AHS/AHM36 CANopen Absolute Encoder

AHS/AHM36 CANopen Absolute Encoder
OPERATING INSTRUCTIONS
AHS36 CANopen
AHM36 CANopen
Absolute Encoder
Described product
AHS36/AHM36 CANopen
Manufacturer
SICK STEGMANN GmbH
Dürrheimer Str. 36
78166 Donaueschingen
Germany
Legal information
This document is protected by the law of copyright. Whereby all rights established
therein remain with the company SICK STEGMANN GmbH. Reproduction of this
document or parts of this document is only permissible within the limits of the legal
determination of Copyright Law. Any modification, expurgation or translation of this
document is prohibited without the express written permission of SICK STEGMANN
GmbH.
The trademarks stated in this document are the property of their respective owner.
© SICK STEGMANN GmbH. All rights reserved.
Original document
This document is an original document of SICK STEGMANN GmbH.
2
OPERATING INSTRUCTIONS | AHS36/AHM36 CANOPEN
8016869/YS01/2016-02-17 | SICK STEGMANN
Subject to change without notice
CONTENTS
Contents
1
About this document ................................................................................ 6
1.1
1.2
1.3
1.4
1.5
1.6
2
On safety..................................................................................................... 9
2.1
2.2
2.3
2.4
3
3.3
4.3
Special features........................................................................................ 14
Operating principle of the encoder ........................................................... 15
4.2.1
Scaleable resolution................................................................ 15
4.2.2
Preset function ........................................................................ 15
4.2.3
Round axis functionality .......................................................... 16
4.2.4
Electronic cam mechanism ..................................................... 18
Controls and status indicators.................................................................. 18
Integration in CANopen ..........................................................................19
5.1
5.2
5.3
5.4
8016869/YS01/2016-02-17 | SICK STEGMANN
Subject to change without notice
Node ID/Baud rate ................................................................................... 11
Parameterization ...................................................................................... 12
3.2.1
EDS file.................................................................................... 12
3.2.2
Save or restore parameters..................................................... 12
Process data objects (PDOs)..................................................................... 13
3.3.1
PDO communication................................................................ 13
3.3.2
PDO mapping........................................................................... 13
Product description.................................................................................14
4.1
4.2
5
Authorized personnel.................................................................................. 9
Intended use............................................................................................... 9
General safety notes and protective measures ........................................ 10
Environmental protection ......................................................................... 10
Quick start instructions on the AHS36/AHM36 CANopen................11
3.1
3.2
4
Function of this document.......................................................................... 6
Target group................................................................................................ 6
Information depth....................................................................................... 6
Scope.......................................................................................................... 7
Abbreviations used ..................................................................................... 7
Symbols used.............................................................................................. 8
Communication profile.............................................................................. 19
5.1.1
CANopen in the OSI model ...................................................... 19
5.1.2
Communication channels........................................................ 20
5.1.3
Topology .................................................................................. 20
Node IDs and COB-IDs .............................................................................. 21
Baud rate.................................................................................................. 22
Layer Setting Services (LSS) ..................................................................... 22
OPERATING INSTRUCTIONS | AHS36/AHM36 CANOPEN
3
CONTENTS
5.5
5.6
5.7
5.8
6
Object library ............................................................................................43
6.1
6.2
6.3
6.4
6.5
7
Nomenclature ........................................................................................... 43
Standard objects....................................................................................... 44
6.2.1
Detailed information on the standard objects......................... 45
Process Data Objects................................................................................ 51
6.3.1
Basic PDO structure ................................................................ 51
6.3.2
Parameter of the Receive PDO ................................................ 52
6.3.3
Parameter of the Transmit PDOs............................................. 53
6.3.4
Transmission types.................................................................. 55
6.3.5
Objects and their subindices that can be mapped .................. 57
Encoder profile specific objects................................................................ 58
6.4.1
Encoder parameters................................................................ 59
6.4.2
Objects for the electronic cam mechanism (CAM)................... 62
6.4.3
Objects for diagnostics ............................................................ 66
Manufacturer-specific objects .................................................................. 71
6.5.1
Objects for the encoder configuration ..................................... 72
6.5.2
Objects that provide status information .................................. 78
Commissioning........................................................................................86
7.1
7.2
7.3
7.4
4
Network management (NMT).................................................................... 26
5.5.1
CANopen state machine.......................................................... 26
5.5.2
Network Management Services............................................... 27
5.5.3
Boot-up message..................................................................... 28
5.5.4
Node Guarding and Heartbeat ................................................ 28
Service Data Objects (SDO) ...................................................................... 29
Process Data Objects (PDO)...................................................................... 31
5.7.1
PDO mapping........................................................................... 31
5.7.2
PDO data transmission............................................................ 32
5.7.3
Asynchronous or synchronous formation of the position......... 34
Configurable functions.............................................................................. 35
5.8.1
EDS file.................................................................................... 35
5.8.2
Scaling parameters ................................................................. 35
5.8.3
Preset function ........................................................................ 38
5.8.4
Cyclic process data.................................................................. 39
5.8.5
Speed measurement............................................................... 40
5.8.6
Round axis functionality .......................................................... 41
5.8.7
Electronic cam mechanism ..................................................... 42
Electrical installation................................................................................. 86
7.1.1
Connection of the AHS36/AHM36 CANopen........................... 86
Settings on the hardware.......................................................................... 87
Configuration ............................................................................................ 88
7.3.1
Default delivery status............................................................. 88
7.3.2
System configuration............................................................... 88
Tests before the initial commissioning ..................................................... 91
OPERATING INSTRUCTIONS | AHS36/AHM36 CANOPEN
8016869/YS01/2016-02-17 | SICK STEGMANN
Subject to change without notice
CONTENTS
8
Fault diagnosis.........................................................................................92
8.1
8.2
8.3
8.4
9
In the event of faults or errors .................................................................. 92
SICK STEGMANN support ......................................................................... 92
Error and status indications on the LED ................................................... 92
8.3.1
Meaning of the LED displays ................................................... 93
Diagnostics via CANopen.......................................................................... 93
8.4.1
Emergency Messages.............................................................. 93
8.4.2
Alarms, warnings and status ................................................... 94
8.4.3
Error during the SDO transfer.................................................. 95
Annex ........................................................................................................96
9.1
Conformity with EU directives ................................................................... 96
10 List of illustrations...................................................................................97
11 List of tables.............................................................................................99
8016869/YS01/2016-02-17 | SICK STEGMANN
Subject to change without notice
OPERATING INSTRUCTIONS | AHS36/AHM36 CANOPEN
5
1
1
ABOUT THIS DOCUMENT
About this document
Please read this chapter carefully before working with this documentation and the
AHS36/AHM36 CANopen Absolute Encoder.
1.1
Function of this document
These operating instructions are designed to address the technical personnel of the
machine manufacturer or the machine operator in regards to correct configuration,
electrical installation, commissioning, operation and maintenance of the
AHS36/AHM36 CANopen Absolute Encoder.
1.2
Target group
The operating instructions are addressed at the planners, developers and operators of
systems in which one or more AHS36/AHM36 CANopen Absolute Encoders are to be
integrated. They also address people who initialize the use of the
AHS36/AHM36 CANopen or who are in charge of servicing and maintaining the device.
These instructions are written for trained persons who are responsible for the
installation, mounting and operation of the AHS36/AHM36 CANopen in an industrial
environment.
1.3
Information depth
These operating instructions contain information on the AHS36/AHM36 CANopen
Absolute Encoder on the following subjects:
•
•
•
product features
electrical installation
commissioning and configuration
•
•
fault diagnosis and troubleshooting
conformity
These operating instructions do not contain any information on the mounting of the
AHS36/AHM36 CANopen. You will find this information in the mounting instructions
included with the device.
They also do not contain any information on technical specifications, dimensional
drawings, ordering information or accessories. You will find this information in the
product information for the AHS36/AHM36 CANopen.
Planning and using measurement systems such as the AHS36/AHM36 CANopen also
requires specific technical skills beyond the information in the operating instructions
and mounting instructions. The information required to acquire these specific skills is
not contained in this document.
When operating the AHS36/AHM36 CANopen, the national, local and statutory rules
and regulations must be observed.
Additional information
You will find additional information at www.can-cia.org.
6
OPERATING INSTRUCTIONS | AHS36/AHM36 CANOPEN
8016869/YS01/2016-02-17 | SICK STEGMANN
Subject to change without notice
ABOUT THIS DOCUMENT 1
1.4
Scope
NOTE
These operating instructions apply to the AHS36/AHM36 CANopen Absolute Encoder
with the following type codes:
•
•
•
•
1.5
Singleturn Encoder Basic = AHS36B-xxCx004096
Multiturn Encoder Basic = AHM36B-xxCx012x12
Singleturn Encoder Advanced = AHS36A-xxCx016384
Multiturn Encoder Advanced = AHM36A-xxCx014x12
Abbreviations used
CAN
CANopen
®
CMR
Controller Area Network
CANopen is a registered trademark of CAN in Automation e.V.
Counts per Measuring Range
CNR_D
Customized Number of Revolutions, Divisor = divisor of the customized number of
revolutions
CNR_N
Customized Number of Revolutions, Nominator = nominator of the customized number
of revolutions
COB-ID
Communication Object Identifier = address of the communication object
CoS
Change of State
CPR
Counts Per Revolution = resolution per revolution
EDS
Electronic Data Sheet
EEPROM
EMGY
Electrically Erasable Programmable Read-only Memory
Emergency Message
LSS
Layer Setting Services = services for the configuration of Node ID and baud rate
NMT
Network Management
Node ID
Node Identifier = node address
PDO
Process Data Object
PLC
Programmable Logic Controller
PMR
Physical Measuring Range
PRS
Physical Resolution Span (per revolution)
RTR
Remote Transmission Request = request telegram for PDOs
SDO
Service Data Object
8016869/YS01/2016-02-17 | SICK STEGMANN
Subject to change without notice
OPERATING INSTRUCTIONS | AHS36/AHM36 CANOPEN
7
1
1.6
ABOUT THIS DOCUMENT
Symbols used
NOTE
Refer to notes for special features of the device.
LED symbols describe the state of a diagnostics LED. Examples:
Ν
The LED is illuminated constantly.
⌠Ε The LED flashes evenly.
⌠ϑ The LED flashes with a short duty cycle.
ν
The LED is off.
α
Take action …
Instructions for taking action are shown by an arrow. Read carefully and follow the
instructions for action.
WARNING
Warning!
A warning notice indicates an actual or potential risk or health hazard. They are
designed to help you to prevent accidents.
Read carefully and follow the warning notices.
8
OPERATING INSTRUCTIONS | AHS36/AHM36 CANOPEN
8016869/YS01/2016-02-17 | SICK STEGMANN
Subject to change without notice
ON SAFETY 2
2
On safety
This chapter deals with your own safety and the safety of the equipment operators.
α
2.1
Please read this chapter carefully before working with the
AHS36/AHM36 CANopen or with the machine or system in which the
AHS36/AHM36 CANopen is used.
Authorized personnel
The AHS36/AHM36 CANopen Absolute Encoder must only be installed, commissioned
and serviced by authorized personnel.
NOTE
Repairs to the AHS36/AHM36 CANopen are only allowed to be undertaken by trained
and authorized service personnel from SICK STEGMANN GmbH.
The following qualifications are necessary for the various tasks:
Activity
Qualification
Mounting
•
•
Basic technical training
Knowledge of the current safety regulations in the
workplace
Electrical installation and
replacement
•
•
•
Practical electrical training
Knowledge of current electrical safety regulations
Knowledge on the use and operation of devices in the
related application (e.g. industrial robots, storage and
conveyor technology)
Commissioning, operation
and configuration
•
Knowledge on the current safety regulations and the use
and operation of devices in the related application
Knowledge of automation systems
Knowledge of CANopen®
Knowledge of automation software
•
•
•
Table 1: Authorized personnel
2.2
Intended use
The AHS36/AHM36 CANopen Absolute Encoder is a measuring device that is
manufactured in accordance with recognized industrial regulations and meets the
quality requirements as per ISO 9001:2008 as well as those of an environment
management system as per ISO 14001:2009.
An encoder is a device for mounting that cannot be used independent of its foreseen
function. For this reason an encoder is not equipped with immediate safe devices.
Measures for the safety of persons and systems must be provided by the constructor of
the system as per statutory regulations.
Due to its design, the AHS36/AHM36 CANopen can only be operated within an
CANopen∇ network. It is necessary to comply with the CANopen∇ specifications and
guidelines for setting up a CANopen∇ network.
In case of any other usage or modifications to the AHS36/AHM36 CANopen, e.g.
opening the housing during mounting and electrical installation, or in case of
modifications to the SICK software, any claims against SICK STEGMANN GmbH under
warranty will be rendered void.
8016869/YS01/2016-02-17 | SICK STEGMANN
Subject to change without notice
OPERATING INSTRUCTIONS | AHS36/AHM36 CANOPEN
9
2
2.3
ON SAFETY
General safety notes and protective measures
WARNING
Please observe the following procedures in order to ensure the correct and safe use
of the AHS36/AHM36 CANopen!
The encoder is to be installed and maintained by trained and qualified personnel with
knowledge of electronics, precision mechanics and control system programming. It is
necessary to comply with the related standards covering the technical safety
stipulations.
All safety regulations are to be met by all persons who are installing, operating or
maintaining the device:
•
•
•
•
•
•
2.4
The operating instructions must always be available and must always be followed.
Unqualified personnel are not allowed to be present in the vicinity of the system
during installation and maintenance.
The system is to be installed in accordance with the applicable safety stipulations
and the mounting instructions.
All work safety regulations of the applicable countries are to be followed during
installation.
Failure to follow all applicable health and work safety regulations may result in
injury or damage to the system.
The current and voltage sources in the encoder are designed in accordance with
all applicable technical regulations.
Environmental protection
Please note the following information on disposal.
Assembly
Material
Disposal
Packaging
Cardboard
Waste paper
Shaft
Stainless steel
Scrap metal
Flange
Aluminium
Scrap metal
Housing
Aluminium die cast
Scrap metal
Electronic assemblies
Various
Electronic waste
Table 2: Disposal of the assemblies
10
OPERATING INSTRUCTIONS | AHS36/AHM36 CANOPEN
8016869/YS01/2016-02-17 | SICK STEGMANN
Subject to change without notice
QUICK START INSTRUCTIONS ON THE AHS36/AHM36 CANOPEN
3
3
Quick start instructions on the AHS36/AHM36 CANopen
3.1
Node ID/Baud rate
The following prerequisites must be met for the communication with the master:
A correct node ID must be set on the AHS36/AHM36 CANopen. Correct is:
•
○
○
a node ID that is not in use in the CANopen network
a node ID that the master expects
The same baud rate must be set on the AHS36/AHM36 CANopen as on the
master.
•
The following parameters are set on the AHS36/AHM36 CANopen in the factory:
Node ID: 5
Baud rate: 125 kbit/s
•
•
LSS, NMT
Master
Node ID = 0
SDO, PDO, EMGY
Slave
Node ID = 1 … 127
Figure 1: Encoder in the CANopen network
The following communication parameters can be assigned to the
AHS36/AHM36 CANopen :
•
•
Node ID: 1 to 127 (as a rule 0 is assigned to the master)
Baud rate: 10 kbit/s, 20 kbit/s, 50 kbit/s, 100 kbit/s, 125 kbit/s, 250 kbit/s,
500 kbit/s, 800 kbit/s, 1,000 kbit/s
Set the node ID and the baud rate as follows:
•
•
using the manufacturer-specific object 2009h
using Layer Setting Services (see section 5.4 on page 22)
Changing node ID and/or baud rate using the object 2009h
To change the node ID and/or the baud rate using the object 2009h, proceed as
follows:
α
α
α
Entering the access code in object 2009.1h: 98127634h
Change node ID and/or baud rate in the objects 2009.2h and 2009.3h
Save parameters with the aid of object 1010.1h: 65766173h (corresponds to
“save” in ASCII)
NOTE
The changes will only be active after restarting the encoder (switch off and on again the
supply voltage).
8016869/YS01/2016-02-17 | SICK STEGMANN
Subject to change without notice
OPERATING INSTRUCTIONS | AHS36/AHM36 CANOPEN
11
3
QUICK START INSTRUCTIONS ON THE AHS36/AHM36 CANOPEN
Integration of several encoders
α
α
Integrate encoder 1 in the network and change the node ID (e.g. node ID 4).
Then integrate encoder 2 in the network and change the node ID if necessary.
NOTE
It is imperative you ensure there are not several encoders or other bus users with an
identical node ID in the same network.
3.2
Parameterization
3.2.1
EDS file
An EDS file is available for the straightforward interfacing of the
AHS36/AHM36 CANopen to a CANopen master. This file contains, amongst others, the
default parameters of the AHS36/AHM36 CANopen and the default configuration of
the process data.
You can download the EDS file from www.sick.com:
α
α
α
α
3.2.2
Enter the seven-digit part number of your encoder directly in the Find field on the
homepage.
Click the related search result.
A page with all the information and files for your device will open.
Download the EDS file.
Integrate the EDS file in the engineering tool for your control.
Save or restore parameters
Saving modified parameters in the EEPROM – Save command
All parameters configured in the encoder’s EEPROM are saved using object 1010h.
α
For this purpose enter the command 65766173h (corresponds to “save” in ASCII)
in object 1010.1h.
NOTE
If the Save command is not run, the previous parameters will be loaded from the
EEPROM the next time the encoder is started.
Resetting encoders to default factory settings – Load command
The parameters are reset to the default factory settings using the object 1011h.
α
For this purpose enter the command 64616F6Ch (corresponds to “load” in ASCII)
in the object 1011.1h.
NOTE
The node ID and baud rate set are not in general reset to the default factory settings.
The Save command must be run after the Load command. If the Save command is not
run, the previous parameters will be loaded from the EEPROM the next time the
encoder is started.
12
OPERATING INSTRUCTIONS | AHS36/AHM36 CANOPEN
8016869/YS01/2016-02-17 | SICK STEGMANN
Subject to change without notice
QUICK START INSTRUCTIONS ON THE AHS36/AHM36 CANOPEN
3.3
3
Process data objects (PDOs)
The AHS36/AHM36 CANopen supports four Transmit PDOs and one Receive PDO.
Transmit PDOs
Data are sent by the encoder to the PLC using the four Transmit PDOs.
The four Transmit PDOs are defined by the following objects:
•
•
The objects 1800h … 1803h contain the communication parameters.
The objects 1A00h … 1A03h contain the mapping of the objects.
The mapping is variable and can be modified.
Receive PDO
Data are received from the PLC by the encoder using the Receive PDO. The mapping for
this Receive PDO is fixed and cannot be modified.
3.3.1
PDO communication
In the factory the transmission type for the Transmit PDOs is set to 255 in the objects
1800h … 1803h. This corresponds to the device-specific triggering.
NOTE
As an event timer is not configured, the Transmit PDOs are only transferred once on
changing to the Operational status!
Changing factory setting for transmission type
For the cyclic or acyclic output of the Transmit PDOs by the encoder, there are the
following options:
α
α
α
Change the event timer in the objects 1800h … 1803h (see Table 63 ff. from
page 53).
Configure a trigger event using the CoS event handling configuration (see
Table 119 on page 77).
Change the transmission type in the objects 1800h … 1803h (see Table 63 ff.
from page 53).
Pay attention to the inhibition time
The inhibition time for the PDOs (configured in the objects 1800.3h … 1803.3h) in
principle limits the communication of a device on the CANopen bus. It always has a
higher priority than the event timer, the CoS events and the sync triggering.
If, e.g., the event timer is set to 100 ms and the inhibition time is set to 1 s, the
corresponding PDO is only sent every second.
3.3.2
PDO mapping
You will find which objects are mapped by default in the related transmit PDOs in
section 6.3.3 on page 53.
8016869/YS01/2016-02-17 | SICK STEGMANN
Subject to change without notice
OPERATING INSTRUCTIONS | AHS36/AHM36 CANOPEN
13
4
4
PRODUCT DESCRIPTION
Product description
This chapter provides information on the special features and properties of the
Absolute Encoder AHS36/AHM36 CANopen. It describes the construction and the
operating principle of the device.
α
4.1
Please read this chapter before mounting, installing and commissioning the
device.
Special features
With male connector
With cable outlet
Singleturn Encoder
Basic
Multiturn Encoder
Basic
Singleturn Encoder
Advanced
Multiturn Encoder
Advanced
Figure 2: Connection types
CANopen interface
Β
Β
Β
Β
Supports the encoder profile CiA DS-406
Β
Β
Β
Β
Diagnostic functions via CANopen
–
–
Β
Β
12 bit singleturn resolution
(1 to 4,096 steps)
Β
Β
–
–
14 bit singleturn resolution
(1 to 16,384 steps)
–
–
Β
Β
12 bit multiturn resolution
(1 to 4,096 revolutions)
–
Β
–
Β
24 bit total resolution
–
Β
–
–
26 bit total resolution
–
–
–
Β
Round axis functionality
–
–
–
Β
Absolute Encoder in 36 mm design
Β
Β
Β
Β
Electro-sensitive, magnetic scanning
Β
Β
Β
Β
Flexible cable outlet/M12 male connector
Β
Β
Β
Β
Large number of mechanical adaptation options
Β
Β
Β
Β
Compact design
Β
Β
Β
Β
Face mount flange, servo flange, blind hollow
shaft
Β
Β
Β
Β
Properties
Table 3: Special features of the encoder variants
14
OPERATING INSTRUCTIONS | AHS36/AHM36 CANOPEN
8016869/YS01/2016-02-17 | SICK STEGMANN
Subject to change without notice
PRODUCT DESCRIPTION
4.2
4
Operating principle of the encoder
The sensing system in the AHS36/AHM36 CANopen Absolute Encoder is based on
absolute acquisition of revolutions without an external power supply or battery. As a
consequence the encoder can immediately output its absolute position again after
switching off and switching back on.
The AHS36/AHM36 CANopen acquires the position of rotating axes and outputs the
position in the form of a unique digital numeric value. The highest reliability is achieved
by means of electro-sensitive, magnetic scanning.
The AHS36 CANopen is a singleturn encoder.
Singleturn encoders are used if absolute acquisition of the rotation of a shaft is
required.
The AHM36 CANopen is a multiturn encoder.
Multiturn encoders are used if more than one shaft revolution must be acquired
absolutely.
4.2.1
Scaleable resolution
The resolution per revolution and the total resolution can be scaled and adapted to the
related application.
The resolution per revolution can be scaled in integers from 1 … 4,096 (Basic) or from
1 … 16,384 (Advanced).
The total resolution of the AHM36 CANopen must be 2ⁿ times the resolution per
revolution. This restriction is not relevant if the round axis functionality is activated.
4.2.2
Preset function
The position value for an encoder can be set with the aid of a preset value. I.e. the
encoder can be set to any position within the measuring range. In this way, e.g., the
encoder’s zero position can be adjusted to the machine’s zero point.
On switching off the encoder, the offset, the difference between the real position value
and the value defined by the preset, is saved. On switching back on the new preset
value is formed from the new real position value and the offset. Even if the position of
encoder changes while it is switched off, this procedure ensures the correct position
value is still output.
Encoder housing
0
1
Offset
Encoder shaft
Preset value
Difference
after switching back on
Offset
Figure 3: Saving the offset
0 = on switching off
1 = on switching back on
8016869/YS01/2016-02-17 | SICK STEGMANN
Subject to change without notice
OPERATING INSTRUCTIONS | AHS36/AHM36 CANOPEN
15
4
PRODUCT DESCRIPTION
4.2.3
Round axis functionality
The encoder supports the function for round axes. The steps per revolution are set as a
fraction. As a result, the total resolution does not have to be configured to 2ⁿ times the
resolution per revolution and can also be a decimal number (e.g. 12.5).
NOTE
The output position value is adjusted with the zero point correction, the counting
direction set and the gearbox parameters entered.
Example with transmission ratio
A rotating table for a filling system is to be controlled. The resolution per revolution is
pre-defined by the number of filling stations. There are nine filling stations. For the
precise measurement of the distance between two filling stations, 1,000 steps are
required.
Rotating table with
nine filling
stations
125
10
Encoder
Figure 4: Example position measurement on a rotating table with transmission ratio
The number of revolutions is pre-defined by the transmission ratio = 12.5 of the
rotating table gearing.
The total resolution is then 9 × 1,000 = 9,000 steps, to be realized in 12.5 revolutions
of the encoder. This ratio cannot be realized via the resolution per revolution and the
total resolution, as the total resolution is not 2ⁿ times the resolution per revolution.
The application problem can be solved using the round axis functionality. Here the
resolution per revolution is ignored. The total resolution as well as the nominator and
divisor for the number of revolutions are configured.
9,000 steps are configured as the total resolution.
For the nominator for the number of revolutions 125 is configured, 10 as the divisor
(125/10 = 12.5).
After 12.5 revolutions (that is after one complete revolution of the rotating table) the
encoder reaches the total resolution of 9,000.
16
OPERATING INSTRUCTIONS | AHS36/AHM36 CANOPEN
8016869/YS01/2016-02-17 | SICK STEGMANN
Subject to change without notice
PRODUCT DESCRIPTION
4
Example without transmission ratio
Rotating table with nine filling stations
1,000 steps
Encoder
Figure 5: Example position measurement on a rotating table without transmission ratio
The encoder is mounted directly on the rotating table. The transmission ratio is 1:1.
The rotating table has 9 filling stations. The encoder must be configured such that it
starts to count with 0 at one filling station and counts to 999 on moving to the next
filling station position.
1,000 steps are configured as the total resolution.
For the nominator for the number of revolutions 1 is configured, 9 as the divisor (1/9
revolutions = 1,000).
After 1/9 revolutions of the encoder shaft there are 1,000 steps, then the encoder
starts to count at 0 again.
8016869/YS01/2016-02-17 | SICK STEGMANN
Subject to change without notice
OPERATING INSTRUCTIONS | AHS36/AHM36 CANOPEN
17
4
PRODUCT DESCRIPTION
4.2.4
Electronic cam mechanism
An electronic cam mechanism can be configured using the encoder. Two so-called CAM
channels with up to eight cam switching positions are supported 0. This is a limit
switch for the position.
Figure 6: Example electronic cam mechanism
Among other parameters, each cam has parameters for the lower switching point 1
and the upper switching point 2, which can be configured via CANopen (see section
6.4.2 on page 62).
4.3
Controls and status indicators
The AHS36/AHM36 CANopen Absolute Encoder has one status LED.
LED
Figure 7: Position of the LED
The LED is multi-colored. Table 138 on page 93 shows the meaning of the signals.
18
OPERATING INSTRUCTIONS | AHS36/AHM36 CANOPEN
8016869/YS01/2016-02-17 | SICK STEGMANN
Subject to change without notice
INTEGRATION IN CANOPEN
5
5
Integration in CANopen
5.1
Communication profile
The CANopen communication protocol (documented in CiA DS-301) defines how the
devices exchange data with each other in a CANopen network.
5.1.1
CANopen in the OSI model
The CANopen protocol is a standardized layer-7 protocol for the CAN bus. This layer is
based on the CAN Application Layer (CAL).
The relevant objects in the encoder profile DS-406 are implemented in the
AHS36/AHM36 CANopen (see section 6.4 on page 58).
E.g. DS 401
DS 406
Encoder
E.g. DS 402
CAN Application Layer (CAL), defined by DS-301
Data link layer
Bit transport layer
Figure 8: CANopen in the OSI model
NOTE
Layers 3 … 6 are not used with CANopen.
8016869/YS01/2016-02-17 | SICK STEGMANN
Subject to change without notice
OPERATING INSTRUCTIONS | AHS36/AHM36 CANOPEN
19
5
INTEGRATION IN CANOPEN
5.1.2
Communication channels
CANopen has various communication channels (SDO, PDO, Emergency Messages).
These channels are formed with the aid of the Communication Object Identifier
(COB-ID). The COB-IDs are based on the node IDs for the individual devices on the
CANopen bus (see section 5.2 on page 21).
LSS, NMT
Master
Node ID = 0
SDO, PDO, EMGY
Slave
Node ID = 1 … 127
Figure 9: Communication channels
•
•
•
5.1.3
To set the encoder’s node ID, so-called Layer Setting Services (LSS) are used (see
section 5.4 on page 22).
Then communication with the encoder via the Network Management Services
(NMT) is possible (see section 5.5 on page 26) and its CANopen state machine
can be switched to the required status (Pre-operational, Operational or Stopped)
by the master.
In the Pre-operational status, Service Data Objects (SDO) can be used for communication and configuration (see section 5.6 on page 29). In the Operational status,
Process Data Objects (PDO) and Emergency Messages (EMGY) can also be used
for communication (see section 5.7 on page 31).
Topology
The AHS36/AHM36 CANopen is integrated in the CANopen trunk using T-connectors
(the T-connectors are available as accessories). The trunk must be terminated at the
end using a 120-Ohm terminator. In this way reflections are prevented. This action is
not necessary on the stubs to the encoders.
PLC
Trunk
Termination
Stubs
Figure 10: AHx36 in the CANopen topologie
Table 137 on page 87 shows the maximum length of the stubs for different baud rates.
20
OPERATING INSTRUCTIONS | AHS36/AHM36 CANOPEN
8016869/YS01/2016-02-17 | SICK STEGMANN
Subject to change without notice
INTEGRATION IN CANOPEN
5.2
5
Node IDs and COB-IDs
The encoder’s node ID can be configured with the aid of the following methods:
SDO access to the manufacturer-specific object 2009h – Network Configuration
(see Table 122 on page 78)
access via Layer Setting Services (see section 5.4 on page 22)
•
•
There can be a maximum of 128 devices in a CANopen network, one master and up to
127 slaves. Each device is given a unique node ID (node address).
The COB-IDs (Communication Object Identifier) derive the communication channels
from this ID.
COB-ID calculation
[Dec]
[Hex]
ID ranges
[Dec]
[Hex]
Function
Direction as seen
from the encoder
0
0
Network management
Receive
128 + Node ID
0080h + Node ID
129 … 255
0081h … 00FFh
Emergency Message
Send
384 + Node ID
0180h + Node ID
385 … 511
0181h … 01FFh
Transmit PDO 1
Send
512 + Node ID
0200h + Node ID
513 … 639
0201h … 027Fh
Receive PDO 1
Receive
640 + Node ID
0280h + Node ID
641 … 767
0281h … 02FFh
Transmit PDO 2
Send
896 + Node ID
0380h + Node ID
897 … 1023
0381h … 03FFh
Transmit PDO 3
Send
1152 + Node ID
0480h + Node ID
1153 … 1279
0481h … 04FFh
Transmit PDO 4
Send
1408 + Node ID
0580h + Node ID
1409 … 1535
0581h … 05FFh
Transmit SDO
Send
1536 + Node ID
0600h + Node ID
1537 … 1663
0601h … 067Fh
Receive SDO
Receive
1792 + Node ID
0700h + Node ID
1793 … 1919
0701h … 077Fh
Node Guarding,
Heartbeat, Boot-Up
Send
2020
07E4h
2020
07E4h
Transmit LSS
Send
2021
07E5h
2021
07E5h
Receive LSS
Receive
Table 4: Communication object identifier for the encoder
Example:
The encoder is given the node ID = 5, it then sends emergency messages via the
ID 133, Transmit PDOs via the ID 389, 645, 901 as well as 1157 and the Transmit
SDO via the ID 1413.
8016869/YS01/2016-02-17 | SICK STEGMANN
Subject to change without notice
OPERATING INSTRUCTIONS | AHS36/AHM36 CANOPEN
21
5
5.3
INTEGRATION IN CANOPEN
Baud rate
The transmission speed on the CANopen bus is defined using the baud rate. Pay
attention to the following criteria:
•
•
•
The same baud rate must be set on the AHS36/AHM36 CANopen as on the
master.
The higher the baud rate in the CANopen network, the lower the bus load.
The longer the cables used, the lower the possible baud rate. Pay attention to the
maximum lenghts of the stubs depending on the baud rate (see Table 137 on
page 87).
The encoder supports the following baud rates:
Baud rate
Supported by the AHS36/AHM36 CANopen
1,000 kbit/s
Yes
800 kbit/s
Yes
500 kbit/s
Yes
250 kbit/s
Yes
125 kbit/s
Yes
100 kbit/s
Yes
50 kbit/s
Yes
20 kbit/s
Yes
10 kbit/s
No
Automatic detection
No
Table 5: Supported baud rates
The encoder’s baud rate can be configured with the aid of the following methods:
•
•
5.4
SDO access to the manufacturer-specific object 2009h – Network Configuration
(see Table 122 on page 78)
access via Layer Setting Services (see section 5.4 on page 22)
Layer Setting Services (LSS)
To set the node ID and the baud rate of the AHS36/AHM36 CANopen, the Layer
Setting Services are supported.
The LSS slave is accessed via its LSS address (identity object), which is saved in object
1018h (see Table 57 on page 50). The LSS address comprises:
•
•
•
•
manufacturer ID
product Code
revision number
serial number
Via the LSS the master requests the individual services that are then executed by the
AHS36/AHM36 CANopen. The communication between the LSS master and LSS slave
is undertaken using the LSS telegrams.
The following COB-IDs are used:
07E4h = LSS slave to LSS master
07E5h = LSS master to LSS slave
22
OPERATING INSTRUCTIONS | AHS36/AHM36 CANOPEN
8016869/YS01/2016-02-17 | SICK STEGMANN
Subject to change without notice
INTEGRATION IN CANOPEN
5
Format of an LSS telegram
NOTE
An LSS telegram is always 8 bytes long. Byte 0 contains the Command Specifier (CS),
followed by 7 bytes for the data. All unused bytes must be set to zero.
COB-ID
Byte 0
Byte 1
Byte 2
Byte 3
CS
Byte 4
Byte 5
Byte 6
Byte 7
Data
Table 6: Format of an LSS telegram
Switch Mode Global
The Switch Mode Global command switches on or off the configuration mode. The
command is not acknowledged, the AHS36/AHM36 CANopen does not respond.
COB-ID
Byte 0
Byte 1
Byte 2
Byte 3
Byte 4
Byte 5
Byte 6
Byte 7
07E5h
04h
Mode
00h
00h
00h
00h
00h
00h
Table 7: Format of the Switch Mode Global command
Byte 1 mode:
00h = switches off the LSS configuration mode
01h = switches to the LSS configuration mode
Configure Node ID
The node address is configured with the aid of this command.
COB-ID
Byte 0
Byte 1
Byte 2
Byte 3
Byte 4
Byte 5
Byte 6
Byte 7
07E5h
11h
Node ID
00h
00h
00h
00h
00h
00h
Table 8: Format of the Configure Node ID command
Byte 1 node ID:
01h = node address 1
…
7Fh = node address 127
Response:
COB-ID
Byte 0
Byte 1
Byte 2
Byte 3
Byte 4
Byte 5
Byte 6
Byte 7
07E4h
11h
Error
code
Error
extend
00h
00h
00h
00h
00h
Table 9: Response to the Configure Node ID command
Byte 1 error code:
00h = parameterization successful
01h = parameter invalid
FFh = contains a specific error code
Byte 2 error extend:
The error extension is manufacturer-specific and always 00h on the
AHS36/AHM36 CANopen.
8016869/YS01/2016-02-17 | SICK STEGMANN
Subject to change without notice
OPERATING INSTRUCTIONS | AHS36/AHM36 CANOPEN
23
5
INTEGRATION IN CANOPEN
Configure Bit Timing Parameters
The baud rate is configured based on a baud rate table using this command.
COB-ID
Byte 0
Byte 1
Byte 2
Byte 3
Byte 4
Byte 5
Byte 6
Byte 7
07E5h
13h
00h
Table
index
00h
00h
00h
00h
00h
Table 10: Format of the Configure Bit Timing Parameters command
Byte 1 table index from the baud rate table:
Table index
Baud rate
Supported by the
AHS36/AHM36 CANopen
0
1,000 kbit/s
Yes
1
800 kbit/s
Yes
2
500 kbit/s
Yes
3
250 kbit/s
Yes
4
125 kbit/s
Yes
5
100 kbit/s
Yes
6
50 kbit/s
Yes
7
20 kbit/s
Yes
8
10 kbit/s
No
9
Automatic detection
No
Table 11: Baud rate table
Response:
COB-ID
Byte 0
Byte 1
Byte 2
Byte 3
Byte 4
Byte 5
Byte 6
Byte 7
07E4h
13h
Error
code
Error
extend
00h
00h
00h
00h
00h
Table 12: Response to the Configure Bit Timing Parameters command
Byte 1 error code:
00h = parameterization successful
01h = parameter invalid
FFh = contains a specific error code
Byte 2 error extend:
The error extension is manufacturer-specific and always 00h on the
AHS36/AHM36 CANopen.
Store Configuration
This command saves the configuration.
NOTE
However, the configuration is not saved in non-volatile memory (EEPROM). This action
must be undertaken using the object 1010h – Save Parameters (see Table 50 on
page 48).
24
OPERATING INSTRUCTIONS | AHS36/AHM36 CANOPEN
8016869/YS01/2016-02-17 | SICK STEGMANN
Subject to change without notice
INTEGRATION IN CANOPEN
5
COB-ID
Byte 0
Byte 1
Byte 2
Byte 3
Byte 4
Byte 5
Byte 6
Byte 7
07E5h
17h
00h
00h
00h
00h
00h
00h
00h
Table 13: Format of the Store Configuration command
Response:
COB-ID
Byte 0
Byte 1
Byte 2
Byte 3
Byte 4
Byte 5
Byte 6
Byte 7
07E4h
17h
Error
code
Error
extend
00h
00h
00h
00h
00h
Table 14: Response to the Store Configuration command
Byte 1 error code:
00h = save successful
01h = Store Configuration command is not supported
02h = memory error occurred
FFh = contains a specific error code
Byte 2 error extend:
The error extension is manufacturer-specific and always 00h on the
AHS36/AHM36 CANopen.
Inquire LSS address service
Using this command the encoder’s node ID and the manufacturer ID, the product code,
the revision number and the serial number can be read from object 1018h (see
Table 57 on page 50).
COB-ID
Byte 0
Byte 1
Byte 2
Byte 3
Byte 4
Byte 5
Byte 6
Byte 7
07E5h
CMD
00h
00h
00h
00h
00h
00h
00h
Table 15: Format of the Inquire LSS address service command
Byte 1 CMD from the command table:
CMD
Parameter
Subindex of object 1018h
5Eh
Node ID
5Dh
Serial Number
.4
5Ch
Revision Number
.3
5Bh
Product Code
.2
5Ah
Vendor ID
.1
Table 16: Command table
Response
COB-ID
Byte 0
Byte 1
Byte 2
Byte 3
Byte 4
Byte 5
Byte 6
Byte 7
07E4h
CMD
Data-X
{LsB}
Data-X
Data-X
Data-X
{MsB}
00h
00h
00h
Table 17: Response to the Inquire LSS address service command
8016869/YS01/2016-02-17 | SICK STEGMANN
Subject to change without notice
OPERATING INSTRUCTIONS | AHS36/AHM36 CANOPEN
25
5
INTEGRATION IN CANOPEN
NOTE
The data are 4 bytes long, in the byte order “Little Endian”. If the data read are shorter
than 4 bytes, the remaining bytes are filled with 0.
Identify Non-Configured Slave Device
Devices that have not been configured can be identified by with the aid of this
command.
COB-ID
Byte 0
Byte 1
Byte 2
Byte 3
Byte 4
Byte 5
Byte 6
Byte 7
07E5h
4Ch
00h
00h
00h
00h
00h
00h
00h
Table 18: Format of the Identify Non Configured Slave Device command
Response
COB-ID
Byte 0
Byte 1
Byte 2
Byte 3
Byte 4
Byte 5
Byte 6
Byte 7
07E4h
50h
00h
00h
00h
00h
00h
00h
00h
Table 19: Response to the Identify Non-Configured Slave Device command
5.5
Network management (NMT)
The Network Management (NMT) has the task of initializing users on a CANopen
network, adding the users to the network, stopping and monitoring them.
In a CANopen network there is always only one NMT master (Network Management
Master), all other devices, that is also the AHS36/AHM36 CANopen, are NMT slaves.
The NMT master has control of all devices and can change their status.
Typically an NMT master is realized by a PLC or a PC.
5.5.1
CANopen state machine
As in every CANopen slave, a so-called CANopen state machine is implemented in the
AHS36/AHM36 CANopen. A differentiation is made between the following statuses:
Status
Description
Initializing
The initialization starts. The device application and the device
communication are initialized. Then the node switches automatically to
the Pre-operational status.
Pre-operational
The encoder is ready for configuration, acyclic communication can take
place via SDO. However, the encoder is not yet able to participate in
PDO communication and also does not send any emergency messages.
Operational
In this status the encoder is fully operational and can transmit
messages independently (PDOs, emergency messages).
Stopped
In this status the encoder is disabled for communication (active
connection monitoring via node guarding remains active).
Table 20: Status of the CANopen state machine
26
OPERATING INSTRUCTIONS | AHS36/AHM36 CANOPEN
8016869/YS01/2016-02-17 | SICK STEGMANN
Subject to change without notice
INTEGRATION IN CANOPEN
5.5.2
5
Network Management Services
The specific status of the CANopen state machine is changed via the NMT services. The
NMT telegrams for device control use the COB-ID 0 and are given the highest priority.
COB-ID
Byte 0
00h
CCD
Byte 1
Byte 2
Byte 3
Byte 4
Byte 5
Byte 6
Byte 7
00h
00h
00h
00h
00h
00h
Node ID
Table 21: Format of the NMT telegram
Byte 0, CCD
Parameter
01h
Start Remote Node
Places the encoder in the Operational status.
02h
Stop Remote Node
Places the encoder in the Stopped status and stops its communication
(active connection monitoring via node guarding remains active).
80h
Enter Pre-operational
Places the encoder in the Pre-operational status. All communication
channels except the PDOs can be used.
81h
Reset node
Resets the value for the profile parameters to the default value. Then
the encoder changes to the Reset Communication status.
82h
Reset communication
Places the encoder in the Reset Communication status. Then the
encoder changes to the Initialization status.
Table 22: Meaning of byte 0
Transitions between the individual operating statuses
Power up or reset
Initialization
Pre-operational
Stopped
Operational
Figure 11: Transitions between the operating statuses
8016869/YS01/2016-02-17 | SICK STEGMANN
Subject to change without notice
OPERATING INSTRUCTIONS | AHS36/AHM36 CANOPEN
27
5
INTEGRATION IN CANOPEN
Transition
Description
1
After power up the encoder enters the Initialization status.
2
After initialization the encoder automatically switches to the
Pre-operational status.
3 and 8
The encoder switches to the Operational status with the Start Remote
Node command.
4 and 7
The encoder switches back to the Pre-operational status with the Enter
Pre-operational State command.
5 and 6
The encoder switches to the Stopped status with the Stop Remote Node
command.
9, 10 and 11
The encoder switches to the Initialization status with the Reset Node
command.
12, 13 and 14
The encoder switches to the Initialization status with the Reset
Communication command.
Table 23: Transitions between the operating statuses
5.5.3
Boot-up message
To signal that a device is ready for operation after switching on, a so-called boot-up
message is sent. This message uses the ID from the NMT Error Control protocol and is
permanently linked to the device address set (700h + node ID).
5.5.4
Node Guarding and Heartbeat
The AHS36/AHM36 CANopen can be monitored permanently using the Node Guarding
protocol or the Heartbeat protocol.
NOTE
It is not possible to use the Node Guarding protocol and the Heartbeat protocol on one
node. If the Heartbeat Time parameter in the object 1017h is not equal to 0 (see
Table 56 on page 50), the Heartbeat protocol is used.
Node guarding
The status of the encoder is checked at regular intervals using the Node Guarding
telegram. The encoder responds within the response time configured in the objects
100Ch and 100Dh (see Table 48 on page 47).
COB-ID
700h +
Node ID
Byte 0
Status
Byte 1
Byte 2
Byte 3
Byte 4
Byte 5
Byte 6
Byte 7
00h
00h
00h
00h
00h
00h
00h
Table 24: Format of the Node Guarding telegram
Byte 0, status
Parameter
Bit 7
Toggle bit
The bit changes its value after each request.
Bit 6 … 0
Operating status of the encoder:
127 = Pre-operational
5 = Operational
4 = Stopped
0 = boot up
Table 25: Meaning of byte 0
28
OPERATING INSTRUCTIONS | AHS36/AHM36 CANOPEN
8016869/YS01/2016-02-17 | SICK STEGMANN
Subject to change without notice
INTEGRATION IN CANOPEN
5
Example for an encoder in the Operational status:
85h, 05h, 85h = no error
85h, 05h, 05h = error
NOTE
If node guarding is active, the encoder expects a corresponding status request from the
NMT master within a specific interval. If this is not the case, the slave changes to the
Pre-operational status.
Heartbeat
If the Heartbeat telegram is used, the encoder sends its status autonomously at regular
intervals. This status can be monitored by any other user in the network.
The heartbeat time is configured using object 1017h (see Table 56 on page 50).
COB-ID
700h +
Node ID
Byte 0
Status
Byte 1
Byte 2
Byte 3
Byte 4
Byte 5
Byte 6
Byte 7
00h
00h
00h
00h
00h
00h
00h
Table 26: Format of the Heartbeat telegram
Byte 0, status
Parameter
Bit 7
Toggle bit
The bit changes its value after each request.
Bit 6 … 0
Operating status of the encoder:
127 = Pre-operational
5 = Operational
4 = Stopped
0 = Boot up
Table 27: Meaning of byte 0
5.6
Service Data Objects (SDO)
The Service Data Objects (SDO) form the communication channel for the transmission
of device parameters (e.g. programming the encoder resolution) and are used for
status requests.
Data of any length can be transmitted using SDOs. The data may need to be divided
between several CAN messages. An SDO is always transmitted with confirmation, i.e.
the reception of each message is acknowledged by the receiver.
Transmit SDO and Receive SDO
The AHS36/AHM36 CANopen has one Transmit SDO channel and one Receive SDO
channel to which two CAN identifiers are assigned.
The SDO communication is compliant with the client-server model. In this process the
encoder represents an SDO server.
The SDO client (e.g. the PLC) specifies in its request the parameter, the access type
(read/write) and, if necessary, the value. The encoder undertakes the write or read
access and responds to the request.
8016869/YS01/2016-02-17 | SICK STEGMANN
Subject to change without notice
OPERATING INSTRUCTIONS | AHS36/AHM36 CANOPEN
29
5
INTEGRATION IN CANOPEN
The data area of a CAN telegram, maximum 8 bytes long, is configured by an SDO as
follows:
COB-ID
600h +
Node ID
CCD
Byte 0
Index
Byte 1
Subindex
Byte 2
Byte 3
Data
Byte 4
Byte 5
Byte 6
Byte 7
Table 28: Format of the SDO
The Command Code (CCD) identifies whether data are to be read or written. In the case
of an error, the data area contains a 4-byte error code that provides information on the
origin of the error (see section 8.4.3 on page 95).
Requirement
Response
Figure 12: Example for Transmit SDO and Receive SDO
In the example the encoder (ID = 5) receives from the PLC via the ID 0605h (Receive
SDO 0600h + encoder ID) a read request (CCD = 40h) for the object 1000h (see
Table 37 on page 45).
The encoder responds via ID 0585h (Transmit SDO 0580h + encoder ID) with the
return message (CCD = 43h) 0200h = multiturn encoder, 9601h device profile =
encoder.
30
OPERATING INSTRUCTIONS | AHS36/AHM36 CANOPEN
8016869/YS01/2016-02-17 | SICK STEGMANN
Subject to change without notice
INTEGRATION IN CANOPEN
5.7
5
Process Data Objects (PDO)
Process data objects (PDO) are used for the quick and efficient exchange of real time
data (e.g. I/O data, set or actual values).
A PDO is transmitted without acknowledgment.
The AHS36/AHM36 CANopen supports one Receive PDO and four Transmit PDOs.
Receive PDO
Transmit PDO
Figure 13: Example for Transmit PDO and Receive PDO
8 data bytes are available on the transmission of the process data.
COB-ID
0180h +
Node ID
Data
Byte 0
Byte 1
Byte 2
Byte 3
Byte 4
Byte 5
Byte 6
Byte 7
Table 29: Format of the Transmit PDOs
5.7.1
PDO mapping
The format of the Transmit PDOs between the master and the encoder must be
harmonized by means of so-called PDO mapping. The process data can be arranged as
required in the PDO message. For this purpose the address (that is the index and
subindex) from the object directory as well as the size (number of bits) are entered in
the mapping object (see Table 68 ff. from page 55).
Example:
Object 1A00h contains the following objects by default:
6004.00h – Position Value
2001.01h – Device Status Word, S_STAT-A
2010.02h – Device Status Word, S_STAT-B
The contents of the objects are transmitted in the Transmit PDO.
COB-ID
Data
0180h +
Node ID
00
00
00
Position value = 1
01
00
00
No error
00
00
No error
Table 30: Example for a Transmit PDO
8016869/YS01/2016-02-17 | SICK STEGMANN
Subject to change without notice
OPERATING INSTRUCTIONS | AHS36/AHM36 CANOPEN
31
5
INTEGRATION IN CANOPEN
5.7.2
PDO data transmission
Bus load
Please note:
The more PDOs and the more often these PDOs are sent, the higher the bus load
in the CANopen network.
The higher the baud rate in the CANopen network, the lower the bus load.
The longer the cables used, the lower the possible baud rate.
•
•
•
For optimal communication a compromise therefore needs to be found between all
three factors mentioned.
If a Transmit PDO is not used, it should be deactivated. For this purpose set bit 31 to 1
in subindex .1 of the related object 180xh.
The PDOs can be transmitted cyclically or acyclically. This aspect is defined by the
objects 180xh and the transmission type defined in their subindex .02.
Object
Subindex
Designation
Data values
180xh
Communication
Parameter for the
1st Transmit PDO
–
.0
Number of entries
5
.1
COB-ID
00000180h + Node ID
.2
Transmission Type
0
Transmission only on switching on the encoder
1 … 240 Cyclic transmission. Cyclic with the SYNC
messages
252
Request by RTR telegram (synchronous
transmission)
253
Request by RTR telegram (asynchronous
transmission)
254
Application-specific triggering
255
Device-specific triggering
.3
Inhibition Time
0 … 65,535
.4
Reserved
–
.5
Event Timer
0 … 65,535
Table 31: Example for the communication parameters
32
OPERATING INSTRUCTIONS | AHS36/AHM36 CANOPEN
8016869/YS01/2016-02-17 | SICK STEGMANN
Subject to change without notice
INTEGRATION IN CANOPEN
5
Cyclic data transmission
For cyclic data transmission there are the following options:
•
•
The process data are sent with the master’s SYNC messages. The cycle is formed
from a multiple of the Sync messages. The factor can be between 1 and 240.
The process data are sent using an event timer to suit the specific application or
device. An event timer is available for each PDO. It can be configured between 0
and 65,535 ms.
Acyclic data transmission
For acyclic data transmission the encoder is triggered by one of the following criteria:
•
•
On application-specific/device-specific triggering
The transmission of the PDOs is controlled by an event (CoS triggering). This event
is defined in object 2007h (see Table 119 on page 77).
On request (RTR telegram)
In this case another bus user (as a rule the master) requests the process data.
NOTE
The combination of cyclic and acyclic data transmission by event timer and CoS
triggering is not permitted.
Event timer and CoS triggering do not limit each other!
If an object is to be transmitted cyclically and acyclically, it must be mapped to two
different PDOs.
NOTE
In the factory the encoder’s Transmit PDOs are set to device-specific triggering. As a
consequence the encoder outputs all Transmit PDOs once on startup. However the
event timer is at 0. For this reason the Transmit PDOs are initially only output once.
For the cyclic or acyclic output of the Transmit PDOs by the encoder, there are the
following options:
α
α
α
Change the event timer in the objects 1800h … 1803h (see Table 63 ff. from
page 53).
Configure a trigger event using the CoS event handling configuration (see
Table 119 on page 77).
Change the transmission type in the objects 1800h … 1803h (see Table 63 ff.
from page 53).
Inhibition time
The inhibition time for the PDOs (configured in the objects 1800.3h … 1803.3h) in
principle limits the communication of a device on the CANopen bus. It always has a
higher priority than the event timer, the CoS events and the sync triggering.
If, e.g., the event timer is set to 100 ms and the inhibition time is set to 1 s, the
corresponding PDO is only sent every second.
NOTE
The inhibition time has no effect on triggering by RTR telegrams.
8016869/YS01/2016-02-17 | SICK STEGMANN
Subject to change without notice
OPERATING INSTRUCTIONS | AHS36/AHM36 CANOPEN
33
5
INTEGRATION IN CANOPEN
From the master
Device-specific
Application specific
RTR telegram
SYNC telegram
Event timer
CoS triggering
No
Inhibition
time
reached?
Yes
One PDO (e.g. Transmit PDO 1) to the master
Figure 14: Sending Transmit PDOs
5.7.3
Asynchronous or synchronous formation of the position
With bit 15 of object 6000h (see Table 74 on page 59) you can define whether the
position is formed asynchronously or synchronously.
•
•
Asynchronous formation of the position
The formation of the position by the encoder is not synchronized. It operates
autonomously using its own cycle. The encoder determines the position every
250 µs1) with a jitter of 20 µs. A PDO always “takes” the last position value, which
may already be 250 µs old.
Synchronous formation of the position
The formation of the position by the encoder is synchronized to the Sync messages from the master. The AHS36/AHM36 CANopen forms the position on the
reception of a SYNC message. In this case it is not possible to determine a speed
value, the speed is output as 0.
NOTE
•
•
1)
34
The output data from the master (essentially for the preset function) cannot be
synchronized.
The input data for the master (essentially the position data) can be synchronized.
Additional latency time due to sensor-internal processes: 500 µs.
OPERATING INSTRUCTIONS | AHS36/AHM36 CANOPEN
8016869/YS01/2016-02-17 | SICK STEGMANN
Subject to change without notice
INTEGRATION IN CANOPEN
5.8
5
Configurable functions
The AHS36/AHM36 CANopen is configured, e.g., in the TwinCAT® configuration tool
with the aid of various objects.
The most important objects for the configuration of the functions are listed in the
following. A complete list of the objects can be found in chapter 6 “Object library” on
page 43.
WARNING
During the configuration of the encoder, make sure there are no persons in a
system’s hazardous area!
All parameter changes have a direct effect on the operation of the encoder. For this
reason the position value may change during configuration, e.g. due to the
implementation of a preset or change of scale. This change could cause an unexpected
movement that may result in a hazard for persons or damage to the system or other
items.
NOTE
All functions described in the following for which parameters can be set can also be
configured in the encoder’s start-up configuration.
5.8.1
EDS file
To be able to integrate the AHS36/AHM36 CANopen straightforwardly in a CANopen
master, there is an EDS file. This file contains the following information on the features
of the AHS36/AHM36 CANopen:
•
•
•
•
information on the manufacturer of the device
name, type and version number of the device
type and version number of the protocol used for this device
default parameters of the AHS36/AHM36 CANopen and default configuration of
the process data
PLC
EEPROM
AHS36/AHM36 CANopen
Figure 15: EDS file
5.8.2
Scaling parameters
The scaling parameters are configured by the objects 6000h, 6001h and 6002h.
Figure 16: Objects 6000h, 6001h and 6002h in TwinCAT®
8016869/YS01/2016-02-17 | SICK STEGMANN
Subject to change without notice
OPERATING INSTRUCTIONS | AHS36/AHM36 CANOPEN
35
5
INTEGRATION IN CANOPEN
6000h – Operating Parameters
Using the object 6000h (see Table 74 on page 59) the parameters Support additional
Error Code, Scaling and Code sequence are configured. The object is configured using
a bit sequence 16 bits wide.
Example:
Bit 0 = code sequence ccw = 1
Bit 2 = scaling on = 1
Bit
Value
15
0
14
0
13
0
12
0
11
0
10
0
9
0
8
0
7
0
6
0
5
0
4
0
3
0
2
1
1
0
0
1
Table 32: Example for binary code
The binary value must be converted into a hexadecimal value and entered in the
configuration dialog box.
101b = 5h
Figure 17: Example for the parameterization of object 6000h
Scaling
This parameter makes it possible to scale the resolution per revolution and the total
resolution.
NOTE
Only if the parameter Scaling is configured to 1 are the values entered for the
resolution and total resolution applied.
Code sequence
The code sequence defines which direction of rotation increases the position value; the
direction of rotation is defined looking at the shaft.
•
•
clockwise (cw) = increasing position value on clockwise revolution of the shaft
counterclockwise (ccw) = increasing position value on counter clockwise
revolution of the shaft
6001h – Counts Per Revolution (CPR)
The resolution per revolution is configured using the object 6001h (see Table 76 on
page 60).
NOTE
The parameter is not used if the round axis functionality is activated.
36
OPERATING INSTRUCTIONS | AHS36/AHM36 CANOPEN
8016869/YS01/2016-02-17 | SICK STEGMANN
Subject to change without notice
INTEGRATION IN CANOPEN
5
Figure 18: Example for the parameterization of object 6001h
The resolution of the AHS36/AHM36 CANopen Basic is max. 4,096 steps per
revolution. The resolution can be scaled from 1 … 4,096 as an integer.
The resolution of the AHS36/AHM36 CANopen Advanced is max. 16,384 steps per
revolution. The resolution can be scaled from 1 … 16,384 as an integer.
6002h – Total Measuring Range
The total resolution is configured using the object 6002h (see Table 77 on page 60).
Figure 19: Example for the parameterization of object 6002h
The total resolution, that is the measuring range of the AHM36 CANopen Basic, is max.
16,777,216 steps. The total resolution of the AHM36 CANopen Advanced is max.
67,108,864 steps.
The total resolution must be 2ⁿ times the resolution per revolution.
NOTE
This restriction is not relevant if the round axis functionality is activated.
Resolution per revolution
n
Total resolution
1,000
3
8,000
8,179
5
261,728
2,048
11
4,194,304
Table 33: Examples for total resolution
NOTE
The parameters are only written to the non-volatile memory in the EEPROM using the
object 1010h with the aid of the data word 65766173h = “save” (see Table 50 on
page 48).
8016869/YS01/2016-02-17 | SICK STEGMANN
Subject to change without notice
OPERATING INSTRUCTIONS | AHS36/AHM36 CANOPEN
37
5
INTEGRATION IN CANOPEN
5.8.3
Preset function
The position value for an encoder can be set with the aid of the preset function. I.e. the
encoder can be set to any position within the measuring range.
NOTE
The preset value must lie within the measuring range configured.
WARNING
Before triggering the preset function, check whether there is a hazard from the
machine or system in which the encoder is integrated!
The preset function results in a change in the position value output by the encoder.
This change could cause an unexpected movement that may result in a hazard for
persons or damage to the system or other items.
The preset value can be set with the aid of the following methods:
•
•
using acyclic communication (SDO) with the object 6003h
using cyclic communication (PDO) with the object 2000h. The value from object
2005h is used.
Acyclic communication (SDO)
The preset value is transferred directly to the encoder using the object 6003h – Preset
Value (see Table 78 on page 60). The encoder immediately adopts the preset value
that is written to the object as the new position value.
Figure 20: Example for the parameterization of object 6003h
The function is available if the encoder is in the Pre-operational or Operational status.
Cyclic communication (PDO)
The preset value is initially transferred to the encoder using the object 2005h –
Configuration Preset Value (see Table 117 on page 75), but is not yet applied as a
new position value.
Figure 21: Example for the parameterization of object 2005h
38
OPERATING INSTRUCTIONS | AHS36/AHM36 CANOPEN
8016869/YS01/2016-02-17 | SICK STEGMANN
Subject to change without notice
INTEGRATION IN CANOPEN
5
The function is triggered using the object 2000h – Control Word 1 (see Table 111 on
page 72).
The function is available if the encoder is in the Operational status.
The object is configured using a bit sequence 16 bits wide.
Example:
Bit 12 = preset is set = 1
Bit 11 = preset mode shift positive = 1
Bit
Value
15
0
14
0
13
0
12
1
11
1
10
0
9
0
8
0
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
Table 34: Example for binary code
The binary value must be converted into a hexadecimal value and entered in the
configuration dialog box.
1100000000000b = 1800h
5.8.4
Cyclic process data
The cyclic process data are defined using the process data objects (see section 6.3 on
page 51).
The object to be incorporated in the objects 1A00h, 1A01h, 1A02h or 1A03h is
entered with its object number, the subindex and the data length (see Table 72 on
page 57).
Figure 22: Example for the parameterization of object 1A00h
Example:
Figure 23: Example for the parameterization of subindex 1A00.01h
60040020h
Object
= 6004h
Subindex
= 00h
Data length = 20h (32 Bit)
8016869/YS01/2016-02-17 | SICK STEGMANN
Subject to change without notice
OPERATING INSTRUCTIONS | AHS36/AHM36 CANOPEN
39
5
INTEGRATION IN CANOPEN
NOTE
In the factory the encoder’s Transmit PDOs are set to device-specific triggering. As a
consequence the encoder outputs all Transmit PDOs once on startup. However the
event timer is at 0. For this reason the Transmit PDOs are initially only output once.
For the cyclic or acyclic output of the Transmit PDOs by the encoder, there are the
following options:
α
α
α
5.8.5
Change the event timer in the objects 1800h … 1803h (see Table 63 ff. from
page 53).
Configure a trigger event using the CoS event handling configuration (see
Table 119 on page 77).
Change the transmission type in the objects 1800h … 1803h (see Table 63 ff.
from page 53).
Speed measurement
The speed measurement is configured using the object 2002h – Speed Calculation
Configuration (see Table 114 on page 74).
Figure 24: Example for the parameterization of object 2002h
Using the subindex 2002.02h – Format: Measuring Units you can define the units in
which the speed is transmitted.
Figure 25: Example for the parameterization of subindex 2002.02h
Possible units are:
•
•
•
•
•
cps
cp10ms
cp100ms
rpm
rps
The factory setting is 3h = rpm.
Using the other Subindices you can configure the refresh time as well as the maximum
and minimum speed (see Table 114 on page 74).
40
OPERATING INSTRUCTIONS | AHS36/AHM36 CANOPEN
8016869/YS01/2016-02-17 | SICK STEGMANN
Subject to change without notice
INTEGRATION IN CANOPEN
5.8.6
5
Round axis functionality
The Round axis functionality removes the restriction for the AHM36 Advanced that the
total resolution must be 2ⁿ times the resolution per revolution. The shaft is considered
as an endless shaft.
The resolution per revolution is not configured directly, instead the nominator and
divisor for the number of revolutions are defined.
The Round axis functionality is configured using the object 2001h – Endless-Shaft
Configuration (see Table 113 on page 73).
Figure 26: Example for the parameterization of object 2001h
The total resolution can be scaled from 1 … 67,108,864 (Advanced) as an integer.
The nominator (2001.02h – Number of Revolutions, Nominator) can be scaled from
1 … 2,048 as an integer. The default factory setting for the nominator is 2,048.
Figure 27: Example for the parameterization of subindex 2001.03h
The divisor (2001.03h – Number of Revolutions, Divisor) can be scaled from 1 … 2,048
as an integer. The default factory setting for the divisor is 1.
Due to the physical limit of the resolution per revolution, the following condition also
applies:
Total resolution ÷ (nominator for the number of revolutions ÷ divisor for the number of
revolutions) ≤ 16,384.
8016869/YS01/2016-02-17 | SICK STEGMANN
Subject to change without notice
OPERATING INSTRUCTIONS | AHS36/AHM36 CANOPEN
41
5
INTEGRATION IN CANOPEN
5.8.7
Electronic cam mechanism
An electronic cam mechanism can be configured using the encoder. Two so-called CAM
channels with up to eight cam switching positions are supported. This is a limit switch
for the position.
The electronic cam mechanism is configured using several objects (see section 6.4.2
“Objects for the electronic cam mechanism (CAM)” on page 62).
Figure 28: Objects for the electronic cam mechanism
The cams are enabled using the object 6301h – CAM Enable Register, the polarity is
defined using the object 6302h – CAM Polarity Register.
Each position parameter is defined by its minimum switching point (objects 6310h to
6317h), its maximum switching point (objects 6320h to 6327h) and its switching
hysteresis (objects 6330h to 6337h).
42
OPERATING INSTRUCTIONS | AHS36/AHM36 CANOPEN
8016869/YS01/2016-02-17 | SICK STEGMANN
Subject to change without notice
OBJECT LIBRARY 6
6
Object library
The AHS36/AHM36 CANopen contains various types of objects:
standard objects with 1000 series object numbers
encoder profile-specific objects with 6000 series object numbers
manufacturer-specific objects with 2000 series object numbers
•
•
•
6.1
Nomenclature
Abbreviation
Meaning
R
Read = read only
R/W
Read/Write = read and write access
STRG
String = character string of variable length
BOOL
Boolean = logical value 0 or 1
INT
Integer value (negative/positive)
(e.g. INT-8 = –128 … +127)
UINT
Unsigned integer = integer value
(e.g. UINT-32 = 0 … 4.294.967.295)
Array
Series of data of one data type
(e.g. array UINT-8 = character string of data type UINT-8)
Record
Series of data with different data types
(e.g. UINT-8, UINT-32, UINT-32, UINT-16)
Table 35: Nomenclature of the access types and data types
8016869/YS01/2016-02-17 | SICK STEGMANN
Subject to change without notice
OPERATING INSTRUCTIONS | AHS36/AHM36 CANOPEN
43
6
6.2
OBJECT LIBRARY
Standard objects
Object
Subindex
Access
Data type
Designation
1000h
R
UINT-32
Device Type
1001h
R
UINT-8
Error Register
1003h
R/W
Record
Predefined Error Field
1005h
R/W
UINT-32
COB-ID SYNC Message
1008h
R
STRG
Device Name
1009h
R
STRG
Hardware Version Number
100Ah
R
STRG
Software Version Number
100Ch
R/W
UINT-16
Node Guarding – Guard Time
100Dh
R/W
UINT-8
Node Guarding – Life Time Factor
1010h
.0 … .1
R/W
Record
Save Parameters
1011h
.0 … .1
R/W
Record
Load/Restore Parameters
1014h
R/W
UINT-32
COB-ID Emergency Message
1015h
R/W
UINT-16
Emergency Inhibit Time
1017h
R/W
UINT-16
Heartbeat Time
1018h
.0 … .4
R
Record
Identity Object
1400h
.0 … .2
R/W
Record
Communication Parameter for the
1st Receive PDO
1600h
.0 and .1
R/W
Record
Mapping Parameter for the
1st Receive PDO
1800h
.0 … .5
R/W
Record
Communication Parameter for the
1st Transmit PDO
1801h
.0 … .5
R/W
Record
Communication Parameter for the
2nd Transmit PDO
1802h
.0 … .5
R/W
Record
Communication Parameter for the
3rd Transmit PDO
1803h
.0 … .5
R/W
Record
Communication Parameter for the
4th Transmit PDO
1A00h
.0 … .3
R/W
Record
Mapping Parameter for the
1st Transmit PDO
1A01h
.0 … .4
R/W
Record
Mapping Parameter for the
2nd Transmit PDO
1A02h
.0 … .3
R/W
Record
Mapping Parameter for the
3rd Transmit PDO
1A03h
.0 … .4
R/W
Record
Mapping Parameter for the
4th Transmit PDO
Table 36: Implemented standard objects
44
OPERATING INSTRUCTIONS | AHS36/AHM36 CANOPEN
8016869/YS01/2016-02-17 | SICK STEGMANN
Subject to change without notice
OBJECT LIBRARY 6
6.2.1
Detailed information on the standard objects
NOTE
In the following only those objects are described in detail for which the content is not
clear from the overview (see Table 36 on page 44).
Object 1000h – Device Type
This object specifies the device type and the device profile implemented.
Object
Access Data type
Designation
Data values
1000h
R
Device Type
See Table 38
UINT-32
Table 37: Object 1000h
Bit
31 … 24
Description
Data values
The device type is output in the bits 31 … 16.
01h
Singleturn encoder
02h
Multiturn encoder
01.96h
Device profile =
Encoder
23 … 16
15 … 8
7…0
The device profile supported is output in the bit
15 … 0.
Table 38: Object 1000h – details
Object 1001h – Error Register
Object
Access Data type
Designation
Data values
1001h
R
Error Register
See Table 40
UINT-8
Table 39: Object 1001h
The encoder writes error messages to this object. It is part of the emergency message
(see section 8.4.1 on page 93).
Bit
Description
Data values
7
Manufacturer-specific error
0
Not active
1
Active
6
Reserved
0
5
Device profile specific error
0
Not active
1
Active
0
Not active
1
Active
0
Not active
1
Active
0
Not active
1
Active
4
3
2
Communication error (PDO length exceeded)
Temperature error
Voltage error
1
Reserved
0
0
Generic error
0
Not active
1
Active
Table 40: Object 1001h – details
8016869/YS01/2016-02-17 | SICK STEGMANN
Subject to change without notice
OPERATING INSTRUCTIONS | AHS36/AHM36 CANOPEN
45
6
OBJECT LIBRARY
Object 1003h – Predefined Error Field
Object
Subindex
Access Data type
Designation
Data values
1003h
R/W
Record
Predefined Error Field
–
.0
R/W
UINT-8
Number of entries
0…4
.1
R
UINT-32
Error 1
00000000h … FFFFFFFFh
.2
R
UINT-32
Error 2
00000000h … FFFFFFFFh
.3
R
UINT-32
Error 3
00000000h … FFFFFFFFh
.4
R
UINT-32
Error 4
00000000h … FFFFFFFFh
Table 41: Object 1003h
NOTE
•
•
•
The number of errors is saved in the subindex .0. If an error has not yet occurred,
the value of the subindex is = 0. Read access is responded to with an SDO error
message 08000024h or 08000000h.
Each new error is saved in subindex .1, older errors move to the next higher
subindex.
To delete the error list, 00h must be written to subindex .0.
Byte 0
1
2
Object 1003h
3
S_STAT-A-LsB
EMGY error code
S_STAT-A-MsB
Error field
Table 42: Object 1003h – details
Object 1005h – COB-ID SYNC Message
Object
Access Data type
Designation
Data values
1005h
R/W
COB-ID SYNC Message
See Table 44
UINT-32
Table 43: Object 1005h
Bit
Description
Data values
31
Reserved
0
30
Defines whether the device generates the SYNC
message.
0
Device does not
generate a SYNC
message.
1
Not supported
0
11 Bit
1
Not supported
29
Defines which bit width is used.
28 … 0
29-bit width CAN ID
0
11 … 0
11-bit width CAN ID
80h
Table 44: Object 1005h – details
46
OPERATING INSTRUCTIONS | AHS36/AHM36 CANOPEN
8016869/YS01/2016-02-17 | SICK STEGMANN
Subject to change without notice
OBJECT LIBRARY 6
Object 1008h – Device Name
The object contains the device name dependent on the encoder type.
Object
Access Data type
Designation
Data values
1008h
R
Device Name
AHS36B-xxCx04096
STRG
16 byte
AHM36B-xxCx12x12
AHS36A-xxCx16384
AHM36A-xxCx14x12
Table 45: Object 1008h
Object 1009h – Hardware Version Number
Object
Access Data type
Designation
Data values
1009h
R
Hardware Version Number
E.g. HW_01.01
(depending on the release)
STRG
8 byte
Table 46: Object 1009h
Object 100Ah – Software Version Number
Object
Access Data type
Designation
Data values
100Ah
R
Software Version Number
E.g. SW_01.01
(depending on the release)
STRG
8 byte
Table 47: Object 100Ah
Object 100Ch – Node Guarding – Guard Time
Object
Access Data type
Designation
Description
Data values
100Ch
R/W
Node Guarding – Guard
Time
0000h … FFFFh
UINT-16
Configured monitoring time
in ms
Table 48: Object 100Ch
Object 100Dh – Node Guarding – Life Time Factor
Object
Access Data type
Designation
Description
Data values
100Dh
R/W
Node Guarding – Life Time
Factor
00h … FFh
UINT-8
Factor for the multiplication
of the monitoring time
Table 49: Object 100Dh
The monitoring time multiplied by the life time factor yields the cycle used to monitor
the encoder.
8016869/YS01/2016-02-17 | SICK STEGMANN
Subject to change without notice
OPERATING INSTRUCTIONS | AHS36/AHM36 CANOPEN
47
6
OBJECT LIBRARY
Object 1010h – Save Parameters
Using this object the parameters are written to EEPROM with the aid of the data word
65766173h = “save” (ASCII code).
WARNING
Check whether the parameters have actually been written to the EEPROM!
The data are only written to the EEPROM in the status Pre-operational. The command is
not executed in any other status, but it is also not identified as denied.
Check whether the parameters have been saved using the object 2010.03h –
State Flag 3 (S_STAT-C) (see Table 126 on page 80).
α
If the data are not saved in the EEPROM, the encoder loads the data last saved the
next time the encoder is switched on. This situation can result in hazards for persons or
damage to the system!
Object
Subindex
Access Data type
Designation
Description
Data values
1010h
R/W
Record
Save Parameters
–
.0
R/W
UINT-8
Number of entries
1
.1
R/W
UINT-32
Total Class Parameters
See Table 51
The parameters for all
object types are saved.
Table 50: Object 1010h
Bit
Designation
Data values
31 … 24
Byte 3
65h = e
23 … 16
Byte 2
76h = v
15 … 8
Byte 1
61h = a
7…0
Byte 0
73h = s
Table 51: Object 1010h – details
Object 1011h – Load/Restore Parameter
Using this object the parameters are reset to the factory settings with the aid of the
data value 64616F6Ch = “load” (ASCII code).
NOTE
•
•
•
•
48
Node ID and baud rate (objects 2009.2h and 2009.3h) are not reset.
The data are only reset to the factory settings in the Pre-operational status. The
command is not executed in any other status, but it is also not identified as
denied.
To reset the communication parameters of the objects 180xh and 2007h and the
mapping of the objects 1A00h …1A03h to the default factory settings, a Reset
Node must be run via the NMT services after the Load command (81h, see
Table 22 on page 27).
Then the data must be saved in the EEPROM using the object 1010h – Save
Parameters, otherwise the encoder will load the data saved in the EEPROM the
next time it is switched on.
OPERATING INSTRUCTIONS | AHS36/AHM36 CANOPEN
8016869/YS01/2016-02-17 | SICK STEGMANN
Subject to change without notice
OBJECT LIBRARY 6
Object
Subindex
Access Data type
Designation
Description
Data values
1011h
R/W
Record
Load/Restore Parameter
–
.0
R/W
UINT-8
Number of entries
1
.1
R/W
UINT-32
Total Class Parameters
See Table 53
The parameters for all
object types are loaded.
Table 52: Object 1011h
Bit
Designation
Data values
31 … 24
Byte 3
64h = d
23 … 16
Byte 2
61h = a
15 … 8
Byte 1
6Fh = o
7…0
Byte 0
6Ch = l
Table 53: Object 1011h – details
Object 1014h – COB-ID Emergency Message
Object
Access Data type
Designation
Description
Data values
1014h
R/W
COB-ID Emergency
Message
00000081h … FFFFFFFFh
UINT-32
Communication object
identifier of the emergency
message
The value is calculated
from 00000080h + the
node ID 1 … 127.
Example: A device with
node ID = 2 transmits with
COB-ID 00000082h.
Table 54: Object 1014h
Object 1015h – Emergency Inhibit Time
Object
Access Data type
Designation
Description
Data values
1015h
R/W
Emergency Inhibit Time
0000h … FFFFh
UINT-16
Contains the configured
inhibit time for the
emergency message in ms.
With the value 0 the inhibit
time is inactive.
Table 55: Object 1015h
8016869/YS01/2016-02-17 | SICK STEGMANN
Subject to change without notice
OPERATING INSTRUCTIONS | AHS36/AHM36 CANOPEN
49
6
OBJECT LIBRARY
Object 1017h – Heartbeat Time
Object
Access Data type
Designation
Description
Data values
1017h
R/W
Heartbeat Time
0000h … FFFFh
UINT-16
Heartbeat cycle time in ms.
With the value 0 the
heartbeat is inactive.
Table 56: Object 1017h
Object 1018h – Identity Object
Object
Subindex
Access Data type
Designation
Description
Data values
1018h
R
Record
Identity Object
–
.0
R
UINT-8
Number of entries
4
.1
R
UINT-32
Vendor ID
01000056h = SICK
.2
R
UINT-32
Product Code
00007721h =
AHS36 Basic
00007722h =
AHM36 Basic
00007723h =
AHS36 Advanced
00007724h =
AHM36 Advanced
.3
R
UINT-32
Revision Number
00010001 = 1.01
(depending on the release)
.4
R
UINT-32
Serial Number
See Table 58
YYWWxxxx (year/week/
sequential number)
Table 57: Object 1018h
Bit
Designation
31 … 24
Device code
23 … 16
YY (year)
15 … 10
WW (week)
9…0
Sequential number
Table 58: Object 1018h – details
50
OPERATING INSTRUCTIONS | AHS36/AHM36 CANOPEN
8016869/YS01/2016-02-17 | SICK STEGMANN
Subject to change without notice
OBJECT LIBRARY 6
6.3
Process Data Objects
The process data objects are used to define which objects are transmitted to the
control system or received from the control system and in which manner. The
AHS36/AHM36 CANopen supports one Receive PDO and four Transmit PDOs.
Data are received from the PLC by the encoder using the Receive PDO. The
mapping for this PDO is fixed and cannot be modified.
Data are sent by the encoder to the PLC using the four Transmit PDOs. The
mapping for these PDOs is variable and can be modified.
•
•
Both the Receive PDO and the four Transmit PDOs are defined each in two objects.
The Receive PDO is defined by the following objects:
•
○
○
The four Transmit PDOs are defined by the following objects:
•
○
○
6.3.1
Object 1400h contains the communication parameters.
Object 1600h contains the mapped object.
The objects 1800h … 1803h contain the communication parameters.
The objects 1A00h … 1A03h contain the mapped objects.
Basic PDO structure
Object
Subindex
Access Data type
Designation
Description
Data values
xxxxh
R/W
RECORD
Receive PDO
Transmit PDO
–
.0
R
UINT-8
Number of entries
1…5
.1 … .5
R/W
UINT-32
Mapping Information
Number
See Table 60
Table 59: Structure of the PDOs
Bit
Designation
Data values
31 … 16
Index of the mapped object
xxxxh
15 … 8
Subindices of the mapped object
1…5
7…0
Length of the mapped object in bits
08h = UINT-8
10h = UINT-16
20h = UINT-32
Table 60: Structure of the PDOs – details
8016869/YS01/2016-02-17 | SICK STEGMANN
Subject to change without notice
OPERATING INSTRUCTIONS | AHS36/AHM36 CANOPEN
51
6
OBJECT LIBRARY
6.3.2
Parameter of the Receive PDO
Object 1400h – Communication Parameter for the 1st Receive PDO
Object
Subindex
Access Data type
Designation
Description
Data values
1400h
R/W
RECORD
Communication Parameter
for the 1st Receive PDO
–
.0
R
UINT-8
Number of entries
2
.1
R/W
UINT-32
COB-ID
0201h … 027Fh
0200h + Node ID (see
Table 4 on page 21)
.2
R/W
UINT-8
Transmission Type
0 … 255
Transmission type (see
Table 67 on page 55)
Table 61: Object 1400h
Object 1600h – Mapping Parameter for the 1st Receive PDO
NOTE
The object 2000h – Control Word 1 is mapped to the object 1600h. This aspect
cannot be modified.
Object
Subindex
Access Data type
Designation
Description
Data values
1600h
R/W
RECORD
Mapping Parameter for the
1st Receive PDO
–
.0
R
UINT-8
Number of entries
1
.1
R/W
UINT-32
Control Word 1 (see
Table 111 on page 72)
20000010h
Table 62: Object 1600h
52
OPERATING INSTRUCTIONS | AHS36/AHM36 CANOPEN
8016869/YS01/2016-02-17 | SICK STEGMANN
Subject to change without notice
OBJECT LIBRARY 6
6.3.3
Parameter of the Transmit PDOs
Object 1800h – Communication Parameter for the 1st Transmit PDO
Object
Subindex
Access Data type
Designation
Description
Data values
[default value]
1800h
R/W
RECORD
Communication Parameter
for the 1st Transmit PDO
–
.0
R/W
UINT-32
Number of entries
5
.1
R/W
UINT-32
COB-ID
0180h + Node ID (see
Table 4 on page 21)
00000180h + Node ID
.2
R/W
UINT-8
Transmission Type
Transmission type (see
Table 67 on page 55)
0 … 255
[255]
.3
R/W
UINT-16
Inhibition Time
Idle time between two
transmissions (× 0.1 ms)
0 … 65,535
[0]
.4
–
–
Reserved
–
.5
R/W
UINT-16
Event Timer
Timer for device-specific or
application-specific
triggering (× 1 ms)
0 … 65,535
[0]
Table 63: Object 1800h
NOTE
Object 1800.05h is linked with object 6200h (see Table 81 on page 61). Modified
values are mutually applied.
Object 1801h – Communication Parameter for the 2nd Transmit PDO
Object
Subindex
Access Data type
Designation
Description
Data values
[default value]
1801h
R/W
RECORD
Communication Parameter
for the 2nd Transmit PDO
–
.0
R/W
UINT-32
Number of entries
5
.1
R/W
UINT-32
COB-ID
0280h + Node ID (see
Table 4 on page 21)
00000280h + Node ID
.2
R/W
UINT-8
Transmission Type
Transmission type (see
Table 67 on page 55)
0 … 255
[255]
.3
R/W
UINT-16
Inhibition Time
Idle time between two
transmissions (× 0.1 ms)
0 … 65,535
[0]
.4
–
–
Reserved
–
.5
R/W
UINT-16
Event Timer
Timer for device-specific or
application-specific
triggering (× 1 ms)
0 … 65,535
[0]
Table 64: Object 1801h
8016869/YS01/2016-02-17 | SICK STEGMANN
Subject to change without notice
OPERATING INSTRUCTIONS | AHS36/AHM36 CANOPEN
53
6
OBJECT LIBRARY
Object 1802h – Communication Parameter for the 3 rd Transmit PDO
Object
Subindex
Access Data type
Designation
Description
Data values
[default value]
1802h
R/W
RECORD
Communication Parameter
for the 3rd Transmit PDO
–
.0
R/W
UINT-32
Number of entries
5
.1
R/W
UINT-32
COB-ID
0380h + Node ID (see
Table 4 on page 21)
00000380h + Node ID
.2
R/W
UINT-8
Transmission Type
Transmission type (see
Table 67 on page 55)
0 … 255
[255]
.3
R/W
UINT-16
Inhibition Time
Idle time between two
transmissions (× 0.1 ms)
0 … 65,535
[0]
.4
–
–
Reserved
–
.5
R/W
UINT-16
Event Timer
Timer for device-specific or
application-specific
triggering (× 1 ms)
0 … 65,535
[0]
Table 65: Object 1802h
Object 1803h – Communication Parameter for the 4th Transmit PDO
Object
Subindex
Access Data type
Designation
Description
Data values
[default value]
1803h
R/W
RECORD
Communication Parameter
for the 4th Transmit PDO
–
.0
R/W
UINT-32
Number of entries
5
.1
R/W
UINT-32
COB-ID
0480h + Node ID (see
Table 4 on page 21)
00000480h + Node ID
.2
R/W
UINT-8
Transmission Type
Transmission type (see
Table 67 on page 55)
0 … 255
[255]
.3
R/W
UINT-16
Inhibition Time
Idle time between two
transmissions (× 0.1 ms)
0 … 65,535
[0]
.4
–
–
Reserved
–
.5
R/W
UINT-16
Event Timer
Timer for device-specific or
application-specific
triggering (× 1 ms)
0 … 65,535
[0]
Table 66: Object 1803h
54
OPERATING INSTRUCTIONS | AHS36/AHM36 CANOPEN
8016869/YS01/2016-02-17 | SICK STEGMANN
Subject to change without notice
OBJECT LIBRARY 6
6.3.4
Transmission types
Number
Description
0
The PDOs are transmitted asynchronously on switching on the encoder.
1 … 240
The PDOs are sent synchronously and cyclically. The digit defines how many SYNC
telegrams are necessary until the PDOs are sent. If the value is, e.g., 2, the
transmission is made after every 2nd SYNC telegram.
252
PDOs are only sent if they are requested by an RTR telegram (as per synchronous
transmission).
253
PDOs are only sent if they are requested by an RTR telegram (as per
asynchronous transmission).
254
Application-specific triggering
255
Device-specific triggering
This is the default setting.
Table 67: Transmission types
The application-specific and device-specific triggering only differ in that with devicespecific triggering the PDOs are transmitted once on changing to the Operational
status.
For application-specific and for device-specific triggering, the event timer is used as a
trigger. In addition the event defined in the CoS event handling configuration is used as
a trigger (see Table 119 on page 77). The two triggers are linked using an OR operator.
NOTE
The combination of cyclic and acyclic data transmission by event timer and CoS
triggering is not permitted.
Event timer and CoS triggering do not limit each other!
If an object is to be transmitted cyclically and acyclically, it must be mapped to two
different PDOs.
Object 1A00h – Mapping Parameter for the 1st Transmit PDO
Object
Subindex
Access Data type
Designation
Description
Data values
1A00h
R/W
RECORD
Mapping Parameter for the
1st Transmit PDO
–
.0
R/W
UINT-8
Number of entries
3
.1
R/W
UINT-32
6004h Position Value
See Table 72 on page 57
.2
R/W
UINT-32
2010.01h STW-1 – Device
Status Word, S_STAT-A
.3
R/W
UINT-32
2010.02h STW-1 – Device
Status Word, S_STAT-B
Table 68: Object 1A00h – default subindices
8016869/YS01/2016-02-17 | SICK STEGMANN
Subject to change without notice
OPERATING INSTRUCTIONS | AHS36/AHM36 CANOPEN
55
6
OBJECT LIBRARY
Object 1A01h – Mapping Parameter for the 2nd Transmit PDO
Object
Subindex
Access Data type
Designation
Description
Data values
1A01h
R/W
RECORD
Mapping Parameter for the
2nd Transmit PDO
–
.0
R/W
UINT-8
Number of entries
4
.1
R/W
UINT-8
1001h Error Register
See Table 72 on page 57
.2
R/W
UINT-32
6503h Alarm Status
.3
R/W
UINT-32
6505h Warning Status
.4
R/W
UINT-32
2018.02h Time Counter Sec
Table 69: Object 1A01h – default subindices
Object 1A02h – Mapping Parameter for the 3rd Transmit PDO
Object
Subindex
Access Data type
Designation
Description
Data values
1A02h
R/W
RECORD
Mapping Parameter for the
3rd Transmit PDO
–
.0
R/W
UINT-8
Number of entries
3
.1
R/W
UINT-32
6030.01h Speed Value 16-Bit
See Table 72 on page 57
.2
R/W
UINT-32
2015h Temperature Value
.3
R/W
UINT-32
2016h Position Value, Raw
Table 70: Object 1A02h – default subindices
Object 1A03h – Mapping Parameter for the 4th Transmit PDO
Object
Subindex
Access Data type
Designation
Description
Data values
1A03h
R/W
RECORD
Mapping Parameter for the
4th Transmit PDO
–
.0
R/W
UINT-8
Number of entries
4
.1
R/W
UINT-32
6300.01h CAM State Register,
Channel 1
See Table 72 on page 57
.2
R/W
UINT-32
6300.02h CAM State Register,
Channel 2
.3
R/W
UINT-32
2010.03h STW-1 – Device
Status Word, S_STAT-C
.4
R/W
UINT-32
2017h Speed Value 32-Bit
Table 71: Object 1A03h – default subindices
56
OPERATING INSTRUCTIONS | AHS36/AHM36 CANOPEN
8016869/YS01/2016-02-17 | SICK STEGMANN
Subject to change without notice
OBJECT LIBRARY 6
6.3.5
Objects and their subindices that can be mapped
Object
Subindex
Length
[Bit]
Designation
Mapping
values
Details
see
1001h
8
Error Register
10010008h
Table 39, page 45
6004h
32
Position Value
60040020h
Table 79, page 61
6030h
.1
16
Speed Value
60300110h
6503h
16
Alarm Status
65030010h
Table 95, page 67
6505h
16
Warning Status
65050010h
Table 99, page 68
6300h
.1
.2
8
8
CAM State Register
Channel 1
Channel 2
63000108h
63000208h
2010h
.1
.2
.3
16
16
16
STW-1 – Device Status Word
S_STAT-A
S_STAT-B
S_STAT-C
20100110h
20100210h
20100310h
2014h
32
Time Counter
20140020h
Table 130, page 84
2015h
16
Temperature Value
20150010h
Table 131, page 84
2016h
32
Position Value, Raw
20160020h
Table 132, page 84
2017h
32
Speed Value 32-Bit
20170020h
Table 133, page 84
2018h
.1
.2
16
16
Time Counter Signals
Time Counter MSec
Time Counter Sec
20180110h
20180210h
2019h
32
Internal Process Cycle Time
20190020h
Table 80, page 61
Table 82, page 62
Table 123, page 78
Table 134, page 85
Table 135, page 85
Table 72: Objects and their subindices that can be mapped
Changing the PDO mappings
NOTE
Parameter changes to the PDO mapping objects are only executed in the status
Pre-operational.
How to change the content of the mapping objects:
α
α
α
α
α
8016869/YS01/2016-02-17 | SICK STEGMANN
Subject to change without notice
First set bit 31 to 1 in the corresponding object 180xh in subindex .1.
In object 1A0xh set the subindex .0 to 0.
Configure the objects to be mapped in the subindices .1 to .n of object 1A0xh.
Set the subindex .0 of the object 1A0xh to the number of mapped objects.
Then set bit 31 to 0 again in the corresponding object 180xh in subindex .1.
OPERATING INSTRUCTIONS | AHS36/AHM36 CANOPEN
57
6
6.4
OBJECT LIBRARY
Encoder profile specific objects
Object
Subindex
Access Data type
Designation
6000h
R/W
UINT-16
Operating Parameter
6001h
R/W
UINT-32
Counts Per Revolution (CPR)
6002h
R/W
UINT-32
Total Measuring Range
6003h
R/W
UINT-32
Preset Value
6004h
R
UINT-32
Position Value
6030h
.0 … .1
R
Array
UINT-16
Speed Value
6200h
R/W
UINT-16
Cyclic Timer
6300h
.0 … .2
R
Array
UINT-8
CAM State Register
6301h
.0 … .2
R/W
Array
UINT-8
CAM Enable Register
6302h
.0 … .2
R/W
Array
UINT-8
CAM Polarity Register
6310h …
6317h
.0 … .2
R/W
Array
UINT-32
CAM-1 … 8 – Lower Limit setting
6320h …
6327h
.0 … .2
R/W
Array
UINT-32
CAM-1 … 8 – Upper Limit setting
6330h …
6337h
.0 … .2
R/W
Array
UINT-16
CAM-1 … 8 – Hysteresis setting
6500h
R
UINT-16
Operating Status
6501h
R
UINT-32
Physical Resolution Span (PRS)
Single Turn Resolution
6502h
R
UINT-16
Number of Revolutions
6503h
R
UINT-16
Alarm Status
6504h
R
UINT-16
Supported Alarms
6505h
R
UINT-16
Warning Status
6506h
R
UINT-16
Supported Warnings
6507h
R
UINT-32
Version Of Profile & Software
6508h
R
UINT-32
Operating Time
6509h
R
INT-32
Internal Offset Value
650Ah
.0 … .3
R
Array
UINT-32
Module Identification
650Bh
R
UINT-32
Serial Number
Table 73: Implemented encoder profile specific objects
58
OPERATING INSTRUCTIONS | AHS36/AHM36 CANOPEN
8016869/YS01/2016-02-17 | SICK STEGMANN
Subject to change without notice
OBJECT LIBRARY 6
6.4.1
Encoder parameters
Object 6000h – Operating Parameters
Object
Access Data type
Designation
Data values
6000h
R/W
Operating Parameters
See Table 75
UINT-16
Table 74: Object 6000h
Bit
Designation
Description
15
RT-SYNC mode
Data values
2)
The encoder determines the position every 250 µs .
A Transmit PDO with a transmission type of 1 … 240
(see Table 67 on page 55) always “takes” the last
position value, which may already be 250 µs old.
0
Not active
1
Active
If the RT SYNC mode is active, then the formation of
the position is synchronized with the SYNC messages
from the master. This means the position value is
determined at exactly the point at which the request
for the Transmit PDO arrives.
In this case it is not possible to determine a speed
value, the speed is output as 0.
14 … 3
Reserved
–
Scaling
0
Not active
The bit enables scaling with objects 6001h and
6002h.
1
Active
1
Commissioning diagnostic control
1
Always active
0
Code sequence (cw, ccw)
0
cw
The code sequence defines the direction of rotation,
viewed on the shaft, in which the position value
increases.
1
ccw
2
•
•
Clockwise = increasing position value on
clockwise revolution of the shaft
Counterclockwise = increasing position value on
counterclockwise revolution of the shaft
Table 75: Object 6000h – details
2)
Additional latency time due to sensor-internal processes: 500 µs.
8016869/YS01/2016-02-17 | SICK STEGMANN
Subject to change without notice
OPERATING INSTRUCTIONS | AHS36/AHM36 CANOPEN
59
6
OBJECT LIBRARY
Object 6001h – Counts Per Revolution (CPR)
The resolution per revolution is configured using this parameter.
NOTE
The parameter is not used if the round axis functionality is activated.
Object
Access Data type
Designation
Description
Data values
[default value]
6001h
R/W
Counts Per Revolution (CPR)
AHx36 Basic =
00000001h … 00000FFFh
[00000FFFh]
UINT-32
Number of steps per
revolution
AHx36 Advanced =
00000001h … 00003FFFh
[00003FFFh]
Table 76: Object 6001h
Object 6002h – Total Measuring Range
The total resolution required is configured using this parameter.
Object
Access Data type
Designation
Description
Data values
6002h
R/W
Total Measuring Range
AHS36 Basic =
1 … 00001000h
UINT-32
Total resolution
AHS36 Advanced =
1 … 00004000h
AHM36 Basic =
1 … 01000000h
AHM36 Advanced =
1 … 04000000h
Table 77: Object 6002h
Object 6003h – Preset Value
The position value of the encoder is set to a preset value using this parameter. In this
way, e.g., the encoder’s zero position can be adjusted to the machine’s zero point.
Object
Access Data type
Designation
Description
Data values
6003h
R/W
Preset Value
–
UINT-32
Preset value
Table 78: Object 6003h
NOTE
•
•
60
On writing the value to the object, it is immediately applied as a new position
value.
The preset value must lie within the measuring range configured.
OPERATING INSTRUCTIONS | AHS36/AHM36 CANOPEN
8016869/YS01/2016-02-17 | SICK STEGMANN
Subject to change without notice
OBJECT LIBRARY 6
Object 6004h – Position Value
The actual position value can be output using this object.
Object
Access Data type
Designation
Description
Data values
6004h
R
Position Value
–
UINT-32
Current position value
Table 79: Object 6004h
NOTE
An error code (Err_PosVal) can also be output instead of the position value (see
Table 124 on page 80). The output of the Err_PosVal must be configured using the
object 6000h (see Table 74 on page 59).
Object 6030h – Speed Value
The actual speed can be read using this object.
Object
Subindex
Access Data type
Designation
Description
Data values
6030h
R
Array
INT-16
Speed Value
–
.0
R
INT-16
Number of entries
1
.1
R
INT-16
Speed Value
Speed in 16 Bit
–32,768 … +32,767
Table 80: Object 6030h
Object 6200h – Cyclic Timer
Object
Access Data type
Designation
Description
Data values
6200h
R/W
Cyclic Timer
0000h … FFFFh
UINT-16
PDO cycle time in ms
Table 81: Object 6200h
NOTE
Object 6200h is linked with object 1800.05h (see Table 63 on page 53). Modified
values are mutually applied.
8016869/YS01/2016-02-17 | SICK STEGMANN
Subject to change without notice
OPERATING INSTRUCTIONS | AHS36/AHM36 CANOPEN
61
6
OBJECT LIBRARY
6.4.2
Objects for the electronic cam mechanism (CAM)
A so-called electronic cam mechanism can be configured using the encoder. One CAM
channel with up to eight cam switching positions is supported. Each position parameter
is defined by its minimum switching point (objects 6310h to 6317h), its maximum
switching point (objects 6320h to 6327h) and its switching hysteresis (objects 6330h
to 6337h).
Object 6300h – CAM State Register
The cam switching states are output using the object 6300h.
Object
Subindex
Access Data type
Designation
Data values
6300h
R
Array
UINT-8
CAM State Register
–
.0
R
UINT-8
Number of entries
2
.1
R
UINT-8
Channel 1
00h … FFh
.2
R
UINT-8
Channel 2
00h … FFh
Table 82: Object 6300h
Bit
Designation
Data values
7
Cam 8
0
Not active
1
Active
0
Not active
1
Active
0
Not active
1
Active
0
Not active
1
Active
0
Not active
1
Active
0
Not active
1
Active
0
Not active
1
Active
0
Not active
1
Active
6
5
4
3
2
1
0
Cam 7
Cam 6
Cam 5
Cam 4
Cam 3
Cam 2
Cam 1
Table 83: Object 6300h – details
If, for instance, the value read is 01h (00000001b), then cam 1 is active. None of the
other cams are active. If, for instance, the value read is 88h (10001000b), then cams
8 and 4 are active. None of the other cams are active.
62
OPERATING INSTRUCTIONS | AHS36/AHM36 CANOPEN
8016869/YS01/2016-02-17 | SICK STEGMANN
Subject to change without notice
OBJECT LIBRARY 6
Object 6301h – CAM Enable Register
Each cam switching position on the CAM channel must be enabled individually in the
encoder. The individual cams are enabled by writing the appropriate value to the object
6301h, subindex .1 or subindex .2.
Every cam switching position that is to be used must be set to 1 in binary notation.
Object
Subindex
Access Data type
Designation
Description
Data values
6301h
R/W
Array
UINT-8
CAM Enable Register
–
.0
R
UINT-8
Number of entries
2
.1
R/W
UINT-8
Channel 1
00h … FFh
.2
R/W
UINT-8
Channel 2
00h … FFh
Table 84: Object 6301h
Bit
Designation
Data values
7
Cam 8
0
Not used
1
Used
0
Not used
1
Used
0
Not used
1
Used
0
Not used
1
Used
0
Not used
1
Used
0
Not used
1
Used
0
Not used
1
Used
0
Not used
1
Used
6
5
4
3
2
1
0
Cam 7
Cam 6
Cam 5
Cam 4
Cam 3
Cam 2
Cam 1
Table 85: Object 6301h – details
If, for instance 4Ah (01001010b) is transmitted in the subindex, the cams 2, 4 and 7
are used. All other cams are not used.
8016869/YS01/2016-02-17 | SICK STEGMANN
Subject to change without notice
OPERATING INSTRUCTIONS | AHS36/AHM36 CANOPEN
63
6
OBJECT LIBRARY
Object 6302h – CAM Polarity Register
Using the CAM Polarity Register it can be defined whether the cams are output as
active high or active low. By default the cams are defined as active high. They therefore
output 1 when the cam switching position is reached.
Object
Subindex
Access Data type
Designation
Description
Data values
6302h
R/W
Array
UINT-8
CAM Polarity Register
–
.0
R
UINT-8
Number of entries
2
.1
R/W
UINT-8
Channel 1
00h … FFh
.2
R/W
UINT-8
Channel 2
00h … FFh
Table 86: Object 6302h
Bit
Designation
Data values
7
Cam 8
0
High active
1
Low active
0
High active
1
Low active
0
High active
1
Low active
0
High active
1
Low active
0
High active
1
Low active
0
High active
1
Low active
0
High active
1
Low active
0
High active
1
Low active
6
5
4
3
2
1
0
Cam 7
Cam 6
Cam 5
Cam 4
Cam 3
Cam 2
Cam 1
Table 87: Object 6301h – details
Objects 6310h … 6317h – CAM 1 … 8, Lower Limit setting
The lower switching point of a cam switching position is defined using the Lower Limit.
Each individual cam switching position (CAM 1 to CAM 8) has its own Lower Limit
object (6310h = cam 1 … 6317h = cam 8).
NOTE
•
•
64
The lower switching point can only be configured, i.e. its value changed, if the
upper switching point for the same CAM has already been set (see Table 89 on
page 65).
The value for the lower switching point must be lower than the value for the upper
switching point.
OPERATING INSTRUCTIONS | AHS36/AHM36 CANOPEN
8016869/YS01/2016-02-17 | SICK STEGMANN
Subject to change without notice
OBJECT LIBRARY 6
Object
Subindex
Access Data type
Designation
Description
Data values
[default value]
6310h …
6317h
R/W
Array
UINT-32
CAM-1 … 8, Lower Limit
–
.0
R
UINT-32
Number of entries
2
.1
R/W
UINT-32
Channel 1
0 … PMR3) – 1
[0]
.2
R/W
UINT-32
Channel 2
0 … PMR3) – 1
[0]
Table 88: Object 6310h … 6317h
Objects 6320h … 6327h – CAM-1 … 8, Upper Limit setting
The upper switching point for a cam switching position is defined using the Upper Limit.
Each individual cam switching position (CAM 1 to CAM 8) has its own Upper Limit
object (6320h = cam 1 … 6327h = cam 8).
Object
Subindex
Access Data type
Designation
Description
Data values
[default value]
6320h …
6327h
R/W
Array
UINT-32
CAM-1 … 8, Upper Limit
–
.0
R
UINT-32
Number of entries
2
.1
R/W
UINT-32
Channel 1
0 … PMR3) – 1
[PMR – 1]
.2
R/W
UINT-32
Channel 2
0 … PMR3) – 1
[PMR – 1]
Table 89: Object 6320h … 6327h
Objects 6330h … 6337h – CAM-1 … 8, Hysteresis setting
The width of the hysteresis of the switching points can be defined using the CAM
hysteresis. For each individual cam switching position (CAM 1 to CAM 8) a dedicated
CAM hysteresis can be set (6330h = cam 1 … 6337h = cam 8).
Object
Subindex
Access Data type
Designation
Description
Data values
6330h …
6337h
R/W
Array
UINT-16
CAM-1 … 8, Hysteresis
–
.0
R
UINT-16
Number of entries
2
.1
R/W
UINT-16
Channel 1
0000h … FFFFh
.2
R/W
UINT-16
Channel 2
0000h … FFFFh
Table 90: Object 6330h … 6337h
3)
Physical measuring range, depending on the encoder type.
8016869/YS01/2016-02-17 | SICK STEGMANN
Subject to change without notice
OPERATING INSTRUCTIONS | AHS36/AHM36 CANOPEN
65
6
OBJECT LIBRARY
6.4.3
Objects for diagnostics
Object 6500h – Operating Status
Object
Access Data type
Designation
Data values
6500h
R
Operating Status
See Table 92
UINT-16
Table 91: Object 6500h
Bit
15 … 13
12
11 … 3
2
1
0
Designation
Data values
Reserved
–
Support additional Error Code
0
No
1
Yes
Reserved
–
Scaling
0
Not active
1
Active
0
Not active
1
Active
0
cw
1
ccw
Commissioning diagnostic control
Code sequence (cw, ccw)
Table 92: Object 6500h – details
Object 6501h – Physical Resolution Span (PRS), Single Turn Resolution
Object
Access Data type
Designation
Description
Data values
6501h
R
PRS, Single Turn Resolution
AHx36 Basic =
00001000h
UINT-32
Physical singleturn resolution
AHx36 Advanced =
00004000h
Table 93: Object 6501h
Object 6502h – Number of Revolutions
Object
Access Data type
Designation
Description
Data values
6502h
R
Number of Revolutions
AHS36 Basic/Advanced =
0001h
UINT-16
Physical multiturn resolution
AHM36 Basic/Advanced =
1000h
Table 94: Object 6502h
66
OPERATING INSTRUCTIONS | AHS36/AHM36 CANOPEN
8016869/YS01/2016-02-17 | SICK STEGMANN
Subject to change without notice
OBJECT LIBRARY 6
Object 6503h – Alarm Status
Object
Access Data type
Designation
Description
Data values
6503h
R
Alarm Status
See Table 96
UINT-16
Table 95: Object 6503h
Bit
15 … 13
12
11 … 1
0
Designation
Data values
Reserved
–
EEPROM error
0
Not active
Dependent of Bit 15 and 7 of object 2010.01h (see
Table 124 on page 80)
1
Active
Reserved
–
Position error
0
Not active
Dependent of Bit 14, 12 … 6 and 4 of object
2010.01h (see Table 124 on page 80)
1
Active
Table 96: Object 6503h – details
NOTE
The related bit remains active until the alarm is reset by the encoder and the encoder
can again determine a correct position. The bit then changes to inactive again.
Object 6504h – Supported Alarms
Object
Access Data type
Designation
Description
Data values
6504h
R
Supported Alarms
1001h
UINT-16
Alarms implemented in the
encoder
Table 97: Object 6504h
Bit
Designation
Data values
Manufacturer-specific
0
Not supported
EEPROM error
1
Supported
Reserved
–
1
Commissioning diagnostics
0
Not supported
0
Position error
1
Supported
15 … 13
12
11 … 2
Table 98: Object 6504h – details
8016869/YS01/2016-02-17 | SICK STEGMANN
Subject to change without notice
OPERATING INSTRUCTIONS | AHS36/AHM36 CANOPEN
67
6
OBJECT LIBRARY
Object 6505h – Warning Status
Object
Access Data type
Designation
Description
Data values
6505h
R
Warning Status
0000h … FFFFh
UINT-16
Table 99: Object 6505h
NOTE
Unlike alarms, the encoder can still form a correct position value if warnings have
occurred.
Bit
Description
Data values
15
Supply voltage outside the permissible range
0
Not active
1
Active
14
Reserved
–
13
Operating temperature outside the permissible
range
0
Not active
1
Active
Frequency/rotational speed outside the range
allowed
0
Not active
1
Active
Reserved
–
Maximum frequency/rotational speed outside the
range allowed
0
Not active
1
Active
12
11 … 1
0
Table 100: Object 6505h – details
NOTE
The related bit remains active until the warning is reset by the encoder. It then changes
to inactive again.
68
OPERATING INSTRUCTIONS | AHS36/AHM36 CANOPEN
8016869/YS01/2016-02-17 | SICK STEGMANN
Subject to change without notice
OBJECT LIBRARY 6
Object 6506h – Supported Warnings
Object
Access Data type
Designation
Description
Data values
6506h
R
Supported Warnings
B003h
UINT-16
Warnings implemented in the
encoder
Table 101: Object 6506h
Bit
Description
Data values
15
Supply voltage outside the permissible range
1
14
Reserved
–
13
Operating temperature outside the permissible
range
1
Supported
12
Frequency outside the permissible range
1
Supported
Reserved
–
5
Reference point not reached
0
Not supported
4
Battery voltage too low
0
Not supported
3
Max. operating time exceeded
0
Not supported
2
CPU watchdog status
0
Not supported
1
Minimum internal LED current in the sensors
reached
0
Not supported
0
Maximum frequency exceeded
1
Supported
11 … 6
Supported
Table 102: Object 6506h – details
Object 6507h – Version Of Profile & Software
Object
Access Data type
Designation
Description
Data values
6507h
R
Version Of Profile & Software
00000000h … FFFFFFFFh
UINT-32
The first two bytes contain
the software version, the
next two the profile version.4)
Table 103: Object 6507h
Bit
Description
Example values
31 … 24
First part of the software version
03h
23 … 16
Last part of the software version
01h
15 … 8
First part of the profile version
01h
7…0
Last part of the profile version
40h
3.1
1.40
Table 104: Object 6507h – details
4)
Internal manufacturer software version, can vary from the objects 100Ah and 1018h.
8016869/YS01/2016-02-17 | SICK STEGMANN
Subject to change without notice
OPERATING INSTRUCTIONS | AHS36/AHM36 CANOPEN
69
6
OBJECT LIBRARY
Object 6508h – Operating Time
Object
Access Data type
Designation
Description
Data values
6508h
R
Operating Time
00000000h … FFFFFFFFh
UINT-32
Operating time in units of
0.1 h
Table 105: Object 6508h
Object 6509h – Internal Offset Value
Object
Access Data type
Designation
Description
Data values
6509h
R
Internal Offset Value
00000000h … FFFFFFFFh
UINT-32
Offset value, calculated from
the Preset function 6003h or
2000h and 2005h (see
section 4.2.2 on page 15)
Table 106: Object 6509h
Object 650Ah – Module Identification
Object
Subindex
Access Data type
Designation
Description
Data values
[default value]
650Ah
R
Array
UINT-32
Module Identification
–
.0
R
UINT-32
Number of entries
3
.1
R
UINT-32
Manufacturer Offset Value
[0]
Manufacturer-specific offset
.2
R
UINT-32
Position Value Minimum
[0]
Lowest position value
.3
R
UINT-32
Position Value Maximum
PMR5) – 1
Highest position value
Table 107: Object 650Ah
Object 650Bh – Serial Number
Object
Access Data type
Designation
Description
Data values
650Bh
R
Serial Number
Serial number
UINT-32
YYWWxxxx
(year/week/sequential
number)
Table 108: Object 650Bh
5)
70
Physical measuring range, depending on the encoder type.
OPERATING INSTRUCTIONS | AHS36/AHM36 CANOPEN
8016869/YS01/2016-02-17 | SICK STEGMANN
Subject to change without notice
OBJECT LIBRARY 6
6.5
Manufacturer-specific objects
In the manufacturer-specific objects a differentiation is made between the following
object types:
objects for the encoder configuration
objects that provide status information
•
•
Object
Subindex
Access Data type
Designation
2000h
R/W
UINT-16
Control Word 1
2001h
.0 … .3
R/W
Array
UINT-32
Endless-Shaft Configuration
2002h
.0 … .6
R/W
Array
UINT-16
Speed Calculation Configuration
2004h
R/W
UINT-32
Configuration Install Service
2005h
R/W
UINT-32
Configuration Preset Value
2006h
.0 … .4
R/W
Record
Physical Measuring Range Limits
2007h
.0 … .8
R/W
Record
CoS-Event Handling Configuration
2008h
R/W
Record
Diagnosis Service-A Configuration
2009h
.0 … .3
R/W
Record
Network Configuration
Table 109: Implemented manufacturer-specific objects for the encoder configuration
Object
Subindex
Access Data type
Designation
2010h
.0 … .3
R
Array
UINT-16
Device Status Word (STW-1)
2011h
.0 … .8
R
Array
UINT-32
Real Scaling Parameter Settings
2012h
.0 … .15
R
Record
Diagnosis Service Parameter
2013h
.0 … .16
R
Record
Diagnosis Error Logging Parameter
2014h
R
UINT-32
Time Counter
2015h
R
UINT-16
Temperature Value
2016h
R
UINT-32
Position Value, Raw
2017h
R
INT-32
Speed Value 32-Bit
2018h
.0 … .2
R
Array
UINT-16
Time Counter Signals
2019h
R
UINT-32
Internal Process Cycle Time
Table 110: Implemented manufacturer-specific objects that provide status information
8016869/YS01/2016-02-17 | SICK STEGMANN
Subject to change without notice
OPERATING INSTRUCTIONS | AHS36/AHM36 CANOPEN
71
6
OBJECT LIBRARY
6.5.1
Objects for the encoder configuration
Object 2000h – Control Word 1
This object sets the encoder to a preset value.
Object
Access Data type
Designation
Data values
2000h
R/W
Control Word 1
See Table 112
UINT-16
Table 111: Object 2000h
Bit
15 … 13
12
11
10
9…1
0
Designation
Description
Data values
Reserved
–
Preset Function Request (PreReq)
0
Inactive
Sets the preset value that is passed with the object
2005h (see Table 117 on page 75).
1
Active
Preset Mode = Shift Positive
0
Inactive
The preset value is added to the current position
value.
1
Active
Preset Mode = Shift Negative
0
Inactive
The preset value is subtracted from the current
position value.
1
Active
Reserved
–
Preset Mode = Preset Zero
0
Inactive
Sets the position value to 0.
1
Active
Table 112: Object 2000h – details
NOTE
•
•
•
72
If no preset mode with bit 11, 10 or 0 is specified, then the preset value from
object 2005h is applied as the position value.
Bits 11, 10 and 0 must be used exclusively. If several of these three bits have the
value 1, then the preset function is not executed.
The preset function is triggered with the rising edge (transition of bit 12 from
0 to 1). To set a preset value again, the bit must therefore be reset to 0.
OPERATING INSTRUCTIONS | AHS36/AHM36 CANOPEN
8016869/YS01/2016-02-17 | SICK STEGMANN
Subject to change without notice
OBJECT LIBRARY 6
Object 2001h – Endless-Shaft Configuration
Object
Subindex
Access Data type
Designation
Description
Data values
[default value]
2001h
R/W
Array
UINT-16
Endless-Shaft configuration
–
.0
R/W
UINT-16
Number of entries
3
.1
R/W
UINT-16
Control of Endless-Shaft
Mode
2
Active
1
Not active
Activates the round axis
functionality
.2
R/W
UINT-16
Number of Revolutions,
Nominator
1 … 2,048
[2,048]
Nominator for the number of
revolutions (CNR_N)
.3
R/W
UINT-16
Number of Revolutions,
Divisor
1 … 2,048
[1]
Divisor for the number of
revolutions (CNR_D)
Table 113: Object 2001h
NOTE
The Round axis functionality can only be used with the multiturn encoder. It is only
executed if scaling has been enabled using object 6000h.
8016869/YS01/2016-02-17 | SICK STEGMANN
Subject to change without notice
OPERATING INSTRUCTIONS | AHS36/AHM36 CANOPEN
73
6
OBJECT LIBRARY
Object 2002h – Speed Calculation Configuration
Object
Subindex
Access Data type
Designation
Description
Data values
[default value]
2002h
R/W
Array
UINT-16
Speed Calculation
Configuration
–
.0
R/W
UINT-16
Number of entries
6
.1
R/W
UINT-16
Operation Control
0
Not active
Controls the mode for the
speed calculation
1
Active
Format: measuring units
0
cps
Speed measuring unit
1
cp100ms
2
cp10ms
3
rpm
4
rps
.2
.3
R/W
R/W
UINT-16
UINT-16
T1 Update Time in MS
AHS36 = 2
Refresh time in ms
AHM36 = 1 … 50
[2]
.4
.5
.6
R/W
R/W
R/W
UINT-16
UINT-16
UINT-16
T2 Integration Time
1 … 200
Integration cycle dependent
on T1
[200]
Upper Limit Warning in rpm
1 … 10,000
Maximum speed, a warning
is output if the speed
exceeds this value.
AHS36B:
AHM36B:
AHS36A:
AHM36A:
Lower Limit Warning in rpm
0 … 9,000
Minimum speed, a warning is
output if the speed drops
below this value.
[0]
[9,000]
[6,000]
[6,000]
[6,000]
Table 114: Object 2002h
The speed is calculated from the average of several measurements. The integration
cycle T2 defines the number of values from which the average is calculated. The
refresh time T1 defines the time between the individual measurements.
Example:
If T1 = 2 ms and T2 = 200, then the speed is calculated from the last 0.4 s.
74
OPERATING INSTRUCTIONS | AHS36/AHM36 CANOPEN
8016869/YS01/2016-02-17 | SICK STEGMANN
Subject to change without notice
OBJECT LIBRARY 6
Object 2004h – Configuration Install Service
Object
Access Data type
Designation
Data values
2004h
R/W
Configuration Install Service
See Table 116
UINT-32
Table 115: Object 2004h
Service Codes
Description
44656632h
Loads the factory parameters for the communication (PDO mapping).
44656633h
Loads the factory manufacturer-specific parameters and the factory
parameters for the encoder profile.
70100100h
Reset-0, simulates switching on/off the encoder (Power on). Parameters
will not be saved.
70100101h
Reset-1, simulates switching on/off the encoder (Power on). Parameters
(Offset, Preset value and Offset for round axis) will be saved.
Table 116: Object 2004h – Service Codes
Object 2005h – Configuration Preset Value
A preset value is transferred to the encoder using this parameter. This preset value
must be set using the object 2000h (see Table 111 on page 72).
Object
Access Data type
Designation
Data values
2005h
R/W
Configuration Preset Value
0 … CMR-1
UINT-32
Table 117: Object 2005h
NOTE
The preset value must lie within the measuring range configured.
8016869/YS01/2016-02-17 | SICK STEGMANN
Subject to change without notice
OPERATING INSTRUCTIONS | AHS36/AHM36 CANOPEN
75
6
OBJECT LIBRARY
Object 2006h – Physical Measuring Range Limits
Object
Subindex
Access Data type
Designation
Description
Data values
[default value]
2006h
R/W
Record
Physical Measuring Range
Limits
–
.0
R
UINT-8
Number of entries
4
.1
R/W
INT-16
Temperature Lower Limit
.2
R/W
INT-16
Temperature Upper Limit
AHx36 Basic =
–20 … +70
Defines the lower limit for the [–20]
internal operating
temperature6) in °C.
AHx36 Advanced =
–40 … +100
[–40]
Defines the upper limit for
the internal operating
temperature6) allowed in °C.
.3
R/W
UINT-16
Operating Voltage Lower
Limit
AHx36 Basic =
–20 … +85
[+85]
AHx36 Advanced =
–40 … +120
[+120]
9000 … 30,000
[10,000]
Defines the lower limit for the
supply voltage allowed in mV.
.4
R/W
UINT-16
10,000 … 30,000
[30,000]
Operating Voltage Upper
Limit
Defines the upper limit for
the supply voltage allowed in
mV.
Table 118: Object 2006h
6)
76
The internal operating temperature of the encoder can be higher than the ambient temperature due to self-heating. It is affected, among
other issues, by the rotational speed and the heat dissipation in the installation situation.
OPERATING INSTRUCTIONS | AHS36/AHM36 CANOPEN
8016869/YS01/2016-02-17 | SICK STEGMANN
Subject to change without notice
OBJECT LIBRARY 6
Object 2007h – CoS-Event Handling Configuration
This object is used to output a Change of State message. The parameters define the
trigger value for the CoS message.
NOTE
The value 0 signifies that the parameter is inactive, that is no CoS message is
triggered.
All CoS events are linked with an OR operator. I.e. if several CoS events are
defined, the corresponding PDO is transmitted on the change of any individual
event.
•
•
Object
Subindex
Access Data type
Designation
Description
Data values
[default value]
2007h
R/W
Record
CoS-Event Handling
Configuration
–
.0
R
UINT-8
Number of entries
8
.1
R/W
UINT-32
CoS_PosVal_Scal
0 … ½ CMR
CoS triggering by the scaled
position value (Object
6004h)
[0]
CoS_PosVal_RAW
0 … ½ PMR – 1
CoS triggering by the
unscaled position value
(Object 2016h)
[0]
CoS_SpeedVal_RAW
0 … ½ Speedmax – 1
CoS triggering by the speed
value (Object 6030.01h)
[0]
CoS_TempVal
0 … 100
CoS triggering by the
temperature value (Object
2017h)
[0]
CoS_FLAG-xx Status
0 … FFFF
CoS triggering by various
objects (see Table 120)
[0]
Reserved
–
.2
R/W
.3
R/W
.4
R/W
.5
R/W
.6 … .8
–
UINT-32
UINT-32
UINT-16
UINT-16
–
Table 119: Object 2007h
Bit
15 … 12
Bit
11 … 8
Bit
7…4
Bit
3…0
CoS trigger criterion
–
–
–
0001
CAM State Register, Channel 1 (Object 6300.01h)
–
–
–
0010
CAM State Register, Channel 2 (Object 6300.02h)
–
–
0001
–
Alarm Status (Object 6503h)
–
–
0010
–
Warning Status (Object 6505h)
–
0001
–
–
State Flag 1, S_STAT-A (Object 2010.01h)
–
0010
–
–
State Flag 2, S_STAT-B (Object 2010.02h)
–
0100
–
–
State Flag 3, S_STAT-C (Object 2010.03h)
Table 120: Object 2007h – CoS_FLAG-xx Status
8016869/YS01/2016-02-17 | SICK STEGMANN
Subject to change without notice
OPERATING INSTRUCTIONS | AHS36/AHM36 CANOPEN
77
6
OBJECT LIBRARY
Object 2008h – Diagnosis Service-A Configuration
Using the object it can be defined how the entries in the object 2012h are handled (see
Table 128 on page 82).
Object
Subindex
Access Data type
Designation
Description
Data values
2008h
R/W
Record
Diagnosis Service-A
Configuration
–
.0
R
UINT-8
Number of entries
2
.1
R/W
UINT-16
Defines how the entries in
the diagnostics table are
handled.
1, 9
[1]
1 = Relative (Entries can be
deleted.)
9 = Absolute
.2
R/W
UINT-16
35
Deletes the entries in the
diagnostics table.
Table 121: Object 2008h
Object 2009h – Network Configuration
Object
Subindex
Access Data type
Designation
Description
Data values
[default value]
2009h
R/W
Record
Network Configuration
–
.0
R
UINT-8
Number of entries
3
.1
R/W
UINT-32
Access code
98127634h
Write protection for the
following parameters
.2
R/W
UINT-8
Node ID
Node address of the encoder
in CANopen
1 … 127
[5]
.3
R/W
UINT-8
Baud rate index (see
Table 11 on page 24)
0…8
[4]
Table 122: Object 2009h
6.5.2
Objects that provide status information
Object 2010h – STW-1 – Device Status Word
Object
Subindex
Access Data type
Designation
Description
Data values
2010h
R
Array
UINT-16
STW-1 – Device Status Word
–
.0
R
UINT-16
Number of entries
3
.1
R
UINT-16
State Flag 1, S_STAT-A
0000h … FFFFh
.2
R
UINT-16
State Flag 2, S_STAT-B
0000h … FFFFh
.3
R
UINT-16
State Flag 3, S_STAT-C
0000h … FFFFh
Table 123: Object 2010h
78
OPERATING INSTRUCTIONS | AHS36/AHM36 CANOPEN
8016869/YS01/2016-02-17 | SICK STEGMANN
Subject to change without notice
OBJECT LIBRARY 6
Bit
Description
Error code
of the
emergency
message
Err_PosVal
15
Memory error:
5080h
–12
Invalid EEPROM checksum on initialization
14
Reserved
–
–
13
Error of the Sync multi counter:
1060h
–11
•
Speed exceeds the upper limit of 12,500 rpm
Or
•
Number of current errors on the calculation of
the singleturn position above the limit of 10
errors
12
Reserved
–
–
11
Position error:
5051h
–8
5050h
–7
5051h
–6
5050h
–5
5070h
–4
5050h
–3
1050h
–
5051h
–2
3100h
–
Invalid or no synchronization from the singleturn
counter to the multiturn counter
10
Position error:
Singleturn position incorrect
9
Position error:
Error on the calculation of the vector length Sin² +
Cos² in the multiturn stage
8
Position error:
Error on the calculation of the vector length Sin² +
Cos² in the singleturn stage
7
Position and memory error:
2
Invalid communication with the I C device in the
main module
6
Position error:
Error on the calculation of the amplitude values Sin
+ Cos in the singleturn stage
5
Warning in relation to the speed:
Current measured value outside of the minimum or
maximum limit
4
Position error:
Error on the calculation of the amplitude values, Sin
+ Cos in the multiturn stage
3
Warning in relation to the supply voltage:
Current measured value outside of the minimum or
maximum limit
2
Reserved
–
–
1
Warning in relation to the temperature:
4200h
–
–
–
Current measured value outside of the minimum or
maximum limit
0
Warning:
General start-up error at power-on
8016869/YS01/2016-02-17 | SICK STEGMANN
Subject to change without notice
OPERATING INSTRUCTIONS | AHS36/AHM36 CANOPEN
79
6
OBJECT LIBRARY
Table 124: Object 2010h – State Flag 1 (S_STAT-A)
NOTE
•
•
If several errors occur, the position value –16 is output.
Instead of the position value, the Err_PosVal is output and makes it possible to
identify an error based on the cyclic process data (see Table 79 on page 61). The
output of the Err_PosVal must be configured using the object 6000h (see
Table 74 on page 59).
Bit
Description
15
Memory error caused by invalid checksum on reading the EEPROM during
encoder initialization:
•
In the area of the sensor configuration data
14
•
In the area of the device configuration data
13
•
In the area of the diagnostics of the basic process data
12
•
In the area of the diagnostics of the service data
11
•
In the area of the user configuration, communication mapping
10
Reserved
9
•
In the area of the user configuration, parameters for the electronic cam
mechanism (CAM)
8
•
In the area of the user configuration, basic parameters
7…6
Reserved
5
Warning, speed exceeds configured maximum value
4
Warning, triggered on executing the preset function. The preset value is outside
the measuring range (CMR).
3
Warning, occurred on changing or writing parameter values:
•
2
In the area of the manufacturer-specific objects
Reserved
1
•
In the area of the encoder profile specific objects
0
•
In the area of the PDO configuration
Table 125: Object 2010h – State Flag 2 (S_STAT-B)
Bit
15 … 13
12
11 … 4
Description
Reserved
Preset function has been triggered and confirmed by object 2000h (see
Table 111 on page 72).
Reserved
3
Status information on saving internal diagnostic data:
2
Bit 3 = 1 and Bit 2 = 0: Save operation complete
Bit 3 = 0 and Bit 2 = 1: Save operation requested and operation in progress
1
0
Saving the configuration data using the Save command (object 1010h, see
Table 50 page 48):
Bit 1 = 1 and Bit 0 = 0: Save operation complete
Bit 1 = 0 and Bit 0 = 1: Save operation requested and operation in progress
Table 126: Object 2010h – State Flag 3 (S_STAT-C)
80
OPERATING INSTRUCTIONS | AHS36/AHM36 CANOPEN
8016869/YS01/2016-02-17 | SICK STEGMANN
Subject to change without notice
OBJECT LIBRARY 6
Object 2011h – Real Scaling Parameter Settings
Object
Subindex
Access Data type
Designation
Description
Data values
2011h
R
Array
UINT-32
Real Scaling Parameter Settings
–
.0
R
UINT-32
Number of entries
8
.1
R
UINT-32
Endless-Shaft Operation Mode
1
Not active
2
Active
.2
R
UINT-32
Endless-Shaft Offset
Offset of the endless shaft function
.3
R
UINT-32
Internal PMR Shift Value
00000000h …
40000000h
–
Internal PMR shift value
.4
R
UINT-32
CNR_N, Number of Revolutions,
Nominator
1 … 2,048
Nominator for the number of
revolutions
.5
R
UINT-32
CNR_D, Number of Revolutions,
Divisor
1 … 2,048
Divisor for the number of revolutions
.6
R
UINT-32
CMR, Counts per Measuring Range
1 … 40000000h
Total resolution
.7
R
UINT-32
CPR, Counts Per Revolution (Integer)
Steps per revolution, digits before
the decimal separator
.8
R
UINT-32
CPR, Counts Per Revolution (Fract)
Steps per revolution, digits after the
decimal separator
Ex.:
at 1.555 = 1
Ex.:
at 1.555 = 555
Table 127: Object 2011h
Object 2012h – Diagnosis Service Parameter
NOTE
The object 2008h defines how the entries in the diagnostic table are handled (see
Table 121 on page 78).
8016869/YS01/2016-02-17 | SICK STEGMANN
Subject to change without notice
OPERATING INSTRUCTIONS | AHS36/AHM36 CANOPEN
81
6
OBJECT LIBRARY
Object
Subindex
Access Data type
Designation
Description
Data values
2012h
R
Record
Diagnosis Service Parameter
–
.0
R
UINT-8
Number of entries
15
.1
R
UINT-32
Number of Switch-On
–
Power up counter
.2
R
UINT-32
–
Operating Time Moving
Operating time in s, the time during
which the encoder has moved is
output7).
.3
R
UINT-16
–
Max. Operating Speed
Maximum speed in rpm since the
encoder has been in operation.
.4
R
UINT-32
Starts with Direction Forward
–
Counter for start of the encoder in
forward direction7)
.5
R
UINT-32
Starts with Direction Backward
–
Counter for start of the encoder in
backward direction7)
.6
R
UINT-32
Starts with Alternating Directions
–
Counter for the number of direction
changes7)
.7
R
UINT-32
Operating Hours counter
–
Operating hours counter (× 0.1 h)
.8
R
INT-16
Min. Operating Temperature
–
Minimum operating temperature in
°C
.9
R
INT-16
Max. Operating Temperature
–
Maximum operating temperature in
°C
.12
R
INT-16
Min. Operating Voltage
–
Minimum supply voltage in mV
.13
R
INT-16
Max. Operating Voltage
–
Maximum supply voltage in mV
.14
R
UINT-32
Reserved
–
.15
R
UINT-32
Counter of Diagnosis Storage
–
Counter for the save processes in
the EEPROM
Table 128: Object 2012h
7)
82
From movements with a speed >12 rpm.
OPERATING INSTRUCTIONS | AHS36/AHM36 CANOPEN
8016869/YS01/2016-02-17 | SICK STEGMANN
Subject to change without notice
OBJECT LIBRARY 6
Object 2013h – Diagnosis Error Logging Parameter
Object
Subindex
Access Data type
Designation
Description
Data values
2013h
R
Record
Diagnosis Error Logging Parameter
–
.0
R
UINT-8
Number of entries
16
.1
R
UINT-32
Warning:
–
General start-up error at power-on
.2
R
UINT-32
Warning in relation to the temperature:
–
Current measured value outside of the
minimum or maximum limit
.3
R
UINT-32
Reserved
–
.4
R
UINT-32
Warning in relation to the supply voltage:
–
Current measured value outside of the
minimum or maximum limit
.5
R
UINT-32
Position error:
–
Error on the calculation of the amplitude
values, Sin + Cos in the multiturn stage
.6
R
UINT-32
Warning in relation to the speed:
–
Current measured value outside of the
minimum or maximum limit
.7
R
UINT-32
–
Position error:
Error on the calculation of the amplitude
values Sin + Cos in the singleturn stage
.8
R
INT-16
–
Position and memory error:
2
Invalid communication with the I C device in
the main module
.9
R
INT-16
Position error:
–
Error on the calculation of the vector length
Sin² + Cos² in the singleturn stage
.10
R
INT-16
Position error:
–
Error on the calculation of the vector length
Sin² + Cos² in the multiturn stage
.11
R
INT-16
Position error:
–
Singleturn position incorrect
.12
R
INT-16
Position error:
–
Invalid or no synchronization from the
singleturn counter to the multiturn counter
.13
R
INT-16
Reserved
–
.14
R
UINT-32
Error of the Sync multi counter:
–
•
Speed exceeds the upper limit of
12,500 rpm
Or
•
8016869/YS01/2016-02-17 | SICK STEGMANN
Subject to change without notice
Number of current errors on the
calculation of the singleturn position
above the limit of 10 errors
OPERATING INSTRUCTIONS | AHS36/AHM36 CANOPEN
83
6
OBJECT LIBRARY
Object
Subindex
Access Data type
Designation
Description
Data values
.15
R
UINT-32
Reserved
–
.16
R
UINT-16
Memory error:
–
Invalid EEPROM checksum on initialization
Table 129: Object 2013h
Object 2014h – Time Counter
Object
Access Data type
Designation
Description
Data values
2014h
R
Time Counter
00000000h … FFFFFFFFh
UINT-32
Operating hours counter
in ms, starts at 0 after each
power-up
Table 130: Object 2014h
Object 2015h – Temperature Value
Object
Access Data type
Designation
Description
Data values
2015h
R
Temperature Value
–
UINT-16
Operating temperature
in °C8)
Table 131: Object 2015h
Object 2016h – Position Value, Raw
Object
Access Data type
Designation
Description
Data values
2016h
R
Position Value, Raw
AHS36 Basic =
0 … 00000FFFh
UINT-32
Position value independent
of any preset value and
independent of the
configured scaling
AHS36 Advanced =
0 … 00003FFFh
AHM36 Basic =
0 … 00FFFFFFh
AHM36 Advanced =
0 … 03FFFFFFh
Table 132: Object 2016h
Object 2017h – Speed Value 32-Bit
Object
Access Data type
Designation
Description
Data values
2017h
R
Speed Value 32-Bit
–
INT-32
Speed value in 32 Bit
Table 133: Object 2017h
8)
84
Depending on the mounting and the encoder rotational speed, can vary by up to 15 °C from the ambient temperature.
OPERATING INSTRUCTIONS | AHS36/AHM36 CANOPEN
8016869/YS01/2016-02-17 | SICK STEGMANN
Subject to change without notice
OBJECT LIBRARY 6
Object 2018h – Time Counter Signals
Object
Subindex
Access Data type
Designation
Description
Data values
2018h
R
Array
UINT-16
Time Counter Signals
–
.0
R
UINT-16
Number of entries
2
.1
R
UINT-16
Time Counter MSec
0000h … FFFFh
Time counter in ms
.2
R
UINT-16
Time Counter Sec
0000h … FFFFh
Time counter in s
Table 134: Object 2018h
Object 2019h – Process Cycle Time
Either the internal or the external cycle time is output via this object.
Object
Access Data type
Designation
Description
Data values
2019h
R
Process Cycle Time
125 … 100,000
UINT-32
Cycle time in µs
Table 135: Object 2019h
8016869/YS01/2016-02-17 | SICK STEGMANN
Subject to change without notice
OPERATING INSTRUCTIONS | AHS36/AHM36 CANOPEN
85
7
COMMISSIONING
7
Commissioning
This chapter provides information on the electrical installation, configuration and
commissioning of the Absolute Encoder AHS36/AHM36 CANopen.
α
7.1
Please read this chapter before mounting, installing and commissioning the
device.
Electrical installation
WARNING
Switch the power supply off!
The machine/system could unintentionally start up while you are connecting the
devices.
α
Ensure that the entire machine/system is disconnected during the electrical
installation.
For the electrical installation you will need male and female connectors (see product
information for the AHS36/AHM36 CANopen).
7.1.1
Connection of the AHS36/AHM36 CANopen
The connection on the AHS36/AHM36 CANopen is on the rear. It is of rotating design.
As a consequence it can be used angled either upward, to the left or to the right, or (as
shown) axial to the rear.
With male connector
With cable outlet
Figure 29: Connection types
The connection on the AHS36/AHM36 CANopen is designed either as an M12×5 male
connector or as a cable outlet with flying leads.
86
OPERATING INSTRUCTIONS | AHS36/AHM36 CANOPEN
8016869/YS01/2016-02-17 | SICK STEGMANN
Subject to change without notice
COMMISSIONING 7
Figure 30: Male connector of the AHS36/AHM36 CANopen
Pin
Wire color
Signal
Function
1
White
SHIELD
Shielding
2
Red
VDC
Supply voltage encoder 10 … 30 VDC
3
Blue
GND/CAN GND
Encoder ground
4
Black
CAN high
CAN signal
5
Pink
CAN low
CAN signal
–
Shielding
Housing
Table 136: Pin assignment of the connection plug/core color on the connecting cable
NOTE
Pay attention to the maximum lenghts of the stubs (see Table 137 on page 87).
Mount all cables with strain relief.
Use twisted pair cables.
•
•
•
Baud rate
Length of an individual stub
Total length of all stubs
1,000 kbit/s
<1m
<5m
500 kbit/s
<5m
< 25 m
250 kbit/s
< 10 m
< 50 m
125 kbit/s
< 20 m
< 100 m
50 kbit/s
< 50 m
< 250 m
Table 137: Maximum length of the stubs
NOTE
The baud rate of the encoder can be configured in the following manner:
•
•
7.2
using object 2009h (see Table 122 on page 78)
by accessing via Layer Setting Services (see section 5.4 on page 22)
Settings on the hardware
It is not possible to make any settings on the hardware. Baud rate and node ID are
configured via the Layer Setting Services (see section 5.4 on page 22).
8016869/YS01/2016-02-17 | SICK STEGMANN
Subject to change without notice
OPERATING INSTRUCTIONS | AHS36/AHM36 CANOPEN
87
7
COMMISSIONING
7.3
Configuration
The AHS36/AHM36 CANopen can be integrated into a control system. For this purpose
an ESI file is loaded into the system.
7.3.1
Default delivery status
The AHS36/AHM36 CANopen is supplied with the following parameters:
•
•
•
•
•
•
•
•
•
•
•
•
•
7.3.2
Code sequence = cw, clockwise
Scaling = none
Resolution per revolution AHx36 Basic = 4,096
Resolution per revolution AHx36 Advanced = 16,384
Total resolution AHS36 Basic = 4,096
Total resolution AHM36 Basic = 16,777,216
Total resolution AHS36 Advanced = 16,384
Total resolution AHM36 Advanced = 67,108,864
Preset value = 0
Speed measuring unit = rpm
Round axis functionality = not activated
Nominator for the number of revolutions (Round axis functionality) = 2,048
Divisor for the number of revolutions (Round axis functionality) = 1
System configuration
NOTE
All configuration information relates to Beckhoff controllers that are configured and
diagnostics undertaken using the configuration tool TwinCAT®.
Baud rate and device ID are configured via the Layer Setting Services (see section 5.4
on page 22).
PLC
EEPROM
AHS36/AHM36 CANopen
Figure 31: Integration in TwinCAT® with EDS file
α
α
88
Start the TwinCAT® system manager.
Choose on the context menu for the CiA node in the device tree the command
Scan boxes....
OPERATING INSTRUCTIONS | AHS36/AHM36 CANOPEN
8016869/YS01/2016-02-17 | SICK STEGMANN
Subject to change without notice
COMMISSIONING 7
Figure 32: Context menu Scan boxes...
The encoder is displayed in the device tree as Box n (in the example with factoryconfigured node ID 5).
Figure 33: Encoder in the device tree
α
On the Online tab, click Advanced....
The Advanced settings dialog box is opened.
Figure 34: Advanced settings dialog box
8016869/YS01/2016-02-17 | SICK STEGMANN
Subject to change without notice
OPERATING INSTRUCTIONS | AHS36/AHM36 CANOPEN
89
7
COMMISSIONING
α
Choose Offline - via EDS file and the appropriate EDS file using the Browse
button.
NOTE
A dedicated EDS file is available for each encoder type:
•
•
•
•
Singleturn Encoder Basic = AHS36_B_CO.eds
Multiturn Encoder Basic = AHM36_B_CO.eds
Singleturn Encoder Advanced = AHS36_A_CO.eds
Multiturn Encoder Advanced = AHM36_A_CO.eds
α
Then change to the configuration mode of the TwinCAT® system manager.
Figure 35: Configuration mode button
Prompts are displayed as to whether the TwinCAT® system manager is to change to the
configuration mode, whether the data are to be loaded from the I/O device and
whether the system is to be placed in the Free Run operating mode.
Figure 36: Configuration mode prompt
Figure 37: Load I/O Devices prompt
Figure 38: Free Run prompt
α
Click OK or Yes.
Figure 39: Status indication for the free run mode or configuration mode
The status indication at the bottom right changes between Free Run in red and Config
Mode in blue.
90
OPERATING INSTRUCTIONS | AHS36/AHM36 CANOPEN
8016869/YS01/2016-02-17 | SICK STEGMANN
Subject to change without notice
COMMISSIONING 7
Figure 40: Online tab
All object parameters can now be read or configured on the Online tab.
NOTE
In the factory the encoder’s Transmit PDOs are set to device-specific triggering. As a
consequence the encoder outputs all Transmit PDOs once on startup. However the
event timer is at 0. For this reason the Transmit PDOs are initially only output once.
For the cyclic or acyclic output of the Transmit PDOs by the encoder, there are the
following options:
α
α
α
7.4
Change the event timer in the objects 1800h … 1803h (see Table 63 ff. from
page 53).
Configure a trigger event using the CoS event handling configuration (see
Table 119 on page 77).
Change the transmission type in the objects 1800h … 1803h (see Table 63 ff.
from page 53).
Tests before the initial commissioning
WARNING
Commissioning requires a thorough check by authorized personnel!
Before you operate a system equipped with the AHS36/AHM36 CANopen for the first
time, make sure that the system is first checked and released by authorized personnel.
Please read the notes in chapter 2 “On safety” on page 9.
8016869/YS01/2016-02-17 | SICK STEGMANN
Subject to change without notice
OPERATING INSTRUCTIONS | AHS36/AHM36 CANOPEN
91
8
8
FAULT DIAGNOSIS
Fault diagnosis
This chapter describes how to identify and rectify errors and malfunctions of the
AHS36/AHM36 CANopen Absolute Encoder.
8.1
In the event of faults or errors
WARNING
Cease operation if the cause of the malfunction has not been clearly identified!
Stop the machine if you cannot clearly identify or allocate the error and if you cannot
safely rectify the malfunction.
8.2
SICK STEGMANN support
If you cannot remedy an error with the help of the information provided in this chapter,
please contact your local SICK STEGMANN subsidiary.
8.3
Error and status indications on the LED
LED
Figure 41: Position of the LED
92
OPERATING INSTRUCTIONS | AHS36/AHM36 CANOPEN
8016869/YS01/2016-02-17 | SICK STEGMANN
Subject to change without notice
FAULT DIAGNOSIS 8
8.3.1
Meaning of the LED displays
The LED indicates the CANopen status of the encoder and errors on the CANopen bus.
Display
Description
Status indications
⌠ϑ
Green
Status of the CANopen state machine = Stopped
⌠Ε
Green
Status of the CANopen state machine = Pre-operational
Ν
Green
Status of the CANopen state machine = Operational
Error messages
ν
Off
No supply voltage
Ν
Red
Busoff
The CANopen master is disconnected from the bus.
⌠Ε
Red
Invalid configuration
⌠ϑ
Red
Counter for the internal CAN controller has reached the warning level for
“error frames”.
⌠ϑ⌠ϑ Red
Error within the Node Guarding telegram or the Heartbeat telegram
Table 138: Meaning of the LED displays
8.4
Diagnostics via CANopen
8.4.1
Emergency Messages
If the encoder detects an internal error, then an emergency message is sent automatically by the AHS36/AHM36 CANopen.
For this purpose a message is formed from the error code in the object 1003h (see
Table 41 on page 46), the error register in the object 1001h (see Table 39 on page 45)
and the Device Status Word in the object 2010h (see Table 123 on page 78).
Byte 0
1
2
Object 1003h
Object
1001h
Error code
Error
register
3
4
5
Object
2010.01h
6
Object
2010.02h
7
0
Error field
Table 139: Emergency Message Format
The object 2010h – Device Status Word is manufacturer-specific. The contents of the
subindices .1 and .2 are written to the emergency message.
Error code of the
object 1003h
Error register of the
object 1001h
Description
0000h
00h
No error or reset error
8000h
01h
Generic error
3000h
05h
0000.0101b
Generic voltage error
3100h
05h
Input voltage outside the operating range
4000h
09h
0000.1001b
Generic temperature error
8016869/YS01/2016-02-17 | SICK STEGMANN
Subject to change without notice
OPERATING INSTRUCTIONS | AHS36/AHM36 CANOPEN
93
8
FAULT DIAGNOSIS
Error code of the
object 1003h
Error register of the
object 1001h
Description
4200h
09h
Encoder temperature outside the operating
range
8100h
11h
0001.0001b
Generic communication error
8110h
11h
CAN overrun (a telegram was lost)
8130h
11h
Life Guard Error
8200h
11h
Generic protocol error
8210
11h
PDO not executed due to an error in the
telegram length
5000h
21h
0011.0001b
Generic error related to the device profile
5050h
21h
Encoder error in the singleturn area
(from CANopen V4.3)
5051h
21h
Encoder error in the multiturn area
(from CANopen V4.3)
5070h
81h
Position and memory error:
Invalid communication with the I2C device in
the main module
5080h
81h
Memory error:
Invalid EEPROM checksum on initialization
1050h
81h
Warning in relation to the speed:
Current measured value outside of the
minimum or maximum limit
1060h
81h
Error of the Sync multi counter:
•
Speed exceeds the upper limit of
12,500 rpm
Or
•
Number of current errors on the
calculation of the singleturn position
above the limit of 10 errors.
Table 140: Error codes and error registers
If there is no longer an error present, the encoder transmits an emergency message
with the error code 0000h and error register 0000h.
8.4.2
Alarms, warnings and status
Alarms, warnings and the encoder status can be read from the following objects:
•
•
•
94
6503h – Alarm Status (see Table 95 on page 67)
6505h – Warning Status (see Table 99 on page 68)
2010h – STW-1 – Device Status Word (see Table 123 on page 78)
OPERATING INSTRUCTIONS | AHS36/AHM36 CANOPEN
8016869/YS01/2016-02-17 | SICK STEGMANN
Subject to change without notice
FAULT DIAGNOSIS 8
8.4.3
Error during the SDO transfer
In the case of an error during the SDO transfer, a so-called Abort-SDO-Transfer-Request
is transmitted with an error code. The following errors are possible:
Value
Description
05030000h
Toggle bit has not changed.
05040000h
SDO protocol time-out
05040001h
Client/server command invalid or unknown
05040005h
Memory too small
06010000h
Object access not supported
06010001h
Read access to an object that can only be written
06010002h
Write access to an object that can only be read
06020000h
Object does not exist in the object directory
06040041h
The object cannot be mapped in the PDO.
06040042h
The number and length of the mapped objects exceed the PDO length.
06040043h
General parameter incompatibility
06040047h
General incompatibility in the device
06060000h
Access error due to a hardware error
06070010h
Incorrect data type, length of the service parameters is incorrect
06070012h
Incorrect data type, length of the service parameters too long
06070013h
Incorrect data type, length of the service parameters too short
06090011h
Subindex does not exist.
06090030h
Parameter value range exceeded, only on write access
06090031h
Parameter value written too long
06090032h
Parameter value written too short
06090036h
Maximum value is smaller than minimum value
08000000h
Generic error
08000020h
Data can not be transmitted or saved in the application.
08000021h
Data can not be transmitted or saved in the application. Reason: local
control system
08000022h
Data can not be transmitted or saved in the application. Reason: actual
device status
08000023h
Dynamic object directory creation error or object directory does not exist
Table 141: Error during the SDO transfer
8016869/YS01/2016-02-17 | SICK STEGMANN
Subject to change without notice
OPERATING INSTRUCTIONS | AHS36/AHM36 CANOPEN
95
9
ANNEX
9
Annex
9.1
Conformity with EU directives
EU declaration of conformity (extract)
The undersigned, representing the following manufacturer herewith declares that the
product is in conformity with the provisions of the following EU directive(s) (including all
applicable amendments), and that the respective standards and/or technical
specifications have been applied.
Complete EU declaration of conformity for download: www.sick.com
96
OPERATING INSTRUCTIONS | AHS36/AHM36 CANOPEN
8016869/YS01/2016-02-17 | SICK STEGMANN
Subject to change without notice
LIST OF ILLUSTRATIONS 10
10
List of illustrations
Figure 1:
Encoder in the CANopen network....................................................... 11
Figure 2:
Connection types................................................................................ 14
Figure 3:
Saving the offset ................................................................................ 15
Figure 4:
Example position measurement on a rotating table with
transmission ratio .............................................................................. 16
Figure 5:
Example position measurement on a rotating table without
transmission ratio .............................................................................. 17
Figure 6:
Example electronic cam mechanism.................................................. 18
Figure 7:
Position of the LED............................................................................. 18
Figure 8:
CANopen in the OSI model ................................................................. 19
Figure 9:
Communication channels................................................................... 20
Figure 10:
AHx36 in the CANopen topologie ....................................................... 20
Figure 11:
Transitions between the operating statuses ...................................... 27
Figure 12:
Example for Transmit SDO and Receive SDO..................................... 30
Figure 13:
Example for Transmit PDO and Receive PDO ..................................... 31
Figure 14:
Sending Transmit PDOs...................................................................... 34
Figure 15:
EDS file............................................................................................... 35
Figure 16:
Objects 6000h, 6001h and 6002h in TwinCAT®............................... 35
Figure 17:
Example for the parameterization of object 6000h ........................... 36
Figure 18:
Example for the parameterization of object 6001h ........................... 37
Figure 19:
Example for the parameterization of object 6002h ........................... 37
Figure 20:
Example for the parameterization of object 6003h ........................... 38
Figure 21:
Example for the parameterization of object 2005h ........................... 38
Figure 22:
Example for the parameterization of object 1A00h............................ 39
Figure 23:
Example for the parameterization of subindex 1A00.01h.................. 39
Figure 24:
Example for the parameterization of object 2002h ........................... 40
Figure 25:
Example for the parameterization of subindex 2002.02h ................. 40
Figure 26:
Example for the parameterization of object 2001h ........................... 41
Figure 27:
Example for the parameterization of subindex 2001.03h ................. 41
Figure 28:
Objects for the electronic cam mechanism........................................ 42
Figure 29:
Connection types................................................................................ 86
Figure 30:
Male connector of the AHS36/AHM36 CANopen............................... 87
Figure 31:
Integration in TwinCAT® with EDS file................................................ 88
Figure 32:
Context menu Scan boxes... ............................................................... 89
Figure 33:
Encoder in the device tree.................................................................. 89
Figure 34:
Advanced settings dialog box............................................................. 89
Figure 35:
Configuration mode button ................................................................ 90
Figure 36:
Configuration mode prompt ............................................................... 90
8016869/YS01/2016-02-17 | SICK STEGMANN
Subject to change without notice
OPERATING INSTRUCTIONS | AHS36/AHM36 CANOPEN
97
10
98
LIST OF ILLUSTRATIONS
Figure 37:
Load I/O Devices prompt.................................................................... 90
Figure 38:
Free Run prompt ................................................................................ 90
Figure 39:
Status indication for the free run mode or configuration mode ......... 90
Figure 40:
Online tab........................................................................................... 91
Figure 41:
Position of the LED............................................................................. 92
OPERATING INSTRUCTIONS | AHS36/AHM36 CANOPEN
8016869/YS01/2016-02-17 | SICK STEGMANN
Subject to change without notice
LIST OF TABLES
11
11
List of tables
Table 1:
Authorized personnel ........................................................................... 9
Table 2:
Disposal of the assemblies ................................................................ 10
Table 3:
Special features of the encoder variants ........................................... 14
Table 4:
Communication object identifier for the encoder............................... 21
Table 5:
Supported baud rates ........................................................................ 22
Table 6:
Format of an LSS telegram................................................................. 23
Table 7:
Format of the Switch Mode Global command .................................... 23
Table 8:
Format of the Configure Node ID command....................................... 23
Table 9:
Response to the Configure Node ID command .................................. 23
Table 10:
Format of the Configure Bit Timing Parameters command ................ 24
Table 11:
Baud rate table................................................................................... 24
Table 12:
Response to the Configure Bit Timing Parameters command............ 24
Table 13:
Format of the Store Configuration command..................................... 25
Table 14:
Response to the Store Configuration command ................................ 25
Table 15:
Format of the Inquire LSS address service command........................ 25
Table 16:
Command table.................................................................................. 25
Table 17:
Response to the Inquire LSS address service command ................... 25
Table 18:
Format of the Identify Non Configured Slave Device command......... 26
Table 19:
Response to the Identify Non-Configured Slave Device
command ........................................................................................... 26
Table 20:
Status of the CANopen state machine ............................................... 26
Table 21:
Format of the NMT telegram .............................................................. 27
Table 22:
Meaning of byte 0 .............................................................................. 27
Table 23:
Transitions between the operating statuses ...................................... 28
Table 24:
Format of the Node Guarding telegram.............................................. 28
Table 25:
Meaning of byte 0 .............................................................................. 28
Table 26:
Format of the Heartbeat telegram...................................................... 29
Table 27:
Meaning of byte 0 .............................................................................. 29
Table 28:
Format of the SDO.............................................................................. 30
Table 29:
Format of the Transmit PDOs ............................................................. 31
Table 30:
Example for a Transmit PDO............................................................... 31
Table 31:
Example for the communication parameters ..................................... 32
Table 32:
Example for binary code..................................................................... 36
Table 33:
Examples for total resolution.............................................................. 37
Table 34:
Example for binary code..................................................................... 39
Table 35:
Nomenclature of the access types and data types ............................ 43
Table 36:
Implemented standard objects .......................................................... 44
8016869/YS01/2016-02-17 | SICK STEGMANN
Subject to change without notice
OPERATING INSTRUCTIONS | AHS36/AHM36 CANOPEN
99
11
100
LIST OF TABLES
Table 37:
Object 1000h ..................................................................................... 45
Table 38:
Object 1000h – details ...................................................................... 45
Table 39:
Object 1001h ..................................................................................... 45
Table 40:
Object 1001h – details ...................................................................... 45
Table 41:
Object 1003h ..................................................................................... 46
Table 42:
Object 1003h – details ...................................................................... 46
Table 43:
Object 1005h ..................................................................................... 46
Table 44:
Object 1005h – details ...................................................................... 46
Table 45:
Object 1008h ..................................................................................... 47
Table 46:
Object 1009h ..................................................................................... 47
Table 47:
Object 100Ah ..................................................................................... 47
Table 48:
Object 100Ch ..................................................................................... 47
Table 49:
Object 100Dh ..................................................................................... 47
Table 50:
Object 1010h ..................................................................................... 48
Table 51:
Object 1010h – details ...................................................................... 48
Table 52:
Object 1011h ..................................................................................... 49
Table 53:
Object 1011h – details ...................................................................... 49
Table 54:
Object 1014h ..................................................................................... 49
Table 55:
Object 1015h ..................................................................................... 49
Table 56:
Object 1017h ..................................................................................... 50
Table 57:
Object 1018h ..................................................................................... 50
Table 58:
Object 1018h – details ...................................................................... 50
Table 59:
Structure of the PDOs......................................................................... 51
Table 60:
Structure of the PDOs – details.......................................................... 51
Table 61:
Object 1400h ..................................................................................... 52
Table 62:
Object 1600h ..................................................................................... 52
Table 63:
Object 1800h ..................................................................................... 53
Table 64:
Object 1801h ..................................................................................... 53
Table 65:
Object 1802h ..................................................................................... 54
Table 66:
Object 1803h ..................................................................................... 54
Table 67:
Transmission types............................................................................. 55
Table 68:
Object 1A00h – default subindices.................................................... 55
Table 69:
Object 1A01h – default subindices.................................................... 56
Table 70:
Object 1A02h – default subindices.................................................... 56
Table 71:
Object 1A03h – default subindices.................................................... 56
Table 72:
Objects and their subindices that can be mapped............................. 57
Table 73:
Implemented encoder profile specific objects.................................... 58
Table 74:
Object 6000h ..................................................................................... 59
Table 75:
Object 6000h – details ...................................................................... 59
OPERATING INSTRUCTIONS | AHS36/AHM36 CANOPEN
8016869/YS01/2016-02-17 | SICK STEGMANN
Subject to change without notice
LIST OF TABLES
11
Table 76:
Object 6001h ..................................................................................... 60
Table 77:
Object 6002h ..................................................................................... 60
Table 78:
Object 6003h ..................................................................................... 60
Table 79:
Object 6004h ..................................................................................... 61
Table 80:
Object 6030h ..................................................................................... 61
Table 81:
Object 6200h ..................................................................................... 61
Table 82:
Object 6300h ..................................................................................... 62
Table 83:
Object 6300h – details ...................................................................... 62
Table 84:
Object 6301h ..................................................................................... 63
Table 85:
Object 6301h – details ...................................................................... 63
Table 86:
Object 6302h ..................................................................................... 64
Table 87:
Object 6301h – details ...................................................................... 64
Table 88:
Object 6310h … 6317h...................................................................... 65
Table 89:
Object 6320h … 6327h...................................................................... 65
Table 90:
Object 6330h … 6337h...................................................................... 65
Table 91:
Object 6500h ..................................................................................... 66
Table 92:
Object 6500h – details ...................................................................... 66
Table 93:
Object 6501h ..................................................................................... 66
Table 94:
Object 6502h ..................................................................................... 66
Table 95:
Object 6503h ..................................................................................... 67
Table 96:
Object 6503h – details ...................................................................... 67
Table 97:
Object 6504h ..................................................................................... 67
Table 98:
Object 6504h – details ...................................................................... 67
Table 99:
Object 6505h ..................................................................................... 68
Table 100:
Object 6505h – details ...................................................................... 68
Table 101:
Object 6506h ..................................................................................... 69
Table 102:
Object 6506h – details ...................................................................... 69
Table 103:
Object 6507h ..................................................................................... 69
Table 104:
Object 6507h – details ...................................................................... 69
Table 105:
Object 6508h ..................................................................................... 70
Table 106:
Object 6509h ..................................................................................... 70
Table 107:
Object 650Ah ..................................................................................... 70
Table 108:
Object 650Bh ..................................................................................... 70
Table 109:
Implemented manufacturer-specific objects for the encoder
configuration ...................................................................................... 71
Table 110:
Implemented manufacturer-specific objects that provide status
information......................................................................................... 71
Table 111:
Object 2000h ..................................................................................... 72
Table 112:
Object 2000h – details ...................................................................... 72
8016869/YS01/2016-02-17 | SICK STEGMANN
Subject to change without notice
OPERATING INSTRUCTIONS | AHS36/AHM36 CANOPEN
101
11
102
LIST OF TABLES
Table 113:
Object 2001h ..................................................................................... 73
Table 114:
Object 2002h ..................................................................................... 74
Table 115:
Object 2004h ..................................................................................... 75
Table 116:
Object 2004h – Service Codes........................................................... 75
Table 117:
Object 2005h ..................................................................................... 75
Table 118:
Object 2006h ..................................................................................... 76
Table 119:
Object 2007h ..................................................................................... 77
Table 120:
Object 2007h – CoS_FLAG-xx Status ................................................. 77
Table 121:
Object 2008h ..................................................................................... 78
Table 122:
Object 2009h ..................................................................................... 78
Table 123:
Object 2010h ..................................................................................... 78
Table 124:
Object 2010h – State Flag 1 (S_STAT-A)............................................ 80
Table 125:
Object 2010h – State Flag 2 (S_STAT-B) ........................................... 80
Table 126:
Object 2010h – State Flag 3 (S_STAT-C)............................................ 80
Table 127:
Object 2011h ..................................................................................... 81
Table 128:
Object 2012h ..................................................................................... 82
Table 129:
Object 2013h ..................................................................................... 84
Table 130:
Object 2014h ..................................................................................... 84
Table 131:
Object 2015h ..................................................................................... 84
Table 132:
Object 2016h ..................................................................................... 84
Table 133:
Object 2017h ..................................................................................... 84
Table 134:
Object 2018h ..................................................................................... 85
Table 135:
Object 2019h ..................................................................................... 85
Table 136:
Pin assignment of the connection plug/core color on the
connecting cable ................................................................................ 87
Table 137:
Maximum length of the stubs............................................................. 87
Table 138:
Meaning of the LED displays .............................................................. 93
Table 139:
Emergency Message Format.............................................................. 93
Table 140:
Error codes and error registers........................................................... 94
Table 141:
Error during the SDO transfer............................................................. 95
OPERATING INSTRUCTIONS | AHS36/AHM36 CANOPEN
8016869/YS01/2016-02-17 | SICK STEGMANN
Subject to change without notice
LIST OF TABLES
11
8016869/YS01/2016-02-17 | SICK STEGMANN
Subject to change without notice
OPERATING INSTRUCTIONS | AHS36/AHM36 CANOPEN
103
8016869/YS01/2016-02-17 ∙ REIPA/XX (2016-02) ∙ USmod 4c int44
India
Phone+91–22–4033 8333
E-Mail [email protected]
South Korea
Phone+82 2 786 6321
E-Mail [email protected]
Israel
Phone+972-4-6881000
E-Mail [email protected]
Spain
Phone+34 93 480 31 00
E-Mail [email protected]
Italy
Phone+39 02 27 43 41
E-Mail [email protected]
Sweden
Phone+46 10 110 10 00
E-Mail [email protected]
Japan
Phone+81 (0)3 5309 2112
E-Mail [email protected]
Switzerland
Phone+41 41 619 29 39
E-Mail [email protected]
Malaysia
Phone+603 808070425
E-Mail [email protected]
Taiwan
Phone+886 2 2375-6288
E-Mail [email protected]
Netherlands
Phone+31 (0)30 229 25 44
E-Mail [email protected]
Thailand
Phone+66 2645 0009
E-Mail [email protected]
Chile
Phone +56 2 2274 7430
E-Mail [email protected]
New Zealand Phone+64 9 415 0459
0800 222 278 – tollfree
[email protected]
Turkey
Phone+90 (216) 528 50 00
E-Mail [email protected]
China
Phone +86 4000 121 000
E-Mail [email protected]
Norway Phone+47 67 81 50 00
E-Mail [email protected]
Denmark
Phone+45 45 82 64 00
E-Mail [email protected]
Poland
Phone+48 22 837 40 50
E-Mail [email protected]
USA/Mexico
Phone+1(952) 941-6780
1 (800) 325-7425 – tollfree
E-Mail [email protected]
Finland
Phone+358-9-2515 800
E-Mail [email protected]
Romania
Phone+40 356 171 120
E-Mail [email protected]
Vietnam
Phone+84 8 62920204
E-Mail [email protected]
France
Phone+33 1 64 62 35 00
E-Mail [email protected]
Russia
Phone+7-495-775-05-30
E-Mail [email protected]
Gemany
Phone+49 211 5301-301
E-Mail [email protected]
Singapore
Phone+65 6744 3732
E-Mail [email protected]
Great Britain
Phone+44 (0)1727 831121
E-Mail [email protected]
Slovakia
Phone+421 482 901201
E-Mail [email protected]
Hong Kong
Phone +852 2153 6300
E-Mail [email protected]
Slovenia
Phone+386 (0)1-47 69 990
E-Mail [email protected]
Hungary
Phone+36 1 371 2680
E-Mail [email protected]
South Africa
Phone+27 11 472 3733
E-Mail [email protected]
Australia
Phone+61 3 9457 0600
1800 334 802 – tollfree
[email protected]
Austria
Phone+43 (0)22 36 62 28 8-0
E-Mail [email protected]
Belgium/Luxembourg
Phone +32 (0)2 466 55 66
E-Mail [email protected]
Brazil
Phone+55 11 3215-4900
E-Mail [email protected]
Canada
Phone+1 905 771 14 44
E-Mail [email protected]
Czech Republic
Phone+420 2 57 91 18 50
E-Mail [email protected]
SICK AG |Waldkirch|Germany|www.sick.com
United Arab Emirates
Phone+971 (0) 4 88 65 878
E-Mail [email protected]
More representatives and agencies
at www.sick.com
Was this manual useful for you? yes no
Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Download PDF

advertisement