STMicroelectronics STM8L052C6 Datasheet

STMicroelectronics STM8L052C6 Datasheet

advertisement

Assistant Bot

Need help? Our chatbot has already read the manual and is ready to assist you. Feel free to ask any questions about the device, but providing details will make the conversation more productive.

Manual
STMicroelectronics STM8L052C6 Datasheet | Manualzz
STM8L052C6
Value Line, 8-bit ultra-low-power MCU, 32-KB Flash, 256-byte data
EEPROM, RTC, LCD, timers, USART, I2C, SPI, ADC
Datasheet - production data
Features
 Operating conditions
– Operating power supply: 1.8 V to 3.6 V
– Temperature range: -40 °C to 85 °C
 Low-power features
– Five low-power modes: Wait, Low-power
run (5.1 µA), Low-power wait (3 µA), Activehalt with full RTC (1.3 µA), Halt (350 nA)
– Consumption: 195 µA/MHz + 440 µA
– Ultra-low leakage per I/0: 50 nA
– Fast wakeup from Halt: 4.7 µs
 Advanced STM8 core
– Harvard architecture and 3-stage pipeline
– Max freq. 16 MHz, 16 CISC MIPS peak
– Up to 40 external interrupt sources
 Reset and supply management
– Low-power, ultra-safe BOR reset with five
selectable thresholds
– Ultra-low-power POR/PDR
– Programmable voltage detector (PVD)
 Clock management
– 32 kHz and 1 to 16 MHz crystal oscillator
– Internal 16 MHz factory-trimmed RC
– Internal 38 kHz low consumption RC
– Clock security system
 Low-power RTC
– BCD calendar with alarm interrupt
– Auto-wakeup from Halt w/ periodic interrupt
 LCD: up to 4x28 segments w/ step-up
converter
 Memories
– 32 KB Flash program memory and
256 bytes data EEPROM with ECC, RWW
– Flexible write and read protection modes
– 2 Kbytes of RAM
March 2015
This is information on a product in full production.
LQFP48
7 x 7 mm
 DMA
– Four channels supporting ADC, SPI, I2C,
USART, timers
– One channel for memory-to-memory
 12-bit ADC up to 1 Msps/25 channels
– Internal reference voltage
 Timers
– Two 16-bit timers with two channels (used
as IC, OC, PWM), quadrature encoder
– One 16-bit advanced control timer with three
channels, supporting motor control
– One 8-bit timer with 7-bit prescaler
– Two watchdogs: one Window, one
Independent
– Beeper timer with 1-, 2- or 4-kHz
frequencies
 Communication interfaces
– Synchronous serial interface (SPI)
– Fast I2C 400 kHz SMBus and PMBus
– USART (ISO 7816 interface and IrDA)
 Up to 41 I/Os, all mappable on interrupt vectors
 Development support
– Fast on-chip programming and nonintrusive debugging with SWIM
– Bootloader using USART
DocID023331 Rev 2
1/103
www.st.com
Contents
STM8L052C6
Contents
1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3
2.1
Device overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2
Ultra-low-power continuum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.1
Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2
Central processing unit STM8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3
Advanced STM8 core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2.2
Interrupt controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Reset and supply management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3.1
Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3.2
Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3.3
Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.4
Clock management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.5
Low-power real-time clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.6
LCD (Liquid crystal display) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.7
Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.8
DMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.9
Analog-to-digital converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.10
System configuration controller and routing interface . . . . . . . . . . . . . . . 19
3.11
Timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.12
2/103
3.2.1
3.11.1
TIM1 - 16-bit advanced control timer . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.11.2
16-bit general purpose timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.11.3
8-bit basic timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Watchdog timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.12.1
Window watchdog timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.12.2
Independent watchdog timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.13
Beeper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.14
Communication interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.14.1
SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.14.2
I²C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
DocID023331 Rev 2
STM8L052C6
Contents
3.14.3
4
3.15
Infrared (IR) interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.16
Development support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.1
5
USART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
System configuration options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Memory and register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.1
Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.2
Register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6
Interrupt vector mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
7
Option bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
8
Electrical parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
8.1
Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
8.1.1
Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
8.1.2
Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
8.1.3
Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
8.1.4
Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
8.1.5
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
8.2
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
8.3
Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
8.3.1
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
8.3.2
Embedded reset and power control block characteristics . . . . . . . . . . . 56
8.3.3
Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
8.3.4
Clock and timing characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
8.3.5
Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
8.3.6
I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
8.3.7
I/O port pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
8.3.8
Communication interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
8.3.9
LCD controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
8.3.10
Embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
8.3.11
12-bit ADC1 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
8.3.12
EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
DocID023331 Rev 2
3/103
4
Contents
9
STM8L052C6
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
9.1
LQFP48 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
10
Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
11
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
4/103
DocID023331 Rev 2
STM8L052C6
List of tables
List of tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table 17.
Table 18.
Table 19.
Table 20.
Table 21.
Table 22.
Table 23.
Table 24.
Table 25.
Table 26.
Table 27.
Table 28.
Table 29.
Table 30.
Table 31.
Table 32.
Table 33.
Table 34.
Table 35.
Table 36.
Table 37.
Table 38.
Table 39.
Table 40.
Table 41.
Table 42.
Table 43.
Table 44.
Table 45.
Table 46.
Medium-density value line STM8L052C6 low-power device features and
peripheral counts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Timer feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Legend/abbreviation for Table 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Medium-density value line STM8L052C6pin description . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Flash and RAM boundary addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
I/O port hardware register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
General hardware register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
CPU/SWIM/debug module/interrupt controller registers . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Interrupt mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Option byte addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Option byte description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 56
Total current consumption in Run mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Total current consumption in Wait mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Total current consumption and timing in Low power run mode at VDD = 1.8 V
to 3.6 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Total current consumption in Low power wait mode at VDD = 1.8 V to 3.6 V . . . . . . . . . . 63
Total current consumption and timing in Active-halt mode at VDD = 1.8 V to 3.6 V. . . . . . 64
Typical current consumption in Active-halt mode, RTC clocked by LSE external crystal . . 65
Total current consumption and timing in Halt mode at VDD = 1.8 to 3.6 V . . . . . . . . . . . . 66
Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Current consumption under external reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
HSE external clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
LSE external clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
HSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
LSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
HSI oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
RAM and hardware registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Flash program and data EEPROM memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Output driving current (high sink ports). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Output driving current (true open drain ports). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Output driving current (PA0 with high sink LED driver capability). . . . . . . . . . . . . . . . . . . . 78
NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
SPI1 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
I2C characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
LCD characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Reference voltage characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
ADC1 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
ADC1 accuracy with VDDA = 3.3 V to 2.5 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
ADC1 accuracy with VDDA = 2.4 V to 3.6 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
DocID023331 Rev 2
5/103
6
List of tables
Table 47.
Table 48.
Table 49.
Table 50.
Table 51.
Table 52.
Table 53.
Table 54.
Table 55.
6/103
STM8L052C6
ADC1 accuracy with VDDA = VREF+ = 1.8 V to 2.4 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
RAIN max for fADC = 16 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
EMS data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
EMI data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package mechanical data. . . . . . . . . . . . 99
Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
DocID023331 Rev 2
STM8L052C6
List of figures
List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.
Figure 40.
Medium-density value line STM8L052C6 device block diagram . . . . . . . . . . . . . . . . . . . . 12
Medium-density value line STM8L052C6 clock tree diagram . . . . . . . . . . . . . . . . . . . . . . 17
STM8L052C6 48-pin LQFP48 package pinout (with LCD) . . . . . . . . . . . . . . . . . . . . . . . . 23
Memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
POR/BOR thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Typ. IDD(RUN) vs. VDD, fCPU = 16 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Typ. IDD(Wait) vs. VDD, fCPU = 16 MHz 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Typ. IDD(LPR) vs. VDD (LSI clock source) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Typ. IDD(LPW) vs. VDD (LSI clock source) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
HSE oscillator circuit diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
LSE oscillator circuit diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Typical HSI frequency vs. VDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Typical LSI frequency vs. VDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Typical VIL and VIH vs. VDD (high sink I/Os). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Typical VIL and VIH vs. VDD (true open drain I/Os). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Typical pull-up resistance RPU vs. VDD with VIN=VSS. . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Typical pull-up current Ipu vs. VDD with VIN=VSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Typ. VOL @ VDD = 3.0 V (high sink ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Typ. VOL @ VDD = 1.8 V (high sink ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Typ. VOL @ VDD = 3.0 V (true open drain ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Typ. VOL @ VDD = 1.8 V (true open drain ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Typ. VDD - VOH @ VDD = 3.0 V (high sink ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Typ. VDD - VOH @ VDD = 1.8 V (high sink ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Typical NRST pull-up resistance RPU vs. VDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Typical NRST pull-up current Ipu vs. VDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Recommended NRST pin configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
SPI1 timing diagram - slave mode and CPHA=0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
SPI1 timing diagram - slave mode and CPHA=1(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
SPI1 timing diagram - master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Typical application with I2C bus and timing diagram 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
ADC1 accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Maximum dynamic current consumption on VREF+ supply pin during ADC
conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Power supply and reference decoupling (VREF+ not connected to VDDA). . . . . . . . . . . . . . 94
Power supply and reference decoupling (VREF+ connected to VDDA) . . . . . . . . . . . . . . . 94
LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package outline . . . . . . . . . . . . . . . . . . . 98
LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat recommended footprint . . . . . . . . . . . . 100
LQFP48 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
DocID023331 Rev 2
7/103
7
Introduction
1
STM8L052C6
Introduction
This document describes the features, pinout, mechanical data and ordering information of
the medium-density value line STM8L052C6 microcontroller with 32-Kbyte Flash memory
density. For further details on the whole STMicroelectronics medium-density family please
refer to Section 2.2: Ultra-low-power continuum.
For detailed information on device operation and registers, refer to the reference manual
(RM0031).
For information on to the Flash program memory and data EEPROM, refer to the
programming manual (PM0054).
For information on the debug module and SWIM (single wire interface module), refer to the
STM8 SWIM communication protocol and debug module user manual (UM0470).
For information on the STM8 core, refer to the STM8 CPU programming manual (PM0044).
Medium density value line devices provide the following benefits:

Integrated system
–
32 Kbytes of medium-density embedded Flash program memory
–
256 bytes of data EEPROM
–
2 Kbytes of RAM
–
Internal high-speed and low-power low-speed RC
–
Embedded reset

Ultra-low-power consumption
–
195 µA/MHZ + 440 µA (consumption)
–
0.9 µA with LSI in Active-halt mode
–
Clock gated system and optimized power management
–
Capability to execute from RAM for low-power wait mode and low-power-run
mode

Advanced features
–
Up to 16 MIPS at 16 MHz CPU clock frequency
–
Direct memory access (DMA) for memory-to-memory or peripheral-to-memory
access

Short development cycles
–
Application scalability across a common family product architecture with
compatible pinout, memory map and modular peripherals
–
Wide choice of development tools
These features make the value line STM8L05xxx ultra-low-power microcontroller family
suitable for a wide range of consumer and mass market applications.
Refer to Table 1: Medium-density value line STM8L052C6 low-power device features and
peripheral counts and Section 3: Functional overview for an overview of the complete range
of peripherals proposed in this family.
Figure 1 shows the block diagram of the medium-density value line STM8L052C6 device.
8/103
DocID023331 Rev 2
STM8L052C6
2
Description
Description
The medium-density value line STM8L052C6 devices are members of the STM8L ultra-lowpower 8-bit family.
The value line STM8L05xxx ultra-low-power family features the enhanced STM8 CPU core
providing increased processing power (up to 16 MIPS at 16 MHz) while maintaining the
advantages of a CISC architecture with improved code density, a 24-bit linear addressing
space and an optimized architecture for low power operations.
The family includes an integrated debug module with a hardware interface (SWIM) which
allows non-intrusive In-application debugging and ultra-fast Flash programming.
Medium-density value line STM8L052C6 microcontrollers feature embedded data EEPROM
and low-power, low-voltage, single-supply program Flash memory.
All devices offer 12-bit ADC, real-time clock, 16-bit timers, one 8-bit timer as well as
standard communication interface such as SPI, I2C, USART and 4x28-segment LCD. The
4x 28-segment LCD is available on the medium-density value line STM8L052C6.
The STM8L052C6 operates from 1.8 V to 3.6 V and is available in the -40 to +85 °C
temperature range.
The modular design of the peripheral set allows the same peripherals to be found in
different ST microcontroller families including 32-bit families. This makes any transition to a
different family very easy, and simplified even more by the use of a common set of
development tools.
All value line STM8L ultra-low-power products are based on the same architecture with the
same memory mapping and a coherent pinout.
DocID023331 Rev 2
9/103
48
Description
2.1
STM8L052C6
Device overview
Table 1. Medium-density value line STM8L052C6 low-power device features and
peripheral counts
Features
STM8L052C6
Flash (Kbytes)
32
Data EEPROM (bytes)
256
RAM (Kbytes)
2
LCD
Timers
4x28
Basic
1
(8-bit)
General purpose
2
(16-bit)
Advanced control
1
(16-bit)
SPI
Communication
I2C
interfaces
USART
1
1
1
GPIOs
41(1)
12-bit synchronized ADC
(number of channels)
1
(25)
Others
RTC, window watchdog, independent watchdog,
16-MHz and 38-kHz internal RC,
1- to 16-MHz and 32-kHz external oscillator
CPU frequency
16 MHz
Operating voltage
1.8 V to 3.6 V
Operating temperature
-40 to +85 °C
Package
LQFP48
1. The number of GPIOs given in this table includes the NRST/PA1 pin but the application can use the
NRST/PA1 pin as general purpose output only (PA1).
10/103
DocID023331 Rev 2
STM8L052C6
2.2
Description
Ultra-low-power continuum
The ultra-low-power value line STM8L05xxx and STM8L15xxx are fully pin-to-pin, software
and feature compatible. Besides the full compatibility within the STM8L family, the devices
are part of STMicroelectronics microcontrollers ultra-low-power strategy which also includes
STM8L101xx and STM32L15xxx. The STM8L and STM32L families allow a continuum of
performance, peripherals, system architecture, and features.
They are all based on STMicroelectronics 0.13 µm ultra-low leakage process.
Note:
1
The STM8L05xxx is pin-to-pin compatible with STM8L101xx devices.
2
The STM32L family is pin-to-pin compatible with the general purpose STM32F family.
Please refer to STM32L15x documentation for more information on these devices.
Performance
All families incorporate highly energy-efficient cores with both Harvard architecture and
pipelined execution: advanced STM8 core for STM8L families and ARM® Cortex®-M3 core
for STM32L family. In addition specific care for the design architecture has been taken to
optimize the mA/DMIPS and mA/MHz ratios.
This allows the ultra-low-power performance to range from 5 up to 33.3 DMIPs.
Shared peripherals
STM8L05x, STM8L15x and STM32L15xx share identical peripherals which ensure a very
easy migration from one family to another:

Analog peripheral: ADC1

Digital peripherals: RTC and some communication interfaces
Common system strategy
To offer flexibility and optimize performance, the STM8L and STM32L devices use a
common architecture:

Same power supply range from 1.8 to 3.6 V

Architecture optimized to reach ultra-low consumption both in low power modes and
Run mode

Fast startup strategy from low power modes

Flexible system clock

Ultra-safe reset: same reset strategy for both STM8L and STM32L including power-on
reset, power-down reset, brownout reset and programmable voltage detector
Features
ST ultra-low-power continuum also lies in feature compatibility:

More than 10 packages with pin count from 20 to 100 pins and size down to 3 x 3 mm

Memory density ranging from 4 to 128 Kbytes
DocID023331 Rev 2
11/103
48
Functional overview
3
STM8L052C6
Functional overview
Figure 1. Medium-density value line STM8L052C6 device block diagram
OSC_IN,
OSC_OUT
16 MHz internal RC
OSC32_IN,
OSC32_OUT
@VDD
1-16 MHz oscillator
32 kHz oscillator
Clock
controller
and
CSS
38 kHz internal RC
VDD18
Clocks
to core and
peripherals
Interrupt controller
Debug module
(SWIM)
BOR
16-bit Timer 2
2 channels
16-bit Timer 3
3 channels
16-bit Timer 1
8-bit Timer 4
Infrared interface
DMA1
(4 channels)
SCL, SDA,
SMB
I²C1
MOSI, MISO,
SCK, NSS
SPI1
RX, TX, CK
VDDA
VSSA
ADC1_INx
VREF+
VREF-
RESET
POR/PDR
2 channels
IR_TIM
VOLT. REG.
STM8 Core
USART1
PVD
Address, control and data buses
SWIM
Power
@VDDA/VSSA
12-bit ADC1
VREFINT out
Internal reference
voltage
VLCD = 2.5 V to
3.6 V
LCD booster
VDD1 =1.8 V
to 3.6 V
VSS1
NRST
PVD_IN
32 Kbytes
program memory
256 bytes
data EEPROM
2 Kbytes RAM
Port A
PA[7:0]
Port B
PB[7:0]
Port C
PC[7:0]
Port D
PD[7:0]
Port E
PE[7:0]
Port F
PF0
Beeper
BEEP
RTC
ALARM, CALIB
IWDG
(38 kHz clock)
WWDG
LCD driver
4x28
1. Legend:
ADC: Analog-to-digital converter
BOR: Brownout reset
DMA: Direct memory access
I²C: Inter-integrated circuit multimaster interface
LCD: Liquid crystal display 
POR/PDR: Power on reset / power down reset
RTC: Real-time clock
SPI: Serial peripheral interface
SWIM: Single wire interface module
USART: Universal synchronous asynchronous receiver transmitter
WWDG: Window watchdog
IWDG: independent watchdog
12/103
DocID023331 Rev 2
SEGx, COMx
STM8L052C6
3.1
Functional overview
Low-power modes
The medium-density value line STM8L052C6 supports five low power modes to achieve the
best compromise between low power consumption, short startup time and available wakeup
sources:

Wait mode: The CPU clock is stopped, but selected peripherals keep running. An
internal or external interrupt, event or a Reset can be used to exit the microcontroller
from Wait mode (WFE or WFI mode).

Low power run mode: The CPU and the selected peripherals are running. Execution
is done from RAM with a low speed oscillator (LSI or LSE). Flash memory and data
EEPROM are stopped and the voltage regulator is configured in ultra-low-power mode.
The microcontroller enters Low power run mode by software and can exit from this
mode by software or by a reset. 
All interrupts must be masked. They cannot be used to exit the microcontroller from this
mode.

Low power wait mode: This mode is entered when executing a Wait for event in Low
power run mode. It is similar to Low power run mode except that the CPU clock is
stopped. The wakeup from this mode is triggered by a Reset or by an internal or
external event (peripheral event generated by the timers, serial interfaces, DMA
controller (DMA1) and I/O ports). When the wakeup is triggered by an event, the
system goes back to Low power run mode. 
All interrupts must be masked. They cannot be used to exit the microcontroller from this
mode.

Active-halt mode: CPU and peripheral clocks are stopped, except RTC. The wakeup
can be triggered by RTC interrupts, external interrupts or reset.

Halt mode: CPU and peripheral clocks are stopped, the device remains powered on.
The RAM content is preserved. The wakeup is triggered by an external interrupt or
reset. A few peripherals have also a wakeup from Halt capability. Switching off the
internal reference voltage reduces power consumption. Through software configuration
it is also possible to wake up the device without waiting for the internal reference
voltage wakeup time to have a fast wakeup time of 5 µs.
DocID023331 Rev 2
13/103
48
Functional overview
STM8L052C6
3.2
Central processing unit STM8
3.2.1
Advanced STM8 core
The 8-bit STM8 core is designed for code efficiency and performance with an Harvard
architecture and a 3-stage pipeline.
It contains six internal registers which are directly addressable in each execution context, 20
addressing modes including indexed indirect and relative addressing, and 80 instructions.
Architecture and registers

Harvard architecture

3-stage pipeline

32-bit wide program memory bus - single cycle fetching most instructions

X and Y 16-bit index registers - enabling indexed addressing modes with or without
offset and read-modify-write type data manipulations

8-bit accumulator

24-bit program counter - 16-Mbyte linear memory space

16-bit stack pointer - access to a 64-Kbyte level stack

8-bit condition code register - 7 condition flags for the result of the last instruction
Addressing

20 addressing modes

Indexed indirect addressing mode for lookup tables located anywhere in the address
space

Stack pointer relative addressing mode for local variables and parameter passing
Instruction set
3.2.2

80 instructions with 2-byte average instruction size

Standard data movement and logic/arithmetic functions

8-bit by 8-bit multiplication

16-bit by 8-bit and 16-bit by 16-bit division

Bit manipulation

Data transfer between stack and accumulator (push/pop) with direct stack access

Data transfer using the X and Y registers or direct memory-to-memory transfers
Interrupt controller
The medium-density value line STM8L052C6 features a nested vectored interrupt
controller:
14/103

Nested interrupts with 3 software priority levels

32 interrupt vectors with hardware priority

Up to 40 external interrupt sources on 11 vectors

Trap and reset interrupts
DocID023331 Rev 2
STM8L052C6
Functional overview
3.3
Reset and supply management
3.3.1
Power supply scheme
The device requires a 1.8 V to 3.6 V operating supply voltage (VDD). The external power
supply pins must be connected as follows:

VSS1 ; VDD1 = 1.8 to 3.6 V: external power supply for I/Os and for the internal regulator.
Provided externally through VDD1 pins, the corresponding ground pin is VSS1.



3.3.2
VSSA ; VDDA = 1.8 to 3.6 V: external power supplies for analog peripherals. VDDA and
VSSA must be connected to VDD1 and VSS1, respectively.
VSS2 ; VDD2 = 1.8 to 3.6 V: external power supplies for I/Os. VDD2 and VSS2 must be
connected to VDD1 and VSS1, respectively.
VREF+ ; VREF- (for ADC1): external reference voltage for ADC1. Must be provided
externally through VREF+ and VREF- pin.
Power supply supervisor
The device has an integrated ZEROPOWER power-on reset (POR)/power-down reset
(PDR), coupled with a brownout reset (BOR) circuitry. At power-on, BOR is always active,
and ensures proper operation starting from 1.8 V. After the 1.8 V BOR threshold is reached,
the option byte loading process starts, either to confirm or modify default thresholds, or to
disable BOR permanently.
Five BOR thresholds are available through option bytes, starting from 1.8 V to 3 V. To
reduce the power consumption in Halt mode, it is possible to automatically switch off the
internal reference voltage (and consequently the BOR) in Halt mode. The device remains
under reset when VDD is below a specified threshold, VPOR/PDR or VBOR, without the need
for any external reset circuit.
The device features an embedded programmable voltage detector (PVD) that monitors the
VDD/VDDA power supply and compares it to the VPVD threshold. This PVD offers 7 different
levels between 1.85 V and 3.05 V, chosen by software, with a step around 200 mV. An
interrupt can be generated when VDD/VDDA drops below the VPVD threshold and/or when
VDD/VDDA is higher than the VPVD threshold. The interrupt service routine can then generate
a warning message and/or put the MCU into a safe state. The PVD is enabled by software.
3.3.3
Voltage regulator
The medium-density value line STM8L052C6 embeds an internal voltage regulator for
generating the 1.8 V power supply for the core and peripherals.
This regulator has two different modes:

Main voltage regulator mode (MVR) for Run, Wait for interrupt (WFI) and Wait for event
(WFE) modes

Low power voltage regulator mode (LPVR) for Halt, Active-halt, Low power run and
Low power wait modes
When entering Halt or Active-halt modes, the system automatically switches from the MVR
to the LPVR in order to reduce current consumption.
DocID023331 Rev 2
15/103
48
Functional overview
3.4
STM8L052C6
Clock management
The clock controller distributes the system clock (SYSCLK) coming from different oscillators
to the core and the peripherals. It also manages clock gating for low power modes and
ensures clock robustness.
Features
16/103

Clock prescaler: To get the best compromise between speed and current
consumption the clock frequency to the CPU and peripherals can be adjusted by a
programmable prescaler.

Safe clock switching: Clock sources can be changed safely on the fly in run mode
through a configuration register.

Clock management: To reduce power consumption, the clock controller can stop the
clock to the core, individual peripherals or memory.

System clock sources: 4 different clock sources can be used to drive the system
clock:
–
1-16 MHz High speed external crystal (HSE)
–
16 MHz High speed internal RC oscillator (HSI)
–
32.768 kHz Low speed external crystal (LSE)
–
38 kHz Low speed internal RC (LSI)

RTC and LCD clock sources: The above four sources can be chosen to clock the
RTC and the LCD, whatever the system clock.

Startup clock: After reset, the microcontroller restarts by default with an internal 
2 MHz clock (HSI/8). The prescaler ratio and clock source can be changed by the
application program as soon as the code execution starts.

Clock security system (CSS): This feature can be enabled by software. If a HSE
clock failure occurs, the system clock is automatically switched to HSI.

Configurable main clock output (CCO): This outputs an external clock for use by the
application.
DocID023331 Rev 2
STM8L052C6
Functional overview
Figure 2. Medium-density value line STM8L052C6 clock tree diagram
&66
26&B,1
26&B287
+6(26&
0+]
+6(
+6,
+6,5&
0+]
/6,
/6(
6<6&/.
3UHVFDOHU
6<6&/.
WRFRUHDQGPHPRU\
3&/.
WRSHULSKHUDOV
3HULSKHUDO
FORFNHQDEOHELWV
/6(
/6,5&
N+]
%((3&/.
&/.%((36(/>@
/6,
,:'*&/.
57&&/.
57&
SUHVFDOHU
/6(26&
N+]
WR,:'*
WR57&
/&'SHULSKHUDO
FORFNHQDEOHELW
57&6(/>@
26&B,1
26&B287
WR%((3
57&&/. 57&&/.
WR/&'
+DOW
&&2
&RQILJXUDEOH
FORFNRXWSXW
&&2
SUHVFDOHU
+6,
/6,
+6(
/6(
6<6&/.
/&'&/.
WR/&'
/&'SHULSKHUDO
FORFNHQDEOHELW
DLK
1. The HSE clock source can be either an external crystal/ceramic resonator or an external source (HSE
bypass). Refer to Section HSE clock in the STM8L15x and STM8L16x reference manual (RM0031).
2. The LSE clock source can be either an external crystal/ceramic resonator or a external source (LSE
bypass). Refer to Section LSE clock in the STM8L15x and STM8L16x reference manual (RM0031).
3.5
Low-power real-time clock
The real-time clock (RTC) is an independent binary coded decimal (BCD) timer/counter.
Six byte locations contain the second, minute, hour (12/24 hour), week day, date, month,
year, in BCD (binary coded decimal) format. Correction for 28, 29 (leap year), 30, and 31
day months are made automatically.It provides a programmable alarm and programmable
periodic interrupts with wakeup from Halt capability.

Periodic wakeup time using the 32.768 kHz LSE with the lowest resolution (of 61 µs) is
from min. 122 µs to max. 3.9 s. With a different resolution, the wakeup time can reach
36 hours.

Periodic alarms based on the calendar can also be generated from every second to
every year.
DocID023331 Rev 2
17/103
48
Functional overview
3.6
STM8L052C6
LCD (Liquid crystal display)
The LCD is only available on STM8L052xx devices.

The liquid crystal display drives up to 4 common terminals and up to 28 segment
terminals to drive up to 112 pixels. Internal step-up converter to guarantee contrast
control whatever VDD.

Static 1/2, 1/3, 1/4 duty supported.

Static 1/2, 1/3 bias supported.

Phase inversion to reduce power consumption and EMI.

Up to 4 pixels which can be programmed to blink.

The LCD controller can operate in Halt mode.
Note:
Unnecessary segments and common pins can be used as general I/O pins.
3.7
Memories
The medium-density value line STM8L052C6 has the following main features:

2 Kbytes of RAM

The non-volatile memory is divided into three arrays:
–
32 Kbytes of medium-density embedded Flash program memory
–
256 bytes of data EEPROM
–
Option bytes
The EEPROM embeds the error correction code (ECC) feature. It supports the read-whilewrite (RWW): it is possible to execute the code from the program matrix while
programming/erasing the data matrix.
The option byte protects part of the Flash program memory from write and readout piracy.
3.8
DMA
A 4-channel direct memory access controller (DMA1) offers a memory-to-memory and
peripherals-from/to-memory transfer capability. The 4 channels are shared between the
following IPs with DMA capability: ADC1, I2C1, SPI1, USART1 and the four timers.
18/103
DocID023331 Rev 2
STM8L052C6
3.9
Functional overview
Analog-to-digital converter

12-bit analog-to-digital converter (ADC1) with 25 channels (including 1 fast channel)
and internal reference voltage

Conversion time down to 1 µs with fSYSCLK= 16 MHz

Programmable resolution

Programmable sampling time

Single and continuous mode of conversion

Scan capability: automatic conversion performed on a selected group of analog inputs

Analog watchdog

Triggered by timer
Note:
ADC1 can be served by DMA1.
3.10
System configuration controller and routing interface
The system configuration controller provides the capability to remap some alternate
functions on different I/O ports. TIM4 and ADC1 DMA channels can also be remapped.
The highly flexible routing interface allows application software to control the routing of
different I/Os to the TIM1 timer input captures. It also controls the routing of internal analog
signals to ADC1 and the internal reference voltage VREFINT.
3.11
Timers
The medium-density value line STM8L052C6 contains one advanced control timer (TIM1),
two 16-bit general purpose timers (TIM2 and TIM3) and one 8-bit basic timer (TIM4).
All the timers can be served by DMA1.
Table 2 compares the features of the advanced control, general-purpose and basic timers.
Table 2. Timer feature comparison
Timer
Counter Counter
resolution
type
16-bit
Capture/compare Complementary
channels
outputs
3+1
3
up/down
Any power of 2
from 1 to 128
TIM3
TIM4
DMA1
request
generation
Any integer
from 1 to 65536
TIM1
TIM2
Prescaler factor
Yes
2
None
8-bit
up
Any power of 2
from 1 to 32768
DocID023331 Rev 2
0
19/103
48
Functional overview
3.11.1
STM8L052C6
TIM1 - 16-bit advanced control timer
This is a high-end timer designed for a wide range of control applications. With its
complementary outputs, dead-time control and center-aligned PWM capability, the field of
applications is extended to motor control, lighting and half-bridge driver.
3.11.2
3.11.3

16-bit up, down and up/down autoreload counter with 16-bit prescaler

3 independent capture/compare channels (CAPCOM) configurable as input capture,
output compare, PWM generation (edge and center aligned mode) and single pulse
mode output

1 additional capture/compare channel which is not connected to an external I/O

Synchronization module to control the timer with external signals

Break input to force timer outputs into a defined state

3 complementary outputs with adjustable dead time

Encoder mode

Interrupt capability on various events (capture, compare, overflow, break, trigger)
16-bit general purpose timers

16-bit autoreload (AR) up/down-counter

7-bit prescaler adjustable to fixed power of 2 ratios (1…128)

2 individually configurable capture/compare channels

PWM mode

Interrupt capability on various events (capture, compare, overflow, break, trigger)

Synchronization with other timers or external signals (external clock, reset, trigger and
enable)
8-bit basic timer
The 8-bit timer consists of an 8-bit up auto-reload counter driven by a programmable
prescaler. It can be used for timebase generation with interrupt generation on timer
overflow.
3.12
Watchdog timers
The watchdog system is based on two independent timers providing maximum security to
the applications.
3.12.1
Window watchdog timer
The window watchdog (WWDG) is used to detect the occurrence of a software fault, usually
generated by external interferences or by unexpected logical conditions, which cause the
application program to abandon its normal sequence.
3.12.2
Independent watchdog timer
The independent watchdog peripheral (IWDG) can be used to resolve processor
malfunctions due to hardware or software failures.
20/103
DocID023331 Rev 2
STM8L052C6
Functional overview
It is clocked by the internal LSI RC clock source, and thus stays active even in case of a
CPU clock failure.
3.13
Beeper
The beeper function outputs a signal on the BEEP pin for sound generation. The signal is in
the range of 1, 2 or 4 kHz.
3.14
Communication interfaces
3.14.1
SPI
The serial peripheral interface (SPI1) provides half/ full duplex synchronous serial
communication with external devices.

Maximum speed: 8 Mbit/s (fSYSCLK/2) both for master and slave

Full duplex synchronous transfers

Simplex synchronous transfers on 2 lines with a possible bidirectional data line

Master or slave operation - selectable by hardware or software

Hardware CRC calculation

Slave/master selection input pin
Note:
SPI1 can be served by the DMA1 Controller.
3.14.2
I²C
The I2C bus interface (I2C1) provides multi-master capability, and controls all I²C busspecific sequencing, protocol, arbitration and timing.

Master, slave and multi-master capability

Standard mode up to 100 kHz and fast speed modes up to 400 kHz

7-bit and 10-bit addressing modes

SMBus 2.0 and PMBus support

Hardware CRC calculation
Note:
I2C1 can be served by the DMA1 Controller.
3.14.3
USART
The USART interface (USART1) allows full duplex, asynchronous communications with
external devices requiring an industry standard NRZ asynchronous serial data format. It
offers a very wide range of baud rates.

1 Mbit/s full duplex SCI

SPI1 emulation

High precision baud rate generator

SmartCard emulation

IrDA SIR encoder decoder

Single wire half duplex mode
Note:
USART1 can be served by the DMA1 Controller.
DocID023331 Rev 2
21/103
48
Functional overview
3.15
STM8L052C6
Infrared (IR) interface
The medium-density value line STM8L052C6 contains an infrared interface which can be
used with an IR LED for remote control functions. Two timer output compare channels are
used to generate the infrared remote control signals.
3.16
Development support
Development tools
Development tools for the STM8 microcontrollers include:

The STice emulation system offering tracing and code profiling

The STVD high-level language debugger including C compiler, assembler and
integrated development environment

The STVP Flash programming software
The STM8 also comes with starter kits, evaluation boards and low-cost in-circuit
debugging/programming tools.
Single wire data interface (SWIM) and debug module
The debug module with its single wire data interface (SWIM) permits non-intrusive real-time
in-circuit debugging and fast memory programming.
The Single wire interface is used for direct access to the debugging module and memory
programming. The interface can be activated in all device operation modes.
The non-intrusive debugging module features a performance close to a full-featured
emulator. Beside memory and peripherals, CPU operation can also be monitored in realtime by means of shadow registers.
Bootloader
A bootloader is available to reprogram the Flash memory using the USART1 interface. The
reference document for the bootloader is UM0560: STM8 bootloader user manual.
The bootloader is used to download application software into the device memories,
including RAM, program and data memory, using standard serial interfaces. It is a
complementary solution to programming via the SWIM debugging interface.
22/103
DocID023331 Rev 2
STM8L052C6
4
Pin description
Pin description
PE7
PE6
PC7
PC6
PC5
PC4
PC3
PC2
VSS2
VDD2
PC1
PC0
Figure 3. STM8L052C6 48-pin LQFP48 package pinout (with LCD)
48 47 46 45 44 43 42 41 40 39 38 37
36
1
2
35
3
34
33
4
32
5
31
6
30
7
29
8
28
9
27
10
26
11
25
12
13 14 15 16 17 18 19 20 21 22 23 24
PD7
PD6
PD5
PD4
PF0
PB7
PB6
PB5
PB4
PB3
PB2
PB1
VLCD
PE0
PE1
PE2
PE3
PE4
PE5
PD0
PD1
PD2
PD3
PB0
PA0
NRST/PA1
PA2
PA3
PA4
PA5
PA6
PA7
VSS1/VSSA/VREFVDD1
VDDA
VREF+
Table 3. Legend/abbreviation for Table 4
Type
Level
I= input, O = output, S = power supply
FT
Five-volt tolerant
TT
3.6 V tolerant
Output
HS = high sink/source (20 mA)
Port and control Input
configuration
Output
Reset state
float = floating, wpu = weak pull-up
T = true open drain, OD = open drain, PP = push pull
Bold X (pin state after reset release). 
Unless otherwise specified, the pin state is the same during the reset phase (i.e.
“under reset”) and after internal reset release (i.e. at reset state).
Table 4. Medium-density value line STM8L052C6pin description
Main function
(after reset)
PP
OD
High sink/source
Output
Ext. interrupt
wpu
floating
Pin name
I/O level
Input
Type
LQFP48
Pin #
Default alternate function
2
NRST/PA1(1)
I/O
3
PA2/OSC_IN/
[USART1_TX](8)/
[SPI1_MISO] (8)
I/O
X
X
X
HS
X
HSE oscillator input /
X Port A2 [USART1 transmit] / [SPI1
master in- slave out]
4
PA3/OSC_OUT/[USART1_
RX](8)/[SPI1_MOSI](8)
I/O
X
X
X
HS
X
HSE oscillator output /
X Port A3 [USART1 receive]/ [SPI1
master out/slave in]/
X
HS
X Reset
DocID023331 Rev 2
PA1
23/103
48
Pin description
STM8L052C6
Table 4. Medium-density value line STM8L052C6pin description (continued)
High sink/source
OD
PP
I/O TT(2)
X
X
X
HS
X
X Port A4
Timer 2 - break input / 
LCD COM 0 / ADC1 input 2
6
PA5/TIM3_BKIN/
LCD_COM1/ADC1_IN1
I/O TT(2)
X
X
X
HS
X
X Port A5
Timer 3 - break input /
LCD_COM 1 / ADC1 input 1
7
PA6/[ADC1_TRIG]/
LCD_COM2/ADC1_IN0
I/O TT(2)
X
X
X
HS
X
X Port A6
[ADC1 - trigger] / LCD_COM2
/ADC1 input 0
8
PA7/LCD_SEG0(3)
I/O
X
X
X
HS
X
X Port A7 LCD segment 0
24
PB0(4)/TIM2_CH1/
LCD_SEG10/ADC1_IN18
I/O TT(2) X(4) X(4)
X
HS
X
X Port B0
Timer 2 - channel 1 / LCD
segment 10 / ADC1_IN18
25
PB1/TIM3_CH1/
LCD_SEG11/
ADC1_IN17
I/O TT(2)
X
X
X
HS
X
X Port B1
Timer 3 - channel 1 / LCD
segment 11 / ADC1_IN17
26
PB2/ TIM2_CH2/
LCD_SEG12/
ADC1_IN16
I/O TT(2)
X
X
X
HS
X
X Port B2
Timer 2 - channel 2 / LCD
segment 12 / ADC1_IN16
27
PB3/TIM2_ETR/
LCD_SEG13/
ADC1_IN15
I/O TT(2)
X
X
X
HS
X
X Port B3
Timer 2 - external trigger /
LCD segment 13 /ADC1_IN15
28
PB4(4)/[SPI1_NSS](8)/
LCD_SEG14/
ADC1_IN14
I/O TT(2) X(4) X(4)
X
HS
X
[SPI1 master/slave select] /
X Port B4 LCD segment 14 /
ADC1_IN14
29
PB5/[SPI1_SCK](8)/
LCD_SEG15/
ADC1_IN13
I/O TT(2)
X
X
X
HS
X
X Port B5
30
PB6/[SPI1_MOSI](8)/
LCD_SEG16/
ADC1_IN12
I/O TT(2)
X
X
X
HS
X
[SPI1 master out/slave in]/
X Port B6 LCD segment 16 /
ADC1_IN12
31
PB7/[SPI1_MISO](8)/
LCD_SEG17/
ADC1_IN11
I/O TT(2)
X
X
X
HS
X
[SPI1 master in- slave out]
X Port B7 /LCD segment 17 /
ADC1_IN11
37
PC0(3)/I2C1_SDA
I/O
X
38
PC1(3)/I2C1_SCL
41
PC2/USART1_RX/
LCD_SEG22/ADC1_IN6/
VREFINT
24/103
I/O
I/O level
PA4/TIM2_BKIN/

LCD_COM0/ADC1_IN2
Pin name
Type
5
LQFP48
Ext. interrupt
Main function
(after reset)
Output
wpu
Input
floating
Pin #
FT
FT
FT
I/O TT(2)
X
X
X
Default alternate function
[SPI1 clock] / LCD segment 15
/ ADC1_IN13
X
T(5)
Port C0 I2C1 data
X
T(5)
Port C1 I2C1 clock
X
HS
X
DocID023331 Rev 2
USART1 receive / 
LCD segment 22 / ADC1_IN6
X Port C2
/Internal voltage reference
output
STM8L052C6
Pin description
Table 4. Medium-density value line STM8L052C6pin description (continued)
wpu
Ext. interrupt
High sink/source
OD
PP
X
X
X
HS
X
X Port C3
42
PC3/USART1_TX/
LCD_SEG23/
ADC1_IN5
43
PC4/USART1_CK/
I2C1_SMB/CCO/
LCD_SEG24/
ADC1_IN4
I/O TT(2)
X
X
X
44
PC5/OSC32_IN
/[SPI1_NSS](8)/
[USART1_TX](8)
I/O
X
X
45
PC6/OSC32_OUT/
[SPI1_SCK](8)/
[USART1_RX](8)
I/O
X
46
PC7/LCD_SEG25/
ADC1_IN3
I/O TT(2)
20
PD0/TIM3_CH2/
[ADC1_TRIG](8)/
LCD_SEG7/ADC1_IN22/
21
I/O TT(2)
Main function
(after reset)
Output
floating
Pin name
I/O level
Input
Type
LQFP48
Pin #
Default alternate function
USART1 transmit / 
LCD segment 23 / ADC1_IN5
HS
X
USART1 synchronous clock /
I2C1_SMB / Configurable
X Port C4 clock output /
LCD segment 24/
ADC1_IN4
X
HS
X
LSE oscillator input / [SPI1
X Port C5 master/slave select] /
[USART1 transmit]
X
X
HS
X
X Port C6
X
X
X
HS
X
X Port C7 LCD segment 25 /ADC1_IN3
I/O TT(2)
X
X
X
HS
X
Timer 3 - channel 2 /
X Port D0 [ADC1_Trigger] / LCD
segment 7 / ADC1_IN22
PD1/TIM3_ETR/
LCD_COM3/
ADC1_IN21
I/O TT(2)
X
X
X
HS
X
X Port D1
Timer 3 - external trigger /
LCD_COM3 / ADC1_IN21
22
PD2/TIM1_CH1
/LCD_SEG8/
ADC1_IN20
I/O TT(2)
X
X
X
HS
X
X Port D2
Timer 1 - channel 1 / LCD
segment 8 / ADC1_IN20
23
PD3/ TIM1_ETR/
LCD_SEG9/ADC1_IN19
I/O TT(2)
X
X
X
HS
X
X Port D3
Timer 1 - external trigger /
LCD segment 9 / ADC1_IN19
33
PD4/TIM1_CH2
/LCD_SEG18/
ADC1_IN10
I/O TT(2)
X
X
X
HS
X
X Port D4
Timer 1 - channel 2 / LCD
segment 18 / ADC1_IN10
34
PD5/TIM1_CH3
/LCD_SEG19/
ADC1_IN9
I/O TT(2)
X
X
X
HS
X
X Port D5
Timer 1 - channel 3 / LCD
segment 19 / ADC1_IN9
35
PD6/TIM1_BKIN
/LCD_SEG20/
ADC1_IN8/RTC_CALIB/
/VREFINT
X
Timer 1 - break input / LCD
segment 20 / ADC1_IN8 /
X Port D6
RTC calibration / Internal
voltage reference output
I/O TT
(2)
X
X
X
HS
DocID023331 Rev 2
LSE oscillator output / [SPI1
clock] / [USART1 receive]
25/103
48
Pin description
STM8L052C6
Table 4. Medium-density value line STM8L052C6pin description (continued)
Main function
(after reset)
PP
Default alternate function
OD
High sink/source
Output
Ext. interrupt
wpu
floating
I/O level
Pin name
Type
Input
LQFP48
Pin #
36
PD7/TIM1_CH1N
/LCD_SEG21/
I/O TT(2)
ADC1_IN7/RTC_ALARM/V
REFINT
X
X
X
HS
X
Timer 1 - inverted channel 1/
LCD segment 21 / ADC1_IN7 /
X Port D7
RTC alarm / Internal voltage
reference output
14
PE0(3)/LCD_SEG1
I/O
X
X
X
HS
X
X Port E0 LCD segment 1
15
PE1/TIM1_CH2N/
LCD_SEG2
I/O TT(2)
X
X
X
HS
X
X Port E1
Timer 1 - inverted channel 2 /
LCD segment 2
16
PE2/TIM1_CH3N/
LCD_SEG3
I/O TT(2)
X
X
X
HS
X
X Port E2
Timer 1 - inverted channel 3 /
LCD segment 3
17
PE3/LCD_SEG4
I/O TT(2)
X
X
X
HS
X
X Port E3 LCD segment 4
18
PE4/LCD_SEG5
I/O TT(2)
X
X
X
HS
X
X Port E4 LCD segment 5
19
PE5/LCD_SEG6/
ADC1_IN23
I/O TT(2)
X
X
X
HS
X
X Port E5 LCD segment 6 / ADC1_IN23
47
PE6/LCD_SEG26/
PVD_IN
I/O TT(2)
X
X
X
HS
X
X Port E6 LCD segment 26/PVD_IN
PE7/LCD_SEG27
I/O TT(2)
X
X
X
HS
X
X Port E7 LCD segment 27
32
PF0/ADC1_IN24
I/O
X
X
X
HS
X
X Port F0
13
VLCD
13
Reserved
10
VDD
S
Digital power supply
11
VDDA
S
Analog supply voltage
12
VREF+
S
ADC1 positive voltage reference
9
VSS1/VSSA/VREF-
S
I/O ground / Analog ground voltage / 
ADC1 negative voltage reference
39
VDD2
S
IOs supply voltage
40
VSS2
S
IOs ground voltage
1
PA0(6)/[USART1_CK](8)/
SWIM/BEEP/IR_TIM (7)
48
FT
S
ADC1_IN24
LCD booster external capacitor
Reserved. Must be tied to VDD
I/O
X
X(6)
X
HS
(7)
X
[USART1 synchronous
clock](8) / SWIM input and outX Port A0
put /Beep output 
/ Infrared Timer output
1. At power-up, the PA1/NRST pin is a reset input pin with pull-up. To be used as a general purpose pin (PA1), it can be
configured only as output open-drain or push-pull, not as a general purpose input. Refer to Section Configuring NRST/PA1
pin as general purpose output in the STM8L15x and STM8L16x reference manual (RM0031).
2. In the 3.6 V tolerant I/Os, protection diode to VDD is not implemented.
26/103
DocID023331 Rev 2
STM8L052C6
Pin description
3. In the 5 V tolerant I/Os, protection diode to VDD is not implemented.
4. A pull-up is applied to PB0 and PB4 during the reset phase. These two pins are input floating after reset release.
5. In the open-drain output column, ‘T’ defines a true open-drain I/O (P-buffer, weak pull-up and protection diode to VDD are
not implemented).
6. The PA0 pin is in input pull-up during the reset phase and after reset release.
7. High Sink LED driver capability available on PA0.
8. [ ] Alternate function remapping option (if the same alternate function is shown twice, it indicates an exclusive choice not a
duplication of the function).
Note:
The slope control of all GPIO pins, except true open drain pins, can be programmed. By
default, the slope control is limited to 2 MHz.
DocID023331 Rev 2
27/103
48
Pin description
4.1
STM8L052C6
System configuration options
As shown in Table 4: Medium-density value line STM8L052C6pin description, some
alternate functions can be remapped on different I/O ports by programming one of the two
remapping registers described in the “Routing interface (RI) and system configuration
controller” section in the STM8L15x and STM8L16x reference manual (RM0031).
28/103
DocID023331 Rev 2
STM8L052C6
Memory and register map
5
Memory and register map
5.1
Memory mapping
The memory map is shown in Figure 4.
Figure 4. Memory map
0x00 0000
0x00 07FF
0x00 0800
RAM (2 Kbytes) (1)
including
Stack (513 bytes) (1)
Reserved
0x00 0FFF
0x00 1000
0x00 10FF
0x00 1100
Data EEPROM
(256 bytes)
0x00 5000
0x00 5050
Reserved
0x00 47FF
0x00 4800
0x00 5070
0x00 509E
Option bytes
0x00 50A0
0x00 48FF
0x00 4900
0x00 50A6
0x00 50B0
0x00 50B2
0x00 50C0
Reserved
0x00 50D3
0x00 50E0
0x00 50F3
0x00 5140
0x00 4FFF
0x00 5000
0x00 5200
0x00 5210
GPIO and peripheral registers
0x00 57FF
0x00 5800
0x00 5250
0x00 5280
Reserved
0x00 5FFF
0x00 6000
0x00 67FF
0x00 6800
0x00 52B0
0x00 52E0
Boot ROM
(2 Kbytes)
0x00 52FF
0x00 5340
0x00 5380
Reserved
0x00 5400
0x00 7EFF
0x00 7F00
0x00 5430
CPU/SWIM/Debug/ITC
Registers
0x00 7FFF
0x00 8000
0x00 807F
0x00 8080
0x00 5230
0x00 5440
GPIO Ports
Flash
DMA1
SYSCFG
ITC-EXTI
WFE
RST
PWR
CLK
WWDG
IWDG
BEEP
RTC
SPI1
I2C1
USART1
TIM2
TIM3
TIM1
TIM4
IRTIM
ADC1
Reserved
LCD
RI
Reserved
Reset and interrupt vectors
Medium density
Flash program memory
(32 Kbytes)
0x00 FFFF
1. Table 5 lists the boundary addresses for each memory size. The top of the stack is at the RAM end
address.
2. Refer to Table 7 for an overview of hardware register mapping, to Table 6 for details on I/O port hardware
registers, and to Table 8 for information on CPU/SWIM/debug module controller registers.
DocID023331 Rev 2
29/103
48
Memory and register map
STM8L052C6
Table 5. Flash and RAM boundary addresses
Memory area
Size
Start address
End address
RAM
2 Kbytes
0x00 0000
0x00 07FF
Flash program memory
32 Kbytes
0x00 8000
0x00 FFFF
5.2
Register map
Table 6. I/O port hardware register map
Register label
Register name
Reset
status
0x00 5000
PA_ODR
Port A data output latch register
0x00
0x00 5001
PA_IDR
Port A input pin value register
0xXX
PA_DDR
Port A data direction register
0x00
0x00 5003
PA_CR1
Port A control register 1
0x01
0x00 5004
PA_CR2
Port A control register 2
0x00
0x00 5005
PB_ODR
Port B data output latch register
0x00
0x00 5006
PB_IDR
Port B input pin value register
0xXX
PB_DDR
Port B data direction register
0x00
0x00 5008
PB_CR1
Port B control register 1
0x00
0x00 5009
PB_CR2
Port B control register 2
0x00
0x00 500A
PC_ODR
Port C data output latch register
0x00
0x00 500B
PC_IDR
Port C input pin value register
0xXX
PC_DDR
Port C data direction register
0x00
0x00 500D
PC_CR1
Port C control register 1
0x00
0x00 500E
PC_CR2
Port C control register 2
0x00
0x00 500F
PD_ODR
Port D data output latch register
0x00
0x00 5010
PD_IDR
Port D input pin value register
0xXX
PD_DDR
Port D data direction register
0x00
0x00 5012
PD_CR1
Port D control register 1
0x00
0x00 5013
PD_CR2
Port D control register 2
0x00
0x00 5014
PE_ODR
Port E data output latch register
0x00
0x00 5015
PE_IDR
Port E input pin value register
0xXX
PE_DDR
Port E data direction register
0x00
0x00 5017
PE_CR1
Port E control register 1
0x00
0x00 5018
PE_CR2
Port E control register 2
0x00
Address
0x00 5002
0x00 5007
0x00 500C
0x00 5011
0x00 5016
30/103
Block
Port A
Port B
Port C
Port D
Port E
DocID023331 Rev 2
STM8L052C6
Memory and register map
Table 6. I/O port hardware register map (continued)
Register label
Register name
Reset
status
0x00 5019
PF_ODR
Port F data output latch register
0x00
0x00 501A
PF_IDR
Port F input pin value register
0xXX
PF_DDR
Port F data direction register
0x00
0x00 501C
PF_CR1
Port F control register 1
0x00
0x00 501D
PF_CR2
Port F control register 2
0x00
Address
0x00 501B
Block
Port F
Table 7. General hardware register map
Address
Block
Register label
0x00 501E to
0x00 5049
Register name
Reset
status
Reserved area (44 bytes)
0x00 5050
FLASH_CR1
Flash control register 1
0x00
0x00 5051
FLASH_CR2
Flash control register 2
0x00
FLASH _PUKR
Flash program memory unprotection key
register
0x00
0x00 5053
FLASH _DUKR
Data EEPROM unprotection key register
0x00
0x00 5054
FLASH _IAPSR
Flash in-application programming status
register
0x00
0x00 5052
0x00 5055 to
0x00 506F
Flash
Reserved area (27 bytes)
DocID023331 Rev 2
31/103
48
Memory and register map
STM8L052C6
Table 7. General hardware register map (continued)
Register label
Register name
Reset
status
0x00 5070
DMA1_GCSR
DMA1 global configuration & status
register
0xFC
0x00 5071
DMA1_GIR1
DMA1 global interrupt register 1
0x00
Address
Block
0x00 5072 to
0x00 5074
Reserved area (3 bytes)
0x00 5075
DMA1_C0CR
DMA1 channel 0 configuration register
0x00
0x00 5076
DMA1_C0SPR
DMA1 channel 0 status & priority register
0x00
0x00 5077
DMA1_C0NDTR
DMA1 number of data to transfer register
(channel 0)
0x00
0x00 5078
DMA1_C0PARH
DMA1 peripheral address high register
(channel 0)
0x52
0x00 5079
DMA1_C0PARL
DMA1 peripheral address low register
(channel 0)
0x00
0x00 507A
Reserved area (1 byte)
DMA1
0x00 507B
DMA1_C0M0ARH
DMA1 memory 0 address high register
(channel 0)
0x00
0x00 507C
DMA1_C0M0ARL
DMA1 memory 0 address low register
(channel 0)
0x00
0x00 507D
0x00 507E
Reserved area (2 bytes)
0x00 507F
DMA1_C1CR
DMA1 channel 1 configuration register
0x00
0x00 5080
DMA1_C1SPR
DMA1 channel 1 status & priority register
0x00
0x00 5081
DMA1_C1NDTR
DMA1 number of data to transfer register
(channel 1)
0x00
0x00 5082
DMA1_C1PARH
DMA1 peripheral address high register
(channel 1)
0x52
0x00 5083
DMA1_C1PARL
DMA1 peripheral address low register
(channel 1)
0x00
32/103
DocID023331 Rev 2
STM8L052C6
Memory and register map
Table 7. General hardware register map (continued)
Address
Block
Register label
0x00 5084
Register name
Reset
status
Reserved area (1 byte)
0x00 5085
DMA1_C1M0ARH
DMA1 memory 0 address high register
(channel 1)
0x00
0x00 5086
DMA1_C1M0ARL
DMA1 memory 0 address low register
(channel 1)
0x00
0x00 5087
0x00 5088
Reserved area (2 bytes)
0x00 5089
DMA1_C2CR
DMA1 channel 2 configuration register
0x00
0x00 508A
DMA1_C2SPR
DMA1 channel 2 status & priority register
0x00
0x00 508B
DMA1_C2NDTR
DMA1 number of data to transfer register
(channel 2)
0x00
0x00 508C
DMA1_C2PARH
DMA1 peripheral address high register
(channel 2)
0x52
0x00 508D
DMA1_C2PARL
DMA1 peripheral address low register
(channel 2)
0x00
0x00 508E
Reserved area (1 byte)
0x00 508F
DMA1_C2M0ARH
DMA1 memory 0 address high register
(channel 2)
0x00
DMA1_C2M0ARL
DMA1 memory 0 address low register
(channel 2)
0x00
DMA1
0x00 5090
0x00 5091
0x00 5092
Reserved area (2 bytes)
0x00 5093
DMA1_C3CR
DMA1 channel 3 configuration register
0x00
0x00 5094
DMA1_C3SPR
DMA1 channel 3 status & priority register
0x00
0x00 5095
DMA1_C3NDTR
DMA1 number of data to transfer register
(channel 3)
0x00
0x00 5096
DMA1_C3PARH_
C3M1ARH
DMA1 peripheral address high register
(channel 3)
0x40
0x00 5097
DMA1_C3PARL_
C3M1ARL
DMA1 peripheral address low register
(channel 3)
0x00
0x00 5098
Reserved area (1 byte)
0x00 5099
DMA1_C3M0ARH
DMA1 memory 0 address high register
(channel 3)
0x00
0x00 509A
DMA1_C3M0ARL
DMA1 memory 0 address low register
(channel 3)
0x00
0x00 509B to
0x00 509D
Reserved area (3 bytes)
0x00 509E
SYSCFG_RMPCR1
Remapping register 1
0x00
0x00 509F
SYSCFG_RMPCR2
Remapping register 2
0x00
DocID023331 Rev 2
33/103
48
Memory and register map
STM8L052C6
Table 7. General hardware register map (continued)
Register label
Register name
Reset
status
0x00 50A0
EXTI_CR1
External interrupt control register 1
0x00
0x00 50A1
EXTI_CR2
External interrupt control register 2
0x00
EXTI_CR3
External interrupt control register 3
0x00
0x00 50A3
EXTI_SR1
External interrupt status register 1
0x00
0x00 50A4
EXTI_SR2
External interrupt status register 2
0x00
0x00 50A5
EXTI_CONF1
External interrupt port select register 1
0x00
0x00 50A6
WFE_CR1
WFE control register 1
0x00
WFE_CR2
WFE control register 2
0x00
WFE_CR3
WFE control register 3
0x00
Address
Block
0x00 50A2
ITC - EXTI
0x00 50A7
WFE
0x00 50A8
0x00 50AC to
0x00 50AF
Reserved area (4 bytes)
0x00 50B0
RST_CR
Reset control register
0x00
RST_SR
Reset status register
0x01
PWR_CSR1
Power control and status register 1
0x00
PWR_CSR2
Power control and status register 2
0x00
RST
0x00 50B1
0x00 50B2
PWR
0x00 50B3
0x00 50B4 to
0x00 50BF
Reserved area (12 bytes)
0x00 50C0
CLK_DIVR
Clock master divider register
0x03
0x00 50C1
CLK_CRTCR
Clock RTC register
0x00
0x00 50C2
CLK_ICKR
Internal clock control register
0x11
0x00 50C3
CLK_PCKENR1
Peripheral clock gating register 1
0x00
0x00 50C4
CLK_PCKENR2
Peripheral clock gating register 2
0x80
0x00 50C5
CLK_CCOR
Configurable clock control register
0x00
0x00 50C6
CLK_ECKR
External clock control register
0x00
0x00 50C7
CLK_SCSR
System clock status register
0x01
CLK_SWR
System clock switch register
0x01
0x00 50C9
CLK_SWCR
Clock switch control register
0bxxxx0000
0x00 50CA
CLK_CSSR
Clock security system register
0x00
0x00 50CB
CLK_CBEEPR
Clock BEEP register
0x00
0x00 50CC
CLK_HSICALR
HSI calibration register
0xxx
0x00 50CD
CLK_HSITRIMR
HSI clock calibration trimming register
0x00
0x00 50CE
CLK_HSIUNLCKR
HSI unlock register
0x00
0x00 50CF
CLK_REGCSR
Main regulator control status register
0bxx11100x
0x00 50C8
0x00 50D0 to
0x00 50D2
34/103
CLK
Reserved area (3 bytes)
DocID023331 Rev 2
STM8L052C6
Memory and register map
Table 7. General hardware register map (continued)
Address
Block
0x00 50D3
Register label
Register name
Reset
status
WWDG_CR
WWDG control register
0x7F
WWDG_WR
WWDR window register
0x7F
WWDG
0x00 50D4
0x00 50D5 to
00 50DF
Reserved area (11 bytes)
0x00 50E0
0x00 50E1
IWDG
0x00 50E2
IWDG_KR
IWDG key register
0xXX
IWDG_PR
IWDG prescaler register
0x00
IWDG_RLR
IWDG reload register
0xFF
0x00 50E3 to
0x00 50EF
Reserved area (13 bytes)
0x00 50F0
0x00 50F1
0x00 50F2
0x00 50F3
0x00 50F4 to
0x00 513F
BEEP_CSR1
BEEP
BEEP control/status register 1
0x00
Reserved area (2 bytes)
BEEP_CSR2
BEEP control/status register 2
0x1F
Reserved area (76 bytes)
DocID023331 Rev 2
35/103
48
Memory and register map
STM8L052C6
Table 7. General hardware register map (continued)
Register label
Register name
Reset
status
0x00 5140
RTC_TR1
Time register 1
0x00
0x00 5141
RTC_TR2
Time register 2
0x00
0x00 5142
RTC_TR3
Time register 3
0x00
Address
Block
0x00 5143
Reserved area (1 byte)
0x00 5144
RTC_DR1
Date register 1
0x01
0x00 5145
RTC_DR2
Date register 2
0x21
0x00 5146
RTC_DR3
Date register 3
0x00
0x00 5147
Reserved area (1 byte)
0x00 5148
RTC_CR1
Control register 1
0x00
0x00 5149
RTC_CR2
Control register 2
0x00
0x00 514A
RTC_CR3
Control register 3
0x00
0x00 514B
Reserved area (1 byte)
0x00 514C
RTC_ISR1
Initialization and status register 1
0x00
0x00 514D
RTC_ISR2
Initialization and Status register 2
0x00
0x00 514E
0x00 514F
Reserved area (2 bytes)
0x00 5150
0x00 5151
0x00 5152
RTC
RTC_SPRERH(1)
Synchronous prescaler register high
0x00(1)
RTC_SPRERL(1)
Synchronous prescaler register low
0xFF(1)
RTC_APRER(1)
Asynchronous prescaler register
0x7F(1)
0x00 5153
Reserved area (1 byte)
0x00 5154
RTC_WUTRH(1)
Wakeup timer register high
0xFF(1)
0x00 5155
RTC_WUTRL(1)
Wakeup timer register low
0xFF(1)
0x00 5156 to
0x00 5158
0x00 5159
Reserved area (3 bytes)
RTC_WPR
0x00 515A
0x00 515B
Write protection register
0x00
Reserved area (2 bytes)
0x00 515C
RTC_ALRMAR1
Alarm A register 1
0x00
0x00 515D
RTC_ALRMAR2
Alarm A register 2
0x00
0x00 515E
RTC_ALRMAR3
Alarm A register 3
0x00
0x00 515F
RTC_ALRMAR4
Alarm A register 4
0x00
0x00 5160 to
0x00 51FF
36/103
Reserved area (160 bytes)
DocID023331 Rev 2
STM8L052C6
Memory and register map
Table 7. General hardware register map (continued)
Register label
Register name
Reset
status
0x00 5200
SPI1_CR1
SPI1 control register 1
0x00
0x00 5201
SPI1_CR2
SPI1 control register 2
0x00
0x00 5202
SPI1_ICR
SPI1 interrupt control register
0x00
SPI1_SR
SPI1 status register
0x02
0x00 5204
SPI1_DR
SPI1 data register
0x00
0x00 5205
SPI1_CRCPR
SPI1 CRC polynomial register
0x07
0x00 5206
SPI1_RXCRCR
SPI1 Rx CRC register
0x00
0x00 5207
SPI1_TXCRCR
SPI1 Tx CRC register
0x00
Address
Block
0x00 5203
SPI1
0x00 5208 to
0x00 520F
Reserved area (8 bytes)
0x00 5210
I2C1_CR1
I2C1 control register 1
0x00
0x00 5211
I2C1_CR2
I2C1 control register 2
0x00
0x00 5212
I2C1_FREQR
I2C1 frequency register
0x00
0x00 5213
I2C1_OARL
I2C1 own address register low
0x00
0x00 5214
I2C1_OARH
I2C1 own address register high
0x00
0x00 5215
Reserved (1 byte)
0x00 5216
I2C1_DR
I2C1 data register
0x00
I2C1_SR1
I2C1 status register 1
0x00
0x00 5218
I2C1_SR2
I2C1 status register 2
0x00
0x00 5219
I2C1_SR3
I2C1 status register 3
0x0x
0x00 521A
I2C1_ITR
I2C1 interrupt control register
0x00
0x00 521B
I2C1_CCRL
I2C1 clock control register low
0x00
0x00 521C
I2C1_CCRH
I2C1 clock control register high
0x00
0x00 521D
I2C1_TRISER
I2C1 TRISE register
0x02
0x00 521E
I2C1_PECR
I2C1 packet error checking register
0x00
0x00 5217
I2C1
0x00 521F to
0x00 522F
Reserved area (17 bytes)
DocID023331 Rev 2
37/103
48
Memory and register map
STM8L052C6
Table 7. General hardware register map (continued)
Register label
Register name
Reset
status
0x00 5230
USART1_SR
USART1 status register
0xC0
0x00 5231
USART1_DR
USART1 data register
undefined
0x00 5232
USART1_BRR1
USART1 baud rate register 1
0x00
0x00 5233
USART1_BRR2
USART1 baud rate register 2
0x00
0x00 5234
USART1_CR1
USART1 control register 1
0x00
USART1_CR2
USART1 control register 2
0x00
0x00 5236
USART1_CR3
USART1 control register 3
0x00
0x00 5237
USART1_CR4
USART1 control register 4
0x00
0x00 5238
USART1_CR5
USART1 control register 5
0x00
0x00 5239
USART1_GTR
USART1 guard time register
0x00
0x00 523A
USART1_PSCR
USART1 prescaler register
0x00
Address
0x00 5235
0x00 523B to
0x00 524F
38/103
Block
USART1
Reserved area (21 bytes)
DocID023331 Rev 2
STM8L052C6
Memory and register map
Table 7. General hardware register map (continued)
Register label
Register name
Reset
status
0x00 5250
TIM2_CR1
TIM2 control register 1
0x00
0x00 5251
TIM2_CR2
TIM2 control register 2
0x00
0x00 5252
TIM2_SMCR
TIM2 Slave mode control register
0x00
0x00 5253
TIM2_ETR
TIM2 external trigger register
0x00
0x00 5254
TIM2_DER
TIM2 DMA1 request enable register
0x00
0x00 5255
TIM2_IER
TIM2 interrupt enable register
0x00
0x00 5256
TIM2_SR1
TIM2 status register 1
0x00
0x00 5257
TIM2_SR2
TIM2 status register 2
0x00
0x00 5258
TIM2_EGR
TIM2 event generation register
0x00
0x00 5259
TIM2_CCMR1
TIM2 capture/compare mode register 1
0x00
0x00 525A
TIM2_CCMR2
TIM2 capture/compare mode register 2
0x00
TIM2_CCER1
TIM2 capture/compare enable register 1
0x00
0x00 525C
TIM2_CNTRH
TIM2 counter high
0x00
0x00 525D
TIM2_CNTRL
TIM2 counter low
0x00
0x00 525E
TIM2_PSCR
TIM2 prescaler register
0x00
0x00 525F
TIM2_ARRH
TIM2 auto-reload register high
0xFF
0x00 5260
TIM2_ARRL
TIM2 auto-reload register low
0xFF
0x00 5261
TIM2_CCR1H
TIM2 capture/compare register 1 high
0x00
0x00 5262
TIM2_CCR1L
TIM2 capture/compare register 1 low
0x00
0x00 5263
TIM2_CCR2H
TIM2 capture/compare register 2 high
0x00
0x00 5264
TIM2_CCR2L
TIM2 capture/compare register 2 low
0x00
0x00 5265
TIM2_BKR
TIM2 break register
0x00
0x00 5266
TIM2_OISR
TIM2 output idle state register
0x00
Address
0x00 525B
0x00 5267 to
0x00 527F
Block
TIM2
Reserved area (25 bytes)
DocID023331 Rev 2
39/103
48
Memory and register map
STM8L052C6
Table 7. General hardware register map (continued)
Register label
Register name
Reset
status
0x00 5280
TIM3_CR1
TIM3 control register 1
0x00
0x00 5281
TIM3_CR2
TIM3 control register 2
0x00
0x00 5282
TIM3_SMCR
TIM3 Slave mode control register
0x00
0x00 5283
TIM3_ETR
TIM3 external trigger register
0x00
0x00 5284
TIM3_DER
TIM3 DMA1 request enable register
0x00
0x00 5285
TIM3_IER
TIM3 interrupt enable register
0x00
0x00 5286
TIM3_SR1
TIM3 status register 1
0x00
0x00 5287
TIM3_SR2
TIM3 status register 2
0x00
0x00 5288
TIM3_EGR
TIM3 event generation register
0x00
0x00 5289
TIM3_CCMR1
TIM3 Capture/Compare mode register 1
0x00
0x00 528A
TIM3_CCMR2
TIM3 Capture/Compare mode register 2
0x00
TIM3_CCER1
TIM3 Capture/Compare enable register 1
0x00
0x00 528C
TIM3_CNTRH
TIM3 counter high
0x00
0x00 528D
TIM3_CNTRL
TIM3 counter low
0x00
0x00 528E
TIM3_PSCR
TIM3 prescaler register
0x00
0x00 528F
TIM3_ARRH
TIM3 Auto-reload register high
0xFF
0x00 5290
TIM3_ARRL
TIM3 Auto-reload register low
0xFF
0x00 5291
TIM3_CCR1H
TIM3 Capture/Compare register 1 high
0x00
0x00 5292
TIM3_CCR1L
TIM3 Capture/Compare register 1 low
0x00
0x00 5293
TIM3_CCR2H
TIM3 Capture/Compare register 2 high
0x00
0x00 5294
TIM3_CCR2L
TIM3 Capture/Compare register 2 low
0x00
0x00 5295
TIM3_BKR
TIM3 break register
0x00
0x00 5296
TIM3_OISR
TIM3 output idle state register
0x00
Address
0x00 528B
0x00 5297 to
0x00 52AF
40/103
Block
TIM3
Reserved area (25 bytes)
DocID023331 Rev 2
STM8L052C6
Memory and register map
Table 7. General hardware register map (continued)
Register label
Register name
Reset
status
0x00 52B0
TIM1_CR1
TIM1 control register 1
0x00
0x00 52B1
TIM1_CR2
TIM1 control register 2
0x00
0x00 52B2
TIM1_SMCR
TIM1 Slave mode control register
0x00
0x00 52B3
TIM1_ETR
TIM1 external trigger register
0x00
0x00 52B4
TIM1_DER
TIM1 DMA1 request enable register
0x00
0x00 52B5
TIM1_IER
TIM1 Interrupt enable register
0x00
0x00 52B6
TIM1_SR1
TIM1 status register 1
0x00
0x00 52B7
TIM1_SR2
TIM1 status register 2
0x00
0x00 52B8
TIM1_EGR
TIM1 event generation register
0x00
0x00 52B9
TIM1_CCMR1
TIM1 Capture/Compare mode register 1
0x00
0x00 52BA
TIM1_CCMR2
TIM1 Capture/Compare mode register 2
0x00
0x00 52BB
TIM1_CCMR3
TIM1 Capture/Compare mode register 3
0x00
0x00 52BC
TIM1_CCMR4
TIM1 Capture/Compare mode register 4
0x00
0x00 52BD
TIM1_CCER1
TIM1 Capture/Compare enable register 1
0x00
0x00 52BE
TIM1_CCER2
TIM1 Capture/Compare enable register 2
0x00
0x00 52BF
TIM1_CNTRH
TIM1 counter high
0x00
TIM1_CNTRL
TIM1 counter low
0x00
0x00 52C1
TIM1_PSCRH
TIM1 prescaler register high
0x00
0x00 52C2
TIM1_PSCRL
TIM1 prescaler register low
0x00
0x00 52C3
TIM1_ARRH
TIM1 Auto-reload register high
0xFF
0x00 52C4
TIM1_ARRL
TIM1 Auto-reload register low
0xFF
0x00 52C5
TIM1_RCR
TIM1 Repetition counter register
0x00
0x00 52C6
TIM1_CCR1H
TIM1 Capture/Compare register 1 high
0x00
0x00 52C7
TIM1_CCR1L
TIM1 Capture/Compare register 1 low
0x00
0x00 52C8
TIM1_CCR2H
TIM1 Capture/Compare register 2 high
0x00
0x00 52C9
TIM1_CCR2L
TIM1 Capture/Compare register 2 low
0x00
0x00 52CA
TIM1_CCR3H
TIM1 Capture/Compare register 3 high
0x00
0x00 52CB
TIM1_CCR3L
TIM1 Capture/Compare register 3 low
0x00
0x00 52CC
TIM1_CCR4H
TIM1 Capture/Compare register 4 high
0x00
0x00 52CD
TIM1_CCR4L
TIM1 Capture/Compare register 4 low
0x00
0x00 52CE
TIM1_BKR
TIM1 break register
0x00
0x00 52CF
TIM1_DTR
TIM1 dead-time register
0x00
0x00 52D0
TIM1_OISR
TIM1 output idle state register
0x00
0x00 52D1
TIM1_DCR1
DMA1 control register 1
0x00
Address
Block
0x00 52C0
TIM1
DocID023331 Rev 2
41/103
48
Memory and register map
STM8L052C6
Table 7. General hardware register map (continued)
Address
Block
0x00 52D2
Register label
Register name
Reset
status
TIM1_DCR2
TIM1 DMA1 control register 2
0x00
TIM1_DMA1R
TIM1 DMA1 address for burst mode
0x00
TIM1
0x00 52D3
0x00 52D4 to
0x00 52DF
Reserved area (12 bytes)
0x00 52E0
TIM4_CR1
TIM4 control register 1
0x00
0x00 52E1
TIM4_CR2
TIM4 control register 2
0x00
0x00 52E2
TIM4_SMCR
TIM4 Slave mode control register
0x00
0x00 52E3
TIM4_DER
TIM4 DMA1 request enable register
0x00
TIM4_IER
TIM4 Interrupt enable register
0x00
0x00 52E5
TIM4_SR1
TIM4 status register 1
0x00
0x00 52E6
TIM4_EGR
TIM4 Event generation register
0x00
0x00 52E7
TIM4_CNTR
TIM4 counter
0x00
0x00 52E8
TIM4_PSCR
TIM4 prescaler register
0x00
0x00 52E9
TIM4_ARR
TIM4 Auto-reload register
0x00
0x00 52E4
TIM4
0x00 52EA to
0x00 52FE
0x00 52FF
0x00 5300 to
0x00 533F
42/103
Reserved area (21 bytes)
IRTIM
IR_CR
Infrared control register
Reserved area (64 bytes)
DocID023331 Rev 2
0x00
STM8L052C6
Memory and register map
Table 7. General hardware register map (continued)
Register label
Register name
Reset
status
0x00 5340
ADC1_CR1
ADC1 configuration register 1
0x00
0x00 5341
ADC1_CR2
ADC1 configuration register 2
0x00
0x00 5342
ADC1_CR3
ADC1 configuration register 3
0x1F
0x00 5343
ADC1_SR
ADC1 status register
0x00
0x00 5344
ADC1_DRH
ADC1 data register high
0x00
0x00 5345
ADC1_DRL
ADC1 data register low
0x00
0x00 5346
ADC1_HTRH
ADC1 high threshold register high
0x0F
0x00 5347
ADC1_HTRL
ADC1 high threshold register low
0xFF
ADC1_LTRH
ADC1 low threshold register high
0x00
0x00 5349
ADC1_LTRL
ADC1 low threshold register low
0x00
0x00 534A
ADC1_SQR1
ADC1 channel sequence 1 register
0x00
0x00 534B
ADC1_SQR2
ADC1 channel sequence 2 register
0x00
0x00 534C
ADC1_SQR3
ADC1 channel sequence 3 register
0x00
0x00 534D
ADC1_SQR4
ADC1 channel sequence 4 register
0x00
0x00 534E
ADC1_TRIGR1
ADC1 trigger disable 1
0x00
0x00 534F
ADC1_TRIGR2
ADC1 trigger disable 2
0x00
0x00 5350
ADC1_TRIGR3
ADC1 trigger disable 3
0x00
0x00 5351
ADC1_TRIGR4
ADC1 trigger disable 4
0x00
Address
Block
0x00 5348
ADC1
0x00 5352 to
0x00 53FF
Reserved area (174 bytes)
0x00 5400
LCD_CR1
LCD control register 1
0x00
0x00 5401
LCD_CR2
LCD control register 2
0x00
0x00 5402
LCD_CR3
LCD control register 3
0x00
LCD_FRQ
LCD frequency selection register
0x00
0x00 5404
LCD_PM0
LCD Port mask register 0
0x00
0x00 5405
LCD_PM1
LCD Port mask register 1
0x00
0x00 5406
LCD_PM2
LCD Port mask register 2
0x00
0x00 5403
LCD
0x00 5407
Reserved area
DocID023331 Rev 2
43/103
48
Memory and register map
STM8L052C6
Table 7. General hardware register map (continued)
Address
Block
Register label
0x00 5408 to
0x00 540B
Register name
Reset
status
Reserved area (4 bytes)
0x00 540C
LCD_RAM0
LCD display memory 0
0x00
0x00 540D
LCD_RAM1
LCD display memory 1
0x00
0x00 540E
LCD_RAM2
LCD display memory 2
0x00
0x00 540F
LCD_RAM3
LCD display memory 3
0x00
0x00 5410
LCD_RAM4
LCD display memory 4
0x00
0x00 5411
LCD_RAM5
LCD display memory 5
0x00
0x00 5412
LCD_RAM6
LCD display memory 6
0x00
0x00 5413
LCD_RAM7
LCD display memory 7
0x00
0x00 5414
LCD_RAM8
LCD display memory 8
0x00
LCD_RAM9
LCD display memory 9
0x00
LCD_RAM10
LCD display memory 10
0x00
0x00 5417
LCD_RAM11
LCD display memory 11
0x00
0x00 5418
LCD_RAM12
LCD display memory 12
0x00
0x00 5419
LCD_RAM13
LCD display memory 13
0x00
0x00 5415
0x00 5416
0x00 541A to
0x00 542F
44/103
LCD
Reserved area (22 bytes)
DocID023331 Rev 2
STM8L052C6
Memory and register map
Table 7. General hardware register map (continued)
Address
Block
Register label
0x00 5430
Register name
Reserved area (1 byte)
Reset
status
0x00
0x00 5431
RI_ICR1
Timer input capture routing register 1
0x00
0x00 5432
RI_ICR2
Timer input capture routing register 2
0x00
0x00 5433
RI_IOIR1
I/O input register 1
undefined
0x00 5434
RI_IOIR2
I/O input register 2
undefined
0x00 5435
RI_IOIR3
I/O input register 3
undefined
0x00 5436
RI_IOCMR1
I/O control mode register 1
0x00
RI_IOCMR2
I/O control mode register 2
0x00
0x00 5438
RI_IOCMR3
I/O control mode register 3
0x00
0x00 5439
RI_IOSR1
I/O switch register 1
0x00
0x00 543A
RI_IOSR2
I/O switch register 2
0x00
0x00 543B
RI_IOSR3
I/O switch register 3
0x00
0x00 543C
RI_IOGCR
I/O group control register
0x3F
0x00 543D
RI_ASCR1
Analog switch register 1
0x00
0x00 543E
RI_ASCR2
Analog switch register 2
0x00
0x00 543F
RI_RCR
Resistor control register 1
0x00
0x00 5437
RI
0x00 5440 to
0x00 5444
Reserved area (5 bytes)
1. These registers are not impacted by a system reset. They are reset at power-on.
Table 8. CPU/SWIM/debug module/interrupt controller registers
Register Label
Register Name
Reset
Status
0x00 7F00
A
Accumulator
0x00
0x00 7F01
PCE
Program counter extended
0x00
0x00 7F02
PCH
Program counter high
0x00
0x00 7F03
PCL
Program counter low
0x00
XH
X index register high
0x00
XL
X index register low
0x00
0x00 7F06
YH
Y index register high
0x00
0x00 7F07
YL
Y index register low
0x00
0x00 7F08
SPH
Stack pointer high
0x03
0x00 7F09
SPL
Stack pointer low
0xFF
0x00 7F0A
CCR
Condition code register
0x28
Address
Block
0x00 7F04
0x00 7F05
(1)
CPU
DocID023331 Rev 2
45/103
48
Memory and register map
STM8L052C6
Table 8. CPU/SWIM/debug module/interrupt controller registers (continued)
Address
Block
0x00 7F0B to
0x00 7F5F
CPU
Register Label
Register Name
Reset
Status
Reserved area (85 bytes)
0x00 7F60
CFG_GCR
Global configuration register
0x00
0x00 7F70
ITC_SPR1
Interrupt Software priority register 1
0xFF
0x00 7F71
ITC_SPR2
Interrupt Software priority register 2
0xFF
0x00 7F72
ITC_SPR3
Interrupt Software priority register 3
0xFF
ITC_SPR4
Interrupt Software priority register 4
0xFF
0x00 7F74
ITC_SPR5
Interrupt Software priority register 5
0xFF
0x00 7F75
ITC_SPR6
Interrupt Software priority register 6
0xFF
0x00 7F76
ITC_SPR7
Interrupt Software priority register 7
0xFF
0x00 7F77
ITC_SPR8
Interrupt Software priority register 8
0xFF
0x00 7F73
ITC-SPR
0x00 7F78 to
0x00 7F79
0x00 7F80
Reserved area (2 bytes)
SWIM
SWIM_CSR
0x00 7F81 to
0x00 7F8F
SWIM control status register
0x00
Reserved area (15 bytes)
0x00 7F90
DM_BK1RE
DM breakpoint 1 register extended byte
0xFF
0x00 7F91
DM_BK1RH
DM breakpoint 1 register high byte
0xFF
0x00 7F92
DM_BK1RL
DM breakpoint 1 register low byte
0xFF
0x00 7F93
DM_BK2RE
DM breakpoint 2 register extended byte
0xFF
0x00 7F94
DM_BK2RH
DM breakpoint 2 register high byte
0xFF
DM_BK2RL
DM breakpoint 2 register low byte
0xFF
0x00 7F96
DM_CR1
DM Debug module control register 1
0x00
0x00 7F97
DM_CR2
DM Debug module control register 2
0x00
0x00 7F98
DM_CSR1
DM Debug module control/status register 1
0x10
0x00 7F99
DM_CSR2
DM Debug module control/status register 2
0x00
0x00 7F9A
DM_ENFCTR
DM enable function register
0xFF
0x00 7F95
DM
0x00 7F9B to
0x00 7F9F
Reserved area (5 bytes)
1. Accessible by debug module only
46/103
DocID023331 Rev 2
STM8L052C6
6
Interrupt vector mapping
Interrupt vector mapping
Table 9. Interrupt mapping
IRQ
No.
Source
block
RESET
TRAP
Wakeup
from Halt
mode
Description
Reset
Software interrupt
0
Wakeup
Wakeup
Wakeup
from
from Wait from Wait
Active(WFI
(WFE
halt mode
mode)
mode)(1)
Vector
address
Yes
Yes
Yes
Yes
0x00 8000
-
-
-
-
0x00 8004
Reserved
0x00 8008
FLASH end of programing/
write attempted to
protected page interrupt
-
-
Yes
Yes
0x00 800C
DMA1 0/1
DMA1 channels 0/1 half
transaction/transaction
complete interrupt
-
-
Yes
Yes
0x00 8010
3
DMA1 2/3
DMA1 channels 2/3 half
transaction/transaction
complete interrupt
-
-
Yes
Yes
0x00 8014
4
RTC
RTC alarm A/
wakeup
Yes
Yes
Yes
Yes
0x00 8018
5
EXTI E/F/
PVD(2)
External interrupt port E/F
PVD interrupt
Yes
Yes
Yes
Yes
0x00 801C
6
EXTIB/G
External interrupt port B/G
Yes
Yes
Yes
Yes
0x00 8020
7
EXTID/H
External interrupt port D/H
Yes
Yes
Yes
Yes
0x00 8024
8
EXTI0
External interrupt 0
Yes
Yes
Yes
Yes
0x00 8028
9
EXTI1
External interrupt 1
Yes
Yes
Yes
Yes
0x00 802C
10
EXTI2
External interrupt 2
Yes
Yes
Yes
Yes
0x00 8030
11
EXTI3
External interrupt 3
Yes
Yes
Yes
Yes
0x00 8034
12
EXTI4
External interrupt 4
Yes
Yes
Yes
Yes
0x00 8038
13
EXTI5
External interrupt 5
Yes
Yes
Yes
Yes
0x00 803C
14
EXTI6
External interrupt 6
Yes
Yes
Yes
Yes
0x00 8040
15
EXTI7
External interrupt 7
Yes
Yes
Yes
Yes
0x00 8044
16
LCD
LCD interrupt
-
-
Yes
Yes
0x00 8048
17
CLK/TIM1
CLK system clock switch/
CSS interrupt/
TIM 1 break
-
-
Yes
Yes
0x00 804C
18
ADC1
ACD1 end of conversion/
analog watchdog/
overrun interrupt
Yes
Yes
Yes
Yes
0x00 8050
1
FLASH
2
DocID023331 Rev 2
47/103
48
Interrupt vector mapping
STM8L052C6
Table 9. Interrupt mapping (continued)
Wakeup
from Halt
mode
Wakeup
Wakeup
Wakeup
from
from Wait from Wait
Active(WFI
(WFE
halt mode
mode)
mode)(1)
IRQ
No.
Source
block
19
TIM2
TIM2 update/overflow/
trigger/break
interrupt
-
-
Yes
Yes
0x00 8054
20
TIM2
TIM2capture/
compare interrupt
-
-
Yes
Yes
0x00 8058
21
TIM3
TIM3 update/overflow/
trigger/break interrupt
-
-
Yes
Yes
0x00 805C
22
TIM3
TIM3 capture/compare
interrupt
-
-
Yes
Yes
0x00 8060
23
TIM1
Update /overflow/trigger/
COM
-
-
-
Yes
0x00 8064
24
TIM1
Capture/compare
-
-
-
Yes
0x00 8068
25
TIM4
TIM4 update/overflow/
trigger interrupt
-
-
Yes
Yes
0x00 806C
26
SPI1
SPI1 TX buffer empty/
RX buffer not empty/
error/wakeup interrupt
Yes
Yes
Yes
Yes
0x00 8070
USART1
USART1transmit data
register empty/
transmission complete
interrupt
-
-
Yes
Yes
0x00 8074
28
USART1
USART1 received data
ready/overrun error/
idle line detected/parity
error/global error interrupt
-
-
Yes
Yes
0x00 8078
29
I2C1
Yes
Yes
Yes
Yes
0x00 807C
27
Description
I2C1 interrupt(3)
Vector
address
1. The Low power wait mode is entered when executing a WFE instruction in Low power run mode. In WFE mode, the
interrupt is served if it has been previously enabled. After processing the interrupt, the processor goes back to WFE mode.
When the interrupt is configured as a wakeup event, the CPU wakes up and resumes processing.
2. The interrupt from PVD is logically OR-ed with Port E and F interrupts. Register EXTI_CONF allows to select between Port
E and Port F interrupt (see External interrupt port select register (EXTI_CONF) in the RM0031).
3. The device is woken up from Halt or Active-halt mode only when the address received matches the interface address.
48/103
DocID023331 Rev 2
STM8L052C6
7
Option bytes
Option bytes
Option bytes contain configurations for device hardware features as well as the memory
protection of the device. They are stored in a dedicated memory block.
All option bytes can be modified in ICP mode (with SWIM) by accessing the EEPROM
address. See Table 10 for details on option byte addresses.
The option bytes can also be modified ‘on the fly’ by the application in IAP mode, except for
the ROP and UBC values which can only be taken into account when they are modified in
ICP mode (with the SWIM).
Refer to the STM8L05x/15x Flash programming manual (PM0054) and STM8 SWIM and
Debug Manual (UM0470) for information on SWIM programming procedures.
Table 10. Option byte addresses
Address
Option name
Option
byte
No.
Option bits
7
6
5
4
3
2
1
0
Factory
default
setting
0x00 4800
Read-out
protection
(ROP)
OPT0
ROP[7:0]
0xAA
0x00 4802
UBC (User
Boot code size)
OPT1
UBC[7:0]
0x00
0x00 4807
Reserved
Independent
watchdog
option
OPT3
[3:0]
Reserved
Number of
stabilization
0x00 4809 clock cycles for
HSE and LSE
oscillators
OPT4
Reserved
Brownout reset
(BOR)
OPT5
[3:0]
Reserved
Bootloader
option bytes
(OPTBL)
OPTBL
[15:0]
0x00 4808
0x00 480A
0x00 480B
0x00 480C
0x00
WWDG WWDG IWDG
_HALT _HW _HALT
LSECNT[1:0]
BOR_TH
IWDG
_HW
HSECNT[1:0]
BOR_
ON
0x00
0x00
0x00
0x00
OPTBL[15:0]
0x00
DocID023331 Rev 2
49/103
51
Option bytes
STM8L052C6
Table 11. Option byte description
Option
byte
No.
Option description
OPT0
ROP[7:0] Memory readout protection (ROP)
0xAA: Disable readout protection (write access via SWIM protocol)
Refer to Readout protection section in the STM8L05x/15x and STM8L16x reference manual
(RM0031).
OPT1
UBC[7:0] Size of the user boot code area
0x00: UBC is not protected.
0x01: Page 0 is write protected.
0x02: Page 0 and 1 reserved for the UBC and write protected. It covers only the interrupt vectors.
0x03: Page 0 to 2 reserved for UBC and write protected.
0x7F to 0xFF - All 128 pages reserved for UBC and write protected.
The protection of the memory area not protected by the UBC is enabled through the MASS keys.
Refer to User boot code section in the STM8L05x/15x and STM8L16x reference manual (RM0031).
OPT2
Reserved
IWDG_HW: Independent watchdog
0: Independent watchdog activated by software
1: Independent watchdog activated by hardware
IWDG_HALT: Independent window watchdog off on Halt/Active-halt
0: Independent watchdog continues running in Halt/Active-halt mode
1: Independent watchdog stopped in Halt/Active-halt mode
OPT3
WWDG_HW: Window watchdog
0: Window watchdog activated by software
1: Window watchdog activated by hardware
WWDG_HALT: Window window watchdog reset on Halt/Active-halt
0: Window watchdog stopped in Halt mode
1: Window watchdog generates a reset when MCU enters Halt mode
HSECNT: Number of HSE oscillator stabilization clock cycles
0x00 - 1 clock cycle
0x01 - 16 clock cycles
0x10 - 512 clock cycles
0x11 - 4096 clock cycles
OPT4
50/103
LSECNT: Number of LSE oscillator stabilization clock cycles
0x00 - 1 clock cycle
0x01 - 16 clock cycles
0x10 - 512 clock cycles
0x11 - 4096 clock cycles
Refer to Table 29: LSE oscillator characteristics on page 70.
DocID023331 Rev 2
STM8L052C6
Option bytes
Table 11. Option byte description (continued)
Option
byte
No.
OPT5
Option description
BOR_ON:
0: Brownout reset off
1: Brownout reset on
BOR_TH[3:1]: Brownout reset thresholds. Refer to Table 20 for details on the thresholds according to
the value of BOR_TH bits.
OPTBL
OPTBL[15:0]:
This option is checked by the boot ROM code after reset. Depending on
content of addresses 00 480B, 00 480C and 0x8000 (reset vector) the
CPU jumps to the bootloader or to the reset vector.
Refer to the UM0560 bootloader user manual for more details.
DocID023331 Rev 2
51/103
51
Electrical parameters
STM8L052C6
8
Electrical parameters
8.1
Parameter conditions
Unless otherwise specified, all voltages are referred to VSS.
8.1.1
Minimum and maximum values
Unless otherwise specified the minimum and maximum values are guaranteed in the worst
conditions of ambient temperature, supply voltage and frequencies by tests in production on
100% of the devices with an ambient temperature at TA= 25 °C and TA = TA max (given by
the selected temperature range).
Data based on characterization results, design simulation and/or technology characteristics
is indicated in the table footnotes and are not tested in production. Based on
characterization, the minimum and maximum values refer to sample tests and represent the
mean value plus or minus three times the standard deviation (mean±3).
8.1.2
Typical values
Unless otherwise specified, typical data is based on TA = 25 °C, VDD = 3 V. It is given only as
design guidelines and is not tested.
Typical ADC accuracy values are determined by characterization of a batch of samples from
a standard diffusion lot over the full temperature range, where 95% of the devices have an
error less than or equal to the value indicated (mean±2).
8.1.3
Typical curves
Unless otherwise specified, all typical curves are given only as design guidelines and are
not tested.
8.1.4
Loading capacitor
The loading conditions used for pin parameter measurement are shown in Figure 5.
Figure 5. Pin loading conditions
STM8L PIN
50 pF
52/103
DocID023331 Rev 2
STM8L052C6
8.1.5
Electrical parameters
Pin input voltage
The input voltage measurement on a pin of the device is described in Figure 6.
Figure 6. Pin input voltage
STM8L PIN
VIN
8.2
Absolute maximum ratings
Stresses above those listed as “absolute maximum ratings” may cause permanent damage
to the device. This is a stress rating only and functional operation of the device under these
conditions is not implied. Exposure to maximum rating conditions for extended periods may
affect device reliability.
Table 12. Voltage characteristics
Symbol
Ratings
Min
Max
Unit
VDD- VSS
External supply voltage (including VDDA
and VDD2)(1)
- 0.3
4.0
V
Input voltage on true open-drain pins
(PC0 and PC1)
VSS - 0.3
VDD + 4.0
Input voltage on five-volt tolerant (FT)
pins (PA7 and PE0)
VSS - 0.3
VDD + 4.0
Input voltage on 3.6 V tolerant (TT) pins
VSS - 0.3
4.0
Input voltage on any other pin
VSS - 0.3
4.0
VIN(2)
VESD
Electrostatic discharge voltage
V
see Absolute maximum
ratings (electrical sensitivity)
on page 96
1. All power (VDD1, VDD2, VDDA) and ground (VSS1, VSS2, VSSA) pins must always be connected to the
external power supply.
2. VIN maximum must always be respected. Refer to Table 13. for maximum allowed injected current values.
DocID023331 Rev 2
53/103
97
Electrical parameters
STM8L052C6
Table 13. Current characteristics
Symbol
Ratings
Max.
IVDD
Total current into VDD power line (source)
80
IVSS
Total current out of VSS ground line (sink)
80
Output current sunk by IR_TIM pin (with high sink LED driver
capability)
80
Output current sunk by any other I/O and control pin
25
IIO
Output current sourced by any I/Os and control pin
Unit
- 25
mA
IINJ(PIN)
IINJ(PIN)
Injected current on true open-drain pins (PC0 and PC1)(1)
- 5 / +0
Injected current on five-volt tolerant (FT) pins (PA7 and PE0) (1)
- 5 / +0
Injected current on 3.6 V tolerant (TT) pins (1)
- 5 / +0
Injected current on any other pin (2)
- 5 / +5
Total injected current (sum of all I/O and control pins) (3)
± 25
1. Positive injection is not possible on these I/Os. A negative injection is induced by VIN<VSS. IINJ(PIN) must
never be exceeded. Refer to Table 12. for maximum allowed input voltage values.
2.
A positive injection is induced by VIN>VDD while a negative injection is induced by VIN<VSS. IINJ(PIN) must
never be exceeded. Refer to Table 12. for maximum allowed input voltage values.
3. When several inputs are submitted to a current injection, the maximum IINJ(PIN) is the absolute sum of the
positive and negative injected currents (instantaneous values).
Table 14. Thermal characteristics
Symbol
TSTG
TJ
54/103
Ratings
Storage temperature range
Value
Unit
-65 to +150
°C
Maximum junction temperature
DocID023331 Rev 2
150
STM8L052C6
8.3
Electrical parameters
Operating conditions
Subject to general operating conditions for VDD and TA.
8.3.1
General operating conditions
Table 15. General operating conditions
Symbol
fSYSCLK(1)
Parameter
System clock
frequency
Conditions
Min.
Max.
Unit
1.8 V VDD  3.6 V
0
16
MHz
-
1.8
3.6
V
Must be at the same
potential as VDD
1.8
3.6
V
VDD
Standard operating
voltage
VDDA
Analog operating
voltage
PD(2)
Power dissipation at
TA= 85 °C
LQFP48
-
288
mW
PD(3)
Power dissipation at
TA= 85 °C
TSSOP20
-
181
mW
TA
Temperature range
1.8 V VDD 3.6 V
-40
85
°C
TJ
Junction temperature
range
-40 °C TA 85 °C
-40
105(4)
°C
1. fSYSCLK = fCPU
2. To calculate PDmax(TA), use the formula PDmax=(TJmax -TA)/JA with TJmax in this table and JA in “Thermal
characteristics” table.
3. To calculate PDmax(TA), use the formula PDmax=(TJmax -TA)/JA with TJmax in this table and JA in “Thermal
characteristics” table.
4. TJmax is given by the test limit. Above this value, the product behavior is not guaranteed.
DocID023331 Rev 2
55/103
97
Electrical parameters
8.3.2
STM8L052C6
Embedded reset and power control block characteristics
Table 16. Embedded reset and power control block characteristics
Symbol
Parameter
Conditions
Min
Typ
Max
VDD rise time rate
BOR detector
enabled
0(1)
-
(1)
VDD fall time rate
BOR detector
enabled
(1)
-
(1)
Reset release delay
VDD rising
-
3
-
ms
1.50
1.65
V
tVDD
tTEMP
µs/V
20
(2)
VPDR
Power-down reset threshold
Falling edge
Brown-out reset threshold 0
(BOR_TH[2:0]=000)
Falling edge
1.67
1.70
1.74
VBOR0
Rising edge
1.69
1.75
1.80
Brown-out reset threshold 1
(BOR_TH[2:0]=001)
Falling edge
1.87
1.93
1.97
VBOR1
Rising edge
1.96
2.04
2.07
Brown-out reset threshold 2
(BOR_TH[2:0]=010)
Falling edge
2.22
2.3
2.35
VBOR2
Rising edge
2.31
2.41
2.44
Brown-out reset threshold 3
(BOR_TH[2:0]=011)
Falling edge
2.45
2.55
2.60
VBOR3
Rising edge
2.54
2.66
2.7
Brown-out reset threshold 4
(BOR_TH[2:0]=100)
Falling edge
2.68
2.80
2.85
VBOR4
Rising edge
2.78
2.90
2.95
Falling edge
1.80
1.84
1.88
VPVD0
PVD threshold 0
Rising edge
1.88
1.94
1.99
Falling edge
1.98
2.04
2.09
VPVD1
PVD threshold 1
Rising edge
2.08
2.14
2.18
Falling edge
2.2
2.24
2.28
VPVD2
PVD threshold 2
Rising edge
2.28
2.34
2.38
Falling edge
2.39
2.44
2.48
VPVD3
PVD threshold 3
Rising edge
2.47
2.54
2.58
Falling edge
2.57
2.64
2.69
VPVD4
PVD threshold 4
Rising edge
2.68
2.74
2.79
Falling edge
2.77
2.83
2.88
VPVD5
PVD threshold 5
Rising edge
2.87
2.94
2.99
Falling edge
2.97
3.05
3.09
VPVD6
PVD threshold 6
Rising edge
3.08
3.15
3.20
1.30
V
V
1. Data guaranteed by design, not tested in production.
2. Data based on characterization results, not tested in production.
56/103
Unit
DocID023331 Rev 2
STM8L052C6
Electrical parameters
Figure 7. POR/BOR thresholds
9''
9''
9
2SHUDWLQJ SRZHUVXSSO\
9''
%25WKUHVKROGB
9
%25WKUHVKROG
9%25
93'5
5HVHW
6DIHUHVHW
6DIHUHVHWUHOHDVH
ZLWKRXW%25 EDWWHU\OLIHH[WHQVLRQ
3'5WKUHVKROG
,QWHUQDO1567
ZLWK
%25
ZLWK ZLWKRXW
%25 %25
%25DOZD\VDFWLYH
DWSRZHUXS
%25DFWLYDWHGE\XVHU
IRUSRZHUGRZQGHWHFWLRQ
7LPH
$,
8.3.3
Supply current characteristics
Total current consumption
The MCU is placed under the following conditions:
l
All I/O pins in input mode with a static value at VDD or VSS (no load)
l
All peripherals are disabled except if explicitly mentioned.
In the following table, data is based on characterization results, unless otherwise specified.
Subject to general operating conditions for VDD and TA.
DocID023331 Rev 2
57/103
97
Electrical parameters
STM8L052C6
Table 17. Total current consumption in Run mode
Symbol
Max
Para
meter
Conditions(1)
Typ
Unit
55 °C
85 °C
fCPU = 125 kHz
0.39
0.47
0.49
fCPU = 1 MHz
0.48
0.56
0.58
fCPU = 4 MHz
0.75
0.84
0.86
fCPU = 8 MHz
1.10
1.20
1.25
fCPU = 16 MHz
1.85
1.93
2.12(5)
fCPU = 125 kHz
0.05
0.06
0.09
fCPU = 1 MHz
0.18
0.19
0.20
fCPU = 4 MHz
0.55
0.62
0.64
fCPU = 8 MHz
0.99
1.20
1.21
fCPU = 16 MHz
1.90
2.22
2.23(5)
LSI RC osc.
(typ. 38 kHz)
fCPU = fLSI
0.040 0.045
0.046
LSE external
clock
(32.768 kHz)
fCPU = fLSE
0.035 0.040 0.048(5)
fCPU = 125 kHz
0.43
0.55
0.56
fCPU = 1 MHz
0.60
0.77
0.80
fCPU = 4 MHz
1.11
1.34
1.37
fCPU = 8 MHz
1.90
2.20
2.23
fCPU = 16 MHz
3.8
4.60
4.75
fCPU = 125 kHz
0.30
0.36
0.39
fCPU = 1 MHz
0.40
0.50
0.52
fCPU = 4 MHz
1.15
1.31
1.40
fCPU = 8 MHz
2.17
2.33
2.44
fCPU = 16 MHz
4.0
4.46
4.52
0.110 0.123
0.130
0.100 0.101
0.104
HSI RC osc.
(16 MHz)(3)
All
peripherals 
Supply OFF,
current code
IDD(RUN)
HSE external
in run
executed
clock
(2)
from RAM,
mode
(fCPU=fHSE)(4)
VDD from
1.8 V to 3.6 V
HSI RC
oscillator.(6)
All
peripherals
Supply 
OFF, code
current
IDD(RUN)
executed
HSE external
in Run 
from Flash, clock
mode
VDD from
=f
) (4)
(f
1.8 V to 3.6 V CPU HSE
LSI RC osc.
fCPU = fLSI
LSE ext. clock
(32.768
fCPU = fLSE
kHz)(7)
1. All peripherals OFF, VDD from 1.8 V to 3.6 V, HSI internal RC oscillator, fCPU=fSYSCLK
2. CPU executing typical data processing
3. The run from RAM consumption can be approximated with the linear formula: 
IDD(run_from_RAM) = Freq * 90 µA/MHz + 380 µA
58/103
DocID023331 Rev 2
mA
mA
STM8L052C6
Electrical parameters
4. Oscillator bypassed (HSEBYP = 1 in CLK_ECKCR). When configured for external crystal, the HSE
consumption 
(IDD HSE) must be added. Refer to Table 28.
5. Tested in production.
6. The run from Flash consumption can be approximated with the linear formula: 
IDD(run_from_Flash) = Freq * 195 µA/MHz + 440 µA
7. Oscillator bypassed (LSEBYP = 1 in CLK_ECKCR). When configured for external crystal, the LSE
consumption 
(IDD LSE) must be added. Refer to Table 29.
Figure 8. Typ. IDD(RUN) vs. VDD, fCPU = 16 MHz
ƒ&
,''581+6,>P$@
ƒ&
ƒ&
9''>9@
DL9
1. Typical current consumption measured with code executed from RAM
DocID023331 Rev 2
59/103
97
Electrical parameters
STM8L052C6
In the following table, data is based on characterization results, unless otherwise specified.
Table 18. Total current consumption in Wait mode
Max
Conditions(1)
Symbol Parameter
Typ
55°C
HSI
CPU not 
clocked, 
all peripherals
OFF, 
Supply 
code executed
IDD(Wait) current in  from RAM 
Wait mode with Flash in
IDDQ mode(3),
VDD from
1.8 V to 3.6 V
0.33
0.39
0.41
fCPU = 1 MHz
0.35
0.41
0.44
fCPU = 4 MHz
0.42
0.51
0.52
fCPU = 8 MHz
0.52
0.57
0.58
fCPU = 16 MHz
0.68
0.76
0.79
f
= 1 MHz
HSE external CPU
clock
fCPU = 4 MHz
(fCPU=fHSE)(4)
fCPU = 8 MHz
0.078 0.121 0.144
0.218
0.26
0.30
0.40
0.52
0.57
fCPU = 16 MHz
0.760
1.01
1.05
fCPU = fLSI
0.035 0.044 0.046
0.38
0.48
0.49
fCPU = 1 MHz
0.41
0.49
0.51
fCPU = 4 MHz
0.50
0.57
0.58
fCPU = 8 MHz
0.60
0.66
0.68
fCPU = 16 MHz
0.79
0.84
0.86
fCPU = 125 kHz
0.06
0.08
0.09
fCPU = 1 MHz
HSE(4)
external clock
fCPU = 4 MHz
(fCPU=HSE)
0.10
0.17
0.18
0.24
0.36
0.39
fCPU = 8 MHz
0.50
0.58
0.61
fCPU = 16 MHz
1.00
1.08
1.14
fCPU = fLSI
0.055 0.058 0.065
LSI
LSE(5)
external clock fCPU = fLSE
(32.768 kHz)
mA
0.032 0.036 0.038
fCPU = 125 kHz
HSI
mode
(2)
fCPU = 125 kHz
LSE(5)
external clock fCPU = fLSE
(32.768 kHz)
Supply 
current in 
IDD(Wait) Wait
Unit
fCPU = 125 kHz 0.032 0.056 0.068
LSI
CPU not
clocked, 
all peripherals
OFF, 
code executed
from Flash,
VDD from 
1.8 V to 3.6 V
85°C
mA
0.051 0.056 0.060
1. All peripherals OFF, VDD from 1.8 V to 3.6 V, HSI internal RC oscillator, fCPU = fSYSCLK
2. For temperature range 6.
3. Flash is configured in IDDQ mode in Wait mode by setting the EPM or WAITM bit in the Flash_CR1 register.
60/103
DocID023331 Rev 2
STM8L052C6
Electrical parameters
4. Oscillator bypassed (HSEBYP = 1 in CLK_ECKCR). When configured for external crystal, the HSE
consumption 
(IDD HSE) must be added. Refer to Table 28.
5. Oscillator bypassed (LSEBYP = 1 in CLK_ECKCR). When configured for external crystal, the LSE
consumption 
(IDD HSE) must be added. Refer to Table 29.
Figure 9. Typ. IDD(Wait) vs. VDD, fCPU = 16 MHz 1)
,'':$,7+6, >—$@
ƒ&
ƒ&
ƒ&
9''>9@
DL9
1. Typical current consumption measured with code executed from Flash memory.
DocID023331 Rev 2
61/103
97
Electrical parameters
STM8L052C6
In the following table, data is based on characterization results, unless otherwise specified.
Table 19. Total current consumption and timing in Low power run mode at VDD = 1.8 V
to 3.6 V
Symbol
Conditions(1)
Parameter
all peripherals OFF
LSI RC osc.
(at 38 kHz)
with TIM2 active(2)
IDD(LPR)
Supply current in
Low power run mode
all peripherals OFF
(3)
LSE external
clock
(32.768 kHz)
with TIM2 active
(2)
Typ Max Unit
TA = -40 °C to 25 °C
5.1
5.4
TA = 55 °C
5.7
6
TA = 85 °C
6.8
7.5
TA = -40 °C to 25 °C
5.4
5.7
TA = 55 °C
6.0
6.3
TA = 85 °C
7.2
7.8
TA = -40 °C to 25 °C
5.25 5.6
TA = 55 °C
5.67 6.1
TA = 85 °C
5.85 6.3
TA = -40 °C to 25 °C
5.59
TA = 55 °C
6.10 6.4
TA = 85 °C
6.30
A
6
7
1. No floating I/Os
2. Timer 2 clock enabled and counter running
3. Oscillator bypassed (LSEBYP = 1 in CLK_ECKCR). When configured for external crystal, the LSE consumption 
(IDD LSE) must be added. Refer to Table 29
Figure 10. Typ. IDD(LPR) vs. VDD (LSI clock source)
ƒ&
,''/35/6,>—$@
ƒ&
ƒ&
9''>9@
DL9
62/103
DocID023331 Rev 2
STM8L052C6
Electrical parameters
In the following table, data is based on characterization results, unless otherwise specified.
Table 20. Total current consumption in Low power wait mode at VDD = 1.8 V to 3.6 V
Symbol
Conditions(1)
Parameter
Typ Max Unit
TA = -40 °C to 25 °C
all peripherals OFF
LSI RC osc.
(at 38 kHz)
with TIM2
IDD(LPW)
active(2)
Supply current in
Low power wait
mode
all peripherals OFF
LSE external
clock(3)
(32.768 kHz)
with TIM2 active (2)
3
3.3
TA = 55 °C
3.3
3.6
TA = 85 °C
4.4
5
TA = -40 °C to 25 °C
3.4
3.7
TA = 55 °C
3.7
4
TA = 85 °C
4.8
5.4
TA = -40 °C to 25 °C
2.35 2.7
TA = 55 °C
2.42 2.82
TA = 85 °C
3.10 3.71
TA = -40 °C to 25 °C
2.46 2.75
TA = 55 °C
2.50 2.81
TA = 85 °C
3.16 3.82
A
1. No floating I/Os.
2. Timer 2 clock enabled and counter is running.
3. Oscillator bypassed (LSEBYP = 1 in CLK_ECKCR). When configured for external crystal, the LSE consumption 
(IDD LSE) must be added. Refer to Table 29.
Figure 11. Typ. IDD(LPW) vs. VDD (LSI clock source)
ƒ&
,''/3: /6,>—$@
ƒ&
ƒ&
9''>9@
DL9
DocID023331 Rev 2
63/103
97
Electrical parameters
STM8L052C6
In the following table, data is based on characterization results, unless otherwise specified.
Table 21. Total current consumption and timing in Active-halt mode at VDD = 1.8 V to 3.6 V
Symbol
Conditions (1)
Parameter
LCD OFF
IDD(AH)
Supply current in
Active-halt mode
LSI RC
(at 38 kHz)
(2)
Supply current in
Active-halt mode
(6)
64/103
3
TA = 85 °C
1.5
3.4
3.3
1.9
4.3
TA = -40 °C to 25 °C
1.9
4.3
TA = 55 °C
1.95
4.4
TA = 85 °C
2.4
5.4
TA = -40 °C to 25 °C
3.9
8.75
TA = 55 °C
4.15
9.3
TA = 85 °C
4.5
10.2
TA = -40 °C to 25 °C
0.5
1.2
TA = 55 °C
0.62
1.4
TA = 85 °C
0.88
2.1
0.85
1.9
0.95
2.2
1.3
3.2
TA = -40 °C to 25 °C
1.5
2.5
TA = 55 °C
1.6
3.8
TA = 85 °C
1.8
4.2
TA = -40 °C to 25 °C
3.4
7.6
TA = 55 °C
3.7
8.3
TA = 85 °C
3.9
9.2
TA = -40 °C to 25 °C
0.9
2.1
TA = 55 °C
1.2
3
TA = 85 °C
1.5
3.4
TA = -40 °C to 25 °C
0.5
1.2
TA = 55 °C
0.62
1.4
TA = 85 °C
0.88
2.1
2.4
-
LCD ON
(1/4 duty/
external
VLCD) (4)
OFF(7)
TA = -40 °C to 25 °C
LCD ON 
(static duty/
TA = 55 °C
external
TA = 85 °C
VLCD) (3)
LCD ON 
(1/4 duty/
external
VLCD) (4)
Supply current in
Active-halt mode
LSE external clock (32.768
kHz)(8)
IDD(WUFAH)
2.1
1.2
1.5
LSI RC (at 38 kHz)
Supply current during
wakeup time from
Active-halt mode
(using HSI)
0.9
TA = 55 °C
3.1
LCD ON
(1/4 duty/
internal
VLCD) (5)
IDD(AH)
TA = -40 °C to 25 °C
1.4
LCD
IDD(AH)
Max
TA = -40 °C to 25 °C
LCD ON 
(static duty/
TA = 55 °C
external
TA = 85 °C
VLCD) (3)
LCD ON
(1/4 duty/
internal
VLCD) (5)
LSE external
clock 
(32.768 kHz)
Typ
-
DocID023331 Rev 2
Unit
A
A
A
mA
STM8L052C6
Electrical parameters
Table 21. Total current consumption and timing in Active-halt mode at VDD = 1.8 V to 3.6 V
Symbol
Parameter
Conditions (1)
Typ
Max
Unit
tWU_HSI(AH)(9)
Wakeup time from
Active-halt mode to
Run mode (using HSI)
-
4.7
7
s
Wakeup time from
Active-halt mode to
Run mode (using LSI)
-
150
-
s
(10)
tWU_LSI(AH)(9)
(10)
1. No floating I/O, unless otherwise specified.
2. RTC enabled. Clock source = LSI
3. RTC enabled, LCD enabled with external VLCD = 3 V, static duty, division ratio = 256, all pixels active, no LCD connected.
4. RTC enabled, LCD enabled with external VLCD, 1/4 duty, 1/3 bias, division ratio = 64, all pixels active, no LCD connected.
5. LCD enabled with internal LCD booster VLCD = 3 V, 1/4 duty, 1/3 bias, division ratio = 64, all pixels active, no LCD
connected.
6. Oscillator bypassed (LSEBYP = 1 in CLK_ECKCR). When configured for external crystal, the LSE consumption 
(IDD LSE) must be added. Refer to Table 29.
7. RTC enabled. Clock source = LSE.
8. Oscillator bypassed (LSEBYP = 1 in CLK_ECKCR). When configured for external crystal, the LSE consumption 
(IDD LSE) must be added. Refer to Table 29.
9. Wakeup time until start of interrupt vector fetch. 
The first word of interrupt routine is fetched 4 CPU cycles after tWU.
10. ULP=0 or ULP=1 and FWU=1 in the PWR_CSR2 register.
Table 22. Typical current consumption in Active-halt mode, RTC clocked by LSE
external crystal
Symbol
Condition(1)
Parameter
Typ
LSE
VDD = 1.8 V
IDD(AH) (2)
Supply current in Active-halt
mode
VDD = 3 V
VDD = 3.6 V
Unit
1.15
(3)
LSE/32
1.05
LSE
1.30
LSE/32(3)
1.20
LSE
1.45
(3)
LSE/32
µA
1.35
1. No floating I/O, unless otherwise specified.
2. Based on measurements on bench with 32.768 kHz external crystal oscillator.
3. RTC clock is LSE divided by 32.
DocID023331 Rev 2
65/103
97
Electrical parameters
STM8L052C6
In the following table, data is based on characterization results, unless otherwise specified.
Table 23. Total current consumption and timing in Halt mode at VDD = 1.8 to 3.6 V
Symbol
IDD(Halt)
Condition(1)
Parameter
TA = -40 °C to 25 °C
Supply current in Halt mode
(Ultra-low-power ULP bit =1 in TA = 55 °C
the PWR_CSR2 register)
TA = 85 °C
Typ
Max
350
1400(2)
580
2000
1160
2800(2)
Unit
nA
IDD(WUHalt)
Supply current during wakeup
time from Halt mode (using
HSI)
-
2.4
-
mA
tWU_HSI(Halt)(3)(4)
Wakeup time from Halt to Run
mode (using HSI)
-
4.7
7
µs
tWU_LSI(Halt) (3)(4)
Wakeup time from Halt mode
to Run mode (using LSI)
-
150
-
µs
1. TA = -40 to 85 °C, no floating I/O, unless otherwise specified.
2. Tested in production.
3. ULP=0 or ULP=1 and FWU=1 in the PWR_CSR2 register.
4. Wakeup time until start of interrupt vector fetch. 
The first word of interrupt routine is fetched 4 CPU cycles after tWU.
66/103
DocID023331 Rev 2
STM8L052C6
Electrical parameters
Current consumption of on-chip peripherals
Table 24. Peripheral current consumption
Symbol
Typ.
VDD = 3.0 V
Parameter
IDD(TIM1)
TIM1 supply current(1)
13
IDD(TIM2)
TIM2 supply current (1)
8
IDD(TIM3)
TIM3 supply current (1)
8
IDD(TIM4)
TIM4 timer supply current (1)
3
USART1 supply current (2)
6
IDD(SPI1)
SPI1 supply current (2)
3
IDD(I2C1)
I2C1 supply current (2)
5
IDD(DMA1)
DMA1 supply current(2)
3
IDD(USART1)
IDD(WWDG)
WWDG supply
IDD(PVD/BOR)
IDD(IDWDG)
current(2)
2
44
ADC1 supply current(4)
IDD(ADC1)
IDD(BOR)
µA/MHz
Peripherals ON(3)
IDD(ALL)
Unit
µA/MHz
1500
Power voltage detector and brownout Reset unit supply
current (5)
2.6
Brownout Reset unit supply current (5)
2.4
Independent watchdog supply current
including LSI supply
current
0.45
excluding LSI
supply current
0.05
µA
1. Data based on a differential IDD measurement between all peripherals OFF and a timer counter running at 16 MHz. The
CPU is in Wait mode in both cases. No IC/OC programmed, no I/O pins toggling. Not tested in production.
2. Data based on a differential IDD measurement between the on-chip peripheral in reset configuration and not clocked and
the on-chip peripheral when clocked and not kept under reset. The CPU is in Wait mode in both cases. No I/O pins toggling.
Not tested in production.
3. Peripherals listed above the IDD(ALL) parameter ON: TIM1, TIM2, TIM3, TIM4, USART1, SPI1, I2C1, DMA1, WWDG.
4. Data based on a differential IDD measurement between ADC in reset configuration and continuous ADC conversion.
5. Including supply current of internal reference voltage.
Table 25. Current consumption under external reset
Symbol
IDD(RST)
Parameter
Supply current under
external reset (1)
Conditions
All pins are externally
tied to VDD
Typ
VDD = 1.8 V
48
VDD = 3 V
76
VDD = 3.6 V
91
Unit
µA
1. All pins except PA0, PB0 and PB4 are floating under reset. PA0, PB0 and PB4 are configured with pull-up under reset.
DocID023331 Rev 2
67/103
97
Electrical parameters
8.3.4
STM8L052C6
Clock and timing characteristics
HSE external clock (HSEBYP = 1 in CLK_ECKCR)
Subject to general operating conditions for VDD and TA.
Table 26. HSE external clock characteristics
Symbol
Parameter
Conditions
fHSE_ext
External clock source
frequency(1)
VHSEH
OSC_IN input pin high level
voltage
VHSEL
OSC_IN input pin low level
voltage
Min
Typ
Max
Unit
1
-
16
MHz
0.7 x VDD
-
VDD
VSS
-
0.3 x VDD
-
-
2.6
-
pF
VSS < VIN < VDD
-
-
±1
µA
-
V
Cin(HSE)
ILEAK_HSE
OSC_IN input
capacitance(1)
OSC_IN input leakage
current
1. Data guaranteed by Design, not tested in production.
LSE external clock (LSEBYP=1 in CLK_ECKCR)
Subject to general operating conditions for VDD and TA.
Table 27. LSE external clock characteristics
Symbol
Parameter
Min
Typ
Max
Unit
-
32.768
-
kHz
fLSE_ext
External clock source frequency(1)
VLSEH(2)
OSC32_IN input pin high level voltage
0.7 x VDD
-
VDD
VLSEL(2)
OSC32_IN input pin low level voltage
VSS
-
0.3 x VDD
Cin(LSE)
OSC32_IN input capacitance(1)
-
0.6
-
pF
OSC32_IN input leakage current
-
-
±1
µA
ILEAK_LSE
V
1. Data guaranteed by Design, not tested in production.
2. Data based on characterization results, not tested in production.
68/103
DocID023331 Rev 2
STM8L052C6
Electrical parameters
HSE crystal/ceramic resonator oscillator
The HSE clock can be supplied with a 1 to 16 MHz crystal/ceramic resonator oscillator. All
the information given in this paragraph is based on characterization results with specified
typical external components. In the application, the resonator and the load capacitors have
to be placed as close as possible to the oscillator pins in order to minimize output distortion
and startup stabilization time. Refer to the crystal resonator manufacturer for more details
(frequency, package, accuracy...).
Table 28. HSE oscillator characteristics
Symbol
Conditions
Min
Typ
Max
Unit
High speed external oscillator
frequency
-
1
-
16
MHz
RF
Feedback resistor
-
-
200
-
k
C(1)
Recommended load capacitance (2)
-
-
20
-
pF
C = 20 pF,
fOSC = 16 MHz
-
-
2.5 (startup)
0.7 (stabilized)(3)
fHSE
IDD(HSE)
gm
Parameter
HSE oscillator power consumption
-
-
2.5 (startup)
0.46 (stabilized)(3)
-
3.5(3)
-
-
mA/V
1
-
ms
Oscillator transconductance
tSU(HSE)(4) Startup time
mA
C = 10 pF,
fOSC =16 MHz
VDD is stabilized
1. C=CL1=CL2 is approximately equivalent to 2 x crystal CLOAD.
2. The oscillator selection can be optimized in terms of supply current using a high quality resonator with small Rm value.
Refer to crystal manufacturer for more details
3. Data guaranteed by Design. Not tested in production.
4. tSU(HSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 16 MHz oscillation. This
value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer.
Figure 12. HSE oscillator circuit diagram
fHSE to core
Rm
Lm
RF
CO
CL1
OSC_IN
Cm
gm
Resonator
Consumption
control
Resonator
STM8
OSC_OUT
CL2
HSE oscillator critical gm formula
g mcrit =  2    f HSE  2  R m  2Co + C 
2
Rm: Motional resistance (see crystal specification), Lm: Motional inductance (see crystal specification),
Cm: Motional capacitance (see crystal specification), Co: Shunt capacitance (see crystal specification),
CL1=CL2=C: Grounded external capacitance
gm >> gmcrit
DocID023331 Rev 2
69/103
97
Electrical parameters
STM8L052C6
LSE crystal/ceramic resonator oscillator
The LSE clock can be supplied with a 32.768 kHz crystal/ceramic resonator oscillator. All
the information given in this paragraph is based on characterization results with specified
typical external components. In the application, the resonator and the load capacitors have
to be placed as close as possible to the oscillator pins in order to minimize output distortion
and startup stabilization time. Refer to the crystal resonator manufacturer for more details
(frequency, package, accuracy...).
Table 29. LSE oscillator characteristics
Symbol
Parameter
fLSE
Low speed external oscillator
frequency
RF
Feedback resistor
C(1)
Recommended load capacitance (2)
IDD(LSE)
gm
LSE oscillator power consumption
Conditions
Min
Typ
Max
Unit
-
-
32.768
-
kHz
V = 200 mV
-
1.2
-
M
-
-
8
-
pF
-
-
-
1.4(3)
µA
VDD = 1.8 V
-
450
-
VDD = 3 V
-
600
-
VDD = 3.6 V
-
750
-
-
3(3)
VDD is stabilized
-
Oscillator transconductance
tSU(LSE)(4) Startup time
1
nA
-
µA/V
-
s
1. C=CL1=CL2 is approximately equivalent to 2 x crystal CLOAD.
2. The oscillator selection can be optimized in terms of supply current using a high quality resonator with a small Rm value.
Refer to crystal manufacturer for more details.
3. Data guaranteed by Design. Not tested in production.
4.
tSU(LSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation.
This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer.
Figure 13. LSE oscillator circuit diagram
fLSE
Rm
RF
CO
Lm
CL1
OSC_IN
Cm
gm
Resonator
Consumption
control
Resonator
STM8
OSC_OUT
CL2
70/103
DocID023331 Rev 2
STM8L052C6
Electrical parameters
Internal clock sources
Subject to general operating conditions for VDD, and TA.
High speed internal RC oscillator (HSI)
In the following table, data is based on characterization results, not tested in production,
unless otherwise specified.
Table 30. HSI oscillator characteristics
Symbol
fHSI
Conditions(1)
Parameter
Frequency
Min
Typ
-
16
VDD = 3.0 V
VDD = 3.0 V, TA = 25 °C
-1
(2)
ACCHSI
Accuracy of HSI
oscillator (factory
calibrated)
TRIM
HSI user trimming
step(3)
tsu(HSI)
HSI oscillator setup
time (wakeup time)
-
-
IDD(HSI)
HSI oscillator power
consumption
-
-
Max
Unit
MHz
-
(2)
%
1
1.8 V  VDD  3.6 V,
-40 °C TA  85 °C
-5
-
5
%
Trimming code multiple of 16
-
0.4
0.7
%
Trimming code = multiple of 16
-
± 1.5
%
3.7
6(4)
µs
100
140(4)
µA
1. VDD = 3.0 V, TA = -40 to 85 °C unless otherwise specified.
2. Tested in production.
3. The trimming step differs depending on the trimming code. It is usually negative on the codes which are multiples of 16
(0x00, 0x10, 0x20, 0x30...0xE0). Refer to the AN3101 “STM8L15x internal RC oscillator calibration” application note for
more details.
4. Guaranteed by design, not tested in production.
Figure 14. Typical HSI frequency vs. VDD
+6,IUHTXHQF\>0+]@
ƒ&
ƒ&
ƒ&
9''>9@
DL9
DocID023331 Rev 2
71/103
97
Electrical parameters
STM8L052C6
Low speed internal RC oscillator (LSI)
In the following table, data is based on characterization results, not tested in production.
Table 31. LSI oscillator characteristics
Parameter (1)
Symbol
fLSI
Conditions(1)
Min
Typ
Max
Unit
-
26
38
56
kHz
Frequency
tsu(LSI)
LSI oscillator wakeup time
IDD(LSI)
LSI oscillator frequency
drift(3)
0 °C TA  85 °C
(2)
-
-
200
-12
-
11
µs
%
1. VDD = 1.8 V to 3.6 V, TA = -40 to 85 °C unless otherwise specified.
2. Guaranteed by design, not tested in production.
3. This is a deviation for an individual part, once the initial frequency has been measured.
Figure 15. Typical LSI frequency vs. VDD
/6, IUHTXHQF\ >N+]@
ƒ&
ƒ&
ƒ&
9''>9@
DL9
72/103
DocID023331 Rev 2
STM8L052C6
8.3.5
Electrical parameters
Memory characteristics
TA = -40 to 85 °C unless otherwise specified.
Table 32. RAM and hardware registers
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
VRM
Data retention mode (1)
Halt mode (or Reset)
1.8
-
-
V
1. Minimum supply voltage without losing data stored in RAM (in Halt mode or under Reset) or in hardware
registers (only in Halt mode). Guaranteed by characterization, not tested in production.
Flash memory
Table 33. Flash program and data EEPROM memory
Symbol
VDD
tprog
Iprog
tRET(2)
Parameter
Min
fSYSCLK = 16 MHz
1.8
Programming time for 1 or 64 bytes (block)
erase/write cycles (on programmed byte)
-
-
Programming time for 1 to 64 bytes (block)
write cycles (on erased byte)
-
-
TA+25 °C, VDD = 3.0 V
-
TA+25 °C, VDD = 1.8 V
-
Data retention (program memory) after 100
erase/write cycles at TA–40 to +85 °C
TRET+85 °C
30(1)
Data retention (data memory) after 100000
erase/write cycles at TA= –40 to +85 °C
TRET +85 °C
30(1)
-
-
100(1)
-
-
cycles
-
-
kcycles
Operating voltage 
(all modes, read/write/erase)
Programming/ erasing consumption
NRW
TA –40 to +85 °C
Erase/write cycles (data memory)
(1)
Unit
3.6
V
6
-
ms
3
-
ms
0.7
mA
-
-
years
Erase/write cycles (program memory)
(3)
Typ
Max
Conditions
100(1)
(4)
1. Data based on characterization results, not tested in production.
2. Conforming to JEDEC JESD22a117
3. The physical granularity of the memory is 4 bytes, so cycling is performed on 4 bytes even when a write/erase operation
addresses a single byte.
4. Data based on characterization performed on the whole data memory.
8.3.6
I/O current injection characteristics
As a general rule, current injection to the I/O pins, due to external voltage below VSS or
above VDD (for standard pins) should be avoided during normal product operation.
However, in order to give an indication of the robustness of the microcontroller in cases
when abnormal injection accidentally happens, susceptibility tests are performed on a
sample basis during device characterization.
DocID023331 Rev 2
73/103
97
Electrical parameters
STM8L052C6
Functional susceptibility to I/O current injection
While a simple application is executed on the device, the device is stressed by injecting
current into the I/O pins programmed in floating input mode. While current is injected into
the I/O pin, one at a time, the device is checked for functional failures.
The failure is indicated by an out of range parameter: ADC error, out of spec current
injection on adjacent pins or other functional failure (for example reset, oscillator frequency
deviation, LCD levels, etc.).
The test results are given in the following table.
Table 34. I/O current injection susceptibility
Functional susceptibility
Symbol
IINJ
8.3.7
Description
Negative
injection
Positive
injection
Injected current on true open-drain pins (PC0 and
PC1)
-5
+0
Injected current on all five-volt tolerant (FT) pins
-5
+0
Injected current on all 3.6 V tolerant (TT) pins
-5
+0
Injected current on any other pin
-5
+5
Unit
mA
I/O port pin characteristics
General characteristics
Subject to general operating conditions for VDD and TA unless otherwise specified. All
unused pins must be kept at a fixed voltage: using the output mode of the I/O for example or
an external pull-up or pull-down resistor.
74/103
DocID023331 Rev 2
STM8L052C6
Electrical parameters
Table 35. I/O static characteristics
Symbol
VIL
Conditions(1)
Min
Typ
Max
Input voltage on true open-drain
pins (PC0 and PC1)
VSS-0.3
-
0.3 x VDD
Input voltage on five-volt
tolerant (FT) pins (PA7 and
PE0)
VSS-0.3
-
0.3 x VDD
Input voltage on 3.6 V tolerant
(TT) pins
VSS-0.3
-
0.3 x VDD
Input voltage on any other pin
VSS-0.3
-
0.3 x VDD
-
5.2
-
5.5
-
5.2
-
5.5
-
3.6
0.70 x VDD
-
VDD+0.3
I/Os
-
200
-
True open drain I/Os
-
200
-
VSSVIN VDD
High sink I/Os
-
-
50 (5)
VSSVIN VDD
True open drain I/Os
-
-
200(5)
VSSVIN VDD
PA0 with high sink LED driver
capability
-
-
200(5)
30
45
60
k
-
5
-
pF
Parameter
Input low level voltage(2)
Input voltage on true open-drain
pins (PC0 and PC1) 
with VDD < 2 V
Input voltage on true open-drain
pins (PC0 and PC1) 
with VDD 2 V
VIH
Input high level voltage
(2)
0.70 x VDD
Input voltage on 3.6 V tolerant
(TT) pins
Input voltage on any other pin
Vhys
Ilkg
Schmitt trigger voltage
hysteresis (3)
Input leakage current (4)
RPU
Weak pull-up equivalent
resistor(2)(6)
CIO
I/O pin capacitance
V
0.70 x VDD
Input voltage on five-volt
tolerant (FT) pins (PA7 and
PE0) with VDD < 2 V
Input voltage on five-volt
tolerant (FT) pins (PA7 and
PE0) with VDD  2 V
Unit
V
mV
VINVSS
-
nA
1. VDD = 3.0 V, TA = -40 to 85 °C unless otherwise specified.
2. Data based on characterization results, not tested in production.
3. Hysteresis voltage between Schmitt trigger switching levels. Based on characterization results, not tested.
4. The max. value may be exceeded if negative current is injected on adjacent pins.
5. Not tested in production.
6. RPU pull-up equivalent resistor based on a resistive transistor (corresponding IPU current characteristics described in
Figure 19).
DocID023331 Rev 2
75/103
97
Electrical parameters
STM8L052C6
Figure 16. Typical VIL and VIH vs. VDD (high sink I/Os)
ƒ&
ƒ&
9,/DQG9,+>9@
ƒ&
9''>9@
DL9
Figure 17. Typical VIL and VIH vs. VDD (true open drain I/Os)
ƒ&
ƒ&
9,/DQG9,+>9@
ƒ&
9''>9@
DL9
76/103
DocID023331 Rev 2
STM8L052C6
Electrical parameters
Figure 18. Typical pull-up resistance RPU vs. VDD with VIN=VSS
ƒ&
3XOOXSUHVLVWDQFH>NŸ@
ƒ&
ƒ&
9''>9@
DL9
Figure 19. Typical pull-up current Ipu vs. VDD with VIN=VSS
ƒ&
ƒ&
3XOOXSFXUUHQW>—$@
ƒ&
9''>9@
DL9
DocID023331 Rev 2
77/103
97
Electrical parameters
STM8L052C6
Output driving current
Subject to general operating conditions for VDD and TA unless otherwise specified.
Table 36. Output driving current (high sink ports)
I/O
Symbol
Type
Output low level voltage for an I/O pin
High sink
VOL (1)
Parameter
VOH (2) Output high level voltage for an I/O pin
Conditions
Min
Max
Unit
IIO = +2 mA,
VDD = 3.0 V
-
0.45
V
IIO = +2 mA,
VDD = 1.8 V
-
0.45
V
IIO = +10 mA,
VDD = 3.0 V
-
0.7
V
IIO = -2 mA,
VDD = 3.0 V
VDD-0.45
-
V
IIO = -1 mA,
VDD = 1.8 V
VDD-0.45
-
V
IIO = -10 mA,
VDD = 3.0 V
VDD-0.7
-
V
1. The IIO current sunk must always respect the absolute maximum rating specified in Table 13 and the sum
of IIO (I/O ports and control pins) must not exceed IVSS.
2. The IIO current sourced must always respect the absolute maximum rating specified in Table 13 and the
sum of IIO (I/O ports and control pins) must not exceed IVDD.
Table 37. Output driving current (true open drain ports)
Open drain
I/O
Symbol
Type
VOL (1)
Parameter
Output low level voltage for an I/O pin
Conditions
Min
Max
IIO = +3 mA,
VDD = 3.0 V
-
0.45
IIO = +1 mA,
VDD = 1.8 V
-
Unit
V
0.45
1. The IIO current sunk must always respect the absolute maximum rating specified in Table 13 and the sum
of IIO (I/O ports and control pins) must not exceed IVSS.
Table 38. Output driving current (PA0 with high sink LED driver capability)
IR
I/O
Symbol
Type
VOL (1)
Parameter
Output low level voltage for an I/O pin
Conditions
Min
Max
Unit
IIO = +20 mA,
VDD = 2.0 V
-
0.45
V
1. The IIO current sunk must always respect the absolute maximum rating specified in Table 13 and the sum
of IIO (I/O ports and control pins) must not exceed IVSS.
78/103
DocID023331 Rev 2
STM8L052C6
Electrical parameters
Figure 20. Typ. VOL @ VDD = 3.0 V (high sink
ports)
Figure 21. Typ. VOL @ VDD = 1.8 V (high sink
ports)
ƒ&
ƒ&
ƒ&
ƒ&
ƒ&
ƒ&
92/ >9@
92/ >9@
,2/ >P$@
, 2/>P$@
Figure 23. Typ. VOL @ VDD = 1.8 V (true open
drain ports)
ƒ&
ƒ&
ƒ&
92/ >9@
ƒ&
ƒ&
ƒ&
BJ7
DL9
Figure 24. Typ. VDD - VOH @ VDD = 3.0 V (high
sink ports)
Figure 25. Typ. VDD - VOH @ VDD = 1.8 V (high
sink ports)
ƒ&
ƒ&
ƒ&
ƒ&
ƒ&
ƒ&
9''92+ >9@
,2/ >P$@
,2/ >P$@
9''92+ >9@
DL9
DL9
Figure 22. Typ. VOL @ VDD = 3.0 V (true open
drain ports)
92/ >9@
,2+ >P$@
,2+ >P$@
DL9
DocID023331 Rev 2
BJ7
79/103
97
Electrical parameters
STM8L052C6
NRST pin
Subject to general operating conditions for VDD and TA unless otherwise specified.
Table 39. NRST pin characteristics
Symbol
Parameter
Conditions
Min
Typ
Max
VIL(NRST)
NRST input low level voltage (1)
-
VSS
-
0.8
VIH(NRST)
NRST input high level voltage (1)
-
1.4
-
VDD
IOL = 2 mA
for 2.7 V  VDD  3.6
V
-
-
IOL = 1.5 mA
for VDD < 2.7 V
-
VOL(NRST)
VHYST
RPU(NRST)
NRST output low level voltage (1)
NRST input hysteresis(3)
(1)
V
0.4
-
10%VDD
-
NRST pull-up equivalent resistor
Unit
(2)
-
-
mV
-
30
45
60
k
VF(NRST)
NRST input filtered pulse (3)
-
-
-
50
VNF(NRST)
NRST input not filtered pulse (3)
-
300
-
-
ns
1. Data based on characterization results, not tested in production.
2. 200 mV min.
3. Data guaranteed by design, not tested in production.
Figure 26. Typical NRST pull-up resistance RPU vs. VDD
ƒ&
3XOOXSUHVLVWDQFH>NŸ@
ƒ&
ƒ&
9''>9@
DL9
80/103
DocID023331 Rev 2
STM8L052C6
Electrical parameters
Figure 27. Typical NRST pull-up current Ipu vs. VDD
ƒ&
ƒ&
3XOOXSFXUUHQW>—$@
ƒ&
9''>9@
DL9
The reset network shown in Figure 28 protects the device against parasitic resets. The user
must ensure that the level on the NRST pin can go below the VIL(NRST) max. level specified
in Table 39. Otherwise the reset is not taken into account internally.
For power consumption sensitive applications, the external reset capacitor value can be
reduced to limit the charge/discharge current. If the NRST signal is used to reset the
external circuitry, attention must be paid to the charge/discharge time of the external
capacitor to fulfill the external devices reset timing conditions. The minimum recommended
capacity is 10 nF.
Figure 28. Recommended NRST pin configuration
VDD
RPU
NRST
EXTERNAL
RESET
CIRCUIT
0.1 µF
Filter
INTERNAL RESET
STM8
(Optional)
DocID023331 Rev 2
81/103
97
Electrical parameters
8.3.8
STM8L052C6
Communication interfaces
SPI1 - Serial peripheral interface
Unless otherwise specified, the parameters given in Table 40 are derived from tests
performed under ambient temperature, fSYSCLK frequency and VDD supply voltage
conditions summarized in Section 8.3.1. Refer to I/O port characteristics for more details on
the input/output alternate function characteristics (NSS, SCK, MOSI, MISO).
Table 40. SPI1 characteristics
Symbol
Conditions(1)
Min
Max
Master mode
0
8
Slave mode
0
8
SPI1 clock rise and fall
time
Capacitive load: C = 30 pF
-
30
tsu(NSS)(2)
NSS setup time
Slave mode
4 x 1/fSYSCLK
-
th(NSS)(2)
NSS hold time
Slave mode
80
-
SCK high and low time
Master mode, 
fMASTER = 8 MHz, fSCK= 4 MHz
105
145
Master mode
30
-
Slave mode
3
-
Master mode
15
-
Slave mode
0
-
fSCK
1/tc(SCK)
tr(SCK)
tf(SCK)
Parameter
SPI1 clock frequency
(2)
tw(SCKH)
tw(SCKL)(2)
tsu(MI) (2)
tsu(SI)(2)
Data input setup time
th(MI) (2)
th(SI)(2)
Data input hold time
Data output access time
Slave mode
-
3x 1/fSYSCLK
tdis(SO)(2)(4)
30
-
Data output disable time
Slave mode
(2)
Data output valid time
Slave mode (after enable edge)
-
60
tv(MO)(2)
Data output valid time
Master mode (after enable
edge)
-
20
Slave mode (after enable edge)
15
-
Master mode (after enable
edge)
1
-
th(SO)(2)
th(MO)(2)
Data output hold time
1. Parameters are given by selecting 10 MHz I/O output frequency.
2. Values based on design simulation and/or characterization results, and not tested in production.
3. Min time is for the minimum time to drive the output and max time is for the maximum time to validate the data.
4. Min time is for the minimum time to invalidate the output and max time is for the maximum time to put the data in Hi-Z.
82/103
MHz
ns
ta(SO)(2)(3)
tv(SO)
Unit
DocID023331 Rev 2
STM8L052C6
Electrical parameters
Figure 29. SPI1 timing diagram - slave mode and CPHA=0
E^^ŝŶƉƵƚ
ƚĐ;^<Ϳ
ƚŚ;E^^Ϳ
^</ŶƉƵƚ
ƚ^h;E^^Ϳ
W,сϬ
WK>сϬ
ƚǁ;^<,Ϳ
ƚǁ;^<>Ϳ
W,сϬ
WK>сϭ
ƚǀ;^KͿ
ƚĂ;^KͿ
D/^K
KhdW hd
ƚƌ;^<Ϳ
ƚĨ;^<Ϳ
ƚŚ;^KͿ
D^ K hd
/dϲ Khd
D^ /E
/ dϭ /E
ƚĚŝƐ;^KͿ
>^ Khd
ƚƐƵ;^/Ϳ
DK^/
/EWhd
>^ /E
ƚŚ;^/Ϳ
DLF
Figure 30. SPI1 timing diagram - slave mode and CPHA=1(1)
166LQSXW
6&.,QSXW
W68166
&3+$ &32/ &3+$ &32/ WF6&.
WZ6&.+
WZ6&./
WY62
WD62
0,62
287 3 87
WK62
06 % 2 87
WVX6,
026,
, 1387
WK166
%, 7 287
WU6&.
WI6&.
WGLV62
/6% 287
WK6,
% , 7 ,1
0 6% ,1
/6% ,1
DL
1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD.
DocID023331 Rev 2
83/103
97
Electrical parameters
STM8L052C6
Figure 31. SPI1 timing diagram - master mode
(IGH
.33INPUT
3#+/UTPUT
#0(! #0/,
3#+/UTPUT
TC3#+
#0(!
#0/,
#0(! #0/,
#0(!
#0/,
TSU-)
-)3/
).0 54
TW3#+(
TW3#+,
TR3#+
TF3#+
-3 ").
") 4).
,3").
TH-)
-/3)
/54054
- 3"/54
" ) 4/54
TV-/
,3"/54
TH-/
AI6
1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD.
84/103
DocID023331 Rev 2
STM8L052C6
Electrical parameters
I2C - Inter IC control interface
Subject to general operating conditions for VDD, fSYSCLK, and TA unless otherwise specified.
The STM8L I2C interface (I2C1) meets the requirements of the Standard I2C communication
protocol described in the following table with the restriction mentioned below:
Refer to I/O port characteristics for more details on the input/output alternate function
characteristics (SDA and SCL).
Table 41. I2C characteristics
Symbol
Parameter
Standard mode
I2C
Fast mode I2C(1)
Min(2)
Max (2)
Min (2)
Max (2)
Unit
tw(SCLL)
SCL clock low time
4.7
-
1.3
-
tw(SCLH)
SCL clock high time
4.0
-
0.6
-
tsu(SDA)
SDA setup time
250
-
100
-
th(SDA)
SDA data hold time
0
-
0
900
tr(SDA)
tr(SCL)
SDA and SCL rise time
-
1000
-
300
tf(SDA)
tf(SCL)
SDA and SCL fall time
-
300
-
300
th(STA)
START condition hold time
4.0
-
0.6
-
tsu(STA)
Repeated START condition setup
time
4.7
-
0.6
-
tsu(STO)
STOP condition setup time
4.0
-
0.6
-
s
STOP to START condition time (bus
free)
4.7
-
1.3
-
s
-
400
-
400
pF
tw(STO:STA)
Cb
Capacitive load for each bus line
s
ns
s
1. fSYSCLK must be at least equal to 8 MHz to achieve max fast I2C speed (400 kHz).
2. Data based on standard I2C protocol requirement, not tested in production.
Note:
For speeds around 200 kHz, the achieved speed can have a 5% tolerance
For other speed ranges, the achieved speed can have a  2% tolerance
The above variations depend on the accuracy of the external components used.
DocID023331 Rev 2
85/103
97
Electrical parameters
STM8L052C6
Figure 32. Typical application with I2C bus and timing diagram 1)
VDD
4.7k
I2C
VDD
4.7k
BUS
100
SDA
100
SCL
STM8L
REPEATED START
START
tsu(STA)
tw(STO:STA)
SDA
tr(SDA)
tf(SDA)
tsu(SDA)
th(SDA)
tr(SCL)
tf(SCL)
STOP
SCL
th(STA)
tw(SCLH)
tw(SCLL)
1. Measurement points are done at CMOS levels: 0.3 x VDD and 0.7 x VDD
86/103
DocID023331 Rev 2
tsu(STO)
START
STM8L052C6
8.3.9
Electrical parameters
LCD controller
In the following table, data is guaranteed by design. Not tested in production.
Table 42. LCD characteristics
Symbol
Parameter
Min
Typ
Max.
Unit
VLCD
LCD external voltage
-
-
3.6
V
VLCD0
LCD internal reference voltage 0
-
2.6
-
V
VLCD1
LCD internal reference voltage 1
-
2.7
-
V
VLCD2
LCD internal reference voltage 2
-
2.8
-
V
VLCD3
LCD internal reference voltage 3
-
2.9
-
V
VLCD4
LCD internal reference voltage 4
-
3.0
-
V
VLCD5
LCD internal reference voltage 5
-
3.1
-
V
VLCD6
LCD internal reference voltage 6
-
3.2
-
V
VLCD7
LCD internal reference voltage 7
-
3.3
-
V
CEXT
VLCD external capacitance
0.1
-
2
µF
-
3
-
µA
-
3
-
µA
Supply
IDD
current(1)
at VDD = 1.8 V
(1)
Supply current
at VDD = 3 V
RHN (2)
High value resistive network (low drive)
-
6.6
-
M
(3)
Low value resistive network (high drive)
-
360
-
k
V33
Segment/Common higher level voltage
-
-
VLCDx
V
V23
Segment/Common 2/3 level voltage
-
2/3VLCDx
-
V
V12
Segment/Common 1/2 level voltage
-
1/2VLCDx
-
V
V13
Segment/Common 1/3 level voltage
-
1/3VLCDx
-
V
V0
Segment/Common lowest level voltage
0
-
-
V
RLN
1. LCD enabled with 3 V internal booster (LCD_CR1 = 0x08), 1/4 duty, 1/3 bias, division ratio= 64, all pixels
active, no LCD connected.
2. RHN is the total high value resistive network.
3. RLN is the total low value resistive network.
VLCD external capacitor
The application can achieve a stabilized LCD reference voltage by connecting an external
capacitor CEXT to the VLCD pin. CEXT is specified in Table 42.
DocID023331 Rev 2
87/103
97
Electrical parameters
8.3.10
STM8L052C6
Embedded reference voltage
In the following table, data is based on characterization results, not tested in production,
unless otherwise specified.
Table 43. Reference voltage characteristics
Symbol
Conditions
Min
Typ
Max.
Unit
-
-
1.4
-
µA
-
-
5
10
µs
Internal reference voltage buffer
consumption (used for ADC)
-
-
13.5
25
µA
Reference voltage output
-
1.202(3)
1.224
1.242(3)
V
Internal reference voltage low
power buffer consumption
-
-
730
1200
nA
IREFOUT(2)
Buffer output current(4)
-
-
-
1
µA
CREFOUT
Reference voltage output load
-
-
-
50
pF
tVREFINT
Internal reference voltage
startup time
-
-
2
3
ms
tBUFEN(2)
Internal reference voltage buffer
startup time once enabled (1)
-
-
10
µs
Accuracy of VREFINT stored in
the VREFINT_Factory_CONV
byte(5)
-
-
±5
mV
Stability of VREFINT over
temperature
-40 °C TA  85 °C
-
20
50
ppm/°C
Stability of VREFINT over
temperature
0 °C TA  50 °C
-
-
20
ppm/°C
-
-
-
TBD
ppm
IREFINT
Parameter
Internal reference voltage
consumption
ADC sampling time when
TS_VREFINT(1)(2) reading the internal reference
voltage
IBUF(2)
VREFINT out
ILPBUF(2)
ACCVREFINT
STABVREFINT
STABVREFINT
Stability of VREFINT after 1000
hours
1. Defined when ADC output reaches its final value ±1/2LSB
2. Data guaranteed by Design. Not tested in production.
3. Tested in production at VDD = 3 V ±10 mV.
4. To guaranty less than 1% VREFOUT deviation.
5. Measured at VDD = 3 V ±10 mV. This value takes into account VDD accuracy and ADC conversion accuracy.
88/103
DocID023331 Rev 2
STM8L052C6
8.3.11
Electrical parameters
12-bit ADC1 characteristics
In the following table, data is guaranteed by design, not tested in production.
Table 44. ADC1 characteristics
Symbol
Parameter
VDDA
Analog supply voltage
VREF+
Reference supply
voltage
VREF-
Conditions
Min
2.4 V VDDA3.6 V
Typ
Max
Unit
1.8
3.6
V
2.4
VDDA
V
1.8 V VDDA 2.4 V
VDDA
V
Lower reference voltage
-
VSSA
V
IVDDA
Current on the VDDA
input pin
-
-
-
-
IVREF+
Current on the VREF+
input pin
1000
1450
µA
700
(peak)(1)
µA
450
(average)(1)
µA
400
-
-
VAIN
Conversion voltage
range
-
0(2)
-
VREF+
TA
Temperature range
-
-40
-
85
°C
on PF0 fast channel
-
-
50(3)
k
on all other channels
-
-
on PF0 fast channel
-
RAIN
External resistance on
VAIN
CADC
Internal sample and hold
capacitor
fADC
fCONV
ADC sampling clock
frequency
16
pF
on all other channels
-
-
2.4 VVDDA3.6 V
without zooming
0.320
-
16
MHz
1.8 VVDDA2.4 V
with zooming
0.320
-
8
MHz
VAIN on PF0 fast
channel
-
-
1(4)(5)
MHz
VAIN on all other
channels
-
-
760(4)(5)
kHz
12-bit conversion rate
fTRIG
External trigger
frequency
-
-
-
tconv
1/fADC
tLAT
External trigger latency
-
-
-
3.5
1/fSYSCLK
DocID023331 Rev 2
89/103
97
Electrical parameters
STM8L052C6
Table 44. ADC1 characteristics (continued)
Symbol
tS
Parameter
Sampling time
tconv
12-bit conversion time
tWKUP
Wakeup time from OFF
state
tIDLE(6)
Time before a new
conversion
tVREFINT
Internal reference
voltage startup time
Conditions
Min
Typ
Max
Unit
VAIN on PF0 fast
channel
VDDA < 2.4 V
0.43(4)(5)
-
-
µs
VAIN on PF0 fast
channel
2.4 V VDDA3.6 V
0.22(4)(5)
-
-
µs
VAIN on slow channels
VDDA < 2.4 V
0.86(4)(5)
-
-
µs
VAIN on slow channels
2.4 V VDDA3.6 V
0.41(4)(5)
-
-
µs
-
12 + tS
1/fADC
16 MHz
1(4)
µs
-
-
-
3
µs
TA +25 °C
-
-
1(7)
s
TA +70 °C
-
-
20(7)
ms
-
-
-
refer to
Table 43
ms
1. The current consumption through VREF is composed of two parameters:
- one constant (max 300 µA)
- one variable (max 400 µA), only during sampling time + 2 first conversion pulses.
So, peak consumption is 300+400 = 700 µA and average consumption is 300 + [(4 sampling + 2) /16] x 400 = 450 µA at
1Msps
2. VREF- or VDDA must be tied to ground.
3. Guaranteed by design, not tested in production.
4. Minimum sampling and conversion time is reached for maximum Rext = 0.5 k.
5. Value obtained for continuous conversion on fast channel.
6. The time between 2 conversions, or between ADC ON and the first conversion must be lower than tIDLE.
7. The tIDLE maximum value is  on the “Z” revision code of the device.
90/103
DocID023331 Rev 2
STM8L052C6
Electrical parameters
In the following three tables, data is guaranteed by characterization result, not tested in
production.
Table 45. ADC1 accuracy with VDDA = 3.3 V to 2.5 V
Symbol
Parameter
Conditions
Typ
Max
1
1.6
Differential non linearity fADC = 8 MHz
1
1.6
fADC = 4 MHz
1
1.5
fADC = 16 MHz
1.2
2
fADC = 8 MHz
1.2
1.8
fADC = 4 MHz
1.2
1.7
fADC = 16 MHz
2.2
3.0
fADC = 8 MHz
1.8
2.5
fADC = 4 MHz
1.8
2.3
fADC = 16 MHz
1.5
2
fADC = 8 MHz
1
1.5
fADC = 4 MHz
0.7
1.2
fADC = 16 MHz
DNL
INL
Integral non linearity
TUE
Total unadjusted error
Offset
Offset error
Unit
LSB
LSB
fADC = 16 MHz
Gain
Gain error
fADC = 8 MHz
1
1.5
fADC = 4 MHz
Table 46. ADC1 accuracy with VDDA = 2.4 V to 3.6 V
Symbol
Parameter
Typ
Max
Unit
1
2
LSB
1.7
3
LSB
DNL
Differential non linearity
INL
Integral non linearity
TUE
Total unadjusted error
2
4
LSB
Offset
Offset error
1
2
LSB
Gain
Gain error
1.5
3
LSB
Table 47. ADC1 accuracy with VDDA = VREF+ = 1.8 V to 2.4 V
Symbol
Parameter
Typ
Max
Unit
DNL
Differential non linearity
1
2
LSB
INL
Integral non linearity
2
3
LSB
TUE
Total unadjusted error
3
5
LSB
Offset
Offset error
2
3
LSB
Gain
Gain error
2
3
LSB
DocID023331 Rev 2
91/103
97
Electrical parameters
STM8L052C6
Figure 33. ADC1 accuracy characteristics
9''$
95()
RUGHSHQGLQJRQSDFNDJH
>/6%,'($/ (*
([DPSOHRIDQDFWX DOWUDQVIH UFXUYH
7KHLGHDOWUDQVIHUFX UYH
(QGSRLQWFRUUHODWLRQOLQH
(7 7RWDOXQDGMXVWHG(UURUPD[LPXPGHYLDWLRQ
EHWZHHQWKHDFWXDODQGWKHLGHDOWUDQVIHUFXUYHV
(2 2IIVHW(UURUGHYLDWLRQEHWZHHQWKHILUVWDFWXDO
WUDQVLWLRQDQGWKHODVWDFWXDORQH
(* *DLQ(UURUGHYLDWLRQEHWZHHQWKHODVWLGHDO
WUDQVLWLRQDQGWKHODVWDFWXDORQH
(' 'LIIHUHQWLDO/LQHDULW\(UURUPD[LPXPGHYLDWLRQ
EHWZHHQDFWXDOVWHSVDQGWKHLGHDORQH
(/ ,QWHJUDO/LQHDULW\(UURUPD[LPXPGHYLDWLRQ
EHWZHHQDQ\DFWXDOWUDQVLWLRQDQGWKHHQGSRLQW
FRUUHODWLRQOLQH
(7
(2
(/
('
/6%,'($/
966$
9''$
DLH
Figure 34. Typical connection diagram using the ADC
670/[[[
9''
5$,1
9$,1
6DPSOHDQGKROG$'&
FRQYHUWHU
97
9
5$'&
$,1[
&SDUDVLWLF
97
9
ELW
FRQYHUWHU
,/“Q$
&$'&
DLI
1. Refer to Table 44 for the values of RAIN and CADC.
2. Cparasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the
pad capacitance (roughly 7 pF). A high Cparasitic value will downgrade conversion accuracy. To remedy
this, fADC should be reduced.
92/103
DocID023331 Rev 2
STM8L052C6
Electrical parameters
Figure 35. Maximum dynamic current consumption on VREF+ supply pin during ADC
conversion
Sampling (n cycles)
Conversion (12 cycles)
ADC clock
Iref+
700µA
300µA
Table 48. RAIN max for fADC = 16 MHz(1)
RAIN max (kohm)
Ts
(cycles)
Ts
(µs)
Slow channels
Fast channels
2.4 V < VDDA < 3.6 V 1.8 V < VDDA < 2.4 V 2.4 V < VDDA < 3.3 V
1.8 V < VDDA < 2.4 V
4
0.25
Not allowed
Not allowed
0.7
Not allowed
9
0.5625
0.8
Not allowed
2.0
1.0
16
1
2.0
0.8
4.0
3.0
24
1.5
3.0
1.8
6.0
4.5
48
3
6.8
4.0
15.0
10.0
96
6
15.0
10.0
30.0
20.0
192
12
32.0
25.0
50.0
40.0
384
24
50.0
50.0
50.0
50.0
1. Guaranteed by design, not tested in production.
General PCB design guidelines
Power supply decoupling should be performed as shown in Figure 36 or Figure 37,
depending on whether VREF+ is connected to VDDA or not. Good quality ceramic 10 nF
capacitors should be used. They should be placed as close as possible to the chip.
DocID023331 Rev 2
93/103
97
Electrical parameters
STM8L052C6
Figure 36. Power supply and reference decoupling (VREF+ not connected to VDDA)
670/
9 5()
([WHUQDO
UHIHUHQFH
—)Q)
6XSSO\
9 ''$
—)Q)
—)Q)
9 66$9 5()
DLF
Figure 37. Power supply and reference decoupling (VREF+ connected to VDDA)
670/
95()9''$
6XSSO\
—)Q)
95()9''$
DLF
94/103
DocID023331 Rev 2
STM8L052C6
8.3.12
Electrical parameters
EMC characteristics
Susceptibility tests are performed on a sample basis during product characterization.
Functional EMS (electromagnetic susceptibility)
Based on a simple running application on the product (toggling 2 LEDs through I/O ports),
the product is stressed by two electromagnetic events until a failure occurs (indicated by the
LEDs).

ESD: Electrostatic discharge (positive and negative) is applied on all pins of the device
until a functional disturbance occurs. This test conforms with the IEC 61000 standard.

FTB: A burst of fast transient voltage (positive and negative) is applied to VDD and VSS
through a 100 pF capacitor, until a functional disturbance occurs. This test conforms
with the IEC 61000 standard.
A device reset allows normal operations to be resumed. The test results are given in the
table below based on the EMS levels and classes defined in application note AN1709.
Designing hardened software to avoid noise problems
EMC characterization and optimization are performed at component level with a typical
application environment and simplified MCU software. It should be noted that good EMC
performance is highly dependent on the user application and the software in particular.
Therefore it is recommended that the user applies EMC software optimization and
prequalification tests in relation with the EMC level requested for his application.
Prequalification trials
Most of the common failures (unexpected reset and program counter corruption) can be
reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1
second.
To complete these trials, ESD stress can be applied directly on the device, over the range of
specification values. When unexpected behavior is detected, the software can be hardened
to prevent unrecoverable errors occurring (see application note AN1015).
Table 49. EMS data
Symbol
Parameter
Conditions
VFESD
VDD 3.3 V, TA +25 °C, 
Voltage limits to be applied on
any I/O pin to induce a functional fCPU16 MHz,
disturbance
conforms to IEC 61000
VEFTB
Fast transient voltage burst limits

VDD 3.3 V, TA +25 °C, 
to be applied through 100 pF on
Using HSI
fCPU 16 MHz,
VDD and VSS pins to induce a
conforms to IEC 61000
Using HSE
functional disturbance
DocID023331 Rev 2
Level/
Class
3B
4A
2B
95/103
97
Electrical parameters
STM8L052C6
Electromagnetic interference (EMI)
Based on a simple application running on the product (toggling 2 LEDs through the I/O
ports), the product is monitored in terms of emission. This emission test is in line with the
norm IEC61967-2 which specifies the board and the loading of each pin.
Table 50. EMI data(1)
Symbol
SEMI
Parameter
Peak level
Conditions
VDD 3.6 V,
TA +25 °C,
LQFP32
conforming to
IEC61967-2
Monitored
frequency band
Max vs.
Unit
16 MHz
0.1 MHz to 30 MHz
-3
30 MHz to 130 MHz
9
130 MHz to 1 GHz
4
SAE EMI Level
2
dBV
-
1. Not tested in production.
Absolute maximum ratings (electrical sensitivity)
Based on two different tests (ESD and LU) using specific measurement methods, the
product is stressed in order to determine its performance in terms of electrical sensitivity.
For more details, refer to the application note AN1181.
Electrostatic discharge (ESD)
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are
applied to the pins of each sample according to each pin combination. The sample size
depends on the number of supply pins in the device (3 parts*(n+1) supply pin). Two models
can be simulated: human body model and charge device model. This test conforms to the
JESD22-A114A/A115A standard.
Table 51. ESD absolute maximum ratings
Symbol
VESD(HBM)
Ratings
Electrostatic discharge voltage
(human body model)
Electrostatic discharge voltage
VESD(CDM)
(charge device model)
Conditions
DocID023331 Rev 2
Unit
2000
TA +25 °C
1. Data based on characterization results, not tested in production.
96/103
Maximum
value (1)
V
500
STM8L052C6
Electrical parameters
Static latch-up

LU: 3 complementary static tests are required on 6 parts to assess the latch-up
performance. A supply overvoltage (applied to each power supply pin) and a current
injection (applied to each input, output and configurable I/O pin) are performed on each
sample. This test conforms to the EIA/JESD 78 IC latch-up standard. For more details,
refer to the application note AN1181.
Table 52. Electrical sensitivities
Symbol
LU
Parameter
Static latch-up class
DocID023331 Rev 2
Class
II
97/103
97
Package information
9
STM8L052C6
Package information
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
9.1
LQFP48 package information
Figure 38. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package outline
C
!
!
!
3%!4).'
0,!.%
#
MM
'!5'%0,!.%
CCC #
+
!
$
$
,
,
$
0).
)$%.4)&)#!4)/.
%
E
1. Drawing is not to scale.
98/103
%
%
B
DocID023331 Rev 2
"?-%?6
STM8L052C6
Package information
Table 53. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package mechanical data
inches(1)
millimeters
Symbol
Min
Typ
Max
Min
Typ
Max
A
-
-
1.600
-
-
0.0630
A1
0.050
-
0.150
0.0020
-
0.0059
A2
1.350
1.400
1.450
0.0531
0.0551
0.0571
b
0.170
0.220
0.270
0.0067
0.0087
0.0106
c
0.090
-
0.200
0.0035
-
0.0079
D
8.800
9.000
9.200
0.3465
0.3543
0.3622
D1
6.800
7.000
7.200
0.2677
0.2756
0.2835
D3
-
5.500
-
-
0.2165
-
E
8.800
9.000
9.200
0.3465
0.3543
0.3622
E1
6.800
7.000
7.200
0.2677
0.2756
0.2835
E3
-
5.500
-
-
0.2165
-
e
-
0.500
-
-
0.0197
-
L
0.450
0.600
0.750
0.0177
0.0236
0.0295
L1
-
1.000
-
-
0.0394
-
k
0°
3.5°
7°
0°
3.5°
7°
ccc
-
-
0.080
-
-
0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
DocID023331 Rev 2
99/103
101
Package information
STM8L052C6
Figure 39. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat recommended footprint
AID
1. Dimensions are expressed in millimeters.
Device marking
The following figure gives an example of topside marking orientation versus pin 1 identifier
location.
Figure 40. LQFP48 marking example (package top view)
3URGXFW
LGHQWLILFDWLRQ
45.-
$5
'DWHFRGH
6WDQGDUG67ORJR
:
88
5HYLVLRQFRGH
3LQLGHQWLILHU
3
069
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not yet ready to be used in production and any consequences deriving from such
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering
Samples to run qualification activity.
100/103
DocID023331 Rev 2
STM8L052C6
10
Part numbering
Part numbering
For a list of available options (memory, package, and so on) or for further information on any
aspect of this device, please contact your nearest ST sales office.
Table 54. Ordering information scheme
Example:
STM8
L
052
C
6
T
6
x
Device family
STM8 microcontroller
Product type
L = Low-power
Sub-family
052 = STM8L052xx, ultra-low power with LCD
Pin count
C = 48 pins
Code size
6 = 32 Kbytes
Package
T = LQFP
Temperature range
6 = –40 to 85 °C
Options
xxx = programmed parts
TR = tape and reel
DocID023331 Rev 2
101/103
101
Revision history
11
STM8L052C6
Revision history
Table 55. Document revision history
Date
Revision
15-Jun-2012
1
Initial release.
2
Updated:
– the factory default setting for OPT5[3:0] in Table 10:
Option byte addresses
– Section 10: Part numbering,
– the disclaimer.
Added:
– Figure 40: LQFP48 marking example (package top view).
09-Mar-2015
102/103
Changes
DocID023331 Rev 2
STM8L052C6
IMPORTANT NOTICE – PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2015 STMicroelectronics – All rights reserved
DocID023331 Rev 2
103/103
103

advertisement

Related manuals

Download PDF

advertisement