Teleworking-Cisco OfficeExtend Deployment Guide - Feb 2013

Teleworking-Cisco OfficeExtend Deployment Guide - Feb 2013

Teleworking—Cisco OfficeExtend

Deployment Guide

February 2013 Series

Preface

Who Should Read This Guide

This Cisco® Smart Business Architecture (SBA) guide is for people who fill a variety of roles:

• Systems engineers who need standard procedures for implementing solutions

• Project managers who create statements of work for Cisco SBA implementations

• Sales partners who sell new technology or who create implementation documentation

• Trainers who need material for classroom instruction or on-the-job training

In general, you can also use Cisco SBA guides to improve consistency among engineers and deployments, as well as to improve scoping and costing of deployment jobs.

Release Series

Cisco strives to update and enhance SBA guides on a regular basis. As we develop a series of SBA guides, we test them together, as a complete system. To ensure the mutual compatibility of designs in Cisco SBA guides, you should use guides that belong to the same series.

The Release Notes for a series provides a summary of additions and changes made in the series.

All Cisco SBA guides include the series name on the cover and at the bottom left of each page. We name the series for the month and year that we release them, as follows:

month year

Series

For example, the series of guides that we released in February 2013 is the “February Series”.

You can find the most recent series of SBA guides at the following sites:

Customer access: http://www.cisco.com/go/sba

Partner access: http://www.cisco.com/go/sbachannel

February 2013 Series

How to Read Commands

Many Cisco SBA guides provide specific details about how to configure

Cisco network devices that run Cisco IOS, Cisco NX-OS, or other operating systems that you configure at a command-line interface (CLI). This section describes the conventions used to specify commands that you must enter.

Commands to enter at a CLI appear as follows: configure terminal

Commands that specify a value for a variable appear as follows: ntp server

10.10.48.17

Commands with variables that you must define appear as follows: class-map

[highest class name]

Commands shown in an interactive example, such as a script or when the command prompt is included, appear as follows:

Router# enable

Long commands that line wrap are underlined. Enter them as one command: wrr-queue random-detect max-threshold 1 100 100 100 100 100

100 100 100

Noteworthy parts of system output or device configuration files appear highlighted, as follows: interface Vlan64

ip address 10.5.204.5 255.255.255.0

Comments and Questions

If you would like to comment on a guide or ask questions, please use the

SBA feedback form .

If you would like to be notified when new comments are posted, an RSS feed is available from the SBA customer and partner pages.

Preface

Table of Contents

What’s In This SBA Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Cisco SBA Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Route to Success . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

About This Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Business Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Technology Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Deployment Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Configuring Cisco Secure ACS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Configuring Internet Edge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Configuring LAN Distribution Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Configuring WLC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Configuring Voice/Data Connectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Configuring AP Authentication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Configuring Cisco OfficeExtend AP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Enabling AP Radios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Configuring WLC Resiliency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Appendix A: Product List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Appendix B: Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

February 2013 Series

Table of Contents

What’s In This SBA Guide

Cisco SBA Solutions

Cisco SBA helps you design and quickly deploy a full-service business network. A Cisco SBA deployment is prescriptive, out-of-the-box, scalable, and flexible.

Cisco SBA incorporates LAN, WAN, wireless, security, data center, application optimization, and unified communication technologies—tested together as a complete system. This component-level approach simplifies system integration of multiple technologies, allowing you to select solutions that solve your organization’s problems—without worrying about the technical complexity.

Cisco SBA Solutions are designs for specific problems found within the most common technology trends. Often, Cisco SBA addresses more than one use case per solution because customers adopt new trends differently and deploy new technology based upon their needs.

Route to Success

To ensure your success when implementing the designs in this guide, you should first read any guides that this guide depends upon—shown to the left of this guide on the route below. As you read this guide, specific prerequisites are cited where they are applicable.

About This Guide

This deployment guide contains one or more deployment chapters, which each include the following sections:

• Business Overview —Describes the business use case for the design.

Business decision makers may find this section especially useful.

• Technology Overview —Describes the technical design for the business use case, including an introduction to the Cisco products that make up the design. Technical decision makers can use this section to understand how the design works.

• Deployment Details —Provides step-by-step instructions for deploying and configuring the design. Systems engineers can use this section to get the design up and running quickly and reliably.

You can find the most recent series of Cisco SBA guides at the following sites:

Customer access: http://www.cisco.com/go/sba

Partner access: http://www.cisco.com/go/sbachannel

SOLUTIONS

February 2013 Series

Prerequisite Guides

Teleworking—Design Overview • Firewall and IPS

Deployment Guide

• LAN Deployment Guide

• Wireless LAN

Deployment Guide

You Are Here

Teleworking—Cisco OfficeExtend

Deployment Guide

What’s In This SBA Guide

1

Introduction

Business Overview

Providing employees access to networked business services from a residential environment poses challenges for both the end user and IT operations. For the home-based teleworker, it is critical that access to business services be reliable and consistent, providing an experience that is as similar as sitting in a cubicle or office in the organization’s facility. However, residential and urban environments tend to have many potential sources of congestion found on the commonly used 2.4-GHz wireless band. Potential sources of interference include cordless handsets, personal home laptops, iPhones or iPods, baby monitors, and many more. Additionally, solutions must support a wide range of teleworking employees who have varying skill sets, making it critical to have a streamlined and simplified way to implement devices that allow for access to the corporate environment.

IT operations have a different set of challenges when it comes to implementing a teleworking solution, including properly securing, maintaining, and managing the teleworker environment from a centralized location. Because operational expenses are a constant consideration, IT must implement a cost-effective solution that protects an organization’s investment without sacrificing quality or functionality.

Technology Overview

The Cisco OfficeExtend solution is specifically designed for the teleworker who primarily uses wireless devices. The solution consists of the following components:

• Cisco Aironet 600 Series OfficeExtend Access Point

• Cisco 2500 Series or Cisco 5500 Series Wireless LAN Controller

Deployment Components

The Cisco Smart Business Architecture (SBA) OfficeExtend deployment is built around two main components: Cisco wireless LAN controllers and

Cisco OfficeExtend Access Points.

February 2013 Series

Cisco Wireless LAN Controllers

Cisco wireless LAN controllers are responsible for system-wide WLAN functions, such as security policies, intrusion prevention, RF management, quality of service (QoS), and mobility. They work in conjunction with Cisco

OfficeExtend Access Points to support business-critical wireless applications for teleworkers. Cisco wireless LAN controllers provide the control, scalability, security, and reliability that network managers need to build a secure, scalable teleworker environment.

Although a standalone controller can support up to 500 Cisco OfficeExtend sites, Cisco recommends deploying controllers in pairs for resiliency. There are many different ways to configure controller resiliency; the simplest is to use a primary/secondary model where all the access points at the site prefer to join the primary controller and only join the secondary controller during a failure event. However, even when configured as a pair, wireless

LAN controllers do not share configuration information. Each wireless LAN controller must be configured separately.

The following controllers are included in this release of Cisco SBA.

• Cisco 2500 Series Wireless LAN Controller —Cisco 2504 Wireless

Controllers support up to 75 Cisco OfficeExtend Access Points and

1000 clients. Cisco 2500 Series Wireless LAN Controllers are ideal for small OfficeExtend deployments.

• Cisco 5500 Series Wireless LAN Controller —Cisco 5508 Wireless

Controllers support up to 500 Cisco OfficeExtend Access Points and

7000 clients, making them ideal for large OfficeExtend deployments.

Because software license flexibility allows you to add additional access points as business requirements change, you can choose the controller that will support your needs long-term, but only pay for what you need, when you need it.

To allow users to connect their endpoint devices to either the organization’s on-site wireless network or their at-home teleworking wireless networks without reconfiguration, the Cisco OfficeExtend teleworking solution offers the same wireless Secure Set Identifiers (SSIDs) at teleworkers’ homes as those that support data and voice inside the organization.

Introduction

Cisco OfficeExtend Access Points

Cisco Aironet 600 Series OfficeExtend Access Points are lightweight. This means they cannot act independently of a wireless LAN controller (WLC).

As the access point communicates with the WLC resources, it will download its configuration and synchronize its software/firmware image, if required.

Cisco Aironet 600 Series establishes a secure Datagram Transport Layer

Security (DTLS) connection between the access point and the controller to offer remote WLAN connectivity using the same profile as at the corporate office. Secure tunneling allows all traffic to be validated against centralized security policies and minimizes the management overhead associated with home-based firewalls.

Cisco OfficeExtend delivers full 802.11n wireless performance and avoids congestion caused by residential devices because it operates simultaneously in the 2.4-GHz and the 5-GHz radio frequency bands. The access point also provides wired Ethernet connectivity in addition to wireless. The

Cisco OfficeExtend Access Point provides wired and wireless segmentation of home and corporate traffic, which allows for home device connectivity without introducing security risks to corporate policy.

Design Models

For the most flexible and secure deployment of Cisco OfficeExtend, deploy a dedicated controller pair for Cisco OfficeExtend using the Cisco 5500 or 2500 Series Wireless LAN Controllers. In the dedicated design model, the controller is directly connected to the Internet edge demilitarized zone

(DMZ) and traffic from the Internet is terminated in the DMZ versus on the internal network, while client traffic is still directly connected to the internal network.

Figure 1 - Cisco OfficeExtend dedicated design model

In previous releases of this document, we presented a second design model where both internal and Cisco OfficeExtend access points were joined on the same controller pair. Because Cisco OfficeExtend and high availability using AP SSO is not supported concurrently on a controller, we have removed that option in this release.

February 2013 Series

Introduction

Deployment Details

This deployment guide uses certain standard design parameters and references various network infrastructure services that are not located within the solution. These parameters are listed in the following table.

Table 1 - Universal design parameters

Network service

Domain name

Active Directory, Domain Name

System (DNS) server, Dynamic

Host Configuration Protocol

(DHCP) server

Network Time Protocol (NTP) server

Simple Network Management

Protocol (SNMP) read-only community

SNMP read/write community

Cisco SBA values

cisco.local

10.4.48.10

10.4.48.17

cisco cisco123

Site specific values

Process

Configuring Cisco Secure ACS

1. Create the wireless device group

2. Create the TACACS+ shell profile

3. Modify the device admin policy

4. Create the network access policy

5. Modify the network access policy

6. Create the network device

This guide assumes that you have already configured Cisco Secure Access

Control System (ACS). This process includes only the procedures required to support the integration of wireless into the deployment. Full details on

Cisco Secure ACS configuration are included in the Cisco SBA—Borderless

Networks Device Management Using ACS Deployment Guide.

Procedure 1 Create the wireless device group

Step 1: Navigate to the Cisco Secure ACS Administration Page. (Example: https://acs.cisco.local)

Step 2: In Network Resources > Network Device Groups > Device Type , click Create .

Step 3: In the Name box, enter a name for the group. (Example: WLC)

February 2013 Series

Deployment Details

Step 4: In the Parent box, select All Device Types , and then click Submit . Step 6: Click Submit .

Procedure 2 Create the TACACS+ shell profile

You must create a shell profile for the WLCs that contains a custom attribute that assigns the user full administrative rights when the user logs in to the

WLC.

Step 1: In Policy Elements > Authorization and Permissions > Device

Administration > Shell Profiles , click Create .

Step 2: Under the General tab, in the Name box, enter a name for the wireless shell profile. (Example: WLC Shell)

Step 3: On the Custom Attributes tab, in the Attribute box, enter role1 .

Step 4: In the Requirement list, choose Mandatory .

Step 5: In the Value box, enter ALL , and then click Add .

February 2013 Series

Procedure 3 Modify the device admin policy

First, you must exclude WLCs from the existing authorization rule.

Step 1:

In

Access Policies > Default Device Admin >Authorization,

click the

Network Admin rule.

Step 2:

Under Conditions, select

NDG:Device Type

, and from the filter

list, choose not in

.

Deployment Details

Step 3: In the box to the right of the filter list, select All Device Types:WLC , and then click OK .

Step 9: Click Save Changes .

Next, create a WLC authorization rule.

Step 4: In Access Policies > Default Device Admin >Authorization , click

Create .

Step 5: In the Name box, enter a name for the WLC authorization rule.

(Example: WLC Admin)

Step 6: Under Conditions, select Identity Group condition, and in the box, select Network Admins .

Step 7: Select NDG:Device Type , and then in the box, select All Device

Types:WLC.

Step 8: In the Shell Profile box, select WLC Shell , and then click OK .

Procedure 4 Create the network access policy

Step 1: In Access Policies > Access Services , click Create .

Step 2: In the Name box, enter a name for the policy. (Example: Wireless

LAN)

February 2013 Series

Deployment Details

Step 3: To the right of Based on Service Template, select Network Access

- Simple , and then click Next .

Step 10: In the Name box, enter a name for the rule. (Example: Rule

Wireless RADIUS)

Step 11: Under Conditions, select Compound Condition .

Step 12: In the Dictionary list, choose RADIUS-IETF .

Step 13: In the Attribute box, select Service-Type .

Step 14: In the Value box, select Framed , and then click Add V .

Step 15: In the Attribute box, select NAS-Port-Type .

Step 16: In the Value box, select Wireless - IEEE 802.11

.

Step 17: Under Current Condition Set, click And > Insert , and then click

Add V .

Step 4: On the Allowed Protocols pane, ensure Allow PEAP and Allow

EAP-Fast are selected, and then click Finish .

Step 5: On the “Access Service created successfully. Would you like to modify the Service Selection policy to activate this service?” message, click

Yes .

Step 6: On the Service Selection Policy pane, click Customize.

Step 7: Using the arrow buttons, move Compound Condition from the

Available list to the Selected list, and then click OK .

Step 8: On the Service Selection Rules pane, select the default RADIUS rule.

Next, you create a new rule for wireless client authentication.

Step 9: Click Create > Create Above .

February 2013 Series

Deployment Details

Step 18: Under Results, in the Service list, choose Wireless LAN , and then click OK .

Step 2: In the Identity Source box, select AD then Local DB , and then click

Save Changes .

Step 3:

Navigate to

Access Policies > Wireless LAN > Authorization.

Step 4:

On the Network Access Authorization Policy pane, click

Customize.

Step 5:

Using the arrow buttons, move

NDG:Device Type

from the

Available

list to the

Selected

list, and then click

OK

.

Step 6:

In

Access Policies > Wireless LAN > Authorization

, click

Create

.

Step 7:

In the

Name

box, enter a name for the rule. (Example: WLC Access)

Step 8:

Under Conditions, select

NDG:Device Type

, and in the box, select

All DeviceTypes:WLC

.

Step 19:

On the Service Selection Rules pane, click

Save Changes

.

Procedure 5 Modify the network access policy

First you must, create an authorization rule to allow the WLCs to authenticate clients using RADIUS.

Step 1:

Navigate to

Access Policies > Wireless LAN > Identity

.

February 2013 Series

Deployment Details

Step 9: In the Authorization Profiles box, select Permit Access , and then click OK .

Step 3: In the Device Type box, select All Device Types:WLC .

Step 4: In the IP box, enter the WLC’s management interface IP address.

(Example: 192.168.19.20)

Step 5: Select TACACS+ .

Step 6: Enter the TACACS+ shared secret key. (Example: SecretKey)

Step 7: Select RADIUS .

Step 8: Enter the RADIUS shared secret key, and then click Submit .

(Example: SecretKey)

Step 10: Click Save Changes .

Procedure 6 Create the network device

The TACACS+ shell profile that is required when managing the controllers with AAA must be applied to the controllers. This requires that for each controller in the organization; you create a network device entry in Cisco

Secure ACS.

Step 1: In Network Resources > Network Devices and AAA Clients , click

Create .

Step 2: In the Name box, enter the device host name. (Example:

WLC-OEAP-1)

February 2013 Series

Deployment Details

Process

Configuring Internet Edge

1. Configure the DMZ switch

2. Configure the DMZ interface

3. Configure address translation

4. Configure security policy

Procedure 1 Configure the DMZ switch

Step 1:

On the DMZ switch, create the wireless VLANs. vlan

1119

name

WLAN_Mgmt

Step 2:

Configure the interfaces that connect to the Internet firewalls as trunk ports, and add the wireless VLANs.

interface GigabitEthernet

1/0/24

description

IE-ASA5545Xa Gig0/1

!

interface GigabitEthernet

2/0/24

description

IE-ASA5545Xb Gig0/1

!

interface range GigabitEthernet

1/0/24,

GigabitEthernet

2/0/24

switchport trunk encapsulation dot1q

switchport trunk allowed vlan add

1119

switchport mode trunk

macro apply EgressQoS

logging event link-status

logging event trunk-status

no shutdown

Step 3: Configure the interfaces that are connected to the primary and resilient WLCs’ management port.

interface GigabitEthernet

1/0/5

description

DMZ OEAP WLC-1 Management Port

!

interface GigabitEthernet

2/0/5

description

DMZ OEAP WLC-2 Management Port

!

interface range GigabitEthernet

1/0/5,

GigabitEthernet

2/0/5

switchport access vlan

1119

switchport host

macro apply EgressQoS

logging event link-status

no shutdown

Procedure 2 Configure the DMZ interface

Typically, the firewall DMZ is a portion of the network where traffic to and from other parts of the network is tightly restricted. Organizations place network services in a DMZ for exposure to the Internet; these services are typically not allowed to initiate connections to the inside network, except for specific circumstances.

The various DMZ networks are connected to Cisco ASA on the appliance’s

GigabitEthernet interface via a VLAN trunk. The IP address assigned to the

VLAN interface on the appliance is the default gateway for that DMZ subnet.

The DMZ switch’s VLAN interface does not have an IP address assigned for the DMZ VLAN.

Step 1: Log in to the Internet edge firewall using Cisco Adaptive Security

Device Manager (ASDM).

Step 2: In Configuration > Device Setup > Interfaces , click the interface that is connected to the DMZ switch, and then click Edit . (Example:

GigabitEthernet0/1)

February 2013 Series

Deployment Details

Step 3: Select Enable Interface , and then click OK .

Step 11: Enter the interface Subnet Mask , and then click OK . (Example:

255.255.255.0)

Step 4: On the Interface pane, click Add > Interface .

Step 5: In the Hardware Port list, choose the interface that you configured

in Step 2. (Example: GigabitEthernet0/1)

Step 6: In the VLAN ID box, enter the VLAN number for the DMZ VLAN.

(Example: 1119)

Step 7: In the Subinterface ID box, enter the VLAN number for the DMZ

VLAN. (Example: 1119)

Step 8: Enter an Interface Name . (Example: dmz-wlc)

Step 9: In the Security Level box, enter a value of 50 .

Step 10: Enter the interface IP Address . (Example: 192.168.19.1)

February 2013 Series

Procedure 3 Configure address translation

The DMZ network uses private network (RFC 1918) addressing that is not

Internet routable, so the firewall must translate the DMZ address of the WLC to an outside public address.

For resiliency in the case of a controller or Internet connection failure, translate the DMZ IP address of the primary controller to the primary Internet connection and the DMZ IP address of the resilient controller to the resilient

Internet connection.

The example DMZ address–to–public IP address mapping is shown in the following table.

Deployment Details

Table 2 - Address mapping from DMZ address to public IP address

Object information

WLC DMZ address

DMZ object name

WLC public address

Outside object name

Primary Internet connection translation

192.168.19.20

dmz-wlc-1

172.16.130.20

outside-wlc-ISPa

Secondary Internet connection translation

192.168.19.21

dmz-wlc-2

172.17.130.20

outside-wlc-ISPb

Step 1:

Navigate to

Configuration > Firewall > Objects > Network

Objects/Groups

.

First, you add a network object for the public address of the WLC.

Step 2:

Click

Add > Network Object

.

Step 3:

In the Add Network Object dialog box, in the

Name box, enter a description for the primary WLC’s public IP address. (Example: outside-wlc-ISPa)

Step 4:

In the

IP Address

box, enter the primary WLC’s public IP address, and then click

OK

. (Example: 172.16.130.20)

Step 6: In the IP Address box, enter the primary WLC’s private DMZ IP address. (Example: 192.168.19.20)

Step 7: Click the two down arrows. The NAT pane expands.

Step 8: Select Add Automatic Address Translation Rules .

Step 9: In the Translated Addr list, choose the network object created in

Step 2, and then click

OK .

Next, you add a network object for the private DMZ address of the WLC.

Step 5: In the Add Network Object dialog box, in the Name box , enter a description for the primary WLC’s private DMZ IP address. (Example: dmz-wlc-1)

February 2013 Series

Step 10: Click Advanced .

Deployment Details

Step 11: In the Destination Interface list, choose the interface name for the primary Internet connection, and then click OK . (Example: outside-16)

Next, you insert a new rule above the rule you selected that enables the

WLCs in the DMZ to communicate with the AAA server in the data center for management and user authentication.

Step 3: Click Add > Insert .

Step 4: In the Internet Access Rule dialog box, in the Interface list, select

—Any— .

Step 5: To the right of Action, select Permit .

Step 6: In the Source list, choose the network object group created

in Procedure 3, “Configure address translation,” Step 14. (Example:

dmz-wlc-group)

Step 7: In the Destination list, choose the network object for the AAA server. (Example: internal-aaa)

Step 8: In the Service list, enter tcp/tacacs, udp/1812, udp/1813 , and then click OK .

Step 12:

Repeat Step 1 through Step 11 for the resilient WLC.

Next, you create a network object group that contains the private DMZ address of every WLC in the DMZ. This makes it easier to configure security policy.

Step 13:

Click

Add > Network Object Group

.

Step 14:

In the Add Network Object Group dialog box, in the

Group Name box, enter a name for the group. (Example: dmz-wlc-group)

Step 15:

On the Existing Network Objects/Groups pane, select the primary

WLC, and then click

Add >>

.

Step 16:

On the Existing Network Objects/Groups pane, select the resilient

WLC, click

Add >>

, and then click

OK

.

Procedure 4 Configure security policy

Step 1:

Navigate to

Configuration > Firewall > Access Rules

.

Step 2:

Click the rule that denies traffic from the DMZ toward other networks.

Next, you must enable the WLCs in the DMZ to synchronize their time with the NTP server in the data center.

February 2013 Series

Deployment Details

Step 9: Click Add > Insert .

Step 10: In the Internet Access Rule dialog box, in the Interface list, select

—Any— .

Step 11: To the right of Action, select Permit .

Step 12: In the Source list, choose the network object group created

in Procedure 3, “Configure address translation,” Step 14. (Example:

dmz-wlc-group)

Step 13: In the Destination list, choose the network object for the NTP server. (Example: internal-ntp)

Step 14: In the Service list, enter udp/ntp , and then click OK .

Step 17: To the right of Action, select Permit .

Step 18: In the Source list, choose the network object group created

in Procedure 3, “Configure address translation,” Step 14. (Example:

dmz-wlc-group)

Step 19: In the Service list, enter tcp/ftp, tcp/ftp-data , and then click OK .

Next, you enable the WLCs in the DMZ to be able to download new software via FTP.

Step 15:

Click

Add > Insert

.

Step 16:

In the Internet Access Rule dialog box, in the

Interface

list, select

—Any—

.

Now you enable the Cisco OfficeExtend Access Points to communicate with the WLCs in the DMZ using Control and Provisioning of Wireless Access

Points (CAPWAP).

Step 20:

Click

Add > Insert

.

Step 21:

In the Internet Access Rule dialog box, in the

Interface

list, select

—Any—

.

Step 22:

To the right of Action, select

Permit

.

Step 23:

In the

Destination

list, choose the network object group cre-

ated in Procedure 3, “Configure address translation,” Step 14. (Example:

dmz-wlc-group)

February 2013 Series

Deployment Details

Step 24: In the Service list, enter udp/5246, udp/5247 , and then click OK .

Step 25:

Click

Process

Apply

.

Configuring LAN Distribution Switch

1. Configure the distribution switch

Step 1: On the LAN distribution switch, create the wireless VLANs that you are connecting to the distribution switch.

vlan

244

name OEAP_Data

vlan

248

name OEAP_Voice

vlan

252

name OEAP_RemoteLAN

Step 2: Configure a VLAN interface (SVI) for each VLAN so devices in the

VLAN can communicate with the rest of the network. interface Vlan

244

description OEAP Wireless Data Network

ip address

10.4.144.1 255.255.252.0

no shutdown

!

interface Vlan

248

description OEAP Wireless Voice Network

ip address

10.4.148.1 255.255.252.0

no shutdown

!

interface Vlan

252

description OEAP Remote LAN Data Network

ip address

10.4.152.1 255.255.252.0

no shutdown

Procedure 1 Configure the distribution switch

The VLANs used in the following configuration examples are:

• Wireless data—

VLAN 244, IP: 10.4.144.0/22

• Wireless voice—

VLAN 248, IP 10.4.148.0/22

• Remote LAN—

VLAN 252, IP 10.4.152.0/24

February 2013 Series

Deployment Details

Step 3: For interface configuration, an 802.1Q trunk is used for the connection to the WLCs. This allows the distribution switch to provide the Layer 3 services to all the networks defined on the WLC. The VLANs allowed on the trunk are pruned to only the VLANs that are active on the WLC.

If you are deploying the Catalyst 6500 or 4500 LAN distribution switch, you do not need to use the switchport trunk encapsulation dot1q command in the following configurations.

interface GigabitEthernet

[port 1]

description OEAP WLC-1 interface GigabitEthernet

[port 2]

description OEAP WLC-2

!

interface range GigabitEthernet

[port 1]

, GigabitEthernet

[port 2]

switchport trunk encapsulation dot1q

switchport trunk allowed vlan

244,248,252

switchport mode trunk

macro apply EgressQoS

logging event link-status

logging event trunk-status

no shutdown

Process

Configuring WLC

1. Configure the WLC platform

2. Configure the WLC for NAT

3. Configure the time zone

4. Configure SNMP

5. Limit what networks can manage the WLC

6. Configure wireless user authentication

7. Centralize management authentication

February 2013 Series

Procedure 1 Configure the WLC platform

After the WLC is physically installed and powered up, you will see the following on the console:

Welcome to the Cisco Wizard Configuration Tool

Use the ‘-‘ character to backup

Would you like to terminate autoinstall? [yes]: YES

Step 1: Enter a system name. (Example: WLC-OEAP-1)

System Name [Cisco_7e:8e:43] (31 characters max):

WLC-OEAP-1

Step 2: Enter an administrator username and password.

Tech Tip

Use at least three of the following four classes in the password: lowercase letters, uppercase letters, digits, or special characters .

Enter Administrative User Name (24 characters max): admin

Enter Administrative Password (24 characters max): *****

Re-enter Administrative Password : *****

Step 3: Use DHCP for the service port interface address.

Service Interface IP address Configuration [none] [DHCP]: DHCP

Step 4: Disable link aggregation. This enables clients to attach directly to the LAN distribution switch and not have to traverse the firewall.

Enable Link Aggregation (LAG) [yes][NO]: NO

Step 5: Enter the IP address and subnet mask for the management interface.

Management Interface IP Address:

192.168.19.20

Management Interface Netmask:

255.255.255.0

Management interface Default Router:

192.168.19.1

Management Interface VLAN Identifier (0 = untagged):

0

Management Interface Port Num [1 to 8]:

1

Deployment Details

Step 6: Enter the default DHCP server for clients. (Example: 10.4.48.10)

Management Interface DHCP Server IP Address:

10.4.48.10

Step 7: If you are deploying a Cisco 5500 Series Wireless LAN Controller

(WLC), disable high availability. High availability and Cisco OfficeExtend are not supported concurrently on the controller.

Enable HA [yes][NO]: NO

Step 8: Configure the virtual interface the WLC uses for Mobility DHCP relay and inter-controller communication. (Example: 192.0.2.1)

Virtual Gateway IP Address:

192.0.2.1

Step 9: If you are configuring a Cisco 2500 Series WLC, enter the multicast

IP address for the communication of multicast traffic by using the multicastmulticast method.

Multicast IP Address: 239.40.40.40

Step 10: Enter a name that will be used as the default mobility and RF group. (Example: OEAP-1)

Mobility/RF Group Name:

OEAP-1

Step 11: Enter an SSID for the WLAN SSID that supports data traffic. You will be able to leverage this later in the deployment process.

Network Name (SSID):

WLAN-Data

Configure DHCP Bridging Mode [yes][NO]: NO

Step 12: Disable DHCP snooping. This increases resiliency during a WLC failure.

Allow Static IP Addresses {YES][no]: YES

Step 13: Specify that the RADIUS Server will be configured later using the

GUI.

Configure a RADIUS Server now? [YES][no]: NO

Step 14: Enter the correct country code for the country where you are deploying the WLC.

Enter Country Code list (enter ‘help’ for a list of countries)

[US]: US

Step 15: Enable all wireless networks.

Enable 802.11b network [YES][no]: YES

February 2013 Series

Enable 802.11a network [YES][no]: YES

Enable 802.11g network [YES][no]: YES

Step 16: Enable the radio resource management (RRM) auto-RF feature.

This helps you keep your network up and operational.

Enable Auto-RF [YES][no]: YES

Step 17: Synchronize the WLC clock to your organization’s NTP server.

Configure a NTP server now? [YES][no]:YES

Enter the NTP server’s IP address:

10.4.48.17

Enter a polling interval between 3600 and 604800 secs: 86400

Step 18: Save the configuration. If you respond with no , the system will restart without saving the configuration and you will have to complete this procedure again.

Configuration correct? If yes, system will save it and reset.

[yes][NO]:

YES

Configuration saved!

Resetting system with new configuration

Step 19: After the WLC has reset, log in to the Cisco Wireless LAN

Controller Administration page using the credentials defined in Step 2.

(Example: https://wlc-oeap-1.cisco.local/)

Procedure 2 Configure the WLC for NAT

The Internet edge firewall translates the IP address of the WLC management interface in the DMZ to a publicly reachable IP address so Cisco

OfficeExtend Access Points at teleworker locations can reach the WLC.

However, in order for the Cisco OfficeExtend Access Points to be able to communicate with the WLC, the publicly reachable address must also be configured on the WLC management interface.

Step 1: In Controller > Interfaces , click the management interface.

Step 2: Select Enable NAT Address .

Deployment Details

Step 3: In the NAT IP Address box, enter the publicly reachable IP address, and then click Apply . (Example: 172.16.130.20)

Step 3: Click Set Timezone .

Procedure 3 Configure the time zone

Step 1:

Navigate to

Commands > Set Time.

Step 2:

In the

Location

list, choose the time zone that corresponds to the location of the WLC.

Procedure 4 Configure SNMP

Step 1: In Management > SNMP > Communities , click New .

Step 2: Enter the Community Name . (Example: cisco)

Step 3: Enter the IP Address. (Example: 10.4.48.0)

Step 4: Enter the IP Mask . (Example: 255.255.255.0)

February 2013 Series

Deployment Details

Step 5: In the Status list, choose Enable , and then click Apply .

Step 11: In the Status list, choose Enable , and then click Apply .

Step 6:

In

Management > SNMP > Communities

, click

New

.

Step 7:

Enter the

Community Name

. (Example: cisco123)

Step 8:

Enter the

IP Address.

(Example: 10.4.48.0)

Step 9:

Enter the

IP Mask

. (Example: 255.255.255.0)

Step 10:

In the

Access Mode list, choose

Read/Write

.

Step 12:

Navigate to

Management > SNMP > Communities

.

Step 13:

Point to the blue box for the public

community, and then click

Remove

.

Step 14:

On the “Are you sure you want to delete?” message, click

OK

.

February 2013 Series

Deployment Details

Step 15:

Repeat Step 13 and Step 14 for the

private community.

Step 4: In the window, enter the following configuration details, and then click Apply .

• Sequence— 1

• Source— 10.4.48.0 / 255.255.255.0

• Destination— Any

• Protocol— TCP

• Destination Port— HTTPS

• Action— Permit

Procedure 5 Limit what networks can manage the WLC

(Optional)

In networks where network operational support is centralized, you can increase network security by using an access list to limit the networks that can access your controller. In this example, only devices on the 10.4.48.0/24 network will be able to access the controller via Secure Shell (SSH) Protocol or SNMP.

Step 1:

In

Security > Access Control Lists > Access Control Lists

, click

New

.

Step 2:

Enter an access list name, and then click

Apply

.

Step 3:

In the list, choose the name of the access list you just created, and then click

Add New Rule

.

February 2013 Series

Deployment Details

Step 5:

Repeat Step 3 through Step 4 four more times, using the configuration details in the following table.

Table 3 - Rule configuration values

Sequence

4

5

2

3

Source

10.4.48.0/255.255.255.0

Any

Any

Any

Destination

Any

Any

Any

Any

Protocol

TCP

TCP

TCP

Any

Destination port

Other/22

HTTPS

Other/22

Any

Step 6: In Security > Access Control Lists > CPU Access Control Lists , select Enable CPU ACL .

Step 7: In the ACL Name

list, choose the ACL you created in Step 2, and then click

Apply.

Action

Permit

Deny

Deny

Permit

February 2013 Series

Deployment Details

Procedure 6 Configure wireless user authentication

Step 1: In Security > AAA > Radius > Authentication , click New .

Step 2: Enter the Server IP Address . (Example: 10.4.48.15)

Step 3: Enter and confirm the Shared Secret . (Example: SecretKey)

Step 4: To the right of Management, clear Enable , and then click Apply .

Step 7: Enter and confirm the Shared Secret , and then click Apply .

(Example: SecretKey)

Step 5: In Security > AAA > Radius > Accounting , click New .

Step 6: Enter the Server IP Address . (Example: 10.4.48.15)

February 2013 Series

Procedure 7 Centralize management authentication

(Optional)

You can use this procedure to deploy centralized management authentication by configuring the authentication, authorization, and accounting (AAA) service. If you prefer to use local management authentication, skip this procedure.

As networks scale in the number of devices to maintain, the operational burden to maintain local management accounts on every device also scales. A centralized AAA service reduces operational tasks per device and provides an audit log of user access for security compliance and root-cause analysis.

When AAA is enabled for access control, all management access to the network infrastructure devices (SSH and HTTPS) is controlled by AAA.

Step 1: In Security > AAA > TACACS+ > Authentication , click New .

Step 2: Enter the Server IP Address . (Example: 10.4.48.15)

Deployment Details

Step 3: Enter and confirm the Shared Secret , and then click Apply .

(Example: SecretKey)

Step 6: Enter and confirm the Shared Secret , and then click Apply .

(Example: SecretKey)

Step 4: In Security > AAA > TACACS+ > Accounting , click New .

Step 5: Enter the Server IP Address . (Example: 10.4.48.15)

Step 7: In Security > AAA > TACACS+ > Authorization , click New .

Step 8: Enter the Server IP Address . (Example: 10.4.48.15)

February 2013 Series

Deployment Details

Step 9: Enter and confirm the Shared Secret , and then click Apply .

(Example: SecretKey)

Step 13: Using the arrow buttons, move RADIUS to the Not Used list, and then click Apply .

Step 10: Navigate to Security > Priority Order > Management User.

Step 11: Using the arrow buttons, move TACACS+ from the Not Used list to the Used for Authentication list.

Step 12: Using the Up and Down buttons, move TACACS+ to be the first in the Order Used for Authentication list.

February 2013 Series

Deployment Details

Process

Configuring Voice/Data Connectivity

1. Create the wireless LAN data interface

2. Create the wireless LAN voice interface

3. Create the remote LAN interface

4. Configure the data wireless LAN

5. Configure voice wireless LAN

6. Configure the remote LAN

The Cisco OfficeExtend Access Point supports a maximum of two wireless

LANs and one remote LAN. Configure the SSIDs to separate voice and data traffic, which is essential in any good network design in order to ensure proper treatment of the respective IP traffic, regardless of the medium it is traversing. In this procedure, you add an interface that allows devices on the wireless data network to communicate with the rest of your organization.

Procedure 1 Create the wireless LAN data interface

Step 1:

In

Controller>Interfaces,

click

New

.

Step 2:

Enter the

Interface Name

. (Example: Wireless-Data)

Step 3: Enter the VLAN Id , and then click Apply . (Example: 244)

Step 4: In the Port Number box, enter the WLC interface that connects to the LAN distribution switch. (Example: 2)

Step 5: In the IP Address box, enter the IP address to assign to the WLC interface. (Example: 10.4.144.5)

Step 6: Enter the Netmask . (Example: 255.255.252.0)

Step 7: In the Gateway box, enter the IP address of the VLAN interface

defined in Configuring LAN Distribution Switch, Procedure 1, “Configure the distribution switch,” Step 2. (Example: 10.4.144.1)

February 2013 Series

Deployment Details

Step 8: In the Primary DHCP Server box, enter the IP address of your organization’s DHCP server, and then click Apply . (Example: 10.4.48.10)

Step 3: Enter the VLAN Id , and then click Apply . (Example: 248)

Procedure 2 Create the wireless LAN voice interface

You must add an interface that allows devices on the wireless voice network to communicate with the rest of the organization.

Step 1: In Controller>Interfaces, click New .

Step 2: Enter the Interface Name . (Example: Wireless-Voice)

Step 4: In the Port Number box, enter the WLC interface that connects to the LAN distribution switch. (Example: 2)

Step 5: In the IP Address box, enter the IP address to assign to the WLC interface. (Example: 10.4.148.5)

Step 6: Enter the Netmask . (Example: 255.255.252.0)

Step 7: In the Gateway box, enter the IP address of the VLAN interface

defined in Configuring LAN Distribution Switch, Procedure 1, “Configure the distribution switch,” Step 2. (Example: 10.4.148.1)

February 2013 Series

Deployment Details

Step 8: In the Primary DHCP Server box, enter the IP address of your organization’s DHCP server, and then click Apply . (Example: 10.4.48.10)

Step 3: Enter the VLAN Id , and then click Apply . (Example: 252)

Procedure 3 Create the remote LAN interface

Next, you add an interface that allows devices on the remote LAN network to communicate with the rest of the organization.

Step 1: In Controller>Interfaces, click New .

Step 2: Enter the Interface Name . (Example: Remote-LAN)

Step 4: In the Port Number box, enter the WLC interface that connects to the LAN distribution switch. (Example: 2)

Step 5: In the IP Address box, enter the IP address to assign to the WLC interface. (Example: 10.4.152.5)

Step 6: Enter the Netmask . (Example: 255.255.252.0)

Step 7: In the Gateway box, enter the IP address of the VLAN interface

defined in Configuring LAN Distribution Switch, Procedure 1, “Configure the distribution switch,” Step 2. (Example: 10.4.152.1)

February 2013 Series

Deployment Details

Step 8: In the Primary DHCP Server box, enter the IP address of your organization’s DHCP server, and then click Apply . (Example: 10.4.48.10)

Step 2: Click the WLAN ID of the SSID created during platform setup.

Procedure 4 Configure the data wireless LAN

Wireless data traffic is different from voice traffic in that it can more efficiently handle delay and jitter as well as greater packet loss. For the data wireless LAN, keep the default QoS settings and segment the data traffic onto the data wired VLAN.

Step 1: Navigate to WLANs .

February 2013 Series

Step 3:

On the General tab, in the

Interface

list, choose the interface cre-

ated in Procedure 1. (Example: Wireless-Data)

Deployment Details

Step 4: On the Advanced tab, clear Coverage Hole Detection .

Step 5: Clear Aironet IE , and then click Apply .

Step 2: In the drop-down list, choose Create New , and then click Go .

Procedure 5 Configure voice wireless LAN

Wireless voice traffic is different from data traffic in that it cannot effectively handle delay and jitter as well as packet loss. To configure the voice wireless

LAN, change the default QoS settings to Platinum and segment the voice traffic onto the voice wired VLAN.

Step 1: Navigate to WLANs .

Step 3:

Enter the

Profile Name

. (Example: Voice)

Step 4:

In the

SSID

box, enter the voice WLAN name, and then click

Apply

.

(Example: WLAN-Voice)

February 2013 Series

Deployment Details

Step 5: On the General tab, to the right of Status , select Enabled .

Step 6: In the Interface

list, choose the interface created in Procedure 2.

(Example: Wireless-Voice)

Step 7: Click the QoS tab, and in the Quality of Service (QoS) list, choose

Platinum .

February 2013 Series

Deployment Details

Step 8: Click the Advanced tab, and then clear Coverage Hole Detection .

Step 9: Clear Aironet IE , and then click Apply .

Step 2: In the drop-down list, choose Create New , and then click Go .

Procedure 6 Configure the remote LAN

A remote LAN is similar to a WLAN except it is mapped to one of the

Ethernet ports on the back of the Cisco OfficeExtend Access Point.

Step 1: Navigate to WLANs .

Step 3: In the Type list, choose Remote LAN .

Step 4: Enter the Profile Name , and then click Apply . (Example: LAN)

February 2013 Series

Deployment Details

Step 5: On the General tab, to the right of Status , select Enabled .

Step 6: In the Interface

list, choose the interface created in Procedure 3.

(Example: Remote-LAN)

Step 7: Click the Security tab.

Step 8: On the Layer 2 tab, clear MAC Filtering , and then click Apply .

February 2013 Series

Process

Configuring AP Authentication

1. Enable the default network device

2. Configure the access point account

3. Configure AP authentication in the WLC

Access point authentication ensures only authorized access points can connect to the controller.

If you want to control which access points can connect to the Cisco

OfficeExtend controller, follow this process.

If you want to allow any access point to connect to the Cisco OfficeExtend controller, skip to the next process.

Cisco Secure ACS is used to store the list of access points authorized by the organization. Storing the list in Secure ACS eases the operational burden of keeping authorization lists on all the controllers in sync.

Procedure 1 Enable the default network device

Access point authentication is kept separate from user authentication by the use of access services in Cisco Secure ACS. The separation is important for security in order to ensure users do not use the well-known username and password format to gain access to the wireless network. Since access point authentication does not match the selection rule defined for wireless user authentication, an additional RADIUS access service must be enabled.

Step 1:

Navigate to the Cisco Secure ACS Administration page. (Example: https://acs.cisco.local)

Step 2:

Navigate to

Network Resources > Default Network Device

.

Step 3:

In the

Default Network Device Status

list, choose

Enabled

.

Step 4:

Select

RADIUS

.

Deployment Details

Step 5: Enter the RADIUS shared secret key, and then click Submit .

(Example SecretKey)

Step 3: In the Name box, enter the MAC address of the access point.

(Example: XX-XX-XX-XX-XX-XX)

Step 4: Enter and confirm a password.

Step 5: Click Submit . This applies the changes.

Procedure 2 Configure the access point account

Each access point is created as a user in the internal identity store of Cisco

Secure ACS, and the username is set to the access point’s MAC address.

The password should also be set to the access point’s MAC address, but because Secure ACS uses host lookup in order to authenticate the RADIUS request, it is not checked and can be set to anything you prefer. The access point’s MAC address can be found on a label on the outside of the product packaging and on a label on the bottom of the access point.

Step 1:

In Cisco Secure ACS, navigate to

Users and Identity Stores >

Internal Identity Stores > Users

.

Step 2:

Click

Create

.

Procedure 3 Configure AP authentication in the WLC

Step 1: Navigate to Security > AAA > AP Policies .

February 2013 Series

Deployment Details

Step 2: Under Policy Configuration, select Authorize MIC APs against auth-list or AAA , and then click Apply .

Process

Configuring Cisco OfficeExtend AP

1. Configure the Cisco OfficeExtend AP

Procedure 1 Configure the Cisco OfficeExtend AP

Tech Tip

The Cisco OfficeExtend Access Point is not designed to replace the functionality of a home router, and it should not be connected directly to the service provider gateway.

Step 2: After the Cisco OfficeExtend Access Point has started, connect a computer to Ethernet port 1, 2, or 3. The computer gets an IP address from the default DHCP address pool of 10.0.0.0/24.

Step 3: Navigate to the Cisco OfficeExtend Access Point by using its default IP address: http://10.0.0.1/

Step 4: Log in to the Administration page by using the default credentials admin/admin .

Step 5: On the Cisco OfficeExtend Access Point Welcome page, click Enter .

The Summary page appears.

Step 1:

Connect the WAN port on the back of the Cisco OfficeExtend

Access Point to your home router/gateway. The Cisco OfficeExtend Access

Point gets an IP address from the home router/gateway.

February 2013 Series

Deployment Details

Step 6: Navigate to Configuration > WAN .

Step 7: In the Primary Controller IP Address box, enter the outside IP address of the primary WLC, and then click Apply . (Example: 172.16.130.20)

Step 8: On the verification screen that appears, click Continue .

The Cisco OfficeExtend Access Point connects to the controller and downloads the current software image. Allow 5 minutes for the device to download and reboot with the new code and configuration.

Tech Tip

After the access point makes a connection to the WLC, the Status

LED on the top of the access point flashes. The Status LED continues flashing until the download is complete. When the download is complete, your access point restarts. After the access point connects to the controller again, the Status LED is displayed as solid blue or purple.

Process

Enabling AP Radios

1. Configure the WLC

After a new Cisco OfficeExtend Access Point joins the controller, the radios are automatically disabled. Before clients can use the access point, you must enable the 5-GHz and 2.4 GHz radios.

Procedure 1 Configure the WLC

First, enable the 5-GHz radio.

Step 1:

On the primary WLC, navigate to

Wireless > Access Points >

Radios > 802.11a/n

.

Access points that have their radios disabled have an Admin Status of

Disable and an Operational Status of DOWN.

Step 2:

Point to the blue box for the Cisco OfficeExtend Access Point that you want to enable, and then click

Configure

.

February 2013 Series

Deployment Details

Step 3: Under General, in the Admin Status list, choose Enable , and then click Apply .

Next, enable the 2.4-GHz radio.

Step 4: Navigate to Wireless > Access Points > Radios > 802.11b/g/n .

Step 5: Point to the blue box for the Cisco OfficeExtend Access Point that you want to enable, and then click Configure .

Step 6: Under General, in the Admin Status list, choose Enable , and then click Apply .

Process

Configuring WLC Resiliency

1. Configure the resilient WLC

2. Configure APs for resiliency

This design uses two WLCs. The first is the primary controller, and in the previous process, you configured all of the Cisco OfficeExtend Access

Points to register to it.

The secondary controller, also called the resilient controller, provides resiliency in case the primary controller or Internet connection fails. Under

February 2013 Series normal operation, there will not be any Cisco OfficeExtend Access Points registered to the resilient controller.

Procedure 1 Configure the resilient WLC

On the resilient WLC, repeat the procedures in the “Configuring WLC” process.

Procedure 2 Configure APs for resiliency

Step 1: On the primary WLC, navigate to Wireless , and then select the desired Cisco OfficeExtend Access Point.

Step 2: Click the High Availability tab.

Step 3: In the Primary Controller box, enter the name and management IP address of the primary WLC. (Example: WLC-OEAP-1 / 172.16.130.20)

Deployment Details

Step 4: In the Secondary Controller box, enter the name and management

IP address of the resilient WLC, and then click Apply . (Example: WLC-

OEAP-2 / 172.17.130.20)

February 2013 Series

Deployment Details

Appendix A: Product List

Wireless LAN OfficeExtend Access Points

Functional Area

Teleworker AP

Product Description

Cisco Aironet 600 OfficeExtend Series Access Point: Dual-band Controller-based

802.11a/g/n

Part Numbers Software

AIR-OEAP602I-x-K9 7.4.100.0

Wireless LAN Controllers

Functional Area

OfficeExtend Controller

Product Description

Cisco 5500 Series Wireless Controller for up to 500 Cisco access points

Cisco 5500 Series Wireless Controller for up to 250 Cisco access points

Cisco 5500 Series Wireless Controller for up to 100 Cisco access points

Cisco 5500 Series Wireless Controller for up to 50 Cisco access points

Cisco 5500 Series Wireless Controller for up to 25 Cisco access points

Cisco 5500 Series Wireless Controller for up to 12 Cisco access points

Cisco 2500 Series Wireless Controller for up to 50 Cisco access points

Cisco 2500 Series Wireless Controller for up to 25 Cisco access points

Cisco 2500 Series Wireless Controller for up to 15 Cisco access points

Cisco 2500 Series Wireless Controller for up to 5 Cisco access points

Part Numbers Software

AIR-CT5508-500-K9 7.4.100.0

AIR-CT5508-250-K9

AIR-CT5508-100-K9

AIR-CT5508-50-K9

AIR-CT5508-25-K9

AIR-CT5508-12-K9

AIR-CT2504-50-K9

AIR-CT2504-25-K9

AIR-CT2504-15-K9

AIR-CT2504-5-K9

Access Control

Functional Area

Authentication Services

Product Description

ACS 5.3 VMware Software and Base License

Part Numbers Software

CSACS-5.3-VM-K9 5.3

February 2013 Series

Appendix A: Product List

Internet Edge

Functional Area

Firewall

Product Description

Cisco ASA 5545-X IPS Edition - security appliance

Cisco ASA 5525-X IPS Edition - security appliance

Cisco ASA 5515-X IPS Edition - security appliance

Cisco ASA 5512-X IPS Edition - security appliance

Cisco ASA5512-X Security Plus license

Firewall Management

Internet Edge LAN

Functional Area

DMZ Switch

Product Description

Cisco Catalyst 3750-X Series Stackable 24 Ethernet 10/100/1000 ports

Part Numbers

ASA5545-IPS-K9

ASA5525-IPS-K9

ASA5515-IPS-K9

ASA5512-IPS-K9

ASA5512-SEC-PL

ASDM

Software

ASA 9.0(1)

IPS 7.1(6)E4

7.0(2)

Part Numbers Software

WS-C3750X-24T-S 15.0(2)SE

IP Base license

LAN Distribution Layer

Functional Area

Modular Distribution Layer

Virtual Switch Pair

Modular Distribution Layer

Switch

Stackable Distribution Layer

Switch

Product Description

Cisco Catalyst 6500 E-Series 6-Slot Chassis

Cisco Catalyst 6500 VSS Supervisor 2T with 2 ports 10GbE and PFC4

Cisco Catalyst 6500 16-port 10GbE Fiber Module w/DFC4

Cisco Catalyst 6500 24-port GbE SFP Fiber Module w/DFC4

Cisco Catalyst 6500 4-port 40GbE/16-port 10GbE Fiber Module w/DFC4

Cisco Catalyst 6500 4-port 10GbE SFP+ adapter for WX-X6904-40G module

Cisco Catalyst 4507R+E 7-slot Chassis with 48Gbps per slot

Cisco Catalyst 4500 E-Series Supervisor Engine 7-E, 848Gbps

Cisco Catalyst 4500 E-Series 24-port GbE SFP Fiber Module

Cisco Catalyst 4500 E-Series 12-port 10GbE SFP+ Fiber Module

Cisco Catalyst 3750-X Series Stackable 12 GbE SFP ports

Cisco Catalyst 3750-X Series Two 10GbE SFP+ and Two GbE SFP ports network module

Cisco Catalyst 3750-X Series Four GbE SFP ports network module

Part Numbers

WS-C6506-E

VS-S2T-10G

WS-X6816-10G-2T

Software

15.0(1)SY1

IP Services license

WS-X6824-SFP-2T

WS-X6904-40G-2T

CVR-CFP-4SFP10G

WS-C4507R+E

WS-X45-SUP7-E

WS-X4624-SFP-E

3.3.0.SG(15.1-1SG)

Enterprise Services license

WS-X4712-SFP+E

WS-C3750X-12S-E 15.0(2)SE

C3KX-NM-10G

IP Services license

C3KX-NM-1G

February 2013 Series

Appendix A: Product List

Appendix B: Changes

This appendix summarizes the changes to this guide since the previous

Cisco SBA series.

• In previous releases of this document, we presented a second design model where both internal and Cisco OfficeExtend access points were joined on the same controller pair. Because Cisco OfficeExtend and high availability using AP SSO is not supported concurrently on a controller, we have removed that option in this release.

• We upgraded the Cisco ASA software to 9.0(1).

• We upgraded the Cisco Wireless Controller software to 7.4.

• We made minor changes to improve the readability of this guide.

February 2013 Series

Appendix B: Changes

Feedback

Please use the feedback form to send comments and suggestions about this guide.

SMART BUSINESS ARCHITECTURE

Americas Headquarters

Cisco Systems, Inc.

San Jose, CA

Asia Pacific Headquarters

Cisco Systems (USA) Pte. Ltd.

Singapore

Europe Headquarters

Cisco Systems International BV Amsterdam,

The Netherlands

Cisco has more than 200 offices worldwide. Addresses, phone numbers, and fax numbers are listed on the Cisco Website at www.cisco.com/go/offices.

ALL DESIGNS, SPECIFICATIONS, STATEMENTS, INFORMATION, AND RECOMMENDATIONS (COLLECTIVELY, “DESIGNS”) IN THIS MANUAL ARE PRESENTED “AS IS,” WITH ALL FAULTS. CISCO AND ITS SUPPLiERS DISCLAIM ALL WARRANTIES, INCLUDING, WITH-

OUT LIMITATION, THE WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM A COURSE OF DEALING, USAGE, OR TRADE PRACTICE. IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE

FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THE DESIGNS, EVEN IF CISCO OR ITS SUPPLIERS

HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. THE DESIGNS ARE SUBJECT TO CHANGE WITHOUT NOTICE. USERS ARE SOLELY RESPONSIBLE FOR THEIR APPLICATION OF THE DESIGNS. THE DESIGNS DO NOT CONSTITUTE THE TECHNICAL

OR OTHER PROFESSIONAL ADVICE OF CISCO, ITS SUPPLIERS OR PARTNERS. USERS SHOULD CONSULT THEIR OWN TECHNICAL ADVISORS BEFORE IMPLEMENTING THE DESIGNS. RESULTS MAY VARY DEPENDING ON FACTORS NOT TESTED BY CISCO.

Any Internet Protocol (IP) addresses used in this document are not intended to be actual addresses. Any examples, command display output, and figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses in illustrative content is unintentional and coincidental.

© 2013 Cisco Systems, Inc. All rights reserved.

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: www.cisco.com/go/trademarks. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1110R)

B-0000315-1 2/13

Was this manual useful for you? yes no
Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project