll Response msgs. Bit3=Strobe Cnxn 1=Consume DNet Group 2 Strobe Response msgs. Bit4=Multicast Poll 1=Consume Multicast Poll Response messages. When the “Security Enable” bit for zone 1 is enabled, this value must match the value of the Device Value Key parameter in the device whose data is being consumed for zone 1. When the “Security Enable” bit for zone 1 is enabled, this value must match the value of the Device Value Key parameter in the device whose data is being consumed for zone 2. When the “Security Enable” bit for zone 1 is enabled, this value must match the value of the Device Value Key parameter in the device whose data is being consumed for zone 3. When the “Security Enable” bit for zone 1 is enabled, this value must match the value of the Device Value Key parameter in the device whose data is being consumed for zone 4. This value is produced in the last 2 bytes of data when one of the ZIP assemblies is chosen for data production. Global enable for ZIP peer-to-peer messaging. This parameter must be disabled before any changes to the ZIP configuration for the device can be made. 0=Disable; 1=Enable 8-3 ArmorStart® ZIP Configuration Data Production In a typical ZIP system, each device on the network automatically produces IO data using “Change of State” (COS) triggering. The automatic production of this COS data by an ArmorStart is enabled by setting Parameter 67 (AutoRun ZIP) to a value of 1 = Enable. Then COS data will be produced automatically when the global ZIP enable parameter (Zone Ctrl Enable, Parameter 99) is set to the value of 1 = Enable. Data production will take place at a rate specified by Parameter 68 (Zone ProducedEPR). The minimum period between Change of State productions is determined by the value of Parameter 69 (Zone ProducedPIT) Data Consumption In the ArmorStart data from up to 4 other devices can be consumed for use in the local logic. The 4 devices whose data is to be consumed are logically referred to by zone number, i.e. zones 1 – 4. To configure an ArmorStart to consume data from another node on the network, the node address or “MacId” is placed in the proper “Zone MacId” parameter (parameters 70-73). For example to configure an ArmorStart to consume data for zone 1 from node number 11 on the network, the value 11 is placed in Parameter 70 (Zone #1 MacId). Not all zones need to be configured to consume data. If the user wishes to turn off data consumption for a zone, the value 64 is placed in the Zone MacId parameter for that zone. The ArmorStart monitors the frequency at which all consumed data is received in order to determine the health of each zone’s data connection. The Zone EPR parameters (parameters 86-89) define the “Expected Packet Rate” for each of the 4 zone connections. If no consumed data for a zone is received in 4 times the EPR, then the zone connection times out, and the value of the corresponding “Zone Health” parameter (parameters 74-77) is set to the value 1 = Not Healthy. The “Zone Health” status of each zone is also available for use in DeviceLogix programs. Mapping Consumed Data to the DeviceLogix Data Table. Consumed data for the 4 zones is placed in an 8 byte section of the DeviceLogix Data Table. Individual bits in this section of the DeviceLogix Data Table can be used in DeviceLogix programs. The table below shows the organization of the 8 bytes of the data table Byte # 0 1 2 3 4 5 6 7 ZIP 7 ZIP 15 ZIP 23 ZIP 31 ZIP 39 ZIP 47 ZIP 55 ZIP 63 ZIP 6 ZIP 14 ZIP 22 ZIP 30 ZIP 38 ZIP 46 ZIP 54 ZIP 62 Bit Number and Name ZIP 5 ZIP 4 ZIP 3 ZIP 2 ZIP 13 ZIP 12 ZIP 11 ZIP 10 ZIP 21 ZIP20 ZIP 19 ZIP 18 ZIP 29 ZIP 28 ZIP 27 ZIP 26 ZIP 37 ZIP 36 ZIP 35 ZIP 34 ZIP 45 ZIP 44 ZIP 43 ZIP 42 ZIP 53 ZIP 52 ZIP 51 ZIP 50 ZIP 61 ZIP 60 ZIP 59 ZIP 58 ZIP 1 ZIP 9 ZIP 17 ZIP 25 ZIP 33 ZIP 41 ZIP 49 ZIP 57 ZIP 0 ZIP 8 ZIP 16 ZIP 24 ZIP 32 ZIP 40 ZIP 48 ZIP 56 8-4 ArmorStart® ZIP Configuration The “Zone Mask” parameters (parameters 78-81) select individual bytes within a consumed message for placement in the DeviceLogix Data Table. Each single bit in the mask represents a corresponding byte in the consumed message packet. For example, consider an ArmorStart that has zone 1 configured to consume data from another ArmorStart that is producing data of the following format: Instance 163 Standard Produced Starter with Network Outputs and ZIP CCV Byte Bit 7 1 2 3 Net Out 8 4 5 6 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Ready Running Rev Running Fwd Warning Tripped 140M On HOA User In 4 User In 3 User In 2 User In 1 Net Out 7 Net Out 6 Net Out 5 Net Out 4 Net Out 3 Net Out 2 Net Out 1 Net Out 15 Net Out 14 Net Out 13 Net Out 12 Net Out 11 Net Out 10 Net Out 9 Device Value Key (low) Device Value Key (high) The user can choose to place only bytes 1 and 2 of the above consumed data in the DeviceLogix Data Table by selecting a Zone Mask value of 00000011 binary as shown in the following RSNetWorx for DeviceNet screen: The “Zone Offset” parameters (parameters 82-85) determine where in the DeviceLogix Data Table to place the consumed data bytes chosen for mapping. The “Zone Offset” value corresponds to a byte in the DeviceLogix Data Table where the data should be placed. Continuing our example from above, a value of 2 in the “Zone #1 Offset” parameter would result in the masked consumed data bytes being placed starting at byte 2 in the data table. This would result in the following ZIP bit assignments: ZIP 16 = Zone 1: Tripped ZIP 17 = Zone 1: Warning ArmorStart® ZIP Configuration 8-5 ZIP 18 = Zone 1: Running Fwd ZIP 19 = Zone 1: Running Rev ZIP 20 = Zone 1: Ready ZIP 21 = Zone 1: reserved ZIP 22 = Zone 1: reserved ZIP 23 = Zone 1: reserved ZIP 24 = Zone 1: User In 1 ZIP 25 = Zone 1: User In 2 ZIP 26 = Zone 1: User In 3 ZIP 27 = Zone 1: User In 4 ZIP 28 = Zone 1: HOA ZIP 29 = Zone 1: 140M Stat ZIP 30 = Zone 1: reserved ZIP 31 = Zone 1: reserved ZIP bits appear in the list of Network Input Points that are available for use in the DeviceLogix Editor in RSNetWorx for DeviceNet as shown below: ZIP Example Consider the following network with 4 ArmorStarts and a 1799-ZCIO module. 8-6 ArmorStart® ZIP Configuration We will configure node 10 to consume data as follows: Zone 1 data will come from node 11 Zone 2 data will come from node 12 Zone 3 data will come from node 13 Zone 4 data will come from node 14. First we must set up nodes 11-14 to “Auto Produce” data when ZIP is enabled. For the ArmorStarts at node 11-13 (shown above) this is done by setting parameter 67 “AutoRun Zip” to “Enabled”. Note that we will leave parameters 68 and 69 at their default values so that data will be produced every 75 msec. ArmorStart® ZIP Configuration For the 1799-ZCIO module (shown below) this is done by setting parameter 13 “AutoRun Zip” to “Enabled”. Next we must configure data consumption for the 4 zones in the ArmorStart at node 10. First set the “Zone MacId” parameters as shown below: 8-7 8-8 ArmorStart® ZIP Configuration We will leave the “Zone EPR” parameters at their default value of 75 msec. This tells our ArmorStart that if no data for a zone is consumed for a period of 300 msec (4 times the EPR), the zone connection should time out and the health status should be set to “Not Healthy”. We will also leave the “Zone Control” parameters at their default telling the ArmorStart to consume Change of State Data for each zone, and to disable data security checking. Since data security checking is disabled, we can also leave parameters 94-98 at their default values of 0. We will set the “Zone Masks” to the value of 00000011 binary. This tells each zone to map bytes 1 and 2 to the DeviceLogix Data Table. ArmorStart® ZIP Configuration 8-9 We will set the “Zone Offsets as shown below. This maps zone 1 data to byte 0 of the DeviceLogix Data Table, zone 2 data to byte 2 of the DeviceLogix Data Table, zone 3 data to byte 4 of the DeviceLogix Data Table and zone 4 data to byte 6 of the DeviceLogix Data Table. Assuming the ArmorStarts mapped to zones 1 to 3 are producing the following data: 8-10 ArmorStart® ZIP Configuration Instance 163 Standard Produced Starter with Network Outputs and ZIP CCV Byte 1 2 3 4 5 6 Bit 7 Net Out 8 Bit 6 Net Out 7 Net Out 15 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Ready Running Rev Running Fwd Warning 140M On HOA User In 4 User In 3 User In 2 Net Out 6 Net Out 5 Net Out 4 Net Out 3 Net Out 2 Net Out 14 Net Out 13 Net Out 12 Net Out 11 Net Out 10 Device Value Key (low) Device Value Key (high) Bit 0 Tripped User In 1 Net Out 1 Net Out 9 And assuming that the 1799-ZCIO module is producing the following data: 1799-ZCIO Produced Assembly Byte 1 2 3 4 5 6 7 Bit 7 Input 7 Bit 5 Input 5 Bit 4 Input 4 Bit 3 Input 3 Bit 2 Input 2 Output 7 Bit 6 Input 6 Logic Ena Output 6 Output 5 Output 4 Output 3 Output 2 Net Out 7 Net Out 6 Net Out 5 Net Out 4 Net Out 3 ZIP CCV (Low) ZIP CCV (High) Net Out 2 Bit 1 Input 1 Input 9 Output 1 Output 9 Net Out 1 Bit 0 Input 0 Input 8 Output 0 Output 8 Net Out 0 The above configuration results in the following DeviceLogix ZIP Data Table mapping: ArmorStart® ZIP Configuration ZIP 0 = Zone 1: Tripped ZIP 1 = Zone 1: Warning ZIP 2 = Zone 1: Running Fwd ZIP 3 = Zone 1: Running Rev ZIP 4 = Zone 1: Ready ZIP 5 = Zone 1: reserved ZIP 6 = Zone 1: reserved ZIP 7 = Zone 1: reserved ZIP 8 = Zone 1: User In 1 ZIP 9 = Zone 1: User In 2 ZIP 10 = Zone 1: User In 3 ZIP 11 = Zone 1: User In 4 ZIP 12 = Zone 1: HOA ZIP 13 = Zone 1: 140M Stat ZIP 14 = Zone 1: reserved ZIP 15 = Zone 1: reserved ZIP 32 = Zone 3: Tripped ZIP 33 = Zone 3: Warning ZIP 34 = Zone 3: Running Fwd ZIP 35 = Zone 3: Running Rev ZIP 36 = Zone 3: Ready ZIP 37 = Zone 3: reserved ZIP 38 = Zone 3: reserved ZIP 39 = Zone 3: reserved ZIP 40 = Zone 3: User In 1 ZIP 41 = Zone 3: User In 2 ZIP 42 = Zone 3: User In 3 ZIP 43 = Zone 3: User In 4 ZIP 44 = Zone 3: HOA ZIP 45 = Zone 3: 140M Stat ZIP 46 = Zone 3: reserved ZIP 47 = Zone 3: reserved ZIP 16 = Zone 2: Tripped ZIP 17 = Zone 2: Warning ZIP 18 = Zone 2: Running Fwd ZIP 19 = Zone 2: Running Rev ZIP 20 = Zone 2: Ready ZIP 21 = Zone 2: reserved ZIP 22 = Zone 2: reserved ZIP 23 = Zone 2: reserved ZIP 24 = Zone 2: User In 1 ZIP 25 = Zone 2: User In 2 ZIP 26 = Zone 2: User In 3 ZIP 27 = Zone 2: User In 4 ZIP 28 = Zone 2: HOA ZIP 29 = Zone 2: 140M Stat ZIP 30 = Zone 2: reserved ZIP 31 = Zone 2: reserved ZIP 48 = Zone 4: Input 0 ZIP 49 = Zone 4: Input 1 ZIP 50 = Zone 4: Input 2 ZIP 51 = Zone 4: Input 3 ZIP 52 = Zone 4: Input 4 ZIP 53 = Zone 4: Input 5 ZIP 54 = Zone 4: Input 6 ZIP 55 = Zone 4: Input 7 ZIP 56 = Zone 4: Input 8 ZIP 57 = Zone 4: Input 9 ZIP 58 = Zone 4: reserved ZIP 59 = Zone 4: reserved ZIP 60 = Zone 4: reserved ZIP 61 = Zone 4: reserved ZIP 62 = Zone 4: Logic Ena ZIP 63 = Zone 4: reserved 8-11 8-12 ArmorStart® ZIP Configuration Finding ZIP bits in the DeviceLogix Editor The 64 ZIP bits are available for use in DeviceLogix programs in the list of “Network Input Points”. Network Input Points Select “Network Input Points” in the DeviceLogix editor toolbar, and scroll down past the first 16 Network Inputs. The 64 ZIP bits are available for use in the list as shown below: Chapter 9 Diagnostics Overview This chapter describes the fault diagnostics of the ArmorStart® Distributed Motor Controller and the conditions that cause various faults to occur. Protection Programming Many of the protective features available with the ArmorStart Distributed Motor Controller can be enabled and adjusted through the programming parameters provided. For further details on programming, refer to Chapter 3 and 4, Program and Status Parameters. Fault Display The ArmorStart Distributed Motor Controller comes equipped with a built-in LED status indication which provides four status LEDs and a Reset button. The LEDs provide status indication for the following: • Power LED The LED is illuminated solid green when control power is present and with the proper polarity • RUN LED This LED is illuminated solid green when a start command and control power are present • Network LED This bi-color (red/green) LED indicates the status of the communication link • FAULT LED Indicates Controller Fault (Trip) condition The Reset Button provides local fault trip reset. Figure 9.1 LED Status Indication and Reset Important: Resetting the fault will not correct the cause of the fault condition. Corrective action must be taken before resetting the fault. 9-2 Clear Fault Fault Codes Diagnostics You may clear a fault using the following methods: • Remotely via network communications • A remote reset will be attempted upon detection of a rising edge (0 to 1 transition) of the “Fault Reset” bit in the various I/O assemblies. A remote reset will also be attempted upon detection of the rising edge of the “Fault Reset” parameter. • Locally via the “Reset” button on the LED Status indication keypad. Table 9.1 provides a complete reference of the Fault LED indications for Bulletin 280G/281G and 284G ArmorStart Distributed Motor Controllers. Table 9.1 Fault Indication Blink Pattern Fault Types Bulletin 280G/281G Bulletin 284G 1 Short Circuit Short Circuit 2 Overload Trip Overload Trip 3 Phase Loss Phase Short 4 Reserved Ground Fault 5 Reserved Stall 6 Control Power Control Power 7 I/O Fault I/O Fault 8 Over Temperature Over Temperature 9 Phase Imbalance Over Current 10 DeviceNet™ Power Loss DeviceNet™ Power Loss 11 Reserved Internal Communications 12 Reserved DC Bus Fault 13 EEPROM Fault EEPROM Fault 14 Hardware Fault Hardware Fault 15 Reserved Restart Retries 16 Reserved Misc. Fault Diagnostics Fault Definitions 9-3 Short Circuit Short Circuit indicates that the Bulletin 140M motor protector has tripped, or that the internal wiring protection algorithm has detected an unsafe current surge. This fault cannot be disabled. The Fault LED will flash a 1-blink pattern. Overload Trip The load has drawn excessive current and based on the overload trip class selected, the device has tripped. This fault cannot be disabled. The Fault LED will flash a 2-blink pattern. Phase Loss Indicates a missing supply phase. This fault can be disabled and is disabled by default. The Fault LED will flash a 3-blink pattern. Phase Short Indicates the drive has detected a phase short. This fault cannot be disabled. The Fault LED will flash a 3-blink pattern. Ground Fault Indicates the drive has detected a ground fault. This fault cannot be disabled. The Fault LED will flash a 4-blink pattern. Stall Indicates the drive has detected a stall condition, indicating the motor has not reached full speed. This fault cannot be disabled. The Fault LED will flash a 5-blink pattern. Control Power Indicates a loss of control power voltage or a blown control power fuse. This fault can be disabled and is disabled by default. The Fault LED will flash a 6-blink pattern. I/O Fault This error can indicate a shorted sensor, shorted input device, or input wiring mistakes. This fault can be disabled and is disabled by default. The Fault LED will flash a 7-blink pattern. Over Temperature Indicates that the operating temperature has been exceeded. This fault cannot be disabled. The Fault LED will flash a 8-blink pattern. Phase Imbalance Indicates an imbalance supply voltage. This fault can be disabled and is disabled by default. The Fault LED will flash a 9-blink pattern. 9-4 Diagnostics Over Current Indicates the drive has detected an over current fault. This fault cannot be disabled. The Fault LED will flash a 9-blink pattern. DeviceNet™ Power Loss DeviceNet power has been lost or has dropped below the 12V threshold. This fault can be disabled and is disabled by default. The Fault LED will flash a 10-blink pattern. Internal Communication Fault Indicates an internal communication fault has been detected. This fault cannot be disabled. The Fault LED will flash 11-blink pattern. DC Bus Fault Indicates the drive has detected a DC Bus Fault. This fault cannot be disabled. The Fault LED will flash a 12-blink pattern. EEPROM Fault This is a major fault, which renders the ArmorStart inoperable. This fault cannot be disabled. The Fault LED will flash a 13-blink pattern. Hardware Fault Indicates incorrect base/starter assembly. This fault cannot be disabled. The Fault LED will flash a 14-blink pattern. Restart Retries This fault is generated when the drive detects that the auto retries count has been exceeded. This fault cannot be disabled. The Fault LED will flash a 15-blink pattern. Miscellaneous Faults For Bulletin 284G units, this fault is actually the logical OR of the drive’s Auxiliary Input fault (fault code F2), Heatsink Over Temperature (fault code F8), Params Defaulted fault (fault code F48) and SVC Autotune fault (fault code F80). This fault cannot be disabled. The Fault LED will flash a 16-blink pattern. Chapter 10 Troubleshooting Introduction The purpose of this chapter is to assist in troubleshooting the ArmorStart® Distributed Motor Controller using the LED Status Display and diagnostic parameters. ATTENTION ! ATTENTION ! ATTENTION ! ATTENTION ! Servicing energized industrial control equipment can be hazardous. Electrical shock, burns or unintentional actuation of controlled industrial equipment may cause death or serious injury. For safety of maintenance personnel as well as others who might be exposed to electrical hazards associated with maintenance activities, follow the local safety related work practices (for example, the NFPA70E, Part II in the United States). Maintenance personnel must be trained in the safety practices, procedures, and requirements that pertain to their respective job assignments. Do not attempt to defeat or override fault circuits. The cause of the fault indication must be determined and corrected before attempting operation. Failure to correct a control system of mechanical malfunction may result in personal injury and /or equipment damage due to uncontrolled machine system operation. The drive contains high voltage capacitors that take time to discharge after removal of mains supply. Before working on drive, ensure isolation of mains supply from line inputs (R, S, T, [L1, L2, L3]). Wait three minutes for capacitors to discharge to safe voltage levels. Failure to do so may result in personal injury or death. Darkened display LEDs is not an indication that capacitors have discharged to safe voltage levels. Only qualified personnel familiar with adjustable frequency AC drives and associated machinery should plan or implement the installation, startup, and subsequent maintenance of the system. Failure to comply may result in personal injury and/or equipment damage. 10-2 Troubleshooting ATTENTION ! ATTENTION ! Bulletin 280G/281G Troubleshooting This drive contains electrostatic discharge- (ESD) sensitive parts and assemblies. Static control precautions are required when installing, testing, servicing, or repairing this assembly. Component damage may result if ESD control procedures are not followed. If you are not familiar with static control procedures, refer to Allen-Bradley Publication 8000-4.5.2, Guarding against Electrostatic Damage, or any other applicable ESD protection handbook. An incorrectly applied or installed drive can result in component damage or a reduction in product life. Wiring or application errors, such as undersizing the motor, incorrect or inadequate AC supply, or excessive ambient temperatures may result in malfunction of the system. The following flowchart for Bulletin 280G/281G units, is provided to aid in quick troubleshooting. Yes Faulted Display No Fault LED Network LED Motor will not Start See Table 10.1 See Table 10.8 See Table 10.7 Troubleshooting 10-3 Table 10.1 Fault LED Indications for Bulletin 280G and 281G ArmorStart Distributed Motor Controllers Blink Pattern Definitions Possible Causes or Remedies 1 Short Circuit The motor circuit protector has tripped, or the internal wiring protection algorithm has detected an unsafe current range. Try to reset the protector if tripped. If the condition continues, check the power wiring. This fault cannot be disabled. 2 Overload Trip The load has drawn excessive current and based on the trip class selected, the device has tripped. Verify that the load is operating correctly and the ArmorStart is properly set-up. This fault cannot be disabled. 3 Phase Loss 4 Reserved Not Used 5 Reserved Not Used 6 Control Power The ArmorStart has detected a loss of the control power voltage or blown control power fuse. Check control voltage, wiring, and proper polarity. Replace control voltage fuse if necessary. This fault can be disabled and is disabled by default. 7 I/O Fault This error indicates a shorted sensor, shorted input device, or input wiring mistakes or a blown output fuse. If this fault occurs, the offending problem should be isolated or removed prior to restarting the system. This fault can be disabled and is disabled by default. 8 Over Temperature Indicates that the operating temperature has been exceeded. This fault cannot be disabled. 9 Phase Imbalance The ArmorStart has detected a voltage imbalance. Check the power system and correct if necessary. This fault can be disabled and is disabled by default. 10 DNet Power Loss DeviceNet™ power has been lost or has dropped below the 12 volt threshold. Check the state of the network power supply and look for DeviceNet media problems. This fault can be disabled and is disabled by default. 11 Reserved Not Used 12 Reserved Not Used 13 EEPROM Fault This is a major fault, which renders the ArmorStart inoperable. Possible causes of this fault are transients induced during EEprom storage routines. If the fault was initiated by a transient, power cycling should clear the problem; otherwise, replacement of the ArmorStart may be required. This fault cannot be disabled. 14 Hardware Fault This fault indicates that a serious hardware problem exists. Check for a base/starter module mismatch. If no mismatch exists, the ArmorStart may need to be replaced. (Hdw Flt is the factory-enabled default setting.) This fault cannot be disabled. The ArmorStart has detected a missing phase. Verify that three-phase voltage is present at the line side connections. This fault can be disabled and is disabled by default. 10-4 Troubleshooting Table 10.2 Motor Will Not Start – No Output Voltage to the Motor LED Status Indication Possible Cause Possible Solutions Fault or Network Status Led indicates a fault condition See Fault Description See Table 10.1 and/or Table 10.12 addressing fault conditions No Fault condition indicated Three Phase is absent Check power system. Check three-phase power wiring and correct if necessary Display is blank Control voltage is absent Check control wiring and polarity. Correct if necessary. Troubleshooting Bulletin 284G Troubleshooting 10-5 Fault Definitions Some of the Bulletin 284G ArmorStart Distributed Motor Controller faults are detected by the internal hardware of the ArmorStart, while others are detected by the internal drive. For internal drive faults, the internal hardware of the ArmorStart simply polls the drive for the existence of faults and reports the fault state. No fault latching is done by the internal hardware of the ArmorStart for these faults. The Pr FltReset Mode parameter (Parameter 23) determines the Auto Resettability of only the faults that are detected on the main control board. These faults are listed as “param 23” autoresettable in 10.3. The Auto Resettability of the faults that are detected in the internal drive is controlled by internal drive parameters. These faults are listed as drive controlled in 10.3.The following flowchart for Bulletin 284G units, is provided to aid in quick troubleshooting. Faulted Display Yes No Define Nature of the Problem Fault LED Network LED Motor will not start See Table 10.3 See Table 10.12 See Common Symptoms and Corrective Actions 10-6 Troubleshooting Table 10.3 Fault LED indications for Bulletin 284G ArmorStart Distributed Motor Controllers Blink Pattern Fault Definitions ArmorStart Drive Controlled Possible Causes or Remedies 1 Short (140M) — The circuit breaker has tripped. Try to reset the breaker. If the condition continues check the power wiring. This fault cannot be disabled. 2 — Overload Fault (Drive Error Codes 7 and 64) An excessive motor load exists. Reduce load so drive output current does not exceed the current set by Parameter 133 (Motor OL Current) and verify Parameter 184 (Boost Select) setting. Reduce load or extend Accel Time. This fault cannot be disabled. 3 — Phase Short (Drive Error Codes 41…43) The ArmorStart has detected a phase short. Excessive current has been detected between two of the output terminals. Check the motor for a shorted condition. Replace starter module if fault cannot be cleared. This fault cannot be disabled. 4 — Ground Fault (Drive Error Codes 13, 38…40) A current path to earth has been detected at or more of the drive output terminals or a phase to ground fault has been detected between the drive and motor in this phase. Check the motor for a grounded condition. Replace starter module if fault cannot be cleared. This fault cannot be disabled. 5 — Motor Stalled (Drive Error Code 6) Drive is unable to accelerate motor. Increase Parameter 139 and/or 167 (Accel Time x) or reduce load so drive output current does not exceed the current by Parameter 189. This fault cannot be disabled. 6 Control Power — The ArmorStart has detected a loss of the control power voltage. Check control voltage, wiring and proper polarity. Replace control voltage fuse if necessary. This fault can be disabled and is disabled by default. 7 IO Fault — Depending on the types of modules in the configuration this error could be generated by a shorted sensor, shorted input device, wiring mistakes, or a blown output fuse. If this fault occurs, the offending problem should be isolated or removed prior to restarting the system. This fault can be disabled and is disabled by default. 8 — Heatsink Over temperature (Drive Error Code 8) Heatsink temperature exceeds a predefined value. Check for blocked or dirty heatsink fins. Verify that ambient temperature has not exceeded. Replace internal fan. This fault cannot be disabled. 9 — Over-Current (Drive Error Codes 12 and 63) The ArmorStart has detected a voltage imbalance. Check the power system and correct if necessary. This fault cannot be disabled. 10 DNet Power Loss — DeviceNet™ power has been lost or has dropped below the 12V threshold. Check the state of the network power supply and look for DeviceNet media problems. This fault can be disabled and is disabled by default. 11 Internal Comm — This fault occurs when communications between the main board the drive is lost. This fault cannot be disabled. This fault cannot be disabled. Verify that the disconnect is in the “on” position and three phase power is present. 12 — DC Bus Fault DC bus voltage remained below 85% of nominal. DC bus voltage fell below the minimum value. DC (Drive Error Codes 3, 4, and 5) bus voltage exceeded maximum value. Monitor the incoming AC line for low voltage or line power interruption. Check input fuses. Monitor the AC line for high line voltage or transient conditions. Bus overvoltage can also be caused by motor regeneration. Extend the decel time or install a starter module with the dynamic brake option. This fault cannot be disabled. 13 — EEPROM Fault/Internal Comm Flt (Drive Error Codes 81 and 100) This is a major fault, which renders the ArmorStart inoperable. Possible causes of this fault are transients induced during EEprom storage routines. If the fault was initiated by a transient, power cycling should clear the problem. Otherwise replacement of the starter module may be required. This fault cannot be disabled. 14 — Hardware Fault (Drive Error Codes 2, 70, and 122) Indicates incorrect base/starter assembly. Auxiliary input interlock is open. Failure has been detected in the drive power section. Failure has been detected in the Drive control and I/O section. Cycle power and replace drive if fault cannot be cleared. This fault cannot be disabled. 15 — Auto Restart Tries (Drive Error Code 33) Drive unsuccessfully attempted to reset a fault and resume running for the programmed number of Parameter 192 (Auto RstrtTries). Correct the cause of the fault. This fault cannot be disabled. 16 — Miscellaneous Fault This fault is actually the logical OR of the drive’s Auxiliary Input fault (Fault Code 2), Heatsink Overtemperature fault (Fault Code 8), Parameter Defaulted fault (Fault Code 48), and SVC Autotune fault (Fault Code 80), Fan RPM Fault, and DB1 Fault. This fault cannot be disabled. Troubleshooting 10-7 Operation and Troubleshooting of the DB1 - Dynamic Brake The DB1 Dynamic Brake option provides the following protection features: • DB Resistor Overtemperature Fault • DB Overcurrent Fault • DB Undercurrent Fault • DB Switch Fault • DB Open Fault • DB VBus Link Fault • DB Thermal Warning • DB Comm Fault DB Resistor Overtemperature Fault The DB1 measures current continuously, and models resistor body temperature based on measured current and resistor model parameters. The DB1 not only calculates the present resistor body temperature, but also predicts the future resistor body temperature. The resistor overtemperature level is based on the predicted future resistor body temperature, not on the present resistor body temperature. This fault is disabled when parameter 182 (DB Resistor Sel) is “Disabled. Troubleshooting – DB Resistor body temperature is too hot. Allow resistor to cool. DB Overcurrent Fault The DB1 compares each current measurement against the Max Current Level. If 5 consecutive samples are above the Max Current Level, then a fault is recorded. This fault is intended to notify the user if the DB resistance is lower than expected. This fault is disabled when parameter 182 (DB Resistor Sel) is “Disabled. Troubleshooting – DB monitor has measured a DB current higher than expected. Turn off all power to unit. Allow at least 3 minutes for capacitors to discharge. Disconnect DB resistor from ArmorStart control module. Caution- DB resistor may still be hot. Measure DB resistor value at the connector with an ohmmeter. DB resistor value should be within the limits defined in Table 10.4. If DB resistance value is within limits, replace control module. If not, replace DB resistor. 10-8 Troubleshooting DB Undercurrent Fault The DB1 compares each current measurement against the Min Current Level. The Min Current Level = Min DB Voltage Level/Max DB Resistance. If 5 consecutive samples are below the Min Current Level and the DB is ON, then a fault is recorded. This fault is intended to notify the user if the DB resistance is higher than expected. This fault is disabled when parameter 182 (DB Resistor Sel) is “Disabled. Troubleshooting – DB monitor has measured a DB current lower than expected. Turn off all power to unit. Allow at least 3 minutes for capacitors to discharge. Disconnect DB resistor from ArmorStart control module. Caution- DB resistor may still be hot. Measure DB resistor value at the connector with an ohmmeter. DB resistor value should be within the limits defined in Table 10.4. If DB resistance value is within limits, replace control module. If not, replace DB resistor. DB Switch Fault A DB Switch fault is issued when continuous DB resistor current is detected when the Drive Bus Voltage level is less than the DB Voltage Level. If 5 consecutive samples of Drive Bus Voltage less than DB Level is detected along with continuous DB resistor current flow, then a shorted DB IGBT fault (DB Switch) is recorded. It is the user’s responsibility to provide an input power contactor to each ArmorStart with a drive. The user must write logic to control (open) the input contactor to the ArmorStart in the event of a DB Switch Fault. The Instruction Literature provides information on how to connect the input contactor, and how to implement the logic. Troubleshooting – Attempt to reset the fault by removing all power to the unit and restarting. If the fault persists, replace control module. DB Open Fault A DB Open fault is issued when Bus Voltage is greater than the DB Voltage Level, and no DB resistor current has been detected. If 5 consecutive samples of Drive Bus Voltage greater than the DB Level is detected along with no DB resistor current flow, then an open DB fault is recorded. This fault is intended to notify the customer of an open DB resistor, or open wire. The fault is disabled when the DB Resistor Setup parameter (82) is “Disabled”. Troubleshooting – DB monitor expected to see current flow and measured none. Likely cause is an open DB resistor, loose DB resistor connector, or open wire in DB cable. Check DB cable connector for tightness. If problem persists, remove DB resistor cable connector from unit and check DB resistance. If DB resistor is open, replace DB resistor. Otherwise replace control module. 10-9 Troubleshooting DB Thermal Warning A DB Thermal Warning is issued if the predicted future resistor body temperature is greater than the Max DB resistor temperature x DB Thermal Warning Percent. Troubleshooting – None. DB resistor thermal value has exceeded the preset threshold of 90% of thermal value. DB VBus Link Fault For proper operation, the DB1 monitors parameters from the Drive internally inside the ArmorStart. If the internal communications to the drive is lost, then this fault is issued. Since the DB1 can no longer provide resistor protection, the user must implement logic to open the input contactor. Troubleshooting – Make sure that 3 phase line power and control power is applied to unit. Attempt to reset fault. If fault persists, replace control module. DB Comm Fault The communications link is monitored continuously. If the DB1 stops responding, then the MCB issues this fault. Since the DB1 can no longer provide resistor protection, the user must implement logic to open the input contactor. Troubleshooting – Replace control module. Table 10.4 IP67 Dynamic Brake Resistance Values Line Voltage [V AC] 460 DB1 Resistor Part Number Drive [kW (Hp)] Minimum DB Resistance [Ω] Maximum DB Resistance [Ω] 284R-360P500-M* 0.37 (0.5) 341.62 387.33 284R-360P500-M* 0.75 (1) 341.62 387.33 284R-360P500-M* 1.5 (2) 341.62 387.33 284R-120P1K2-M* 2.2 (3) 113.87 129.11 284R-120P1K2-M* 3.3 (5) 113.87 129.11 * - Indicates cable length (0.5 m or 1.0 m). 10-10 Troubleshooting Internal Drive Faults A fault is a condition that stops the drive. There are two fault types. Type Description 1 Auto-Reset/Run When this type of fault occurs, and Parameter 192 (Auto Rstrt Tries) Related Parameter(s): 155, 158, 161, 193 is set to a value greater than 0, a userconfigurable timer, Parameter 193 (AutoRstrt Delay) Related Parameter(s): 192, begins. When the timer reaches zero, the drive attempts to automatically reset the fault. If the condition that caused the fault is no longer present, the fault will be reset and the drive will be restarted 2 Non-Resettable This type of fault may require drive or motor repair, or is caused by wiring or programing errors. The cause of the fault must be corrected before the fault can be cleared. Automatically Clearing Faults (Option/Step) Clear a Type 1 Fault and Restart the Drive 1. Set Parameter 192 (Auto Rstrt Tries) to a value other than 0. 2. Set Parameter 193 (Auto Rstrt Delay) to a value other than 0. Clear an Overvoltage, Undervoltage or Heatsink OvrTmp Fault without Restarting the Drive 1. Set 192 (Auto Rstrt Tries) to a value other than 0. 2. Set 193 (Auto Rstrt Delay) to 0. Auto Restart (Reset/Run) Troubleshooting 10-11 The Auto Restart feature provides the ability for the drive to automatically perform a fault reset followed by a start attempt without user or application intervention. This allows remote or unattended operation. Only certain faults are allowed to be reset. Certain faults (Type 2) that indicate possible drive component malfunction are not resettable.Caution should be used when enabling this feature, since the drive will attempt to issue its own start command based on user selected programming. Table 10.5 Fault Types, Descriptions, and Actions No. Fault Type ➊ F2 Auxiliary Input 1 Auxiliary input interlock is open. F3 Power Loss 2 F4 UnderVoltage 1 F5 OverVoltage 1 F6 Motor Stalled 1 F7 Motor Overload 1 F8 Heatsink OvrTmp 1 F12 HW OverCurrent 2 F13 Ground Fault 2 F33 Auto Rstrt Tries F38 F39 F40 F41 F42 F43 F48 Phase U to Gnd Phase V to Gnd Phase W to Gnd Phase UV Short Phase UW Short Phase VW Short Params Defaulted 2 DC bus voltage remained below 85% of nominal. DC bus voltage fell below the minimum value. DC bus voltage exceeded maximum 6.Monitor the AC line for high line voltage or transient conditions. Bus overvoltage value. can also be caused by motor regeneration. Extend the decel time or install dynamic brake option. Drive is unable to accelerate motor. 7.Increase Parameter 139…167 (Accel Time x) or reduce load so drive output current does not exceed the current set by Parameter 189 (Current Limit 1). Internal electronic overload trip 8. An excessive motor load exists. Reduce load so drive output current does not exceed the current set by Parameter 133 (Motor OL Current). 9. Verify Parameter 184 (Boost Select) setting Heatsink temperature exceeds a 10. Check for blocked or dirty heat sink fins. Verify that ambient temperature predefined value. has not exceeded 40°C. 11. Replace internal fan. The drive output current has 12.Check programming. Check for excess load, improper programming of exceeded the hardware current Parameter 184 (Boost Select), DC brake volts set too high, or other causes of limit. excess current. A current path to earth ground has 13.Check the motor and external wiring to the drive output terminals for a been detected at one or more of the grounded condition. drive output terminals. Drive unsuccessfully attempted to 14.Correct the cause of the fault and manually clear. reset a fault and resume running for the programmed number of Parameter 192 (Auto Rstrt Tries). A phase to ground fault has been 15. Check the wiring between the drive and motor. detected between the drive and 16. Check motor for grounded phase. motor in this phase. 17. Replace starter module if fault cannot be cleared. Excessive current has been detected 18. Check the motor and drive output terminal wiring for a shorted condition. between these two output terminals. 19. Replace starter module if fault cannot be cleared. F63 SW OverCurrent 2 F64 Drive Overload 2 F70 Power Unit 2 F80 SVC Autotune 2 2 Description The drive was commanded to write default values to EEPROM. Programmed Parameter 198 (SW Current Trip) has been exceeded. Drive rating of 150% for 1 min. or 200% for 3 sec. has been exceeded. Failure has been detected in the drive power section. The autotune function was either cancelled by the user or failed. Action 1. Check remote wiring. 2. Verify communications. 3. Monitor the incoming AC line for low voltage or line power interruption. 4. Check input fuses. 5.Monitor the incoming AC line for low voltage or line power interruption. 20. Clear the fault or cycle power to the drive. 21. Program the drive parameters as needed. 22.Check load requirements and Parameter 198 (SW Current Trip) setting. 23.Reduce load or extend Accel Time. 24. Cycle power. 25. Replace starter module if fault cannot be cleared. 26.Restart procedure. 10-12 Troubleshooting No. Fault Type ➊ F81 Comm Loss 2 F100 Parameter Checksum 2 F122 I/O Board Fail 2 Description Action RS485 (DSI) port stopped communicating. The checksum read from the board does not match the checksum calculated. Failure has been detected in the drive control and I/O section. ➊ 27. Turn off using Parameter 205 (Comm Loss Action). 28. Replace starter module if fault cannot be cleared. 29.Set Parameter 141 (Reset To Defaults) to option 1 Reset Defaults. 30. Cycle power. 31. Replace starter module if fault cannot be cleared. See Table 10.3 for internal drive fault types.Common Symptoms and Corrective Actions Table 10.6 Motor Does Not Start Cause(s) Indication Corrective Action No output voltage to the motor. None Check the power circuit. • Check the supply voltage. • Check all fuses and disconnects Check the motor. • Verify that the motor is connected properly. • Verify that I/O Terminal 01 is active. • Verify that Parameter 136 (Start Source) matches your configuration. • Verify that Parameter 195 (Reverse Disable) is not prohibiting movement. Drive is Faulted Flashing red status light Clear fault. • Press Stop • Cycle power • Set Parameter 200 (Fault Clear) to option 1 Clear Faults. • Cycle digital input is Parameter 151…154 (Digital Inx Sel) is set to option 7 Clear Fault. Table 10.7 Drive Does Not Respond to Changes in Speed Command Cause(s) Indication Corrective Action No value is coming form the source of the command. The drive Run indicator is lit and output is 0 Hz. • • None Incorrect reference source is being selected via remote device or digital inputs. • • • • Check Parameter 112 (Control Source) for correct source. If the source is an analog input, check wiring and use a meter to check for presence of signal. Check Parameter 102 (Commanded Freq) to verify correct command. Check Parameter 112 (Control Source) for correct source. Check Parameter 114 (Dig In Status) to see if inputs are selecting an alternate source. Verify settings for Parameters 151…154 (Digital Inx Sel). Check Parameter 138 (Speed Reference) for the source of the speed reference. Reprogram as necessary. Troubleshooting 10-13 Table 10.8 Motor and/or Drive Will Not Accelerate to Commanded Speed Cause(s) Indication Corrective Action Acceleration time is excessive. None Reprogram Parameter 139 (Accel Time 1) or Parameter 167 (Accel Time 2). Excess load or short acceleration times force the drive into current limit, slowing, or stopping acceleration. None • Speed command source or value is not as expected. None • • Programming is preventing the drive output from exceeding limiting values. None Check Parameter 135 (Maximum Freq) to insure that speed is not limited by programming. Torque performance does not match motor characteristics. None • • • • • Compare Parameter 103 (Output Current) with Parameter 189 (Current Limit1). Remove excess load or reprogram Parameter 139 (Accel Time 1) or Parameter 167 (Accel Time 2). Check for improper setting of Parameter 184 (Boost Select). Verify Parameter 102 (Commanded Freq). Check Parameter 112 (Control Source) for the proper Speed Command. Set motor nameplate full load amps in Parameter 226 (Motor NP FLA). Use Parameter 227 (Autotune) to perform Static Tune or Rotate Tune procedure. Set Parameter 225 (Torque Perf Mode) to option 0V/Hz. Table 10.9 Motor Operation is Unstable Cause(s) Motor data was incorrectly entered. Indication None Corrective Action 1. Correctly enter motor nameplate data into Parameters 131, 132, and 133. Enable Parameter 197 (Compensation). Use Parameter 184 (Boost Select) to reduce boost level. 2. 3. Table 10.10 Drive Will Not Reverse Motor Direction Cause(s) Indication Corrective Action Digital input is not selected for reversing control. None Check (Digital Inx Sel). Choose correct input and program for reversing mode. Motor wiring is improperly phased for reverse. None Switch two motor leads. Reverse is disabled. None Check Parameter 195 (Reverse Disable). Table 10.11 Drive Does Not Power Up Cause(s) Indication Corrective Action No input power to drive. None Check the power circuit. • Check the supply voltage. • Check all fuses and disconnects. Jumper between I/O Terminals P2 and P1 not installed and/or DC Bus Inductor not connected. None Install jumper or connect DC Bus Inductor. 10-14 Troubleshooting DeviceNet Troubleshooting Procedures The following table identifies possible causes and corrective actions when troubleshooting DeviceNet related failures using the NETWORK STATUS LED. Table 10.12 DeviceNet Troubleshooting Procedures Network Status LED Definition Possible Causes Off The device has not completed the initialization, is not on an active network, or may not be powered up. Check to make sure the product is properly wired and configured on the network. Flashes green-red-off While waiting to detect the network baud rate, the LED will flash this pattern about every 3 seconds. If the product stays in this state, it means that there is no set baud rate. Ensure that at least one device on the network has a set baud rate. Solid Green The device is operating in a normal condition, and is communicating to another device on the network. No action Required Flashing Green The device is operating in a normal condition, and is on-line, but has no connection to another device. This is the typical state for new devices. The device may need to be mapped to a master scanner, placed in a scanlist, or have another device communicate to it. Flashing Red Recoverable fault has occurred. Check to make sure the PLC™ and scanner are operating correctly and that there are no media/ cabling issues. Check to see if other networked devices are in a similar state. Solid Red The device has detected a major error that has rendered it incapable of communicating on the network (Duplicate MAC ID, Bus-off, media issue). Troubleshooting should be done to ensure that the network is correct (terminators, lengths, etc.) and there is not a duplicate node problem. If other devices on the network appear to be operating fine and power cycling the device does not work, contact Technical Support. Flashing Red and Green The device has detected a network access error and is in a communication faulted state. The device has subsequently received and accepted an Identify Communication Faulted Request Long Protocol message. This is not a common state for DeviceNet products. Power cycling the device may resolve the problem; however, if the problem continues, it may be necessary to contact technical support. 10-15 Troubleshooting Control Module Replacement (Bulletin 280G/281G) Removal of Starter Module ATTENTION ! To avoid shock hazard, disconnect main power before working on the controller, motor, or control devices 1) Disconnect from power source 2) Remove motor cable. 3) Loosen the four mounting screws. 4) Unplug the Control module from the base by pulling forward. Installation of Control Module 5) Install control module. 6) Tighten four mounting screws. 7) Install motor and control brake cable. Figure 10.1 Bulletin 280G/281G Control Module Replacement 1 4 Motor Cable 2 3 1 3 Note: DeviceNet base module is shown 2 30 lb-in/ 3.39 Nm 10-16 Troubleshooting Control Module Replacement (Bulletin 284G) Removal of Control Module ATTENTION ! To avoid shock hazard, disconnect main power before working on the controller, motor, or control devices 1) Disconnect from power source 2) Remove motor cable. 3) Loosen the four mounting screws. 4) Unplug the Control module from the base by pulling forward. Installation of Control Module 5) Install control module. 6) Tighten four mounting screws. 7) Install all cables to starter module. Figure 10.2 Bulletin 284G Control Module Replacement 1 2 3 4 3 Note: DeviceNet base module is shown 2 30 lb-in/ 3.39 Nm 1 10-17 Troubleshooting Base Module Replacement (Bulletin 280G/281G) Removal of Base Module ATTENTION ! To avoid shock hazard, disconnect main power before working on the controller, motor, or control devices 1) Disconnect from power source. 2) Remove motor, control brake, control and three-phase power, comunication, and all other cables connected to the inputs. 3) Loosen four mounting screws on the Starter Module. 4) Unplug the Control Module from the base by pulling forward. Figure 10.3 Bulletin 280G/281G Base Module Removal Base Module 1 Input/Output Cable 2 4 Note: DeviceNet base module is shown Communication Cable 2 3 Motor Cable Control Module 10-18 Troubleshooting Base Module Replacement (Bulletin 280G/281G) Installation of Base Module ATTENTION ! To avoid shock hazard, disconnect main power before working on the controller, motor, or control devices 1) Mount Base Module with four mounting screws. 2) Install Control Module. 3) Tighten the four mounting screws. 4) Install motor, control brake, control and three-phase power, comunication, and all other cables connected to the inputs. 5) Tighten four mounting screws on the terminal access cover plate. 6) Install Control Module. 7) Tighten the four mounting screws. 8) Install motor cable, comunication cables and all others connected to the inputs and outputs. Figure 10.4 Bulletin 280G/281G Base Module Installation Base Module Input/ Output Cable 4 46 - 50 lb-in 2 Communication Cable 3 Note: DeviceNet base module is shown 7 Motor Cable Control Module Troubleshooting Base Module Replacement (Bulletin 284G) 10-19 Removal of Base Module To avoid shock hazard, disconnect main power before working on the controller, motor, or control devices ATTENTION ! 1) Disconnect from power source. 2) Remove all cables from Control Module, comunication cables and all others connected to the inputs. 3) Loosen four mounting screws on the Control Module. 4) Unplug Control Module from the base by pulling forward. 5) Loosen mounting screws and remove. Figure 10.5 Bulletin 284G Base Module Removal Base Module Input/Output Cable 1 2 Communication Cable 3 2 Motor Cable Control Module 4 10-20 Troubleshooting Base Module Replacement (Bulletin 284G) Installation of Base Module ATTENTION ! To avoid shock hazard, disconnect main power before working on the controller, motor, or control devices 1) Mount Base Module with four mounting screws. 2) Install Control Module. 3) Tighten four mounting screws. 4) Install all cables to Control Module, comunication, control and three-phase power, and all other cables connected to the inputs. Figure 10.6 Bulletin 284G Base Module Installation Base Module Input/ Output Cable 4 Communication Cable 3 Control Module 2 4 Motor Cable Troubleshooting 10-21 Figure 10.7 Control Voltage Fuse Replacement Control Voltage Fuse 10-22 Notes: Troubleshooting Appendix Specifications Bulletin 280G/281G Power Circuit Electrical Ratings Rated Operation Voltage UL/NEMA 380/220V…480/277V AC IEC 380/220V…480/277V AC Rate Insulation Voltage Rated Impulsed Voltage Dielectric Withstand 600V 4 kV 2200V AC 600 V 4 kV 2500V AC Operating Frequency Utilization Category Protection Against Shock 50/60 Hz N/A N/A 50/60 Hz AC-3 IP2X 2.5 A 5.5 A 16 A Rated Operating Current Max. Control Circuit Short Circuit Protection Safety Products only: 24V DC (+10%, -15%) A2 (should be grounded at voltage source) 120V AC (+10%, -15%) A2 (should be grounded at voltage source) 1 kA 10 A circuit breaker or equivalent 250V 250V — 4 kV 1500V AC 2000V AC — III 50/60 Hz 50/60 Hz Rated Operation Voltage Rated Short Circuit SCPD Rate Insulation Voltage Rated Impulsed Voltage Dielectric Withstand Overvoltage Category Operating Frequency SCPD Performance Type 1 Current Rating 0.5…2.5 A 1.1…5.5 A 3.2…16 A Voltage 30kA 100 A maximum 100 A maximum SCPD List Control Voltage Contactor (Pick Up) Contactor (Hold In) 120V AC Brake (Pick Up) 120V AC Brake (Hold In) Total Control Power (Pick Up) Total Control Power (Hold In) Input Ratings Units Volts Amps Amps Amps Amps VA (W) VA (W) Rated Operation Voltage Input On-State Voltage Range Input On-state Current Input Off-state Voltage Range Input Off-state Current Off to On On to Off Input Compatibility Number of inputs Voltage Status Only Current Available 65kA Sym. Amps RMS SCPD Fuses, only fuse types: J, CC, and T SCPD UL 489 Circuit Breakers 480Y/277V Safety Products Only C10 Base: 100 A maximum C25 Base: 60 A maximum Size per NEC Group Motor Power Requirements Non-Safety Products 120V AC, 50/60 Hz 0.58 plus the motor brake current 0.08 plus the motor brake current — — 70 9 Safety Products 24V DC 1.09 30 motor brake pick-up current motor brake hold-in current (26) (7.2) 24V DC 10…26V DC 3.0 mA @ 10V DC 7.2 mA @ 24V DC 0…5V DC <1.5 mA Input Filter — Software Selectable Settable from 0…64 ms in 1 ms increments Settable from 0…64 ms in 1 ms increments N/A IEC 1+ 6 Sensor Source 11…25V DC from DeviceNet™ 50 mA MAX per Input, 300 mA Total A A-2 Specifications Bulletin 280G/281G, Continued Electrical Ratings Environmental UL/NEMA Operating Temperature Range Storage and Transportation temperature range Altitude Humidity Pollution Degree Enclosure Ratings Approximate Shipping Weight Operational Non-Operational Operational Non-Operational WireSize Tightening Torque IEC -20…40°C (-4…104°F) –25….85°C (–13…185°F) 2000 m 5…95% (non-condensing) 3 NEMA 4/12/13 IP67 6.8 kg (15 lbs.) Mechanical Resistance to Shock 15 G 30 G Resistance to Vibration 1 G, 0.15 mm (0.006 in.) displacement 2.5 G, 0.38 mm (0.015 in.) displacement Power and Ground Terminals Primary/Secondary Terminal: Primary/Secondary Terminal: #16 AWG…#10 AWG 1.5 mm2…4.0 mm2 Primary Terminal: 10.8 in·lb Primary Terminal: 1.2 N·m Secondary Terminal: 4.5 in·lb Secondary Terminal: 0.5 N·m Wire Strip Length 0.35 in. (9 mm) Control and Safety Monitor Inputs WireSize #18 AWG…#10 AWG Tightening Torque 6.2 in·lb Wire Strip Length Other Rating 1.0 mm2…4.0 mm2 0.7 N·m 0.35 in. (9 mm) EMC Emission levels Conducted Radio Frequency Emissions Radiated Emissions Electrostatic Discharge Radio Frequency Electromagnetic Field Fast Transient Surge Transient Overload Current Range Trip Classes Trip Rating Number of poles DeviceNet Supply Voltage Rating DeviceNet Input Current External Devices powered by DeviceNet Total w/max. Sensor Inputs (6) DeviceNet Input Current Surge Baud Rates Distance Maximum Motor Cable Certifications Class A Class A EMC immunity levels 4 kV contact and 8 kV Air 10 V/m 2 kV 1 kV L-L, 2 kV L-N (Earth) Overload Characteristics 0.5…2.5 A 1.1…5.5 A 3.2…16 A 10, 15, 20 120% of FLC setting 3 DeviceNet Specifications Range 11…25V DC, 24V DC Nominal 167 mA @ 24V DC - 4.0 W 364 mA @ 11V DC - 4.0 W Sensors Inputs 6* 50 mA - total 300 mA 367 mA @ 24V DC - 8.8 W 15 A for 250 µs DeviceNet Communications 125, 250, 500 kbps 500 m (1630 ft) @ 125 kbps 200 m (656 ft) @ 250 kbps 100 m (328 ft) @ 500 kbps 10 AWG for all motor sizes cULus (File No. E3125) UL 508 EN/IEC 60947-4-1 CE Marked per Low Voltage Directive 73/23/EEC and EMC Directive 89/336/EEC Specifications Bulletin 280G/281G, Continued Figure A.1 External Connections for Input Connector 2 1 5 4 3 Pin 1: +V Out Pin 2: Input Pin 3: Comm Pin 4: Input Pin 5: NC (No Connection) Figure A.2 External Connections for Motor Connector @ 460V AC Pin 1: T1 - Black Pin 2: Ground - Green/Yellow Pin 3: T3 - Red Pin 4: T2 - White Figure A.3 External Connections for DeviceNet™ Connector Figure A.4 External Connections for Control Brake Connector Pin 1: GND - Green/Yellow Pin 2: L1 - Black Pin 3: L2 - White Figure A.5 External Connections for Three-Phase Power Input Pin 1: L1 - Black Pin 2: Ground - Green/Yellow Pin 3: L3 - Red Pin 4: L2 - White A-3 A-4 Specifications Bulletin 280G/281G, Continued Figure A.6 External Connections for 120V AC Control Power Pin 1: GND - Green/Yellow Pin 2: L1 - Black Pin 3: L2 - White Figure A.7 Safety Monitor Input (SM1/SM2) Pin 1: SM2- White Pin 2: SM1 - Brown Pin 3: N/C- No connection Pin 4: N/C- No connection Figure A.8 External Connections for Safety Input Power (A1/A2) Pin 1: M - White Pin 2: A1 - Brown Pin 3: P - Black Pin 4: A2 - Blue Specifications Bulletin 280G/281G, Continued Figure A.9 Overload Trip Curves Class 10Class Overload 10 Curves Approximate Trip Time (sec) 10000 1000 Cold 100 Hot 10 1 0 100 200 300 400 500 600 700 Multiples % of Full Load Current Class 15 Overload Curves Class 15 Approximate Trip Time (sec) 10000 Cold 100 Hot 1 0 100 200 300 400 500 600 700 Multiples %for of Full Load Current Class 20 Overload Curves Class 20 Approximate Trip Time (sec) 10000 Cold 100 Hot 1 0 100 200 300 400 500 600 % of Full Load Current Multiples 700 A-5 A-6 Specifications Bulletin 284G Power Circuit Electrical Ratings Rated Operation Voltage Rate Insulation Voltage UL/NEMA 380/220V…480.277V AC 600V IEC 380/220V…480.277V AC 600 V Rated Impulsed Voltage Dielectric Withstand Operating Frequency 4 kV 2200V AC 50/60 Hz 4 kV 2500V AC 50/60 Hz Utilization Category Protection Against Shock N/A N/A AC-3 IP2X 2.5 A 5.5 A 16 A Rated Operating Current Max. Short Circuit Protection Current Rating Voltage 480Y/277V 10 A 25 A Sym. Amps RMS 65 kA 30 kA SCPD Performance SCPD Fuses, only fuse types: J, CC, and T 100 A maximum Safety Products Only C10 Base: 100 A maximum C25 Base: 60 A maximum Size per NEC Group Motor — Safety Products only: 24V DC (+10%, -15%) A2 (should be grounded at voltage source) 120V AC (+10%, -15%) A2 (should be grounded at voltage source) 1 kA 10 A circuit breaker or equivalent 250V 250V — 4 kV 1500V AC 2000V AC — III 50/60 Hz 50/60 Hz SCPD UL 489 Circuit Breakers 100 A maximum SCPD List Control Circuit Rated Operation Voltage Rated Short Circuit SCPD Rate Insulation Voltage Rated Impulsed Voltage Dielectric Withstand Overvoltage Category Operating Frequency Control Voltage Contactor (Pick Up) Contactor (Hold In) 120V AC Brake (Pick Up) 120V AC Brake (Hold In) Total Control (Pick Up) Total Control (Hold In) Input Ratings — Units Volts Amps Amps Amps Amps VA (W) VA (W) Rated Operation Voltage Input On-State Voltage Range Input On-state Current Input Off-state Voltage Range Input Off-state Current Off to On On to Off Input Compatibility Number of inputs Voltage Status Only Current Available Power Requirements Non-Safety Products 120V AC 0.35 plus motor brake pick-up current 0.10 plus motor brake hold-in current — — 42 12 Safety Products 24V DC 0.63 0.63 0.29 plus motor brake pick-up current 0.04 plus motor brake hold-in current (15) (15) 24V DC 10…26V DC 3.0 mA @ 10V DC 7.2 mA @ 24V DC 0…5V DC <1.5 mA Input Filter — Software Selectable Settable from 0…64 ms in 1 ms increments Settable from 0…64 ms in 1 ms increments N/A IEC 1+ 6 Sensor Source 11…25V DC from DeviceNet™ 50 mA MAX per Input, 300 mA Total Specifications A-7 Bulletin 284G, Continued Electrical Ratings Environmental UL/NEMA Operating Temperature Range Storage and Transportation temperature range Altitude Humidity Pollution Degree Enclosure Ratings Approximate Shipping Weight Operational Non-Operational Operational Non-Operational WireSize Tightening Torque IEC -20…40°C (-4…104°F) –25….85°C (–13…185°F) 2000 m 5…95% (non-condensing) 3 NEMA 4/12/13 IP67 18.1 kg (40 lbs.) Mechanical Resistance to Shock 15 G 30 G Resistance to Vibration 1 G, 0.15 mm (0.006 in.) displacement 2.5 G, 0.38 mm (0.015 in.) displacement Power and Ground Terminals Primary/Secondary Terminal: Primary/Secondary Terminal: #16 AWG…#10 AWG 1.5 mm2…4.0 mm2 Primary Terminal: 10.8 in·lb Primary Terminal: 1.2 N·m Secondary Terminal: 4.5 in·lb Secondary Terminal: 0.5 N·m Wire Strip Length 0.35 in. (9 mm) Control and Safety Monitor Inputs WireSize #18 AWG…#10 AWG Tightening Torque 6.2 in·lb Wire Strip Length Other Rating 1.0 mm2…4.0 mm2 0.7 N·m 0.35 in. (9 mm) EMC Emission levels Conducted Radio Frequency Emissions Radiated Emissions Electrostatic Discharge Radio Frequency Electromagnetic Field Fast Transient Surge Transient Trip Class Overload Protection Number of poles DeviceNet Supply Voltage Rating DeviceNet Input Current External Devices powered by DeviceNet Total w/max. Sensor Inputs (6) DeviceNet Input Current Surge Baud Rates Distance Maximum Motor Cable Certifications Class A Class A EMC immunity levels 4 kV contact and 8 kV Air 10 V/m 2 kV 1 kV L-L, 2 kV L-N (Earth) Overload Characteristics 10 I2t overload protection - 150% for 60 seconds, 200% for 30 seconds 3 DeviceNet Specifications Range 11…25V DC, 24V DC Nominal 167 mA @ 24V DC - 4.0 W 364 mA @ 11V DC - 4.0 W Sensors Inputs 6* 50 mA - total 300 mA 367 mA @ 24V DC - 8.0 W 15 A for 250 µs DeviceNet Communications 125, 250, 500 kbps 500 m (1630 ft) @ 125 kbps 200 m (656 ft) @ 250 kbps 100 m (328 ft) @ 500 kbps 10 AWG shielded motor cable, 5 m maximum, with 360° RF connections on both ends. Required to meet conducted and radiated emissions requirements. cULus (File No. E207834) UL 508C EN 50178, EN 61800-3, EN 60947-1 CE Marked per Low Voltage Directive 73/23/EEC and EMC Directive 89/336/EEC A-8 Specifications Bulletin 284G, Continued Figure A.10 External Connections for Input Connector Figure A.11 External Connections for DeviceNet™ Connector Figure A.12 External Connections for Motor Connector Pin 1: T1 Pin 2: Ground Pin 3: T3 Pin 4: T2 - Black - Green/Yellow - Red - White Figure A.13 External Connections for Control Brake Connector Pin 1: GND Pin 2: L1 Pin 3: L2 - Green/Yellow - Black - White Pin 1: GND Pin 2: BR+ Pin 3: BR- - Green/Yellow - Black - White Figure A.14 External Connections for Dynamic Brake Connector Specifications Bulletin 284G, Continued Figure A.15 External Connections for 120V AC Control Power Pin 1: GND - Green/Yellow Pin 2: L1 - Black Pin 3: L2 - White Figure A.16 Safety Monitor Input (SM1/SM2) Pin 1: SM2- White Pin 2: SM1 - Brown Pin 3: N/C- No connection Pin 4: N/C- No connection Figure A.17 External Connections for Safety Input Power (A1/A2) Pin 1: M - White Pin 2: A1 - Brown Pin 3: P - Black Pin 4: A2 - Blue % of P132 (Motor NP Hertz) % of P133 (Motor OL Current) % of P133 (Motor OL Current) % of P133 (Motor OL Current) Overload Curves % of P132 (Motor NP Hertz) % of P132 (Motor NP Hertz) A-9 A-10 Specifications Bulletin 284G, Continued Line Voltage Frequency 3-Phase kW Rating 3-Phase Hp Rating Output Current (A) Input Current (A) 0.4 0.75 1.5 2.2 3.0 — — — — — — — — — — 0.5 1 2 3 5 1.4 2.3 4.0 6.0 7.6 1.4 2.3 4.0 6.0 7.6 2.15 3.80 6.40 9.00 12.40 1.85 3.45 5.57 8.20 12.5 Drive Ratings 380 50 460 60 IP67 Dynamic Brake Resistor Ratings Table A.1 IP67 Dynamic Brake Resistor Application Type 1 Drive and Motor Size kW Part Number Resistance Ohms ± 5% Continuous Power kW 360 360 360 120 120 0.086 0.086 0.086 0.26 0.26 Max Braking Braking Max Torque % of Torque % of Energy kJ Motor Motor Application Type 2 Duty Cycle % Braking Torque % of Motor Duty Cycle % 47% 23% 12% 24% 13% 150% 150% 110% 150% 124% 31% 15% 11% 16% 10% 400-480 Volt AC Input Drives 0.37 (0.5) 0.75 (1) 1.5 (2) 2.2 (3) 4 (5) 284R-360P500-M* 284R-360P500-M* 284R-360P500-M* 284R-120P1K2-M* 284R-120P1K2-M* 17 17 17 52 52 305% 220% 110% 197% 124% 100% 100% 100% 100% 100% Note: Always check the resistor ohms against minimum resistance for drive being used. Note: Duty Cycle listed is based on full speed to zero speed deceleration. For constance regen at full speed, duty cycle capability is half of what is listed. Application Type 1 represents maximum capability up to 100% braking torque where possible. Application Type 2 represents more than 100% braking torque where possible, up to a maximum of 150%. Specifications ArmorConnect™ Three-Phase Power Media Table 1.A Patchcords Pin Count Assembly Rating Cat. No. Straight Female Straight Male 0 4-pin Right-Angle Female Straight Male Straight Female Right-Angle Male Right-Angle Female Right-Angle Male 600V, 25 A 280-PWRM35A-M➊ 280-PWRM35A-M➊ 280-PWRM35A-M➊ 280-PWRM35A-M➊ 0 ➊ The cat. no. is incomplete as shown. For desired length, replace the symbol with: 05 —0.5 m (1.62 ft), 1—1 m (3.3 ft), 015—1.5 m (4.9 ft), 2—2 m (6.5 ft), 025—2.5 m (8.1 ft), 3—3 m (9.8 ft), 4—4 m (13.1 ft), 6—6 m (19.7 ft), 8—8 m (26.2 ft), 10—10 m (32.8 ft), 12—12 m (39.4 ft), or 14—14 m (45.9 ft). Specifications Pinout and Color Code Mechanical Coupling Nut Black Anodized Aluminum or 316 Stainless Steel Housing Black PVC Insert Black PVC Cable Diameter 0.775 in. +/- 0.12 in. (19.68 mm +/- 0.5 mm) Face View Pinout Electrical 4-pin Contacts Copper Alloy with Gold over Nickel Plating Cable Black PVC, dual rated UL TC/Open Wiring and STOOW Cable Rating 600V AC/DC Assembly Rating 600V @ 25 A, Symmetrical Amps RMS Fault: 65 kA when used with Class CC, T, or J type fuses or 100 A circuit breaker Environmental Enclosure Type Rating IP67, NEMA 4; IP69K 1200 psi washdown Operating Temperature UL Type TC 600V 90 °C Dry 75 °C Wet, Exposed Run (ER) or MTW 600V 90 °C or STOOW 105 °C 600V CSA STOOW 600V FT2 Certifications UL Listed (File No. E318496, Guide PVVA) Standards Compliance UL 2237 Color Code Female 1 Black 2 Green/Yellow Extended PIN Male 3 Red 4 White Approximate Dimensions Dimensions in millimeters (inches). Dimensions are not intended to be used for manufacturing purposes and are subject to change. Female straight Male straight 88.9 (3.50) 88.9 (3.50) 38.6 (1.52) 38.6 (1.52) Female 90 deg. 49.5 - 57.1 (1.95 - 2.25) Male 90 deg. 49.5 - 57.1 (1.95 - 2.25) Example of a Patchcord 74.7 (2.94) 74.7 (2.94) 38.6 (1.52) 38.6 (1.52) A-11 A-12 Specifications Table 1.B Power Tees and Reducers Description Assembly Rating Color Code Cat. No. M35, 3-Phase Power Tee, 4 pole 25 A A 280-T35 0 0 Specifications Pinout and Color Code Mechanical Coupling Nut Black Anodized Aluminum or 316 Stainless Steel Housing Black PVC Insert Black PVC Face View Pinout Trunk Tee: 25 A Electrical Contacts Copper Alloy with Gold over Nickel Plating Voltage 600V AC/DC 4-pin Trunk Tee: 25 A Reducing Tee: Trunk 25 A/Drop 15 A Reducer: 15 A Assembly Rating Symmetrical Amps RMS Fault 65 kA when used with Class CC, T, or J type fuses or 100 A circuit breaker Female Color Code 1 Black (A) 2 Green/Yellow Extended PIN Environmental Enclosure Type Rating IP67, NEMA 4; IP69K 1200 psi washdown Certifications UL Listed (File No. E318496, Guide PVVA) Standards Compliance UL 2237 Male 3 Red 4 White Approximate Dimensions Dimensions in millimeters (inches). Dimensions are not intended to be used for manufacturing purposes and are subject to change. Power Tee 108.0 (4.25) KEYWAY #1 BLACK #2 GREEN/YELLOW 38.0 (1.50) 19.0 (0.75) #2 GREEN/YELLOW #4-WHITE #1 BLACK #3 RED #3-RED #4 WHITE #4 WHITE 73.7 (2.90) FEMALE WIRING DIAGRAM MALE #2-GREEN/YELLOW EXTENDED PIN 2 GREEN/YELLOW LEAD FEMALE #3 RED #1-BLACK A-13 Specifications Table 1.C Power Receptacles (Male and Female) Pin Count Assembly Rating Color Code 4-pin 10 AWG, 600V, 25 A B Cat. No. Female Male 280-M35F-M1 280-M35M-M1 0 0 Specifications Pinout and Color Code Mechanical Receptacle Shell Material Black Anodized Aluminum (female) and Zinc DieCast, Black E-Coat (male) or 316 Stainless Steel Insert Black PVC Contacts Copper Alloy with Gold over Nickel Plating Face View Pinout 10 AWG, 600V @ 25 A Electrical Cable Rating 4-pin 600V AC/DC 4-pin: 10 AWG, 600V @ 25 A Assembly Rating Symmetrical Amps RMS Fault 65 kA when used with Class CC, T, or J type fuses or 100 A circuit breaker Environmental Enclosure Type Rating IP67, NEMA 4; 1200 psi washdown Certifications UL Listed (File No. E318496, Guide PVVA) Standards Compliance UL 2237 Female Color Code 1 Black (B) 2 Green/Yellow Extended PIN Male 3 Red 4 White Approximate Dimensions Dimensions in millimeters (inches). Dimensions are not intended to be used for manufacturing purposes and are subject to change. 45.26 (1.782) 280-M35F-M1 7.62 +/-2.54 (0.30 +/- 0.10) 11.89 (0.468) 6.35 (0.25) 1000 (39.37) 51.61 (2.032) 280-M35M-M1 6.35 (0.25) 11.89 (0.468) 1000 (39.37) A-14 Notes: Specifications Appendix B Bulletin 280G/281G CIP Information Electronic Data Sheets Electronic Data Sheets (EDS) files are specially formatted ASCII files that provide all of the information necessary for a configuration tool (e.g. RSNetWorx™ for DeviceNet™) to access and alter the parameters of the device. The EDS file contains all of the device information: number of parameters, groupings, parameter name, minimum, maximum, and default values, units, data format and scaling. EDS files for all the ArmorStart® Distributed Motor Controller units are available from the Internet at http://www.ab.com/networks/eds. They may also be built automatically by some configuration tools since all of the information necessary for a basic EDS file may be extracted from the ArmorStart Distributed Motor Controller. DOL Type Product Codes and Name Strings Product codes for DOL starters (and DOL Reversing starters) are based on the Overload relay current rating and the control power rating of the starter. The following table lists the product codes for the Bulletin 280G Distributed Motor Controllers: Table B.1 Table B.2 ➊ Bul. 280G Distributed Motor Controller Product Codes and Name Strings 280G Device Type ➊ Product Code Contactor Size Code 22 0x484 100C-12 0.5…2.5 A 120V AC 22 0x485 100C-12 1.1…5.5 A 120V AC 22 0x486 100C-23 3.2…16 A 120V AC Overload Control Power Current Rating Voltage Bul. 280G Distributed Motor Controller Safety Product Codes and Name Strings 280G Device Type ➊ Product Code Contactor Size Code 22 0x4A1 100C-12 0.5…2.5 A 24V DC 22 0x4A2 100C-12 1.1…5.5 A 24V DC 22 0x4A3 100C-23 3.2…16 A 24V DC 22= Motor Starter Overload Control Power Current Rating Voltage B-2 Bulletin 280G/281G CIP Information DOL Reversing Type Product Codes and Name String The following table lists the product codes for the Bulletin 281G Distributed Motor Controllers: Table B.3 Table B.4 ➊ DeviceNet Objects Bul. 281G Distributed Motor Controller Product Codes and Name Strings 281G Device Type ➊ Product Code Contactor Size Code 22 0x4C4 100C-12 0.5…2.5 A Overload Control Power Current Rating Voltage 120V AC 22 0x4C5 100C-12 1.1…5.5 A 120V AC 22 0x4C6 100C-23 3.2…16 A 120V AC Bul. 281G Distributed Motor Controller Safety Product Codes and Name Strings 281G Device Type ➊ Product Code Contactor Size Code 22 0x4Ee1 100C-12 0.5…2.5 A 24V DC Overload Control Power Current Rating Voltage 22 0x4E2 100C-12 1.1…5.5 A 24V DC 22 0x4E3 100C-23 3.2…16 A 24V DC 22= Motor Starter The ArmorStart Distributed Motor Controller supports the following DeviceNet object classes: Table B.5 DeviceNet Object Classes Class Object 0x0001 Identity 0x0002 Message Router 0x0003 DeviceNet 0x0004 Assembly 0x0005 Connection 0x0008 Discrete Input Point 0x0009 Discrete Output Point 0x000F Parameter Object 0x0010 Parameter Group Object 0x001D Discrete Input Group 0x001E Discrete Output Group 0x0029 Control Supervisor 0x002B Acknowledge Handler 0x002C Overload Object 0x00B4 DN Interface Object B-3 Bulletin 280G/281G CIP Information Identity Object — CLASS CODE 0x0001 The following class attributes are supported for the Identity Object: Table B.6 Identity Objects Attribute ID Access Rule Name Data Type Value 1 Get Revision UINT 1 A single instance of the Identity Object is supported. The following instance attributes are supported. Table B.7 Attribute ID Access Rule 1 2 3 4 Identity Object Class Attributes Identity Object Instance Attributes Name Data Type Value Get Vendor UINT 1 Get Device Type UINT 22 Get Product Code UINT See Table B.1 and Table B.3 Get Revision Major Revision Minor Revision Structure of: USINT USINT Indicates Software Firmware Revision Number 5 Get Status WORD Bit 0 — 0=not owned; 1=owned by master Bit 2 — 0=Factory Defaulted; 1=Configured Bit 8 — Minor Recoverable fault Bit 9 — Minor Unrecoverable fault Bit 10 — Major Recoverable fault Bit 11 — Major Unrecoverable fault 6 Get Serial Number UDINT Unique Number for Each Device 7 Get Product Name String Length ASCII String Structure of: USINT STRING Product code specific See Table B.1 and Table B.3 8 Get State USINT Returns the value “3=Operational” 9 Get Configuration Consistency Value UINT Unique value depending on output of the parameter checksum algorithm. 10 Get/Set Heartbeat Interval USINT In seconds. Default = 0 The following common services are implemented for the Identity Object: Table B.8 Message Router — CLASS CODE 0x0002 Identity Object Common Services Implemented for: Service Code Class Instance Service Name 0x0E Yes Yes Get_Attribute_Single 0x05 No Yes Reset 0x10 No Yes Set_Attribute_Single No class or instance attributes are supported. The message router object exists only to rout explicit messages to other objects. B-4 Bulletin 280G/281G CIP Information DeviceNet Object — CLASS CODE 0x0003 The following class attributes are supported for the DeviceNet Object: Table B.9 DeviceNet Object Class Attributes Attribute ID Access Rule Name Data Type Value 1 Get Revision UINT 2 A single instance (instance 1) of the DeviceNet Object is supported. The following instance attributes are supported. Table B.10 DeviceNet Object Instance Attributes Attribute ID Access Rule Name Data Type Value 1 Get/Set Node Address USINT 0 - 63 2 Get/Set Baud Rate USINT 0=125K 1=250K 2=500K 5 Get Allocation Info Allocation Choice Master Node Addr Structure of: BYTE USINT 8 Get MAC ID Switch Value BOOL *Allocation_byte Allocation_byte* 0…63 = address 255 = unallocated 0-63 Bit 0 Explicit messaging Bit 1 Polled I/O Bit 4 COS I/O Bit 5 Cyclic I/O Bit 6 Acknowledge Suppression The following services are implemented for the DeviceNet Object: Table B.11 DeviceNet Object Common Services Implemented for: Service Code Class Instance Service Name 0x0E Yes Yes Get_Attribute_Single 0x10 No Yes Set_Attribute_Single 0x4B No Yes Allocate_Master/Slave _Connection_Set 0x4C No Yes Release_Master/Slave _Connection_Set B-5 Bulletin 280G/281G CIP Information Assembly Object — CLASS CODE 0x0004 The following class attributes are supported for the Assembly Object: Table B.12 Assembly Object Class Attributes Attribute ID Access Rule Name Data Type Value 2 Get Max Instance UINT 190 All of the various instances of the assembly object will support attribute 3. The following table summarizes the various instances that are supported: Table B.13 DeviceNet Assembly Object Instance Attributes Custom Parameter Based “Word-wise” I/O Assemblies Attribute ID Type Description 3 Consumed Required ODVA Consumed Instance 52 Produced Required ODVA Produced Instance 120 Produced Custom Parameter Based Word Wise Assembly 160 Consumed Default Consumed Instance for DOL 161 Produced Default Produced Instance for DOL 162 Consumed Standard Consumed Instance for DOL with Network Inputs 163 Produced Standard Produced Instance for DOL with Network Outputs 181 Produced User Inputs 182 Consumed Consumed Network Bits (a.k.a Network Inputs) 183 Produced Produced Network Bits (a.k.a. Network Outputs) 184 Produced Trip Status Bits 185 Produced Starter Status Bits 186 Produced DeviceNet Status Bits 187 Consumed Starter Control Bits 189 Produced Warning Status Bits 190 Produced 1779-ZCIO Bits Table B.14 Custom Parameter Based “Word-Wise” (Produced) Assembly Instance 120 Instance 120 Word 0 1 2 3 Byte Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 0 Value of the parameter pointed to by “Prod Assy Word 0” Param (low byte) 1 Value of the parameter pointed to by “Prod Assy Word 0” Param (high byte) 2 Value of the parameter pointed to by “Prod Assy Word 1” Param (low byte) 3 Value of the parameter pointed to by “Prod Assy Word 1” Param (high byte) 4 Value of the parameter pointed to by “Prod Assy Word 2” Param (low byte) 5 Value of the parameter pointed to by “Prod Assy Word 2” Param (high byte) 6 Value of the parameter pointed to by “Prod Assy Word 3” Param (low byte) 7 Value of the parameter pointed to by “Prod Assy Word 3” Param (high byte) B-6 Bulletin 280G/281G CIP Information “Word-wise” Bit-Packed Assemblies Assemblies whose instance numbers are 180…189 are all one word (16 bits) long. They can be used “stand alone”, but their main use is to assemble information for EDS file parameters. These “word-wise” assemblies become the building blocks for the custom parameter-based “word-wise” assemblies described above. Note that these “word-wise” assemblies are designed for use with DeviceLogix™, so their contents reflect the various words in the DeviceLogix data table. Table B.15 Instance 181 — This is a “Read Only” Status Assembly Instance 181 — Hardware Inputs 1…16 Byte Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 0 — — Input 5 Input 4 Input 3 Input 2 Input 1 Input 0 1 Reserved Table B.16 Instance 182 — This is a “Read/Write” Control Assembly Instance 182 — Consumed Network Inputs 1…16 Byte Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 0 Net Input Net Input Net Input Net Input Net Input Net Input Net Input Net Input 8 7 6 5 4 3 2 1 1 Net Input Net Input Net Input Net Input Net Input Net Input Net Input Net Input 16 15 14 13 12 11 10 9 Table B.17 Instance 183 This is a “Read Only” Status Assembly Instance 183 — Produced Network Outputs 1…15 Byte Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 0 Net Out 8 Net Out 7 Net Out 6 Net Out 5 Net Out 4 Net Out 3 Net Out 8 Net Out 1 1 Reserved Net Out 15 Net Out 14 Net Out 13 Net Out 12 Net Out 11 Net Out Net Out 9 10 Table B.18 Instance 184 This is a “Read Only” Status Assembly Instance 184 — Trip Status Byte Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 0 — In SS Flt Control Power — — Phase Loss OL Trip Short Circuit 1 — — Hw Flt EEPROM — — DNet Power Phase Imbal B-7 Bulletin 280G/281G CIP Information Table B.19 Instance 185 This is a “Read Only” Status Assembly Instance 185 — Starter Status Byte Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 0 At Ref — Net Ctl Status Ready Running Running Warning Rev Fwd 1 — — 140M On HOA Stat. Keypad Hand — Bit 1 Bit 0 Tripped — — Table B.20 Instance 186 This is a “Read Only” Status Assembly Instance 186 — DeviceNet Status Byte Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 0 — — — I/O Idle I/O Flt Exp Flt 1 Bit 1 Bit 0 I/O Cnxn Exp Cnxn ZIP FLT ZIP4 CNX ZIP3 FLT ZIP2 CNX ZIP2 FLT ZIP2 CNX ZIP1 FLT ZIP1 CNX Table B.21 Instance 187 This is a “Read/Write” Assembly Instance 187 — Starter Control Bits Byte 0 1 Bit 7 Bit 6 User Out User Out B A — — Bit 5 Bit 4 Bit 3 Bit 2 — — — Fault Reset — — — — Bit 1 Bit 0 Run Rev Run Fwd — — Table B.22 Instance 189 This is a “Read-Only” Assembly Instance 189 — Warning Status Bits Standard Distributed Motor Controller I/O Assemblies Byte Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 0 — IO Warning Control Power Warning — — PL Warning — — 1 — — HW Warn — — — DN Warn PI Warn Standard Distributed Motor Controller IO Assemblies are available on all Starter Types. Standard Distributed Motor Controller Output (Consumed) Assemblies Table B.23 Instance 3 is the required output (consumed) assembly defined in the DeviceNet Motor Starter Profile Instance 3 — ODVA Starter Byte Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 0 — — — — — — — Run Fwd B-8 Bulletin 280G/281G CIP Information Table B.24 Instance 160 is the default output (consumed) assembly for Standard Distributed Motor Controllers Instance 160 — Default Consumed Standard Distributed Motor Controller Byte 0 Bit 7 Bit 6 Reserved Reserved Bit 5 Bit 4 Bit 3 Bit 2 — — — Fault Reset Bit 1 Bit 0 Run Rev Run Fwd Table B.25 Instance 162 is the standard output (consumed) assembly with Network Inputs Instance 162 — Standard Consumed Starter with Network Inputs Byte 0 Bit 7 Bit 6 Reserved Reserved Net In 7 Bit 5 Bit 4 Bit 3 Bit 2 — — — Fault Reset Net In 6 Net In 5 Net In 4 Net In 3 Bit 1 Bit 0 Run Rev Run Fwd 1 Net In 8 2 Net In 16 Net In 15 Net In 14 Net In 13 Net In 12 Net In 11 Net In 10 Net In 9 Net In 2 Net In 1 Standard Distributed Motor Controller Input (Produced) Assemblies Table B.26 Instance 52 is the required input (produced) assembly defined in the DeviceNet Motor Starter Profile Instance 52 — ODVA Starter Byte Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 — — — — — — Running — Fault Table B.27 Instance 161 is the default input (produced) assembly for Standard Distributed Motor Controllers Instance 161 — Default Producted Standard Distributed Motor Controller Byte Bit 7 Bit 6 Bit 5 Bit 4 Ready Bit 3 Bit 2 Bit 1 Running Running Warning Rev Fwd Bit 0 0 Reserved 140M On Reserved Tripped 1 Reserved Reserved User In 5 User In 4 User In 3 User In 2 User In 1 User In 0 B-9 Bulletin 280G/281G CIP Information Table B.28 Instance 163 is the standard input (produced) assembly with Network Outputs and ZIP CCV Instance 163 — Standard Produced Starter with Network Outputs Byte 0 Bit 7 Bit 6 Bit 5 Not Used 140M On Not Used Bit 4 Ready Bit 3 Bit 2 Bit 1 Running Running Warning Rev Fwd Bit 0 Tripped 1 Not Used Not Used User In 5 User In 4 User In 3 User In 2 User In 1 User In 0 2 Net Out 8 Net Out 7 Net Out 6 Net Out 5 Net Out 4 Net Out 3 Net Out 2 Net Out 1 3 Logic Enabled Net Out 15 Net Out 14 Net Out 13 Net Out 12 4 ZIP CCV (Low) 5 ZIP CCV (High) Net Out 11 Net Out Net Out 9 10 Table B.29 Instance 190 is the 1999-ZCIO Native Format Produced Assembly Instance 190 — 1799-ZCIO Native Format Produced Assembly Byte Bit 7 Bit 6 Bit 5 0 Running Running Warning Rev Fwd 1 Reserved 2 Logic Enabled Reserved Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Tripped Input 3 Input 2 Input 1 Input 0 140M On HOA Reserved User Out User Out Run Rev Run Fwd B A 3 Reserved 4 Net Out 8 Net Out 7 Net Out 6 Net Out 5 Net Out 4 Net Out 3 Net Out 2 Net Out 1 5 ZIP CCV (Low) 6 ZIP CCV (High) B-10 Bulletin 280G/281G CIP Information Connection Object — CLASS CODE 0x0005 No class attributes are supported for the Connection Object Multiple instances of the Connection Object are supported, instances 1, 2, and 4 from the group 2 predefined master/slave connection set, instances 5 and 6 are available through explicit UCMM connections. Instance 1 is the Predefined Group 2 Connection Set Explicit Message Connection. The following instance 1 attributes is supported: Table B.30 Connection Object Instance 1 Attributes Attribute ID Access Rule Name Data Type Value 1 Get State USINT 0=nonexistant 1=configuring 3=established 4=timed out 2 Get Instance Type USINT 0=Explicit Message 3 Get Transport Class Trigger USINT 0x83 — Server, Transport Class 3 4 Get Produced Connection ID UINT 10xxxxxx011 xxxxxx = node address 5 Get Consumed Connection ID UINT 10xxxxxx100 xxxxxx = node address 6 Get Initial Comm Characteristics USINT 0x22 7 Get Produced Connection Size UINT 0x61 8 Get Consumed Connection Size UINT 0x61 9 Get/Set Expected Packet Rate UINT in ms 12 Get Watchdog Action USINT 01 = auto delete 03 = deferred delete 13 Get Produced Connection Path Length UINT 14 Get Produced Connection Path 15 Get Consumed Connection Path Length 16 Get Consumed Connection Path 0 Empty UINT 0 Empty Bulletin 280G/281G CIP Information B-11 Instance 2 is the Predefined Group 2 Connection Set Polled I/O Message Connection. The following instance 2 attributes are supported: Table B.31 Connection Object Instance 2 Attributes Attribute ID Access Rule Name Data Type Value 0=nonexistant 1=configuring 3=established 4=timed out 1 Get State USINT 2 Get Instance Type USINT 1= I/O Connection 3 Get Transport Class Trigger USINT 0x82 — Server, Transport Class 2 (If alloc_choice != polled and ack suppression is enabled then value = 0x80) 4 Get Produced Connection ID UINT 01111xxxxxx xxxxxx=node address 5 Get Consumed Connection ID UINT 10xxxxxx101 xxxxxx=node address 6 Get Initial Comm Characteristics USINT 0x21 7 Get Produced Connection Size UINT 0 to 8 8 Get Consumed Connection Size UINT 0 to 8 9 Get/Set Expected Packet Rate UINT in ms 12 Get/Set Watchdog Action USINT 0=transition to timed out 1=auto delete 2=auto reset 13 Get Produced Connection Path Length UINT 8 14 Get/Set Produced Connection Path 15 Get Consumed Connection Path Length 16 Get/Set Consumed Connection Path 21 04 00 25 (assy inst) 00 30 03 UINT 8 21 04 00 25 (assy inst) 00 30 03 B-12 Bulletin 280G/281G CIP Information Instance 4 is the Predefined Group 2 Connection Set Change of State/ Cyclic I/O Message Connection. The following instance 4 attributes are supported: Table B.32 Connection Object Instance 4 Attributes Attribute ID Access Rule Name Data Type Value 0=nonexistant 1=configuring 3=established 4=timed out 1 Get State USINT 2 Get Instance Type USINT 1=I/O Connection 3 Get Transport Class Trigger USINT 0x00 (Cyclic, unacknowledged) 0x03 (Cyclic, acknowledged) 0x10 (COS, unacknowledged) 0x13 (COS, acknowledged) 4 Get Produced Connection ID UINT 01101xxxxxx xxxxxx=node address 5 Get Consumed Connection ID UINT 10xxxxxx101 xxxxxx=node address 6 Get Initial Comm Characteristics USINT 0x02 (acknowledged) 0x0F (unacknowledged) 7 Get Produced Connection Size UINT 0 to 8 8 Get Consumed Connection Size UINT 0 to 8 9 Get/Set Expected Packet Rate UINT in ms 12 Get Watchdog Action USINT 0=transition to timed out 1=auto delete 2=auto reset 13 Get Produced Connection Path Length UINT 14 Get Produced Connection Path 15 Get Consumed Connection Path Length 16 Get/Set Consumed Connection Path 8 21 04 00 25 (assy inst) 00 30 03 UINT 8 21 04 00 25 (assy inst) 00 30 03 Bulletin 280G/281G CIP Information B-13 Instances 5 and 6 are available group 3 explicit message connections that are allocated through the UCMM. The following attributes are supported: Table B.33 Connection Object Instance 5-6 Attributes Attribute ID Access Rule Name Data Type Value 1 Get State USINT 0=nonexistant 1=configuring 3=established 4=timed out 2 Get Instance Type USINT 0=Explicit Message 3 Get Transport Class Trigger USINT 0x83 — Server, Transport Class 3 4 Get Produced Connection ID UINT Depends on message group and Message ID 5 Get Consumed Connection ID UINT Depends on message group and Message ID 6 Get Initial Comm Characteristics USINT 0x33 (Group 3) 7 Get Produced Connection Size UINT 0 8 Get Consumed Connection Size UINT 0XFFFF 9 Get/Set Expected Packet Rate UINT in ms 12 Get Watchdog Action USINT 01 = auto delete 03 = deferred delete 13 Get Produced Connection Path Length UINT 0 14 Get Produced Connection Path 15 Get Consumed Connection Path Length 16 Get Consumed Connection Path Empty UINT 0 Empty Instances 8-11 are ZIP Consumers. The following instance attributes will be supported: Table B.34 Connection Object Instances 8-11 Attributes Attribute ID Access Rule Name Data Type Value 1 Get State USINT 0=nonexistant 1=configuring 3=established 2 Get Instance Type USINT 1=I/O Connection 3 Get Transport Class Trigger USINT 0x20 (COS, unacknowledged) 4 Get Produced Connection ID UINT FFFF (not producing data) 5 Get Consumed Connection ID UINT 01101xxxxxx xxxxxx=node address 6 Get Initial Comm Characteristics USINT 0xF0 (unacknowledged) 7 Get Produced Connection Size UINT 0 8 Get Consumed Connection Size UINT 8 9 Get/Set Expected Packet Rate UINT in milliseconds 12 Get Watchdog Action USINT 2=auto reset 13 Get Produced Connection Path Length UINT 0 14 Get Produced Connection Path 15 Get Consumed Connection Path Length 16 Get Consumed Connection Path 0 UINT 8 21 0E 03 25 01 00 30 02 B-14 Bulletin 280G/281G CIP Information The following services are implemented for the Connection Object: Table B.35 Connection Objects Common Services Discrete Input Point Object — CLASS CODE 0x0008 Implemented for: Service Code Service Name Class 0x05 No Yes Reset 0x0E No Yes Get_Attribute_Single 0x10 No Yes Set_Attribute_Single Instance The following class attributes are supported for the Discrete Input Point Object: Table B.36 Discrete Input Point Object Class Attributes Attribute ID Access Rule Name Data Type Value 1 Get Revision UINT 2 2 Get Max Instance UINT 6 Four instances of the Discrete Input Point Object are supported. All instances contain the following attributes: Table B.37 Discrete Input Point Object Instance Attributes Attribute ID Access Rule Name Data Type Value 3 Get Value BOOL 0=OFF, 1=ON 115 Get/Set Force Enable BOOL 0=Disable, 1=Enabl;e 116 Get/Set Force Value BOOL 0=OFF, 1=ON The following common services are implemented for the Discrete Input Point Object: Table B.38 Discrete Input Point Object Instance Common Services Implemented for: Service Code Class Instance 0x0E Yes Yes Get_Attribute_Single 0x10 No Yes Set_Attribute_Single Service Name B-15 Bulletin 280G/281G CIP Information Discrete Output Point Object — CLASS CODE 0x0009 ➊ The following class attributes are supported for the Discrete Output Point Object: Table B.39 Discrete Output Point Object Class Attributes Attribute ID Access Rule Name Data Type Value 1 Get Revision UINT 1 2 Get Max Instance UINT 2 Four instances of the Discrete Output Point Object are supported. The following table summarizes the DOP instances: Table B.40 Discrete Output Point Object Instance Attributes Instance ID Name Alternate Mapping Description 1 Run Fwd Output 0029 – 01 – 03 Run Forward output. For all starter types, this output is hard wired from the ArmorStart CPU to the actuator 2 Run Rev Output 0029 – 01 – 04 Run Reverse output. For all starter types, this output is hard wired from the ArmorStart CPU to the actuator 3 Reserved none 4 Reserved none — All instances contain the following attributes. Attribute ID Access Rule Name Data Type Value 3 Get Value BOOL 0=OFF, 1=ON 5 Get/Set Fault Action BOOL 0=Fault Value attribute, 1=Hold Last State 6 Get/Set Fault Value BOOL 0=OFF, 1=ON 7 Get/Set Idle Action BOOL 0=Fault Value attribute, 1=Hold Last State 8 Get/Set Idle Value BOOL 0=OFF, 1=ON 113 Get/Set " Pr Fault Action BOOL 0=Pr Fault Value attribute, 1=Ignore 114 Get/Set " Pr Fault Value BOOL 0=OFF, 1=ON 115 Get/Set Force Enable BOOL 0=Disable, 1=Enable 116 Get/Set Force Value BOOL 0=OFF, 1=ON ➊ For DOP instances 1 and 2, attributes 113 and 114 have “Get” only access, and their values are always 0. The following common services are implemented for the Discrete Output Point Object: Table B.41 Discrete Output Object Common Services Implemented for: Service Code Instance Service Name Class 0x0E 0x10 Yes Yes Get_Attribute_Single No Yes Set_Attribute_Single B-16 Bulletin 280G/281G CIP Information DOP Instances 1 and 2 Special Behavior Besides the sources that can affect output points 3 and 4, DOPs 1 and 2 can be affected by keypad inputs since they double as the Run Forward and Run Reverse outputs. This adds complexity to their behavior, so their behavior is defined in this section separately. The following State Transition Diagram is used for DOP Instances 1 and 2 Figure B.1 DOP Instances 1 and 2 Power Off Non-Existant Power Up Auto State = Auto Init Keyad "Hand" Button Pressed Hand State = Hand Stop Auto Hand Keyad "Auto" Button Pressed Auto State = Auto Init Bulletin 280G/281G CIP Information B-17 The following State Transition Diagram is used in Auto State for Unbound DOP Instances 1 and 2 Figure B.2 Auto State for Unbound DOP Instances 1 and 2 Auto Init Connection Transitions to Established DNet Fault Protection Fault DNet Fault DNet Fault Protection Fault Idle DNet Fault Connection Transitions to Established Protection Fault Reset Receive Data Run Protection Fault Protection Fault DNet Fault Ready Protection Fault Receive Idle DNet Idle B-18 Bulletin 280G/281G CIP Information Parameter Object — CLASS CODE 0x000F The following class attributes are supported for the Parameter Object: Table B.42 Parameter Object Class Attributes Attribute ID Access Rule Name Data Type 1 Get Revision UINT 2 Get Max Instance UINT 8 Get Parameter Class Descriptor WORD 9 Get Configuration Assembly Instance UINT The number of instances of the parameter object will depend upon the type of Distributed Motor Controller. There is a standard set of instances reserved (1-99) for all starters. These instances are followed by a unique set of instances for each starter type (Across the Line, Soft start, or Inverter type). The following instance attributes are implemented for all parameter attributes: Table B.43 Parameter Object Instance Attributes Attribute ID Access Rule Name Data Type 1 Get/Set Value Specified in Descriptor 2 Get Link Path Size USINT 3 Get Link Path Array of: BYTE EPATH 4 Get Descriptor WORD 5 Get Data Type EPATH 6 Get Data Size USINT 7 Get Parameter Name String SHORT_STRING 8 Get Units String SHORT_STRING 9 Get Help String SHORT_STRING 10 Get Minimum Value Specified in Descriptor 11 Get Maximum Value Specified in Descriptor 12 Get Default Value Specified in Descriptor 13 Get Scaling Multiplier UINT 14 Get Scaling Divisor UINT 15 Get Scaling Base UINT 16 Get Scaling Offset INT 17 Get Multiplier Link UINT 18 Get Divisor Link UINT 19 Get Base Link UINT 20 Get Offset Link UINT 21 Get Decimal Precision USINT B-19 Bulletin 280G/281G CIP Information The following common services are implemented for the Parameter Object: Table B.44 Parameter Object Common Services Implemented for: Service Code Parameter Group Object — CLASS CODE 0x0010 Class Service Name Instance 0x0E Yes Yes Get_Attribute_Single 0x10 No Yes Set_Attribute_Single 0x01 No Yes Get_Attributes_All The following class attributes are supported for the Parameter Object: Table B.45 Parameter Group Object Class Attributes Attribute ID Access Rule Name Data Type 1 2 Get Revision UINT Get Max Instance UINT All Bulletin 280G/281G Motor Starters have the following instances of the parameter group object: • Instance 1 = DeviceLogix Parameters • Instance 2 = DeviceNet Parameters • Instance 3 = Starter Protection Parameters • Instance 4 = User I/O Parameters • Instance 5 = Miscellaneous Setup Parameters • Instance 6 = ZIP Parameters • Instance 7 = Starter Display • Instance 8 = Starter Setup The following instance attributes are supported for all parameter group instances: Table B.46 Parameter Group Object Instance Attributes Attribute ID 1 2 3 Access Rule Get Get Get Name Group Name String Number of Members 1st Parameter Data Type SHORT_STRING UINT UINT 4 n Get Get 2nd Parameter Nth Parameter UINT UINT B-20 Bulletin 280G/281G CIP Information The following common services are implemented for the Parameter Group Object: Table B.47 Parameter Group Object Service Common Services Discrete Input Group Object — CLASS CODE 0x001D " Implemented for: Service Code Class Yes 0x0E Discrete Input Group Object — Class CODE 0x001D Service Name Instance Yes Get_Attribute_Single No class attributes are supported for the Discrete Input Group Object. A single instance of the Discrete Input Group Object is supported. It contains the following attributes: Table B.48 Discrete Input Instance Attributes Attribute ID Access Rule Name Data Type Value 3 Get Number of Instances USINT 4 4 Get Binding Array of UINT List of DIP instances 6 Get/Set Off_On_Delay UINT in µsec 7 Get/Set On_Off_Delay UINT in µsec The following common services are implemented for the Discrete Input Group Object: Table B.49 Discrete Input Group Object Common Services Service Code Implemented for: Class Instance Service Name 0x0E No Yes Get_Attribute_Single 0x10 No Yes Set_Attribute_Single Bulletin 280G/281G CIP Information Discrete Output Group Object — CLASS CODE 0x001E B-21 No class attributes are supported for the Discrete Output Group Object. A single instance of the Discrete Output Group Object is supported. It contains the following attributes: Table B.50 Discrete Output Instance Attributes Attribute ID 3 4 6 Access Rule Get Get Get/Set Name Number of Instances Binding Command Data Type USINT Array of UINT BOOL 104 Get/Set Network Status Override BOOL 105 Get/Set Comm Status Override BOOL Value 4 for DOL List of DOP instances; 1, 2, 3, 4 0=idle; 1=run 0=No Override (go to safe state) 1=Override (run local logic) 0=No override (go to safe state) 1=Override (run local logic) The following common services are implemented for the Discrete Output Group Object: Table B.51 Discrete Output Group Common Services Service Code 0x0E 0x10 Implemented for: Class No No Instance Yes Yes Service Name Get_Attribute_Single Set_Attribute_Single B-22 Bulletin 280G/281G CIP Information Control Supervisor Object -CLASS CODE 0x0029 No class attributes are supported. The following instance attributes are supported: A single instance (instance 1) of the Control Supervisor Object will be supported. Table B.52 Control Supervisor Instance Attributes Attribute ID Access Rule Name Data Type Value 3 Get/Set Run 1 BOOL *4 Get/Set Run 2 BOOL These Run outputs also map to DOP instances 1 and 2. 7 Get Running 1 BOOL Status of RUN FWD contact *8 Get Running 2 BOOL Status of RUN REV contact 9 Get Ready BOOL Device not faulted 10 Get Tripped BOOL Device faulted 12 Get/Set Fault Reset BOOL 0->1 = Trip Reset 100 Get/Set Keypad Mode BOOL 0=Maintained; 1=Momentary 101 Get/Set Keypad Disable BOOL 0=Not Disabled; 1=Disabled Warning Status WORD Bits 0-4 = reserved Bit 5 = CP Warning Bit 6 = IO Warning Bit 7 = reserved Bit 8 = reserved Bit 9 = DN Warning Bits 10-12 = reserved Bit 13 = HW Warning Bits 14-15 = reserved 115 Get 124 Get/Set Trip Enable WORD Bit enumerated trip enable word 130 Get/Set Trip Reset Mode BOOL 0=manual; 1=auto 131 Get/Set Trip Reset Level USINT 0 – 100%; default = 75 151 Get Base Enclosure WORD Bit 0 = IP67 Bits 1-15 reserved WORD Bit 0 = reserved Bit 1 = reserved Bit 2 = CP Fuse Detect Bits 3-7 = reserved Bit 8 = 10A Base Bit 9 = 25A Base Bit 10-15 = reserved 152 Get Base Options 153 Get Wiring Options WORD Bit 0 = reserved Bit 1 = reserved Bit 2= 28xG Gland Bits 3-15 = reserved 154 Get Starter Enclosure WORD Bit 0 = IP67 Bits 1-15 reserved 155 Get Starter Options WORD Bit 0 = Full Keypad Bit 1 = Safety Monitor Bits 2-15 reserved 156 Get Last Pr Trip UINT See Parameter 61 B-23 Bulletin 280G/281G CIP Information The following common services are implemented for the Control Supervisor Object: Table B.53 Control Supervisor Object Common Services Service Code Acknowledge Handler Object — CLASS CODE 0x002b Implemented for: Class Instance Service Name 0x0E No Yes Get_Attribute_Single 0x10 No Yes Set_Attribute_Single No class attributes are supported for the Acknowledge Handler Object. A single instance (instance 1) of the Acknowledge Handler Object is supported. The following instance attributes are supported: Table B.54 Acknowledge Handler Instance Attributes Attribute ID Access Rule Name Data Type Value 1 Get/Set Acknowledge Timer UINT milliseconds 2 Get Retry Limit USINT 1 Get COS Producing Connection Instance UINT 4 3 The following common services are implemented for the Acknowledge Handler Object: Table B.55 Acknowledge Handler Common Services Service Code Implemented for: Service Name Class Instance 0x0E No Yes Get_Attribute_Single 0x10 No Yes Set_Attribute_Single B-24 Bulletin 280G/281G CIP Information Overload Object — CLASS CODE 0x002c No class attributes are supported for the Overload Object. A single instance (instance 1) of the Overload Object is supported for Bulletin 280G/281G: Table B.56 Overload Object Instance Attributes Attribute ID Access Rule Name Data Type Value 3 Get/Set FLA Setting BOOL xxx.x Amps 4 Get/Set Trip Class USINT 1=10 2=15 3=20 5 Get Average Current UINT xxx.x Amps 7 Get % Thermal Utilized USINT xxx% FLA 8 Get Current L1 UINT xxx.x Amps 9 Get Current L2 UINT xxx.x Amps 10 Get Current L3 UINT xxx.x Amps 190 Get/Set FLA Setting Times 10 BOOL xxx.x Amps 192 Get Avg. Current Times 10 UINT xxx.x Amps 193 Get Current L1 Times 10 UINT 194 Get Current L2 Times 10 UINT 195 Get Current L3 Times 10 UINT xxx.x Amps The following common services are implemented for the Overload Object: Table B.57 Acknowledge Handler Object Common Services Service Code Implemented for: Service Name Class Instance 0x0E No Yes Get_Attribute_Single 0x10 No Yes Set_Attribute_Single Bulletin 280G/281G CIP Information DeviceNet Interface Object -CLASS CODE 0x00B4 B-25 This “vendor specific” object has no class attributes. A single instance (instance 1) of the DeviceNet Interface Object is supported: Table B.58 DeviceNet Interface Object Instance Attribute Attribute ID Access Rule Name Data Type Min/Max Default Description 7 Get/Set Prod Assy Word 0 USINT 0…108 1 Defines Word 0 of Assy 120 8 Get/Set Prod Assy Word 1 USINT 0…108 5 Defines Word 1 of Assy 120 9 Get/Set Prod Assy Word 2 USINT 0…108 6 Defines Word 2 of Assy 120 10 Get/Set Prod Assy Word 3 USINT 0…108 7 Defines Word 3 of Assy 120 13 Get/Set Starter COS Mask WORD 0…0xFFFF 0xFFFF Change of state mask for starter bits 15 Get/Set Autobaud Enable BOOL 0…1 1 1= enabled; 0 = disabled 16 Get/Set Consumed Assy USINT 0…185 160 3, 121, 160, 162, 182, 187 17 Get/Set Produced Assy USINT 100…187 161 52, 121, 161, 163, 181-187,189,190 19 Get/Set Set To Defaults BOOL 0…1 0 0=No action; 1=Reset 23 Get I/O Produced Size USINT 0…8 — Size of I/O Produced Data in Bytes 24 Get I/O Consumed Size USINT 0…3 — Size of I/O Consumed Data in Bytes 30 Get DNet Voltage UINT xx.xx — DeviceNet Voltage xx.xx Volts 50 Get/Set PNB COS Mask WORD 0 to 0x00FF 0 Change of state mask for PNBs The following common services are implemented for the DeviceNet Interface Object: Table B.59 DeviceNet Interface Object Common Services Service Code Implemented for: Service Name Class Instance 0x0E No Yes Get_Attribute_Single 0x10 No Yes Set_Attribute_Single B-26 Notes: Bulletin 280G/281G CIP Information Appendix C Bulletin 284G CIP Information Electronic Data Sheets Electronic Data Sheets (EDS) files are specially formatted ASCII files that provide all of the information necessary for a configuration tool (e.g., RSNetWorx™ for DeviceNet™ Revision 3.21 Service Pack 2 or later) to access and alter parameters of the device. The EDS file contains all of the device information: number of parameter, groupings, parameter name, minimum, maximum, and default values, units, data format, and scaling. EDS files for all the ArmorStart® Distributed Motor Controllers units are available from the Internet at www.ab.com/networks/eds. They may also be built automatically by some configuration tools since much of the information necessary for an EDS file may be extracted from the ArmorStart Distributed Motor Controller. VFD Type Product Codes and Name Strings Product codes for the Bulletin 284G variable frequency drives are based on the Horse Power Rating and Supply Voltage rating of the Distributed Motor Controller. Table C.1 lists the product codes and name strings for the Bulletin 284G Distributed Motor Controllers: Table C.1 Bulletin 284G Product Codes and Name Strings 284G Device Type ➊ Product Code Hp Supply Voltage 22 0x592 0.50 480V AC ArmorStart 284G PF40 480V 0.5 Hp PF40 22 0x594 1 480V AC ArmorStart 284G PF40 480V 1 Hp PF40 22 0x596 2 480V AC ArmorStart 284G PF40 480V 2 Hp PF40 22 0x597 3 480V AC ArmorStart 284G PF40 480V 3 Hp PF40 22 0x598 5 480V AC ArmorStart 284G PF40 480V 5 Hp PF40 22 0x599 7.5 480V AC ArmorStart 1000 PF40 480V 7.5 Hp PF40 22 0x59A 10 480V AC ArmorStart 1000 PF40 480V 10 Hp PF40 22 0x59B 15 480V AC ArmorStart 1000 PF40 480V 15 Hp PF40 Table C.2 284G Device Type ➊ Drive Type Bulletin 284G Safety Product Codes and Name Strings Product Code Hp Supply Voltage 22 0x5C2 0.50 480V AC ArmorStart 284G PF40 480V 0.5 Hp PF40 22 0x5C4 1 480V AC ArmorStart 284G PF40 480V 1 Hp PF40 22 0x5C6 2 480V AC ArmorStart 284G PF40 480V 2 Hp PF40 22 0x5C7 3 480V AC ArmorStart 284G PF40 480V 3 Hp PF40 22 0x5C8 5 480V AC ArmorStart 284G PF40 480V 5 Hp PF40 22 0x5C9 7.5 480V AC ArmorStart 1000 PF40 480V 7.5 Hp PF40 22 0x5CA 10 480V AC ArmorStart 1000 PF40 480V 10 Hp PF40 22 0x5CB 15 480V AC ArmorStart 1000 PF40 480V 15 Hp PF40 ➊ 22= Motor Starter 1 Name String Name String Drive Type C-2 Bulletin 284G CIP Information DeviceNet Objects The ArmorStart Distributed Motor Controller supports the following DeviceNet object classes: Table C.3 DeviceNet Object Classes Class 0x0001 0x0002 0x0003 0x0004 0x0005 0x0008 0x0009 0x000F 0x0010 0x001D 0x001E 0x0029 0x002B 0x00B4 Identity Object — CLASS CODE 0x0001 Object Identity Message Router DeviceNet Assembly Connection Discrete Input Point Discrete Output Point Parameter Object Parameter Group Object Discrete Input Group Discrete Output Group Control Supervisor Acknowledge Handler DN Interface Object The following class attributes are supported for the Identity Object: Table C.4 Attribute ID 1 Identity Object Class Attributes Access Rule Get Name Revision Data Type UINT Value 1 Bulletin 284G CIP Information Identity Object A single instance of the Identity Object is supported. The following instance attributes are supported: Table C.5 Identity Object Instance Attributes Attribute ID Access Rule 1 2 3 Get Get Get 4 Get 5 Name Data Type Vendor Device Type Product Code Revision Major Revision Minor Revision UINT UINT UINT Structure of: USINT USINT Get Status WORD 6 Get 7 Get Serial Number Product Name String Length ASCII String UDINT Structure of: USINT STRING 8 Get State USINT 9 Get 10 Get/Set Configuration Consistency Value Heartbeat Interval UINT USINT Value 1 22 See Table C.1 Indicates Software Firmware Revision Number Bit 0: 0 = not owned; 1 = owned by master Bit 2: 0 = Factory Defaulted; 1 = Configured Bit 8: Minor Recoverable fault Bit 9: Minor Unrecoverable fault Bit 10: Major Recoverable fault Bit 11: Major Unrecoverable fault Unique Number for Each Device Product code specific See Table C.1. Returns the value 3 = Operational Unique value depending on output of the parameter checksum algorithm. In seconds. Default = 0 The following common services are implemented for the Identity Object: Table C.6 Service Code 0x0E 0x05 0x10 Message Router — CLASS CODE 0x0002 C-3 Class No No No Identity Object Common Services Implemented for Instance Yes Yes Yes Service Name Get_Attribute_Single Reset Set_Attribute_Single No class or instance attributes are supported. The message router object exists only to rout explicit messages to other objects. C-4 Bulletin 284G CIP Information DeviceNet Object — CLASS CODE 0x0003 The following class attributes are supported for the DeviceNet Object: DeviceNet Object Class Attributes Table C.7 Attribute ID Access Rule Name Data Type Value 1 Get Revision UINT 2 A single instance (Instance 1) of the DeviceNet Object will be supported. The following instance attributes are supported: DeviceNet Object Instance Attributes Table C.8 Attribute ID Access Rule Name Data Type 1 Get/Set Node Address USINT 2 Get/Set Baud Rate USINT 5 Get 8 Get ➊ Allocation Info • Allocation Choice • Master Node Addr MAC ID Switch Value Structure of: • BYTE • USINT BOOL Value 0…63 0 = 125K 1 = 250K 2 = 500K Allocation_byte ➊ 0…63 = address 255 = unallocated 0…63 See Table C.9 Table C.9 Allocation_byte Bit 0 Bit 1 Bit 4 Bit 5 Bit 6 Explicit messaging Polled I/O COS I/O Cyclic I/O Acknowledge Suppression The following services are implemented for the DeviceNet Object: Table C.10 DeviceNet Object Common Services Implemented for Service Code Class Instance 0x0E 0x10 0x4B 0x4C Yes No No No Yes Yes Yes Yes Service Name Get_Attribute_Single Set_Attribute_Single Allocate_Master/Slave _Connection_Set Release_Master/Slave _Connection_Set C-5 Bulletin 284G CIP Information Assembly Object — CLASS CODE 0x0004 The following class attributes are supported for the Assembly Object Table C.11 DeviceNet Assembly Object: Attribute ID Access Rule Name Data Type Value 2 Get Max Instance UINT 190 All of the various instances of the assembly object will support Attribute 3. Table C.12 summarizes the various instances that are supported Table C.12 DeviceNet Assembly Object Instance Attributes: Attribute ID Type 3 52 120 160 161 Consumed Produced Produced Consumed Produced 162 Consumed 163 Produced 164 165 Consumed Produced 166 Consumed 167 Produced 170 171 181 182 183 184 185 186 187 188 189 190 Consumed Produced Produced Consumed Produced Produced Produced Produced Consumed Consumed Produced Produced Description Required ODVA Consumed Instance Required ODVA Produced Instance Custom Parameter Based Word Wise Assembly Default Consumed Instance for DOL and SoftStart units Default Produced Instance for DOL and SoftStart units Standard Consumed Instance for DOL and SoftStart with Network Inputs Standard Produced Instance for DOL and SoftStart with Network Outputs Default Consumed Instance for Inverter type units Default Produced Instance for Inverter type units Standard Consumed Instance for Inverter type units with Network Inputs Standard Produced Instance for Inverter type units with Network Outputs Power Flex Native Format Consumed Instance Power Flex Native Format Produced Instance User Inputs Consumed Network Bits (a.k.a Network Inputs) Produced Network Bits (a.k.a. Network Outputs) Trip Status Bits Starter Status Bits DeviceNet Status Bits Starter Control Bits Drive Control Bits Warning Status Bits 1799 - ZCIO Bits C-6 Bulletin 284G CIP Information Custom Parameter Based WordWise I/O Assembly Table C.13 CustomParameter Based Word Wise (Produced) Assembly Instance Instance 120 Word 0 1 2 3 Word-Wise Bit-Packed Assemblies Byte 0 1 2 3 4 5 6 7 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Value of the parameter pointed to by Produced Word 0 Param (low byte) Value of the parameter pointed to by Produced Word 0 Param (high byte) Value of the parameter pointed to by Produced Word 1 Param (low byte) Value of the parameter pointed to by Produced Word 1 Param (high byte) Value of the parameter pointed to by Produced Word 2 Param (low byte) Value of the parameter pointed to by Produced Word 2 Param (high byte) Value of the parameter pointed to by Produced Word 3 Param (low byte) Value of the parameter pointed to by Produced Word 3 Param (high byte) Assemblies whose instance numbers are 180...189 are all one word (16 bits) long. They can be used stand-alone, but their main use is to assemble information for EDS file parameters. These Word-Wise assemblies become the building blocks for the Custom Parameter Based Word-Wise assembly described in Table C.13. Table C.14 Instance 181 — Hardware Inputs 1…16 Instance 181 — This is a Read Only Status Assembly Byte Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 0 1 — — — — Input 5 — Input 4 — Input 3 — Input 2 — Input 1 — Input 0 — Table C.15 Instance 182 — Consumed Network Inputs 1…16 Instance 182 — This is a Read/Write Control Assembly Byte 0 1 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Net Input 8 Net Input 16 Net Input 7 Net Input 15 Net Input 6 Net Input 14 Net Input 5 Net Input 13 Net Input 4 Net Input 12 Net Input 3 Net Input 11 Net Input 2 Net Input 10 Net Input 1 Net Input 9 Table C.16 Instance 183 — Produced Network Outputs 1…15 Instance 183 — This is a Read Only Status Assembly Byte Bit 7 0 Net Out 8 1 Reserved Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Net Out 7 Net Out 15 Net Out 6 Net Out 14 Net Out 5 Net Out 13 Net Out 4 Net Out 12 Net Out 3 Net Out 11 Net Out 8 Net Out 10 Net Out 1 Net Out 9 C-7 Bulletin 284G CIP Information Table C.17 Instance 184 — Trip Status Instance 184 — This is a Read Only Status Assembly Byte Bit 7 Over Temp Misc. Fault 0 1 Bit 6 Bit 5 IO Fault Control Power Retries Bit 4 Bit 3 Bit 2 Stall Gnd Fault Phase Short Int Comm HW Fault EEPROM DC Bus Bit 1 OL Trip DNet Flt Bit 0 140M Trip Over Current Table C.18 Instance 185 — Starter Status Instance 185 — This is a Read Only Status Assembly Byte Bit 7 Bit 6 Bit 5 0 At Reference 1 Reserved Net Ref Status Contactor 1 ➊ Net Ctl Status 140M On ➊ Bit 4 Ready Bit 3 Bit 2 Running Running Rev Fwd HOA KP Hand Status KP Jog Bit 1 Bit 0 Alarm Tripped DrvOpto2 DrvOpto1 Refers to control brake contactor status. Table C.19 Instance 186 — DeviceNet Status Instance 186 — This is a Read Only Status Assembly Byte Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 0 — — — I/O Idle I/O Flt Exp Flt I/O Cnxn 1 ZIP 4 Flt ZIP 4 Cnx ZIP 3 Flt ZIP 3 Cnx ZIP 2 Flt ZIP 2 Cnx ZIP 1 Flt Bit 2 Bit 1 Bit 0 Run Rev Run Fwd — — Exp Cnxn ZIP 1 Cnx Instance 187 — This is a Read/Write Assembly Byte 0 1 Bit 7 Bit 6 Reserved Reserved — — Bit 5 Bit 4 Bit 3 — Jog Rev Jog Fwd — — — Fault Reset — Bit 3 Bit 2 Bit 1 Bit 0 Decel 2 Decel 1 Accel 2 Accel 1 Drv In 4 Drv In 3 Drv In 2 Drv In 1 Instance 188 — This is a Read/Write Assembly Byte Bit 7 0 — 1 — Bit 6 Bit 5 Bit 4 Freq Select 3 — Freq Select 2 — Freq Select 1 — Table C.20 Instance 189 This is a “Read Only” assembly Instance 189 Warning Status Bits Byte Bit 7 Bit 6 0 Reserved I/O Warning 1 — — Bit 5 Control Power Warning HW Warn Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 — — — — — — — — DN Warn PI Warn C-8 Bulletin 284G CIP Information Table C.21 Instance 190 is the 1999-ZCIO Native Format Produced Assembly Instance 190 1799-ZCIO Native Format Produced Assembly Byte Bit 7 Bit 6 0 Running Rev 1 Reserved Running Fwd Logic Enable 2 Drive In 4 Drive In 3 Net Out 8 Net Out 7 3 4 5 6 Standard Distributed Motor Controller I/O Assemblies Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Warning Tripped Input 3 Input 2 Input 1 Input 0 140M On HOA Reserved Drive In Run Reserved Reserved Run Rev 1 Fwd Reserved Jog Rev Jog Fwd Net Out Net Out Net Out 6 Net Out 4 Net Out 3 Net Out 2 5 1 ZIP CCV (Low) ZIP CCV (High) Drive In 2 Standard Distributed Motor Controller I/O Assemblies are available on all Starter Types. Standard Distributed Motor Controller Output (Consumed) Assemblies Instance 3 is the required output (consumed) assembly defined in the DeviceNet Motor Starter Profile. Table C.22 ODVA Starter Byte Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 0 — — — — — — — Run Fwd Instance 160 is the default output (consumed) assembly for Bulletin 280G/281G Distributed Motor Controllers Table C.23 Instance 160 — Default Consumed Standard Distributed Motor Controller. Byte 0 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Fault Reset Reserved Reserved Bit 1 Bit 0 Run Rev Run Fwd Instance 162 is the standard output (consumed) assembly with Network Inputs for Bulletin 280G/281G Distributed Motor Controllers Table C.24 Standard Consumed Starter with Network Inputs. Byte Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Fault Run Rev Run Fwd Reset Net In 7 Net In 6 Net In 5 Net In 4 Net In 3 Net In 2 Net In 1 Net In 15 Net In 14 Net In 13 Net In 12 Net In 11 Net In 10 Net In 9 0 Reserved Reserved 1 2 Net In 8 Net In 16 C-9 Bulletin 284G CIP Information Bulletin 284G Distributed Motor Controller I/O Assemblies Bulletin 284G Distributed Motor Controller IO Assemblies are available ONLY on the Bulletin 284G Distributed Motor Controller. Standard Distributed Motor Controller Output (Consumed) Assemblies Instance 164 is the default output (consumed) assembly for Inverter Type Distributed Motor Controllers Table C.25 Instance 164 — Default Consumed Inverter Type Distributed Motor Controller. Byte Bit 7 0 Reserved 1 Drive In 4 2 3 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Jog Fault Fwd Reset Decel Drive In 3 Drive In 2 Drive In 1 Decel 1 2 Comm Frequency Command (Low) (xxx.x Hz) Comm Frequency Command (High) (xxx.x Hz) Reserved — Jog Rev Bit 1 Bit 0 Run Rev Run Fwd Accel 2 Accel 1 Instance 166 is the standard output (consumed) assembly for Inverter Type Distributed Motor Controllers with network inputs Table C.26 Instance 166 — Consumed Inverter Type Starter with Network Inputs Byte Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Fault Run Rev Run Fwd Reset Drive In Drive In Decel Decel Accel Accel Drive In 4 Drive In 3 2 1 2 1 2 1 Comm Frequency Command (Low) (xxx.x Hz) Comm Frequency Command (High) (xxx.x Hz) Net In 8 Net In 7 Net In 6 Net In 5 Net In 4 Net In 3 Net In 2 Net In 1 Net In 16 Net In 15 Net In 14 Net In 13 Net In 12 Net In 11 Net In 10 Net In 9 0 Reserved Reserved 1 2 3 4 5 — Jog Rev Jog Fwd Standard Distributed Motor Controller Input (Produced) Assemblies Instance 52 is the required input (produced) assembly defined in the DeviceNet Motor Starter Profile Table C.27 Instance 52 — ODVA Starter. Byte Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 — — — — — — Running — Fault C-10 Bulletin 284G CIP Information Instance 161 is the default input (produced) assembly for the Bulletin 280G/281G Distributed Motor Controller Table C.28 Instance 161 — Default Produced Standard Distributed Motor. Byte Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 0 — 140M On — Ready Running Rev Running Fwd — Tripped 1 — — User In 5 User In 4 User In 3 User In 2 User In 1 User In 0 Instance 163 is the standard input (produced) assembly with Network Outputs for the Bulletin 280G/281G Distributed Motor Controller Table C.29 Instance 163 — Standard Produced Starter with Network Outputs and ZIP CCV. Byte Bit 7 Bit 6 Bit 5 140M On 0 Net Out 8 Logic Enable Stat 3 Bit 3 Bit 2 Bit 1 Bit 0 Ready Running Rev Running Fwd Warning Tripped User In 4 User In 3 User In 2 User In 1 Net Out 7 User In 5 Net Out 6 User In 4 Net Out 5 Net Out 15 Net Out 14 Net Out 13 1 2 Bit 4 4 5 Net Out 4 Net Out 3 Net Out 2 Net Out 1 Net Out 12 Net Out 11 Net Out 10 Net Out 9 ZIP Device Value Key (Low) ZIP Device Value Key (High) Inverter Type Distributed Motor Controller Input (Produced) Assemblies Instance 165 is the default input (produced) assembly for Inverter Type Distributed Motor Controllers Table C.30 Default Produced Inverter Type Distributed Motor Controller. Byte Bit 7 Bit 6 0 At Reference 140M On 1 Reserved 2 3 ➊ Contactor 1 ➊ Bit 5 Bit 4 Bit 3 Bit 2 Net Ctl Running Running Ready Status Rev Fwd User In User In User In 3 User In 2 5 4 Output Frequency (Low) (xxx.x Hz) Output Frequency (High) (xxx.x Hz) Refers to control brake contactor status. Bit 1 Bit 0 Alarm Tripped User In 1 User In 0 C-11 Bulletin 284G CIP Information Instance 167 is input (produced) assembly for Inverter Type Distributed Motor Controllers with Network Outputs Table C.31 Instance 167 —Produced Inverter Type Starter with Network Byte Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 0 At Reference 140M On Net Ctl Status Ready Running Rev Running Fwd Alarm Tripped Reserved Contactor 1 ➊ User In 5 User In 4 User In 3 User In 2 User In 1 User In 0 1 2 3 4 Net Out 8 5 Net Out 7 Net Out 15 6 7 ➊ Output Frequency (Low) (xxx.x Hz) Output Frequency (High) (xxx.x Hz) Net Out 6 Net Out 5 Net Out 4 Net Out 3 Net Out 2 Net Out 1 Net Out Net Out Net Out Net Out Net Out Net Out 9 14 13 12 11 10 ZIP Device Value Key (Low) ZIP Device Value Key (High) Refers to control brake contactor status. Power Flex Native Assemblies These assembly instances have the same data format as the Power Flex Drives with a DNet adapter. Power Flex Native Consumed Assembly Instance 170 is the Power Flex Native Format Consumed Assembly Table C.32 Instance 170 — Power Flex Native Format Consumed Assembly. Byte Bit 7 Bit 6 0 MOP Inc 1 MOP Dec reserved Freq Select 3 2 3 Bit 5 Bit 4 Bit 3 Direction Cmd Flt Reset Freq Select Freq Decel 2 Select 1 2 Comm Frequency Command (Low) Comm Frequency Command (High) Bit 2 Bit 1 Bit 0 Jog Decel 1 Start Stop Accel Accel 2 1 C-12 Bulletin 284G CIP Information Table C.33 Logic Command Accel 2 Accel 1 Description 0 0 No Command 0 1 Accel 1 Enable 1 0 Accel 2 Enable 1 1 Hold Accel Rate Selected Decel 2 Decel 1 0 0 No Command 0 1 Decel 1 Enable 1 0 Decel 2 Enable 1 1 Hold Decel Rate Selected Freq Select 3 Freq Select 2 Freq Select 1 0 0 0 No Command 0 0 1 Freq Source = P136 (Start Source) 0 1 0 Freq Source = P169 (Internal Freq) 0 1 1 Freq Source = Comms 1 0 0 P170 (Preset Freq 0) 1 0 1 P171 (Preset Freq 1) 1 1 0 P172 (Preset Freq 2) 1 1 1 P173 (Preset Freq 3) Power Flex Native Produced Assembly Instance 171 is the Power Flex Native Format Produced Assembly. Table C.34 Instance 171 — PowerFlex Native Format Produced Assembly Byte Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 0 Faulted Alarm Deceling Acceling Rot Fwd 1 Drv In 4 Stat 2 3 Drv In 3 Param Drv In 2 Stat Drv In 1 Stat Locked Drive Error Code (low) Drive Error Code (high) Bit 2 Bit 1 Bit 0 Cmd Running Ready Fwd Ctl fm Ref fm Net At Ref Net C-13 Bulletin 284G CIP Information Connection Object — CLASS CODE 0x0005 No class attributes are supported for the Connection Object. Multiple instances of the Connection Object are supported, Instances 1, 2, and 4 from the Group 2 predefined master/slave connection set, Instances 5 and 6 are available through explicit UCMM connections. Instance 1 is the Predefined Group 2 Connection Set Explicit Message Connection. The following Instance 1 attributes is supported Table C.35 Connection Object Instance 1 Attributes: Attribute ID Access Rule Name Data Type State 1 Get 2 Get 3 Get 4 Get 5 Get 6 7 8 9 Get Get Get Get/Set 12 Get 13 Get 14 Get 15 Get 16 Get USINT Instance Type Transport Class Trigger Produced Connection ID Consumed Connection ID Initial Comm Characteristics Produced Connection Size Consumed Connection Size Expected Packet Rate Watchdog Action Produced Connection Path Length Produced Connection Path Consumed Connection Path Length Consumed Connection Path USINT USINT UINT UINT USINT UINT UINT UINT USINT UINT UINT Value 0 = non-existent 1 = configuring 3 = established 4 = timed out 0 = Explicit Message 0x83 — Server, Transport Class 3 10xxxxxx011 xxxxxx = node address 10xxxxxx100 xxxxxx = node address 0x22 0x61 0x61 in milliseconds 01 = auto delete 03 = deferred delete 0 Empty 0 Empty C-14 Bulletin 284G CIP Information Instance 2 is the Predefined Group 2 Connection Set Polled I/O Message Connection. The following Instance 2 attributes are supported Table C.36 Connection Object Instance 2 Attributes: Attribute ID Access Name Data Type State 1 Get 2 Get 3 Get 4 Get 5 Get 6 7 8 9 Get Get Get Get/Set 12 Get/Set 13 Get 14 Get/Set 15 Get 16 Get/Set USINT Instance Type Transport Class Trigger USINT USINT Produced Connection ID Consumed Connection ID Initial Comm Characteristics Produced Connection Size Consumed Connection Size Expected Packet Rate Watchdog Action UINT UINT USINT UINT UINT UINT USINT Produced Connection Path Length Produced Connection Path Consumed Connection Path Length Consumed Connection Path UINT UINT Value 0 = non-existent 1 = configuring 3 = established 4 = timed out 1 = I/O Connection 0x82 — Server, Transport Class 2 (If alloc_choice != polled and ack suppression is enabled then value = 0x80) 01111xxxxxx xxxxxx = node address 10xxxxxx101 xxxxxx = node address 0x21 0…8 0…8 in milliseconds 0 = transition to timed out 1 = auto delete 2 = auto reset 8 21 04 00 25 (assy inst) 00 30 03 8 21 04 00 25 (assy inst) 00 30 03 C-15 Bulletin 284G CIP Information Instance 4 is the Predefined Group 2 Connection Set Change of State/ Cyclic I/O Message Connection. The following Instance 4 attributes are supported Table C.37 Connection Object Instance 4 Attributes: Attribute ID Access Rule Name Data Type State 1 Get 2 Get 3 Get 4 Get 5 Get 6 Get 7 8 9 Get Get Get/Set 12 Get 13 Get 14 Get 15 Get 16 Get/Set USINT Instance Type Transport Class Trigger USINT USINT Produced Connection ID Consumed Connection ID Initial Comm Characteristics Produced Connection Size Consumed Connection Size Expected Packet Rate Watchdog Action UINT UINT USINT UINT UINT UINT USINT Produced Connection Path Length Produced Connection Path Consumed Connection Path Length Consumed Connection Path UINT UINT Value 0 = non-existent 1 = configuring 3 = established 4 = timed out 1 = I/O Connection 0x00 (Cyclic, unacknowledged) 0x03 (Cyclic, acknowledged) 0x10 (COS, unacknowledged) 0x13 (COS, acknowledged) 01101xxxxxx xxxxxx = node address 10xxxxxx101 xxxxxx = node address 0x02 (acknowledged) 0x0F (unacknowledged) 0…8 0…8 in milliseconds 0 = transition to timed out 1 = auto delete 2 = auto reset 8 21 04 00 25 (assy inst) 00 30 03 8 21 04 00 25 (assy inst) 00 30 03 C-16 Bulletin 284G CIP Information Instances 5…7 will be available Group 3 explicit message connections that are allocated through the UCMM. The following attributes are supported Table C.38 Connection Object Instance 5...7 Attributes: Attribute ID Access Rule Name Data Type State 1 Get 2 Get 3 Get 4 Get 5 Get 6 7 8 9 Get Get Get Get/Set 12 Get 13 Get 14 Get 15 Get 16 Get USINT Instance Type Transport Class Trigger Produced Connection ID Consumed Connection ID Initial Comm Characteristics Produced Connection Size Consumed Connection Size Expected Packet Rate Watchdog Action Produced Connection Path Length Produced Connection Path Consumed Connection Path Length Consumed Connection Path USINT USINT UINT UINT USINT UINT UINT UINT USINT UINT UINT Value 0 = non-existent 1 = configuring 3 = established 4 = timed out 0 = Explicit Message 0x83 — Server, Transport Class 3 Depends on message group and Message ID Depends on message group and Message ID 0x33 (Group 3) 0 in milliseconds 01 = auto delete 03 = deferred delete 0 Empty 0 Empty C-17 Bulletin 284G CIP Information Instances 8…11 are ZIP Consumers. The following instance attributes will be supported: Table C.39 Connection Object instance 8...11 Attributes Attribute ID Access Rule 1 Get 2 Get 3 Get 4 Get 5 Get 6 7 8 9 12 Get Get Get Get/Set Get 13 Get 14 Get 15 Get 16 Get Data Type Name State USINT Instance Type Transport Class Trigger USINT Produced Connection ID Consumed Connection ID UINT Initial Comm Characteristics Produced Connection Size Consumed Connection Size Expected Packet Rate Watchdog Action Produced Connection Path Length Produced Connection Path Consumed Connection Path Length Consumed Connection Path USINT UINT UINT UINT USINT USINT UINT UINT UINT Value 0=nonexistant 1=configuring 3=established 1=I/O Connection 0x20 (COS, unacknowledged) FFFF (not producing data) 01101xxxxxx xxxxxx=node address 0xF0 (unacknowledged) 0 8 in milliseconds 2=auto reset 0 0 8 21 0E 03 25 01 00 30 02 The following services are implemented for the Connection Object Table C.40 Connection Objects Common Services: Implemented for Service Code Class Instance 0x05 0x0E 0x10 No No No Yes Yes Yes Service Name Reset Get_Attribute_Single Set_Attribute_Single C-18 Bulletin 284G CIP Information Discrete Input Point Object — CLASS CODE 0x0008 The following class attributes are supported for the Discrete Input Point Object Table C.41 Discrete Input Point Object Class Attributes: Attribute ID Access Rule Name Data Type Value 1 2 Get Get Revision Max Instance UINT UINT 2 4 Four instances of the Discrete Input Point Object are supported. All instances will contain the following attributes Table C.42 Discrete Input Point Object Instance Attributes: Attribute ID Access Rule Name Data Type Value 3 Get Value BOOL 115 Get/Set Force Enable BOOL 116 Get/Set Force Value BOOL 0 = OFF, 1 = ON 0 = Disable, 1 = Enable 0 = OFF, 1 = ON The following common services are implemented for the Discrete Input Point Object Table C.43 Discrete Input Point Object Instance Common Services: Implemented for Service Code Class Instance Service Name 0x0E 0x10 Yes No Yes Yes Get_Attribute_Single Set_Attribute_Single C-19 Bulletin 284G CIP Information Discrete Output Point Object — CLASS CODE 0x0009 The following class attributes are supported for the Discrete Output Point Object: Table C.44 Discrete Output Point Object Class Attributes Attribute ID Access Rule Name Data Type Value 1 2 Get Get Revision Max Instance UINT UINT 1 10 Ten instances of the Discrete Output Point Object are supported. Table C.45 summarizes the DOP instances: Table C.45 Discrete Output Point Object Instance Attributes Instance ID Name Alternate Mapping 1 Run Fwd Output 0029 – 01 – 03 2 Run Rev Output 0029 – 01 – 04 Reserved Reserved Drive Input 1 Drive Input 2 Drive Input 3 Drive Input 4 Drive Jog Fwd Drive Jog Rev none none none none none none 3 4 5 6 7 8 9 10 none Description Run Forward output. For all starter types, this output is hard wired from the ArmorStart CPU to the actuator Run Reverse output. For all starter types, this output is hard wired from the ArmorStart CPU to the actuator These four instances exist for Inverter units only. They are connected to Drive Inputs 1…4. This instances exists for Inverter units only none All instances will contain the following attributes Table C.46 Discrete Output Point Instance Attributes. Attribute ID Access Rule Name Data Type Value 3 Get Value BOOL 5 Get/Set Fault Action BOOL 6 Get/Set Fault Value BOOL 7 Get/Set Idle Action BOOL 8 Get/Set Idle Value BOOL 113 Get/Set ➊ Pr Fault Action BOOL 114 Get/Set ➊ Pr Fault Value BOOL 115 Get/Set Force Enable BOOL 116 Get/Set Force Value BOOL 0 = OFF, 1 = ON 0 = Fault Value attribute, 1 = Hold Last State 0 = OFF, 1 = ON 0 = Fault Value attribute, 1 = Hold Last State 0 = OFF, 1 = ON 0 = Pr Fault Value attribute, 1 = Ignore 0 = OFF, 1 = ON 0 = Disable, 1 = Enable 0 = OFF, 1 = ON ➊ For DOP Instances 1 and 2, and 9 and 10, Attributes 113 and 114 have Get only access, and their values are always 0 C-20 Bulletin 284G CIP Information The following common services are implemented for the Discrete Output Point Object Table C.47 Discrete Output Common Services: Discrete Output Point Object Special Requirements Implemented for Service Code Class Instance Service Name 0x0E 0x10 No No Yes Yes Get_Attribute_Single Set_Attribute_Single DOP Instances 3 and 4 Special Behavior There are many sources that can affect an output point’s value: an I/O message, and explicit message, local logic, network fault and idle conditions, and protection fault conditions. An output point must know how to select which source of data to use to drive its value attribute. An output that is not bound behaves much the same as in the DeviceNet Specification. One notable addition to DOP behavior for the ArmorStart implementation is the Protection Fault Action and Protection Fault Value attributes determine the behavior of the DOP when the ArmorStart faults on a protection fault. Bulletin 284G CIP Information C-21 The following State Transition Diagram is used for Unbound DOP Instances 3…8 when they are not used in a Devicelogix™ Program Figure C.1 State Transition Diagram — Unbound DOP 3…8 Non-Existant Power On Connection Transitions to Established Available Protection Fault Idle DNet Fault DNet Fault Receive Data Run DNet Fault Connection Transitions to Established Protection Fault Reset Protection Fault Protection Fault DNet Fault Ready Protection Fault Receive Idle DNet Idle C-22 Bulletin 284G CIP Information DOP Instances 1, 2, 9, and 10 Special Behavior Besides the sources that can affect output points 3 and 4, DOPs 1 and 2 can be affected by keypad inputs since they double as the Run Forward and Run Reverse outputs. This adds complexity to their behavior, so their behavior is defined in this section separately. The following State Transition Diagram is used for DOP Instances 1, 2, 9, and 10: Figure C.2 DOP Instances 1, 2, 9, and 10 Power Off Non-Existant Power Up Auto State = Auto Init Keyad "Hand" Button Pressed Hand State = Hand Stop Auto Hand Keyad "Auto" Button Pressed Auto State = Auto Init C-23 Bulletin 284G CIP Information The following State Transition Diagram is used in Auto State for Unbound DOP Instances 1, 2, 9, and 10 Figure C.3 Auto State for Unbound DOP Instances 1, 2, 9, and 10 Auto Init Connection Transitions to Established DNet Fault Protection Fault DNet Fault DNet Fault Protection Fault Idle DNet Fault Connection Transitions to Established Protection Fault Reset Receive Data Run Protection Fault Protection Fault DNet Fault Ready Protection Fault Receive Idle DNet Idle C-24 Bulletin 284G CIP Information Parameter Object — CLASS CODE 0x000F The following class attributes are supported for the Parameter Object Table C.48 Parameter Object Class Attributes: Attribute ID Access Rule 1 2 Get Get 8 Get 9 Get Name Revision Max Instance Parameter Class Descriptor Configuration Assembly Instance Data Type UINT UINT WORD UINT The number of instances of the parameter object depends upon the type of Distributed Motor Controller. There will be a standard set of instances reserved (1…99) for all starters. These instances will be followed by a unique set of instances for each starter type (Bulletin 280G/281G or 284G). The following instance attributes are implemented for all parameter attributes Table C.49 Parameter Object Instance Attributes: Attribute ID Access Rule 1 2 Get/Set Get 3 Get 4 5 6 Get Get Get 7 Get 8 9 10 11 12 13 14 15 16 17 18 19 20 21 Get Get Get Get Get Get Get Get Get Get Get Get Get Get Name Value Link Path Size Link Path Descriptor Data Type Data Size Parameter Name String Units String Help String Minimum Value Maximum Value Default Value Scaling Multiplier Scaling Divisor Scaling Base Scaling Offset Multiplier Link Divisor Link Base Link Offset Link Decimal Precision Data Type Specified in Descriptor USINT Array of: • BYTE • EPATH WORD EPATH USINT SHORT_STRING SHORT_STRING SHORT_STRING Specified in Descriptor Specified in Descriptor Specified in Descriptor UINT UINT UINT INT UINT UINT UINT UINT USINT C-25 Bulletin 284G CIP Information The following common services are implemented for the Parameter Object Table C.50 Parameter Object Common Services: Parameter Group Object — CLASS CODE 0x0010 Implemented for Service Code Class Instance 0x0E 0x10 0x01 Yes No No Yes Yes Yes Service Name Get_Attribute_Single Set_Attribute_Single Get_Attributes_All The following class attributes are supported for the Parameter Object Table C.51 Parameter Group Object Class Attributes: Attribute ID Access Rule 1 2 Get Get Name Revision Max Instance Data Type UINT UINT All Bulletin 284G Motor Starters have the following instances of the parameter group object: • Instance 1 = DeviceLogix Parameters • Instance 2 = DeviceNet Parameters • Instance 3 = Starter Protection Parameters • Instance 4 = User I/O Parameters • Instance 5 = Miscellaneous • Instance 6 = Drive DNet • Instance 7 = ZIP Parameters • Instance 8 = Basic Display • Instance 9 = Basic Program • Instance 10 = Advanced Program C-26 Bulletin 284G CIP Information The following instance attributes are supported for all parameter group instances Table C.52 Parameter Group Object Instance Attributes: Attribute ID Access Rule 1 2 3 4 N Get Get Get Get Get Name Data Type Group Name String Number of Members First Parameter Second Parameter Nth Parameter SHORT_STRING UINT UINT UINT UINT The following common services are implemented for the Parameter Group Object Table C.53 Parameter Group Object Service Common Services: Discrete Input Group Object — CLASS CODE 0x001D Implemented for Service Code Class Instance 0x0E Yes Yes Service Name Get_Attribute_Single No class attributes are supported for the Discrete Input Group Object. A single instance of the Discrete Input Group Object is supported. It contains the following attributes Table C.54 Discrete Input Instance Attributes: Attribute ID Access Rule 3 Get 4 Get 6 7 Get/Set Get/Set Name Number of Instances Binding Data Type Value USINT 4 Array of UINT Off_On_Delay On_Off_Delay UINT UINT List of DIP instances in usec In usec The following common services are implemented for the Discrete Input Group Object Table C.55 Discrete Input Group Object Common Services: Implemented for Service Code Class Instance 0x0E 0x10 No No Yes Yes Service Name Get_Attribute_Single Set_Attribute_Single Bulletin 284G CIP Information Discrete Output Group Object — CLASS CODE 0x001E C-27 No class attributes are supported for the Discrete Output Group Object. Two instances of the Discrete Output Group Object are supported. They contain the following attributes Table C.56 Discrete Output Group Instance 1Attributes : Attribute ID Access Rule 3 Get 4 Get 6 Get/Set 104 Get/Set 105 Get/Set Name Number of Instances Binding Command Network Status Override Comm Status Override Data Type USINT Array of UINT BOOL BOOL BOOL Value 10 List of DOP instances; 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 0 = idle; 1 = run 0 = No Override (go to safe state) 1 = Override (run local logic) 0 = No override (go to safe state) 1 = Override (run local logic) Table C.57 Discrete Output Group Instance 2 Attributes Attribute ID Access Rule 3 Get 4 Get 7 Get/Set 8 Get/Set 9 Get/Set 10 Get/Set 113 Get/Set 114 Get/Set Name Number of Instances Binding Fault Action Data Type USINT Array of UINT BOOL Fault Value Idle Action BOOL Idle Value Pr Fault Action BOOL Pr Fault Value BOOL BOOL BOOL Value 4 5, 6, 7, 8 0 = Fault Value Attribute, 1 = Hold Last State 0 = OFF, 1 = ON 0 = Idle Value Attribute, 1 = Hold Last State 0 = OFF, 1 = ON 0 = Pr Fault Value Attribute, 1 = Ignore 0 = OFF, 1 = ON The following common services are implemented for the Discrete Output Group Object Table C.58 Discrete Output Group Common Services: Implemented for Service Code Class Instance 0x0E 0x10 No No Yes Yes Service Name Get_Attribute_Single Set_Attribute_Single C-28 Bulletin 284G CIP Information Control Supervisor Object — CLASS CODE 0x0029 No class attributes will be supported. A single instance (instance 1) of the Control Supervisor Object will be supported Table C.59 Instance 1 — Control Supervisor Object. Attribute ID Access Rule 3 Get/Set 4 Get/Set 7 8 9 Name Data Type Value Run FWD BOOL Run REV BOOL These Run outputs also map to DOP instances 1 and 2. Get Running FWD BOOL Get Running REV BOOL Get Ready BOOL 10 Get Tripped BOOL 12 Get/Set Fault Reset BOOL 0->1 = Trip Reset 100 Get/Set Keypad Mode BOOL 0=Maintained; 1=Momentary 101 Get/Set Keypad Disable BOOL 0=Not Disabled; 1=Disabled WORD Bits 0-1 = reserved Bit 2 = reserved Bit 3 = reserved Bit 4 = reserved Bit 5 = CP Warning Bit 6 = IO Warning Bit 7 = reserved Bit 8 = reserved Bit 9 = DN Warning Bits 10-12 = reserved Bit 13 = HW Warning Bits 14-15 = reserved Warning Status 115 Get 124 Get/Set Trip Enable WORD Bit enumerated trip enable word 130 Get/Set Trip Reset Mode BOOL 0=manual; 1=auto 131 Get/Set Trip Reset Level USINT 0 – 100%; default = 75 150 Get/Set High Speed Ena BOOL 0 = Disable; 1 = Enable 151 Get WORD Bit 0 = IP67 Bit 1 = NEMA 4x Bits 2-15 reserved WORD Bit 0 = Output Fuse Bit 1 = Safety Monitor Bit 2 = CP Fuse Detect Bits 3-7 = Reserved Bit 8 = 10A Base Bit 9 = 25A Base Bit 10-15 = Reserved WORD Bit 0 = Conduit Bit 1 = Round Media Bits 2-15 = Reserved WORD Bit 0 = IP67 Bit 1 = NEMA 4x Bits 2-15 reserved Base Enclosure Base Options 152 Get 153 Get 154 Get 156 Get Wiring Options Starter Enclosure Last PR Trip UINT DB Status 157 Get WORD Bit 0 = DB Faulted Bit 1 = DB Overtemp Warning Bit 2= DB On Bit 3= DB Flt Reset Inhibit Bits 4-15 reserved WORD Bit 0 = DB Overtemp Bit 1 = DB OverCurrent Bit 2 = DB UnderCurrent Bit 3 = DBShorted Switch Bit 4 = DBOpen Bit 5 = Reserved Bit 6 = DBBus Voltage Link Open Bit 7= Reserved Bit 8= DB Comms Bits 9-15 = reserved DB Fault 158 Get C-29 Bulletin 284G CIP Information The following common services are implemented for the Control Supervisor Object Table C.60 Control Supervisor Object Common Services: Service Code Implemented for Class No No 0x0E 0x10 Acknowledge Handler Object — CLASS CODE 0x002b Instance Yes Yes Service Name Get_Attribute_Single Set_Attribute_Single No class attributes are supported for the Acknowledge Handler Object. A single instance (Instance 1) of the Acknowledge Handler Object is supported. The following instance attributes are supported Table C.61 Acknowledge Handler Instance Attributes: Attribute ID Access Rule 1 2 3 Get/Set Get Get Data Type Name Acknowledge Timer Retry Limit COS Producing Connection Instance UINT USINT UINT Value milliseconds 1 4 The following common services are implemented for the Acknowledge Handler Object Table C.62 Acknowledge Handler Common Services: Implemented for Service Code Class Instance 0x0E 0x10 No No Yes Yes Service Name Get_Attribute_Single Set_Attribute_Single C-30 Bulletin 284G CIP Information DeviceNet Interface Object — CLASS CODE 0x00B4 This vendor specific object has no class attributes. A single instance (Instance 1) of the DeviceNet Interface Object is supported Table C.63 DeviceNet Interface Object Instance Attribute: Attribute ID Access Rule 7 8 9 10 13 15 Get/Set Get/Set Get/Set Get/Set Get/Set Get/Set 16 Get/Set 17 Get/Set 19 23 24 30 50 64 Get/Set Get Get Get Get/Set Get/Set Name Prod Assy Word 0 Prod Assy Word 1 Prod Assy Word 2 Prod Assy Word 3 Starter COS Mask Autobaud Enable Consumed Assy Produced Assy Set To Defaults I/O Produced Size I/O Consumed Size DNet Voltage PNB COS Mask Unlock Identity Instances Data Type Min./Max. Default Description USINT USINT USINT USINT WORD BOOL 0 — 0xFFFF 0—1 USINT 0…185 Defines Word 0 of Assy 120 Defines Word 1 of Assy 120 Defines Word 2 of Assy 120 Defines Word 3 of Assy 120 Change of state mask for starter bits 1 = enabled; 0 = disabled 3, 160, 162, 164, 166, 170, 182, 187, 188 USINT 100…187 BOOL 0…1 0…8 0…8 1 5 6 7 0xFFFF 1 160 (drive 164) 161 (drive 165) 0 USINT UINT WORD USINT 0…0x00FF 0 0 52, 120, 161, 163, 165, 167, 171, 181…190 0 = No action; 1 = Reset DeviceNet Voltage Change of state mask for PNBs Unlock when set to 99 hex The following common services are implemented for the DeviceNet Interface Object Table C.64 DeviceNet Interface Object Common Services: Implemented for Service Code Class Instance 0x0E 0x10 No No Yes Yes Service Name Get_Attribute_Single Set_Attribute_Single Appendix D Group Motor Installations Application of ArmorStart® Controllers in Group Installation The following is a method of applying ArmorStart controllers using group motor installation rules as defined in the National Electric Code (NEC 2005) and Electrical Standard for Industrial Machinery (NFPA 79-2002). 1. List motors of the group in descending order of motor nameplate full load current. 2. Select disconnect means. a. Sum all locked rotor currents of motors that can be started simultaneously using NEC Table 430.251. b. Add to that value all the full load currents of any other motors or loads that can be operating at the same time as the motors that start simultaneously, using NEC Table 430.250. c. Use the total current from a and b above to get an equivalent horsepower value from Table 430.251. That value is the size of the disconnect means in horsepower. (NEC 430.110) 3. Select fuse or circuit breaker protection: Select fuse or circuit breaker size for the largest motor per NEC Table 430.52 and add that ampere value to the total of the full load currents of the rest of the motors. The final value is the fuse or circuit breaker size required. (NEC 430.53C) 4. Select wire: Ampacity of wire feeding a group of motors is not less than 125% of the full-load current rating of the highest rated motor plus the sum of the full load current ratings of all the motors in the group. (NEC 430.24) 5. The code states that any taps supplying a single motor shall have an ampacity not less than one third the ampacity of the branch circuit conductors. (NEC 430.53D) The branch circuit conductors can be defined as the conductors on the load side of the fuse block or circuit breaker. This requirement actually defines the size of the group of motors. For example, if the wire from the fuses or circuit breaker is AWG #8 with rated ampacity of 50 A, the smallest wire you can use as a tap and to the motors is AWG #14 with an ampacity of 20 A. (NEC Table 310.16 for 75° C wire) Note that the Bulletin 280 ArmorStart controllers will not accept wire greater than #10 wires at its input terminal blocks. The ArmorStart cabling to the motor is UL Listed for the controller’s Hp and is supplied with the ArmorStart controller or as an accessory when longer lengths are required. D-2 Group Motor Installations Group motor installations using the ArmorStart in distributed control applications will be largely dictated by the required motor Hp, their locations and the practical concerns of wire-cable routing on the equipment. It should be noted that Group motor installation are designed to use the actual motor Hp and current ratings in NEC Table 430.250 and not the ArmorStart controller’s rating. This allows for the possible standardization of ArmorStart controllers in an installation. An application can be designed using 5 Hp controllers for all motors between say 5 and 2 Hp and 1 Hp controllers for motors 1 Hp and less without having to oversize the wiring and short circuit protection that would result from using the larger ArmorStart controller’s rating. In the case of using the Bulletin 284G VFD-ArmorStart the actual full-load current of the motor needs to multiplied by the ratio of the drive’s ratio of rated input current to output current to arrive at the actual full-load current. For example, in the case of a 2 Hp VFDArmorStart being used to control a 1 Hp 2.1 A @ 460 V motor, the full-load amperes to be used for the Group motor calculation would be the 2 Hp VFD-ArmorStart’s (Rated Input Current / Rated Output Current) x 1 Hp motor’s rated full-load current; (5.7 A / 4.0 A)2.1 A = 3.0 A. The following is a group motor example calculation for a 460 V distributed application that requires two 10 Hp DOL-ArmorStart controlling 10 Hp and 5 Hp motors and four 2 Hp VFD-ArmorStarts controlling one 2 Hp motor and three 1 Hp motors. From NEC Table 430.250 the full-load current of the respective motors are: Motor Hp Motor FLC (A) 10 14 5 7.6 2 3.4 1 2.1 1 2.1 1 2.1 D-3 Group Motor Installations To design the motor circuit using a time delay fuse from NEC Table 430.52 to the rules of NEC 430.53C we start with the largest motor, 10 Hp, and calculate 14 A x 175% = 24.5 A. To this we add the FLC of the 5 Hp motor, 7.6 A, plus the other calculated drive currents for the motors controlled by the VFD-ArmorStarts. The calculated drive currents are given in the following Table: Motor Hp Motor FLC (A) Drive Input to Output Current Ratio (See ArmorStart Users Manual Appendix A) Calculated Drive Current (A) 2 3.4 5.57 A/4.0 A = 1.39 3.4 x 1.39 = 4.72 A 1 2.1 3.45 A/2.3 A = 1.5 2.1 x 1.5 = 3.15 A 1 2.1 3.45 A/2.3 A = 1.5 2.1 x 1.5 = 3.15 A 1 2.1 3.45 A/2.3 A = 1.5 2.1 x 1.5 = 3.15 A The total current for the fuse ampacity is calculated in the following Table: Motor Hp Motor FLC (A) TD Fuse Current (A) 10 14 24.5 A 5 7.6 7.6 A 2 3.4 4.72 A 1 2.1 3.15 A 1 2.1 3.15 A 1 2.1 3.15 A Total Fuse Current 46.4 A Therefore the standard fuse available not exceeding 46.4 A is a 40 A fuse. To calculate the wire ampacity and therefore the size of the motor branch conductor we use NEC 430.24 and calculate the sum of 125% of the largest motor’s FLC plus the FLC of the other motors in the group. The conductor ampacity calculation is given in the following Table: Motor Hp Motor FLC (A) Wire Current (A) 10 14 14A x 1.25 =17.5A 5 7.6 7.6A 2 3.4 4.89 A 1 2.1 3.15 A 1 2.1 3.15 A 1 2.1 3.15 A Total Fuse Current 39.4 A D-4 Group Motor Installations From NEC Table 310.16 we need to use 8 AWG for the motor branch circuit. Per NEC 430.28 the individual motor tap conductors can be sized down to 1/3 the ampacity of the trunk but not less than 125% of the specific motor’s FLC on the tap. This reduction is further conditionally based on the tap being not more than 25 feet. NFPA 79, 7.2.10.4 and Table 7.2.10.4 restrict the size reduction by the size of the branch circuit fuse size and tap conductor size. For the above case we have used a 40 A time-delay fuse. NFPA 79, Table 7.2.10.4 indicates that the smallest tap conductor can be 12 AWG. NEC Table 310.16 for wire ampacity allows 12 AWG (25 A) to be used in all taps for this application. See the final Group motor circuit design in the following figure: 8 AWG motor branch trunk AWG motor trunk tap conductors are ** 12permissible with 40A Time Delay fuse; 14 AWG 40A Time Delay are permissible with 50A Inverse Time circuit breaker. (NFPA 79 Table 7.2.10.4) or 50A Inverse Time CB ** * 10 HP DOL-AS SF=1.15 14A FLC 10 HP 10 HP DOL-AS SF=1.15 7.6A FLC 5 HP 2 HP VFD-AS SF=1.15 3.4A FLC 2 HP 2 HP VFD-AS SF=1.15 2.1A FLC 1 HP the ArmorStart and motor cable are UL Listed * Note, together and supplied by Rockwell Automation. 2 HP VFD-AS SF=1.15 2.1A FLC 1 HP 2 HP VFD-AS SF=1.15 2.1A FLC 1 HP Group Motor Installations D-5 If the Group motor design were carried out with the intent to use an inverse-time circuit breaker from NEC Table 430.52 to the rules of NEC 430.53C, we start with the largest motor, 10 Hp, and calculate 14A x 250% = 35 A to this we add the FLC of the 5 Hp motor, 7.6 A, plus the other calculated drive currents for the motors controlled by the VFD-ArmorStarts. The calculated drive currents are given in the following table: Motor Hp Motor FLC (A) Inverse-Time CB Current (A) 10 14 35 A 5 7.6 7.6 A 2 3.4 4.89 A 1 2.1 3.15 A 1 2.1 3.15 A 1 2.1 Total Fuse Current 3.15 A 56.94 A Therefore for the standard inverse-time circuit breaker available not exceeding 56.94 A we need to use a 50 A inverse-time circuit breaker. This design will also allow the use of 8 AWG for the motor branch circuit. Continuing than and applying NEC 430.28 the individual motor tap conductors can be sized down to 1/3 the ampacity of the trunk and following the restrictions in NFPA 79, 7.2.10.4 and Table 7.2.10.4 for this case where we have used a 50 A inverse-time circuit breaker. NFPA 79, Table 7.2.10.4 indicates that the smallest tap conductor can now be 14 AWG. See the above figure for this Group motor circuit design. The above method instructs one on applying ArmorStart controllers using group motor installation rules. Because of the ArmorStart’s capability, rating and Listing this method provides the minimum branch circuit wire and SCPD protection size that can be used. The Armor Start has been evaluated and tested for group motor installations when being feed by a power source having 65,000 Amps available fault current. The ArmorStart is not a listed combination motor controller, however, but is Listed as Industrial Control Equipment per UL 508 for group motor installations per NFPA 79. Under this Listing the NEC and actually NFPA 79 puts an upper bound on the SCPD to be used. That upper bound is dictated by the maximum ratings in Table 7.2.10.4. D-6 Group Motor Installations The rules and allowances for sizing of the over current protection for NFPA 79 motor groups is covered by 7.2.10.4, Table 7.2.10.4 and Table 13.5.6. These rules in Tables 7.2.10.4 and 13.5.6 are intended to limit the maximum SCPD for a group. Therefore each ArmorStart controller with its factory-supplied output motor cable is suitable for single-motor or multiple-motor group installations on industrial machinery when installed according to NFPA 79, 2002. The controller and output motor cable have been evaluated as a single system. The maximum over current device rating or setting is limited to the value in Table D.1 for the smallest user-supplied input line conductor, by the controller's maximum rating, or as allowed by the UL Certificate of Compliances 012607-E3125, E96956, and E207834 for the combined use of ArmorStart and ArmorConnect components. The Certificate of Compliances allow the ArmorStart Distributed Motor Controllers Models 280*-*10*, 281*-*10*, and 284*-*10* respectively to be used with ArmorConnect input cable media 280*PWRM22*-M*, 280S-PWRM22*-M* Cable Assembly branch circuit taps, and 280*-M22*-M1 ArmorConnet Panel Mounting Fittings when the group motor branch circuits are protected with a maximum 40 A non-time delay or a 20 A time delay, Class CC, T or F fuse. These ArmorStart and ArmorConnect product UL Certification of Compliances effectively extend Table D.1 to allow ArmorConnect branch circuit taps and mounting fittings constructed with 16 AWG conductor sized to be connected to appropriate ArmorStart motor controllers. See Table D.1. D-7 Group Motor Installations Table D.1 Extended NFPA 79, Relationship Between Conductor Size and Maximum Rating or Setting of Short-Circuit Protective Devices for Power Circuits Conductor Size (AWG) Max. Ratings Non-Time Delay Fuse or Time Delay or Dual Element Inverse Time Circuit Fuse (amperes) ➊ Breaker (amperes) 16 ➋ 40 ➌ 20 ➍ 14 60 30 12 80 40 10 100 50 8 150 80 6 200 100 4 250 125 ➊ For 16 AWG conductors the branch circuit breaker must be marked for use the 16 AWG wire, NFPA 79, 12.6.1.1. ➋ The UL Certificate of Compliance for the ArmorStart Distributed Motor Controllers models 280*-*10*, 281*-*10*, 283*-*10*, 284*-*10*; and ArmorConnect input cable media 280*-M22*-M*, 280SPWRM22*-M* cable assembly branch circuit taps, and 280*-M22*-M1 ArmorConnect panel mounting fittings allows 16 AWG conductors to be used when part of ArmorStart and ArmorConnect components. ➌ The 280*-PWRM22*-M* ArmorConnect cable assembly taps and 280*-22*-M1 panel mounted fittings with 16 AWG conductors are suitably protected when protected in the branch circuit by a 40A nontime delay fuse. ➍ The 280*-PWRM22*-M* ArmorConnect Cable Assembly taps and 280*-22*-M1 Panel Mounted Fittings with 16 AWG conductors are suitably protected when protected in the branch circuit by a 20A time delay fuse. Branch Circuit Protection Requirements for ArmorConnect Three-Phase Power Media When using ArmorConnect three-phase power media, fuses can be used for the motor branch circuit protective device, for the group motor installations. The following fuse types are recommended: Class CC, T, or J type fuses. A 100 A circuit breaker (Allen-Bradley140 H-Frame) can be used for the motor branch protective device, for the group motor installations when using only the following ArmorConnect Power Media components: 280-M35M-M1, 280-M35F-M1, 280-T35, and 280-PWRM35*-M*. The Listed ArmorStart motor controllers with their factory supplied motor cable carries the marked maximum ratings shown in the following table. Voltage Max. Ratings 480Y/277 Sym. Amps RMS 65 kA Circuit Breaker 100 A Fuse ➎ 100 A ➎ Class J, CC, and T fuses only. D-8 Group Motor Installations To summarize, the design of the ArmorStart controllers in group motor applications is to be carried out as described above. The user supplied line side SCPD and wiring has to meet the minimum requirements determined above, however, the SCPD is required to protect the ArmorStart controller’s associated line side wiring only and can be increased to the values allowed in the maximum ratings tables above. Because the maximum line side conductor for the ArmorStart is #10 AWG this is the maximum tap wire or daisy-chain wiring that can be used to take advantage of the ArmorStart’s maximum input ratings. A benefit to the ArmorStart rating and the above design process using NFPA rules is that the industrial equipment that utilizes several group motor installations on different branch circuits can standardize the size of the SCPD and the branch wiring for all the branch circuits of the installation as long as they do not exceed the maximum ratings of Table D.1as extended by the UL Certificate of Compliances for combined ArmorStart and ArmorConnect installations, which ever is less. Appendix E Accessories Table E.1 DeviceNet™ Media ➊ Description KwikLink pigtail drops are Insulation Displacement Connector (IDC) with integral Class 1 round cables for interfacing devices or power supplies to flat cable DeviceNet Mini- T-Port Tap Gray PVC Thin Cable Thick Cable DeviceNet Configuration Terminal — Used to interface with objects on a DeviceNet network. Includes 1 m communications cable. Communication cable, color-coded bare leads Communication cable, microconnector (male) Panel Mount Adapter/Door Mount Bezel Kit Length m (ft) Cat. No. 1 m (3.3) 2 m (6.5) 3 m (9.8) Sealed 1485P-P1E4-B1-N5 1485P-P1E4-B2-N5 1485P-P1E4-B3-N5 6 m (19.8) 1485P-P1E4-B6-N5 Right Keyway Left Keyway 1485P-P1N5-MN5NF 1485P-P1N5-MN5KM Connector Cat. No. Mini Straight Female Mini Straight Male Mini Straight Female Mini Right Angle Male Mini Right Angle Female Mini Straight Male Mini Right Angle Female Mini Straight Male Mini Straight Female Mini Straight Male Mini Straight Female Mini Right Angle Male Mini Right Angle Female Mini Straight Male Mini Right Angle Female Mini Straight Male Length m (ft) 1485G-P➋N5-M5 1485G-P➋W5-N5 1485G-P➋M5-Z5 1485G-P➋W5-Z5 1485C-P➌N5-M5 1485C-P➌W5-N5 1485C-P➌M5-Z5 1485C-P➌W5-Z5 Cat. No. 1 m (3.3) 193-DNCT 1 m (3.3) 1 m (3.3) — 193-CB1 193-CM1 193-DNCT-BZ1 ➊ See the On-Machine Connectivity catalog for complete cable selection information. ➋ Replace symbol with desired length in meters (Example: 1485G-P1N5-M5 for a 1 m cable). Standard cable lengths: 1 m, 2 m, 3 m, 4 m, 5 m, and 6 m. ➌ Replace symbol with desired length in meters (Example: 1485C-P1N5-M5 for a 1 m cable). Standard cable lengths: 1 m, 2 m, 3 m, 4 m, 5 m, 6 m, 8 m, 10 m, 12 m, 18 m, 24 m, and 30 m. E-2 Accessories Table E.2 Sensor Media ➊ Description ArmorStart® I/O Connection Pin Count 0 Input 0 Connector Cat. No. Straight Female Straight Male 889D-F4ACDM-➋ Straight Female Right Angle Male 889D-F4AACDE-➋ Straight Female 879D-F4ACDM-➋ Right Angle Male 879D-R4ACM-➋ Straight Female Straight Male 889R-F3AERM-➋ Straight Female Right Angle Male 899R-F3AERE-➋ 5-Pin DC Micro Patchcord 0 Input 0 5-pin DC Micro V-Cable Output 3-pin AC Micro Patchcord ➊ See Publication M116-CA001A-EN-P for complete cable selection information. ➋ Replace symbol with desired length in meters (Example: 889D-F4ACDM-1 for a 1 m cable). Standard cable lengths: 1 m, 2 m, 5 m, and 10 m. Table E.3 ➌ Sealing Caps Description For Use With Cat. No. Plastic Sealing Cap (M12) ➌ Input I/O Connection 1485A-M12 To achieve IP 67 rating, sealing caps must be installed on all unused I/O connections. Table E.4 Locking Clips Description The clam shell design clips over the ArmorStart motor connector and motor cable to limit customer access. Package QTY Cat. No. 10 280-MTR22-LC 10 280-MTR35-LC E-3 Accessories IP67 Dynamic Brake Resistor Application Type 1 Drive and Motor Size kW Part Number Resistance Ohms ± 5% Max Braking Braking Continuous Max Energy Torque % of Torque % of Power kW kJ Motor Motor Application Type 2 Duty Cycle % Braking Torque % of Motor Duty Cycle % 47% 23% 12% 24% 13% 150% 150% 110% 150% 124% 31% 15% 11% 16% 10% 400-480 Volt AC Input Drives 0.37 (0.5) 0.75 (1) 1.5 (2) 2.2 (3) 4 (5) 284R-360P500 284R-360P500 284R-360P500 284R-120P1K2 284R-120P1K2 360 360 360 120 120 0.086 0.086 0.086 0.26 0.26 17 17 17 52 52 305% 220% 110% 197% 124% 100% 100% 100% 100% 100% Note: Always check the resistor ohms against minimum resistance for drive being used. Note: Duty Cycle listed is based on full speed to zero speed deceleration. For constance regen at full speed, duty cycle capability is half of what is listed. Application Type 1 represents maximum capability up to 100% braking torque where possible. Application Type 2 represents more than 100% braking torque where possible, up to a maximum of 150%. Figure E.1 Dynamic Brake Resistor Approximate Dimensions Dimensions are not intended to be used for manufacturing purposes. A H B C D J E F Cat No. 284R-091P500 284R-360P500 284R120P1K2 G A mm (in.) B mm (in.) C 89 ± 3 (3.5 ± 0.12) 215 ± 5 (8.46 ± 0.2) 420 ± 5 (16.54 ± 0.2) * D mm (in.) E mm (in.) 235 ± 5 60 ± 2 (9.25 ± 0.2) (2.36 ± 0.08) 440 ± 5 (17.32 ± 0.2) F G mm (in.) mm (in.) 127 (5) 12.54 (0.49) H mm (in.) J mm (in.) 60 ± 2 50 ± 1.5 (2.36 ± 0.08) (1.97 ± 0.06) * Length is user-selectable based on the suffix added to the catalog number. For a length of 500±10mm, add -M05 to the end of the catalog number. For a length of 1000±10mm, add -M1 to the end of the catalog number. E-4 Notes: Accessories Appendix F Safety I/O Module and TÜV Requirements ArmorStart Safety-Related Parts Each ArmorStart Safety Distributed motor controller is intended to be combined with the 1732DS-IB8XOBV4 safety I/O module to form a subsystem that is part of the overall machine stop function. The motor controllers are connected to the safety I/O module through specified cable assemblies. The combination of one of these controllers, the safety module, and the specified interconnecting cables are referred to as the ArmorStart Safety-Related Parts. The part numbers for each of these components is specified below. The combination of these components is shown in Figure F.1. The safety I/O module and PLC program must be configured as outlined. See configuration of Safety I/O Module and PLC program. Table F.1 Safety-Related Parts Catalog Number Description 280…S* Bulletin 280 Distributed Motor Controller – controller is full-voltage, non-reversing * - denotes safety version of Bulletin 280 281…S* Bulletin 281 Distributed Motor Controller – controller is full-voltage, reversing * - denotes safety version of Bulletin 280 284…S* Bulletin 281 Distributed Motor Controller – controller is variable-frequency AC drive * - denotes safety version of Bulletin 280 1732DS-IB8XOBV4 Guard I/O DeviceNet Safety Module 889D-F4HJDM-*, 889D-F4AEDM-* or equivalent • * - denotes length • SM cable assembly - Interconnecting cable assembly between safety module input and ArmorStart controller connector labeled “SM”. Assembly provides contactor position feedback. A1/A2 cable assembly Interconnecting cable assembly between safety module output and ArmorStart controller connector labeled “A1/A2”. Assembly provides output contactor coil power and controller power supply. F-2 Safety I/O Module and TÜV Requirements ArmorBlock® Guard I/O™ Modules 0 0 Description Cat. No. ArmorBlock Guard I/O provides all the advantages of traditional distributed I/O for safety systems, but has an IP67 package that can be mounted directly on your machine. On-machine safety I/O reduces wiring time and startup costs for safety controller applications by eliminating electrical boxes and simplifying cable installation. The ArmorBlock family provides industrially hardened I/O blocks that you can mount directly on equipment near sensors or actuators. Wiring the I/O to the sensors and actuators is easy using pre-wired quick disconnect cables. You can use Guard I/O with any safety controller that communicates on DeviceNet using CIP Safety for the control and monitoring of safety circuits. Guard I/O detects circuit failures at each I/O point while providing detailed diagnostics directly to the controller. With CIP Safety, you can easily integrate safety and standard control systems by using safety and standard messages on the same wire. The 1732DS ArmorBlock Guard I/O family consists of 24V DC digital I/O modules that communicate on DeviceNet networks. The I/O connectors are sealed M12 micro style while the network and auxiliary power connectors are sealed mini style. Plus, the ArmorBlock Guard I/O uses the same input and output M12 pin configuration as standard ArmorBlock and Maxum. 1732DS-IB8XOBv4 Specifications Electrical Current Consumption 85 mA @ 24V DC I/O Operating Voltage Range 19.2…28.8V DC (24V DC +/- 20%) Digital Inputs Number of Inputs 8 safety single-channel or 4 safety dual-channel Input Type current sinking Voltage, On-State Input, Min. 11V DC Voltage, On-State Input, Max. 5V DC Current, On-State Input, Min. 3.3 mA Voltage, On-State Input, Min. 11V DC Digital Outputs Number of Outputs 4 safety solid-state Output Type dual-channel, current sourcing/current sinking pair Short Circuit Protection Yes Standard Pulse Test Outputs Number of Pulse Test Sources 8 Pulse Test Output Current 0.7 A per point Short Circuit Protection Yes Approximate Dimensions 179 x 70 x 68.7 mm (7.05 x 2.76 x 2.71 in.) Weight 600 g (1.2 lb) Operating Temperature -20…+60 °C (-4…+140 °F) Relative Humidity 10…95%, non-condensing Vibration 0.76 mm @ 10…500 Hz Shock, Operating 30 g Enclosure Type Rating IP67 UL, CE, C-Tick, CSA, UL NRGF, ODVA Conformance, TÜV Certified for fuctional safety up to SIL 3, Cat. 4 Mechanical Environmental Certifications F-3 Safety I/O Module and TÜV Requirements Micro Connector Pin Assignments Face View Pinout Input Configuration Output Configuration Pin Signal Pin Signal 1 2 3 4 5 Test Output n+1 Safe Input n+1 Input Common Safe Input n Test Output n 1 2 3 4 5 Output +24V DC Power Output n+1 (sinking) Output Power Common Output n (sourcing) Output Power Common Female 2 5 1 3 4 Mini Connector Pin Assignments Face View Pinout Signal Pin 1 2 3 4 5 Male Female Drain V+ (Red) V- (Black) CAN_H (White) CAN_L (Blue) Power Configuration Pin Assignments Pin 1 2 3 4 Face View Pinout Signal Male Output +24V DC Power (Red) Input +24V DC Power (Green) Input Power Common (White) Output Power Common (Black) ArmorBlock Guard I/O Recommended Compatible Cables and Connectors Description Cat. No. DC Micro (M12) Male Cordset 889D-F4HJ-➊ DC Micro Style Patchcord 889D-F4HJDM-➊ M12 Terminal Chamber, Straight Male 871A-TS4-DM M12 Terminal Chamber, Right Angle Male 871A-TR4-DM ➊ Replace symbol with 1 (1 m), 2 (2 m), 5 (5 m), or 10 (10 m) for standard cable length. F-4 Safety I/O Module and TÜV Requirements Figure F.1 Three-Phase Power Media DeviceNet Media I/O output The 1732DS Safety I/O module outputs to provided 24V DC power for control power to the ArmorStart - A1/A2 control input I/O input Aux. Power The 1732DS Safety I/O module inputs will monitor the status of the safety-rated contactors inside the ArmorStart -SM safety monitor input. Safety Function Definition The safety function is an uncontrolled stop. The uncontrolled stop is executed by removing the ArmorStart safety controller output voltage in response to a DeviceNet Safety network command. Limitations of the Safety-Related Parts The user must provide other components to implement the overall machine stop function. Example components are the DeviceNet safety network, a safety PLC, and a safety input module. Detection of the contactor state is provided so that a Category 4 architecture can be implemented for the overall machine stop function. The user must provide a safety PLC and program to process the “SM” feedback as required by Category 4. See configuration of safety I/O module and Safety PLC Program. Safety I/O Module and TÜV Requirements F-5 Configuration of the 1732DS-IBXOBV4 Safety I/O Module and PLC Program The safety module must be configured as follows: Configure the output that is connected to the I/O output cable assembly for: • Dual (bipolar mode) • Safety Pulse Test Configure the input that is connected to the I/O Input cable assembly as follows: • Channel = Single • Mode = Pulsed Test Input from test output X • Source = Pulsed output from X ArmorStart Controller - none required Safety PLC Program – the program must: • Force the output contactors to the open state when a safetyrelated stop is demanded. • Force the output contactors to remain in the open state if the SM feedback is open after a safety-related stop is executed (see Note 1 and Note 2). Note 1: The program must inhibit the contactor closure to satisfy safety category 4 of 13849-1. Note 2: The SM feedback logic should be implemented only after a safetyrelated stop for the Bulletin 280/281 controllers. It should be ignored during normal operation. One of the series contactors is used for the normal stop/start function for these controllers. Therefore, a malfunctioning contactor circuit cannot be distinguished from a normal running state. Refer to Publication SAFETY-AT018*, for programming examples. F-6 Safety I/O Module and TÜV Requirements Safety-Related Specifications Component Response Time Component Response Time (ms) 1732DS-IB8XOBV4 See Publication 1732DS-IN001* Bulletin 280 20…40 Bulletin 281 20…40 Bulletin 284 8…12 Probability of Dangerous Failure per hour and MTTFd for Uncontrolled Stop Maintenance and Internal Part Replacement ArmorStart Safety Controller used in Combination of ArmorStart SafetyRelated Parts MTTFd (years) Average probability of dangerous failure per hour (1/h) Bulletin 280… 100 5.7E-9 Bulletin 281… 100 6.0E-9 Bulletin 284… 100 6.0E-9 The ArmorStart Safety controllers do not have any internal maintenance procedures or internal replacement parts. Refer to the 1732DS-IB8XOBV4 safety module documentation for maintenance requirements pertaining to it. It is recommended that the operation of the 1732DS-IB8XOBV4 safety module and the ArmorStart output contactor circuits be verified once per year by performing the contactor circuit verification procedure. The contactor circuit verification procedure must be performed on an ArmorStart Safety controller that has experienced an output short-circuit fault prior to placing the controller back into service. Contactor Circuit Verification Procedure Initiate a stop from the safety PLC to the 1732DS-IB8XOBV4 • Verify that the ArmorStart controller output motor voltage is removed. • Verify that the SM feedback to the safety PLC transitions to the open state. Safety I/O Module and TÜV Requirements Troubleshooting F-7 1732DS-IB8XOBV4 Safety Module Refer to 1732DS-IB8XOBV4 documentation for trouble shooting instructions. ArmorStart Safety Bulletin 280/281/284 Distributed Motor Controllers Safety Circuit Troubleshooting Symptom Motor will not start ArmorStart Controller LED Status Indication Power Fault Run Off Off Off Probable Cause 1. 2. 3. The disconnect switch of the ArmorStart controller is open. 24 VDC not supplied to A1 and A2 at A1/A2 connector because cable or connections are defective. 1732DS-IB8XOBV4 not supplying 24 VDC to A1 and A2 pins of A1/A2 cable. Recommended Action 1. 2. 3. Check disconnect switch. Verify cable and connections. Refer to IN PWR/OUT PWR Indicators in 1732DS-IB8XOBV4 manual. Off Flashing Off There is an ArmorStart controller fault. Refer to ArmorStart Manual for controller fault. On Off Off After non-safety stop➀ 1. The controller is not receiving a RUN command. After non-safety stop➀ 1. Check RUN command source. After safety stop➁ 1. The controller is not receiving a RUN command. 2. SM cable connections (SM1, SM2) open. 3. SM feedback is open inside control module. 4. 1732DS-IB8XOBV4 is reporting open SM feedback from the IN0...INn inputs. After safety stop➁ 1. Check RUN command source. 2. Check SM cable and connections. 3. Check SM feedback inside control module. 4. Refer to I/O Indicators in 1732DS-IB8XOBV4 manual. On Flashing Off ArmorStart controller fault is inhibiting ArmorStart controller start function. Refer to ArmorStart Manual for controller fault. On Off On 1. 1. 2. 3. Three-phase power is not being supplied to controller (Bulletin 280/281 controllers). 24 VDC not supplied to P and M at A1/A2 connector because cable or connections are defective. 1732DS-IB8XOBV4 OUT0...OUTn outputs are not supplying 24 VDC to pins P and M of A1/A2 cable assembly. 2. 3. Verify 3-phase voltage at ArmorStart controller input. Verify cable and connections. Refer to I/O Indicators in 1732DS-IB8XOBV4 manual. ➀ Non-safety stop – The 1732DS-IB8XOBV4 does not remove 24V DC from P and M of A1/A2 when a non-safety stop is executed. Restarting the controller after a non-safety stop is not inhibited by the safety circuit. ➁ Safety stop – The 1732DS-IB8XOBV4 removes 24V DC from P and M of A1/A2 when a safety stop is executed. This opens both contactors. Restarting the controller stop is inhibited if the SM feedback is open. The program in the safety controller does not permit the 1732DS-IB8XOBV4 to apply 24V DC to P and M in the A1/A2 cable. F-8 Notes: Safety I/O Module and TÜV Requirements Appendix Renewal Parts Figure G.1 Bulletin 280G/281G Control Module Renewal Part Catalog Structure 280 G – F 12D – N B – RG Bulletin Number 280 Full Voltage Starter 281 Reversing Starter Communications D DeviceNet™ G with six inputs Motor Connection RG Round Enclosure Type F Type 4 (IP67) Overload Selection Current Range B 0.5…2.5 A C 1.1…5.5 A D 3.2…16 A Contactor Size/Control Voltage 120V AC 12D 23D Control Module N Control Module Only Control Module Renewal Part Product Selection Table G.1 Full Voltage Starters — IP67/NEMA Type 4, Up to 460V AC Current Rating (A) kW Hp Cat. No. 400V AC 50 Hz 460V AC 60 Hz 120V AC 0.5…2.5 0.75 1 280G-F12D-NB-RG 1.1…5.5 2.2 3 280G-F12D-NC-RG 3.2…16 7.5 10 280G-F23D-ND-RG Table G.2 Reversing Starters — IP67/NEMA Type 4, Up to 460V AC Current Rating (A) kW Hp Cat. No. 400V AC 50 Hz 460V AC 60 Hz 120V AC 0.5…2.5 0.75 1 281G-F12D-NB-RG 1.1…5.5 2.2 3 281G-F12D-NC-RG 3.2…16 7.5 10 281G-F23D-ND-RG G G-2 Renewal Parts Figure G.2 Bulletin 280G Base Module Renewal Part Catalog Structure 280 G – F N – 10 – RG Bulletin Number 280 Starter Communications D DeviceNet™ G with six inputs Line Connection RG ArmorConnect™ Power Media Enclosure Type F Type 4 (IP67) N Short Circuit Protection (Bul. 140M) 10 10 A Rated Device 25 25 A Rated Device Base Only No Control Module Base Module Renewal Part Product Selection Table G.3 Bul. 280G Full Voltage Starters & Bul. 281G Reversing Starters — IP67/NEMA Type 4, Up to 460V AC with ArmorConnect Connectivity Current Rating (A) kW Hp 400V AC 50 Hz 460V AC 60 Hz Cat. No. 0.5…2.5 0.75 1 280G-FN-10-RG 1.1…5.5 2.2 3 280G-FN-10-RG 3.2…16 7.5 10 280G-FN-25-RG Renewal Parts G-3 Figure G.3 Bulletin 280G/281G Safety Control Module Renewal Part Catalog Structure 280 G – F 12S – N B – RG Bulletin Number 280 Full Voltage Starter 281 Reversing Starter Communications D DeviceNet™ G with six inputs Motor Connection RG Round Enclosure Type F Type 4 (IP67) Overload Selection Current Range B 0.5…2.5 A C 1.1…5.5 A D 3.2…16 A Contactor Size/Control Voltage 24V DC 12D 23D Control Module N Control Module Only Control Module Renewal Part Product Selection Table G.4 Full Voltage Starters — IP67/NEMA Type 4, Up to 460V AC Current Rating (A) kW Hp Cat. No. 400V AC 50 Hz 460V AC 60 Hz 24V DC 0.5…2.5 0.75 1 280G-F12S-NB-RG 1.1…5.5 2.2 3 280G-F12S-NC-RG 3.2…16 7.5 10 280G-F23S-ND-RG Table G.5 Reversing Starters — IP67/NEMA Type 4, Up to 460V AC Current Rating (A) kW Hp Cat. No. 400V AC 50 Hz 460V AC 60 Hz 24V DC 0.5…2.5 0.75 1 281G-F12S-NB-RG 1.1…5.5 2.2 3 281G-F12S-NC-RG 3.2…16 7.5 10 281G-F23S-ND-RG G-4 Renewal Parts Figure G.4 Bulletin 280G Safety Base Module Renewal Part Catalog Structure 280 G – F S – 10 – RG Bulletin Number 280 Starter Communications D DeviceNet™ G with six inputs Line Connection RG ArmorConnect™ Power Media Enclosure Type F Type 4 (IP67) S Short Circuit Protection (Bul. 140M) 10 10 A Rated Device 25 25 A Rated Device Base Only No Control Module Base Module Renewal Part Product Selection Table G.6 Bul. 280G Full Voltage Starters & Bul. 281G Reversing Starters — IP67/NEMA Type 4, Up to 460V AC with ArmorConnect Connectivity Current Rating (A) kW Hp 400V AC 50 Hz 460V AC 60 Hz Cat. No. 0.5…2.5 0.75 1 280G-FS-10-RG 1.1…5.5 2.2 3 280G-FS-10-RG 3.2…16 7.5 10 280G-FS-25-RG Renewal Parts G-5 Figure G.5 Bulletin 284G Control Module Renewal Part Catalog Structure 284 D – F V D2P3 D – N – RG – Option 1 – Option 2 – Option 3 Bulletin Number Option 3 EMI EMI Filter Communications D DeviceNet™ Enclosure Type F Type 4 (IP67) Option 2 CB Control Brake Connector DB1 DB Brake Connector for IP67 Dynamic Brake Resistor Control Module N Control Module Only Torque Performance Mode V Sensorless Vector Control Volts per Hz Control Voltage D 120V AC Option 1 Blank Status Only Output Current Code Output Current [A] kW Hp Motor Media Type RG Round 480V Drive D1P4 D2P3 D4P0 D6P0 D7P0 1.4 2.3 4 6 7.6 0.4 0.75 1.5 2.2 4 0.5 1 2 3 5 Table G.7 Bulletin 284G Control Module with Sensorless Vector Control , IP67/NEMA 4, Up to 600V Input Voltage 380…480V 50/60 Hz 3-Phase kW Hp Output Current Cat. No. 120 V AC Control Voltage 0.4 0.5 1.4 A 284G-FVD1P4D-N-RG-CB-DB1-EMI 0.75 1.0 2.3 A 284G-FVD2P3D-N-RG-CB-DB1-EMI 1.5 2.0 4.0 A 284G-FVD4P0D-N-RG-CB-DB1-EMI 2.2 3.0 6.0 A 284G-FVD6P0D-N-RG-CB-DB1-EMI 3.0 5.0 7.6 A 284G-FVD7P6D-N-RG-CB-DB1-EMI G-6 Renewal Parts Figure G.6 Bulletin 284G Base Module Renewal Part Catalog Structure 280 G – F N – 10 – RG Bulletin Number Communications D DeviceNet™ Line Media RG ArmorConnect™ Power Media Enclosure Type F Type 4 (IP67) Base N Short-Circuit Protection Bulletin 140 Current Rating (A) 10 10 A Rated Device 25 25 A Rated Device Base Only — no starter Base Module Renewal Part Product Selection Table G.8 Bulletin 284G Base Module Renewal Part, IP67/NEMA 4, Up to 600V AC with ArmorConnect™ Connectivity Input Voltage kW Hp Output Current Cat. No. 380…480V 50/60 Hz 3-Phase 0.4…2.2 0.5…3.0 1.4…4.0 A 280G-FN-10-RG 3.0 5.0 6.0…7.6 A 280G-FN-25-RG Renewal Parts G-7 Figure G.7 Bulletin 284G Safety Control Module Renewal Part Catalog Structure 284 D – F V D2P3 S – N – RG – Option 1 – Option 2 – Option 3 Bulletin Number Option 3 EMI EMI Filter Communications D DeviceNet™ Enclosure Type F Type 4 (IP67) Option 2 CB Control Brake Connector DB1 DB Brake Connector for IP67 Dynamic Brake Resistor Control Module N Control Module Only Torque Performance Mode V Sensorless Vector Control Volts per Hz Control Voltage S 24V DC Option 1 Blank Status Only Output Current Code Output Current [A] kW Hp Motor Media Type RG Round 480V Drive D1P4 D2P3 D4P0 D6P0 D7P0 1.4 2.3 4 6 7.6 0.4 0.75 1.5 2.2 4 0.5 1 2 3 5 Table G.9 Bulletin 284G Control Module with Sensorless Vector Control , IP67/NEMA 4, Up to 600V Input Voltage 380…480V 50/60 Hz 3-Phase kW Hp Output Current Cat. No. 120 V AC Control Voltage 0.4 0.5 1.4 A 284G-FVD1P4S-N-RG-CB-DB1-EMI 0.75 1.0 2.3 A 284G-FVD2P3S-N-RG-CB-DB1-EMI 1.5 2.0 4.0 A 284G-FVD4P0S-N-RG-CB-DB1-EMI 2.2 3.0 6.0 A 284G-FVD6P0S-N-RG-CB-DB1-EMI 3.0 5.0 7.6 A 284G-FVD7P6S-N-RG-CB-DB1-EMI G-8 Renewal Parts Figure G.8 Bulletin 284G Base Module Renewal Part Catalog Structure 280 G – F S – 10 – RG Bulletin Number Communications D DeviceNet™ Line Media RG ArmorConnect™ Power Media Enclosure Type F Type 4 (IP67) Base S Short-Circuit Protection Bulletin 140 Current Rating (A) 10 10 A Rated Device 25 25 A Rated Device Base Only — no starter Base Module Renewal Part Product Selection Table G.10 Bulletin 284G Base Module Renewal Part, IP67/NEMA 4, Up to 600V AC with ArmorConnect™ Connectivity Input Voltage kW Hp Output Current Cat. No. 380…480V 50/60 Hz 3-Phase 0.4…2.2 0.5…3.0 1.4…4.0 A 280G-FS-10-RG 3.0 5.0 6.0…7.6 A 280G-FS-25-RG Appendix H PID Setup PID Loop The Bulletin 284G ArmorStart® Distributed Motor with sensorless vector control has a built-in PID (proportional, integral, differential) control loop. The PID loop is used to maintain a process feedback (such as pressure, flow, or tension) at a desired set point. The PID loop works by subtracting the PID feedback from a reference and generating an error value. The PID loop reacts to the error, based on the PID Gains, and outputs a frequency to try to reduce the error value to 0. To enable the PID loop, Parameter 232 (PID Ref Sel) must be set to an option other than 0 PID Disabled. Exclusive Control and Trim Control are two basic configurations where the PID loop may be used. Exclusive Control In Exclusive Control, the Speed Reference becomes 0, and the PID Output becomes the entire Freq Command. Exclusive Control is used when Parameter 232 (PID Ref Sel) is set to option 1, 2, 3, or 4. This configuration does not require a master reference, only a desired set point, such as a flow rate for a pump. PID Loop PID Ref + PID Fdbk – PID Error PID Prop Gain + PID Integ Time + PID Output Accel/Decel Ramp Freq Command + PID Diff Rate PID Enabled Example • In a pumping application, the PID Reference equals the Desired System Pressure set point. • The Pressure Transducer signal provides PID Feedback to the drive. Fluctuations in actual system pressure, due to changes in flow, result in a PID Error value. • The drive output frequency increases or decreases to vary motor shaft speed to correct for the PID Error value. • The Desired System Pressure set point is maintained as valves in the system are opened and closed causing changes in flow. • When the PID Control Loop is disabled, the Commanded Speed is the Ramped Speed Reference. PID Feedback = Pressure Transducer Signal Pump 1 PID Reference = Desired System Pressure H-2 PID Setup Trim Control In Trim Control, the PID Output is added to the Speed Reference. In Trim mode, the output of the PID loop bypasses the accel/decel ramp as shown. Trim Control is used when Parameter 232 (PID Ref Sel) is set to option 5, 6, 7, or 8. Speed Ref PID Loop PID Ref + PID Fdbk – PID Error Accel/Decel Ramp PID Prop Gain + PID Integ Time + PID Output + + Output Freq + PID Diff Rate PID Enabled Example • In a winder application, the PID Reference equals the Equilibrium set point. • The Dancer Pot signal provides PID Feedback to the drive. Fluctuations in tension result in a PID Error value. • The Master Speed Reference sets the wind/unwind speed. • As tension increases or decreases during winding, the Speed Reference is trimmed to compensate. Tension is maintained near the Equilibrium set point. 0 Volts PID Reference = Equilibrium Set Point PID Feedback = Dancer Pot Signal 10 Volts Speed Reference PID Setup H-3 PID Reference and Feedback Parameter 232 (PID Ref Sel) is used to enable the PID mode (Parameter 232 ¦ 0 PID Disabled) and to select the source of the PID Reference. If A132 (PID Ref Sel) is not set to 0 PID Disabled, PID can still be disabled by select programmable digital input options (Parameters 151…154) such as Jog, Local, or PID Disable. Option Description 0 PID Disabled Disables the PID loop (default setting) 1 PID Setpoint Selects Exclusive Control. Parameter 137 (PID Setpoint) will be used to set the value of the PID Reference 4 Comm Port Selects Exclusive Control. The reference word from a communication network 5 Setpnt, Trim Selects Trim Control. Parameter 137 (PID Setpoint) will be used to set the value of the PID Reference. 8 Comm, Trim Selects Trim Control. The reference word from a communication network DeviceNet becomes the PID Reference. The value sent over the network is scaled so that Parameter 135 (Maximum Freq) x 10 = 100% reference. For example, with (Maximum Freq) = 60 Hz, a value of 600 sent over the network would represent 100% reference. DeviceNet™ becomes the PID Reference. The value sent over the network is scaled so that Parameter 135 (Maximum Freq) x 10 = 100% reference. For example, with (Maximum Freq) = 60 Hz, a value of 600 sent over the network would represent 100% reference. Parameter 233 (PID Feedback Sel) is used to select the source of the PID feedback. Option Description 2 Comm Port The Consumed Assembly (Instance 164 — Default Consumed Inverter Type Distributed Motor Controller) from a communication network (see page C-9 for details on the Consumed Assembly) which becomes the PID Feedback. The value sent over the network is scaled so that Parameter 135 (Maximum Freq) x 10 = 100% Feedback. For example, with (Maximum Freq) = 60 Hz, a value of 600 sent over the network would represent 100% Feedback. PID Deadband Parameter 238 (PID Deadband) is used to set a range, in percent, of the PID Reference that the drive will ignore. Example • (PID Deadband) is set to 5.0 • The PID Reference is 25.0% • The PID Regulator will not act on a PID Error that falls between 20.0 and 30.0% H-4 PID Setup PID Preload The value set in Parameter 239 (PID Preload), in Hertz, will be preloaded into the integral component of the PID at any start or enable. This will cause the drive’s frequency command to initially jump to that preload frequency, and the PID loop starts regulating from there. PID Enabled PID Pre-load Value PID Output Freq Cmd PID Pre-load Value > 0 PID Limits Parameter 230 (PID Trim Hi) and Parameter 231 (PID Trim Lo) are used to limit the PID output and are only used in trim mode. (PID Trim Hi) sets the maximum frequency for the PID output in trim mode. (PID Trim Lo) sets the reverse frequency limit for the PID output in trim mode. Note that when the PID reaches the Hi or Lo limit, the PID regulator stops integrating so that windup does not occur. PID Gains The proportional, integral, and differential gains make up the PID regulator. • Parameter 234 (PID Prop Gain) The proportional gain (unitless) affects how the regulator reacts to the magnitude of the error. The proportional component of the PID regulator outputs a speed command proportional to the PID error. For example, a proportional gain of 1 would output 100% of maximum frequency when the PID error is 100% of the analog input range. A larger value for (PID Prop Gain) makes the proportional component more responsive, and a smaller value makes it less responsive. Setting (PID Prop Gain) to 0.00 disables the proportional component of the PID loop. PID Setup • H-5 Parameter 235 (PID Integ Time) The integral gain (units of seconds) affects how the regulator reacts to error over time and is used to get rid of steady state error. For example, with an integral gain of 2 seconds, the output of the integral gain component would integrate up to 100% of maximum frequency when the PID error is 100% for 2 seconds. A larger value for (PID Integ Time) makes the integral component less responsive, and a smaller value makes it more responsive. Setting (PID Integ Time) to 0 disables the integral component of the PID loop. • Parameter 236 (PID Diff Rate) The Differential gain (units of 1/seconds) affects the rate of change of the PID output. The differential gain is multiplied by the difference between the previous error and current error. Thus, with a large error the D has a large effect and with a small error the D has less of an effect. This parameter is scaled so that when it is set to 1.00, the process response is 0.1% of (Maximum Freq) when the process error is changing at 1%/second. A larger value for (PID Diff Rate) makes the differential term have more of an effect and a small value makes it have less of an effect. In many applications, the D gain is not needed. Setting (PID Diff Rate) to 0.00 (factory default) disables the differential component of the PID loop. Guidelines for Adjusting the PID Gains 1. Adjust the proportional gain. During this step it may be desirable to disable the integral gain and differential gain by setting them to 0. After a step change in the PID Feedback: • If the response is too slow increase Parameter 234 (PID Prop Gain). • If the response is too quick and/or unstable (see Figure H.1), decrease Parameter 234 (PID Prop Gain). • Typically, Parameter 234 (PID Prop Gain) is set to some value below the point where the PID begins to go unstable. 2. Adjust the integral gain (leave the proportional gain set as in Step 1). After a step change in the PID Feedback: • If the response is too slow (see Figure H.2), or the PID Feedback does not become equal to the PID Reference, decrease Parameter 235 (PID Integ Time). • If there is a lot of oscillation in the PID Feedback before settling out (see Figure H.3), increase Parameter 235 (PID Integ Time). H-6 PID Setup 3. At this point, the differential gain may not be needed. However, if after determining the values for Parameter 234 (PID Prop Gain) and Parameter 235 (PID Integ Time): • Response is still slow after a step change, increase Parameter 236 (PID Diff Rate). • Response is still unstable, decrease Parameter 236 (PID Diff Rate). The following figures show some typical responses of the PID loop at different points during adjustment of the PID Gains. Figure H.1 Unstable PID Reference PID Feedback Time Figure H.2 Slow Response — Over-Damped PID Reference PID Feedback Time Figure H.3 Oscillation — Under-Damped PID Reference PID Feedback Time Figure H.4 Good Response — Critically Damped PID Reference PID Feedback Time Appendix I Step Logic, Basic Logic and Timer/Counter Functions Four Bulletin 284G ArmorStart® logic functions provide the capability to program simple logic functions without a separate controller. • Step Logic Function Steps through up to eight preset speeds based on programmed logic. Programmed logic can include conditions that need to be met from digital inputs programmed as Logic In1 and Logic In2 before stepping from one preset speed to the next. A timer is available for each of the eight steps and is used to program a time delay before stepping from one preset speed to the next. The status of a digital output can also be controlled based on the step being executed. • Basic Logic Function Up to two digital inputs can be programmed as Logic In1 and/or Logic In2. A digital output can be programmed to change state based on the condition of one or both inputs based on basic logic functions such as AND, OR, NOR. The basic logic functions can be used with or without step logic. • Timer Function A digital input can be programmed for Timer Start. A digital output can be programmed as a Timer Out with an output level programmed to the desired time. When the timer reaches the time programmed into the output level the output will change state. The timer can be reset via a digital input programmed as Reset Timer. • Counter Function A digital input can be programmed for Counter In. A digital output can be programmed as Counter Out with an output level programmed to the desired number of counts. When the counter reaches the count programmed into the output level the output will change state. The counter can be reset via a digital input programmed as Reset Counter. 1 I-2 Step Logic, Basic Logic and Timer/Counter Functions Step Logic Using Timed Steps To activate this function, set Parameter 138 (Speed Reference) to 6 Stp Logic. Three parameters are used to configure the logic, speed reference, and time for each step. • Logic is defined using Parameters 240…247 (Stp Logic x). • Preset Speeds are set with Parameters 170…177 (Preset Freq x). • Time of operation for each step is set with Parameters 250…257 (Stp Logic Time x). The direction of motor rotation can be forward or reverse. Figure I.1 Using Timed Steps Step 0 Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7 Forward 0 Reverse Time Step Logic Sequence • Sequence begins with a valid start command. • A normal sequence begins with Step 0 and transitions to the next step when the corresponding step logic time has expired. • Step 7 is followed by Step 0. • Sequence repeats until a stop is issued or a fault condition occurs. Step Logic, Basic Logic and Timer/Counter Functions Step Logic Using Basic Logic Functions I-3 Digital input and digital output parameters can be configured to use logic to transition to the next step. Logic In1 and Logic In2 are defined by programming Parameters 151…154 …Digital Inx Sel… to Option 23 Logic In1 or Option 24 Logic In2. Example • Run at Step 0. • Transition to Step 1 when Logic In1 is true. Logic senses the edge of Logic In1 when it transitions from Off to On. Logic In1 is not required to remain On. • Transition to Step 2 when both Logic In1 and Logic In2 are true. The drive senses the level of both Logic In1 and Logic In2 and transitions to Step 2 when both are On. • Transition to Step 3 when Logic In2 returns to a false or Off state. Inputs are not required to remain in the On condition except under the logic conditions used for the transition from Step 2 to Step 3. Figure I.2 Start Step 0 Step 1 Step 2 Step 3 Frequency Logic In1 Logic In2 Time The step time value and the basic logic may be used together to satisfy machine conditions. For instance, the step may need to run for a minimum time period and then use the basic logic to trigger a transition to the next step. Figure I.3 Start Step 0 Frequency Logic In1 Logic In2 Time Step 1 I-4 Step Logic, Basic Logic and Timer/Counter Functions Timer Function Digital inputs and outputs control the timer function and are configured with Parameters 151…154 (Digital Inx Sel) set to 18 Timer Start and 20 Reset Timer. Digital outputs (relay and opto type) define a preset level and indicate when the level is reached. Level Parameters 156 (Relay Out Level), 159 (Opto Out1 Level), and 162 (Opto Out2 Level) are used to set the desired time in seconds. Parameters 155 (Relay Out Sel), 158 (Opto Out1 Sel), and 161 (Opto Out2 Sel) are set to option 16 Timer Out and cause the output to change state when the preset level is reached. Counter Function Digital inputs and outputs control the counter function and are configured with Parameters 151…154 (Digital Inx Sel) set to 19 Counter In and 21 Reset Counter. Digital outputs (relay and opto type) define a preset level and indicate when the level is reached. Level Parameters 156 (Relay Out Level), 159 (Opto Out1 Level), and 162 (Opto Out2 Level) are used to set the desired count value. Parameters 155 (Relay Out Sel), 158 (Opto Out1 Sel), and 161 (Opto Out2 Sel) are set to 17 Counter Out which causes the output to change state when the level is reached. Example • A photo eye is used to count packages on a conveyor line. • An accumulator holds the packages until five are collected. • A diverter arm redirects the group of five packages to a bundling area. • The diverter arm returns to its original position and triggers a limit switch that resets the counter. • Parameters are set to the following options: • 151 (Digital In1 Sel) set to 19 to select Counter In • 152 (Digital In2 Sel) set to 21 to select Reset Counter • 155 (Relay Out Sel) set to 17 to select Counter Out • 156 (Relay Out Level) set to 5.0 (counts) I-5 Step Logic, Basic Logic and Timer/Counter Functions Step Logic Parameters Digit 3 Digit 2 Digit 1 Digit 0 0 0 F 1 Setting Accel/Decel Parameters Used Step Logic Output State Commanded Direction 0 1 Off FWD 1 1 Off REV 2 1 Off No Output 3 1 On FWD 4 1 On REV 5 1 On No Output 6 2 Off FWD 7 2 Off REV 8 2 Off No Output 9 2 On FWD A 2 On REV b 2 On No Output Setting Setting Logic 0 Jump to Step 0 1 Jump to Step 1 2 Jump to Step 2 3 Jump to Step 3 4 Jump to Step 4 5 Jump to Step 5 6 Jump to Step 6 7 Jump to Step 7 8 End Program (Normal Stop) 9 End Program (Coast to Stop) A End Program and Fault (F2) Description Logic 0 Skip Step (jump immediately). SKIP 1 Step based on the time programmed in the respective (Stp Logic Time x) parameter. TIMED 2 Step if Logic In1 is active (logically true). TRUE 3 Step if Logic In2 is active (logically true). TRUE 4 Step if Logic In1 is not active (logically false). FALSE 5 Step if Logic In2 is not active (logically false). FALSE 6 Step if either Logic In1 or Logic In2 is active (logically true). OR 7 Step if both Logic In1 and Logic In2 is active (logically true). AND 8 Step if neither Logic In1 or Logic In2 is active (logically true). NOR I-6 Step Logic, Basic Logic and Timer/Counter Functions Setting Description Logic 9 Step if Logic In1 is active (logically true) and Logic In2 is not active (logically false). A Step if Logic In2 is active (logically true) and Logic In1 is not active (logically false). XOR b Step after (Stp Logic Time x) and Logic In1 is active (logically true). TIMED AND C Step after (Stp Logic Time x) and Logic In2 is active (logically true). TIMED AND d Step after (Stp Logic Time x) and Logic In1 is not active (logically false). TIMED OR E Step after (Stp Logic Time x) and Logic In2 is not active (logically false). TIMED OR F Do not step OR no jump to, so use Digit 0 logic. IGNORE Setting XOR Description Logic 0 Skip Step (jump immediately). SKIP 1 Step based on the time programmed in the respective (Stp Logic Time x) parameter. TIMED 2 Step if Logic In1 is active (logically true). TRUE 3 Step if Logic In2 is active (logically true). TRUE 4 Step if Logic In1 is not active (logically false). FALSE 5 Step if Logic In2 is not active (logically false). FALSE 6 Step if either Logic In1 or Logic In2 is active (logically true). OR 7 Step if both Logic In1 and Logic In2 is active (logically true). AND 8 Step if neither Logic In1 or Logic In2 is active (logically true). NOR 9 Step if Logic In1 is active (logically true) and Logic In2 is not active (logically false). XOR A Step if Logic In2 is active (logically true) and Logic In1 is not active (logically false). XOR b Step after (Stp Logic Time x) and Logic In1 is active (logically true). TIMED AND C Step after (Stp Logic Time x) and Logic In2 is active (logically true). TIMED AND d Step after (Stp Logic Time x) and Logic In1 is not active (logically false). TIMED OR E Step after (Stp Logic Time x) and Logic In2 is not active (logically false). TIMED OR F Use logic programmed in Digit 1. IGNORE Step Logic, Basic Logic and Timer/Counter Functions Notes: I-7 I-8 Notes: Step Logic, Basic Logic and Timer/Counter Functions . Publication 280G-UM001D-EN-P - January 2015 Supercedes Publication 280G-UM001C-EN-P — February 2010 Copyright ©2015 Rockwell Automation, Inc. All Rights Reserved. Printed in USA.
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
advertisement