ArmorStart Distributed Motor Controller User Manual

ArmorStart Distributed Motor Controller User Manual
ArmorStart® Distributed Motor
Controller
USER MANUAL
Bulletin 280G/281G, 284G
3
Important User Information
Because of the variety of uses for the products described in this publication,
those responsible for the application and use of this control equipment must
satisfy themselves that all necessary steps have been taken to assure that
each application and use meets all performance and safety requirements,
including any applicable laws, regulations, codes and standards.
The illustrations, charts, sample programs and layout examples shown in
this guide are intended solely for purposes of example. Since there are many
variables and requirements associated with any particular installation,
Rockwell Automation does not assume responsibility or liability (to include
intellectual property liability) for actual use based upon the examples shown
in this publication.
Rockwell Automation publication SGI-1.1, Safety Guidelines for the
Application, Installation and Maintenance of Solid-State Control (available
from your local Allen-Bradley sales office), describes some important
differences between solid-state equipment and electromechanical devices
that should be taken into consideration when applying products such as
those described in this publication.
Reproduction of the contents of this copyrighted publication, in whole or
part, without written permission of Rockwell Automation, is prohibited.
Throughout this manual we use notes to make you aware of safety
considerations:
ATTENTION
!
Identifies information about practices or circumstances
that can lead to personal injury or death, property damage
or economic loss
Attention statements help you to:
• identify a hazard
• avoid a hazard
• recognize the consequences
IMPORTANT
Identifies information that is critical for successful
application and understanding of the product.
Trademark List
ArmorStart and ControlLogix are registered trademarks of Rockwell Automation, Inc.
ArmorConnect, DeviceLogix, PLC, RSNetWorx, RSLogix 5000, and SLC are trademarks of Rockwell Automation,
Inc. DeviceNet and the DeviceNet logo are trademarks of the Open Device Vendors Association (ODVA). ControlNet
is a trademark of ControlNet International, LTD.
4
European Communities (EC)
Directive Compliance
If this product has the CE mark it is approved for installation within the
European Union and EEA regions. It has been designed and tested to meet
the following directives.
Low Voltage and EMC Directives
This product is tested to meet Council Directive 73/23/EEC Low Voltage
and 89/336/EEC and Council Directive 89/336/EC Electromagnetic
Compatibility (EMC) by applying the following standard(s):
• Bulletin 280/281: EN 60947-4-1 — Low-voltage switchgear and
controlgear — Part 4-1:Contactors and motor-starters —
Electromechanical contactors and motor-starters.
• Bulletin 283: EN 60947-4-2 — Low-voltage switchgear and
controlgear — Part 4-2: AC semiconductor motor controllers and
starters.
• Bulletin 284: EN 61800-3 — Adjustable speed electronic power drive
systems — Part 3: EMC product standard including specific test
methods.
This product is intended for use in an industrial environment.
Table of Contents
Table of Contents
Chapter 1
Product Overview
Introduction ....................................................................................1-1
Description .....................................................................................1-1
Safety ArmorStart............................................................................1-1
Operation .......................................................................................1-2
Mode of Operation ..........................................................................1-2
Bulletin 280G/281G — Full-Voltage Start ................................1-2
Bulletin 284G — Sensorless Vector Control..............................1-2
Description of Features ..................................................................1-3
Overload Protection .................................................................1-3
LED Status Indication ..............................................................1-5
Fault Diagnostics .....................................................................1-5
Inputs ......................................................................................1-6
Gland Plate Entrance ...............................................................1-6
ArmorStart with DeviceNet Network Capabilities ......................1-6
DeviceLogix™ ........................................................................1-6
Peer to Peer Communications (ZIP) ..........................................1-6
EMI Filter..................................................................................1-6
Dynamic Brake Resistor ...........................................................1-7
Control Brake Contactor ..........................................................1-7
Chapter 2
Installation and Wiring
Receiving .......................................................................................2-1
Unpacking ......................................................................................2-1
Inspecting ......................................................................................2-1
Storing ...........................................................................................2-1
General Precautions .......................................................................2-2
Precautions for Bulletin 280G/281G Applications .............................2-2
Precautions for Bulletin 284G Applications ......................................2-2
Dimensions ....................................................................................2-4
Bulletin 280G/281G ..................................................................2-4
Bulletin 284G ...........................................................................2-6
Bulletin 1000............................................................................2-8
Wiring ..........................................................................................2-13
Power, Control, Safety Monitor Inputs, and
Ground Wiring ......................................................................2-13
Terminal Designations ..................................................................2-14
Dimensions for Safety Products.....................................................2-15
Bulletin 280G Safety Product ..................................................2-15
Bulletin 281G Safety Product ..................................................2-16
Bulletin 284G Safety Product ..................................................2-17
Bulletin 1000 Safety Product ..................................................2-19
Safety Terminal Designations .......................................................2-26
ArmorConnect Power Media .........................................................2-29
Description ............................................................................2-29
ArmorStart with ArmorConnect Connectivity ..........................2-30
Terminal Designations............................................................2-30
ArmorStart Safety with ArmorConnect Connectivity ...............2-31
Terminal Designations............................................................2-31
ArmorConnect Cable Ratings .................................................2-31
Branch Circuit Protection Requirements for
ArmorConnect Three-Phase Power Media .............................2-32
Group Motor Installations for USA and Canada Markets ................2-32
i
ii
Table of Contents
Wiring and Workmanship Guidelines ............................................2-32
DeviceNet Network Installation .....................................................2-33
Other DeviceNet System Design Considerations ....................2-34
Electromagnetic Compatibility (EMC) ............................................2-35
General Notes (Bulletin 284G only) ........................................2-35
Grounding .............................................................................2-35
Wiring ...................................................................................2-35
Chapter 3
Bulletin 280G/281G
Programmable Parameters
Chapter 4
Bulletin 284G Programmable Parameters
for Sensorless Vector Controllers
Chapter 5
DeviceNet™ Commissioning
Introduction ....................................................................................3-1
Parameter Programming .........................................................3-1
Parameter Group Listing .................................................................3-2
DeviceLogix™ Group .....................................................................3-2
DeviceNet Group ............................................................................3-7
Starter Protection Group ...............................................................3-10
User I/O ........................................................................................3-14
Misc. Group .................................................................................3-14
ZIP Parameters ............................................................................3-16
Starter Display .............................................................................3-23
Starter Setup ................................................................................3-24
Introduction ....................................................................................4-1
Parameter Programming .........................................................4-1
Parameter Group Listing .................................................................4-2
DeviceLogix™ Group .....................................................................4-3
DeviceNet Group ............................................................................4-8
Starter Protection Group ...............................................................4-12
User I/O ........................................................................................4-15
Miscellaneous Group ....................................................................4-16
Drive DeviceNet Group ..................................................................4-18
Display Group................................................................................4-20
Basic Program Group ....................................................................4-25
Advanced Program Group..............................................................4-28
Clear Type 1 Fault and Restart ......................................................4-42
Clear an Overvoltage, Undervoltage, or Heatsink OvrTmp Fault
without Restarting the Drive ..........................................................4-42
How Step Logic Works .................................................................4-55
Step Logic Settings .......................................................................4-55
Establishing a DeviceNet Node Address ..........................................5-1
Node Commissioning using Hardware ............................................5-1
Node Commissioning using Software .............................................5-2
Building and Registering an EDS File ..............................................5-3
Table of Contents
iii
Using the Node Commissioning Tool Inside RSNetWorx
for DeviceNet ................................................................................. 5-5
System Configuration ................................................................... 5-6
Using Automap feature with default Input and Output (I/O)
Assemblies (Bulletin 280G/281G).................................................... 5-7
Default Input and Output (I/O) Assembly Formats
(Bulletin 280G/281G) ...................................................................... 5-7
Setting the Motor FLA and Overload Trip Class
(Bulletin 280G/281G) ...................................................................... 5-8
Using Automap feature with default Input and Output (I/O)
Assemblies (Bulletin 284G) ............................................................. 5-9
Default Input and Output (I/O) Assembly Formats (Bulletin 284G) .... 5-9
Setting the Motor FLA (Bulletin 284G) ........................................... 5-10
193-DCNT Product Overview ........................................................ 5-11
User Manual .......................................................................... 5-11
Bill of Material ....................................................................... 5-11
Accessories ........................................................................... 5-11
Tools Menu............................................................................ 5-12
Node Comissioning................................................................ 5-12
Chapter 6
Explicit Messaging on DeviceNet™
Logic Controller Application Example with Explicit
Messaging ..................................................................................... 6-1
Programming the 1747-SLC .......................................................... 6-2
I/O Mapping ............................................................................ 6-2
Explicit Messaging with SLC .......................................................... 6-3
Setting up the Data File ................................................................. 6-4
Sequence of Events ....................................................................... 6-5
Programming the 1756-ControlLogix ............................................. 6-8
I/O Mapping ............................................................................ 6-8
Explicit Messaging with ControlLogix ............................................. 6-9
Setting Up the MSG Instruction ...................................................... 6-9
Chapter 7
Using DeviceLogix™
DeviceLogix Programming ............................................................. 7-1
DeviceLogix Programming Example ............................................... 7-2
ArmorStart Fault Bit, Status Bit, Outputs and Produced Network Bits in
the DeviceLogix Ladder Editor ....................................................... 7-5
Chapter 8
ArmorStart® ZIP Configuration
Overview ....................................................................................... 8-1
ZIP Parameter Overview ................................................................ 8-1
Data Production ............................................................................. 8-3
Data Consumption ......................................................................... 8-3
Mapping Consumed Data to the DeviceLogix Data Table. ............... 8-3
Finding ZIP bits in Device Logix Editor........................................... 8-12
iv
Table of Contents
Chapter 9
Diagnostics
Overview ........................................................................................9-1
Protection Programming ..........................................................9-1
Fault Display ..................................................................................9-1
Clear Fault .....................................................................................9-2
Fault Codes ....................................................................................9-2
Fault Definitions .............................................................................9-3
Short Circuit ............................................................................9-3
Overload Trip ...........................................................................9-3
Phase Loss ..............................................................................9-3
Phase Short..............................................................................9-3
Ground Fault ............................................................................9-3
Stall .........................................................................................9-3
Control Power ..........................................................................9-3
I/O Fault ..................................................................................9-3
Over Temperature ...................................................................9-3
Phase Imbalance .....................................................................9-3
Over Current.............................................................................9-4
DeviceNet™ Power Loss .........................................................9-4
Internal Communication Fault...................................................9-4
DC Bus Fault ............................................................................9-4
EEPROM Fault .........................................................................9-4
Hardware Fault ........................................................................9-4
Restart Retries .........................................................................9-4
Miscellaneous Faults ................................................................9-4
Chapter 10
Troubleshooting
Introduction ..................................................................................10-1
Bulletin 280G/281G Troubleshooting .............................................10-2
Bulletin 284G Troubleshooting.......................................................10-5
Fault Definitions .....................................................................10-5
Operation and Troubleshooting of the DB1- Dynamic Brake....10-7
Internal Drive Faults .............................................................10-10
DeviceNet Troubleshooting Procedures ......................................10-14
Control Module Replacement (Bulletin 280G/281G) .....................10-15
Control Module Replacement (Bulletin 284G)...............................10-16
Base Module Replacement (Bulletin 280G/281G).........................10-17
Base Module Replacement (Bulletin 284G) ..................................10-19
Appendix A
Specifications
Bulletin 280G/281G Specifications ..................................................A-1
Bulletin 284G Specifications............................................................A-6
ArmorConnect™ Three-Phase Power Media ................................A-11
Patchcords ............................................................................A-11
Power Tees & Reducer ..........................................................A-12
Power Receptacles ................................................................A-13
Appendix B
Bulletin 280G/281G CIP Information
Electronic Data Sheets ...................................................................B-1
DOL Type Product Codes and Name Strings ...................................B-1
DOL Reversing Type Product Codes and Name String .....................B-2
DeviceNet Objects ..........................................................................B-2
Table of Contents
Identity Object — CLASS CODE 0x0001 .........................................B-3
Identity Objects ..............................................................................B-3
Message Router — CLASS CODE 0x0002 ......................................B-3
DeviceNet Object — CLASS CODE 0x0003 .....................................B-4
Assembly Object — CLASS CODE 0x0004 .....................................B-5
Custom Parameter Based
“Word-wise” I/O Assemblies ..........................................................B-5
“Word-wise” Bit-Packed Assemblies ..............................................B-6
Standard Distributed Motor Controller I/O Assemblies .....................B-7
Standard Distributed Motor Controller Output
(Consumed) Assemblies ..........................................................B-7
Standard Distributed Motor Controller Input
(Produced) Assemblies ............................................................B-8
Connection Object — CLASS CODE 0x0005 .................................B-10
Discrete Input Point Object — CLASS CODE 0x0008 ...................B-14
Discrete Output Point Object — CLASS CODE 0x0009 ..................B-15
Discrete Output Point Object Special Requirements ......................B-16
DOP Instances 1 and 2 Special Behavior ...............................B-16
Parameter Object — CLASS CODE 0x000F ..................................B-18
Parameter Group Object — CLASS CODE 0x0010 ........................B-19
Discrete Input Group Object — CLASS CODE 0x001D ..................B-20
Discrete Output Group Object — CLASS CODE 0x001E ................B-21
Control Supervisor Object -CLASS CODE 0x0029 ..........................B-22
Acknowledge Handler Object — CLASS CODE 0x002b .................B-23
Overload Object — CLASS CODE 0x002c .....................................B-24
DeviceNet Interface Object -CLASS CODE 0x00B4 ........................B-25
Appendix C
Bulletin 284G CIP Information
Electronic Data Sheets ...................................................................C-1
VFD Type Product Codes and Name Strings ....................................C-1
DeviceNet Objects ..........................................................................C-2
Identity Object — CLASS CODE 0x0001 .........................................C-2
Identity Objects ..............................................................................C-3
Message Router — CLASS CODE 0x0002 ......................................C-3
DeviceNet Object — CLASS CODE 0x0003 .....................................C-4
Assembly Object — CLASS CODE 0x0004 .....................................C-5
Custom Parameter Based
“Word-wise” I/O Assemblies ..........................................................C-6
“Word-wise” Bit-Packed Assemblies ..............................................C-6
Standard Distributed Motor Controller I/O Assemblies .....................C-8
Standard Distributed Motor Controller Output
(Consumed) Assemblies ..........................................................C-8
Standard Distributed Motor Controller Input
(Produced) Assemblies ............................................................C-9
Inverter Type Distributed Motor Controller Input
(Produced) Assemblies ...........................................................C-10
PowerFlex Native Assemblies .................................................C-11
Connection Object — CLASS CODE 0x0005 .................................C-13
Discrete Input Point Object — CLASS CODE 0x0008 ...................C-18
Discrete Output Point Object — CLASS CODE 0x0009 ..................C-19
v
vi
Table of Contents
Discrete Output Point Object Special Requirements ......................C-20
DOP Instances 3 and 4 Special Behavior ...............................C-20
DOP Instances 1, 2, 9, and 10 Special Behavior ....................C-22
Parameter Object — CLASS CODE 0x000F ..................................C-24
Parameter Group Object — CLASS CODE 0x0010 ........................C-25
Discrete Input Group Object — CLASS CODE 0x001D ..................C-26
Discrete Output Group Object — CLASS CODE 0x001E ................C-27
Control Supervisor Object -CLASS CODE 0x0029 ..........................C-28
Acknowledge Handler Object — CLASS CODE 0x002b .................C-29
DeviceNet Interface Object -CLASS CODE 0x00B4 ........................C-30
Appendix D
Group Motor Installations
Application of ArmorStart® Controllers in Group Installation ...........D-1
Appendix E
Accessories
IP67 Dynamic Brake Resistor ..........................................................E-3
Appendix F
Safety I/O Module and TÜV
Requirements
ArmorStart Safety-Related Parts...................................................... F-1
ArmorBlock Guard I/O Modules ....................................................... F-2
Specifications .......................................................................... F-2
ArmorBlock Guard I/O Recommended Compatible
Cables and Connectors.................................................................... F-3
Safety-Related Specifications.......................................................... F-6
Maintenance and Internal Part Replacement.................................... F-6
Troubleshooting .............................................................................. F-7
Appendix G
Renewal Parts
Renewal Parts.................................................................................G-1
Appendix H
PID Setup
Exclusive Control.............................................................................H-1
Trim Control ....................................................................................H-2
PID Reference and Feedback...........................................................H-3
PID Deadband .................................................................................H-3
PID Preload .....................................................................................H-4
PID Limits .......................................................................................H-4
PID Gains ........................................................................................H-4
Guidelines For Adjusting PID Gains ..................................................H-5
Appendix I
Step Logic, Basic Logic and Timer/
Counter Functions
Step Logic Using Timed Steps .......................................................... I-2
Step Logic Using Basic Logic Functions............................................ I-3
Timer Function................................................................................. I-4
Counter Function.............................................................................. I-4
Step Logic Parameters ..................................................................... I-5
Chapter
1
Product Overview
Introduction
This chapter provides a brief overview of the features and
functionality of the Bulletin 280G/281G and 284G ArmorStart®
Distributed Motor Controllers.
Description
The ArmorStart Distributed Motor Controllers are integrated, preengineered, starters with Bulletin 280G/281G for full-voltage and
reversing applications and Bulletin 284G for variable frequency AC
drives applications. The ArmorStart offers a robust IP67/NEMA Type
4 enclosure design, which is suitable for water wash down
environments.
The modular “plug and play” design offers simplicity in wiring the
installation. The quick disconnects for the I/O, communications, and
motor connections reduce the wiring time and eliminate wiring errors.
The ArmorStart offers as standard, six DC inputs to be used with
sensors for monitoring and controlling the application process. The
ArmorStart’s LED status indication and built-in diagnostics
capabilities allow ease of maintenance and troubleshooting.
The ArmorStart Distributed Motor Controller offers short circuit
protection per UL508 and IEC 60947. The ArmorStart is rated for
local-disconnect service by incorporating the Bulletin 140 Motor
Protector as the local-disconnect, eliminating the need for additional
components. The ArmorStart Distributed Motor Controllers are
suitable for group motor installations.
Safety ArmorStart
The safety version of the ArmorStart provides a safety solution
integrated into DeviceNet Safety installations. The Bulletin 280/281/
284 Safety ArmorStart achieves Category 4 functionality by using
redundant contactors. The Safety ArmorStart offers a quick connects
via the gland plate to the 1732DS-IB8XOBV4 safety I/O module. The
Bulletin 1732DS Safety I/O inputs will monitor the status of the
safety rated contactors inside the ArmorStart. The Bulletin 1732DS
Safety I/O outputs to provide 24V DC power for control power to the
ArmorStart.
Note: The Bulletin 280/281/284 Safety ArmorStart is suitable for
safety applications up to Safety Category 4PL e (TÜV
assessment per ISO 13849-1:2008). TÜV compliance letter is
available upon request.
Note: For additional information regarding the
1732DS-IB8XOBV4 safety I/O module, see publication
1791DS-UM001*-EN-P.
1-2
Product Overview
Operation
The ArmorStart Distributed Motor Controllers can operate threephase squirrel-cage induction motors as follows:
Bulletin 280G/281G: up to 10 Hp (7.5 kW) @ 460V AC, 50/60 Hz.
Bulletin 284G: up to 5 Hp (3.0 kW) @ 460V AC.
Bulletin 1000: 7.5 Hp (5.5 kW), 10 Hp (7.5 kW) and 15 Hp (11 kW)
@ 460V AC, 50/60 Hz.
The ArmorStart Distributed Motor Controller will accept a control
power input of 120V AC.
Mode of Operation
Bulletin 280G/281G
Full-Voltage Start
This method is used in applications requiring across-the-line starting,
in which full inrush current and locked-rotor torque are realized. The
ArmorStart Bulletin 280G offers full-voltage starting and the Bulletin
281G offers full-voltage starting for reversing applications.
100%
Percent
Voltage
Time (seconds)
Bulletin 284G
Sensorless Vector Control
•
Sensorless Vector Control provides exceptional speed regulation
and very high levels of torque across the entire speed range of the
drive
•
The Autotune feature allows the Bulletin 284G ArmorStart
Distributed Motor Controller to adapt to individual motor
characteristics.
•
To select this method of operation, select V for the Mode of
Operation listed in the catalog structure. See
Publication 280-SG001*.
1-3
Product Overview
Description of Features
Overload Protection
The ArmorStart Distributed Motor Controller incorporates, as
standard, electronic motor overload protection. This overload
protection is accomplished electronically with an I2t algorithm. The
ArmorStart’s overload protection is programmable via the
communication network, providing the user with flexibility.
The Bulletin 280G/281G overload trip class can be selected for class
10, 15, 20 protection. Ambient insensitivity is inherent in the
electronic design of the overload.
Figure 1.1 Overload Trip Curves
ClassClass
10 Overload
Curves
10
Class 15
Overload
Class
15 Curves
10000
Cold
100
Hot
10
Approximate Trip Time (sec)
1000
1
Cold
100
Hot
1
0
100
200
300
400
500
600
700
0
% of Full Load Current
Multiples
100
200
300
400
500
600
700
Multiples%for
of Full Load Current
Class 20 Overload Curves
Class 20
10000
Approximate Trip Time (sec)
Approximate Trip Time (sec)
10000
Cold
100
Hot
1
0
100
200
300
400
500
600
% of Full Load Current
Multiples
700
Product Overview
The Bulletin 284G ArmorStart Distributed Motor Controller
incorporates, as standard, electronic motor overload protection. This
overload protection is accomplished electronically with an I2t
algorithm. The ArmorStart’s overload protection is programmable via
the communication network providing the user with flexibility.
Programming the Motor OL Current parameter provides class 10
overload protection for the Bulletin 284G Distributed Motor
Controller. Ambient insensitivity is inherent in the electronic design
of the overload.
% of P132 (Motor NP Hertz)
% of P133 (Motor OL Current)
% of P132 (Motor NP Hertz)
% of P133 (Motor OL Current)
Figure 1.2 Overload Trip Curves
% of P133 (Motor OL Current)
1-4
% of P132 (Motor NP Hertz)
1-5
Product Overview
LED Status Indication
The LED Status Indication provides 4 status LEDs and a Reset
button. The LEDs provide status indication for the following:
•
POWER LED
The LED is illuminated solid green when control power is present
and with the proper polarity
•
RUN LED
This LED is illuminated solid green when a start command and
control power are present
•
NETWORK LED
This bi-color (red/green) LED indicates the status of the
communication link
•
FAULT LED
Indicates Controller Fault (Trip) condition
The “Reset Button” acts as a local trip reset.
Figure 1.3 Status Indication and Reset
Fault Diagnostics
Fault diagnostics capabilities built in the ArmorStart Distributed
Motor Controller help you pinpoint a problem for easy
troubleshooting and quick re-starting.
Fault Indication
Available on Bulletin:
280G/281G
284G
Fault Indication
Available on Bulletin:
280G/281G
284G
•
Short Circuit
X
X
•
Phase Imbalance
X
•
Overload
X
X
•
Miscellaneous Fault
X
•
Phase Loss
X
X
•
Brake Fuse Detection
X
•
Control Power Loss
X
X
•
Internal Comm. Fault
X
•
Control Power Fuse Detection
X
X
•
DC Bus Fault
X
•
I/O Fault
X
X
•
Ground Fault
X
•
Over Temperature
X
X
•
Overcurrent
X
•
DeviceNet™ Power Loss
X
X
•
Restart Retries
X
•
EEprom Fault
X
X
•
Stall
X
•
Hardware Fault
X
X
•
Phase Short
X
1-6
Product Overview
Inputs
The inputs are single-keyed (2 inputs per connector), which are
sourced from DeviceNet power (24V DC), with LED status
indication.
Gland Plate Entrance
The ArmorStart product offers connectivity to the ArmorConnect™
power media. Receptacles are provided for connectivity to both threephase and control power media.
ArmorStart with DeviceNet Network Capabilities
The ArmorStart Distributed Motor Controller delivers advanced
capabilities to access parameter settings and provides fault
diagnostics, and remote start-stop control. DeviceNet is the
communication protocol, provided with the ArmorStart Bulletin
280G/281G or 284G Distributed Motor Controller.
DeviceLogix™
DeviceLogix is a stand-alone Boolean program that resides within the
ArmorStart Distributed Motor Controller. DeviceLogix is
programmed using Boolean math operations, such as, AND, OR,
NOT, Timers, Counters, and Latches. DeviceLogix can run as a standalone application, independent of the network. However, 24V DC
must be supplied at the DeviceNet connector to power the inputs.
Peer to Peer Communications (ZIP)
The zone control capabilities of ArmorStart Distributed Motor
Controllers is ideal for large horsepower (0.5…15 Hp) motored
conveyors. The ArmorStart Distributed Motor Controllers have builtin DeviceNet communications, DeviceLogix technology, and the
added Zone Interlocking Parameters (ZIP) which allow one
ArmorStart to receive data directly, from up to four other DeviceNet
nodes, without going through a network scanner. These direct
communications between conveyor zones are beneficial in a merge,
diverter, or accumulation conveyor application.
EMI Filter (Bulletin 284G only)
The EMI Filter is required if the Bulletin 284G ArmorStart
Distributed Motor Controller must be CE-compliant. A shielded
4-conductor patchcord or cordset no longer than 14 meters, must be
used to comply with the CE requirement.
Product Overview
1-7
Dynamic Brake Resistor (Bulletin 284G only)
The IP67 Dynamic Brake Resistor plug and play design offers
simplicity in writing and installation. The factory installed option of
DB1 must be selected in order to have the quick disconnect
connectivity. The cable length of the IP67 Dynamic Brake Resistor is
available in two lengths, 0.5 meter and 1 meter. See Appendix G,
Accessories, for available IP67 Dynamic Brake Resistors.
Note: The IP67 Dynamic Brake Resistor is used only with the -DB1
factory-installed option.
Control Brake Contactor
An internal contactor is used to switch the electromechanical motor
brake On/Off. The motor brake is powered from the control voltage
circuit.
1-8
Notes:
Product Overview
Chapter
2
Installation and Wiring
Receiving
It is the responsibility of the user to thoroughly inspect the equipment
before accepting the shipment from the freight company. Check the
item(s) received against the purchase order. If any items are damaged,
it is the responsibility of the user not to accept delivery until the
freight agent has noted the damage on the freight bill. Should any
concealed damage be found during unpacking, it is again the
responsibility of the user to notify the freight agent. The shipping
container must be left intact and the freight agent should be requested
to make a visual inspection of the equipment.
Unpacking
Remove all packing material, wedges, or braces from within and
around the starter. Remove all packing material from device(s).
Inspecting
After unpacking, check the nameplate catalog number(s) against the
purchase order.
Storing
The controller should remain in its shipping container prior to
installation. If the equipment is not to be used for a period of time, it
must be stored according to the following instructions in order to
maintain warranty coverage.
•
Store in a clean, dry location.
•
Store within an ambient temperature range of –25…+85 °C
(–13…+185 °F).
•
Store within a relative humidity range of 0…95%,
noncondensing.
•
Do not store equipment where it could be exposed to a corrosive
atmosphere.
•
Do not store equipment in a construction area.
2-2
Installation and Wiring
General Precautions
In addition to the precautions listed throughout this manual, the
following statements, which are general to the system, must be read
and understood.
ATTENTION
!
ATTENTION
!
ATTENTION
!
The controller contains ESD (electrostatic
discharge)-sensitive parts and assemblies. Static
control precautions are required when installing,
testing, servicing, or repairing the assembly.
Component damage may result if ESD control
procedures are not followed. If you are not familiar
with static control procedures, refer to Publication
8000-4.5.2, Guarding against Electrostatic
Discharge, or any other applicable ESD protection
handbooks.
An incorrectly applied or installed controller can
damage components or reduce product life. Wiring
or application errors, such as undersizing the motor,
incorrect or inadequate AC supply, or excessive
ambient temperatures, may result in malfunction of
the system.
Only personnel familiar with the controller and
associated machinery should plan or implement the
installation, startup, and subsequent maintenance of
the system. Failure to do this may result in personal
injury and/or equipment damage.
Precautions for Bulletin 280G/281G
Applications
ATTENTION
!
ATTENTION
!
To prevent electrical shock, open disconnect prior
to connecting and disconnecting cables. Risk of
shock - environment rating may not be maintained
with open receptacles.
Only qualified personnel familiar with adjustable
frequency AC drives and associated machinery
should plan or implement the installation, startup,
and subsequent maintenance of the system. Failure
to do this may result in personal injury and/or
equipment damage.
Installation and Wiring
2-3
Precautions for Bulletin 284G
Applications
ATTENTION
!
ATTENTION
!
The drive contains high voltage capacitors which
take time to discharge after removal of mains
supply. Before working on drive, ensure isolation of
mains supply from line inputs (R, S, T [L1, L2, L3]).
Wait three minutes for capacitors to discharge to
safe voltage levels. Failure to do so may result in
personal injury or death. Darkened display LEDs
are not an indication that capacitors have discharged
to safe voltage levels. Risk of shock-environment
rating may not be maintained with open receptacles.
Only qualified personnel familiar with adjustable
frequency AC drives and associated machinery
should plan or implement the installation, startup,
and subsequent maintenance of the system. Failure
to do this may result in personal injury and/or
equipment damage.
2-4
Installation and Wiring
Dimensions for Bulletin 280G/281G
Dimensions are shown in millimeters (inches). Dimensions are not
intended to be used for manufacturing purposes. All dimensions are
subject to change.
Figure 2.1 Dimensions for IP67/NEMA Type 4 with ArmorConnect
Connectivity
Installation and Wiring
2-5
Figure 2.2 Bulletin 280G/281G ArmorStart® with DeviceNet™
Communication Protocol
Local Disconnect
LED Status
Indication
6 Inputs
(Micro/M12)
DeviceNet
Connection
(Mini/M18)
Control Power
Receptacle
Ground Terminal
3-Phase Power
Receptacle
Motor
Connection
Control Brake
2-6
Installation and Wiring
Dimensions for Bulletin 284G
Dimensions are shown in millimeters (inches). Dimensions are not
intended to be used for manufacturing purposes. All dimensions are
subject to change.
Figure 2.3 Dimensions for 2 Hp (1.5 kW) and below @ 460V AC, IP67/NEMA
Type 4 with ArmorConnect connectivity
Installation and Wiring
Dimensions for Bulletin 284G,
Continued
2-7
Dimensions are shown in millimeters (inches). Dimensions are not
intended to be used for manufacturing purposes. All dimensions are
subject to change.
Figure 2.4 Dimensions for 3 Hp (2.2 kW) and above @ 460V AC, IP67/NEMA
Type 4 with ArmorConnect connectivity
2-8
Installation and Wiring
Dimensions for Bulletin 1000
Dimensions are shown in millimeters (inches). Dimensions are not
intended to be used for manufacturing purposes. All dimensions are
subject to change.
Figure 2.5 Dimensions for 7.5 Hp (5.5 kW) and 10 Hp (7.5 kW) @ 460V AC,
IP67/NEMA Type 4 with ArmorConnect Connectivity
Installation and Wiring
Dimensions for Bulletin 1000,
Continued
2-9
Dimensions are shown in millimeters (inches). Dimensions are not
intended to be used for manufacturing purposes. All dimensions are
subject to change.
Figure 2.6 Dimensions for 15 Hp (11 kW) @ 460V AC, IP67/NEMA Type 4 with
ArmorConnect Connectivity
2-10
Installation and Wiring
Figure 2.7 Bulletin 284G ArmorStart
Local Disconnect
LED Status
Indication
6 Inputs
(Micro/M12)
Control Brake
Connector
DeviceNet
Connection
(Mini/M18)
Control Power
Receptacle
Ground
Terminal
3-Phase
Receptacle
Dynamic
Brake Connector
Motor
Connector
Installation and Wiring
Figure 2.8 Bulletin 1000 ArmorStart
2-11
2-12
Installation and Wiring
Figure 2.9 Bulletin 1000 ArmorStart
Installation and Wiring
Wiring
2-13
Power, Control, and Ground Wiring
Table 2.1 provides the power, control, safety inputs, and ground wire
capacities, and the tightening torque requirements. The power,
control, ground, and safety monitor terminals will accept a maximum
of two wires per terminal.
Table 2.1
Power, Control, Safety Input, Ground Wire Size, and Torque
Specifications
Terminals
Wire Size
Torque
Wire Strip Length
Power
and
Ground
Primary/Secondary
Terminal:
1.5…4.0 mm2
(#16 …#10 AWG)
Primary Terminal:
10.8 lb.-in.
(1.2 N•m)
Secondary Terminal:
4.5 lb.-in
(0.5 N•m)
0.35 in. (9 mm)
Control and Safety
Inputs
1.0 mm2…4.0 mm2
(#18…#10 AWG)
6.2 lb.-in
(0.7 N•m)
0.35 in. (9 mm)
2-14
Installation and Wiring
Terminal Designations for Bulletins
280G, 281G, and 284G
As shown in the next figure, the ArmorStart Distributed Motor Controller
contains terminals for power, control, and ground wiring. Access can be
gained by removing the terminal access cover plate.
Figure 2.10 ArmorStart Power, Control and Terminals
Table 2.2
Power, Control, and Ground Terminal Designations
Terminal Designations
No. of Poles
Description
A1 (+)
2
Control Power Input
A2 (-)
2
Control Power Common
PE
2
Ground
1/L1
2
Line Power Phase A
3/L3
2
Line Power Phase B
5/L5
2
Line Power Phase C
Installation and Wiring
Dimensions for Bulletin 280G
Safety Product
2-15
Dimensions are shown in millimeters (inches). Dimensions are not
intended to be used for manufacturing purposes. All dimensions are
subject to change.
Figure 2.11 Dimensions for Bulletin 280G Safety Product
2-16
Installation and Wiring
Dimensions for Bulletin 281G
Safety Product
Dimensions are shown in millimeters (inches). Dimensions are not
intended to be used for manufacturing purposes. All dimensions are
subject to change.
Figure 2.12 Dimensions for Bulletin 281G Safety Product
Installation and Wiring
Dimensions for Bulletin 284G
Safety Product
2-17
Dimensions are shown in millimeters (inches). Dimensions are not
intended to be used for manufacturing purposes. All dimensions are
subject to change.
Figure 2.13 Dimensions for 2 Hp (1.5 kW) and below @ 460V AC, IP67/NEMA
Type 4 with ArmorConnect connectivity
2-18
Installation and Wiring
Dimensions for Bulletin 284G
Safety Product, Continued
Dimensions are shown in millimeters (inches). Dimensions are not
intended to be used for manufacturing purposes. All dimensions are
subject to change.
Figure 2.14 Dimensions for 3 Hp (2.2 kW) and 5 Hp (3.0 kW) and below @
460V AC, IP67/NEMA Type 4 with ArmorConnect connectivity
Installation and Wiring
Dimensions for Bulletin 1000
Safety Product
2-19
Dimensions are shown in millimeters (inches). Dimensions are not
intended to be used for manufacturing purposes. All dimensions are
subject to change.
Figure 2.15 Dimensions for 7.5 Hp (5.5 kW) and 10 Hp (7.5 kW) @ 460V AC,
IP67/NEMA Type 4 with ArmorConnect Connectivity
2-20
Installation and Wiring
Dimensions for Bulletin 1000
Safety Product, Continued
Dimensions are shown in millimeters (inches). Dimensions are not
intended to be used for manufacturing purposes. All dimensions are
subject to change.
Figure 2.16 Dimensions for 15 Hp @ 460V AC, IP67/NEMA Type 4 with
ArmorConnect Connectivity
Installation and Wiring
2-21
Figure 2.17 Bulletin 280G Safety ArmorStart
Local Disconnect
LED Status
Indication
6 Inputs
(Micro/M12)
DeviceNet
Connection
(Mini/M18)
A1/A2
SM
Control Power
Receptacle
3-Phase Power
Receptacle
Motor
Connection
Control Brake
2-22
Installation and Wiring
Figure 2.18 Bulletin 281G Safety ArmorStart
Local Disconnect
LED Status
Indication
6 Inputs
(Micro/M12)
DeviceNet
Connection
(Mini/M18)
Control Brake
SM
A1/A2
Control Power
3-Phase Power
Receptacle
Motor
Connection
Installation and Wiring
2-23
Figure 2.19 Bulletin 284G Safety ArmorStart
Local Disconnect
LED Status
Indication
6 Inputs
(Micro/M12)
DeviceNet
Connection
(Mini/M18)
Control Brake
A1/A2
SM
Control Power
Motor
Connection
3-Phase Power
Receptacle
Dynamic Brake
2-24
Installation and Wiring
Figure 2.20 Bulletin 1000 Safety ArmorStart
Installation and Wiring
Figure 2.21 Bulletin 1000 ArmorStart
2-25
2-26
Installation and Wiring
Safety Terminal Designations
As shown in the next figure, the ArmorStart Distributed Motor Controller
contains terminals for power, safety I/O inputs, control, and ground wiring.
Access can be gained by removing the terminal access cover plate.
Figure 2.22 Bulletin 280G ArmorStart Safety Power, Control and Terminals
Table 2.3
Power, Control, Safety Monitor, and Ground Terminal Designations
Terminal Designations
No. of Poles
Description
SM1
2
Safety I/O Input
SM2
2
Safety I/O Input
A1 (+)
2
Control Power Input
A2 (-)
2
Control Power Common
PE
2
Ground
1/L1
2
Line Power Phase A
3/L3
2
Line Power Phase B
5/L5
2
Line Power Phase C
Installation and Wiring
Safety Terminal Designations,
Continued
2-27
As shown in the next figure, the ArmorStart Distributed Motor Controller
contains terminals for power, safety I/O inputs, control, and ground wiring.
Access can be gained by removing the terminal access cover plate.
Figure 2.23 Bulletin 281G ArmorStart Safety Power, Control and Terminals
Table 2.4
Power, Control, Safety Monitor, and Ground Terminal Designations
Terminal Designations
No. of Poles
Description
SM1
2
Safety I/O Input
SM2
2
Safety I/O Input
A1 (+)
2
Control Power Input
A2 (-)
2
Control Power Common
PE
2
Ground
1/L1
2
Line Power Phase A
3/L3
2
Line Power Phase B
5/L5
2
Line Power Phase C
2-28
Installation and Wiring
Safety Terminal Designations,
Continued
As shown in the next figure, the ArmorStart Distributed Motor Controller
contains terminals for power, safety I/O inputs, control, and ground wiring.
Access can be gained by removing the terminal access cover plate.
Figure 2.24 ArmorStart Safety 2 Hp Power, Control and Terminals
Table 2.5
Power, Control, Safety Monitor, and Ground Terminal Designations
Terminal Designations
No. of Poles
Description
SM1
2
Safety I/O Input
SM2
2
Safety I/O Input
A1 (+)
2
Control Power Input
A2 (-)
2
Control Power Common
PE
2
Ground
1/L1
2
Line Power Phase A
3/L3
2
Line Power Phase B
5/L5
2
Line Power Phase C
Installation and Wiring
ArmorConnect Power Media
2-29
Description
The ArmorConnect power media offers both three-phase and control
power cable system of cord sets, patch cords, receptacles, tees,
reducers and accessories to be utilized with the ArmorStart
Distributed Motor Controller. These cable system components allow
quick connection of ArmorStart Distributed Motor Controllers, there
by reducing installation time. They provide for repeatable, reliable
connection of the three-phase and control power to the ArmorStart
Distributed Motor Controller and motor by providing a plug-and-play
environment that also avoids system mis-wiring. When specifying
power media for use with the ArmorStart Distributed Motor
Controllers (Bulletin 280G/281G and 284G) use only the Bulletin
280 ArmorConnect power media.
Figure 2.25 Three-Phase Power System Overview
Enclosure
PLC
Bulletin 1492FB
Branch Circuit
Protective Device
Bulletin 1606
Power Supply
1606-XLSDNET4
DeviceNet
Power Supply
Bulletin 280/281
ArmorStart
Bulletin 280/281
ArmorStart
RESET
Bulletin 284
ArmorStart
RESET
➊ Three-Phase Power Trunk- PatchCord cable with integral female or male connector on each end
Example Part Number: 280-PWR35A-M*
➋ Three-Phase Drop Cable- PatchCord cable with integral female or male connector on each end
Example Part Number: 280-PWR35A-M*
➌ Three-Phase Power Tee and Reducer Tee connects to a single drop line to trunk with quick change connectors – Part Number: 280-T35
Reducing Tee connects to a single drop line (Mini) to trunk (Quick change) connector – Part Number: 280-RT35
➍ Three-Phase Power Receptacles Female receptacles are a panel mount connector with flying leads – Part Number: 280-M35F-M1
2-30
Installation and Wiring
Figure 2.26 Control Power Media System Overview
Enclosure
PLC
Bulletin 1492FB
Branch Circuit
Protective Device
Bulletin 1606
Power Supply
1606-XLSDNET4
DeviceNet
Power Supply
Bulletin 280/281
ArmorStart
Bulletin 280/281
ArmorStart
RESET
Bulletin 284
ArmorStart
RESET
➏ Control Power Media Patchcords - PatchCord cable with integral female or male connector on each end
Example Part Number: 889N-F3AFNU-*F
➐ Control Power Tees - The Control Power tee (Part Number: 898N-33PB-N4KF) is used with a patchcord to connect to the ArmorStart Distributed Motor
Controller.
➑ Control Power Receptacles - Female receptacles are a panel mount connector with flying leads –
Part Number: 888N-D3AF1-*F
2-31
Installation and Wiring
ArmorStart with ArmorConnect Connectivity
Ground
Terminal
Control Power
Receptacle
Three-Phase
Power
Receptacle
Terminal Designations
Terminal
Designations
Description
Color Code
A1 (+)
Control Power Input
Black
A2 (-)
Control Power Common White
PE
Ground
Green/Yellow
1/L1
Line Power - Phase A
Black
3/L2
Line Power - Phase B
White
5/L3
Line Power - Phase C
Red
ArmorConnect Cable Ratings
The ArmorConnect power media cables are rated per UL Type TC
600V 90 °C Dry 75 °C Wet, Exposed Run (ER) or MTW 600V 90 °C
or STOOW 105 °C 600V - CSA STOOW 600V FT2.
2-32
Installation and Wiring
ArmorStart Safety with ArmorConnect Connectivity
A1/A2 -24V DC
Control Power rm
1732DS Safety
I/O Module Outu
Safety Monitor
Input from
1732DS Safey
I/O Module Inpt
120V AC
Aux. Powr
for
Conto Brake
Ground
Terminal
Three-Phase
Power
Recepale
Terminal Designations
Terminal
Designations
Description
Color Code
SM1
Safety Monitor Input
Brown
SM2
Safety Monitor Input
White
A1 (+)
Control Power Input
Brown
A2 (-)
Control Power Common Blue
PE
Ground
Green/Yellow
1/L1
Line Power - Phase A
Black
3/L2
Line Power - Phase B
White
5/L3
Line Power - Phase C
Red
ArmorConnect Cable Ratings
The ArmorConnect power media cables are rated per UL Type TC
600V 90 °C Dry 75 °C Wet, Exposed Run (ER) or MTW 600V 90 °C
or STOOW 105 °C 600V - CSA STOOW 600V FT2.
Installation and Wiring
2-33
Branch Circuit Protection Requirements for ArmorConnect
Three-Phase Power Media
When using ArmorConnect three-phase power media, fuses can be
used for the motor branch circuit protective device, for the group
motor installations. The following fuse types are recommended: Class
CC, T, or J type fuses. A 100 A circuit breaker (Allen-Bradley140
H-Frame) can be used for the motor branch protective device, for the
group motor installations when using only the following
ArmorConnect Power Media components: 280-M35M-M1,
280-M35F-M1, 280-T35, and 280-PWRM35*-M*.
Maximum Ratings
Group Motor Installations for USA
and Canada Markets
Voltage (V)
480Y/277
Sym. Amps RMS
65 kA
Fuse
100 A
Circuit Breaker
100 A
The ArmorStart Distributed Motor Controllers are listed for use with
each other in group installations per NFPA 79, Electrical Standard for
Industrial Machinery. When applied according to the group motor
installation requirements, two or more motors, of any rating or
controller type, are permitted on a single branch circuit. Group Motor
Installation has been successfully used for many years in the USA and
Canada.
Note: For additional information regarding group motor
installations with the ArmorStart Distributed Motor
Controller, see Appendix D.
Wiring and Workmanship
Guidelines
In addition to conduit and seal-tite raceway, it is acceptable to utilize
cable that is dual rated Tray Cable, Type TC-ER and Cord, STOOW,
for power and control wiring on ArmorStart installations. In the USA
and Canada installations, the following guidance is outlined by the
NEC and NFPA 79.
2-34
Installation and Wiring
In industrial establishments where the conditions of maintenance and
supervision ensure that only qualified persons service the installation,
and where the exposed cable is continuously supported and protected
against physical damage using mechanical protection, such as struts,
angles, or channels, Type TC tray cable that complies with the crush
and impact requirements of Type MC (Metal Clad) cable and is
identified for such use with the marking Type TC-ER (Exposed
Run)* shall be permitted between a cable tray and the utilization
equipment or device as open wiring. The cable shall be secured at
intervals not exceeding 1.8 m (6 ft) and installed in a “good workmanlike” manner. Equipment grounding for the utilization equipment
shall be provided by an equipment grounding conductor within the
cable.
*Historically cable meeting these crush and impact requirements
were designated and marked “Open Wiring”. Cable so marked is
equivalent to the present Type TC-ER and can be used.
While the ArmorStart is intended for installation in factory floor
environments of industrial establishments, the following must be
taken into consideration when locating the ArmorStart in the
application: Cables, including those for control voltage including
24V DC and communications, are not to be exposed to an operator or
building traffic on a continuous basis. Location of the ArmorStart to
minimize exposure to continual traffic is recommended. If location to
minimize traffic flow is unavoidable, other barriers to minimize
inadvertent exposure to the cabling should be considered. Routing
cables should be done in such a manner to minimize inadvertent
exposure and/or damage.
Additionally, if conduit or other raceways are not used, it is
recommended that strain relief fittings be utilized when installing the
cables for the control and power wiring through the conduit openings.
The working space around the ArmorStart may be minimized as the
ArmorStart does not require examination, adjustment, servicing or
maintenance while energized. In lieu of this service, the ArmorStart is
meant to be unplugged and replaced after proper lockout/tag-out
procedures have been employed.
DeviceNet Network Installation
The ArmorStart Distributed Motor Controller contains the equivalent
of 30 in. (0.76 m) of DeviceNet drop cable's electrical characteristics
and therefore 30 in. of drop cable must be included in the DeviceNet
drop cable budget for each ArmorStart in addition to actual drop cable
required for the installation.
Other DeviceNet System Design Considerations
The separation of the control power and DeviceNet power is
recommended as a good design practice. This minimizes the load on
the DeviceNet supply, and prevents transients which may be present
on the control power system from influencing the communication
controls.
Installation and Wiring
Electromagnetic Compatibility
(EMC)
2-35
The following guidelines are provided for EMC installation
compliance.
General Notes (Bulletin 284G only)
•
The motor Cable should be kept as short as possible in order to
avoid electromagnetic emission as well as capacitive currents
•
Conformity of the drive with CE EMC requirements does not
guarantee an entire machine installation complies with CE EMC
requirements. Many factors can influence total machine/
installation compliance.
•
Using an EMI filter with any drive rating, may result in relatively
high ground leakage currents. Therefore, the filter must only be
used in installations and solidly grounded (bonded) to the
building power distribution ground. Grounding must not rely on
flexible cables and should not include any form of plug or socket
that would permit inadvertent disconnection. Some local codes
may require redundant ground connections. The integrity of all
connections should be periodically checked.
Grounding
Connect a grounding conductor to the terminal provided as standard
on each ArmorStart Distributed Motor Controller. Refer to Table 2.2
for grounding provision location. There is also an externally available
ground terminal. Refer to Figure 2.2 and Figure 2.7.
Wiring
Wire in an industrial control application can be divided into three
groups: power, control, and signal. The following recommendations
for physical separation between these groups is provided to reduce the
coupling effect.
•
Minimum spacing between different wire groups in the same tray
should be 6 in. (16 cm).
•
Wire runs outside an enclosure should be run in conduit or have
shielding/armor with equivalent attenuation.
•
Different wire groups should be run in separate conduits.
•
Minimum spacing between conduits containing different wire
groups should be 3 in. (8 cm).
2-36
Notes:
Installation and Wiring
Chapter
3
Bulletin 280G/281G Programmable
Parameters
Introduction
This chapter describes each programmable parameter and its
function.
Parameter Programming
Each Distributed Motor Controller type will have a common set of
parameters followed by a set of parameters that pertain to the
individual starter type.
Refer to Chapter 5, DeviceNet™ Commissioning for instructions in
using RSNetWorx™ for DeviceNet to modify parameter settings.
Important: Resetting the Factory Default Values Parameter 47,
Set to Defaults, allows the installer to reset all parameters
to the factory default values. It also resets the MAC ID to
its factory default after DeviceNet Power is cycled if
switches are set >63.
Important: Parameter setting changes downloaded to the
ArmorStart™ take effect immediately, even during a
“running” status.
Important: Parameter setting changes made in a configuration tool
such as RSNetWorx for DeviceNet do not take effect in
the ArmorStart until the installer applies or downloads
the new settings to the device.
3-2
Bulletin 280G/281G Programmable Parameters
Parameter Group Listing
The Bulletin 280G/281G ArmorStart contains eight parameter
groups. The parameters shown in the DeviceLogix, DeviceNet,
Starter Protection, User I/O, Misc. Parameter, ZIP Parameters, Starter
Display and Starter Setup, are discussed in this chapter.
Table 3.1
DeviceLogix
DeviceNet
Starter
Protection
22 Breaker Type
User I/O
Parameter Group Listing
Misc.
ZIP Parameters
Starter Display
101 Phase A Current
Starter Setup
1 Hdw Inputs
10 Autobaud Enable
30 Off-to-On Delay
45 Keypad Mode
67 AutoRun Zip
2 Network Inputs
11 Consumed IO Assy 23 PrFltResetMode
31 On-to-Off Delay
46 Keypad Disable
68 Zone Produced EPR 102 Phase B Current
106 FLA Setting
107 Overload Class
3 Network Outputs
12 Produced IO Assy
24 Pr Fault Enable
32 In Sink/Source
47 Set To Defaults
69 Zone Produced PIT 103 Phase C Current
108 OL Reset Level
4 Trip Status
13 Prod Assy Word 0
25 Pr Fault Reset
56 Base Enclosure
70 Zone #1 MacId
104 Average Current
5 Starter Status
14 Prod Assy Word 1
26 StrtrDN FltState
57 Base Option
71 Zone #2 MacId
105% Therm Utilized
6 DNet Status
15 Prod Assy Word 2
27 StrtrDN FltValue
58 Wiring Option
72 Zone #3 MacId
7 Starter Command
16 Prod Assy Word 3
28 StrtrDN IdlState
59 Starter Enclosure
73 Zone #4 MacId
8 Network Override
17 Consumed IO Size
29 StrtrDN IdlValue
60 Starter Options
9 Comm Override
18 Produced IO Size
61 Last PR Fault
19 Starter COS Mask
62 Warning Status
74 Zone #1 Health
75 Zone #2 Health
76 Zone #3 Health
20 Net Out COS Mask
77 Zone #4 Health
21 DNet Voltage
78 Zone #1 Mask
79 Zone #2 Mask
80 Zone #3 Mask
81 Zone #4 Mask
82 Zone #1 Offset
83 Zone #2 Offset
84 Zone #3 Offset
85 Zone #4 Offset
86 Zone #1 EPR
87 Zone #2 EPR
88 Zone #3 EPR
89 Zone #4 EPR
90 Zone #1 Control
91 Zone #2 Control
92 Zone #3 Control
93 Zone #4 Control
94 Zone #1 Key
95 Zone #2 Key
96 Zone #3 Key
97 Zone #4 Key
98 Device Value Key
99 Zone Ctrl Enable
DeviceLogix™ Group
Hdw Inputs
This parameter provides status of
hardware inputs
Parameter Number
1
Access Rule
GET
Data Type
WORD
Group
DeviceLogix
Units
—
Minimum Value
0
Maximum Value
15
Default Value
0
3-3
Bulletin 280G/281G Programmable Parameters
Bit
Function
5
4
3
2
1
0
—
—
—
—
—
X
Input 0
—
—
—
—
X
—
Input 1
—
—
—
X
—
—
Input 2
—
—
X
—
—
—
Input 3
—
X
—
—
—
—
Input 4
X
—
—
—
—
—
Input 5
Network Inputs
Parameter Number
2
Access Rule
GET
This parameter provides status of
network inputs
Data Type
WORD
Group
DeviceLogix
Units
—
Minimum Value
0
Maximum Value
65535
Default Value
0
Bit
15 14 13 12 11 10
9
8
7
6
5
4
3
2
1
Function
0
— — — — — — — — — — — — — — — X
Net Input 0
— — — — — — — — — — — — — — X —
Net Input 1
— — — — — — — — — — — — — X — —
Net input 2
— — — — — — — — — — — — X — — —
Net Input 3
— — — — — — — — — — — X — — — —
Net Input 4
— — — — — — — — — — X — — — — —
Net Input 5
— — — — — — — — — X — — — — — —
Net Input 6
— — — — — — — — X — — — — — — —
Net Input 7
— — — — — — — X — — — — — — — —
Net Input 8
— — — — — — X — — — — — — — — —
Net Input 9
— — — — — X — — — — — — — — — —
Net Input 10
— — — — X — — — — — — — — — — —
Net Input 11
— — — X — — — — — — — — — — — —
Net Input 12
— — X — — — — — — — — — — — — —
Net Input 13
— X — — — — — — — — — — — — — —
Net Input 14
X — — — — — — — — — — — — — — —
Net Input 15
Network Outputs
This parameter provides status of
network outputs
Parameter Number
3
Access Rule
GET
Data Type
WORD
Group
DeviceLogix
Units
—
Minimum Value
0
Maximum Value
32767
Default Value
0
3-4
Bulletin 280G/281G Programmable Parameters
Bit
14 13 12 11 10
9
8
7
6
5
4
3
2
1
Function
0
— — — — — — — — — — — — — —
X
Net Output 0
— — — — — — — — — — — — —
X
—
Net Output 1
— — — — — — — — — — — —
X
— —
Net Output 2
— — — — — — — — — — —
X
— — —
Net Output 3
— — — — — — — — — —
X
— — — —
Net Output 4
— — — — — — — — —
X
— — — — —
Net Output 5
— — — — — — — —
X
— — — — — —
Net Output 6
— — — — — — —
X
— — — — — — —
Net Output 7
— — — — — —
X
— — — — — — — —
Net Output 8
— — — — —
X
— — — — — — — — —
Net Output 9
— — — —
X
— — — — — — — — — —
Net Output 10
— — —
X
— — — — — — — — — — —
Net Output 11
— —
X
— — — — — — — — — — — —
Net Output 12
—
X
— — — — — — — — — — — — —
Net Output 13
X
— — — — — — — — — — — — — —
Net Output 14
Trip Status
Parameter Number
4
Access Rule
GET
This parameter provides trip
identification
Data Type
WORD
Group
DeviceLogix Setup
Units
—
Minimum Value
0
Maximum Value
16383
Default Value
0
Bit
13 12 11 10
9
8
7
6
5
4
3
2
Function
1
0
— — — — — — — — — — — — —
X
— — — — — — — — — — — —
X
—
— — — — — — — — — — —
X
— —
— — — — — — — — — —
X
— — —
Reserved
— — — — — — — — —
X
— — — —
Reserved
— — — — — — — —
X
— — — — —
— — — — — — —
X
— — — — — —
— — — — — —
X
— — — — — — —
Over Temperature
— — — — —
X
— — — — — — — —
Phase Imbalance
— — — —
X
— — — — — — — — —
Dnet Power Loss
— — —
X
— — — — — — — — — —
Reserved
— —
X
— — — — — — — — — — —
Reserved
—
X
— — — — — — — — — — — —
EEprom
X
— — — — — — — — — — — — —
HW Fault
Short Circuit
Overload
Phase Loss
Control Power
I/O Fault
3-5
Bulletin 280G/281G Programmable Parameters
Starter Status
Parameter Number
5
Access Rule
GET
This parameter provides the
status of the starter
Data Type
WORD
Group
DeviceLogix
Units
—
Minimum Value
0
Maximum Value
16383
Default Value
0
Bit
13 12 11 10
9
8
7
6
5
4
3
2
1
0
Function
— — — — — — — — — — — — —
X
Tripped
— — — — — — — — — — — —
X
—
Warning
— — — — — — — — — — —
X
— —
Running Fwd
— — — — — — — — — —
X
— — —
Running Rev
— — — — — — — — —
X
— — — —
— — — — — — — —
X
— — — — —
— — — — — — —
X
— — — — — —
— — — — — —
X
— — — — — — —
— — — — —
X
— — — — — — — —
Reserved
— — — —
X
— — — — — — — — —
Reserved
— — —
X
— — — — — — — — — —
— —
X
— — — — — — — — — — —
—
X
— — — — — — — — — — — —
X
— — — — — — — — — — — — —
DNet Status
This parameter provides status of
the DeviceNet connection
Ready
Net Ctl Status
Reserved
At Reference
Reserved
Keypad Hand
HOA Status
140M On
Parameter Number
6
Access Rule
GET
Data Type
WORD
Group
DeviceLogix
Units
—
Minimum Value
0
Maximum Value
32, 767
Default Value
0
3-6
Bulletin 280G/281G Programmable Parameters
Bit
15 14 13 12 11 10 9
8
7
6
5
4
3
2
1
0
Function:
— — — — — — — — — — — — — — — X Explicit Connection
— — — — — — — — — — — — — — X —
I/O Connection
— — — — — — — — — — — — — X — —
Explicit Fault
— — — — — — — — — — — — X — — —
I/O Fault
— — — — — — — — — — — X — — — —
I/O Idle
— — — — — — — — X
X — — — — —
Reserved
— — — — — — — X — — — — — — — —
X
ZIP 1 Cnxn
— — — — — — X — — — — — — — — —
ZIP 1 Flt
— — — — — X — — — — — — — — — —
ZIP 2 Cnxn
— — — — X — — — — — — — — — — —
ZIP 2 Flt
— — — X — — — — — — — — — — — —
ZIP 3 Cnxn
— — X — — — — — — — — — — — — —
ZIP 3 Flt
— X — — — — — — — — — — — — — —
ZIP 4 Cnxn
X — — — — — — — — — — — — — — —
ZIP 4 Flt
Starter Command
The parameter provides the
status of the starter command.
Parameter Number
7
Access Rule
GET
Data Type
WORD
Group
DeviceLogix
Units
—
Minimum Value
0
Maximum Value
255
Default Value
0
Bit
6
5
4
3
2
1
—
—
—
—
—
—
—
X
Run Fwd
—
—
—
—
—
—
X
—
Run Rev
—
—
—
—
—
X
—
—
Fault Reset
—
—
—
—
X
—
—
—
Reserved
—
—
—
X
—
—
—
—
Reserved
—
—
X
—
—
—
—
—
Reserved
—
X
—
—
—
—
—
—
Reserved
X
—
—
—
—
—
—
—
Reserved
Network Override
This parameter allows for the
local logic to override a Network
fault
0 = Disable
1 = Enable
0
Function:
7
Parameter Number
8
Access Rule
GET/SET
Data Type
BOOL
Group
DeviceLogix
Units
—
Minimum Value
0
Maximum Value
1
Default Value
0
3-7
Bulletin 280G/281G Programmable Parameters
Comm Override
This parameter allows for local
logic to override the absence of
an I/O connection
0 = Disable
1 = Enable
DeviceNet Group
Autobaud Enable
When this parameter is enabled,
the device will attempt to
determine the network baud rate
and set its baud rate to the same,
provided network traffic exists.
At least one node with an
established baud rate must exist
on the network for autobaud to
occur.
0 = Disable
1 = Enable
Consumed I/O Assy
This parameter selects the
format of the I/O data consumed.
Enter a Consumed I/O assembly
instance number to select a data
format.
Produced I/O Assy
This parameter selects the
format of the I/O data produced.
Enter a Produces I/O assembly
instance number to select a data
format.
Parameter Number
9
Access Rule
GET/SET
Data Type
BOOL
Group
DeviceLogix
Units
—
Minimum Value
0
Maximum Value
1
Default Value
0
Parameter Number
10
Access Rule
GET/SET
Data Type
BOOL
Group
DeviceNet
Units
—
Minimum Value
0
Maximum Value
1
Default Value
1
Parameter Number
11
Access Rule
GET/SET
Data Type
USINT
Group
DeviceNet
Units
—
Minimum Value
0
Maximum Value
187
Default Value
160
Parameter Number
12
Access Rule
GET/SET
Data Type
USINT
Group
DeviceNet
Units
—
Minimum Value
0
Maximum Value
190
Default Value
161
3-8
Bulletin 280G/281G Programmable Parameters
Prod Assy Word 0
This parameter is used to build
bytes 0-1 for produced assembly
120
Produced Assy Word 1
This parameter is used to build
bytes 2-3 for produced assembly
120
Prod Assy Word 2
This parameter is used to build
bytes 4-5 for produced assembly
120
Prod Assy Word 3
This parameter is used to build
bytes 6-7 for produced assembly
120
Consumed I/O Size
This parameter reflects the
consumed I/O data size in bytes.
Parameter Number
13
Access Rule
GET/SET
Data Type
USINT
Group
DeviceNet
Units
—
Minimum Value
0
Maximum Value
108
Default Value
1
Parameter Number
14
Access Rule
GET/SET
Data Type
USINT
Group
DeviceNet
Units
—
Minimum Value
0
Maximum Value
108
Default Value
4
Parameter Number
15
Access Rule
GET/SET
Data Type
USINT
Group
DeviceNet
Units
—
Minimum Value
0
Maximum Value
108
Default Value
5
Parameter Number
16
Access Rule
GET/SET
Data Type
USINT
Group
DeviceNet
Units
—
Minimum Value
0
Maximum Value
108
Default Value
6
Parameter Number
17
Access Rule
GET
Data Type
USINT
Group
DeviceNet
Units
—
Minimum Value
0
Maximum Value
8
Default Value
1
3-9
Bulletin 280G/281G Programmable Parameters
Produced I/O Size
This parameter reflects the
produced I/O data size in bytes.
Starter COS Mask
This parameter allows the
installer to define the change-ofstate conditions that will result in
a change-of-state message
being produced
Parameter Number
18
Access Rule
GET
Data Type
USINT
Group
DeviceNet
Units
—
Minimum Value
0
Maximum Value
8
Default Value
2
Parameter Number
19
Access Rule
GET/SET
Data Type
WORD
Group
DeviceNet
Units
—
Minimum Value
0
Maximum Value
16383
Default Value
16149 ➊
16157 ➋
Bulletin 280G products.
Bulletin 281G products.
➊
➋
Bit
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Function
—
—
—
—
—
—
—
—
—
—
—
—
—
X
Tripped
—
—
—
—
—
—
—
—
—
—
—
—
X
—
Warning
—
—
—
—
—
—
—
—
—
—
X
—
—
Running Fwd
—
—
—
—
—
—
—
—
—
—
X
—
—
—
Running Rev
—
—
—
—
—
—
—
—
—
X
—
—
—
—
Ready
—
—
—
—
—
—
—
—
X
—
—
—
—
—
NET Ctl Status
—
—
—
—
—
—
—
X
—
—
—
—
—
—
140M On
—
—
—
—
—
—
X
—
—
—
—
—
—
—
Reserved
—
—
—
—
—
X
—
—
—
—
—
—
—
—
Input 0
—
—
—
—
X
—
—
—
—
—
—
—
—
—
Input 1
—
—
—
X
—
—
—
—
—
—
—
—
—
—
Input 2
—
—
X
—
—
—
—
—
—
—
—
—
—
—
Input 3
—
X
—
—
—
—
—
—
—
—
—
—
—
—
Input 4
X
—
—
—
—
—
—
—
—
—
—
—
—
—
Input 5
3-10
Bulletin 280G/281G Programmable Parameters
Net Out COS Mask
This parameter sets the bits that
will trigger a COS message when
network outputs change state.
Parameter Number
20
Access Rule
GET/SET
Data Type
WORD
Group
DeviceNet
Units
—
Minimum Value
0
Maximum Value
32767
Default Value
0
Bit
Function
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
—
—
—
—
—
—
—
—
—
—
—
—
—
—
X
Net Output 0
—
—
—
—
—
—
—
—
—
—
—
—
—
X
—
Net Output 1
—
—
—
—
—
—
—
—
—
—
—
—
X
—
—
Net Output 2
—
—
—
—
—
—
—
—
—
—
—
X
—
—
—
Net Output 3
—
—
—
—
—
—
—
—
—
—
X
—
—
—
—
Net Output 4
—
—
—
—
—
—
—
—
—
X
—
—
—
—
—
Net Output 5
—
—
—
—
—
—
—
—
X
—
—
—
—
—
—
Net Output 6
—
—
—
—
—
—
—
X
—
—
—
—
—
—
—
Net Output 7
—
—
—
—
—
—
X
—
—
—
—
—
—
—
—
Net Output 8
—
—
—
—
—
X
—
—
—
—
—
—
—
—
—
Net Output 9
—
—
—
—
X
—
—
—
—
—
—
—
—
—
—
Net Output 10
—
—
—
X
—
—
—
—
—
—
—
—
—
—
—
Net Output 11
—
—
X
—
—
—
—
—
—
—
—
—
—
—
—
Net Output 12
—
X
—
—
—
—
—
—
—
—
—
—
—
—
—
Net Output 13
X
—
—
—
—
—
—
—
—
—
—
—
—
—
—
Net Output 14
Dnet Voltage
This parameter provides the
voltage measurement for the
DeviceNet network
Starter Protection Group
Breaker Type
This parameter identifies the
Bulletin 140M used in this
product
0 = 140M-D8N-C10
1 = 140M-D8N-C25
Parameter Number
21
Access Rule
GET
Data Type
UINT
Group
DeviceNet
Units
xx.xx Volts
Minimum Value
0
Maximum Value
6500
Default Value
0
Parameter Number
22
Access Rule
GET/SET
Data Type
BOOL
Group
Starter Protection
Units
—
Minimum Value
0
Maximum Value
1
Default Value
0
3-11
Bulletin 280G/281G Programmable Parameters
PrFlt Reset Mode
Parameter Number
23
Access Rule
GET/SET
This parameter configures the
Protection Fault reset mode.
0= Manual
1= Automatic
Pr Fault Enable
Data Type
BOOL
Group
Starter Protection
Units
—
Minimum Value
0
Maximum Value
1
Default Value
0
Parameter Number
24
Access Rule
GET/SET
Data Type
WORD
Group
Starter Protection Setup
Units
—
This parameter enables the
Protection Fault by setting the bit
to 1
Minimum Value
0
Maximum Value
16383
Default Value
12419
Bit
13 12 11 10
9
8
7
0
— — — — — — — — — — — — —
X
— — — — — — — — — — — —
X
—
— — — — — — — — — — —
X
— —
— — — — — — — — — —
X
— — —
Reserved
— — — — — — — — —
X
— — — —
Reserved
— — — — — — — —
X
— — — — —
— — — — — — —
X
— — — — — —
— — — — — —
X
— — — — — — —
Over Temperature
— — — — —
X
— — — — — — — —
Phase Imbalance
— — — —
X
— — — — — — — — —
Dnet Power Loss
— — —
X
— — — — — — — — — —
Reserved
— —
X
— — — — — — — — — — —
Reserved
—
X
— — — — — — — — — — — —
Eeprom
X
— — — — — — — — — — — — —
HW Fault
This parameter resets the
Protection Fault on a transition of
0-->1.
5
4
3
2
Function
1
Pr Fault Reset
6
Short Circuit
Overload
Phase Loss
Control Power
I/O Fault
Parameter Number
25
Access Rule
GET/SET
Data Type
BOOL
Group
Starter Protection
Units
—
Minimum Value
0
Maximum Value
1
Default Value
0
3-12
Bulletin 280G/281G Programmable Parameters
StrtrDN FltState
This parameter in conjunction
with Parameter 27 defines how
the starter will respond when a
DeviceNet fault occurs. When set
to “1”, hold to last state occurs.
When set to “0”, will go to DnFlt
Value on DN faults as determined
by Parameter 27.
StrtrDN FltValue
This parameter determines how
the starter will be commanded in
the event of a Device Net fault.
0 = OFF
1 = ON
StrtrDN IdlState
This parameter in conjunction
with Parameter 29 defines how
the starter will respond when a
DeviceNet network is idle. When
set to “1”, hold to last state
occurs. When set to “0”, will go
to DnIdl Value on DN Idle as
determined by Parameter 29.
StrtrDN IdlValue
This parameter determines the
state that starter assumes when
the network is idle and
Parameter 28 is set to “0”
0 = OFF
1 = ON
Parameter Number
26
Access Rule
GET/SET
Data Type
BOOL
Group
Starter Protection
Units
—
Minimum Value
0
Maximum Value
1
Default Value
0
Parameter Number
27
Access Rule
GET
Data Type
BOOL
Group
Starter Protection
Units
—
Minimum Value
0
Maximum Value
1
Default Value
0
Parameter Number
28
Access Rule
GET/SET
Data Type
BOOL
Group
Starter Protection
Units
—
Minimum Value
0
Maximum Value
1
Default Value
0
Parameter Number
29
Access Rule
GET
Data Type
BOOL
Group
Starter Protection
Units
—
Minimum Value
0
Maximum Value
1
Default Value
0
3-13
Bulletin 280G/281G Programmable Parameters
Last PR Fault
0 = None
1 = Hardware Short Circuit
2 = Software Short Circuit
3 = Motor Overload
4 = Reserved
5 = Phase Loss
6 – 12 = Reserved
13 = Control Power Loss
14 = Control Power Fuse
15 = I/O Short
16 = Reserved
17 = Overtemp
18= Reserved
19 = Phase Imbalance
20 = Reserved
21 = DNet Power Loss
22 = Internal Comm
23-26 = Reserved
27 = MCB EEPROM
28 = Base EEPROM
29 = Reserved
30 = Wrong Base
31 = Wrong CTs
32-100 = Reserved
Warning Status
Parameter Number
61
Access Rule
GET
Data Type
UINT
Group
Starter Protection
Units
—
MinimumValue
0
Maximum Value
100
Default Value
0
Parameter Number
62
Access Rule
GET
This parameter warns the Data Type
user of a condition, without
Group
faulting
Units
WORD
Starter Protection
—
MinimumValue
0
Maximum Value
65535
Default Value
0
Bit
15 14 13 12 11 10 9
X
X
X
X
X
X
X
8
X
7
X
6
X
5
X
4
X
3
X
2
X
1
X
0
X
Warning
reserved
reserved
Phase Loss
reserved
reserved
Control Power
IO Warning
reserved
Phase Imbalance
DeviceNet
reserved
reserved
reserved
Hardware
reserved
reserved
3-14
Bulletin 280G/281G Programmable Parameters
User I/O
Off-to-On Delay
This parameter allows the
installer to program a time
duration before an input is
reported “ON”
On-to-Off Delay
This parameter allows the
installer to program a time
duration before an input is
reported “OFF”
In Sink/Source
This parameter allows the
installer to program the inputs to
be sink or source.
0=Sink
1=Source
Misc. Group
Keypad Mode
This parameter selects if the
keypad operation is maintained
or momentary
0= Maintained
1= Momentary
Keypad Disable
This parameter disables all
keypad function except for the
“OFF” and “RESET” buttons
0=Not Disabled
1=Disabled
Parameter Number
30
Access Rule
GET/SET
Data Type
UINT
Group
User I/O
Units
ms
Minimum Value
0
Maximum Value
65.000
Default Value
0
Parameter Number
31
Access Rule
GET/SET
Data Type
UINT
Group
User I/O
Units
ms
Minimum Value
0
Maximum Value
65.000
Default Value
0
Parameter Number
32
Access Rule
GET/SET
Data Type
BOOL
Group
User I/
Units
—
Minimum Value
0
Maximum Value
1
Default Value
0
Parameter Number
45
Access Rule
GET/SET
Data Type
BOOL
Group
Misc.
Units
—
Minimum Value
0
Maximum Value
1
Default Value
0
Parameter Number
46
Access Rule
GET/SET
Data Type
BOOL
Group
Misc.
Units
—
Minimum Value
0
Maximum Value
1
Default Value
0
3-15
Bulletin 280G/281G Programmable Parameters
Set to Defaults
This parameter if set to 1 will set
the device to the factory defaults
0=No Operation
1=Set to Defaults
Base Enclosure
Indicates the ArmorStart Base
unit enclosure rating
Bit 0 = IP67
Bit 1 = Nema 4X
Bit 2 = SIL3/CAT4
Bit 3-15 = Reserved
Base Options
Indicates the options for the
ArmorStart Base unit
Bit 0 = Reserved
Bit 1 = Reserved
Bit 2 = CP Fuse Detect
Bits 3-7 = Reserved
Bit 8 = 10A Base
Bit 9 = 25A Base
Bit 10-15 = Reserved
Wiring Options
Bit 0 = Conduit
Bit 1 = Round Media
Bits 2-15 = 28xG
Bits 3-15 = Reserved
Starter Enclosure
Bit 0 = IP67
Bit 1 = NEMA 4x
Bit 2 = SIL3/CAT4
Bits 3-15 reserved
Parameter Number
47
Access Rule
GET/SET
Data Type
BOOL
Group
Misc.
Units
—
Minimum Value
0
Maximum Value
1
Default Value
0
Parameter Number
56
Access Rule
GET
Data Type
WORD
Group
Misc.
Units
—
MinimumValue
0
Maximum Value
65535
Default Value
0
Parameter Number
57
Access Rule
GET
Data Type
WORD
Group
Misc.
Units
—
MinimumValue
0
Maximum Value
65535
Default Value
0
Parameter Number
58
Access Rule
GET
Data Type
WORD
Group
Misc.
Units
—
MinimumValue
0
Maximum Value
65535
Default Value
0
Parameter Number
59
Access Rule
GET
Data Type
WORD
Group
Misc.
Units
—
MinimumValue
0
Maximum Value
65535
Default Value
—
3-16
Bulletin 280G/281G Programmable Parameters
Starter Option
Bit 0 = HOA Keypad
Bit 1 = Safety Monitor
Bit 2 = Source Brake
Bits 4-15 = Reserved
ZIP Parameters
AutoRun Zip
Enables ZIP data production on
power up
0=Disable
1=Enable
Zone Produced EPR
The Expected Packet Rate in
msec. Defines the rate at which
ZIP data is produced. Defaults to
75 msec.
Zone Produced PIT
The Production Inhibit Time in
msec. Defines the minimum time
between Change of State data
production
Zone #1 MAC ID
The node address of the device
whose data is to be consumed
for zone 1
Parameter Number
60
Access Rule
GET
Data Type
WORD
Group
Misc.
Units
—
MinimumValue
0
Maximum Value
66535
Default Value
—
Parameter Number
67
Access Rule
Get/Set
Data Type
BOOL
Group
ZIP Parameters
Units
MinimumValue
0
Maximum Value
1
Default Value
0
Parameter Number
68
Access Rule
GET/SET
Data Type
UINT
Group
Zip Parameter
Units
msec
MinimumValue
0
Maximum Value
65535
Default Value
75
Parameter Number
69
Access Rule
GET/SET
Data Type
UINT
Group
ZIP Parameters
Units
msec
MinimumValue
0
Maximum Value
65535
Default Value
75
Parameter Number
70
Access Rule
GET/SET
Data Type
USINT
Group
ZIP Parameters
Units
—
MinimumValue
0
Maximum Value
64
Default Value
64
3-17
Bulletin 280G/281G Programmable Parameters
Zone #2 MAC ID
The node address of the device
whose data is to be consumed
for zone 2
Zone #3 MAC ID
The node address of the device
whose data is to be consumed
for zone 3
Zone #4 MAC ID
The node address of the device
whose data is to be consumed
for zone 4
Zone #1 Health
Read Only consumed connection
status for zone 1
0 = Healthy
1 = Unhealthy
Zone #2 Health
Read Only consumed connection
status for zone 2
0 = Healthy
1 = Unhealthy
Parameter Number
71
Access Rule
GET/SET
Data Type
USINT
Group
ZIP Parameters
Units
—
MinimumValue
0
Maximum Value
64
Default Value
64
Parameter Number
72
Access Rule
GET/SET
Data Type
USINT
Group
ZIP Parameters
Units
—
MinimumValue
0
Maximum Value
64
Default Value
64
Parameter Number
73
Access Rule
GET/SET
Data Type
USINT
Group
Misc. Option
Units
—
MinimumValue
0
Maximum Value
64
Default Value
64
Parameter Number
74
Access Rule
GET
Data Type
BOOL
Group
ZIP Parameters
Units
—
MinimumValue
0
Maximum Value
1
Default Value
0
Parameter Number
75
Access Rule
GET
Data Type
BOOL
Group
ZIP Parameters
Units
—
MinimumValue
0
Maximum Value
1
Default Value
0
3-18
Bulletin 280G/281G Programmable Parameters
Zone #3 Health
Read Only consumed connection
status for zone 3
0 = Healthy
1 = Unhealthy
Zone #4 Health
Read Only consumed connection
status for zone 4
0 = Healthy
1 = Unhealthy
Zone #1 Mask
Bit enumerated consumed data
mask for zone 1. Each bit
represents a byte in consumed
data up to 8 bytes in length. If a
mask bit is set, the
corresponding consumed data
byte is placed in the DeviceLogix
data table
Zone #2 Mask
Bit enumerated consumed data
mask for zone 2. Each bit
represents a byte in consumed
data up to 8 bytes in length. If a
mask bit is set, the
corresponding consumed data
byte is placed in the DeviceLogix
data table
Zone #3 Mask
Bit enumerated consumed data
mask for zone 3. Each bit
represents a byte in consumed
data up to 8 bytes in length. If a
mask bit is set, the
corresponding consumed data
byte is placed in the DeviceLogix
data table
Parameter Number
76
Access Rule
GET
Data Type
BOOL
Group
ZIP Parameters
Units
—
MinimumValue
0
Maximum Value
1
Default Value
0
Parameter Number
77
Access Rule
GET
Data Type
BOOL
Group
ZIP Parameters
Units
—
MinimumValue
0
Maximum Value
1
Default Value
0
Parameter Number
78
Access Rule
GET/SET
Data Type
BYTE
Group
ZIP Parameters
Units
—
MinimumValue
0
Maximum Value
255
Default Value
0
Parameter Number
79
Access Rule
GET/SET
Data Type
BYTE
Group
ZIP Parameters
Units
—
MinimumValue
0
Maximum Value
255
Default Value
0
Parameter Number
80
Access Rule
GET/SET
Data Type
BYTE
Group
ZIP Parameters
Units
—
MinimumValue
0
Maximum Value
255
Default Value
0
3-19
Bulletin 280G/281G Programmable Parameters
Zone #4 Mask
Bit enumerated consumed data
mask for zone 4. Each bit
represents a byte in consumed
data up to 8 bytes in length. If a
mask bit is set, the
corresponding consumed data
byte is placed in the DeviceLogix
data table
Zone #1 Offset
The byte offset into the ZIP data
portion of the DeviceLogix data
table to place the chosen
consumed data bytes for zone 1.
Zone #2 Offset
The byte offset into the ZIP data
portion of the DeviceLogix data
table to place the chosen
consumed data bytes for zone 2.
Zone #3 Offset
The byte offset into the ZIP data
portion of the DeviceLogix data
table to place the chosen
consumed data bytes for zone 3.
Zone #4 Offset
The byte offset into the ZIP data
portion of the DeviceLogix data
table to place the chosen
consumed data bytes for zone 4.
Parameter Number
81
Access Rule
GET/SET
Data Type
BYTE
Group
ZIP Parameters
Units
—
MinimumValue
0
Maximum Value
255
Default Value
0
Parameter Number
82
Access Rule
GET/SET
Data Type
UINT
Group
ZIP Parameters
Units
—
MinimumValue
0
Maximum Value
7
Default Value
0
Parameter Number
83
Access Rule
GET/SET
Data Type
UNIT
Group
ZIP Parameters
Units
—
MinimumValue
0
Maximum Value
7
Default Value
0
Parameter Number
84
Access Rule
GET/SET
Data Type
UNIT
Group
ZIP Parameters
Units
—
MinimumValue
0
Maximum Value
1
Default Value
0
Parameter Number
85
Access Rule
GET/SET
Data Type
UNIT
Group
ZIP Parameters
Units
—
MinimumValue
0
Maximum Value
1
Default Value
0
3-20
Bulletin 280G/281G Programmable Parameters
Zone #1 EPR
The Expected Packet Rate in
msec. for the zone 1 consuming
connection. If consumed data is
not received in 4 times this
value, the zone connection will
time out and “Zone #1 Health”
will report 1 = Not Healthy.
Zone #2 EPR
The Expected Packet Rate in
msec. for the zone 1 consuming
connection. If consumed data is
not received in 4 times this
value, the zone connection will
time out and “Zone #2 Health”
will report 1 = Not Healthy.
Zone #3 EPR
The Expected Packet Rate in
msec. for the zone 1 consuming
connection. If consumed data is
not received in 4 times this
value, the zone connection will
time out and “Zone #3 Health”
will report 1 = Not Healthy.
Zone #4 EPR
The Expected Packet Rate in
msec. for the zone 1 consuming
connection. If consumed data is
not received in 4 times this
value, the zone connection will
time out and “Zone #4 Health”
will report 1 = Not Healthy.
Parameter Number
86
Access Rule
GET/SET
Data Type
UINT
Group
ZIP Parameters
Units
msec
MinimumValue
0
Maximum Value
65535
Default Value
75
Parameter Number
87
Access Rule
GET/SET
Data Type
UNIT
Group
ZIP Parameters
Units
msec
MinimumValue
0
Maximum Value
65535
Default Value
75
Parameter Number
88
Access Rule
GET/SET
Data Type
UNIT
Group
ZIP Parameters
Units
msec
MinimumValue
0
Maximum Value
65535
Default Value
75
Parameter Number
89
Access Rule
GET/SET
Data Type
UNIT
Group
ZIP Parameters
Units
msec
MinimumValue
0
Maximum Value
65535
Default Value
75
3-21
Bulletin 280G/281G Programmable Parameters
Zone #1 Control
Zone 1 Control Word. Default
Bit 0 and Bit 1 set, all other bits
clear.
Bit0=Security Enable 1=Enable
data security
Bit1=COS Cnxn
1=Consume
DNet Group 2 COS messages
Bit2=Poll Cnxn
1=Consume DNet Group 2 Poll
Response msgs.
Bit3=Strobe Cnxn
1=Consume DNet Group 2
Strobe Response msgs.
Bit4=Multicast Poll
1=Consume Multicast Poll
Response messages.
Zone #2 Control
Zone 2 Control Word. Default
Bit 0 and Bit 1 set, all other bits
clear.
Bit0=Security Enable 1=Enable
data security
Bit1=COS Cnxn
1=Consume
DNet Group 2 COS messages
Bit2=Poll Cnxn
1=Consume DNet Group 2 Poll
Response msgs.
Bit3=Strobe Cnxn
1=Consume DNet Group 2
Strobe Response msgs.
Bit4=Multicast Poll
1=Consume Multicast Poll
Response messages
Zone #3 Control
Zone 3 Control Word. Default
Bit 0 and Bit 1 set, all other bits
clear.
Bit0=Security Enable 1=Enable
data security
Bit1=COS Cnxn
1=Consume
DNet Group 2 COS messages
Bit2=Poll Cnxn
1=Consume DNet Group 2 Poll
Response msgs.
Bit3=Strobe Cnxn
1=Consume DNet Group 2
Strobe Response msgs.
Bit4=Multicast Poll
1=Consume Multicast Poll
Response messages
Parameter Number
90
Access Rule
GET/SET
Data Type
BYTE
Group
ZIP Parameters
Units
—
MinimumValue
0
Maximum Value
255
Default Value
3
Parameter Number
91
Access Rule
GET/SET
Data Type
BYTE
Group
ZIP Parameters
Units
—
MinimumValue
0
Maximum Value
255
Default Value
3
Parameter Number
92
Access Rule
GET/SET
Data Type
BYTE
Group
ZIP Parameters
Units
—
MinimumValue
0
Maximum Value
255
Default Value
3
3-22
Bulletin 280G/281G Programmable Parameters
Zone #4 Control
Zone 3 Control Word. Default
Bit 0 and Bit 1 set, all other bits
clear.
Bit0=Security Enable 1=Enable
data security
Bit1=COS Cnxn
1=Consume
DNet Group 2 COS messages
Bit2=Poll Cnxn
1=Consume DNet Group 2 Poll
Response msgs.
Bit3=Strobe Cnxn
1=Consume DNet Group 2
Strobe Response msgs.
Bit4=Multicast Poll
1=Consume Multicast Poll
Response messages
Zone #1 Key
When the “Security Enable” bit
for zone 1 is enabled, this value
must match the value of the
Device Value Key parameter in
the device whose data is being
consumed for zone 1.
Zone #2 Key
When the “Security Enable” bit
for zone 2 is enabled, this value
must match the value of the
Device Value Key parameter in
the device whose data is being
consumed for zone 2.
Zone #3 Key
When the “Security Enable” bit
for zone 3 is enabled, this value
must match the value of the
Device Value Key parameter in
the device whose data is being
consumed for zone 3.
Parameter Number
93
Access Rule
GET/SET
Data Type
BYTE
Group
ZIP Parameters
Units
—
MinimumValue
0
Maximum Value
255
Default Value
3
Parameter Number
94
Access Rule
GET/SET
Data Type
UINT
Group
ZIP Parameters
Units
—
MinimumValue
0
Maximum Value
65535
Default Value
0
Parameter Number
95
Access Rule
GET/SET
Data Type
UINT
Group
ZIP Parameters
Units
—
MinimumValue
0
Maximum Value
65535
Default Value
0
Parameter Number
96
Access Rule
GET/SET
Data Type
UINT
Group
ZIP Parameters
Units
—
MinimumValue
0
Maximum Value
65535
Default Value
0
3-23
Bulletin 280G/281G Programmable Parameters
Zone #4 KEY
When the “Security Enable” bit
for zone 4 is enabled, this value
must match the value of the
Device Value Key parameter in
the device whose data is being
consumed for zone 4
Device Value Key
This value is produced in the last
2 bytes of data when one of the
ZIP assemblies is chosen for data
production.
Zone Ctrl Enable
Global enable for ZIP peer-topeer messaging. This parameter
must be disabled before any
changes to the ZIP configuration
for the device can be made.
0=Disable
1=Enable
Starter Display
Phase A Current
This parameter provides the
current of Phase A measured n
increments of 1/10th of an
ampere
Phase B Current
This parameter provides the
current of Phase B measured in
increments of 1/10th of an
ampere
Parameter Number
97
Access Rule
GET/SET
Data Type
UINT
Group
ZIP Parameters
Units
—
MinimumValue
0
Maximum Value
65535
Default Value
0
Parameter Number
98
Access Rule
GET/SET
Data Type
UINT
Group
ZIP Parameters
Units
—
MinimumValue
0
Maximum Value
65535
Default Value
0
Parameter Number
99
Access Rule
GET/SET
Data Type
BOOL
Group
ZIP Parameters
Units
—
MinimumValue
0
Maximum Value
1
Default Value
0
Parameter Number
101
Access Rule
GET/SET
Data Type
INT
Group
Starter Display
Units
xx.x Amps
Minimum Value
0
Maximum Value
32767
Default Value
0
Parameter Number
102
Access Rule
GET/SET
Data Type
INT
Group
Starter Display
Units
xx.x Amps
Minimum Value
0
Maximum Value
32767
Default Value
0
3-24
Bulletin 280G/281G Programmable Parameters
Phase C Current
This parameter provides the
current of Phase C measured in
increments of 1/10th of an
ampere
Average Current
This parameter provides the
average current measured in
increments of 1/10th of an
ampere
% Therm Utilized
This parameter displays the
% Thermal Capacity used
Starter Setup
FLA Setting
The motor’s full load current
rating is programmed in this
parameter
Table 3.2
Parameter Number
103
Access Rule
GET/SET
Data Type
INT
Group
Starter Display
Units
xx.x Amps
Minimum Value
0
Maximum Value
32767
Default Value
0
Parameter Number
104
Access Rule
GET/SET
Data Type
INT
Group
Starter Display
Units
xx.x Amps
Minimum Value
0
Maximum Value
32767
Default Value
0
Parameter Number
105
Access Rule
GET/SET
Data Type
USINT
Group
Starter Display
Units
% FLA
Minimum Value
0
Maximum Value
100
Default Value
0
Parameter Number
106
Access Rule
GET/SET
Data Type
INT
Group
Starter Setup
Units
xx.x Amps
Minimum Value
See Table 3.2
Maximum Value
See Table 3.2
Default Value
See Table 3.2
FLA Setting Ranges and Default Values (with indicated setting
precision)
FLA Current Range (A)
Default Value
Minimum Value
Maximum Value
0.5
2.5
0.5
1.1
5.5
1.1
3.2
16.0
3.2
3-25
Bulletin 280G/281G Programmable Parameters
Overload Class
This parameter allows the
installer to select the overload
class
1= Overload Class 10
2= Overload Class 15
3= Overload Class 20
OL Reset Level
This parameter allows the
installer select the % Thermal
Capacity which an overload can
be cleared
Parameter Number
107
Access Rule
GET/SET
Data Type
USINT
Group
Starter Setup
Units
xx.x Amps
Minimum Value
1
Maximum Value
3
Default Value
1
Parameter Number
108
Access Rule
GET/SET
Data Type
USINT
Group
Starter Setup
Units
% FLA
Minimum Value
0
Maximum Value
100
Default Value
75
3-26
Notes
Bulletin 280G/281G Programmable Parameters
Chapter
4
Bulletin 284G Programmable Parameters for
Sensorless Vector Controllers
This chapter describes each programmable parameter and its function for
Bulletin 284G Sensorless Vector Controllers.
Parameter Programming
Each Distributed Motor Controller type will have a common set of
parameters followed by a set of parameters that pertain to the individual
starter type.
Refer to Chapter 5, DeviceNet™ Commissioning, for instructions in using
RSNetworx™ for DeviceNet™ to modify parameter settings.
Important: Resetting the Factory Default Values Parameter 47, Set to
Defaults, allows the installer to reset all parameter to the
factory default values. It also resets the MAC ID to its factory
default after DeviceNet Power is cycled if switches are set >63.
Important: Parameter setting changes downloaded to the ArmorStart®
take effect immediately, even during a running status.
Important: Parameter setting changes made in a configuration tool such as
RSNetworx for DeviceNet do not take effect in the ArmorStart
until the installer applies or downloads the new settings to the
device.
1
4-2
Bulletin 284G Programmable Parameters for Sensorless Vector Controllers
Parameter Group Listing
The Bulletin 284G ArmorStart contains ten parameter groups. The
parameters shown in the DeviceLogix™, DeviceNet , Starter
Protection , User I/O , Misc. Parameter , Drive DeviceNet , Display
Group, ZIP Parameters, Basic Program, and Advanced Program will
be discussed in this chapter.
Table 4.1
DeviceLogix
1 Hdw Inputs
2 Network Inputs
3 Network Outputs
4 Trip Status
5 Starter Status
6 DNet Status
7 Starter Command
8 Network Override
9 Comm Override
DeviceNet
10 Autobaud Enable
11 Consumed IO Assy
12 Produced IO Assy
13 Prod Assy Word 0
14 Prod Assy Word 1
15 Prod Assy Word 2
16 Prod Assy Word 3
17 Consumed IO Size
18 Produced IO Size
19 Starter COS Mask
20 Net Out COS Mask
21 DNet Voltage
Starter Protection
22 Breaker Type
23 PrFltResetMode
24 Pr Fault Enable
25 Pr Fault Reset
26 StrtrDN FltState
27 StrtrDN FltValue
28 StrtrDN IdlState
29 StrtrDN IdlValue
61 LAST Pr Fault
62 Warning Status
Display Group
ZIP Parameters
Basic Program
101 Output Freq
102 Commanded Freq
103 Output Current
104 Output Voltage
105 DC Bus Voltage
106 Drive Status
107 Fault 1 Code
108 Fault 2 Code
109 Fault 3 Code
110 Process Display
112 Control Source
113 Contrl In Status
114 Dig In Status
115 Comm Status
116 Control SW Ver
117 Drive Type
118 Elapsed Run Time
119 Testpoint Data
120 Analog In 0…10V
121 Analog In 4…20 mA
122 Output Power
123 Output Power Fctr
124 Drive Temp
125 Counter Status
126 Timer Status
127 Timer Stat Fract
128 Stp Logic Status
129 Torque Current
67 AutoRun Zip
68 Zone Produced EPR
69 Zone Produced PIT
70 Zone #1 MacId
71 Zone #2 MacId
72 Zone #3 MacId
73 Zone #4 MacId
74 Zone #1 Health
75 Zone #2 Health
76 Zone #3 Health
77 Zone #4 Health
78 Zone #1 Mask
79 Zone #2 Mask
80 Zone #3 Mask
81 Zone #4 Mask
82 Zone #1 Offset
83 Zone #2 Offset
84 Zone #3 Offset
85 Zone #4 Offset
86 Zone #1 EPR
87 Zone #2 EPR
88 Zone #3 EPR
89 Zone #4 EPR
90 Zone #1 Control
91 Zone #2 Control
92 Zone #3 Control
93 Zone #4 Control
94 Zone #1 Key
95 Zone #2 Key
96 Zone #3 Key
97 Zone #4 Key
98 Device Value Key
99 Zone Ctrl Enable
131 Motor NP Volts
132 Motor NP Hertz
133 Motor OL Current
134 Minimum Freq
135 Maximum Freq
136 Start Source
137 Stop Mode
138 Speed Reference
139 Accel Time 1
140 Decel Time 1
141 Reset To Defalts
142 Reserved
143 Motor OL Ret
.
Paramerer Group Listing
User I/O
Miscellaneous
30 Off-to-On Delay
31 On-to-Off Delay
32 In Sink/Source
45 Keypad Mode
46 Keypad Disable
47 Set To Defaults
56 Base Enclosure
57 Base Options
58 Wiring Options
59 Starter Enclosure
60 Starter Options
151 Digital In1 Sel
152 Digital In2 Sel
153 Digital In3 Sel
154 Digital In4 Sel
155 Relay Out Sel
156 Relay Out Level
157 Relay Out LevelF
158 Opto Out1 Sel
159 Opto Out1 Level
160 Opto Out1 LevelF
161 Opto Out2 Sel
162 Opto Out2 Level
163 DB Threshold
164 Opto Out Logic
165 Analog Out Sel
166 Analog Out High
167 Accel Time 2
168 Decel Time 2
169 Internal Freq
170 Preset Freq 0
171 Preset Freq 1
172 Preset Freq 2
173 Preset Freq 3
174 Preset Freq 4
175 Preset Freq 5
176 Preset Freq 6
177 Preset Freq 7
178 Jog Frequency
179 Jog Accel/Decel
180 DC Brake Time
181 DC Brake Level
182 DB Resistor Sel
183 S Curve %
184 Boost Select
185 Start Boost
186 Break Voltage
187 Break Frequency
188 Maximum Voltage
189 Current Limit 1
190 Motor OL Select
191 PWM Frequency
192 Auto Rstrt Tries
193 Auto Rstrt Delay
194 Start At PowerUp
195 Reverse Disable
196 Flying Start En
197 Compensation
198 SW Current Trip
199 Process Factor
200 Fault Clear
201 Program Lock
202 Testpoint Sel
203 Comm Data Rate
204 Comm Node Addr
205 Comm Loss Action
206 Comm Loss Time
207 Comm Format
208 Language
209 Anlg Out Setpt
210 Anlg In 0…10V Lo
211 Anlg In 0…10V Hi
212 Anlg In 4…20 mA Lo
213 Anlg In4…20 mA Hi
214 Slip Hertz @ FLA
215 Process Time Lo
216 Process Time Hi
217 Bus Reg Mode
218 Current Limit 2
219 Skip Frequency
220 Skip Freq Band
221 Stall Fault Time
222 Analog In Loss
223 10V Bipolar Enbl
224 Var PWM Disable
225 Torque Perf Mode
226 Motor NP FLA
Drive DeviceNet
48 Drive Control
49 Drvin PrFltState
50 Drvin PrFltValue
51 Drvin DNFltState
52 Drvin DNFltValue
53 Drvin DNFltState
54 Drvin DNFltValue
55 High Speed Enable
Advanced Program
227 Autotune
228 IR Voltage Drop
229 Flux Current Ref
230 PID Trim Hi
231 PID Trim Lo
232 PID Ref Sel
233 PID Feedback Sel
234 PID Prop Gain
235 PID Integ Time
236 PID Diff Rate
237 PID Setpoint
238 PID Deadband
239 PID Preload
240 Stp Logic 0
241 Stp Logic 1
242 Stp Logic 2
243 Stp Logic 3
244 Stp Logic 4
245 Stp Logic 5
246 Stp Logic 6
247 Stp Logic 7
248 Reserved
249 Reserved
250 Stp Logic Time 0
251 Stp Logic Time 1
252 Stp Logic Time 2
253 Stp Logic Time 3
254 Stp Logic Time 4
255 Stp Logic Time 5
256 Stp Logic Time 6
257 Stp Logic Time 7
258 Reserved
259 Reserved
260 EM Brk Off Delay
261 EM Brk On Delay
262 MOP Reset Sel
4-3
Bulletin 284G Programmable Parameters for Sensorless Vector Controllers
DeviceLogix Group
This parameter is not available with the Bulletin 284A.
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Hdw Inputs
This parameter provides status of hardware inputs.
1
GET
WORD
DeviceLogix
—
0
15
0
Bit
5
4
3
2
1
0
—
—
—
—
—
X
—
—
—
—
X
—
—
—
—
X
—
—
—
—
X
—
—
—
—
X
—
—
—
—
X
—
—
—
—
—
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Network Inputs
This parameter provides status of network inputs.
Function
Input 0
Input 1
Input 2
Input 3
Input 4
Input 5
2
GET
WORD
DeviceLogix
—
0
65535
0
Bit
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
X
—
—
—
—
—
—
—
—
—
—
—
—
—
—
X
—
—
—
—
—
—
—
—
—
—
—
—
—
—
X
—
—
—
—
—
—
—
—
—
—
—
—
—
—
X
—
—
—
—
—
—
—
—
—
—
—
—
—
—
X
—
—
—
—
—
—
—
—
—
—
—
—
—
—
X
—
—
—
—
—
—
—
—
—
—
—
—
—
—
X
—
—
—
—
—
—
—
—
—
—
—
—
—
—
X
—
—
—
—
—
—
—
—
—
—
—
—
—
—
X
—
—
—
—
—
—
—
—
—
—
—
—
—
—
X
—
—
—
—
—
—
—
—
—
—
—
—
—
—
X
—
—
—
—
—
—
—
—
—
—
—
—
—
—
X
—
—
—
—
—
—
—
—
—
—
—
—
—
—
X
—
—
—
—
—
—
—
—
—
—
—
—
—
—
X
—
—
—
—
—
—
—
—
—
—
—
—
—
—
X
—
—
—
—
—
—
—
—
—
—
—
—
—
—
X
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
Function
Net Input 0
Net Input 1
Net input 2
Net Input 3
Net Input 4
Net Input 5
Net Input 6
Net Input 7
Net Input 8
Net Input 9
Net Input 10
Net Input 11
Net Input 12
Net Input 13
Net Input 14
Net Input 15
4-4
Bulletin 284G Programmable Parameters for Sensorless Vector Controllers
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Network Outputs
This parameter provides status of network outputs.
3
GET
WORD
DeviceLogix
—
0
32767
0
Bit
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
—
—
—
—
—
—
—
—
—
—
—
—
—
—
X
—
—
—
—
—
—
—
—
—
—
—
—
—
X
—
—
—
—
—
—
—
—
—
—
—
—
—
X
—
—
—
—
—
—
—
—
—
—
—
—
—
X
—
—
—
—
—
—
—
—
—
—
—
—
—
X
—
—
—
—
—
—
—
—
—
—
—
—
—
X
—
—
—
—
—
—
—
—
—
—
—
—
—
X
—
—
—
—
—
—
—
—
—
—
—
—
—
X
—
—
—
—
—
—
—
—
—
—
—
—
—
X
—
—
—
—
—
—
—
—
—
—
—
—
—
X
—
—
—
—
—
—
—
—
—
—
—
—
—
X
—
—
—
—
—
—
—
—
—
—
—
—
—
X
—
—
—
—
—
—
—
—
—
—
—
—
—
X
—
—
—
—
—
—
—
—
—
—
—
—
—
X
—
—
—
—
—
—
—
—
—
—
—
—
—
X
—
—
—
—
—
—
—
—
—
—
—
—
—
—
Function
Net Output 0
Net Output 1
Net Output 2
Net Output 3
Net Output 4
Net Output 5
Net Output 6
Net Output 7
Net Output 8
Net Output 9
Net Output 10
Net Output 11
Net Output 12
Net Output 13
Net Output 14
4-5
Bulletin 284G Programmable Parameters for Sensorless Vector Controllers
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Trip Status
This parameter provides trip identification.
4
GET
WORD
DeviceLogix
—
0
65535
0
Bit
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
X
—
—
—
—
—
—
—
—
—
—
—
—
—
—
X
—
—
—
—
—
—
—
—
—
—
—
—
—
—
X
—
—
—
—
—
—
—
—
—
—
—
—
—
—
X
—
—
—
—
—
—
—
—
—
—
—
—
—
—
X
—
—
—
—
—
—
—
—
—
—
—
—
—
—
X
—
—
—
—
—
—
—
—
—
—
—
—
—
—
X
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
X
—
—
—
—
—
—
—
—
—
—
—
—
—
—
X
—
—
—
—
—
—
—
—
—
—
—
—
—
—
X
—
—
—
—
—
—
—
—
—
—
—
—
—
—
X
—
—
—
—
—
—
—
—
—
—
—
—
—
—
X
—
—
—
—
—
—
—
—
—
—
—
—
—
—
X
—
—
—
—
—
—
—
—
—
—
—
—
—
—
X
—
—
—
—
—
—
—
—
—
—
—
—
—
—
X
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
X
—
—
—
—
—
—
—
➊ Indicates DB1 Comm Fault for Bulletin 284G.
Function
Short Circuit
Overload
Phase Short
Ground Fault
Stall
Control Power
IO Fault
Overtemperature
Over Current
Dnet Power Loss
Internal Comm ➊
DC Bus Fault
EEprom
HW Fault
Restart Retries
Misc. Fault
4-6
Bulletin 284G Programmable Parameters for Sensorless Vector Controllers
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Starter Status
This parameter provides the status of the starter.
5
GET
WORD
DeviceLogix
—
0
65535
0
Bit
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
X
—
—
—
—
—
—
—
—
—
—
—
—
—
—
X
—
—
—
—
—
—
—
—
—
—
—
—
—
—
X
—
—
—
—
—
—
—
—
—
—
—
—
—
—
X
—
—
—
—
—
—
—
—
—
—
—
—
—
—
X
—
—
—
—
—
—
—
—
—
—
—
—
—
—
X
—
—
—
—
—
—
—
—
—
—
—
—
—
—
X
—
—
—
—
—
—
—
—
—
—
—
—
—
—
X
—
—
—
—
—
—
—
—
—
—
—
—
—
—
X
—
—
—
—
—
—
—
—
—
—
—
—
—
—
X
—
—
—
—
—
—
—
—
—
—
—
—
—
—
X
—
—
—
—
—
—
—
—
—
—
—
—
—
—
X
—
—
—
—
—
—
—
—
—
—
—
—
—
—
X
—
—
—
—
—
—
—
—
—
—
—
—
—
—
X
—
—
—
—
—
—
—
—
—
—
—
—
—
—
X
—
—
—
—
—
—
—
—
—
—
—
—
—
—
X
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
➊ Refers to Control Brake contactor status.
Function
Tripped
Warning
Running Fwd
Running Rev
Ready
Net Ctl Status
Net Ref Status
At Reference
DrvOpto1
DrvOpto2
Keypad Jog
Keypad Hand
HOA Status
140M On
Contactor 1 ➊
Reserved
4-7
Bulletin 284G Programmable Parameters for Sensorless Vector Controllers
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Dnet Status
This parameter provides status of the DeviceNet connection.
6
GET
WORD
DeviceLogix
—
0
31
0
Bit
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
—
—
—
—
—
—
—
—
—
—
—
—
—
X
—
—
—
—
—
—
—
—
—
—
—
—
X
—
—
—
—
—
—
—
—
—
—
—
—
X
—
—
—
—
—
—
—
—
—
—
—
—
X
—
—
—
—
—
—
—
—
—
—
—
—
X
—
—
—
—
—
—
—
—
—
—
—
—
X
—
—
—
—
—
—
—
—
—
—
—
—
X
—
—
—
—
—
—
—
—
—
—
—
—
X
—
—
—
—
—
—
—
—
—
—
—
—
X
—
—
—
—
—
—
—
—
—
—
—
—
—
X
—
—
—
—
—
—
—
—
—
—
—
—
—
X
—
—
—
—
—
—
—
—
—
—
—
—
X
—
—
—
—
—
—
—
—
—
—
—
—
X
—
—
—
—
—
—
—
—
—
—
—
—
X
—
—
—
—
—
—
—
—
—
—
—
—
X
—
—
—
—
—
—
—
—
—
—
—
—
X
—
—
—
—
—
—
—
—
—
—
—
—
—
Starter Command
This parameter provides the command the starter.
Function
Exp Cnxn
IO Cnxn
Exp Flt
IO Flt
IO Idle
Reserved
ZIP 1 Cnxn
ZIP 1 Flt
ZIP 2 Cnxn
ZIP 2 Flt
ZIP 3 Cnxn
ZIP 3 Flt
ZIP 4 Cnxn
ZIP 4 Flt
Parameter Number
7
Access Rule
GET/SET
Data Type
WORD
Group
DeviceLogix
Units
—
Minimum Value
0
Maximum Value
255
Default Value
0
Bit
7
6
5
4
3
2
1
0
—
—
—
—
—
—
—
X
—
—
—
—
—
—
X
—
—
—
—
—
—
X
—
—
—
—
—
—
X
—
—
—
—
—
—
X
—
—
—
—
—
—
X
—
—
—
—
—
—
X
—
—
—
—
—
—
X
—
—
—
—
—
—
—
Function
Run Fwd
Run Rev
Fault Reset
Jog Fwd
Jog Rev
Reserved
Reserved
Reserved
4-8
Bulletin 284G Programmable Parameters for Sensorless Vector Controllers
Network Override
This parameter allows for the local logic to override a Network fault.
0 = Disable
1 = Enable
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
8
GET/SET
BOOL
DeviceLogix
—
0
1
0
Comm Override
This parameter allows for local logic to override a loss of an I/O connection.
0 = Disable
1 = Enable
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
9
GET/SET
BOOL
DeviceLogix
—
0
1
0
Autobaud Enable
When this parameter is enabled, the device will attempt to determine the network
baud rate and set its baud rate to the same, provided network traffic exists. At least
one node with an established baud rate must exist on the network for autobaud to
occur.
0 = Disable
1 = Enable
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
10
GET/SET
BOOL
DeviceNet
—
0
1
1
Consumed I/O Assy
This parameter selects the format of the I/O data consumed
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
11
GET/SET
USINT
DeviceNet
—
0
188
164
Produced I/O Assy
This parameter selects the format of the I/O data produced.
Parameter Number
12
Access Rule
GET/SET
Data Type
USINT
Group
DeviceNet
Units
—
DeviceNet Group
Minimum Value
0
Maximum Value
190
Default Value
165
4-9
Bulletin 284G Programmable Parameters for Sensorless Vector Controllers
Prod Assy Word 0
This parameter is used to build bytes 0-1 for produced assembly 120.
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
13
GET/SET
USINT
DeviceNet
—
0
262
1
Produced Assy Word 1
This parameter is used to build bytes 2-3 for produced assembly 120
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
14
GET/SET
USINT
DeviceNet
—
0
262
4
Prod Assy Word 2
This parameter is used to build bytes 4-5 for produced assembly 120.
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
15
GET/SET
USINT
DeviceNet
—
0
262
5
Prod Assy Word 3
This parameter is used to build bytes 6-7 for produced assembly 120.
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
16
GET/SET
USINT
DeviceNet
—
0
262
6
Consumer I/O Size
This parameter maps to the Scanner Tx Size.
Parameter Number
17
Access Rule
GET
Data Type
USINT
Group
DeviceNet
Units
—
Minimum Value
0
Maximum Value
8
Default Value
4
4-10
Bulletin 284G Programmable Parameters for Sensorless Vector Controllers
Parameter Number
Produced I/O Size
This parameter maps to the Scanners Rx Size.
Starter COS Mask
This parameter allows the installer to define the change-of-state conditions that will
result in a change-of-state message being produced.
18
Access Rule
GET
Data Type
USINT
Group
DeviceNet
Units
—
Minimum Value
0
Maximum Value
8
Default Value
4
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
19
GET/SET
WORD
DeviceNet
—
0
16383
16383
Bit
13
12
11
10
9
8
7
6
5
4
3
2
1
0
—
—
—
—
—
—
—
—
—
—
—
—
—
X
—
—
—
—
—
—
—
—
—
—
—
—
X
—
—
—
—
—
—
—
—
—
—
—
—
X
—
—
—
—
—
—
—
—
—
—
—
—
X
—
—
—
—
—
—
—
—
—
—
—
—
X
—
—
—
—
—
—
—
—
—
—
—
—
X
—
—
—
—
—
—
—
—
—
—
—
—
X
—
—
—
—
—
—
—
—
—
—
—
—
X
—
—
—
—
—
—
—
—
—
—
—
—
X
—
—
—
—
—
—
—
—
—
—
—
—
X
—
—
—
—
—
—
—
—
—
—
—
—
X
—
—
—
—
—
—
—
—
—
—
—
—
X
—
—
—
—
—
—
—
—
—
—
—
—
X
—
—
—
—
—
—
—
—
—
—
—
—
X
—
—
—
—
—
—
—
—
—
—
—
—
—
Function
Tripped
Warning
Running Fwd
Running Rev
Ready
Net Ctl Status
140M On
At Reference
User Input 0
User Input 1
User Input 2
User Input 3
User Input 4
User Input 5
4-11
Bulletin 284G Programmable Parameters for Sensorless Vector Controllers
Net Out COS Mask
This parameter sets the bit that will trigger a COS message on the network output.
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
20
GET/SET
WORD
DeviceNet
—
0
32767
0
Bit
Function
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
—
—
—
—
—
—
—
—
—
—
—
—
—
—
X
Net Output 0
—
—
—
—
—
—
—
—
—
—
—
—
—
X
—
Net Output 1
—
—
—
—
—
—
—
—
—
—
—
—
X
—
—
Net Output 2
—
—
—
—
—
—
—
—
—
—
—
X
—
—
—
Net Output 3
—
—
—
—
—
—
—
—
—
—
X
—
—
—
—
Net Output 4
—
—
—
—
—
—
—
—
—
X
—
—
—
—
—
Net Output 5
—
—
—
—
—
—
—
—
X
—
—
—
—
—
—
Net Output 6
—
—
—
—
—
—
—
X
—
—
—
—
—
—
—
Net Output 7
—
—
—
—
—
—
X
—
—
—
—
—
—
—
—
Net Output 8
—
—
—
—
—
X
—
—
—
—
—
—
—
—
—
Net Output 9
—
—
—
—
X
—
—
—
—
—
—
—
—
—
—
Net Output 10
—
—
—
X
—
—
—
—
—
—
—
—
—
—
—
Net Output 11
—
—
X
—
—
—
—
—
—
—
—
—
—
—
—
Net Output 12
—
X
—
—
—
—
—
—
—
—
—
—
—
—
—
Net Output 13
X
—
—
—
—
—
—
—
—
—
—
—
—
—
—
Net Output 14
Dnet Voltage
This parameter provides the voltage measurement for the DeviceNet network.
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
21
GET
UINT
DeviceNet
V
0
6500
0
4-12
Bulletin 284G Programmable Parameters for Sensorless Vector Controllers
Starter Protection Group
Breaker Type
This parameter identifies the Bulletin 140M used in this product.
0 = 140M-D8N-C10
1 = 140M-D8N-C25
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
22
GET
BOOL
Starter Protection
—
0
1
—
PrFlt Reset Mode
This parameter is the Protection Fault reset mode.
0 = Manual
1 = Automatic
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
23
GET/SET
BOOL
Starter Protection
—
0
1
0
Pr Fault Enable
This parameter enables the Protection Fault by setting the bit to 1.
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
24
GET/SET
WORD
Starter Protection
—
0
65535
64927
Bit
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
X
—
—
—
—
—
—
—
—
—
—
—
—
—
—
X
—
—
—
—
—
—
—
—
—
—
—
—
—
—
X
—
—
—
—
—
—
—
—
—
—
—
—
—
—
X
—
—
—
—
—
—
—
—
—
—
—
—
—
—
X
—
—
—
—
—
—
—
—
—
—
—
—
—
—
X
—
—
—
—
—
—
—
—
—
—
—
—
—
—
X
—
—
—
—
—
—
—
—
—
—
—
—
—
—
X
—
—
—
—
—
—
—
—
—
—
—
—
—
—
X
—
—
—
—
—
—
—
—
—
—
—
—
—
—
X
—
—
—
—
—
—
—
—
—
—
—
—
—
—
X
—
—
—
—
—
—
—
—
—
—
—
—
—
—
X
—
—
—
—
—
—
—
—
—
—
—
—
—
—
X
—
—
—
—
—
—
—
—
—
—
—
—
—
—
X
—
—
—
—
—
—
—
—
—
—
—
—
—
—
X
—
—
—
—
—
—
—
—
—
—
—
—
—
—
X
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
Function
Short Circuit
Overload
Phase Short
Ground Fault
Stall
Control Power
IO Fault
Overtemperature
Over Current
Dnet Power Loss
Internal Comm
DC Bus Fault
EEprom
HW Fault
Restart Retries
Misc. Fault
4-13
Bulletin 284G Programmable Parameters for Sensorless Vector Controllers
Pr Fault Reset
This parameter resets the Protection Fault on a transition 0 > 1.
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
25
GET/SET
BOOL
Starter Protection
—
0
1
0
StrtrDN FltState
This parameter in conjunction with Parameter 27 defines how the starter will
respond when a DeviceNet fault occurs. When set to 1, hold to last state occurs.
When set to 0, will go to DnFlt Value on DN faults as determined by Parameter 27.
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
26
GET/SET
BOOL
Starter Protection
—
0
1
0
StrtrDN FltValue
This parameter determines if the starter will be commanded in the event of a
DevceNet fault.
0 = OFF
1 = ON
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
27
GET/SET
BOOL
Starter Protection
—
0
1
0
StrtrDN IdlState
This parameter in conjunction with Parameter 29 defines how the starter will respond
when a DeviceNet network is idle. When set to 1, hold to last state occurs. When set
to 0, will go to DnFlt Value on DN faults as determined by Parameter 29.
0 = Go to Idle Value
1 = Hold Last State
Parameter Number
28
Access Rule
GET/SET
Data Type
BOOL
Group
Starter Protection
Units
—
StrtrDN IdlValue
This parameter determines the state that starter assumes when the network is idle
and Parameter 28 is set to 0.
0 = OFF
1 = ON
Minimum Value
0
Maximum Value
1
Default Value
0
Parameter Number
29
Access Rule
GET/SET
Data Type
BOOL
Group
Starter Protection
Units
—
Minimum Value
0
Maximum Value
1
Default Value
0
4-14
Bulletin 284G Programmable Parameters for Sensorless Vector Controllers
Last PR Fault
1 =Hdw Short Ckt
2 = Reserved
3 =Motor Overload (PF Fault Code 7)
4 =Drive Overload (PF Fault Code 64)
5 = Phase U to Gnd (PF Fault Code 38)
6 = Phase V to Gnd (PF Fault Code 39)
7 = Phase W to Gnd (PF Fault Code 40)
8 = Phase UV Short (PF4 Fault Code 41)
9 = Phase UW Short (PF Fault Code 42)
10 = Phase VW Short (PF Fault Code 43)
11 = Ground Fault
(PF Fault Code 13)
12 = Stall
(PF Fault Code 6)
13 = Control Pwr Loss
14 = Control Pwr Fuse
15 = Input Short
16 = Output Fuse
17 = Over Temp
18 = Heatsink OvrTmp (PF Fault Code 8)
19 = HW OverCurrent (PF Fault Code 12)
20 = SW OverCurrent (PF Fault Code 63)
21 = DNet Power Loss
22 = Internal Comm
23 = Drive Comm Loss (PF Fault Code 81)
24 = Power Loss
(PF Fault Code 3)
25 = Under Voltage
(PF Fault Code 4)
26 = Over Voltage
(PF Fault Code 5)
27 = MCB EEPROM
28 = Base EEPROM
29 =Drive EEPROM
(PF Fault Code 100)
30 = Wrong Base
31 = Fan RPM
32 = Power Unit
(PF Fault Code 70)
33 = Drive IO Brd
(PF Fault Code122)
34 = Restart Retries
(PF Fault Code 33)
35 = Drive Aux In Flt
(PF Fault Code 2)
36 = Analog Input
(PF Fault Code 29)
37 = Drv Param Reset (PF Fault Code 48)
38 = SCV Autotune
(PF Fault Code 80)
39 = Source Brake
40 = Reserved
41 = DB1 Comm
42 = DB1 Fault
43 = DB Switch Short
Warning Status
This parameter warns the user of a condition, without faulting
Parameter Number
61
Access Rule
GET
Data Type
UINT
Group
Starter Protection
Units
—
Minimum Value
0
Maximum Value
45
Default Value
0
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
62
GET
WORD
Starter Protection
—
0
65535
0
4-15
Bulletin 284G Programmable Parameters for Sensorless Vector Controllers
User I/O Group
Off-to-On Delay
This parameter allows the installer to program a time duration before being reported
ON.
On-to-Off Delay
This parameter allows the installer to program a time duration before being reported
OFF.
In Sink/Source
This parameter allows the installer to program the inputs to be sink or source.
0 = Sink
1 = Source
Parameter Number
30
Access Rule
GET/SET
Data Type
UINT
Group
User I/O
Units
ms
Minimum Value
0
Maximum Value
65.000
Default Value
0
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
31
GET/SET
UINT
User I/O
ms
0
65.000
0
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
32
GET/SET
BOOL
User I/O
—
0
1
0
4-16
Bulletin 284G Programmable Parameters for Sensorless Vector Controllers
Miscellaneous Group
Keypad Mode
This parameter selects if the keypad operation is maintained or momentary.
0 = Maintained
1 = Momentary
Parameter Number
45
Access Rule
GET/SET
Data Type
BOOL
Group
Misc.
Units
—
Minimum Value
0
Maximum Value
1
Default Value
0
Keypad Disable
This parameter disables all keypad function except for the OFF and RESET buttons.
0 = Not Disabled
1 = Disabled
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
46
GET/SET
BOOL
Misc.
—
0
1
0
Set to Defaults
This parameter if set to 1 will set the device to the factory defaults.
0 = No Operation
1 = Set to Defaults
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
47
GET/SET
BOOL
Misc.
—
0
1
0
Base Enclosure
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
56
GET
WORD
Misc.
—
0
15
0
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
57
GET
WORD
Misc.
—
0
15
Default Value
0
Indicates the ArmorStart Base unit enclosure rating
0 = IP67
1 = Nema 4X
2 = SIL3/CAT4
3-15 = Reserved
Base Options
Indicates the options for the ArmorStart Base unit
Bit 0 = Reserved
Bit 1 = Reserved
Bit 2 = CP Fuse Detect
Bits 3-7 = Reserved
Bit 8 = 10A Base
Bit 9 = 25A Base
Bit 10-15 = Reserved
4-17
Bulletin 284G Programmable Parameters for Sensorless Vector Controllers
Wiring Options
Bit 0 = Conduit
Bit 1 = Round Media
Bits 2 = 28xG
Bits 3-15 = Reserved
Starter Enclosure
Bit 0 = IP67
Bit 1 = NEMA 4x
Bit 2 = SIL3/CAT4
Bits 3-15 reserved
Starter Option
Bit 0 = Reserved
Bit 1 = Reserved
Bit 2 = Reserved
Bit 3 = Control Brake
Bit 4 = Dynamic Brake
Bit 5 = Reserved
Bit 6 = Reserved
Bit 7 = Reserved
Bits 8-15 = Reserved
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
58
GET
WORD
Misc.
—
0
15
0
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
59
GET
WORD
Misc.
—
0
15
0
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
60
GET
WORD
Misc.
—
0
66535
Default Value
0
4-18
Bulletin 284G Programmable Parameters for Sensorless Vector Controllers
Drive DeviceNet Group
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Drive Control
This parameter provides the status of drive parameters.
48
GET
WORD
Drive DeviceNet
—
0
4095
0
Bit
11
10
9
8
7
6
5
4
3
2
1
0
Function
—
—
—
—
—
—
—
—
—
—
—
X
Accel 1 En
—
—
—
—
—
—
—
—
—
—
X
—
Accel 2 En
—
—
—
—
—
—
—
—
—
X
—
—
Decel 1 En
—
—
—
—
—
—
—
—
X
—
—
—
Decel 3 En
—
—
—
—
—
—
—
X
—
—
—
—
Freq Sel 0
—
—
—
—
—
—
X
—
—
—
—
—
Freq Sel 1
—
—
—
—
—
X
—
—
—
—
—
—
Freq Sel 2
—
—
—
—
X
—
—
—
—
—
—
—
Reserved
—
—
—
X
—
—
—
—
—
—
—
—
Drv In 1
—
—
X
—
—
—
—
—
—
—
—
—
Drv In 2
—
X
—
—
—
—
—
—
—
—
—
—
Drv In 3
X
—
—
—
—
—
—
—
—
—
—
—
Drv In 4
Drvin PrFltState
This parameter, in conjunction with Parameter 50, defines how the Drive Digital
Inputs 1…4 will respond when a protection trip occurs. When set to 1, Drive Digital
Inputs 1…4 continue to operate as command via the network. When set to 0, Drive
Digital Inputs 1…4 will open or close as determined by setting in Parameter 50.
0 = Go to PrFlt Value
1 = Ignore PrFlt
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
49
GET/SET
BOOL
Drive DeviceNet
—
0
1
0
Drvin PrFltValue
This parameter determines the state of Drive Digital Inputs 1…4, assumes when a
trip occurs and Parameter 49 is set to 0.
0 = Open
1 = Close
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
50
GET/SET
BOOL
Drive DeviceNet
—
0
1
0
4-19
Bulletin 284G Programmable Parameters for Sensorless Vector Controllers
Drvin DNFltState
This parameter, in conjunction with Parameter 52, defines how the Drive Digital
Inputs 1…4 will respond when a DeviceNet fault occurs. When set to 1, Drive
Digital Inputs 1…4 hold to last state occurs. When set to 0, will go to DnFlt Value on
DN faults as determined by Parameter 52.
0 = Go to Fault Value
1 = Hold Last State
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
51
GET/SET
BOOL
Drive DeviceNet
—
0
1
0
Drvin DNFlt Value
This parameter determines the state of Drive Digital Inputs 1…4 when a DeviceNet
Fault occurs and Parameter 51 is set to 0.
0 = OFF
1 = ON
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
52
GET/SET
BOOL
Drive DeviceNet
—
0
1
0
Drvin DNIdlState
This parameter, in conjunction with Parameter 54, defines how the Drive Digital
Input 1…4 will respond when a DeviceNet network is idle. When set to 1, hold to
last state occurs. When set to 0, will go to DnFlt Value on DN faults as determined
by Parameter 54.
0 = Go to Fault Value
1 = Hold Last State
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
53
GET/SET
BOOL
Drive DeviceNet
—
0
1
0
StrtrDN IdlValue
This parameter determines the state that Drive Digital Inputs 1…4 assume when
the network is idle and Parameter 53 is set to 0.
0 = OFF
1 = ON
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
54
GET/SET
BOOL
Drive DeviceNet
—
0
1
0
High Speed En
0 = Disabled
1 = Enabled
Parameter Number
55
Access Rule
GET/SET
Data Type
BOOL
Group
Drive DeviceNet
Units
—
Minimum Value
0
Maximum Value
1
Default Value
0
4-20
Bulletin 284G Programmable Parameters for Sensorless Vector Controllers
Display Group
Output Freq
Output frequency present at T1, T2, T3.
Parameter Number
Related Parameters
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
101
102, 110, 134, 135, 138
GET
UINT
Display Group
0.1 Hz
0.0
400.0 Hz
Read Only
Commanded Freq
Value of the active frequency command. Displays the commanded frequency even if
the drive is not running.
Parameter Number
Related Parameters
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
102
101, 113, 134, 135, 138
GET
UINT
Display Group
0.1 Hz
0.0
400.0 Hz
Read Only
Output Current
Output Current present at T1, T2, T3.
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
103
GET
UINT
Display Group
0.01
0.00
Drive rated amps x 2
Read Only
Output Voltage
Output Current present at T1, T2, T3.
Parameter Number
Related Parameters
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
104
131, 184, 188
GET
UINT
Display Group
1V AC
0
230V, 460V, or 600V AC
Read Only
DC Bus Voltage
Present DC Bus voltage level.
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
105
GET
UINT
Display Group
1V DC
Based on Drive Rating
Read Only
4-21
Bulletin 284G Programmable Parameters for Sensorless Vector Controllers
Drive Status
Present operating condition of the drive.
Bit 0 = running
Bit 1 = Forward
Bit 2 = Accelerating
Bit 3 = Decelerating
Parameter Number
106
Related Parameter
195
Access Rule
GET
Data Type
Byte
Group
Display Group
Units
—
Minimum Value
0
Maximum Value
1
Default Value
Read Only
Fault 1 Code
A code that represents drive fault. The code will appear in this parameter as the
most recent fault that has occurred.
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
107
GET
UINT
Display Group
—
F122
F2
Read Only
Fault 2 Code
A code that represents a drive fault. The code will appear in this parameter as the
second most recent fault that has occurred.
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
108
GET
UINT
Display Group
—
F122
F2
Read Only
Fault 3 Code
A code that represents a drive fault. The code will appear in this parameter as the
third most recent fault that has occurred.
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
109
GET
UINT
Display Group
—
F122
F2
Read Only
Process Display
The output frequency scaled by the process factor (Parameter 199).
Parameter Number
Related Parameter
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
110
101. 199
GET
LINT
Display Group
0.01…1
0.00
9999
Read Only
4-22
Bulletin 284G Programmable Parameters for Sensorless Vector Controllers
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
112
136, 138, 151…154 (Digital
Inx Sel) must be set to 4, 169,
170…177 (Preset Freq X),
240…247 (Step Logic
Control)
GET
UINT
Display Group
1
0
9
Default Value
5
Contrl In Status
Status of the control terminal block control inputs:
Bit 0 = Start/Run FWD input
Bit 1 = Direction/Run REV Input
Bit 2 = Stop Input
Bit 3 = Dynamic Brake Transistor On
Parameter Number
Related Parameter
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
113
102, 134, 135
GET
UINT
Display Group
1
0
1
0
Dig In Status
Status of the control terminal block digital inputs:
Bit 0 = Digital IN 1 Sel
Bit 1 = Digital IN 2 Sel
Bit 2 = Digital IN 3 Sel
Bit 3 = Digital IN 4 Sel
Parameter Number
Related Parameter
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
114
151…154
GET
UINT
Display Group
1
0
1
0
Comm Status
Status of communications ports:
Bit 0 = Receiving Data
Bit 1 = Transmitting Data
Bit 2 = RS485
Bit 3 = Communication Error
Parameter Number
Related Parameter
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
115
203…207
GET
UINT
Display Group
1
0
1
0
Control Source
Displays the source of the Start Command and Speed Reference.
Valid Start Commands for the Bulletin 284G ArmorStart are the following:
2 = 2-wire
3 = 2-wire Level Sensitive
4 = 2-wire High Speed
5 = RS485 (DSI) Port
9 = Jog
Valid Speed Commands for the Bulletin 284G ArmorStart are the following:
1 = Internal Frequency
2 = 0…10V Input/Remote Potentiometer
4 = Preset Freq X
5 = RS485 (DSI) port
6 = Step Logic Control
9 = Jog Freq
Related Parameters
4-23
Bulletin 284G Programmable Parameters for Sensorless Vector Controllers
Control SW Ver
Main Control Board software version for AC Drive.
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
116
GET
UINT
Display Group
0.01
1.00
99.99
Read Only
Drive Type
Used by Rockwell Automation field service personnel.
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
117
GET
UINT
Display Group
1
1001
9999
Read Only
Elapsed Run Time
Accumulated time drive is outputting power. Time is displayed in 10 hour
increments.
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
118
GET
UINT
Display Group
1 = 10 hrs
0
9999
Read Only
Testpoint Data
The present value of the function selected in Parameter 202.
Parameter Number
Related Parameter
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
119
202
GET
UINT
Display Group
1 Hex
0
FFFF
Read Only
Analog In 0…10V
The percent value of the voltage at I/O terminal 13 (100% = 10V).
Parameter Number
Related Parameter
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
120
210, 211
GET
UINT
Display Group
0.1%
0.0%
100.0%
Read Only
Parameter Number
121
Analog In 4…20 mA
This parameter is not available for use with the Bulletin 284G ArmorStart
Distributed Motor Controller.
4-24
Bulletin 284G Programmable Parameters for Sensorless Vector Controllers
Output Power
The output power present at T1, T2, and T3.
Output Power Fctr
The angle in electrical degrees between motor voltage and current.
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
122
GET
UINT
0.00
Drive rated power X 2
Read Only
Parameter Number
123
Display Group
Access Rule
GET
Data Type
UINT
Group
Display Group
Units
0.1°
Minimum Value
0.0°
Maximum Value
180.0°
Default Value
Read Only
Drive Temp
Present operating temperature of the drive power section.
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
124
GET
UINT
Display Group
1°C
0
120
Read Only
Counter Status
The current value of the counter when counter is enabled.
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
125
GET
UINT
Display Group
1
0
9999
Read Only
Timer Status
The current value of the timer when timer is enabled.
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
126
GET
UINT
Display Group
0.1 sec
0
9999
Read Only
4-25
Bulletin 284G Programmable Parameters for Sensorless Vector Controllers
Stp Logic Status
When Parameter 138 (Speed Reference) is set to 6 Stp Logic, this parameter will
display the current step of step logic as defined by Parameters 240…247 (Stp
Logic X).
Torque Current
The current value of the motor torque current.
Parameter Number
128
Access Rule
GET
Data Type
UINT
Group
Display Group
Units
1
Minimum Value
0
Maximum Value
8
Default Value
Read Only
Parameter Number
129
Related Parameters
Access Rule
GET
Data Type
UINT
Group
Display Group
Units
0.01
Minimum Value
0.00
Maximum Value
Drive Rated Amps x 2
Default Value
Read Only
Parameter Number
Related Parameters
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
131
104, 184, 185…187
GET/SET
UINT
Basic Program
1V AC
20
240V, 460V, or 600V AC
Based on Drive Rating
Parameter Number
Related Parameters
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
132
184, 185…187, and 190
GET/SET
UINT
Basic Program
1 Hz
15
400
60 Hz
Basic Program Group
Motor NP Volts
Stop drive before changing this parameter.
Set to the motor name plate rated volts.
Motor NP Hertz
Set to the motor nameplate rated frequency.
Stop drive before changing this parameter.
4-26
Bulletin 284G Programmable Parameters for Sensorless Vector Controllers
Motor OL Current
Set to the maximum allowable current. The drive fault on an F7 Motor Over load if
the value of this parameter is exceeded by 150% for 60 seconds.
Parameter Number
Related Parameter
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Minimum Freq
Sets the lowest frequency the drive will output continuously.
Parameter Number
Related Parameter
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Maximum Freq
Stop drive before changing this parameter.
Sets the Highest frequency the drive will output continuously.
Start Source
Stop drive before changing this parameter.
Sets the control scheme used to start the Bulletin 284G ArmorStart.
2 = 2-wire
3 = 2-wire Level Sensitive
4 = 2-wire High Speed
5 = RS485 (DSI) Port
Parameter Number
133
155, 158, 161, 189, 190, 198,
214, 218
GET/SET
UINT
Basic Program
0.1 A
0.0
Drive rated amps x 2
Based on Drive Rating
134
101, 102, 113, 135, 185, 186,
187, 210, 212
GET/SET
UINT
Basic Program
0.1 Hz
0.0
400
0.0
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
135
101, 102, 113, 134, 135, 178,
185, 186, 187, 211, 213
GET/SET
UINT
Basic Program
0.1 Hz
0.0
400
60.0
Parameter Number
Related Parameters
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
136
112 and 137
GET/SET
UINT
Basic Program
—
0
5
5
Related Parameter
4-27
Bulletin 284G Programmable Parameters for Sensorless Vector Controllers
Stop Mode
Valid Stop Mode for the Bulletin 284G ArmorStart are the following:
0 = Ramp, CF Ramp to Stop. Stop command clears active fault.
1 = Coast, CF Coast to Stop. Stop command clears active fault.
2 = DC Brake,CF DC Injection Braking Stop. Stop command clears active fault.
3 = DCBrkAuto, CF DC injection Braking with Auto Shutoff.
Standard DC Injection Braking for value set in Parameter 180 (DC Brake Time) or
Drive shuts off if the drive detects that the motor is stopped. Stop command clears
active fault
4 = Ramp Ramp to Stop
5 = Coast Coast to Stop
6 = DC Brake DC Injection Braking Stop
7 = DC BrakeAuto DC Injection Stop with Auto Shutoff.
Standard DC Injection Braking for value set in Parameter 180 (DC Brake Time)
or
Drive shuts off if current limit is exceeded
8 = Ramp + EM B, CF Ramp to Stop with EM Brake Control. Stop command clears
active fault.
9 = Ramp + EM Brk Ramp to Stop with EM Brake Control.
Speed Reference
Valid Speed References for the Bulletin 284G ArmorStart are the following:
1 = Internal Freq
2 = 0…10V Input
4 = Preset Freq
5 = Comm port
6 = Stp Logic
9 = Jog Freq
Note: Option 2 must be selected when using 0…10V Analog Input.
Accel Time 1
Sets the rate of acceleration for all speed increases.
Maximum
Freq- = Accel Rate
------------------------------------Accel Time
Parameter Number
137
Related Parameters
136, 180, 181, 182, 205, 260,
261
Access Rule
GET/SET
Data Type
UINT
Group
Basic Program
Units
—
Minimum Value
0
Maximum Value
9
Default Value
9
Parameter Number
138
101, 102, 112, 139, 140, 151,
152, 153, 154, 169,
170…173, 174…177, 210,
211, 213, 232, 240…247,
and 250…257
GET/SET
UINT
Basic Program
—
0
7
5
Related Parameters
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Parameter Number
139
Related Parameters
138, 140, 151, 152, 153, 154,
167, 170…173, 174…177,
and 240…247
Access Rule
GET/SET
Data Type
UINT
Group
Basic Program
Units
0.1 sec
Minimum Value
0.0 sec
Maximum Value
600.0 sec
Default Value
10.0 sec
4-28
Bulletin 284G Programmable Parameters for Sensorless Vector Controllers
Decel Time 1
Sets the rate of deceleration for all speed decreases.
Maximum
Freq- = Decel Rate
------------------------------------Decel Time
Reset To Defaults
Stop drive before changing this parameter.
Resets all parameter values to factory defaults.
0 = Ready/Idle (Default)
1 = Factory Rset
Motor OL Ret
Enables/disables the Motor overload Retention function. When Enabled, the value
held in the motor overload counter is saved at power-down and restored at powerup. A change to this parameter setting resets the counter.
0 = Disabled (Default)
1 = Enabled
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
140
138, 139, 151, 152, 153, 154,
168, 170…173, 174…177,
and 240…247
GET/SET
UINT
Basic Program
0.1 sec
0.1 sec
600.0 sec
10.0 sec
Parameter Number
141
Access Rule
GET/SET
Data Type
BOOL
Group
Basic Program Group
Units
—
Related Parameters
Minimum Value
1
Maximum Value
1
Default Value
0
Parameter Number
143
Access Rule
GET/SET
Data Type
BOOL
Group
Basic Program Group
Units
—
Minimum Value
0
Maximum Value
1
Default Value
0
Parameter Number
151, 152, 153, 154
112, 114, 138…140, 167,
168, 170…173, 174…177,
178, 179, 240…247
GET/SET
UINT
Advanced Program Group
Advanced Program Group
151 (Digital In 1 SEL)
152 (Digital In 2 SEL)
153 (Digital In 3 SEL)
154 (Digital In 4 SEL)
Stop drive before changing this parameter.
Selects the function for the digital inputs.
Related Parameters
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
See Table 4.2 for details
Bulletin 284G Programmable Parameters for Sensorless Vector Controllers
Table 4.2
Options
0
Not Used
1
Acc & Dec2
2
Jog
3
Aux Fault
Preset Freq
(Parameters 151
and 152 Default)
Local (Parameter
153 Default)
Comm Port
Clear Fault
RampStop,CF
CoastStop,CF
DCInjStop,CF
Jog Forward
(Parameter 154
Default)
4
5
6
7
8
9
10
11
12
Jog Reverse
13
10V In Ctrl
14
15
16
17
18
19
20
21
22
20MA In Ctrl
PID Disable
MOP Up
MOP Down
Timer Start
Counter In
Reset Timer
Reset Countr
Rset Tim&Cnt
23
Logic In1
24
Logic In2
25
Current Lmt2
26
Anlg Invert
4-29
Digital Inputs Options
Description
Terminal has no function but can be read over network communication via Parameter 114 (Dig In Status).
• When active, Parameter 167 (Accel Time 2) and Parameter 168 (Decel Time 2) are used for all ramp rates
except Jog.
• Can only be tied to one input.
• When input is present, drive accelerates according to the value set in Parameter 179 (Jog Accel/Decel) and
ramps to the value set in Parameter 178 (Jog Frequency).
• When the input is removed, drive ramps to a stop according to the value set in Parameter 179 (Jog Accel/
Decel).
• A valid Start command will override this input.
When enable, an F2 Auxiliary Input fault will occur when the input is removed.
Refer to Parameters 170…173 and 174…177.
Option not valid for Bulletin 284G ArmorStart.
This option is the default setting.
When active, clears active fault.
Causes drive to immediately ramp to stop regardless of how Parameter 137 (Stop Mode) is set.
Causes drive to immediately ramp to stop regardless of how Parameter 137 (Stop Mode) is set.
Causes drive to immediately begin a DC Injection stop regardless of how Parameter 137 (Stop Mode) is set.
Drive accelerates to Parameter 178 (Jog Frequency) according to Parameter 179 (Jog Accel/Decel) and ramps to
stop when input becomes inactive. A valid start will override this command.
Drive accelerates to Parameter 178 (Jog Frequency) according to Parameter 179 (Jog Accel/Decel) and ramps to
stop when input becomes inactive. A valid start will override this command.
Option with Factory Installed option — A10 (0…10V Analog Input). Selects 0…10V or +/-10V as the frequency
reference. Start source is not changed.
Option not valid for Bulletin 284G ArmorStart.
Disabled PID function. Drive uses the next valid non-PID speed reference.
Increases the value of Parameter 169 (internal Freq) at a rate 2 Hz per second. Default of Parameter 169 is 60 Hz.
Decreases the value of Parameter 169 (internal Freq) at a rate 2 Hz per second. Default of Parameter 169 is 60 Hz.
Clears and starts the timer function. May be used to control the relay or opto outputs.
Starts the counter function. May be used to control the relay or opto outputs.
Clears the active timer.
Clears the active counter.
Clear active timer and counter.
Logic Function input number 1. May be used to control the relay or opto outputs (see Parameters 155, 158, 161
options 11…14). May be used in conjunction with Step Logic Parameters 240…247 (Stp Logic X).
Logic Function input number 1. May be used to control the relay or opto outputs (see Parameters 155, 158, 161
options 11…14). May be used in conjunction with Step Logic Parameters 240…247 (Stp Logic X).
When active, Parameter 218 (Current Limit 2) determines the drive current limit level.
Inverts the scaling of analog input levels set in parameter 210 (Anlg In 0…10V LO) and parameter 211
(Anlg In 0…10 HI).
4-30
Bulletin 284G Programmable Parameters for Sensorless Vector Controllers
155 (Relay Out Sel)
Sets the condition that changes the state of the output relay contacts.
Parameter Number
Related Parameters
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
155
133, 156, 192, 240…247,
250…257, 260, 261
GET/SET
UINT
Advanced Program Group
—
0
22
22
Table 4.3
Options
1
2
3
4
Ready/Fault
(Default)
At Frequency
MotorRunning
Reverse
Motor Overld
5
Ramp Reg
6
Above Freq
7
Above Cur
8
Above DCVolt
9
10
11
12
13
14
15
16
17
Retries Exst
Above Anlg V
Logic In 1
Logic In 2
Logic In 1 & 2
Logic In 1 or 2
StpLogic Out
Timer Out
Counter Out
18
Above PF Ang
19
Anlg In Loss
20
ParamControl
21
NonRec Fault
22
EM Brk Cntrl
0
Description
Relay changes state when power is applied. This indicates the drive is ready for operation. Relay returns drive to
shelf state when power is removed or a fault occurs.
Drive reached commanded frequency.
Motor is receiving power from drive.
Drive is commanded to run in reverse direction.
Motor overload condition exists.
Ramp regulator is modifying the programmed accel/decal times to avoid overcurrent or overvoltage fault from
occurring.
Drive exceeds the frequency (Hz) value set in Parameter 156 (Relay Out Level) Use Parameter 156 to set
threshold.
Drive exceeds the current (% Amps) value set in Parameter 156 (Relay Out Level) Use Parameter 156 to set
threshold.
Drive exceeds the DC bus voltage value set in Parameter 156 (Relay Out Level). Use Parameter 156 to set
threshold.
Value set in Parameter 192 (Auto Rstrt Tries) is exceeded.
Option not valid for Bulletin 284G ArmorStart.
An input is programmed as Logic In 1 and is active.
An input is programmed as Logic In 2 and is active.
Both Logic inputs are programmed and active.
One or both Logic inputs are programmed and one or both is active.
Drive enters Step Logic step with Digit 3 of Command Word (Parameters 240…247).
Timer has reached value set in Parameter 156 (Relay Out Level). Use Parameter 156 to set threshold.
Counter has reached value set in Parameter 156 (Relay Out Level). Use Parameter 156 to set threshold.
Power factor angle has exceeded the value set in Parameter 156 (Relay Out Level). Use Parameter 156 to set
threshold.
Analog input loss has occurred. Program parameter 122 (Analog In Los) for desired action when loss occurs
Enables the output to be controlled over the network communications by writing to Parameter 156 (Relay Out
Level) (0 = Off, 1 = ON).
Value set in Parameter 192 (Auto Rstrt Tries) is exceeded.
EM Brake is energized. Program Parameter 260 (EM Brk Off Delay) and Parameter 262 (EM Brk On Delay) for
desired action.
4-31
Bulletin 284G Programmable Parameters for Sensorless Vector Controllers
Relay Out Level
Sets the trip point for the digital output relay if the value of Parameter 155 (Relay
Out Sel) is 6, 7, 8, 10, 16, 17, 18, or 20.
Parameters 155 Setting
Parameter 156 Min./Max.
6
7
8
10
16
17
18
20
0/400 Hz
0/180%
0/815V
0/100%
0.1/9999 sec
1/9999 counts
1/180°
0/1
158 (Opto Out1 Sel)
161 (Opto Out2 Sel)
Determines the operation of the programmable opto outputs.
Parameter Number
156
Related Parameters
155, 158, 161
Access Rule
GET/SET
Data Type
UINT
Group
Advanced Program Group
Units
0.1
Minimum Value
0.0
Maximum Value
9999
Default Value
0.0
Parameter Number
158, 161
133, 156, 192, 240…247,
250…257
GET/SET
UINT
Advanced Program Group
Related Parameters
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Table 4.4
Parameter 158 and 161 Options
Options
Description
3
4
Ready/Fault
(Default)
At Frequency
(Parameter 161
Default)
MotorRunning
(Parameter
158Default)
Reverse
Motor Overld
5
Ramp Reg
6
Above Freq
7
Above Cur
8
Above DCVolt
9
10
11
12
13
14
Retries Exst
Above Anlg V
Logic In 1
Logic In 2
Logic In 1 & 2
Logic In 1 or 2
0
1
2
See Table 4.4 for details
Opto outputs are active when power is applied. This indicates the drive is ready for operation. Opto outputs are
inactive when power is removed or a fault occurs.
Drive reached commanded frequency.
Motor is receiving power from drive.
Drive is commanded to run in reverse direction.
Motor overload condition exists.
Ramp regulator is modifying the programmed accel/decal times to avoid overcurrent or overvoltage fault from
occurring.
Drive exceeds the frequency (Hz) value set in Parameter 159 (Opto Out 1 Level) or Parameter 162 (Opto Output 2
Level) Use Parameter 159 or 162 to set threshold.
Drive exceeds the current (% Amps) value set in Parameter 159 (Opto Out 1 Level) or Parameter 162 (Opto Output
2 Level). Use Parameter 159 or 162 to set threshold. Important: Value for Parameter 159 or 162 must entered in
percent of the drive rated output current.
Drive exceeds the DC bus voltage value set in Parameter 159 (Opto Out 1 Level). Use Parameter 159 or 162 to set
threshold.
Value set in Parameter 192 (Auto Rstrt Tries) is exceeded.
Option not valid for Bulletin 284G ArmorStart.
An input is programmed as Logic In 1 and is active.
An input is programmed as Logic In 2 and is active.
Both Logic inputs are programmed and active.
One or both Logic inputs are programmed and one or both is active.
4-32
Bulletin 284G Programmable Parameters for Sensorless Vector Controllers
Options
Description
15
StpLogic Out
16
Timer Out
17
Counter Out
18
Above PF Ang
19
Anlg In Loss
20
ParamControl
Drive enters Step Logic step with Digit 3 of Command Word (Parameters 240…247).
Timer has reached value set in Parameter 159 (Opto Out 1 Level) or Parameter 162 (Opto Output 2 Level). Use
Parameter 159 or 162 to set threshold.
Counter has reached value set in Parameter 159 (Opto Out 1 Level) or Parameter 162 (Opto Output 2 Level). Use
Parameter 159 or 162 to set threshold.
Power factor angle has exceeded the value set in Parameter 159 (Opto Out 1 Level) or Parameter 162 (Opto
Output 2 Level). Use Parameter 159 or 162 to set threshold.
Analog input loss has occurred. Program parameter 122 (Analog In Los) for desired action when loss occurs
Enables the output to be controlled over the network communications by writing to Parameter 159 (Opto Out 1
Level) or Parameter 162 (Opto Output 2 Level) (0 = Off, 1 = ON).
Value set in Parameter 192 (Auto Rstrt Tries) is exceeded.
ATTENTION Parameter 192 (Auto Rstrt Tries) is not enabled. A nonresettable fault has occurred.
21
NonRec Fault
22
EM Brk Cntrl
!
EM Brake is energized. Program Parameter 260 (EM Brk Off Delay) and Parameter 262 (EM Brk On Delay) for
desired action.
159 (Opto Out1 Level)
162 (Opto Out2 Level)
Sets the trip point for the digital output relay if the value of Parameter 158 (Opto
Out1 Sel) or Parameter 161 (Opto Out2 Sel) is 6, 7, 8, 10, 16, 17, 18, or 20.
Parameters 158 and 161
Setting
Parameters 159 and 161
Min./Max.
6
7
8
10
16
17
18
20
0/400 Hz
0/180%
0/815V
0/100%
0.1/9999 sec
1/9999 counts
1/180°
0/1
Opto Out Logic
Determines the logic (Normally Open/N.O. or Normally Closed/N.C.) of the opto
outputs.
Option
Opto Out1 Logic
Opto Out2 Logic
0
1
2
3
N.O. (Normally Open)
N.C. (Normally Closed)
N.O. (Normally Open)
N.C. (Normally Closed)
N.O. (Normally Open)
N.O. (Normally Open)
N.C. (Normally Closed)
N.C. (Normally Closed)
Parameter Number
159 162
Access Rule
GET/SET
Data Type
UINT
Group
Advanced Program Group
Units
—
Minimum Value
0.0
Maximum Value
9999
Default Value
0.0
Parameter Number
164
Access Rule
GET/SET
Data Type
UINT
Group
Advanced Program Group
Units
1
Minimum Value
0
Maximum Value
3
Default Value
0
4-33
Bulletin 284G Programmable Parameters for Sensorless Vector Controllers
Analog Out Sel
Sets the analog output signal (0…10V). The output is used to provide a signal that is
proportional to several drives
Table 4.5
Options
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
OutFreq 0…10
OutCurr 0…10
OutVolt 0…10
OutPowr 0…10
TstData 0…10
OutFreq 0…20
OutCurr 0…20
OutVolt 0…20
OutPowr 0…20
TstData 0…20
OutFreq 4…20
OutCurr 4…20
OutVolt 4…20
OutPowr 4…20
TstData 4…20
OutTorq 0…10
OutTorq 0…20
OutTorq 4…20
Setpnt 0…10
Setpnt 0…20
Setpnt 4…20
Parameter Number
Related Parameters
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
165
135, 166
GET/SET
UINT
Advanced Program Group
See Table for details
Analog Output Options
Output Range
Minimum Output
Value
Maximum Output Value A066
(Analog Out High)
DIP Switch Position
Related
Parameter
0…10V
0…10V
0…10V
0…10V
0…10V
0…20 mA
0…20 mA
0…20 mA
0…20 mA
0…20 mA
4…20 mA
4…20 mA
4…20 mA
4…20 mA
4…20 mA
0…10V
0…20 mA
4…20 mA
0…10V
0…20 mA
4…20 mA
0V = 0 Hz
0V = 0 Amps
0V = 0 Volts
0V = 0 kW
0V = 0000
0 mA = 0 Hz
0 mA = 0 Amps
0 mA = 0 Volts
0 mA = 0 kW
0 mA = 0000
4 mA = 0 Hz
4 mA = 0 Amps
4 mA = 0 Volts
4 mA = 0 kW
4 mA = 0000
0V = 0 Amps
0 mA = 0 Amps
4 mA = 0 Amps
0V = 0%
0 mA = 0%
4 mA = 0%
P035 (Maximum Freq)
200% Drive Rated Output Current
120% Drive Rated Output Volts
200% Drive Rated Power
65535 (Hex FFFF)
P035 (Maximum Freq)
200% Drive Rated Output Current
120% Drive Rated Output Volts
200% Drive Rated Power
65535 (Hex FFFF)
P035 (Maximum Freq)
200% Drive Rated Output Current
120% Drive Rated Output Volts
200% Drive Rated Power
65535 (Hex FFFF)
200% Drive Rated FLA
200% Drive Rated FLA
200% Drive Rated FLA
100.0% Setpoint Setting
100.0% Setpoint Setting
100.0% Setpoint Setting
0…10V
0…10V
0…10V
0…10V
0…10V
0…20 mA
0…20 mA
0…20 mA
0…20 mA
0…20 mA
0…20 mA
0…20 mA
0…20 mA
0…20 mA
0…20 mA
0…10V
0…20 mA
0…20 mA
0…10V
0…20 mA
0…20 mA
101
103
104
122
119
101
103
104
122
119
101
103
104
122
119
129
129
129
209
209
209
Note: Only options 5…14, 16, 17, 19, and 20 are not valid options.
Analog Out High
Scales the maximum output value for parameter 165 source setting
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
166
GET/SET
UINT
Advanced Program Group
%
0%
800%
100%
4-34
Bulletin 284G Programmable Parameters for Sensorless Vector Controllers
Accel Time 2
When active, sets the rate of acceleration for all speed increases except for jog.
Maximum
Freq- = Accel Rate
------------------------------------Accel Time
ce
ler
at
Ac
on
ati
Speed
er
cel
De
ion
Parameter 135
(Maximum Freq)
0
Param.
0 139 or
167
(Accel
Time x)
Time
Param.
140 or
168
(Decel
Time x)
Decel Time 2
When active, sets the rate of deceleration for all speed decreases except for jog.
Maximum
Freq- = Decel Rate
------------------------------------Decel Time
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
167
139, 151, 152, 153, 154,
170…173, 174…177,
240…247
GET/SET
UINT
Advanced Program Group
0.1 sec
0.0
600.0
Default Value
20.0
Parameter Number
168
140, 151, 152, 153, 154,
170…173, 174…177,
240…247
GET/SET
Related Parameters
Related Parameters
Access Rule
era
n
tio
Ac
era
cel
cel
Speed
De
tio
n
Parameter 135
(Maximum Freq)
0
Param.
0 139 or
167
(Accel
Time x)
Time
Param.
140 or
168
(Decel
Time x)
Internal Freq
Provide the frequency command to drive when Parameter 138 (Speed Reference) is
set to 1 Internal Freq. When enabled, this parameter will change the frequency
command in real time.
Data Type
UINT
Group
Advanced Program Group
Units
0.1 sec
Minimum Value
0.0
Maximum Value
600.0
Default Value
20.0
Parameter Number
Related Parameters
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
169
138, 162
GET/SET
UINT
Advanced Program Group
0.1 Hz
0.0
400.0
60.0
Bulletin 284G Programmable Parameters for Sensorless Vector Controllers
Parameter Number
Related Parameters
170 (Preset Freq 0) ➊
171 (Preset Freq 1)
172 (Preset Freq 2)
173 (Preset Freq 3)
174 (Preset Freq 4)
175 (Preset Freq 5)
176 (Preset Freq 6)
177 (Preset Freq 7)
4-35
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
170…173, 174…177
138, 139, 140, 151, 152, 152,
153, 167, 168, 240…247,
250…257
GET/SET
UINT
Advanced Program Group
0.1 Hz
0.0
400.0
See Table 4.A
170 Default ➊
171 Default
172 Default
173 Default
174 Default
175 Default
176 Default
177 Default
Min./Max.
Display
0.0 Hz
5.0 Hz
10.0 Hz
20.0 Hz
30.0 Hz
40.0 Hz
50.0 Hz
60.0 Hz
0.0/400.0 Hz
0.1 Hz
.
Table 4.A 170…177 Preset Freq Options
Values
Provides a fixed frequency command value when 151…153 (Digital Inx Sel) is set to
4 Preset Frequencies.
Input State of Digital In
1 (I/O Terminal 05 when
Parameter 151 = 4)
Input State of Digital In
2 (I/O Terminal 06 when
Parameter 152 = 4)
Input State of Digital In
3 (I/O Terminal 07 when
Parameter 153 = 4)
Frequency
Source
Accel/Decel
Parameter
Used ➋
0
1
0
1
0
1
0
1
0
0
1
1
0
0
1
1
0
0
0
0
1
1
1
1
170 (Preset Freq 0)
171 (Preset Freq 1)
172 (Preset Freq 2)
173 (Preset Freq 3)
174 (Preset Freq 4)
175 (Preset Freq 5)
176 (Preset Freq 6)
177 (Preset Freq 7)
(Accel Time 1)/(Decel Time 1)
(Accel Time 1)/(Decel Time 1)
(Accel Time 2)/(Decel Time 2)
(Accel Time 2)/(Decel Time 2)
(Accel Time 3)/(Decel Time 3)
(Accel Time 3)/(Decel Time 3)
(Accel Time 4)/(Decel Time 4)
(Accel Time 4)/(Decel Time 4)
➊ To activate 170 (Preset Freq 0) set 138 (Speed Reference) to option 4 Preset Freq.
➋ When a Digital Input is set to Accel 2 & Decel 2, and the input is active, that input overrides the
settings in this table.
Jog Frequency
Sets the output frequency when the jog command is issued.
Parameter Number
Related Parameters
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
178
135, 151, 152, 153, 154, 179
GET/SET
UINT
Advanced Program Group
0.1 Hz
0.0
400.0
10.0
4-36
Bulletin 284G Programmable Parameters for Sensorless Vector Controllers
Jog Accel/Decel
Sets the acceleration and deceleration time when a jog command is issued.
Parameter Number
Related Parameters
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
179
178, 151, 152, 153, 154
GET/SET
UINT
Advanced Program Group
0.1 sec
0.1
600.0
10.0
DC Brake Time
Sets the length of time that DC brake current is injected into the motor. Refer to
Parameter 181 DC Brake Level.
Parameter Number
Related Parameters
Access Rule
Data Type
Group
Units
Minimum Value
Default Value
180
137, 181
GET/SET
UINT
Advanced Program Group
0.1 sec
0.0
99.9
(Setting of 99.9 = Continuous)
0.0
Parameter Number
Related Parameters
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
181
137, 180
GET/SET
UINT
Advanced Program Group
0.1 A
0.0
Drive rated amps X 1.8
Drive rated amps X 0.05
Maximum Value
DC Brake Level
Defines the maximum DC brake current, in amps, applied to the motor when
Parameter 137 (Stop Mode) is set to either Ramp or DC Brake.
ATTENTION
!
• If a hazard of injury due to movement of equipment or
material exists, an auxiliary mechanical braking device must
be used.
• This feature should not be used with synchronous or
permanent magnet motors. Motors may be demagnetized
during braking.
4-37
Bulletin 284G Programmable Parameters for Sensorless Vector Controllers
DB Resistor Sel
Stop drive before changing this parameter.
Enables/disables external dynamic braking.
Parameter Number
182
Related Parameters
137
Access Rule
GET/SET
Data Type
UINT
Group
Advanced Program Group
Setting
Min./Max.
Units
1
0
1
2
3…99
Disabled
Normal RA Res (5% Duty Cycle)
No Protection (100% Duty Cycle)
x% Duty Cycle Limited (3…99% of Duty Cycle)
Minimum Value
0
Maximum Value
99
Default Value
0
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
183
GET/SET
UINT
Advanced Program Group
1%
0
100
0% disabled
Parameter Number
184
104, 131, 132, 185, 186, 187,
225
GET/SET
UINT
Advanced Program Group
—
0
14
8
S Curve %
Sets the percentage of acceleration or deceleration time that is applied to ramp as S
Curve. Time is added, half at the beginning and half at the end of the ramp.
Figure 4.2
Boost Select
Sets the boost voltage (% of Parameter 131 [Motor NP Volts]) and redefines the Volts
per Hz curve. Active when Parameter 225 (Torque Perf Mode) = 0V/Hz Drive may
add additional voltage unless Option 5 is selected.
See Table 4.6 for details
Related Parameters
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
Bulletin 284G Programmable Parameters for Sensorless Vector Controllers
Table 4.6
Boost Select Options
Options
Description
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
Custom V/Hz
30.0, VT
35.0, VT
40.0, VT
45.0, VT
0.0 no IR
0.0
2.5, CT (Default for 5 Hp/4.0 kW Drive)
5.0, CT Default
7.5,CT
10.0,CT
12.5,CT
15.0,CT
17.5,CT
20.0,CT
100
Figure 4.1
1/2 (Motor NP Volts)
1/2
(Motor NP Hertz)
50
% Parameter 131 (Motor NP Volts)
4-38
Settings
5...14
0
4
3
2
1
50
% Parameter 132 (Motor NP Hertz)
100
Variable Torque (Typical fan/pump
curves)
Constant Torque
Bulletin 284G Programmable Parameters for Sensorless Vector Controllers
Start Boost
Sets the boost voltage (% of Parameter 131 [Motor NP Volts]) and redefines the Volts
per Hz curve when Parameter 184 (Boost Select) = 0 Custom V/Hz and Parameter
225 (Torque Perf Mode) = 0V/Hz.
Parameter Number
Related Parameters
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
185
131, 132, 134, 135, 184, 186,
187, 188, 225
GET/SET
UINT
Advanced Program Group
1.1%
0.0%
25.0%
2.5%
Figure 4.3
Parameter 188 (Maximum Voltage)
Parameter 186
(Start Boost)
Parameter 186 (Break Voltage)
Voltage
Parameter 131 (Motor NP Volts)
Parameter 187 (Break Frequency)
Parameter 134 (Minimum Freq)
Parameter 132 (Motor NP Hertz)
Frequency
4-39
Parameter 135 (Maximum Freq)
4-40
Bulletin 284G Programmable Parameters for Sensorless Vector Controllers
Brake Voltage
Sets the frequency where brake voltage is applied when Parameter 184 (Boost
Select) = 0 Custom V/Hz and Parameter 225 (Torque Perf Mode) = 0V/Hz.
Parameter Number
186
Related Parameters
131, 132, 134, 135, 184, 185,
187, 188, 225
Access Rule
GET/SET
Data Type
UINT
Group
Advanced Program Group
Units
1.1%
Minimum Value
0.0%
Maximum Value
100.0%
Default Value
25.0%
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
187
131, 132, 134, 135, 184, 185,
186, 188, 225
GET/SET
UINT
Advanced Program Group
0.1 Hz
0.0 Hz
400.0 Hz
15.0 Hz
Maximum Voltage
Sets the highest voltage the drive will output.
Parameter Number
Related Parameters
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
188
104, 185, 186, 187
GET/SET
UINT
Advanced Program Group
1V AC
20V AC
Drive Rated Volts
Drive Rated Volts
Current Limit 1
Maximum output current allowed before current limiting occurs
Parameter Number
Related Parameters
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
189
133, 218
GET/SET
UINT
Advanced Program Group
0.1 A
0.1 A
Drive rated amps X 1.8
Drive rated amps X 1.5
Brake Frequency
Sets the frequency where brake frequency is applied when Parameter 184 (Boost
Select) = 0 Custom V/Hz and Parameter 225 (Torque Perf Mode) = 0V/Hz.
Related Parameters
4-41
Bulletin 284G Programmable Parameters for Sensorless Vector Controllers
Motor OL Select
Drive provides Class 10 motor overload protection. Setting 0…2 select the derating
factor for I2t overload function.
0 = No Derate
1 = Min. Derate
2 = Max. Derate
Parameter Number
Related Parameters
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
190
132, 133
GET/SET
UINT
Advanced Program Group
1
0
2
0
% of P132 (Motor NP Hertz)
PWM Frequency
Sets the carrier frequency the PWM output waveform. The Figure 4.5 provides
derating guidelines based on the PWM frequency setting.
Figure 4.5
% of P133 (Motor OL Current)
% of P132 (Motor NP Hertz)
% of P133 (Motor OL Current)
% of P133 (Motor OL Current)
Figure 4.4 Overload Trip Curves
% of P132 (Motor NP Hertz)
Parameter Number
191
Related Parameters
224
Access Rule
GET/SET
Data Type
UINT
Group
Advanced Program Group
Units
0.l Hz
Minimum Value
2.0 Hz
Maximum Value
16.0 Hz
Default Value
4.0 Hz
4-42
Bulletin 284G Programmable Parameters for Sensorless Vector Controllers
Auto Rstrt Tries
Set the maximum number of times the drive attempts to reset a fault and restart.
Parameter Number
Related Parameter
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
192
155, 158, 161, 193
GET/SET
UINT
Advanced Program Group
1
0
9
0
Clear a Type 1 Fault and Restart the Drive
1. Set Parameter 192 (Auto Rstrt Tries) to a value other than 0.
2. Set Parameter 193 (AutoRstrt Delay) to a value other than 0.
Clear an Overvoltage, Undervoltage, or Heatsink OvrTmp Fault
without Restarting the Drive
1. Set Parameter 192 (Auto Rstrt Tries) to a value other than 0.
2. Set Parameter 193 (AutoRstrt Delay) to 0.
ATTENTION Equipment damage and/or personal injury may result if this
parameter is used in an inappropriate application. Do not
use this function without considering applicable local,
national, and international codes, standards, regulations, or
industry guidelines.
!
Auto Rstrt Delay
Sets time between restart attempts when Parameter 192 (Auto Rstrt Tries) is set to a
value other than zero.
Parameter Number
Related Parameters
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
193
192
GET/SET
UINT
Advanced Program Group
0.1 sec
0.0
300.0 sec
1.0 sec
4-43
Bulletin 284G Programmable Parameters for Sensorless Vector Controllers
Parameter Number
Related Parameters
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
194
192
GET/SET
UINT
Advanced Program Group
—
0
1
Default Value
0
Parameter Number
Related Parameters
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
195
106
GET/SET
UINT
Advanced Program Group
—
0
1
0
Flying Start En
Sets the condition that allows the drive to reconnect to a spinning motor at actual
RPM.
0 = Disabled
1 = Enabled
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
196
GET/SET
UINT
Advanced Program Group
—
0
1
0
Compensation
Enables/disables correction options that may improve problems with motor
instability
0 = Disabled
1 = Electrical (Default)
Some drive/motor combinations have inherent instabilities which are exhibited as
non-sinusoidal motor currents. This setting attempts to correct this condition
2 = Mechanical
Some motor/load combinations have mechanical resonances which can be excited
by the drive current regulator. This setting slows down the current regulator
response and attempts to correct this condition.
3 = Both
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
197
GET/SET
UINT
Advanced Program Group
—
0
3
Default Value
1
Start at PowerUp
Stop drive before changing this parameter.
Enables/disables a feature that allows a Start or Run command to automatically
cause the drive to resume running at command speed after the drive input is
restored. Requires a digital input configured Run or Start and a valid start contact.
This parameter will not function if Parameter 136 (Start Source) is set to 4 2-W High
Speed.
0 = Disabled
1 = Enabled
ATTENTION Equipment damage and/or personal injury may
result if this parameter is used in an
inappropriate application. Do not use this
function without considering applicable local,
national, and international codes, standards,
regulations, or industry guidelines.
!
Reverse Disable
Stop drive before changing this parameter.
Enables/disables the function that allows the direction of the motor rotation to be
changed. The reverse command may come from a digital command or serial
command. All reverse inputs including two-wire Run Reverse will be ignored with
reverse disabled.
0 = Disabled
1 = Enabled
4-44
Bulletin 284G Programmable Parameters for Sensorless Vector Controllers
SW Current Trip
Enables/disables a software instantaneous (within 100 ms) current trip.
Parameter Number
Related Parameters
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
198
133
GET/SET
UINT
Advanced Program Group
0.1 A
0.0
Drive rated amps x 2
0.0 (Disabled)
Process Factor
Scales the output frequency value displayed by Parameter 110 (Process Display).
Output Freq x Process Factor = Process Display
Parameter Number
Related Parameters
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
199
110
GET/SET
UINT
Advanced Program Group
0.1
0.1
999.9
30.0
Fault Clear
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
200
GET/SET
UINT
Advanced Program Group
—
0
2
0
Program Lock
Protects parameters against change by unauthorized personnel.
0 = Unlocked
1 = Locked
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
201
GET/SET
UINT
Advanced Program Group
—
0
1
0
Testpoint Sel
Used by Rockwell Automation field service personnel.
Parameter Number
Related Parameters
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
202
119
GET/SET
UINT
Advanced Program Group
1 Hex
0
FFFF
400
Stop drive before changing this parameter.
Resets a fault and clears the fault queue. Used primarily to clear a fault over
network communications.
0 = Ready/Idle (Default)
1 = Reset Fault
2 = Clear Buffer (Parameters 107…109 [Fault x Code])
4-45
Bulletin 284G Programmable Parameters for Sensorless Vector Controllers
Comm Data Rate
This parameter is not available for use with the ArmorStart Distributed Motor
Controller.
Parameter Number
203
CommNode Addr
This parameter is not available for use with the ArmorStart Distributed Motor
Controller.
Parameter Number
204
Parameter Number
205
Related Parameters
115, 137, 206
Access Rule
GET/SET
Comm Loss Action
Selects the drive’s response to a loss of the communication connection or excessive
communication errors.
0 = Fault (Default)
Drive will fault on an F81 Comm Loss and coast to stop
1 = Coast Stop
Stops drive via coast to stop
2 = Stop
Stops via Parameter 137 (Stop Mode) setting
3 = Continu Last
Drive continues operating at communication commanded speed saved in RAM
Data Type
UINT
Group
Advanced Program Group
Units
—
Minimum Value
0
Maximum Value
3
Default Value
0
Parameter Number
Related Parameters
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
206
115, 205
GET/SET
UINT
Advanced Program Group
0.1 sec
0.1 sec
60.0 sec
15.0 sec
Comm Format
This parameter is not available for use with the ArmorStart Distributed Motor
Controller.
Parameter Number
207
Language
This parameter is not available for use with the ArmorStart Distributed Motor
Controller.
Parameter Number
208
Parameter Number
Related Parameter
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
209
165
GET/SET
UINT
Advanced Program Group
0.1%
0.0%
100.0%
0.0%
Comm Loss Time
Sets the time that the drive remain in communication loss before implanting the
option selected in Parameter 205 (Comm Loss Action).
Anlg Out Setpnt
When parameter 165 (Analog Out Sel) is set to option 18, this sets the percentage of
the analog output desired
4-46
Bulletin 284G Programmable Parameters for Sensorless Vector Controllers
Anlg In 0…10V Lo
Stop drive before changing this parameter.
Sets the analog input level that corresponds to parameter 134 (Minimum Freq) if a
0…10V input is used by parameter 138 (Speed Reference)
Parameter Number
Related Parameter
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
210
121, 134, 138, 222
GET/SET
UINT
Advanced Program Group
0.1%
0.0%
100.0%
0.0%
Figure 4.6
Parameter 135
[Maximum Freq]
e
nc
e
fer
d
ee
Re
Sp
Parameter 134
[Minimum Freq]
0
0
Parameter 210
[Anlg In 0-10V Lo]
Parameter 211
[Anlg In 0-10V Hi]
Sets the analog input level that corresponds to parameter 135 (Maximum Freq) if a
0…10V input is used by parameter 138 (Speed Reference). Analog inversion can be
accomplished by setting this value smaller than parameter 210 (Anlg In 0…10V Lo).
Parameter Number
Related Parameter
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
211
121, 135, 138, 222, 223
GET/SET
UINT
Advanced Program Group
0.1%
0.0%
100.0%
0.0%
Anlg In4…20MA LO
This parameter is not available for use with the ArmorStart Distributed Motor
Controller.
Parameter Number
212
Anlg In4…20 mA HI
This parameter is not available for use with the ArmorStart Distributed Motor
Controller.
Parameter Number
213
Anlg In 0…10V HI
Stop drive before changing this parameter.
4-47
Bulletin 284G Programmable Parameters for Sensorless Vector Controllers
Slip Hertz @ FLA
Compensates for the inherent slip in an induction motor. This frequency is added to
the commanded output frequency based on motor current.
Process Time Lo
Scales the time value when the drive is running at Parameter 134 (Minimum Freq).
When set to a value other than zero, Parameter 110 (Process Display) indicates the
duration of the process.
Process Time Hi
Scales the time value when the drive is running at Parameter 135 (Maximum Freq).
When set to a value other than zero, Parameter 110 (Process Display) indicates the
duration of the process.
Bus Reg Mode
Enables the bus regulator.
0 = Disable
1 = Enabled
Parameter Number
Related Parameter
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
214
133
GET/SET
UINT
Advanced Program Group
0.1 Hz
0.0 Hz
10.0 Hz
2.0 Hz
Parameter Number
215
Related Parameters
110, 134
Access Rule
GET/SET
Data Type
UNIT
Group
Advanced Setup
Units
Hz
Minimum Value
0.00
Maximum Value
99.99
Default Value
0.00
Parameter Number
216
Related Parameters
110, 135
Access Rule
GET/SET
Data Type
UNIT
Group
Advanced Setup
Units
Hz
Minimum Value
0.00
Maximum Value
99.99
Default Value
0.00
Parameter Number
217
Related Parameters
Access Rule
GET/SET
Data Type
UNIT
Group
Advanced Setup
Units
—
Minimum Value
0
Maximum Value
1
Default Value
1
4-48
Bulletin 284G Programmable Parameters for Sensorless Vector Controllers
Current Limit 2
Maximum output current allowed before current limiting occurs. This parameter is
only active if Parameters 151, 152, 153, and 154 (Digital Inx Sel) is set to 25
Current Lmt2 and is active.
Parameter Number
Related Parameters
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
218
133, 151, 152, 153, 154, 189
GET/SET
UINT
Advanced Program Group
0.1 A
0.1 A
Drive rated amps x 1.8
Drive rated amps x 1.5
Skip Frequency
Sets the frequency at which the drive will not operate.
Parameter Number
Related Parameters
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
219
220
GET/SET
UINT
Advanced Program Group
0.1 hz
0.0
400.0 Hz
0.0 Hz
Skip Frq Band
Determines the brand width around Parameter 219 (Skip Frequency). Parameter
220 (Skip Frquency) is split applying 1/2 above and 1/2 below the actual skip
frequency. A setting of 0.0 disables this parameter.
Parameter Number
Related Parameters
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
220
219
GET/SET
UINT
Advanced Program Group
0.1 Hz
0.0 Hz
30.0 Hz
0.0 Hz
Figure 4.7
Bulletin 284G Programmable Parameters for Sensorless Vector Controllers
4-49
Stall Fault Time
Sets for the fault time that the drive will remain in stall mode before a fault is issued.
0 = 60 sec (Default)
1 = 120 sec
2 = 240 sec
3 = 360 sec
4 = 480 sec
5 = Flt Disabled
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
221
GET/SET
UINT
Advanced Program Group
—
0
5
0
Analog In Loss
Selects drive action when an input signal loss is detected. Signal loss is defined as
an analog signal less than 1V. The signal loss event ends and normal operation
resumes when the input signal level is greater than or equal to 1.5V. If using a
0…10V analog input, set parameter 210 (Anlg In 0…10V Lo) to a minimum of 20%
(i.e., 2 volts).
Parameter Number
Related Parameters
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
222
210, 211, 232
GET/SET
UINT
Advanced Program Group
Parameter Number
Related Parameters
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
223
138, 211
GET/SET
UINT
Advanced Program Group
—
0
1
0
See Table 4.7 for details
Table 4.7
Options
0
1
2
3
4
5
6
Description
Disabled (Default)
Fault (F29)
Stop
Zero Ref
Min Freq Ref
Max Freq Ref
Int Freq Ref
F29 Analog Input Loss
Uses P037 (Stop Mode)
Drive runs at zero speed reference
Drive runs at minimum frequency
Drive runs at maximum frequency
Drive runs at internal frequency
10V Bipolar Enbl
Enables/disables bipolar control. In bipolar mode, direction is commanded by the
sign of the reference.
Options
0 = Unipolar In (Default) 0…10V only
1 = Bipolar In +/- 10V
4-50
Bulletin 284G Programmable Parameters for Sensorless Vector Controllers
Var PWM Disable
Stop drive before changing this parameter.
Enables/disables a feature that varies the carrier frequency for the PWM output
waveform defined by Parameter 191 (PWM Frequency).
0 = Enabled
1 = Disabled
Disabling this feature when low frequency condition exists may result in IGBT stress
and nuisance tripping.
Torque Perf Mode
Stop drive before changing this parameter.
Enables/disables sensorless vector control operation.
0 = V/Hz
1 = Sensrls Vect
Motor NP FLA
Set to the motor nameplate full load amps.
Parameter Number
Related Parameters
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
224
191
GET/SET
UINT
Advanced Program Group
—
0
1
0
Parameter Number
Related Parameters
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
225
184, 185, 186, 187, 227
GET/SET
UINT
Advanced Program Group
—
0
1
1
Parameter Number
Related Parameters
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
226
227
GET/SET
UINT
Advanced Program Group
0.1 A
0.1
Drive rated amps x 2
Drive rated amps
4-51
Bulletin 284G Programmable Parameters for Sensorless Vector Controllers
Autotune
Parameter Number
227
Related Parameters
225, 226, 228, 229
Access Rule
GET/SET
Data Type
UINT
Group
Advanced Program Group
Units
—
Minimum Value
0
Maximum Value
3
Default Value
0
Stop drive before changing this parameter.
Provides an automatic method for setting Parameter 228 (IR Voltage Drop) and
Parameter 229 (Flux Current Ref), which affect sensorless vector performance.
Parameter 226 (Motor NP FLA) must be set to the motor nameplate full load amps
before running the Autotune procedure.
Provides an automatic method for setting A128 (IR Voltage Drop) and A129 (Flux
Current Ref), which affect sensorless vector performance. Parameter A126 (Motor
NP FLA) must be set to the motor nameplate full load amps before running the
Autotune procedure.
0 = Ready/Idle (Default)
1 = Static Tune
2 = Rotate Tune
Ready (0) — Parameter returns to this setting following a Static Tune or Rotate
Tune.
Static Tune (1) — A temporary command that initiates a non-rotational motor
stator resistance test for the best possible automatic setting of A128 (IR Voltage
Drop). A start command is required following initiation of this setting. The parameter
returns to Ready (0) following the test, at which time another start transition is
required to operate the drive in normal mode. Used when motor cannot be
uncoupled from the load.
Rotate Tune (2) — A temporary command that initiates a Static Tune followed by a
rotational test for the best possible automatic setting of A129 (Flux Current Ref). A
start command is required following initiation of this setting. The parameter returns
to Ready (0) following the test, at which time another start transition is required to
operate the drive in normal mode.
Important: Used when motor is uncoupled from the load. Results
may not be valid if a load is coupled to the motor during
this procedure.
ATTENTION Rotation of the motor in an undesired direction can occur
during this procedure. To guard against possible injury and/
or equipment damage, it is recommended that the motor be
disconnected from the load before proceeding.
!
If the Autotune routine fails, an F80 SVC Autotune fault is displayed.
4-52
Bulletin 284G Programmable Parameters for Sensorless Vector Controllers
IR Voltage Drop
Value of volts dropped across the resistance of the motor stator.
Parameter Number
Related Parameters
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
228
227
GET/SET
UINT
Advanced Program Group
0.1V AC
0.0
230
Based on Drive Rating
Flux Current Ref
Value of amps for full motor flux.
Parameter Number
Related Parameter
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
229
227
GET/SET
UINT
Advanced Program Group
0.01 A
0.00
Motor NP Volts
Based on Drive Rating
PID Trim Hi
Sets the maximum positive value that is added to a PID reference when PID trim is
used.
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
230
GET/SET
UINT
Advanced Program Group
0.1
0.0
400.0
60.0
PID Trim Lo
Sets the minimum positive value that is added to a PID reference when PID trim is
used.
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
231
GET/SET
UINT
Advanced Program Group
0.1
0.0
400.0
0.1
PID Ref Select
Parameter Number
Related Parameters
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
232
138, 222
GET/SET
UINT
Advanced Program Group
—
0
9
Default Value
0
Stop drive before changing this parameter.
Enables/disables PID mode and selects the source of the PID reference. Valid PID
Ref Select for the Bulletin 284G ArmorStart are the following:
0 = PID Disable
1 = PID Setpoint
4 = Comm Port
5 = Setpnt Trim
8 = Comm, Trim
Bulletin 284G Programmable Parameters for Sensorless Vector Controllers
4-53
PID Feedback Sel
Valid PID Feedback Sel command for the Bulletin 284G ArmorStart is the following;
2 = Comm Port
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
233
GET/SET
UINT
Advanced Program Group
—
0
2
0
PID Prop Gain
Sets the value for the PID proportional component when the PID mode is enabled by
Parameter 232 (PID Ref Sel).
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
234
GET/SET
UINT
Advanced Program Group
0.01
0.00
99.99
0.01
PID Integ Time
Sets the value for the PID integral component when the PID mode is enabled by
Parameter 232 (PID Ref Sel).
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
235
GET/SET
UINT
Advanced Program Group
0.1 sec
0.0 sec
999.9 sec
0.1 sec
PID Diff Rate
Sets the value for the PID differential component when the PID mode is enabled by
Parameter 232 (PID Rel Sel).
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
236
GET/SET
UINT
Advanced Program Group
0.01 (1/sec)
0.00 (1/sec)
99.99 (1/sec)
0.01 (1/sec)
PID Setpoint
Provides an internal fixed value for process setpoint when the PID mode is enabled
by Parameter 232 (PID Ref Sel).
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
237
GET/SET
UINT
Advanced Program Group
0.1%
0.0%
10.0%
0.0%
4-54
Bulletin 284G Programmable Parameters for Sensorless Vector Controllers
PID Deadband
Sets the lower limit of the PID output.
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
238
GET/SET
UINT
Advanced Program Group
0.1%
0.0%
10.0%
0.0%
PID Preload
Sets the value used to preload the integral component on start or enable.
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
239
GET/SET
UINT
Advanced Program Group
0.0 Hz
0.0 Hz
400.0 Hz
0.0 Hz
A240 (Stp Logic 0)
A241 (Stp Logic 1)
A242 (Stp Logic 2)
A243 (Stp Logic 3)
A244 (Stp Logic 4)
A245 (Stp Logic 5)
A246 (Stp Logic 6)
A247 (Stp Logic 7)
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
240…247
GET/SET
UINT
Advanced Program Group
—
0001
baFF
Default Value
00F1
Stop drive before changing this parameter.
Parameters 240…247 are only active if 138 (Speed Reference) is set
to 6 Stp Logic.
These parameters can be used to create a custom profile of frequency
commands. Each step can be based on time, status of a Logic input, or
a combination of time and the status of a Logic input.
Digits 0…3 for each (Stp Logic x) parameter must be programmed
according to the desired profile.
A Logic input is established by setting a digital input, Parameters
151…154 (Digital Inx Sel), to 23 Logic In1 and/or 24 Logic In2.
A time interval between steps can be programmed using Parameters
250…257 (Stp Logic Time x). See Table 4.8 for related parameters.
The speed for any step is programmed using Parameters 170…177
(Preset Freq x).
Bulletin 284G Programmable Parameters for Sensorless Vector Controllers
4-55
Table 4.8
Step Logic Parameter
(Active when 138 = 6 Stp
Logic)
Related Preset Frequency
Parameter (Can be activated
independent of Step Logic
Parameters)
Related Step Logic Time
Parameter (Active when
240…247 Digit 0 or 1 are set
to 1, b, C, d, or E)
240 (Stp Logic 0)
241 (Stp Logic 1)
242 (Stp Logic 2)
243 (Stp Logic 3)
244 (Stp Logic 4)
245 (Stp Logic 5)
246 (Stp Logic 6)
247 (Stp Logic 7)
170 (Preset Freq 0)
171 (Preset Freq 1)
172 (Preset Freq 2)
173 (Preset Freq 3)
174 (Preset Freq 4)
175 (Preset Freq 5)
176 (Preset Freq 6)
177 (Preset Freq 7)
250 (Stp Logic Time 0)
251 (Stp Logic Time 1)
252 (Stp Logic Time 2)
253 (Stp Logic Time 3)
254 (Stp Logic Time 4)
255 (Stp Logic Time 5)
256 (Stp Logic Time 6)
257 (Stp Logic Time 7)
How Step Logic Works
The step logic sequence begins with a valid start command. A normal
sequence always begins with 240 (Stp Logic 0).
Digit 0: Logic For Next Step — This digit defines the logic for the
next step. When the condition is met the program advances to the next
step. Step 0 follows Step 7. Example: Digit 0 is set 3. When Logic
In2 becomes active, the program advances to the next step.
Digit 1: Logic to Jump to a Different Step — For all settings other
than F, when the condition is met, the program overrides Digit 0 and
jumps to the step defined by Digit 2.
Digit 2: Different Step to Jump — When the condition for Digit 1 is
met, the Digit 2 setting determines the next step or to end the
program.
Digit 3: Step Settings — This digit defines what accel/decel profile
the speed command will follow and the direction of the command for
the current step. In addition, if a relay or opto output (Parameters 155,
158, and 161) is set to 15 StpLogic Out, this parameter can control
the status of that output.
Any Step Logic parameter can be programmed to control a relay or
opto output, but you cannot control different outputs based on the
condition of different Step Logic commands.
Step Logic Settings
The logic for each function is determined by the four digits for each
step logic parameter. The following is a listing of the available
settings for each digit. Refer to Appendix J for details.
4-56
Bulletin 284G Programmable Parameters for Sensorless Vector Controllers
Table 4.9
Digit 3 Settings
Required
Setting
Accel/Decel
Parameter Used
Step Logic
Output State
Commanded
Direction
0
1
2
3
4
5
6
7
8
9
A
b
Accel/Decel 1
Accel/Decel 1
Accel/Decel 1
Accel/Decel 1
Accel/Decel 1
Accel/Decel 1
Accel/Decel 2
Accel/Decel 2
Accel/Decel 2
Accel/Decel 2
Accel/Decel 2
Accel/Decel 2
Off
Off
Off
On
On
On
Off
Off
Off
On
On
On
FWD
REV
No Output
FWD
REV
No Output
FWD
REV
No Output
FWD
REV
No Output
Table 4.10 Digit 2 Settings
0
1
2
3
4
5
6
7
8
9
A
Jump to Step 0
Jump to Step 1
Jump to Step 2
Jump to Step 3
Jump to Step 4
Jump to Step 5
Jump to Step 6
Jump to Step 7
End Program (Normal Stop)
End Program (Coast to Stop)
End Program and Fault (F2)
Table 4.11 Digit 1 and Digit 0 Settings
0
1
2
3
4
5
6
7
8
9
A
b
C
d
E
F
Skip Step (Jump Immediately)
Step Based on (Stp Logic Time x)
Step if Logic In1 is Active
Step if Logic In2 is Active
Step if Logic In1 is Not Active
Step if Logic In12 is Not Active
Stop if either Logic In1 and Logic In2 is Active
Stop if both Logic In1 and Logic In2 is Active
Stop if neither Logic In1 and Logic In2 is Active
Step if Logic In1 is Active and Logic In2 is Not Active
Step if Logic In2 is Active and Logic In1 is Not Active
Step after (Stp Logic Time x) and Logic In1 is Active
Step after (Stp Logic Time x) and Logic In2 is Active
Step after (Stp Logic Time x) and Logic In1 is Not Active
Step after (Stp Logic Time x) and Logic In2 is Not Active
Do Not Stop/Ignore Digit 2 Settings
4-57
Bulletin 284G Programmable Parameters for Sensorless Vector Controllers
A250 (Stp Logic Time 0)
A251 (Stp Logic Time 1)
A252 (Stp Logic Time 2)
A253 (Stp Logic Time 3)
A254 (Stp Logic Time 4)
A255 (Stp Logic Time 5)
A256 (Stp Logic Time 6)
A257 (Stp Logic Time 7)
Sets the time to remain in each step if the corresponding StpLogic command is set
to Step after Time.
EM Brk Off Delay
Sets the time the drive will remain at minimum frequency before ramping to the
commanded frequency and energizing the brake coil relay when Parameter 137 (Stop
Mode) is set to option 8 or 9.
Parameter Number
Access Rule
Data Type
Group
Units
Minimum Value
Maximum Value
Default Value
250…257
138, 155, 158, 161,
171…177, 240…247
GET/SET
UINT
Advanced Program Group
0.1 sec
0.0 sec
999.9 sec
30.0 sec
Related Parameters
Parameter Number
260
Related Parameters
137
Access Rule
GET/SET
Data Type
UNIT
Group
Advanced Setup
Units
0.01 sec
Minimum Value
0.01 sec
Maximum Value
10 sec
Default Value
0.0 sec
Frequency
Ra
l
260 [EM Brk Off Delay]
Ac
ce
mp
261 [EM Brk On Delay]
De
Ra
mp
ce
l
Minimum Freq
Start
Commanded
EM Brk
Energized (Off)
Time
Stop
Commanded
EM Brk On Delay
Sets the time the drive will remain at minimum frequency before stopping and deenergizing the brake coil relay when Parameter 137 (Stop Mode) is set to option 8 or
9.
EM Brk
De-Energized (On)
Drive Stops
Parameter Number
261
Related Parameters
137
Access Rule
GET/SET
Data Type
UNIT
Group
Advanced Setup
Units
0.01 sec
Minimum Value
0.01 sec
Maximum Value
10.00 sec
Default Value
0.0 sec
4-58
Bulletin 284G Programmable Parameters for Sensorless Vector Controllers
MOP Reset Sel
Sets the drive to save the current MOP Reference command.
0 = Zero MOP Ref
This option clamps Parameter 169 (Internal Freq) at 0.0 Hz when drive is not running.
1 = Save MOP Ref (Default)
Reference is saved in Parameter 169 (Internal Freq).
DB Threshold
Sets the DC bus Voltage Threshold for Dynamic Brake operation. If the DC bus
voltage falls below the value set in this parameter, the Dynamic Brake will not turn
on. Lower values will make the Dynamic Braking function more responsive, but may
result in nuisance Dynamic Brake activation.
Parameter Number
262
Related Parameters
169
Access Rule
Get/Set
Data Type
UINT
Group
Advanced Program Group
Units
—
Minimum Value
0
Maximum Value
1
Default Value
0
Parameter Number
263
Access Rule
GET/SET
Data Type
UINT
Group
Advanced Program Group
Units
—
Minimum Value
0.0%
Maximum Value
110.0%
Default Value
100%
5
Chapter
DeviceNet™ Commissioning
This chapter refers to Bulletin 280G/281G and 284G products.
Establishing a DeviceNet Node
Address
The ArmorStart® is shipped with a default node address of 63 and
Autobaud enabled. Each device on a DeviceNet network must have a
unique node address or MAC ID which can be set to a value from 0 to
63. Keep in mind that most DeviceNet systems use address 0 for the
master device (Scanner) and node address 63 should be left vacant for
introduction of new slave devices. The ArmorStart offers two
methods for node commissioning as shown below.
The node address for a device can be changed using software or by
setting hardware switches that reside on the back of the control
module. While both methods yield the same result, it is good practice
to choose one method and deploy it throughout the system.
The ArmorStart is shipped with the hardware rotary switches set to a
value of (99). If the switches are set to a value (64) or above, the
device will automatically configure itself to the software node
address. If the switches are set to a value of (63) or less, the device
will be at the node address designated by the switch configuration.
To set an address using the hardware rotary switches, simply set the
switches to the desired node address and cycle power to the unit. The
Device will re-start at the new address.
Figure 5.1 Rotary Node Address Configuration
See Detail A
LSD
Detail A
MSD
Node Commissioning using
Hardware
5-2
DeviceNet™ Commissioning
Node Commissioning using
Software
To set the node address of the ArmorStart using software or other
handheld tools, leave the hardware switches in there default position
(99) or insure that they are set to something greater than (63). With
the hardware switches set, use the software or handheld tool to
change the address.
To begin the configuration of ArmorStart using software, execute the
RSNetWorx™ software and complete the following procedure. You
must use RSNetWorx Revision 3.21 Service Pack 2 or later.
1. Go on-line using RSNetWorx for DeviceNet. This can be
accomplished by selecting the Network menu, and then choosing
Online.
2. Choose the appropriate DeviceNet PC interface. In this example,
a 1784-PCIDS module is chosen. Other common DeviceNet
interfaces are the 1770-KFD, and 1784-PCD.
Note: DeviceNet drivers must be configured using RSLinx prior to
being available to RSNetWorx.
3. Click OK.
4. RSNetWorx will notify the user to upload or download devices
before viewing configuration. Click OK.
5. RSNetWorx will now browse the network and display all of the
nodes it has detected on the network. For some versions of
RSNetWorx software the ArmorStart EDS files and icon may not
be included and will show up as an “Unregistered Device”. If the
screen appears like the example below, continue with Building
and Registering an EDS file.
6. If RSNetWorx recognizes the device as an ArmorStart, skip
ahead to the following section Changing the Node address (MAC
ID)
DeviceNet™ Commissioning
Building and Registering an EDS
File
5-3
The EDS file defines how RSNetWorx for DeviceNet will
communicate to the ArmorStart. Follow the steps below to build and
register the EDS file.
To register a device you must first obtain the EDS file from the
following web page: http://www.ab.com/networks/eds
After obtaining the files do the following:
1. Right mouse click on the “Unrecognized Device” icon and
choose Register Device from the menu.
2. Click Next. The following screen appears:
3. Choose “Register an EDS file(s)” as shown above and then click
the Next button.
4. Choose to “Register a single file” and specify the file name or use
the Browse button to locate the EDS file on your computer. If
connected to the Internet you may use the Download EDS file
button to automatically search for the correct EDS file.
5-4
DeviceNet™ Commissioning
5. Click the Next button.
6. The following screen will display any warning or errors if a problem occurs while registering the file. If a problem occurs insure
that you have the correct file and try again. Click the Next button
when no errors occur.
7. Select an alternative icon by highlighting the new device and
clicking Change Icon. Once you have selected an icon, choose
OK and then click the Next button
8. When asked if you would like to register this device, click the
Next button.
DeviceNet™ Commissioning
5-5
9. Click the Finish button. After a short while RSNetWorx will
update your online screen by replacing the unrecognized device
with the name and icon given by the EDS file you have just registered.
Using the Node Commissioning
Tool Inside RSNetWorx for
DeviceNet
1. Choose “Node Commissioning” from the “Tools” menu at the
top of the screen.
2. Clicking on Browse… will prompt a screen similar to the one
below to appear.
3. Select the ArmorStart located at node 63, and then click OK. The
node commissioning screen will have the “Current Device Settings” entries completed. It will also provide the current network
baud rate in the “New ArmorStart Settings” area. Do not change
the baud rate unless you absolutely sure that this value needs to
be changed.
4. Enter the desired node address in the “New Device Settings” section. In this example, the new node address is 5. Click Apply to
apply the new node address.
5-6
DeviceNet™ Commissioning
5. When the new node address has been successfully applied, the
“Current Device Settings” section of the window is updated as
follows. If an error occurs, check to make sure the device is properly powered up and connected to the network.
6. Click Close to exit the node commissioning tool.
7. Choose “Single Pass Browse” from the “Network” menu to
update RSNetWorx and verify that the node address is set correctly.
System Configuration
Selection of produced and consumed I/O assemblies (sometimes
referred to as input and output assemblies) define the format of I/O
message data that is exchanged between the ArmorStart and other
devices on the network. The consumed information is generally used
to command the state of its outputs, and produced information
typically contains the state of the inputs and the current fault status of
the device.
The default consumed and produced assemblies are shown below; for
additional formats refer to Appendix B, page B-1. The ArmorStart
default configuration varies depending on the type of starter.
Choosing the size and format of the I/O data that is exchanged by the
ArmorStart is done by choosing a consumed assembly instance
number. This instance number is written to the Consumed IO Assy
parameter. The different instances/formats allow user programming
flexibility and network optimization.
Important: The Consumed and Produced IO Assy parameter values
can not be changed while the ArmorStart is online with a
scanner. Any attempts to change the value of this
parameter while online with a scanner will result in the
error message “Object State Conflict”.
5-7
DeviceNet™ Commissioning
Using Automap feature with
default Input and Output (I/O)
Assemblies (Bulletin 280G/281G)
The Automap feature available in all Rockwell Automation scanners
will automatically map the information as shown below. If manual
mapping is not required, the information below can be used to map a
device based on the default configuration.
Table 5.1
Default Input and Output (I/O) Assemblies
Default
Default Input and Output (I/O)
Assembly Formats (Bulletin 280G/
281G)
Message type
Polled
Consumed data size
1 byte (Rx)
Produced data size
2 bytes (Tx)
The I/O assembly format for the ArmorStart is identified by the value
in parameter 11 (Consumed IO Assy.) and parameter 12 (Produced IO
Assy.). These values determine the amount and arrangement of the
information communicated to the master scanner. The tables below
identify the default information produced and consumed by the
standard starter. For additional formats and advance configurations
please reference Table B.13 on page B-5.
Table 5.2
Instance 160 — Default Consumed Data for Standard Distributed
Motor Controller (1 byte)
Byte
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
0
Not Used
Not Used
Not Used
Not Used
Not Used
Fault Reset
Run Rev
Run Fwd
Table 5.3
Instance 161 — Default Produced Data for Standard Distributed
Motor Controller (2 bytes)
Byte
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
0
Not Used
140M On
Not Used
Ready
Running Rev
Running Fwd
Warning
Tripped
1
Not Used
Not Used
User In 5
User In 4
User In 3
User In 2
User In 1
User In 0
5-8
DeviceNet™ Commissioning
Setting the Motor FLA and
Overload Trip Class (Bulletin 280G/
281G)
The product should now be configured and communicating on the
network. The last step is to program the motor FLA setting
(parameter# 106) and overload trip class (parameter# 107). This can
be accomplished by using software such as RSNetWorx for
DeviceNet or another handheld DeviceNet tool.
Using the software, access the device parameters screen as shown
below. Notice that by default the motor FLA is set to the minimum
FLA setting for the device and the overload trip class is set to 10.
Select FLA setting (parameter #106) and enter a value that
corresponds to the FLA of the motor connected to the ArmorStart.
Make sure the single radio button is selected and then select
Download to Device.
Select Overload Class (parameter #107) and choose the overload trip
class to be used with the motor connected to the ArmorStart. The
ArmorStart can be set up for trip class 10, 15, or 20. Make sure the
Single radio button is selected and then select Download to Device.
The proper motor protection is now in place.
Figure 5.2 RSNetWorx Parameter Screen
5-9
DeviceNet™ Commissioning
Using Automap feature with
default Input and Output (I/O)
Assemblies (Bulletin 284G)
The Automap feature available in all Rockwell Automation scanners
will automatically map the information as shown below. If manual
mapping is not required, the information below can be used to map a
device based on the default configuration.
Table 5.4
Default Input and Output (I/O) Assemblies
Default
Default Input and Output (I/O)
Assembly Formats (Bulletin 284G)
Message type
Polled
Consumed data size
4 bytes (Rx)
Produced data size
2 bytes (Tx)
The I/O assembly formats for the ArmorStart are identified by the
value in Parameter 11 (Consumed IO Assy.) and Parameter 12
(Produced IO Assy.). These values determine the amount and
arrangement of the information communicated to the master scanner.
The tables below identify the default information produced and
consumed by Bulletin 284G devices. For additional formats and
advance configurations please reference the user manual:
Defaults for Bulletin 284G Distributed Motor Controllers
Table 1
Instance 164 — Default Consumed Inverter Type Distributed Starter
(4 bytes)
Byte
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
0
Not
Used
Not
Used
Not
Used
Jog
Rev
Jog Fwd
Fault Reset
Run Rev
Run Fwd
1
Drive
In 4
Drive
In 3
Drive
In 2
Drive Decel Rate 2
In 1
Enable
Decel Rate 1
Enable
Accel Rate 2
Enable
Accel Rate 1
Enable
2
Comm Frequency Command (Low) (xxx.x Hz)
3
Comm Frequency Command (High) (xxx.x Hz)
Table 2
Instance 165 — Default Produced Inverter Type Distributed Starter
(4 bytes)
Byte
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
0
At
Reference
140M On
Net Ctl
Status
Ready
Running
Rev
Running
Fwd
Warning
Tripped
1
Reserved
Contactor 1
➊
Input
5
Input
4
Input 3
Input 2
Input 1
Input 0
2
Output Frequency (Low) (xxx.x Hz)
3
Output Frequency (High) (xxx.x Hz)
➊ Refers to control brake contactor status..
5-10
DeviceNet™ Commissioning
Setting the Motor FLA (Bulletin
284G)
The product should now be configured and communicating on the
network. The last step is to program the proper motor OL current
setting (Parameter 133). This can be accomplished by using software
such as RSNetWorx for DeviceNet or a handheld DeviceNet tool.
Use the software to access the device parameters screen. By default
the motor OL current is set to the minimum motor OL current setting
for the device. Set this parameter to the desired value and download to
the device.
Select Motor OL Current (Parameter 133) and enter a value that
corresponds to the FLA of the motor connected to the ArmorStart.
Make sure the Single radio button is selected and then select
Download to Device.
The proper motor protection is now in place.
Figure 6 RSNetWorx Parameter Screen
5-11
DeviceNet™ Commissioning
193-DNCT Product Overview
The 193-DNCT product is a handheld device that can be used to
commission, configure, program, and monitor other devices on a
DeviceNet™ network. In addition, the 193-DNCT can be used to
upload, store, and later download complete device configurations for
DeviceNet™ devices via the network. The 193-DNCT also has the
capability to present DeviceNet™ physical layer diagnostics and
network bandwidth statistics to the user.
User Manual
For additional information regarding the 193-DNCT, refer to the User
Manual, 193-UM009*.
Bill of Material
The 193-DNCT product package includes the following items:
Item
Description
Quantity
193-DNCT
DeviceNet™ Configuration Terminal
193-CB1
1 m DNCT Cable with color-coded bare leads
193-QR002_-EN-P DeviceNet™ Configuration Terminal Quick Reference
1
1
1
Accessories
Description
1 m DNCT Cable with color-coded bare lead
1 m DNCT Cable with microconnector (male)
Door mount bezel kit
Mini-Mini-Micro Tee for connection to ArmorStart
5-pin connector
ATTENTION
!
Catalog No.
193-CB1
193-CM1
193-DNCT-BZ1
1485P-P1R5-MN5R1
1787-PLUG10R
The Bulletin 193 DeviceNet™ Configuration
Terminal should only be used on a DeviceNet™
network.
5-12
DeviceNet™ Commissioning
Tools Menu
The Tools Menu gives the user access to the Node Commissioning
screen, a Class Instance Attribute editor, and a graphical parameter
chart recorder screen. The Tools Menu is shown below:
Node Commissioning
Pressing Enter while the NodeComm item is selected in the Tools
Menu invokes the Node Commissioning screen. Node commissioning
allows the operator to change the Mac ID and/or the baud rate for the
currently selected device.
Currently selected item
This only appears if one of the
fields has been changed.
Pressing Enter here will reset
the DeviceNet™ HIM after
writing any changes to the
device
Chapter
6
Explicit Messaging on DeviceNet™
Logic Controller Application
Example with Explicit
Messaging
This chapter is designed to demonstrate programming and explicit
message examples for both the SLC™ family of programmable
controllers and ControlLogix® family of programmable controllers.
The examples will show how to develop a program for simple control
and use a simple explicit message to retrieve data that is not
automatically acquired based on the input and output assembly of the
device. The user of the device can use this example as a guide in
developing, their own programs.
Below is the RSNetWorx™ view of the simple network used in this
example.
Figure 6.1 Simple Network
To assist in the development of the example the network will consist
only of the ArmorStart® and scanner. Therefore the only mapped
information in the scanner will be the ArmorStart. Refer to Chapter 5,
DeviceNet™ Commissioning for assistance in mapping.
6-2
Explicit Messaging on DeviceNet™
Programming the 1747-SLC
I/O Mapping
The following example will utilize the Standard Distributed Motor
Controller and the factory default input and output assembly of 160
and 161. Refer to Appendix B, Bulletin 280G/281G CIP Information
for additional assembly formats. The default input and output
assemblies are shown in the table below with the corresponding data
size.
Table 6.1
Message Type (I/O Assembly)
Data Size (bytes)
Instance 160 – Consumed (output)
1 (Rx)
Instance 161 – Produced (input)
2 (Tx)
If a different I/O assembly is selected, the data size may change. It is
important to understand that the I/O assembly selected here will
directly affect the input and output mapping in the scanner’s scanlist
and the amount of Programmable Logic Controller (PLC) memory
reserved for this information.
Table 6.2
Example SLC Input Addressing (Produced Assembly)
)
Instance 161 Default Produced Standard Distributed Motor Controller
Byte 0
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Address
I:1.23
I:1.22
I:1.21
I:1.20
I:1.19
I:1.18
I:1.17
I:1.16
Data
Reserved
Reserved
Reserved
Ready
Running Rev
Running Fwd
Warning
Tripped
Byte 1
Bit 15
Bit 14
Bit 13
Bit 12
Bit 11
Bit 10
Bit 9
Bit 8
Address
I:1.31
I:1.30
I:1.29
I:1.28
I:1.27
I:1.26
I:1.25
I:1.24
Data
Reserved
Reserved
140M On
HOA
User In 3
User In 2
User In 1
User In 0
Table 6.3
Example SLC Output Addressing (Consumed Assembly)
)
Instance 160 Default Consumed Standard Distributed Motor Controller
Byte
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Address
O:1.23
O:1.22
O:1.21
O:1.20
O:1.19
O:1.18
O:1.17
O:1.16
Data
Reserved
Reserved
Reserved
Reserved
Reserved
Fault Reset
Run Rev
Run Fwd
The example PLC program for the SLC will use the “Tripped” and
the “140M On” bit from the produced assembly and the “Fault
Reset”, “User Out A”, and “Run Fwd” bit from the consumed
assembly.
Explicit Messaging on DeviceNet™
Explicit Messaging with SLC
6-3
The 1747-SDN module uses the M0 and M1 file areas for data
transfer. Only words 224 through 256 are used to execute the Explicit
Message Request and Response function. The minimum data size for
the explicit message request is 6 words and the maximum is 32
words. The following tables illustrate the standard format of the
explicit message request and response.
Table 6.4
Explicit Message Request (Get_Attribute_Single)
)
Bit location within Word
15 … 8
7…0
TXID
COMMAND
Word - 0
PORT
SIZE
Word - 1
MAC ID
Word - 2
SERVICE
Table 6.5
CLASS
Word - 3
INSTANCE
Word - 4
ATTRIBUTE
Word - 5
Explicit Message Response (Get_Attribute_Single)
Bit location within Word
15 … 8
7…0
TXID
STATUS
Word - 0
PORT
SIZE
Word - 1
SERVICE
MAC ID
Word - 2
DATA
Word - 3
•
Transmission ID (TXID):
The scanner uses this value to track the transaction to completion,
and returns the value with the response that matches the request
downloaded by the SLC-500 processor. The TXID data size is
one byte.
•
Command:
This code instructs the scanner how to administer the request. A
listing of these codes can be found in the 1747-SDN User
Manual, Publication 1747-5.8. The Command data size is one
byte.
•
Status:
The Status code provides the communication module’s status and
its response.
•
Port:
The physical channel of the scanner where the transaction is to be
routed. The port setting can be zero (channel A) or one (channel
B). The Port data size is one byte. Please note that the 1747-SDN
has only one channel, and so this value is always set to zero.
6-4
Explicit Messaging on DeviceNet™
Setting up the Data File
•
Size:
This identifies the size of the transaction body in bytes. The
transaction body begins at word 3. The maximum size is 58 bytes.
The Size data size is one byte.
•
Service:
This code specifies the type of request being delivered. The
Service data size is one byte.
•
MAC ID:
The DeviceNet™ network node address of the device for which
the transaction is intended is identified here. The slave device
must be listed in the scanner module’s scan list and be on-line for
the explicit message transaction to be completed.
•
Class:
The desired DeviceNet class is specified here.
•
Instance:
This code identifies the specific instance within the object class
towards which the transaction is directed. The value zero is
reserved to denote that the transaction is directed towards the
class itself versus a specific instance within the class.
•
Attribute:
This code identifies the specific characteristic of the object
towards which the transaction is directed. The attribute data size
is one word.
The following table lists the most common transaction types (get
information and set information), and the appropriate service, class,
instance, and attribute that corresponds to the type.
Table 6.6
Common Configuration Examples for ArmorStart
Transaction Type
Service ➊
Class ➊
Instance ➊
Attribute ➊
Get_Attribute_Single
0x0E
0x0F
Par. # ➋
1➌
Set_Attribute_Single
0x10
0x0F
Par. # ➋
1➌
The numeric values are in a hexadecimal format.
➋ This is the actual parameter number.
➌ The code “1” specifies the value of the instance (parameter).
➊
6-5
Explicit Messaging on DeviceNet™
Sequence of Events
Use the following sequence of events as a guide for establishing
explicit messages in your SLC ladder logic.
1. Put the explicit message request data into an integer (N) file of the
SLC-500 processor.
2. Use the file copy instruction (COP) to copy the explicit message
request data entered in step 1 to the M0 File, words 224 through
256.
3. Use the examine-if-closed instruction (XIC) to monitor bit 15 of
the scanner’s module status register for an indication that it has
received a response from the ArmorStart.
4. Copy the data from the M1 file, words 224 through 256, into a file
in the SLC-500 processor using the file copy instruction (COP).
The following example shows the exact data format to perform a
“Get Attribute Single” request. This message will specifically access
parameter 104, Average Current. The first three words are shown
segmented into two bytes, corresponding to the upper and lower bytes
shown in the explicit message request table (Table 6.4).
Note: The data in the table is shown in a hexadecimal format.
Therefore parameter 104 decimal is equal to 68 hexadecimal
(0x68).
Table 6.7
TXID
Word
N7:x
Command
Port
0
01
Size
Service
1
01
00
Word
N7:x
Status
06
Port
10
01
0E
Size
00
04
MAC ID
12
06
0E
Class
Instance
Attribute
3
4
5
6
7
000F
0068
0001
—
—
Get_Attribute_Single Response
Service
11
xx
MAC ID
2
Table 6.8
TXID
Get_Attribute_Single Request
04
Data
13
14
15
16
17
x
—
—
—
—
Figure 6.2 SLC Example of Ladder Logic Program
6-6
Explicit Messaging on DeviceNet™
If a trip condition exists, momentarily setting B3:0.1 will reset the fault. B3:0.0 will need to be re-initiated to start the “run Fwd”
Explicit Messaging on DeviceNet™
6-7
6-8
Explicit Messaging on DeviceNet™
Programming the
1756-ControlLogix
I/O Mapping
The following example will use the standard distributed motor
controller and the factory default input and output assembly of 160
and 161. Refer to Appendix B for additional assembly formats. The
default input and output assembly will again be used in the following
example.
Note: The addressing is different between the SLC 1747 and
ControlLogix 1756 program. It is important that the user
understand how to create and use “tags” in order to properly
follow the example. Please see the RSLogix™ 5000
programming manual for additional help with defining tags.
The tables below list the data configuration for the ControlLogix
platform and include the tag name as used in the example program.
Table 6.9
Example ControlLogix Input Addressing (Produced Assembly)
)
Instance 161 Default Produced Standard Distributed Motor Controller
Byte 0
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Address
Local:1:I.
Data[1].7
Local:1:I.
Data[1].6
Local:1:I.
Data[1].5
Local:1:I.
Data[1].4
Local:1:I.
Data[1].3
Local:1:I.
Data[1].2
Local:1:I.
Data[1].1
Local:1:I.
Data[1].0
Tag Name
—
—
—
—
—
—
Status_
warning
Status_
tripped
Data
reserved
reserved
reserved
Ready
Running Rev
Running Fwd
Warning
Tripped
Byte 1
Bit 15
Bit 14
Bit 13
Bit 12
Bit 11
Bit 10
Bit 9
Bit 8
Address
Local:1:I.
Data[1].15
Local:1:I.
Data[1].14
Local:1:I.
Data[1].13
Local:1:I.
Data[1].12
Local:1:I.
Data[1].11
Local:1:I.
Data[1].10
Local:1:I.
Data[1].9
Local:1:I.
Data[1].8
Tag Name
—
140M On
—
—
—
—
—
—
Data
reserved
reserved
User In 5
User In 4
User In 3
User In 2
User In 1
User In 0
Table 6.10 Example ControlLogix Output Address (Consumed Assembly)
)
Instance 160 Default Consumed Standard Distributed Motor Controller
Byte 0
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Address
Local:1:O.
Data[1].7
Local:1:O.
Data[1].6
Local:1:O.
Data[1].5
Local:1:O.
Data[1].4
Local:1:O.
Data[1].3
Local:1:O.
Data[1].2
Local:1:O.
Data[1].1
Local:1:O.
Data[1].0
Tag Name
—
—
—
—
—
Control_fault
Reset
—
—
Data
reserved
reserved
reserved
reserved
reserved
Fault Reset
Run Rev
Run Fwd
Explicit Messaging on DeviceNet™
6-9
Explicit Messaging with
ControlLogix
The ControlLogix platform requires significantly less structure to
initiate an explicit message. The explicit message Request and
Response is configured within the MSG function. The MSG function
can be found in the Input/Output tab of RSLogix 5000. Notice that in
the ControlLogix program example, rung 6 is the only required logic
to complete the explicit message request.
Setting Up the MSG Instruction
A tag name must be given to the MSG function before the rest of the
information can be defined. In this example a tag was created with the
name explicit_mess. After the instruction has been named, click on
the gray box
to define the rest of the instruction.
The following example shows the exact data format to perform a Get
Attribute Single request. This message will specifically access
parameter 104, Average Current. See Table 6.6 on page 6-4 for
additional configurations.
Figure 6.3 Message Configuration
•
Message Type
Select CIP Generic from pull down menu to configure an explicit
message.
•
Destination Element
This is the tag name of the location you are going to place the
response information. In this example a tag was created with the
name explicit_data.
6-10
Explicit Messaging on DeviceNet™
•
Service Type
The pull down menu has several options, however only the Get
Attribute Single is used for this example.
The Class, Instance, and Attribute define the actual information
being requested. Additional configurations of these parameters
can be found in Appendix B.
•
Class
In this example the value is “F”
•
Instance
In this example the value is “104”
•
Attribute
In this example the value is “1”
After the above information has been entered, click on the
communication tab.
•
Path
The path will define the route the message will take to get to the
device it is intended for. In this example the path is Scanner,2,4;
where scanner is the name of the 1756-DNB in the rack, 2
represents the DeviceNet port, and 4 represents the physical node
address of the ArmorStart.
Figure 6.4 Scanner Path
Explicit Messaging on DeviceNet™
Figure 6.5 ControlLogix Example of Ladder Logic Program
6-11
6-12
Notes
Explicit Messaging on DeviceNet™
Chapter
7
Using DeviceLogix™
DeviceLogix is a stand-alone Boolean program that resides within the
ArmorStart®. The program is embedded in the product software so
that there is no additional module required to use this technology;
RSNetWorx™ for DeviceNet™ is required to program the device.
In addition to the actual programming, DeviceLogix can be
configured to operate under specific situations. It is important to note
that the DeviceLogix program will only run if the logic has been
enabled. This can be done within the “Logic Editor” of RSNetWorx.
The operation configuration is accomplished by setting the “Network
Override” and “Communication Override” parameter. The following
information describes the varying levels of operation:
DeviceLogix Programming
•
If both overrides are disabled and the logic is enabled, the ONLY
time DeviceLogix will run is if there is an active I/O connection
with a master, i.e. the master is in Run mode. At all other times
DeviceLogix will be running the logic, but will NOT control the
state of the outputs.
•
If the Network Override is enabled and the logic is enabled then
DeviceLogix controls the state of the outputs when the PLC is in
Run mode and if a network fault such as Duplicate MAC ID or
Module Bus off condition occurs.
•
If the Communications Override is enabled and the logic is
enabled, the device does not need any I/O connection to run the
logic. As long as there is control power and a DeviceNet power
source connected to the device, the logic will control the state of
the outputs.
DeviceLogix has many applications and the implementation is
typically only limited to the imagination of the programmer. Keep in
mind that the application of DeviceLogix is only designed to handle
simple logic routines.
DeviceLogix is programmed using simple Boolean math operators
such as AND, OR, NOT, timers, counters, and latches. Decision
making is done by combining these Boolean operations with any of
the available I/O. The inputs and outputs used to interface with the
logic can come from the network or from the device hardware.
Hardware I/O is the physical Inputs and Outputs located on the device
such as push buttons and pilot lights that are connected to the
ArmorStart.
7-2
Using DeviceLogix™
There are many reasons to use the DeviceLogix functionality, but
some of the most common are listed below:
DeviceLogix Programming
Example
•
Increased system reliability
•
Fast update times (1 - 2 ms possible)
•
Improved diagnostics and reduced troubleshooting
•
Operation independent of PLC or Network status
•
Continue to run process in the event of network interruptions
•
Critical operations can be safely shutdown through local logic
The following example will show how to program a simple logic
routine to interface the ArmorStart with a remote hard-wired startstop station. In this case the I/O is wired as shown in the table.
Table 7.1
Hardware Bit Assignments and Description for the ArmorStart
Input Table
Output Table
Bit
Description
Bit
Description
Input 0
Start Button
Run Fwd
Contactor Coil
Input 1
Stop Button
N/A
N/A
Input 2
N/A
—
—
Input 3
N/A
—
—
Important: Before programming logic, it is important to decide on
the conditions under which the logic will run. As defined
earlier, the conditions can be defined by setting
parameter 8 (Network Override) and parameter 9
(Comm. Override) to the desired value.
1. While in RSNetWorx for DeviceNet, Double click on the
ArmorStart.
2. Click on the “DeviceLogix” tab. If you are on-line with a device a
dialog box will appear asking you to upload or download. Click
on “Upload.”
3. Click the Start Logic Editor button.
4. If programming off-line continue to step 5, otherwise click on the
“Edit” button. Click “Yes” when asked if you want to Enter Edit
Mode. Once in edit mode the entire list of Function Blocks will
be displayed in the toolbar.
5. Left Click on the “RSL” function block. This is a reset dominate
latch.
6. Move the cursor into the grid, and left click to drop the function
onto the grid.
Using DeviceLogix™
7-3
7. From the toolbar, Click on the “Discrete Input” button and select
Input 0 from the pull-down menu. This is the remote start button
based on the example I/O table.
8. Place the input to the left of the RSL function. To drop the input
on the page, left click on the desired position.
9. Place the mouse cursor over the tip of Input 0. The tip will turn
green. Click on the tip when it turns green.
10. Move the mouse cursor toward the input of the RSL function. A
line will follow the cursor. When a connection can be made, the
tip of the RSL function will also turn green. Click the on Input
and the line will be drawn from Input 0 to the Set Input of the
RSL function.
Note: If this was not a valid connection, one of the pin tips would
have turned red rather than green. Left double clicking on the
unused portion of the grid or pressing the “Esc” key at any
time will cancel the connection process.
11. From the toolbar, Click on the “Discrete Input” button and select
Input 1 from the pull-down menu. This is the remote stop button
based on the example I/O table.
12. Place the input to the left of the RSL function.
13. Connect the input to the reset input of the RSL latch.
7-4
Using DeviceLogix™
14. From the toolbar, Click on the “Discrete Output” button and
select “Run Fwd” from the pull-down menu. Run Fwd is the
relay controlling the coil of the contactor. Click OK.
15. Move the cursor into the grid and place the Output to the right of
the RSL function block.
16. Connect the output of the “RSL” function block to Run Fwd.
17. Click on the “Verify” button located in the toolbar or select
“Logic Verify” from the “Tools” pull-down menu.
18. Click on the “Edit” button to toggle out of edit mode if online
with a device.
19. Go to the pull-down menu in the right corner of the toolbar and
select “Download”.
20. Note: Ensure that the PLC key switch is in the Program position.
If in any other position, the download will not occur and an error
will be generated.
21. Press “OK” when told the download was successful.
22. Now from the same pull-down menu select “Logic Enable On.”
23. The ArmorStart is now programmed and the logic is Active.
Using DeviceLogix™
ArmorStart Fault Bit, Status Bit,
Outputs and Produced Network
Bits in the DeviceLogix Ladder
Editor
7-5
All ArmorStart Distributed Motor Starters support DeviceLogix.
When using the DeviceLogix ladder editor to program logic for an
ArmorStart, the bit names that are associated with fault bits, status
bits, outputs and produced network bits when using the original
DeviceLogix function block editor are not presented by the ladder
editor. Instead, these bits are numbered. Fault bits such as “Overload
Trip” are tagged “FB0, FB1, FB2, etc. Status bits such as “Running
Fwd” are tagged SB0, SB1, SB2, etc. Outputs such as “Run Reverse”
are tagged DOP0, DOP1 etc. Produced Network Bits such as “Fault
Reset” are tagged PNB0, PNB1, etc.
The following steps provide information to program ArmorStart
DeviceLogix programs with the ladder editor.
1. Bulletin 280G and 281G ArmorStart Status Bits
The screen capture below shows how to choose status bits in the
ladder editor.
The following list contains the status bit definitions for Bulletin 280G
and 281G ArmorStart units:
ArmorStart Revision 2.xxx (280G and 281G)
0 = Tripped
1 = Warning
2 = Running Fwd
3 = Running Rev
4 = Ready
5 = Net Ctl Status
6 = Keypad Hand
7 = HOA Status
8 = 140M On
9 = Explicit Msg Cnxn Exists
10 = IO Cnxn Exists
11 = Explicit Cnxn Fault
12 = IO Cnxn Fault
13 = IO Cnxn Idle
14 = Current Flowing
15 = Keypad Hand Direction
16 = ZIP1 Cnxn
17 = ZIP1 Fault
18 = ZIP2 Cnxn
19 = ZIP2 Fault
20 = ZIP3 Cnxn
21 = ZIP3 Fault
22 = ZIP4 Cnxn
23 = ZIP4 Fault
7-6
Using DeviceLogix™
2. Bulletin 280G and 281G ArmorStart Fault Bits
The screen capture below how to choose fault bits in the ladder editor.
The following list contains the fault bit definitions for Bulletin 280G
and 281G ArmorStart units:
ArmorStart Revision 2.xxx (280G and 281G)
0 = Short Circuit
1 = Overload
2 = Phase Loss
3 = Control Power
4 = IO Fault
5 = Over Temp
6 = Phase Imbalance
7 = DNet Power Loss
8 = EEprom
9 = HW Flt
10 = PL Warning
11 = CP Warning
12 = IO Warning
13 = Phase Imbal Warn
14 = DN Warning
15 = HW Warning
Using DeviceLogix™
7-7
3. Bulletin 280G and 281G ArmorStart Produced Network Bits
The screen capture below shows how to choose Produced Network
Bits in the ladder editor.
The following table contains the produced network bit definitions for
Bulletin 280G and 281G ArmorStart units:
ArmorStart Revision 2.xxx (280G and 281G)
0 = Net Output 0
1 = Net Output 1
2 = Net Output 2
3 = Net Output 3
4 = Net Output 4
5 = Net Output 5
6 = Net Output 6
7 = Net Output 7
8 = Net Output 8
9 = Net Output 9
10 = Net Output 10
11 = Net Output 11
12 = Net Output 12
13 = Net Output 13
14 = Net Output 14
15 = Fault Reset
16 = Motion Disable
17 = Keypad Disable
7-8
Using DeviceLogix™
4. Bulletin 284G ArmorStart Status Bits
The following table contains the status bit definitions for Bulletin
284G ArmorStart:
Power Flex 40
Revision 2.00x (284G)
0 = Tripped
1 = Warning
2 = Running Fwd
3 = Running Rev
4 = Ready
5 = Net Ctl Status
6 = Net Ref Status
7 = At Reference
8 = Drive Opto 1
9 = Drive Opto 2
10 = Keypad Jog
11= Keypad Hand
12 = HOA Status
13 = 140M On
14 = Contactor 1
15 = Contactor 2
16 = Explicit Msg Cnxn Exists
17 = IO Cnxn Exists
18 = Explicit Cnxn Fault
19 = IO Cnxn Fau
20 = IO Cnxn Idle
21 = Keypad Hand Direction
22 = ZIP1 Cnxn
23 = ZIP1 Fault
24 = ZIP2 Cnxn
25 = ZIP2 Fault
26 = ZIP3 Cnxn
27 = ZIP3 Fault
28 = ZIP4 Cnxn
29 = ZIP4 Fault
Using DeviceLogix™
5. Bulletin 284G ArmorStart Fault Bits
The screen capture below shows how to choose Fault Bits in the
ladder editor.
The following table contains the fault bit definitions for Bulletin
284G ArmorStart:
ArmorStart Revision 2.xxx (284G)
0 = Short Circuit
1 = Overload
2 = Phase Short
3 = Ground Fault
4 = Stall
5 = Control Power
6 = IO Fault
7 = Over Temp
8 = Phase Over Current
9 = DNet Power Loss
10 = Internal Comm
11 = DC Bus Fault
12 = EEprom
13 = HW Flt
14 = Reset Retries
15 = Misc. Fault
16 = CP Warning
17 = IO Warning
18 = DN Warning
19 = HW Warning
7-9
7-10
Using DeviceLogix™
6. Bulletin 284G ArmorStartProduced Network Bits
The screen capture below shows how to choose Produced Network
Bits in the ladder editor.
The following table contains the produced network bit definitions for
Bulletin 284G ArmorStart units:
ArmorStart Revision 2.xxx (284G)
0 = Net Output 0
1 = Net Output 1
2 = Net Output 2
3 = Net Output 3
4 = Net Output 4
5 = Net Output 5
6 = Net Output 6
7 = Net Output 7
8 = Net Output 8
9 = Net Output 9
10 = Net Output 10
11 = Net Output 11
12 = Net Output 12
13 = Net Output 13
14 = Net Output 14
15 = Fault Reset
16 = Accel 1
17 = Accel 2
18 = Decel 1
19 = Decel 2
20 = Freq Select 1
21 = Freq Select 2
22 = Freq Select 3
23 = Motion Disable
24 = Keypad Disable
Chapter
8
ArmorStart® ZIP Configuration
Overview
This chapter describes the steps necessary to configure the Zone
Interlocking Parameters (ZIP) to configure peer-to-peer
communication between an ArmorStart and another ZIP enabled
device such as another ArmorStart or a 1977-ZCIO module. First, an
overview of the ZIP parameter set is presented. Then the steps
necessary to enable peer-to-peer data production are described. Next,
the steps necessary to enable peer-to-peer data consumption are
described. Finally, the steps necessary to map the consumed peer-topeer data to the DeviceLogix™ data table for use in local logic are
described.
ZIP Parameter Overview
Each ArmorStart can consume ZIP data from up to 4 other devices.
The 4 devices are referred to as “zones” of data and these zones are
numbered from 1 to 4. The following parameters are used to
configure a device for ZIP peer-to-peer communication:
8-2
ArmorStart® ZIP Configuration
Param #
Parameter Name
67
AutoRun ZIP
68
69
70
71
72
73
74
Zone ProducedEPR
Zone ProducedPIT
Zone #1 MacId
Zone #2 MacId
Zone #3 MacId
Zone #4 MacId
Zone #1 Health
75
Zone #2 Health
76
Zone #3 Health
77
Zone #4 Health
78
Zone #1 Mask
79
Zone #2 Mask
80
Zone #3 Mask
81
Zone #4 Mask
82
83
84
85
86
Zone #1 Offset
Zone #2 Offset
Zone #3 Offset
Zone #4 Offset
Zone #1 EPR
87
Zone #2 EPR
88
Zone #3 EPR
89
Zone #4 EPR
90
Zone #1 Control
91
Zone #2 Control
92
Zone #3 Control
93
Zone #4 Control
94
Zone #1 Key
95
Zone #2 Key
96
Zone #3 Key
97
Zone #4 Key
98
99
Device Value Key
Zone Ctrl Enable
Parameter Description
Enables ZIP data production on power up
0=Disable; 1=Enable
The Expected Packet Rate in msec. Defines the rate of at which ZIP data is produced. Defaults to 75 msec.
The Production Inhibit Time in msec. Defines the minimum time between Change of State data production
The node address of the device whose data is to be consumed for zone 1
The node address of the device whose data is to be consumed for zone 2
The node address of the device whose data is to be consumed for zone 3
The node address of the device whose data is to be consumed for zone 4
Read Only consumed connection status for zone 1
0=Healthy; 1=Not Healthy
Read Only consumed connection status for zone 2
0=Healthy; 1=Not Healthy
Read Only consumed connection status for zone 3
0=Healthy; 1=Not Healthy
Read Only consumed connection status for zone 4
0=Healthy; 1=Not Healthy
Bit enumerated consumed data mask for zone 1. Each bit represents a byte in consumed data up to 8 bytes in length. If a mask bit
is set, the corresponding consumed data byte is placed in the DeviceLogix data table
Bit enumerated consumed data mask for zone 2. Each bit represents a byte in consumed data up to 8 bytes in length. If a mask bit
is set, the corresponding consumed data byte is placed in the DeviceLogix data table
Bit enumerated consumed data mask for zone 3. Each bit represents a byte in consumed data up to 8 bytes in length. If a mask bit
is set, the corresponding consumed data byte is placed in the DeviceLogix data table
Bit enumerated consumed data mask for zone 4. Each bit represents a byte in consumed data up to 8 bytes in length. If a mask bit
is set, the corresponding consumed data byte is placed in the DeviceLogix data table
The byte offset into the ZIP data portion of the DeviceLogix data table to place the chosen consumed data bytes for zone 1.
The byte offset into the ZIP data portion of the DeviceLogix data table to place the chosen consumed data bytes for zone 2.
The byte offset into the ZIP data portion of the DeviceLogix data table to place the chosen consumed data bytes for zone 3.
The byte offset into the ZIP data portion of the DeviceLogix data table to place the chosen consumed data bytes for zone 4.
The Expected Packet Rate in msec. for the zone 1 consuming connection. If consumed data is not received in 4 times this value, the
zone connection will time out and “Zone #1 Health” will report 1 = Not Healthy.
The Expected Packet Rate in msec. for the zone 2 consuming connection. If consumed data is not received in 4 times this value, the
zone connection will time out and “Zone #2 Health” will report 1 = Not Healthy
The Expected Packet Rate in msec. for the zone 3 consuming connection. If consumed data is not received in 4 times this value, the
zone connection will time out and “Zone #3 Health” will report 1 = Not Healthy
The Expected Packet Rate in msec. for the zone 4 consuming connection. If consumed data is not received in 4 times this value, the
zone connection will time out and “Zone #4 Health” will report 1 = Not Healthy
Zone 1 Control Word. Default Bit 1 set, all other bits clear.
Bit0=Security Enable 1=Enable data security
Bit1=COS Cnxn
1=Consume DNet Group 2 COS messages
Bit2=Poll Cnxn
1=Consume DNet Group 2 Poll Response msgs.
Bit3=Strobe Cnxn 1=Consume DNet Group 2 Strobe Response msgs.
Bit4=Multicast Poll 1=Consume Multicast Poll Response messages.
Zone 2 Control Word. Default Bit 1 set, all other bits clear.
Bit0=Security Enable 1=Enable data security
Bit1=COS Cnxn
1=Consume DNet Group 2 COS messages
Bit2=Poll Cnxn
1=Consume DNet Group 2 Poll Response msgs.
Bit3=Strobe Cnxn 1=Consume DNet Group 2 Strobe Response msgs.
Bit4=Multicast Poll 1=Consume Multicast Poll Response messages.
Zone 3 Control Word. Default Bit 1 set, all other bits clear.
Bit0=Security Enable 1=Enable data security
Bit1=COS Cnxn
1=Consume DNet Group 2 COS messages
Bit2=Poll Cnxn
1=Consume DNet Group 2 Poll Response msgs.
Bit3=Strobe Cnxn 1=Consume DNet Group 2 Strobe Response msgs.
Bit4=Multicast Poll 1=Consume Multicast Poll Response messages.
Zone 4 Control Word. Default Bit 1 set, all other bits clear.
Bit0=Security Enable 1=Enable data security
Bit1=COS Cnxn
1=Consume DNet Group 2 COS messages
Bit2=Poll Cnxn
1=Consume DNet Group 2 Poll Response msgs.
Bit3=Strobe Cnxn 1=Consume DNet Group 2 Strobe Response msgs.
Bit4=Multicast Poll 1=Consume Multicast Poll Response messages.
When the “Security Enable” bit for zone 1 is enabled, this value must match the value of the Device Value Key parameter in the
device whose data is being consumed for zone 1.
When the “Security Enable” bit for zone 1 is enabled, this value must match the value of the Device Value Key parameter in the
device whose data is being consumed for zone 2.
When the “Security Enable” bit for zone 1 is enabled, this value must match the value of the Device Value Key parameter in the
device whose data is being consumed for zone 3.
When the “Security Enable” bit for zone 1 is enabled, this value must match the value of the Device Value Key parameter in the
device whose data is being consumed for zone 4.
This value is produced in the last 2 bytes of data when one of the ZIP assemblies is chosen for data production.
Global enable for ZIP peer-to-peer messaging. This parameter must be disabled before any changes to the ZIP configuration for the
device can be made.
0=Disable; 1=Enable
8-3
ArmorStart® ZIP Configuration
Data Production
In a typical ZIP system, each device on the network automatically
produces IO data using “Change of State” (COS) triggering. The
automatic production of this COS data by an ArmorStart is enabled
by setting Parameter 67 (AutoRun ZIP) to a value of 1 = Enable. Then
COS data will be produced automatically when the global ZIP enable
parameter (Zone Ctrl Enable, Parameter 99) is set to the value of 1 =
Enable. Data production will take place at a rate specified by
Parameter 68 (Zone ProducedEPR). The minimum period between
Change of State productions is determined by the value of Parameter
69 (Zone ProducedPIT)
Data Consumption
In the ArmorStart data from up to 4 other devices can be consumed
for use in the local logic. The 4 devices whose data is to be consumed
are logically referred to by zone number, i.e. zones 1 – 4. To configure
an ArmorStart to consume data from another node on the network, the
node address or “MacId” is placed in the proper “Zone MacId”
parameter (parameters 70-73). For example to configure an
ArmorStart to consume data for zone 1 from node number 11 on the
network, the value 11 is placed in Parameter 70 (Zone #1 MacId).
Not all zones need to be configured to consume data. If the user
wishes to turn off data consumption for a zone, the value 64 is placed
in the Zone MacId parameter for that zone.
The ArmorStart monitors the frequency at which all consumed data is
received in order to determine the health of each zone’s data
connection. The Zone EPR parameters (parameters 86-89) define the
“Expected Packet Rate” for each of the 4 zone connections.
If no consumed data for a zone is received in 4 times the EPR, then
the zone connection times out, and the value of the corresponding
“Zone Health” parameter (parameters 74-77) is set to the value 1 =
Not Healthy. The “Zone Health” status of each zone is also available
for use in DeviceLogix programs.
Mapping Consumed Data to the
DeviceLogix Data Table.
Consumed data for the 4 zones is placed in an 8 byte section of the
DeviceLogix Data Table. Individual bits in this section of the
DeviceLogix Data Table can be used in DeviceLogix programs. The
table below shows the organization of the 8 bytes of the data table
Byte #
0
1
2
3
4
5
6
7
ZIP 7
ZIP 15
ZIP 23
ZIP 31
ZIP 39
ZIP 47
ZIP 55
ZIP 63
ZIP 6
ZIP 14
ZIP 22
ZIP 30
ZIP 38
ZIP 46
ZIP 54
ZIP 62
Bit Number and Name
ZIP 5
ZIP 4
ZIP 3
ZIP 2
ZIP 13 ZIP 12 ZIP 11 ZIP 10
ZIP 21
ZIP20
ZIP 19 ZIP 18
ZIP 29 ZIP 28 ZIP 27 ZIP 26
ZIP 37 ZIP 36 ZIP 35 ZIP 34
ZIP 45 ZIP 44 ZIP 43 ZIP 42
ZIP 53 ZIP 52 ZIP 51 ZIP 50
ZIP 61 ZIP 60 ZIP 59 ZIP 58
ZIP 1
ZIP 9
ZIP 17
ZIP 25
ZIP 33
ZIP 41
ZIP 49
ZIP 57
ZIP 0
ZIP 8
ZIP 16
ZIP 24
ZIP 32
ZIP 40
ZIP 48
ZIP 56
8-4
ArmorStart® ZIP Configuration
The “Zone Mask” parameters (parameters 78-81) select individual
bytes within a consumed message for placement in the DeviceLogix
Data Table. Each single bit in the mask represents a corresponding
byte in the consumed message packet. For example, consider an
ArmorStart that has zone 1 configured to consume data from another
ArmorStart that is producing data of the following format:
Instance 163 Standard Produced Starter with Network Outputs and ZIP CCV
Byte
Bit 7
1
2
3
Net Out 8
4
5
6
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Ready Running Rev Running Fwd Warning
Tripped
140M On
HOA
User In 4
User In 3 User In 2 User In 1
Net Out 7 Net Out 6 Net Out 5 Net Out 4 Net Out 3 Net Out 2 Net Out 1
Net Out 15 Net Out 14 Net Out 13 Net Out 12 Net Out 11 Net Out 10 Net Out 9
Device Value Key (low)
Device Value Key (high)
The user can choose to place only bytes 1 and 2 of the above
consumed data in the DeviceLogix Data Table by selecting a Zone
Mask value of 00000011 binary as shown in the following
RSNetWorx for DeviceNet screen:
The “Zone Offset” parameters (parameters 82-85) determine where in
the DeviceLogix Data Table to place the consumed data bytes chosen
for mapping. The “Zone Offset” value corresponds to a byte in the
DeviceLogix Data Table where the data should be placed. Continuing
our example from above, a value of 2 in the “Zone #1 Offset”
parameter would result in the masked consumed data bytes being
placed starting at byte 2 in the data table. This would result in the
following ZIP bit assignments:
ZIP 16 = Zone 1: Tripped
ZIP 17 = Zone 1: Warning
ArmorStart® ZIP Configuration
8-5
ZIP 18 = Zone 1: Running Fwd
ZIP 19 = Zone 1: Running Rev
ZIP 20 = Zone 1: Ready
ZIP 21 = Zone 1: reserved
ZIP 22 = Zone 1: reserved
ZIP 23 = Zone 1: reserved
ZIP 24 = Zone 1: User In 1
ZIP 25 = Zone 1: User In 2
ZIP 26 = Zone 1: User In 3
ZIP 27 = Zone 1: User In 4
ZIP 28 = Zone 1: HOA
ZIP 29 = Zone 1: 140M Stat
ZIP 30 = Zone 1: reserved
ZIP 31 = Zone 1: reserved
ZIP bits appear in the list of Network Input Points that are available
for use in the DeviceLogix Editor in RSNetWorx for DeviceNet as
shown below:
ZIP Example
Consider the following network with 4 ArmorStarts and a 1799-ZCIO module.
8-6
ArmorStart® ZIP Configuration
We will configure node 10 to consume data as follows:
Zone 1 data will come from node 11
Zone 2 data will come from node 12
Zone 3 data will come from node 13
Zone 4 data will come from node 14.
First we must set up nodes 11-14 to “Auto Produce” data when ZIP is
enabled.
For the ArmorStarts at node 11-13 (shown above) this is done by
setting parameter 67 “AutoRun Zip” to “Enabled”. Note that we will
leave parameters 68 and 69 at their default values so that data will be
produced every 75 msec.
ArmorStart® ZIP Configuration
For the 1799-ZCIO module (shown below) this is done by setting parameter 13 “AutoRun Zip” to “Enabled”.
Next we must configure data consumption for the 4 zones in the
ArmorStart at node 10.
First set the “Zone MacId” parameters as shown below:
8-7
8-8
ArmorStart® ZIP Configuration
We will leave the “Zone EPR” parameters at their default value of 75
msec. This tells our ArmorStart that if no data for a zone is consumed
for a period of 300 msec (4 times the EPR), the zone connection
should time out and the health status should be set to “Not Healthy”.
We will also leave the “Zone Control” parameters at their default
telling the ArmorStart to consume Change of State Data for each
zone, and to disable data security checking. Since data security
checking is disabled, we can also leave parameters 94-98 at their
default values of 0.
We will set the “Zone Masks” to the value of 00000011 binary. This
tells each zone to map bytes 1 and 2 to the DeviceLogix Data Table.
ArmorStart® ZIP Configuration
8-9
We will set the “Zone Offsets as shown below. This maps zone 1 data
to byte 0 of the DeviceLogix Data Table, zone 2 data to byte 2 of the
DeviceLogix Data Table, zone 3 data to byte 4 of the DeviceLogix
Data Table and zone 4 data to byte 6 of the DeviceLogix Data Table.
Assuming the ArmorStarts mapped to zones 1 to 3 are producing the
following data:
8-10
ArmorStart® ZIP Configuration
Instance 163 Standard Produced Starter with Network Outputs and ZIP CCV
Byte
1
2
3
4
5
6
Bit 7
Net Out 8
Bit 6
Net Out 7
Net Out 15
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Ready
Running Rev Running Fwd Warning
140M On
HOA
User In 4
User In 3
User In 2
Net Out 6 Net Out 5
Net Out 4
Net Out 3 Net Out 2
Net Out 14 Net Out 13 Net Out 12 Net Out 11 Net Out 10
Device Value Key (low)
Device Value Key (high)
Bit 0
Tripped
User In 1
Net Out 1
Net Out 9
And assuming that the 1799-ZCIO module is producing the following
data:
1799-ZCIO Produced Assembly
Byte
1
2
3
4
5
6
7
Bit 7
Input 7
Bit 5
Input 5
Bit 4
Input 4
Bit 3
Input 3
Bit 2
Input 2
Output 7
Bit 6
Input 6
Logic Ena
Output 6
Output 5
Output 4
Output 3
Output 2
Net Out 7
Net Out 6
Net Out 5
Net Out 4 Net Out 3
ZIP CCV (Low)
ZIP CCV (High)
Net Out 2
Bit 1
Input 1
Input 9
Output 1
Output 9
Net Out 1
Bit 0
Input 0
Input 8
Output 0
Output 8
Net Out 0
The above configuration results in the following DeviceLogix ZIP
Data Table mapping:
ArmorStart® ZIP Configuration
ZIP 0 = Zone 1: Tripped
ZIP 1 = Zone 1: Warning
ZIP 2 = Zone 1: Running Fwd
ZIP 3 = Zone 1: Running Rev
ZIP 4 = Zone 1: Ready
ZIP 5 = Zone 1: reserved
ZIP 6 = Zone 1: reserved
ZIP 7 = Zone 1: reserved
ZIP 8 = Zone 1: User In 1
ZIP 9 = Zone 1: User In 2
ZIP 10 = Zone 1: User In 3
ZIP 11 = Zone 1: User In 4
ZIP 12 = Zone 1: HOA
ZIP 13 = Zone 1: 140M Stat
ZIP 14 = Zone 1: reserved
ZIP 15 = Zone 1: reserved
ZIP 32 = Zone 3: Tripped
ZIP 33 = Zone 3: Warning
ZIP 34 = Zone 3: Running Fwd
ZIP 35 = Zone 3: Running Rev
ZIP 36 = Zone 3: Ready
ZIP 37 = Zone 3: reserved
ZIP 38 = Zone 3: reserved
ZIP 39 = Zone 3: reserved
ZIP 40 = Zone 3: User In 1
ZIP 41 = Zone 3: User In 2
ZIP 42 = Zone 3: User In 3
ZIP 43 = Zone 3: User In 4
ZIP 44 = Zone 3: HOA
ZIP 45 = Zone 3: 140M Stat
ZIP 46 = Zone 3: reserved
ZIP 47 = Zone 3: reserved
ZIP 16 = Zone 2: Tripped
ZIP 17 = Zone 2: Warning
ZIP 18 = Zone 2: Running Fwd
ZIP 19 = Zone 2: Running Rev
ZIP 20 = Zone 2: Ready
ZIP 21 = Zone 2: reserved
ZIP 22 = Zone 2: reserved
ZIP 23 = Zone 2: reserved
ZIP 24 = Zone 2: User In 1
ZIP 25 = Zone 2: User In 2
ZIP 26 = Zone 2: User In 3
ZIP 27 = Zone 2: User In 4
ZIP 28 = Zone 2: HOA
ZIP 29 = Zone 2: 140M Stat
ZIP 30 = Zone 2: reserved
ZIP 31 = Zone 2: reserved
ZIP 48 = Zone 4: Input 0
ZIP 49 = Zone 4: Input 1
ZIP 50 = Zone 4: Input 2
ZIP 51 = Zone 4: Input 3
ZIP 52 = Zone 4: Input 4
ZIP 53 = Zone 4: Input 5
ZIP 54 = Zone 4: Input 6
ZIP 55 = Zone 4: Input 7
ZIP 56 = Zone 4: Input 8
ZIP 57 = Zone 4: Input 9
ZIP 58 = Zone 4: reserved
ZIP 59 = Zone 4: reserved
ZIP 60 = Zone 4: reserved
ZIP 61 = Zone 4: reserved
ZIP 62 = Zone 4: Logic Ena
ZIP 63 = Zone 4: reserved
8-11
8-12
ArmorStart® ZIP Configuration
Finding ZIP bits in the DeviceLogix
Editor
The 64 ZIP bits are available for use in DeviceLogix programs in the
list of “Network Input Points”.
Network
Input Points
Select “Network Input Points” in the DeviceLogix editor toolbar, and
scroll down past the first 16 Network Inputs. The 64 ZIP bits are
available for use in the list as shown below:
Chapter
9
Diagnostics
Overview
This chapter describes the fault diagnostics of the ArmorStart®
Distributed Motor Controller and the conditions that cause various
faults to occur.
Protection Programming
Many of the protective features available with the ArmorStart
Distributed Motor Controller can be enabled and adjusted through the
programming parameters provided. For further details on
programming, refer to Chapter 3 and 4, Program and Status
Parameters.
Fault Display
The ArmorStart Distributed Motor Controller comes equipped with a
built-in LED status indication which provides four status LEDs and a
Reset button. The LEDs provide status indication for the following:
•
Power LED
The LED is illuminated solid green when control power is
present and with the proper polarity
•
RUN LED
This LED is illuminated solid green when a start command and
control power are present
•
Network LED
This bi-color (red/green) LED indicates the status of the
communication link
•
FAULT LED
Indicates Controller Fault (Trip) condition
The Reset Button provides local fault trip reset.
Figure 9.1 LED Status Indication and Reset
Important: Resetting the fault will not correct the cause of the fault
condition. Corrective action must be taken before
resetting the fault.
9-2
Clear Fault
Fault Codes
Diagnostics
You may clear a fault using the following methods:
•
Remotely via network communications
•
A remote reset will be attempted upon detection of a rising edge
(0 to 1 transition) of the “Fault Reset” bit in the various I/O
assemblies. A remote reset will also be attempted upon detection
of the rising edge of the “Fault Reset” parameter.
•
Locally via the “Reset” button on the LED Status indication
keypad.
Table 9.1 provides a complete reference of the Fault LED indications
for Bulletin 280G/281G and 284G ArmorStart Distributed Motor
Controllers.
Table 9.1
Fault Indication
Blink Pattern
Fault Types
Bulletin 280G/281G
Bulletin 284G
1
Short Circuit
Short Circuit
2
Overload Trip
Overload Trip
3
Phase Loss
Phase Short
4
Reserved
Ground Fault
5
Reserved
Stall
6
Control Power
Control Power
7
I/O Fault
I/O Fault
8
Over Temperature
Over Temperature
9
Phase Imbalance
Over Current
10
DeviceNet™ Power Loss
DeviceNet™ Power Loss
11
Reserved
Internal Communications
12
Reserved
DC Bus Fault
13
EEPROM Fault
EEPROM Fault
14
Hardware Fault
Hardware Fault
15
Reserved
Restart Retries
16
Reserved
Misc. Fault
Diagnostics
Fault Definitions
9-3
Short Circuit
Short Circuit indicates that the Bulletin 140M motor protector has
tripped, or that the internal wiring protection algorithm has detected
an unsafe current surge. This fault cannot be disabled. The Fault LED
will flash a 1-blink pattern.
Overload Trip
The load has drawn excessive current and based on the overload trip
class selected, the device has tripped. This fault cannot be disabled.
The Fault LED will flash a 2-blink pattern.
Phase Loss
Indicates a missing supply phase. This fault can be disabled and is
disabled by default. The Fault LED will flash a 3-blink pattern.
Phase Short
Indicates the drive has detected a phase short. This fault cannot be
disabled. The Fault LED will flash a 3-blink pattern.
Ground Fault
Indicates the drive has detected a ground fault. This fault cannot be
disabled. The Fault LED will flash a 4-blink pattern.
Stall
Indicates the drive has detected a stall condition, indicating the motor
has not reached full speed. This fault cannot be disabled. The Fault
LED will flash a 5-blink pattern.
Control Power
Indicates a loss of control power voltage or a blown control power
fuse. This fault can be disabled and is disabled by default. The Fault
LED will flash a 6-blink pattern.
I/O Fault
This error can indicate a shorted sensor, shorted input device, or input
wiring mistakes. This fault can be disabled and is disabled by default.
The Fault LED will flash a 7-blink pattern.
Over Temperature
Indicates that the operating temperature has been exceeded. This fault
cannot be disabled. The Fault LED will flash a 8-blink pattern.
Phase Imbalance
Indicates an imbalance supply voltage. This fault can be disabled and
is disabled by default. The Fault LED will flash a 9-blink pattern.
9-4
Diagnostics
Over Current
Indicates the drive has detected an over current fault. This fault cannot
be disabled. The Fault LED will flash a 9-blink pattern.
DeviceNet™ Power Loss
DeviceNet power has been lost or has dropped below the 12V
threshold. This fault can be disabled and is disabled by default. The
Fault LED will flash a 10-blink pattern.
Internal Communication Fault
Indicates an internal communication fault has been detected. This
fault cannot be disabled. The Fault LED will flash 11-blink pattern.
DC Bus Fault
Indicates the drive has detected a DC Bus Fault. This fault cannot be
disabled. The Fault LED will flash a 12-blink pattern.
EEPROM Fault
This is a major fault, which renders the ArmorStart inoperable. This
fault cannot be disabled. The Fault LED will flash a 13-blink pattern.
Hardware Fault
Indicates incorrect base/starter assembly. This fault cannot be
disabled. The Fault LED will flash a 14-blink pattern.
Restart Retries
This fault is generated when the drive detects that the auto retries
count has been exceeded. This fault cannot be disabled. The Fault
LED will flash a 15-blink pattern.
Miscellaneous Faults
For Bulletin 284G units, this fault is actually the logical OR of the
drive’s Auxiliary Input fault (fault code F2), Heatsink Over
Temperature (fault code F8), Params Defaulted fault (fault code F48)
and SVC Autotune fault (fault code F80).
This fault cannot be disabled. The Fault LED will flash a 16-blink
pattern.
Chapter
10
Troubleshooting
Introduction
The purpose of this chapter is to assist in troubleshooting the
ArmorStart® Distributed Motor Controller using the LED Status
Display and diagnostic parameters.
ATTENTION
!
ATTENTION
!
ATTENTION
!
ATTENTION
!
Servicing energized industrial control equipment
can be hazardous. Electrical shock, burns or
unintentional actuation of controlled industrial
equipment may cause death or serious injury. For
safety of maintenance personnel as well as others
who might be exposed to electrical hazards
associated with maintenance activities, follow the
local safety related work practices (for example, the
NFPA70E, Part II in the United States).
Maintenance personnel must be trained in the safety
practices, procedures, and requirements that pertain
to their respective job assignments.
Do not attempt to defeat or override fault circuits.
The cause of the fault indication must be determined
and corrected before attempting operation. Failure
to correct a control system of mechanical
malfunction may result in personal injury and /or
equipment damage due to uncontrolled machine
system operation.
The drive contains high voltage capacitors that take
time to discharge after removal of mains supply.
Before working on drive, ensure isolation of mains
supply from line inputs (R, S, T, [L1, L2, L3]). Wait
three minutes for capacitors to discharge to safe
voltage levels. Failure to do so may result in
personal injury or death.
Darkened display LEDs is not an indication that
capacitors have discharged to safe voltage levels.
Only qualified personnel familiar with adjustable
frequency AC drives and associated machinery
should plan or implement the installation, startup,
and subsequent maintenance of the system. Failure
to comply may result in personal injury and/or
equipment damage.
10-2
Troubleshooting
ATTENTION
!
ATTENTION
!
Bulletin 280G/281G
Troubleshooting
This drive contains electrostatic discharge- (ESD)
sensitive parts and assemblies. Static control
precautions are required when installing, testing,
servicing, or repairing this assembly. Component
damage may result if ESD control procedures are
not followed. If you are not familiar with static
control procedures, refer to Allen-Bradley
Publication 8000-4.5.2, Guarding against
Electrostatic Damage, or any other applicable ESD
protection handbook.
An incorrectly applied or installed drive can result
in component damage or a reduction in product life.
Wiring or application errors, such as undersizing the
motor, incorrect or inadequate AC supply, or
excessive ambient temperatures may result in
malfunction of the system.
The following flowchart for Bulletin 280G/281G units, is provided to
aid in quick troubleshooting.
Yes
Faulted Display
No
Fault
LED
Network
LED
Motor will not
Start
See
Table 10.1
See
Table 10.8
See
Table 10.7
Troubleshooting
10-3
Table 10.1 Fault LED Indications for Bulletin 280G and 281G ArmorStart
Distributed Motor Controllers
Blink Pattern
Definitions
Possible Causes or Remedies
1
Short Circuit
The motor circuit protector has tripped, or the internal wiring protection
algorithm has detected an unsafe current range. Try to reset the protector if
tripped. If the condition continues, check the power wiring. This fault cannot
be disabled.
2
Overload Trip
The load has drawn excessive current and based on the trip class selected,
the device has tripped. Verify that the load is operating correctly and the
ArmorStart is properly set-up. This fault cannot be disabled.
3
Phase Loss
4
Reserved
Not Used
5
Reserved
Not Used
6
Control Power
The ArmorStart has detected a loss of the control power voltage or blown
control power fuse. Check control voltage, wiring, and proper polarity.
Replace control voltage fuse if necessary. This fault can be disabled and is
disabled by default.
7
I/O Fault
This error indicates a shorted sensor, shorted input device, or input wiring
mistakes or a blown output fuse. If this fault occurs, the offending problem
should be isolated or removed prior to restarting the system. This fault can
be disabled and is disabled by default.
8
Over Temperature
Indicates that the operating temperature has been exceeded. This fault
cannot be disabled.
9
Phase Imbalance
The ArmorStart has detected a voltage imbalance. Check the power system
and correct if necessary. This fault can be disabled and is disabled by
default.
10
DNet Power Loss
DeviceNet™ power has been lost or has dropped below the 12 volt
threshold. Check the state of the network power supply and look for
DeviceNet media problems. This fault can be disabled and is disabled by
default.
11
Reserved
Not Used
12
Reserved
Not Used
13
EEPROM Fault
This is a major fault, which renders the ArmorStart inoperable. Possible
causes of this fault are transients induced during EEprom storage routines.
If the fault was initiated by a transient, power cycling should clear the
problem; otherwise, replacement of the ArmorStart may be required. This
fault cannot be disabled.
14
Hardware Fault
This fault indicates that a serious hardware problem exists. Check for a
base/starter module mismatch. If no mismatch exists, the ArmorStart may
need to be replaced. (Hdw Flt is the factory-enabled default setting.) This
fault cannot be disabled.
The ArmorStart has detected a missing phase. Verify that three-phase
voltage is present at the line side connections. This fault can be disabled
and is disabled by default.
10-4
Troubleshooting
Table 10.2 Motor Will Not Start – No Output Voltage to the Motor
LED Status Indication
Possible Cause
Possible Solutions
Fault or Network Status Led indicates a
fault condition
See Fault Description
See Table 10.1 and/or Table 10.12 addressing fault
conditions
No Fault condition indicated
Three Phase is absent
Check power system.
Check three-phase power wiring and correct if
necessary
Display is blank
Control voltage is absent
Check control wiring and polarity. Correct if
necessary.
Troubleshooting
Bulletin 284G Troubleshooting
10-5
Fault Definitions
Some of the Bulletin 284G ArmorStart Distributed Motor Controller faults are detected by the internal hardware of
the ArmorStart, while others are detected by the internal drive. For internal drive faults, the internal hardware of the
ArmorStart simply polls the drive for the existence of faults and reports the fault state. No fault latching is done by
the internal hardware of the ArmorStart for these faults. The Pr FltReset Mode parameter (Parameter 23)
determines the Auto Resettability of only the faults that are detected on the main control board. These faults are
listed as “param 23” autoresettable in 10.3. The Auto Resettability of the faults that are detected in the internal
drive is controlled by internal drive parameters. These faults are listed as drive controlled in 10.3.The following
flowchart for Bulletin 284G units, is provided to aid in quick troubleshooting.
Faulted Display
Yes
No
Define Nature
of the Problem
Fault
LED
Network
LED
Motor will not
start
See
Table 10.3
See
Table 10.12
See
Common
Symptoms and
Corrective
Actions
10-6
Troubleshooting
Table 10.3 Fault LED indications for Bulletin 284G ArmorStart Distributed
Motor Controllers
Blink
Pattern
Fault Definitions
ArmorStart
Drive Controlled
Possible Causes or Remedies
1
Short
(140M)
—
The circuit breaker has tripped. Try to reset the breaker. If the condition continues check the power
wiring. This fault cannot be disabled.
2
—
Overload Fault
(Drive Error Codes 7 and 64)
An excessive motor load exists. Reduce load so drive output current does not exceed the current
set by Parameter 133 (Motor OL Current) and verify Parameter 184 (Boost Select) setting. Reduce
load or extend Accel Time. This fault cannot be disabled.
3
—
Phase Short (Drive Error
Codes 41…43)
The ArmorStart has detected a phase short. Excessive current has been detected between two of
the output terminals. Check the motor for a shorted condition. Replace starter module if fault
cannot be cleared. This fault cannot be disabled.
4
—
Ground Fault (Drive Error
Codes 13, 38…40)
A current path to earth has been detected at or more of the drive output terminals or a phase to
ground fault has been detected between the drive and motor in this phase. Check the motor for a
grounded condition. Replace starter module if fault cannot be cleared. This fault cannot be
disabled.
5
—
Motor Stalled
(Drive Error Code 6)
Drive is unable to accelerate motor. Increase Parameter 139 and/or 167 (Accel Time x) or reduce
load so drive output current does not exceed the current by Parameter 189. This fault cannot be
disabled.
6
Control
Power
—
The ArmorStart has detected a loss of the control power voltage. Check control voltage, wiring and
proper polarity. Replace control voltage fuse if necessary. This fault can be disabled and is disabled
by default.
7
IO Fault
—
Depending on the types of modules in the configuration this error could be generated by a shorted
sensor, shorted input device, wiring mistakes, or a blown output fuse. If this fault occurs, the
offending problem should be isolated or removed prior to restarting the system. This fault can be
disabled and is disabled by default.
8
—
Heatsink Over temperature
(Drive Error Code 8)
Heatsink temperature exceeds a predefined value. Check for blocked or dirty heatsink fins. Verify
that ambient temperature has not exceeded. Replace internal fan. This fault cannot be disabled.
9
—
Over-Current
(Drive Error Codes 12 and 63)
The ArmorStart has detected a voltage imbalance. Check the power system and correct if
necessary. This fault cannot be disabled.
10
DNet Power
Loss
—
DeviceNet™ power has been lost or has dropped below the 12V threshold. Check the state of the
network power supply and look for DeviceNet media problems. This fault can be disabled and is
disabled by default.
11
Internal
Comm
—
This fault occurs when communications between the main board the drive is lost. This fault cannot
be disabled. This fault cannot be disabled. Verify that the disconnect is in the “on” position and
three phase power is present.
12
—
DC Bus Fault
DC bus voltage remained below 85% of nominal. DC bus voltage fell below the minimum value. DC
(Drive Error Codes 3, 4, and 5) bus voltage exceeded maximum value. Monitor the incoming AC line for low voltage or line power
interruption. Check input fuses. Monitor the AC line for high line voltage or transient conditions.
Bus overvoltage can also be caused by motor regeneration. Extend the decel time or install a
starter module with the dynamic brake option. This fault cannot be disabled.
13
—
EEPROM Fault/Internal Comm
Flt
(Drive Error Codes 81 and
100)
This is a major fault, which renders the ArmorStart inoperable. Possible causes of this fault are
transients induced during EEprom storage routines. If the fault was initiated by a transient, power
cycling should clear the problem. Otherwise replacement of the starter module may be required.
This fault cannot be disabled.
14
—
Hardware Fault
(Drive Error Codes 2, 70, and
122)
Indicates incorrect base/starter assembly. Auxiliary input interlock is open. Failure has been
detected in the drive power section. Failure has been detected in the Drive control and I/O section.
Cycle power and replace drive if fault cannot be cleared. This fault cannot be disabled.
15
—
Auto Restart Tries
(Drive Error Code 33)
Drive unsuccessfully attempted to reset a fault and resume running for the programmed number of
Parameter 192 (Auto RstrtTries). Correct the cause of the fault. This fault cannot be disabled.
16
—
Miscellaneous Fault
This fault is actually the logical OR of the drive’s Auxiliary Input fault (Fault Code 2), Heatsink
Overtemperature fault (Fault Code 8), Parameter Defaulted fault (Fault Code 48), and SVC Autotune
fault (Fault Code 80), Fan RPM Fault, and DB1 Fault. This fault cannot be disabled.
Troubleshooting
10-7
Operation and Troubleshooting of the DB1 - Dynamic Brake
The DB1 Dynamic Brake option provides the following protection
features:
•
DB Resistor Overtemperature Fault
•
DB Overcurrent Fault
•
DB Undercurrent Fault
•
DB Switch Fault
•
DB Open Fault
•
DB VBus Link Fault
•
DB Thermal Warning
•
DB Comm Fault
DB Resistor Overtemperature Fault
The DB1 measures current continuously, and models resistor body
temperature based on measured current and resistor model
parameters. The DB1 not only calculates the present resistor body
temperature, but also predicts the future resistor body temperature.
The resistor overtemperature level is based on the predicted future
resistor body temperature, not on the present resistor body
temperature. This fault is disabled when parameter 182 (DB Resistor
Sel) is “Disabled.
Troubleshooting – DB Resistor body temperature is too hot. Allow
resistor to cool.
DB Overcurrent Fault
The DB1 compares each current measurement against the Max
Current Level. If 5 consecutive samples are above the Max Current
Level, then a fault is recorded. This fault is intended to notify the user
if the DB resistance is lower than expected. This fault is disabled
when parameter 182 (DB Resistor Sel) is “Disabled.
Troubleshooting – DB monitor has measured a DB current higher
than expected. Turn off all power to unit. Allow at least 3 minutes for
capacitors to discharge. Disconnect DB resistor from ArmorStart
control module. Caution- DB resistor may still be hot. Measure DB
resistor value at the connector with an ohmmeter. DB resistor value
should be within the limits defined in Table 10.4. If DB resistance
value is within limits, replace control module. If not, replace DB
resistor.
10-8
Troubleshooting
DB Undercurrent Fault
The DB1 compares each current measurement against the Min
Current Level. The Min Current Level = Min DB Voltage Level/Max
DB Resistance. If 5 consecutive samples are below the Min Current
Level and the DB is ON, then a fault is recorded. This fault is
intended to notify the user if the DB resistance is higher than
expected. This fault is disabled when parameter 182 (DB Resistor
Sel) is “Disabled.
Troubleshooting – DB monitor has measured a DB current lower
than expected. Turn off all power to unit. Allow at least 3 minutes for
capacitors to discharge. Disconnect DB resistor from ArmorStart
control module. Caution- DB resistor may still be hot. Measure DB
resistor value at the connector with an ohmmeter. DB resistor value
should be within the limits defined in Table 10.4. If DB resistance
value is within limits, replace control module. If not, replace DB
resistor.
DB Switch Fault
A DB Switch fault is issued when continuous DB resistor current is
detected when the Drive Bus Voltage level is less than the DB Voltage
Level. If 5 consecutive samples of Drive Bus Voltage less than DB
Level is detected along with continuous DB resistor current flow, then
a shorted DB IGBT fault (DB Switch) is recorded.
It is the user’s responsibility to provide an input power contactor to
each ArmorStart with a drive. The user must write logic to control
(open) the input contactor to the ArmorStart in the event of a DB
Switch Fault. The Instruction Literature provides information on how
to connect the input contactor, and how to implement the logic.
Troubleshooting – Attempt to reset the fault by removing all power
to the unit and restarting. If the fault persists, replace control module.
DB Open Fault
A DB Open fault is issued when Bus Voltage is greater than the DB
Voltage Level, and no DB resistor current has been detected. If 5
consecutive samples of Drive Bus Voltage greater than the DB Level
is detected along with no DB resistor current flow, then an open DB
fault is recorded. This fault is intended to notify the customer of an
open DB resistor, or open wire. The fault is disabled when the DB
Resistor Setup parameter (82) is “Disabled”.
Troubleshooting – DB monitor expected to see current flow and
measured none. Likely cause is an open DB resistor, loose DB
resistor connector, or open wire in DB cable. Check DB cable
connector for tightness. If problem persists, remove DB resistor cable
connector from unit and check DB resistance. If DB resistor is open,
replace DB resistor. Otherwise replace control module.
10-9
Troubleshooting
DB Thermal Warning
A DB Thermal Warning is issued if the predicted future resistor body
temperature is greater than the Max DB resistor temperature x DB
Thermal Warning Percent.
Troubleshooting – None. DB resistor thermal value has exceeded the
preset threshold of 90% of thermal value.
DB VBus Link Fault
For proper operation, the DB1 monitors parameters from the Drive
internally inside the ArmorStart. If the internal communications to the
drive is lost, then this fault is issued. Since the DB1 can no longer
provide resistor protection, the user must implement logic to open the
input contactor.
Troubleshooting – Make sure that 3 phase line power and control
power is applied to unit. Attempt to reset fault. If fault persists,
replace control module.
DB Comm Fault
The communications link is monitored continuously. If the DB1 stops
responding, then the MCB issues this fault. Since the DB1 can no
longer provide resistor protection, the user must implement logic to
open the input contactor.
Troubleshooting – Replace control module.
Table 10.4 IP67 Dynamic Brake Resistance Values
Line Voltage
[V AC]
460
DB1 Resistor
Part Number
Drive
[kW (Hp)]
Minimum DB
Resistance [Ω]
Maximum DB
Resistance [Ω]
284R-360P500-M*
0.37 (0.5)
341.62
387.33
284R-360P500-M*
0.75 (1)
341.62
387.33
284R-360P500-M*
1.5 (2)
341.62
387.33
284R-120P1K2-M*
2.2 (3)
113.87
129.11
284R-120P1K2-M*
3.3 (5)
113.87
129.11
* - Indicates cable length (0.5 m or 1.0 m).
10-10
Troubleshooting
Internal Drive Faults
A fault is a condition that stops the drive. There are two fault types.
Type
Description
1
Auto-Reset/Run
When this type of fault occurs, and Parameter 192 (Auto Rstrt Tries) Related
Parameter(s): 155, 158, 161, 193 is set to a value greater than 0, a userconfigurable timer, Parameter 193 (AutoRstrt Delay) Related Parameter(s): 192,
begins. When the timer reaches zero, the drive attempts to automatically reset
the fault. If the condition that caused the fault is no longer present, the fault will
be reset and the drive will be restarted
2
Non-Resettable
This type of fault may require drive or motor repair, or is caused by wiring or
programing errors. The cause of the fault must be corrected before the fault can
be cleared.
Automatically Clearing Faults (Option/Step)
Clear a Type 1 Fault and Restart the Drive
1. Set Parameter 192 (Auto Rstrt Tries) to a value other than 0.
2. Set Parameter 193 (Auto Rstrt Delay) to a value other than 0.
Clear an Overvoltage, Undervoltage or Heatsink OvrTmp Fault
without Restarting the Drive
1. Set 192 (Auto Rstrt Tries) to a value other than 0.
2. Set 193 (Auto Rstrt Delay) to 0.
Auto Restart (Reset/Run)
Troubleshooting
10-11
The Auto Restart feature provides the ability for the drive to
automatically perform a fault reset followed by a start attempt without
user or application intervention. This allows remote or unattended
operation. Only certain faults are allowed to be reset. Certain faults
(Type 2) that indicate possible drive component malfunction are not
resettable.Caution should be used when enabling this feature, since
the drive will attempt to issue its own start command based on user
selected programming.
Table 10.5 Fault Types, Descriptions, and Actions
No.
Fault
Type
➊
F2
Auxiliary Input
1
Auxiliary input interlock is open.
F3
Power Loss
2
F4
UnderVoltage
1
F5
OverVoltage
1
F6
Motor Stalled
1
F7
Motor Overload
1
F8
Heatsink OvrTmp
1
F12
HW OverCurrent
2
F13
Ground Fault
2
F33
Auto Rstrt Tries
F38
F39
F40
F41
F42
F43
F48
Phase U to Gnd
Phase V to Gnd
Phase W to Gnd
Phase UV Short
Phase UW Short
Phase VW Short
Params Defaulted
2
DC bus voltage remained below
85% of nominal.
DC bus voltage fell below the
minimum value.
DC bus voltage exceeded maximum 6.Monitor the AC line for high line voltage or transient conditions. Bus overvoltage
value.
can also be caused by motor regeneration. Extend the decel time or install
dynamic brake option.
Drive is unable to accelerate motor. 7.Increase Parameter 139…167 (Accel Time x) or reduce load so drive output
current does not exceed the current set by Parameter 189 (Current Limit 1).
Internal electronic overload trip
8. An excessive motor load exists. Reduce load so drive output current does not
exceed the current set by Parameter 133 (Motor OL Current).
9. Verify Parameter 184 (Boost Select) setting
Heatsink temperature exceeds a
10. Check for blocked or dirty heat sink fins. Verify that ambient temperature
predefined value.
has not exceeded 40°C.
11. Replace internal fan.
The drive output current has
12.Check programming. Check for excess load, improper programming of
exceeded the hardware current
Parameter 184 (Boost Select), DC brake volts set too high, or other causes of
limit.
excess current.
A current path to earth ground has
13.Check the motor and external wiring to the drive output terminals for a
been detected at one or more of the grounded condition.
drive output terminals.
Drive unsuccessfully attempted to
14.Correct the cause of the fault and manually clear.
reset a fault and resume running for
the programmed number of
Parameter 192 (Auto Rstrt Tries).
A phase to ground fault has been
15. Check the wiring between the drive and motor.
detected between the drive and
16. Check motor for grounded phase.
motor in this phase.
17. Replace starter module if fault cannot be cleared.
Excessive current has been detected 18. Check the motor and drive output terminal wiring for a shorted condition.
between these two output terminals. 19. Replace starter module if fault cannot be cleared.
F63
SW OverCurrent
2
F64
Drive Overload
2
F70
Power Unit
2
F80
SVC Autotune
2
2
Description
The drive was commanded to write
default values to EEPROM.
Programmed Parameter 198 (SW
Current Trip) has been exceeded.
Drive rating of 150% for 1 min. or
200% for 3 sec. has been exceeded.
Failure has been detected in the
drive power section.
The autotune function was either
cancelled by the user or failed.
Action
1. Check remote wiring.
2. Verify communications.
3. Monitor the incoming AC line for low voltage or line power interruption.
4. Check input fuses.
5.Monitor the incoming AC line for low voltage or line power interruption.
20. Clear the fault or cycle power to the drive.
21. Program the drive parameters as needed.
22.Check load requirements and Parameter 198 (SW Current Trip) setting.
23.Reduce load or extend Accel Time.
24. Cycle power.
25. Replace starter module if fault cannot be cleared.
26.Restart procedure.
10-12
Troubleshooting
No.
Fault
Type
➊
F81
Comm Loss
2
F100
Parameter
Checksum
2
F122
I/O Board Fail
2
Description
Action
RS485 (DSI) port stopped
communicating.
The checksum read from the board
does not match the checksum
calculated.
Failure has been detected in the
drive control and I/O section.
➊
27. Turn off using Parameter 205 (Comm Loss Action).
28. Replace starter module if fault cannot be cleared.
29.Set Parameter 141 (Reset To Defaults) to option 1 Reset Defaults.
30. Cycle power.
31. Replace starter module if fault cannot be cleared.
See Table 10.3 for internal drive fault types.Common Symptoms and Corrective Actions
Table 10.6 Motor Does Not Start
Cause(s)
Indication
Corrective Action
No output
voltage to
the motor.
None
Check the power circuit.
• Check the supply voltage.
• Check all fuses and disconnects
Check the motor.
• Verify that the motor is connected properly.
• Verify that I/O Terminal 01 is active.
• Verify that Parameter 136 (Start Source) matches your
configuration.
• Verify that Parameter 195 (Reverse Disable) is not prohibiting
movement.
Drive is
Faulted
Flashing red
status light
Clear fault.
• Press Stop
• Cycle power
• Set Parameter 200 (Fault Clear) to option 1 Clear Faults.
• Cycle digital input is Parameter 151…154 (Digital Inx Sel) is
set to option 7 Clear Fault.
Table 10.7 Drive Does Not Respond to Changes in Speed Command
Cause(s)
Indication
Corrective Action
No value is
coming form
the source of
the command.
The drive
Run
indicator is
lit and
output is
0 Hz.
•
•
None
Incorrect
reference
source is being
selected via
remote device
or digital inputs.
•
•
•
•
Check Parameter 112 (Control Source) for correct source.
If the source is an analog input, check wiring and use a
meter to check for presence of signal.
Check Parameter 102 (Commanded Freq) to verify correct
command.
Check Parameter 112 (Control Source) for correct source.
Check Parameter 114 (Dig In Status) to see if inputs are
selecting an alternate source. Verify settings for
Parameters 151…154 (Digital Inx Sel).
Check Parameter 138 (Speed Reference) for the source of
the speed reference. Reprogram as necessary.
Troubleshooting
10-13
Table 10.8 Motor and/or Drive Will Not Accelerate to Commanded Speed
Cause(s)
Indication
Corrective Action
Acceleration time is
excessive.
None
Reprogram Parameter 139 (Accel Time 1) or Parameter
167 (Accel Time 2).
Excess load or short
acceleration times
force the drive into
current limit,
slowing, or stopping
acceleration.
None
•
Speed command
source or value is not
as expected.
None
•
•
Programming is
preventing the drive
output from
exceeding limiting
values.
None
Check Parameter 135 (Maximum Freq) to insure that
speed is not limited by programming.
Torque performance
does not match
motor
characteristics.
None
•
•
•
•
•
Compare Parameter 103 (Output Current) with
Parameter 189 (Current Limit1).
Remove excess load or reprogram Parameter 139
(Accel Time 1) or Parameter 167 (Accel Time 2).
Check for improper setting of Parameter 184 (Boost
Select).
Verify Parameter 102 (Commanded Freq).
Check Parameter 112 (Control Source) for the proper
Speed Command.
Set motor nameplate full load amps in Parameter
226 (Motor NP FLA).
Use Parameter 227 (Autotune) to perform Static
Tune or Rotate Tune procedure.
Set Parameter 225 (Torque Perf Mode) to
option 0V/Hz.
Table 10.9 Motor Operation is Unstable
Cause(s)
Motor data
was
incorrectly
entered.
Indication
None
Corrective Action
1.
Correctly enter motor nameplate data into Parameters 131,
132, and 133.
Enable Parameter 197 (Compensation).
Use Parameter 184 (Boost Select) to reduce boost level.
2.
3.
Table 10.10 Drive Will Not Reverse Motor Direction
Cause(s)
Indication
Corrective Action
Digital input is not selected for
reversing control.
None
Check (Digital Inx Sel). Choose correct input and
program for reversing mode.
Motor wiring is improperly
phased for reverse.
None
Switch two motor leads.
Reverse is disabled.
None
Check Parameter 195 (Reverse Disable).
Table 10.11 Drive Does Not Power Up
Cause(s)
Indication
Corrective Action
No input power to drive.
None
Check the power circuit.
• Check the supply voltage.
• Check all fuses and disconnects.
Jumper between I/O Terminals P2
and P1 not installed and/or DC
Bus Inductor not connected.
None
Install jumper or connect DC Bus Inductor.
10-14
Troubleshooting
DeviceNet Troubleshooting Procedures
The following table identifies possible causes and corrective actions
when troubleshooting DeviceNet related failures using the
NETWORK STATUS LED.
Table 10.12 DeviceNet Troubleshooting Procedures
Network Status LED
Definition
Possible Causes
Off
The device has not completed the initialization, is
not on an active network, or may not be powered
up.
Check to make sure the product is properly wired
and configured on the network.
Flashes green-red-off
While waiting to detect the network baud rate, the
LED will flash this pattern about every 3 seconds.
If the product stays in this state, it means that there
is no set baud rate. Ensure that at least one device
on the network has a set baud rate.
Solid Green
The device is operating in a normal condition, and
is communicating to another device on the
network.
No action Required
Flashing Green
The device is operating in a normal condition, and
is on-line, but has no connection to another device.
This is the typical state for new devices.
The device may need to be mapped to a master
scanner, placed in a scanlist, or have another
device communicate to it.
Flashing Red
Recoverable fault has occurred.
Check to make sure the PLC™ and scanner are
operating correctly and that there are no media/
cabling issues. Check to see if other networked
devices are in a similar state.
Solid Red
The device has detected a major error that has
rendered it incapable of communicating on the
network (Duplicate MAC ID, Bus-off, media issue).
Troubleshooting should be done to ensure that the
network is correct (terminators, lengths, etc.) and
there is not a duplicate node problem. If other
devices on the network appear to be operating fine
and power cycling the device does not work,
contact Technical Support.
Flashing Red and Green
The device has detected a network access error
and is in a communication faulted state. The device
has subsequently received and accepted an Identify
Communication Faulted Request Long Protocol
message.
This is not a common state for DeviceNet products.
Power cycling the device may resolve the problem;
however, if the problem continues, it may be
necessary to contact technical support.
10-15
Troubleshooting
Control Module Replacement
(Bulletin 280G/281G)
Removal of Starter Module
ATTENTION
!
To avoid shock hazard, disconnect main power
before working on the controller, motor, or control
devices
1) Disconnect from power source
2) Remove motor cable.
3) Loosen the four mounting screws.
4) Unplug the Control module from the base by pulling forward.
Installation of Control Module
5) Install control module.
6) Tighten four mounting screws.
7) Install motor and control brake cable.
Figure 10.1 Bulletin 280G/281G Control Module Replacement
1
4
Motor Cable
2
3
1
3
Note: DeviceNet base module is
shown
2
30 lb-in/
3.39 Nm
10-16
Troubleshooting
Control Module Replacement
(Bulletin 284G)
Removal of Control Module
ATTENTION
!
To avoid shock hazard, disconnect main power
before working on the controller, motor, or control
devices
1) Disconnect from power source
2) Remove motor cable.
3) Loosen the four mounting screws.
4) Unplug the Control module from the base by pulling forward.
Installation of Control Module
5) Install control module.
6) Tighten four mounting screws.
7) Install all cables to starter module.
Figure 10.2 Bulletin 284G Control Module Replacement
1
2
3
4
3
Note: DeviceNet base module is
shown
2
30 lb-in/
3.39 Nm
1
10-17
Troubleshooting
Base Module Replacement
(Bulletin 280G/281G)
Removal of Base Module
ATTENTION
!
To avoid shock hazard, disconnect main power
before working on the controller, motor, or control
devices
1) Disconnect from power source.
2) Remove motor, control brake, control and three-phase power,
comunication, and all other cables connected to the inputs.
3) Loosen four mounting screws on the Starter Module.
4) Unplug the Control Module from the base by pulling forward.
Figure 10.3 Bulletin 280G/281G Base Module Removal
Base Module
1
Input/Output Cable
2
4
Note: DeviceNet base module is
shown
Communication
Cable
2
3
Motor Cable
Control Module
10-18
Troubleshooting
Base Module Replacement
(Bulletin 280G/281G)
Installation of Base Module
ATTENTION
!
To avoid shock hazard, disconnect main power
before working on the controller, motor, or control
devices
1) Mount Base Module with four mounting screws.
2) Install Control Module.
3) Tighten the four mounting screws.
4) Install motor, control brake, control and three-phase power,
comunication, and all other cables connected to the inputs.
5) Tighten four mounting screws on the terminal access cover plate.
6) Install Control Module.
7) Tighten the four mounting screws.
8) Install motor cable, comunication cables and all others connected
to the inputs and outputs.
Figure 10.4 Bulletin 280G/281G Base Module Installation
Base
Module
Input/
Output
Cable
4
46 - 50 lb-in
2
Communication
Cable
3
Note: DeviceNet base module is
shown
7
Motor Cable
Control Module
Troubleshooting
Base Module Replacement
(Bulletin 284G)
10-19
Removal of Base Module
To avoid shock hazard, disconnect main power
before working on the controller, motor, or control
devices
ATTENTION
!
1) Disconnect from power source.
2) Remove all cables from Control Module, comunication cables and
all others connected to the inputs.
3) Loosen four mounting screws on the Control Module.
4) Unplug Control Module from the base by pulling forward.
5) Loosen mounting screws and remove.
Figure 10.5 Bulletin 284G Base Module Removal
Base Module
Input/Output
Cable
1
2
Communication
Cable
3
2
Motor
Cable
Control
Module
4
10-20
Troubleshooting
Base Module Replacement
(Bulletin 284G)
Installation of Base Module
ATTENTION
!
To avoid shock hazard, disconnect main power
before working on the controller, motor, or control
devices
1) Mount Base Module with four mounting screws.
2) Install Control Module.
3) Tighten four mounting screws.
4) Install all cables to Control Module, comunication, control and
three-phase power, and all other cables connected to the inputs.
Figure 10.6 Bulletin 284G Base Module Installation
Base Module
Input/
Output
Cable 4
Communication
Cable
3
Control
Module
2
4
Motor
Cable
Troubleshooting
10-21
Figure 10.7 Control Voltage Fuse Replacement
Control Voltage Fuse
10-22
Notes:
Troubleshooting
Appendix
Specifications
Bulletin 280G/281G
Power Circuit
Electrical Ratings
Rated Operation Voltage
UL/NEMA
380/220V…480/277V AC
IEC
380/220V…480/277V AC
Rate Insulation Voltage
Rated Impulsed Voltage
Dielectric Withstand
600V
4 kV
2200V AC
600 V
4 kV
2500V AC
Operating Frequency
Utilization Category
Protection Against Shock
50/60 Hz
N/A
N/A
50/60 Hz
AC-3
IP2X
2.5 A
5.5 A
16 A
Rated Operating Current Max.
Control
Circuit
Short Circuit
Protection
Safety Products only: 24V DC (+10%, -15%) A2 (should be grounded at voltage source)
120V AC (+10%, -15%) A2 (should be grounded at voltage source)
1 kA
10 A circuit breaker or equivalent
250V
250V
—
4 kV
1500V AC
2000V AC
—
III
50/60 Hz
50/60 Hz
Rated Operation Voltage
Rated Short Circuit
SCPD
Rate Insulation Voltage
Rated Impulsed Voltage
Dielectric Withstand
Overvoltage Category
Operating Frequency
SCPD Performance Type 1
Current Rating
0.5…2.5 A
1.1…5.5 A
3.2…16 A
Voltage
30kA
100 A maximum
100 A maximum
SCPD List
Control Voltage
Contactor (Pick Up)
Contactor (Hold In)
120V AC Brake (Pick Up)
120V AC Brake (Hold In)
Total Control Power (Pick Up)
Total Control Power (Hold In)
Input Ratings
Units
Volts
Amps
Amps
Amps
Amps
VA (W)
VA (W)
Rated Operation Voltage
Input On-State Voltage Range
Input On-state Current
Input Off-state Voltage Range
Input Off-state Current
Off to On
On to Off
Input Compatibility
Number of inputs
Voltage Status Only
Current Available
65kA
Sym. Amps RMS
SCPD Fuses,
only fuse types: J, CC, and T
SCPD UL 489 Circuit Breakers
480Y/277V
Safety Products Only
C10 Base: 100 A maximum
C25 Base: 60 A maximum
Size per NEC Group Motor
Power Requirements
Non-Safety Products
120V AC, 50/60 Hz
0.58 plus the motor brake current
0.08 plus the motor brake current
—
—
70
9
Safety Products
24V DC
1.09
30
motor brake pick-up current
motor brake hold-in current
(26)
(7.2)
24V DC
10…26V DC
3.0 mA @ 10V DC
7.2 mA @ 24V DC
0…5V DC
<1.5 mA
Input Filter — Software Selectable
Settable from 0…64 ms in 1 ms increments
Settable from 0…64 ms in 1 ms increments
N/A
IEC 1+
6
Sensor Source
11…25V DC from DeviceNet™
50 mA MAX per Input, 300 mA Total
A
A-2
Specifications
Bulletin 280G/281G, Continued
Electrical Ratings
Environmental
UL/NEMA
Operating Temperature Range
Storage and Transportation
temperature range
Altitude
Humidity
Pollution Degree
Enclosure Ratings
Approximate Shipping Weight
Operational
Non-Operational
Operational
Non-Operational
WireSize
Tightening Torque
IEC
-20…40°C (-4…104°F)
–25….85°C (–13…185°F)
2000 m
5…95% (non-condensing)
3
NEMA 4/12/13
IP67
6.8 kg (15 lbs.)
Mechanical Resistance to Shock
15 G
30 G
Resistance to Vibration
1 G, 0.15 mm (0.006 in.) displacement
2.5 G, 0.38 mm (0.015 in.) displacement
Power and Ground Terminals
Primary/Secondary Terminal:
Primary/Secondary Terminal:
#16 AWG…#10 AWG
1.5 mm2…4.0 mm2
Primary Terminal: 10.8 in·lb
Primary Terminal: 1.2 N·m
Secondary Terminal: 4.5 in·lb
Secondary Terminal: 0.5 N·m
Wire Strip Length
0.35 in. (9 mm)
Control and Safety Monitor Inputs
WireSize
#18 AWG…#10 AWG
Tightening Torque
6.2 in·lb
Wire Strip Length
Other Rating
1.0 mm2…4.0 mm2
0.7 N·m
0.35 in. (9 mm)
EMC Emission levels
Conducted Radio Frequency Emissions
Radiated Emissions
Electrostatic Discharge
Radio Frequency Electromagnetic Field
Fast Transient
Surge Transient
Overload Current Range
Trip Classes
Trip Rating
Number of poles
DeviceNet Supply Voltage Rating
DeviceNet Input Current
External Devices powered by DeviceNet
Total w/max. Sensor Inputs (6)
DeviceNet Input Current Surge
Baud Rates
Distance Maximum
Motor Cable
Certifications
Class A
Class A
EMC immunity levels
4 kV contact and 8 kV Air
10 V/m
2 kV
1 kV L-L, 2 kV L-N (Earth)
Overload Characteristics
0.5…2.5 A
1.1…5.5 A
3.2…16 A
10, 15, 20
120% of FLC setting
3
DeviceNet Specifications
Range 11…25V DC, 24V DC Nominal
167 mA @ 24V DC - 4.0 W
364 mA @ 11V DC - 4.0 W
Sensors Inputs 6* 50 mA - total 300 mA
367 mA @ 24V DC - 8.8 W
15 A for 250 µs
DeviceNet Communications
125, 250, 500 kbps
500 m (1630 ft) @ 125 kbps
200 m (656 ft) @ 250 kbps
100 m (328 ft) @ 500 kbps
10 AWG for all motor sizes
cULus (File No. E3125)
UL 508
EN/IEC 60947-4-1
CE Marked per Low Voltage Directive 73/23/EEC and EMC Directive 89/336/EEC
Specifications
Bulletin 280G/281G, Continued
Figure A.1 External Connections for Input Connector
2
1
5
4
3
Pin 1: +V Out
Pin 2: Input
Pin 3: Comm
Pin 4: Input
Pin 5: NC (No Connection)
Figure A.2 External Connections for Motor Connector @ 460V AC
Pin 1: T1 - Black
Pin 2: Ground - Green/Yellow
Pin 3: T3 - Red
Pin 4: T2 - White
Figure A.3 External Connections for DeviceNet™ Connector
Figure A.4 External Connections for Control Brake Connector
Pin 1: GND - Green/Yellow
Pin 2: L1 - Black
Pin 3: L2 - White
Figure A.5 External Connections for Three-Phase Power Input
Pin 1: L1 - Black
Pin 2: Ground - Green/Yellow
Pin 3: L3 - Red
Pin 4: L2 - White
A-3
A-4
Specifications
Bulletin 280G/281G, Continued
Figure A.6 External Connections for 120V AC Control Power
Pin 1: GND - Green/Yellow
Pin 2: L1 - Black
Pin 3: L2 - White
Figure A.7 Safety Monitor Input (SM1/SM2)
Pin 1: SM2- White
Pin 2: SM1 - Brown
Pin 3: N/C- No connection
Pin 4: N/C- No connection
Figure A.8 External Connections for Safety Input Power (A1/A2)
Pin 1: M - White
Pin 2: A1 - Brown
Pin 3: P - Black
Pin 4: A2 - Blue
Specifications
Bulletin 280G/281G, Continued
Figure A.9 Overload Trip Curves
Class 10Class
Overload
10 Curves
Approximate Trip Time (sec)
10000
1000
Cold
100
Hot
10
1
0
100
200
300
400
500
600
700
Multiples
% of Full Load Current
Class 15 Overload Curves
Class 15
Approximate Trip Time (sec)
10000
Cold
100
Hot
1
0
100
200
300
400
500
600
700
Multiples
%for
of Full Load Current
Class 20 Overload Curves
Class 20
Approximate Trip Time (sec)
10000
Cold
100
Hot
1
0
100
200
300
400
500
600
% of Full Load Current
Multiples
700
A-5
A-6
Specifications
Bulletin 284G
Power Circuit
Electrical Ratings
Rated Operation Voltage
Rate Insulation Voltage
UL/NEMA
380/220V…480.277V AC
600V
IEC
380/220V…480.277V AC
600 V
Rated Impulsed Voltage
Dielectric Withstand
Operating Frequency
4 kV
2200V AC
50/60 Hz
4 kV
2500V AC
50/60 Hz
Utilization Category
Protection Against Shock
N/A
N/A
AC-3
IP2X
2.5 A
5.5 A
16 A
Rated Operating Current Max.
Short Circuit
Protection
Current Rating
Voltage
480Y/277V
10 A
25 A
Sym. Amps RMS
65 kA
30 kA
SCPD Performance
SCPD Fuses,
only fuse types: J, CC, and T
100 A maximum
Safety Products Only
C10 Base: 100 A maximum
C25 Base: 60 A maximum
Size per NEC Group Motor
—
Safety Products only: 24V DC (+10%, -15%) A2 (should be grounded at voltage source)
120V AC (+10%, -15%) A2 (should be grounded at voltage source)
1 kA
10 A circuit breaker or equivalent
250V
250V
—
4 kV
1500V AC
2000V AC
—
III
50/60 Hz
50/60 Hz
SCPD UL 489 Circuit Breakers
100 A maximum
SCPD List
Control
Circuit
Rated Operation Voltage
Rated Short Circuit
SCPD
Rate Insulation Voltage
Rated Impulsed Voltage
Dielectric Withstand
Overvoltage Category
Operating Frequency
Control Voltage
Contactor (Pick Up)
Contactor (Hold In)
120V AC Brake (Pick Up)
120V AC Brake (Hold In)
Total Control (Pick Up)
Total Control (Hold In)
Input Ratings
—
Units
Volts
Amps
Amps
Amps
Amps
VA (W)
VA (W)
Rated Operation Voltage
Input On-State Voltage Range
Input On-state Current
Input Off-state Voltage Range
Input Off-state Current
Off to On
On to Off
Input Compatibility
Number of inputs
Voltage Status Only
Current Available
Power Requirements
Non-Safety Products
120V AC
0.35 plus motor brake pick-up current
0.10 plus motor brake hold-in current
—
—
42
12
Safety Products
24V DC
0.63
0.63
0.29 plus motor brake pick-up current
0.04 plus motor brake hold-in current
(15)
(15)
24V DC
10…26V DC
3.0 mA @ 10V DC
7.2 mA @ 24V DC
0…5V DC
<1.5 mA
Input Filter — Software Selectable
Settable from 0…64 ms in 1 ms increments
Settable from 0…64 ms in 1 ms increments
N/A
IEC 1+
6
Sensor Source
11…25V DC from DeviceNet™
50 mA MAX per Input, 300 mA Total
Specifications
A-7
Bulletin 284G, Continued
Electrical Ratings
Environmental
UL/NEMA
Operating Temperature Range
Storage and Transportation
temperature range
Altitude
Humidity
Pollution Degree
Enclosure Ratings
Approximate Shipping Weight
Operational
Non-Operational
Operational
Non-Operational
WireSize
Tightening Torque
IEC
-20…40°C (-4…104°F)
–25….85°C (–13…185°F)
2000 m
5…95% (non-condensing)
3
NEMA 4/12/13
IP67
18.1 kg (40 lbs.)
Mechanical Resistance to Shock
15 G
30 G
Resistance to Vibration
1 G, 0.15 mm (0.006 in.) displacement
2.5 G, 0.38 mm (0.015 in.) displacement
Power and Ground Terminals
Primary/Secondary Terminal:
Primary/Secondary Terminal:
#16 AWG…#10 AWG
1.5 mm2…4.0 mm2
Primary Terminal: 10.8 in·lb
Primary Terminal: 1.2 N·m
Secondary Terminal: 4.5 in·lb
Secondary Terminal: 0.5 N·m
Wire Strip Length
0.35 in. (9 mm)
Control and Safety Monitor Inputs
WireSize
#18 AWG…#10 AWG
Tightening Torque
6.2 in·lb
Wire Strip Length
Other Rating
1.0 mm2…4.0 mm2
0.7 N·m
0.35 in. (9 mm)
EMC Emission levels
Conducted Radio Frequency Emissions
Radiated Emissions
Electrostatic Discharge
Radio Frequency Electromagnetic Field
Fast Transient
Surge Transient
Trip Class
Overload Protection
Number of poles
DeviceNet Supply Voltage Rating
DeviceNet Input Current
External Devices powered by DeviceNet
Total w/max. Sensor Inputs (6)
DeviceNet Input Current Surge
Baud Rates
Distance Maximum
Motor Cable
Certifications
Class A
Class A
EMC immunity levels
4 kV contact and 8 kV Air
10 V/m
2 kV
1 kV L-L, 2 kV L-N (Earth)
Overload Characteristics
10
I2t overload protection - 150% for 60 seconds, 200% for 30 seconds
3
DeviceNet Specifications
Range 11…25V DC, 24V DC Nominal
167 mA @ 24V DC - 4.0 W
364 mA @ 11V DC - 4.0 W
Sensors Inputs 6* 50 mA - total 300 mA
367 mA @ 24V DC - 8.0 W
15 A for 250 µs
DeviceNet Communications
125, 250, 500 kbps
500 m (1630 ft) @ 125 kbps
200 m (656 ft) @ 250 kbps
100 m (328 ft) @ 500 kbps
10 AWG shielded motor cable, 5 m maximum, with 360° RF connections on both ends.
Required to meet conducted and radiated emissions requirements.
cULus (File No. E207834)
UL 508C
EN 50178, EN 61800-3, EN 60947-1
CE Marked per Low Voltage Directive 73/23/EEC and EMC Directive 89/336/EEC
A-8
Specifications
Bulletin 284G, Continued
Figure A.10 External Connections for Input Connector
Figure A.11 External Connections for DeviceNet™ Connector
Figure A.12 External Connections for Motor Connector
Pin 1: T1
Pin 2: Ground
Pin 3: T3
Pin 4: T2
- Black
- Green/Yellow
- Red
- White
Figure A.13 External Connections for Control Brake Connector
Pin 1: GND
Pin 2: L1
Pin 3: L2
- Green/Yellow
- Black
- White
Pin 1: GND
Pin 2: BR+
Pin 3: BR-
- Green/Yellow
- Black
- White
Figure A.14 External Connections for Dynamic Brake Connector
Specifications
Bulletin 284G, Continued
Figure A.15 External Connections for 120V AC Control Power
Pin 1: GND - Green/Yellow
Pin 2: L1 - Black
Pin 3: L2 - White
Figure A.16 Safety Monitor Input (SM1/SM2)
Pin 1: SM2- White
Pin 2: SM1 - Brown
Pin 3: N/C- No connection
Pin 4: N/C- No connection
Figure A.17 External Connections for Safety Input Power (A1/A2)
Pin 1: M - White
Pin 2: A1 - Brown
Pin 3: P - Black
Pin 4: A2 - Blue
% of P132 (Motor NP Hertz)
% of P133 (Motor OL Current)
% of P133 (Motor OL Current)
% of P133 (Motor OL Current)
Overload Curves
% of P132 (Motor NP Hertz)
% of P132 (Motor NP Hertz)
A-9
A-10
Specifications
Bulletin 284G, Continued
Line Voltage
Frequency
3-Phase kW Rating
3-Phase Hp Rating
Output Current (A)
Input Current (A)
0.4
0.75
1.5
2.2
3.0
—
—
—
—
—
—
—
—
—
—
0.5
1
2
3
5
1.4
2.3
4.0
6.0
7.6
1.4
2.3
4.0
6.0
7.6
2.15
3.80
6.40
9.00
12.40
1.85
3.45
5.57
8.20
12.5
Drive Ratings
380
50
460
60
IP67 Dynamic Brake Resistor Ratings
Table A.1
IP67 Dynamic Brake Resistor
Application Type 1
Drive and
Motor Size
kW
Part Number
Resistance
Ohms ± 5%
Continuous
Power kW
360
360
360
120
120
0.086
0.086
0.086
0.26
0.26
Max Braking
Braking
Max
Torque % of Torque % of
Energy kJ
Motor
Motor
Application Type 2
Duty
Cycle %
Braking
Torque % of
Motor
Duty
Cycle %
47%
23%
12%
24%
13%
150%
150%
110%
150%
124%
31%
15%
11%
16%
10%
400-480 Volt AC Input Drives
0.37 (0.5)
0.75 (1)
1.5 (2)
2.2 (3)
4 (5)
284R-360P500-M*
284R-360P500-M*
284R-360P500-M*
284R-120P1K2-M*
284R-120P1K2-M*
17
17
17
52
52
305%
220%
110%
197%
124%
100%
100%
100%
100%
100%
Note: Always check the resistor ohms against minimum resistance for drive being used.
Note: Duty Cycle listed is based on full speed to zero speed deceleration. For constance regen at full speed, duty cycle capability is half of what is listed. Application Type 1
represents maximum capability up to 100% braking torque where possible. Application Type 2 represents more than 100% braking torque where possible, up to a maximum
of 150%.
Specifications
ArmorConnect™ Three-Phase Power Media
Table 1.A
Patchcords
Pin
Count
Assembly
Rating
Cat. No.
Straight Female
Straight Male
0
4-pin
Right-Angle Female
Straight Male
Straight Female
Right-Angle Male
Right-Angle Female
Right-Angle Male
600V, 25 A
280-PWRM35A-M➊ 280-PWRM35A-M➊ 280-PWRM35A-M➊ 280-PWRM35A-M➊
0
➊
The cat. no. is incomplete as shown. For desired length, replace the symbol with: 05 —0.5 m (1.62 ft), 1—1 m (3.3 ft), 015—1.5 m (4.9 ft), 2—2 m (6.5 ft),
025—2.5 m (8.1 ft), 3—3 m (9.8 ft), 4—4 m (13.1 ft), 6—6 m (19.7 ft), 8—8 m (26.2 ft), 10—10 m (32.8 ft), 12—12 m (39.4 ft), or 14—14 m (45.9 ft).
Specifications
Pinout and Color Code
Mechanical
Coupling Nut
Black Anodized Aluminum or 316 Stainless Steel
Housing
Black PVC
Insert
Black PVC
Cable Diameter
0.775 in. +/- 0.12 in. (19.68 mm +/- 0.5 mm)
Face View Pinout
Electrical
4-pin
Contacts
Copper Alloy with Gold over Nickel Plating
Cable
Black PVC, dual rated UL TC/Open Wiring and STOOW
Cable Rating
600V AC/DC
Assembly Rating
600V @ 25 A, Symmetrical Amps RMS Fault: 65 kA when
used with Class CC, T, or J type fuses
or 100 A circuit breaker
Environmental
Enclosure Type Rating
IP67, NEMA 4; IP69K 1200 psi washdown
Operating Temperature
UL Type TC 600V 90 °C Dry 75 °C Wet, Exposed Run (ER) or
MTW 600V 90 °C or STOOW 105 °C 600V CSA STOOW 600V FT2
Certifications
UL Listed (File No. E318496, Guide PVVA)
Standards Compliance
UL 2237
Color Code
Female
1 Black
2 Green/Yellow Extended PIN
Male
3 Red
4 White
Approximate Dimensions
Dimensions in millimeters (inches). Dimensions are not intended to be used for manufacturing purposes and are subject to change.
Female straight
Male straight
88.9 (3.50)
88.9 (3.50)
38.6
(1.52)
38.6
(1.52)
Female 90 deg.
49.5 - 57.1
(1.95 - 2.25)
Male 90 deg.
49.5 - 57.1
(1.95 - 2.25)
Example of a Patchcord
74.7
(2.94)
74.7
(2.94)
38.6
(1.52)
38.6
(1.52)
A-11
A-12
Specifications
Table 1.B
Power Tees and Reducers
Description
Assembly Rating
Color Code
Cat. No.
M35, 3-Phase Power Tee, 4 pole
25 A
A
280-T35
0
0
Specifications
Pinout and Color Code
Mechanical
Coupling Nut
Black Anodized Aluminum or 316 Stainless Steel
Housing
Black PVC
Insert
Black PVC
Face View Pinout
Trunk Tee: 25 A
Electrical
Contacts
Copper Alloy with Gold over Nickel Plating
Voltage
600V AC/DC
4-pin
Trunk Tee: 25 A
Reducing Tee: Trunk 25 A/Drop 15 A
Reducer: 15 A
Assembly Rating
Symmetrical Amps RMS Fault 65 kA when used with
Class CC, T, or J type fuses or
100 A circuit breaker
Female
Color Code 1 Black
(A)
2 Green/Yellow Extended PIN
Environmental
Enclosure Type Rating
IP67, NEMA 4; IP69K 1200 psi washdown
Certifications
UL Listed (File No. E318496, Guide PVVA)
Standards Compliance
UL 2237
Male
3 Red
4 White
Approximate Dimensions
Dimensions in millimeters (inches). Dimensions are not intended to be used for manufacturing purposes and are subject to change.
Power Tee
108.0
(4.25)
KEYWAY
#1 BLACK
#2 GREEN/YELLOW
38.0
(1.50)
19.0
(0.75)
#2 GREEN/YELLOW
#4-WHITE
#1 BLACK
#3 RED
#3-RED
#4 WHITE
#4 WHITE
73.7 (2.90)
FEMALE
WIRING DIAGRAM
MALE
#2-GREEN/YELLOW
EXTENDED PIN 2
GREEN/YELLOW LEAD
FEMALE
#3 RED
#1-BLACK
A-13
Specifications
Table 1.C
Power Receptacles (Male and Female)
Pin Count
Assembly Rating
Color Code
4-pin
10 AWG, 600V, 25 A
B
Cat. No.
Female
Male
280-M35F-M1
280-M35M-M1
0
0
Specifications
Pinout and Color Code
Mechanical
Receptacle Shell Material
Black Anodized Aluminum (female) and Zinc DieCast,
Black E-Coat (male) or 316 Stainless Steel
Insert
Black PVC
Contacts
Copper Alloy with Gold over Nickel Plating
Face View Pinout
10 AWG, 600V @ 25 A
Electrical
Cable Rating
4-pin
600V AC/DC
4-pin: 10 AWG, 600V @ 25 A
Assembly Rating
Symmetrical Amps RMS Fault 65 kA when used with
Class CC, T, or J type fuses or
100 A circuit breaker
Environmental
Enclosure Type Rating
IP67, NEMA 4; 1200 psi washdown
Certifications
UL Listed (File No. E318496, Guide PVVA)
Standards Compliance
UL 2237
Female
Color Code 1 Black
(B)
2 Green/Yellow Extended PIN
Male
3 Red
4 White
Approximate Dimensions
Dimensions in millimeters (inches). Dimensions are not intended to be used for manufacturing purposes and are subject to change.
45.26
(1.782)
280-M35F-M1
7.62 +/-2.54
(0.30 +/- 0.10)
11.89 (0.468)
6.35 (0.25)
1000
(39.37)
51.61
(2.032)
280-M35M-M1
6.35 (0.25)
11.89 (0.468)
1000
(39.37)
A-14
Notes:
Specifications
Appendix
B
Bulletin 280G/281G CIP Information
Electronic Data Sheets
Electronic Data Sheets (EDS) files are specially formatted ASCII
files that provide all of the information necessary for a configuration
tool (e.g. RSNetWorx™ for DeviceNet™) to access and alter the
parameters of the device. The EDS file contains all of the device
information: number of parameters, groupings, parameter name,
minimum, maximum, and default values, units, data format and
scaling.
EDS files for all the ArmorStart® Distributed Motor Controller units
are available from the Internet at
http://www.ab.com/networks/eds.
They may also be built automatically by some configuration tools
since all of the information necessary for a basic EDS file may be
extracted from the ArmorStart Distributed Motor Controller.
DOL Type Product Codes and Name
Strings
Product codes for DOL starters (and DOL Reversing starters) are
based on the Overload relay current rating and the control power
rating of the starter. The following table lists the product codes for the
Bulletin 280G Distributed Motor Controllers:
Table B.1
Table B.2
➊
Bul. 280G Distributed Motor Controller Product Codes and Name
Strings
280G
Device
Type
➊
Product
Code
Contactor
Size Code
22
0x484
100C-12
0.5…2.5 A
120V AC
22
0x485
100C-12
1.1…5.5 A
120V AC
22
0x486
100C-23
3.2…16 A
120V AC
Overload
Control Power
Current Rating
Voltage
Bul. 280G Distributed Motor Controller Safety Product Codes and
Name Strings
280G
Device
Type
➊
Product
Code
Contactor
Size Code
22
0x4A1
100C-12
0.5…2.5 A
24V DC
22
0x4A2
100C-12
1.1…5.5 A
24V DC
22
0x4A3
100C-23
3.2…16 A
24V DC
22= Motor Starter
Overload
Control Power
Current Rating
Voltage
B-2
Bulletin 280G/281G CIP Information
DOL Reversing Type Product Codes
and Name String
The following table lists the product codes for the Bulletin 281G
Distributed Motor Controllers:
Table B.3
Table B.4
➊
DeviceNet Objects
Bul. 281G Distributed Motor Controller Product Codes and Name
Strings
281G
Device Type
➊
Product
Code
Contactor
Size Code
22
0x4C4
100C-12
0.5…2.5 A
Overload
Control Power
Current Rating
Voltage
120V AC
22
0x4C5
100C-12
1.1…5.5 A
120V AC
22
0x4C6
100C-23
3.2…16 A
120V AC
Bul. 281G Distributed Motor Controller Safety Product Codes and
Name Strings
281G
Device Type
➊
Product
Code
Contactor
Size Code
22
0x4Ee1
100C-12
0.5…2.5 A
24V DC
Overload
Control Power
Current Rating
Voltage
22
0x4E2
100C-12
1.1…5.5 A
24V DC
22
0x4E3
100C-23
3.2…16 A
24V DC
22= Motor Starter
The ArmorStart Distributed Motor Controller supports the following
DeviceNet object classes:
Table B.5
DeviceNet Object Classes
Class
Object
0x0001
Identity
0x0002
Message Router
0x0003
DeviceNet
0x0004
Assembly
0x0005
Connection
0x0008
Discrete Input Point
0x0009
Discrete Output Point
0x000F
Parameter Object
0x0010
Parameter Group Object
0x001D
Discrete Input Group
0x001E
Discrete Output Group
0x0029
Control Supervisor
0x002B
Acknowledge Handler
0x002C
Overload Object
0x00B4
DN Interface Object
B-3
Bulletin 280G/281G CIP Information
Identity Object — CLASS CODE
0x0001
The following class attributes are supported for the Identity Object:
Table B.6
Identity Objects
Attribute ID
Access Rule
Name
Data Type
Value
1
Get
Revision
UINT
1
A single instance of the Identity Object is supported. The following
instance attributes are supported.
Table B.7
Attribute ID
Access Rule
1
2
3
4
Identity Object Class Attributes
Identity Object Instance Attributes
Name
Data Type
Value
Get
Vendor
UINT
1
Get
Device Type
UINT
22
Get
Product Code
UINT
See Table B.1 and Table B.3
Get
Revision
Major Revision
Minor Revision
Structure of:
USINT
USINT
Indicates Software Firmware Revision Number
5
Get
Status
WORD
Bit 0 — 0=not owned; 1=owned by master
Bit 2 — 0=Factory Defaulted; 1=Configured
Bit 8 — Minor Recoverable fault
Bit 9 — Minor Unrecoverable fault
Bit 10 — Major Recoverable fault
Bit 11 — Major Unrecoverable fault
6
Get
Serial Number
UDINT
Unique Number for Each Device
7
Get
Product Name
String Length
ASCII String
Structure of:
USINT
STRING
Product code specific
See Table B.1 and Table B.3
8
Get
State
USINT
Returns the value “3=Operational”
9
Get
Configuration Consistency Value
UINT
Unique value depending on output of the parameter
checksum algorithm.
10
Get/Set
Heartbeat Interval
USINT
In seconds. Default = 0
The following common services are implemented for the Identity
Object:
Table B.8
Message Router — CLASS CODE
0x0002
Identity Object Common Services
Implemented for:
Service
Code
Class
Instance
Service
Name
0x0E
Yes
Yes
Get_Attribute_Single
0x05
No
Yes
Reset
0x10
No
Yes
Set_Attribute_Single
No class or instance attributes are supported. The message router
object exists only to rout explicit messages to other objects.
B-4
Bulletin 280G/281G CIP Information
DeviceNet Object — CLASS CODE
0x0003
The following class attributes are supported for the DeviceNet Object:
Table B.9
DeviceNet Object Class Attributes
Attribute ID
Access Rule
Name
Data Type
Value
1
Get
Revision
UINT
2
A single instance (instance 1) of the DeviceNet Object is supported.
The following instance attributes are supported.
Table B.10 DeviceNet Object Instance Attributes
Attribute ID Access Rule
Name
Data Type
Value
1
Get/Set
Node Address
USINT
0 - 63
2
Get/Set
Baud Rate
USINT
0=125K
1=250K
2=500K
5
Get
Allocation Info
Allocation Choice
Master Node Addr
Structure of:
BYTE
USINT
8
Get
MAC ID Switch Value
BOOL
*Allocation_byte
Allocation_byte*
0…63 = address
255 = unallocated
0-63
Bit 0
Explicit messaging
Bit 1
Polled I/O
Bit 4
COS I/O
Bit 5
Cyclic I/O
Bit 6
Acknowledge Suppression
The following services are implemented for the DeviceNet Object:
Table B.11 DeviceNet Object Common Services
Implemented for:
Service
Code
Class
Instance
Service
Name
0x0E
Yes
Yes
Get_Attribute_Single
0x10
No
Yes
Set_Attribute_Single
0x4B
No
Yes
Allocate_Master/Slave
_Connection_Set
0x4C
No
Yes
Release_Master/Slave
_Connection_Set
B-5
Bulletin 280G/281G CIP Information
Assembly Object — CLASS CODE
0x0004
The following class attributes are supported for the Assembly Object:
Table B.12 Assembly Object Class Attributes
Attribute ID
Access Rule
Name
Data Type
Value
2
Get
Max Instance
UINT
190
All of the various instances of the assembly object will support
attribute 3. The following table summarizes the various instances that
are supported:
Table B.13 DeviceNet Assembly Object Instance Attributes
Custom Parameter Based
“Word-wise” I/O Assemblies
Attribute ID
Type
Description
3
Consumed
Required ODVA Consumed Instance
52
Produced
Required ODVA Produced Instance
120
Produced
Custom Parameter Based Word Wise Assembly
160
Consumed
Default Consumed Instance for DOL
161
Produced
Default Produced Instance for DOL
162
Consumed
Standard Consumed Instance for DOL with Network Inputs
163
Produced
Standard Produced Instance for DOL with Network Outputs
181
Produced
User Inputs
182
Consumed
Consumed Network Bits (a.k.a Network Inputs)
183
Produced
Produced Network Bits (a.k.a. Network Outputs)
184
Produced
Trip Status Bits
185
Produced
Starter Status Bits
186
Produced
DeviceNet Status Bits
187
Consumed
Starter Control Bits
189
Produced
Warning Status Bits
190
Produced
1779-ZCIO Bits
Table B.14 Custom Parameter Based “Word-Wise” (Produced) Assembly
Instance 120
Instance 120
Word
0
1
2
3
Byte
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
0
Value of the parameter pointed to by “Prod Assy Word 0” Param (low byte)
1
Value of the parameter pointed to by “Prod Assy Word 0” Param (high byte)
2
Value of the parameter pointed to by “Prod Assy Word 1” Param (low byte)
3
Value of the parameter pointed to by “Prod Assy Word 1” Param (high byte)
4
Value of the parameter pointed to by “Prod Assy Word 2” Param (low byte)
5
Value of the parameter pointed to by “Prod Assy Word 2” Param (high byte)
6
Value of the parameter pointed to by “Prod Assy Word 3” Param (low byte)
7
Value of the parameter pointed to by “Prod Assy Word 3” Param (high byte)
B-6
Bulletin 280G/281G CIP Information
“Word-wise” Bit-Packed
Assemblies
Assemblies whose instance numbers are 180…189 are all one word
(16 bits) long. They can be used “stand alone”, but their main use is to
assemble information for EDS file parameters. These “word-wise”
assemblies become the building blocks for the custom
parameter-based “word-wise” assemblies described above. Note that
these “word-wise” assemblies are designed for use with
DeviceLogix™, so their contents reflect the various words in the
DeviceLogix data table.
Table B.15 Instance 181 — This is a “Read Only” Status Assembly
Instance 181 — Hardware Inputs 1…16
Byte
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
0
—
—
Input 5
Input 4
Input 3
Input 2
Input 1
Input 0
1
Reserved
Table B.16 Instance 182 — This is a “Read/Write” Control Assembly
Instance 182 — Consumed Network Inputs 1…16
Byte
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
0
Net Input Net Input Net Input Net Input Net Input Net Input Net Input Net Input
8
7
6
5
4
3
2
1
1
Net Input Net Input Net Input Net Input Net Input Net Input Net Input Net Input
16
15
14
13
12
11
10
9
Table B.17 Instance 183 This is a “Read Only” Status Assembly
Instance 183 — Produced Network Outputs 1…15
Byte
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
0
Net Out 8 Net Out 7 Net Out 6 Net Out 5 Net Out 4 Net Out 3 Net Out 8 Net Out 1
1
Reserved
Net Out
15
Net Out
14
Net Out
13
Net Out
12
Net Out
11
Net Out
Net Out 9
10
Table B.18 Instance 184 This is a “Read Only” Status Assembly
Instance 184 — Trip Status
Byte
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
0
—
In SS Flt
Control
Power
—
—
Phase
Loss
OL Trip
Short
Circuit
1
—
—
Hw Flt
EEPROM
—
—
DNet
Power
Phase
Imbal
B-7
Bulletin 280G/281G CIP Information
Table B.19 Instance 185 This is a “Read Only” Status Assembly
Instance 185 — Starter Status
Byte
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
0
At Ref
—
Net Ctl
Status
Ready
Running Running
Warning
Rev
Fwd
1
—
—
140M On
HOA
Stat.
Keypad
Hand
—
Bit 1
Bit 0
Tripped
—
—
Table B.20 Instance 186 This is a “Read Only” Status Assembly
Instance 186 — DeviceNet Status
Byte
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
0
—
—
—
I/O Idle
I/O Flt
Exp Flt
1
Bit 1
Bit 0
I/O Cnxn Exp Cnxn
ZIP FLT ZIP4 CNX ZIP3 FLT ZIP2 CNX ZIP2 FLT ZIP2 CNX ZIP1 FLT ZIP1 CNX
Table B.21 Instance 187 This is a “Read/Write” Assembly
Instance 187 — Starter Control Bits
Byte
0
1
Bit 7
Bit 6
User Out User Out
B
A
—
—
Bit 5
Bit 4
Bit 3
Bit 2
—
—
—
Fault
Reset
—
—
—
—
Bit 1
Bit 0
Run Rev Run Fwd
—
—
Table B.22 Instance 189 This is a “Read-Only” Assembly
Instance 189 — Warning Status Bits
Standard Distributed Motor
Controller I/O Assemblies
Byte
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
0
—
IO
Warning
Control
Power
Warning
—
—
PL
Warning
—
—
1
—
—
HW Warn
—
—
—
DN Warn PI Warn
Standard Distributed Motor Controller IO Assemblies are available
on all Starter Types.
Standard Distributed Motor Controller Output (Consumed)
Assemblies
Table B.23 Instance 3 is the required output (consumed) assembly defined in
the DeviceNet Motor Starter Profile
Instance 3 — ODVA Starter
Byte
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
0
—
—
—
—
—
—
—
Run Fwd
B-8
Bulletin 280G/281G CIP Information
Table B.24 Instance 160 is the default output (consumed) assembly for
Standard Distributed Motor Controllers
Instance 160 — Default Consumed Standard Distributed Motor Controller
Byte
0
Bit 7
Bit 6
Reserved Reserved
Bit 5
Bit 4
Bit 3
Bit 2
—
—
—
Fault
Reset
Bit 1
Bit 0
Run Rev Run Fwd
Table B.25 Instance 162 is the standard output (consumed) assembly with
Network Inputs
Instance 162 — Standard Consumed Starter with Network Inputs
Byte
0
Bit 7
Bit 6
Reserved Reserved
Net In 7
Bit 5
Bit 4
Bit 3
Bit 2
—
—
—
Fault
Reset
Net In 6
Net In 5
Net In 4
Net In 3
Bit 1
Bit 0
Run Rev Run Fwd
1
Net In 8
2
Net In 16 Net In 15 Net In 14 Net In 13 Net In 12 Net In 11 Net In 10 Net In 9
Net In 2
Net In 1
Standard Distributed Motor Controller Input (Produced)
Assemblies
Table B.26 Instance 52 is the required input (produced) assembly defined in
the DeviceNet Motor Starter Profile
Instance 52 — ODVA Starter
Byte
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
—
—
—
—
—
—
Running
—
Fault
Table B.27 Instance 161 is the default input (produced) assembly for
Standard Distributed Motor Controllers
Instance 161 — Default Producted Standard Distributed Motor Controller
Byte
Bit 7
Bit 6
Bit 5
Bit 4
Ready
Bit 3
Bit 2
Bit 1
Running Running
Warning
Rev
Fwd
Bit 0
0
Reserved 140M On Reserved
Tripped
1
Reserved Reserved User In 5 User In 4 User In 3 User In 2 User In 1 User In 0
B-9
Bulletin 280G/281G CIP Information
Table B.28 Instance 163 is the standard input (produced) assembly with
Network Outputs and ZIP CCV
Instance 163 — Standard Produced Starter with Network Outputs
Byte
0
Bit 7
Bit 6
Bit 5
Not Used 140M On Not Used
Bit 4
Ready
Bit 3
Bit 2
Bit 1
Running Running
Warning
Rev
Fwd
Bit 0
Tripped
1
Not Used Not Used User In 5 User In 4 User In 3 User In 2 User In 1 User In 0
2
Net Out 8 Net Out 7 Net Out 6 Net Out 5 Net Out 4 Net Out 3 Net Out 2 Net Out 1
3
Logic
Enabled
Net Out
15
Net Out
14
Net Out
13
Net Out
12
4
ZIP CCV (Low)
5
ZIP CCV (High)
Net Out
11
Net Out
Net Out 9
10
Table B.29 Instance 190 is the 1999-ZCIO Native Format Produced Assembly
Instance 190 — 1799-ZCIO Native Format Produced Assembly
Byte
Bit 7
Bit 6
Bit 5
0
Running Running
Warning
Rev
Fwd
1
Reserved
2
Logic
Enabled
Reserved
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Tripped
Input 3
Input 2
Input 1
Input 0
140M On
HOA
Reserved
User Out User Out
Run Rev Run Fwd
B
A
3
Reserved
4
Net Out 8 Net Out 7 Net Out 6 Net Out 5 Net Out 4 Net Out 3 Net Out 2 Net Out 1
5
ZIP CCV (Low)
6
ZIP CCV (High)
B-10
Bulletin 280G/281G CIP Information
Connection Object — CLASS CODE
0x0005
No class attributes are supported for the Connection Object
Multiple instances of the Connection Object are supported, instances
1, 2, and 4 from the group 2 predefined master/slave connection set,
instances 5 and 6 are available through explicit UCMM connections.
Instance 1 is the Predefined Group 2 Connection Set Explicit
Message Connection. The following instance 1 attributes is
supported:
Table B.30 Connection Object Instance 1 Attributes
Attribute
ID
Access
Rule
Name
Data
Type
Value
1
Get
State
USINT
0=nonexistant
1=configuring
3=established
4=timed out
2
Get
Instance Type
USINT
0=Explicit
Message
3
Get
Transport Class Trigger
USINT
0x83 — Server,
Transport Class 3
4
Get
Produced Connection ID
UINT
10xxxxxx011
xxxxxx = node
address
5
Get
Consumed Connection ID
UINT
10xxxxxx100
xxxxxx = node
address
6
Get
Initial Comm Characteristics
USINT
0x22
7
Get
Produced Connection Size
UINT
0x61
8
Get
Consumed Connection Size
UINT
0x61
9
Get/Set
Expected Packet Rate
UINT
in ms
12
Get
Watchdog Action
USINT
01 = auto delete
03 = deferred delete
13
Get
Produced Connection Path Length
UINT
14
Get
Produced Connection Path
15
Get
Consumed Connection Path Length
16
Get
Consumed Connection Path
0
Empty
UINT
0
Empty
Bulletin 280G/281G CIP Information
B-11
Instance 2 is the Predefined Group 2 Connection Set Polled I/O
Message Connection. The following instance 2 attributes are
supported:
Table B.31 Connection Object Instance 2 Attributes
Attribute ID
Access Rule
Name
Data Type
Value
0=nonexistant
1=configuring
3=established
4=timed out
1
Get
State
USINT
2
Get
Instance Type
USINT
1= I/O Connection
3
Get
Transport Class Trigger
USINT
0x82 — Server, Transport Class 2
(If alloc_choice != polled and ack suppression is enabled
then value = 0x80)
4
Get
Produced Connection ID
UINT
01111xxxxxx
xxxxxx=node
address
5
Get
Consumed Connection ID
UINT
10xxxxxx101
xxxxxx=node
address
6
Get
Initial Comm Characteristics
USINT
0x21
7
Get
Produced Connection Size
UINT
0 to 8
8
Get
Consumed Connection Size
UINT
0 to 8
9
Get/Set
Expected Packet Rate
UINT
in ms
12
Get/Set
Watchdog Action
USINT
0=transition to timed out
1=auto delete
2=auto reset
13
Get
Produced Connection Path Length
UINT
8
14
Get/Set
Produced Connection Path
15
Get
Consumed Connection Path Length
16
Get/Set
Consumed Connection Path
21 04 00 25 (assy inst) 00 30 03
UINT
8
21 04 00 25 (assy inst) 00 30 03
B-12
Bulletin 280G/281G CIP Information
Instance 4 is the Predefined Group 2 Connection Set Change of State/
Cyclic I/O Message Connection. The following instance 4 attributes
are supported:
Table B.32 Connection Object Instance 4 Attributes
Attribute ID
Access Rule
Name
Data Type
Value
0=nonexistant
1=configuring
3=established
4=timed out
1
Get
State
USINT
2
Get
Instance Type
USINT
1=I/O Connection
3
Get
Transport Class Trigger
USINT
0x00 (Cyclic, unacknowledged)
0x03 (Cyclic, acknowledged)
0x10 (COS, unacknowledged)
0x13 (COS, acknowledged)
4
Get
Produced Connection ID
UINT
01101xxxxxx
xxxxxx=node
address
5
Get
Consumed Connection ID
UINT
10xxxxxx101
xxxxxx=node
address
6
Get
Initial Comm Characteristics
USINT
0x02 (acknowledged)
0x0F (unacknowledged)
7
Get
Produced Connection Size
UINT
0 to 8
8
Get
Consumed Connection Size
UINT
0 to 8
9
Get/Set
Expected Packet Rate
UINT
in ms
12
Get
Watchdog Action
USINT
0=transition to timed out
1=auto delete
2=auto reset
13
Get
Produced Connection Path Length
UINT
14
Get
Produced Connection Path
15
Get
Consumed Connection Path Length
16
Get/Set
Consumed Connection Path
8
21 04 00 25 (assy inst) 00 30 03
UINT
8
21 04 00 25 (assy inst) 00 30 03
Bulletin 280G/281G CIP Information
B-13
Instances 5 and 6 are available group 3 explicit message connections
that are allocated through the UCMM. The following attributes are
supported:
Table B.33 Connection Object Instance 5-6 Attributes
Attribute ID
Access Rule
Name
Data Type
Value
1
Get
State
USINT
0=nonexistant
1=configuring
3=established
4=timed out
2
Get
Instance Type
USINT
0=Explicit
Message
3
Get
Transport Class Trigger
USINT
0x83 — Server, Transport Class 3
4
Get
Produced Connection ID
UINT
Depends on message group and Message ID
5
Get
Consumed Connection ID
UINT
Depends on message group and Message ID
6
Get
Initial Comm Characteristics
USINT
0x33 (Group 3)
7
Get
Produced Connection Size
UINT
0
8
Get
Consumed Connection Size
UINT
0XFFFF
9
Get/Set
Expected Packet Rate
UINT
in ms
12
Get
Watchdog Action
USINT
01 = auto delete
03 = deferred delete
13
Get
Produced Connection Path Length
UINT
0
14
Get
Produced Connection Path
15
Get
Consumed Connection Path Length
16
Get
Consumed Connection Path
Empty
UINT
0
Empty
Instances 8-11 are ZIP Consumers. The following instance attributes
will be supported:
Table B.34 Connection Object Instances 8-11 Attributes
Attribute ID
Access Rule
Name
Data Type
Value
1
Get
State
USINT
0=nonexistant
1=configuring
3=established
2
Get
Instance Type
USINT
1=I/O Connection
3
Get
Transport Class Trigger
USINT
0x20 (COS, unacknowledged)
4
Get
Produced Connection ID
UINT
FFFF (not producing data)
5
Get
Consumed Connection ID
UINT
01101xxxxxx
xxxxxx=node address
6
Get
Initial Comm Characteristics
USINT
0xF0 (unacknowledged)
7
Get
Produced Connection Size
UINT
0
8
Get
Consumed Connection Size
UINT
8
9
Get/Set
Expected Packet Rate
UINT
in milliseconds
12
Get
Watchdog Action
USINT
2=auto reset
13
Get
Produced Connection Path Length
UINT
0
14
Get
Produced Connection Path
15
Get
Consumed Connection Path Length
16
Get
Consumed Connection Path
0
UINT
8
21 0E 03 25 01 00 30 02
B-14
Bulletin 280G/281G CIP Information
The following services are implemented for the Connection Object:
Table B.35 Connection Objects Common Services
Discrete Input Point Object —
CLASS CODE 0x0008
Implemented for:
Service
Code
Service
Name
Class
0x05
No
Yes
Reset
0x0E
No
Yes
Get_Attribute_Single
0x10
No
Yes
Set_Attribute_Single
Instance
The following class attributes are supported for the Discrete Input
Point Object:
Table B.36 Discrete Input Point Object Class Attributes
Attribute ID
Access Rule
Name
Data Type
Value
1
Get
Revision
UINT
2
2
Get
Max Instance
UINT
6
Four instances of the Discrete Input Point Object are supported. All
instances contain the following attributes:
Table B.37 Discrete Input Point Object Instance Attributes
Attribute ID
Access Rule
Name
Data Type
Value
3
Get
Value
BOOL
0=OFF, 1=ON
115
Get/Set
Force Enable
BOOL
0=Disable, 1=Enabl;e
116
Get/Set
Force Value
BOOL
0=OFF, 1=ON
The following common services are implemented for the Discrete
Input Point Object:
Table B.38 Discrete Input Point Object Instance Common Services
Implemented for:
Service
Code
Class
Instance
0x0E
Yes
Yes
Get_Attribute_Single
0x10
No
Yes
Set_Attribute_Single
Service Name
B-15
Bulletin 280G/281G CIP Information
Discrete Output Point Object —
CLASS CODE 0x0009 ➊
The following class attributes are supported for the Discrete Output
Point Object:
Table B.39 Discrete Output Point Object Class Attributes
Attribute ID
Access Rule
Name
Data Type
Value
1
Get
Revision
UINT
1
2
Get
Max Instance
UINT
2
Four instances of the Discrete Output Point Object are supported. The
following table summarizes the DOP instances:
Table B.40 Discrete Output Point Object Instance Attributes
Instance ID
Name
Alternate
Mapping
Description
1
Run Fwd Output
0029 – 01 – 03
Run Forward output. For all starter
types, this output is hard wired from
the ArmorStart CPU to the actuator
2
Run Rev Output
0029 – 01 – 04
Run Reverse output. For all starter
types, this output is hard wired from
the ArmorStart CPU to the actuator
3
Reserved
none
4
Reserved
none
—
All instances contain the following attributes.
Attribute ID
Access Rule
Name
Data Type
Value
3
Get
Value
BOOL
0=OFF, 1=ON
5
Get/Set
Fault Action
BOOL
0=Fault Value attribute, 1=Hold Last State
6
Get/Set
Fault Value
BOOL
0=OFF, 1=ON
7
Get/Set
Idle Action
BOOL
0=Fault Value attribute, 1=Hold Last State
8
Get/Set
Idle Value
BOOL
0=OFF, 1=ON
113
Get/Set "
Pr Fault Action
BOOL
0=Pr Fault Value attribute, 1=Ignore
114
Get/Set "
Pr Fault Value
BOOL
0=OFF, 1=ON
115
Get/Set
Force Enable
BOOL
0=Disable, 1=Enable
116
Get/Set
Force Value
BOOL
0=OFF, 1=ON
➊ For DOP instances 1 and 2, attributes 113 and 114 have “Get” only access, and their values are
always 0.
The following common services are implemented for the Discrete
Output Point Object:
Table B.41 Discrete Output Object Common Services
Implemented for:
Service
Code
Instance
Service
Name
Class
0x0E
0x10
Yes
Yes
Get_Attribute_Single
No
Yes
Set_Attribute_Single
B-16
Bulletin 280G/281G CIP Information
DOP Instances 1 and 2 Special Behavior
Besides the sources that can affect output points 3 and 4, DOPs 1 and
2 can be affected by keypad inputs since they double as the Run
Forward and Run Reverse outputs. This adds complexity to their
behavior, so their behavior is defined in this section separately.
The following State Transition Diagram is used for DOP Instances 1
and 2
Figure B.1 DOP Instances 1 and 2
Power Off
Non-Existant
Power Up
Auto State = Auto Init
Keyad "Hand"
Button Pressed
Hand State = Hand Stop
Auto
Hand
Keyad "Auto"
Button Pressed
Auto State = Auto Init
Bulletin 280G/281G CIP Information
B-17
The following State Transition Diagram is used in Auto State for
Unbound DOP Instances 1 and 2
Figure B.2 Auto State for Unbound DOP Instances 1 and 2
Auto Init
Connection Transitions to Established
DNet Fault
Protection Fault
DNet Fault
DNet Fault
Protection Fault
Idle
DNet Fault
Connection Transitions to Established
Protection Fault Reset
Receive Data
Run
Protection Fault
Protection Fault
DNet Fault
Ready
Protection Fault
Receive Idle
DNet
Idle
B-18
Bulletin 280G/281G CIP Information
Parameter Object — CLASS CODE
0x000F
The following class attributes are supported for the Parameter Object:
Table B.42 Parameter Object Class Attributes
Attribute ID
Access Rule
Name
Data Type
1
Get
Revision
UINT
2
Get
Max Instance
UINT
8
Get
Parameter Class Descriptor
WORD
9
Get
Configuration Assembly Instance
UINT
The number of instances of the parameter object will depend upon the
type of Distributed Motor Controller. There is a standard set of
instances reserved (1-99) for all starters. These instances are followed
by a unique set of instances for each starter type (Across the Line,
Soft start, or Inverter type).
The following instance attributes are implemented for all parameter
attributes:
Table B.43 Parameter Object Instance Attributes
Attribute ID
Access Rule
Name
Data Type
1
Get/Set
Value
Specified in Descriptor
2
Get
Link Path Size
USINT
3
Get
Link Path
Array of:
BYTE
EPATH
4
Get
Descriptor
WORD
5
Get
Data Type
EPATH
6
Get
Data Size
USINT
7
Get
Parameter Name String
SHORT_STRING
8
Get
Units String
SHORT_STRING
9
Get
Help String
SHORT_STRING
10
Get
Minimum Value
Specified in Descriptor
11
Get
Maximum Value
Specified in Descriptor
12
Get
Default Value
Specified in Descriptor
13
Get
Scaling Multiplier
UINT
14
Get
Scaling Divisor
UINT
15
Get
Scaling Base
UINT
16
Get
Scaling Offset
INT
17
Get
Multiplier Link
UINT
18
Get
Divisor Link
UINT
19
Get
Base Link
UINT
20
Get
Offset Link
UINT
21
Get
Decimal Precision
USINT
B-19
Bulletin 280G/281G CIP Information
The following common services are implemented for the Parameter
Object:
Table B.44 Parameter Object Common Services
Implemented for:
Service Code
Parameter Group Object — CLASS
CODE 0x0010
Class
Service Name
Instance
0x0E
Yes
Yes
Get_Attribute_Single
0x10
No
Yes
Set_Attribute_Single
0x01
No
Yes
Get_Attributes_All
The following class attributes are supported for the Parameter Object:
Table B.45 Parameter Group Object Class Attributes
Attribute ID
Access Rule
Name
Data Type
1
2
Get
Revision
UINT
Get
Max Instance
UINT
All Bulletin 280G/281G Motor Starters have the following instances
of the parameter group object:
•
Instance 1 = DeviceLogix Parameters
•
Instance 2 = DeviceNet Parameters
•
Instance 3 = Starter Protection Parameters
•
Instance 4 = User I/O Parameters
•
Instance 5 = Miscellaneous Setup Parameters
•
Instance 6 = ZIP Parameters
•
Instance 7 = Starter Display
•
Instance 8 = Starter Setup
The following instance attributes are supported for all parameter
group instances:
Table B.46 Parameter Group Object Instance Attributes
Attribute ID
1
2
3
Access Rule
Get
Get
Get
Name
Group Name String
Number of Members
1st Parameter
Data Type
SHORT_STRING
UINT
UINT
4
n
Get
Get
2nd Parameter
Nth Parameter
UINT
UINT
B-20
Bulletin 280G/281G CIP Information
The following common services are implemented for the Parameter
Group Object:
Table B.47 Parameter Group Object Service Common Services
Discrete Input Group Object — CLASS CODE 0x001D "
Implemented for:
Service Code
Class
Yes
0x0E
Discrete Input Group Object —
Class CODE 0x001D
Service Name
Instance
Yes
Get_Attribute_Single
No class attributes are supported for the Discrete Input Group Object.
A single instance of the Discrete Input Group Object is supported. It
contains the following attributes:
Table B.48 Discrete Input Instance Attributes
Attribute ID Access Rule
Name
Data Type
Value
3
Get
Number of Instances
USINT
4
4
Get
Binding
Array of UINT
List of DIP instances
6
Get/Set
Off_On_Delay
UINT
in µsec
7
Get/Set
On_Off_Delay
UINT
in µsec
The following common services are implemented for the Discrete
Input Group Object:
Table B.49 Discrete Input Group Object Common Services
Service Code
Implemented for:
Class
Instance
Service Name
0x0E
No
Yes
Get_Attribute_Single
0x10
No
Yes
Set_Attribute_Single
Bulletin 280G/281G CIP Information
Discrete Output Group Object —
CLASS CODE 0x001E
B-21
No class attributes are supported for the Discrete Output Group
Object.
A single instance of the Discrete Output Group Object is supported. It
contains the following attributes:
Table B.50 Discrete Output Instance Attributes
Attribute ID
3
4
6
Access Rule
Get
Get
Get/Set
Name
Number of Instances
Binding
Command
Data Type
USINT
Array of UINT
BOOL
104
Get/Set
Network Status Override
BOOL
105
Get/Set
Comm Status Override
BOOL
Value
4 for DOL
List of DOP instances; 1, 2, 3, 4
0=idle; 1=run
0=No Override (go to safe state)
1=Override (run local logic)
0=No override (go to safe state)
1=Override (run local logic)
The following common services are implemented for the Discrete
Output Group Object:
Table B.51 Discrete Output Group Common Services
Service Code
0x0E
0x10
Implemented for:
Class
No
No
Instance
Yes
Yes
Service Name
Get_Attribute_Single
Set_Attribute_Single
B-22
Bulletin 280G/281G CIP Information
Control Supervisor Object -CLASS
CODE 0x0029
No class attributes are supported.
The following instance attributes are supported:
A single instance (instance 1) of the Control Supervisor Object will
be supported.
Table B.52 Control Supervisor Instance Attributes
Attribute ID
Access Rule
Name
Data Type
Value
3
Get/Set
Run 1
BOOL
*4
Get/Set
Run 2
BOOL
These Run outputs also map to DOP instances 1
and 2.
7
Get
Running 1
BOOL
Status of RUN FWD contact
*8
Get
Running 2
BOOL
Status of RUN REV contact
9
Get
Ready
BOOL
Device not faulted
10
Get
Tripped
BOOL
Device faulted
12
Get/Set
Fault Reset
BOOL
0->1 = Trip Reset
100
Get/Set
Keypad Mode
BOOL
0=Maintained; 1=Momentary
101
Get/Set
Keypad Disable
BOOL
0=Not Disabled; 1=Disabled
Warning Status
WORD
Bits 0-4 = reserved
Bit 5 = CP Warning
Bit 6 = IO Warning
Bit 7 = reserved
Bit 8 = reserved
Bit 9 = DN Warning
Bits 10-12 = reserved
Bit 13 = HW Warning
Bits 14-15 = reserved
115
Get
124
Get/Set
Trip Enable
WORD
Bit enumerated trip enable word
130
Get/Set
Trip Reset Mode
BOOL
0=manual; 1=auto
131
Get/Set
Trip Reset Level
USINT
0 – 100%; default = 75
151
Get
Base Enclosure
WORD
Bit 0 = IP67
Bits 1-15 reserved
WORD
Bit 0 = reserved
Bit 1 = reserved
Bit 2 = CP Fuse Detect
Bits 3-7 = reserved
Bit 8 = 10A Base
Bit 9 = 25A Base
Bit 10-15 = reserved
152
Get
Base Options
153
Get
Wiring Options
WORD
Bit 0 = reserved
Bit 1 = reserved
Bit 2= 28xG Gland
Bits 3-15 = reserved
154
Get
Starter Enclosure
WORD
Bit 0 = IP67
Bits 1-15 reserved
155
Get
Starter Options
WORD
Bit 0 = Full Keypad
Bit 1 = Safety Monitor
Bits 2-15 reserved
156
Get
Last Pr Trip
UINT
See Parameter 61
B-23
Bulletin 280G/281G CIP Information
The following common services are implemented for the Control
Supervisor Object:
Table B.53 Control Supervisor Object Common Services
Service Code
Acknowledge Handler Object —
CLASS CODE 0x002b
Implemented for:
Class
Instance
Service Name
0x0E
No
Yes
Get_Attribute_Single
0x10
No
Yes
Set_Attribute_Single
No class attributes are supported for the Acknowledge Handler
Object.
A single instance (instance 1) of the Acknowledge Handler Object is
supported. The following instance attributes are supported:
Table B.54 Acknowledge Handler Instance Attributes
Attribute ID
Access Rule
Name
Data Type
Value
1
Get/Set
Acknowledge Timer
UINT
milliseconds
2
Get
Retry Limit
USINT
1
Get
COS Producing Connection
Instance
UINT
4
3
The following common services are implemented for the
Acknowledge Handler Object:
Table B.55 Acknowledge Handler Common Services
Service Code
Implemented for:
Service Name
Class
Instance
0x0E
No
Yes
Get_Attribute_Single
0x10
No
Yes
Set_Attribute_Single
B-24
Bulletin 280G/281G CIP Information
Overload Object — CLASS CODE
0x002c
No class attributes are supported for the Overload Object.
A single instance (instance 1) of the Overload Object is supported for
Bulletin 280G/281G:
Table B.56 Overload Object Instance Attributes
Attribute ID
Access Rule
Name
Data Type
Value
3
Get/Set
FLA Setting
BOOL
xxx.x Amps
4
Get/Set
Trip Class
USINT
1=10
2=15
3=20
5
Get
Average Current
UINT
xxx.x Amps
7
Get
% Thermal Utilized
USINT
xxx% FLA
8
Get
Current L1
UINT
xxx.x Amps
9
Get
Current L2
UINT
xxx.x Amps
10
Get
Current L3
UINT
xxx.x Amps
190
Get/Set
FLA Setting Times 10
BOOL
xxx.x Amps
192
Get
Avg. Current Times 10
UINT
xxx.x Amps
193
Get
Current L1 Times 10
UINT
194
Get
Current L2 Times 10
UINT
195
Get
Current L3 Times 10
UINT
xxx.x Amps
The following common services are implemented for the Overload
Object:
Table B.57 Acknowledge Handler Object Common Services
Service Code
Implemented for:
Service Name
Class
Instance
0x0E
No
Yes
Get_Attribute_Single
0x10
No
Yes
Set_Attribute_Single
Bulletin 280G/281G CIP Information
DeviceNet Interface Object -CLASS
CODE 0x00B4
B-25
This “vendor specific” object has no class attributes.
A single instance (instance 1) of the DeviceNet Interface Object is
supported:
Table B.58 DeviceNet Interface Object Instance Attribute
Attribute ID
Access Rule
Name
Data Type
Min/Max
Default
Description
7
Get/Set
Prod Assy Word 0
USINT
0…108
1
Defines Word 0 of Assy 120
8
Get/Set
Prod Assy Word 1
USINT
0…108
5
Defines Word 1 of Assy 120
9
Get/Set
Prod Assy Word 2
USINT
0…108
6
Defines Word 2 of Assy 120
10
Get/Set
Prod Assy Word 3
USINT
0…108
7
Defines Word 3 of Assy 120
13
Get/Set
Starter COS Mask
WORD
0…0xFFFF
0xFFFF
Change of state mask for starter bits
15
Get/Set
Autobaud Enable
BOOL
0…1
1
1= enabled; 0 = disabled
16
Get/Set
Consumed Assy
USINT
0…185
160
3, 121, 160, 162, 182, 187
17
Get/Set
Produced Assy
USINT
100…187
161
52, 121, 161, 163, 181-187,189,190
19
Get/Set
Set To Defaults
BOOL
0…1
0
0=No action; 1=Reset
23
Get
I/O Produced Size
USINT
0…8
—
Size of I/O Produced Data in Bytes
24
Get
I/O Consumed Size
USINT
0…3
—
Size of I/O Consumed Data in Bytes
30
Get
DNet Voltage
UINT
xx.xx
—
DeviceNet Voltage xx.xx Volts
50
Get/Set
PNB COS Mask
WORD
0 to 0x00FF
0
Change of state mask for PNBs
The following common services are implemented for the DeviceNet
Interface Object:
Table B.59 DeviceNet Interface Object Common Services
Service Code
Implemented for:
Service Name
Class
Instance
0x0E
No
Yes
Get_Attribute_Single
0x10
No
Yes
Set_Attribute_Single
B-26
Notes:
Bulletin 280G/281G CIP Information
Appendix
C
Bulletin 284G CIP Information
Electronic Data Sheets
Electronic Data Sheets (EDS) files are specially formatted ASCII files that
provide all of the information necessary for a configuration tool (e.g.,
RSNetWorx™ for DeviceNet™ Revision 3.21 Service Pack 2 or later) to
access and alter parameters of the device. The EDS file contains all of the
device information: number of parameter, groupings, parameter name,
minimum, maximum, and default values, units, data format, and scaling.
EDS files for all the ArmorStart® Distributed Motor Controllers units are
available from the Internet at www.ab.com/networks/eds.
They may also be built automatically by some configuration tools since
much of the information necessary for an EDS file may be extracted from
the ArmorStart Distributed Motor Controller.
VFD Type Product Codes and
Name Strings
Product codes for the Bulletin 284G variable frequency drives are based on
the Horse Power Rating and Supply Voltage rating of the Distributed Motor
Controller. Table C.1 lists the product codes and name strings for the
Bulletin 284G Distributed Motor Controllers:
Table C.1
Bulletin 284G Product Codes and Name Strings
284G
Device
Type ➊
Product
Code
Hp
Supply Voltage
22
0x592
0.50
480V AC
ArmorStart 284G PF40 480V 0.5 Hp
PF40
22
0x594
1
480V AC
ArmorStart 284G PF40 480V 1 Hp
PF40
22
0x596
2
480V AC
ArmorStart 284G PF40 480V 2 Hp
PF40
22
0x597
3
480V AC
ArmorStart 284G PF40 480V 3 Hp
PF40
22
0x598
5
480V AC
ArmorStart 284G PF40 480V 5 Hp
PF40
22
0x599
7.5
480V AC
ArmorStart 1000 PF40 480V 7.5 Hp
PF40
22
0x59A
10
480V AC
ArmorStart 1000 PF40 480V 10 Hp
PF40
22
0x59B
15
480V AC
ArmorStart 1000 PF40 480V 15 Hp
PF40
Table C.2
284G
Device
Type ➊
Drive Type
Bulletin 284G Safety Product Codes and Name Strings
Product
Code
Hp
Supply Voltage
22
0x5C2
0.50
480V AC
ArmorStart 284G PF40 480V 0.5 Hp
PF40
22
0x5C4
1
480V AC
ArmorStart 284G PF40 480V 1 Hp
PF40
22
0x5C6
2
480V AC
ArmorStart 284G PF40 480V 2 Hp
PF40
22
0x5C7
3
480V AC
ArmorStart 284G PF40 480V 3 Hp
PF40
22
0x5C8
5
480V AC
ArmorStart 284G PF40 480V 5 Hp
PF40
22
0x5C9
7.5
480V AC
ArmorStart 1000 PF40 480V 7.5 Hp
PF40
22
0x5CA
10
480V AC
ArmorStart 1000 PF40 480V 10 Hp
PF40
22
0x5CB
15
480V AC
ArmorStart 1000 PF40 480V 15 Hp
PF40
➊ 22= Motor Starter
1
Name String
Name String
Drive Type
C-2
Bulletin 284G CIP Information
DeviceNet Objects
The ArmorStart Distributed Motor Controller supports the following
DeviceNet object classes:
Table C.3
DeviceNet Object Classes
Class
0x0001
0x0002
0x0003
0x0004
0x0005
0x0008
0x0009
0x000F
0x0010
0x001D
0x001E
0x0029
0x002B
0x00B4
Identity Object — CLASS CODE
0x0001
Object
Identity
Message Router
DeviceNet
Assembly
Connection
Discrete Input Point
Discrete Output Point
Parameter Object
Parameter Group Object
Discrete Input Group
Discrete Output Group
Control Supervisor
Acknowledge Handler
DN Interface Object
The following class attributes are supported for the Identity Object:
Table C.4
Attribute ID
1
Identity Object Class Attributes
Access Rule
Get
Name
Revision
Data Type
UINT
Value
1
Bulletin 284G CIP Information
Identity Object
A single instance of the Identity Object is supported. The following
instance attributes are supported:
Table C.5
Identity Object Instance Attributes
Attribute
ID
Access
Rule
1
2
3
Get
Get
Get
4
Get
5
Name
Data Type
Vendor
Device Type
Product Code
Revision
Major Revision
Minor Revision
UINT
UINT
UINT
Structure of:
USINT
USINT
Get
Status
WORD
6
Get
7
Get
Serial Number
Product Name
String Length
ASCII String
UDINT
Structure of:
USINT
STRING
8
Get
State
USINT
9
Get
10
Get/Set
Configuration
Consistency
Value
Heartbeat Interval
UINT
USINT
Value
1
22
See Table C.1
Indicates Software Firmware
Revision Number
Bit 0: 0 = not owned; 1 =
owned by master
Bit 2: 0 = Factory Defaulted;
1 = Configured
Bit 8: Minor Recoverable fault
Bit 9: Minor Unrecoverable fault
Bit 10: Major Recoverable fault
Bit 11: Major Unrecoverable
fault
Unique Number for Each Device
Product code specific
See Table C.1.
Returns the value
3 = Operational
Unique value depending on
output of the parameter
checksum algorithm.
In seconds. Default = 0
The following common services are implemented for the Identity
Object:
Table C.6
Service
Code
0x0E
0x05
0x10
Message Router — CLASS CODE
0x0002
C-3
Class
No
No
No
Identity Object Common Services
Implemented for
Instance
Yes
Yes
Yes
Service
Name
Get_Attribute_Single
Reset
Set_Attribute_Single
No class or instance attributes are supported. The message router
object exists only to rout explicit messages to other objects.
C-4
Bulletin 284G CIP Information
DeviceNet Object — CLASS CODE
0x0003
The following class attributes are supported for the DeviceNet Object:
DeviceNet Object Class Attributes
Table C.7
Attribute ID
Access Rule
Name
Data Type
Value
1
Get
Revision
UINT
2
A single instance (Instance 1) of the DeviceNet Object will be
supported. The following instance attributes are supported:
DeviceNet Object Instance Attributes
Table C.8
Attribute
ID
Access
Rule
Name
Data Type
1
Get/Set
Node Address
USINT
2
Get/Set
Baud Rate
USINT
5
Get
8
Get
➊
Allocation Info
• Allocation Choice
• Master Node Addr
MAC ID Switch Value
Structure of:
• BYTE
• USINT
BOOL
Value
0…63
0 = 125K
1 = 250K
2 = 500K
Allocation_byte ➊
0…63 = address
255 = unallocated
0…63
See Table C.9
Table C.9
Allocation_byte
Bit 0
Bit 1
Bit 4
Bit 5
Bit 6
Explicit messaging
Polled I/O
COS I/O
Cyclic I/O
Acknowledge Suppression
The following services are implemented for the DeviceNet Object:
Table C.10 DeviceNet Object Common Services
Implemented for
Service
Code
Class
Instance
0x0E
0x10
0x4B
0x4C
Yes
No
No
No
Yes
Yes
Yes
Yes
Service
Name
Get_Attribute_Single
Set_Attribute_Single
Allocate_Master/Slave _Connection_Set
Release_Master/Slave _Connection_Set
C-5
Bulletin 284G CIP Information
Assembly Object — CLASS CODE
0x0004
The following class attributes are supported for the Assembly Object
Table C.11 DeviceNet Assembly Object:
Attribute ID
Access Rule
Name
Data Type
Value
2
Get
Max Instance
UINT
190
All of the various instances of the assembly object will support
Attribute 3. Table C.12 summarizes the various instances that are
supported
Table C.12 DeviceNet Assembly Object Instance Attributes:
Attribute
ID
Type
3
52
120
160
161
Consumed
Produced
Produced
Consumed
Produced
162
Consumed
163
Produced
164
165
Consumed
Produced
166
Consumed
167
Produced
170
171
181
182
183
184
185
186
187
188
189
190
Consumed
Produced
Produced
Consumed
Produced
Produced
Produced
Produced
Consumed
Consumed
Produced
Produced
Description
Required ODVA Consumed Instance
Required ODVA Produced Instance
Custom Parameter Based Word Wise Assembly
Default Consumed Instance for DOL and SoftStart units
Default Produced Instance for DOL and SoftStart units
Standard Consumed Instance for DOL and SoftStart with Network
Inputs
Standard Produced Instance for DOL and SoftStart with Network
Outputs
Default Consumed Instance for Inverter type units
Default Produced Instance for Inverter type units
Standard Consumed Instance for Inverter type units with Network
Inputs
Standard Produced Instance for Inverter type units with Network
Outputs
Power Flex Native Format Consumed Instance
Power Flex Native Format Produced Instance
User Inputs
Consumed Network Bits (a.k.a Network Inputs)
Produced Network Bits (a.k.a. Network Outputs)
Trip Status Bits
Starter Status Bits
DeviceNet Status Bits
Starter Control Bits
Drive Control Bits
Warning Status Bits
1799 - ZCIO Bits
C-6
Bulletin 284G CIP Information
Custom Parameter Based WordWise I/O Assembly
Table C.13 CustomParameter Based Word Wise (Produced) Assembly
Instance
Instance 120
Word
0
1
2
3
Word-Wise Bit-Packed Assemblies
Byte
0
1
2
3
4
5
6
7
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Value of the parameter pointed to by Produced Word 0 Param (low byte)
Value of the parameter pointed to by Produced Word 0 Param (high byte)
Value of the parameter pointed to by Produced Word 1 Param (low byte)
Value of the parameter pointed to by Produced Word 1 Param (high byte)
Value of the parameter pointed to by Produced Word 2 Param (low byte)
Value of the parameter pointed to by Produced Word 2 Param (high byte)
Value of the parameter pointed to by Produced Word 3 Param (low byte)
Value of the parameter pointed to by Produced Word 3 Param (high byte)
Assemblies whose instance numbers are 180...189 are all one word
(16 bits) long. They can be used stand-alone, but their main use is to
assemble information for EDS file parameters. These Word-Wise
assemblies become the building blocks for the Custom Parameter
Based Word-Wise assembly described in Table C.13.
Table C.14 Instance 181 — Hardware Inputs 1…16
Instance 181 — This is a Read Only Status Assembly
Byte
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
0
1
—
—
—
—
Input 5
—
Input 4
—
Input 3
—
Input 2
—
Input 1
—
Input 0
—
Table C.15 Instance 182 — Consumed Network Inputs 1…16
Instance 182 — This is a Read/Write Control Assembly
Byte
0
1
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Net Input
8
Net Input
16
Net Input
7
Net Input
15
Net Input
6
Net Input
14
Net Input
5
Net Input
13
Net Input
4
Net Input
12
Net Input
3
Net Input
11
Net Input
2
Net Input
10
Net Input
1
Net Input
9
Table C.16 Instance 183 — Produced Network Outputs 1…15
Instance 183 — This is a Read Only Status Assembly
Byte
Bit 7
0
Net Out 8
1
Reserved
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Net Out
7
Net Out
15
Net Out
6
Net Out
14
Net Out
5
Net Out
13
Net Out
4
Net Out
12
Net Out
3
Net Out
11
Net Out
8
Net Out
10
Net Out
1
Net Out
9
C-7
Bulletin 284G CIP Information
Table C.17 Instance 184 — Trip Status
Instance 184 — This is a Read Only Status Assembly
Byte
Bit 7
Over
Temp
Misc.
Fault
0
1
Bit 6
Bit 5
IO Fault
Control
Power
Retries
Bit 4
Bit 3
Bit 2
Stall
Gnd
Fault
Phase
Short
Int
Comm
HW Fault EEPROM
DC Bus
Bit 1
OL Trip
DNet Flt
Bit 0
140M
Trip
Over
Current
Table C.18 Instance 185 — Starter Status
Instance 185 — This is a Read Only Status Assembly
Byte
Bit 7
Bit 6
Bit 5
0
At
Reference
1
Reserved
Net Ref
Status
Contactor 1
➊
Net Ctl
Status
140M
On
➊
Bit 4
Ready
Bit 3
Bit 2
Running Running
Rev
Fwd
HOA
KP Hand
Status
KP Jog
Bit 1
Bit 0
Alarm
Tripped
DrvOpto2 DrvOpto1
Refers to control brake contactor status.
Table C.19 Instance 186 — DeviceNet Status
Instance 186 — This is a Read Only Status Assembly
Byte
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
0
—
—
—
I/O Idle
I/O Flt
Exp Flt
I/O Cnxn
1
ZIP 4 Flt
ZIP 4
Cnx
ZIP 3 Flt
ZIP 3
Cnx
ZIP 2 Flt
ZIP 2
Cnx
ZIP 1 Flt
Bit 2
Bit 1
Bit 0
Run Rev
Run Fwd
—
—
Exp
Cnxn
ZIP 1
Cnx
Instance 187 — This is a Read/Write Assembly
Byte
0
1
Bit 7
Bit 6
Reserved Reserved
—
—
Bit 5
Bit 4
Bit 3
—
Jog Rev
Jog Fwd
—
—
—
Fault
Reset
—
Bit 3
Bit 2
Bit 1
Bit 0
Decel 2
Decel 1
Accel 2
Accel 1
Drv In 4
Drv In 3
Drv In 2
Drv In 1
Instance 188 — This is a Read/Write Assembly
Byte
Bit 7
0
—
1
—
Bit 6
Bit 5
Bit 4
Freq
Select 3
—
Freq
Select 2
—
Freq
Select 1
—
Table C.20 Instance 189 This is a “Read Only” assembly
Instance 189 Warning Status Bits
Byte
Bit 7
Bit 6
0
Reserved
I/O
Warning
1
—
—
Bit 5
Control
Power
Warning
HW
Warn
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
—
—
—
—
—
—
—
—
DN Warn
PI Warn
C-8
Bulletin 284G CIP Information
Table C.21 Instance 190 is the 1999-ZCIO Native Format Produced Assembly
Instance 190 1799-ZCIO Native Format Produced Assembly
Byte
Bit 7
Bit 6
0
Running
Rev
1
Reserved
Running
Fwd
Logic
Enable
2
Drive In 4
Drive In 3
Net Out 8
Net Out 7
3
4
5
6
Standard Distributed Motor
Controller I/O Assemblies
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Warning
Tripped
Input 3
Input 2
Input 1
Input 0
140M On
HOA
Reserved
Drive In
Run
Reserved Reserved Run Rev
1
Fwd
Reserved
Jog Rev Jog Fwd
Net Out
Net Out
Net Out 6
Net Out 4 Net Out 3 Net Out 2
5
1
ZIP CCV (Low)
ZIP CCV (High)
Drive In 2
Standard Distributed Motor Controller I/O Assemblies are available
on all Starter Types.
Standard Distributed Motor Controller Output (Consumed)
Assemblies
Instance 3 is the required output (consumed) assembly defined in the
DeviceNet Motor Starter Profile.
Table C.22 ODVA Starter
Byte
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
0
—
—
—
—
—
—
—
Run Fwd
Instance 160 is the default output (consumed) assembly for Bulletin
280G/281G Distributed Motor Controllers
Table C.23 Instance 160 — Default Consumed Standard Distributed Motor
Controller.
Byte
0
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Fault
Reset
Reserved Reserved
Bit 1
Bit 0
Run Rev Run Fwd
Instance 162 is the standard output (consumed) assembly with
Network Inputs for Bulletin 280G/281G Distributed Motor
Controllers
Table C.24 Standard Consumed Starter with Network Inputs.
Byte
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Fault
Run Rev Run Fwd
Reset
Net In 7 Net In 6 Net In 5 Net In 4 Net In 3 Net In 2 Net In 1
Net In 15 Net In 14 Net In 13 Net In 12 Net In 11 Net In 10 Net In 9
0
Reserved Reserved
1
2
Net In 8
Net In 16
C-9
Bulletin 284G CIP Information
Bulletin 284G Distributed Motor Controller I/O Assemblies
Bulletin 284G Distributed Motor Controller IO Assemblies are
available ONLY on the Bulletin 284G Distributed Motor Controller.
Standard Distributed Motor Controller Output (Consumed) Assemblies
Instance 164 is the default output (consumed) assembly for Inverter
Type Distributed Motor Controllers
Table C.25 Instance 164 — Default Consumed Inverter Type Distributed
Motor Controller.
Byte
Bit 7
0
Reserved
1
Drive In 4
2
3
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Jog
Fault
Fwd
Reset
Decel
Drive In 3 Drive In 2 Drive In 1
Decel 1
2
Comm Frequency Command (Low) (xxx.x Hz)
Comm Frequency Command (High) (xxx.x Hz)
Reserved
—
Jog Rev
Bit 1
Bit 0
Run Rev
Run
Fwd
Accel 2
Accel 1
Instance 166 is the standard output (consumed) assembly for Inverter
Type Distributed Motor Controllers with network inputs
Table C.26 Instance 166 — Consumed Inverter Type Starter with Network
Inputs
Byte
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Fault
Run Rev Run Fwd
Reset
Drive In Drive In
Decel
Decel
Accel
Accel
Drive In 4 Drive In 3
2
1
2
1
2
1
Comm Frequency Command (Low) (xxx.x Hz)
Comm Frequency Command (High) (xxx.x Hz)
Net In 8
Net In 7 Net In 6 Net In 5 Net In 4 Net In 3 Net In 2 Net In 1
Net In 16 Net In 15 Net In 14 Net In 13 Net In 12 Net In 11 Net In 10 Net In 9
0
Reserved Reserved
1
2
3
4
5
—
Jog Rev
Jog Fwd
Standard Distributed Motor Controller Input (Produced)
Assemblies
Instance 52 is the required input (produced) assembly defined in the
DeviceNet Motor Starter Profile
Table C.27 Instance 52 — ODVA Starter.
Byte
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
—
—
—
—
—
—
Running
—
Fault
C-10
Bulletin 284G CIP Information
Instance 161 is the default input (produced) assembly for the Bulletin
280G/281G Distributed Motor Controller
Table C.28 Instance 161 — Default Produced Standard Distributed Motor.
Byte
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
0
—
140M
On
—
Ready
Running
Rev
Running
Fwd
—
Tripped
1
—
—
User In
5
User In
4
User In 3
User In 2
User In 1
User In 0
Instance 163 is the standard input (produced) assembly with Network
Outputs for the Bulletin 280G/281G Distributed Motor Controller
Table C.29 Instance 163 — Standard Produced Starter with Network Outputs
and ZIP CCV.
Byte
Bit 7
Bit 6
Bit 5
140M On
0
Net Out
8
Logic
Enable
Stat
3
Bit 3
Bit 2
Bit 1
Bit 0
Ready
Running
Rev
Running
Fwd
Warning
Tripped
User In 4
User In 3
User In 2
User In 1
Net Out
7
User In
5
Net Out
6
User In
4
Net Out
5
Net Out
15
Net Out
14
Net Out
13
1
2
Bit 4
4
5
Net Out 4 Net Out 3 Net Out 2 Net Out 1
Net Out
12
Net Out
11
Net Out
10
Net Out 9
ZIP Device Value Key (Low)
ZIP Device Value Key (High)
Inverter Type Distributed Motor Controller Input (Produced)
Assemblies
Instance 165 is the default input (produced) assembly for Inverter
Type Distributed Motor Controllers
Table C.30 Default Produced Inverter Type Distributed Motor Controller.
Byte
Bit 7
Bit 6
0
At
Reference
140M On
1
Reserved
2
3
➊
Contactor 1
➊
Bit 5
Bit 4
Bit 3
Bit 2
Net Ctl
Running Running
Ready
Status
Rev
Fwd
User In User In
User In 3 User In 2
5
4
Output Frequency (Low) (xxx.x Hz)
Output Frequency (High) (xxx.x Hz)
Refers to control brake contactor status.
Bit 1
Bit 0
Alarm
Tripped
User In 1
User In 0
C-11
Bulletin 284G CIP Information
Instance 167 is input (produced) assembly for Inverter Type
Distributed Motor Controllers with Network Outputs
Table C.31 Instance 167 —Produced Inverter Type Starter with Network
Byte
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
0
At
Reference
140M On
Net Ctl
Status
Ready
Running
Rev
Running
Fwd
Alarm
Tripped
Reserved
Contactor 1
➊
User In 5
User In 4
User In 3
User In 2
User In 1
User In 0
1
2
3
4
Net Out 8
5
Net Out 7
Net Out 15
6
7
➊
Output Frequency (Low) (xxx.x Hz)
Output Frequency (High) (xxx.x Hz)
Net Out 6 Net Out 5 Net Out 4 Net Out 3 Net Out 2 Net Out 1
Net Out
Net Out
Net Out
Net Out
Net Out
Net Out 9
14
13
12
11
10
ZIP Device Value Key (Low)
ZIP Device Value Key (High)
Refers to control brake contactor status.
Power Flex Native Assemblies
These assembly instances have the same data format as the Power
Flex Drives with a DNet adapter.
Power Flex Native Consumed Assembly
Instance 170 is the Power Flex Native Format Consumed Assembly
Table C.32 Instance 170 — Power Flex Native Format Consumed Assembly.
Byte
Bit 7
Bit 6
0
MOP Inc
1
MOP Dec
reserved
Freq Select
3
2
3
Bit 5
Bit 4
Bit 3
Direction Cmd
Flt Reset
Freq Select
Freq
Decel
2
Select 1
2
Comm Frequency Command (Low)
Comm Frequency Command (High)
Bit 2
Bit 1
Bit 0
Jog
Decel
1
Start Stop
Accel Accel
2
1
C-12
Bulletin 284G CIP Information
Table C.33 Logic Command
Accel 2
Accel 1
Description
0
0
No Command
0
1
Accel 1 Enable
1
0
Accel 2 Enable
1
1
Hold Accel Rate Selected
Decel 2
Decel 1
0
0
No Command
0
1
Decel 1 Enable
1
0
Decel 2 Enable
1
1
Hold Decel Rate Selected
Freq Select 3
Freq Select 2
Freq Select 1
0
0
0
No Command
0
0
1
Freq Source = P136 (Start Source)
0
1
0
Freq Source = P169 (Internal Freq)
0
1
1
Freq Source = Comms
1
0
0
P170 (Preset Freq 0)
1
0
1
P171 (Preset Freq 1)
1
1
0
P172 (Preset Freq 2)
1
1
1
P173 (Preset Freq 3)
Power Flex Native Produced Assembly
Instance 171 is the Power Flex Native Format Produced Assembly.
Table C.34 Instance 171 — PowerFlex Native Format Produced Assembly
Byte
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
0
Faulted
Alarm
Deceling
Acceling
Rot Fwd
1
Drv In 4
Stat
2
3
Drv In 3
Param
Drv In 2 Stat Drv In 1
Stat
Locked
Drive Error Code (low)
Drive Error Code (high)
Bit 2
Bit 1
Bit 0
Cmd
Running Ready
Fwd
Ctl fm
Ref fm Net At Ref
Net
C-13
Bulletin 284G CIP Information
Connection Object — CLASS CODE
0x0005
No class attributes are supported for the Connection Object.
Multiple instances of the Connection Object are supported, Instances
1, 2, and 4 from the Group 2 predefined master/slave connection set,
Instances 5 and 6 are available through explicit UCMM connections.
Instance 1 is the Predefined Group 2 Connection Set Explicit
Message Connection. The following Instance 1 attributes is supported
Table C.35 Connection Object Instance 1 Attributes:
Attribute
ID
Access
Rule
Name
Data
Type
State
1
Get
2
Get
3
Get
4
Get
5
Get
6
7
8
9
Get
Get
Get
Get/Set
12
Get
13
Get
14
Get
15
Get
16
Get
USINT
Instance Type
Transport Class Trigger
Produced Connection ID
Consumed Connection ID
Initial Comm Characteristics
Produced Connection Size
Consumed Connection Size
Expected Packet Rate
Watchdog Action
Produced Connection Path
Length
Produced Connection Path
Consumed Connection Path
Length
Consumed Connection Path
USINT
USINT
UINT
UINT
USINT
UINT
UINT
UINT
USINT
UINT
UINT
Value
0 = non-existent
1 = configuring
3 = established
4 = timed out
0 = Explicit Message
0x83 — Server, Transport
Class 3
10xxxxxx011
xxxxxx = node address
10xxxxxx100
xxxxxx = node address
0x22
0x61
0x61
in milliseconds
01 = auto delete
03 = deferred delete
0
Empty
0
Empty
C-14
Bulletin 284G CIP Information
Instance 2 is the Predefined Group 2 Connection Set Polled I/O
Message Connection. The following Instance 2 attributes are
supported
Table C.36 Connection Object Instance 2 Attributes:
Attribute
ID
Access
Name
Data
Type
State
1
Get
2
Get
3
Get
4
Get
5
Get
6
7
8
9
Get
Get
Get
Get/Set
12
Get/Set
13
Get
14
Get/Set
15
Get
16
Get/Set
USINT
Instance Type
Transport Class Trigger
USINT
USINT
Produced Connection ID
Consumed Connection ID
Initial Comm Characteristics
Produced Connection Size
Consumed Connection Size
Expected Packet Rate
Watchdog Action
UINT
UINT
USINT
UINT
UINT
UINT
USINT
Produced Connection Path
Length
Produced Connection Path
Consumed Connection Path
Length
Consumed Connection Path
UINT
UINT
Value
0 = non-existent
1 = configuring
3 = established
4 = timed out
1 = I/O Connection
0x82 — Server,
Transport Class 2 (If
alloc_choice != polled
and ack suppression is
enabled then value =
0x80)
01111xxxxxx
xxxxxx = node address
10xxxxxx101
xxxxxx = node address
0x21
0…8
0…8
in milliseconds
0 = transition to timed
out
1 = auto delete
2 = auto reset
8
21 04 00 25 (assy inst)
00 30 03
8
21 04 00 25 (assy inst)
00 30 03
C-15
Bulletin 284G CIP Information
Instance 4 is the Predefined Group 2 Connection Set Change of State/
Cyclic I/O Message Connection. The following Instance 4 attributes
are supported
Table C.37 Connection Object Instance 4 Attributes:
Attribute
ID
Access
Rule
Name
Data
Type
State
1
Get
2
Get
3
Get
4
Get
5
Get
6
Get
7
8
9
Get
Get
Get/Set
12
Get
13
Get
14
Get
15
Get
16
Get/Set
USINT
Instance Type
Transport Class Trigger
USINT
USINT
Produced Connection ID
Consumed Connection ID
Initial Comm Characteristics
Produced Connection Size
Consumed Connection Size
Expected Packet Rate
Watchdog Action
UINT
UINT
USINT
UINT
UINT
UINT
USINT
Produced Connection Path
Length
Produced Connection Path
Consumed Connection Path
Length
Consumed Connection Path
UINT
UINT
Value
0 = non-existent
1 = configuring
3 = established
4 = timed out
1 = I/O Connection
0x00 (Cyclic,
unacknowledged)
0x03 (Cyclic,
acknowledged)
0x10 (COS,
unacknowledged)
0x13 (COS,
acknowledged)
01101xxxxxx
xxxxxx = node address
10xxxxxx101
xxxxxx = node address
0x02 (acknowledged)
0x0F (unacknowledged)
0…8
0…8
in milliseconds
0 = transition to timed
out
1 = auto delete
2 = auto reset
8
21 04 00 25 (assy inst)
00 30 03
8
21 04 00 25 (assy inst)
00 30 03
C-16
Bulletin 284G CIP Information
Instances 5…7 will be available Group 3 explicit message
connections that are allocated through the UCMM. The following
attributes are supported
Table C.38 Connection Object Instance 5...7 Attributes:
Attribute
ID
Access
Rule
Name
Data
Type
State
1
Get
2
Get
3
Get
4
Get
5
Get
6
7
8
9
Get
Get
Get
Get/Set
12
Get
13
Get
14
Get
15
Get
16
Get
USINT
Instance Type
Transport Class Trigger
Produced Connection ID
Consumed Connection ID
Initial Comm Characteristics
Produced Connection Size
Consumed Connection Size
Expected Packet Rate
Watchdog Action
Produced Connection Path
Length
Produced Connection Path
Consumed Connection Path
Length
Consumed Connection Path
USINT
USINT
UINT
UINT
USINT
UINT
UINT
UINT
USINT
UINT
UINT
Value
0 = non-existent
1 = configuring
3 = established
4 = timed out
0 = Explicit
Message
0x83 — Server,
Transport Class 3
Depends on message
group and Message ID
Depends on message
group and Message ID
0x33 (Group 3)
0
in milliseconds
01 = auto delete
03 = deferred delete
0
Empty
0
Empty
C-17
Bulletin 284G CIP Information
Instances 8…11 are ZIP Consumers. The following instance
attributes will be supported:
Table C.39 Connection Object instance 8...11 Attributes
Attribute
ID
Access
Rule
1
Get
2
Get
3
Get
4
Get
5
Get
6
7
8
9
12
Get
Get
Get
Get/Set
Get
13
Get
14
Get
15
Get
16
Get
Data
Type
Name
State
USINT
Instance Type
Transport Class Trigger
USINT
Produced Connection ID
Consumed Connection ID
UINT
Initial Comm Characteristics
Produced Connection Size
Consumed Connection Size
Expected Packet Rate
Watchdog Action
Produced Connection Path
Length
Produced Connection Path
Consumed Connection Path
Length
Consumed Connection Path
USINT
UINT
UINT
UINT
USINT
USINT
UINT
UINT
UINT
Value
0=nonexistant
1=configuring
3=established
1=I/O Connection
0x20 (COS,
unacknowledged)
FFFF (not producing data)
01101xxxxxx
xxxxxx=node address
0xF0 (unacknowledged)
0
8
in milliseconds
2=auto reset
0
0
8
21 0E 03 25 01 00 30 02
The following services are implemented for the Connection Object
Table C.40 Connection Objects Common Services:
Implemented for
Service
Code
Class
Instance
0x05
0x0E
0x10
No
No
No
Yes
Yes
Yes
Service
Name
Reset
Get_Attribute_Single
Set_Attribute_Single
C-18
Bulletin 284G CIP Information
Discrete Input Point Object —
CLASS CODE 0x0008
The following class attributes are supported for the Discrete Input
Point Object
Table C.41 Discrete Input Point Object Class Attributes:
Attribute ID
Access Rule
Name
Data Type
Value
1
2
Get
Get
Revision
Max Instance
UINT
UINT
2
4
Four instances of the Discrete Input Point Object are supported. All
instances will contain the following attributes
Table C.42 Discrete Input Point Object Instance Attributes:
Attribute ID
Access Rule
Name
Data Type
Value
3
Get
Value
BOOL
115
Get/Set
Force Enable
BOOL
116
Get/Set
Force Value
BOOL
0 = OFF, 1 = ON
0 = Disable,
1 = Enable
0 = OFF, 1 = ON
The following common services are implemented for the Discrete
Input Point Object
Table C.43 Discrete Input Point Object Instance Common Services:
Implemented for
Service
Code
Class
Instance
Service
Name
0x0E
0x10
Yes
No
Yes
Yes
Get_Attribute_Single
Set_Attribute_Single
C-19
Bulletin 284G CIP Information
Discrete Output Point Object —
CLASS CODE 0x0009
The following class attributes are supported for the Discrete Output
Point Object:
Table C.44 Discrete Output Point Object Class Attributes
Attribute ID
Access Rule
Name
Data Type
Value
1
2
Get
Get
Revision
Max Instance
UINT
UINT
1
10
Ten instances of the Discrete Output Point Object are supported.
Table C.45 summarizes the DOP instances:
Table C.45 Discrete Output Point Object Instance Attributes
Instance
ID
Name
Alternate
Mapping
1
Run Fwd
Output
0029 – 01
– 03
2
Run Rev
Output
0029 – 01
– 04
Reserved
Reserved
Drive Input 1
Drive Input 2
Drive Input 3
Drive Input 4
Drive Jog
Fwd
Drive Jog Rev
none
none
none
none
none
none
3
4
5
6
7
8
9
10
none
Description
Run Forward output. For all starter types, this output
is hard wired from the ArmorStart CPU to the
actuator
Run Reverse output. For all starter types, this output
is hard wired from the ArmorStart CPU to the
actuator
These four instances exist for Inverter units only.
They are connected to Drive Inputs 1…4.
This instances exists for Inverter units only
none
All instances will contain the following attributes
Table C.46 Discrete Output Point Instance Attributes.
Attribute ID
Access Rule
Name
Data Type
Value
3
Get
Value
BOOL
5
Get/Set
Fault Action
BOOL
6
Get/Set
Fault Value
BOOL
7
Get/Set
Idle Action
BOOL
8
Get/Set
Idle Value
BOOL
113
Get/Set ➊
Pr Fault Action
BOOL
114
Get/Set ➊
Pr Fault Value
BOOL
115
Get/Set
Force Enable
BOOL
116
Get/Set
Force Value
BOOL
0 = OFF, 1 = ON
0 = Fault Value
attribute, 1 =
Hold Last State
0 = OFF, 1 = ON
0 = Fault Value
attribute, 1 =
Hold Last State
0 = OFF, 1 = ON
0 = Pr Fault Value
attribute, 1 =
Ignore
0 = OFF, 1 = ON
0 = Disable, 1 =
Enable
0 = OFF, 1 = ON
➊ For DOP Instances 1 and 2, and 9 and 10, Attributes 113 and 114 have Get only access, and their
values are always 0
C-20
Bulletin 284G CIP Information
The following common services are implemented for the Discrete
Output Point Object
Table C.47 Discrete Output Common Services:
Discrete Output Point Object
Special Requirements
Implemented for
Service
Code
Class
Instance
Service
Name
0x0E
0x10
No
No
Yes
Yes
Get_Attribute_Single
Set_Attribute_Single
DOP Instances 3 and 4 Special Behavior
There are many sources that can affect an output point’s value: an I/O
message, and explicit message, local logic, network fault and idle
conditions, and protection fault conditions. An output point must
know how to select which source of data to use to drive its value
attribute.
An output that is not bound behaves much the same as in the
DeviceNet Specification. One notable addition to DOP behavior for
the ArmorStart implementation is the Protection Fault Action and
Protection Fault Value attributes determine the behavior of the DOP
when the ArmorStart faults on a protection fault.
Bulletin 284G CIP Information
C-21
The following State Transition Diagram is used for Unbound DOP
Instances 3…8 when they are not used in a Devicelogix™ Program
Figure C.1 State Transition Diagram — Unbound DOP 3…8
Non-Existant
Power On
Connection Transitions to Established
Available
Protection Fault
Idle
DNet Fault
DNet Fault
Receive
Data
Run
DNet Fault
Connection Transitions to Established
Protection Fault Reset
Protection Fault
Protection Fault
DNet Fault
Ready
Protection Fault
Receive Idle
DNet
Idle
C-22
Bulletin 284G CIP Information
DOP Instances 1, 2, 9, and 10 Special Behavior
Besides the sources that can affect output points 3 and 4, DOPs 1 and
2 can be affected by keypad inputs since they double as the Run
Forward and Run Reverse outputs. This adds complexity to their
behavior, so their behavior is defined in this section separately.
The following State Transition Diagram is used for DOP Instances 1,
2, 9, and 10:
Figure C.2 DOP Instances 1, 2, 9, and 10
Power Off
Non-Existant
Power Up
Auto State = Auto Init
Keyad "Hand"
Button Pressed
Hand State = Hand Stop
Auto
Hand
Keyad "Auto"
Button Pressed
Auto State = Auto Init
C-23
Bulletin 284G CIP Information
The following State Transition Diagram is used in Auto State for
Unbound DOP Instances 1, 2, 9, and 10
Figure C.3 Auto State for Unbound DOP Instances 1, 2, 9, and 10
Auto Init
Connection Transitions to Established
DNet Fault
Protection Fault
DNet Fault
DNet Fault
Protection Fault
Idle
DNet Fault
Connection Transitions to Established
Protection Fault Reset
Receive Data
Run
Protection Fault
Protection Fault
DNet Fault
Ready
Protection Fault
Receive Idle
DNet
Idle
C-24
Bulletin 284G CIP Information
Parameter Object — CLASS CODE
0x000F
The following class attributes are supported for the Parameter Object
Table C.48 Parameter Object Class Attributes:
Attribute ID
Access Rule
1
2
Get
Get
8
Get
9
Get
Name
Revision
Max Instance
Parameter Class
Descriptor
Configuration
Assembly Instance
Data Type
UINT
UINT
WORD
UINT
The number of instances of the parameter object depends upon the
type of Distributed Motor Controller. There will be a standard set of
instances reserved (1…99) for all starters. These instances will be
followed by a unique set of instances for each starter type (Bulletin
280G/281G or 284G).
The following instance attributes are implemented for all parameter
attributes
Table C.49 Parameter Object Instance Attributes:
Attribute ID
Access Rule
1
2
Get/Set
Get
3
Get
4
5
6
Get
Get
Get
7
Get
8
9
10
11
12
13
14
15
16
17
18
19
20
21
Get
Get
Get
Get
Get
Get
Get
Get
Get
Get
Get
Get
Get
Get
Name
Value
Link Path Size
Link Path
Descriptor
Data Type
Data Size
Parameter Name
String
Units String
Help String
Minimum Value
Maximum Value
Default Value
Scaling Multiplier
Scaling Divisor
Scaling Base
Scaling Offset
Multiplier Link
Divisor Link
Base Link
Offset Link
Decimal Precision
Data Type
Specified in Descriptor
USINT
Array of:
• BYTE
• EPATH
WORD
EPATH
USINT
SHORT_STRING
SHORT_STRING
SHORT_STRING
Specified in Descriptor
Specified in Descriptor
Specified in Descriptor
UINT
UINT
UINT
INT
UINT
UINT
UINT
UINT
USINT
C-25
Bulletin 284G CIP Information
The following common services are implemented for the Parameter
Object
Table C.50 Parameter Object Common Services:
Parameter Group Object — CLASS
CODE 0x0010
Implemented for
Service
Code
Class
Instance
0x0E
0x10
0x01
Yes
No
No
Yes
Yes
Yes
Service
Name
Get_Attribute_Single
Set_Attribute_Single
Get_Attributes_All
The following class attributes are supported for the Parameter Object
Table C.51 Parameter Group Object Class Attributes:
Attribute ID
Access Rule
1
2
Get
Get
Name
Revision
Max Instance
Data Type
UINT
UINT
All Bulletin 284G Motor Starters have the following instances of the
parameter group object:
•
Instance 1 = DeviceLogix Parameters
•
Instance 2 = DeviceNet Parameters
•
Instance 3 = Starter Protection Parameters
•
Instance 4 = User I/O Parameters
•
Instance 5 = Miscellaneous
•
Instance 6 = Drive DNet
•
Instance 7 = ZIP Parameters
•
Instance 8 = Basic Display
•
Instance 9 = Basic Program
•
Instance 10 = Advanced Program
C-26
Bulletin 284G CIP Information
The following instance attributes are supported for all parameter
group instances
Table C.52 Parameter Group Object Instance Attributes:
Attribute ID
Access Rule
1
2
3
4
N
Get
Get
Get
Get
Get
Name
Data Type
Group Name String
Number of Members
First Parameter
Second Parameter
Nth Parameter
SHORT_STRING
UINT
UINT
UINT
UINT
The following common services are implemented for the Parameter
Group Object
Table C.53 Parameter Group Object Service Common Services:
Discrete Input Group Object —
CLASS CODE 0x001D
Implemented for
Service
Code
Class
Instance
0x0E
Yes
Yes
Service
Name
Get_Attribute_Single
No class attributes are supported for the Discrete Input Group Object.
A single instance of the Discrete Input Group Object is supported. It
contains the following attributes
Table C.54 Discrete Input Instance Attributes:
Attribute ID
Access Rule
3
Get
4
Get
6
7
Get/Set
Get/Set
Name
Number of
Instances
Binding
Data Type
Value
USINT
4
Array of UINT
Off_On_Delay
On_Off_Delay
UINT
UINT
List of DIP
instances
in usec
In usec
The following common services are implemented for the Discrete
Input Group Object
Table C.55 Discrete Input Group Object Common Services:
Implemented for
Service
Code
Class
Instance
0x0E
0x10
No
No
Yes
Yes
Service
Name
Get_Attribute_Single
Set_Attribute_Single
Bulletin 284G CIP Information
Discrete Output Group Object —
CLASS CODE 0x001E
C-27
No class attributes are supported for the Discrete Output Group
Object.
Two instances of the Discrete Output Group Object are supported.
They contain the following attributes
Table C.56 Discrete Output Group Instance 1Attributes
:
Attribute
ID
Access
Rule
3
Get
4
Get
6
Get/Set
104
Get/Set
105
Get/Set
Name
Number of
Instances
Binding
Command
Network Status
Override
Comm Status
Override
Data
Type
USINT
Array of
UINT
BOOL
BOOL
BOOL
Value
10
List of DOP instances; 1, 2, 3, 4, 5,
6, 7, 8, 9, 10
0 = idle; 1 = run
0 = No Override (go to safe state)
1 = Override (run local logic)
0 = No override (go to safe state)
1 = Override (run local logic)
Table C.57 Discrete Output Group Instance 2 Attributes
Attribute
ID
Access
Rule
3
Get
4
Get
7
Get/Set
8
Get/Set
9
Get/Set
10
Get/Set
113
Get/Set
114
Get/Set
Name
Number of
Instances
Binding
Fault Action
Data
Type
USINT
Array of
UINT
BOOL
Fault Value
Idle Action
BOOL
Idle Value
Pr Fault Action
BOOL
Pr Fault Value
BOOL
BOOL
BOOL
Value
4
5, 6, 7, 8
0 = Fault Value Attribute, 1 = Hold
Last State
0 = OFF, 1 = ON
0 = Idle Value Attribute, 1 = Hold
Last State
0 = OFF, 1 = ON
0 = Pr Fault Value Attribute, 1 =
Ignore
0 = OFF, 1 = ON
The following common services are implemented for the Discrete
Output Group Object
Table C.58 Discrete Output Group Common Services:
Implemented for
Service
Code
Class
Instance
0x0E
0x10
No
No
Yes
Yes
Service
Name
Get_Attribute_Single
Set_Attribute_Single
C-28
Bulletin 284G CIP Information
Control Supervisor Object —
CLASS CODE 0x0029
No class attributes will be supported. A single instance (instance 1) of
the Control Supervisor Object will be supported
Table C.59 Instance 1 — Control Supervisor Object.
Attribute ID
Access Rule
3
Get/Set
4
Get/Set
7
8
9
Name
Data Type
Value
Run FWD
BOOL
Run REV
BOOL
These Run outputs also map to DOP
instances 1 and 2.
Get
Running FWD
BOOL
Get
Running REV
BOOL
Get
Ready
BOOL
10
Get
Tripped
BOOL
12
Get/Set
Fault Reset
BOOL
0->1 = Trip Reset
100
Get/Set
Keypad Mode
BOOL
0=Maintained; 1=Momentary
101
Get/Set
Keypad Disable
BOOL
0=Not Disabled; 1=Disabled
WORD
Bits 0-1 = reserved
Bit 2 = reserved
Bit 3 = reserved
Bit 4 = reserved
Bit 5 = CP Warning
Bit 6 = IO Warning
Bit 7 = reserved
Bit 8 = reserved
Bit 9 = DN Warning
Bits 10-12 = reserved
Bit 13 = HW Warning
Bits 14-15 = reserved
Warning Status
115
Get
124
Get/Set
Trip Enable
WORD
Bit enumerated trip enable word
130
Get/Set
Trip Reset Mode
BOOL
0=manual; 1=auto
131
Get/Set
Trip Reset Level
USINT
0 – 100%; default = 75
150
Get/Set
High Speed Ena
BOOL
0 = Disable; 1 = Enable
151
Get
WORD
Bit 0 = IP67
Bit 1 = NEMA 4x
Bits 2-15 reserved
WORD
Bit 0 = Output Fuse
Bit 1 = Safety Monitor
Bit 2 = CP Fuse Detect
Bits 3-7 = Reserved
Bit 8 = 10A Base
Bit 9 = 25A Base
Bit 10-15 = Reserved
WORD
Bit 0 = Conduit
Bit 1 = Round Media
Bits 2-15 = Reserved
WORD
Bit 0 = IP67
Bit 1 = NEMA 4x
Bits 2-15 reserved
Base Enclosure
Base Options
152
Get
153
Get
154
Get
156
Get
Wiring Options
Starter Enclosure
Last PR Trip
UINT
DB Status
157
Get
WORD
Bit 0 = DB Faulted
Bit 1 = DB Overtemp Warning
Bit 2= DB On
Bit 3= DB Flt Reset Inhibit
Bits 4-15 reserved
WORD
Bit 0 = DB Overtemp
Bit 1 = DB OverCurrent
Bit 2 = DB UnderCurrent
Bit 3 = DBShorted Switch
Bit 4 = DBOpen
Bit 5 = Reserved
Bit 6 = DBBus Voltage Link Open
Bit 7= Reserved
Bit 8= DB Comms
Bits 9-15 = reserved
DB Fault
158
Get
C-29
Bulletin 284G CIP Information
The following common services are implemented for the Control
Supervisor Object
Table C.60 Control Supervisor Object Common Services:
Service
Code
Implemented for
Class
No
No
0x0E
0x10
Acknowledge Handler Object
— CLASS CODE 0x002b
Instance
Yes
Yes
Service
Name
Get_Attribute_Single
Set_Attribute_Single
No class attributes are supported for the Acknowledge Handler Object.
A single instance (Instance 1) of the Acknowledge Handler Object is
supported. The following instance attributes are supported
Table C.61 Acknowledge Handler Instance Attributes:
Attribute
ID
Access
Rule
1
2
3
Get/Set
Get
Get
Data
Type
Name
Acknowledge Timer
Retry Limit
COS Producing Connection Instance
UINT
USINT
UINT
Value
milliseconds
1
4
The following common services are implemented for the Acknowledge
Handler Object
Table C.62 Acknowledge Handler Common Services:
Implemented for
Service
Code
Class
Instance
0x0E
0x10
No
No
Yes
Yes
Service
Name
Get_Attribute_Single
Set_Attribute_Single
C-30
Bulletin 284G CIP Information
DeviceNet Interface Object —
CLASS CODE 0x00B4
This vendor specific object has no class attributes.
A single instance (Instance 1) of the DeviceNet Interface Object is
supported
Table C.63 DeviceNet Interface Object Instance Attribute:
Attribute ID
Access
Rule
7
8
9
10
13
15
Get/Set
Get/Set
Get/Set
Get/Set
Get/Set
Get/Set
16
Get/Set
17
Get/Set
19
23
24
30
50
64
Get/Set
Get
Get
Get
Get/Set
Get/Set
Name
Prod Assy Word 0
Prod Assy Word 1
Prod Assy Word 2
Prod Assy Word 3
Starter COS Mask
Autobaud Enable
Consumed Assy
Produced Assy
Set To Defaults
I/O Produced Size
I/O Consumed Size
DNet Voltage
PNB COS Mask
Unlock Identity Instances
Data Type
Min./Max.
Default
Description
USINT
USINT
USINT
USINT
WORD
BOOL
0 — 0xFFFF
0—1
USINT
0…185
Defines Word 0 of Assy 120
Defines Word 1 of Assy 120
Defines Word 2 of Assy 120
Defines Word 3 of Assy 120
Change of state mask for starter bits
1 = enabled; 0 = disabled
3, 160, 162, 164, 166, 170, 182, 187, 188
USINT
100…187
BOOL
0…1
0…8
0…8
1
5
6
7
0xFFFF
1
160
(drive 164)
161
(drive 165)
0
USINT
UINT
WORD
USINT
0…0x00FF
0
0
52, 120, 161, 163, 165, 167, 171,
181…190
0 = No action; 1 = Reset
DeviceNet Voltage
Change of state mask for PNBs
Unlock when set to 99 hex
The following common services are implemented for the DeviceNet
Interface Object
Table C.64 DeviceNet Interface Object Common Services:
Implemented for
Service
Code
Class
Instance
0x0E
0x10
No
No
Yes
Yes
Service
Name
Get_Attribute_Single
Set_Attribute_Single
Appendix
D
Group Motor Installations
Application of ArmorStart®
Controllers in Group Installation
The following is a method of applying ArmorStart controllers using
group motor installation rules as defined in the National Electric Code
(NEC 2005) and Electrical Standard for Industrial Machinery (NFPA
79-2002).
1. List motors of the group in descending order of motor nameplate
full load current.
2. Select disconnect means.
a. Sum all locked rotor currents of motors that can be started
simultaneously using NEC Table 430.251.
b. Add to that value all the full load currents of any other
motors or loads that can be operating at the same time as the
motors that start simultaneously, using NEC Table 430.250.
c. Use the total current from a and b above to get an equivalent
horsepower value from Table 430.251. That value is the size
of the disconnect means in horsepower. (NEC 430.110)
3. Select fuse or circuit breaker protection: Select fuse or circuit
breaker size for the largest motor per NEC Table 430.52 and add
that ampere value to the total of the full load currents of the rest
of the motors. The final value is the fuse or circuit breaker size
required. (NEC 430.53C)
4. Select wire: Ampacity of wire feeding a group of motors is not
less than 125% of the full-load current rating of the highest rated
motor plus the sum of the full load current ratings of all the
motors in the group. (NEC 430.24)
5. The code states that any taps supplying a single motor shall have
an ampacity not less than one third the ampacity of the branch
circuit conductors. (NEC 430.53D) The branch circuit conductors
can be defined as the conductors on the load side of the fuse block
or circuit breaker. This requirement actually defines the size of
the group of motors. For example, if the wire from the fuses or
circuit breaker is AWG #8 with rated ampacity of 50 A, the
smallest wire you can use as a tap and to the motors is AWG #14
with an ampacity of 20 A. (NEC Table 310.16 for 75° C wire)
Note that the Bulletin 280 ArmorStart controllers will not accept
wire greater than #10 wires at its input terminal blocks. The
ArmorStart cabling to the motor is UL Listed for the controller’s
Hp and is supplied with the ArmorStart controller or as an
accessory when longer lengths are required.
D-2
Group Motor Installations
Group motor installations using the ArmorStart in distributed control
applications will be largely dictated by the required motor Hp, their
locations and the practical concerns of wire-cable routing on the
equipment. It should be noted that Group motor installation are
designed to use the actual motor Hp and current ratings in NEC Table
430.250 and not the ArmorStart controller’s rating. This allows for
the possible standardization of ArmorStart controllers in an
installation. An application can be designed using 5 Hp controllers for
all motors between say 5 and 2 Hp and 1 Hp controllers for motors 1
Hp and less without having to oversize the wiring and short circuit
protection that would result from using the larger ArmorStart
controller’s rating.
In the case of using the Bulletin 284G VFD-ArmorStart the actual
full-load current of the motor needs to multiplied by the ratio of the
drive’s ratio of rated input current to output current to arrive at the
actual full-load current. For example, in the case of a 2 Hp VFDArmorStart being used to control a 1 Hp 2.1 A @ 460 V motor, the
full-load amperes to be used for the Group motor calculation would
be the 2 Hp VFD-ArmorStart’s (Rated Input Current / Rated Output
Current) x 1 Hp motor’s rated full-load current; (5.7 A / 4.0 A)2.1 A =
3.0 A.
The following is a group motor example calculation for a 460 V
distributed application that requires two 10 Hp DOL-ArmorStart
controlling 10 Hp and 5 Hp motors and four 2 Hp VFD-ArmorStarts
controlling one 2 Hp motor and three 1 Hp motors. From NEC Table
430.250 the full-load current of the respective motors are:
Motor Hp
Motor FLC (A)
10
14
5
7.6
2
3.4
1
2.1
1
2.1
1
2.1
D-3
Group Motor Installations
To design the motor circuit using a time delay fuse from NEC Table
430.52 to the rules of NEC 430.53C we start with the largest motor,
10 Hp, and calculate 14 A x 175% = 24.5 A. To this we add the FLC
of the 5 Hp motor, 7.6 A, plus the other calculated drive currents for
the motors controlled by the VFD-ArmorStarts. The calculated drive
currents are given in the following Table:
Motor
Hp
Motor FLC
(A)
Drive Input to Output Current Ratio
(See ArmorStart Users Manual Appendix A)
Calculated Drive Current
(A)
2
3.4
5.57 A/4.0 A = 1.39
3.4 x 1.39 = 4.72 A
1
2.1
3.45 A/2.3 A = 1.5
2.1 x 1.5 = 3.15 A
1
2.1
3.45 A/2.3 A = 1.5
2.1 x 1.5 = 3.15 A
1
2.1
3.45 A/2.3 A = 1.5
2.1 x 1.5 = 3.15 A
The total current for the fuse ampacity is calculated in the following
Table:
Motor Hp
Motor FLC (A)
TD Fuse Current (A)
10
14
24.5 A
5
7.6
7.6 A
2
3.4
4.72 A
1
2.1
3.15 A
1
2.1
3.15 A
1
2.1
3.15 A
Total Fuse Current
46.4 A
Therefore the standard fuse available not exceeding 46.4 A is a 40 A
fuse.
To calculate the wire ampacity and therefore the size of the motor
branch conductor we use NEC 430.24 and calculate the sum of 125%
of the largest motor’s FLC plus the FLC of the other motors in the
group. The conductor ampacity calculation is given in the following
Table:
Motor Hp
Motor FLC (A)
Wire Current (A)
10
14
14A x 1.25 =17.5A
5
7.6
7.6A
2
3.4
4.89 A
1
2.1
3.15 A
1
2.1
3.15 A
1
2.1
3.15 A
Total Fuse Current
39.4 A
D-4
Group Motor Installations
From NEC Table 310.16 we need to use 8 AWG for the motor branch
circuit. Per NEC 430.28 the individual motor tap conductors can be
sized down to 1/3 the ampacity of the trunk but not less than 125% of
the specific motor’s FLC on the tap. This reduction is further
conditionally based on the tap being not more than 25 feet. NFPA 79,
7.2.10.4 and Table 7.2.10.4 restrict the size reduction by the size of
the branch circuit fuse size and tap conductor size. For the above case
we have used a 40 A time-delay fuse. NFPA 79, Table 7.2.10.4
indicates that the smallest tap conductor can be 12 AWG. NEC Table
310.16 for wire ampacity allows 12 AWG (25 A) to be used in all taps
for this application. See the final Group motor circuit design in the
following figure:
8 AWG motor branch trunk
AWG motor trunk tap conductors are
** 12permissible
with 40A Time Delay fuse; 14 AWG
40A Time Delay
are permissible with 50A Inverse Time circuit
breaker. (NFPA 79 Table 7.2.10.4)
or 50A Inverse Time CB
**
*
10 HP
DOL-AS
SF=1.15
14A FLC
10 HP
10 HP
DOL-AS
SF=1.15
7.6A FLC
5 HP
2 HP
VFD-AS
SF=1.15
3.4A FLC
2 HP
2 HP
VFD-AS
SF=1.15
2.1A FLC
1 HP
the ArmorStart and motor cable are UL Listed
* Note,
together and supplied by Rockwell Automation.
2 HP
VFD-AS
SF=1.15
2.1A FLC
1 HP
2 HP
VFD-AS
SF=1.15
2.1A FLC
1 HP
Group Motor Installations
D-5
If the Group motor design were carried out with the intent to use an
inverse-time circuit breaker from NEC Table 430.52 to the rules of
NEC 430.53C, we start with the largest motor, 10 Hp, and calculate
14A x 250% = 35 A to this we add the FLC of the 5 Hp motor, 7.6 A,
plus the other calculated drive currents for the motors controlled by
the VFD-ArmorStarts. The calculated drive currents are given in the
following table:
Motor Hp
Motor FLC (A)
Inverse-Time CB Current (A)
10
14
35 A
5
7.6
7.6 A
2
3.4
4.89 A
1
2.1
3.15 A
1
2.1
3.15 A
1
2.1
Total Fuse Current
3.15 A
56.94 A
Therefore for the standard inverse-time circuit breaker available not
exceeding 56.94 A we need to use a 50 A inverse-time circuit breaker.
This design will also allow the use of 8 AWG for the motor branch
circuit. Continuing than and applying NEC 430.28 the individual
motor tap conductors can be sized down to 1/3 the ampacity of the
trunk and following the restrictions in NFPA 79, 7.2.10.4 and Table
7.2.10.4 for this case where we have used a 50 A inverse-time circuit
breaker. NFPA 79, Table 7.2.10.4 indicates that the smallest tap
conductor can now be 14 AWG. See the above figure for this Group
motor circuit design.
The above method instructs one on applying ArmorStart controllers
using group motor installation rules. Because of the ArmorStart’s
capability, rating and Listing this method provides the minimum
branch circuit wire and SCPD protection size that can be used. The
Armor Start has been evaluated and tested for group motor
installations when being feed by a power source having 65,000 Amps
available fault current. The ArmorStart is not a listed combination
motor controller, however, but is Listed as Industrial Control
Equipment per UL 508 for group motor installations per NFPA 79.
Under this Listing the NEC and actually NFPA 79 puts an upper
bound on the SCPD to be used. That upper bound is dictated by the
maximum ratings in Table 7.2.10.4.
D-6
Group Motor Installations
The rules and allowances for sizing of the over current protection for
NFPA 79 motor groups is covered by 7.2.10.4, Table 7.2.10.4 and
Table 13.5.6. These rules in Tables 7.2.10.4 and 13.5.6 are intended to
limit the maximum SCPD for a group. Therefore each ArmorStart
controller with its factory-supplied output motor cable is suitable for
single-motor or multiple-motor group installations on industrial
machinery when installed according to NFPA 79, 2002. The
controller and output motor cable have been evaluated as a single
system. The maximum over current device rating or setting is limited
to the value in Table D.1 for the smallest user-supplied input line
conductor, by the controller's maximum rating, or as allowed by the
UL Certificate of Compliances 012607-E3125, E96956, and E207834
for the combined use of ArmorStart and ArmorConnect components.
The Certificate of Compliances allow the ArmorStart Distributed
Motor Controllers Models 280*-*10*, 281*-*10*, and 284*-*10*
respectively to be used with ArmorConnect input cable media 280*PWRM22*-M*, 280S-PWRM22*-M* Cable Assembly branch
circuit taps, and 280*-M22*-M1 ArmorConnet Panel Mounting
Fittings when the group motor branch circuits are protected with a
maximum 40 A non-time delay or a 20 A time delay, Class CC, T or F
fuse.
These ArmorStart and ArmorConnect product UL Certification of
Compliances effectively extend Table D.1 to allow ArmorConnect
branch circuit taps and mounting fittings constructed with 16 AWG
conductor sized to be connected to appropriate ArmorStart motor
controllers. See Table D.1.
D-7
Group Motor Installations
Table D.1
Extended NFPA 79, Relationship Between Conductor Size and
Maximum Rating or Setting of Short-Circuit Protective Devices
for Power Circuits
Conductor Size
(AWG)
Max. Ratings
Non-Time Delay Fuse or
Time Delay or Dual Element
Inverse Time Circuit
Fuse (amperes)
➊
Breaker (amperes)
16 ➋
40 ➌
20 ➍
14
60
30
12
80
40
10
100
50
8
150
80
6
200
100
4
250
125
➊ For 16 AWG conductors the branch circuit breaker must be marked for use the 16 AWG wire, NFPA
79, 12.6.1.1.
➋ The UL Certificate of Compliance for the ArmorStart Distributed Motor Controllers models 280*-*10*,
281*-*10*, 283*-*10*, 284*-*10*; and ArmorConnect input cable media 280*-M22*-M*, 280SPWRM22*-M* cable assembly branch circuit taps, and 280*-M22*-M1 ArmorConnect panel mounting
fittings allows 16 AWG conductors to be used when part of ArmorStart and ArmorConnect components.
➌ The 280*-PWRM22*-M* ArmorConnect cable assembly taps and 280*-22*-M1 panel mounted fittings
with 16 AWG conductors are suitably protected when protected in the branch circuit by a 40A nontime delay fuse.
➍ The 280*-PWRM22*-M* ArmorConnect Cable Assembly taps and 280*-22*-M1 Panel Mounted Fittings
with 16 AWG conductors are suitably protected when protected in the branch circuit by a 20A time
delay fuse.
Branch Circuit Protection Requirements for ArmorConnect
Three-Phase Power Media
When using ArmorConnect three-phase power media, fuses can be
used for the motor branch circuit protective device, for the group
motor installations. The following fuse types are recommended: Class
CC, T, or J type fuses. A 100 A circuit breaker (Allen-Bradley140
H-Frame) can be used for the motor branch protective device, for the
group motor installations when using only the following
ArmorConnect Power Media components: 280-M35M-M1,
280-M35F-M1, 280-T35, and 280-PWRM35*-M*.
The Listed ArmorStart motor controllers with their factory supplied
motor cable carries the marked maximum ratings shown in the
following table.
Voltage
Max. Ratings
480Y/277
Sym. Amps RMS
65 kA
Circuit Breaker
100 A
Fuse ➎
100 A
➎ Class J, CC, and T fuses only.
D-8
Group Motor Installations
To summarize, the design of the ArmorStart controllers in group
motor applications is to be carried out as described above. The user
supplied line side SCPD and wiring has to meet the minimum
requirements determined above, however, the SCPD is required to
protect the ArmorStart controller’s associated line side wiring only
and can be increased to the values allowed in the maximum ratings
tables above. Because the maximum line side conductor for the
ArmorStart is #10 AWG this is the maximum tap wire or daisy-chain
wiring that can be used to take advantage of the ArmorStart’s
maximum input ratings.
A benefit to the ArmorStart rating and the above design process using
NFPA rules is that the industrial equipment that utilizes several group
motor installations on different branch circuits can standardize the
size of the SCPD and the branch wiring for all the branch circuits of
the installation as long as they do not exceed the maximum ratings of
Table D.1as extended by the UL Certificate of Compliances for
combined ArmorStart and ArmorConnect installations, which ever is
less.
Appendix
E
Accessories
Table E.1
DeviceNet™ Media ➊
Description
KwikLink pigtail drops are Insulation
Displacement Connector (IDC) with integral Class
1 round cables for interfacing devices or power
supplies to flat cable
DeviceNet Mini- T-Port Tap
Gray PVC Thin Cable
Thick Cable
DeviceNet Configuration Terminal — Used to
interface with objects on a DeviceNet network.
Includes 1 m communications cable.
Communication cable, color-coded bare leads
Communication cable, microconnector (male)
Panel Mount Adapter/Door Mount Bezel Kit
Length m (ft)
Cat. No.
1 m (3.3)
2 m (6.5)
3 m (9.8)
Sealed
1485P-P1E4-B1-N5
1485P-P1E4-B2-N5
1485P-P1E4-B3-N5
6 m (19.8)
1485P-P1E4-B6-N5
Right Keyway
Left Keyway
1485P-P1N5-MN5NF
1485P-P1N5-MN5KM
Connector
Cat. No.
Mini Straight Female
Mini Straight Male
Mini Straight Female
Mini Right Angle Male
Mini Right Angle Female
Mini Straight Male
Mini Right Angle Female
Mini Straight Male
Mini Straight Female
Mini Straight Male
Mini Straight Female
Mini Right Angle Male
Mini Right Angle Female
Mini Straight Male
Mini Right Angle Female
Mini Straight Male
Length m (ft)
1485G-P➋N5-M5
1485G-P➋W5-N5
1485G-P➋M5-Z5
1485G-P➋W5-Z5
1485C-P➌N5-M5
1485C-P➌W5-N5
1485C-P➌M5-Z5
1485C-P➌W5-Z5
Cat. No.
1 m (3.3)
193-DNCT
1 m (3.3)
1 m (3.3)
—
193-CB1
193-CM1
193-DNCT-BZ1
➊ See the On-Machine Connectivity catalog for complete cable selection information.
➋ Replace symbol with desired length in meters (Example: 1485G-P1N5-M5 for a 1 m cable). Standard cable lengths: 1 m, 2 m, 3 m, 4 m, 5 m, and 6 m.
➌ Replace symbol with desired length in meters (Example: 1485C-P1N5-M5 for a 1 m cable). Standard cable lengths: 1 m, 2 m, 3 m, 4 m, 5 m, 6 m, 8 m, 10 m, 12 m,
18 m, 24 m, and 30 m.
E-2
Accessories
Table E.2
Sensor Media ➊
Description
ArmorStart® I/O
Connection
Pin Count
0
Input
0
Connector
Cat. No.
Straight Female
Straight Male
889D-F4ACDM-➋
Straight Female
Right Angle Male
889D-F4AACDE-➋
Straight Female
879D-F4ACDM-➋
Right Angle Male
879D-R4ACM-➋
Straight Female
Straight Male
889R-F3AERM-➋
Straight Female
Right Angle Male
899R-F3AERE-➋
5-Pin
DC Micro Patchcord
0
Input
0
5-pin
DC Micro V-Cable
Output
3-pin
AC Micro Patchcord
➊ See Publication M116-CA001A-EN-P for complete cable selection information.
➋ Replace symbol with desired length in meters (Example: 889D-F4ACDM-1 for a 1 m cable). Standard cable lengths: 1 m, 2 m, 5 m, and 10 m.
Table E.3
➌
Sealing Caps
Description
For Use With
Cat. No.
Plastic Sealing Cap (M12) ➌
Input I/O Connection
1485A-M12
To achieve IP 67 rating, sealing caps must be installed on all unused I/O connections.
Table E.4
Locking Clips
Description
The clam shell design clips over the ArmorStart motor connector and motor cable to limit customer
access.
Package QTY
Cat. No.
10
280-MTR22-LC
10
280-MTR35-LC
E-3
Accessories
IP67 Dynamic Brake Resistor
Application Type 1
Drive and
Motor Size
kW
Part Number
Resistance
Ohms ± 5%
Max Braking
Braking
Continuous Max Energy
Torque % of Torque % of
Power kW
kJ
Motor
Motor
Application Type 2
Duty
Cycle %
Braking
Torque % of
Motor
Duty
Cycle %
47%
23%
12%
24%
13%
150%
150%
110%
150%
124%
31%
15%
11%
16%
10%
400-480 Volt AC Input Drives
0.37 (0.5)
0.75 (1)
1.5 (2)
2.2 (3)
4 (5)
284R-360P500
284R-360P500
284R-360P500
284R-120P1K2
284R-120P1K2
360
360
360
120
120
0.086
0.086
0.086
0.26
0.26
17
17
17
52
52
305%
220%
110%
197%
124%
100%
100%
100%
100%
100%
Note: Always check the resistor ohms against minimum resistance for drive being used.
Note: Duty Cycle listed is based on full speed to zero speed deceleration. For constance regen at full speed, duty cycle capability is half of what is listed. Application
Type 1 represents maximum capability up to 100% braking torque where possible. Application Type 2 represents more than 100% braking torque where possible, up
to a maximum of 150%.
Figure E.1 Dynamic Brake Resistor Approximate Dimensions
Dimensions are not intended to be used for manufacturing purposes.
A
H
B
C
D
J
E
F
Cat No.
284R-091P500
284R-360P500
284R120P1K2
G
A
mm (in.)
B
mm (in.)
C
89 ± 3
(3.5 ± 0.12)
215 ± 5
(8.46 ± 0.2)
420 ± 5
(16.54 ± 0.2)
*
D
mm (in.)
E
mm (in.)
235 ± 5
60 ± 2
(9.25 ± 0.2) (2.36 ± 0.08)
440 ± 5
(17.32 ± 0.2)
F
G
mm (in.) mm (in.)
127
(5)
12.54
(0.49)
H
mm (in.)
J
mm (in.)
60 ± 2
50 ± 1.5
(2.36 ± 0.08) (1.97 ± 0.06)
* Length is user-selectable based on the suffix added to the catalog number. For a length of 500±10mm, add -M05 to the end of the catalog number. For a length of
1000±10mm, add -M1 to the end of the catalog number.
E-4
Notes:
Accessories
Appendix
F
Safety I/O Module and TÜV Requirements
ArmorStart Safety-Related Parts
Each ArmorStart Safety Distributed motor controller is intended to be
combined with the 1732DS-IB8XOBV4 safety I/O module to form a
subsystem that is part of the overall machine stop function. The motor
controllers are connected to the safety I/O module through specified
cable assemblies. The combination of one of these controllers, the
safety module, and the specified interconnecting cables are referred to
as the ArmorStart Safety-Related Parts. The part numbers for each of
these components is specified below. The combination of these
components is shown in Figure F.1. The safety I/O module and PLC
program must be configured as outlined. See configuration of Safety
I/O Module and PLC program.
Table F.1
Safety-Related Parts
Catalog Number
Description
280…S*
Bulletin 280 Distributed Motor Controller –
controller is full-voltage, non-reversing
* - denotes safety version of Bulletin 280
281…S*
Bulletin 281 Distributed Motor Controller –
controller is full-voltage, reversing
* - denotes safety version of Bulletin 280
284…S*
Bulletin 281 Distributed Motor Controller –
controller is variable-frequency AC drive
* - denotes safety version of Bulletin 280
1732DS-IB8XOBV4
Guard I/O DeviceNet Safety Module
889D-F4HJDM-*, 889D-F4AEDM-*
or equivalent
•
* - denotes length
•
SM cable assembly - Interconnecting
cable assembly between safety
module input and ArmorStart
controller connector labeled “SM”.
Assembly provides contactor position
feedback.
A1/A2 cable assembly Interconnecting cable assembly
between safety module output and
ArmorStart controller connector
labeled “A1/A2”. Assembly provides
output contactor coil power and
controller power supply.
F-2
Safety I/O Module and TÜV Requirements
ArmorBlock® Guard I/O™
Modules
0
0
Description
Cat. No.
ArmorBlock Guard I/O provides all the advantages of traditional distributed I/O for safety systems, but
has an IP67 package that can be mounted directly on your machine. On-machine safety I/O reduces
wiring time and startup costs for safety controller applications by eliminating electrical boxes and
simplifying cable installation. The ArmorBlock family provides industrially hardened I/O blocks that you
can mount directly on equipment near sensors or actuators. Wiring the I/O to the sensors and
actuators is easy using pre-wired quick disconnect cables.
You can use Guard I/O with any safety controller that communicates on DeviceNet using CIP Safety for
the control and monitoring of safety circuits. Guard I/O detects circuit failures at each I/O point while
providing detailed diagnostics directly to the controller. With CIP Safety, you can easily integrate safety
and standard control systems by using safety and standard messages on the same wire.
The 1732DS ArmorBlock Guard I/O family consists of 24V DC digital I/O modules that communicate on
DeviceNet networks. The I/O connectors are sealed M12 micro style while the network and auxiliary
power connectors are sealed mini style. Plus, the ArmorBlock Guard I/O uses the same input and
output M12 pin configuration as standard ArmorBlock and Maxum.
1732DS-IB8XOBv4
Specifications
Electrical
Current Consumption
85 mA @ 24V DC
I/O Operating Voltage Range
19.2…28.8V DC (24V DC +/- 20%)
Digital Inputs
Number of Inputs
8 safety single-channel or 4 safety dual-channel
Input Type
current sinking
Voltage, On-State Input, Min.
11V DC
Voltage, On-State Input, Max.
5V DC
Current, On-State Input, Min.
3.3 mA
Voltage, On-State Input, Min.
11V DC
Digital Outputs
Number of Outputs
4 safety solid-state
Output Type
dual-channel, current sourcing/current sinking pair
Short Circuit Protection
Yes
Standard Pulse Test Outputs
Number of Pulse Test Sources
8
Pulse Test Output Current
0.7 A per point
Short Circuit Protection
Yes
Approximate Dimensions
179 x 70 x 68.7 mm (7.05 x 2.76 x 2.71 in.)
Weight
600 g (1.2 lb)
Operating Temperature
-20…+60 °C (-4…+140 °F)
Relative Humidity
10…95%, non-condensing
Vibration
0.76 mm @ 10…500 Hz
Shock, Operating
30 g
Enclosure Type Rating
IP67
UL, CE, C-Tick, CSA, UL NRGF, ODVA Conformance, TÜV
Certified for fuctional safety up to SIL 3, Cat. 4
Mechanical
Environmental
Certifications
F-3
Safety I/O Module and TÜV Requirements
Micro Connector Pin Assignments
Face View Pinout
Input Configuration
Output Configuration
Pin
Signal
Pin
Signal
1
2
3
4
5
Test Output n+1
Safe Input n+1
Input Common
Safe Input n
Test Output n
1
2
3
4
5
Output +24V DC Power
Output n+1 (sinking)
Output Power Common
Output n (sourcing)
Output Power Common
Female
2
5
1
3
4
Mini Connector Pin Assignments
Face View Pinout
Signal
Pin
1
2
3
4
5
Male
Female
Drain
V+ (Red)
V- (Black)
CAN_H (White)
CAN_L (Blue)
Power Configuration Pin Assignments
Pin
1
2
3
4
Face View Pinout
Signal
Male
Output +24V DC Power (Red)
Input +24V DC Power (Green)
Input Power Common (White)
Output Power Common (Black)
ArmorBlock Guard I/O Recommended Compatible Cables and Connectors
Description
Cat. No.
DC Micro (M12) Male Cordset
889D-F4HJ-➊
DC Micro Style Patchcord
889D-F4HJDM-➊
M12 Terminal Chamber, Straight Male
871A-TS4-DM
M12 Terminal Chamber, Right Angle Male
871A-TR4-DM
➊ Replace symbol with 1 (1 m), 2 (2 m), 5 (5 m), or 10 (10 m) for standard cable length.
F-4
Safety I/O Module and TÜV Requirements
Figure F.1
Three-Phase Power Media
DeviceNet Media
I/O output
The 1732DS Safety I/O module outputs to
provided 24V DC power for control power
to the ArmorStart - A1/A2 control input
I/O input
Aux. Power
The 1732DS Safety I/O module inputs will monitor the status of the safety-rated contactors inside the ArmorStart -SM safety monitor input.
Safety Function Definition
The safety function is an uncontrolled stop. The uncontrolled stop is
executed by removing the ArmorStart safety controller output voltage
in response to a DeviceNet Safety network command.
Limitations of the Safety-Related Parts
The user must provide other components to implement the overall
machine stop function. Example components are the DeviceNet
safety network, a safety PLC, and a safety input module.
Detection of the contactor state is provided so that a Category 4
architecture can be implemented for the overall machine stop
function. The user must provide a safety PLC and program to process
the “SM” feedback as required by Category 4. See configuration of
safety I/O module and Safety PLC Program.
Safety I/O Module and TÜV Requirements
F-5
Configuration of the 1732DS-IBXOBV4 Safety I/O Module and
PLC Program
The safety module must be configured as follows:
Configure the output that is connected to the I/O output cable
assembly for:
•
Dual (bipolar mode)
•
Safety Pulse Test
Configure the input that is connected to the I/O Input cable assembly
as follows:
•
Channel = Single
•
Mode = Pulsed Test Input from test output X
•
Source = Pulsed output from X
ArmorStart Controller - none required
Safety PLC Program – the program must:
• Force the output contactors to the open state when a safetyrelated stop is demanded.
•
Force the output contactors to remain in the open state if the SM
feedback is open after a safety-related stop is executed (see Note
1 and Note 2).
Note 1: The program must inhibit the contactor closure to satisfy safety
category 4 of 13849-1.
Note 2: The SM feedback logic should be implemented only after a safetyrelated stop for the Bulletin 280/281 controllers. It should be ignored
during normal operation. One of the series contactors is used for the
normal stop/start function for these controllers. Therefore, a
malfunctioning contactor circuit cannot be distinguished from a normal
running state.
Refer to Publication SAFETY-AT018*, for programming examples.
F-6
Safety I/O Module and TÜV Requirements
Safety-Related Specifications
Component Response Time
Component
Response Time (ms)
1732DS-IB8XOBV4
See Publication 1732DS-IN001*
Bulletin 280
20…40
Bulletin 281
20…40
Bulletin 284
8…12
Probability of Dangerous Failure per hour and MTTFd for
Uncontrolled Stop
Maintenance and Internal Part
Replacement
ArmorStart Safety Controller used in
Combination of ArmorStart SafetyRelated Parts
MTTFd
(years)
Average probability of
dangerous failure per hour
(1/h)
Bulletin 280…
100
5.7E-9
Bulletin 281…
100
6.0E-9
Bulletin 284…
100
6.0E-9
The ArmorStart Safety controllers do not have any internal
maintenance procedures or internal replacement parts. Refer to the
1732DS-IB8XOBV4 safety module documentation for maintenance
requirements pertaining to it. It is recommended that the operation of
the 1732DS-IB8XOBV4 safety module and the ArmorStart output
contactor circuits be verified once per year by performing the
contactor circuit verification procedure. The contactor circuit
verification procedure must be performed on an ArmorStart Safety
controller that has experienced an output short-circuit fault prior to
placing the controller back into service.
Contactor Circuit Verification Procedure
Initiate a stop from the safety PLC to the 1732DS-IB8XOBV4
•
Verify that the ArmorStart controller output motor voltage is
removed.
•
Verify that the SM feedback to the safety PLC transitions to the
open state.
Safety I/O Module and TÜV Requirements
Troubleshooting
F-7
1732DS-IB8XOBV4 Safety Module
Refer to 1732DS-IB8XOBV4 documentation for trouble shooting
instructions.
ArmorStart Safety Bulletin 280/281/284 Distributed Motor
Controllers Safety Circuit Troubleshooting
Symptom
Motor will
not start
ArmorStart Controller LED Status
Indication
Power
Fault
Run
Off
Off
Off
Probable Cause
1.
2.
3.
The disconnect switch of the ArmorStart
controller is open.
24 VDC not supplied to A1 and A2 at
A1/A2 connector because cable or
connections are defective.
1732DS-IB8XOBV4 not supplying 24 VDC
to A1 and A2 pins of A1/A2 cable.
Recommended Action
1.
2.
3.
Check disconnect switch.
Verify cable and connections.
Refer to IN PWR/OUT PWR Indicators in
1732DS-IB8XOBV4 manual.
Off
Flashing
Off
There is an ArmorStart controller fault.
Refer to ArmorStart Manual for controller fault.
On
Off
Off
After non-safety stop➀
1. The controller is not receiving a RUN
command.
After non-safety stop➀
1. Check RUN command source.
After safety stop➁
1. The controller is not receiving a RUN
command.
2. SM cable connections (SM1, SM2) open.
3. SM feedback is open inside control
module.
4. 1732DS-IB8XOBV4 is reporting open SM
feedback from the IN0...INn inputs.
After safety stop➁
1. Check RUN command source.
2. Check SM cable and connections.
3. Check SM feedback inside control
module.
4. Refer to I/O Indicators in
1732DS-IB8XOBV4 manual.
On
Flashing
Off
ArmorStart controller fault is inhibiting
ArmorStart controller start function.
Refer to ArmorStart Manual for controller fault.
On
Off
On
1.
1.
2.
3.
Three-phase power is not being supplied
to controller (Bulletin 280/281
controllers).
24 VDC not supplied to P and M at A1/A2
connector because cable or connections
are defective.
1732DS-IB8XOBV4 OUT0...OUTn outputs
are not supplying 24 VDC to pins P and M
of A1/A2 cable assembly.
2.
3.
Verify 3-phase voltage at ArmorStart
controller input.
Verify cable and connections.
Refer to I/O Indicators in
1732DS-IB8XOBV4 manual.
➀
Non-safety stop – The 1732DS-IB8XOBV4 does not remove 24V DC from P and M of A1/A2 when
a non-safety stop is executed. Restarting the controller after a non-safety stop is not inhibited by
the safety circuit.
➁
Safety stop – The 1732DS-IB8XOBV4 removes 24V DC from P and M of A1/A2 when a safety stop
is executed. This opens both contactors. Restarting the controller stop is inhibited if the SM feedback
is open. The program in the safety controller does not permit the 1732DS-IB8XOBV4 to apply 24V DC
to P and M in the A1/A2 cable.
F-8
Notes:
Safety I/O Module and TÜV Requirements
Appendix
Renewal Parts
Figure G.1 Bulletin 280G/281G Control Module Renewal Part Catalog
Structure
280 G – F 12D – N B – RG
Bulletin Number
280
Full Voltage Starter
281
Reversing Starter
Communications
D
DeviceNet™
G
with six inputs
Motor Connection
RG
Round
Enclosure Type
F
Type 4 (IP67)
Overload Selection
Current Range
B
0.5…2.5 A
C
1.1…5.5 A
D
3.2…16 A
Contactor Size/Control Voltage
120V AC
12D
23D
Control Module
N
Control Module Only
Control Module Renewal Part Product Selection
Table G.1
Full Voltage Starters — IP67/NEMA Type 4, Up to 460V AC
Current Rating
(A)
kW
Hp
Cat. No.
400V AC
50 Hz
460V AC
60 Hz
120V AC
0.5…2.5
0.75
1
280G-F12D-NB-RG
1.1…5.5
2.2
3
280G-F12D-NC-RG
3.2…16
7.5
10
280G-F23D-ND-RG
Table G.2
Reversing Starters — IP67/NEMA Type 4, Up to 460V AC
Current Rating
(A)
kW
Hp
Cat. No.
400V AC
50 Hz
460V AC
60 Hz
120V AC
0.5…2.5
0.75
1
281G-F12D-NB-RG
1.1…5.5
2.2
3
281G-F12D-NC-RG
3.2…16
7.5
10
281G-F23D-ND-RG
G
G-2
Renewal Parts
Figure G.2 Bulletin 280G Base Module Renewal Part Catalog Structure
280 G – F N – 10 – RG
Bulletin Number
280
Starter
Communications
D
DeviceNet™
G
with six inputs
Line Connection
RG
ArmorConnect™ Power Media
Enclosure Type
F
Type 4 (IP67)
N
Short Circuit Protection (Bul. 140M)
10
10 A Rated Device
25
25 A Rated Device
Base Only
No Control Module
Base Module Renewal Part Product Selection
Table G.3
Bul. 280G Full Voltage Starters & Bul. 281G Reversing Starters —
IP67/NEMA Type 4, Up to 460V AC with ArmorConnect
Connectivity
Current Rating
(A)
kW
Hp
400V AC
50 Hz
460V AC
60 Hz
Cat. No.
0.5…2.5
0.75
1
280G-FN-10-RG
1.1…5.5
2.2
3
280G-FN-10-RG
3.2…16
7.5
10
280G-FN-25-RG
Renewal Parts
G-3
Figure G.3 Bulletin 280G/281G Safety Control Module Renewal Part Catalog
Structure
280 G – F 12S – N B – RG
Bulletin Number
280
Full Voltage Starter
281
Reversing Starter
Communications
D
DeviceNet™
G
with six inputs
Motor Connection
RG
Round
Enclosure Type
F
Type 4 (IP67)
Overload Selection
Current Range
B
0.5…2.5 A
C
1.1…5.5 A
D
3.2…16 A
Contactor Size/Control Voltage
24V DC
12D
23D
Control Module
N
Control Module Only
Control Module Renewal Part Product Selection
Table G.4
Full Voltage Starters — IP67/NEMA Type 4, Up to 460V AC
Current Rating
(A)
kW
Hp
Cat. No.
400V AC
50 Hz
460V AC
60 Hz
24V DC
0.5…2.5
0.75
1
280G-F12S-NB-RG
1.1…5.5
2.2
3
280G-F12S-NC-RG
3.2…16
7.5
10
280G-F23S-ND-RG
Table G.5
Reversing Starters — IP67/NEMA Type 4, Up to 460V AC
Current Rating
(A)
kW
Hp
Cat. No.
400V AC
50 Hz
460V AC
60 Hz
24V DC
0.5…2.5
0.75
1
281G-F12S-NB-RG
1.1…5.5
2.2
3
281G-F12S-NC-RG
3.2…16
7.5
10
281G-F23S-ND-RG
G-4
Renewal Parts
Figure G.4 Bulletin 280G Safety Base Module Renewal Part Catalog Structure
280 G – F S – 10 – RG
Bulletin Number
280
Starter
Communications
D
DeviceNet™
G
with six inputs
Line Connection
RG
ArmorConnect™ Power Media
Enclosure Type
F
Type 4 (IP67)
S
Short Circuit Protection (Bul. 140M)
10
10 A Rated Device
25
25 A Rated Device
Base Only
No Control Module
Base Module Renewal Part Product Selection
Table G.6
Bul. 280G Full Voltage Starters & Bul. 281G Reversing Starters —
IP67/NEMA Type 4, Up to 460V AC with ArmorConnect
Connectivity
Current Rating
(A)
kW
Hp
400V AC
50 Hz
460V AC
60 Hz
Cat. No.
0.5…2.5
0.75
1
280G-FS-10-RG
1.1…5.5
2.2
3
280G-FS-10-RG
3.2…16
7.5
10
280G-FS-25-RG
Renewal Parts
G-5
Figure G.5 Bulletin 284G Control Module Renewal Part Catalog Structure
284 D – F V D2P3 D – N – RG – Option 1 – Option 2 – Option 3
Bulletin
Number
Option 3
EMI
EMI Filter
Communications
D
DeviceNet™
Enclosure Type
F
Type 4 (IP67)
Option 2
CB
Control Brake Connector
DB1
DB Brake Connector for IP67
Dynamic Brake Resistor
Control Module
N
Control Module Only
Torque Performance Mode
V
Sensorless Vector
Control Volts per Hz
Control Voltage
D
120V AC
Option 1
Blank Status Only
Output Current
Code
Output
Current
[A]
kW
Hp
Motor Media Type
RG
Round
480V Drive
D1P4
D2P3
D4P0
D6P0
D7P0
1.4
2.3
4
6
7.6
0.4
0.75
1.5
2.2
4
0.5
1
2
3
5
Table G.7
Bulletin 284G Control Module with Sensorless Vector Control ,
IP67/NEMA 4, Up to 600V
Input Voltage
380…480V
50/60 Hz
3-Phase
kW
Hp
Output
Current
Cat. No.
120 V AC
Control Voltage
0.4
0.5
1.4 A
284G-FVD1P4D-N-RG-CB-DB1-EMI
0.75
1.0
2.3 A
284G-FVD2P3D-N-RG-CB-DB1-EMI
1.5
2.0
4.0 A
284G-FVD4P0D-N-RG-CB-DB1-EMI
2.2
3.0
6.0 A
284G-FVD6P0D-N-RG-CB-DB1-EMI
3.0
5.0
7.6 A
284G-FVD7P6D-N-RG-CB-DB1-EMI
G-6
Renewal Parts
Figure G.6 Bulletin 284G Base Module Renewal Part Catalog Structure
280 G – F N – 10 – RG
Bulletin
Number
Communications
D
DeviceNet™
Line Media
RG
ArmorConnect™ Power Media
Enclosure Type
F
Type 4 (IP67)
Base
N
Short-Circuit Protection
Bulletin 140 Current Rating (A)
10
10 A Rated Device
25
25 A Rated Device
Base Only — no starter
Base Module Renewal Part
Product Selection
Table G.8
Bulletin 284G Base Module Renewal Part, IP67/NEMA 4, Up to
600V AC with ArmorConnect™ Connectivity
Input Voltage
kW
Hp
Output
Current
Cat. No.
380…480V
50/60 Hz
3-Phase
0.4…2.2
0.5…3.0
1.4…4.0 A
280G-FN-10-RG
3.0
5.0
6.0…7.6 A
280G-FN-25-RG
Renewal Parts
G-7
Figure G.7 Bulletin 284G Safety Control Module Renewal Part Catalog
Structure
284 D – F V D2P3 S – N – RG – Option 1 – Option 2 – Option 3
Bulletin
Number
Option 3
EMI
EMI Filter
Communications
D
DeviceNet™
Enclosure Type
F
Type 4 (IP67)
Option 2
CB
Control Brake Connector
DB1
DB Brake Connector for IP67
Dynamic Brake Resistor
Control Module
N
Control Module Only
Torque Performance Mode
V
Sensorless Vector
Control Volts per Hz
Control Voltage
S
24V DC
Option 1
Blank Status Only
Output Current
Code
Output
Current
[A]
kW
Hp
Motor Media Type
RG
Round
480V Drive
D1P4
D2P3
D4P0
D6P0
D7P0
1.4
2.3
4
6
7.6
0.4
0.75
1.5
2.2
4
0.5
1
2
3
5
Table G.9 Bulletin 284G Control Module with Sensorless Vector Control ,
IP67/NEMA 4, Up to 600V
Input Voltage
380…480V
50/60 Hz
3-Phase
kW
Hp
Output
Current
Cat. No.
120 V AC
Control Voltage
0.4
0.5
1.4 A
284G-FVD1P4S-N-RG-CB-DB1-EMI
0.75
1.0
2.3 A
284G-FVD2P3S-N-RG-CB-DB1-EMI
1.5
2.0
4.0 A
284G-FVD4P0S-N-RG-CB-DB1-EMI
2.2
3.0
6.0 A
284G-FVD6P0S-N-RG-CB-DB1-EMI
3.0
5.0
7.6 A
284G-FVD7P6S-N-RG-CB-DB1-EMI
G-8
Renewal Parts
Figure G.8 Bulletin 284G Base Module Renewal Part Catalog Structure
280 G – F S – 10 – RG
Bulletin
Number
Communications
D
DeviceNet™
Line Media
RG
ArmorConnect™ Power Media
Enclosure Type
F
Type 4 (IP67)
Base
S
Short-Circuit Protection
Bulletin 140 Current Rating (A)
10
10 A Rated Device
25
25 A Rated Device
Base Only — no starter
Base Module Renewal Part
Product Selection
Table G.10 Bulletin 284G Base Module Renewal Part, IP67/NEMA 4, Up to
600V AC with ArmorConnect™ Connectivity
Input Voltage
kW
Hp
Output
Current
Cat. No.
380…480V
50/60 Hz
3-Phase
0.4…2.2
0.5…3.0
1.4…4.0 A
280G-FS-10-RG
3.0
5.0
6.0…7.6 A
280G-FS-25-RG
Appendix
H
PID Setup
PID Loop
The Bulletin 284G ArmorStart® Distributed Motor with sensorless vector
control has a built-in PID (proportional, integral, differential) control loop.
The PID loop is used to maintain a process feedback (such as pressure, flow,
or tension) at a desired set point. The PID loop works by subtracting the
PID feedback from a reference and generating an error value. The PID loop
reacts to the error, based on the PID Gains, and outputs a frequency to try to
reduce the error value to 0. To enable the PID loop, Parameter 232 (PID Ref
Sel) must be set to an option other than 0 PID Disabled.
Exclusive Control and Trim Control are two basic configurations where the
PID loop may be used.
Exclusive Control
In Exclusive Control, the Speed Reference becomes 0, and the PID Output
becomes the entire Freq Command. Exclusive Control is used when
Parameter 232 (PID Ref Sel) is set to option 1, 2, 3, or 4. This configuration
does not require a master reference, only a desired set point, such as a flow
rate for a pump.
PID Loop
PID Ref
+
PID Fdbk
–
PID
Error
PID Prop Gain
+
PID Integ Time
+
PID
Output
Accel/Decel
Ramp
Freq
Command
+
PID Diff Rate
PID Enabled
Example
• In a pumping application, the PID Reference equals the Desired System
Pressure set point.
•
The Pressure Transducer signal provides PID Feedback to the drive.
Fluctuations in actual system pressure, due to changes in flow, result in
a PID Error value.
•
The drive output frequency increases or decreases to vary motor shaft
speed to correct for the PID Error value.
•
The Desired System Pressure set point is maintained as valves in the
system are opened and closed causing changes in flow.
•
When the PID Control Loop is disabled, the Commanded Speed is the
Ramped Speed Reference.
PID Feedback =
Pressure Transducer Signal
Pump
1
PID Reference =
Desired System Pressure
H-2
PID Setup
Trim Control
In Trim Control, the PID Output is added to the Speed Reference. In
Trim mode, the output of the PID loop bypasses the accel/decel ramp
as shown. Trim Control is used when Parameter 232 (PID Ref Sel) is
set to option 5, 6, 7, or 8.
Speed Ref
PID Loop
PID Ref
+
PID Fdbk
–
PID
Error
Accel/Decel
Ramp
PID Prop Gain
+
PID Integ Time
+
PID
Output
+
+
Output
Freq
+
PID Diff Rate
PID Enabled
Example
• In a winder application, the PID Reference equals the
Equilibrium set point.
•
The Dancer Pot signal provides PID Feedback to the drive.
Fluctuations in tension result in a PID Error value.
•
The Master Speed Reference sets the wind/unwind speed.
•
As tension increases or decreases during winding, the Speed
Reference is trimmed to compensate. Tension is maintained near
the Equilibrium set point.
0 Volts
PID Reference =
Equilibrium Set Point
PID Feedback =
Dancer Pot Signal
10 Volts
Speed Reference
PID Setup
H-3
PID Reference and Feedback
Parameter 232 (PID Ref Sel) is used to enable the PID mode
(Parameter 232 ¦ 0 PID Disabled) and to select the source of the PID
Reference. If A132 (PID Ref Sel) is not set to 0 PID Disabled, PID
can still be disabled by select programmable digital input options
(Parameters 151…154) such as Jog, Local, or PID Disable.
Option
Description
0
PID Disabled
Disables the PID loop (default setting)
1
PID Setpoint
Selects Exclusive Control. Parameter 137 (PID Setpoint) will be used to set the value of
the PID Reference
4
Comm Port
Selects Exclusive Control. The reference word from a communication network
5
Setpnt, Trim
Selects Trim Control. Parameter 137 (PID Setpoint) will be used to set the value of the
PID Reference.
8
Comm, Trim
Selects Trim Control. The reference word from a communication network DeviceNet
becomes the PID Reference. The value sent over the network is scaled so that
Parameter 135 (Maximum Freq) x 10 = 100% reference. For example, with (Maximum
Freq) = 60 Hz, a value of 600 sent over the network would represent 100% reference.
DeviceNet™ becomes the PID Reference. The value sent over the network is scaled
so that Parameter 135 (Maximum Freq) x 10 = 100% reference. For example, with
(Maximum Freq) = 60 Hz, a value of 600 sent over the network would represent 100%
reference.
Parameter 233 (PID Feedback Sel) is used to select the source of the
PID feedback.
Option
Description
2
Comm Port
The Consumed Assembly (Instance 164 — Default Consumed Inverter Type Distributed
Motor Controller) from a communication network (see page C-9 for details on the
Consumed Assembly) which becomes the PID Feedback. The value sent over the
network is scaled so that Parameter 135 (Maximum Freq) x 10 = 100% Feedback. For
example, with (Maximum Freq) = 60 Hz, a value of 600 sent over the network would
represent 100% Feedback.
PID Deadband
Parameter 238 (PID Deadband) is used to set a range, in percent, of
the PID Reference that the drive will ignore.
Example
• (PID Deadband) is set to 5.0
•
The PID Reference is 25.0%
•
The PID Regulator will not act on a PID Error that falls between
20.0 and 30.0%
H-4
PID Setup
PID Preload
The value set in Parameter 239 (PID Preload), in Hertz, will be preloaded into the integral component of the PID at any start or enable.
This will cause the drive’s frequency command to initially jump to
that preload frequency, and the PID loop starts regulating from there.
PID Enabled
PID Pre-load Value
PID Output
Freq Cmd
PID Pre-load Value > 0
PID Limits
Parameter 230 (PID Trim Hi) and Parameter 231 (PID Trim Lo) are
used to limit the PID output and are only used in trim mode. (PID
Trim Hi) sets the maximum frequency for the PID output in trim
mode. (PID Trim Lo) sets the reverse frequency limit for the PID
output in trim mode. Note that when the PID reaches the Hi or Lo
limit, the PID regulator stops integrating so that windup does not
occur.
PID Gains
The proportional, integral, and differential gains make up the PID
regulator.
•
Parameter 234 (PID Prop Gain)
The proportional gain (unitless) affects how the regulator reacts
to the magnitude of the error. The proportional component of the
PID regulator outputs a speed command proportional to the PID
error. For example, a proportional gain of 1 would output 100%
of maximum frequency when the PID error is 100% of the
analog input range. A larger value for (PID Prop Gain) makes
the proportional component more responsive, and a smaller
value makes it less responsive. Setting (PID Prop Gain) to 0.00
disables the proportional component of the PID loop.
PID Setup
•
H-5
Parameter 235 (PID Integ Time)
The integral gain (units of seconds) affects how the regulator
reacts to error over time and is used to get rid of steady state
error. For example, with an integral gain of 2 seconds, the output
of the integral gain component would integrate up to 100% of
maximum frequency when the PID error is 100% for 2 seconds.
A larger value for (PID Integ Time) makes the integral
component less responsive, and a smaller value makes it more
responsive. Setting (PID Integ Time) to 0 disables the integral
component of the PID loop.
•
Parameter 236 (PID Diff Rate)
The Differential gain (units of 1/seconds) affects the rate of
change of the PID output. The differential gain is multiplied by
the difference between the previous error and current error.
Thus, with a large error the D has a large effect and with a small
error the D has less of an effect. This parameter is scaled so that
when it is set to 1.00, the process response is 0.1% of (Maximum
Freq) when the process error is changing at 1%/second. A larger
value for (PID Diff Rate) makes the differential term have more
of an effect and a small value makes it have less of an effect. In
many applications, the D gain is not needed. Setting (PID Diff
Rate) to 0.00 (factory default) disables the differential
component of the PID loop.
Guidelines for Adjusting the PID Gains
1. Adjust the proportional gain. During this step it may be desirable
to disable the integral gain and differential gain by setting them to
0. After a step change in the PID Feedback:
•
If the response is too slow increase Parameter 234 (PID Prop
Gain).
•
If the response is too quick and/or unstable (see Figure H.1),
decrease Parameter 234 (PID Prop Gain).
•
Typically, Parameter 234 (PID Prop Gain) is set to some
value below the point where the PID begins to go unstable.
2. Adjust the integral gain (leave the proportional gain set as in Step
1). After a step change in the PID Feedback:
•
If the response is too slow (see Figure H.2), or the PID
Feedback does not become equal to the PID Reference,
decrease Parameter 235 (PID Integ Time).
•
If there is a lot of oscillation in the PID Feedback before
settling out (see Figure H.3), increase Parameter 235 (PID
Integ Time).
H-6
PID Setup
3. At this point, the differential gain may not be needed. However, if
after determining the values for Parameter 234 (PID Prop Gain)
and Parameter 235 (PID Integ Time):
•
Response is still slow after a step change, increase Parameter
236 (PID Diff Rate).
•
Response is still unstable, decrease Parameter 236 (PID Diff
Rate).
The following figures show some typical responses of the PID loop at
different points during adjustment of the PID Gains.
Figure H.1 Unstable
PID Reference
PID Feedback
Time
Figure H.2 Slow Response — Over-Damped
PID Reference
PID Feedback
Time
Figure H.3 Oscillation — Under-Damped
PID Reference
PID Feedback
Time
Figure H.4 Good Response — Critically Damped
PID Reference
PID Feedback
Time
Appendix
I
Step Logic, Basic Logic and Timer/Counter
Functions
Four Bulletin 284G ArmorStart® logic functions provide the capability to
program simple logic functions without a separate controller.
•
Step Logic Function
Steps through up to eight preset speeds based on programmed logic.
Programmed logic can include conditions that need to be met from
digital inputs programmed as Logic In1 and Logic In2 before stepping
from one preset speed to the next. A timer is available for each of the
eight steps and is used to program a time delay before stepping from
one preset speed to the next. The status of a digital output can also be
controlled based on the step being executed.
•
Basic Logic Function
Up to two digital inputs can be programmed as Logic In1 and/or Logic
In2. A digital output can be programmed to change state based on the
condition of one or both inputs based on basic logic functions such as
AND, OR, NOR. The basic logic functions can be used with or
without step logic.
•
Timer Function
A digital input can be programmed for Timer Start. A digital output
can be programmed as a Timer Out with an output level programmed
to the desired time. When the timer reaches the time programmed into
the output level the output will change state. The timer can be reset via
a digital input programmed as Reset Timer.
•
Counter Function
A digital input can be programmed for Counter In. A digital output can
be programmed as Counter Out with an output level programmed to
the desired number of counts. When the counter reaches the count
programmed into the output level the output will change state. The
counter can be reset via a digital input programmed as Reset Counter.
1
I-2
Step Logic, Basic Logic and Timer/Counter Functions
Step Logic Using Timed Steps
To activate this function, set Parameter 138 (Speed Reference) to 6
Stp Logic. Three parameters are used to configure the logic, speed
reference, and time for each step.
•
Logic is defined using Parameters 240…247 (Stp Logic x).
•
Preset Speeds are set with Parameters 170…177 (Preset Freq x).
•
Time of operation for each step is set with Parameters 250…257
(Stp Logic Time x).
The direction of motor rotation can be forward or reverse.
Figure I.1 Using Timed Steps
Step 0
Step 1
Step 2
Step 3 Step 4 Step 5 Step 6
Step 7
Forward
0
Reverse
Time
Step Logic Sequence
•
Sequence begins with a valid start command.
•
A normal sequence begins with Step 0 and transitions to the next
step when the corresponding step logic time has expired.
•
Step 7 is followed by Step 0.
•
Sequence repeats until a stop is issued or a fault condition occurs.
Step Logic, Basic Logic and Timer/Counter Functions
Step Logic Using Basic Logic
Functions
I-3
Digital input and digital output parameters can be configured to use
logic to transition to the next step. Logic In1 and Logic In2 are
defined by programming Parameters 151…154 …Digital Inx Sel… to
Option 23 Logic In1 or Option 24 Logic In2.
Example
•
Run at Step 0.
•
Transition to Step 1 when Logic In1 is true.
Logic senses the edge of Logic In1 when it transitions from Off
to On. Logic In1 is not required to remain On.
•
Transition to Step 2 when both Logic In1 and Logic In2 are true.
The drive senses the level of both Logic In1 and Logic In2 and
transitions to Step 2 when both are On.
•
Transition to Step 3 when Logic In2 returns to a false or Off state.
Inputs are not required to remain in the On condition except
under the logic conditions used for the transition from Step 2 to
Step 3.
Figure I.2
Start
Step 0
Step 1
Step 2
Step 3
Frequency
Logic In1
Logic In2
Time
The step time value and the basic logic may be used together to
satisfy machine conditions. For instance, the step may need to run for
a minimum time period and then use the basic logic to trigger a
transition to the next step.
Figure I.3
Start
Step 0
Frequency
Logic In1
Logic In2
Time
Step 1
I-4
Step Logic, Basic Logic and Timer/Counter Functions
Timer Function
Digital inputs and outputs control the timer function and are
configured with Parameters 151…154 (Digital Inx Sel) set to 18
Timer Start and 20 Reset Timer.
Digital outputs (relay and opto type) define a preset level and indicate
when the level is reached. Level Parameters 156 (Relay Out Level),
159 (Opto Out1 Level), and 162 (Opto Out2 Level) are used to set the
desired time in seconds.
Parameters 155 (Relay Out Sel), 158 (Opto Out1 Sel), and 161 (Opto
Out2 Sel) are set to option 16 Timer Out and cause the output to
change state when the preset level is reached.
Counter Function
Digital inputs and outputs control the counter function and are
configured with Parameters 151…154 (Digital Inx Sel) set to 19
Counter In and 21 Reset Counter.
Digital outputs (relay and opto type) define a preset level and indicate
when the level is reached. Level Parameters 156 (Relay Out Level),
159 (Opto Out1 Level), and 162 (Opto Out2 Level) are used to set the
desired count value.
Parameters 155 (Relay Out Sel), 158 (Opto Out1 Sel), and 161 (Opto
Out2 Sel) are set to 17 Counter Out which causes the output to
change state when the level is reached.
Example
•
A photo eye is used to count packages on a conveyor line.
•
An accumulator holds the packages until five are collected.
•
A diverter arm redirects the group of five packages to a bundling
area.
•
The diverter arm returns to its original position and triggers a
limit switch that resets the counter.
•
Parameters are set to the following options:
•
151 (Digital In1 Sel) set to 19 to select Counter In
•
152 (Digital In2 Sel) set to 21 to select Reset Counter
•
155 (Relay Out Sel) set to 17 to select Counter Out
•
156 (Relay Out Level) set to 5.0 (counts)
I-5
Step Logic, Basic Logic and Timer/Counter Functions
Step Logic Parameters
Digit 3
Digit 2
Digit 1
Digit 0
0
0
F
1
Setting
Accel/Decel Parameters Used
Step Logic Output State
Commanded Direction
0
1
Off
FWD
1
1
Off
REV
2
1
Off
No Output
3
1
On
FWD
4
1
On
REV
5
1
On
No Output
6
2
Off
FWD
7
2
Off
REV
8
2
Off
No Output
9
2
On
FWD
A
2
On
REV
b
2
On
No Output
Setting
Setting
Logic
0
Jump to Step 0
1
Jump to Step 1
2
Jump to Step 2
3
Jump to Step 3
4
Jump to Step 4
5
Jump to Step 5
6
Jump to Step 6
7
Jump to Step 7
8
End Program (Normal Stop)
9
End Program (Coast to Stop)
A
End Program and Fault (F2)
Description
Logic
0
Skip Step (jump immediately).
SKIP
1
Step based on the time programmed in the respective (Stp Logic Time x) parameter.
TIMED
2
Step if Logic In1 is active (logically true).
TRUE
3
Step if Logic In2 is active (logically true).
TRUE
4
Step if Logic In1 is not active (logically false).
FALSE
5
Step if Logic In2 is not active (logically false).
FALSE
6
Step if either Logic In1 or Logic In2 is active (logically true).
OR
7
Step if both Logic In1 and Logic In2 is active (logically true).
AND
8
Step if neither Logic In1 or Logic In2 is active (logically true).
NOR
I-6
Step Logic, Basic Logic and Timer/Counter Functions
Setting
Description
Logic
9
Step if Logic In1 is active (logically true) and Logic In2 is not active (logically false).
A
Step if Logic In2 is active (logically true) and Logic In1 is not active (logically false).
XOR
b
Step after (Stp Logic Time x) and Logic In1 is active (logically true).
TIMED AND
C
Step after (Stp Logic Time x) and Logic In2 is active (logically true).
TIMED AND
d
Step after (Stp Logic Time x) and Logic In1 is not active (logically false).
TIMED OR
E
Step after (Stp Logic Time x) and Logic In2 is not active (logically false).
TIMED OR
F
Do not step OR no jump to, so use Digit 0 logic.
IGNORE
Setting
XOR
Description
Logic
0
Skip Step (jump immediately).
SKIP
1
Step based on the time programmed in the respective (Stp Logic Time x) parameter.
TIMED
2
Step if Logic In1 is active (logically true).
TRUE
3
Step if Logic In2 is active (logically true).
TRUE
4
Step if Logic In1 is not active (logically false).
FALSE
5
Step if Logic In2 is not active (logically false).
FALSE
6
Step if either Logic In1 or Logic In2 is active (logically true).
OR
7
Step if both Logic In1 and Logic In2 is active (logically true).
AND
8
Step if neither Logic In1 or Logic In2 is active (logically true).
NOR
9
Step if Logic In1 is active (logically true) and Logic In2 is not active (logically false).
XOR
A
Step if Logic In2 is active (logically true) and Logic In1 is not active (logically false).
XOR
b
Step after (Stp Logic Time x) and Logic In1 is active (logically true).
TIMED AND
C
Step after (Stp Logic Time x) and Logic In2 is active (logically true).
TIMED AND
d
Step after (Stp Logic Time x) and Logic In1 is not active (logically false).
TIMED OR
E
Step after (Stp Logic Time x) and Logic In2 is not active (logically false).
TIMED OR
F
Use logic programmed in Digit 1.
IGNORE
Step Logic, Basic Logic and Timer/Counter Functions
Notes:
I-7
I-8
Notes:
Step Logic, Basic Logic and Timer/Counter Functions
.
Publication 280G-UM001D-EN-P - January 2015
Supercedes Publication 280G-UM001C-EN-P — February 2010
Copyright ©2015 Rockwell Automation, Inc. All Rights Reserved. Printed in USA.
Was this manual useful for you? yes no
Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Download PDF

advertisement