organic compounds Acta Crystallographica Section E Specimen prepared at 101 kPa Specimen prepared at 293 K Structure Reports Online Particle morphology: no specific habit, white Data collection ISSN 1600-5368 ID31 ESRF Grenoble diffractometer Specimen mounting: 1.0 mm borosilicate glass capillary Specimen mounted in transmission mode Capecitabine from X-ray powder synchrotron data Jan Rohlicek,a* Michal Husak,a Ales Gavenda,b Alexandr Jegorov,c Bohumil Kratochvila and Andy Fitchd a Department of Solid State Chemistry, ICT Prague, Technicka 5, Prague, Czech Republic, bIVAX Pharmaceuticals s.r.o., R&D, Opava, Czech Republic, c Pharmaceuticals Research and Development, Branisovska 31, Ceske Budejovice, Czech Republic, and dID31 Beamline, ESRF, 6 rue Jules Horowitz, BP 220, F-38043 Grenoble Cedex, France Correspondence e-mail: [email protected] Received 3 April 2009; accepted 12 May 2009 Key indicators: powder synchrotron study; T = 293 K; mean (C–C) = 0.004 Å; disorder in main residue; R factor = 0.055; wR factor = 0.074; data-to-parameter ratio = 5.5. Refinement Rp = 0.055 Rwp = 0.074 Rexp = 0.036 RB = 0.102 S = 2.11 Wavelength of incident radiation: 0.79483(4) Å Excluded region(s): no Profile function: Pseudo-Voigt profile coefficients as parameterized in Thompson et al. Related literature Capecitabine is the first FDA-approved oral chemotherapy for the treatment for some types of cancer, including advanced bowel cancer or breast cancer, see: Wagstaff et al. (2003); Jones et al. (2004). (1987), asymmetry correction according to Finger et al. (1994) 499 reflections 91 parameters 77 restraints H-atom parameters not refined Preferred orientation correction: March–Dollase (Dollase, 1986); direction of preferred orientation 001, texture parameter r = 1.03 (1) Table 1 Hydrogen-bond geometry (Å, ). D—H A In the title compound [systematic name 5-deoxy-5-fluoro-N(pentyloxycarbonyl)cytidine], C15H22FN3O6, the pentyl chain is disordered over two positions with refined occupancies of 0.53 (5) and 0.47 (5). The furan ring assumes an envelope conformation. In the crystal, intermolecular N—H O hydrogen bonds link the molecules into chains propagating along the b axis. The crystal packing exhibits electrostatic interactions between the 5-fluoropyrimidin-2(1H)-one fragments of neighbouring molecules as indicated by short O C [2.875 (3) and 2.961 (3) Å] and F C [2.886 (3) Å] contacts. Scan method: step Absorption correction: none 2min = 1.0, 2max = 35.0 Increment in 2 = 0.003 N17—H171 O8 i D—H H A D A D—H A 0.860 1.956 2.797 (5) 170 Symmetry code: (i) x þ 1; y þ 12; z þ 32. Data collection: ESRF SPEC package; cell refinement: GSAS (Larson & Von Dreele, 1994); data reduction: CRYSFIRE2004 (Shirley, 2000) and MOPAC (Dewar et al., 1985); program(s) used to solve structure: FOX (Favre-Nicolin & Černý, 2002); program(s) used to refine structure: GSAS; molecular graphics: Mercury (Macrae et al., 2006) and PLATON (Spek, 2009); software used to prepare material for publication: enCIFer (Allen et al., 2004). This study was supported by the Czech Grant Agency (grant No. GAČR 203/07/0040), the Institute of Chemical Technology in Prague (grant No. 108–08–0017) and the research program MSM 2B08021 of the Ministry of Education, Youth and Sports of the Czech Republic. Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2544). References Experimental Crystal data C15H22FN3O6 Mr = 359.35 Orthorhombic, P21 21 21 a = 5.20527 (2) Å b = 9.52235 (4) Å c = 34.77985 (13) Å V = 1723.91 (1) Å3 Acta Cryst. (2009). E65, o1325–o1326 Z=4 Synchrotron radiation = 0.79483 (4) Å = 0.15 mm1 T = 293 K Specimen shape: cylinder 40 1 1 mm Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338. Dewar, M. J. S., Zoebisch, E. G., Healy, E. F. & Stewart, J. J. P. (1985). J. Am. Chem. Soc. 107, 3902–3909. Dollase, W. A. (1986). J. Appl. Cryst. 19, 267–272. Favre-Nicolin, V. & Černý, R. (2002). J. Appl. Cryst. 35, 734–743. Finger, L. W., Cox, D. E. & Jephcoat, A. P. (1994). J. Appl. Cryst. 27, 892–900. Jones, L., Hawkins, N., Westwood, M., Wright, K., Richardson, G. & Riemsma, R. (2004). Health Technol. Assess. 8, 1–156. Larson, A. C. & Von Dreele, R. B. (1994). GSAS. Report LAUR 86-748. Los Alamos National Laboratory, New Mexico, USA. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. doi:10.1107/S1600536809017905 Rohlicek et al. o1325 organic compounds Shirley, R. (2000). CRYSFIRE User’s Manual. Guildford, England: The Lattice Press. Spek, A. L. (2009). Acta Cryst. D65, 148–155. o1326 Rohlicek et al. C15H22FN3O6 Thompson, P., Cox, D. E. & Hastings, J. B. (1987). J. Appl. Cryst. 20, 79–83. Wagstaff, A. J., Ibbotson, T. & Goa, K. L. (2003). Drugs, 63, 217–236. Acta Cryst. (2009). E65, o1325–o1326 supporting information supporting information Acta Cryst. (2009). E65, o1325–o1326 [doi:10.1107/S1600536809017905] Capecitabine from X-ray powder synchrotron data Jan Rohlicek, Michal Husak, Ales Gavenda, Alexandr Jegorov, Bohumil Kratochvil and Andy Fitch S1. Comment Capecitabine is the first FDA-approved oral chemotherapy for the treatment for some types of cancer, including advanced bowel cancer or breast cancer (Wagstaff et al., 2003; Jones et al., 2004). Capecitabine is 5-deoxy-5-fluoro-N-[(pentyloxy)carbonyl]-cytidine and in vivo is enzymatically converted to the active drug 5-fluorouracil. Crystal structure determination of capecitabine was not reported yet. In this paper we report crystal structure determination of the title compound from the powder diffraction data by using synchrotron radiation. The asymmetric unit consists of one molecule of capecitabine (Fig 1). The crystal packing is stabilized by intermolecular interactions - electrostatic interactions proved by short O···C and F···C contacts (Table 1) and N—H···O hydrogen bonds (Table 2). S2. Experimental Samples of crystalline capecitabine were prepared by two methods, a and b, respectively. Method a: capecitabine (10 g) was dissolved in EtOH (80 g). The solution was concentrated under reduced pressure to a residual volume of 25 ml and kept under stirring overnight. The solid was filtered off and dried at room temperature furnishing capecitabine (6 g). Method b: capecitabine (18 g) was dissolved in DCM (200 g) and the solution was evaporated to dryness under reduced pressure. The residue was taken up with toluene (400 g) and about 150 g of solvent were distilled off. The solution was heated up to 50°C and then allowed to 3 spontaneously cool to 25°C. After cooling to 0°C, the solid was filtered off, washed with toluene and dried at 60°C under vacuum to constant weight furnishing capecitabine (16.5 g). S3. Refinement Both crystallization procedures lead to one polycrystalline form of capecitabine. It was confirmed by measuring on XRay powder diffractometer PANalytical Xpert Pro, Cu Kα radiation (λ = 1.541874 Å). Attempts to determine the structure from these data were unsuccessful probably due to flexible molecule of capecitabine and low resolution of these data. The powder obtained by the first "a" procedure was used for structure determination. X-Ray diffraction data were collected on the high resolution diffractometer ID31 of the European Synchrotron Radiation Facility. The monochromatic wavelength was fixed at 0.79483 (4) Å. Si (111) crystal multi-analyser combined with Si (111) monochromator was used (beam offset angle α = 2°). A rotating 1-mm-diameter borosilicate glass capillary with capecitabine powder was used for the experiment. Data were measured from 1.002°2θ to 34.998°2θ at the room temperature, steps scans was set to 0.003°2θ. First 20 peaks were used by CRYSFIRE 2004 package (Shirley, 2000) to get a list of possible lattice parameters. The most probable result was selected (a = 5.21 Å, b = 9.52 Å, c = 34.79 Å, V = 1724 Å3, FOM (20) = 330). If 15 Å3 are used as an atomic volume for C, N, O and F and 5 Å3 as a volume for hydrogen atom, the approximate molecular volume is Acta Cryst. (2009). E65, o1325–o1326 sup-1 supporting information 485 Å3. The found volume of 1724 Å3 suggests that there are four molecules in the unit cell (Z = 4). P212121 space group was selected on the basic of peaks extinction and on the basic of agreement of the Le-bail fit. The structure was solved in program FOX (Favre-Nicolin & Černý, 2002) using parallel tempering algorithm. The initial model was generated by AM1 computing method implemented in program MOPAC (Dewar et al., 1985). For the solution process hydrogen atoms were removed. This model was restrained with bonds and angles restraints, automatically generated by program FOX. The refinement was carried out in GSAS (Larson & Von Dreele, 1994). Hydrogen atoms were added in positions based on geometry and structure was restrained by bonds and angles restraints. Five planar restraints for sp2 hybridization were used (O20/C18/O19/N17, N17/C13/N14/C12, C13/C12/F16/C11, N14/C10/O15/N9 and C4/N9/C10/C11). Due to relatively high Uiso thermal parameters of alkyl chain (C21—C25) the structure was refined with two disordered chains (C21—C25 and C21a—C25a) with occupancy factors 0.53 (5) and 0.47 (5). Uiso thermal parameters were constrained just for atoms in disordered chains by this way (C21/C21a, C22/C22a, C23/C23a, C24/C24a, C25/C25a). At the final stage atomic coordinates of non-hydrogen atoms were refined to the final agreement factors: Rp=0.055 and Rwp=0.0743. The diffraction profiles and the differences between the measured and calculated profiles are shown in Fig. 2. Figure 1 The molecular structure of capecitabine showing the atomic numbering. Displacement spheres are drawn at the 20% probability level. Only major part of the disordered pentyl chain is shown. Acta Cryst. (2009). E65, o1325–o1326 sup-2 supporting information Figure 2 The final Rietveld plot showing the measured data (black thin-plus), calculated data (red line) and difference curve (blue line). Calculated positions of the reflections are shown by verical bars. 5-deoxy-5-fluoro-N-(pentyloxycarbonyl)cytidine Crystal data C15H22FN3O6 Mr = 359.35 Orthorhombic, P212121 a = 5.20527 (2) Å b = 9.52235 (4) Å c = 34.77985 (13) Å V = 1723.91 (1) Å3 Z=4 F(000) = 760 Dx = 1.385 Mg m−3 Synchrotron radiation, λ = 0.79483(4) Å µ = 0.15 mm−1 T = 293 K Particle morphology: no specific habit white cylinder, 40 × 1 mm Specimen preparation: Prepared at 293 K and 101 kPa Data collection ID31 ESRF Grenoble diffractometer Radiation source: X-Ray Si(111) monochromator Acta Cryst. (2009). E65, o1325–o1326 Specimen mounting: 1.0 mm borosilicate glass capillary Data collection mode: transmission Scan method: step 2θmin = 1.000°, 2θmax = 34.996°, 2θstep = 0.003° sup-3 supporting information Refinement Least-squares matrix: full Rp = 0.055 Rwp = 0.074 Rexp = 0.036 RBragg = 0.102 χ2 = 4.452 11333 data points Excluded region(s): no Profile function: Pseudo-Voigt profile coefficients as parameterized in Thompson et al. (1987), asymmetry correction according to Finger et al. (1994) 91 parameters 77 restraints 6 constraints H-atom parameters not refined Weighting scheme based on measured s.u.'s w = 1/σ(Yobs)2 (Δ/σ)max = 0.05 Background function: Shifted Chebyschev Preferred orientation correction: March–Dollase (Dollase, 1986); direction of preferred orientation 001, texture parameter r = 1.03(1) Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) C1 C2 C3 C4 O5 C6 O7 O8 N9 C10 C11 C12 C13 N14 O15 F16 N17 C18 O19 O20 C21 C22 C23 C24 C25 C21a C22a C23a C24a C25a H251 H252 H253 x y z Uiso*/Ueq Occ. (<1) −0.0205 (8) 0.0063 (7) 0.0924 (6) −0.0166 (5) −0.0717 (9) 0.2118 (13) −0.2355 (9) 0.0594 (11) 0.1175 (4) 0.0276 (4) 0.3307 (5) 0.4772 (3) 0.3691 (3) 0.1675 (4) −0.1690 (5) 0.6861 (5) 0.4922 (3) 0.4009 (4) 0.2448 (4) 0.5359 (5) 0.491 (4) 0.524 (3) 0.801 (3) 0.817 (4) 0.700 (5) 0.518 (5) 0.680 (3) 0.560 (3) 0.764 (5) 0.925 (4) 0.7123 0.5245 0.7906 0.8964 (3) 0.7423 (4) 0.6753 (3) 0.7766 (2) 0.9090 (3) 0.9888 (6) 0.6775 (5) 0.5279 (3) 0.79531 (18) 0.73076 (17) 0.87392 (18) 0.90315 (14) 0.83732 (13) 0.75150 (16) 0.6596 (2) 0.98180 (17) 0.86898 (14) 0.8094 (2) 0.7158 (3) 0.8859 (3) 0.8346 (15) 0.957 (2) 0.9940 (19) 1.1183 (13) 1.082 (2) 0.8251 (19) 0.9142 (19) 0.939 (2) 0.9452 (15) 1.079 (2) 1.1617 1.0576 1.0057 0.86415 (10) 0.87424 (8) 0.83655 (8) 0.80775 (7) 0.82416 (10) 0.87530 (18) 0.88107 (14) 0.83793 (13) 0.77283 (7) 0.73805 (7) 0.77201 (7) 0.73950 (6) 0.70512 (6) 0.70410 (6) 0.73930 (11) 0.74183 (10) 0.67035 (6) 0.63692 (7) 0.63482 (12) 0.60977 (10) 0.57240 (14) 0.5449 (2) 0.5361 (5) 0.5087 (4) 0.4695 (5) 0.57299 (18) 0.54603 (17) 0.5068 (4) 0.4756 (2) 0.4786 (7) 0.453 0.4727 0.4585 0.087 (5)* 0.048 (5)* 0.049 (4)* 0.081 (5)* 0.093 (3)* 0.079 (4)* 0.088 (3)* 0.109 (3)* 0.036 (4)* 0.030 (4)* 0.023 (4)* 0.031 (4)* 0.010 (4)* 0.028 (4)* 0.046 (3)* 0.072 (2)* 0.030 (3)* 0.063 (5)* 0.108 (3)* 0.087 (4)* 0.146 (6)* 0.169 (8)* 0.174 (9)* 0.174 (10)* 0.143 (9)* 0.146 (6)* 0.169 (8)* 0.174 (9)* 0.174 (10)* 0.143 (9)* 0.25* 0.25* 0.25* 0.53 (5) 0.53 (5) 0.53 (5) 0.53 (5) 0.53 (5) 0.47 (5) 0.47 (5) 0.47 (5) 0.47 (5) 0.47 (5) 0.53 (5) 0.53 (5) 0.53 (5) Acta Cryst. (2009). E65, o1325–o1326 sup-4 supporting information H241 H242 H231 H232 H221 H222 H211 H212 H61 H62 H63 H21 H31 H11 H41 H111 H171 H82 H72 H2511 H2512 H2513 H2411 H2412 H2311 H2312 H2211 H2212 H2111 H2112 0.7261 0.9921 0.8866 0.8831 0.4433 0.4406 0.3216 0.6111 0.1794 0.2378 0.361 0.1249 0.273 −0.166 −0.1786 0.3869 0.6224 −0.0753 −0.216 1.0505 1.008 0.8164 0.874 0.6824 0.4682 0.4442 0.7075 0.8402 0.5817 0.3442 1.1953 1.1435 1.0173 0.9152 1.0371 0.9338 0.7981 0.7627 1.0833 0.9842 0.9557 0.7267 0.6894 0.9315 0.7386 0.9132 0.9246 0.5066 0.592 1.0802 1.082 1.1589 0.8661 0.943 1.0252 0.8643 1.0029 0.8684 0.7316 0.8245 0.5195 0.5053 0.5594 0.5246 0.5559 0.5214 0.5706 0.5664 0.868 0.9023 0.8624 0.8946 0.8356 0.8775 0.8007 0.7957 0.6699 0.8272 0.883 0.4588 0.5029 0.476 0.478 0.4511 0.5072 0.5013 0.5578 0.5424 0.5736 0.5647 0.25* 0.25* 0.25* 0.25* 0.25* 0.25* 0.25* 0.25* 0.1* 0.1* 0.1* 0.075* 0.075* 0.12* 0.12* 0.03* 0.04* 0.1* 0.12* 0.25* 0.25* 0.25* 0.25* 0.25* 0.25* 0.25* 0.25* 0.25* 0.25* 0.25* 0.53 (5) 0.53 (5) 0.53 (5) 0.53 (5) 0.53 (5) 0.53 (5) 0.53 (5) 0.53 (5) 0.47 (5) 0.47 (5) 0.47 (5) 0.47 (5) 0.47 (5) 0.47 (5) 0.47 (5) 0.47 (5) 0.47 (5) 0.47 (5) 0.47 (5) Geometric parameters (Å, º) C1—C2 C1—O5 C1—C6 C1—H11 C2—C3 C2—O7 C2—H21 C3—C4 C3—O8 C3—H31 C4—O5 C4—N9 C4—H41 C6—H61 C6—H62 Acta Cryst. (2009). E65, o1325–o1326 1.515 (5) 1.421 (5) 1.545 (7) 0.950 1.525 (4) 1.422 (6) 0.950 1.502 (4) 1.413 (4) 0.950 1.413 (4) 1.4123 (19) 0.950 0.950 0.950 O20—C21 O20—C21a C21—C22 C21—H211 C21—H212 C22—C23 C22—H221 C22—H222 C23—C24 C23—H231 C23—H232 C24—H241 C24—H242 C25—C24 C25—H251 1.408 (2) 1.407 (2) 1.518 (2) 0.949 (16) 0.95 (2) 1.520 (2) 0.95 (2) 0.950 (9) 1.522 (2) 0.950 (19) 0.95 (2) 0.949 (19) 0.95 (2) 1.530 (2) 0.951 (19) sup-5 supporting information C6—H63 O7—H72 O8—H82 N9—C10 N9—C11 C10—N14 C10—O15 C11—C12 C11—H111 C12—C13 C12—F16 C13—N14 C13—N17 N17—C18 N17—H171 C18—O19 C18—O20 0.950 0.820 0.820 1.4352 (18) 1.3389 (19) 1.4015 (19) 1.2282 (19) 1.3919 (19) 0.950 1.4625 (19) 1.3228 (19) 1.3305 (18) 1.4013 (19) 1.3783 (19) 0.860 1.208 (2) 1.384 (2) C25—H252 C25—H253 C21a—C22a C21a—H2111 C21a—H2112 C22a—C23a C22a—H2211 C22a—H2212 C23a—C24a C23a—H2311 C23a—H2312 C24a—C25a C24a—H2411 C24a—H2412 C25a—H2511 C25a—H2512 C25a—H2513 0.95 (3) 0.95 (2) 1.519 (2) 0.95 (3) 0.95 (3) 1.520 (2) 0.950 (15) 0.95 (2) 1.523 (2) 0.95 (2) 0.950 (18) 1.530 (2) 0.95 (2) 0.952 (18) 0.950 (19) 0.95 (3) 0.95 (3) O15···C12i F16···C10ii 2.961 (3) 2.886 (3) O15···C11iii 2.875 (3) C2—C1—O5 C2—C1—C6 C2—C1—H11 O5—C1—C6 O5—C1—H11 C6—C1—H11 C1—C2—C3 C1—C2—O7 C1—C2—H21 C3—C2—O7 C3—C2—H21 O7—C2—H21 C2—C3—C4 C2—C3—O8 C2—C3—H31 C4—C3—O8 C4—C3—H31 O8—C3—H31 C3—C4—O5 C3—C4—N9 C3—C4—H41 O5—C4—N9 O5—C4—H41 N9—C4—H41 C1—O5—C4 C1—C6—H61 C1—C6—H62 109.0 (3) 114.9 (2) 107.52 110.2 (2) 107.4 107.5 103.46 (14) 112.16 (19) 112.53 102.85 (18) 112.59 112.5 101.19 (13) 110.48 (18) 105.17 127.86 (19) 105.07 105.13 112.34 (14) 117.90 (12) 105.26 109.57 (17) 105.29 105.37 106.4 (3) 109.5 109.5 O20—C21—H212 C22—C21—H211 C22—C21—H212 H211—C21—H212 C21—C22—C23 C21—C22—H221 C21—C22—H222 C23—C22—H221 C23—C22—H222 H221—C22—H222 C22—C23—C24 C22—C23—H231 C22—C23—H232 C24—C23—H231 C24—C23—H232 H231—C23—H232 C23—C24—C25 C23—C24—H241 C23—C24—H242 C25—C24—H241 C25—C24—H242 H241—C24—H242 C24—C25—H251 C24—C25—H252 C24—C25—H253 H251—C25—H252 H251—C25—H253 110.1 (17) 110.1 (16) 109.9 (6) 109.4 (9) 114.3 (2) 108.2 (6) 108.2 (14) 108.3 (14) 108.3 (12) 109.5 (16) 110.9 (2) 109.1 (13) 109.1 (15) 109.1 (15) 109.1 (12) 109.5 (16) 111.3 (2) 109.1 (12) 109.0 (16) 109 (2) 109.0 (17) 109.4 (11) 110 (2) 110 (2) 109.6 (17) 109.3 (19) 110 (2) Acta Cryst. (2009). E65, o1325–o1326 sup-6 supporting information C1—C6—H63 H61—C6—H62 H61—C6—H63 H62—C6—H63 C2—O7—H72 C3—O8—H82 C4—N9—C10 C4—N9—C11 C10—N9—C11 N9—C10—N14 N9—C10—O15 N14—C10—O15 N9—C11—C12 N9—C11—H111 C12—C11—H111 C11—C12—C13 C11—C12—F16 C13—C12—F16 C12—C13—N14 C12—C13—N17 N14—C13—N17 C10—N14—C13 C13—N17—C18 C13—N17—H171 C18—N17—H171 N17—C18—O19 N17—C18—O20 O19—C18—O20 C18—O20—C21 C18—O20—C21a O20—C21—C22 O20—C21—H211 109.4 109.4 109.4 109.6 109.5 109.47 120.62 (14) 119.91 (14) 119.47 (12) 118.71 (13) 118.59 (15) 122.71 (15) 125.65 (14) 117.16 117.19 111.59 (12) 120.89 (15) 127.52 (14) 126.04 (12) 115.94 (14) 118.02 (18) 118.29 (13) 118.81 (13) 120.56 120.63 125.88 (16) 100.60 (15) 133.52 (16) 111.3 (2) 111.7 (2) 107.3 (2) 110.0 (9) H252—C25—H253 O20—C21a—C22a O20—C21a—H2111 O20—C21a—H2112 C22a—C21a—H2111 C22a—C21a—H2112 H2111—C21a—H2112 C21a—C22a—C23a C21a—C22a—H2211 C21a—C22a—H2212 C23a—C22a—H2211 C23a—C22a—H2212 H2211—C22a—H2212 C22a—C23a—C24a C22a—C23a—H2311 C22a—C23a—H2312 C24a—C23a—H2311 C24a—C23a—H2312 H2311—C23a—H2312 C23a—C24a—C25a C23a—C24a—H2411 C23a—C24a—H2412 C25a—C24a—H2411 C25a—C24a—H2412 H2411—C24a—H2412 C24a—C25a—H2511 C24a—C25a—H2512 C24a—C25a—H2513 H2511—C25a—H2512 H2511—C25a—H2513 H2512—C25a—H2513 109 (2) 107.2 (2) 110.1 (16) 109.9 (18) 110.2 (17) 110.1 (13) 109.4 (6) 114.4 (2) 108.3 (6) 108.2 (15) 108.2 (19) 108.3 (10) 109.4 (10) 111.0 (2) 109 (2) 109.0 (11) 109.1 (12) 109.2 (19) 109.5 (16) 111.4 (2) 109.0 (10) 109 (2) 109 (3) 109.0 (16) 109.4 (11) 110 (2) 110 (2) 109.6 (17) 109 (2) 109 (2) 110 (2) Symmetry codes: (i) x−1, y, z; (ii) −x+1, y+1/2, −z+3/2; (iii) −x, y−1/2, −z+3/2. Hydrogen-bond geometry (Å, º) D—H···A D—H H···A D···A D—H···A N17—H171···O8ii 0.860 1.956 2.797 (5) 170 Symmetry code: (ii) −x+1, y+1/2, −z+3/2. Acta Cryst. (2009). E65, o1325–o1326 sup-7
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
advertisement