Schluter®-DITRA Installation Handbook 2016

Schluter®-DITRA Installation Handbook 2016
Schluter®-DITRA Installation Handbook 2016
The Universal Underlayment for Ceramic and Stone Tile
Schluter®-DITRA
Specifically designed as an underlayment for
ceramic and stone tile
Ceramic and stone tiles are durable, easy to maintain, and hygienic, representing the ideal surface coverings.
However, today’s lightweight construction methods can make the installation of hard surface coverings particularly
challenging. In order to protect the integrity of the tile assembly, an underlayment that performs multiple functions
is required.
Schluter®-DITRA is specifically designed to allow the installation of ceramic and stone tile over any even and
load-bearing substrate. The integration of DITRA’s uncoupling, waterproofing, load-distribution, and vapor
management functions makes consistent results viable.
Uncoupling
Tile has been successfully installed for thousands of years by incorporating an uncoupling layer, or
forgiving shear interface, within the tile assembly. DITRA provides uncoupling through its open rib
structure, which allows for in-plane movement that effectively neutralizes the differential movement
stresses between the substrate and the tile, thus eliminating the major cause of cracking and
delaminating of the tiled surface.
Waterproofing
DITRA provides reliable waterproofing in interior and exterior applications. Its polyethylene
composition protects the substrate from moisture penetration, which is particularly important in
today’s building environment where most substrates are moisture sensitive.
Vapor Management
The distinguishing feature of DITRA is the existence of free space created by the configured
channels on the underside of the matting. The free space provides a route for excess moisture
and vapor to escape from the substrate that could otherwise cause damage to the tile layer above.
Thus, DITRA effectively manages moisture beneath the tile covering.
Support/Load Distribution
When placed on a solid foundation, columns or pillars can support tremendous loads. The same
physical principle applies to DITRA installations. Column-like mortar structures are formed in
the cutback cavities of the matting. Loads are transferred from the tile covering through these
column-like mortar structures to the substrate. Since DITRA is virtually incompressible within the
tile assembly, the advantages of uncoupling are achieved without sacrificing point load distribution
capabilities. The ability of DITRA installations to support and distribute heavy loads while preserving
the integrity of the tiled surface has been verified through extensive laboratory and field testing,
including applications exposed to vehicular traffic.
Legend
★★★
★★
★
Essential
Significant
Helpful
DITRA will forever change
the way you lay tile.
Cover photo courtesy of Patrick Rogers
CONTENTS
WOOD CONCRETE 8 Floors, Interior - Ceramic or Stone Tile
GYPSUM 9 Floors, Interior - Ceramic or Stone Tile
4 Floors, Interior - 16, 19.2, & 24-inch o.c. joist spacing
Floors, Interior - Natural Stone Tile
Floors, Interior - Existing Vinyl
Floors, Interior - Structural Plank Subfloor
• Young concrete
• Concrete subject to moisture migration
• Pre-stressed/post-tensioned concrete
HEATED FLOORS 10 Wood Substrate - Electric thin-mat or wire system
Wood Substrate - Thin slab (lightweight or gypsum concrete)
Concrete Substrate - Structural concrete slab
WATERPROOFING 12 Floors, Interior - Ceramic or Stone Tile
EXTERIOR APPLICATIONS 13 Exterior Concrete Floors, Patios, and Walkways
Concrete or Wood Substrate - Balcony and Terrace
14 Exterior Systems Planning Guide
MOVEMENT JOINTS 18 Placement guidelines and descriptions
WOOD UNDERLAYMENT 21 Installation guidelines
INSTALLATION 22 Schluter®-DITRA installation instructions
THIN-SET FACTS 23 Discussion of thin-set mortar types to be used with
Schluter®-DITRA
PRODUCT SELECTION 24 Choosing between Schluter®-DITRA and DITRA-XL
TESTING 25 Evaluation of mortar types used with Schluter®-DITRA
• ASTM C627
• Shear bond strength
• Freeze/thaw exposure
TESTING & CERTIFICATIONS 26 Product Evaluation
NATURAL STONE 27 Discussion of natural stone and single-layer wood subfloors
SOUND CONTROL 29 Discussion of sound control in conjunction with ceramic
and stone tile
HOW DOES IT WORK 30 Explanation of how Schluter®-DITRA functions
PRODUCT & ORDERING INFO 21
WARRANTY 35
Schluter-Systems’ written installation instructions shall have precedence
over referenced industry standard guidelines and installation procedures
insofar as referenced information may contain overlapping or conflicting
requirements. Type, thickness, and format of the ceramic or stone tile
surface covering must be suitable for the intended application.
WOOD
Every substrate presents unique challenges
All wood materials, including OSB, plywood, and framing members, are subject to expansion, contraction, bending, and deflection as a
result of changes in moisture content and loading. Further, these deformations fluctuate over the life of the building structure.
Schluter®-DITRA’s uncoupling function protects the ceramic or stone tile covering from the aforementioned deformations
by neutralizing the differential movement stresses between the wood structure and the tile, thus eliminating the major
cause of cracking and delaminating of the tiled surface. Therefore, DITRA can replace a second layer of plywood in most
applications.
Since wood structures are sensitive to moisture, DITRA’s waterproofing function adds an essential element to the flooring
assembly by providing simple, effective, and permanent moisture protection.
Wood continually absorbs and releases moisture. The free space beneath the DITRA membrane allows the wood to
breathe and provides a route for any residual moisture in the wood substrate to escape.
Since DITRA is virtually incompressible within the tile assembly, the advantages of uncoupling are achieved without
sacrificing point load distribution capabilities.
By addressing all of the challenges associated with today’s fast, lightweight construction methods, DITRA provides a durable installation
system for ceramic and stone tile over wood substrates.
Floors, Interior - Ceramic or Porcelain Tile
16" (406 mm) o.c. joist spacing, single layer OSB
or plywood subfloor
D-W16-T-16
Ceramic or porcelain tile
Areas of Application
over any even and structurally sound OSB or
plywood subfloor with 16" (406 mm) o.c.
joist spacing
interior dry or wet areas
Unmodified thin-set mortar
DITRA or DITRA-XL
uncoupling membrane
Latex p.c. mortar
Limitations
minimum 2" x 2" (50 mm x 50 mm) tile
for natural stone, see detail D-W-S (page 6)
and natural stone discussion (page 27)
Single layer of plywood
or OSB
Joists, I-joists, or
trusses
Requirements
maximum spacing of joists, I-joists, or floor
trusses is 16" (406 mm) o.c.
minimum subfloor thickness – 19/32", 5/8"
nom. (16 mm) tongue-and-groove with 1/8"
(3 mm) gap between sheets
Substrate Preparation
verify that subfloor panels are properly
fastened to framing members
any leveling of the subfloor must be done
prior to installing DITRA and DITRA-XL
★★★
4
★★★
★
★★
Movement Joints
DITRA and DITRA-XL do not eliminate the
need for movement joints, including perimeter
joints, within the tiled surface. Movement
joints must be installed in accordance with
industry standards and norms; see page 18
of this Handbook, TCNA EJ171, and TTMAC
301 MJ
WOOD — Floors, Interior - Ceramic or Porcelain Tile
Setting and Grouting Materials
latex portland cement (p.c.) mortar – ANSI
A118.11
unmodified thin-set mortar – ANSI A118.1
grout – ANSI A118.3, A118.6, A118.7,
A118.8
Setting and Grouting Specifications
tile – ANSI A108.5
grout – ANSI A108.6, A108.9, A108.10
Other Considerations
tightly butted and/or tented plywood or OSB
seams must be addressed prior to installing
DITRA and DITRA-XL
vapor barrier on crawl space floors according
to regional building codes
where a waterproof floor is required, all
DITRA and DITRA-XL seams and floor/wall
transitions must be sealed with Schluter®KERDI-BAND using unmodified thin-set
mortar; see page 12
19.2" (488 mm) o.c. joist spacing, single layer OSB
or plywood subfloor
D-W19-T-16
Ceramic or porcelain tile
Areas of Application
over any even and structurally sound OSB or
plywood subfloor with 19.2" (488 mm) o.c.
joist spacing
interior dry or wet areas
Unmodified thin-set mortar
DITRA or DITRA-XL
uncoupling membrane
Latex p.c. mortar
Limitations
minimum 2" x 2" (50 mm x 50 mm) tile
for natural stone, see detail D-W-S (page 6)
and natural stone discussion (page 27)
Single layer of plywood
or OSB
Joists, I-joists, or
trusses
Requirements
maximum spacing of joists, I-joists, or floor
trusses is 19.2" (488 mm) o.c.
minimum subfloor thickness – 23/32", 3/4"
nom. (19 mm) tongue-and-groove with 1/8"
(3 mm) gap between sheets
Substrate Preparation
verify that subfloor panels are properly
fastened to framing members
any leveling of the subfloor must be done
prior to installing DITRA and DITRA-XL
★★★
★★★
★
★★
Ceramic or porcelain tile
Other Considerations
tightly butted and/or tented plywood or OSB
seams must be addressed prior to installing
DITRA and DITRA-XL
vapor barrier on crawl space floors according
to regional building codes
where a waterproof floor is required, all
DITRA and DITRA-XL seams and floor/wall
transitions must be sealed with Schluter®KERDI-BAND using unmodified thin-set
mortar; see page 12
Movement Joints
DITRA and DITRA-XL do not eliminate the
need for movement joints, including perimeter
joints, within the tiled surface. Movement
joints must be installed in accordance with
industry standards and norms; see page 18
of this Handbook, TCNA EJ171, and TTMAC
301 MJ
Areas of Application
over any even and structurally sound double
layer OSB or plywood floor
Interior dry or wet areas
Unmodified thin-set mortar
DITRA or DITRA-XL
uncoupling membrane
Limitations
minimum 2" x 2" (50 mm x 50 mm) tile
Latex p.c. mortar
Double layer of plywood
or OSB
Requirements
maximum spacing of I-joists or floor trusses
is 24" (610 mm) o.c.
double layer wood floor consisting of:
•minimum subfloor thickness – 23/32",
3/4" nom. (19 mm) tongue-and-groove
•minimum underlayment thickness –
11/32", 3/8" nom. (10 mm)
I-joists or
trusses
Substrate Preparation
verify that subfloor panels are properly
fastened to framing members
underlayment – minimum 11/32", 3/8" nom.
(10 mm)-thick Exposure 1, plugged-face
plywood or OSB with 1/8" (3 mm) gap
between sheets; see page 21 for
underlayment installation guidelines
any leveling of the assembly must be done
prior to installing DITRA and DITRA-XL
★★★
Setting and Grouting Specifications
tile – ANSI A108.5
grout – ANSI A108.6, A108.9, A108.10
24" (610 mm) o.c. joist spacing, double layer OSB
or plywood subfloor
D-W24-T-16
★★★
Setting and Grouting Materials
latex portland cement (p.c.) mortar – ANSI
A118.11
unmodified thin-set mortar – ANSI A118.1
grout – ANSI A118.3, A118.6, A118.7,
A118.8
★
★★
Setting and Grouting Materials
latex portland cement (p.c.) mortar – ANSI
A118.11
unmodified thin-set mortar – ANSI A118.1
grout – ANSI A118.3, A118.6, A118.7,
A118.8
Setting and Grouting Specifications
tile – ANSI A108.5
grout – ANSI A108.6, A108.9, A108.10
Other Considerations
tightly butted and/or tented plywood or OSB
seams must be addressed prior to installing
DITRA and DITRA-XL
vapor barrier on crawl space floors according
to regional building codes.
where a waterproof floor is required, all
DITRA and DITRA-XL seams and floor/wall
transitions must be sealed with Schluter®KERDI-BAND using unmodified thin-set
mortar; see page 12
ceramic or porcelain tile can be installed over
single layer wood subfloors on joists spaced
at 24" (610 mm) o.c. when using DITRA-XL;
see detail D-W24-XL-T on page 6
Movement Joints
DITRA and DITRA-XL do not eliminate the
need for movement joints, including perimeter
joints, within the tiled surface. Movement
joints must be installed in accordance with
industry standards and norms; see page 18
of this Handbook, TCNA EJ171, and TTMAC
301 MJ
WOOD — Floors, Interior - Ceramic or Porcelain Tile
5
24" (610 mm) o.c. joist spacing, single layer OSB
or plywood subfloor
D-W24-XL-T-16
Ceramic or porcelain tile
Unmodified thin-set mortar
Areas of Application
over any even and structurally sound OSB or
plywood subfloor with 24" (610 mm) o.c.
joist spacing
interior dry or wet areas
DITRA-XL
uncoupling membrane
Latex p.c. mortar
Single layer of plywood
or OSB
Limitations
minimum 2" x 2" (50 mm x 50 mm) tile
for natural stone, see detail D-W-S (page 6)
and natural stone discussion (page 27)
I-joists or trusses
Requirements
maximum spacing of I-joists or floor trusses
is 24" (610 mm) o.c.
minimum subfloor thickness – 23/32", 3/4"
nom. (19 mm) tongue-and-groove with 1/8"
(3 mm) gap between sheets
Substrate Preparation
verify that subfloor panels are properly
fastened to framing members
any leveling of the subfloor must be done
prior to installing DITRA-XL
★★★
★★★
★
★★
Setting and Grouting Materials
latex portland cement (p.c.) mortar – ANSI
A118.11
unmodified thin-set mortar – ANSI A118.1
grout – ANSI A118.3, A118.6, A118.7,
A118.8
Setting and Grouting Specifications
tile – ANSI A108.5
grout – ANSI A108.6, A108.9, A108.10
Other Considerations
tightly butted and/or tented plywood or OSB
seams must be addressed prior to installing
DITRA-XL
vapor barrier on crawl space floors according
to regional building codes
where a waterproof floor is required, all DITRAXL seams and floor/wall transitions must be
sealed with Schluter®-KERDI-BAND using
unmodified thin-set mortar; see page 12
Movement Joints
DITRA-XL does not eliminate the need for
movement joints, including perimeter joints,
within the tiled surface. Movement joints must
be installed in accordance with industry
standards and norms; see page 18 of this
Handbook, TCNA EJ171, and TTMAC 301
MJ
Floors, Interior - Natural Stone Tile
D-W-S-16
Double layer of OSB or Plywood subfloor
Natural stone tile
Areas of Application
over any even and structurally sound double
layer OSB or plywood floor
interior dry or wet areas
Unmodified thin-set mortar
DITRA or DITRA-XL
uncoupling membrane
Limitations
requires double layer wood floor regardless
of joist spacing
minimum 2" x 2" (50 mm x 50 mm) tile
Latex p.c. mortar
Double layer of plywood
or OSB
Requirements
maximum spacing of joists, I-joists, or floor
trusses is 24" (610 mm) o.c.
double layer wood floor consisting of:
•minimum subfloor thickness – 23/32",
3/4" nom. (19 mm) tongue-and-groove
•minimum underlayment thickness –
11/32", 3/8" nom. (10 mm)
Joists, I-joists, or
trusses
★★★
6
★★★
★
★★
WOOD — Floors, Interior
Substrate Preparation
verify that subfloor panels are properly
fastened to framing members
underlayment – minimum 11/32", 3/8" nom.
(10 mm)-thick Exposure 1, plugged-face
plywood or OSB with 1/8" (3 mm) gap
between sheets; see page 21 for
underlayment installation guidelines
any leveling of the assembly must be done
prior to installing DITRA and DITRA-XL
Movement Joints
DITRA and DITRA-XL do not eliminate the
need for movement joints, including perimeter
joints, within the tiled surface. Movement
joints must be installed in accordance with
industry standards and norms; see page 18
of this Handbook, TCNA EJ171, and TTMAC
301 MJ
Setting and Grouting Materials
latex portland cement (p.c.) mortar – ANSI
A118.11
unmodified thin-set mortar – ANSI A118.1
grout – ANSI A118.3, A118.6, A118.7,
A118.8
Setting and Grouting Specifications
tile – ANSI A108.5
grout – ANSI A108.6, A108.9, A108.10
Other Considerations
certain moisture-sensitive stones, e.g., green
marble, or resin-backed tiles may require
special setting materials. Consult stone
supplier and Schluter-Systems for more
information
tightly butted and/or tented plywood or OSB
seams must be addressed prior to installing
DITRA and DITRA-XL
vapor barrier on crawl space floors according
to regional building codes
where a waterproof floor is required, all
DITRA and DITRA-XL seams and floor/wall
transitions must be sealed with Schluter®KERDI-BAND using unmodified thin-set
mortar; see page 12
Floors, Interior - Existing Vinyl Floors
D-V-T-16
Areas of Application
over any even and structurally sound
substrate with existing vinyl flooring
interior dry or wet areas
Tile or wood base
Ceramic, porcelain or stone tile
Limitations
minimum 2" x 2" (50 mm x 50 mm) tile
cushioned vinyl unacceptable
perimeter bonded vinyl flooring unacceptable
multiple layers of vinyl unacceptable
RONDEC
DILEX-EKE
Unmodified thin-set mortar
KERDI-BAND
Requirements
for wood substrates, subfloor/underlayment
configuration according to detail D-W16-T,
D-W19-T, D-W24-T, D-W24-XL-T, or D-W-S;
D-W24-XL-T for use with DITRA-XL only
DITRA or DITRA-XL
uncoupling membrane
Fast-setting
latex p.c. mortar
Substrate Preparation
ensure that the structure beneath the vinyl is
sound and adequate
ensure that vinyl is well adhered
remove any wax and clean vinyl
for wood substrates, nail off floor with ring
shank flooring nails every 4" (102 mm) o.c.
– fasteners must pass through entire thickness of assembly with minimal penetration
into joists
any leveling of the assembly must be done
prior to installing DITRA and DITRA-XL
Existing vinyl
Plywood or OSB
Joists, I-joists, or
trusses
Movement Joints
DITRA and DITRA-XL do not eliminate the
need for movement joints, including perimeter
joints, within the tiled surface. Movement
joints must be installed in accordance with
industry standards and norms; see page 18
of this Handbook, TCNA EJ171, and TTMAC
301 MJ
★★★
★★★
★★
D-SP-TS-16
Setting and Grouting Materials
fast-setting latex portland cement (p.c.)
mortar – ANSI A118.4 or ANSI A118.11
unmodified thin-set mortar – ANSI A118.1
grout – ANSI A118.3, A118.6, A118.7,
A118.8
Setting and Grouting Specifications
tile – ANSI A108.5
grout – ANSI A108.6, A108.9, A108.10
Other Considerations
DITRA and DITRA-XL are adhered to the vinyl
flooring using a fast-setting latex-portland
cement mortar suitable for bonding to vinyl.
As an alternative, a suitable cement-based
embossing leveler or an appropriate latexmodified thin-set mortar can be used to skim
coat the vinyl to provide a bonding surface.
When skim coat is cured, DITRA and DITRAXL are adhered to the skim coat using an
unmodified thin-set mortar. See page 23 for
discussion on latex-modified thin-set mortars
sandwiched between two impervious layers
seaming DITRA and DITRA-XL, including
floor/wall connections, with Schluter ®KERDI-BAND may be appropriate in cases
where a break in the water line of an ice
maker or dishwasher can damage preexisting moisture-sensitive substrates and
underlayments. KERDI-BAND floor/wall
connections are just as easily concealed with
wood base as with tile. KERDI-BAND floor/
wall connections in dishwasher alcoves are
parged with thin-set mortar; see page 12
vapor barrier on crawl space floors according
to regional building codes
certain moisture-sensitive stones, e.g., green
marble, or resin-backed tiles may require special
setting materials. Consult stone supplier and
Schluter-Systems for more information
Floors, Interior - Structural Plank Subfloor
Ceramic, porcelain or stone tile
Unmodified thin-set mortar
Areas of Application
over structural plank subfloors
interior dry or wet areas
DITRA or DITRA-XL
uncoupling membrane
Limitations
minimum 2" x 2" (50 mm x 50 mm) tile
Latex p.c. mortar
Requirements
maximum spacing of joists is 24" (610 mm) o.c.
double layer wood floor consisting of:
•
minimum structural plank subfloor
thickness – 3/4" (19 mm)
•minimum underlayment thickness –
15/32", 1/2" nom. (13 mm)
Plywood or OSB
underlayment
Structural plank
subfloor
Joists
Substrate Preparation
verify that subfloor planks are properly
fastened to framing members
underlayment – minimum 15/32", 1/2" nom.
(13 mm)-thick Exposure 1, plugged-face
plywood or OSB with 1/8" (3 mm) gap
between sheets; see page 21 for
underlayment installation guidelines
any leveling of the assembly must be done
prior to installing DITRA and DITRA-XL
★★★
★★★
★
★★
Movement Joints
DITRA and DITRA-XL do not eliminate the
need for movement joints, including perimeter
joints, within the tiled surface. Movement
joints must be installed in accordance with
industry standards and norms; see page 18
of this Handbook, TCNA EJ171, and TTMAC
301 MJ
Setting and Grouting Materials
latex portland cement (p.c.) mortar – ANSI
A118.11
unmodified thin-set mortar – ANSI A118.1
grout – ANSI A118.3, A118.6, A118.7,
A118.8
Setting and Grouting Specifications
tile – ANSI A108.5
grout – ANSI A108.6, A108.9, A108.10
Other Considerations
vapor barrier on crawl space floors according
to regional building codes
where a waterproof floor is required, all
DITRA and DITRA-XL seams and floor/wall
transitions must be sealed with Schluter®KERDI-BAND using unmodified thin-set
mortar; see page 12
certain moisture-sensitive stones, e.g., green
marble, or resin-backed tiles may require
special setting materials. Consult stone
supplier and Schluter-Systems for more
information
WOOD — Floors, Interior
7
CONCRETE
Every substrate presents unique challenges
There are various challenges associated with the installation of hard surface coverings on concrete substrates.
To begin, the coefficient of thermal expansion of concrete is close to twice that of ceramic tile. Additionally, tile contractors are often expected
to install tile over young concrete (concrete cured less than 28 days). However, rigid surface coverings installed over young concrete are
susceptible to damage as a result of shrinkage during curing. Pre-stressed/post-tensioned concrete slabs are also commonplace in today’s
construction environment. Although pre-stressing is used to help control deflections in concrete structures, these slabs are still subject to
deformations caused by changes in moisture, temperature, and loading. Many concrete slabs on or below grade are subject to moisture
migration, which can be problematic. Furthermore, these structures experience the same deformations as stated above.
Schluter®-DITRA’s uncoupling function protects the ceramic or stone tile covering by neutralizing the differential
movement stresses between the concrete substrate and the tile, thus eliminating the major cause of cracking and
delaminating of the tiled surface.
DITRA’s waterproofing ability not only protects the substrate from moisture and harmful substances, it also slows the
drying of fresh concrete, which reduces the chances of cracking and curling of the slab.
The free space beneath the DITRA matting provides a route for any residual moisture in the concrete slab to escape. This
allows the installation of DITRA and the tile covering as soon as the slab can be walked upon. Vapor management is also
essential for slabs subject to moisture migration.
Since DITRA is virtually incompressible within the tile assembly, the advantages of uncoupling are achieved without sacrificing
point load distribution capabilities. This allows DITRA to be installed in commercial and industrial applications exposed to
heavy vehicular traffic, provided the type, format, and thickness of the tile is appropriate for the application.
By addressing all of the challenges associated with today’s fast construction methods, DITRA provides a durable installation system for
ceramic and stone tile over concrete substrates.
Floors, Interior - Ceramic or Stone Tile
D-C-TS-16
Concrete subfloor
Ceramic, porcelain or stone tile
Areas of Application
over any structurally sound and even
concrete subfloor
young concrete (concrete cured less than 28 days)
on or below grade concrete subject to
moisture migration
post-tensioned or pre-stressed concrete
cracked concrete
Unmodified thin-set mortar
DITRA or DITRA-XL
uncoupling membrane
Unmodified
thin-set mortar
Concrete
★★★
Limitations
minimum 2" x 2" (50 mm x 50 mm) tile
concrete slabs subject to moisture migration
must have all seams in DITRA and DITRA-XL
sealed with Schluter®-KERDI-BAND using
unmodified thin-set mortar
any cracks in concrete subfloor must exhibit
in-plane movement only; thin-set tile
assemblies, including those incorporating
DITRA or DITRA-XL, cannot accommodate
differential vertical displacement
★
★★★
★
Requirements
slab to be structurally sound
slab to be free of waxy or oily films and curing
compounds (when present, mechanical
scarifying is necessary)
the installation of DITRA or DITRA-XL and tile
can begin as soon as the slab can be walked
upon
slab to be free of standing water
Substrate Preparation
any leveling or sloping of the slab or
assembly must be done prior to installing
DITRA and DITRA-XL
8
CONCRETE — Floors, Interior - Ceramic or Stone Tile
Movement Joints
DITRA and DITRA-XL do not eliminate the
need for movement joints, including perimeter
joints, within the tiled surface. Movement
joints must be installed in accordance with
industry standards and norms; see page 18
of this Handbook, TCNA EJ171, and TTMAC
301 MJ
concrete floors may incorporate various
movement joints; see page 19 of this
Handbook for guidelines on how to treat the
different types of joints (control/contraction
joints, expansion joints, etc.)
Setting and Grouting Materials
unmodified thin-set mortar – ANSI A118.1
grout – ANSI A118.3, A118.6, A118.7, A118.8
Setting and Grouting Specifications
tile – ANSI A108.5
grout – ANSI A108.6, A108.9, A108.10
Other Considerations
where a waterproof floor is required, all
DITRA and DITRA-XL seams and floor/wall
transitions must be sealed with Schluter®KERDI-BAND using unmodified thin-set
mortar; see page 12
certain moisture-sensitive stones, e.g., green
marble, or resin-backed tiles may require special
setting materials. Consult stone supplier and
Schluter-Systems for more information
GYPSUM
Every substrate presents unique challenges
Bonding ceramic or stone tiles directly to gypsum concrete substrates is generally considered questionable or not recommended. The
challenges associated with gypsum-based underlayments include the requirement of an extended drying period before installing tile and
continued sensitivity to the reintroduction of moisture throughout the life of the installation. In addition, since the coefficient of thermal
expansion of gypsum concrete is substantially greater than that of ceramic tile, shear stresses caused by temperature fluctuations can
result in delamination or cracking of the tile covering. This is particularly important when gypsum concrete is used as a thermal mass for
radiant heated floors. With the increasing popularity of radiant heated floors, which typically utilize gypsum concrete, tile installers need a
reliable installation system to address these issues.
Schluter®-DITRA’s uncoupling function protects the ceramic or stone tile covering by neutralizing the differential
movement stresses between the gypsum concrete substrate and the tile, thus eliminating the major cause of cracking
and delaminating of the tiled surface.
DITRA’s waterproofing function prevents the reintroduction of moisture to gypsum concrete underlayments, which,
if not prevented, could significantly compromise performance of the underlayment and lead to damage of the
tiled surface.
The residual moisture in gypsum concrete is allowed to escape through the air channels on the underside of the DITRA
matting. This is particularly important since gypsum concrete must dry in order to gain strength.
Since DITRA is virtually incompressible within the tile assembly, the advantages of uncoupling are achieved without
sacrificing point load distribution capabilities.
By addressing all of the challenges associated with today’s fast, lightweight construction methods, DITRA provides a durable installation
system for ceramic and stone tile over gypsum substrates.
Floors, Interior - Ceramic or Stone Tile
D-G-TS-16
Gypsum concrete
Ceramic, porcelain or stone tile
Areas of Application
over gypsum concrete underlayment placed
over structurally sound wood or concrete
subfloors
interior dry or wet areas
Unmodified thin-set mortar
DITRA or DITRA-XL
uncoupling membrane
Limitations
minimum 2" x 2" (50 mm x 50 mm) tile
Unmodified thin-set mortar
Gypsum concrete
Requirements
for wood substrates, subfloor/underlayment
configuration according to detail D-W16-T,
D-W19-T, D-W24-T, or D-W24-XL-T;
D-W24-XL-T for use with DITRA-XL only
where radiant heat tubes are laid over the
subfloor, gypsum poured to a height that is
3/4" (19 mm) above the tops of the tubes is
required before installing DITRA and DITRA-XL
residual moisture in gypsum screed, 2.0%
(percentage by volume) or less before
installing DITRA and DITRA-XL
Substrate Preparation
gypsum – follow manufacturer’s directions
★★★
★★★
★★★
★★
Movement Joints
DITRA and DITRA-XL do not eliminate the
need for movement joints, including perimeter
joints, within the tiled surface. Movement
joints must be installed in accordance with
industry standards and norms; see page 18
of this Handbook, TCNA EJ171, and TTMAC
301 MJ
Setting and Grouting Materials
unmodified thin-set mortar – ANSI A118.1
grout – ANSI A118.3, A118.6, A118.7,
A118.8
Installation Specifications
tile – ANSI A108.5
grout – ANSI A108.6, A108.9, A108.10
gypsum – follow manufacturer’s
recommendations
Other Considerations
since DITRA and DITRA-XL must bond to the
gypsum
concrete,
follow
gypsum
manufacturer’s recommendations regarding
primers and/or special surface preparation
before installing DITRA and DITRA-XL
where a waterproof floor is required, all
DITRA and DITRA-XL seams and floor/wall
transitions must be sealed with Schluter®KERDI-BAND using unmodified thin-set
mortar; see page 12
certain moisture-sensitive stones, e.g., green
marble, or resin-backed tiles may require
special setting materials. Consult stone
supplier and Schluter-Systems for more
information
vapor barrier on crawl space floors according
to regional building codes
GYPSUM — Floors, Interior - Ceramic or Stone Tile
9
HEATED FLOORS
Every substrate presents unique challenges
Radiant heating is one of the fastest growing market segments in the construction industry. Unlike other surface coverings, the low
thermal resistivity of ceramic and stone tiles allows them to be used in radiant heat applications without sacrificing the energy efficiency
of the system. However, there are inherent challenges in combining rigid surface coverings with radiant panel heating systems. A viable
installation system must address the magnified fluctuations in temperature that contribute to increased shear stresses between the heated
assembly and the tile covering. The system must also limit thermal striping by promoting even heat distribution and protect the assembly
from moisture, which is particularly important when gypsum concrete is used as the thermal mass.
Differential movement stresses are magnified in radiant-heated floor applications because of significant temperature
gradients. Schluter®-DITRA’s uncoupling function protects the ceramic or stone tile covering by neutralizing the
differential movement stresses between the heated assembly and the tile, thus eliminating the major cause of cracking
and delaminating of the tiled surface.
DITRA’s waterproofing function provides simple, effective, and permanent protection for moisture-sensitive substrates,
such as gypsum concrete and wood, used in heated floor applications.
The open rib structure of the DITRA matting allows the residual moisture in the substrate to escape. This is particularly
important for gypsum concrete since it must dry in order to gain strength. In addition, the free space beneath the matting
limits thermal striping by promoting even heat distribution throughout the assembly.
Since DITRA is virtually incompressible within the tile assembly, the advantages of uncoupling are achieved without
sacrificing point load distribution capabilities.
DITRA provides a reliable installation system that allows the integration of radiant heat and rigid surface coverings, enabling the tile
contractor to take advantage of this rapidly growing market segment.
Wood Substrate
D-RE-16
Electric thin-mat or wire system
Ceramic, porcelain or stone tile
Areas of Application
over any even and structurally sound substrate
interior dry or wet areas according to heating
system manufacturer’s recommendations
Unmodified thin-set mortar
DITRA or DITRA-XL
uncoupling membrane
Limitations
minimum 2" x 2" (50 mm x 50 mm) tile
Unmodified thin-set mortar
Requirements
for wood substrates, subfloor/underlayment
configuration according to detail D-W16-T,
D-W19-T, D-W24-T, D-W24-XL-T, or D-W-S;
D-W24-XL-T for use with DITRA-XL only
for concrete substrates, see detail D-C-TS
Electric thin-mat or wire
Latex p.c. mortar
Plywood or OSB
Joists, I-joists, or
trusses
Substrate Preparation
any leveling of the assembly must be done
prior to installing DITRA and DITRA-XL
additional preparation according to heating
system manufacturer’s directions
Movement Joints
DITRA and DITRA-XL do not eliminate the
need for movement joints, including perimeter
joints, within the tiled surface. Movement
joints must be installed in accordance with
industry standards and norms; see page 18
of this Handbook, TCNA EJ171, and TTMAC
301 MJ
★★★
10
★★★
★
HEATED FLOORS
★★
Setting and Grouting Materials
latex portland cement (p.c.) mortar – ANSI
A118.11
unmodified thin-set mortar – ANSI A118.1
grout – ANSI A118.3, A118.6, A118.7,
A118.8
Setting and Grouting Specifications
tile – ANSI A108.5
grout – ANSI A108.6, ANSI A108.9, ANSI
A108.10
heating system – follow manufacturer’s
directions
Other Considerations
install heating cable system per heating
manufacturer’s directions; encapsulate
heating cables in a skim coat of latex p.c.
mortar or a cement-based leveling compound
and allow to cure before installing DITRA or
DITRA-XL with unmodified thin-set mortar
install electric thin-mat per heating
manufacturer’s directions and install DITRA
or DITRA-XL with unmodified thin-set mortar.
vapor barrier on crawl space floors according
to regional building codes
where a waterproof floor is required, all
DITRA and DITRA-XL seams and floor/wall
transitions must be sealed with Schluter®KERDI-BAND using unmodified thin-set
mortar; see page 12
certain moisture-sensitive stones, e.g., green
marble or resin-backed tiles, may require
special setting materials. Consult stone
supplier and Schluter-Systems for more
information
Schluter®-DITRA-HEAT is an uncoupling
membrane designed to secure heating
cables without encapsulating them in leveling
compounds; see schluter.com for more
information
Wood Substrate
D-RHTS-16
Thin slab (lightweight or gypsum concrete)
Ceramic, porcelain or stone tile
Areas of Application
over lightweight or gypsum concrete thin
slab placed over structurally sound wood or
concrete subfloor
interior dry or wet areas
Unmodified thin-set mortar
DITRA or DITRA-XL
uncoupling membrane
Limitations
minimum 2" x 2" (50 mm x 50 mm) tile
Unmodified
thin-set mortar
Requirements
for wood substrates, subfloor/underlayment
configuration according to detail D-W16-T,
D-W19-T, D-W24-T, or D-W24-XL-T;
D-W24-XL-T for use with DITRA-XL only
where radiant heat tubes are laid over the
subfloor, gypsum or concrete fill poured to
a height that is 3/4" (19 mm) above the tops
of the tubes is required before installing
DITRA and DITRA-XL
residual moisture in gypsum concrete, 2.0%
(percentage by volume) or less before
installing DITRA and DITRA-XL
Lightweight or
gypsum concrete
Even and structurally
sound substrate
Substrate Preparation
gypsum or concrete – follow manufacturer’s
directions and/or design specifications
additional substrate preparation according to
heating system manufacturer’s directions
★★★
★★★
★★★
★★
Movement Joints
DITRA and DITRA-XL do not eliminate the
need for movement joints, including perimeter
joints, within the tiled surface. Movement
joints must be installed in accordance with
industry standards and norms; see page 18
of this Handbook, TCNA EJ171, and TTMAC
301 MJ
Setting and Grouting Materials
unmodified thin-set mortar – ANSI A118.1
grout – ANSI A118.3, A118.6, A118.7,
A118.8
Setting and Grouting Specifications
tile – ANSI A108.5
grout – ANSI A108.6, A108.9, A108.10
heating system – follow manufacturer’s
directions
Other Considerations
if gypsum concrete is used, follow gypsum
manufacturer’s recommendations regarding
primers and/or special surface preparation
before installing DITRA and DITRA-XL
vapor barrier on crawl space floors according
to regional building codes
where a waterproof floor is required, all
DITRA and DITRA-XL seams and floor/wall
transitions must be sealed with Schluter®KERDI-BAND using unmodified thin-set
mortar; see page 12
certain moisture-sensitive stones, e.g., green
marble, or resin-backed tiles may require
special setting materials. Consult stone
supplier and Schluter-Systems for more
information
Concrete Substrate
D-RHSS-16
Structural concrete slab
Ceramic, porcelain or stone tile
Areas of Application
over structurally sound and even radiantheated concrete floors
young concrete (concrete cured less than 28 days)
on or below grade concrete subject to
moisture migration
cracked concrete
Unmodified thin-set mortar
DITRA or DITRA-XL
uncoupling membrane
Unmodified thin-set mortar
Concrete
★★★
Limitations
minimum 2" x 2" (50 mm x 50 mm) tile
concrete slabs subject to moisture migration
must have all seams in DITRA and DITRA-XL
sealed with Schluter®-KERDI-BAND using
unmodified thin-set mortar
any cracks in concrete subfloor must exhibit
in-plane movement only; thin-set tile
assemblies, including those incorporating
DITRA or DITRA-XL, cannot accommodate
differential vertical displacement
★
★★★
★
Requirements
slab to be structurally sound
slab to be free of waxy or oily films and curing
compounds (when present, mechanical
scarifying is necessary)
the installation of DITRA or DITRA-XL and
tile can begin as soon as the slab can be
walked upon
slab to be free of standing water
Substrate Preparation
any leveling or sloping of the slab or
assembly must be done prior to installing
DITRA and DITRA-XL
Movement Joints
DITRA and DITRA-XL do not eliminate the
need for movement joints, including perimeter
joints, within the tiled surface. Movement
joints must be installed in accordance with
industry standards and norms; see page 18
of this Handbook, TCNA EJ171, and TTMAC
301 MJ
concrete floors may incorporate various
movement joints; see page 19 of this
Handbook for guidelines on how to treat the
different types of joints (control/contraction
joints, expansion joints, etc.)
Setting and Grouting Materials
unmodified thin-set mortar – ANSI A118.1
grout – ANSI A118.3, A118.6, A118.7,
A118.8
Setting and Grouting Specifications
tile – ANSI A108.5
grout – ANSI A108.6, A108.9, A108.10
Other Considerations
where a waterproof floor is required, all
DITRA and DITRA-XL seams and floor/wall
transitions must be sealed with Schluter®KERDI-BAND using unmodified thin-set
mortar; see page 12
certain moisture-sensitive stones, e.g., green
marble, or resin-backed tiles may require special
setting materials. Consult stone supplier and
Schluter-Systems for more information
HEATED FLOORS
11
WATERPROOFING
Every substrate presents unique challenges
Today’s construction methods, which include the use of lightweight, moisture-sensitive
materials, such as plywood, OSB, and gypsum concrete, have made the installation of
hard surface coverings particularly challenging. If wood or gypsum concrete substrates are
exposed to moisture, the tile layer above can be damaged as a result.
Typical areas that require waterproofing include tub surrounds, showers, and barrier free
showers. Barrier-free tiled showers eliminate the use of a curb and rely on the slope of
the floor to keep water inside the stall, thus improving accessibility. Waterproofing must
be installed in all areas subjected to water exposure in barrier-free shower applications.
Ideally, the entire floor is protected. There are other commonly tiled areas that may, through
unexpected circumstances, become exposed to significant amounts of water; for example,
an overflowed toilet, or ruptured dishwasher, icemaker, or washing machine lines, which can
result in flooding.
Waterproofing these floors can save an owner from replacing the tile assembly and
substructure in the event of a leak. Schluter®-DITRA and Schluter®-DITRA-XL
installations can be made waterproof with minimal effort. Since the mattings are made of
waterproof polyethylene, the only extra step necessary is to seal the seams and floor/wall
connections. This is easily accomplished by applying Schluter®-KERDI-BAND to these
areas using an unmodified thin-set mortar. The result is a waterproof installation that will
not suffer damage in the event of an unexpected water leak. Schluter®-KERDI-DRAIN or
Schluter®-KERDI-LINE may be used to provide drainage in DITRA and DITRA-XL installations.
DITRA and DITRA-XL meet the requirements of the American National Standard for Load
Bearing, Bonded, Waterproof Membranes for Thin-Set Ceramic Tile and Dimension Stone
Installations (ANSI A118.10), and are listed by cUPC® and evaluated by ICC-ES (ESR-2467
and PMG-1204).
Floors, Interior - Ceramic or Stone Tile
D-WP-16
Tile or wood base
Ceramic, porcelain or stone tile
RONDEC
DILEX-EKE
Unmodified thin-set mortar
KERDI-BAND
DITRA or DITRA-XL
uncoupling membrane
Thin-set mortar
per appropriate
detail
12
Areas of Application
over any even and structurally sound
substrate where waterproofing is desired
Limitations
minimum 2" x 2" (50 mm x 50 mm) tile
Requirements
all seams in DITRA and DITRA-XL matting
and floor/wall transitions must be sealed with
KERDI-BAND using unmodified thin-set
mortar. Note: KERDI-BAND must lap DITRA
at seams and at floor/wall transitions by a
minimum of 2" (50 mm) in order to maintain
waterproof integrity
WATERPROOFING — Floors, Interior
Other Considerations
seaming DITRA and DITRA-XL, including
floor/wall connections, with KERDI-BAND
may be appropriate in cases where a break
in the water line of an ice maker or dishwasher
can damage pre-existing moisture-sensitive
substrates and underlayments. KERDIBAND floor/wall connections are just as
easily concealed with wood base as with tile.
KERDI-BAND floor/wall connections in
dishwasher alcoves are parged with thin-set
mortar
in some applications the vertical section of
the floor/wall transition will not accept a bond
to unmodified thin-set mortar. Connections
to such elements can be achieved using
Schluter®-KERDI-FIX or suitable trowelapplied waterproofing materials, such as
those that require atmospheric moisture to
cure (e.g., urethane sealant)
KERDI-DRAIN or KERDI-LINE may be used
to provide drainage in DITRA and DITRA-XL
applications. DITRA/DITRA-XL is sealed to
the fleece-laminated KERDI-DRAIN bonding
flange with a section of KERDI membrane
using unmodified thin-set mortar. KERDI-FIX
is used to seal the section of KERDI to the
stainless steel KERDI-DRAIN bonding flange.
DITRA/DITRA-XL is sealed to the KERDI
waterproofing collar on KERDI-LINE using
unmodified thin-set mortar
EXTERIOR APPLICATIONS
Every substrate presents unique challenges
Ceramic and stone tiles are ideal surface coverings for the exterior and have been used successfully for thousands of years. Exterior
balconies and terraces are ideal opportunities for the installation of tiled surfaces. However, these installations have typically presented
significant challenges to tile setters. Since hard surface coverings are rigid by nature and have different physical properties compared to
virtually every substrate, they cannot be bonded directly to the substrate, particularly in exterior applications where they are exposed to
potentially severe climatic changes and the recurring introduction of moisture.
Schluter®-DITRA’s uncoupling function protects the ceramic or stone tile covering by neutralizing the differential
movement stresses between the substrate and the tile, thus eliminating the major cause of cracking and delaminating of
the tiled surface. This is particularly important since these stresses are magnified by the significant temperature gradients
common to exterior applications.
DITRA provides effective waterproofing that will protect the tile assembly from the recurring introduction of water, which
is common in exterior applications.
The free space beneath the DITRA matting provides a route for any residual moisture in the substrate to escape. This is
especially important when installing tile over a young slab, concrete slabs subject to moisture migration, or a fresh mortar
bed.
Since DITRA is virtually incompressible within the tile assembly, the advantages of uncoupling are achieved without
sacrificing point load distribution capabilities.
Because DITRA is uniquely engineered to provide uncoupling, vapor management, and waterproofing, all of which are essential functions in
exterior environments, it provides a reliable installation system for ceramic and stone tile surface coverings in exterior applications.
EXTERIOR APPLICATIONS — Exterior Concrete Floors, Patios, and Walkways
13
Exterior Systems Planning Guide
A successful installation involves proper planning and following the appropriate exterior detail found in the Schluter®-DITRA Installation
Handbook. This checklist is designed to help you evaluate the conditions when planning an exterior tile assembly. If all items listed cannot
be satisfied, there is risk of assembly failure and no warranty will be provided. In that case, we recommend not proceeding with the project.
q
Ensure suitability of the balcony structure
The structure must be able to support the weight of the proposed tile assembly. The typical weight of an exterior tile assembly with a 1-1/2" (38 mm) -thick
mortar bed weighs 24 pounds/square foot according to the TCNA Handbook for Ceramic, Glass, and Stone Tile Installation. This will vary depending on
materials selected for your particular installation. The owner should work with a design professional (e.g., engineer, architect, etc.) to ensure the structure
is suitable for the intended use and complies with applicable building codes.
q
Ensure adequate room for proper installation
The structure must allow for the height of the installed tile assembly. Provide adequate room to ensure the installer can create or maintain slope away from
the and allow for the installation of roofing membrane flashing, particularly at door openings. Additionally, sufficient elevation drop from the interior to exterior
at door thresholds is recommended to keep water from entering the building.
q
Ensure moisture management throughout the assembly
q
q
q
q
q
q
Sufficient slope (1.5 – 2.0%).
Protect the balcony structure with a roofing membrane. Membrane installation to be completed by roofing professional. Schluter®-Systems
does not supply roofing membranes or warranty structural waterproofing in exterior applications.
Appropriate flashing must be installed where required and all protrusions must be sealed.
Include of a drainage membrane (e.g., TROBA or TROBA-PLUS) in assemblies with mortar beds.
Water must be directed away from the structure including the use of flashing and a drip edge (e.g., BARA) at the perimeter of the assembly. A gutter system (e.g., BARIN) installed with edging profiles is the most complete solution. This combination provides edge finishing and water management at balcony and terrace perimeters. When parapet walls are surrounding the assembly, a floor drain may be used. Considerations of drain installation should be taken into effect during design of the assembly.
Ensure full thin-set mortar coverage during tile installation
ANSI A108.05 requires 95% contact area between tiles and thin-set mortar in exterior applications. The coverage must be distributed to give full support
to the tile with particular attention to the corners. Back-buttering is a useful way to help ensure proper coverage, particularly when installing large-format
tiles. By back-buttering, it is possible to fill in the concave area on the back of the tile (ceramic tiles are not perfectly flat) and improve contact with the
mortar combed on the substrate. Combing the mortar in one direction can also improve coverage by making it easier to collapse the mortar ridges when
embedding the tiles.
q
Ensure installation of movement joints
DITRA does not eliminate the need for movement joints, which are essential in any installation. Provide perimeter joints at all restraining surfaces (e.g., walls,
railings, etc.). In exterior applications surface movement joints must be placed every 8' - 12' (2.4 m – 3.7 m) in each direction.
q
Ensure appropriate railing design and installation
It is recommended to choose under- or side-mounted railing systems when practical to avoid roofing membrane penetration. While not recommended, if
a top-mounted railing system is the only option available, care must be taken to ensure that protrusions through the waterproofing layer(s) are sealed by
the roofing professional.
q
Materials Selection
q
q
q
q
Exterior applications have the potential for surface water, which may create slippery surfaces. Therefore, consider the slip resistance of the tile and select a material recommended by the manufacturer for the intended use. It is recommended that tiles are
tested according to the ANSI A137.1 DCOF AcuTest method to evaluate Dynamic Coefficient of Friction. Please refer to the TCNA handbook for Ceramic, Glass, and Stone Tile Installation for further information.
For assemblies exposed to freeze-thaw conditions, the tile must be frost-resistant and recommended by the tile manufacturer for the intended use. It is recommended that the tiles are tested according to the ASTM C1026 Standard Test Method for Measuring the Resistance of Ceramic and Glass Tile to Freeze-Thaw Cycling.
When selecting profiles, use color-coated aluminum or stainless steel. When stainless steel profiles are exposed to de-icing salts,
use stainless steel 316L (1.4404 = V4A).
Respect exterior working conditions
Working in exterior environments involves considerations during installation and curing of the tile assembly. Observe temperatures ranges required by the
setting material manufacturer during both installation and curing. Tenting of working area may be necessary to shade the surfaces from direct sunlight
and/or rain. Direct sun or high temperatures may cause issues such as flash setting or skinning of the mortar. If an installation is to be completed in cold
temperatures, heat will be required in the space before, during and after installation to ensure proper curing of the mortar. Combustion heaters must be
vented for carbon monoxide safety.
If acceptable working conditions cannot be maintained, stop the installation.
Lastly, efflorescence is considered to be a natural occurrence with cementitious materials and is therefore not to be considered a defective condition. Since
exterior tile assemblies are installed with cementitious thin-set mortars and grouts and exposed to water, there is always the possibility of efflorescence.
14
EXTERIOR APPLICATIONS — Planning Guide
Exterior Concrete Floors, Patios, and Walkways
D-EXT-C-TS-16
Concrete subfloor
Ceramic, porcelain or stone tile
Areas of Application
over structurally sound and even exterior
concrete on grade where positive drainage
below slab is provided
young concrete (concrete cured less than
28 days)
post-tensioned or pre-stressed concrete
cracked concrete
Unmodified thin-set mortar
DITRA or DITRA-XL
uncoupling membrane
Unmodified
thin-set mortar
Concrete
★★★
Limitations
minimum 2" x 2" (50 mm x 50 mm) tile
for wood or concrete balconies and terraces,
see detail D-EXT-OS, page 16. Please
contact Schluter-Systems with any questions
any cracks in concrete subfloor must exhibit
in-plane movement only; thin-set tile
assemblies, including those incorporating
DITRA or DITRA-XL, cannot accommodate
differential vertical displacement
★★★
★★★
★
Requirements
slab to be structurally sound
slab/assembly must be sloped for complete
surface drainage
gravel bed or other means of drainage must
be provided below slab
slab to be free of waxy or oily films and curing
compounds (when present, mechanical
scarifying is necessary)
slab to be free of standing water
all seams in DITRA and DITRA-XL and floor/
wall transitions must be sealed with
Schluter®-KERDI-BAND using unmodified
thin-set mortar; see page 22
Substrate Preparation
sloping of the slab or assembly must be
done prior to installing DITRA and DITRA-XL
Movement Joints
DITRA and DITRA-XL do not eliminate the
need for movement joints, including perimeter
joints, within the tiled surface. Movement
joints must be installed in accordance with
industry standards and norms; see page 18
of this Handbook, TCNA EJ171, and TTMAC
301 MJ
concrete floors may incorporate various
movement joints; see page 19 of this
Handbook for guidelines on how to treat the
different types of joints (control/contraction
joints, expansion joints, etc.)
Setting and Grouting Materials
unmodified thin-set mortar – ANSI A118.1
grout – A118.6, A118.7
Setting and Grouting Specifications
tile – ANSI A108.5
grout – A108.10
EXTERIOR APPLICATIONS — Concrete or Wood Substrates - Balcony and Terrace
15
Concrete or Wood Substrate Balcony and Terrace
D-EXT-OS-16
1. Concrete or wood structure
For wood substrates, subfloor/underlayment
configuration according to detail D-W16-T,
D-W19-T, D-W24-T, or D-W24-XL-T; D-W24-XL-T
for use with Schluter®-DITRA-XL only.
11
9
2. Roofing membrane
The roofing membrane must be sufficiently sloped
(1.5 - 2%) and is necessary for the proper function
of the assembly.
3.Schluter®-TROBA-PLUS
Drainage mat for sustained water drainage.
10
13
5
6
4. Mortar bed
Wire reinforced mortar bed, minimum thickness
1-1/2" (38 mm).
5. Edge insulation strip (compressible foam).
4
2
3
8
6.Schluter -DITRA or Schluter -DITRA-XL
Install DITRA and DITRA-XL on mortar bed using
unmodified thin-set mortar.
®
®
7.Schluter®-BARA-RTK
Edging profile with drip lip and support for
the BARIN gutter system. Please also see
Schluter-Systems’ Illustrated Price List and visit
www.schluter.com for more detailed information on
BARA balcony edging profiles.
8.Schluter®-BARA-RK
T-shaped finishing profile.
1
7
12
9.Schluter -KERDI-BAND
Polyethylene seaming tape, used to seal DITRA
and DITRA-XL seams and floor/wall connections
with unmodified thin-set mortar; see page 22.
®
10.Schluter ®-DILEX-EKE
Corner movement profile for floor/wall connections.
11.Schluter ®-RONDEC or -JOLLY
Edging profiles provide a clean finish for base tiles.
Available in many different colors and finishes.
Material: stainless steel or color-coated aluminum.
12.Schluter ®-BARIN
Gutter system made of color-coated aluminum, for
water management at the perimeter of balconies
and terraces. Also available: a complete line
of system accessories. Please also see SchluterSystems’ Illustrated Price List and visit www.
schluter.com for more detailed information on the
BARIN gutter system.
13.Ceramic or stone tile
Install surface covering using unmodified thin-set
mortar.
Schluter products make it easy to construct functional balcony coverings
that include subsurface drainage, uncoupling/waterproofing, tightly
Note: Movement joints are mandatory; see page 18 sealed wall joints, and gutters.
of this Handbook.
16
EXTERIOR APPLICATIONS — Concrete or Wood Substrate - Balcony and Terrace
Schluter ®-TROBA/-TROBA-PLUS
TROBA and TROBA-PLUS are reliable, long-lasting
drainage mats for installation over horizontal, sloped
waterproofing layers. Any water that penetrates the mortar
bed is directed under normal gravitational force to the
drainage exits. In addition, the waterproofing layer is
effectively protected from damage.
A
B
Schluter ®-BARA-RTK
BARA-RTK is an edging profile with a drip lip for
installation over an existing sloped substrate. The profile
has a special flange for attaching the BARIN gutter system.
RONDEC or JOLLY profiles can be laid over the top of the
stepped bonding flange to finish the edge of the tile. As an
alternative, tiles can be installed with an overhang.
Schluter®-BARA-RTK
Schluter®-BARA-RK
BARA-RK is a T-shaped finishing profile for screeds. The
finishing leg has a protruding drip lip, which covers the
exposed edge of the TROBA drainage mat.
Schluter®-BARA-RK
Notes
EXTERIOR APPLICATIONS — Concrete or Wood Substrate - Balcony and Terrace
17
MOVEMENT JOINTS
Every substrate presents unique challenges
DISCUSSION
Movement joints are an integral part of any tile assembly. The various components of a tile
assembly (tile, mortar, substrate, etc.) have unique physical characteristics that affect
their behavior. Specifically, these components will expand and contract at different
rates, according to each component’s intrinsic physical properties, with changes
in moisture, temperature, and loading (both dead and live loads). This differential
expansion/contraction of attached components results in internal stresses.
Furthermore, structures that restrain overall expansion of the tile field (walls, columns,
etc.) cause stress buildup within the system. If the aforementioned movements
are not accommodated through the use of movement joints in the tile field and at
restraining structures, the resulting stresses can cause cracking of the grout and tile
and delamination of the tile from the substrate. Thus, movement joints are an essential
component of any durable tile assembly.
SOLUTIONS
Movement joints must be incorporated within the tile field, at doorsills, and at transitions
to walls and other restraining structures to allow movement of the assembly and prevent
stresses that can damage the system. Schluter®-Systems’ prefabricated movement joint
profiles protect tile edges and prevent sound bridges and surface water penetration,
resulting in a permanent, maintenance-free installation. The family of Schluter®-DILEX
prefabricated movement profiles includes a variety of shapes, sizes, and materials to suit
different applications. Please see Schluter®-Systems’ Illustrated Price List and visit www.
schluter.com for more detailed information on DILEX movement profiles.
TECHNICAL NOTES
The Tile Council of North America (TCNA) and the Terrazzo, Tile, and Marble Association
of Canada (TTMAC) provide guidelines (EJ171 and 301MJ, respectively) for the
placement and construction of movement joints in and around the tile field. Schluter®Systems accepts these guidelines. However, given the increased use of larger tiles,
smaller grout joints, and lighter building materials, which are more susceptible to
movement, Schluter®-Systems recommends that movement joints within the tile field be
placed at more frequent intervals, as indicated below.
Guidelines for the placement of movement joints
Field size not to exceed 400 ft2 (37.0 m2)
Interior applications: 16' - 20' (4.9 m - 6.1 m) in each direction
Interior areas exposed to direct sunlight, moisture, or heated floors: 12' - 16'
(3.7 m - 4.9 m) in each direction
Exterior: 8' - 12' (2.4 m - 3.7 m) in each direction
Place around the perimeter of any size floor and/or against all restraining surfaces
Fields should be as square as possible. The ratio between length and width should
not exceed 1:1.5.
18
MOVEMENT JOINTS
Typical movement joint applications
1 Schluter®-DILEX-EKE
Perimeter Joints
Perimeter joints are provided at the outer edges of any tile installation to accommodate
movements attributable to changes in moisture, temperature, and loading. See figures
1, 2, and 3.
2 SILL SEAL BAND
If Schluter®-DILEX corner movement profiles will not be used, Schluter®-Systems
recommends the use of sill seal (a compressible polyethylene gasket used to seal the
gap between foundations and sill plates) as a quality control measure when providing
perimeter movement joints. The sill seal band is placed against perimeter structures
before any component of the tile assembly is installed, (e.g., Schluter®-DITRA, Schluter®DITRA-XL, additional underlayments including self-leveling materials, mortar beds, etc.
See figures 2 and 3). After the tile is installed and grouted, any excess sill seal material is
cut away, leaving a movement joint with uniform width that is void of any mortar, grout,
or other restraining materials that would render the joint ineffectual.
Surface Joints
Surface joints must be placed within the tiled surface regardless of substrate conditions.
They provide for stress relief from movements in the tile field due to thermal and moisture
expansion/contraction and loading. See figure 4.
3 PERIMETER
EXPANSION JOINT
Expansion Joints
Expansion joints permit both horizontal and vertical differential movements attributable
to thermal and moisture expansion/contraction by providing a complete separation
for the full depth of the slab to allow for free movement between adjoining parts of a
structure or abutting surfaces. They are typically placed at columns, walls, and any other
restraining surfaces. Expansion joints must be continued through the tile covering.
DITRA and DITRA-XL are separated at expansion joints and the joint is continued
through the tile covering using DILEX surface movement profiles. When DITRA and
DITRA-XL are used as waterproofing, the abutted sections must be covered with
Schluter®-KERDI-FLEX or Schluter®-KERDI-BAND.
Cold Joints
4 Schluter®-DILEX-BWS
Cold (construction) joints occur where two successive placements of concrete meet.
True cold joints bond the new concrete to the old and do not allow movement. However,
it takes extra care to accomplish this, so they are usually designed to act as expansion
or control/contraction joints. Cold joints are treated in the same manner as expansion
joints. See above.
Control/Contraction Joints
Control/contraction joints are designed to induce controlled cracking caused by drying
and chemical shrinkage at preselected locations. They are typically formed by saw
cutting, tooling, or through the use of inserts. DITRA and DITRA-XL are not separated
at control/contraction joints; however, surface movement joints must be provided in the
tile covering in accordance with the aforementioned guidelines. See also Surface Joints.
Structural or Seismic Joints
Regarding structural and seismic expansion joints, please contact Schluter®-Systems at
1-800-472-4588 (USA) or 1-800-667-8746 (Canada) for proper installation guidelines.
MOVEMENT JOINTS
19
Note regarding residential applications
Due to the increased popularity of continuous tile installations (i.e., tile continuing
from room to room on a given floor), movement joints have become both increasingly
important and increasingly difficult to provide. For instance, consider the residential
installation shown in Figure 5. It is almost certain that the homeowner will resist the idea
of placing movement joints across any of the rooms shown in the figure, despite TCNA,
TTMAC, and Schluter®-Systems guidelines. However, the need for movement joints in
this installation is undeniable, given the extended size of the field. The question then
becomes, “How does one provide the movement joints necessary to ensure a durable
installation without compromising the aesthetic qualities of the continuous tile field?”
The easiest way to accomplish this goal is to begin by providing movement joints at the
perimeter of the installation. Perimeter joints are absolutely necessary and do not interrupt
the tile field. The next step would be to place movement joints at the thresholds between
rooms or where a tiled hallway meets a larger tiled room. These locations are relatively
inconspicuous and the lines formed by the movement joints are logical in that they
reflect the natural perimeter of each room. Finally, determine if any other characteristics
of the floor plan invite the placement of additional movement joints. In this example, the
intersection of the nook area and kitchen/family room may be a reasonable choice.
Figure 5
Nook
Kitchen
Family
Room
Study/Office
Living/Dining
Room
Master
Suite
Schluter®-Systems understands that the tile setter must take into account the needs of
his or her client in determining the placement of movement joints in a tile installation.
For example, a client may not wish to interrupt a continuous tile field that spans multiple
rooms. However, as indicated by the orange lines above, there are ways to meet
industry guidelines that will serve to provide the client with a durable installation that
remains aesthetically pleasing.
20
MOVEMENT JOINTS
WOOD UNDERLAYMENT
Plywood/OSB underlayment installation guidelines
DISCUSSION
In some applications referenced in this Handbook, adding a layer of plywood or OSB
before installing Schluter®-DITRA and the ceramic or stone tile covering is required to
reduce deflection and curvature of the sheathing between the joists.
INSTALLATION GUIDE
Place underlayment panels (Exposure 1, plugged-face plywood or OSB of minimum
3/8" (10 mm) thickness) with long dimension perpendicular to floor joists such that the
following conditions are met:
1.Abut all underlayment end joints at quarter points between joists.
Example: Abut underlayment panels on either side of the joist centerline at:
4" (102 mm) for 16" (406 mm) o.c. joists, 5" (127 mm) for 19.2" (488 mm) o.c. joists,
or 6" (152 mm) for 24" (610 mm) o.c. joists (see figures 1 & 2).
Note: Underlayment end joints should be placed as far away from subfloor end joints
as possible.
2.Underlayment to overlap edge joints of subfloor by 1/2 of the width of the subfloor
panel (24" - 610 mm). At restraining surfaces, overlap may be less than 24" (610 mm)
when the subfloor panel is less than 48" (1.2 m)-wide (see figure 1).
3.Gap underlayment panels 1/8" (3 mm) on all ends and edges, and 1/4" (6 mm) at
perimeter walls, cabinetry, or other restraining surfaces.
Figures 1 & 2 – Typical Subfloor/Underlayment Detail (Not to Scale)
Figure 1
Figure 2
Plywood/OSB Type and Fastener Schedule Guidelines
Plywood/OSB
Grades
Exposure 1,
plugged-face
plywood or OSB
Plywood/OSB
Thickness - in (mm)
Maximum On-Center Fastener Spacing - in (mm)
Panel Edges
Field
3/8 (10)
4 (102)
6 (152)
1/2 (13)
4 (102)
6 (152)
Greater than 1/2 (13)
6 (152)
6 (152)
The following guidelines must be followed when fastening underlayment panels:
1.Use ring shank nails (no staples) or wood screws (no drywall screws).
2.Fasteners must pass through entire thickness of underlayment and subfloor panels
with minimal penetration into joists (see figure 2).
FINAL WORD
As stated previously, Schluter®-Systems requires that any underlayment panel must have
a minimum thickness of 3/8" (10 mm). When in doubt, increase underlayment thickness.
WOOD UNDERLAYMENT
21
INSTALLATION
Schluter ®-DITRA and Schluter ®-DITRA-XL
Easy Step-by-Step Installation
A step-by-step installation video is available. E-mail us at [email protected] or call us at 1-800-472-4588 (USA) or 1-800-667-8746 (Canada).
To see a video clip, go to www.schluter.com.
2
1
Using a thin-set mortar that is suitable for the
substrate, apply the thin-set mortar (mixed to a
fairly fluid consistency, but still able to hold
a notch) using a 1/4" x 3/16" (6 mm x 5 mm)
V-notched trowel, 5/16" x 5/16" (8 mm x 8 mm)
V-notched trowel, or the DITRA trowel, which
features a 11/64" x 11/64" (4.5 mm x 4.5 mm)
square-notched design.
3
Apply DITRA or DITRA-XL to the floor, fleece side
down. Solidly embed the matting into the bonding
mortar using a float, screed trowel, or Schluter®DITRA-ROLLER (please observe the open time of
the bonding mortar).
When using the DITRA-ROLLER, place a weight
(e.g., bag(s) of mortar/grout or box of tile) not to
exceed 75 lbs on the DITRA-ROLLER shelf. Slowly
move the roller from one end of the matting to the
other, slightly overlapping successive passes.
Tile can be installed over DITRA and DITRA-XL
immediately; no need to wait for the mortar to
cure. Fill the cut-back cavities with unmodified
thin-set mortar and comb additional mortar over
the matting using a trowel that is appropriate for
the size of the tile. Solidly embed the tiles in the
setting material. Periodically remove and check a
tile to ensure that full coverage is being attained.
Back-buttering is a useful way to help ensure
proper coverage, particularly when installing largeformat tiles (e.g., 12" x 12" (305 mm x 305 mm)
and larger).
4
Lift up a corner of the matting to check coverage.
Proper installation results in full contact between
the fleece webbing and the thin-set mortar. Simply
abut end and side sections of adjacent sheets.
Note: Coverage may vary with mortar consistency,
angle at which the trowel is held, substrate
flatness, etc. If full coverage is not achieved,
remove and reapply, making sure to verify proper
mortar consistency and application. In some
cases it may be beneficial to use a trowel with
larger notches, such as a 1/4" x 1/4" (6 mm x 6
mm) square-notched trowel for DITRA-XL.
ESTIMATED THIN-SET COVERAGE
To bond DITRA and DITRA-XL to the
substrate: Use one 50 lb. (22.68 kg) bag of
mortar per 150 - 200 ft2 (13.9 - 18.6 m2).
To bond the tile to the DITRA, using a
1/4" x 3/8" (6 mm x 10 mm) square- or
U-notched trowel: Use one 50 lb (22.68 kg)
bag of mortar per 40 - 50 ft2 (3.7 - 4.6 m2).
To bond the tile to the DITRA-XL, using
a 1/4" x 3/8" (6 mm x 10 mm) square- or
U-notched trowel: Use one 50 lb (22.68 kg)
bag of mortar per 35 - 45 ft2 (3.3 - 4.2 m2).
Waterproofing
The following steps are required for waterproofing only:
1
2
At the joints, fill the cut-back cavities
with unmodified thin-set mortar,
approximately 8" (203 mm) wide,
centered over the joint.
3
Comb additional unmodified thin-set mortar over the joint using a
1/4" x 3/16" (6 mm x 5 mm) V-notched trowel or the Schluter®-KERDI
trowel, which features a 1/8" x 1/8" (3 mm x 3 mm) square-notched design.
Using the flat side of the trowel, firmly press the 5" (127 mm)-wide
Schluter®-KERDI-BAND into the mortar to ensure 100% coverage and to
remove excess mortar and air pockets.
4
At all wall junctions, apply a 10"
(254 mm)-wide strip of KERDI-BAND
as described in steps 1-3, centered
where the wall and floor meet.
Notes
KERDI-BAND must lap DITRA and DITRA-XL at seams and at floor/wall transitions by a minimum of 2" (50 mm) in order to maintain waterproof integrity.
In some applications the vertical section of the floor/wall transition will not accept a bond to unmodified thin-set mortar. Connections to such elements
can be achieved using Schluter®-KERDI-FIX or suitable trowel-applied waterproofing materials, such as those that require atmospheric moisture to cure
(e.g., urethane sealant).
22
INSTALLATION
THIN-SET FACTS
Discussion of thin-set mortars and Schluter®-DITRA installations
QUESTION
Can ceramic tile, including porcelain tile, be set on DITRA
with unmodified thin-set mortar?
ANSWER
YES. In fact, we recommend it. Here’s why:
Portland cement-based unmodified thin-set mortars are dependent on the presence
of moisture for hydration in order to gain strength. Since DITRA is impervious,
it does not deprive the mortar of its moisture. This allows the cement to properly hydrate,
resulting in a strong, dense bond coat. In fact, after the mortar has reached final set
(usually within 24 hours), unmodified thin-set mortars achieve higher strengths when
cured in continually moist conditions.
QUESTION
Can ceramic tile, including porcelain tile, be set on
DITRA with latex-modified thin-set mortar?
ANSWER
We DON’T recommend it. Here’s why:
Latex-modified mortars must air dry for the polymers to coalesce and form a hard film
in order to gain strength. When sandwiched between two impervious materials such as
DITRA and ceramic tile, including porcelain tile, drying takes place very slowly through
the open joints in the tile covering. [According to the TCNA Handbook for Ceramic,
Glass, and Stone Tile Installation, this drying period can fluctuate from 14 days to over
60 days, depending on the geographic location, the climatic conditions, and whether
the installation is interior or exterior]. Therefore, extended cure times would be required
before grouting if using modified thin-set mortars between DITRA and ceramic tile,
including porcelain tile. If extended cure times were not observed, the results could be
unpredictable. This is even more important to consider in exterior applications that are
exposed to rain as there is the additional concern of latex leaching.
ADDITIONAL NOTES
Over 25 years of field experience and testing by the Tile Council of North America
(TCNA) support the efficacy of using unmodified thin-set mortars to bond ceramic tile,
including porcelain tile, to DITRA in both interior and exterior applications. See relevant
testing data on page 25.
Remember, the type of mortar used to apply DITRA depends on the type of substrate.
The mortar must bond to the substrate and mechanically anchor the fleece on the
underside of the DITRA. For example, bonding DITRA to wood requires latex-modified
thin-set mortar. When bonding DITRA to particularly dry, porous concrete with
unmodified thin-set mortar, the slab should be moistened to saturate the concrete and
help prevent premature drying of the mortar. Excess or standing surface water must be
removed prior to installation. Additionally, all mortars (modified and unmodified) have an
acceptable temperature range that must be observed during application and curing.
THINSET FACTS
23
PRODUCT SELECTION
Choosing between Schluter®-DITRA and DITRA-XL
How Do I Choose Between DITRA and DITRA-XL?
Schluter uncoupling membranes provide the four essential functions for successful tile installation over a wide range of substrates, including
plywood/OSB, concrete, gypsum, heated floors, etc. The choice between using DITRA or DITRA-XL depends on the nature of the particular
project or application. The following points will help differentiate between the two products.
DITRA
• Minimizes tile assembly thickness and reduces transitions to lower
surface coverings (e.g., carpet, engineered wood, and vinyl)
• Only 1/8" (3 mm)-thick – provides the thinnest possible assembly
without sacrificing performance
DITRA-XL
• Allows for ceramic tile application over single layer plywood/OSB
subfloors on joists spaced at 24" (610 mm) o.c.
• 5/16" (7 mm)-thick – creates an even transition between typical
5/16" (7 mm)-thick tile and 3/4" (19 mm)-thick hardwood flooring
Even Transitions to Hardwood Flooring
DITRA
In many thin-set ceramic tile applications, one of the goals is to minimize the thickness
of the assembly to reduce height transitions from the tile to other floor coverings such
as carpet, engineered wood, or vinyl. At 1/8" (3 mm)-thick, DITRA accomplishes this
goal while providing the four essential functions for successful tile installations. Schluter
floor profiles finish and protect tile edges at these transitions to complete the installation.
However, where ceramic tile meets 3/4" (19 mm)-thick hardwood, minimizing the
thickness of the tile assembly can result in a height transition up to the hardwood.
On various projects, our customers began using two layers of DITRA to solve this
problem. However, they requested a better solution.
Research and Development
Since the uncoupling function is based on the geometric configuration of the product, we
recognized that increasing the thickness of DITRA would result in increased movement
accommodation. When the new product was tested, it became clear that the increase
was significant. For results of the DITRA-XL ASTM C627 testing, please see page 26.
24
PRODUCT SELECTION
DITRA-XL
TESTING
Evaluation of mortar types used with Schluter®-DITRA
As stated previously in this Handbook, Schluter-Systems recommends the use of unmodified thin-set mortar between DITRA and the
ceramic or porcelain tile covering. In this section, we will address concerns regarding the use of unmodified mortar over DITRA and provide
insight into the overall function of the tile assembly using experimental data. The Tile Council of North America was contracted to perform
independent testing of all experimental setups described hereafter.
A popular misconception in the tile industry is that porcelain tile cannot be bonded using unmodified mortar. To show that
unmodified mortar will provide the necessary performance in DITRA installation systems, the following tests were performed.
First, unmodified mortars from two different manufacturers were used to bond porcelain tile to DITRA over a single layer of 3/4" plywood
with joists spaced at 19.2" o.c. The two installations were tested according to the ASTM C627 “Standard Test Method for Evaluating
Ceramic Floor Tile Installation Systems Using the Robinson Type Floor Tester” and produced ratings of heavy and light. Heavy indicates
a performance level acceptable for shopping malls, stores, commercial kitchens, work areas, laboratories, auto showrooms and service
areas, shipping/receiving, and exterior decks, while light indicates a performance level acceptable for light commercial use in office space,
reception areas, kitchens, and bathrooms. Given that the test assemblies only utilized a single layer of plywood, these high-performance
ratings demonstrate that unmodified mortar can provide a secure bond even over a bending and deflecting substrate. Tiles were removed
from each of the ASTM C627 specimens after the Robinson test was complete, and then used to evaluate shear bond strength between
the unmodified mortar and the tile. Test results are summarized in the table below.
Mortar Type
(Applicable ANSI Standard)
Test Report Number
ASTM C627 Test Rating*
Test Report Number
Manufacturer 1
Unmodified (A118.1)
TCA-046-03 (B)
Heavy (13 cycles)
TCA-073-03
Manufacturer 2
Unmodified (A118.1)
TCA-126-03 (A)
Light (9 cycles)
TCA-186-03
Shear Test Results†
(psi)
Specimens:
327, 267, 267, 246
Average:
277
Specimens:
425, 381, 275, 377
Average:
365
*Test Setup:
1.2" x 2" joists spaced 19.2” o.c.
2.APA-rated “Exposure 1” tongue-and-groove plywood subfloor; 3/4" thickness
3.Spray-dried latex-modified mortar in Test TCA-046-03 and liquid-emulsion latex-modified mortar in Test TCA-126-03 (ANSI A118.4)
4.Schluter®-DITRA mat
5.Unmodified mortar, as indicated in table above (ANSI A118.1)
6.12" x 12" porcelain tile; 3/8" nominal thickness
7.Sanded, spray-dried latex-modified portland cement grout (ANSI A118.7)
† Tile samples removed from ASTM C627 test specimens and evaluated for shear bond strength between mortar and tile
Tests were also performed on DITRA assemblies using unmodified thin-set mortar over concrete according to ASTM C627. The two
assemblies produced ratings of Extra Heavy, indicating a performance level acceptable for extra heavy and high impact use in food plants,
dairies, breweries, and kitchens, and Light, indicating a performance level suitable for light commercial use in office space, reception areas,
kitchens, and bathrooms. Variation in the performance levels achieved is attributable to the different tile used. Test results are summarized
in the table below.
Substrate
Mortar Type (Applicable
ANSI Standard)
Tile
Grout (Applicable
ANSI Standard)
ASTM C627 Test Rating
Test Report Number
Concrete
Unmodified (A118.1)
12" x 12" porcelain;
5/16" nominal thickness
Polymer Modified
Cement Grout (A118.7)
Extra Heavy (14 cycles)
TCNA-039-06
Concrete
Unmodified (A118.1)
2" x 2" porcelain;
1/4" nominal thickness
Polymer Modified
Cement Grout (A118.7)
Light (6 cycles)
TCNA-057-06
Given concern over freeze/thaw performance of unmodified mortar, the next set of tests included shear bond tests of porcelain
tile bonded to concrete with and without DITRA after exposure to freeze-thaw cycles in accordance with ANSI A118.4 (F5.2.6).
An unmodified mortar was used in one installation, while a liquid-emulsion latex-modified mortar from the same manufacturer was used in
the other. It should be noted that when used between two impervious materials, such as porcelain tile and DITRA, latex-modified mortars
must be afforded extended drying times. According to the TCNA Handbook for Ceramic, Glass, and Stone Tile Installation, the necessary
drying period can fluctuate from 14 days to over 60 days when using latex-modified mortar. Since unmodified mortars do not require a
drying period (and actually benefit from continued water presence), they allow for normal use of the tile installation in a fraction of the time
and, as shown in the test data in the table below, provide more than adequate performance.
Mortar Type
(Applicable ANSI Standard)
Shear Test Results‡ (psi) Test Report TCA-145-03
Tile Bonded to Concrete (ANSI A118.4) —
Manufacturer 1
Unmodified (A118.1)
208
Manufacturer 1 Liquid-Emulsion
Latex-modified (A118.4)
199
Tile and DITRA Bonded to Concrete (ANSI A118.10)°
Specimens:
Average:
Specimens:
Average:
66, 61, 70, 62
65
53, 57, 58, 75
61
‡ All specimens subjected to freeze/thaw cycles in accordance with ANSI A118.4 (F5.2.6)
_ ANSI A118.4 requires minimum shear bond strength of 175 psi
° ANSI A118.10 requires minimum shear bond strength of 50 psi
TESTING
25
TESTING & CERTIFICATIONS
Product Evaluation
Schluter-Systems is committed to providing reliable installation systems for ceramic and stone tile. As part of this commitment,
we have invested considerable resources in testing our products and obtaining certifications where applicable to provide our customers
and local code officials with relevant data that supports the efficacy of our systems. All the testing referenced below was performed by
independent laboratories.
Uncoupling and Support/Load Distribution
The method used to establish the overall performance of a tile assembly under loading is the ASTM C627 “Standard Test Method for
Evaluating Ceramic Floor Tile Installation Systems Using the Robinson Type Floor Tester.” The assembly is tested in cycles using a
loaded, revolving carriage. Load, wheel hardness, and number of revolutions vary with each cycle. Once a specified level of damage is
exceeded, the test is stopped. The Tile Council of North America (TCNA) Handbook for Ceramic, Glass, and Stone Tile Installation assigns
performance levels to an assembly based on the number of cycles successfully completed. The ratings include residential, light, moderate,
heavy, and extra heavy, in order of improving performance.
Report Number
Substrate
Joist Spacing
Tile
Rating
TCA-046-03 (B)
Plywood
19.2" o.c.
12" x 12" porcelain
Heavy (13 cycles)
TCA-126-03 (A)
Plywood
19.2" o.c.
12" x 12" porcelain
Light (9 cycles)
TCA-130-04 (C)
OSB
19.2" o.c.
6" x 6" porcelain
Heavy (12 cycles)
TCA-130-04 (A)
OSB
19.2" o.c.
3" x 3" porcelain
Light (7 cycles)
TCNA-039-06
Concrete
N/A
12" x 12" porcelain
Extra Heavy (14 cycles)
TCNA-057-06
Concrete
N/A
2" x 2" porcelain
Light (6 cycles)
TCNA-153-08
Plywood
24" o.c.
6" x 6" porcelain
Extra Heavy (14 cycles)
TCNA-303-06
Plywood
24" o.c.
12" x 12" porcelain
Heavy (12 cycles)
Schluter -DITRA
®
Schluter -DITRA-XL
®
Assembly Notes:
1.All plywood and OSB subfloors were 23/32" (3/4" nom.) -thick
2.DITRA and DITRA-XL bonded to plywood/OSB with modified
thin-set mortar (ANSI A118.11)
3.DITRA bonded to concrete with unmodified thin-set mortar
(ANSI A118.1)
4.Tile bonded to DITRA and DITRA-XL with unmodified thin-set
mortar (ANSI A118.1)
5.Polymer-modified cement grout (ANSI A118.7)
The test results above demonstrate that Schluter®-DITRA and -DITRA-XL perform extremely well under load while at the same time
providing flexibility within the shear plane.
Waterproofing
DITRA and DITRA-XL provide reliable waterproofing in interior and exterior applications. The products have been found to meet or exceed
the requirements of the American National Standard Specifications for Load Bearing, Bonded, Waterproof Membranes for Thin-set
Ceramic Tile and Dimension Stone Installation A118.10. Schluter®-DITRA and DITRA-XL are also listed by cUPC® and have been evaluated
by ICC-ES (Report No. ESR-2467 and PMG-1204).
Vapor Management
The free space under the DITRA matting allows the substrate to breathe, while the material composition provides for a very low water vapor
permeance, which prevents any significant vapor intrusion in the tile assembly from below.
Property
Test Method
Performance
Water vapor permeance
ASTM E96-00 (water method at 73° F and 50% RH)
0.006 perms
The result is that DITRA and DITRA-XL effectively manage vapor and prevent damage to the tile covering as a result.
Green Building
DITRA has been independently tested to determine VOC emissions per California Specification 01350: “Standard Practice for the Testing
of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers”
Property
Test Method
Performance
VOC emissions
CA 01350 and ASTM D5116
0.0 mg/m3
Thus, DITRA has been found to emit zero VOCs and can contribute towards achieving the following green building credits:
• LEED, IEQ Credit 4.3: Low-Emitting Materials - Flooring Systems
• ICC 700-2008, 901.6: Pollutant Source Control - Hard-Surface Flooring
• CHPS, EQ2.2: Low-Emitting Materials
26 TESTING & CERTIFICATIONS
NATURAL STONE
Discussion of natural stone and single-layer wood subfloors
Natural stone is a product of nature with a wide variety of colors, patterns, and textures that come together to distinguish it as one of the
premiere surface coverings available on the market. Some of stone’s characteristics, which add to its beauty and uniqueness, are veins,
fissures, starts, and dry-seams. While these characteristics enhance its aesthetic appeal, they’re also indicators that point to the inherent
variability of the flexural strength of natural stone, which can have detrimental effects on serviceability. This variability is underscored by
examining the range of typical flexural (bending) strengths of ceramic tile compared to the range of strength for some common natural stones.
Schluter-Systems contracted the Tile Council of North America (TCNA) to perform flexural strength testing on various commercially
available ceramic tiles and dimension stones guided by the ASTM C880 Standard Test Method for Flexural Strength of Dimension Stone.
Five samples of each tile and stone were tested, with the minimum recorded values displayed in the figure below. We have chosen
to show only minimum values since these represent the weakest samples, which would be most prone to cracking in service over a
bending substrate.
6000
Minimum Recorded Flexural Strength (psi)
5236
5000
4485
4241
4000
3000
2490
2438
2000
1856
1488
1000
539
0
Porcelain A
Ceramic B
Porcelain B
Granite
Ceramic A
White Carrara
Slate
Crema Marfil
337
Travertine
It is clear from the figure that the minimum recorded flexural strengths of these dimension stones tend to be significantly less than those
of the ceramic tiles. In some cases, the differences are dramatic. For example, the minimum recorded flexural strength of the weakest
travertine sample (337 psi) was only 14% of the minimum flexural strength of the weakest ceramic sample (2438 psi). In other words, the
weakest ceramic sample was more than 7 times as strong as the weakest travertine sample. As another example, the minimum recorded
flexural strength of the weakest porcelain sample is more than 12 times as strong as the minimum recorded flexural strength of the weakest
travertine sample.
Q. Why does Schluter-Systems recommend a double-layer wood floor for installing natural stone over DITRA and DITRA-XL?
A. There are three principle reasons: 1) As illustrated above, the fact that most stone products have a minimum flexural strength that
is substantially lower than what is typical for ceramic tile; 2) Stones are products of nature and complex heterogeneous materials with
naturally occurring regions of discontinuity, such as veins and fissures. Such features can be weaker than the surrounding stone fabric and
act as “stress risers,” concentrating bending stresses within the region of discontinuity; and 3) When wood floor assemblies are subjected
to forces such as loading – both live and dead loads – they produce flexural stresses in the surface covering which can cause weak and
brittle materials to break or crack.
Engineering mechanics as well as field observations show that the location of maximum flexural stresses in the floor assembly is directly
over the floor joists and at seams in the subfloor panels. Therefore, we recommend double-layer wood floors when installing natural stone
in order to increase the stiffness of the sheathing assembly and position underlayment seams away from the joists to minimize flexural
stresses in the stone covering directly above the joists and at seams. Refer to page 21 for underlayment installation guidelines. For more
information on the development of these guidelines, please refer to the article titled “Position of Underlayment to Prevent Cracked Tile and
Grout” on our website at www.schluter.com/5138.aspx.
NATURAL STONE
27
Q. What distinguishes DITRA-XL from DITRA?
A. Since the uncoupling function of DITRA is founded on its geometric flexibility to provide a forgiving shear plane, increasing the height
of the product produces additional protection against stresses being transferred between the tile and supporting substrate. Testing
reveals that this increase is significant.
Four assemblies incorporating natural stone installed with DITRA-XL over single-layer plywood subfloors were tested according to the
ASTM C627 Standard Test Method for Evaluating Ceramic Floor Tile Installation Systems Using the Robinson Type Floor Tester as
shown below.
Joist Spacing
Stone
ASTM C627 Test Results
Rating
19.2" o.c.
White Carrara
12 cycles
Heavy
TCNA Test Report Number
TCNA-121-07 (A)
24" o.c.
White Carrara
7 cycles
Light
TCNA-121-07 (B)
24" o.c.
Crema Marfil
5 cycles
Residential
TCNA-441-07
24" o.c.
Travertine
5 cycles
Residential
TCNA-441-07
Test Setup:
1. 2" x 2" joists
2. APA-rated “Exposure 1” tongue-and-groove plywood subfloor; 23/32" (3/4" nom.) thickness
3. Latex portland cement mortar (ANSI A118.11)
4.Schluter®-DITRA-XL
5. Unmodified thin-set mortar (ANSI A118.1)
6. Stone (12" x 12" x 3/8" nom. for each type)
7. Polymer-modified cement grout (ANSI A118.7)
These test assemblies represent demanding conditions, given the bending and deflection of the single-layer plywood subfloor under
loading and keeping in mind the lower flexural strengths of these types of stones. The results indicate that DITRA-XL provides superior
movement accommodation to limit stress transfer and protect the natural stone surface covering against damage.
It should be noted that one limitation of the ASTM C627 test is that test specimens do not include seams or butt joints between subfloor
panel ends as would be present in an actual floor construction. Subfloor butt joints are located in areas of maximum bending flexural stress
(on the joists).
Q. Then why doesn’t Schluter-Systems warranty DITRA-XL for stone applications over single-layer wood subfloors?
A. Schluter-Systems acknowledges that, in many instances, the market is requesting stone applications over single-layer wood subfloors.
This is due in large part because customers want even transitions to adjacent flooring surfaces and don’t want the additional cost
of installing another layer of wood. Schluter-Systems has responded to this request with DITRA-XL. In our opinion, based on laboratory
testing and field experience, DITRA-XL is the most reliable system for installing natural stone over single-layer wood subfloors on the
market today.
Still, the inherent variability in the flexural strength of natural stone in conjunction with the dynamics of single-layer wood subfloors can
produce substantial uncertainty in predicting the in-service performance of the stone covering. As such, Schluter-Systems cannot warranty
stone coverings over single-layer wood subfloors.
When the risks associated with natural stone and a single-layer wood application are unacceptable to the owner, building design
professional, general contractor, and/or installer, then detail D-W-S is recommended, which includes the use of a plywood/OSB
underlayment (double-layer wood system) in addition to the DITRA or DITRA-XL uncoupling membrane. Double-layer wood systems using
DITRA or DITRA-XL for supporting stone are covered by the DITRA & DITRA-XL warranty (see page 35).
28 NATURAL STONE
SOUND CONTROL
Discussion of sound control in conjunction with ceramic & stone tile
Controlling sound transmission through floor/ceiling assemblies in multi-story construction can present challenges to architects and
design professionals, particularly when hard surface coverings, including ceramic and stone tiles, are used. This is because sound control
materials tend to be compressible and may not provide adequate support for the tile layer in thin-set applications. However, there are
practical methods that allow for the use of tile and stone while providing sound transmission control.
Sound transmission categories, evaluation, and code requirements
The first category is airborne sound, such as speaking, music, etc. Airborne sound transmission is measured using standard test methods.
For example, the ASTM E90 and ASTM E336 test methods are commonly used for laboratory and field measurement of airborne sound
transmission, respectively. The results from these tests are then used to calculate a single-number rating per ASTM E413 that is called sound
transmission class (STC) or field sound transmission class (FSTC).
The second category is impact sound, such as foot traffic, dropped items, etc. The ASTM E492 and ASTM E1007 test methods are
commonly used for laboratory and field measurement of impact sound transmission, respectively. The results from these tests are then used
to calculate a single-number rating per ASTM E989 that is called impact insulation class (IIC) or field impact insulation class (FIIC). The ASTM
E2179 test method was developed to provide a means of evaluating the flooring assembly’s contribution to a concrete floor. The contribution
of the flooring assembly to the IIC of the slab is calculated and reported as the ΔIIC (delta IIC).
Building codes typically contain requirements for both STC and IIC. For example, the International Building Code (IBC) calls out minimum
values of 50 for STC and IIC or 45 for FSTC and FIIC as an alternative to laboratory testing. The International Residential Code (IRC) calls out
minimum values of 45 for STC and IIC. Condominium associations may have their own minimum requirements for sound attenuation as well.
Factors affecting performance
Airborne sound transmission through floor/ceiling assemblies can be reduced effectively by increasing the mass of the assembly and
introducing suspended ceilings with sound insulation in the cavities. In general, STC ratings are largely independent of the choice of floor
covering. Furthermore, the methods used to improve STC ratings as called out above do not have adverse effects on the floor covering.
Thus, airborne sound transmission control is not a challenge to be addressed by the tile industry.
Impact sound control performance is dependent upon both the floor/ceiling structure and the floor covering itself. In general, impact sound
control with hard surface coverings is best achieved with floating systems that incorporate resilient layers.
A 6" (152 mm)-thick concrete slab will produce an IIC rating of approximately 28 without the floor covering or ceiling assembly. The direct
application of tile will not significantly improve the IIC rating. When flexible underlayments (membranes) are used in a thin-set assembly the
IIC rating can be improved, though the use of additional sound attenuation methods (e.g., sound-rated ceilings) are typically necessary
to meet required minimums. As resilient layers within a thin-set assembly are made thicker and more flexible sound control tends to
improve, but load-bearing capacity is reduced. This is the inherent limitation of thin-set assemblies for sound control. However, relatively
thick and resilient sound underlayments can be combined with a load-distribution layer (e.g., mortar bed, lightweight concrete topping,
poured gypsum underlayment) to provide excellent results (sound control meeting code minimums) without a sound-rated ceiling and
still provide good support for the tile assembly. For example, research has shown that a 1-3/8" (35 mm)-thick concrete topping over
1" (25 mm)-thick mineral fiber board on a 6" (152 mm)-thick concrete slab will produce an average IIC rating of approximately 60 to 65
without the floor covering or ceiling assembly, which far exceeds code minimums.
Wood-frame construction typically consists of a plywood or OSB subfloor supported on joists with gypsum board used to finish the ceiling
underneath. The first step in improving impact sound control is to ensure that the gypsum board ceiling is not directly attached to the joists.
Resilient channels are used to provide isolation between the gypsum board and the joists. Sound insulation batts are placed in the cavities
between joists as well. This type of assembly will produce an IIC rating of approximately 45 before the flooring assembly is installed. This
rating can be improved by increasing the mass of the assembly (e.g., adding another layer of gypsum board to the ceiling or plywood/OSB
to the floor). The direct application of tile over the subfloor can actually lower the IIC rating of this assembly. Using flexible underlayments
may mitigate this effect or even improve the IIC rating, but currently there is no standard test method available to quantify the contribution
of a flooring assembly to wood-frame construction in general. Again, the use of relatively thick and resilient sound underlayments can be
combined with a load-distribution layer to provide significant sound control and a solid base for tile installation.
Schluter ®-DITRA
Schluter-Systems has never promoted DITRA as a sound control system. However, DITRA provides a degree of sound attenuation
similar to various thin-set sound control membranes. DITRA and ceramic tile were tested* over a 6" (152 mm)-thick concrete slab and
the measured IIC rating of this assembly was 10 points greater than the measured IIC rating of the bare slab (IIC bare slab = 28, IIC slab
w/DITRA and tile = 38). This level of performance is not sufficient to meet typical code requirements without additional sound control
measures. As discussed above, the use of a sound control underlayment in combination with a load-distribution layer such as a mortar
bed, lightweight concrete, or gypsum concrete can significantly improve the IIC rating of the assembly. Sound-rated ceilings can improve
the IIC rating as well.
* Please note that this testing was performed prior to the approval of the ASTM E2179 standard test method and used a smaller specimen
size (4 ft x 4 ft) than required by existing sound control test method standards.
Installation Considerations
In laboratory testing, sound energy transmission is effectively directed through the test specimen only, with negligible transfer through other
paths. In other words, the values recorded provide an accurate picture of the sound control characteristics of the test specimen itself.
However, in construction, floor/ceiling assemblies and wall assemblies are connected to form the final structure and there is potential
for interaction between these elements. Floor/ceiling assemblies may not perform as expected in the field with respect to both airborne
and impact sound control if they are not isolated from adjacent walls to prevent sound energy transfer. Thus, perimeter joints serve to
accommodate expansion of the tile assembly and prevent “flanking” sound transfer. Schluter-Systems provides a range of prefabricated
movement joint profiles that can be used to limit movement stresses due to changes in moisture content, temperature, and loading and
limit sound energy transfer.
SOUND CONTROL
29
HOW DOES IT WORK?
Explanation of how Schluter®-DITRA functions
To understand how the DITRA system works, it is important to first understand what a tile assembly is, how it functions, and how stresses
occur within the assembly. A tile installation is a composite assembly that consists of layered components (underlayments, bonding
mortars, tile, etc.). The primary sources of stress in this composite system are movements due to loading, changes in temperature,
and changes in moisture content (either in the substructure or in the components of the tile assembly, including the tile itself). When an
installation is subjected to these movements, compressive and tensile stresses develop within the assembly and interact to produce shear
stresses at the interfaces between the layered components. Therefore, a tile assembly must be able to perform well under load and, at the
same time, provide flexibility within the shear plane.
The method used to establish the overall performance of a tile assembly under loading is the ASTM C627 “Standard Test Method for
Evaluating Ceramic Floor Tile Installation Systems Using the Robinson Type Floor Tester.” The assembly is tested in cycles using a loaded,
revolving carriage. Load, wheel hardness, and number of revolutions vary with each cycle. Once a specified level of damage is exceeded,
the test is stopped. The Tile Council of North America (TCNA) Handbook for Ceramic, Glass, and Stone Tile Installation assigns performance
levels to an assembly based on the number of cycles successfully completed. The ratings include residential, light, moderate, heavy, and
extra heavy, in order of improving performance.
The TCNA conducted the tests shown below, which included a single layer of plywood (3/4" thick) over joists spaced at 19.2"
o.c., DITRA bonded using modified thin-set mortar (ANSI A118.4), 12" x 12" porcelain tile (3/8" thick) bonded using unmodified
thin-set mortar (ANSI A118.1), and modified portland cement grout (ANSI A118.7).
Test Report Number
Number of Cycles Passed
Rating
TCA-046-03 (B)
13
Heavy
TCA-126-03 (A)
9
Light
The two installations produced ratings of heavy and light, according to the TCNA Handbook for Ceramic, Glass, and Stone Tile
Installation. “Heavy” indicates a performance level acceptable for shopping malls, stores, commercial kitchens, work areas, laboratories,
auto showrooms and service areas, shipping/receiving, and exterior decks, while “light” indicates a performance level acceptable for light
commercial use in office space, reception areas, kitchens, and bathrooms.
Given that the test assemblies consisted of only a single layer of plywood over joists spaced at 19.2" o.c. (a bending and deflecting
substrate), these ratings demonstrate that DITRA performs extremely well under load while at the same time providing flexibility within the
shear plane.
DITRA provides uncoupling (geometric flexibility) through its open rib structure, which allows for in-plane movement that
effectively neutralizes the differential movement stresses between the substrate and the tile.
When placed on a solid foundation, columns or pillars can support tremendous loads. The same physical principle
applies to DITRA installations. Column-like mortar structures are formed in the cutback cavities of the matting. Loads
are transferred from the tile covering through these column-like mortar structures to the substrate. Since mortar has a
very high compressive strength, DITRA becomes virtually incompressible within the tile assembly and, therefore, doesn’t
sacrifice load-distribution capabilities of the system.
This flexibility is readily apparent when the overall DITRA assembly is subjected to shear testing. In the tests shown below, porcelain tile
was bonded to concrete using unmodified thin-set mortar meeting ANSI A118.1. One specimen included DITRA, while the other did not.
The results show that the amount of stress developed in the system when the tile layer is displaced is significantly reduced through the
inclusion of DITRA, which is due to the product’s flexibility in the shear plane.
Assembly
Average Maximum Shear Stress (psi)
Tile over concrete
208
Tile and DITRA over concrete
65
Tile has been successfully installed for thousands of years by incorporating an uncoupling layer, or forgiving shear interface, between the
tile assembly and the substrate. This practice has evolved from the sand-strata method (tile set in mortar over a layer of tamped sand) to
the unbonded mortar bed method (tile set in mortar over a cleavage membrane). However, this alone does not ensure a high-performance
tile installation. The tile covering must be well supported so that loads can be distributed through the assembly to the substructure without
damaging the tile covering. Therefore, a viable tile assembly must be designed to incorporate both support/load distribution of the tile layer
and flexibility within the shear plane (e.g., a traditional unbonded mortar bed allows for flexibility at the shear plane through a cleavage
membrane, but still provides a solid base for the tile layer).
Since DITRA utilizes geometric flexibility in the shear plane rather than material flexibility, the advantages of uncoupling are achieved without
sacrificing load-distribution capabilities of the tile assembly. Thus, it is the combination of geometric flexibility in the shear plane and support
in the normal direction that allows DITRA to protect the tile layer from stresses due to loading and changes in temperature and moisture.
30 HOW DOES IT WORK?
PRODUCT & ORDERING INFO
The ordering information for the Schluter®-DITRA, Schluter®-DITRA-XL and Schluter®-KERDI components outlined in this Handbook
is located below. For technical support, Illustrated Price List, or to receive additional information on our complete product line, please call
1-800-472-4588 (USA) or 1-800-667-8746 (Canada), or visit our comprehensive website at www.schluter.com.
Schluter ®-DITRA
DITRA is a pressure-stable polyethylene membrane, vacuum-formed in a cutback grid design, with
an anchoring fleece laminated to its underside. DITRA is 1/8" (3 mm) in height and emits zero VOC.
Schluter ®-DITRA
Uncoupling and waterproofing membrane (1/8" - 3 mm thick)
Item No.
DITRA 5M
DITRA 150
DITRA 30M
Dimensions
3' 3" x 16' 5" = 54 ft2 (1 m x 5 m = 5 m2)
3' 3" x 45' 9" = 150 ft2 (1 m x 14 m = 14 m2)
3' 3" x 98' 5" = 323 ft2 (1 m x 30 m = 30 m2)
Schluter ®-DITRA-XL
DITRA-XL is a pressure-stable polyethylene membrane, vacuum-formed in a cutback grid design,
with an anchoring fleece laminated to its underside. DITRA-XL is 5/16" (7 mm) in height and emits
zero VOC.
Schluter ®-DITRA-XL
Uncoupling and waterproofing membrane (5/16" - 7 mm thick)
Item No.
DITRA-XL/175
Dimensions
3' 3" x 53' 3" = 175 ft2 (1 m x 16.25 m = 16.25 m2)
Schluter ®-KERDI-BAND
KERDI-BAND is a waterproofing strip used to seal butt joints and floor/wall connections with the
KERDI and DITRA membranes, as well as profile connections with the Schluter®-BARA balcony
edging profile series.
Schluter ®-KERDI-BAND
Waterproofing strip
KEBA
KEBA
KEBA
KEBA
KEBA
KEBA
KEBA
Item No.
100/125/5M
100/125/10M
100/185/5M
100/250/5M
100/125
100/185
100/250
Width
5" - 125 mm
5" - 125 mm
7-1/4" - 185 mm
10" - 250 mm
5" - 125 mm
7-1/4" - 185 mm
10" - 250 mm
Length
16' 5" - 5 m
33' - 10 m
16' 5" - 5 m
16' 5" - 5 m
98' 5" - 30 m
98' 5" - 30 m
98' 5" - 30 m
Thickness
4 mil
4 mil
4 mil
4 mil
4 mil
4 mil
4 mil
Note: 1 mil = 1 one-thousandth of an inch
PRODUCT & ORDERING INFO
31
Schluter ®-KERDI-FLEX
KERDI-FLEX is a flexible polyethylene waterproofing strip used to seal movement joints over
DITRA in specialty applications where large movements are expected, i.e. over expansion joints or
construction joints.
Schluter ®-KERDI-FLEX
Waterproofing strip for use above movement joints
Item No.
FLEX 125/5M
FLEX 250/5M
FLEX 125/30
FLEX 250/30
Width
5" - 125 mm
10" - 250 mm
5" - 125 mm
10" - 250 mm
Length
16' 5" - 5 m
16' 5" - 5 m
98' 5" - 30 m
98' 5" - 30 m
Thickness
12 mil
12 mil
12 mil
12 mil
Note: 1 mil = 1 one-thousandth of an inch
Schluter ®-KERDI-KERECK-F
KERDI-KERECK-F are preformed, seamless corners made of KERDI for waterproofing inside and
outside corners.
Schluter ®-KERDI-KERECK-F
Waterproofing for corners
Inside Corner
Outside Corner
Item No.
KERECK/FI 2
KERECK/FI 10
KERECK/FA 2
KERECK/FA 10
Waterproofing for 135º corners
KERECK135/FI2
KERECK135/FI10
Thickness
4 mil
4 mil
4 mil
4 mil
Packaging
2 Inside corners
10 Inside corners
2 Outside corners
10 Outside corners
4 mil
4 mil
2 Inside corners
10 Inside corners
Note: 1 mil = 1 one-thousandth of an inch
Schluter -KERDI-KM
®
KERDI-KM prefabricated seal is cut sections of the KERDI waterproofing membrane designed to seal
protrusions through the KERDI or DITRA/DITRA-XL membranes. KERDI-KM is designed to be used
in conjunction with Schluter®-KERDI-FIX or equivalent sealant to seal around pipes or other similar
elements.
Schluter ®-KERDI-KM
Pipe seal
Item No.
KM 5117/22
Dimensions
Thickness
Packaging
4 mil
5 units
7" x 7" - 175 x 175 mm
Hole diameter, ø = 7/8" - 22 mm
Note: 1 mil = 1 one-thousandth of an inch
Schluter ®-DITRA-TROWEL and Schluter ®-KERDI-TROWEL
Used to install DITRA and KERDI membranes. The DITRA-TROWEL features an 11/64" x 11/64"
(4.5 mm x 4.5 mm) square-notched design while the KERDI-TROWEL features a 1/8" x 1/8"
(3 mm x 3 mm) square-notched design.
Schluter ®-DITRA-TROWEL and Schluter ®-KERDI-TROWEL
Trowels used to install DITRA and KERDI membranes
Item No.
32 PRODUCT & ORDERING INFO
Notch Size
Packaging
TRL-DIT6
11/64" x 11/64" (4.5 mm x 4.5 mm)
6 units
TRL-KER6
1/8” x 1/8” (3 mm x 3 mm)
6 units
Schluter ®-DITRA-ROLLER
Used to embed DITRA membranes in the bond coat during membrane installation. The lightweight
DITRA-ROLLER features a 14-1/2" (37 cm) wide roller and a shelf for placing 50 to 75 lbs of
weight (e.g., bag of thin-set mortar or grout, box of tiles, etc.). Between uses, it can be conveniently
disassembled for transport and storage.
Schluter ®-DITRA-ROLLER
Used to embed DITRA in the bond coat
Item No.
DIRO
Width
14-1/2" (37 cm)
Schluter ®-KERDI-FIX
KERDI-FIX is a single-component sealing and bonding compound with a silane-modified
polymer base. It is odor-neutral, UV- and weather-resistant, and contains no solvents. KERDI-FIX
is elastomeric and bonds well to most materials, such as wood, stone, concrete, metal, glass,
and many plastics. KERDI-FIX is suitable for the bonding of KERDI waterproofing membrane to
Schluter®-BARA balcony profiles and to vertical sections of floor/wall transitions that will not accept
a bond to unmodified thin-set mortar. KERDI-FIX is also suitable for use as a sealant or as a joint
filling compound.
Schluter ®-KERDI-FIX
Sealing and bonding compound
Item No.
KERDIFIX/color*
Description
Cartridge (290 ml)
*Color Codes
BW
Bright
white
G
Grey
Notes
PRODUCT & ORDERING INFO 33
Notes:
34
NOTES
WARRANTY
Schluter ®-DITRA & Schluter ®-DITRA-XL 10-Year Limited Warranty
COVERAGE AND CONDITIONS: Subject to the conditions and limitations as stated hereinafter, Schluter-Systems* warrants that
Schluter®-DITRA or Schluter®-DITRA-XL (the “Products”) will meet all composition and performance criteria for a period of ten (10)
years from the date of purchase only when the Products are used and installed in accordance with the terms and conditions of the
Schluter®-DITRA Installation Handbook and industry standard guidelines that are not in conflict with the Handbook in effect at the time of
installation. Further, efflorescence is considered to be a natural occurrence with cementitious materials and is therefore not considered to
be a defective condition and is not covered by this warranty. It is the responsibility of the owner/ builder/ installer to ensure the suitability
of all building materials and all associated building materials for the owner’s intended use. It is recommended that the owner consult with
an experienced and professional installer.
RESOLUTION: If the Products fail to meet this warranty, then the owner’s exclusive remedy and the sole obligation of Schluter-Systems,
at its election, shall be to a) reinstall or replace the failed portion of the floor covering assembly or b) pay an amount not to exceed the
original square foot cost of the installation of the floor covering assembly verified to be defective. Floor covering assembly is defined to
include all DITRA or DITRA-XL materials, non-reusable flooring surfaces, and the appropriate setting and grouting materials. Further, due
to conditions beyond the control of Schluter- Systems (e.g., color and shade availability, discontinuation, normal wear and tear), SchluterSystems cannot guarantee or warrant an exact match to the specific tile, stone, or other flooring materials used in the installation. In such
events, substantially similar materials may be substituted.
DISCLAIMER: THERE ARE NO WARRANTIES BEYOND THIS EXPRESSED WARRANTY AS STATED ABOVE. ALL OTHER WARRANTIES,
REPRESENTATIONS OR CONDITIONS, EXPRESSED OR IMPLIED, ARE DISCLAIMED AND EXCLUDED, INCLUDING WARRANTIES,
REPRESENTATIONS OR CONDITIONS OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE ARISING BY STATUTE
OR OTHERWISE BY LAW OR FROM A COURSE OF DEALING OR USAGE OF TRADE. SCHLUTER-SYSTEMS EXCLUDES AND IN NO
EVENT SHALL HAVE ANY LIABILITY FOR LOST PROFITS OR ANY OTHER INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES, ARISING OUT OF OR OTHERWISE CONNECTED TO FAILURE OF THE PRODUCTS OR FLOORING SYSTEM
OF WHICH THEY ARE PART, NOR MISUSE OF THE PRODUCTS OR FLOORING SYSTEM, REGARDLESS OF ANY STRICT LIABILITY,
ACTIVE OR PASSIVE NEGLIGENCE OF SCHLUTER SYSTEMS, AND REGARDLESS OF THE LEGAL THEORY (CONTRACT OR TORT OR
EXTRA-CONTRACTUAL OR OTHER), NOR FROM ACTS OF WAR, TERRORISM, FAULTY AND NEGLIGENT PENETRATION OF THE
SYSTEM, FIRES, EXPLOSIONS, ACTS OF GOD, INTENTIONAL ACTS OF DESTRUCTION OR ANY LOSSES DUE TO STRUCTURAL
FAILURE OR OTHER CAUSES UNRELATED TO THE PRODUCTS OR DELAYS, OR ANY OTHER INCIDENTAL OR CONSEQUENTIAL
DAMAGES. THIS WARRANTY IS GIVEN IN LIEU OF ANY OTHER WARRANTY EXPRESSED OR IMPLIED. THE REMEDIES CONTAINED
HEREIN ARE THE ONLY REMEDIES AVAILABLE FOR BREACH OF THIS WARRANTY. THIS LIMITED WARRANTY GIVES YOU
SPECIFIC LEGAL RIGHTS; SOME STATES AND PROVINCES DO NOT ALLOW DISCLAIMERS OR OTHER RESTRICTIONS OF IMPLIED
WARRANTIES, SO SOME OF THE ABOVE DISCLAIMERS MAY NOT APPLY TO YOU.
TRANSFERABILITY: This Limited Warranty extends ONLY to the original end user (defined as original intended owner and user of the
property/unit in which the installation is incorporated - herein referred to as “Owner”) and is not transferable or assignable, unless approved
in writing by the Technical Director or an Officer of Schluter-Systems or otherwise prohibited by specific state or provincial law.
MODIFICATIONS TO WARRANTY: No changes or modification of any terms or conditions of this warranty are allowed unless authorized
by written agreement and signed by the Technical Director or an Officer of Schluter-Systems.
EFFECTIVE DATE: This warranty shall supersede and replace any and all prior oral or written warranties, agreements, or other such
representations made by or on behalf of Schluter-Systems relative to the Products or the application of the Products and shall apply to any
installation occurring on or after January 1, 2013.
CLAIMS ON THIS LIMITED WARRANTY: To make a claim under this Limited Warranty, the Owner must provide Schluter-Systems
with written notice within 30 days of any alleged defect in the Products covered by this Limited Warranty, together with date and proof
of purchase of the Products, proof of the costs of the original installation and name and address of all installers, failing which this Limited
Warranty shall be of no legal effect. Schluter-Systems reserves the right at its election and as a condition of this Limited Warranty to inspect
the alleged failed and defective condition.
All U.S. Claims shall be sent to: All Canadian Claims shall be sent to:
Schluter Systems L.P.
Attn: Warranty Claims Dept.
194 Pleasant Ridge Road
Plattsburgh, NY 12901-5841 Schluter Systems (Canada), Inc.
Attn: Warranty Claims Dept.
21100 chemin Ste-Marie
Ste-Anne-de-Bellevue, QC H9X 3Y8
*For the purpose of this warranty Schluter Systems, L.P. shall provide the warranty for all products for end users located in the United States, and
Schluter Systems (Canada) Inc. shall provide the warranty for all products for end users located in Canada. This warranty is limited to
sales of the Products made in and intended for use in the United States and Canada.
WARRANTY35
09/2015
© 2015 Schluter Systems L.P.
www.schluter.com
552378
Schluter Systems L.P. • 194 Pleasant Ridge Road, Plattsburgh, NY 12901-5841 • Tel.: 800-472-4588 • Fax: 800-477-9783
Schluter Systems (Canada) Inc. • 21100 chemin Ste-Marie, Ste-Anne-de-Bellevue, QC H9X 3Y8 • Tel.: 800-667-8746 • Fax: 877-667-2410
Was this manual useful for you? yes no
Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Related manuals

Download PDF

advertisement