- Home
- Home security & automation
- Security device components
- STMicroelectronics
- STM8L052C6
- Data Sheet
- 103 Pages
STMicroelectronics STM8L052C6 Datasheet
advertisement
Assistant Bot
Need help? Our chatbot has already read the manual and is ready to assist you. Feel free to ask any questions about the device, but providing details will make the conversation more productive.
▼
Scroll to page 2
of
103
STM8L052C6 Value Line, 8-bit ultra-low-power MCU, 32-KB Flash, 256-byte data EEPROM, RTC, LCD, timers, USART, I2C, SPI, ADC Datasheet - production data Features Operating conditions – Operating power supply: 1.8 V to 3.6 V – Temperature range: -40 °C to 85 °C Low-power features – Five low-power modes: Wait, Low-power run (5.1 µA), Low-power wait (3 µA), Activehalt with full RTC (1.3 µA), Halt (350 nA) – Consumption: 195 µA/MHz + 440 µA – Ultra-low leakage per I/0: 50 nA – Fast wakeup from Halt: 4.7 µs Advanced STM8 core – Harvard architecture and 3-stage pipeline – Max freq. 16 MHz, 16 CISC MIPS peak – Up to 40 external interrupt sources Reset and supply management – Low-power, ultra-safe BOR reset with five selectable thresholds – Ultra-low-power POR/PDR – Programmable voltage detector (PVD) Clock management – 32 kHz and 1 to 16 MHz crystal oscillator – Internal 16 MHz factory-trimmed RC – Internal 38 kHz low consumption RC – Clock security system Low-power RTC – BCD calendar with alarm interrupt – Auto-wakeup from Halt w/ periodic interrupt LCD: up to 4x28 segments w/ step-up converter Memories – 32 KB Flash program memory and 256 bytes data EEPROM with ECC, RWW – Flexible write and read protection modes – 2 Kbytes of RAM March 2015 This is information on a product in full production. LQFP48 7 x 7 mm DMA – Four channels supporting ADC, SPI, I2C, USART, timers – One channel for memory-to-memory 12-bit ADC up to 1 Msps/25 channels – Internal reference voltage Timers – Two 16-bit timers with two channels (used as IC, OC, PWM), quadrature encoder – One 16-bit advanced control timer with three channels, supporting motor control – One 8-bit timer with 7-bit prescaler – Two watchdogs: one Window, one Independent – Beeper timer with 1-, 2- or 4-kHz frequencies Communication interfaces – Synchronous serial interface (SPI) – Fast I2C 400 kHz SMBus and PMBus – USART (ISO 7816 interface and IrDA) Up to 41 I/Os, all mappable on interrupt vectors Development support – Fast on-chip programming and nonintrusive debugging with SWIM – Bootloader using USART DocID023331 Rev 2 1/103 www.st.com Contents STM8L052C6 Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3 2.1 Device overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2 Ultra-low-power continuum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11 Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.1 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.2 Central processing unit STM8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.3 Advanced STM8 core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.2.2 Interrupt controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Reset and supply management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.3.1 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.3.2 Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.3.3 Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.4 Clock management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.5 Low-power real-time clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.6 LCD (Liquid crystal display) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.7 Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.8 DMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.9 Analog-to-digital converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.10 System configuration controller and routing interface . . . . . . . . . . . . . . . 19 3.11 Timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.12 2/103 3.2.1 3.11.1 TIM1 - 16-bit advanced control timer . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.11.2 16-bit general purpose timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.11.3 8-bit basic timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Watchdog timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.12.1 Window watchdog timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.12.2 Independent watchdog timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.13 Beeper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.14 Communication interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.14.1 SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.14.2 I²C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 DocID023331 Rev 2 STM8L052C6 Contents 3.14.3 4 3.15 Infrared (IR) interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.16 Development support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 4.1 5 USART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 System configuration options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Memory and register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 5.1 Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 5.2 Register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 6 Interrupt vector mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 7 Option bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 8 Electrical parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 8.1 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 8.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 8.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 8.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 8.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 8.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 8.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 8.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 8.3.1 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 8.3.2 Embedded reset and power control block characteristics . . . . . . . . . . . 56 8.3.3 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 8.3.4 Clock and timing characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 8.3.5 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 8.3.6 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 8.3.7 I/O port pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 8.3.8 Communication interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 8.3.9 LCD controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 8.3.10 Embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 8.3.11 12-bit ADC1 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 8.3.12 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 DocID023331 Rev 2 3/103 4 Contents 9 STM8L052C6 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 9.1 LQFP48 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 10 Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 11 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 4/103 DocID023331 Rev 2 STM8L052C6 List of tables List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. Table 16. Table 17. Table 18. Table 19. Table 20. Table 21. Table 22. Table 23. Table 24. Table 25. Table 26. Table 27. Table 28. Table 29. Table 30. Table 31. Table 32. Table 33. Table 34. Table 35. Table 36. Table 37. Table 38. Table 39. Table 40. Table 41. Table 42. Table 43. Table 44. Table 45. Table 46. Medium-density value line STM8L052C6 low-power device features and peripheral counts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Timer feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Legend/abbreviation for Table 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Medium-density value line STM8L052C6pin description . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Flash and RAM boundary addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 I/O port hardware register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 General hardware register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 CPU/SWIM/debug module/interrupt controller registers . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Interrupt mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Option byte addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Option byte description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 56 Total current consumption in Run mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 Total current consumption in Wait mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 Total current consumption and timing in Low power run mode at VDD = 1.8 V to 3.6 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Total current consumption in Low power wait mode at VDD = 1.8 V to 3.6 V . . . . . . . . . . 63 Total current consumption and timing in Active-halt mode at VDD = 1.8 V to 3.6 V. . . . . . 64 Typical current consumption in Active-halt mode, RTC clocked by LSE external crystal . . 65 Total current consumption and timing in Halt mode at VDD = 1.8 to 3.6 V . . . . . . . . . . . . 66 Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 Current consumption under external reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 HSE external clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 LSE external clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 HSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 LSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 HSI oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 RAM and hardware registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 Flash program and data EEPROM memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 Output driving current (high sink ports). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 Output driving current (true open drain ports). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 Output driving current (PA0 with high sink LED driver capability). . . . . . . . . . . . . . . . . . . . 78 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 SPI1 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 I2C characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 LCD characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 Reference voltage characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 ADC1 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 ADC1 accuracy with VDDA = 3.3 V to 2.5 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 ADC1 accuracy with VDDA = 2.4 V to 3.6 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 DocID023331 Rev 2 5/103 6 List of tables Table 47. Table 48. Table 49. Table 50. Table 51. Table 52. Table 53. Table 54. Table 55. 6/103 STM8L052C6 ADC1 accuracy with VDDA = VREF+ = 1.8 V to 2.4 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 RAIN max for fADC = 16 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 EMS data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 EMI data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package mechanical data. . . . . . . . . . . . 99 Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 DocID023331 Rev 2 STM8L052C6 List of figures List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Figure 33. Figure 34. Figure 35. Figure 36. Figure 37. Figure 38. Figure 39. Figure 40. Medium-density value line STM8L052C6 device block diagram . . . . . . . . . . . . . . . . . . . . 12 Medium-density value line STM8L052C6 clock tree diagram . . . . . . . . . . . . . . . . . . . . . . 17 STM8L052C6 48-pin LQFP48 package pinout (with LCD) . . . . . . . . . . . . . . . . . . . . . . . . 23 Memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 POR/BOR thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Typ. IDD(RUN) vs. VDD, fCPU = 16 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Typ. IDD(Wait) vs. VDD, fCPU = 16 MHz 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 Typ. IDD(LPR) vs. VDD (LSI clock source) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Typ. IDD(LPW) vs. VDD (LSI clock source) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 HSE oscillator circuit diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 LSE oscillator circuit diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 Typical HSI frequency vs. VDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 Typical LSI frequency vs. VDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 Typical VIL and VIH vs. VDD (high sink I/Os). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 Typical VIL and VIH vs. VDD (true open drain I/Os). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 Typical pull-up resistance RPU vs. VDD with VIN=VSS. . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 Typical pull-up current Ipu vs. VDD with VIN=VSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 Typ. VOL @ VDD = 3.0 V (high sink ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 Typ. VOL @ VDD = 1.8 V (high sink ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 Typ. VOL @ VDD = 3.0 V (true open drain ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 Typ. VOL @ VDD = 1.8 V (true open drain ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 Typ. VDD - VOH @ VDD = 3.0 V (high sink ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 Typ. VDD - VOH @ VDD = 1.8 V (high sink ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 Typical NRST pull-up resistance RPU vs. VDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 Typical NRST pull-up current Ipu vs. VDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 Recommended NRST pin configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 SPI1 timing diagram - slave mode and CPHA=0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 SPI1 timing diagram - slave mode and CPHA=1(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 SPI1 timing diagram - master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 Typical application with I2C bus and timing diagram 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 ADC1 accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 Maximum dynamic current consumption on VREF+ supply pin during ADC conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 Power supply and reference decoupling (VREF+ not connected to VDDA). . . . . . . . . . . . . . 94 Power supply and reference decoupling (VREF+ connected to VDDA) . . . . . . . . . . . . . . . 94 LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package outline . . . . . . . . . . . . . . . . . . . 98 LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat recommended footprint . . . . . . . . . . . . 100 LQFP48 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 DocID023331 Rev 2 7/103 7 Introduction 1 STM8L052C6 Introduction This document describes the features, pinout, mechanical data and ordering information of the medium-density value line STM8L052C6 microcontroller with 32-Kbyte Flash memory density. For further details on the whole STMicroelectronics medium-density family please refer to Section 2.2: Ultra-low-power continuum. For detailed information on device operation and registers, refer to the reference manual (RM0031). For information on to the Flash program memory and data EEPROM, refer to the programming manual (PM0054). For information on the debug module and SWIM (single wire interface module), refer to the STM8 SWIM communication protocol and debug module user manual (UM0470). For information on the STM8 core, refer to the STM8 CPU programming manual (PM0044). Medium density value line devices provide the following benefits: Integrated system – 32 Kbytes of medium-density embedded Flash program memory – 256 bytes of data EEPROM – 2 Kbytes of RAM – Internal high-speed and low-power low-speed RC – Embedded reset Ultra-low-power consumption – 195 µA/MHZ + 440 µA (consumption) – 0.9 µA with LSI in Active-halt mode – Clock gated system and optimized power management – Capability to execute from RAM for low-power wait mode and low-power-run mode Advanced features – Up to 16 MIPS at 16 MHz CPU clock frequency – Direct memory access (DMA) for memory-to-memory or peripheral-to-memory access Short development cycles – Application scalability across a common family product architecture with compatible pinout, memory map and modular peripherals – Wide choice of development tools These features make the value line STM8L05xxx ultra-low-power microcontroller family suitable for a wide range of consumer and mass market applications. Refer to Table 1: Medium-density value line STM8L052C6 low-power device features and peripheral counts and Section 3: Functional overview for an overview of the complete range of peripherals proposed in this family. Figure 1 shows the block diagram of the medium-density value line STM8L052C6 device. 8/103 DocID023331 Rev 2 STM8L052C6 2 Description Description The medium-density value line STM8L052C6 devices are members of the STM8L ultra-lowpower 8-bit family. The value line STM8L05xxx ultra-low-power family features the enhanced STM8 CPU core providing increased processing power (up to 16 MIPS at 16 MHz) while maintaining the advantages of a CISC architecture with improved code density, a 24-bit linear addressing space and an optimized architecture for low power operations. The family includes an integrated debug module with a hardware interface (SWIM) which allows non-intrusive In-application debugging and ultra-fast Flash programming. Medium-density value line STM8L052C6 microcontrollers feature embedded data EEPROM and low-power, low-voltage, single-supply program Flash memory. All devices offer 12-bit ADC, real-time clock, 16-bit timers, one 8-bit timer as well as standard communication interface such as SPI, I2C, USART and 4x28-segment LCD. The 4x 28-segment LCD is available on the medium-density value line STM8L052C6. The STM8L052C6 operates from 1.8 V to 3.6 V and is available in the -40 to +85 °C temperature range. The modular design of the peripheral set allows the same peripherals to be found in different ST microcontroller families including 32-bit families. This makes any transition to a different family very easy, and simplified even more by the use of a common set of development tools. All value line STM8L ultra-low-power products are based on the same architecture with the same memory mapping and a coherent pinout. DocID023331 Rev 2 9/103 48 Description 2.1 STM8L052C6 Device overview Table 1. Medium-density value line STM8L052C6 low-power device features and peripheral counts Features STM8L052C6 Flash (Kbytes) 32 Data EEPROM (bytes) 256 RAM (Kbytes) 2 LCD Timers 4x28 Basic 1 (8-bit) General purpose 2 (16-bit) Advanced control 1 (16-bit) SPI Communication I2C interfaces USART 1 1 1 GPIOs 41(1) 12-bit synchronized ADC (number of channels) 1 (25) Others RTC, window watchdog, independent watchdog, 16-MHz and 38-kHz internal RC, 1- to 16-MHz and 32-kHz external oscillator CPU frequency 16 MHz Operating voltage 1.8 V to 3.6 V Operating temperature -40 to +85 °C Package LQFP48 1. The number of GPIOs given in this table includes the NRST/PA1 pin but the application can use the NRST/PA1 pin as general purpose output only (PA1). 10/103 DocID023331 Rev 2 STM8L052C6 2.2 Description Ultra-low-power continuum The ultra-low-power value line STM8L05xxx and STM8L15xxx are fully pin-to-pin, software and feature compatible. Besides the full compatibility within the STM8L family, the devices are part of STMicroelectronics microcontrollers ultra-low-power strategy which also includes STM8L101xx and STM32L15xxx. The STM8L and STM32L families allow a continuum of performance, peripherals, system architecture, and features. They are all based on STMicroelectronics 0.13 µm ultra-low leakage process. Note: 1 The STM8L05xxx is pin-to-pin compatible with STM8L101xx devices. 2 The STM32L family is pin-to-pin compatible with the general purpose STM32F family. Please refer to STM32L15x documentation for more information on these devices. Performance All families incorporate highly energy-efficient cores with both Harvard architecture and pipelined execution: advanced STM8 core for STM8L families and ARM® Cortex®-M3 core for STM32L family. In addition specific care for the design architecture has been taken to optimize the mA/DMIPS and mA/MHz ratios. This allows the ultra-low-power performance to range from 5 up to 33.3 DMIPs. Shared peripherals STM8L05x, STM8L15x and STM32L15xx share identical peripherals which ensure a very easy migration from one family to another: Analog peripheral: ADC1 Digital peripherals: RTC and some communication interfaces Common system strategy To offer flexibility and optimize performance, the STM8L and STM32L devices use a common architecture: Same power supply range from 1.8 to 3.6 V Architecture optimized to reach ultra-low consumption both in low power modes and Run mode Fast startup strategy from low power modes Flexible system clock Ultra-safe reset: same reset strategy for both STM8L and STM32L including power-on reset, power-down reset, brownout reset and programmable voltage detector Features ST ultra-low-power continuum also lies in feature compatibility: More than 10 packages with pin count from 20 to 100 pins and size down to 3 x 3 mm Memory density ranging from 4 to 128 Kbytes DocID023331 Rev 2 11/103 48 Functional overview 3 STM8L052C6 Functional overview Figure 1. Medium-density value line STM8L052C6 device block diagram OSC_IN, OSC_OUT 16 MHz internal RC OSC32_IN, OSC32_OUT @VDD 1-16 MHz oscillator 32 kHz oscillator Clock controller and CSS 38 kHz internal RC VDD18 Clocks to core and peripherals Interrupt controller Debug module (SWIM) BOR 16-bit Timer 2 2 channels 16-bit Timer 3 3 channels 16-bit Timer 1 8-bit Timer 4 Infrared interface DMA1 (4 channels) SCL, SDA, SMB I²C1 MOSI, MISO, SCK, NSS SPI1 RX, TX, CK VDDA VSSA ADC1_INx VREF+ VREF- RESET POR/PDR 2 channels IR_TIM VOLT. REG. STM8 Core USART1 PVD Address, control and data buses SWIM Power @VDDA/VSSA 12-bit ADC1 VREFINT out Internal reference voltage VLCD = 2.5 V to 3.6 V LCD booster VDD1 =1.8 V to 3.6 V VSS1 NRST PVD_IN 32 Kbytes program memory 256 bytes data EEPROM 2 Kbytes RAM Port A PA[7:0] Port B PB[7:0] Port C PC[7:0] Port D PD[7:0] Port E PE[7:0] Port F PF0 Beeper BEEP RTC ALARM, CALIB IWDG (38 kHz clock) WWDG LCD driver 4x28 1. Legend: ADC: Analog-to-digital converter BOR: Brownout reset DMA: Direct memory access I²C: Inter-integrated circuit multimaster interface LCD: Liquid crystal display POR/PDR: Power on reset / power down reset RTC: Real-time clock SPI: Serial peripheral interface SWIM: Single wire interface module USART: Universal synchronous asynchronous receiver transmitter WWDG: Window watchdog IWDG: independent watchdog 12/103 DocID023331 Rev 2 SEGx, COMx STM8L052C6 3.1 Functional overview Low-power modes The medium-density value line STM8L052C6 supports five low power modes to achieve the best compromise between low power consumption, short startup time and available wakeup sources: Wait mode: The CPU clock is stopped, but selected peripherals keep running. An internal or external interrupt, event or a Reset can be used to exit the microcontroller from Wait mode (WFE or WFI mode). Low power run mode: The CPU and the selected peripherals are running. Execution is done from RAM with a low speed oscillator (LSI or LSE). Flash memory and data EEPROM are stopped and the voltage regulator is configured in ultra-low-power mode. The microcontroller enters Low power run mode by software and can exit from this mode by software or by a reset. All interrupts must be masked. They cannot be used to exit the microcontroller from this mode. Low power wait mode: This mode is entered when executing a Wait for event in Low power run mode. It is similar to Low power run mode except that the CPU clock is stopped. The wakeup from this mode is triggered by a Reset or by an internal or external event (peripheral event generated by the timers, serial interfaces, DMA controller (DMA1) and I/O ports). When the wakeup is triggered by an event, the system goes back to Low power run mode. All interrupts must be masked. They cannot be used to exit the microcontroller from this mode. Active-halt mode: CPU and peripheral clocks are stopped, except RTC. The wakeup can be triggered by RTC interrupts, external interrupts or reset. Halt mode: CPU and peripheral clocks are stopped, the device remains powered on. The RAM content is preserved. The wakeup is triggered by an external interrupt or reset. A few peripherals have also a wakeup from Halt capability. Switching off the internal reference voltage reduces power consumption. Through software configuration it is also possible to wake up the device without waiting for the internal reference voltage wakeup time to have a fast wakeup time of 5 µs. DocID023331 Rev 2 13/103 48 Functional overview STM8L052C6 3.2 Central processing unit STM8 3.2.1 Advanced STM8 core The 8-bit STM8 core is designed for code efficiency and performance with an Harvard architecture and a 3-stage pipeline. It contains six internal registers which are directly addressable in each execution context, 20 addressing modes including indexed indirect and relative addressing, and 80 instructions. Architecture and registers Harvard architecture 3-stage pipeline 32-bit wide program memory bus - single cycle fetching most instructions X and Y 16-bit index registers - enabling indexed addressing modes with or without offset and read-modify-write type data manipulations 8-bit accumulator 24-bit program counter - 16-Mbyte linear memory space 16-bit stack pointer - access to a 64-Kbyte level stack 8-bit condition code register - 7 condition flags for the result of the last instruction Addressing 20 addressing modes Indexed indirect addressing mode for lookup tables located anywhere in the address space Stack pointer relative addressing mode for local variables and parameter passing Instruction set 3.2.2 80 instructions with 2-byte average instruction size Standard data movement and logic/arithmetic functions 8-bit by 8-bit multiplication 16-bit by 8-bit and 16-bit by 16-bit division Bit manipulation Data transfer between stack and accumulator (push/pop) with direct stack access Data transfer using the X and Y registers or direct memory-to-memory transfers Interrupt controller The medium-density value line STM8L052C6 features a nested vectored interrupt controller: 14/103 Nested interrupts with 3 software priority levels 32 interrupt vectors with hardware priority Up to 40 external interrupt sources on 11 vectors Trap and reset interrupts DocID023331 Rev 2 STM8L052C6 Functional overview 3.3 Reset and supply management 3.3.1 Power supply scheme The device requires a 1.8 V to 3.6 V operating supply voltage (VDD). The external power supply pins must be connected as follows: VSS1 ; VDD1 = 1.8 to 3.6 V: external power supply for I/Os and for the internal regulator. Provided externally through VDD1 pins, the corresponding ground pin is VSS1. 3.3.2 VSSA ; VDDA = 1.8 to 3.6 V: external power supplies for analog peripherals. VDDA and VSSA must be connected to VDD1 and VSS1, respectively. VSS2 ; VDD2 = 1.8 to 3.6 V: external power supplies for I/Os. VDD2 and VSS2 must be connected to VDD1 and VSS1, respectively. VREF+ ; VREF- (for ADC1): external reference voltage for ADC1. Must be provided externally through VREF+ and VREF- pin. Power supply supervisor The device has an integrated ZEROPOWER power-on reset (POR)/power-down reset (PDR), coupled with a brownout reset (BOR) circuitry. At power-on, BOR is always active, and ensures proper operation starting from 1.8 V. After the 1.8 V BOR threshold is reached, the option byte loading process starts, either to confirm or modify default thresholds, or to disable BOR permanently. Five BOR thresholds are available through option bytes, starting from 1.8 V to 3 V. To reduce the power consumption in Halt mode, it is possible to automatically switch off the internal reference voltage (and consequently the BOR) in Halt mode. The device remains under reset when VDD is below a specified threshold, VPOR/PDR or VBOR, without the need for any external reset circuit. The device features an embedded programmable voltage detector (PVD) that monitors the VDD/VDDA power supply and compares it to the VPVD threshold. This PVD offers 7 different levels between 1.85 V and 3.05 V, chosen by software, with a step around 200 mV. An interrupt can be generated when VDD/VDDA drops below the VPVD threshold and/or when VDD/VDDA is higher than the VPVD threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software. 3.3.3 Voltage regulator The medium-density value line STM8L052C6 embeds an internal voltage regulator for generating the 1.8 V power supply for the core and peripherals. This regulator has two different modes: Main voltage regulator mode (MVR) for Run, Wait for interrupt (WFI) and Wait for event (WFE) modes Low power voltage regulator mode (LPVR) for Halt, Active-halt, Low power run and Low power wait modes When entering Halt or Active-halt modes, the system automatically switches from the MVR to the LPVR in order to reduce current consumption. DocID023331 Rev 2 15/103 48 Functional overview 3.4 STM8L052C6 Clock management The clock controller distributes the system clock (SYSCLK) coming from different oscillators to the core and the peripherals. It also manages clock gating for low power modes and ensures clock robustness. Features 16/103 Clock prescaler: To get the best compromise between speed and current consumption the clock frequency to the CPU and peripherals can be adjusted by a programmable prescaler. Safe clock switching: Clock sources can be changed safely on the fly in run mode through a configuration register. Clock management: To reduce power consumption, the clock controller can stop the clock to the core, individual peripherals or memory. System clock sources: 4 different clock sources can be used to drive the system clock: – 1-16 MHz High speed external crystal (HSE) – 16 MHz High speed internal RC oscillator (HSI) – 32.768 kHz Low speed external crystal (LSE) – 38 kHz Low speed internal RC (LSI) RTC and LCD clock sources: The above four sources can be chosen to clock the RTC and the LCD, whatever the system clock. Startup clock: After reset, the microcontroller restarts by default with an internal 2 MHz clock (HSI/8). The prescaler ratio and clock source can be changed by the application program as soon as the code execution starts. Clock security system (CSS): This feature can be enabled by software. If a HSE clock failure occurs, the system clock is automatically switched to HSI. Configurable main clock output (CCO): This outputs an external clock for use by the application. DocID023331 Rev 2 STM8L052C6 Functional overview Figure 2. Medium-density value line STM8L052C6 clock tree diagram &66 26&B,1 26&B287 +6(26& 0+] +6( +6, +6,5& 0+] /6, /6( 6<6&/. 3UHVFDOHU 6<6&/. WRFRUHDQGPHPRU\ 3&/. WRSHULSKHUDOV 3HULSKHUDO FORFNHQDEOHELWV /6( /6,5& N+] %((3&/. &/.%((36(/>@ /6, ,:'*&/. 57&&/. 57& SUHVFDOHU /6(26& N+] WR,:'* WR57& /&'SHULSKHUDO FORFNHQDEOHELW 57&6(/>@ 26&B,1 26&B287 WR%((3 57&&/. 57&&/. WR/&' +DOW &&2 &RQILJXUDEOH FORFNRXWSXW &&2 SUHVFDOHU +6, /6, +6( /6( 6<6&/. /&'&/. WR/&' /&'SHULSKHUDO FORFNHQDEOHELW DLK 1. The HSE clock source can be either an external crystal/ceramic resonator or an external source (HSE bypass). Refer to Section HSE clock in the STM8L15x and STM8L16x reference manual (RM0031). 2. The LSE clock source can be either an external crystal/ceramic resonator or a external source (LSE bypass). Refer to Section LSE clock in the STM8L15x and STM8L16x reference manual (RM0031). 3.5 Low-power real-time clock The real-time clock (RTC) is an independent binary coded decimal (BCD) timer/counter. Six byte locations contain the second, minute, hour (12/24 hour), week day, date, month, year, in BCD (binary coded decimal) format. Correction for 28, 29 (leap year), 30, and 31 day months are made automatically.It provides a programmable alarm and programmable periodic interrupts with wakeup from Halt capability. Periodic wakeup time using the 32.768 kHz LSE with the lowest resolution (of 61 µs) is from min. 122 µs to max. 3.9 s. With a different resolution, the wakeup time can reach 36 hours. Periodic alarms based on the calendar can also be generated from every second to every year. DocID023331 Rev 2 17/103 48 Functional overview 3.6 STM8L052C6 LCD (Liquid crystal display) The LCD is only available on STM8L052xx devices. The liquid crystal display drives up to 4 common terminals and up to 28 segment terminals to drive up to 112 pixels. Internal step-up converter to guarantee contrast control whatever VDD. Static 1/2, 1/3, 1/4 duty supported. Static 1/2, 1/3 bias supported. Phase inversion to reduce power consumption and EMI. Up to 4 pixels which can be programmed to blink. The LCD controller can operate in Halt mode. Note: Unnecessary segments and common pins can be used as general I/O pins. 3.7 Memories The medium-density value line STM8L052C6 has the following main features: 2 Kbytes of RAM The non-volatile memory is divided into three arrays: – 32 Kbytes of medium-density embedded Flash program memory – 256 bytes of data EEPROM – Option bytes The EEPROM embeds the error correction code (ECC) feature. It supports the read-whilewrite (RWW): it is possible to execute the code from the program matrix while programming/erasing the data matrix. The option byte protects part of the Flash program memory from write and readout piracy. 3.8 DMA A 4-channel direct memory access controller (DMA1) offers a memory-to-memory and peripherals-from/to-memory transfer capability. The 4 channels are shared between the following IPs with DMA capability: ADC1, I2C1, SPI1, USART1 and the four timers. 18/103 DocID023331 Rev 2 STM8L052C6 3.9 Functional overview Analog-to-digital converter 12-bit analog-to-digital converter (ADC1) with 25 channels (including 1 fast channel) and internal reference voltage Conversion time down to 1 µs with fSYSCLK= 16 MHz Programmable resolution Programmable sampling time Single and continuous mode of conversion Scan capability: automatic conversion performed on a selected group of analog inputs Analog watchdog Triggered by timer Note: ADC1 can be served by DMA1. 3.10 System configuration controller and routing interface The system configuration controller provides the capability to remap some alternate functions on different I/O ports. TIM4 and ADC1 DMA channels can also be remapped. The highly flexible routing interface allows application software to control the routing of different I/Os to the TIM1 timer input captures. It also controls the routing of internal analog signals to ADC1 and the internal reference voltage VREFINT. 3.11 Timers The medium-density value line STM8L052C6 contains one advanced control timer (TIM1), two 16-bit general purpose timers (TIM2 and TIM3) and one 8-bit basic timer (TIM4). All the timers can be served by DMA1. Table 2 compares the features of the advanced control, general-purpose and basic timers. Table 2. Timer feature comparison Timer Counter Counter resolution type 16-bit Capture/compare Complementary channels outputs 3+1 3 up/down Any power of 2 from 1 to 128 TIM3 TIM4 DMA1 request generation Any integer from 1 to 65536 TIM1 TIM2 Prescaler factor Yes 2 None 8-bit up Any power of 2 from 1 to 32768 DocID023331 Rev 2 0 19/103 48 Functional overview 3.11.1 STM8L052C6 TIM1 - 16-bit advanced control timer This is a high-end timer designed for a wide range of control applications. With its complementary outputs, dead-time control and center-aligned PWM capability, the field of applications is extended to motor control, lighting and half-bridge driver. 3.11.2 3.11.3 16-bit up, down and up/down autoreload counter with 16-bit prescaler 3 independent capture/compare channels (CAPCOM) configurable as input capture, output compare, PWM generation (edge and center aligned mode) and single pulse mode output 1 additional capture/compare channel which is not connected to an external I/O Synchronization module to control the timer with external signals Break input to force timer outputs into a defined state 3 complementary outputs with adjustable dead time Encoder mode Interrupt capability on various events (capture, compare, overflow, break, trigger) 16-bit general purpose timers 16-bit autoreload (AR) up/down-counter 7-bit prescaler adjustable to fixed power of 2 ratios (1…128) 2 individually configurable capture/compare channels PWM mode Interrupt capability on various events (capture, compare, overflow, break, trigger) Synchronization with other timers or external signals (external clock, reset, trigger and enable) 8-bit basic timer The 8-bit timer consists of an 8-bit up auto-reload counter driven by a programmable prescaler. It can be used for timebase generation with interrupt generation on timer overflow. 3.12 Watchdog timers The watchdog system is based on two independent timers providing maximum security to the applications. 3.12.1 Window watchdog timer The window watchdog (WWDG) is used to detect the occurrence of a software fault, usually generated by external interferences or by unexpected logical conditions, which cause the application program to abandon its normal sequence. 3.12.2 Independent watchdog timer The independent watchdog peripheral (IWDG) can be used to resolve processor malfunctions due to hardware or software failures. 20/103 DocID023331 Rev 2 STM8L052C6 Functional overview It is clocked by the internal LSI RC clock source, and thus stays active even in case of a CPU clock failure. 3.13 Beeper The beeper function outputs a signal on the BEEP pin for sound generation. The signal is in the range of 1, 2 or 4 kHz. 3.14 Communication interfaces 3.14.1 SPI The serial peripheral interface (SPI1) provides half/ full duplex synchronous serial communication with external devices. Maximum speed: 8 Mbit/s (fSYSCLK/2) both for master and slave Full duplex synchronous transfers Simplex synchronous transfers on 2 lines with a possible bidirectional data line Master or slave operation - selectable by hardware or software Hardware CRC calculation Slave/master selection input pin Note: SPI1 can be served by the DMA1 Controller. 3.14.2 I²C The I2C bus interface (I2C1) provides multi-master capability, and controls all I²C busspecific sequencing, protocol, arbitration and timing. Master, slave and multi-master capability Standard mode up to 100 kHz and fast speed modes up to 400 kHz 7-bit and 10-bit addressing modes SMBus 2.0 and PMBus support Hardware CRC calculation Note: I2C1 can be served by the DMA1 Controller. 3.14.3 USART The USART interface (USART1) allows full duplex, asynchronous communications with external devices requiring an industry standard NRZ asynchronous serial data format. It offers a very wide range of baud rates. 1 Mbit/s full duplex SCI SPI1 emulation High precision baud rate generator SmartCard emulation IrDA SIR encoder decoder Single wire half duplex mode Note: USART1 can be served by the DMA1 Controller. DocID023331 Rev 2 21/103 48 Functional overview 3.15 STM8L052C6 Infrared (IR) interface The medium-density value line STM8L052C6 contains an infrared interface which can be used with an IR LED for remote control functions. Two timer output compare channels are used to generate the infrared remote control signals. 3.16 Development support Development tools Development tools for the STM8 microcontrollers include: The STice emulation system offering tracing and code profiling The STVD high-level language debugger including C compiler, assembler and integrated development environment The STVP Flash programming software The STM8 also comes with starter kits, evaluation boards and low-cost in-circuit debugging/programming tools. Single wire data interface (SWIM) and debug module The debug module with its single wire data interface (SWIM) permits non-intrusive real-time in-circuit debugging and fast memory programming. The Single wire interface is used for direct access to the debugging module and memory programming. The interface can be activated in all device operation modes. The non-intrusive debugging module features a performance close to a full-featured emulator. Beside memory and peripherals, CPU operation can also be monitored in realtime by means of shadow registers. Bootloader A bootloader is available to reprogram the Flash memory using the USART1 interface. The reference document for the bootloader is UM0560: STM8 bootloader user manual. The bootloader is used to download application software into the device memories, including RAM, program and data memory, using standard serial interfaces. It is a complementary solution to programming via the SWIM debugging interface. 22/103 DocID023331 Rev 2 STM8L052C6 4 Pin description Pin description PE7 PE6 PC7 PC6 PC5 PC4 PC3 PC2 VSS2 VDD2 PC1 PC0 Figure 3. STM8L052C6 48-pin LQFP48 package pinout (with LCD) 48 47 46 45 44 43 42 41 40 39 38 37 36 1 2 35 3 34 33 4 32 5 31 6 30 7 29 8 28 9 27 10 26 11 25 12 13 14 15 16 17 18 19 20 21 22 23 24 PD7 PD6 PD5 PD4 PF0 PB7 PB6 PB5 PB4 PB3 PB2 PB1 VLCD PE0 PE1 PE2 PE3 PE4 PE5 PD0 PD1 PD2 PD3 PB0 PA0 NRST/PA1 PA2 PA3 PA4 PA5 PA6 PA7 VSS1/VSSA/VREFVDD1 VDDA VREF+ Table 3. Legend/abbreviation for Table 4 Type Level I= input, O = output, S = power supply FT Five-volt tolerant TT 3.6 V tolerant Output HS = high sink/source (20 mA) Port and control Input configuration Output Reset state float = floating, wpu = weak pull-up T = true open drain, OD = open drain, PP = push pull Bold X (pin state after reset release). Unless otherwise specified, the pin state is the same during the reset phase (i.e. “under reset”) and after internal reset release (i.e. at reset state). Table 4. Medium-density value line STM8L052C6pin description Main function (after reset) PP OD High sink/source Output Ext. interrupt wpu floating Pin name I/O level Input Type LQFP48 Pin # Default alternate function 2 NRST/PA1(1) I/O 3 PA2/OSC_IN/ [USART1_TX](8)/ [SPI1_MISO] (8) I/O X X X HS X HSE oscillator input / X Port A2 [USART1 transmit] / [SPI1 master in- slave out] 4 PA3/OSC_OUT/[USART1_ RX](8)/[SPI1_MOSI](8) I/O X X X HS X HSE oscillator output / X Port A3 [USART1 receive]/ [SPI1 master out/slave in]/ X HS X Reset DocID023331 Rev 2 PA1 23/103 48 Pin description STM8L052C6 Table 4. Medium-density value line STM8L052C6pin description (continued) High sink/source OD PP I/O TT(2) X X X HS X X Port A4 Timer 2 - break input / LCD COM 0 / ADC1 input 2 6 PA5/TIM3_BKIN/ LCD_COM1/ADC1_IN1 I/O TT(2) X X X HS X X Port A5 Timer 3 - break input / LCD_COM 1 / ADC1 input 1 7 PA6/[ADC1_TRIG]/ LCD_COM2/ADC1_IN0 I/O TT(2) X X X HS X X Port A6 [ADC1 - trigger] / LCD_COM2 /ADC1 input 0 8 PA7/LCD_SEG0(3) I/O X X X HS X X Port A7 LCD segment 0 24 PB0(4)/TIM2_CH1/ LCD_SEG10/ADC1_IN18 I/O TT(2) X(4) X(4) X HS X X Port B0 Timer 2 - channel 1 / LCD segment 10 / ADC1_IN18 25 PB1/TIM3_CH1/ LCD_SEG11/ ADC1_IN17 I/O TT(2) X X X HS X X Port B1 Timer 3 - channel 1 / LCD segment 11 / ADC1_IN17 26 PB2/ TIM2_CH2/ LCD_SEG12/ ADC1_IN16 I/O TT(2) X X X HS X X Port B2 Timer 2 - channel 2 / LCD segment 12 / ADC1_IN16 27 PB3/TIM2_ETR/ LCD_SEG13/ ADC1_IN15 I/O TT(2) X X X HS X X Port B3 Timer 2 - external trigger / LCD segment 13 /ADC1_IN15 28 PB4(4)/[SPI1_NSS](8)/ LCD_SEG14/ ADC1_IN14 I/O TT(2) X(4) X(4) X HS X [SPI1 master/slave select] / X Port B4 LCD segment 14 / ADC1_IN14 29 PB5/[SPI1_SCK](8)/ LCD_SEG15/ ADC1_IN13 I/O TT(2) X X X HS X X Port B5 30 PB6/[SPI1_MOSI](8)/ LCD_SEG16/ ADC1_IN12 I/O TT(2) X X X HS X [SPI1 master out/slave in]/ X Port B6 LCD segment 16 / ADC1_IN12 31 PB7/[SPI1_MISO](8)/ LCD_SEG17/ ADC1_IN11 I/O TT(2) X X X HS X [SPI1 master in- slave out] X Port B7 /LCD segment 17 / ADC1_IN11 37 PC0(3)/I2C1_SDA I/O X 38 PC1(3)/I2C1_SCL 41 PC2/USART1_RX/ LCD_SEG22/ADC1_IN6/ VREFINT 24/103 I/O I/O level PA4/TIM2_BKIN/ LCD_COM0/ADC1_IN2 Pin name Type 5 LQFP48 Ext. interrupt Main function (after reset) Output wpu Input floating Pin # FT FT FT I/O TT(2) X X X Default alternate function [SPI1 clock] / LCD segment 15 / ADC1_IN13 X T(5) Port C0 I2C1 data X T(5) Port C1 I2C1 clock X HS X DocID023331 Rev 2 USART1 receive / LCD segment 22 / ADC1_IN6 X Port C2 /Internal voltage reference output STM8L052C6 Pin description Table 4. Medium-density value line STM8L052C6pin description (continued) wpu Ext. interrupt High sink/source OD PP X X X HS X X Port C3 42 PC3/USART1_TX/ LCD_SEG23/ ADC1_IN5 43 PC4/USART1_CK/ I2C1_SMB/CCO/ LCD_SEG24/ ADC1_IN4 I/O TT(2) X X X 44 PC5/OSC32_IN /[SPI1_NSS](8)/ [USART1_TX](8) I/O X X 45 PC6/OSC32_OUT/ [SPI1_SCK](8)/ [USART1_RX](8) I/O X 46 PC7/LCD_SEG25/ ADC1_IN3 I/O TT(2) 20 PD0/TIM3_CH2/ [ADC1_TRIG](8)/ LCD_SEG7/ADC1_IN22/ 21 I/O TT(2) Main function (after reset) Output floating Pin name I/O level Input Type LQFP48 Pin # Default alternate function USART1 transmit / LCD segment 23 / ADC1_IN5 HS X USART1 synchronous clock / I2C1_SMB / Configurable X Port C4 clock output / LCD segment 24/ ADC1_IN4 X HS X LSE oscillator input / [SPI1 X Port C5 master/slave select] / [USART1 transmit] X X HS X X Port C6 X X X HS X X Port C7 LCD segment 25 /ADC1_IN3 I/O TT(2) X X X HS X Timer 3 - channel 2 / X Port D0 [ADC1_Trigger] / LCD segment 7 / ADC1_IN22 PD1/TIM3_ETR/ LCD_COM3/ ADC1_IN21 I/O TT(2) X X X HS X X Port D1 Timer 3 - external trigger / LCD_COM3 / ADC1_IN21 22 PD2/TIM1_CH1 /LCD_SEG8/ ADC1_IN20 I/O TT(2) X X X HS X X Port D2 Timer 1 - channel 1 / LCD segment 8 / ADC1_IN20 23 PD3/ TIM1_ETR/ LCD_SEG9/ADC1_IN19 I/O TT(2) X X X HS X X Port D3 Timer 1 - external trigger / LCD segment 9 / ADC1_IN19 33 PD4/TIM1_CH2 /LCD_SEG18/ ADC1_IN10 I/O TT(2) X X X HS X X Port D4 Timer 1 - channel 2 / LCD segment 18 / ADC1_IN10 34 PD5/TIM1_CH3 /LCD_SEG19/ ADC1_IN9 I/O TT(2) X X X HS X X Port D5 Timer 1 - channel 3 / LCD segment 19 / ADC1_IN9 35 PD6/TIM1_BKIN /LCD_SEG20/ ADC1_IN8/RTC_CALIB/ /VREFINT X Timer 1 - break input / LCD segment 20 / ADC1_IN8 / X Port D6 RTC calibration / Internal voltage reference output I/O TT (2) X X X HS DocID023331 Rev 2 LSE oscillator output / [SPI1 clock] / [USART1 receive] 25/103 48 Pin description STM8L052C6 Table 4. Medium-density value line STM8L052C6pin description (continued) Main function (after reset) PP Default alternate function OD High sink/source Output Ext. interrupt wpu floating I/O level Pin name Type Input LQFP48 Pin # 36 PD7/TIM1_CH1N /LCD_SEG21/ I/O TT(2) ADC1_IN7/RTC_ALARM/V REFINT X X X HS X Timer 1 - inverted channel 1/ LCD segment 21 / ADC1_IN7 / X Port D7 RTC alarm / Internal voltage reference output 14 PE0(3)/LCD_SEG1 I/O X X X HS X X Port E0 LCD segment 1 15 PE1/TIM1_CH2N/ LCD_SEG2 I/O TT(2) X X X HS X X Port E1 Timer 1 - inverted channel 2 / LCD segment 2 16 PE2/TIM1_CH3N/ LCD_SEG3 I/O TT(2) X X X HS X X Port E2 Timer 1 - inverted channel 3 / LCD segment 3 17 PE3/LCD_SEG4 I/O TT(2) X X X HS X X Port E3 LCD segment 4 18 PE4/LCD_SEG5 I/O TT(2) X X X HS X X Port E4 LCD segment 5 19 PE5/LCD_SEG6/ ADC1_IN23 I/O TT(2) X X X HS X X Port E5 LCD segment 6 / ADC1_IN23 47 PE6/LCD_SEG26/ PVD_IN I/O TT(2) X X X HS X X Port E6 LCD segment 26/PVD_IN PE7/LCD_SEG27 I/O TT(2) X X X HS X X Port E7 LCD segment 27 32 PF0/ADC1_IN24 I/O X X X HS X X Port F0 13 VLCD 13 Reserved 10 VDD S Digital power supply 11 VDDA S Analog supply voltage 12 VREF+ S ADC1 positive voltage reference 9 VSS1/VSSA/VREF- S I/O ground / Analog ground voltage / ADC1 negative voltage reference 39 VDD2 S IOs supply voltage 40 VSS2 S IOs ground voltage 1 PA0(6)/[USART1_CK](8)/ SWIM/BEEP/IR_TIM (7) 48 FT S ADC1_IN24 LCD booster external capacitor Reserved. Must be tied to VDD I/O X X(6) X HS (7) X [USART1 synchronous clock](8) / SWIM input and outX Port A0 put /Beep output / Infrared Timer output 1. At power-up, the PA1/NRST pin is a reset input pin with pull-up. To be used as a general purpose pin (PA1), it can be configured only as output open-drain or push-pull, not as a general purpose input. Refer to Section Configuring NRST/PA1 pin as general purpose output in the STM8L15x and STM8L16x reference manual (RM0031). 2. In the 3.6 V tolerant I/Os, protection diode to VDD is not implemented. 26/103 DocID023331 Rev 2 STM8L052C6 Pin description 3. In the 5 V tolerant I/Os, protection diode to VDD is not implemented. 4. A pull-up is applied to PB0 and PB4 during the reset phase. These two pins are input floating after reset release. 5. In the open-drain output column, ‘T’ defines a true open-drain I/O (P-buffer, weak pull-up and protection diode to VDD are not implemented). 6. The PA0 pin is in input pull-up during the reset phase and after reset release. 7. High Sink LED driver capability available on PA0. 8. [ ] Alternate function remapping option (if the same alternate function is shown twice, it indicates an exclusive choice not a duplication of the function). Note: The slope control of all GPIO pins, except true open drain pins, can be programmed. By default, the slope control is limited to 2 MHz. DocID023331 Rev 2 27/103 48 Pin description 4.1 STM8L052C6 System configuration options As shown in Table 4: Medium-density value line STM8L052C6pin description, some alternate functions can be remapped on different I/O ports by programming one of the two remapping registers described in the “Routing interface (RI) and system configuration controller” section in the STM8L15x and STM8L16x reference manual (RM0031). 28/103 DocID023331 Rev 2 STM8L052C6 Memory and register map 5 Memory and register map 5.1 Memory mapping The memory map is shown in Figure 4. Figure 4. Memory map 0x00 0000 0x00 07FF 0x00 0800 RAM (2 Kbytes) (1) including Stack (513 bytes) (1) Reserved 0x00 0FFF 0x00 1000 0x00 10FF 0x00 1100 Data EEPROM (256 bytes) 0x00 5000 0x00 5050 Reserved 0x00 47FF 0x00 4800 0x00 5070 0x00 509E Option bytes 0x00 50A0 0x00 48FF 0x00 4900 0x00 50A6 0x00 50B0 0x00 50B2 0x00 50C0 Reserved 0x00 50D3 0x00 50E0 0x00 50F3 0x00 5140 0x00 4FFF 0x00 5000 0x00 5200 0x00 5210 GPIO and peripheral registers 0x00 57FF 0x00 5800 0x00 5250 0x00 5280 Reserved 0x00 5FFF 0x00 6000 0x00 67FF 0x00 6800 0x00 52B0 0x00 52E0 Boot ROM (2 Kbytes) 0x00 52FF 0x00 5340 0x00 5380 Reserved 0x00 5400 0x00 7EFF 0x00 7F00 0x00 5430 CPU/SWIM/Debug/ITC Registers 0x00 7FFF 0x00 8000 0x00 807F 0x00 8080 0x00 5230 0x00 5440 GPIO Ports Flash DMA1 SYSCFG ITC-EXTI WFE RST PWR CLK WWDG IWDG BEEP RTC SPI1 I2C1 USART1 TIM2 TIM3 TIM1 TIM4 IRTIM ADC1 Reserved LCD RI Reserved Reset and interrupt vectors Medium density Flash program memory (32 Kbytes) 0x00 FFFF 1. Table 5 lists the boundary addresses for each memory size. The top of the stack is at the RAM end address. 2. Refer to Table 7 for an overview of hardware register mapping, to Table 6 for details on I/O port hardware registers, and to Table 8 for information on CPU/SWIM/debug module controller registers. DocID023331 Rev 2 29/103 48 Memory and register map STM8L052C6 Table 5. Flash and RAM boundary addresses Memory area Size Start address End address RAM 2 Kbytes 0x00 0000 0x00 07FF Flash program memory 32 Kbytes 0x00 8000 0x00 FFFF 5.2 Register map Table 6. I/O port hardware register map Register label Register name Reset status 0x00 5000 PA_ODR Port A data output latch register 0x00 0x00 5001 PA_IDR Port A input pin value register 0xXX PA_DDR Port A data direction register 0x00 0x00 5003 PA_CR1 Port A control register 1 0x01 0x00 5004 PA_CR2 Port A control register 2 0x00 0x00 5005 PB_ODR Port B data output latch register 0x00 0x00 5006 PB_IDR Port B input pin value register 0xXX PB_DDR Port B data direction register 0x00 0x00 5008 PB_CR1 Port B control register 1 0x00 0x00 5009 PB_CR2 Port B control register 2 0x00 0x00 500A PC_ODR Port C data output latch register 0x00 0x00 500B PC_IDR Port C input pin value register 0xXX PC_DDR Port C data direction register 0x00 0x00 500D PC_CR1 Port C control register 1 0x00 0x00 500E PC_CR2 Port C control register 2 0x00 0x00 500F PD_ODR Port D data output latch register 0x00 0x00 5010 PD_IDR Port D input pin value register 0xXX PD_DDR Port D data direction register 0x00 0x00 5012 PD_CR1 Port D control register 1 0x00 0x00 5013 PD_CR2 Port D control register 2 0x00 0x00 5014 PE_ODR Port E data output latch register 0x00 0x00 5015 PE_IDR Port E input pin value register 0xXX PE_DDR Port E data direction register 0x00 0x00 5017 PE_CR1 Port E control register 1 0x00 0x00 5018 PE_CR2 Port E control register 2 0x00 Address 0x00 5002 0x00 5007 0x00 500C 0x00 5011 0x00 5016 30/103 Block Port A Port B Port C Port D Port E DocID023331 Rev 2 STM8L052C6 Memory and register map Table 6. I/O port hardware register map (continued) Register label Register name Reset status 0x00 5019 PF_ODR Port F data output latch register 0x00 0x00 501A PF_IDR Port F input pin value register 0xXX PF_DDR Port F data direction register 0x00 0x00 501C PF_CR1 Port F control register 1 0x00 0x00 501D PF_CR2 Port F control register 2 0x00 Address 0x00 501B Block Port F Table 7. General hardware register map Address Block Register label 0x00 501E to 0x00 5049 Register name Reset status Reserved area (44 bytes) 0x00 5050 FLASH_CR1 Flash control register 1 0x00 0x00 5051 FLASH_CR2 Flash control register 2 0x00 FLASH _PUKR Flash program memory unprotection key register 0x00 0x00 5053 FLASH _DUKR Data EEPROM unprotection key register 0x00 0x00 5054 FLASH _IAPSR Flash in-application programming status register 0x00 0x00 5052 0x00 5055 to 0x00 506F Flash Reserved area (27 bytes) DocID023331 Rev 2 31/103 48 Memory and register map STM8L052C6 Table 7. General hardware register map (continued) Register label Register name Reset status 0x00 5070 DMA1_GCSR DMA1 global configuration & status register 0xFC 0x00 5071 DMA1_GIR1 DMA1 global interrupt register 1 0x00 Address Block 0x00 5072 to 0x00 5074 Reserved area (3 bytes) 0x00 5075 DMA1_C0CR DMA1 channel 0 configuration register 0x00 0x00 5076 DMA1_C0SPR DMA1 channel 0 status & priority register 0x00 0x00 5077 DMA1_C0NDTR DMA1 number of data to transfer register (channel 0) 0x00 0x00 5078 DMA1_C0PARH DMA1 peripheral address high register (channel 0) 0x52 0x00 5079 DMA1_C0PARL DMA1 peripheral address low register (channel 0) 0x00 0x00 507A Reserved area (1 byte) DMA1 0x00 507B DMA1_C0M0ARH DMA1 memory 0 address high register (channel 0) 0x00 0x00 507C DMA1_C0M0ARL DMA1 memory 0 address low register (channel 0) 0x00 0x00 507D 0x00 507E Reserved area (2 bytes) 0x00 507F DMA1_C1CR DMA1 channel 1 configuration register 0x00 0x00 5080 DMA1_C1SPR DMA1 channel 1 status & priority register 0x00 0x00 5081 DMA1_C1NDTR DMA1 number of data to transfer register (channel 1) 0x00 0x00 5082 DMA1_C1PARH DMA1 peripheral address high register (channel 1) 0x52 0x00 5083 DMA1_C1PARL DMA1 peripheral address low register (channel 1) 0x00 32/103 DocID023331 Rev 2 STM8L052C6 Memory and register map Table 7. General hardware register map (continued) Address Block Register label 0x00 5084 Register name Reset status Reserved area (1 byte) 0x00 5085 DMA1_C1M0ARH DMA1 memory 0 address high register (channel 1) 0x00 0x00 5086 DMA1_C1M0ARL DMA1 memory 0 address low register (channel 1) 0x00 0x00 5087 0x00 5088 Reserved area (2 bytes) 0x00 5089 DMA1_C2CR DMA1 channel 2 configuration register 0x00 0x00 508A DMA1_C2SPR DMA1 channel 2 status & priority register 0x00 0x00 508B DMA1_C2NDTR DMA1 number of data to transfer register (channel 2) 0x00 0x00 508C DMA1_C2PARH DMA1 peripheral address high register (channel 2) 0x52 0x00 508D DMA1_C2PARL DMA1 peripheral address low register (channel 2) 0x00 0x00 508E Reserved area (1 byte) 0x00 508F DMA1_C2M0ARH DMA1 memory 0 address high register (channel 2) 0x00 DMA1_C2M0ARL DMA1 memory 0 address low register (channel 2) 0x00 DMA1 0x00 5090 0x00 5091 0x00 5092 Reserved area (2 bytes) 0x00 5093 DMA1_C3CR DMA1 channel 3 configuration register 0x00 0x00 5094 DMA1_C3SPR DMA1 channel 3 status & priority register 0x00 0x00 5095 DMA1_C3NDTR DMA1 number of data to transfer register (channel 3) 0x00 0x00 5096 DMA1_C3PARH_ C3M1ARH DMA1 peripheral address high register (channel 3) 0x40 0x00 5097 DMA1_C3PARL_ C3M1ARL DMA1 peripheral address low register (channel 3) 0x00 0x00 5098 Reserved area (1 byte) 0x00 5099 DMA1_C3M0ARH DMA1 memory 0 address high register (channel 3) 0x00 0x00 509A DMA1_C3M0ARL DMA1 memory 0 address low register (channel 3) 0x00 0x00 509B to 0x00 509D Reserved area (3 bytes) 0x00 509E SYSCFG_RMPCR1 Remapping register 1 0x00 0x00 509F SYSCFG_RMPCR2 Remapping register 2 0x00 DocID023331 Rev 2 33/103 48 Memory and register map STM8L052C6 Table 7. General hardware register map (continued) Register label Register name Reset status 0x00 50A0 EXTI_CR1 External interrupt control register 1 0x00 0x00 50A1 EXTI_CR2 External interrupt control register 2 0x00 EXTI_CR3 External interrupt control register 3 0x00 0x00 50A3 EXTI_SR1 External interrupt status register 1 0x00 0x00 50A4 EXTI_SR2 External interrupt status register 2 0x00 0x00 50A5 EXTI_CONF1 External interrupt port select register 1 0x00 0x00 50A6 WFE_CR1 WFE control register 1 0x00 WFE_CR2 WFE control register 2 0x00 WFE_CR3 WFE control register 3 0x00 Address Block 0x00 50A2 ITC - EXTI 0x00 50A7 WFE 0x00 50A8 0x00 50AC to 0x00 50AF Reserved area (4 bytes) 0x00 50B0 RST_CR Reset control register 0x00 RST_SR Reset status register 0x01 PWR_CSR1 Power control and status register 1 0x00 PWR_CSR2 Power control and status register 2 0x00 RST 0x00 50B1 0x00 50B2 PWR 0x00 50B3 0x00 50B4 to 0x00 50BF Reserved area (12 bytes) 0x00 50C0 CLK_DIVR Clock master divider register 0x03 0x00 50C1 CLK_CRTCR Clock RTC register 0x00 0x00 50C2 CLK_ICKR Internal clock control register 0x11 0x00 50C3 CLK_PCKENR1 Peripheral clock gating register 1 0x00 0x00 50C4 CLK_PCKENR2 Peripheral clock gating register 2 0x80 0x00 50C5 CLK_CCOR Configurable clock control register 0x00 0x00 50C6 CLK_ECKR External clock control register 0x00 0x00 50C7 CLK_SCSR System clock status register 0x01 CLK_SWR System clock switch register 0x01 0x00 50C9 CLK_SWCR Clock switch control register 0bxxxx0000 0x00 50CA CLK_CSSR Clock security system register 0x00 0x00 50CB CLK_CBEEPR Clock BEEP register 0x00 0x00 50CC CLK_HSICALR HSI calibration register 0xxx 0x00 50CD CLK_HSITRIMR HSI clock calibration trimming register 0x00 0x00 50CE CLK_HSIUNLCKR HSI unlock register 0x00 0x00 50CF CLK_REGCSR Main regulator control status register 0bxx11100x 0x00 50C8 0x00 50D0 to 0x00 50D2 34/103 CLK Reserved area (3 bytes) DocID023331 Rev 2 STM8L052C6 Memory and register map Table 7. General hardware register map (continued) Address Block 0x00 50D3 Register label Register name Reset status WWDG_CR WWDG control register 0x7F WWDG_WR WWDR window register 0x7F WWDG 0x00 50D4 0x00 50D5 to 00 50DF Reserved area (11 bytes) 0x00 50E0 0x00 50E1 IWDG 0x00 50E2 IWDG_KR IWDG key register 0xXX IWDG_PR IWDG prescaler register 0x00 IWDG_RLR IWDG reload register 0xFF 0x00 50E3 to 0x00 50EF Reserved area (13 bytes) 0x00 50F0 0x00 50F1 0x00 50F2 0x00 50F3 0x00 50F4 to 0x00 513F BEEP_CSR1 BEEP BEEP control/status register 1 0x00 Reserved area (2 bytes) BEEP_CSR2 BEEP control/status register 2 0x1F Reserved area (76 bytes) DocID023331 Rev 2 35/103 48 Memory and register map STM8L052C6 Table 7. General hardware register map (continued) Register label Register name Reset status 0x00 5140 RTC_TR1 Time register 1 0x00 0x00 5141 RTC_TR2 Time register 2 0x00 0x00 5142 RTC_TR3 Time register 3 0x00 Address Block 0x00 5143 Reserved area (1 byte) 0x00 5144 RTC_DR1 Date register 1 0x01 0x00 5145 RTC_DR2 Date register 2 0x21 0x00 5146 RTC_DR3 Date register 3 0x00 0x00 5147 Reserved area (1 byte) 0x00 5148 RTC_CR1 Control register 1 0x00 0x00 5149 RTC_CR2 Control register 2 0x00 0x00 514A RTC_CR3 Control register 3 0x00 0x00 514B Reserved area (1 byte) 0x00 514C RTC_ISR1 Initialization and status register 1 0x00 0x00 514D RTC_ISR2 Initialization and Status register 2 0x00 0x00 514E 0x00 514F Reserved area (2 bytes) 0x00 5150 0x00 5151 0x00 5152 RTC RTC_SPRERH(1) Synchronous prescaler register high 0x00(1) RTC_SPRERL(1) Synchronous prescaler register low 0xFF(1) RTC_APRER(1) Asynchronous prescaler register 0x7F(1) 0x00 5153 Reserved area (1 byte) 0x00 5154 RTC_WUTRH(1) Wakeup timer register high 0xFF(1) 0x00 5155 RTC_WUTRL(1) Wakeup timer register low 0xFF(1) 0x00 5156 to 0x00 5158 0x00 5159 Reserved area (3 bytes) RTC_WPR 0x00 515A 0x00 515B Write protection register 0x00 Reserved area (2 bytes) 0x00 515C RTC_ALRMAR1 Alarm A register 1 0x00 0x00 515D RTC_ALRMAR2 Alarm A register 2 0x00 0x00 515E RTC_ALRMAR3 Alarm A register 3 0x00 0x00 515F RTC_ALRMAR4 Alarm A register 4 0x00 0x00 5160 to 0x00 51FF 36/103 Reserved area (160 bytes) DocID023331 Rev 2 STM8L052C6 Memory and register map Table 7. General hardware register map (continued) Register label Register name Reset status 0x00 5200 SPI1_CR1 SPI1 control register 1 0x00 0x00 5201 SPI1_CR2 SPI1 control register 2 0x00 0x00 5202 SPI1_ICR SPI1 interrupt control register 0x00 SPI1_SR SPI1 status register 0x02 0x00 5204 SPI1_DR SPI1 data register 0x00 0x00 5205 SPI1_CRCPR SPI1 CRC polynomial register 0x07 0x00 5206 SPI1_RXCRCR SPI1 Rx CRC register 0x00 0x00 5207 SPI1_TXCRCR SPI1 Tx CRC register 0x00 Address Block 0x00 5203 SPI1 0x00 5208 to 0x00 520F Reserved area (8 bytes) 0x00 5210 I2C1_CR1 I2C1 control register 1 0x00 0x00 5211 I2C1_CR2 I2C1 control register 2 0x00 0x00 5212 I2C1_FREQR I2C1 frequency register 0x00 0x00 5213 I2C1_OARL I2C1 own address register low 0x00 0x00 5214 I2C1_OARH I2C1 own address register high 0x00 0x00 5215 Reserved (1 byte) 0x00 5216 I2C1_DR I2C1 data register 0x00 I2C1_SR1 I2C1 status register 1 0x00 0x00 5218 I2C1_SR2 I2C1 status register 2 0x00 0x00 5219 I2C1_SR3 I2C1 status register 3 0x0x 0x00 521A I2C1_ITR I2C1 interrupt control register 0x00 0x00 521B I2C1_CCRL I2C1 clock control register low 0x00 0x00 521C I2C1_CCRH I2C1 clock control register high 0x00 0x00 521D I2C1_TRISER I2C1 TRISE register 0x02 0x00 521E I2C1_PECR I2C1 packet error checking register 0x00 0x00 5217 I2C1 0x00 521F to 0x00 522F Reserved area (17 bytes) DocID023331 Rev 2 37/103 48 Memory and register map STM8L052C6 Table 7. General hardware register map (continued) Register label Register name Reset status 0x00 5230 USART1_SR USART1 status register 0xC0 0x00 5231 USART1_DR USART1 data register undefined 0x00 5232 USART1_BRR1 USART1 baud rate register 1 0x00 0x00 5233 USART1_BRR2 USART1 baud rate register 2 0x00 0x00 5234 USART1_CR1 USART1 control register 1 0x00 USART1_CR2 USART1 control register 2 0x00 0x00 5236 USART1_CR3 USART1 control register 3 0x00 0x00 5237 USART1_CR4 USART1 control register 4 0x00 0x00 5238 USART1_CR5 USART1 control register 5 0x00 0x00 5239 USART1_GTR USART1 guard time register 0x00 0x00 523A USART1_PSCR USART1 prescaler register 0x00 Address 0x00 5235 0x00 523B to 0x00 524F 38/103 Block USART1 Reserved area (21 bytes) DocID023331 Rev 2 STM8L052C6 Memory and register map Table 7. General hardware register map (continued) Register label Register name Reset status 0x00 5250 TIM2_CR1 TIM2 control register 1 0x00 0x00 5251 TIM2_CR2 TIM2 control register 2 0x00 0x00 5252 TIM2_SMCR TIM2 Slave mode control register 0x00 0x00 5253 TIM2_ETR TIM2 external trigger register 0x00 0x00 5254 TIM2_DER TIM2 DMA1 request enable register 0x00 0x00 5255 TIM2_IER TIM2 interrupt enable register 0x00 0x00 5256 TIM2_SR1 TIM2 status register 1 0x00 0x00 5257 TIM2_SR2 TIM2 status register 2 0x00 0x00 5258 TIM2_EGR TIM2 event generation register 0x00 0x00 5259 TIM2_CCMR1 TIM2 capture/compare mode register 1 0x00 0x00 525A TIM2_CCMR2 TIM2 capture/compare mode register 2 0x00 TIM2_CCER1 TIM2 capture/compare enable register 1 0x00 0x00 525C TIM2_CNTRH TIM2 counter high 0x00 0x00 525D TIM2_CNTRL TIM2 counter low 0x00 0x00 525E TIM2_PSCR TIM2 prescaler register 0x00 0x00 525F TIM2_ARRH TIM2 auto-reload register high 0xFF 0x00 5260 TIM2_ARRL TIM2 auto-reload register low 0xFF 0x00 5261 TIM2_CCR1H TIM2 capture/compare register 1 high 0x00 0x00 5262 TIM2_CCR1L TIM2 capture/compare register 1 low 0x00 0x00 5263 TIM2_CCR2H TIM2 capture/compare register 2 high 0x00 0x00 5264 TIM2_CCR2L TIM2 capture/compare register 2 low 0x00 0x00 5265 TIM2_BKR TIM2 break register 0x00 0x00 5266 TIM2_OISR TIM2 output idle state register 0x00 Address 0x00 525B 0x00 5267 to 0x00 527F Block TIM2 Reserved area (25 bytes) DocID023331 Rev 2 39/103 48 Memory and register map STM8L052C6 Table 7. General hardware register map (continued) Register label Register name Reset status 0x00 5280 TIM3_CR1 TIM3 control register 1 0x00 0x00 5281 TIM3_CR2 TIM3 control register 2 0x00 0x00 5282 TIM3_SMCR TIM3 Slave mode control register 0x00 0x00 5283 TIM3_ETR TIM3 external trigger register 0x00 0x00 5284 TIM3_DER TIM3 DMA1 request enable register 0x00 0x00 5285 TIM3_IER TIM3 interrupt enable register 0x00 0x00 5286 TIM3_SR1 TIM3 status register 1 0x00 0x00 5287 TIM3_SR2 TIM3 status register 2 0x00 0x00 5288 TIM3_EGR TIM3 event generation register 0x00 0x00 5289 TIM3_CCMR1 TIM3 Capture/Compare mode register 1 0x00 0x00 528A TIM3_CCMR2 TIM3 Capture/Compare mode register 2 0x00 TIM3_CCER1 TIM3 Capture/Compare enable register 1 0x00 0x00 528C TIM3_CNTRH TIM3 counter high 0x00 0x00 528D TIM3_CNTRL TIM3 counter low 0x00 0x00 528E TIM3_PSCR TIM3 prescaler register 0x00 0x00 528F TIM3_ARRH TIM3 Auto-reload register high 0xFF 0x00 5290 TIM3_ARRL TIM3 Auto-reload register low 0xFF 0x00 5291 TIM3_CCR1H TIM3 Capture/Compare register 1 high 0x00 0x00 5292 TIM3_CCR1L TIM3 Capture/Compare register 1 low 0x00 0x00 5293 TIM3_CCR2H TIM3 Capture/Compare register 2 high 0x00 0x00 5294 TIM3_CCR2L TIM3 Capture/Compare register 2 low 0x00 0x00 5295 TIM3_BKR TIM3 break register 0x00 0x00 5296 TIM3_OISR TIM3 output idle state register 0x00 Address 0x00 528B 0x00 5297 to 0x00 52AF 40/103 Block TIM3 Reserved area (25 bytes) DocID023331 Rev 2 STM8L052C6 Memory and register map Table 7. General hardware register map (continued) Register label Register name Reset status 0x00 52B0 TIM1_CR1 TIM1 control register 1 0x00 0x00 52B1 TIM1_CR2 TIM1 control register 2 0x00 0x00 52B2 TIM1_SMCR TIM1 Slave mode control register 0x00 0x00 52B3 TIM1_ETR TIM1 external trigger register 0x00 0x00 52B4 TIM1_DER TIM1 DMA1 request enable register 0x00 0x00 52B5 TIM1_IER TIM1 Interrupt enable register 0x00 0x00 52B6 TIM1_SR1 TIM1 status register 1 0x00 0x00 52B7 TIM1_SR2 TIM1 status register 2 0x00 0x00 52B8 TIM1_EGR TIM1 event generation register 0x00 0x00 52B9 TIM1_CCMR1 TIM1 Capture/Compare mode register 1 0x00 0x00 52BA TIM1_CCMR2 TIM1 Capture/Compare mode register 2 0x00 0x00 52BB TIM1_CCMR3 TIM1 Capture/Compare mode register 3 0x00 0x00 52BC TIM1_CCMR4 TIM1 Capture/Compare mode register 4 0x00 0x00 52BD TIM1_CCER1 TIM1 Capture/Compare enable register 1 0x00 0x00 52BE TIM1_CCER2 TIM1 Capture/Compare enable register 2 0x00 0x00 52BF TIM1_CNTRH TIM1 counter high 0x00 TIM1_CNTRL TIM1 counter low 0x00 0x00 52C1 TIM1_PSCRH TIM1 prescaler register high 0x00 0x00 52C2 TIM1_PSCRL TIM1 prescaler register low 0x00 0x00 52C3 TIM1_ARRH TIM1 Auto-reload register high 0xFF 0x00 52C4 TIM1_ARRL TIM1 Auto-reload register low 0xFF 0x00 52C5 TIM1_RCR TIM1 Repetition counter register 0x00 0x00 52C6 TIM1_CCR1H TIM1 Capture/Compare register 1 high 0x00 0x00 52C7 TIM1_CCR1L TIM1 Capture/Compare register 1 low 0x00 0x00 52C8 TIM1_CCR2H TIM1 Capture/Compare register 2 high 0x00 0x00 52C9 TIM1_CCR2L TIM1 Capture/Compare register 2 low 0x00 0x00 52CA TIM1_CCR3H TIM1 Capture/Compare register 3 high 0x00 0x00 52CB TIM1_CCR3L TIM1 Capture/Compare register 3 low 0x00 0x00 52CC TIM1_CCR4H TIM1 Capture/Compare register 4 high 0x00 0x00 52CD TIM1_CCR4L TIM1 Capture/Compare register 4 low 0x00 0x00 52CE TIM1_BKR TIM1 break register 0x00 0x00 52CF TIM1_DTR TIM1 dead-time register 0x00 0x00 52D0 TIM1_OISR TIM1 output idle state register 0x00 0x00 52D1 TIM1_DCR1 DMA1 control register 1 0x00 Address Block 0x00 52C0 TIM1 DocID023331 Rev 2 41/103 48 Memory and register map STM8L052C6 Table 7. General hardware register map (continued) Address Block 0x00 52D2 Register label Register name Reset status TIM1_DCR2 TIM1 DMA1 control register 2 0x00 TIM1_DMA1R TIM1 DMA1 address for burst mode 0x00 TIM1 0x00 52D3 0x00 52D4 to 0x00 52DF Reserved area (12 bytes) 0x00 52E0 TIM4_CR1 TIM4 control register 1 0x00 0x00 52E1 TIM4_CR2 TIM4 control register 2 0x00 0x00 52E2 TIM4_SMCR TIM4 Slave mode control register 0x00 0x00 52E3 TIM4_DER TIM4 DMA1 request enable register 0x00 TIM4_IER TIM4 Interrupt enable register 0x00 0x00 52E5 TIM4_SR1 TIM4 status register 1 0x00 0x00 52E6 TIM4_EGR TIM4 Event generation register 0x00 0x00 52E7 TIM4_CNTR TIM4 counter 0x00 0x00 52E8 TIM4_PSCR TIM4 prescaler register 0x00 0x00 52E9 TIM4_ARR TIM4 Auto-reload register 0x00 0x00 52E4 TIM4 0x00 52EA to 0x00 52FE 0x00 52FF 0x00 5300 to 0x00 533F 42/103 Reserved area (21 bytes) IRTIM IR_CR Infrared control register Reserved area (64 bytes) DocID023331 Rev 2 0x00 STM8L052C6 Memory and register map Table 7. General hardware register map (continued) Register label Register name Reset status 0x00 5340 ADC1_CR1 ADC1 configuration register 1 0x00 0x00 5341 ADC1_CR2 ADC1 configuration register 2 0x00 0x00 5342 ADC1_CR3 ADC1 configuration register 3 0x1F 0x00 5343 ADC1_SR ADC1 status register 0x00 0x00 5344 ADC1_DRH ADC1 data register high 0x00 0x00 5345 ADC1_DRL ADC1 data register low 0x00 0x00 5346 ADC1_HTRH ADC1 high threshold register high 0x0F 0x00 5347 ADC1_HTRL ADC1 high threshold register low 0xFF ADC1_LTRH ADC1 low threshold register high 0x00 0x00 5349 ADC1_LTRL ADC1 low threshold register low 0x00 0x00 534A ADC1_SQR1 ADC1 channel sequence 1 register 0x00 0x00 534B ADC1_SQR2 ADC1 channel sequence 2 register 0x00 0x00 534C ADC1_SQR3 ADC1 channel sequence 3 register 0x00 0x00 534D ADC1_SQR4 ADC1 channel sequence 4 register 0x00 0x00 534E ADC1_TRIGR1 ADC1 trigger disable 1 0x00 0x00 534F ADC1_TRIGR2 ADC1 trigger disable 2 0x00 0x00 5350 ADC1_TRIGR3 ADC1 trigger disable 3 0x00 0x00 5351 ADC1_TRIGR4 ADC1 trigger disable 4 0x00 Address Block 0x00 5348 ADC1 0x00 5352 to 0x00 53FF Reserved area (174 bytes) 0x00 5400 LCD_CR1 LCD control register 1 0x00 0x00 5401 LCD_CR2 LCD control register 2 0x00 0x00 5402 LCD_CR3 LCD control register 3 0x00 LCD_FRQ LCD frequency selection register 0x00 0x00 5404 LCD_PM0 LCD Port mask register 0 0x00 0x00 5405 LCD_PM1 LCD Port mask register 1 0x00 0x00 5406 LCD_PM2 LCD Port mask register 2 0x00 0x00 5403 LCD 0x00 5407 Reserved area DocID023331 Rev 2 43/103 48 Memory and register map STM8L052C6 Table 7. General hardware register map (continued) Address Block Register label 0x00 5408 to 0x00 540B Register name Reset status Reserved area (4 bytes) 0x00 540C LCD_RAM0 LCD display memory 0 0x00 0x00 540D LCD_RAM1 LCD display memory 1 0x00 0x00 540E LCD_RAM2 LCD display memory 2 0x00 0x00 540F LCD_RAM3 LCD display memory 3 0x00 0x00 5410 LCD_RAM4 LCD display memory 4 0x00 0x00 5411 LCD_RAM5 LCD display memory 5 0x00 0x00 5412 LCD_RAM6 LCD display memory 6 0x00 0x00 5413 LCD_RAM7 LCD display memory 7 0x00 0x00 5414 LCD_RAM8 LCD display memory 8 0x00 LCD_RAM9 LCD display memory 9 0x00 LCD_RAM10 LCD display memory 10 0x00 0x00 5417 LCD_RAM11 LCD display memory 11 0x00 0x00 5418 LCD_RAM12 LCD display memory 12 0x00 0x00 5419 LCD_RAM13 LCD display memory 13 0x00 0x00 5415 0x00 5416 0x00 541A to 0x00 542F 44/103 LCD Reserved area (22 bytes) DocID023331 Rev 2 STM8L052C6 Memory and register map Table 7. General hardware register map (continued) Address Block Register label 0x00 5430 Register name Reserved area (1 byte) Reset status 0x00 0x00 5431 RI_ICR1 Timer input capture routing register 1 0x00 0x00 5432 RI_ICR2 Timer input capture routing register 2 0x00 0x00 5433 RI_IOIR1 I/O input register 1 undefined 0x00 5434 RI_IOIR2 I/O input register 2 undefined 0x00 5435 RI_IOIR3 I/O input register 3 undefined 0x00 5436 RI_IOCMR1 I/O control mode register 1 0x00 RI_IOCMR2 I/O control mode register 2 0x00 0x00 5438 RI_IOCMR3 I/O control mode register 3 0x00 0x00 5439 RI_IOSR1 I/O switch register 1 0x00 0x00 543A RI_IOSR2 I/O switch register 2 0x00 0x00 543B RI_IOSR3 I/O switch register 3 0x00 0x00 543C RI_IOGCR I/O group control register 0x3F 0x00 543D RI_ASCR1 Analog switch register 1 0x00 0x00 543E RI_ASCR2 Analog switch register 2 0x00 0x00 543F RI_RCR Resistor control register 1 0x00 0x00 5437 RI 0x00 5440 to 0x00 5444 Reserved area (5 bytes) 1. These registers are not impacted by a system reset. They are reset at power-on. Table 8. CPU/SWIM/debug module/interrupt controller registers Register Label Register Name Reset Status 0x00 7F00 A Accumulator 0x00 0x00 7F01 PCE Program counter extended 0x00 0x00 7F02 PCH Program counter high 0x00 0x00 7F03 PCL Program counter low 0x00 XH X index register high 0x00 XL X index register low 0x00 0x00 7F06 YH Y index register high 0x00 0x00 7F07 YL Y index register low 0x00 0x00 7F08 SPH Stack pointer high 0x03 0x00 7F09 SPL Stack pointer low 0xFF 0x00 7F0A CCR Condition code register 0x28 Address Block 0x00 7F04 0x00 7F05 (1) CPU DocID023331 Rev 2 45/103 48 Memory and register map STM8L052C6 Table 8. CPU/SWIM/debug module/interrupt controller registers (continued) Address Block 0x00 7F0B to 0x00 7F5F CPU Register Label Register Name Reset Status Reserved area (85 bytes) 0x00 7F60 CFG_GCR Global configuration register 0x00 0x00 7F70 ITC_SPR1 Interrupt Software priority register 1 0xFF 0x00 7F71 ITC_SPR2 Interrupt Software priority register 2 0xFF 0x00 7F72 ITC_SPR3 Interrupt Software priority register 3 0xFF ITC_SPR4 Interrupt Software priority register 4 0xFF 0x00 7F74 ITC_SPR5 Interrupt Software priority register 5 0xFF 0x00 7F75 ITC_SPR6 Interrupt Software priority register 6 0xFF 0x00 7F76 ITC_SPR7 Interrupt Software priority register 7 0xFF 0x00 7F77 ITC_SPR8 Interrupt Software priority register 8 0xFF 0x00 7F73 ITC-SPR 0x00 7F78 to 0x00 7F79 0x00 7F80 Reserved area (2 bytes) SWIM SWIM_CSR 0x00 7F81 to 0x00 7F8F SWIM control status register 0x00 Reserved area (15 bytes) 0x00 7F90 DM_BK1RE DM breakpoint 1 register extended byte 0xFF 0x00 7F91 DM_BK1RH DM breakpoint 1 register high byte 0xFF 0x00 7F92 DM_BK1RL DM breakpoint 1 register low byte 0xFF 0x00 7F93 DM_BK2RE DM breakpoint 2 register extended byte 0xFF 0x00 7F94 DM_BK2RH DM breakpoint 2 register high byte 0xFF DM_BK2RL DM breakpoint 2 register low byte 0xFF 0x00 7F96 DM_CR1 DM Debug module control register 1 0x00 0x00 7F97 DM_CR2 DM Debug module control register 2 0x00 0x00 7F98 DM_CSR1 DM Debug module control/status register 1 0x10 0x00 7F99 DM_CSR2 DM Debug module control/status register 2 0x00 0x00 7F9A DM_ENFCTR DM enable function register 0xFF 0x00 7F95 DM 0x00 7F9B to 0x00 7F9F Reserved area (5 bytes) 1. Accessible by debug module only 46/103 DocID023331 Rev 2 STM8L052C6 6 Interrupt vector mapping Interrupt vector mapping Table 9. Interrupt mapping IRQ No. Source block RESET TRAP Wakeup from Halt mode Description Reset Software interrupt 0 Wakeup Wakeup Wakeup from from Wait from Wait Active(WFI (WFE halt mode mode) mode)(1) Vector address Yes Yes Yes Yes 0x00 8000 - - - - 0x00 8004 Reserved 0x00 8008 FLASH end of programing/ write attempted to protected page interrupt - - Yes Yes 0x00 800C DMA1 0/1 DMA1 channels 0/1 half transaction/transaction complete interrupt - - Yes Yes 0x00 8010 3 DMA1 2/3 DMA1 channels 2/3 half transaction/transaction complete interrupt - - Yes Yes 0x00 8014 4 RTC RTC alarm A/ wakeup Yes Yes Yes Yes 0x00 8018 5 EXTI E/F/ PVD(2) External interrupt port E/F PVD interrupt Yes Yes Yes Yes 0x00 801C 6 EXTIB/G External interrupt port B/G Yes Yes Yes Yes 0x00 8020 7 EXTID/H External interrupt port D/H Yes Yes Yes Yes 0x00 8024 8 EXTI0 External interrupt 0 Yes Yes Yes Yes 0x00 8028 9 EXTI1 External interrupt 1 Yes Yes Yes Yes 0x00 802C 10 EXTI2 External interrupt 2 Yes Yes Yes Yes 0x00 8030 11 EXTI3 External interrupt 3 Yes Yes Yes Yes 0x00 8034 12 EXTI4 External interrupt 4 Yes Yes Yes Yes 0x00 8038 13 EXTI5 External interrupt 5 Yes Yes Yes Yes 0x00 803C 14 EXTI6 External interrupt 6 Yes Yes Yes Yes 0x00 8040 15 EXTI7 External interrupt 7 Yes Yes Yes Yes 0x00 8044 16 LCD LCD interrupt - - Yes Yes 0x00 8048 17 CLK/TIM1 CLK system clock switch/ CSS interrupt/ TIM 1 break - - Yes Yes 0x00 804C 18 ADC1 ACD1 end of conversion/ analog watchdog/ overrun interrupt Yes Yes Yes Yes 0x00 8050 1 FLASH 2 DocID023331 Rev 2 47/103 48 Interrupt vector mapping STM8L052C6 Table 9. Interrupt mapping (continued) Wakeup from Halt mode Wakeup Wakeup Wakeup from from Wait from Wait Active(WFI (WFE halt mode mode) mode)(1) IRQ No. Source block 19 TIM2 TIM2 update/overflow/ trigger/break interrupt - - Yes Yes 0x00 8054 20 TIM2 TIM2capture/ compare interrupt - - Yes Yes 0x00 8058 21 TIM3 TIM3 update/overflow/ trigger/break interrupt - - Yes Yes 0x00 805C 22 TIM3 TIM3 capture/compare interrupt - - Yes Yes 0x00 8060 23 TIM1 Update /overflow/trigger/ COM - - - Yes 0x00 8064 24 TIM1 Capture/compare - - - Yes 0x00 8068 25 TIM4 TIM4 update/overflow/ trigger interrupt - - Yes Yes 0x00 806C 26 SPI1 SPI1 TX buffer empty/ RX buffer not empty/ error/wakeup interrupt Yes Yes Yes Yes 0x00 8070 USART1 USART1transmit data register empty/ transmission complete interrupt - - Yes Yes 0x00 8074 28 USART1 USART1 received data ready/overrun error/ idle line detected/parity error/global error interrupt - - Yes Yes 0x00 8078 29 I2C1 Yes Yes Yes Yes 0x00 807C 27 Description I2C1 interrupt(3) Vector address 1. The Low power wait mode is entered when executing a WFE instruction in Low power run mode. In WFE mode, the interrupt is served if it has been previously enabled. After processing the interrupt, the processor goes back to WFE mode. When the interrupt is configured as a wakeup event, the CPU wakes up and resumes processing. 2. The interrupt from PVD is logically OR-ed with Port E and F interrupts. Register EXTI_CONF allows to select between Port E and Port F interrupt (see External interrupt port select register (EXTI_CONF) in the RM0031). 3. The device is woken up from Halt or Active-halt mode only when the address received matches the interface address. 48/103 DocID023331 Rev 2 STM8L052C6 7 Option bytes Option bytes Option bytes contain configurations for device hardware features as well as the memory protection of the device. They are stored in a dedicated memory block. All option bytes can be modified in ICP mode (with SWIM) by accessing the EEPROM address. See Table 10 for details on option byte addresses. The option bytes can also be modified ‘on the fly’ by the application in IAP mode, except for the ROP and UBC values which can only be taken into account when they are modified in ICP mode (with the SWIM). Refer to the STM8L05x/15x Flash programming manual (PM0054) and STM8 SWIM and Debug Manual (UM0470) for information on SWIM programming procedures. Table 10. Option byte addresses Address Option name Option byte No. Option bits 7 6 5 4 3 2 1 0 Factory default setting 0x00 4800 Read-out protection (ROP) OPT0 ROP[7:0] 0xAA 0x00 4802 UBC (User Boot code size) OPT1 UBC[7:0] 0x00 0x00 4807 Reserved Independent watchdog option OPT3 [3:0] Reserved Number of stabilization 0x00 4809 clock cycles for HSE and LSE oscillators OPT4 Reserved Brownout reset (BOR) OPT5 [3:0] Reserved Bootloader option bytes (OPTBL) OPTBL [15:0] 0x00 4808 0x00 480A 0x00 480B 0x00 480C 0x00 WWDG WWDG IWDG _HALT _HW _HALT LSECNT[1:0] BOR_TH IWDG _HW HSECNT[1:0] BOR_ ON 0x00 0x00 0x00 0x00 OPTBL[15:0] 0x00 DocID023331 Rev 2 49/103 51 Option bytes STM8L052C6 Table 11. Option byte description Option byte No. Option description OPT0 ROP[7:0] Memory readout protection (ROP) 0xAA: Disable readout protection (write access via SWIM protocol) Refer to Readout protection section in the STM8L05x/15x and STM8L16x reference manual (RM0031). OPT1 UBC[7:0] Size of the user boot code area 0x00: UBC is not protected. 0x01: Page 0 is write protected. 0x02: Page 0 and 1 reserved for the UBC and write protected. It covers only the interrupt vectors. 0x03: Page 0 to 2 reserved for UBC and write protected. 0x7F to 0xFF - All 128 pages reserved for UBC and write protected. The protection of the memory area not protected by the UBC is enabled through the MASS keys. Refer to User boot code section in the STM8L05x/15x and STM8L16x reference manual (RM0031). OPT2 Reserved IWDG_HW: Independent watchdog 0: Independent watchdog activated by software 1: Independent watchdog activated by hardware IWDG_HALT: Independent window watchdog off on Halt/Active-halt 0: Independent watchdog continues running in Halt/Active-halt mode 1: Independent watchdog stopped in Halt/Active-halt mode OPT3 WWDG_HW: Window watchdog 0: Window watchdog activated by software 1: Window watchdog activated by hardware WWDG_HALT: Window window watchdog reset on Halt/Active-halt 0: Window watchdog stopped in Halt mode 1: Window watchdog generates a reset when MCU enters Halt mode HSECNT: Number of HSE oscillator stabilization clock cycles 0x00 - 1 clock cycle 0x01 - 16 clock cycles 0x10 - 512 clock cycles 0x11 - 4096 clock cycles OPT4 50/103 LSECNT: Number of LSE oscillator stabilization clock cycles 0x00 - 1 clock cycle 0x01 - 16 clock cycles 0x10 - 512 clock cycles 0x11 - 4096 clock cycles Refer to Table 29: LSE oscillator characteristics on page 70. DocID023331 Rev 2 STM8L052C6 Option bytes Table 11. Option byte description (continued) Option byte No. OPT5 Option description BOR_ON: 0: Brownout reset off 1: Brownout reset on BOR_TH[3:1]: Brownout reset thresholds. Refer to Table 20 for details on the thresholds according to the value of BOR_TH bits. OPTBL OPTBL[15:0]: This option is checked by the boot ROM code after reset. Depending on content of addresses 00 480B, 00 480C and 0x8000 (reset vector) the CPU jumps to the bootloader or to the reset vector. Refer to the UM0560 bootloader user manual for more details. DocID023331 Rev 2 51/103 51 Electrical parameters STM8L052C6 8 Electrical parameters 8.1 Parameter conditions Unless otherwise specified, all voltages are referred to VSS. 8.1.1 Minimum and maximum values Unless otherwise specified the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at TA= 25 °C and TA = TA max (given by the selected temperature range). Data based on characterization results, design simulation and/or technology characteristics is indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean±3). 8.1.2 Typical values Unless otherwise specified, typical data is based on TA = 25 °C, VDD = 3 V. It is given only as design guidelines and is not tested. Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean±2). 8.1.3 Typical curves Unless otherwise specified, all typical curves are given only as design guidelines and are not tested. 8.1.4 Loading capacitor The loading conditions used for pin parameter measurement are shown in Figure 5. Figure 5. Pin loading conditions STM8L PIN 50 pF 52/103 DocID023331 Rev 2 STM8L052C6 8.1.5 Electrical parameters Pin input voltage The input voltage measurement on a pin of the device is described in Figure 6. Figure 6. Pin input voltage STM8L PIN VIN 8.2 Absolute maximum ratings Stresses above those listed as “absolute maximum ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device under these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. Table 12. Voltage characteristics Symbol Ratings Min Max Unit VDD- VSS External supply voltage (including VDDA and VDD2)(1) - 0.3 4.0 V Input voltage on true open-drain pins (PC0 and PC1) VSS - 0.3 VDD + 4.0 Input voltage on five-volt tolerant (FT) pins (PA7 and PE0) VSS - 0.3 VDD + 4.0 Input voltage on 3.6 V tolerant (TT) pins VSS - 0.3 4.0 Input voltage on any other pin VSS - 0.3 4.0 VIN(2) VESD Electrostatic discharge voltage V see Absolute maximum ratings (electrical sensitivity) on page 96 1. All power (VDD1, VDD2, VDDA) and ground (VSS1, VSS2, VSSA) pins must always be connected to the external power supply. 2. VIN maximum must always be respected. Refer to Table 13. for maximum allowed injected current values. DocID023331 Rev 2 53/103 97 Electrical parameters STM8L052C6 Table 13. Current characteristics Symbol Ratings Max. IVDD Total current into VDD power line (source) 80 IVSS Total current out of VSS ground line (sink) 80 Output current sunk by IR_TIM pin (with high sink LED driver capability) 80 Output current sunk by any other I/O and control pin 25 IIO Output current sourced by any I/Os and control pin Unit - 25 mA IINJ(PIN) IINJ(PIN) Injected current on true open-drain pins (PC0 and PC1)(1) - 5 / +0 Injected current on five-volt tolerant (FT) pins (PA7 and PE0) (1) - 5 / +0 Injected current on 3.6 V tolerant (TT) pins (1) - 5 / +0 Injected current on any other pin (2) - 5 / +5 Total injected current (sum of all I/O and control pins) (3) ± 25 1. Positive injection is not possible on these I/Os. A negative injection is induced by VIN<VSS. IINJ(PIN) must never be exceeded. Refer to Table 12. for maximum allowed input voltage values. 2. A positive injection is induced by VIN>VDD while a negative injection is induced by VIN<VSS. IINJ(PIN) must never be exceeded. Refer to Table 12. for maximum allowed input voltage values. 3. When several inputs are submitted to a current injection, the maximum IINJ(PIN) is the absolute sum of the positive and negative injected currents (instantaneous values). Table 14. Thermal characteristics Symbol TSTG TJ 54/103 Ratings Storage temperature range Value Unit -65 to +150 °C Maximum junction temperature DocID023331 Rev 2 150 STM8L052C6 8.3 Electrical parameters Operating conditions Subject to general operating conditions for VDD and TA. 8.3.1 General operating conditions Table 15. General operating conditions Symbol fSYSCLK(1) Parameter System clock frequency Conditions Min. Max. Unit 1.8 V VDD 3.6 V 0 16 MHz - 1.8 3.6 V Must be at the same potential as VDD 1.8 3.6 V VDD Standard operating voltage VDDA Analog operating voltage PD(2) Power dissipation at TA= 85 °C LQFP48 - 288 mW PD(3) Power dissipation at TA= 85 °C TSSOP20 - 181 mW TA Temperature range 1.8 V VDD 3.6 V -40 85 °C TJ Junction temperature range -40 °C TA 85 °C -40 105(4) °C 1. fSYSCLK = fCPU 2. To calculate PDmax(TA), use the formula PDmax=(TJmax -TA)/JA with TJmax in this table and JA in “Thermal characteristics” table. 3. To calculate PDmax(TA), use the formula PDmax=(TJmax -TA)/JA with TJmax in this table and JA in “Thermal characteristics” table. 4. TJmax is given by the test limit. Above this value, the product behavior is not guaranteed. DocID023331 Rev 2 55/103 97 Electrical parameters 8.3.2 STM8L052C6 Embedded reset and power control block characteristics Table 16. Embedded reset and power control block characteristics Symbol Parameter Conditions Min Typ Max VDD rise time rate BOR detector enabled 0(1) - (1) VDD fall time rate BOR detector enabled (1) - (1) Reset release delay VDD rising - 3 - ms 1.50 1.65 V tVDD tTEMP µs/V 20 (2) VPDR Power-down reset threshold Falling edge Brown-out reset threshold 0 (BOR_TH[2:0]=000) Falling edge 1.67 1.70 1.74 VBOR0 Rising edge 1.69 1.75 1.80 Brown-out reset threshold 1 (BOR_TH[2:0]=001) Falling edge 1.87 1.93 1.97 VBOR1 Rising edge 1.96 2.04 2.07 Brown-out reset threshold 2 (BOR_TH[2:0]=010) Falling edge 2.22 2.3 2.35 VBOR2 Rising edge 2.31 2.41 2.44 Brown-out reset threshold 3 (BOR_TH[2:0]=011) Falling edge 2.45 2.55 2.60 VBOR3 Rising edge 2.54 2.66 2.7 Brown-out reset threshold 4 (BOR_TH[2:0]=100) Falling edge 2.68 2.80 2.85 VBOR4 Rising edge 2.78 2.90 2.95 Falling edge 1.80 1.84 1.88 VPVD0 PVD threshold 0 Rising edge 1.88 1.94 1.99 Falling edge 1.98 2.04 2.09 VPVD1 PVD threshold 1 Rising edge 2.08 2.14 2.18 Falling edge 2.2 2.24 2.28 VPVD2 PVD threshold 2 Rising edge 2.28 2.34 2.38 Falling edge 2.39 2.44 2.48 VPVD3 PVD threshold 3 Rising edge 2.47 2.54 2.58 Falling edge 2.57 2.64 2.69 VPVD4 PVD threshold 4 Rising edge 2.68 2.74 2.79 Falling edge 2.77 2.83 2.88 VPVD5 PVD threshold 5 Rising edge 2.87 2.94 2.99 Falling edge 2.97 3.05 3.09 VPVD6 PVD threshold 6 Rising edge 3.08 3.15 3.20 1.30 V V 1. Data guaranteed by design, not tested in production. 2. Data based on characterization results, not tested in production. 56/103 Unit DocID023331 Rev 2 STM8L052C6 Electrical parameters Figure 7. POR/BOR thresholds 9'' 9'' 9 2SHUDWLQJ SRZHUVXSSO\ 9'' %25WKUHVKROGB 9 %25WKUHVKROG 9%25 93'5 5HVHW 6DIHUHVHW 6DIHUHVHWUHOHDVH ZLWKRXW%25 EDWWHU\OLIHH[WHQVLRQ 3'5WKUHVKROG ,QWHUQDO1567 ZLWK %25 ZLWK ZLWKRXW %25 %25 %25DOZD\VDFWLYH DWSRZHUXS %25DFWLYDWHGE\XVHU IRUSRZHUGRZQGHWHFWLRQ 7LPH $, 8.3.3 Supply current characteristics Total current consumption The MCU is placed under the following conditions: l All I/O pins in input mode with a static value at VDD or VSS (no load) l All peripherals are disabled except if explicitly mentioned. In the following table, data is based on characterization results, unless otherwise specified. Subject to general operating conditions for VDD and TA. DocID023331 Rev 2 57/103 97 Electrical parameters STM8L052C6 Table 17. Total current consumption in Run mode Symbol Max Para meter Conditions(1) Typ Unit 55 °C 85 °C fCPU = 125 kHz 0.39 0.47 0.49 fCPU = 1 MHz 0.48 0.56 0.58 fCPU = 4 MHz 0.75 0.84 0.86 fCPU = 8 MHz 1.10 1.20 1.25 fCPU = 16 MHz 1.85 1.93 2.12(5) fCPU = 125 kHz 0.05 0.06 0.09 fCPU = 1 MHz 0.18 0.19 0.20 fCPU = 4 MHz 0.55 0.62 0.64 fCPU = 8 MHz 0.99 1.20 1.21 fCPU = 16 MHz 1.90 2.22 2.23(5) LSI RC osc. (typ. 38 kHz) fCPU = fLSI 0.040 0.045 0.046 LSE external clock (32.768 kHz) fCPU = fLSE 0.035 0.040 0.048(5) fCPU = 125 kHz 0.43 0.55 0.56 fCPU = 1 MHz 0.60 0.77 0.80 fCPU = 4 MHz 1.11 1.34 1.37 fCPU = 8 MHz 1.90 2.20 2.23 fCPU = 16 MHz 3.8 4.60 4.75 fCPU = 125 kHz 0.30 0.36 0.39 fCPU = 1 MHz 0.40 0.50 0.52 fCPU = 4 MHz 1.15 1.31 1.40 fCPU = 8 MHz 2.17 2.33 2.44 fCPU = 16 MHz 4.0 4.46 4.52 0.110 0.123 0.130 0.100 0.101 0.104 HSI RC osc. (16 MHz)(3) All peripherals Supply OFF, current code IDD(RUN) HSE external in run executed clock (2) from RAM, mode (fCPU=fHSE)(4) VDD from 1.8 V to 3.6 V HSI RC oscillator.(6) All peripherals Supply OFF, code current IDD(RUN) executed HSE external in Run from Flash, clock mode VDD from =f ) (4) (f 1.8 V to 3.6 V CPU HSE LSI RC osc. fCPU = fLSI LSE ext. clock (32.768 fCPU = fLSE kHz)(7) 1. All peripherals OFF, VDD from 1.8 V to 3.6 V, HSI internal RC oscillator, fCPU=fSYSCLK 2. CPU executing typical data processing 3. The run from RAM consumption can be approximated with the linear formula: IDD(run_from_RAM) = Freq * 90 µA/MHz + 380 µA 58/103 DocID023331 Rev 2 mA mA STM8L052C6 Electrical parameters 4. Oscillator bypassed (HSEBYP = 1 in CLK_ECKCR). When configured for external crystal, the HSE consumption (IDD HSE) must be added. Refer to Table 28. 5. Tested in production. 6. The run from Flash consumption can be approximated with the linear formula: IDD(run_from_Flash) = Freq * 195 µA/MHz + 440 µA 7. Oscillator bypassed (LSEBYP = 1 in CLK_ECKCR). When configured for external crystal, the LSE consumption (IDD LSE) must be added. Refer to Table 29. Figure 8. Typ. IDD(RUN) vs. VDD, fCPU = 16 MHz & ,''581+6,>P$@ & & 9''>9@ DL9 1. Typical current consumption measured with code executed from RAM DocID023331 Rev 2 59/103 97 Electrical parameters STM8L052C6 In the following table, data is based on characterization results, unless otherwise specified. Table 18. Total current consumption in Wait mode Max Conditions(1) Symbol Parameter Typ 55°C HSI CPU not clocked, all peripherals OFF, Supply code executed IDD(Wait) current in from RAM Wait mode with Flash in IDDQ mode(3), VDD from 1.8 V to 3.6 V 0.33 0.39 0.41 fCPU = 1 MHz 0.35 0.41 0.44 fCPU = 4 MHz 0.42 0.51 0.52 fCPU = 8 MHz 0.52 0.57 0.58 fCPU = 16 MHz 0.68 0.76 0.79 f = 1 MHz HSE external CPU clock fCPU = 4 MHz (fCPU=fHSE)(4) fCPU = 8 MHz 0.078 0.121 0.144 0.218 0.26 0.30 0.40 0.52 0.57 fCPU = 16 MHz 0.760 1.01 1.05 fCPU = fLSI 0.035 0.044 0.046 0.38 0.48 0.49 fCPU = 1 MHz 0.41 0.49 0.51 fCPU = 4 MHz 0.50 0.57 0.58 fCPU = 8 MHz 0.60 0.66 0.68 fCPU = 16 MHz 0.79 0.84 0.86 fCPU = 125 kHz 0.06 0.08 0.09 fCPU = 1 MHz HSE(4) external clock fCPU = 4 MHz (fCPU=HSE) 0.10 0.17 0.18 0.24 0.36 0.39 fCPU = 8 MHz 0.50 0.58 0.61 fCPU = 16 MHz 1.00 1.08 1.14 fCPU = fLSI 0.055 0.058 0.065 LSI LSE(5) external clock fCPU = fLSE (32.768 kHz) mA 0.032 0.036 0.038 fCPU = 125 kHz HSI mode (2) fCPU = 125 kHz LSE(5) external clock fCPU = fLSE (32.768 kHz) Supply current in IDD(Wait) Wait Unit fCPU = 125 kHz 0.032 0.056 0.068 LSI CPU not clocked, all peripherals OFF, code executed from Flash, VDD from 1.8 V to 3.6 V 85°C mA 0.051 0.056 0.060 1. All peripherals OFF, VDD from 1.8 V to 3.6 V, HSI internal RC oscillator, fCPU = fSYSCLK 2. For temperature range 6. 3. Flash is configured in IDDQ mode in Wait mode by setting the EPM or WAITM bit in the Flash_CR1 register. 60/103 DocID023331 Rev 2 STM8L052C6 Electrical parameters 4. Oscillator bypassed (HSEBYP = 1 in CLK_ECKCR). When configured for external crystal, the HSE consumption (IDD HSE) must be added. Refer to Table 28. 5. Oscillator bypassed (LSEBYP = 1 in CLK_ECKCR). When configured for external crystal, the LSE consumption (IDD HSE) must be added. Refer to Table 29. Figure 9. Typ. IDD(Wait) vs. VDD, fCPU = 16 MHz 1) ,'':$,7+6, >$@ & & & 9''>9@ DL9 1. Typical current consumption measured with code executed from Flash memory. DocID023331 Rev 2 61/103 97 Electrical parameters STM8L052C6 In the following table, data is based on characterization results, unless otherwise specified. Table 19. Total current consumption and timing in Low power run mode at VDD = 1.8 V to 3.6 V Symbol Conditions(1) Parameter all peripherals OFF LSI RC osc. (at 38 kHz) with TIM2 active(2) IDD(LPR) Supply current in Low power run mode all peripherals OFF (3) LSE external clock (32.768 kHz) with TIM2 active (2) Typ Max Unit TA = -40 °C to 25 °C 5.1 5.4 TA = 55 °C 5.7 6 TA = 85 °C 6.8 7.5 TA = -40 °C to 25 °C 5.4 5.7 TA = 55 °C 6.0 6.3 TA = 85 °C 7.2 7.8 TA = -40 °C to 25 °C 5.25 5.6 TA = 55 °C 5.67 6.1 TA = 85 °C 5.85 6.3 TA = -40 °C to 25 °C 5.59 TA = 55 °C 6.10 6.4 TA = 85 °C 6.30 A 6 7 1. No floating I/Os 2. Timer 2 clock enabled and counter running 3. Oscillator bypassed (LSEBYP = 1 in CLK_ECKCR). When configured for external crystal, the LSE consumption (IDD LSE) must be added. Refer to Table 29 Figure 10. Typ. IDD(LPR) vs. VDD (LSI clock source) & ,''/35/6,>$@ & & 9''>9@ DL9 62/103 DocID023331 Rev 2 STM8L052C6 Electrical parameters In the following table, data is based on characterization results, unless otherwise specified. Table 20. Total current consumption in Low power wait mode at VDD = 1.8 V to 3.6 V Symbol Conditions(1) Parameter Typ Max Unit TA = -40 °C to 25 °C all peripherals OFF LSI RC osc. (at 38 kHz) with TIM2 IDD(LPW) active(2) Supply current in Low power wait mode all peripherals OFF LSE external clock(3) (32.768 kHz) with TIM2 active (2) 3 3.3 TA = 55 °C 3.3 3.6 TA = 85 °C 4.4 5 TA = -40 °C to 25 °C 3.4 3.7 TA = 55 °C 3.7 4 TA = 85 °C 4.8 5.4 TA = -40 °C to 25 °C 2.35 2.7 TA = 55 °C 2.42 2.82 TA = 85 °C 3.10 3.71 TA = -40 °C to 25 °C 2.46 2.75 TA = 55 °C 2.50 2.81 TA = 85 °C 3.16 3.82 A 1. No floating I/Os. 2. Timer 2 clock enabled and counter is running. 3. Oscillator bypassed (LSEBYP = 1 in CLK_ECKCR). When configured for external crystal, the LSE consumption (IDD LSE) must be added. Refer to Table 29. Figure 11. Typ. IDD(LPW) vs. VDD (LSI clock source) & ,''/3: /6,>$@ & & 9''>9@ DL9 DocID023331 Rev 2 63/103 97 Electrical parameters STM8L052C6 In the following table, data is based on characterization results, unless otherwise specified. Table 21. Total current consumption and timing in Active-halt mode at VDD = 1.8 V to 3.6 V Symbol Conditions (1) Parameter LCD OFF IDD(AH) Supply current in Active-halt mode LSI RC (at 38 kHz) (2) Supply current in Active-halt mode (6) 64/103 3 TA = 85 °C 1.5 3.4 3.3 1.9 4.3 TA = -40 °C to 25 °C 1.9 4.3 TA = 55 °C 1.95 4.4 TA = 85 °C 2.4 5.4 TA = -40 °C to 25 °C 3.9 8.75 TA = 55 °C 4.15 9.3 TA = 85 °C 4.5 10.2 TA = -40 °C to 25 °C 0.5 1.2 TA = 55 °C 0.62 1.4 TA = 85 °C 0.88 2.1 0.85 1.9 0.95 2.2 1.3 3.2 TA = -40 °C to 25 °C 1.5 2.5 TA = 55 °C 1.6 3.8 TA = 85 °C 1.8 4.2 TA = -40 °C to 25 °C 3.4 7.6 TA = 55 °C 3.7 8.3 TA = 85 °C 3.9 9.2 TA = -40 °C to 25 °C 0.9 2.1 TA = 55 °C 1.2 3 TA = 85 °C 1.5 3.4 TA = -40 °C to 25 °C 0.5 1.2 TA = 55 °C 0.62 1.4 TA = 85 °C 0.88 2.1 2.4 - LCD ON (1/4 duty/ external VLCD) (4) OFF(7) TA = -40 °C to 25 °C LCD ON (static duty/ TA = 55 °C external TA = 85 °C VLCD) (3) LCD ON (1/4 duty/ external VLCD) (4) Supply current in Active-halt mode LSE external clock (32.768 kHz)(8) IDD(WUFAH) 2.1 1.2 1.5 LSI RC (at 38 kHz) Supply current during wakeup time from Active-halt mode (using HSI) 0.9 TA = 55 °C 3.1 LCD ON (1/4 duty/ internal VLCD) (5) IDD(AH) TA = -40 °C to 25 °C 1.4 LCD IDD(AH) Max TA = -40 °C to 25 °C LCD ON (static duty/ TA = 55 °C external TA = 85 °C VLCD) (3) LCD ON (1/4 duty/ internal VLCD) (5) LSE external clock (32.768 kHz) Typ - DocID023331 Rev 2 Unit A A A mA STM8L052C6 Electrical parameters Table 21. Total current consumption and timing in Active-halt mode at VDD = 1.8 V to 3.6 V Symbol Parameter Conditions (1) Typ Max Unit tWU_HSI(AH)(9) Wakeup time from Active-halt mode to Run mode (using HSI) - 4.7 7 s Wakeup time from Active-halt mode to Run mode (using LSI) - 150 - s (10) tWU_LSI(AH)(9) (10) 1. No floating I/O, unless otherwise specified. 2. RTC enabled. Clock source = LSI 3. RTC enabled, LCD enabled with external VLCD = 3 V, static duty, division ratio = 256, all pixels active, no LCD connected. 4. RTC enabled, LCD enabled with external VLCD, 1/4 duty, 1/3 bias, division ratio = 64, all pixels active, no LCD connected. 5. LCD enabled with internal LCD booster VLCD = 3 V, 1/4 duty, 1/3 bias, division ratio = 64, all pixels active, no LCD connected. 6. Oscillator bypassed (LSEBYP = 1 in CLK_ECKCR). When configured for external crystal, the LSE consumption (IDD LSE) must be added. Refer to Table 29. 7. RTC enabled. Clock source = LSE. 8. Oscillator bypassed (LSEBYP = 1 in CLK_ECKCR). When configured for external crystal, the LSE consumption (IDD LSE) must be added. Refer to Table 29. 9. Wakeup time until start of interrupt vector fetch. The first word of interrupt routine is fetched 4 CPU cycles after tWU. 10. ULP=0 or ULP=1 and FWU=1 in the PWR_CSR2 register. Table 22. Typical current consumption in Active-halt mode, RTC clocked by LSE external crystal Symbol Condition(1) Parameter Typ LSE VDD = 1.8 V IDD(AH) (2) Supply current in Active-halt mode VDD = 3 V VDD = 3.6 V Unit 1.15 (3) LSE/32 1.05 LSE 1.30 LSE/32(3) 1.20 LSE 1.45 (3) LSE/32 µA 1.35 1. No floating I/O, unless otherwise specified. 2. Based on measurements on bench with 32.768 kHz external crystal oscillator. 3. RTC clock is LSE divided by 32. DocID023331 Rev 2 65/103 97 Electrical parameters STM8L052C6 In the following table, data is based on characterization results, unless otherwise specified. Table 23. Total current consumption and timing in Halt mode at VDD = 1.8 to 3.6 V Symbol IDD(Halt) Condition(1) Parameter TA = -40 °C to 25 °C Supply current in Halt mode (Ultra-low-power ULP bit =1 in TA = 55 °C the PWR_CSR2 register) TA = 85 °C Typ Max 350 1400(2) 580 2000 1160 2800(2) Unit nA IDD(WUHalt) Supply current during wakeup time from Halt mode (using HSI) - 2.4 - mA tWU_HSI(Halt)(3)(4) Wakeup time from Halt to Run mode (using HSI) - 4.7 7 µs tWU_LSI(Halt) (3)(4) Wakeup time from Halt mode to Run mode (using LSI) - 150 - µs 1. TA = -40 to 85 °C, no floating I/O, unless otherwise specified. 2. Tested in production. 3. ULP=0 or ULP=1 and FWU=1 in the PWR_CSR2 register. 4. Wakeup time until start of interrupt vector fetch. The first word of interrupt routine is fetched 4 CPU cycles after tWU. 66/103 DocID023331 Rev 2 STM8L052C6 Electrical parameters Current consumption of on-chip peripherals Table 24. Peripheral current consumption Symbol Typ. VDD = 3.0 V Parameter IDD(TIM1) TIM1 supply current(1) 13 IDD(TIM2) TIM2 supply current (1) 8 IDD(TIM3) TIM3 supply current (1) 8 IDD(TIM4) TIM4 timer supply current (1) 3 USART1 supply current (2) 6 IDD(SPI1) SPI1 supply current (2) 3 IDD(I2C1) I2C1 supply current (2) 5 IDD(DMA1) DMA1 supply current(2) 3 IDD(USART1) IDD(WWDG) WWDG supply IDD(PVD/BOR) IDD(IDWDG) current(2) 2 44 ADC1 supply current(4) IDD(ADC1) IDD(BOR) µA/MHz Peripherals ON(3) IDD(ALL) Unit µA/MHz 1500 Power voltage detector and brownout Reset unit supply current (5) 2.6 Brownout Reset unit supply current (5) 2.4 Independent watchdog supply current including LSI supply current 0.45 excluding LSI supply current 0.05 µA 1. Data based on a differential IDD measurement between all peripherals OFF and a timer counter running at 16 MHz. The CPU is in Wait mode in both cases. No IC/OC programmed, no I/O pins toggling. Not tested in production. 2. Data based on a differential IDD measurement between the on-chip peripheral in reset configuration and not clocked and the on-chip peripheral when clocked and not kept under reset. The CPU is in Wait mode in both cases. No I/O pins toggling. Not tested in production. 3. Peripherals listed above the IDD(ALL) parameter ON: TIM1, TIM2, TIM3, TIM4, USART1, SPI1, I2C1, DMA1, WWDG. 4. Data based on a differential IDD measurement between ADC in reset configuration and continuous ADC conversion. 5. Including supply current of internal reference voltage. Table 25. Current consumption under external reset Symbol IDD(RST) Parameter Supply current under external reset (1) Conditions All pins are externally tied to VDD Typ VDD = 1.8 V 48 VDD = 3 V 76 VDD = 3.6 V 91 Unit µA 1. All pins except PA0, PB0 and PB4 are floating under reset. PA0, PB0 and PB4 are configured with pull-up under reset. DocID023331 Rev 2 67/103 97 Electrical parameters 8.3.4 STM8L052C6 Clock and timing characteristics HSE external clock (HSEBYP = 1 in CLK_ECKCR) Subject to general operating conditions for VDD and TA. Table 26. HSE external clock characteristics Symbol Parameter Conditions fHSE_ext External clock source frequency(1) VHSEH OSC_IN input pin high level voltage VHSEL OSC_IN input pin low level voltage Min Typ Max Unit 1 - 16 MHz 0.7 x VDD - VDD VSS - 0.3 x VDD - - 2.6 - pF VSS < VIN < VDD - - ±1 µA - V Cin(HSE) ILEAK_HSE OSC_IN input capacitance(1) OSC_IN input leakage current 1. Data guaranteed by Design, not tested in production. LSE external clock (LSEBYP=1 in CLK_ECKCR) Subject to general operating conditions for VDD and TA. Table 27. LSE external clock characteristics Symbol Parameter Min Typ Max Unit - 32.768 - kHz fLSE_ext External clock source frequency(1) VLSEH(2) OSC32_IN input pin high level voltage 0.7 x VDD - VDD VLSEL(2) OSC32_IN input pin low level voltage VSS - 0.3 x VDD Cin(LSE) OSC32_IN input capacitance(1) - 0.6 - pF OSC32_IN input leakage current - - ±1 µA ILEAK_LSE V 1. Data guaranteed by Design, not tested in production. 2. Data based on characterization results, not tested in production. 68/103 DocID023331 Rev 2 STM8L052C6 Electrical parameters HSE crystal/ceramic resonator oscillator The HSE clock can be supplied with a 1 to 16 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph is based on characterization results with specified typical external components. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details (frequency, package, accuracy...). Table 28. HSE oscillator characteristics Symbol Conditions Min Typ Max Unit High speed external oscillator frequency - 1 - 16 MHz RF Feedback resistor - - 200 - k C(1) Recommended load capacitance (2) - - 20 - pF C = 20 pF, fOSC = 16 MHz - - 2.5 (startup) 0.7 (stabilized)(3) fHSE IDD(HSE) gm Parameter HSE oscillator power consumption - - 2.5 (startup) 0.46 (stabilized)(3) - 3.5(3) - - mA/V 1 - ms Oscillator transconductance tSU(HSE)(4) Startup time mA C = 10 pF, fOSC =16 MHz VDD is stabilized 1. C=CL1=CL2 is approximately equivalent to 2 x crystal CLOAD. 2. The oscillator selection can be optimized in terms of supply current using a high quality resonator with small Rm value. Refer to crystal manufacturer for more details 3. Data guaranteed by Design. Not tested in production. 4. tSU(HSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 16 MHz oscillation. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer. Figure 12. HSE oscillator circuit diagram fHSE to core Rm Lm RF CO CL1 OSC_IN Cm gm Resonator Consumption control Resonator STM8 OSC_OUT CL2 HSE oscillator critical gm formula g mcrit = 2 f HSE 2 R m 2Co + C 2 Rm: Motional resistance (see crystal specification), Lm: Motional inductance (see crystal specification), Cm: Motional capacitance (see crystal specification), Co: Shunt capacitance (see crystal specification), CL1=CL2=C: Grounded external capacitance gm >> gmcrit DocID023331 Rev 2 69/103 97 Electrical parameters STM8L052C6 LSE crystal/ceramic resonator oscillator The LSE clock can be supplied with a 32.768 kHz crystal/ceramic resonator oscillator. All the information given in this paragraph is based on characterization results with specified typical external components. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details (frequency, package, accuracy...). Table 29. LSE oscillator characteristics Symbol Parameter fLSE Low speed external oscillator frequency RF Feedback resistor C(1) Recommended load capacitance (2) IDD(LSE) gm LSE oscillator power consumption Conditions Min Typ Max Unit - - 32.768 - kHz V = 200 mV - 1.2 - M - - 8 - pF - - - 1.4(3) µA VDD = 1.8 V - 450 - VDD = 3 V - 600 - VDD = 3.6 V - 750 - - 3(3) VDD is stabilized - Oscillator transconductance tSU(LSE)(4) Startup time 1 nA - µA/V - s 1. C=CL1=CL2 is approximately equivalent to 2 x crystal CLOAD. 2. The oscillator selection can be optimized in terms of supply current using a high quality resonator with a small Rm value. Refer to crystal manufacturer for more details. 3. Data guaranteed by Design. Not tested in production. 4. tSU(LSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer. Figure 13. LSE oscillator circuit diagram fLSE Rm RF CO Lm CL1 OSC_IN Cm gm Resonator Consumption control Resonator STM8 OSC_OUT CL2 70/103 DocID023331 Rev 2 STM8L052C6 Electrical parameters Internal clock sources Subject to general operating conditions for VDD, and TA. High speed internal RC oscillator (HSI) In the following table, data is based on characterization results, not tested in production, unless otherwise specified. Table 30. HSI oscillator characteristics Symbol fHSI Conditions(1) Parameter Frequency Min Typ - 16 VDD = 3.0 V VDD = 3.0 V, TA = 25 °C -1 (2) ACCHSI Accuracy of HSI oscillator (factory calibrated) TRIM HSI user trimming step(3) tsu(HSI) HSI oscillator setup time (wakeup time) - - IDD(HSI) HSI oscillator power consumption - - Max Unit MHz - (2) % 1 1.8 V VDD 3.6 V, -40 °C TA 85 °C -5 - 5 % Trimming code multiple of 16 - 0.4 0.7 % Trimming code = multiple of 16 - ± 1.5 % 3.7 6(4) µs 100 140(4) µA 1. VDD = 3.0 V, TA = -40 to 85 °C unless otherwise specified. 2. Tested in production. 3. The trimming step differs depending on the trimming code. It is usually negative on the codes which are multiples of 16 (0x00, 0x10, 0x20, 0x30...0xE0). Refer to the AN3101 “STM8L15x internal RC oscillator calibration” application note for more details. 4. Guaranteed by design, not tested in production. Figure 14. Typical HSI frequency vs. VDD +6,IUHTXHQF\>0+]@ & & & 9''>9@ DL9 DocID023331 Rev 2 71/103 97 Electrical parameters STM8L052C6 Low speed internal RC oscillator (LSI) In the following table, data is based on characterization results, not tested in production. Table 31. LSI oscillator characteristics Parameter (1) Symbol fLSI Conditions(1) Min Typ Max Unit - 26 38 56 kHz Frequency tsu(LSI) LSI oscillator wakeup time IDD(LSI) LSI oscillator frequency drift(3) 0 °C TA 85 °C (2) - - 200 -12 - 11 µs % 1. VDD = 1.8 V to 3.6 V, TA = -40 to 85 °C unless otherwise specified. 2. Guaranteed by design, not tested in production. 3. This is a deviation for an individual part, once the initial frequency has been measured. Figure 15. Typical LSI frequency vs. VDD /6, IUHTXHQF\ >N+]@ & & & 9''>9@ DL9 72/103 DocID023331 Rev 2 STM8L052C6 8.3.5 Electrical parameters Memory characteristics TA = -40 to 85 °C unless otherwise specified. Table 32. RAM and hardware registers Symbol Parameter Conditions Min Typ Max Unit VRM Data retention mode (1) Halt mode (or Reset) 1.8 - - V 1. Minimum supply voltage without losing data stored in RAM (in Halt mode or under Reset) or in hardware registers (only in Halt mode). Guaranteed by characterization, not tested in production. Flash memory Table 33. Flash program and data EEPROM memory Symbol VDD tprog Iprog tRET(2) Parameter Min fSYSCLK = 16 MHz 1.8 Programming time for 1 or 64 bytes (block) erase/write cycles (on programmed byte) - - Programming time for 1 to 64 bytes (block) write cycles (on erased byte) - - TA+25 °C, VDD = 3.0 V - TA+25 °C, VDD = 1.8 V - Data retention (program memory) after 100 erase/write cycles at TA–40 to +85 °C TRET+85 °C 30(1) Data retention (data memory) after 100000 erase/write cycles at TA= –40 to +85 °C TRET +85 °C 30(1) - - 100(1) - - cycles - - kcycles Operating voltage (all modes, read/write/erase) Programming/ erasing consumption NRW TA –40 to +85 °C Erase/write cycles (data memory) (1) Unit 3.6 V 6 - ms 3 - ms 0.7 mA - - years Erase/write cycles (program memory) (3) Typ Max Conditions 100(1) (4) 1. Data based on characterization results, not tested in production. 2. Conforming to JEDEC JESD22a117 3. The physical granularity of the memory is 4 bytes, so cycling is performed on 4 bytes even when a write/erase operation addresses a single byte. 4. Data based on characterization performed on the whole data memory. 8.3.6 I/O current injection characteristics As a general rule, current injection to the I/O pins, due to external voltage below VSS or above VDD (for standard pins) should be avoided during normal product operation. However, in order to give an indication of the robustness of the microcontroller in cases when abnormal injection accidentally happens, susceptibility tests are performed on a sample basis during device characterization. DocID023331 Rev 2 73/103 97 Electrical parameters STM8L052C6 Functional susceptibility to I/O current injection While a simple application is executed on the device, the device is stressed by injecting current into the I/O pins programmed in floating input mode. While current is injected into the I/O pin, one at a time, the device is checked for functional failures. The failure is indicated by an out of range parameter: ADC error, out of spec current injection on adjacent pins or other functional failure (for example reset, oscillator frequency deviation, LCD levels, etc.). The test results are given in the following table. Table 34. I/O current injection susceptibility Functional susceptibility Symbol IINJ 8.3.7 Description Negative injection Positive injection Injected current on true open-drain pins (PC0 and PC1) -5 +0 Injected current on all five-volt tolerant (FT) pins -5 +0 Injected current on all 3.6 V tolerant (TT) pins -5 +0 Injected current on any other pin -5 +5 Unit mA I/O port pin characteristics General characteristics Subject to general operating conditions for VDD and TA unless otherwise specified. All unused pins must be kept at a fixed voltage: using the output mode of the I/O for example or an external pull-up or pull-down resistor. 74/103 DocID023331 Rev 2 STM8L052C6 Electrical parameters Table 35. I/O static characteristics Symbol VIL Conditions(1) Min Typ Max Input voltage on true open-drain pins (PC0 and PC1) VSS-0.3 - 0.3 x VDD Input voltage on five-volt tolerant (FT) pins (PA7 and PE0) VSS-0.3 - 0.3 x VDD Input voltage on 3.6 V tolerant (TT) pins VSS-0.3 - 0.3 x VDD Input voltage on any other pin VSS-0.3 - 0.3 x VDD - 5.2 - 5.5 - 5.2 - 5.5 - 3.6 0.70 x VDD - VDD+0.3 I/Os - 200 - True open drain I/Os - 200 - VSSVIN VDD High sink I/Os - - 50 (5) VSSVIN VDD True open drain I/Os - - 200(5) VSSVIN VDD PA0 with high sink LED driver capability - - 200(5) 30 45 60 k - 5 - pF Parameter Input low level voltage(2) Input voltage on true open-drain pins (PC0 and PC1) with VDD < 2 V Input voltage on true open-drain pins (PC0 and PC1) with VDD 2 V VIH Input high level voltage (2) 0.70 x VDD Input voltage on 3.6 V tolerant (TT) pins Input voltage on any other pin Vhys Ilkg Schmitt trigger voltage hysteresis (3) Input leakage current (4) RPU Weak pull-up equivalent resistor(2)(6) CIO I/O pin capacitance V 0.70 x VDD Input voltage on five-volt tolerant (FT) pins (PA7 and PE0) with VDD < 2 V Input voltage on five-volt tolerant (FT) pins (PA7 and PE0) with VDD 2 V Unit V mV VINVSS - nA 1. VDD = 3.0 V, TA = -40 to 85 °C unless otherwise specified. 2. Data based on characterization results, not tested in production. 3. Hysteresis voltage between Schmitt trigger switching levels. Based on characterization results, not tested. 4. The max. value may be exceeded if negative current is injected on adjacent pins. 5. Not tested in production. 6. RPU pull-up equivalent resistor based on a resistive transistor (corresponding IPU current characteristics described in Figure 19). DocID023331 Rev 2 75/103 97 Electrical parameters STM8L052C6 Figure 16. Typical VIL and VIH vs. VDD (high sink I/Os) & & 9,/DQG9,+>9@ & 9''>9@ DL9 Figure 17. Typical VIL and VIH vs. VDD (true open drain I/Os) & & 9,/DQG9,+>9@ & 9''>9@ DL9 76/103 DocID023331 Rev 2 STM8L052C6 Electrical parameters Figure 18. Typical pull-up resistance RPU vs. VDD with VIN=VSS & 3XOOXSUHVLVWDQFH>N@ & & 9''>9@ DL9 Figure 19. Typical pull-up current Ipu vs. VDD with VIN=VSS & & 3XOOXSFXUUHQW>$@ & 9''>9@ DL9 DocID023331 Rev 2 77/103 97 Electrical parameters STM8L052C6 Output driving current Subject to general operating conditions for VDD and TA unless otherwise specified. Table 36. Output driving current (high sink ports) I/O Symbol Type Output low level voltage for an I/O pin High sink VOL (1) Parameter VOH (2) Output high level voltage for an I/O pin Conditions Min Max Unit IIO = +2 mA, VDD = 3.0 V - 0.45 V IIO = +2 mA, VDD = 1.8 V - 0.45 V IIO = +10 mA, VDD = 3.0 V - 0.7 V IIO = -2 mA, VDD = 3.0 V VDD-0.45 - V IIO = -1 mA, VDD = 1.8 V VDD-0.45 - V IIO = -10 mA, VDD = 3.0 V VDD-0.7 - V 1. The IIO current sunk must always respect the absolute maximum rating specified in Table 13 and the sum of IIO (I/O ports and control pins) must not exceed IVSS. 2. The IIO current sourced must always respect the absolute maximum rating specified in Table 13 and the sum of IIO (I/O ports and control pins) must not exceed IVDD. Table 37. Output driving current (true open drain ports) Open drain I/O Symbol Type VOL (1) Parameter Output low level voltage for an I/O pin Conditions Min Max IIO = +3 mA, VDD = 3.0 V - 0.45 IIO = +1 mA, VDD = 1.8 V - Unit V 0.45 1. The IIO current sunk must always respect the absolute maximum rating specified in Table 13 and the sum of IIO (I/O ports and control pins) must not exceed IVSS. Table 38. Output driving current (PA0 with high sink LED driver capability) IR I/O Symbol Type VOL (1) Parameter Output low level voltage for an I/O pin Conditions Min Max Unit IIO = +20 mA, VDD = 2.0 V - 0.45 V 1. The IIO current sunk must always respect the absolute maximum rating specified in Table 13 and the sum of IIO (I/O ports and control pins) must not exceed IVSS. 78/103 DocID023331 Rev 2 STM8L052C6 Electrical parameters Figure 20. Typ. VOL @ VDD = 3.0 V (high sink ports) Figure 21. Typ. VOL @ VDD = 1.8 V (high sink ports) & & & & & & 92/ >9@ 92/ >9@ ,2/ >P$@ , 2/>P$@ Figure 23. Typ. VOL @ VDD = 1.8 V (true open drain ports) & & & 92/ >9@ & & & BJ7 DL9 Figure 24. Typ. VDD - VOH @ VDD = 3.0 V (high sink ports) Figure 25. Typ. VDD - VOH @ VDD = 1.8 V (high sink ports) & & & & & & 9''92+ >9@ ,2/ >P$@ ,2/ >P$@ 9''92+ >9@ DL9 DL9 Figure 22. Typ. VOL @ VDD = 3.0 V (true open drain ports) 92/ >9@ ,2+ >P$@ ,2+ >P$@ DL9 DocID023331 Rev 2 BJ7 79/103 97 Electrical parameters STM8L052C6 NRST pin Subject to general operating conditions for VDD and TA unless otherwise specified. Table 39. NRST pin characteristics Symbol Parameter Conditions Min Typ Max VIL(NRST) NRST input low level voltage (1) - VSS - 0.8 VIH(NRST) NRST input high level voltage (1) - 1.4 - VDD IOL = 2 mA for 2.7 V VDD 3.6 V - - IOL = 1.5 mA for VDD < 2.7 V - VOL(NRST) VHYST RPU(NRST) NRST output low level voltage (1) NRST input hysteresis(3) (1) V 0.4 - 10%VDD - NRST pull-up equivalent resistor Unit (2) - - mV - 30 45 60 k VF(NRST) NRST input filtered pulse (3) - - - 50 VNF(NRST) NRST input not filtered pulse (3) - 300 - - ns 1. Data based on characterization results, not tested in production. 2. 200 mV min. 3. Data guaranteed by design, not tested in production. Figure 26. Typical NRST pull-up resistance RPU vs. VDD & 3XOOXSUHVLVWDQFH>N@ & & 9''>9@ DL9 80/103 DocID023331 Rev 2 STM8L052C6 Electrical parameters Figure 27. Typical NRST pull-up current Ipu vs. VDD & & 3XOOXSFXUUHQW>$@ & 9''>9@ DL9 The reset network shown in Figure 28 protects the device against parasitic resets. The user must ensure that the level on the NRST pin can go below the VIL(NRST) max. level specified in Table 39. Otherwise the reset is not taken into account internally. For power consumption sensitive applications, the external reset capacitor value can be reduced to limit the charge/discharge current. If the NRST signal is used to reset the external circuitry, attention must be paid to the charge/discharge time of the external capacitor to fulfill the external devices reset timing conditions. The minimum recommended capacity is 10 nF. Figure 28. Recommended NRST pin configuration VDD RPU NRST EXTERNAL RESET CIRCUIT 0.1 µF Filter INTERNAL RESET STM8 (Optional) DocID023331 Rev 2 81/103 97 Electrical parameters 8.3.8 STM8L052C6 Communication interfaces SPI1 - Serial peripheral interface Unless otherwise specified, the parameters given in Table 40 are derived from tests performed under ambient temperature, fSYSCLK frequency and VDD supply voltage conditions summarized in Section 8.3.1. Refer to I/O port characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO). Table 40. SPI1 characteristics Symbol Conditions(1) Min Max Master mode 0 8 Slave mode 0 8 SPI1 clock rise and fall time Capacitive load: C = 30 pF - 30 tsu(NSS)(2) NSS setup time Slave mode 4 x 1/fSYSCLK - th(NSS)(2) NSS hold time Slave mode 80 - SCK high and low time Master mode, fMASTER = 8 MHz, fSCK= 4 MHz 105 145 Master mode 30 - Slave mode 3 - Master mode 15 - Slave mode 0 - fSCK 1/tc(SCK) tr(SCK) tf(SCK) Parameter SPI1 clock frequency (2) tw(SCKH) tw(SCKL)(2) tsu(MI) (2) tsu(SI)(2) Data input setup time th(MI) (2) th(SI)(2) Data input hold time Data output access time Slave mode - 3x 1/fSYSCLK tdis(SO)(2)(4) 30 - Data output disable time Slave mode (2) Data output valid time Slave mode (after enable edge) - 60 tv(MO)(2) Data output valid time Master mode (after enable edge) - 20 Slave mode (after enable edge) 15 - Master mode (after enable edge) 1 - th(SO)(2) th(MO)(2) Data output hold time 1. Parameters are given by selecting 10 MHz I/O output frequency. 2. Values based on design simulation and/or characterization results, and not tested in production. 3. Min time is for the minimum time to drive the output and max time is for the maximum time to validate the data. 4. Min time is for the minimum time to invalidate the output and max time is for the maximum time to put the data in Hi-Z. 82/103 MHz ns ta(SO)(2)(3) tv(SO) Unit DocID023331 Rev 2 STM8L052C6 Electrical parameters Figure 29. SPI1 timing diagram - slave mode and CPHA=0 E^^ŝŶƉƵƚ ƚĐ;^<Ϳ ƚŚ;E^^Ϳ ^</ŶƉƵƚ ƚ^h;E^^Ϳ W,сϬ WK>сϬ ƚǁ;^<,Ϳ ƚǁ;^<>Ϳ W,сϬ WK>сϭ ƚǀ;^KͿ ƚĂ;^KͿ D/^K KhdW hd ƚƌ;^<Ϳ ƚĨ;^<Ϳ ƚŚ;^KͿ D^ K hd /dϲ Khd D^ /E / dϭ /E ƚĚŝƐ;^KͿ >^ Khd ƚƐƵ;^/Ϳ DK^/ /EWhd >^ /E ƚŚ;^/Ϳ DLF Figure 30. SPI1 timing diagram - slave mode and CPHA=1(1) 166LQSXW 6&.,QSXW W68166 &3+$ &32/ &3+$ &32/ WF6&. WZ6&.+ WZ6&./ WY62 WD62 0,62 287 3 87 WK62 06 % 2 87 WVX6, 026, , 1387 WK166 %, 7 287 WU6&. WI6&. WGLV62 /6% 287 WK6, % , 7 ,1 0 6% ,1 /6% ,1 DL 1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD. DocID023331 Rev 2 83/103 97 Electrical parameters STM8L052C6 Figure 31. SPI1 timing diagram - master mode (IGH .33INPUT 3#+/UTPUT #0(! #0/, 3#+/UTPUT TC3#+ #0(! #0/, #0(! #0/, #0(! #0/, TSU-) -)3/ ).0 54 TW3#+( TW3#+, TR3#+ TF3#+ -3 "). ") 4). ,3"). TH-) -/3) /54054 - 3"/54 " ) 4/54 TV-/ ,3"/54 TH-/ AI6 1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD. 84/103 DocID023331 Rev 2 STM8L052C6 Electrical parameters I2C - Inter IC control interface Subject to general operating conditions for VDD, fSYSCLK, and TA unless otherwise specified. The STM8L I2C interface (I2C1) meets the requirements of the Standard I2C communication protocol described in the following table with the restriction mentioned below: Refer to I/O port characteristics for more details on the input/output alternate function characteristics (SDA and SCL). Table 41. I2C characteristics Symbol Parameter Standard mode I2C Fast mode I2C(1) Min(2) Max (2) Min (2) Max (2) Unit tw(SCLL) SCL clock low time 4.7 - 1.3 - tw(SCLH) SCL clock high time 4.0 - 0.6 - tsu(SDA) SDA setup time 250 - 100 - th(SDA) SDA data hold time 0 - 0 900 tr(SDA) tr(SCL) SDA and SCL rise time - 1000 - 300 tf(SDA) tf(SCL) SDA and SCL fall time - 300 - 300 th(STA) START condition hold time 4.0 - 0.6 - tsu(STA) Repeated START condition setup time 4.7 - 0.6 - tsu(STO) STOP condition setup time 4.0 - 0.6 - s STOP to START condition time (bus free) 4.7 - 1.3 - s - 400 - 400 pF tw(STO:STA) Cb Capacitive load for each bus line s ns s 1. fSYSCLK must be at least equal to 8 MHz to achieve max fast I2C speed (400 kHz). 2. Data based on standard I2C protocol requirement, not tested in production. Note: For speeds around 200 kHz, the achieved speed can have a 5% tolerance For other speed ranges, the achieved speed can have a 2% tolerance The above variations depend on the accuracy of the external components used. DocID023331 Rev 2 85/103 97 Electrical parameters STM8L052C6 Figure 32. Typical application with I2C bus and timing diagram 1) VDD 4.7k I2C VDD 4.7k BUS 100 SDA 100 SCL STM8L REPEATED START START tsu(STA) tw(STO:STA) SDA tr(SDA) tf(SDA) tsu(SDA) th(SDA) tr(SCL) tf(SCL) STOP SCL th(STA) tw(SCLH) tw(SCLL) 1. Measurement points are done at CMOS levels: 0.3 x VDD and 0.7 x VDD 86/103 DocID023331 Rev 2 tsu(STO) START STM8L052C6 8.3.9 Electrical parameters LCD controller In the following table, data is guaranteed by design. Not tested in production. Table 42. LCD characteristics Symbol Parameter Min Typ Max. Unit VLCD LCD external voltage - - 3.6 V VLCD0 LCD internal reference voltage 0 - 2.6 - V VLCD1 LCD internal reference voltage 1 - 2.7 - V VLCD2 LCD internal reference voltage 2 - 2.8 - V VLCD3 LCD internal reference voltage 3 - 2.9 - V VLCD4 LCD internal reference voltage 4 - 3.0 - V VLCD5 LCD internal reference voltage 5 - 3.1 - V VLCD6 LCD internal reference voltage 6 - 3.2 - V VLCD7 LCD internal reference voltage 7 - 3.3 - V CEXT VLCD external capacitance 0.1 - 2 µF - 3 - µA - 3 - µA Supply IDD current(1) at VDD = 1.8 V (1) Supply current at VDD = 3 V RHN (2) High value resistive network (low drive) - 6.6 - M (3) Low value resistive network (high drive) - 360 - k V33 Segment/Common higher level voltage - - VLCDx V V23 Segment/Common 2/3 level voltage - 2/3VLCDx - V V12 Segment/Common 1/2 level voltage - 1/2VLCDx - V V13 Segment/Common 1/3 level voltage - 1/3VLCDx - V V0 Segment/Common lowest level voltage 0 - - V RLN 1. LCD enabled with 3 V internal booster (LCD_CR1 = 0x08), 1/4 duty, 1/3 bias, division ratio= 64, all pixels active, no LCD connected. 2. RHN is the total high value resistive network. 3. RLN is the total low value resistive network. VLCD external capacitor The application can achieve a stabilized LCD reference voltage by connecting an external capacitor CEXT to the VLCD pin. CEXT is specified in Table 42. DocID023331 Rev 2 87/103 97 Electrical parameters 8.3.10 STM8L052C6 Embedded reference voltage In the following table, data is based on characterization results, not tested in production, unless otherwise specified. Table 43. Reference voltage characteristics Symbol Conditions Min Typ Max. Unit - - 1.4 - µA - - 5 10 µs Internal reference voltage buffer consumption (used for ADC) - - 13.5 25 µA Reference voltage output - 1.202(3) 1.224 1.242(3) V Internal reference voltage low power buffer consumption - - 730 1200 nA IREFOUT(2) Buffer output current(4) - - - 1 µA CREFOUT Reference voltage output load - - - 50 pF tVREFINT Internal reference voltage startup time - - 2 3 ms tBUFEN(2) Internal reference voltage buffer startup time once enabled (1) - - 10 µs Accuracy of VREFINT stored in the VREFINT_Factory_CONV byte(5) - - ±5 mV Stability of VREFINT over temperature -40 °C TA 85 °C - 20 50 ppm/°C Stability of VREFINT over temperature 0 °C TA 50 °C - - 20 ppm/°C - - - TBD ppm IREFINT Parameter Internal reference voltage consumption ADC sampling time when TS_VREFINT(1)(2) reading the internal reference voltage IBUF(2) VREFINT out ILPBUF(2) ACCVREFINT STABVREFINT STABVREFINT Stability of VREFINT after 1000 hours 1. Defined when ADC output reaches its final value ±1/2LSB 2. Data guaranteed by Design. Not tested in production. 3. Tested in production at VDD = 3 V ±10 mV. 4. To guaranty less than 1% VREFOUT deviation. 5. Measured at VDD = 3 V ±10 mV. This value takes into account VDD accuracy and ADC conversion accuracy. 88/103 DocID023331 Rev 2 STM8L052C6 8.3.11 Electrical parameters 12-bit ADC1 characteristics In the following table, data is guaranteed by design, not tested in production. Table 44. ADC1 characteristics Symbol Parameter VDDA Analog supply voltage VREF+ Reference supply voltage VREF- Conditions Min 2.4 V VDDA3.6 V Typ Max Unit 1.8 3.6 V 2.4 VDDA V 1.8 V VDDA 2.4 V VDDA V Lower reference voltage - VSSA V IVDDA Current on the VDDA input pin - - - - IVREF+ Current on the VREF+ input pin 1000 1450 µA 700 (peak)(1) µA 450 (average)(1) µA 400 - - VAIN Conversion voltage range - 0(2) - VREF+ TA Temperature range - -40 - 85 °C on PF0 fast channel - - 50(3) k on all other channels - - on PF0 fast channel - RAIN External resistance on VAIN CADC Internal sample and hold capacitor fADC fCONV ADC sampling clock frequency 16 pF on all other channels - - 2.4 VVDDA3.6 V without zooming 0.320 - 16 MHz 1.8 VVDDA2.4 V with zooming 0.320 - 8 MHz VAIN on PF0 fast channel - - 1(4)(5) MHz VAIN on all other channels - - 760(4)(5) kHz 12-bit conversion rate fTRIG External trigger frequency - - - tconv 1/fADC tLAT External trigger latency - - - 3.5 1/fSYSCLK DocID023331 Rev 2 89/103 97 Electrical parameters STM8L052C6 Table 44. ADC1 characteristics (continued) Symbol tS Parameter Sampling time tconv 12-bit conversion time tWKUP Wakeup time from OFF state tIDLE(6) Time before a new conversion tVREFINT Internal reference voltage startup time Conditions Min Typ Max Unit VAIN on PF0 fast channel VDDA < 2.4 V 0.43(4)(5) - - µs VAIN on PF0 fast channel 2.4 V VDDA3.6 V 0.22(4)(5) - - µs VAIN on slow channels VDDA < 2.4 V 0.86(4)(5) - - µs VAIN on slow channels 2.4 V VDDA3.6 V 0.41(4)(5) - - µs - 12 + tS 1/fADC 16 MHz 1(4) µs - - - 3 µs TA +25 °C - - 1(7) s TA +70 °C - - 20(7) ms - - - refer to Table 43 ms 1. The current consumption through VREF is composed of two parameters: - one constant (max 300 µA) - one variable (max 400 µA), only during sampling time + 2 first conversion pulses. So, peak consumption is 300+400 = 700 µA and average consumption is 300 + [(4 sampling + 2) /16] x 400 = 450 µA at 1Msps 2. VREF- or VDDA must be tied to ground. 3. Guaranteed by design, not tested in production. 4. Minimum sampling and conversion time is reached for maximum Rext = 0.5 k. 5. Value obtained for continuous conversion on fast channel. 6. The time between 2 conversions, or between ADC ON and the first conversion must be lower than tIDLE. 7. The tIDLE maximum value is on the “Z” revision code of the device. 90/103 DocID023331 Rev 2 STM8L052C6 Electrical parameters In the following three tables, data is guaranteed by characterization result, not tested in production. Table 45. ADC1 accuracy with VDDA = 3.3 V to 2.5 V Symbol Parameter Conditions Typ Max 1 1.6 Differential non linearity fADC = 8 MHz 1 1.6 fADC = 4 MHz 1 1.5 fADC = 16 MHz 1.2 2 fADC = 8 MHz 1.2 1.8 fADC = 4 MHz 1.2 1.7 fADC = 16 MHz 2.2 3.0 fADC = 8 MHz 1.8 2.5 fADC = 4 MHz 1.8 2.3 fADC = 16 MHz 1.5 2 fADC = 8 MHz 1 1.5 fADC = 4 MHz 0.7 1.2 fADC = 16 MHz DNL INL Integral non linearity TUE Total unadjusted error Offset Offset error Unit LSB LSB fADC = 16 MHz Gain Gain error fADC = 8 MHz 1 1.5 fADC = 4 MHz Table 46. ADC1 accuracy with VDDA = 2.4 V to 3.6 V Symbol Parameter Typ Max Unit 1 2 LSB 1.7 3 LSB DNL Differential non linearity INL Integral non linearity TUE Total unadjusted error 2 4 LSB Offset Offset error 1 2 LSB Gain Gain error 1.5 3 LSB Table 47. ADC1 accuracy with VDDA = VREF+ = 1.8 V to 2.4 V Symbol Parameter Typ Max Unit DNL Differential non linearity 1 2 LSB INL Integral non linearity 2 3 LSB TUE Total unadjusted error 3 5 LSB Offset Offset error 2 3 LSB Gain Gain error 2 3 LSB DocID023331 Rev 2 91/103 97 Electrical parameters STM8L052C6 Figure 33. ADC1 accuracy characteristics 9''$ 95() RUGHSHQGLQJRQSDFNDJH >/6%,'($/ (* ([DPSOHRIDQDFWX DOWUDQVIH UFXUYH 7KHLGHDOWUDQVIHUFX UYH (QGSRLQWFRUUHODWLRQOLQH (7 7RWDOXQDGMXVWHG(UURUPD[LPXPGHYLDWLRQ EHWZHHQWKHDFWXDODQGWKHLGHDOWUDQVIHUFXUYHV (2 2IIVHW(UURUGHYLDWLRQEHWZHHQWKHILUVWDFWXDO WUDQVLWLRQDQGWKHODVWDFWXDORQH (* *DLQ(UURUGHYLDWLRQEHWZHHQWKHODVWLGHDO WUDQVLWLRQDQGWKHODVWDFWXDORQH (' 'LIIHUHQWLDO/LQHDULW\(UURUPD[LPXPGHYLDWLRQ EHWZHHQDFWXDOVWHSVDQGWKHLGHDORQH (/ ,QWHJUDO/LQHDULW\(UURUPD[LPXPGHYLDWLRQ EHWZHHQDQ\DFWXDOWUDQVLWLRQDQGWKHHQGSRLQW FRUUHODWLRQOLQH (7 (2 (/ (' /6%,'($/ 966$ 9''$ DLH Figure 34. Typical connection diagram using the ADC 670/[[[ 9'' 5$,1 9$,1 6DPSOHDQGKROG$'& FRQYHUWHU 97 9 5$'& $,1[ &SDUDVLWLF 97 9 ELW FRQYHUWHU ,/Q$ &$'& DLI 1. Refer to Table 44 for the values of RAIN and CADC. 2. Cparasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad capacitance (roughly 7 pF). A high Cparasitic value will downgrade conversion accuracy. To remedy this, fADC should be reduced. 92/103 DocID023331 Rev 2 STM8L052C6 Electrical parameters Figure 35. Maximum dynamic current consumption on VREF+ supply pin during ADC conversion Sampling (n cycles) Conversion (12 cycles) ADC clock Iref+ 700µA 300µA Table 48. RAIN max for fADC = 16 MHz(1) RAIN max (kohm) Ts (cycles) Ts (µs) Slow channels Fast channels 2.4 V < VDDA < 3.6 V 1.8 V < VDDA < 2.4 V 2.4 V < VDDA < 3.3 V 1.8 V < VDDA < 2.4 V 4 0.25 Not allowed Not allowed 0.7 Not allowed 9 0.5625 0.8 Not allowed 2.0 1.0 16 1 2.0 0.8 4.0 3.0 24 1.5 3.0 1.8 6.0 4.5 48 3 6.8 4.0 15.0 10.0 96 6 15.0 10.0 30.0 20.0 192 12 32.0 25.0 50.0 40.0 384 24 50.0 50.0 50.0 50.0 1. Guaranteed by design, not tested in production. General PCB design guidelines Power supply decoupling should be performed as shown in Figure 36 or Figure 37, depending on whether VREF+ is connected to VDDA or not. Good quality ceramic 10 nF capacitors should be used. They should be placed as close as possible to the chip. DocID023331 Rev 2 93/103 97 Electrical parameters STM8L052C6 Figure 36. Power supply and reference decoupling (VREF+ not connected to VDDA) 670/ 9 5() ([WHUQDO UHIHUHQFH )Q) 6XSSO\ 9 ''$ )Q) )Q) 9 66$9 5() DLF Figure 37. Power supply and reference decoupling (VREF+ connected to VDDA) 670/ 95()9''$ 6XSSO\ )Q) 95()9''$ DLF 94/103 DocID023331 Rev 2 STM8L052C6 8.3.12 Electrical parameters EMC characteristics Susceptibility tests are performed on a sample basis during product characterization. Functional EMS (electromagnetic susceptibility) Based on a simple running application on the product (toggling 2 LEDs through I/O ports), the product is stressed by two electromagnetic events until a failure occurs (indicated by the LEDs). ESD: Electrostatic discharge (positive and negative) is applied on all pins of the device until a functional disturbance occurs. This test conforms with the IEC 61000 standard. FTB: A burst of fast transient voltage (positive and negative) is applied to VDD and VSS through a 100 pF capacitor, until a functional disturbance occurs. This test conforms with the IEC 61000 standard. A device reset allows normal operations to be resumed. The test results are given in the table below based on the EMS levels and classes defined in application note AN1709. Designing hardened software to avoid noise problems EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular. Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application. Prequalification trials Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1 second. To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015). Table 49. EMS data Symbol Parameter Conditions VFESD VDD 3.3 V, TA +25 °C, Voltage limits to be applied on any I/O pin to induce a functional fCPU16 MHz, disturbance conforms to IEC 61000 VEFTB Fast transient voltage burst limits VDD 3.3 V, TA +25 °C, to be applied through 100 pF on Using HSI fCPU 16 MHz, VDD and VSS pins to induce a conforms to IEC 61000 Using HSE functional disturbance DocID023331 Rev 2 Level/ Class 3B 4A 2B 95/103 97 Electrical parameters STM8L052C6 Electromagnetic interference (EMI) Based on a simple application running on the product (toggling 2 LEDs through the I/O ports), the product is monitored in terms of emission. This emission test is in line with the norm IEC61967-2 which specifies the board and the loading of each pin. Table 50. EMI data(1) Symbol SEMI Parameter Peak level Conditions VDD 3.6 V, TA +25 °C, LQFP32 conforming to IEC61967-2 Monitored frequency band Max vs. Unit 16 MHz 0.1 MHz to 30 MHz -3 30 MHz to 130 MHz 9 130 MHz to 1 GHz 4 SAE EMI Level 2 dBV - 1. Not tested in production. Absolute maximum ratings (electrical sensitivity) Based on two different tests (ESD and LU) using specific measurement methods, the product is stressed in order to determine its performance in terms of electrical sensitivity. For more details, refer to the application note AN1181. Electrostatic discharge (ESD) Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts*(n+1) supply pin). Two models can be simulated: human body model and charge device model. This test conforms to the JESD22-A114A/A115A standard. Table 51. ESD absolute maximum ratings Symbol VESD(HBM) Ratings Electrostatic discharge voltage (human body model) Electrostatic discharge voltage VESD(CDM) (charge device model) Conditions DocID023331 Rev 2 Unit 2000 TA +25 °C 1. Data based on characterization results, not tested in production. 96/103 Maximum value (1) V 500 STM8L052C6 Electrical parameters Static latch-up LU: 3 complementary static tests are required on 6 parts to assess the latch-up performance. A supply overvoltage (applied to each power supply pin) and a current injection (applied to each input, output and configurable I/O pin) are performed on each sample. This test conforms to the EIA/JESD 78 IC latch-up standard. For more details, refer to the application note AN1181. Table 52. Electrical sensitivities Symbol LU Parameter Static latch-up class DocID023331 Rev 2 Class II 97/103 97 Package information 9 STM8L052C6 Package information In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark. 9.1 LQFP48 package information Figure 38. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package outline C ! ! ! 3%!4).' 0,!.% # MM '!5'%0,!.% CCC # + ! $ $ , , $ 0). )$%.4)&)#!4)/. % E 1. Drawing is not to scale. 98/103 % % B DocID023331 Rev 2 "?-%?6 STM8L052C6 Package information Table 53. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package mechanical data inches(1) millimeters Symbol Min Typ Max Min Typ Max A - - 1.600 - - 0.0630 A1 0.050 - 0.150 0.0020 - 0.0059 A2 1.350 1.400 1.450 0.0531 0.0551 0.0571 b 0.170 0.220 0.270 0.0067 0.0087 0.0106 c 0.090 - 0.200 0.0035 - 0.0079 D 8.800 9.000 9.200 0.3465 0.3543 0.3622 D1 6.800 7.000 7.200 0.2677 0.2756 0.2835 D3 - 5.500 - - 0.2165 - E 8.800 9.000 9.200 0.3465 0.3543 0.3622 E1 6.800 7.000 7.200 0.2677 0.2756 0.2835 E3 - 5.500 - - 0.2165 - e - 0.500 - - 0.0197 - L 0.450 0.600 0.750 0.0177 0.0236 0.0295 L1 - 1.000 - - 0.0394 - k 0° 3.5° 7° 0° 3.5° 7° ccc - - 0.080 - - 0.0031 1. Values in inches are converted from mm and rounded to 4 decimal digits. DocID023331 Rev 2 99/103 101 Package information STM8L052C6 Figure 39. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat recommended footprint AID 1. Dimensions are expressed in millimeters. Device marking The following figure gives an example of topside marking orientation versus pin 1 identifier location. Figure 40. LQFP48 marking example (package top view) 3URGXFW LGHQWLILFDWLRQ 45.- $5 'DWHFRGH 6WDQGDUG67ORJR : 88 5HYLVLRQFRGH 3LQLGHQWLILHU 3 069 1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity. 100/103 DocID023331 Rev 2 STM8L052C6 10 Part numbering Part numbering For a list of available options (memory, package, and so on) or for further information on any aspect of this device, please contact your nearest ST sales office. Table 54. Ordering information scheme Example: STM8 L 052 C 6 T 6 x Device family STM8 microcontroller Product type L = Low-power Sub-family 052 = STM8L052xx, ultra-low power with LCD Pin count C = 48 pins Code size 6 = 32 Kbytes Package T = LQFP Temperature range 6 = –40 to 85 °C Options xxx = programmed parts TR = tape and reel DocID023331 Rev 2 101/103 101 Revision history 11 STM8L052C6 Revision history Table 55. Document revision history Date Revision 15-Jun-2012 1 Initial release. 2 Updated: – the factory default setting for OPT5[3:0] in Table 10: Option byte addresses – Section 10: Part numbering, – the disclaimer. Added: – Figure 40: LQFP48 marking example (package top view). 09-Mar-2015 102/103 Changes DocID023331 Rev 2 STM8L052C6 IMPORTANT NOTICE – PLEASE READ CAREFULLY STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement. Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers’ products. No license, express or implied, to any intellectual property right is granted by ST herein. Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product. ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners. Information in this document supersedes and replaces information previously supplied in any prior versions of this document. © 2015 STMicroelectronics – All rights reserved DocID023331 Rev 2 103/103 103
advertisement