PDF of article - Crystallography Journals Online

PDF of article - Crystallography Journals Online
organic compounds
Acta Crystallographica Section E
Specimen prepared at 101 kPa
Specimen prepared at 293 K
Structure Reports
Online
Particle morphology: no specific
habit, white
Data collection
ISSN 1600-5368
ID31 ESRF Grenoble
diffractometer
Specimen mounting: 1.0 mm borosilicate glass capillary
Specimen mounted in transmission
mode
Capecitabine from X-ray powder
synchrotron data
Jan Rohlicek,a* Michal Husak,a Ales Gavenda,b Alexandr
Jegorov,c Bohumil Kratochvila and Andy Fitchd
a
Department of Solid State Chemistry, ICT Prague, Technicka 5, Prague, Czech
Republic, bIVAX Pharmaceuticals s.r.o., R&D, Opava, Czech Republic,
c
Pharmaceuticals Research and Development, Branisovska 31, Ceske Budejovice,
Czech Republic, and dID31 Beamline, ESRF, 6 rue Jules Horowitz, BP 220, F-38043
Grenoble Cedex, France
Correspondence e-mail: [email protected]
Received 3 April 2009; accepted 12 May 2009
Key indicators: powder synchrotron study; T = 293 K; mean (C–C) = 0.004 Å;
disorder in main residue; R factor = 0.055; wR factor = 0.074; data-to-parameter
ratio = 5.5.
Refinement
Rp = 0.055
Rwp = 0.074
Rexp = 0.036
RB = 0.102
S = 2.11
Wavelength of incident radiation:
0.79483(4) Å
Excluded region(s): no
Profile function: Pseudo-Voigt
profile coefficients as parameterized in Thompson et al.
Related literature
Capecitabine is the first FDA-approved oral chemotherapy for
the treatment for some types of cancer, including advanced
bowel cancer or breast cancer, see: Wagstaff et al. (2003);
Jones et al. (2004).
(1987), asymmetry correction
according to Finger et al. (1994)
499 reflections
91 parameters
77 restraints
H-atom parameters not refined
Preferred orientation correction:
March–Dollase (Dollase, 1986);
direction of preferred orientation
001, texture parameter r = 1.03
(1)
Table 1
Hydrogen-bond geometry (Å, ).
D—H A
In the title compound [systematic name 5-deoxy-5-fluoro-N(pentyloxycarbonyl)cytidine], C15H22FN3O6, the pentyl chain
is disordered over two positions with refined occupancies of
0.53 (5) and 0.47 (5). The furan ring assumes an envelope
conformation. In the crystal, intermolecular N—H O
hydrogen bonds link the molecules into chains propagating
along the b axis. The crystal packing exhibits electrostatic
interactions between the 5-fluoropyrimidin-2(1H)-one fragments of neighbouring molecules as indicated by short O C
[2.875 (3) and 2.961 (3) Å] and F C [2.886 (3) Å] contacts.
Scan method: step
Absorption correction: none
2min = 1.0, 2max = 35.0
Increment in 2 = 0.003
N17—H171 O8
i
D—H
H A
D A
D—H A
0.860
1.956
2.797 (5)
170
Symmetry code: (i) x þ 1; y þ 12; z þ 32.
Data collection: ESRF SPEC package; cell refinement: GSAS
(Larson & Von Dreele, 1994); data reduction: CRYSFIRE2004
(Shirley, 2000) and MOPAC (Dewar et al., 1985); program(s) used to
solve structure: FOX (Favre-Nicolin & Černý, 2002); program(s) used
to refine structure: GSAS; molecular graphics: Mercury (Macrae et al.,
2006) and PLATON (Spek, 2009); software used to prepare material
for publication: enCIFer (Allen et al., 2004).
This study was supported by the Czech Grant Agency
(grant No. GAČR 203/07/0040), the Institute of Chemical
Technology in Prague (grant No. 108–08–0017) and the
research program MSM 2B08021 of the Ministry of Education,
Youth and Sports of the Czech Republic.
Supplementary data and figures for this paper are available from the
IUCr electronic archives (Reference: CV2544).
References
Experimental
Crystal data
C15H22FN3O6
Mr = 359.35
Orthorhombic, P21 21 21
a = 5.20527 (2) Å
b = 9.52235 (4) Å
c = 34.77985 (13) Å
V = 1723.91 (1) Å3
Acta Cryst. (2009). E65, o1325–o1326
Z=4
Synchrotron radiation
= 0.79483 (4) Å
= 0.15 mm1
T = 293 K
Specimen shape: cylinder
40 1 1 mm
Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J.
Appl. Cryst. 37, 335–338.
Dewar, M. J. S., Zoebisch, E. G., Healy, E. F. & Stewart, J. J. P. (1985). J. Am.
Chem. Soc. 107, 3902–3909.
Dollase, W. A. (1986). J. Appl. Cryst. 19, 267–272.
Favre-Nicolin, V. & Černý, R. (2002). J. Appl. Cryst. 35, 734–743.
Finger, L. W., Cox, D. E. & Jephcoat, A. P. (1994). J. Appl. Cryst. 27, 892–900.
Jones, L., Hawkins, N., Westwood, M., Wright, K., Richardson, G. & Riemsma,
R. (2004). Health Technol. Assess. 8, 1–156.
Larson, A. C. & Von Dreele, R. B. (1994). GSAS. Report LAUR 86-748. Los
Alamos National Laboratory, New Mexico, USA.
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor,
R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
doi:10.1107/S1600536809017905
Rohlicek et al.
o1325
organic compounds
Shirley, R. (2000). CRYSFIRE User’s Manual. Guildford, England: The
Lattice Press.
Spek, A. L. (2009). Acta Cryst. D65, 148–155.
o1326
Rohlicek et al.
C15H22FN3O6
Thompson, P., Cox, D. E. & Hastings, J. B. (1987). J. Appl. Cryst. 20,
79–83.
Wagstaff, A. J., Ibbotson, T. & Goa, K. L. (2003). Drugs, 63, 217–236.
Acta Cryst. (2009). E65, o1325–o1326
supporting information
supporting information
Acta Cryst. (2009). E65, o1325–o1326
[doi:10.1107/S1600536809017905]
Capecitabine from X-ray powder synchrotron data
Jan Rohlicek, Michal Husak, Ales Gavenda, Alexandr Jegorov, Bohumil Kratochvil and Andy
Fitch
S1. Comment
Capecitabine is the first FDA-approved oral chemotherapy for the treatment for some types of cancer, including advanced
bowel cancer or breast cancer (Wagstaff et al., 2003; Jones et al., 2004). Capecitabine is 5-deoxy-5-fluoro-N-[(pentyloxy)carbonyl]-cytidine and in vivo is enzymatically converted to the active drug 5-fluorouracil. Crystal structure
determination of capecitabine was not reported yet. In this paper we report crystal structure determination of the title
compound from the powder diffraction data by using synchrotron radiation.
The asymmetric unit consists of one molecule of capecitabine (Fig 1). The crystal packing is stabilized by
intermolecular interactions - electrostatic interactions proved by short O···C and F···C contacts (Table 1) and N—H···O
hydrogen bonds (Table 2).
S2. Experimental
Samples of crystalline capecitabine were prepared by two methods, a and b, respectively. Method a: capecitabine (10 g)
was dissolved in EtOH (80 g). The solution was concentrated under reduced pressure to a residual volume of 25 ml and
kept under stirring overnight. The solid was filtered off and dried at room temperature furnishing capecitabine (6 g).
Method b: capecitabine (18 g) was dissolved in DCM (200 g) and the solution was evaporated to dryness under reduced
pressure. The residue was taken up with toluene (400 g) and about 150 g of solvent were distilled off. The solution was
heated up to 50°C and then allowed to 3 spontaneously cool to 25°C. After cooling to 0°C, the solid was filtered off,
washed with toluene and dried at 60°C under vacuum to constant weight furnishing capecitabine (16.5 g).
S3. Refinement
Both crystallization procedures lead to one polycrystalline form of capecitabine. It was confirmed by measuring on XRay powder diffractometer PANalytical Xpert Pro, Cu Kα radiation (λ = 1.541874 Å). Attempts to determine the structure
from these data were unsuccessful probably due to flexible molecule of capecitabine and low resolution of these data.
The powder obtained by the first "a" procedure was used for structure determination. X-Ray diffraction data were
collected on the high resolution diffractometer ID31 of the European Synchrotron Radiation Facility. The monochromatic
wavelength was fixed at 0.79483 (4) Å. Si (111) crystal multi-analyser combined with Si (111) monochromator was used
(beam offset angle α = 2°). A rotating 1-mm-diameter borosilicate glass capillary with capecitabine powder was used for
the experiment. Data were measured from 1.002°2θ to 34.998°2θ at the room temperature, steps scans was set to
0.003°2θ.
First 20 peaks were used by CRYSFIRE 2004 package (Shirley, 2000) to get a list of possible lattice parameters. The
most probable result was selected (a = 5.21 Å, b = 9.52 Å, c = 34.79 Å, V = 1724 Å3, FOM (20) = 330). If 15 Å3 are used
as an atomic volume for C, N, O and F and 5 Å3 as a volume for hydrogen atom, the approximate molecular volume is
Acta Cryst. (2009). E65, o1325–o1326
sup-1
supporting information
485 Å3. The found volume of 1724 Å3 suggests that there are four molecules in the unit cell (Z = 4). P212121 space group
was selected on the basic of peaks extinction and on the basic of agreement of the Le-bail fit. The structure was solved in
program FOX (Favre-Nicolin & Černý, 2002) using parallel tempering algorithm. The initial model was generated by
AM1 computing method implemented in program MOPAC (Dewar et al., 1985). For the solution process hydrogen
atoms were removed. This model was restrained with bonds and angles restraints, automatically generated by program
FOX. The refinement was carried out in GSAS (Larson & Von Dreele, 1994). Hydrogen atoms were added in positions
based on geometry and structure was restrained by bonds and angles restraints. Five planar restraints for sp2 hybridization
were used (O20/C18/O19/N17, N17/C13/N14/C12, C13/C12/F16/C11, N14/C10/O15/N9 and C4/N9/C10/C11). Due to
relatively high Uiso thermal parameters of alkyl chain (C21—C25) the structure was refined with two disordered chains
(C21—C25 and C21a—C25a) with occupancy factors 0.53 (5) and 0.47 (5). Uiso thermal parameters were constrained
just for atoms in disordered chains by this way (C21/C21a, C22/C22a, C23/C23a, C24/C24a, C25/C25a). At the final
stage atomic coordinates of non-hydrogen atoms were refined to the final agreement factors: Rp=0.055 and Rwp=0.0743.
The diffraction profiles and the differences between the measured and calculated profiles are shown in Fig. 2.
Figure 1
The molecular structure of capecitabine showing the atomic numbering. Displacement spheres are drawn at the 20%
probability level. Only major part of the disordered pentyl chain is shown.
Acta Cryst. (2009). E65, o1325–o1326
sup-2
supporting information
Figure 2
The final Rietveld plot showing the measured data (black thin-plus), calculated data (red line) and difference curve (blue
line). Calculated positions of the reflections are shown by verical bars.
5-deoxy-5-fluoro-N-(pentyloxycarbonyl)cytidine
Crystal data
C15H22FN3O6
Mr = 359.35
Orthorhombic, P212121
a = 5.20527 (2) Å
b = 9.52235 (4) Å
c = 34.77985 (13) Å
V = 1723.91 (1) Å3
Z=4
F(000) = 760
Dx = 1.385 Mg m−3
Synchrotron radiation, λ = 0.79483(4) Å
µ = 0.15 mm−1
T = 293 K
Particle morphology: no specific habit
white
cylinder, 40 × 1 mm
Specimen preparation: Prepared at 293 K and
101 kPa
Data collection
ID31 ESRF Grenoble
diffractometer
Radiation source: X-Ray
Si(111) monochromator
Acta Cryst. (2009). E65, o1325–o1326
Specimen mounting: 1.0 mm borosilicate glass
capillary
Data collection mode: transmission
Scan method: step
2θmin = 1.000°, 2θmax = 34.996°, 2θstep = 0.003°
sup-3
supporting information
Refinement
Least-squares matrix: full
Rp = 0.055
Rwp = 0.074
Rexp = 0.036
RBragg = 0.102
χ2 = 4.452
11333 data points
Excluded region(s): no
Profile function: Pseudo-Voigt profile
coefficients as parameterized in Thompson et al.
(1987), asymmetry correction according to
Finger et al. (1994)
91 parameters
77 restraints
6 constraints
H-atom parameters not refined
Weighting scheme based on measured s.u.'s w =
1/σ(Yobs)2
(Δ/σ)max = 0.05
Background function: Shifted Chebyschev
Preferred orientation correction: March–Dollase
(Dollase, 1986); direction of preferred
orientation 001, texture parameter r = 1.03(1)
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
C1
C2
C3
C4
O5
C6
O7
O8
N9
C10
C11
C12
C13
N14
O15
F16
N17
C18
O19
O20
C21
C22
C23
C24
C25
C21a
C22a
C23a
C24a
C25a
H251
H252
H253
x
y
z
Uiso*/Ueq
Occ. (<1)
−0.0205 (8)
0.0063 (7)
0.0924 (6)
−0.0166 (5)
−0.0717 (9)
0.2118 (13)
−0.2355 (9)
0.0594 (11)
0.1175 (4)
0.0276 (4)
0.3307 (5)
0.4772 (3)
0.3691 (3)
0.1675 (4)
−0.1690 (5)
0.6861 (5)
0.4922 (3)
0.4009 (4)
0.2448 (4)
0.5359 (5)
0.491 (4)
0.524 (3)
0.801 (3)
0.817 (4)
0.700 (5)
0.518 (5)
0.680 (3)
0.560 (3)
0.764 (5)
0.925 (4)
0.7123
0.5245
0.7906
0.8964 (3)
0.7423 (4)
0.6753 (3)
0.7766 (2)
0.9090 (3)
0.9888 (6)
0.6775 (5)
0.5279 (3)
0.79531 (18)
0.73076 (17)
0.87392 (18)
0.90315 (14)
0.83732 (13)
0.75150 (16)
0.6596 (2)
0.98180 (17)
0.86898 (14)
0.8094 (2)
0.7158 (3)
0.8859 (3)
0.8346 (15)
0.957 (2)
0.9940 (19)
1.1183 (13)
1.082 (2)
0.8251 (19)
0.9142 (19)
0.939 (2)
0.9452 (15)
1.079 (2)
1.1617
1.0576
1.0057
0.86415 (10)
0.87424 (8)
0.83655 (8)
0.80775 (7)
0.82416 (10)
0.87530 (18)
0.88107 (14)
0.83793 (13)
0.77283 (7)
0.73805 (7)
0.77201 (7)
0.73950 (6)
0.70512 (6)
0.70410 (6)
0.73930 (11)
0.74183 (10)
0.67035 (6)
0.63692 (7)
0.63482 (12)
0.60977 (10)
0.57240 (14)
0.5449 (2)
0.5361 (5)
0.5087 (4)
0.4695 (5)
0.57299 (18)
0.54603 (17)
0.5068 (4)
0.4756 (2)
0.4786 (7)
0.453
0.4727
0.4585
0.087 (5)*
0.048 (5)*
0.049 (4)*
0.081 (5)*
0.093 (3)*
0.079 (4)*
0.088 (3)*
0.109 (3)*
0.036 (4)*
0.030 (4)*
0.023 (4)*
0.031 (4)*
0.010 (4)*
0.028 (4)*
0.046 (3)*
0.072 (2)*
0.030 (3)*
0.063 (5)*
0.108 (3)*
0.087 (4)*
0.146 (6)*
0.169 (8)*
0.174 (9)*
0.174 (10)*
0.143 (9)*
0.146 (6)*
0.169 (8)*
0.174 (9)*
0.174 (10)*
0.143 (9)*
0.25*
0.25*
0.25*
0.53 (5)
0.53 (5)
0.53 (5)
0.53 (5)
0.53 (5)
0.47 (5)
0.47 (5)
0.47 (5)
0.47 (5)
0.47 (5)
0.53 (5)
0.53 (5)
0.53 (5)
Acta Cryst. (2009). E65, o1325–o1326
sup-4
supporting information
H241
H242
H231
H232
H221
H222
H211
H212
H61
H62
H63
H21
H31
H11
H41
H111
H171
H82
H72
H2511
H2512
H2513
H2411
H2412
H2311
H2312
H2211
H2212
H2111
H2112
0.7261
0.9921
0.8866
0.8831
0.4433
0.4406
0.3216
0.6111
0.1794
0.2378
0.361
0.1249
0.273
−0.166
−0.1786
0.3869
0.6224
−0.0753
−0.216
1.0505
1.008
0.8164
0.874
0.6824
0.4682
0.4442
0.7075
0.8402
0.5817
0.3442
1.1953
1.1435
1.0173
0.9152
1.0371
0.9338
0.7981
0.7627
1.0833
0.9842
0.9557
0.7267
0.6894
0.9315
0.7386
0.9132
0.9246
0.5066
0.592
1.0802
1.082
1.1589
0.8661
0.943
1.0252
0.8643
1.0029
0.8684
0.7316
0.8245
0.5195
0.5053
0.5594
0.5246
0.5559
0.5214
0.5706
0.5664
0.868
0.9023
0.8624
0.8946
0.8356
0.8775
0.8007
0.7957
0.6699
0.8272
0.883
0.4588
0.5029
0.476
0.478
0.4511
0.5072
0.5013
0.5578
0.5424
0.5736
0.5647
0.25*
0.25*
0.25*
0.25*
0.25*
0.25*
0.25*
0.25*
0.1*
0.1*
0.1*
0.075*
0.075*
0.12*
0.12*
0.03*
0.04*
0.1*
0.12*
0.25*
0.25*
0.25*
0.25*
0.25*
0.25*
0.25*
0.25*
0.25*
0.25*
0.25*
0.53 (5)
0.53 (5)
0.53 (5)
0.53 (5)
0.53 (5)
0.53 (5)
0.53 (5)
0.53 (5)
0.47 (5)
0.47 (5)
0.47 (5)
0.47 (5)
0.47 (5)
0.47 (5)
0.47 (5)
0.47 (5)
0.47 (5)
0.47 (5)
0.47 (5)
Geometric parameters (Å, º)
C1—C2
C1—O5
C1—C6
C1—H11
C2—C3
C2—O7
C2—H21
C3—C4
C3—O8
C3—H31
C4—O5
C4—N9
C4—H41
C6—H61
C6—H62
Acta Cryst. (2009). E65, o1325–o1326
1.515 (5)
1.421 (5)
1.545 (7)
0.950
1.525 (4)
1.422 (6)
0.950
1.502 (4)
1.413 (4)
0.950
1.413 (4)
1.4123 (19)
0.950
0.950
0.950
O20—C21
O20—C21a
C21—C22
C21—H211
C21—H212
C22—C23
C22—H221
C22—H222
C23—C24
C23—H231
C23—H232
C24—H241
C24—H242
C25—C24
C25—H251
1.408 (2)
1.407 (2)
1.518 (2)
0.949 (16)
0.95 (2)
1.520 (2)
0.95 (2)
0.950 (9)
1.522 (2)
0.950 (19)
0.95 (2)
0.949 (19)
0.95 (2)
1.530 (2)
0.951 (19)
sup-5
supporting information
C6—H63
O7—H72
O8—H82
N9—C10
N9—C11
C10—N14
C10—O15
C11—C12
C11—H111
C12—C13
C12—F16
C13—N14
C13—N17
N17—C18
N17—H171
C18—O19
C18—O20
0.950
0.820
0.820
1.4352 (18)
1.3389 (19)
1.4015 (19)
1.2282 (19)
1.3919 (19)
0.950
1.4625 (19)
1.3228 (19)
1.3305 (18)
1.4013 (19)
1.3783 (19)
0.860
1.208 (2)
1.384 (2)
C25—H252
C25—H253
C21a—C22a
C21a—H2111
C21a—H2112
C22a—C23a
C22a—H2211
C22a—H2212
C23a—C24a
C23a—H2311
C23a—H2312
C24a—C25a
C24a—H2411
C24a—H2412
C25a—H2511
C25a—H2512
C25a—H2513
0.95 (3)
0.95 (2)
1.519 (2)
0.95 (3)
0.95 (3)
1.520 (2)
0.950 (15)
0.95 (2)
1.523 (2)
0.95 (2)
0.950 (18)
1.530 (2)
0.95 (2)
0.952 (18)
0.950 (19)
0.95 (3)
0.95 (3)
O15···C12i
F16···C10ii
2.961 (3)
2.886 (3)
O15···C11iii
2.875 (3)
C2—C1—O5
C2—C1—C6
C2—C1—H11
O5—C1—C6
O5—C1—H11
C6—C1—H11
C1—C2—C3
C1—C2—O7
C1—C2—H21
C3—C2—O7
C3—C2—H21
O7—C2—H21
C2—C3—C4
C2—C3—O8
C2—C3—H31
C4—C3—O8
C4—C3—H31
O8—C3—H31
C3—C4—O5
C3—C4—N9
C3—C4—H41
O5—C4—N9
O5—C4—H41
N9—C4—H41
C1—O5—C4
C1—C6—H61
C1—C6—H62
109.0 (3)
114.9 (2)
107.52
110.2 (2)
107.4
107.5
103.46 (14)
112.16 (19)
112.53
102.85 (18)
112.59
112.5
101.19 (13)
110.48 (18)
105.17
127.86 (19)
105.07
105.13
112.34 (14)
117.90 (12)
105.26
109.57 (17)
105.29
105.37
106.4 (3)
109.5
109.5
O20—C21—H212
C22—C21—H211
C22—C21—H212
H211—C21—H212
C21—C22—C23
C21—C22—H221
C21—C22—H222
C23—C22—H221
C23—C22—H222
H221—C22—H222
C22—C23—C24
C22—C23—H231
C22—C23—H232
C24—C23—H231
C24—C23—H232
H231—C23—H232
C23—C24—C25
C23—C24—H241
C23—C24—H242
C25—C24—H241
C25—C24—H242
H241—C24—H242
C24—C25—H251
C24—C25—H252
C24—C25—H253
H251—C25—H252
H251—C25—H253
110.1 (17)
110.1 (16)
109.9 (6)
109.4 (9)
114.3 (2)
108.2 (6)
108.2 (14)
108.3 (14)
108.3 (12)
109.5 (16)
110.9 (2)
109.1 (13)
109.1 (15)
109.1 (15)
109.1 (12)
109.5 (16)
111.3 (2)
109.1 (12)
109.0 (16)
109 (2)
109.0 (17)
109.4 (11)
110 (2)
110 (2)
109.6 (17)
109.3 (19)
110 (2)
Acta Cryst. (2009). E65, o1325–o1326
sup-6
supporting information
C1—C6—H63
H61—C6—H62
H61—C6—H63
H62—C6—H63
C2—O7—H72
C3—O8—H82
C4—N9—C10
C4—N9—C11
C10—N9—C11
N9—C10—N14
N9—C10—O15
N14—C10—O15
N9—C11—C12
N9—C11—H111
C12—C11—H111
C11—C12—C13
C11—C12—F16
C13—C12—F16
C12—C13—N14
C12—C13—N17
N14—C13—N17
C10—N14—C13
C13—N17—C18
C13—N17—H171
C18—N17—H171
N17—C18—O19
N17—C18—O20
O19—C18—O20
C18—O20—C21
C18—O20—C21a
O20—C21—C22
O20—C21—H211
109.4
109.4
109.4
109.6
109.5
109.47
120.62 (14)
119.91 (14)
119.47 (12)
118.71 (13)
118.59 (15)
122.71 (15)
125.65 (14)
117.16
117.19
111.59 (12)
120.89 (15)
127.52 (14)
126.04 (12)
115.94 (14)
118.02 (18)
118.29 (13)
118.81 (13)
120.56
120.63
125.88 (16)
100.60 (15)
133.52 (16)
111.3 (2)
111.7 (2)
107.3 (2)
110.0 (9)
H252—C25—H253
O20—C21a—C22a
O20—C21a—H2111
O20—C21a—H2112
C22a—C21a—H2111
C22a—C21a—H2112
H2111—C21a—H2112
C21a—C22a—C23a
C21a—C22a—H2211
C21a—C22a—H2212
C23a—C22a—H2211
C23a—C22a—H2212
H2211—C22a—H2212
C22a—C23a—C24a
C22a—C23a—H2311
C22a—C23a—H2312
C24a—C23a—H2311
C24a—C23a—H2312
H2311—C23a—H2312
C23a—C24a—C25a
C23a—C24a—H2411
C23a—C24a—H2412
C25a—C24a—H2411
C25a—C24a—H2412
H2411—C24a—H2412
C24a—C25a—H2511
C24a—C25a—H2512
C24a—C25a—H2513
H2511—C25a—H2512
H2511—C25a—H2513
H2512—C25a—H2513
109 (2)
107.2 (2)
110.1 (16)
109.9 (18)
110.2 (17)
110.1 (13)
109.4 (6)
114.4 (2)
108.3 (6)
108.2 (15)
108.2 (19)
108.3 (10)
109.4 (10)
111.0 (2)
109 (2)
109.0 (11)
109.1 (12)
109.2 (19)
109.5 (16)
111.4 (2)
109.0 (10)
109 (2)
109 (3)
109.0 (16)
109.4 (11)
110 (2)
110 (2)
109.6 (17)
109 (2)
109 (2)
110 (2)
Symmetry codes: (i) x−1, y, z; (ii) −x+1, y+1/2, −z+3/2; (iii) −x, y−1/2, −z+3/2.
Hydrogen-bond geometry (Å, º)
D—H···A
D—H
H···A
D···A
D—H···A
N17—H171···O8ii
0.860
1.956
2.797 (5)
170
Symmetry code: (ii) −x+1, y+1/2, −z+3/2.
Acta Cryst. (2009). E65, o1325–o1326
sup-7
Was this manual useful for you? yes no
Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Download PDF

advertisement