Motorola | MC9S12GC-Family | MC9S12C Family Device User Guide V01.11 Covers also

DOCUMENT NUMBER
9S12C128DGV1/D
MC9S12C Family
Device User Guide
V01.11
Covers also
MC9S12GC Family
Original Release Date: 25 JAN 2003
Revised: 28 FEB 2005
Motorola, Inc.
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its
products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,
including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola data sheets and/or specifications can and do vary in
different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s
technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as
components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the
Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized
application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses,
and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges
that Motorola was negligent regarding the design or manufacture of the part. Motorola and
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal
Opportunity/Affirmative Action Employer.
©Motorola, Inc., 2002
1
Device User Guide — 9S12C128DGV1/D V01.11
Revision History
Version Revision Effective
Number
Date
Date
00.01
Author
Description of Changes
25.JAN.03 25.JAN.03
Original Version. Based on C32 user guide version 01.12
00.02
07.FEB.03 07.FEB.03
Enhanced PortK description
Part number table revision in preface
00.03
25.FEB.03 25.FEB.03
QFP112 Emulation pinout correction
Enhanced part number explanation in preface
Reduced pseudo STOP current spec. for C64,C96,C128
00.04
15.APR.03 15.APR03
Enhanced PortAD signal description
Corrected VDDR description in 2.4.2
Revised pin leakage in electrical parameters
00.05
05.MAY.03 05.MAY.03
SPI timing parameter table correction
Output drive high value reduced in 3V range
PE[4:2] Pull-Up spec out of reset changed
3V Expansion bus timing parameters not tested in production
Minimum bus frequency specification increased to 0.25MHz.
00.06
21.MAY.03 21.MAY.03
Parameter classification added to Appendix Table C-2.
IOH changed to 4mA for 3V range.
01.00
15.JUL.03
LVR level defined.for C32. Run IDD changed for C32.
Block guide reference table updated
Added PCB layout guide for Pierce oscillator configuration
IOL parameter updated in 3.3V range
01.01
12.AUG.03 12.AUG.03
Updated PARTID listing due to C128 ECO revision
01.02
20.NOV.03 20.NOV.03
Changed DOC number and CPU DOC reference number
Included separate C32 LVI levels
Changed PortM pull up reset state to enabled.
01.03
27.NOV.03 27.NOV.03
Added References to the CAN-less GC-Family
No major revision number increment, since silicon functionality is
not changed.
Added VDDX connection in PCB layout figures 8-1.to 8-6
Added Part ID for 2L45J mask set to Part ID table
01.04
27.JAN.04 27.JAN.04
Table A-4 VDD/VDDPLL min when supplied externally now 2.35V
Reference S12FTS128K1 in Preface (was S12FTS128K)
Reference to CPU Guide corrected to Version2
11.FEB.04 11.FEB.04
Corrected flash sector sizes for C-Family devices with >64K Flash
Corrected Preface Table 0-1 16K part listing to GC16 without CAN
Added PPAGE specifications to memory map diagrams
Added flash timing parameters for 1024 byte sector size
07.JUN.04 07.JUN.04
Removed IREG from electrical parameter table
Added EXTAL pin voltage spec. to oscillator characteristic table
NVM reliability definition of program/erase cycle count corrected.
Added note for LVRF when VREG disabled
Updated Part ID references in Tables 0-2,0-3,0-4 and 1-3
01.05
01.06
15.JUL03
2
Device User Guide — 9S12C128DGV1/D V01.11
Version Revision Effective
Number
Date
Date
Author
Description of Changes
01.07
14.SEP.04
14.SEP.04
Removed LVRD from electrical parameter Table B-1.
Removed fosc from Table A-4. (Covered in B-11)
Adjusted VIL,VIH spec for EXTAL
Added further notes to Figure 1-5.
01.08
29.SEP.04
29.SEP.04
Updated NVM data retention electrical parameter table
01.09
01.10
01.11
08.OCT.04 08.OCT.04
Adjusted minimum VDD voltage in electrical parameter table
Added note that external LVR is needed if internal VREG disabled
Adjusted VREG output voltage spec.
Removed reference to ppm rate in NVM electricals
27.OCT.04 27.OCT.04
Corrected PortAD I/O function description
Updated Part Number Coding tables
Added MC9S12GC96 part option
Corrected PPAGE Table listing
Updated GC16 memory map figure for PPAGE function
28.FEB.05 28.FEB.05
Added 0M34C maskset and PART ID
Adjusted minimum VDD voltage in electrical parameter table
Adjusted VREG output voltage spec.
Updated LVI and LVR levels in Table B-1 due to new maskset.
PORTAD0 corrected to PORTAD
PIM section enhanced to explain PORTAD (ATD) and PTAD (PIM)
3
Device User Guide — 9S12C128DGV1/D V01.11
4
Device User Guide — 9S12C128DGV1/D V01.11
Table of Contents
Section 1 Introduction
1.1
1.2
1.3
1.4
1.5
1.6
1.7
Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Modes of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Device Memory Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Detailed Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Part ID Assignments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Section 2 Signal Description
2.1
Device Pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.2
Signal Properties Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
2.2.1
Pin Initialization for 48 & 52 Pin LQFP bond-out versions . . . . . . . . . . . . . . . . . . 56
2.3
Detailed Signal Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.3.1
EXTAL, XTAL — Oscillator Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.3.2
RESET — External Reset Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.3.3
TEST / VPP — Test Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.3.4
XFC — PLL Loop Filter Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.3.5
BKGD / TAGHI / MODC — Background Debug, Tag High & Mode Pin . . . . . . . 58
2.3.6
PA[7:0] / ADDR[15:8] / DATA[15:8] — Port A I/O Pins . . . . . . . . . . . . . . . . . . . . 58
2.3.7
PB[7:0] / ADDR[7:0] / DATA[7:0] — Port B I/O Pins . . . . . . . . . . . . . . . . . . . . . . 58
2.3.8
PE7 / NOACC / XCLKS — Port E I/O Pin 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
2.3.9
PE6 / MODB / IPIPE1 — Port E I/O Pin 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
2.3.10 PE5 / MODA / IPIPE0 — Port E I/O Pin 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
2.3.11 PE4 / ECLK— Port E I/O Pin [4] / E-Clock Output . . . . . . . . . . . . . . . . . . . . . . . . 60
2.3.12 PE3 / LSTRB — Port E I/O Pin [3] / Low-Byte Strobe (LSTRB). . . . . . . . . . . . . . 60
2.3.13 PE2 / R/W — Port E I/O Pin [2] / Read/Write. . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
2.3.14 PE1 / IRQ — Port E input Pin [1] / Maskable Interrupt Pin . . . . . . . . . . . . . . . . . 61
2.3.15 PE0 / XIRQ — Port E input Pin [0] / Non Maskable Interrupt Pin . . . . . . . . . . . . 61
2.3.16 PAD[7:0] / AN[7:0] — Port AD I/O Pins [7:0] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
2.3.17 PP[7] / KWP[7] — Port P I/O Pin [7]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
2.3.18 PP[6] / KWP[6]/ROMCTL — Port P I/O Pin [6] . . . . . . . . . . . . . . . . . . . . . . . . . . 61
2.3.19 PP[5:0] / KWP[5:0] / PW[5:0] — Port P I/O Pins [5:0] . . . . . . . . . . . . . . . . . . . . . 62
5
Device User Guide — 9S12C128DGV1/D V01.11
2.3.20 PJ[7:6] / KWJ[7:6] — Port J I/O Pins [7:6] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
2.3.21 PM5 / SCK — Port M I/O Pin 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
2.3.22 PM4 / MOSI — Port M I/O Pin 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
2.3.23 PM3 / SS — Port M I/O Pin 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
2.3.24 PM2 / MISO — Port M I/O Pin 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
2.3.25 PM1 / TXCAN — Port M I/O Pin 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
2.3.26 PM0 / RXCAN — Port M I/O Pin 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
2.3.27 PS[3:2] — Port S I/O Pins [3:2] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
2.3.28 PS1 / TXD — Port S I/O Pin 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
2.3.29 PS0 / RXD — Port S I/O Pin 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
2.3.30 PPT[7:5] / IOC[7:5] — Port T I/O Pins [7:5] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
2.3.31 PT[4:0] / IOC[4:0] / PW[4:0]— Port T I/O Pins [4:0] . . . . . . . . . . . . . . . . . . . . . . . 63
2.4
Power Supply Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
2.4.1
VDDX,VSSX — Power & Ground Pins for I/O Drivers . . . . . . . . . . . . . . . . . . . . . 63
2.4.2
VDDR, VSSR — Power & Ground Pins for I/O Drivers & for Internal Voltage Regulator
63
2.4.3
VDD1, VDD2, VSS1, VSS2 — Internal Logic Power Pins . . . . . . . . . . . . . . . . . . 63
2.4.4
VDDA, VSSA — Power Supply Pins for ATD and VREG . . . . . . . . . . . . . . . . . . 64
2.4.5
VRH, VRL — ATD Reference Voltage Input Pins . . . . . . . . . . . . . . . . . . . . . . . . 64
2.4.6
VDDPLL, VSSPLL — Power Supply Pins for PLL . . . . . . . . . . . . . . . . . . . . . . . . 64
Section 3 System Clock Description
Section 4 Modes of Operation
4.1
4.2
4.3
4.3.1
4.3.2
4.3.3
4.4
4.4.1
4.4.2
4.4.3
4.4.4
Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Chip Configuration Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Security. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Securing the Microcontroller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Operation of the Secured Microcontroller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Unsecuring the Microcontroller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Low Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Stop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Pseudo Stop. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Wait . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Run. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Section 5 Resets and Interrupts
6
Device User Guide — 9S12C128DGV1/D V01.11
5.1
Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.2
Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.2.1
Vector Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.3
Resets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.3.1
Reset Summary Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.3.2
Effects of Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Section 6 HCS12 Core Block Description
6.1
Device-specific information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.1.1
PPAGE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.1.2
BDM alternate clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.1.3
Extended Address Range Emulation Implications . . . . . . . . . . . . . . . . . . . . . . . . 71
Section 7 Voltage Regulator (VREG) Block Description
7.1
Device-specific information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
7.1.1
VREGEN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
7.1.2
VDD1, VDD2, VSS1, VSS2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Section 8 Recommended Printed Circuit Board Layout
Section 9 Clock Reset Generator (CRG) Block Description
9.1
Device-specific information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
9.1.1
XCLKS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Section 10 Oscillator (OSC) Block Description
Section 11 Timer (TIM) Block Description
Section 12 Analog to Digital Converter (ATD) Block Description
12.1 Device-specific information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
12.1.1 VRL (voltage reference low). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Section 13 Serial Communications Interface (SCI) Block Description
Section 14 Serial Peripheral Interface (SPI) Block Description
Section 15 Flash Block Description
7
Device User Guide — 9S12C128DGV1/D V01.11
Section 16 RAM Block Description
Section 17 Pulse Width Modulator (PWM) Block Description
Section 18 MSCAN Block Description
Section 19 Port Integration Module (PIM) Block Description
Appendix A Electrical Characteristics
A.1 General. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
A.1.1
Parameter Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
A.1.2
Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
A.1.3
Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
A.1.4
Current Injection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
A.1.5
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
A.1.6
ESD Protection and Latch-up Immunity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
A.1.7
Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
A.1.8
Power Dissipation and Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 87
A.1.9
I/O Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
A.1.10 Supply Currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Appendix B Electrical Specifications
B.1
B.2
B.3
B.3.1
B.3.2
B.4
B.4.1
B.4.2
B.4.3
B.4.4
B.4.5
B.5
B.5.1
B.5.2
8
Voltage Regulator Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Chip Power-up and LVI/LVR graphical explanation . . . . . . . . . . . . . . . . . . . . . . . . . 96
Output Loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Resistive Loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Capacitive Loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
ATD Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
ATD Operating Characteristics In 5V Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
ATD Operating Characteristics In 3.3V Range . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Factors influencing accuracy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
ATD accuracy (5V Range) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
ATD accuracy (3.3V Range) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
NVM, Flash and EEPROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
NVM timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
NVM Reliability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Device User Guide — 9S12C128DGV1/D V01.11
B.6 Reset, Oscillator and PLL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
B.6.1
Startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
B.6.2
Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
B.6.3
Phase Locked Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
B.7 MSCAN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
B.8 SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Appendix C Electrical Specifications
C.1 Master Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
C.2 Slave Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
C.3 External Bus Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
C.3.1
General Muxed Bus Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Appendix D Package Information
D.1
D.2
D.3
D.4
General. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
80-pin QFP package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
52-pin LQFP package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
48-pin LQFP package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
Appendix E Emulation Information
E.1 General. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
E.1.1
PK[2:0] / XADDR[16:14]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
E.2 112-pin LQFP package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
9
Device User Guide — 9S12C128DGV1/D V01.11
10
Device User Guide — 9S12C128DGV1/D V01.11
List of Figures
Figure 0-1
Figure 1-1
Figure 1-2
Figure 1-3
Figure 1-4
Figure 1-5
Figure 1-6
Figure 2-1
Figure 2-2
Figure 2-3
Figure 2-4
Figure 2-5
Figure 2-6
Figure 2-7
Figure 3-1
Figure 8-1
Figure 8-2
Figure 8-3
Figure 8-4
Figure 8-5
Figure 8-6
Figure B-1
Figure B-2
Figure B-3
Figure B-4
Figure B-5
Figure C-1
Figure C-2
Figure C-3
Figure C-4
Figure C-5
Figure D-1
Figure D-2
Order Part number Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
MC9S12C-Family Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
MC9S12C128 and MC9S12GC128 User configurable Memory Map . . . . . . 29
MC9S12C96 and MC9S12GC96 User Configurable Memory Map. . . . . . . . 30
MC9S12C64 and MC9S12GC64 User Configurable Memory Map. . . . . . . . 31
MC9S12C32 and MC9S12GC32 User Configurable Memory Map. . . . . . . . 32
MC9S12GC16 User Configurable Memory Map . . . . . . . . . . . . . . . . . . . . . . 33
Pin Assignments in 80 QFP for MC9S12C-Family . . . . . . . . . . . . . . . . . . . . 52
Pin assignments in 52 LQFP for MC9S12C-Family. . . . . . . . . . . . . . . . . . . . 53
Pin Assignments in 48 LQFP for MC9S12C-Family . . . . . . . . . . . . . . . . . . . 54
PLL Loop Filter Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Colpitts Oscillator Connections (PE7=1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Pierce Oscillator Connections (PE7=0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
External Clock Connections (PE7=0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Clock Connections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Recommended PCB Layout (48 LQFP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Recommended PCB Layout (52 LQFP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Recommended PCB Layout (80 QFP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Recommended PCB Layout for 48 LQFP Pierce Oscillator . . . . . . . . . . . . . 77
Recommended PCB Layout for 52 LQFP Pierce Oscillator . . . . . . . . . . . . . 78
Recommended PCB Layout for 80QFP Pierce Oscillator . . . . . . . . . . . . . . . 79
Voltage Regulator - Chip Power-up and Voltage Drops (not scaled) . . . . . 96
ATD Accuracy Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Basic PLL functional diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Jitter Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Maximum bus clock jitter approximation . . . . . . . . . . . . . . . . . . . . . . . . . . 114
SPI Master Timing (CPHA=0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
SPI Master Timing (CPHA=1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
SPI Slave Timing (CPHA=0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
SPI Slave Timing (CPHA=1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
General External Bus Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
80-pin QFP Mechanical Dimensions (case no. 841B) . . . . . . . . . . . . . . . . 128
52-pin LQFP Mechanical Dimensions (case no. 848D-03) . . . . . . . . . . . . 129
11
Device User Guide — 9S12C128DGV1/D V01.11
Figure D-3 48-pin LQFP Mechanical Dimensions (case no.932-03 ISSUE F) . . . . . . 130
Figure 19-1 Pin Assignments in 112-pin LQFP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Figure 19-2 112-pin LQFP mechanical dimensions (case no. 987)80-pin QFP Mechanical Dimensions (case no. 841B)133
12
Device User Guide — 9S12C128DGV1/D V01.11
List of Tables
Table 0-1 List of MC9S12C and MC9S12GC Family members. . . . . . . . . . . . . . . . . . . . 17
Table 0-2 MC9S12C-Family Part Number Coding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Table 0-3 MC9S12GC-Family Part Number Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Table 0-4 Document References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Table 1-1 Device Register Map Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
$0000 - $000FMEBI map 1 of 3 (HCS12 Multiplexed External Bus Interface) 34
$0010 - $0014 MMC map 1 of 4 (HCS12 Module Mapping Control) 34
$0018 - $0018 Miscellaneous Peripherals (Device User Guide) 35
$0019 - $0019 VREG3V3 (Voltage Regulator) 35
$0015 - $0016 INT map 1 of 2 (HCS12 Interrupt) 35
$0017 - $0017MMC map 2 of 4 (HCS12 Module Mapping Control) 35
$001A - $001B Miscellaneous Peripherals (Device User Guide) 35
$001C - $001D MMC map 3 of 4 (HCS12 Module Mapping Control, 36
Device User Guide) 36
$001E - $001E MEBI map 2 of 3 (HCS12 Multiplexed External Bus Interface) 36
$001F - $001F INT map 2 of 2 (HCS12 Interrupt) 36
$0020 - $002F
DBG (including BKP) map 1 of 1 (HCS12 Debug) 36
$0030 - $0031 MMC map 4 of 4 (HCS12 Module Mapping Control) 37
$0032 - $0033 MEBI map 3 of 3 (HCS12 Multiplexed External Bus Interface) 37
$0034 - $003F CRG (Clock and Reset Generator) 37
$0040 - $006F TIM (Timer 16 Bit 8 Channels) 38
$0070 - $007F Reserved 40
$0080 - $009F ATD (Analog to Digital Converter 10 Bit 8 Channel) 40
$00A0 - $00C7 Reserved 41
$00D0 - $00D7 Reserved 42
$00C8 - $00CF SCI (Asynchronous Serial Interface) 42
$00D8 - $00DF SPI (Serial Peripheral Interface) 42
$00E0 - $00FF PWM (Pulse Width Modulator) 43
$0100 - $010F Flash Control Register 44
$0110 - $013F Reserved 45
$0140 - $017F CAN (Motorola Scalable CAN - MSCAN) 45
Table 1-2 Detailed MSCAN Foreground Receive and Transmit Buffer Layout. . . . . . . . 46
$0180 - $023F Reserved 47
13
Device User Guide — 9S12C128DGV1/D V01.11
$0240 - $027F PIM (Port Interface Module) 47
$0280 - $03FF Reserved space 50
Table 1-3 Assigned Part ID Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Table 1-4 Memory size registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Table 2-1 Signal Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Table 2-2 MC9S12C-Family Power and Ground Connection Summary . . . . . . . . . . . . . 64
Table 4-1 Mode Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Table 4-2 Clock Selection Based on PE7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Table 5-1 Interrupt Vector Locations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Table 5-2 Reset Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Table 6-1 Device Specific Flash PAGE Mapping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Table 8-1 Recommended External Component Values. . . . . . . . . . . . . . . . . . . . . . . . . . 73
Table A-1 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Table A-2 ESD and Latch-up Test Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Table A-3 ESD and Latch-Up Protection Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 86
Table A-4 Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Table A-5 Thermal Package Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Table A-6 5V I/O Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Table A-7 3.3V I/O Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Table A-8 Supply Current Characteristics for MC9S12C32 . . . . . . . . . . . . . . . . . . . . . . . 93
Table A-9 Supply Current Characteristics for MC9S12C64,MC9S12C96,MC9S12C128 94
Table B-1 Voltage Regulator Electrical Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Table B-2 Voltage Regulator - Capacitive Loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Table B-3 ATD Operating Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Table B-4 ATD Operating Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Table B-5 ATD Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Table B-6 ATD Conversion Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Table B-7 ATD Conversion Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Table B-8 NVM Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Table B-9 NVM Reliability Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Table B-10 Startup Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Table B-11 Oscillator Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Table B-12 PLL Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Table B-13 MSCAN Wake-up Pulse Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Table C-1 Measurement Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Table C-2 SPI Master Mode Timing Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
14
Device User Guide — 9S12C128DGV1/D V01.11
Table C-3
Table C-4
Table C-5
SPI Slave Mode Timing Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Expanded Bus Timing Characteristics (5V Range). . . . . . . . . . . . . . . . . . . . 124
Expanded Bus Timing Characteristics (3.3V Range) . . . . . . . . . . . . . . . . . . 125
15
Device User Guide — 9S12C128DGV1/D V01.11
16
Device User Guide — 9S12C128DGV1/D V01.11
Preface
The Device User Guide provides information about the MC9S12C-Family as well the MC9S12GC-Family
devices made up of standard HCS12 blocks and the HCS12 processor core. This document is part of the
customer documentation. A complete set of device manuals also includes the HCS12 Core User Guide and
all the individual Block User Guides of the implemented modules. In an effort to reduce redundancy all
module specific information is located only in the respective Block User Guide. If applicable, special
implementation details of the module are given in the block description sections of this document.
The C-Family and the GC-Family offer an extensive range of package, temperature and speed options.
The members of the GC-Family do not feature a CAN module.
Table 0-1 shows a feature overview of the MC9S12C and MC9S12GC Family members.
Table 0-2 lists the part number coding based on the package, speed and temperature and preliminary die
options for the C-Family.
Table 0-3 lists the part number coding based on the package, speed and temperature and preliminary die
options for the GC-Family.
Table 0-1 List of MC9S12C and MC9S12GC Family members
Flash
RAM
128K
4K
96K
4K
64K
4K
32K
2K
16K
1K
Device
CAN
SCI
SPI
A/D
PWM
Timer
MC9S12C128
1
1
1
8ch
6ch
8ch
MC9S12GC128
—
1
1
8ch
6ch
8ch
MC9S12C96
1
1
1
8ch
6ch
8ch
MC9S12GC96
—
1
1
8ch
6ch
8ch
MC9S12C64
1
1
1
8ch
6ch
8ch
MC9S12GC64
—
1
1
8ch
6ch
8ch
MC9S12C32
1
1
1
8ch
6ch
8ch
MC9S12GC32
—
1
1
8ch
6ch
8ch
MC9S12GC16
—
1
1
8ch
6ch
8ch
17
Device User Guide — 9S12C128DGV1/D V01.11
MC9S12 C32
C FU
Temperature Options
C = -40˚C to 85˚C
V = -40˚C to 105˚C
M = -40˚C to 125˚C
Package Options
FU = 80QFP
PB = 52LQFP
FA = 48LQFP
Speed Options
25 = 25MHz bus
16 = 16MHz bus
25
Speed Option
Package Option
Temperature Option
Device Title
Controller Family
Figure 0-1 Order Part number Coding
Table 0-2 MC9S12C-Family Part Number Coding
Part Number
Mask1
set
Temp.
Package
Speed
Die Type Flash
RAM
I/O2,3
MC9S12C128CFA16
XL09S
-40˚C, 85˚C
48LQFP
16MHz
C128 die
128K
4K
31
MC9S12C128CPB16
XL09S
-40˚C, 85˚C
52LQFP
16MHz
C128 die
128K
4K
35
MC9S12C128CFU16
XL09S
-40˚C, 85˚C
80QFP
16MHz
C128 die
128K
4K
60
MC9S12C128VFA16
XL09S
-40˚C,105˚C
48LQFP
16MHz
C128 die
128K
4K
31
MC9S12C128VPB16
XL09S
-40˚C,105˚C
52LQFP
16MHz
C128 die
128K
4K
35
MC9S12C128VFU16
XL09S
-40˚C, 105˚C
80QFP
16MHz
C128 die
128K
4K
60
MC9S12C128MFA16
XL09S
-40˚C,125˚C
48LQFP
16MHz
C128 die
128K
4K
31
MC9S12C128MPB16
XL09S
-40˚C,125˚C
52LQFP
16MHz
C128 die
128K
4K
35
MC9S12C128MFU16
XL09S
-40˚C, 125˚C
80QFP
16MHz
C128 die
128K
4K
60
MC9S12C128CFA
XL09S
-40˚C, 85˚C
48LQFP
25MHz
C128 die
128K
4K
31
MC9S12C128CPB
XL09S
-40˚C, 85˚C
52LQFP
25MHz
C128 die
128K
4K
35
MC9S12C128CFU
XL09S
-40˚C, 85˚C
80QFP
25MHz
C128 die
128K
4K
60
MC9S12C128VFA
XL09S
-40˚C,105˚C
48LQFP
25MHz
C128 die
128K
4K
31
MC9S12C128VPB
XL09S
-40˚C,105˚C
52LQFP
25MHz
C128 die
128K
4K
35
MC9S12C128VFU
XL09S
-40˚C, 105˚C
80QFP
25MHz
C128 die
128K
4K
60
MC9S12C128MFA
XL09S
-40˚C,125˚C
48LQFP
25MHz
C128 die
128K
4K
31
MC9S12C128MPB
XL09S
-40˚C,125˚C
52LQFP
25MHz
C128 die
128K
4K
35
MC9S12C128MFU
XL09S
-40˚C, 125˚C
80QFP
25MHz
C128 die
128K
4K
60
MC9S12C96CFA16
XL09S
-40˚C, 85˚C
48LQFP
16MHz
C128 die
96K
4K
31
MC9S12C96CPB16
XL09S
-40˚C, 85˚C
52LQFP
16MHz
C128 die
96K
4K
35
MC9S12C96CFU16
XL09S
-40˚C, 85˚C
80QFP
16MHz
C128 die
96K
4K
60
MC9S12C96VFA16
XL09S
-40˚C,105˚C
48LQFP
16MHz
C128 die
96K
4K
31
MC9S12C96VPB16
XL09S
-40˚C,105˚C
52LQFP
16MHz
C128 die
96K
4K
35
MC9S12C96VFU16
XL09S
-40˚C, 105˚C
80QFP
16MHz
C128 die
96K
4K
60
MC9S12C96MFA16
XL09S
-40˚C,125˚C
48LQFP
16MHz
C128 die
96K
4K
31
MC9S12C96MPB16
XL09S
-40˚C,125˚C
52LQFP
16MHz
C128 die
96K
4K
35
MC9S12C96MFU16
XL09S
-40˚C, 125˚C
80QFP
16MHz
C128 die
96K
4K
60
MC9S12C96CFA
XL09S
-40˚C, 85˚C
48LQFP
25MHz
C128 die
96K
4K
31
18
Device User Guide — 9S12C128DGV1/D V01.11
Mask1
set
Temp.
Package
Speed
MC9S12C96CPB
XL09S
-40˚C, 85˚C
52LQFP
25MHz
C128 die
MC9S12C96CFU
XL09S
-40˚C, 85˚C
80QFP
25MHz
MC9S12C96VFA
XL09S
-40˚C,105˚C
48LQFP
25MHz
MC9S12C96VPB
XL09S
-40˚C,105˚C
52LQFP
MC9S12C96VFU
XL09S
-40˚C, 105˚C
80QFP
MC9S12C96MFA
XL09S
-40˚C,125˚C
MC9S12C96MPB
XL09S
-40˚C,125˚C
Part Number
RAM
I/O2,3
96K
4K
35
C128 die
96K
4K
60
C128 die
96K
4K
31
25MHz
C128 die
96K
4K
35
25MHz
C128 die
96K
4K
60
48LQFP
25MHz
C128 die
96K
4K
31
52LQFP
25MHz
C128 die
96K
4K
35
Die Type Flash
MC9S12C96MFU
XL09S
-40˚C, 125˚C
80QFP
25MHz
C128 die
96K
4K
60
MC9S12C64CFA16
XL09S
-40˚C, 85˚C
48LQFP
16MHz
C128 die
64K
4K
31
MC9S12C64CPB16
XL09S
-40˚C, 85˚C
52LQFP
16MHz
C128 die
64K
4K
35
MC9S12C64CFU16
XL09S
-40˚C, 85˚C
80QFP
16MHz
C128 die
64K
4K
60
MC9S12C64VFA16
XL09S
-40˚C,105˚C
48LQFP
16MHz
C128 die
64K
4K
31
MC9S12C64VPB16
XL09S
-40˚C,105˚C
52LQFP
16MHz
C128 die
64K
4K
35
MC9S12C64VFU16
XL09S
-40˚C, 105˚C
80QFP
16MHz
C128 die
64K
4K
60
MC9S12C64MFA16
XL09S
-40˚C,125˚C
48LQFP
16MHz
C128 die
64K
4K
31
MC9S12C64MPB16
XL09S
-40˚C,125˚C
52LQFP
16MHz
C128 die
64K
4K
35
MC9S12C64MFU16
XL09S
-40˚C, 125˚C
80QFP
16MHz
C128 die
64K
4K
60
MC9S12C64CFA
XL09S
-40˚C, 85˚C
48LQFP
25MHz
C128 die
64K
4K
31
MC9S12C64CPB
XL09S
-40˚C, 85˚C
52LQFP
25MHz
C128 die
64K
4K
35
MC9S12C64CFU
XL09S
-40˚C, 85˚C
80QFP
25MHz
C128 die
64K
4K
60
MC9S12C64VFA
XL09S
-40˚C,105˚C
48LQFP
25MHz
C128 die
64K
4K
31
MC9S12C64VPB
XL09S
-40˚C,105˚C
52LQFP
25MHz
C128 die
64K
4K
35
MC9S12C64VFU
XL09S
-40˚C, 105˚C
80QFP
25MHz
C128 die
64K
4K
60
MC9S12C64MFA
XL09S
-40˚C,125˚C
48LQFP
25MHz
C128 die
64K
4K
31
MC9S12C64MPB
XL09S
-40˚C,125˚C
52LQFP
25MHz
C128 die
64K
4K
35
MC9S12C64MFU
XL09S
-40˚C, 125˚C
80QFP
25MHz
C128 die
64K
4K
60
MC9S12C32CFA16 xL45J / xM34C
-40˚C, 85˚C
48LQFP
16MHz
C32 die
32K
2K
31
MC9S12C32CPB16 xL45J / xM34C
-40˚C, 85˚C
52LQFP
16MHz
C32 die
32K
2K
35
MC9S12C32CFU16 xL45J / xM34C
-40˚C, 85˚C
80QFP
16MHz
C32 die
32K
2K
60
MC9S12C32VFA16 xL45J / xM34C
-40˚C,105˚C
48LQFP
16MHz
C32 die
32K
2K
31
MC9S12C32VPB16 xL45J / xM34C
-40˚C,105˚C
52LQFP
16MHz
C32 die
32K
2K
35
MC9S12C32VFU16 xL45J / xM34C -40˚C, 105˚C
80QFP
16MHz
C32 die
32K
2K
60
MC9S12C32MFA16 xL45J / xM34C
-40˚C,125˚C
48LQFP
16MHz
C32 die
32K
2K
31
MC9S12C32MPB16
-40˚C,125˚C
52LQFP
16MHz
C32 die
32K
2K
35
MC9S12C32MFU16 xL45J / xM34C -40˚C, 125˚C
80QFP
16MHz
C32 die
32K
2K
60
xL45J / xM34C
MC9S12C32CFA25 xL45J / xM34C
-40˚C, 85˚C
48LQFP
25MHz
C32 die
32K
2K
31
MC9S12C32CPB25 xL45J / xM34C
-40˚C, 85˚C
52LQFP
25MHz
C32 die
32K
2K
35
MC9S12C32CFU25 xL45J / xM34C
-40˚C, 85˚C
80QFP
25MHz
C32 die
32K
2K
60
MC9S12C32VFA25 xL45J / xM34C
-40˚C,105˚C
48LQFP
25MHz
C32 die
32K
2K
31
MC9S12C32VPB25 xL45J / xM34C
-40˚C,105˚C
52LQFP
25MHz
C32 die
32K
2K
35
MC9S12C32VFU25 xL45J / xM34C -40˚C, 105˚C
80QFP
25MHz
C32 die
32K
2K
60
MC9S12C32MFA25 xL45J / xM34C
-40˚C,125˚C
48LQFP
25MHz
C32 die
32K
2K
31
MC9S12C32MPB25
-40˚C,125˚C
52LQFP
25MHz
C32 die
32K
2K
35
MC9S12C32MFU25 xL45J / xM34C -40˚C, 125˚C
80QFP
25MHz
C32 die
32K
2K
60
xL45J / xM34C
19
Device User Guide — 9S12C128DGV1/D V01.11
NOTES:
1. XL09S denotes all minor revisions of L09S maskset
XL45J denotes all minor revisions of L45J maskset
Maskset dependent errata can be accessed at
http://e-www.motorola.com/wbapp/sps/site/prod_summary.jsp
2. All C-Family derivatives feature 1 CAN, 1 SCI, 1 SPI, an 8-channel A/D, a 6-channel PWM and an 8 channel timer.
The GC-Family members do not have the CAN module
3. I/O is the sum of ports able to act as digital input or output.
Table 0-3 MC9S12GC-Family Part Number Coding
Mask1
set
Temp.
Package
Speed
MC9S12GC128CFA
XL09S
-40˚C, 85˚C
48LQFP
25MHz
C128 die
MC9S12GC128CPB
XL09S
-40˚C, 85˚C
52LQFP
25MHz
MC9S12GC128CFU
XL09S
-40˚C, 85˚C
80QFP
25MHz
Part Number
RAM
I/O2,3
128K
4K
31
C128 die
128K
4K
35
C128 die
128K
4K
60
Die Type Flash
MC9S12GC128VFA
XL09S
-40˚C, 105˚C
48LQFP
25MHz
C128 die
128K
4K
31
MC9S12GC128VPB
XL09S
-40˚C, 105˚C
52LQFP
25MHz
C128 die
128K
4K
35
MC9S12GC128VFU
XL09S
-40˚C, 105˚C
80QFP
25MHz
C128 die
128K
4K
60
MC9S12GC128MFA
XL09S
-40˚C, 125˚C
48LQFP
25MHz
C128 die
128K
4K
31
MC9S12GC128MPB
XL09S
-40˚C, 125˚C
52LQFP
25MHz
C128 die
128K
4K
35
MC9S12GC128MFU
XL09S
-40˚C, 125˚C
80QFP
25MHz
C128 die
128K
4K
60
MC9S12GC96CFA
XL09S
-40˚C, 85˚C
48LQFP
25MHz
C128 die
96K
4K
31
MC9S12GC96CPB
XL09S
-40˚C, 85˚C
52LQFP
25MHz
C128 die
96K
4K
35
MC9S12GC96CFU
XL09S
-40˚C, 85˚C
80QFP
25MHz
C128 die
96K
4K
60
MC9S12GC96VFA
XL09S
-40˚C, 105˚C
48LQFP
25MHz
C128 die
96K
4K
31
MC9S12GC96VPB
XL09S
-40˚C, 105˚C
52LQFP
25MHz
C128 die
96K
4K
35
MC9S12GC96VFU
XL09S
-40˚C, 105˚C
80QFP
25MHz
C128 die
96K
4K
60
MC9S12GC96MFA
XL09S
-40˚C, 125˚C
48LQFP
25MHz
C128 die
96K
4K
31
MC9S12GC96MPB
XL09S
-40˚C, 125˚C
52LQFP
25MHz
C128 die
96K
4K
35
MC9S12GC96MFU
XL09S
-40˚C, 125˚C
80QFP
25MHz
C128 die
96K
4K
60
MC9S12GC64CFA
XL09S
-40˚C, 85˚C
48LQFP
25MHz
C128 die
64K
4K
31
MC9S12GC64CPB
XL09S
-40˚C, 85˚C
52LQFP
25MHz
C128 die
64K
4K
35
MC9S12GC64CFU
XL09S
-40˚C, 85˚C
80QFP
25MHz
C128 die
64K
4K
60
MC9S12GC64VFA
XL09S
-40˚C, 105˚C
48LQFP
25MHz
C128 die
64K
4K
31
MC9S12GC64VPB
XL09S
-40˚C, 105˚C
52LQFP
25MHz
C128 die
64K
4K
35
MC9S12GC64VFU
XL09S
-40˚C, 105˚C
80QFP
25MHz
C128 die
64K
4K
60
MC9S12GC64MFA
XL09S
-40˚C, 125˚C
48LQFP
25MHz
C128 die
64K
4K
31
MC9S12GC64MPB
XL09S
-40˚C, 125˚C
52LQFP
25MHz
C128 die
64K
4K
35
MC9S12GC64MFU
XL09S
-40˚C, 125˚C
80QFP
25MHz
C128 die
64K
4K
60
MC9S12GC32CFA xL45J / xM34C
-40˚C, 85˚C
48LQFP
25MHz
C32 die
32K
2K
31
MC9S12GC32CPB xL45J / xM34C
-40˚C, 85˚C
52LQFP
25MHz
C32 die
32K
2K
35
MC9S12GC32CFU xL45J / xM34C
-40˚C, 85˚C
80QFP
25MHz
C32 die
32K
2K
60
MC9S12GC32VFA xL45J / xM34C
-40˚C,105˚C
48LQFP
25MHz
C32 die
32K
2K
31
MC9S12GC32VPB
-40˚C,105˚C
52LQFP
25MHz
C32 die
32K
2K
35
MC9S12GC32VFU xL45J / xM34C -40˚C, 105˚C
80QFP
25MHz
C32 die
32K
2K
60
MC9S12GC32MFA
20
xL45J / xM34C
xL45J / xM34C
-40˚C,125˚C
48LQFP
25MHz
C32 die
32K
2K
31
MC9S12GC32MPB xL45J / xM34C
-40˚C,125˚C
52LQFP
25MHz
C32 die
32K
2K
35
Device User Guide — 9S12C128DGV1/D V01.11
Mask1
set
Temp.
RAM
I/O2,3
32K
2K
60
C32 die
16K
1K
31
C32 die
16K
1K
35
Package
Speed
MC9S12GC32MFU xL45J / xM34C -40˚C, 125˚C
80QFP
25MHz
C32 die
MC9S12GC16CFA xL45J / xM34C
-40˚C, 85˚C
48LQFP
25MHz
MC9S12GC16CPB xL45J / xM34C
-40˚C, 85˚C
52LQFP
25MHz
Part Number
Die Type Flash
MC9S12GC16CFU xL45J / xM34C
-40˚C, 85˚C
80QFP
25MHz
C32 die
16K
1K
60
MC9S12GC16VFA xL45J / xM34C
-40˚C,105˚C
48LQFP
25MHz
C32 die
16K
1K
31
MC9S12GC16VPB
-40˚C,105˚C
52LQFP
25MHz
C32 die
16K
1K
35
MC9S12GC16VFU xL45J / xM34C -40˚C, 105˚C
80QFP
25MHz
C32 die
16K
1K
60
MC9S12GC16MFA
xL45J / xM34C
xL45J / xM34C
-40˚C,125˚C
48LQFP
25MHz
C32 die
16K
1K
31
MC9S12GC16MPB xL45J / xM34C
-40˚C,125˚C
52LQFP
25MHz
C32 die
16K
1K
35
MC9S12GC16MFU xL45J / xM34C -40˚C, 125˚C
80QFP
25MHz
C32 die
16K
1K
60
NOTES:
1. XL09S denotes all minor revisions of L09S maskset
XL45J denotes all minor revisions of L45J maskset
Maskset dependent errata can be accessed at
http://e-www.motorola.com/wbapp/sps/site/prod_summary.jsp
2. All C-Family derivatives feature 1 CAN, 1 SCI, 1 SPI, an 8-channel A/D, a 6-channel PWM and an 8 channel timer. The
GC-Family members do not have the CAN module
3. I/O is the sum of ports capable to act as digital input or output.
Table 0-4 Document References
User Guide 1
Version
Document Order Number
CPU12 Reference Manual
V02
S12CPUV2/D
HCS12 Debug (DBG) Block Guide
V01
S12DBGV1/D
HCS12 Background Debug (BDM) Block Guide
V04
S12BDMV4/D
HCS12 Module Mapping Control (MMC) Block Guide
V04
S12MMCV4/D
HCS12 Multiplexed External Bus Interface (MEBI) Block Guide
V03
S12MEBIV3/D
HCS12 Interrupt (INT) Block Guide
V01
S12INTV1/D
Analog To Digital Converter: 10 Bit 8 Channel (ATD_10B8C) Block Guide
V02
S12ATD10B8CV2/D
Clock and Reset Generator (CRG) Block Guide
V04
S12CRGV4/D
Serial Communications Interface (SCI) Block Guide
V02
S12SCIV2/D
Serial Peripheral Interface (SPI) Block Guide
V03
S12SPIV3/D
2
V02
S12MSCANV2/D
Motorola Scalable CAN (MSCAN) Block Guide
Pulse Width Modulator: 8 bit, 6 channel (PWM_8B6C) Block Guide
V01
S12PWM8B6V1/D
Timer: 16 bit, 8 channel (TIM_16B8C) Block Guide
V01
S12TIM16B8CV1/D
Voltage Regulator (VREG) Block Guide
V02
S12VREG3V3V2/D
Oscillator (OSC) Block Guide
V02
S12OSCV2/D
Port Integration Module (PIM_9C32) Block Guide
V01
S12C32PIMV1/D
32Kbyte Flash EEPROM (FTS32K) Block Guide
V01
S12FTS32KV1/D
64Kbyte Flash EEPROM (FTS64K) Block Guide
V01
S12FTS64KV1/D
128Kbyte Flash EEPROM (FTS128K1) Block Guide
V01
S12FTS128K1V1/D
NOTES:
1. For the GC16 refer to the 16K flash, for the C32 and GC32 refer to the 32K flash, for the C64 and GC64 the 64K flash, for
the C96 the 96K flash and C128 the 128K flash document.
2. Not available on the GC-Family members
21
Device User Guide — 9S12C128DGV1/D V01.11
Terminology
Acronyms and Abbreviations
New or invented terms, symbols, and notations
22
Device User Guide — 9S12C128DGV1/D V01.11
Section 1 Introduction
1.1 Overview
The MC9S12C-Family and the MC9S12GC-Family is a 48/52/80 pin Flash-based Industrial/Automotive
network control MCU family. Members of the MC9S12C-Family and the MC9S12GC-Family deliver the
power and flexibility of our 16 Bit core (CPU12) family to a whole new range of cost and space sensitive,
general purpose Industrial and Automotive network applications. All MC9S12C-Family and
MC9S12GC-Family members are comprised of standard on-chip peripherals including a 16-bit central
processing unit (CPU12), up to 128K bytes of Flash EEPROM, up to 4K bytes of RAM, an asynchronous
serial communications interface (SCI), a serial peripheral interface (SPI), an 8-channel 16-bit timer
module (TIM), a 6-channel 8-bit Pulse Width Modulator (PWM), an 8-channel, 10-bit analog-to-digital
converter (ADC). The MC9S12C-Family members also feature a CAN 2.0 A, B software compatible
module (MSCAN12). The MC9S12C-Family as well as the MC9S12GC-Family has full 16-bit data paths
throughout. The inclusion of a PLL circuit allows power consumption and performance to be adjusted to
suit operational requirements. In addition to the I/O ports available in each module, up to 10 dedicated I/O
port bits are available with Wake-Up capability from STOP or WAIT mode. The MC9S12C-Family and
the MC9S12GC-Family devices are available in 48, 52 and 80 pin QFP packages, with the 80 Pin version
pin compatible to the HCS12 A, B and D- Family derivatives.
1.2 Features
•
16-bit HCS12 CORE
–
HCS12 CPU
i. Upward compatible with M68HC11 instruction set
ii. Interrupt stacking and programmer’s model identical to M68HC11
iii. Instruction queue
iv. Enhanced indexed addressing
•
–
MMC (memory map and interface)
–
INT (interrupt control)
–
BDM (background debug mode)
–
DBG12 (enhanced debug12 module, including breakpoints and change-of-flow trace buffer)
–
MEBI: Multiplexed Expansion Bus Interface (available only in 80 pin package version)
Wake-up interrupt inputs
–
•
Up to 12-port bits available for wake up interrupt function with digital filtering
Memory options
–
16K or 32KByte Flash EEPROM (erasable in 512-byte sectors)
64K, 96K or 128KByte Flash EEPROM (erasable in 1024-byte sectors)
23
Device User Guide — 9S12C128DGV1/D V01.11
–
•
•
•
•
•
•
24
1K, 2K or 4K Byte RAM
Analog-to-Digital Converters
–
One 8-channel module with 10-bit resolution.
–
External conversion trigger capability
Available on MC9S12C-Family:
One 1M bit per second, CAN 2.0 A, B software compatible module
–
Five receive and three transmit buffers
–
Flexible identifier filter programmable as 2 x 32 bit, 4 x 16 bit or 8 x 8 bit
–
Four separate interrupt channels for Rx, Tx, error and wake-up
–
Low-pass filter wake-up function
–
Loop-back for self test operation
Timer Module (TIM)
–
8-Channel Timer
–
Each Channel Configurable as either Input Capture or Output Compare
–
Simple PWM Mode
–
Modulo Reset of Timer Counter
–
16-Bit Pulse Accumulator
–
External Event Counting
–
Gated Time Accumulation
6 PWM channels
–
Programmable period and duty cycle
–
8-bit 6-channel or 16-bit 3-channel
–
Separate control for each pulse width and duty cycle
–
Center-aligned or left-aligned outputs
–
Programmable clock select logic with a wide range of frequencies
–
Fast emergency shutdown input
Serial interfaces
–
One asynchronous serial communications interface (SCI)
–
One synchronous serial peripheral interface (SPI)
CRG (Clock Reset Generator Module)
–
Windowed COP watchdog,
–
Real time interrupt,
–
Clock monitor,
Device User Guide — 9S12C128DGV1/D V01.11
•
•
•
•
–
Pierce or low current Colpitts oscillator
–
Phase-locked loop clock frequency multiplier
–
Limp home mode in absence of external clock
–
Low power 0.5 to 16 MHz crystal oscillator reference clock
Operating frequency
–
32MHz equivalent to 16MHz Bus Speed for single chip
–
32MHz equivalent to 16MHz Bus Speed in expanded bus modes
–
Option of 9S12C-Family: 50MHz equivalent to 25MHz Bus Speed
–
All 9S12GC-Family Members allow a 50MHz operting frequency.
Internal 2.5V Regulator
–
Supports an input voltage range from 2.97V to 5.5V
–
Low power mode capability
–
Includes low voltage reset (LVR) circuitry
–
Includes low voltage interrupt (LVI) circuitry
48-Pin LQFP, 52-Pin LQFP or 80-Pin QFP package
–
Up to 58 I/O lines with 5V input and drive capability (80 pin package)
–
Up to 2 dedicated 5V input only lines (IRQ, XIRQ)
–
5V 8 A/D converter inputs and 5V I/O
Development support
–
Single-wire background debug™ mode (BDM)
–
On-chip hardware breakpoints
–
Enhanced DBG12 debug features
1.3 Modes of Operation
User modes (Expanded modes are only available in the 80 pin package version).
•
•
Normal and Emulation Operating Modes
–
Normal Single-Chip Mode
–
Normal Expanded Wide Mode
–
Normal Expanded Narrow Mode
–
Emulation Expanded Wide Mode
–
Emulation Expanded Narrow Mode
Special Operating Modes
25
Device User Guide — 9S12C128DGV1/D V01.11
•
26
–
Special Single-Chip Mode with active Background Debug Mode
–
Special Test Mode (Motorola use only)
–
Special Peripheral Mode (Motorola use only)
Low power modes
–
Stop Mode
–
Pseudo Stop Mode
–
Wait Mode
Device User Guide — 9S12C128DGV1/D V01.11
1.4 Block Diagram
Figure 1-1 MC9S12C-Family Block Diagram
PLL 2.5V
VDDPLL
VSSPLL
PTAD
PTT
SPI
PJ6
PJ7
PTS
PB7
PB6
PB5
PB4
PB3
PB2
PB1
PB0
Internal Logic 2.5V
VDD1,2
VSS1,2
RXD
TXD
MSCAN is not available on the
9S12GC Family Members
MSCAN
PP0
PP1
PP2
PP3
PP4
PP5
PP6
PP7
PS0
PS1
PS2
PS3
PTM
PA7
PA6
PA5
PA4
PA3
PA2
PA1
PA0
ADDR7
ADDR6
ADDR5
ADDR4
ADDR3
ADDR2
ADDR1
ADDR0
PTB
DATA7
DATA6
DATA5
DATA4
DATA3
DATA2
DATA1
DATA0
PTA
ADDR15
ADDR14
ADDR13
ADDR12
ADDR11
ADDR10
ADDR9
ADDR8
DDRB
DATA15
DATA14
DATA13
DATA12
DATA11
DATA10
DATA9
DATA8
Multiplexed
Wide Bus
DDRA
SCI
DDRAD
DDRT
TEST/VPP
Multiplexed Address/Data Bus
PTP
PWM
Module
PW0
PW1
PW2
PW3
PW4
PW5
RXCAN
TXCAN
MISO
SS
MOSI
SCK
DDRP
XIRQ
IRQ
System
R/W
Integration
LSTRB/TAGLO
Module
ECLK
(SIM)
MODA/IPIPE0
MODB/IPIPE1
NOACC/XCLKS
PT0
PT1
PT2
PT3
PT4
PT5
PT6
PT7
PTJ
COP Watchdog
Clock Monitor
Periodic Interrupt
PAD0
PAD1
PAD2
PAD3
PAD4
PAD5
PAD6
PAD7
PM0
PM1
PM2
PM3
PM4
PM5
MUX
DDRJ
Timer
Module
Clock and
Reset
Generation
Module
IOC0
IOC1
IOC2
IOC3
IOC4
IOC5
IOC6
IOC7
DDRS
PE0
PE1
PE2
PE3
PE4
PE5
PE6
PE7
PLL
HCS12
CPU
DDRM
XFC
VDDPLL
VSSPLL
EXTAL
XTAL
RESET
1K, 2K, 4K Byte RAM
Background
MODC
Debug12 Module
VDDA
VSSA
VRH
VRL
AN0
AN1
AN2
AN3
AN4
AN5
AN6
AN7
16K, 32K, 64K, 96K, 128K Byte Flash
DDRE
BKGD
Voltage Regulator
PTE
VDD2
VSS2
VDD1
VSS1
VDDA
VSSA
VRH
VRL
ATD
Key Int Keypad Interrupt
VSSR
VDDR
VDDX
VSSX
Signals shown in Bold are not available on the 52 or 48 Pin Package
Signals shown in Bold Italic are available in the 52, but not the 48 Pin Package
I/O Driver 5V
VDDX
VSSX
A/D Converter 5V
VDDA
VSSA
VRL is bonded internally to VSSA
for 52 and 48 Pin packages
Voltage Regulator 5V & I/O
VDDR
VSSR
27
Device User Guide — 9S12C128DGV1/D V01.11
1.5 Device Memory Map
Table 1-1 shows the device register map of the MC9S12C-Family after reset. The following figures
(Figure 1-2, Figure 1-2, Figure 1-3 and Figure 1-4) illustrate the full device memory map with flash
and RAM.
Table 1-1 Device Register Map Overview
Address
$000 - $017
Module
CORE (Ports A, B, E, Modes, Inits, Test)
24
$018
Reserved
1
$019
Voltage Regulator (VREG)
1
$01A - $01B
Device ID register
2
$01C - $01F
CORE (MEMSIZ, IRQ, HPRIO)
4
$020 - $02F
CORE (DBG)
(PPAGE1)
16
$030 - $033
CORE
$034 - $03F
Clock and Reset Generator (CRG)
$040 - $06F
Standard Timer Module16-bit 8-channels (TIM)
48
$070 - $07F
Reserved
16
4
12
$080 - $09F
Analog to Digital Convert (ATD)
32
$0A0 - $0C7
Reserved
40
$0C8 - $0CF
Serial Communications Interface (SCI)
8
$0D0 - $0D7
Reserved
8
$0D8 - $0DF
Serial Peripheral Interface (SPI)
$0E0 - $0FF
Pulse Width Modulator 8-bit 6 channels (PWM)
$100 - $10F
Flash Control Register
16
$110 - $13F
Reserved
48
$140 - $17F
Motorola Scalable CAN (MSCAN)2
64
$180 - $23F
Reserved
$240 - $27F
Port Integration Module (PIM)
$280 - $3FF
Reserved
NOTES:
1. External memory paging is not supported on this device (6.1.1 PPAGE).
2. Not available on MC9S12GC-Family Devices
28
Size
8
32
192
64
384
Device User Guide — 9S12C128DGV1/D V01.11
$0000
1K Register Space
$03FF
Mappable to any 2K Boundary
PAGE MAP
$0000
$0400
$0000
16K Fixed Flash EEPROM
$3FFF
$3000
$4000
$3D
$3000
4K Bytes RAM
$3FFF
Mappable to any 4K Boundary
$4000
16K Fixed Flash EEPROM
$3E
$7FFF
$8000
$8000
16K Page Window
8 * 16K Flash EEPROM Pages
EXT
PPAGE
$BFFF
$C000
$C000
$FFFF
$FF00
$FF00
$FFFF
VECTORS
VECTORS
VECTORS
NORMAL
SINGLE CHIP
EXPANDED
SPECIAL
SINGLE CHIP
$FFFF
16K Fixed Flash EEPROM
$3F
BDM
(If Active)
The figure shows a useful map, which is not the map out of reset. After reset the map is:
$0000 - $03FF: Register Space
$0000 - $0FFF: 4K RAM (only 3K visible $0400 - $0FFF)
Flash Erase Sector Size is 1024 Bytes
Figure 1-2 MC9S12C128 and MC9S12GC128 User configurable Memory Map
29
Device User Guide — 9S12C128DGV1/D V01.11
$0000
1K Register Space
$03FF
Mappable to any 2K Boundary
PAGE MAP
$0000
$0400
$0000
16K Fixed Flash EEPROM
$3FFF
$3000
$4000
$3D
$3000
4K Bytes RAM
$3FFF
Mappable to any 4K Boundary
$4000
16K Fixed Flash EEPROM
$3E
$7FFF
$8000
$8000
16K Page Window
6 * 16K Flash EEPROM Pages
EXT
PPAGE
$BFFF
$C000
$C000
$FFFF
$FF00
$FF00
$FFFF
VECTORS
VECTORS
VECTORS
NORMAL
SINGLE CHIP
EXPANDED
SPECIAL
SINGLE CHIP
$FFFF
16K Fixed Flash EEPROM
$3F
BDM
(If Active)
The figure shows a useful map, which is not the map out of reset. After reset the map is:
$0000 - $03FF: Register Space
$0000 - $0FFF: 4K RAM (only 3K visible $0400 - $0FFF)
Flash Erase Sector Size is 1024 Bytes
Figure 1-3 MC9S12C96 and MC9S12GC96 User Configurable Memory Map
30
Device User Guide — 9S12C128DGV1/D V01.11
$0000
1K Register Space
$03FF
Mappable to any 2K Boundary
PAGE MAP
$0000
$0400
$0000
16K Fixed Flash EEPROM
$3FFF
$3000
$4000
$3000
4K Bytes RAM
$3FFF
Mappable to any 4K Boundary
$3D
$4000
16K Fixed Flash EEPROM
$3E
$7FFF
$8000
$8000
16K Page Window
4 * 16K Flash EEPROM Pages
EXT
PPAGE
$BFFF
$C000
$C000
$FFFF
$FF00
$FF00
$FFFF
VECTORS
VECTORS
VECTORS
NORMAL
SINGLE CHIP
EXPANDED
SPECIAL
SINGLE CHIP
$FFFF
16K Fixed Flash EEPROM
$3F
BDM
(If Active)
The figure shows a useful map, which is not the map out of reset. After reset the map is:
$0000 - $03FF: Register Space
$0000 - $0FFF: 4K RAM (only 3K visible $0400 - $0FFF)
Flash Erase Sector Size is 1024 Bytes
Figure 1-4 MC9S12C64 and MC9S12GC64 User Configurable Memory Map
31
Device User Guide — 9S12C128DGV1/D V01.11
$0000
1K Register Space
$0000
$0400
$03FF
Mappable to any 2K Boundary
$3800
$3800
2K Bytes RAM
$3FFF
Mappable to any 2K Boundary
PAGE MAP
$4000
$3E
$8000
$8000
16K Page Window
2 * 16K Flash EEPROM Pages
EXT
PPAGE
$BFFF
$C000
$C000
$FFFF
$FF00
$FF00
$FFFF
VECTORS
VECTORS
VECTORS
NORMAL
SINGLE CHIP
EXPANDED
SPECIAL
SINGLE CHIP
$FFFF
16K Fixed Flash EEPROM
$3F
BDM
(If Active)
The figure shows a useful map, which is not the map out of reset. After reset the map is:
$0000 - $03FF: Register Space
$0800 - $0FFF: 2K RAM
Flash Erase Sector Size is 512 Bytes
The flash page $3E is visible at $4000-$7FFF in the memory map if ROMHM=0.
In the figure ROMHM=1 removing page $3E from $4000-$7FFF.
Figure 1-5 MC9S12C32 and MC9S12GC32 User Configurable Memory Map
32
Device User Guide — 9S12C128DGV1/D V01.11
$0000
1K Register Space
$0000
$0400
$03FF
Mappable to any 2K Boundary
$3C00
$3C00
1K Bytes RAM
$3FFF
Mappable to any 2K Boundary
PAGE MAP
$4000
$8000
$8000
16K Page Window
EXT
PPAGE
$BFFF
$C000
$C000
$FFFF
$FF00
$FF00
$FFFF
VECTORS
VECTORS
VECTORS
NORMAL
SINGLE CHIP
EXPANDED
SPECIAL
SINGLE CHIP
$FFFF
16K Fixed Flash EEPROM
$3F
BDM
(If Active)
The figure shows a useful map, which is not the map out of reset. After reset the map is:
$0000 - $03FF: Register Space
$0C00 - $0FFF: 1K RAM
The 16K flash array page $3F is also visible in the PPAGE window when PPAGE register contents are odd.
Flash Erase Sector Size is 512 Bytes
Figure 1-6 MC9S12GC16 User Configurable Memory Map
1.6 Detailed Register Map
The detailed register map of the MC9S12C Family is listed in address order below.
33
Device User Guide — 9S12C128DGV1/D V01.11
$0000 - $000F
Address
Name
$0000
PORTA
$0001
PORTB
$0002
DDRA
$0003
DDRB
$0004
Reserved
$0005
Reserved
$0006
Reserved
$0007
Reserved
$0008
PORTE
$0009
DDRE
$000A
PEAR
$000B
MODE
$000C
PUCR
$000D
RDRIV
$000E
EBICTL
$000F
Reserved
$0010 - $0014
34
Address
Name
$0010
INITRM
$0011
INITRG
Address
Name
MEBI map 1 of 3 (HCS12 Multiplexed External Bus Interface)
Bit 7
Read:
Bit 7
Write:
Read:
Bit 7
Write:
Read:
Bit 7
Write:
Read:
Bit 7
Write:
Read:
0
Write:
Read:
0
Write:
Read:
0
Write:
Read:
0
Write:
Read:
Bit 7
Write:
Read:
Bit 7
Write:
Read:
NOACCE
Write:
Read:
MODC
Write:
Read:
PUPKE
Write:
Read:
RDPK
Write:
Read:
0
Write:
Read:
0
Write:
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
6
5
4
3
2
1
Bit 0
6
5
4
3
2
1
Bit 0
6
5
4
3
2
1
Bit 0
6
5
4
3
2
1
Bit 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
6
5
4
3
2
Bit 1
Bit 0
6
5
4
3
Bit 2
0
0
PIPOE
NECLK
LSTRE
RDWE
0
0
EMK
EME
PUPBE
PUPAE
RDPB
RDPA
0
MODB
MODA
0
0
0
0
0
0
0
0
0
IVIS
0
0
0
0
0
0
0
0
0
0
0
0
0
PUPEE
RDPE
ESTR
0
MMC map 1 of 4 (HCS12 Module Mapping Control)
Bit 7
Read:
RAM15
Write:
Read:
0
Write:
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
RAM14
RAM13
RAM12
RAM11
REG14
REG13
REG12
REG11
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
0
Bit 1
0
Bit 0
0
0
0
Bit 2
Bit 1
Bit 0
RAMHAL
Device User Guide — 9S12C128DGV1/D V01.11
$0010 - $0014
Address
MMC map 1 of 4 (HCS12 Module Mapping Control)
Name
$0012
INITEE
$0013
MISC
$0014
Reserved
Read:
Write:
Read:
Write:
Read:
Write:
$0015 - $0016
Address
Name
$0015
ITCR
$0016
ITEST
$0017
Read:
Write:
Read:
Write:
Read:
Write:
$0018 - $0018
Address
$0018
Read:
Write:
$0019 - $0019
Address
$0019
Read:
Write:
$001A - $001B
Address
Name
$001A
PARTIDH
$001B
PARTIDL
Bit 3
Bit 2
0
Bit 1
0
EE15
EE14
EE13
EE12
EE11
0
0
0
0
0
0
0
0
Bit 0
EXSTR1
EXSTR0
ROMHM
ROMON
0
0
0
0
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
WRINT
ADR3
ADR2
ADR1
ADR0
INT8
INT6
INT4
INT2
INT0
EEON
Bit 7
0
Bit 6
0
Bit 5
0
INTE
INTC
INTA
Bit 7
0
Bit 6
0
Bit 5
0
Bit 4
0
Bit 3
0
Bit 2
0
Bit 1
0
Bit 0
0
Bit 7
0
Bit 6
0
Bit 5
0
Bit 4
0
Bit 3
0
Bit 2
0
Bit 1
0
Bit 0
0
Bit 3
0
Bit 2
LVDS
Bit 1
Bit 0
LVIE
LVIF
VREG3V3 (Voltage Regulator)
Name
VREGCTRL
Bit 4
Miscellaneous Peripherals (Device User Guide)
Name
Reserved
Bit 5
MMC map 2 of 4 (HCS12 Module Mapping Control)
Name
Reserved
Bit 6
INT map 1 of 2 (HCS12 Interrupt)
$0017 - $0017
Address
Bit 7
Bit 7
0
Bit 6
0
Bit 5
0
Bit 4
0
Miscellaneous Peripherals (Device User Guide)
Read:
Write:
Read:
Write:
Bit 7
ID15
Bit 6
ID14
Bit 5
ID13
Bit 4
ID12
Bit 3
ID11
Bit 2
ID10
Bit 1
ID9
Bit 0
ID8
ID7
ID6
ID5
ID4
ID3
ID2
ID1
ID0
35
Device User Guide — 9S12C128DGV1/D V01.11
$001C - $001D
Address
Name
$001C
MEMSIZ0
$001D
MEMSIZ1
MMC map 3 of 4 (HCS12 Module Mapping Control,
Device User Guide)
Bit 7
Read: reg_sw0
Write:
Read: rom_sw1
Write:
$001E - $001E
Address
$001E
Read:
Write:
$001F - $001F
Address
$001F
Read:
Write:
$0020 - $002F
Address
$0020
$0021
$0022
$0023
$0024
$0025
$0026
$0027
$0028
$0029
$002A
$002B
36
Name
DBGC1
-
DBGSC
DBGTBH
DBGTBL
DBGCNT
DBGCCX
DBGCCH
DBGCCL
-
DBGC2
BKPCT0
DBGC3
BKPCT1
DBGCAX
BKP0X
DBGCAH
BKP0H
Bit 4
eep_sw0
Bit 3
0
Bit 2
ram_sw2
Bit 1
ram_sw1
Bit 0
ram_sw0
rom_sw0
0
0
0
0
pag_sw1
pag_sw0
Bit 7
Bit 6
IRQE
IRQEN
Bit 5
0
Bit 4
0
Bit 3
0
Bit 2
0
Bit 1
0
Bit 0
0
Bit 0
INT map 2 of 2 (HCS12 Interrupt)
Name
HPRIO
Bit 5
eep_sw1
MEBI map 2 of 3 (HCS12 Multiplexed External Bus Interface)
Name
INTCR
Bit 6
0
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
PSEL7
PSEL6
PSEL5
PSEL4
PSEL3
PSEL2
PSEL1
0
DBG (including BKP) map 1 of 1 (HCS12 Debug)
Bit 7
read
DBGEN
write
AF
read
write
read Bit 15
write
read
write
read
write
read
write
read
write
read
write
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
0
DBGBRK
ARM
TRGSEL
BEGIN
CAPMOD
BF
CF
0
Bit 14
Bit 13
Bit 12
Bit 11
Bit 10
Bit 9
Bit 8
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
TBF
0
TRG
CNT
PAGSEL
EXTCMP
Bit 15
14
13
12
11
10
9
Bit 8
Bit 7
6
5
4
3
2
1
Bit 0
RWCEN
RWC
RWBEN
RWB
9
Bit 8
read
BKABEN
FULL
BDM
TAGAB BKCEN
TAGC
write
read
BKAMBH BKAMBL BKBMBH BKBMBL RWAEN
RWA
write
read
PAGSEL
EXTCMP
write
read
write
Bit 0
Bit 15
14
13
12
11
10
Device User Guide — 9S12C128DGV1/D V01.11
$0020 - $002F
Address
$002C
$002D
$002E
$002F
DBG (including BKP) map 1 of 1 (HCS12 Debug)
Name
DBGCAL
BKP0L
DBGCBX
BKP1X
DBGCBH
BKP1H
DBGCBL
BKP1L
read
write
read
write
read
write
read
write
$0030 - $0031
Address
PPAGE
$0031
Reserved
Read:
Write:
Read:
Write:
$0032 - $0033
Address
PORTK1
$0033
DDRK(1)
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Bit 7
6
5
4
3
2
1
Bit 0
PAGSEL
EXTCMP
Bit 15
14
13
12
11
10
9
Bit 8
Bit 7
6
5
4
3
2
1
Bit 0
Bit 7
0
Bit 6
0
0
0
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
PIX5
PIX4
PIX3
PIX2
PIX1
PIX0
0
0
0
0
0
0
MEBI map 3 of 3 (HCS12 Multiplexed External Bus Interface)
Name
$0032
Bit 6
MMC map 4 of 4 (HCS12 Module Mapping Control)
Name
$0030
Bit 7
Read:
Write:
Read:
Write:
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Bit 7
6
5
4
3
2
1
Bit 0
Bit 7
6
5
4
3
2
1
Bit 0
NOTES:
1. Only applicable in special emulation-only bond outs, for emulation of extended memory map.
$0034 - $003F
Address
Name
$0034
SYNR
$0035
REFDV
$0036
CTFLG
TEST ONLY
$0037
CRGFLG
$0038
CRGINT
$0039
CLKSEL
$003A
PLLCTL
CRG (Clock and Reset Generator)
Bit 7
Read:
0
Write:
Read:
0
Write:
Read: TOUT7
Write:
Read:
RTIF
Write:
Read:
RTIE
Write:
Read:
PLLSEL
Write:
Read:
CME
Write:
Bit 6
0
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
SYN5
SYN4
SYN3
SYN2
SYN1
SYN0
0
0
0
REFDV3
REFDV2
REFDV1
REFDV0
TOUT6
TOUT5
TOUT4
TOUT3
TOUT2
TOUT1
TOUT0
LOCK
TRACK
0
0
PLLWAI
CWAI
RTIWAI
COPWAI
PRE
PCE
SCME
PROF
0
LOCKIF
0
0
PSTP
SYSWAI
ROAWAI
PLLON
AUTO
ACQ
LOCKIE
0
SCMIF
SCMIE
SCM
0
37
Device User Guide — 9S12C128DGV1/D V01.11
$0034 - $003F
Address
Name
$003B
RTICTL
$003C
COPCTL
$003D
$003E
$003F
FORBYP
TEST ONLY
CTCTL
TEST ONLY
ARMCOP
CRG (Clock and Reset Generator)
Bit 7
Read:
0
Write:
Read:
WCOP
Write:
Read:
RTIBYP
Write:
Read: TCTL7
Write:
Read:
0
Write:
Bit 7
$0040 - $006F
Address
38
TIOS
$0041
CFORC
$0042
OC7M
$0043
OC7D
$0044
TCNT (hi)
$0045
TCNT (lo)
$0046
TSCR1
$0047
TTOV
$0048
TCTL1
$0049
TCTL2
$004A
TCTL3
$004B
TCTL4
$004C
TIE
$004D
TSCR2
$004E
TFLG1
$004F
TFLG2
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
RTR6
RTR5
RTR4
RTR3
RTR2
RTR1
RTR0
0
0
0
CR2
CR1
CR0
RSBCK
COPBYP
0
PLLBYP
0
0
FCM
0
TCTL6
TCTL5
TCTL4
TCLT3
TCTL2
TCTL1
TCTL0
0
6
0
5
0
4
0
3
0
2
0
1
0
Bit 0
TIM (Timer 16 Bit 8 Channels)
Name
$0040
Bit 6
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
IOS7
IOS6
IOS5
IOS4
IOS3
IOS2
IOS1
IOS0
0
FOC7
0
FOC6
0
FOC5
0
FOC4
0
FOC3
0
FOC2
0
FOC1
0
FOC0
OC7M7
OC7M6
OC7M5
OC7M4
OC7M3
OC7M2
OC7M1
OC7M0
OC7D7
OC7D6
OC7D5
OC7D4
OC7D3
OC7D2
OC7D1
OC7D0
Bit 15
14
13
12
11
10
9
Bit 8
Bit 7
6
5
4
3
2
1
Bit 0
TEN
TSWAI
TSFRZ
TFFCA
0
0
0
0
TOV7
TOV6
TOV5
TOV4
TOV3
TOV2
TOV1
TOV0
OM7
OL7
OM6
OL6
OM5
OL5
OM4
OL4
OM3
OL3
OM2
OL2
OM1
OL1
OM0
OL0
EDG7B
EDG7A
EDG6B
EDG6A
EDG5B
EDG5A
EDG4B
EDG4A
EDG3B
EDG3A
EDG2B
EDG2A
EDG1B
EDG1A
EDG0B
EDG0A
C7I
C6I
C5I
C4I
C3I
C2I
C1I
C0I
0
0
0
TCRE
PR2
PR1
PR0
C6F
C5F
C4F
C3F
C2F
C1F
C0F
0
0
0
0
0
0
0
TOI
C7F
TOF
Device User Guide — 9S12C128DGV1/D V01.11
Address
Name
$0050
TC0 (hi)
$0051
TC0 (lo)
$0052
TC1 (hi)
$0053
TC1 (lo)
$0054
TC2 (hi)
$0055
TC2 (lo)
$0056
TC3 (hi)
$0057
TC3 (lo)
$0058
TC4 (hi)
$0059
TC4 (lo)
$005A
TC5 (hi)
$005B
TC5 (lo)
$005C
TC6 (hi)
$005D
TC6 (lo)
$005E
TC7 (hi)
$005F
TC7 (lo)
$0060
PACTL
$0061
PAFLG
$0062
PACNT (hi)
$0063
PACNT (lo)
$0064
Reserved
$0065
Reserved
$0066
Reserved
$0067
Reserved
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Bit 15
14
13
12
11
10
9
Bit 8
Bit 7
6
5
4
3
2
1
Bit 0
Bit 15
14
13
12
11
10
9
Bit 8
Bit 7
6
5
4
3
2
1
Bit 0
Bit 15
14
13
12
11
10
9
Bit 8
Bit 7
6
5
4
3
2
1
Bit 0
Bit 15
14
13
12
11
10
9
Bit 8
Bit 7
6
5
4
3
2
1
Bit 0
Bit 15
14
13
12
11
10
9
Bit 8
Bit 7
6
5
4
3
2
1
Bit 0
Bit 15
14
13
12
11
10
9
Bit 8
Bit 7
6
5
4
3
2
1
Bit 0
Bit 15
14
13
12
11
10
9
Bit 8
Bit 7
6
5
4
3
2
1
Bit 0
Bit 15
14
13
12
11
10
9
Bit 8
Bit 7
6
5
4
3
2
1
Bit 0
PAEN
PAMOD
PEDGE
CLK1
CLK0
PAOVI
PAI
0
0
0
0
0
0
PAOVF
PAIF
Bit 15
14
13
12
11
10
9
Bit 8
Bit 7
6
5
4
3
2
1
Bit 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
39
Device User Guide — 9S12C128DGV1/D V01.11
Address
Name
$0068
Reserved
$0069
Reserved
$006A
Reserved
$006B
Reserved
$006C
Reserved
$006D
Reserved
$006E
Reserved
$006F
Reserved
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
$0070 - $007F
$0070
- $007F
Reserved
40
ATDCTL0
$0081
ATDCTL1
$0082
ATDCTL2
$0083
ATDCTL3
$0084
ATDCTL4
$0085
ATDCTL5
$0086
ATDSTAT0
$0087
Reserved
$0088
ATDTEST0
$0089
ATDTEST1
$008A
Reserved
Bit 5
0
Bit 4
0
Bit 3
0
Bit 2
0
Bit 1
0
Bit 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
ATD (Analog to Digital Converter 10 Bit 8 Channel)
Name
$0080
Bit 6
0
Reserved
Read:
Write:
$0080 - $009F
Address
Bit 7
0
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Bit 7
0
Bit 6
0
Bit 5
0
Bit 4
0
Bit 3
0
Bit 2
0
Bit 1
0
Bit 0
0
0
0
0
0
0
0
0
0
ADPU
AFFC
AWAI
ETRIGLE
ETRIGP
ETRIG
ASCIE
S8C
S4C
S2C
S1C
FIFO
FRZ1
FRZ0
SRES8
SMP1
SMP0
PRS4
PRS3
PRS2
PRS1
PRS0
DJM
DSGN
SCAN
MULT
CC
CB
CA
ETORF
FIFOR
0
CC2
CC1
CC0
0
SCF
0
0
ASCIF
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
SC
0
Device User Guide — 9S12C128DGV1/D V01.11
$0080 - $009F
Address
ATD (Analog to Digital Converter 10 Bit 8 Channel)
Name
$008B
ATDSTAT1
$008C
Reserved
$008D
ATDDIEN
$008E
Reserved
$008F
PORTAD
$0090
ATDDR0H
$0091
ATDDR0L
$0092
ATDDR1H
$0093
ATDDR1L
$0094
ATDDR2H
$0095
ATDDR2L
$0096
ATDDR3H
$0097
ATDDR3L
$0098
ATDDR4H
$0099
ATDDR4L
$009A
ATDDR5H
$009B
ATDDR5L
$009C
ATDDR6H
$009D
ATDDR6L
$009E
ATDDR7H
$009F
ATDDR7L
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
$00A0 - $00C7
$00A0
- $00C7
Reserved
Bit 7
CCF7
Bit 6
CCF6
Bit 5
CCF5
Bit 4
CCF4
Bit 3
CCF3
Bit 2
CCF2
Bit 1
CCF1
Bit 0
CCF0
0
0
0
0
0
0
0
0
Bit 7
6
5
4
3
2
1
Bit 0
0
0
0
0
0
0
0
0
Bit7
6
5
4
3
2
1
BIT 0
Bit15
14
13
12
11
10
9
Bit8
Bit7
Bit6
0
0
0
0
0
0
Bit15
14
13
12
11
10
9
Bit8
Bit7
Bit6
0
0
0
0
0
0
Bit15
14
13
12
11
10
9
Bit8
Bit7
Bit6
0
0
0
0
0
0
Bit15
14
13
12
11
10
9
Bit8
Bit7
Bit6
0
0
0
0
0
0
Bit15
14
13
12
11
10
9
Bit8
Bit7
Bit6
0
0
0
0
0
0
Bit15
14
13
12
11
10
9
Bit8
Bit7
Bit6
0
0
0
0
0
0
Bit15
14
13
12
11
10
9
Bit8
Bit7
Bit6
0
0
0
0
0
0
Bit15
14
13
12
11
10
9
Bit8
Bit7
Bit6
0
0
0
0
0
0
0
0
0
0
0
0
Reserved
Read:
Write:
0
0
41
Device User Guide — 9S12C128DGV1/D V01.11
$00C8 - $00CF
Address
Name
$00C8
SCIBDH
$00C9
SCIBDL
$00CA
SCICR1
$00CB
SCICR2
$00CC
SCISR1
$00CD
SCISR2
$00CE
SCIDRH
$00CF
SCIDRL
SCI (Asynchronous Serial Interface)
Bit 7
0
Read:
Write:
Read:
SBR7
Write:
Read:
LOOPS
Write:
Read:
TIE
Write:
Read: TDRE
Write:
Read:
0
Write:
Read:
R8
Write:
Read:
R7
Write:
T7
$00D0 - $00D7
$00D0
- $00D7
Reserved
42
Name
$00D8
SPICR1
$00D9
SPICR2
$00DA
SPIBR
$00DB
SPISR
$00DC
Reserved
$00DD
SPIDR
$00DE
Reserved
$00DF
Reserved
Bit 5
0
0
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
SBR12
SBR11
SBR10
SBR9
SBR8
SBR6
SBR5
SBR4
SBR3
SBR2
SBR1
SBR0
SCISWAI
RSRC
M
WAKE
ILT
PE
PT
TCIE
RIE
ILIE
TE
RE
RWU
SBK
TC
RDRF
IDLE
OR
NF
FE
PF
0
0
0
0
BRK13
TXDIR
0
0
0
0
0
0
R6
T6
R5
T5
R4
T4
R3
T3
R2
T2
R1
T1
R0
T0
0
0
0
0
0
0
0
T8
RAF
Reserved
Read:
Write:
$00D8 - $00DF
Address
Bit 6
0
SPI (Serial Peripheral Interface)
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
SPIE
SPE
SPTIE
MSTR
CPOL
CPHA
SSOE
LSBFE
0
0
0
SPISWAI
SPC0
SPPR2
SPPR1
SPPR0
SPR2
SPR1
SPR0
SPIF
0
SPTEF
MODF
0
0
0
0
0
0
0
0
0
0
0
0
Bit7
6
5
4
3
2
1
Bit0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
MODFEN BIDIROE
0
0
Device User Guide — 9S12C128DGV1/D V01.11
$00E0 - $00FF
Address
PWM (Pulse Width Modulator)
Name
$00E0
PWME
$00E1
PWMPOL
$00E2
PWMCLK
$00E3
PWMPRCLK
$00E4
PWMCAE
$00E5
PWMCTL
$00E6
PWMTST
Test Only
$00E7
PWMPRSC
$00E8
PWMSCLA
$00E9
PWMSCLB
$00EA
PWMSCNTA
$00EB
PWMSCNTB
$00EC
PWMCNT0
$00ED
PWMCNT1
$00EE
PWMCNT2
$00EF
PWMCNT3
$00F0
PWMCNT4
$00F1
PWMCNT5
$00F2
PWMPER0
$00F3
PWMPER1
$00F4
PWMPER2
$00F5
PWMPER3
$00F6
PWMPER4
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Bit 7
0
Bit 6
0
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
PWME5
PWME4
PWME3
PWME2
PWME1
PWME0
0
0
PPOL5
PPOL4
PPOL3
PPOL2
PPOL1
PPOL0
0
0
PCLK5
PCLK4
PCLK3
PCLK2
PCLK1
PCLK0
PCKB1
PCKB0
PCKA2
PCKA1
PCKA0
CAE5
CAE4
CAE3
CAE2
CAE1
CAE0
CON45
CON23
CON01
PSWAI
PFRZ
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Bit 7
6
5
4
3
2
1
Bit 0
Bit 7
6
5
4
3
2
1
Bit 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Bit 7
0
Bit 7
0
Bit 7
0
Bit 7
0
Bit 7
0
Bit 7
0
6
0
6
0
6
0
6
0
6
0
6
0
5
0
5
0
5
0
5
0
5
0
5
0
4
0
4
0
4
0
4
0
4
0
4
0
3
0
3
0
3
0
3
0
3
0
3
0
2
0
2
0
2
0
2
0
2
0
2
0
1
0
1
0
1
0
1
0
1
0
1
0
Bit 0
0
Bit 0
0
Bit 0
0
Bit 0
0
Bit 0
0
Bit 0
0
Bit 7
6
5
4
3
2
1
Bit 0
Bit 7
6
5
4
3
2
1
Bit 0
Bit 7
6
5
4
3
2
1
Bit 0
Bit 7
6
5
4
3
2
1
Bit 0
Bit 7
6
5
4
3
2
1
Bit 0
0
0
0
PCKB2
0
0
43
Device User Guide — 9S12C128DGV1/D V01.11
Address
Name
$00F7
PWMPER5
$00F8
PWMDTY0
$00F9
PWMDTY1
$00FA
PWMDTY2
$00FB
PWMDTY3
$00FC
PWMDTY4
$00FD
PWMDTY5
$00FE
Reserved
$00FF
Reserved
$0100 - $010F
Address
Name
$0100
FCLKDIV
$0101
FSEC
$0102
FTSTMOD
$0103
FCNFG
$0104
FPROT
$0105
FSTAT
$0106
FCMD
$0107
$0108
$0109
$010A
$010B
44
Reserved for
Factory Test
Reserved for
Factory Test
Reserved for
Factory Test
Reserved for
Factory Test
Reserved for
Factory Test
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Bit 7
6
5
4
3
2
1
Bit 0
Bit 7
6
5
4
3
2
1
Bit 0
Bit 7
6
5
4
3
2
1
Bit 0
Bit 7
6
5
4
3
2
1
Bit 0
Bit 7
6
5
4
3
2
1
Bit 0
Bit 7
6
5
4
3
2
1
Bit 0
Bit 7
6
5
4
3
2
1
Bit 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Flash Control Register
Bit 7
Read: FDIVLD
Write:
Read: KEYEN1
Write:
Read:
0
Write:
Read:
CBEIE
Write:
Read:
FPOPEN
Write:
Read:
CBEIF
Write:
Read:
0
Write:
Read:
0
Write:
Read:
0
Write:
Read:
0
Write:
Read:
0
Write:
Read:
0
Write:
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
PRDIV8
FDIV5
FDIV4
FDIV3
FDIV2
FDIV1
FDIV0
KEYEN0
NV5
NV4
NV3
NV2
SEC1
SEC0
0
0
WRALL
0
0
0
CCIE
KEYACC
0
0
0
NV6
FPHDIS
FPHS1
FPHS0
FPLDIS
PVIOL
ACCERR
CCIF
0
BLANK
0
BKSEL1
BKSEL0
FPLS1
FPLS0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
CMDB6
CMDB5
0
CMDB2
0
CMDB0
Device User Guide — 9S12C128DGV1/D V01.11
$0100 - $010F
Address
Flash Control Register
Name
$010C
Reserved
$010D
Reserved
$010E
Reserved
$010F
Reserved
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
$0110 - $013F
$0110
- $003F
Reserved
Name
$0140
CANCTL0
$0141
CANCTL1
$0142
CANBTR0
$0143
CANBTR1
$0144
CANRFLG
$0145
CANRIER
$0146
CANTFLG
$0147
CANTIER
$0148
CANTARQ
$0149
CANTAAK
$014A
CANTBSEL
$014B
CANIDAC
$014C
Reserved
$014D
Reserved
Bit 6
0
Bit 5
0
Bit 4
0
Bit 3
0
Bit 2
0
Bit 1
0
Bit 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Bit 3
Bit 2
Bit 1
Bit 0
TIME
WUPE
SLPRQ
INITRQ
SLPAK
INITAK
Reserved
Read:
Write:
0
CAN (Motorola Scalable CAN - MSCAN)1
$0140 - $017F
Address
Bit 7
0
Bit 7
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
RXFRM
Bit 6
RXACT
Bit 5
CSWAI
Bit 4
SYNCH
0
CANE
CLKSRC
LOOPB
LISTEN
WUPM
SJW1
SJW0
BRP5
BRP4
BRP3
BRP2
BRP1
BRP0
SAMP
TSEG22
TSEG21
TSEG20
TSEG13
TSEG12
TSEG11
TSEG10
WUPIF
CSCIF
RSTAT1
RSTAT0
TSTAT1
TSTAT0
OVRIF
RXF
WUPIE
CSCIE
OVRIE
RXFIE
0
0
0
0
0
TXE2
TXE1
TXE0
0
0
0
0
0
TXEIE2
TXEIE1
TXEIE0
0
0
0
0
0
ABTRQ2
ABTRQ1
ABTRQ0
0
0
0
0
0
ABTAK2
ABTAK1
ABTAK0
0
0
0
0
0
TX2
TX1
TX0
0
0
IDAM1
IDAM0
0
IDHIT2
IDHIT1
IDHIT0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
RSTATE1 RSTATE0 TSTATE1 TSTATE0
45
Device User Guide — 9S12C128DGV1/D V01.11
CAN (Motorola Scalable CAN - MSCAN)1
$0140 - $017F
Address
Name
$014E
CANRXERR
$014F
CANTXERR
$0150 $0153
$0154 $0157
$0158 $015B
$015C $015F
$0160 $016F
$0170 $017F
CANIDAR0 CANIDAR3
CANIDMR0 CANIDMR3
CANIDAR4 CANIDAR7
CANIDMR4 CANIDMR7
CANRXFG
CANTXFG
Bit 7
Read: RXERR7
Write:
Read: TXERR7
Write:
Read:
AC7
Write:
Read:
AM7
Write:
Read:
AC7
Write:
Read:
AM7
Write:
Read:
Write:
Read:
Write:
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
RXERR6
RXERR5
RXERR4
RXERR3
RXERR2
RXERR1
RXERR0
TXERR6
TXERR5
TXERR4
TXERR3
TXERR2
TXERR1
TXERR0
AC6
AC5
AC4
AC3
AC2
AC1
AC0
AM6
AM5
AM4
AM3
AM2
AM1
AM0
AC6
AC5
AC4
AC3
AC2
AC1
AC0
AM6
AM5
AM4
AM3
AM2
AM1
AM0
FOREGROUND RECEIVE BUFFER see Table 1-2
FOREGROUND TRANSMIT BUFFER see Table 1-2
NOTES:
1. Not available on the MC9S12GC-Family members. Those memory locations should not be accessed.
Table 1-2 Detailed MSCAN Foreground Receive and Transmit Buffer Layout
Address
$xxx0
$xxx1
$xxx2
$xxx3
$xxx4$xxxB
$xxxC
$xxxD
$xxxE
$xxxF
$xx10
46
Name
Extended ID
Standard ID
CANxRIDR0
Extended ID
Standard ID
CANxRIDR1
Extended ID
Standard ID
CANxRIDR2
Extended ID
Standard ID
CANxRIDR3
CANxRDSR0 CANxRDSR7
Read:
Read:
Write:
Read:
Read:
Write:
Read:
Read:
Write:
Read:
Read:
Write:
Read:
Write:
Read:
CANRxDLR
Write:
Read:
Reserved
Write:
Read:
CANxRTSRH
Write:
Read:
CANxRTSRL
Write:
Extended ID Read:
CANxTIDR0 Write:
Standard ID Read:
Write:
Bit 7
ID28
ID10
Bit 6
ID27
ID9
Bit 5
ID26
ID8
Bit 4
ID25
ID7
Bit 3
ID24
ID6
Bit 2
ID23
ID5
Bit 1
ID22
ID4
Bit 0
ID21
ID3
ID20
ID2
ID19
ID1
ID18
ID0
SRR=1
RTR
IDE=1
IDE=0
ID17
ID16
ID15
ID14
ID13
ID12
ID11
ID10
ID9
ID8
ID7
ID6
ID5
ID4
ID3
ID2
ID1
ID0
RTR
DB7
DB6
DB5
DB4
DB3
DB2
DB1
DB0
DLC3
DLC2
DLC1
DLC0
TSR15
TSR14
TSR13
TSR12
TSR11
TSR10
TSR9
TSR8
TSR7
TSR6
TSR5
TSR4
TSR3
TSR2
TSR1
TSR0
ID28
ID27
ID26
ID25
ID24
ID23
ID22
ID21
ID10
ID9
ID8
ID7
ID6
ID5
ID4
ID3
Device User Guide — 9S12C128DGV1/D V01.11
Address
$xx11
$xx12
$xx13
Name
Extended ID
CANxTIDR1
Standard ID
Extended ID
CANxTIDR2
Standard ID
Extended ID
CANxTIDR3
Standard ID
$xx14$xx1B
CANxTDSR0 CANxTDSR7
$xx1C
CANxTDLR
$xx1D
CONxTTBPR
$xx1E
CANxTTSRH
$xx1F
CANxTTSRL
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
$0180 - $023F
$0180
- $023F
Reserved
PTT
$0241
PTIT
$0242
DDRT
$0243
RDRT
$0244
PERT
$0245
PPST
$0246
Reserved
$0247
MODRR
$0248
PTS
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
ID20
ID19
ID18
SRR=1
IDE=1
ID17
ID16
ID15
ID2
ID1
ID0
RTR
IDE=0
ID14
ID13
ID12
ID11
ID10
ID9
ID8
ID7
ID6
ID5
ID4
ID3
ID2
ID1
ID0
RTR
DB7
DB6
DB5
DB4
DB3
DB2
DB1
DB0
DLC3
DLC2
DLC1
DLC0
PRIO7
PRIO6
PRIO5
PRIO4
PRIO3
PRIO2
PRIO1
PRIO0
TSR15
TSR14
TSR13
TSR12
TSR11
TSR10
TSR9
TSR8
TSR7
TSR6
TSR5
TSR4
TSR3
TSR2
TSR1
TSR0
0
0
0
0
0
0
Reserved
Read:
Write:
$0240 - $027F
$0240
Bit 7
0
0
PIM (Port Interface Module)
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
PTT7
PTT6
PTT5
PTT4
PTT3
PTT2
PTT1
PTT0
PTIT7
PTIT6
PTIT5
PTIT4
PTIT3
PTIT2
PTIT1
PTIT0
DDRT7
DDRT7
DDRT5
DDRT4
DDRT3
DDRT2
DDRT1
DDRT0
RDRT7
RDRT6
RDRT5
RDRT4
RDRT3
RDRT2
RDRT1
RDRT0
PERT7
PERT6
PERT5
PERT4
PERT3
PERT2
PERT1
PERT0
PPST7
PPST6
PPST5
PPST4
PPST3
PPST2
PPST1
PPST0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
MODRR4 MODRR3 MODRR2 MODRR1 MODRR0
0
PTS3
PTS2
PTS1
PTS0
47
Device User Guide — 9S12C128DGV1/D V01.11
48
$0249
PTIS
$024A
DDRS
$024B
RDRS
$024C
PERS
$024D
PPSS
$024E
WOMS
$024F
Reserved
$0250
PTM
$0251
PTIM
$0252
DDRM
$0253
RDRM
$0254
PERM
$0255
PPSM
$0256
WOMM
$0257
Reserved
$0258
PTP
$0259
PTIP
$025A
DDRP
$025B
RDRP
$025C
PERP
$025D
PPSP
$025E
PIEP
$025F
PIFP
$0260
Reserved
Read:
0
Write:
Read:
0
Write:
Read:
0
Write:
Read:
0
Write:
Read:
0
Write:
Read:
0
Write:
Read:
0
Write:
Read:
0
Write:
Read:
0
Write:
Read:
0
Write:
Read:
0
Write:
Read:
0
Write:
Read:
0
Write:
Read:
0
Write:
Read:
0
Write:
Read:
PTP7
Write:
Read: PTIP7
Write:
Read:
DDRP7
Write:
Read:
RDRP7
Write:
Read:
PERP7
Write:
Read:
PPSP7
Write:
Read:
PIEP7
Write:
Read:
PIFP7
Write:
Read:
0
Write:
0
0
0
PTIS3
PTIS2
PTIS1
PTIS0
0
0
0
DDRS3
DDRS2
DDRS1
DDRS0
0
0
0
RDRS3
RDRS2
RDRS1
RDRS0
0
0
0
PERS3
PERS2
PERS1
PERS0
0
0
0
PPSS3
PPSS2
PPSS1
PPSS0
0
0
0
WOMS3
WOMS2
WOMS1
WOMS0
0
0
0
0
0
0
0
PTM5
PTM4
PTM3
PTM2
PTM1
PTM0
PTIM5
PTIM4
PTIM3
PTIM2
PTIM1
PTIM0
DDRM5
DDRM4
DDRM3
DDRM2
DDRM1
DDRM0
RDRM5
RDRM4
RDRM3
RDRM2
RDRM1
RDRM0
PERM5
PERM4
PERM3
PERM2
PERM1
PERM0
PPSM5
PPSM4
PPSM3
PPSM2
PPSM1
PPSM0
WOMM5
WOMM4
WOMM3
WOMM2
WOMM1
WOMM0
0
0
0
0
0
0
0
PTP6
PTP5
PTP4
PTP3
PTP2
PTP1
PTP0
PTIP6
PTIP5
PTIP4
PTIP3
PTIP2
PTIP1
PTIP0
DDRP7
DDRP5
DDRP4
DDRP3
DDRP2
DDRP1
DDRP0
RDRP6
RDRP5
RDRP4
RDRP3
RDRP2
RDRP1
RDRP0
PERP6
PERP5
PERP4
PERP3
PERP2
PERP1
PERP0
PPSP6
PPSP5
PPSP4
PPSP3
PPSP2
PPSP1
PPSS0
PIEP6
PIEP5
PIEP4
PIEP3
PIEP2
PIEP1
PIEP0
PIFP6
PIFP5
PIFP4
PIFP3
PIFP2
PIFP1
PIFP0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Device User Guide — 9S12C128DGV1/D V01.11
$0261
Reserved
$0262
Reserved
$0263
Reserved
$0264
Reserved
$0265
Reserved
$0266
Reserved
$0267
Reserved
$0268
PTJ
$0269
PTIJ
$026A
DDRJ
$026B
RDRJ
$026C
PERJ
$026D
PPSJ
$026E
PIEJ
$026F
PIFJ
$0270
PTAD
$0271
PTIAD
$0272
DDRAD
$0273
RDRAD
$0274
PERAD
$0275
PPSAD
$0276$027F
Reserved
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
PTJ7
PTJ6
0
0
0
0
0
0
PTIJ7
PTIJ6
0
0
0
0
0
0
DDRJ7
DDRJ7
0
0
0
0
0
0
RDRJ7
RDRJ6
0
0
0
0
0
0
PERJ7
PERJ6
0
0
0
0
0
0
PPSJ7
PPSJ6
0
0
0
0
0
0
PIEJ7
PIEJ6
0
0
0
0
0
0
PIFJ7
PIFJ6
0
0
0
0
0
0
PTAD7
PTAD6
PTAD5
PTAD4
PTAD3
PTAD2
PTAD1
PTAD0
PTIAD7
PTIAD6
PTIAD5
PTIAD4
PTIAD3
PTIAD2
PTIAD1
PTIJ7
DDRAD7 DDRAD6 DDRAD5 DDRAD4 DDRAD3 DDRAD2 DDRAD1 DDRAD0
RDRAD7 RDRAD6 RDRAD5 RDRAD4 RDRAD3 RDRAD2 RDRAD1 RDRAD0
Read:
PERAD7 PERAD6 PERAD5 PERAD4 PERAD3 PERAD2 PERAD1 PERAD0
Write:
Read:
PPSAD7 PPSAD6 PPSAD5 PPSAD4 PPSAD3 PPSAD2 PPSAD1 PPSAD0
Write:
Read:
0
0
0
0
0
0
0
0
Write:
49
Device User Guide — 9S12C128DGV1/D V01.11
$0280 - $03FF
Reserved space
Address
Name
Read:
$0280
Reserved
- $2FF
Write:
Read:
$0300 Unimplemented
$03FF
Write:
Bit 7
0
Bit 6
0
Bit 5
0
Bit 4
0
Bit 3
0
Bit 2
0
Bit 1
0
Bit 0
0
0
0
0
0
0
0
0
0
1.7 Part ID Assignments
The part ID is located in two 8-bit registers PARTIDH and PARTIDL (addresses $001A and $001B after
reset). The read-only value is a unique part ID for each revision of the chip. Table 1-3 shows the assigned
part ID numbers for production mask sets.
Table 1-3 Assigned Part ID Numbers
Device
Mask Set Number
MC9S12C32
MC9S12C32
MC9S12C32
MC9S12C64
MC9S12C96
MC9S12C128
MC9S12GC16
MC9S12GC32
MC9S12GC32
MC9S12GC64
MC9S12GC96
MC9S12GC128
1L45J
2L45J
0M34C
2L09S
2L09S
2L09S
2L45J
2L45J
0M34C
2L09S
2L09S
2L09S
Part ID1
$3300
$3302
$3310
$3102
$3102
$3102
$3302
$3302
$3310
$3102
$3102
$3102
NOTES:
1. The coding is as follows:
Bit 15-12: Major family identifier
Bit 11-8: Minor family identifier
Bit 7-4: Major mask set revision number including FAB transfers
Bit 3-0: Minor - non full - mask set revision
The device memory sizes are located in two 8-bit registers MEMSIZ0 and MEMSIZ1 (addresses $001C
and $001D after reset). Table 1-4 shows the read-only values of these registers. Refer to Module Mapping
and Control (MMC) Block Guide for further details.
Table 1-4 Memory size registers
Device
MC9S12GC16
50
Register name
MEMSIZ0
MEMSIZ1
Value
$00
$80
Device User Guide — 9S12C128DGV1/D V01.11
Table 1-4 Memory size registers
Device
MC9S12C32, MC9S12GC32
MC9S12C64, MC9S12GC64
MC9S12C96,MC9S12GC96
MC9S12C128, MC9S12GC128
Register name
MEMSIZ0
MEMSIZ1
MEMSIZ0
MEMSIZ1
MEMSIZ0
MEMSIZ1
MEMSIZ0
MEMSIZ1
Value
$00
$80
$01
$C0
$01
$C0
$01
$C0
51
Device User Guide — 9S12C128DGV1/D V01.11
Section 2 Signal Description
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
MC9S12C-Family
MC9S12GC-Family
60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44
43
42
41
VRH
VDDA
PAD07/AN07
PAD06/AN06
PAD05/AN05
PAD04/AN04
PAD03/AN03
PAD02/AN02
PAD01/AN01
PAD00/AN00
VSS2
VDD2
PA7/ADDR15/DATA15
PA6/ADDR14/DATA14
PA5/ADDR13/DATA13
PA4/ADDR12/DATA12
PA3/ADDR11/DATA11
PA2/ADDR10/DATA10
PA1/ADDR9/DATA9
PA0/ADDR8/DATA8
ADDR5/DATA5/PB5
ADDR6/DATA6/PB6
ADDR7/DATA7/PB7
XCLKS/NOACC/PE7
MODB/IPIPE1/PE6
MODA/IPIPE0/PE5
ECLK/PE4
VSSR
VDDR
RESET
VDDPLL
XFC
VSSPLL
EXTAL
XTAL
TEST/VPP
LSTRB/TAGLO/PE3
R/W/PE2
IRQ/PE1
XIRQ/PE0
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
PW3/KWP3/PP3
PW2/KWP2/PP2
PW1/KWP1/PP1
PW0/KWP0/PP0
PW0/IOC0/PT0
PW1/IOC1/PT1
PW2/IOC2/PT2
PW3/IOC3/PT3
VDD1
VSS1
PW4/IOC4/PT4
IOC5/PT5
IOC6/PT6
IOC7/PT7
MODC/TAGHI/BKGD
ADDR0/DATA0/PB0
ADDR1/DATA1/PB1
ADDR2/DATA2/PB2
ADDR3/DATA3/PB3
ADDR4/DATA4/PB4
80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
PP4/KWP4/PW4
PP5/KWP5/PW5
PP7/KWP7
VDDX
VSSX
PM0/RXCAN
PM1/TXCAN
PM2/MISO
PM3/SS
PM4/MOSI
PM5/SCK
PJ6/KWJ6
PJ7/KWJ7
PP6/KWP6/ROMCTL
PS3
PS2
PS1/TXD
PS0/RXD
VSSA
VRL
2.1 Device Pinout
Signals shown in Bold are not available on the 52 or 48 Pin Package
Signals shown in Bold Italic are available in the 52, but not the 48 Pin Package
Figure 2-1 Pin Assignments in 80 QFP for MC9S12C-Family
52
PP5/KWP5/PW5
VDDX
VSSX
PM0/RXCAN
PM1/TXCAN
PM2/MISO
PM3/SS
PM4/MOSI
PM5/SCK
PS1/TXD
PS0/RXD
VSSA
51
50
49
48
47
46
45
44
43
42
41
40
PP4/KWP4/PW4
52
Device User Guide — 9S12C128DGV1/D V01.11
VRH
2
38
VDDA
PW1/IOC1/PT1
3
37
PW2/IOC2/PT2
4
36
PW3/IOC3/PT3
5
35
PAD07/AN07
PAD06/AN06
PAD05/AN05
VDD1
6
34
PAD04/AN04
VSS1
7
33
PAD03/AN03
PW4/IOC4/PT4
8
32
PAD02/AN02
IOC5/PT5
9
31
PAD01/AN01
IOC6/PT6
10
30
PAD00/AN00
IOC7/PT7
11
29
PA2
MODC/BKGD
12
28
PA1
PB4
13
27
PA0
15
16
17
18
19
20
21
22
23
24
ECLK/PE4
VSSR
VDDR
RESET
VDDPLL
XFC
VSSPLL
EXTAL
XTAL
TEST/VPP
IRQ/PE1
XIRQ/PE0
25
14
MC9S12C-Family
MC9S12GC-Family
XCLKS/PE7
1
26
39
PW3/KWP3/PP3
PW0/IOC0/PT0
* Signals shown in Bold italic are not available on the 48 Pin Package
Figure 2-2 Pin assignments in 52 LQFP for MC9S12C-Family
53
VSSX
PM0/RXCAN
PM1/TXCAN
PM2/MISO
PM3/SS
PM4/MOSI
PM5/SCK
PS1/TXD
PS0/RXD
VSSA
46
45
44
43
42
41
40
39
38
37
VDDX
PW1/IOC1/PT1
47
1
PP5/KWP5/PW5
PW0/IOC0/PT0
48
Device User Guide — 9S12C128DGV1/D V01.11
VRH
2
35
VDDA
PW2/IOC2/PT2
3
34
PW3/IOC3/PT3
4
33
VDD1
5
32
PAD07/AN07
PAD06/AN06
PAD05/AN05
VSS1
6
31
PAD04/AN04
PW4/IOC4/PT4
7
30
PAD03/AN03
IOC5/PT5
8
29
PAD02/AN02
IOC6/PT6
9
28
PAD01/AN01
IOC7/PT7
10
27
PAD00/AN00
MODC/BKGD
11
26
PA0
PB4
12
25
XIRQ/PE0
17
18
19
20
21
RESET
VDDPLL
XFC
VSSPLL
EXTAL
23
16
VDDR
TEST/VPP
IRQ/PE1
15
VSSR
22
14
ECLK/PE4
XTAL
13
XCLKS/PE7
MC9S12C-Family
MC9S12GC-Family
24
36
Figure 2-3 Pin Assignments in 48 LQFP for MC9S12C-Family
54
Device User Guide — 9S12C128DGV1/D V01.11
2.2 Signal Properties Summary
Table 2-1 Signal Properties
Pin Name Pin Name Pin Name Power
Function 1 Function 2 Function 3 Domain
Internal Pull
Resistor
CTRL
Description
Reset
State
EXTAL
—
—
VDDPLL
NA
NA
XTAL
—
—
VDDPLL
NA
NA
Oscillator pins
RESET
—
—
VDDX
None
None
External reset pin
XFC
—
—
VDDPLL
NA
NA
PLL loop filter pin
TEST
VPP
—
VSSX
NA
NA
Test pin only
BKGD
MODC
TAGHI
VDDX
Up
Up
Background debug, mode pin, tag signal high
PE7
NOACC
XCLKS
VDDX
PUCR
Up
Port E I/O pin, access, clock select
Port E I/O pin and pipe status
PE6
IPIPE1
MODB
VDDX
While RESET
pin is low: Down
PE5
IPIPE0
MODA
VDDX
While RESET
pin is low: Down
Port E I/O pin and pipe status
PE4
ECLK
—
VDDX
PUCR
Mode
Dep1
Port E I/O pin, bus clock output
PE3
LSTRB
TAGLO
VDDX
PUCR
Mode
Dep(1)
Port E I/O pin, low strobe, tag signal low
PE2
R/W
—
VDDX
PUCR
Mode
Dep(1)
Port E I/O pin, R/W in expanded modes
PE1
IRQ
—
VDDX
PUCR
Up
Port E input, external interrupt pin
PE0
XIRQ
—
VDDX
PUCR
Up
Port E input, non-maskable interrupt pin
PA[7:3]
ADDR[15:1/
DATA[15:1]
—
VDDX
PUCR
Disabled Port A I/O pin & multiplexed address/data
PA[2:1]
ADDR[10:9/
DATA[10:9]
—
VDDX
PUCR
Disabled Port A I/O pin & multiplexed address/data
PA[0]
ADDR[8]/
DATA[8]
—
VDDX
PUCR
Disabled Port A I/O pin & multiplexed address/data
PB[7:5]
ADDR[7:5]/
DATA[7:5]
—
VDDX
PUCR
Disabled Port B I/O pin & multiplexed address/data
PB[4]
ADDR[4]/
DATA[4]
—
VDDX
PUCR
Disabled Port B I/O pin & multiplexed address/data
PB[3:0]
ADDR[3:0]/
DATA[3:0]
—
VDDX
PUCR
Disabled Port B I/O pin & multiplexed address/data
PAD[7:0]
AN[7:0]
—
VDDA
PP[7]
KWP[7]
—
VDDX
PERP/
PPSP
Disabled Port P I/O Pins and keypad wake-up
PP[6]
KWP[6]
ROMCTL
VDDX
PERP/
PPSP
Disabled
PP[5]
KWP[5]
PW5
VDDX
PERP/
PPSP
Disabled Port P I/O Pin, keypad wake-up, PW5 output
PP[4:3]
KWP[4:3]
PW[4:3]
VDDX
PERP/
PPSP
Disabled Port P I/O Pin, keypad wake-up, PWM output
PERAD/P
Disabled Port AD I/O pins and ATD inputs
PSAD
Port P I/O Pins, keypad wake-up and ROMON
enable.
55
Device User Guide — 9S12C128DGV1/D V01.11
Pin Name Pin Name Pin Name Power
Function 1 Function 2 Function 3 Domain
Internal Pull
Resistor
CTRL
Description
Reset
State
PP[2:0]
KWP[2:0]
PW[2:0]
VDDX
PERP/
PPSP
Disabled Port P I/O Pins, keypad wake-up, PWM outputs
PJ[7:6]
KWJ[7:6]
—
VDDX
PERJ/
PPSJ
Disabled Port J I/O Pins and keypad wake-up
PM5
SCK
—
VDDX
PERM/
PPSM
Up
Port M I/O Pin and SPI SCK signal
PM4
MOSI
—
VDDX
PERM/
PPSM
Up
Port M I/O Pin and SPI MOSI signal
PM3
SS
—
VDDX
PERM/
PPSM
Up
Port M I/O Pin and SPI SS signal
PM2
MISO
—
VDDX
PERM/
PPSM
Up
Port M I/O Pin and SPI MISO signal
PM1
TXCAN
—
VDDX
PERM/
PPSM
Up
Port M I/O Pin and CAN transmit signal2
PM0
RXCAN
—
VDDX
PERM/
PPSM
Up
Port M I/O Pin and CAN receive signal2
PS[3:2]
—
—
VDDX
PERS/
PPSS
Up
Port S I/O Pins
PS1
TXD
—
VDDX
PERS/
PPSS
Up
Port S I/O Pin and SCI transmit signal
PS0
RXD
—
VDDX
PERS/
PPSS
Up
Port S I/O Pin and SCI receive signal
PT[7:5]
IOC[7:5]
—
VDDX
PERT/
PPST
Disabled Port T I/O Pins shared with timer (TIM)
PT[4:0]
IOC[4:0]
PW[4:0]
VDDX
PERT/
PPST
Disabled Port T I/O Pins shared with timer and PWM
NOTES:
1. The PortE output buffer enable signal control at reset is determined by the PEAR register and is mode dependent. E.g. in
special test mode RDWE=LSTRE=1 which enables the PE[3:2] output buffers and disables the pull-ups. Refer to S12_MEBI
user guide for PEAR register details.
2. CAN functionality is not available on the MC9S12GC-Family members
2.2.1 Pin Initialization for 48 & 52 Pin LQFP bond-out versions
Not Bonded Pins If the port pins are not bonded out in the chosen package the user should initialize the
registers to be inputs with enabled pull resistance to avoid excess current consumption. This applies to the
following pins:
(48LQFP): Port A[7:1], Port B[7:5], Port B[3:0], PortE[6,5,3,2], Port P[7:6], PortP[4:0], Port J[7:6],
PortS[3:2]
(52LQFP): Port A[7:3], Port B[7:5], Port B[3:0], PortE[6,5,3,2], Port P[7:6], PortP[2:0], Port J[7:6],
PortS[3:2]
56
Device User Guide — 9S12C128DGV1/D V01.11
2.3 Detailed Signal Descriptions
2.3.1 EXTAL, XTAL — Oscillator Pins
EXTAL and XTAL are the crystal driver and external clock pins. On reset all the device clocks are derived
from the EXTAL input frequency. XTAL is the crystal output.
2.3.2 RESET — External Reset Pin
RESET is an active low bidirectional control signal that acts as an input to initialize the MCU to a known
start-up state. It also acts as an open-drain output to indicate that an internal failure has been detected in
either the clock monitor or COP watchdog circuit. External circuitry connected to the RESET pin should
not include a large capacitance that would interfere with the ability of this signal to rise to a valid logic one
within 32 ECLK cycles after the low drive is released. Upon detection of any reset, an internal circuit
drives the RESET pin low and a clocked reset sequence controls when the MCU can begin normal
processing.
2.3.3 TEST / VPP — Test Pin
This pin is reserved for test and must be tied to VSS in all applications.
2.3.4 XFC — PLL Loop Filter Pin
Dedicated pin used to create the PLL loop filter. See CRG BUG for more detailed information.PLL loop
filter. Please ask your Motorola representative for the interactive application note to compute PLL loop
filter elements. Any current leakage on this pin must be avoided.
XFC
R0
MCU
CP
CS
VDDPLL
VDDPLL
Figure 2-4 PLL Loop Filter Connections
57
Device User Guide — 9S12C128DGV1/D V01.11
2.3.5 BKGD / TAGHI / MODC — Background Debug, Tag High & Mode Pin
The BKGD / TAGHI / MODC pin is used as a pseudo-open-drain pin for the background debug
communication. In MCU expanded modes of operation when instruction tagging is on, an input low on
this pin during the falling edge of E-clock tags the high half of the instruction word being read into the
instruction queue. It is also used as a MCU operating mode select pin at the rising edge during reset, when
the state of this pin is latched to the MODC bit.
2.3.6 PA[7:0] / ADDR[15:8] / DATA[15:8] — Port A I/O Pins
PA7-PA0 are general purpose input or output pins,. In MCU expanded modes of operation, these pins are
used for the multiplexed external address and data bus. PA[7:1] pins are not available in the 48 package
version. PA[7:3] are not available in the 52 pin package version.
2.3.7 PB[7:0] / ADDR[7:0] / DATA[7:0] — Port B I/O Pins
PB7-PB0 are general purpose input or output pins. In MCU expanded modes of operation, these pins are
used for the multiplexed external address and data bus. PB[7:5] and PB[3:0] pins are not available in the
48 nor 52 pin package version.
2.3.8 PE7 / NOACC / XCLKS — Port E I/O Pin 7
PE7 is a general purpose input or output pin. During MCU expanded modes of operation, the NOACC
signal, when enabled, is used to indicate that the current bus cycle is an unused or “free” cycle. This signal
will assert when the CPU is not using the bus.The XCLKS is an input signal which controls whether a
crystal in combination with the internal Colpitts (low power) oscillator is used or whether Pierce
oscillator/external clock circuitry is used. The state of this pin is latched at the rising edge of RESET. If
the input is a logic low the EXTAL pin is configured for an external clock drive or a Pierce Oscillator. If
input is a logic high a Colpitts oscillator circuit is configured on EXTAL and XTAL. Since this pin is an
input with a pull-up device during reset, if the pin is left floating, the default configuration is a Colpitts
oscillator circuit on EXTAL and XTAL.
58
Device User Guide — 9S12C128DGV1/D V01.11
EXTAL
CDC *
C1
MCU
Crystal or
ceramic resonator
XTAL
C2
VSSPLL
* Due to the nature of a translated ground Colpitts oscillator a
DC voltage bias is applied to the crystal
.Please contact the crystal manufacturer for crystal DC
Figure 2-5 Colpitts Oscillator Connections (PE7=1)
EXTAL
C1
MCU
Crystal or
ceramic resonator
RB
XTAL
RS*
C2
VSSPLL
* Rs can be zero (shorted) when use with higher frequency crystals.
Refer to manufacturer’s data.
Figure 2-6 Pierce Oscillator Connections (PE7=0)
EXTAL
MCU
XTAL
CMOS-COMPATIBLE
EXTERNAL OSCILLATOR
(VDDPLL-Level)
not connected
Figure 2-7 External Clock Connections (PE7=0)
59
Device User Guide — 9S12C128DGV1/D V01.11
2.3.9 PE6 / MODB / IPIPE1 — Port E I/O Pin 6
PE6 is a general purpose input or output pin. It is used as a MCU operating mode select pin during reset.
The state of this pin is latched to the MODB bit at the rising edge of RESET. This pin is shared with the
instruction queue tracking signal IPIPE1}. This pin is an input with a pull-down device which is only
active when RESET is low. PE[6] is not available in the 48 / 52 pin package versions.
2.3.10 PE5 / MODA / IPIPE0 — Port E I/O Pin 5
PE5 is a general purpose input or output pin. It is used as a MCU operating mode select pin during reset.
The state of this pin is latched to the MODA bit at the rising edge of RESET. This pin is shared with the
instruction queue tracking signal IPIPE0}. This pin is an input with a pull-down device which is only
active when RESET is low. This pin is not available in the 48 / 52 pin package versions.
2.3.11 PE4 / ECLK— Port E I/O Pin [4] / E-Clock Output
ECLK is the output connection for the internal bus clock. It is used to demultiplex the address and data in
expanded modes and is used as a timing reference. ECLK frequency is equal to 1/2 the crystal frequency
out of reset. The ECLK pin is initially configured as ECLK output with stretch in all expanded modes. The
E clock output function depends upon the settings of the NECLK bit in the PEAR register, the IVIS bit in
the MODE register and the ESTR bit in the EBICTL register. All clocks, including the E clock, are halted
when the MCU is in STOP mode. It is possible to configure the MCU to interface to slow external
memory. ECLK can be stretched for such accesses. Reference the MISC register (EXSTR[1:0] bits) for
more information. In normal expanded narrow mode, the E clock is available for use in external select
decode logic or as a constant speed clock for use in the external application system. Alternatively PE4 can
be used as a general purpose input or output pin.
2.3.12 PE3 / LSTRB — Port E I/O Pin [3] / Low-Byte Strobe (LSTRB)
In all modes this pin can be used as a general-purpose I/O and is an input with an active pull-up out of
reset. If the strobe function is required, it should be enabled by setting the LSTRE bit in the PEAR register.
This signal is used in write operations. Therefore external low byte writes will not be possible until this
function is enabled. This pin is also used as TAGLO in Special Expanded modes and is multiplexed with
the LSTRB function. This pin is not available in the 48 / 52 pin package versions.
2.3.13 PE2 / R/W — Port E I/O Pin [2] / Read/Write
In all modes this pin can be used as a general-purpose I/O and is an input with an active pull-up out of
reset. If the read/write function is required it should be enabled by setting the RDWE bit in the PEAR
register. External writes will not be possible until enabled. This pin is not available in the 48 / 52 pin
package versions.
60
Device User Guide — 9S12C128DGV1/D V01.11
2.3.14 PE1 / IRQ — Port E input Pin [1] / Maskable Interrupt Pin
The IRQ input provides a means of applying asynchronous interrupt requests to the MCU. Either falling
edge-sensitive triggering or level-sensitive triggering is program selectable (INTCR register). IRQ is
always enabled and configured to level-sensitive triggering out of reset. It can be disabled by clearing
IRQEN bit (INTCR register). When the MCU is reset the IRQ function is masked in the condition code
register. This pin is always an input and can always be read. There is an active pull-up on this pin while in
reset and immediately out of reset. The pull-up can be turned off by clearing PUPEE in the PUCR register.
2.3.15 PE0 / XIRQ — Port E input Pin [0] / Non Maskable Interrupt Pin
The XIRQ input provides a means of requesting a non maskable interrupt after reset initialization. During
reset, the X bit in the condition code register (CCR) is set and any interrupt is masked until MCU software
enables it. Because the XIRQ input is level sensitive, it can be connected to a multiple-source wired-OR
network. This pin is always an input and can always be read. There is an active pull-up on this pin while
in reset and immediately out of reset. The pull-up can be turned off by clearing PUPEE in the PUCR
register.
2.3.16 PAD[7:0] / AN[7:0] — Port AD I/O Pins [7:0]
PAD7-PAD0 are general purpose I/O pins and also analog inputs for the analog to digital converter. In
order to use a PAD pin as a standard input, the corresponding ATDDIEN register bit must be set. These
bits are cleared out of reset to configure the PAD pins for A/D operation.
When the A/D converter is active in multi-channel mode, port inputs are scanned and converted
irrespective of PortAD configuration. Thus PortAD pins that are configured as digital inputs or digital
outputs are also converted in the A/D conversion sequence.
2.3.17 PP[7] / KWP[7] — Port P I/O Pin [7]
PP7 is a general purpose input or output pin, shared with the keypad interrupt function. When configured
as an input, it can generate interrupts causing the MCU to exit STOP or WAIT mode. This pin is not
available in the 48 / 52 pin package versions.
2.3.18 PP[6] / KWP[6]/ROMCTL — Port P I/O Pin [6]
PP6 is a general purpose input or output pin, shared with the keypad interrupt function. When configured
as an input, it can generate interrupts causing the MCU to exit STOP or WAIT mode. This pin is not
available in the 48 / 52 pin package versions. During MCU expanded modes of operation, this pin is used
to enable the Flash EEPROM memory in the memory map (ROMCTL). At the rising edge of RESET, the
state of this pin is latched to the ROMON bit.
PP6=1 in emulation modes equates to ROMON =0 (ROM space externally mapped)
PP6=0 in expanded modes equates to ROMON =0 (ROM space externally mapped)
61
Device User Guide — 9S12C128DGV1/D V01.11
2.3.19 PP[5:0] / KWP[5:0] / PW[5:0] — Port P I/O Pins [5:0]
PP[5:0] are general purpose input or output pins, shared with the keypad interrupt function. When
configured as inputs, they can generate interrupts causing the MCU to exit STOP or WAIT mode.
PP[5:0] are also shared with the PWM output signals, PW[5:0]. Pins PP[2:0] are only available in the 80
pin package version. Pins PP[4:3] are not available in the 48 pin package version.
2.3.20 PJ[7:6] / KWJ[7:6] — Port J I/O Pins [7:6]
PJ[7:6] are general purpose input or output pins, shared with the keypad interrupt function. When
configured as inputs, they can generate interrupts causing the MCU to exit STOP or WAIT mode. These
pins are not available in the 48 pin package version nor in the 52 pin package version.
2.3.21 PM5 / SCK — Port M I/O Pin 5
PM5 is a general purpose input or output pin and also the serial clock pin SCK for the Serial Peripheral
Interface (SPI).
2.3.22 PM4 / MOSI — Port M I/O Pin 4
PM4 is a general purpose input or output pin and also the master output (during master mode) or slave
input (during slave mode) pin for the Serial Peripheral Interface (SPI).
2.3.23 PM3 / SS — Port M I/O Pin 3
PM3 is a general purpose input or output pin and also the slave select pin SS for the Serial Peripheral
Interface (SPI).
2.3.24 PM2 / MISO — Port M I/O Pin 2
PM2 is a general purpose input or output pin and also the master input (during master mode) or slave
output (during slave mode) pin for the Serial Peripheral Interface (SPI).
2.3.25 PM1 / TXCAN — Port M I/O Pin 1
PM1 is a general purpose input or output pin and the transmit pin, TXCAN, of the CAN module if
available.
2.3.26 PM0 / RXCAN — Port M I/O Pin 0
PM0 is a general purpose input or output pin and the receive pin, RXCAN, of the CAN module if available.
62
Device User Guide — 9S12C128DGV1/D V01.11
2.3.27 PS[3:2] — Port S I/O Pins [3:2]
PS3 and PS2 are general purpose input or output pins. These pins are not available in the 48 / 52 pin
package versions.
2.3.28 PS1 / TXD — Port S I/O Pin 1
PS1 is a general purpose input or output pin and the transmit pin, TXD, of Serial Communication Interface
(SCI).
2.3.29 PS0 / RXD — Port S I/O Pin 0
PS0 is a general purpose input or output pin and the receive pin, RXD, of Serial Communication Interface
(SCI).
2.3.30 PPT[7:5] / IOC[7:5] — Port T I/O Pins [7:5]
PT7-PT5 are general purpose input or output pins. They can also be configured as the timer system input
capture or output compare pins IOC7-IOC5.
2.3.31 PT[4:0] / IOC[4:0] / PW[4:0]— Port T I/O Pins [4:0]
PT4-PT0 are general purpose input or output pins. They can also be configured as the timer system input
capture or output compare pins IOC4-IOC0 or as the PWM outputs PW[4:0].
2.4 Power Supply Pins
2.4.1 VDDX,VSSX — Power & Ground Pins for I/O Drivers
External power and ground for I/O drivers. Bypass requirements depend on how heavily the MCU pins
are loaded.
2.4.2 VDDR, VSSR — Power & Ground Pins for I/O Drivers & for Internal
Voltage Regulator
External power and ground for the internal voltage regulator. Connecting VDDR to ground disables the
internal voltage regulator.
2.4.3 VDD1, VDD2, VSS1, VSS2 — Internal Logic Power Pins
Power is supplied to the MCU through VDD and VSS. This 2.5V supply is derived from the internal
voltage regulator. There is no static load on those pins allowed. The internal voltage regulator is turned
off, if VDDR is tied to ground.
63
Device User Guide — 9S12C128DGV1/D V01.11
2.4.4 VDDA, VSSA — Power Supply Pins for ATD and VREG
VDDA, VSSA are the power supply and ground input pins for the voltage regulator reference and the
analog to digital converter.
2.4.5 VRH, VRL — ATD Reference Voltage Input Pins
VRH and VRL are the reference voltage input pins for the analog to digital converter.
2.4.6 VDDPLL, VSSPLL — Power Supply Pins for PLL
Provides operating voltage and ground for the Oscillator and the Phased-Locked Loop. This allows the
supply voltage to the Oscillator and PLL to be bypassed independently. This 2.5V voltage is generated by
the internal voltage regulator.
Table 2-2 MC9S12C-Family Power and Ground Connection Summary
Mnemonic
Nominal
Voltage
VDD1
VDD2
2.5 V
VSS1
VSS2
0V
VDDR
5.0 V
VSSR
0V
VDDX
5.0 V
VSSX
0V
VDDA
5.0 V
VSSA
0V
VRH
5.0 V
VRL
0V
VDDPLL
2.5 V
VSSPLL
0V
Description
Internal power and ground generated by internal regulator. These also
allow an external source to supply the core VDD/VSS voltages and bypass
the internal voltage regulator.
In the 48 and 52 LQFP packages VDD2 and VSS2 are not available.
External power and ground, supply to internal voltage regulator.
External power and ground, supply to pin drivers.
Operating voltage and ground for the analog-to-digital converters and the
reference for the internal voltage regulator, allows the supply voltage to the
A/D to be bypassed independently.
Reference voltage low for the ATD converter.
In the 48 and 52 LQFP packages VRL is bonded to VSSA.
Provides operating voltage and ground for the Phased-Locked Loop. This
allows the supply voltage to the PLL to be bypassed independently.
Internal power and ground generated by internal regulator.
NOTE:All VSS pins must be connected together in the application. Because fast signal transitions
place high, short-duration current demands on the power supply, use bypass capacitors with
high-frequency characteristics and place them as close to the MCU as possible. Bypass requirements
depend on MCU pin load.
Section 3 System Clock Description
64
Device User Guide — 9S12C128DGV1/D V01.11
The Clock and Reset Generator provides the internal clock signals for the core and all peripheral modules.
Figure 3-1 shows the clock connections from the CRG to all modules. Consult the CRG Block User
Guide for details on clock generation.
S12_CORE
core clock
Flash
RAM
TIM
ATD
PIM
EXTAL
SCI
CRG
bus clock
oscillator clock
SPI
MSCAN
Not on 9S12GC
XTAL
VREG
TPM
Figure 3-1 Clock Connections
Section 4 Modes of Operation
4.1 Overview
Eight possible modes determine the operating configuration of the MC9S12C Family. Each mode has an
associated default memory map and external bus configuration controlled by a further pin.
Three low power modes exist for the device.
4.2 Chip Configuration Summary
The operating mode out of reset is determined by the states of the MODC, MODB, and MODA pins during
reset. The MODC, MODB, and MODA bits in the MODE register show the current operating mode and
provide limited mode switching during operation. The states of the MODC, MODB, and MODA pins are
65
Device User Guide — 9S12C128DGV1/D V01.11
latched into these bits on the rising edge of the reset signal. The ROMCTL signal allows the setting of the
ROMON bit in the MISC register thus controlling whether the internal Flash is visible in the memory map.
ROMON = 1 mean the Flash is visible in the memory map. The state of the ROMCTL pin is latched into
the ROMON bit in the MISC register on the rising edge of the reset signal.
Table 4-1 Mode Selection
BKGD =
MODC
PE6 =
MODB
PE5 =
MODA
PP6 =
ROMCTL
ROMON
Bit
0
0
0
X
1
0
0
1
0
1
1
0
0
1
0
X
0
0
1
1
0
1
1
0
1
0
0
X
1
0
0
1
1
X
1
0
0
1
1
1
0
1
1
1
0
1
1
1
Mode Description
Special Single Chip, BDM allowed and ACTIVE. BDM is
allowed in all other modes but a serial command is
required to make BDM active.
Emulation Expanded Narrow, BDM allowed
Special Test (Expanded Wide), BDM allowed
Emulation Expanded Wide, BDM allowed
Normal Single Chip, BDM allowed
Normal Expanded Narrow, BDM allowed
Peripheral; BDM allowed but bus operations would cause
bus conflicts (must not be used)
Normal Expanded Wide, BDM allowed
For further explanation on the modes refer to the S12_MEBI block guide.
Table 4-2 Clock Selection Based on PE7
PE7 = XCLKS
Description
1
Colpitts Oscillator selected
0
Pierce Oscillator/external clock selected
4.3 Security
The device will make available a security feature preventing the unauthorized read and write of the
memory contents. This feature allows:
•
Protection of the contents of FLASH,
•
Operation in single-chip mode,
•
Operation from external memory with internal FLASH disabled.
The user must be reminded that part of the security must lie with the user’s code. An extreme example
would be user’s code that dumps the contents of the internal program. This code would defeat the purpose
of security. At the same time the user may also wish to put a back door in the user’s program. An example
66
Device User Guide — 9S12C128DGV1/D V01.11
of this is the user downloads a key through the SCI which allows access to a programming routine that
updates parameters.
4.3.1 Securing the Microcontroller
Once the user has programmed the FLASH, the part can be secured by programming the security bits
located in the FLASH module. These non-volatile bits will keep the part secured through resetting the part
and through powering down the part.
The security byte resides in a portion of the Flash array.
Check the Flash Block User Guide for more details on the security configuration.
4.3.2 Operation of the Secured Microcontroller
4.3.2.1 Normal Single Chip Mode
This will be the most common usage of the secured part. Everything will appear the same as if the part was
not secured with the exception of BDM operation. The BDM operation will be blocked.
4.3.2.2 Executing from External Memory
The user may wish to execute from external space with a secured microcontroller. This is accomplished
by resetting directly into expanded mode. The internal FLASH will be disabled. BDM operations will be
blocked.
4.3.3 Unsecuring the Microcontroller
In order to unsecure the microcontroller, the internal FLASH must be erased. This can be done through an
external program in expanded mode or via a sequence of BDM commands. Unsecuring is also possible via
the Backdoor Key Access. Refer to Flash Block Guide for details.
Once the user has erased the FLASH, the part can be reset into special single chip mode. This invokes a
program that verifies the erasure of the internal FLASH. Once this program completes, the user can erase
and program the FLASH security bits to the unsecured state. This is generally done through the BDM, but
the user could also change to expanded mode (by writing the mode bits through the BDM) and jumping to
an external program (again through BDM commands). Note that if the part goes through a reset before the
security bits are reprogrammed to the unsecure state, the part will be secured again.
4.4 Low Power Modes
The microcontroller features three main low power modes. Consult the respective Block User Guide for
information on the module behavior in Stop, Pseudo Stop, and Wait Mode. An important source of
information about the clock system is the Clock and Reset Generator User Guide (CRG).
67
Device User Guide — 9S12C128DGV1/D V01.11
4.4.1 Stop
Executing the CPU STOP instruction stops all clocks and the oscillator thus putting the chip in fully static
mode. Wake up from this mode can be done via reset or external interrupts.
4.4.2 Pseudo Stop
This mode is entered by executing the CPU STOP instruction. In this mode the oscillator is still running
and the Real Time Interrupt (RTI) or Watchdog (COP) sub module can stay active. Other peripherals are
turned off. This mode consumes more current than the full STOP mode, but the wake up time from this
mode is significantly shorter.
4.4.3 Wait
This mode is entered by executing the CPU WAI instruction. In this mode the CPU will not execute
instructions. The internal CPU signals (address and databus) will be fully static. All peripherals stay active.
For further power consumption reduction the peripherals can individually turn off their local clocks.
4.4.4 Run
Although this is not a low power mode, unused peripheral modules should not be enabled in order to save
power.
Section 5 Resets and Interrupts
5.1 Overview
Consult the Exception Processing section of the CPU12 Reference Manual for information.
5.2 Vectors
5.2.1 Vector Table
Table 5-1 lists interrupt sources and vectors in default order of priority.
Table 5-1 Interrupt Vector Locations
Interrupt Source
CCR
Mask
Local Enable
HPRIO Value
to Elevate
$FFFE, $FFFF
External Reset, Power On Reset or Low
Voltage Reset (see CRG Flags Register
to determine reset source)
None
None
–
$FFFC, $FFFD
Clock Monitor fail reset
None
COPCTL (CME, FCME)
–
$FFFA, $FFFB
COP failure reset
None
COP rate select
–
$FFF8, $FFF9
Unimplemented instruction trap
None
None
–
Vector Address
68
Device User Guide — 9S12C128DGV1/D V01.11
$FFF6, $FFF7
SWI
None
None
–
$FFF4, $FFF5
XIRQ
X-Bit
None
–
$FFF2, $FFF3
IRQ
I-Bit
INTCR (IRQEN)
$F2
$FFF0, $FFF1
Real Time Interrupt
I-Bit
CRGINT (RTIE)
$F0
$FFEE, $FFEF
Standard Timer channel 0
I-Bit
TIE (C0I)
$EE
$FFEC, $FFED
Standard Timer channel 1
I-Bit
TIE (C1I)
$EC
$FFEA, $FFEB
Standard Timer channel 2
I-Bit
TIE (C2I)
$EA
$FFE8, $FFE9
Standard Timer channel 3
I-Bit
TIE (C3I)
$E8
$FFE6, $FFE7
Standard Timer channel 4
I-Bit
TIE (C4I)
$E6
$FFE4, $FFE5
Standard Timer channel 5
I-Bit
TIE (C5I)
$E4
$FFE2, $FFE3
Standard Timer channel 6
I-Bit
TIE (C6I)
$E2
$FFE0, $FFE1
Standard Timer channel 7
I-Bit
TIE (C7I)
$E0
$FFDE, $FFDF
Standard Timer overflow
I-Bit
TMSK2 (TOI)
$DE
$FFDC, $FFDD
Pulse accumulator A overflow
I-Bit
PACTL (PAOVI)
$DC
$FFDA, $FFDB
Pulse accumulator input edge
I-Bit
PACTL (PAI)
$DA
$FFD8, $FFD9
SPI
I-Bit
SPICR1 (SPIE, SPTIE)
$D8
$FFD6, $FFD7
SCI
I-Bit
SCICR2
(TIE, TCIE, RIE, ILIE)
$D6
ATD
I-Bit
ATDCTL2 (ASCIE)
$D2
Port J
I-Bit
PIEP (PIEP7-6)
$CE
$FFD4, $FFD5
Reserved
$FFD2, $FFD3
Reserved
$FFD0, $FFD1
$FFCE, $FFCF
$FFCC, $FFCD
Reserved
$FFCA, $FFCB
Reserved
$FFC8, $FFC9
Reserved
$FFC6, $FFC7
CRG PLL lock
I-Bit
PLLCR (LOCKIE)
$C6
$FFC4, $FFC5
CRG Self Clock Mode
I-Bit
PLLCR (SCMIE)
$C4
I-Bit
FCNFG (CCIE, CBEIE)
$B8
Reserved
$FFBA to $FFC3
$FFB8, $FFB9
FLASH
1
$FFB6, $FFB7
CAN wake-up
I-Bit
CANRIER (WUPIE)
$B6
$FFB4, $FFB5
errors1
I-Bit
CANRIER (CSCIE, OVRIE)
$B4
CAN
receive1
I-Bit
CANRIER (RXFIE)
$B2
CAN
transmit1
I-Bit
CANTIER (TXEIE[2:0])
$B0
$FFB2, $FFB3
$FFB0, $FFB1
CAN
Reserved
$FF90 to $FFAF
$FF8E, $FF8F
Port P
I-Bit
PIEP (PIEP7-0)
$8E
$FF8C, $FF8D
$FF8A, $FF8B
PWM Emergency Shutdown
I-Bit
PWMSDN(PWMIE)
$8C
VREG LVI
I-Bit
CTRL0 (LVIE)
$8A
$FF80 to $FF89
Reserved
NOTES:
1. Not available on MC9S12GC-Family members
5.3 Resets
Resets are a subset of the interrupts featured inTable 5-1. The different sources capable of generating a
system reset are summarized in Table 5-2. When a reset occurs, MCU registers and control bits are
69
Device User Guide — 9S12C128DGV1/D V01.11
changed to known start-up states. Refer to the respective module Block User Guides for register reset
states.
5.3.1 Reset Summary Table
Table 5-2 Reset Summary
Reset
Priority
Source
Vector
Power-on Reset
1
CRG Module
$FFFE, $FFFF
External Reset
1
RESET pin
$FFFE, $FFFF
Low Voltage Reset
1
VREG Module
$FFFE, $FFFF
Clock Monitor Reset
2
CRG Module
$FFFC, $FFFD
COP Watchdog Reset
3
CRG Module
$FFFA, $FFFB
5.3.2 Effects of Reset
When a reset occurs, MCU registers and control bits are changed to known start-up states. Refer to the
respective module Block User Guides for register reset states. Refer to the HCS12 Multiplexed External
Bus Interface (MEBI) Block Guide for mode dependent pin configuration of port A, B and E out of reset.
Refer to the PIM Block User Guide for reset configurations of all peripheral module ports.
Refer to Figure 1-2 to Figure 1-5 footnotes for locations of the memories depending on the operating
mode after reset.
The RAM array is not automatically initialized out of reset.
NOTE:
For devices assembled in 48-pin or 52-pin LQFP packages all non-bonded out pins
should be configured as outputs after reset in order to avoid current drawn from
floating inputs. Refer to Table 2-1 for affected pins.
Section 6 HCS12 Core Block Description
Consult the individual block guides for information about the HCS12 core modules, i.e. central processing
unit (CPU), interrupt module (INT), module mapping control module (MMC), multiplexed external bus
interface (MEBI), debug12 module (DBG12) and background debug mode module (BDM).
Where the CPU12 Reference Manual refers to cycles this is equivalent to device bus clock periods.
6.1 Device-specific information
6.1.1 PPAGE
External paging is not supported on these devices. In order to access the 16K flash blocks in the address
range $8000-$BFFF the PPAGE register must be loaded with the corresponding value for this range. Refer
to Table 6-1 for device specific page mapping.
70
Device User Guide — 9S12C128DGV1/D V01.11
For all devices Flash Page 3F is visible in the $C000-$FFFF range if ROMON is set. For all devices (ecept
9S12GC16) Page 3E is also visible in the $4000-$7FFF range if ROMHM is cleared and ROMON is set.
For all devices apart from MC9S12C32 Flash Page 3D is visible in the $0000-$3FFF range if ROMON is
set...
Table 6-1 Device Specific Flash PAGE Mapping
Device
PAGE
PAGE visible with PPAGE contents
MC9S12GC16
3F
$01,$03,$05,$07,$09......$35,$37,$39,$3B,$3D,$3F
MC9S12C32
MC9S12GC32
3E
$00,$02,$04,$06,$08,$0A,$0C,$0E,$10,$12......$2C,$2E,$30,$32,$34,$36,$38,$3A,$3C,$3E
3F
$01,$03,$05,$07,$09,$0B,$0D,$0F,$11,$13.....$2D,$2F,$31,$33,$35,$37,$39,$3B,$3D,$3F
3C
$04,$0C,$14,$1C,$24,$2C,$34,$3C
3D
$05,$0D,$15,$1D,$25,$2D,$35,$3D
3E
$06,$0E,$16,$1E,$26,$2E,$36,$3E
3F
$07,$0F,$17,$1F,$27,$2F,$37,$3F
3A
$02,$0A,$12,$1A,$22,$2A,$32,$3A
3B
$03,$0B,$13,$1B,$23,$2B,$33,$3B
3C
$04,$0C,$14,$1C,$24,$2C,$34,$3C
3D
$05,$0D,$15,$1D,$25,$2D,$35,$3D
3E
$06,$0E,$16,$1E,$26,$2E,$36,$3E
3F
$07,$0F,$17,$1F,$27,$2F,$37,$3F
38
$00,$08,$10,$18,$20,$28,$30,$38
39
$01,$09,$11,$19,$21,$29,$31,$39
3A
$02,$0A,$12,$1A,$22,$2A,$32,$3A
3B
$03,$0B,$13,$1B,$23,$2B,$33,$3B
3C
$04,$0C,$14,$1C,$24,$2C,$34,$3C
3D
$05,$0D,$15,$1D,$25,$2D,$35,$3D
3E
$06,$0E,$16,$1E,$26,$2E,$36,$3E
3F
$07,$0F,$17,$1F,$27,$2F,$37,$3F
MC9S12C64
MC9S12GC64
MC9S12C96
MC9S12GC96
MC9S12C128
MC9S12GC128
6.1.2 BDM alternate clock
The BDM section of S12 Core User Guide reference to alternate clock is equivalent to oscillator clock.
6.1.3 Extended Address Range Emulation Implications
In order to emulate the MC9S12GC or MC9S12C-Family devices, external addressing of a 128K memory
map is required. This is provided in a 112 LQFP package version which includes the 3 necessary extra
external address bus signals via PortK[2:0]. This package version is for emulation only and not provided
as a general production package.
The reset state of DDRK is $00, configuring the pins as inputs.
The reset state of PUPKE in the PUCR register is “1” enabling the internal PortK pullups.
In this reset state the pull-ups provide a defined state and prevent a floating input, thereby preventing
unnecessary current flow at the input stage.
71
Device User Guide — 9S12C128DGV1/D V01.11
To prevent unnecessary current flow in production package options, the states of DDRK and PUPKE
should not be changed by software.
Section 7 Voltage Regulator (VREG) Block Description
Consult the VREG Block User Guide for information about the dual output linear voltage regulator.
7.1 Device-specific information
The VREG is part of the IPBus domain.
7.1.1 VREGEN
VREGEN is connected internally to VDDR.
7.1.2 VDD1, VDD2, VSS1, VSS2
In the 80 pin QFP package versions, both internal VDD and VSS of the 2.5V domain are bonded out on 2
sides of the device as two pin pairs (VDD1, VSS1 & VDD2, VSS2). VDD1 and VDD2 are connected
together internally. VSS1 and VSS2 are connected together internally.
The extra pin pair enables systems using the 80 pin package to employ better supply routing and further
decoupling.
Section 8 Recommended Printed Circuit Board Layout
The PCB must be carefully laid out to ensure proper operation of the voltage regulator as well as of the
MCU itself. The following rules must be observed:
•
Every supply pair must be decoupled by a ceramic capacitor connected as near as possible to the
corresponding pins (C1 - C6).
•
Central point of the ground star should be the VSSR pin.
•
Use low ohmic low inductance connections between VSS1, VSS2 and VSSR.
•
VSSPLL must be directly connected to VSSR.
•
Keep traces of VSSPLL, EXTAL and XTAL as short as possible and occupied board area for C7,
C8, C11 and Q1 as small as possible.
•
Do not place other signals or supplies underneath area occupied by C7, C8, C10 and Q1 and the
connection area to the MCU.
•
Central power input should be fed in at the VDDA/VSSA pins.
72
Device User Guide — 9S12C128DGV1/D V01.11
Table 8-1 Recommended External Component Values
Component
Purpose
Type
Value
C1
VDD1 filter capapcitor
ceramic X7R
220nF, 470nF1
C2
VDD2 filter capacitor (80 QFP only)
ceramic X7R
220nF
C3
VDDA filter capacitor
ceramic X7R
100nF
C4
VDDR filter capacitor
X7R/tantalum
>=100nF
C5
VDDPLL filter capacitor
ceramic X7R
100nF
C6
VDDX filter capacitor
X7R/tantalum
>=100nF
C7
OSC load capacitor
C8
OSC load capacitor
C9
PLL loop filter capacitor
C10
PLL loop filter capacitor
C11
DC cutoff capacitor
Colpitts mode only, if recommended by
quartz manufacturer
R1
PLL loop filter resistor
See PLL Specification chapter
R2 / RB
PLL loop filter resistor
R3 / RS
PLL loop filter resistor
Q1
Quartz
See PLL specification chapter
See PLL specification chapter
Pierce mode only
NOTES:
1. In 48LQFP and 52LQFP package versions, VDD2 is not available. Thus 470nF must be connected
to VDD1.
73
Device User Guide — 9S12C128DGV1/D V01.11
C6
VDDX
VSSA
C3
VSSX
VDDA
VDD1
C1
VSS1
VSSR
C4
C7
R1
C8
C10
C9
Note:
Oscillator in
Colpitts mode.
C11
C5
VDDR
Q1
VSSPLL
VDDPLL
Figure 8-1 Recommended PCB Layout (48 LQFP)
74
Device User Guide — 9S12C128DGV1/D V01.11
)
NOTE: Oscillator in Colpitts mode.
C6
VDDX
VSSA
VSSX
C3
VDDA
VDD1
C1
VSS1
VSSR
C4
C7
C8
C10
C9
R1
C11
C5
VDDR
Q1
VSSPLL
VDDPLL
Figure 8-2 Recommended PCB Layout (52 LQFP)
75
Device User Guide — 9S12C128DGV1/D V01.11
)
NOTE: Oscillator in Colpitts mode.
C6
VDDX
VSSA
VSSX
C3
VDDA
VDD1
VSS2
C2
C1
VSS1
VDD2
VSSR
C4
C7
C8
C10
C9
R1
C11
C5
VDDR
Q1
VSSPLL
VDDPLL
Figure 8-3 Recommended PCB Layout (80 QFP)
76
Device User Guide — 9S12C128DGV1/D V01.11
C6
VDDX
VSSA
VSSX
C3
VDDA
VDD1
C1
VSS1
VSSR
C5
C4
R3
R2
VDDR
Q1
C7
C8
C10
C9
R1
VSSPLL
VDDPLL
Figure 8-4 Recommended PCB Layout for 48 LQFP Pierce Oscillator
77
Device User Guide — 9S12C128DGV1/D V01.11
C6
VDDX
VSSA
VSSX
C3
VDDA
VDD1
C1
VSS1
VSSR
C5
C4
R3
R2
VDDR
Q1
C7
C8
C10
C9
R1
VSSPLL
VDDPLL
Figure 8-5 Recommended PCB Layout for 52 LQFP Pierce Oscillator
78
Device User Guide — 9S12C128DGV1/D V01.11
C6
VDDX
VSSA
VSSX
C3
VDDA
VDD1
VSS2
C1
C2
VSS1
VDD2
VSSPLL
VSSR
C4
R3
C5
VDDR
R2
Q1
C7
C8
C10
C9
R1
VSSPLL
VDDPLL
Figure 8-6 Recommended PCB Layout for 80QFP Pierce Oscillator
Section 9 Clock Reset Generator (CRG) Block Description
Consult the CRG Block User Guide for information about the Clock and Reset Generator module.
79
Device User Guide — 9S12C128DGV1/D V01.11
9.1 Device-specific information
The Low Voltage Reset feature uses the low voltage reset signal from the VREG module as an input to the
CRG module. When the regulator output voltage supply to the internal chip logic falls below a specified
threshold the LVR signal from the VREG module causes the CRG module to generate a reset.
NOTE: If the voltage regulator is shut down by connecting VDDR to ground then the LVRF flag in the
CRG Flags Register (CRGFLG) is undefined.
9.1.1 XCLKS
The XCLKS input signal is active low (see 2.3.8 PE7 / NOACC / XCLKS — Port E I/O Pin 7).
Section 10 Oscillator (OSC) Block Description
Consult the OSC Block User Guide for information about the Oscillator module.
Section 11 Timer (TIM) Block Description
Consult the TIM_16B8C Block User Guide for information about the Timer module.
Section 12 Analog to Digital Converter (ATD) Block
Description
12.1 Device-specific information
In order to use a PortAD pin as an analog input, the corresponding DDRAD bit in the PIM register map
must be cleared to configure the pin as an input.
12.1.1 VRL (voltage reference low)
In the 48 and 52 pin package versions, the VRL pad is bonded internally to the VSSA pin.
Consult the ATD_10B8C Block User Guide for further information about the A/D Converter module.
Section 13 Serial Communications Interface (SCI) Block
Description
80
Device User Guide — 9S12C128DGV1/D V01.11
Consult the SCI Block User Guide for information about the Asynchronous Serial Communications
Interface module.
Section 14 Serial Peripheral Interface (SPI) Block
Description
Consult the SPI Block User Guide for information about the Serial Peripheral Interface module.
Section 15 Flash Block Description
Consult the FTS16K Block User Guide for information about the Flash module for the MC9S12GC16.
Consult the FTS32K Block User Guide for information about the Flash module for the MC9S12C32 or
MC9S12GC32.
Consult the FTS64K Block User Guide for information about the Flash module for the MC9S12C64 or
MC9S12GC64.
Consult the FTS96K Block User Guide for information about the Flash module for the MC9S12C96 or
MC9S12GC96.
Consult the FTS128K Block User Guide for information about the Flash module for the MC9S12C128or
MC9S12GC128.
Section 16 RAM Block Description
This module supports single-cycle misaligned word accesses without wait states.
The MC912GC16 features a single 1K byte RAM module.
The MC9S12C32 and MC9S12GC32 feature a 2K byte RAM module.
The MC9S12C64, MC9S12GC64, MC9S12C96, MC9S12GC96, MC9S12C128 and MC9S12GC128
versions feature a 4K byte RAM module.
Section 17 Pulse Width Modulator (PWM) Block
Description
Consult the PWM_8B6C Block User Guide for information about the Pulse Width Modulator Module.
Section 18 MSCAN Block Description
81
Device User Guide — 9S12C128DGV1/D V01.11
Consult the MSCAN Block User Guide for information about the Motorola Scalable CAN Module.
This module is not available on the MC9GC-Family Members.
Section 19 Port Integration Module (PIM) Block Description
Consult the PIM_9C32 Block User Guide for information about the Port Integration Module for all
versions of the MC9DS12GC and MC9S12C-Family.
The MODRR register within the PIM allows for mapping of PWM channels to PortT in the absence of
PortP pins for the low pin count packages. For the 80QFP package option it is recommended not to use
MODRR since this is intended to support PWM channel availability in low pin count packages. Note that
when mapping PWM channels to PortT in an 80QFP option, the associated PWM channels are then
mapped to both PortP and PortT.
The PortAD pins interface to the PIM module. However the port pin digital state can be read from either
the PORTAD register in the ATD register map or from the PTAD register in the PIM register map.
In order to read a digital pin value from PORTAD the corresponding ATDDIEN bit must be set. If the
corresponding ATDDIEN bit is cleared then the pin is configured as an analog input and the PORTAD bit
reads back as "1".
In order to read a digital pin value from PTAD, the corresponding DDRAD bit must be cleared, to
configure the pin as an input.
Furthermore in order to use a PortAD pin as an analog input, the corresponding DDRAD bit must be
cleared to configure the pin as an input.
82
Device User Guide — 9S12C128DGV1/D V01.11
Appendix A Electrical Characteristics
A.1 General
NOTE:
The electrical characteristics given in this section are preliminary and should be
used as a guide only. Values cannot be guaranteed by Motorola and are subject to
change without notice.
NOTE:
The parts are specified and tested over the 5V and 3.3V ranges. For the
intermediate range, generally the electrical specifications for the 3.3V range
apply, but the parts are not tested in production test in the intermediate range.
This supplement contains the most accurate electrical information for the MC9S12C-Family
microcontrollers available at the time of publication. The information should be considered
PRELIMINARY and is subject to change.
This introduction is intended to give an overview on several common topics like power supply, current
injection etc.
A.1.1 Parameter Classification
The electrical parameters shown in this supplement are guaranteed by various methods. To give the
customer a better understanding the following classification is used and the parameters are tagged
accordingly in the tables where appropriate.
NOTE:
This classification will be added at a later release of the specification
P: Those parameters are guaranteed during production testing on each individual device.
C: Those parameters are achieved by the design characterization by measuring a statistically relevant
sample size across process variations. They are regularly verified by production monitors.
T: Those parameters are achieved by design characterization on a small sample size from typical devices.
All values shown in the typical column are within this category.
D: Those parameters are derived mainly from simulations.
A.1.2 Power Supply
The MC9S12C-Family and MC9S12GC-Family members utilize several pins to supply power to the I/O
ports, A/D converter, oscillator and PLL as well as the internal logic.
The VDDA, VSSA pair supplies the A/D converter.
The VDDX, VSSX pair supplies the I/O pins
The VDDR, VSSR pair supplies the internal voltage regulator.
VDD1, VSS1, VDD2 and VSS2 are the supply pins for the digital logic.
VDDPLL, VSSPLL supply the oscillator and the PLL.
83
Device User Guide — 9S12C128DGV1/D V01.11
VSS1 and VSS2 are internally connected by metal.
VDD1 and VDD2 are internally connected by metal.
VDDA, VDDX, VDDR as well as VSSA, VSSX, VSSR are connected by anti-parallel diodes for ESD
protection.
NOTE:
In the following context VDD5 is used for either VDDA, VDDR and VDDX; VSS5
is used for either VSSA, VSSR and VSSX unless otherwise noted.
IDD5 denotes the sum of the currents flowing into the VDDA, VDDX and VDDR
pins.
VDD is used for VDD1, VDD2 and VDDPLL, VSS is used for VSS1, VSS2 and
VSSPLL.
IDD is used for the sum of the currents flowing into VDD1 and VDD2.
A.1.3 Pins
There are four groups of functional pins.
A.1.3.1 5V I/O pins
Those I/O pins have a nominal level of 5V. This class of pins is comprised of all port I/O pins, the analog
inputs, BKGD pin and the RESET inputs.The internal structure of all those pins is identical, however some
of the functionality may be disabled. E.g. pull-up and pull-down resistors may be disabled permanently.
A.1.3.2 Analog Reference
This class is made up by the two VRH and VRL pins. In 48 and 52 pin package versions the VRL pad is
bonded to the VSSA pin.
A.1.3.3 Oscillator
The pins XFC, EXTAL, XTAL dedicated to the oscillator have a nominal 2.5V level. They are supplied
by VDDPLL.
A.1.3.4 TEST
This pin is used for production testing only.
A.1.4 Current Injection
Power supply must maintain regulation within operating VDD5 or VDD range during instantaneous and
operating maximum current conditions. If positive injection current (Vin > VDD5) is greater than IDD5, the
injection current may flow out of VDD5 and could result in external power supply going out of regulation.
Insure external VDD5 load will shunt current greater than maximum injection current. This will be the
greatest risk when the MCU is not consuming power; e.g. if no system clock is present, or if clock rate is
very low which would reduce overall power consumption.
84
Device User Guide — 9S12C128DGV1/D V01.11
A.1.5 Absolute Maximum Ratings
Absolute maximum ratings are stress ratings only. A functional operation under or outside those maxima
is not guaranteed. Stress beyond those limits may affect the reliability or cause permanent damage of the
device.
This device contains circuitry protecting against damage due to high static voltage or electrical fields;
however, it is advised that normal precautions be taken to avoid application of any voltages higher than
maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused
inputs are tied to an appropriate logic voltage level (e.g., either VSS5 or VDD5).
Table A-1 Absolute Maximum Ratings
Num
Rating
Symbol
Min
Max
Unit
1
I/O, Regulator and Analog Supply Voltage
VDD5
-0.3
6.5
V
2
Digital Logic Supply Voltage1
VDD
-0.3
3.0
V
3
PLL Supply Voltage (1)
VDDPLL
-0.3
3.0
V
4
Voltage difference VDDX to VDDR and VDDA
∆VDDX
-0.3
0.3
V
5
Voltage difference VSSX to VSSR and VSSA
∆VSSX
-0.3
0.3
V
6
Digital I/O Input Voltage
VIN
-0.3
6.5
V
7
Analog Reference
VRH, VRL
-0.3
6.5
V
8
XFC, EXTAL, XTAL inputs
VILV
-0.3
3.0
V
9
TEST input
VTEST
-0.3
10.0
V
10
Instantaneous Maximum Current
Single pin limit for all digital I/O pins 2
I
D
-25
+25
mA
11
Instantaneous Maximum Current
Single pin limit for XFC, EXTAL, XTAL3
IDL
-25
+25
mA
12
Instantaneous Maximum Current
Single pin limit for TEST4
IDT
-0.25
0
mA
13
Operating Temperature Range (packaged)
T
A
– 40
125
°C
14
Operating Temperature Range (junction)
TJ
– 40
140
°C
15
Storage Temperature Range
Tstg
– 65
155
°C
NOTES:
1. The device contains an internal voltage regulator to generate the logic and PLL supply out of the I/O supply.
The absolute maximum ratings apply when the device is powered from an external source.
2. All digital I/O pins are internally clamped to VSSX and VDDX, VSSR and VDDR or VSSA and VDDA.
3. These pins are internally clamped to VSSPLL and VDDPLL
4. This pin is clamped low to VSSX, but not clamped high. This pin must be tied low in applications.
85
Device User Guide — 9S12C128DGV1/D V01.11
A.1.6 ESD Protection and Latch-up Immunity
All ESD testing is in conformity with CDF-AEC-Q100 Stress test qualification for Automotive Grade
Integrated Circuits. During the device qualification ESD stresses were performed for the Human Body
Model (HBM), the Machine Model (MM) and the Charge Device Model.
A device will be defined as a failure if after exposure to ESD pulses the device no longer meets the device
specification. Complete DC parametric and functional testing is performed per the applicable device
specification at room temperature followed by hot temperature, unless specified otherwise in the device
specification.
Table A-2 ESD and Latch-up Test Conditions
Model
Human Body
Machine
Description
Symbol
Value
Unit
Series Resistance
R1
1500
Ohm
Storage Capacitance
C
100
pF
Number of Pulse per pin
positive
negative
-
3
3
Series Resistance
R1
0
Ohm
Storage Capacitance
C
200
pF
Number of Pulse per pin
positive
negative
-
3
3
Minimum input voltage limit
-2.5
V
Maximum input voltage limit
7.5
V
Latch-up
Table A-3 ESD and Latch-Up Protection Characteristics
Num
C
1
C
2
Rating
Symbol
Min
Max
Unit
Human Body Model (HBM)
VHBM
2000
-
V
C
Machine Model (MM)
VMM
200
-
V
3
C
Charge Device Model (CDM)
VCDM
500
-
V
4
C
Latch-up Current at 125°C
positive
negative
ILAT
+100
-100
-
mA
5
C
Latch-up Current at 27°C
positive
negative
ILAT
+200
-200
-
mA
A.1.7 Operating Conditions
This chapter describes the operating conditions of the devices. Unless otherwise noted those conditions
apply to all the following data.
86
Device User Guide — 9S12C128DGV1/D V01.11
NOTE:
Instead of specifying ambient temperature all parameters are specified for the more
meaningful silicon junction temperature. For power dissipation calculations refer
to Section A.1.8 Power Dissipation and Thermal Characteristics.
Table A-4 Operating Conditions
Rating
Symbol
Min
Typ
Max
Unit
I/O, Regulator and Analog Supply Voltage
VDD5
2.97
5
5.5
V
Digital Logic Supply Voltage 1
VDD
2.35
2.5
2.75
V
PLL Supply Voltage (1)
VDDPLL
2.35
2.5
2.75
V
Voltage Difference VDDX to VDDA
∆VDDX
-0.1
0
0.1
V
Voltage Difference VSSX to VSSR and VSSA
∆VSSX
-0.1
0
0.1
V
fbus2
0.25
-
25
MHz
T
-40
-
140
°C
Bus Frequency
Operating Junction Temperature Range
J
NOTES:
1. The device contains an internal voltage regulator to generate the logic and PLL supply out of the I/O supply. The
operating conditions apply when this regulator is disabled and the device is powered from an external source.
Using an external regulator, with the internal voltage regulator disabled, an external LVR must be provided.
2. Some blocks e.g. ATD (conversion) and NVMs (program/erase) require higher bus frequencies for proper operation.
A.1.8 Power Dissipation and Thermal Characteristics
Power dissipation and thermal characteristics are closely related. The user must assure that the maximum
operating junction temperature is not exceeded. The average chip-junction temperature (TJ) in °C can be
obtained from:
T J = T A + ( P D • Θ JA )
T J = Junction Temperature, [°C ]
T A = Ambient Temperature, [°C ]
P D = Total Chip Power Dissipation, [W]
Θ JA = Package Thermal Resistance, [°C/W]
The total power dissipation can be calculated from:
P D = P INT + P IO
P INT = Chip Internal Power Dissipation, [W]
Two cases with internal voltage regulator enabled and disabled must be considered:
87
Device User Guide — 9S12C128DGV1/D V01.11
1. Internal Voltage Regulator disabled
P INT = I DD ⋅ V DD + I DDPLL ⋅ V DDPLL + I DDA ⋅ V DDA
2
P IO =
R DSON ⋅ I
IO i
i
∑
Which is the sum of all output currents on I/O ports associated with VDDX and VDDM.
For RDSON is valid:
V OL
R DSON = ------------ ;for outputs driven low
I OL
respectively
V DD5 – V OH
R DSON = ------------------------------------ ;for outputs driven high
I OH
2. Internal voltage regulator enabled
P INT = I DDR ⋅ V DDR + I DDA ⋅ V DDA
IDDR is the current shown in Table A-8 and not the overall current flowing into VDDR, which
additionally contains the current flowing into the external loads with output high.
2
P IO =
R DSON ⋅ I IO
i
i
∑
88
Device User Guide — 9S12C128DGV1/D V01.11
Which is the sum of all output currents on I/O ports associated with VDDX and VDDR.
Table A-5 Thermal Package Characteristics1
Num
C
1
T
2
Rating
Symbol
Min
Typ
Max
Unit
Thermal Resistance LQFP48, single layer PCB2
θJA
-
-
69
o
C/W
T
Thermal Resistance LQFP48, double sided PCB with
2 internal planes3
θJA
-
-
53
o
C/W
3
T
Junction to Board LQFP48
θJB
30
oC/W
4
T
Junction to Case LQFP48
θJC
20
o
C/W
5
T
Junction to Package Top LQFP48
ΨJT
4
o
C/W
6
T
Thermal Resistance LQFP52, single sided PCB
θJA
-
-
65
oC/W
7
T
Thermal Resistance LQFP52, double sided PCB with
2 internal planes
θJA
-
-
49
oC/W
8
T
Junction to Board LQFP52
θJB
31
oC/W
9
T
Junction to Case LQFP52
θJC
17
oC/W
10
T
Junction to Package Top LQFP52
ΨJT
3
oC/W
11
T
Thermal Resistance QFP 80, single sided PCB
θJA
-
-
52
oC/W
12
T
Thermal Resistance QFP 80, double sided PCB with
2 internal planes
θJA
-
-
42
oC/W
13
T
Junction to Board QFP80
θJB
28
oC/W
14
T
Junction to Case QFP80
θJC
18
oC/W
15
T
Junction to Package Top QFP80
ΨJT
4
oC/W
NOTES:
1. The values for thermal resistance are achieved by package simulations
2. PC Board according to EIA/JEDEC Standard 51-2
3. PC Board according to EIA/JEDEC Standard 51-7
A.1.9 I/O Characteristics
This section describes the characteristics of all I/O pins. All parameters are not always applicable, e.g. not
all pins feature pull up/down resistances.
89
Device User Guide — 9S12C128DGV1/D V01.11
Table A-6 5V I/O Characteristics
Conditions are 4.5< VDDX <5.5V Termperature from -40˚C to +140˚C, unless otherwise noted
Num
C
Min
Typ
Max
Unit
1
P
Input High Voltage
V
0.65*VDD5
-
-
V
T
Input High Voltage
VIH
-
-
VDD5 + 0.3
V
P
Input Low Voltage
VIL
-
-
0.35*VDD5
V
T
Input Low Voltage
VIL
VSS5 - 0.3
-
-
V
C
Input Hysteresis
4
P
Input Leakage Current (pins in high ohmic input
mode)1
Vin = VDD5 or VSS5
5
C
6
2
3
Rating
Symbol
IH
V
250
HYS
mV
I
in
–1
-
1
µA
Output High Voltage (pins in output mode)
Partial Drive IOH = –2mA
V
OH
VDD5 – 0.8
-
-
V
P
Output High Voltage (pins in output mode)
Full Drive IOH = –10mA
VOH
VDD5 – 0.8
-
-
V
7
C
Output Low Voltage (pins in output mode)
Partial Drive IOL = +2mA
VOL
-
-
0.8
V
8
P
Output Low Voltage (pins in output mode)
Full Drive IOL = +10mA
V
OL
-
-
0.8
V
9
P
Internal Pull Up Device Current,
tested at V Max.
IPUL
-
-
-130
µA
Internal Pull Up Device Current,
tested at V Min.
IPUH
-10
-
-
µA
Internal Pull Down Device Current,
tested at V Min.
IPDH
-
-
130
µA
Internal Pull Down Device Current,
tested at V Max.
IPDL
10
-
-
µA
7
-
pF
-
2.5
25
mA
3
µs
IL
10
C
IH
11
P
IH
12
C
IL
13
D
Input Capacitance
Cin
14
T
Injection current2
Single Pin limit
Total Device Limit. Sum of all injected currents
IICS
IICP
15
P
Port P, J Interrupt Input Pulse filtered3
tPIGN
16
P
Port P, J Interrupt Input Pulse passed3
tPVAL
-2.5
-25
10
µs
NOTES:
1. Maximum leakage current occurs at maximum operating temperature. Current decreases by approximately one-half for
each 8 C to 12 C in the temperature range from 50 C to 125 C.
2. Refer to Section A.1.4 Current Injection, for more details
3. Parameter only applies in STOP or Pseudo STOP mode.
90
Device User Guide — 9S12C128DGV1/D V01.11
Table A-7 3.3V I/O Characteristics
Conditions are VDDX=3.3V +/-10%, Termperature from -40˚C to +140˚C, unless otherwise noted
Num
C
Min
Typ
Max
Unit
1
P
Input High Voltage
V
0.65*VDD5
-
-
V
T
Input High Voltage
VIH
-
-
VDD5 + 0.3
V
P
Input Low Voltage
VIL
-
-
0.35*VDD5
V
T
Input Low Voltage
VIL
VSS5 - 0.3
-
-
V
3
C
Input Hysteresis
4
P
Input Leakage Current (pins in high ohmic input
mode)1
Vin = VDD5 or VSS5
5
C
6
2
Rating
Symbol
IH
V
250
HYS
mV
I
in
–1
-
1
µA
Output High Voltage (pins in output mode)
Partial Drive IOH = –0.75mA
V
OH
VDD5 – 0.4
-
-
V
P
Output High Voltage (pins in output mode)
Full Drive IOH = –4mA
V
VDD5 – 0.4
-
-
V
7
C
Output Low Voltage (pins in output mode)
Partial Drive IOL = +0.9mA
V
-
-
0.4
V
8
P
Output Low Voltage (pins in output mode)
Full Drive IOL = +4.75mA
V
OL
-
-
0.4
V
9
P
Internal Pull Up Device Current,
tested at V Max.
IPUL
-
-
–60
µA
IL
OH
OL
10
C
Internal Pull Up Device Current,
tested at VIH Min.
IPUH
-6
-
-
µA
11
P
Internal Pull Down Device Current,
tested at V Min.
IPDH
-
-
60
µA
Internal Pull Down Device Current,
tested at V Max.
IPDL
6
-
-
µA
7
-
pF
-
2.5
25
mA
3
µs
IH
12
C
IL
11
D
Input Capacitance
Cin
12
T
Injection current2
Single Pin limit
Total Device Limit. Sum of all injected currents
IICS
IICP
13
P
Port P, J Interrupt Input Pulse filtered3
tPIGN
14
P
Port P, J Interrupt Input Pulse passed3
tPVAL
-2.5
-25
10
µs
NOTES:
1. Maximum leakage current occurs at maximum operating temperature. Current decreases by approximately one-half for
each 8 C to 12 C in the temperature range from 50 C to 125 C.
2. Refer to Section A.1.4 Current Injection, for more details
3. Parameter only applies in STOP or Pseudo STOP mode.
91
Device User Guide — 9S12C128DGV1/D V01.11
A.1.10 Supply Currents
This section describes the current consumption characteristics of the device as well as the conditions for
the measurements.
A.1.10.1 Measurement Conditions
All measurements are without output loads. Unless otherwise noted the currents are measured in single
chip mode, internal voltage regulator enabled and at 25MHz bus frequency using a 4MHz oscillator.
A.1.10.2 Additional Remarks
In expanded modes the currents flowing in the system are highly dependent on the load at the address, data
and control signals as well as on the duty cycle of those signals. No generally applicable numbers can be
given. A very good estimate is to take the single chip currents and add the currents due to the external
loads.
92
Device User Guide — 9S12C128DGV1/D V01.11
Table A-8 Supply Current Characteristics for MC9S12C32
Conditions are shown in Table A-4 with internal regulator enabled unless otherwise noted
Num
C
1
P
Rating
Run Supply Current Single Chip
Symbol
Min
Typ
IDD5
Max
Unit
35
mA
30
8
mA
Wait Supply current
2
3
4
P
P
C
All modules enabled
VDDR<4.9V, only RTI enabled(2)
VDDR>4.9V, only RTI enabled
C
P
C
P
C
P
C
P
Pseudo Stop Current (RTI and COP disabled)(2)(3)
-40°C
27°C
85°C
"C" Temp Option 100˚C
105°C
"V" Temp Option 120˚C
125°C
"M" Temp Option 140°C
IDDPS1
C
C
C
C
C
Pseudo Stop Current (RTI and COP enabled)2 3
-40°C
27°C
85°C
105°C
125°C
IDDPS1
IDDW
3.5
2.5
340
360
500
550
590
720
780
1100
450
1450
µA
1900
4500
540
700
750
880
1300
µA
Stop Current (3)
5
C
P
C
P
C
P
C
P
-40°C
27°C
85°C
"C" Temp Option 100˚C
105°C
"V" Temp Option 120˚C
125°C
"M" Temp Option 140°C
IDDS(1)
10
20
100
140
170
300
350
520
80
1000
µA
1400
4000
NOTES:
1. STOP current measured in production test at increased junction temperature, hence for Temp Option "C" the test is
carried out at 100˚C although the Temperature specification is 85˚C. Similarly for "v" and "M" options the temperature
used in test lies 15˚C above the temperature option specification.
2. PLL off
3. At those low power dissipation levels TJ = TA can be assumed
93
Device User Guide — 9S12C128DGV1/D V01.11
Table A-9 Supply Current Characteristics for MC9S12C64,MC9S12C96,MC9S12C128
Conditions are shown in Table A-4 with internal regulator enabled unless otherwise noted
Num
C
1
P
Rating
Run Supply Current Single Chip,
Symbol
Min
Typ
IDD5
Max
Unit
45
mA
33
8
mA
Wait Supply current
2
6
4
P
P
C
All modules enabled
VDDR<4.9V, only RTI enabled(2)
VDDR>4.9V, only RTI enabled
C
P
C
P
C
P
C
P
Pseudo Stop Current (RTI and COP disabled)(2)(3)
-40°C
27°C
85°C
"C" Temp Option 100˚C
105°C
"V" Temp Option 120˚C
125°C
"M" Temp Option 140°C
IDDPS1
C
C
C
C
C
Pseudo Stop Current (RTI and COP enabled)2 3
-40°C
27°C
85°C
105°C
125°C
IDDPS1
IDDW
2.5
3.5
190
200
300
400
450
600
650
1000
250
1400
µA
1900
4800
370
500
590
780
1200
µA
Stop Current (3)
5
C
P
C
P
C
P
C
P
-40°C
27°C
85°C
"C" Temp Option 100˚C
105°C
"V" Temp Option 120˚C
125°C
"M" Temp Option 140°C
IDDS(1)
12
25
130
160
200
350
400
600
100
1200
µA
1700
4500
NOTES:
1. STOP current measured in production test at increased junction temperature, hence for Temp Option "C" the test is
carried out at 100˚C although the Temperature specification is 85˚C. Similarly for "v" and "M" options the temperature
used in test lies 15˚C above the temperature option specification.
2. PLL off
3. At those low power dissipation levels TJ = TA can be assumed
94
Device User Guide — 9S12C128DGV1/D V01.11
Appendix B Electrical Specifications
B.1 Voltage Regulator Operating Conditions
Table B-1 Voltage Regulator Electrical Parameters
Nu
m
C
1
P
Input Voltages
3
P
4
5
7
Characteristic
Symbol
Min
Typical
Max
Unit
VVDDR, A
2.97
—
5.5
V
Output Voltage Core
Full Performance Mode
VDD
2.35
2.5
2.75
V
P
Low Voltage Interrupt1
Assert Level (xL45J maskset)
Assert Level (other masksets2)
Deassert Level (xL45J maskset)
Deassert Level (other masksets(2))
VLVIA
VLVIA
VLVID
VLVID
4.30
4.10
4.42
4.25
4.53
4.37
4.65
4.52
4.77
4.66
4.89
4.77
V
V
V
V
P
Low Voltage Reset3,4
Assert Level (xL45J maskset)
Assert Level (other masksets(2))
VLVRA
2.25
2.25
2.3
2.35
—
V
C
Power-on Reset5
Assert Level
Deassert Level
VPORA
VPORD
0.97
—
—
—
—
2.05
V
V
NOTES:
1. Monitors VDDA, active only in Full Performance Mode. Indicates I/O & ADC performance degradation due to low supply
voltage.
2. On C32/G32 xM34C maskset and on all C64, C96,C128,GC64,GC128 masksets.
3. Monitors VDD, active only in Full Performance Mode. MCU is monitored by the POR in RPM (see Figure B-1)
4. Digital functionality is guaranteed in the range between VDD(min) and VLVRA(min).
5. Monitors VDD. Active in all modes.
95
Device User Guide — 9S12C128DGV1/D V01.11
B.2 Chip Power-up and LVI/LVR graphical explanation
Voltage regulator sub modules LVI (low voltage interrupt), POR (power-on reset) and LVR (low voltage
reset) handle chip power-up or drops of the supply voltage. Their function is described in Figure B-1.
Figure B-1 Voltage Regulator - Chip Power-up and Voltage Drops (not scaled)
V
VDDA
VLVID
VLVIA
VDD
VLVRD
VLVRA
VPORD
t
LVI
LVI enabled
LVI disabled due to LVR
POR
LVR
B.3 Output Loads
B.3.1 Resistive Loads
The on-chip voltage regulator is intended to supply the internal logic and oscillator circuits allows no
external DC loads.
96
Device User Guide — 9S12C128DGV1/D V01.11
B.3.2 Capacitive Loads
The capacitive loads are specified in Table B-2. Ceramic capacitors with X7R dielectricum are required.
Table B-2 Voltage Regulator - Capacitive Loads
Num
Characteristic
1
VDD external capacitive load
2
VDDPLL external capacitive load
Symbol
Min
Typical
Max
Unit
CDDext
400
440
12000
nF
CDDPLLext
90
220
5000
nF
97
Device User Guide — 9S12C128DGV1/D V01.11
98
Device User Guide — 9S12C128DGV1/D V01.11
B.4 ATD Characteristics
This section describes the characteristics of the analog to digital converter.
VRL is not available as a separate pin in the 48 and 52 pin versions. In this case the internal VRL pad is
bonded to the VSSA pin.
The ATD is specified and tested for both the 3.3V and 5V range. For ranges between 3.3V and 5V the
ATD accuracy is generally the same as in the 3.3V range but is not tested in this range in production test.
B.4.1 ATD Operating Characteristics In 5V Range
The Table B-3 shows conditions under which the ATD operates.
The following constraints exist to obtain full-scale, full range results:
VSSA ≤ VRL ≤ VIN ≤ VRH ≤ VDDA. This constraint exists since the sample buffer amplifier can not
drive beyond the power supply levels that it ties to. If the input level goes outside of this range it will
effectively be clipped.
Table B-3 ATD Operating Characteristics
Conditions are shown in Table A-4 unless otherwise noted. Supply Voltage 5V-10% <= VDDA <=5V+10%
Num
C
Rating
1
D
2
C
Differential Reference Voltage1
3
D
ATD Clock Frequency
Symbol
Min
VRL
VRH
VSSA
VDDA/2
VRH-VRL
4.75
fATDCLK
Typ
Max
Unit
VDDA/2
VDDA
V
V
5.25
V
0.5
2.0
MHz
NCONV10
TCONV10
14
7
28
14
Cycles
µs
NCONV10
TCONV10
12
6
26
13
Cycles
µs
Reference Potential
Low
High
5.0
ATD 10-Bit Conversion Period
Clock Cycles2
Conv, Time at 2.0MHz ATD Clock fATDCLK
4
D
5
D
5
D
Recovery Time (VDDA=5.0 Volts)
tREC
20
µs
6
P
Reference Supply current
IREF
0.375
mA
ATD 8-Bit Conversion Period
Clock Cycles2
Conv, Time at 2.0MHz ATD Clock fATDCLK
NOTES:
1. Full accuracy is not guaranteed when differential voltage is less than 4.75V
2. The minimum time assumes a final sample period of 2 ATD clocks cycles while the maximum time assumes a final sample
period of 16 ATD clocks.
B.4.2 ATD Operating Characteristics In 3.3V Range
The Table B-3 shows conditions under which the ATD operates.
The following constraints exist to obtain full-scale, full range results:
VSSA ≤ VRL ≤ VIN ≤ VRH ≤ VDDA. This constraint exists since the sample buffer amplifier can not drive
99
Device User Guide — 9S12C128DGV1/D V01.11
beyond the power supply levels that it ties to. If the input level goes outside of this range it will effectively
be clipped
Table B-4 ATD Operating Characteristics
Conditions are shown in Table A-4 unless otherwise noted; Supply Voltage 3.3V-10% <= VDDA <= 3.3V+10%
Num C
Rating
Symbol
Min
VRL
VRH
VSSA
VDDA/2
Typ
Max
Unit
VDDA/2
VDDA
V
V
3.6
V
Reference Potential
1
D
Low
High
2
C Differential Reference Voltage
VRH-VRL
3.0
3
D ATD Clock Frequency
fATDCLK
0.5
2.0
MHz
4
D
14
7
28
14
Cycles
µs
5
D
12
6
26
13
Cycles
µs
6
D Recovery Time (VDDA=3.3 Volts)
tREC
20
µs
7
P
IREF
0.250
mA
3.3
ATD 10-Bit Conversion Period
Clock Cycles1 NCONV10
Conv, Time at 2.0MHz ATD Clock fATDCLK TCONV10
ATD 8-Bit Conversion Period
Clock Cycles(1)
Conv, Time at 2.0MHz ATD Clock fATDCLK
Reference Supply current
NCONV8
TCONV8
NOTES:
1. The minimum time assumes a final sample period of 2 ATD clocks cycles while the maximum time assumes a final sample
period of 16 ATD clocks.
B.4.3 Factors influencing accuracy
Three factors - source resistance, source capacitance and current injection - have an influenceon the
accuracy of the ATD.
B.4.3.1 Source Resistance:
Due to the input pin leakage current as specified in Table A-6 in conjunction with the source resistance
there will be a voltage drop from the signal source to the ATD input. The maximum source resistance RS
specifies results in an error of less than 1/2 LSB (2.5mV) at the maximum leakage current. If device or
operating conditions are less than worst case or leakage-induced error is acceptable, larger values of source
resistance is allowable.
B.4.3.2 Source capacitance
When sampling an additional internal capacitor is switched to the input. This can cause a voltage drop due
to charge sharing with the external and the pin capacitance. For a maximum sampling error of the input
voltage ≤ 1LSB, then the external filter capacitor, Cf ≥ 1024 * (CINS- CINN).
100
Device User Guide — 9S12C128DGV1/D V01.11
B.4.3.3 Current injection
There are two cases to consider.
1. A current is injected into the channel being converted. The channel being stressed has conversion
values of $3FF ($FF in 8-bit mode) for analog inputs greater than VRH and $000 for values less
than VRL unless the current is higher than specified as disruptive conditions.
2. Current is injected into pins in the neighborhood of the channel being converted. A portion of this
current is picked up by the channel (coupling ratio K), This additional current impacts the accuracy
of the conversion depending on the source resistance.
The additional input voltage error on the converted channel can be calculated as VERR = K * RS *
IINJ, with IINJ being the sum of the currents injected into the two pins adjacent to the converted
channel.
Table B-5 ATD Electrical Characteristics
Conditions are shown in Table A-4 unless otherwise noted
Num
C
Rating
Symbol
Min
Typ
Max
Unit
1
C
Max input Source Resistance
RS
-
-
1
KΩ
2
T
Total Input Capacitance
Non Sampling
Sampling
10
15
pF
3
C
Disruptive Analog Input Current
INA
2.5
mA
4
C
Coupling Ratio positive current injection
Kp
10-4
A/A
5
C
Coupling Ratio negative current injection
Kn
10-2
A/A
CINN
CINS
-2.5
101
Device User Guide — 9S12C128DGV1/D V01.11
B.4.4 ATD accuracy (5V Range)
Table B-6 specifies the ATD conversion performance excluding any errors due to current injection, input
capacitance and source resistance.
Table B-6 ATD Conversion Performance
Conditions are shown in Table A-4 unless otherwise noted
VREF = VRH - VRL = 5.12V. Resulting to one 8 bit count = 20mV and one 10 bit count = 5mV
fATDCLK = 2.0MHz
Num
C
1
P
10-Bit Resolution
LSB
2
P
10-Bit Differential Nonlinearity
DNL
–1
1
Counts
3
P
10-Bit Integral Nonlinearity
INL
–2
2
Counts
4
P
10-Bit Absolute Error1
AE
-2.5
2.5
Counts
5
P
8-Bit Resolution
LSB
6
P
8-Bit Differential Nonlinearity
DNL
–0.5
7
P
8-Bit Integral Nonlinearity
INL
–1.0
AE
-1.5
8
P
Rating
8-Bit Absolute
Error(1)
Symbol
Min
Typ
Max
5
Unit
mV
20
mV
0.5
Counts
±0.5
1.0
Counts
±1
1.5
Counts
NOTES:
1. These values include quantization error which is inherently 1/2 count for any A/D converter.
B.4.5 ATD accuracy (3.3V Range)
Table B-6 specifies the ATD conversion performance excluding any errors due to current injection, input
capacitance and source resistance.
Table B-7 ATD Conversion Performance
Conditions are shown in Table A-4 unless otherwise noted
VREF = VRH - VRL = 3.328V. Resulting to one 8 bit count = 13mV and one 10 bit count = 3.25mV
fATDCLK = 2.0MHz
Num
C
Rating
Symbol
Min
1
P
10-Bit Resolution
LSB
2
P
10-Bit Differential Nonlinearity
DNL
–1.5
3
P
10-Bit Integral Nonlinearity
INL
–3.5
4
P
10-Bit Absolute Error1
AE
-5
5
P
8-Bit Resolution
LSB
6
P
8-Bit Differential Nonlinearity
DNL
–0.5
7
P
8-Bit Integral Nonlinearity
INL
–1.5
8
P
8-Bit Absolute Error(1)
AE
-2.0
Typ
3.25
Unit
mV
1.5
Counts
±1.5
3.5
Counts
±2.5
5
Counts
13
mV
0.5
Counts
±1
1.5
Counts
±1.5
2.0
Counts
NOTES:
1. These values include the quantization error which is inherently 1/2 count for any A/D converter.
102
Max
Device User Guide — 9S12C128DGV1/D V01.11
For the following definitions see also Figure B-2.
Differential Non-Linearity (DNL) is defined as the difference between two adjacent switching steps.
Vi – Vi – 1
DNL ( i ) = ------------------------ – 1
1LSB
The Integral Non-Linearity (INL) is defined as the sum of all DNLs:
n
INL ( n ) =
∑
i=1
Vn – V0
DNL ( i ) = -------------------- – n
1LSB
103
Device User Guide — 9S12C128DGV1/D V01.11
DNL
LSB
Vi-1
$3FF
10-Bit Absolute Error Boundary
Vi
8-Bit Absolute Error Boundary
$3FE
$3FD
$3FC
$FF
$3FB
$3FA
$3F9
$3F8
$FE
$3F7
$3F6
$3F4
8-Bit Resolution
10-Bit Resolution
$3F5
$FD
$3F3
9
Ideal Transfer Curve
8
2
7
10-Bit Transfer Curve
6
5
4
1
3
8-Bit Transfer Curve
2
1
0
3.25
6.5
9.75
13 16.25 19.5 22.75 26 29.25
3286 3289 3292 3295 3299 3302 3305 3309 3312 3315 3318 3321 3324 3328
Vin
mV
Figure B-2 ATD Accuracy Definitions
NOTE:
104
Figure B-2 shows only definitions, for specification values refer to Table B-6.
Device User Guide — 9S12C128DGV1/D V01.11
B.5 NVM, Flash and EEPROM
B.5.1 NVM timing
The time base for all NVM program or erase operations is derived from the oscillator. A minimum
oscillator frequency fNVMOSC is required for performing program or erase operations. The NVM modules
do not have any means to monitor the frequency and will not prevent program or erase operation at
frequencies above or below the specified minimum. Attempting to program or erase the NVM modules at
a lower frequency a full program or erase transition is not assured.
The Flash program and erase operations are timed using a clock derived from the oscillator using the
FCLKDIV and ECLKDIV registers respectively. The frequency of this clock must be set within the limits
specified as fNVMOP.
The minimum program and erase times shown in Table B-8 are calculated for maximum fNVMOP and
maximum fbus. The maximum times are calculated for minimum fNVMOP and a fbus of 2MHz.
B.5.1.1 Single Word Programming
The programming time for single word programming is dependant on the bus frequency as a well as on
the frequency f¨NVMOP and can be calculated according to the following formula.
1
1
t swpgm = 9 ⋅ --------------------- + 25 ⋅ ---------f NVMOP
f bus
B.5.1.2 Row Programming
Generally the time to program a consecutive word can be calculated as:
1
1
t bwpgm = 4 ⋅ --------------------- + 9 ⋅ ---------f NVMOP
f bus
For the C16, GC16, C32 and GC32 device flash arrays, where up to 32 words in a row can be programmed
consecutively by keeping the command pipeline filled, the time to program a whole row is:
t brpgm = t swpgm + 31 ⋅ t bwpgm
For the C64, GC64, C96, C128 and GC128 device flash arrays, where up to 64 words in a row can be
programmed consecutively by keeping the command pipeline filled, the time to program a whole row is:
t brpgm = t swpgm + 63 ⋅ t bwpgm
Row programming is more than 2 times faster than single word programming.
105
Device User Guide — 9S12C128DGV1/D V01.11
B.5.1.3 Sector Erase
Erasing either a 512 byte or 1024 byte Flash sector takes:
1
t era ≈ 4000 ⋅ --------------------f NVMOP
The setup times can be ignored for this operation.
B.5.1.4 Mass Erase
Erasing a NVM block takes:
1
t mass ≈ 20000 ⋅ --------------------f NVMOP
This is independent of sector size.
The setup times can be ignored for this operation.
Table B-8 NVM Timing Characteristics
Conditions are shown in Table A-4 unless otherwise noted
Num
C
1
D
2
Rating
Symbol
Min
Typ
Max
Unit
External Oscillator Clock
fNVMOSC
0.5
501
MHz
D
Bus frequency for Programming or Erase Operations
fNVMBUS
1
3
D
Operating Frequency
fNVMOP
150
200
kHz
4
P
Single Word Programming Time
tswpgm
462
74.53
µs
5
D
Flash Burst Programming consecutive word
tbwpgm
20.42
313
µs
6
D
Flash Burst Programming Time for 32 Word row
tbrpgm
678.42
1035.53
µs
6
D
Flash Burst Programming Time for 64 Word row
tbrpgm
1331.22
2027.53
µs
7
P
Sector Erase Time
tera
204
26.73
ms
8
P
Mass Erase Time
tmass
1004
1333
ms
9
D
Blank Check Time Flash per block
t check
115
327786
7t
cyc
9
D
Blank Check Time Flash per block
t check
118
655469
(7)t
cyc
MHz
NOTES:
1. Restrictions for oscillator in crystal mode apply!
2. Minimum Programming times are achieved under maximum NVM operating frequency f NVMOP and maximum bus frequency fbus.
3. Maximum Erase and Programming times are achieved under particular combinations of f NVMOP and bus frequency f bus
. Refer to formulae in Sections A.3.1.1 - A.3.1.4 for guidance.
4. Minimum Erase times are achieved under maximum NVM operating frequency f NVMOP .
5. Minimum time, if first word in the array is not blank (512 byte sector size).
6. Maximum time to complete check on an erased block (512 byte sector size)
7. Where tcyc is the system bus clock period.
8. Minimum time, if first word in the array is not blank (1024 byte sector size)
9. Maximum time to complete check on an erased block (1024 byte sector size).
106
Device User Guide — 9S12C128DGV1/D V01.11
B.5.2 NVM Reliability
The reliability of the NVM blocks is guaranteed by stress test during qualification, constant process
monitors and burn-in to screen early life failures.
The program/erase cycle count on the sector is incremented every time a sector or mass erase event is
executed.
NOTE:
All values shown in Table B-9 are target values and subject to further extensive
characterization.
Table B-9 NVM Reliability Characteristics
Conditions are shown in Table A-4 unless otherwise noted
Num
C
Rating
Symbol
Min
Typ
Max
Unit
11
C
Data Retention at an average junction temperature of
TJavg = 85°C
tNVMRET
15
Years
2
C
Flash number of Program/Erase cycles
nFLPE
10,000
Cycles
NOTES:
1. Data Retention at maximum guaranteed device operating temperature up to 1 year
107
Device User Guide — 9S12C128DGV1/D V01.11
108
Device User Guide — 9S12C128DGV1/D V01.11
B.6 Reset, Oscillator and PLL
This section summarizes the electrical characteristics of the various startup scenarios for Oscillator and
Phase-Locked-Loop (PLL).
B.6.1 Startup
Table B-10 summarizes several startup characteristics explained in this section. Detailed description of the
startup behavior can be found in the Clock and Reset Generator (CRG) Block User Guide.
Table B-10 Startup Characteristics
Conditions are shown in Table A-4 unless otherwise noted
Num
C
Rating
Symbol
1
T
POR release level
VPORR
2
T
POR assert level
VPORA
0.97
V
3
D
Reset input pulse width, minimum input time
PWRSTL
2
tosc
4
D
Startup from Reset
nRST
192
5
D
Interrupt pulse width, IRQ edge-sensitive
mode
PWIRQ
20
6
D
Wait recovery startup time
tWRS
Min
Typ
Max
Unit
2.07
V
196
nosc
ns
14
tcyc
B.6.1.1 POR
The release level VPORR and the assert level VPORA are derived from the VDD Supply. They are also valid
if the device is powered externally. After releasing the POR reset the oscillator and the clock quality check
are started. If after a time tCQOUT no valid oscillation is detected, the MCU will start using the internal self
clock. The fastest startup time possible is given by nuposc.
B.6.1.2 LVR
The release level VLVRR and the assert level VLVRA are derived from the VDD Supply. They are also valid
if the device is powered externally. After releasing the LVR reset the oscillator and the clock quality check
are started. If after a time tCQOUT no valid oscillation is detected, the MCU will start using the internal self
clock. The fastest startup time possible is given by nuposc.
B.6.1.3 SRAM Data Retention
Provided an appropriate external reset signal is applied to the MCU, preventing the CPU from executing
code when VDD5 is out of specification limits, the SRAM contents integrity is guaranteed if after the reset
the PORF bit in the CRG Flags Register has not been set.
109
Device User Guide — 9S12C128DGV1/D V01.11
B.6.1.4 External Reset
When external reset is asserted for a time greater than PWRSTL the CRG module generates an internal
reset, and the CPU starts fetching the reset vector without doing a clock quality check, if there was an
oscillation before reset.
B.6.1.5 Stop Recovery
Out of STOP the controller can be woken up by an external interrupt. A clock quality check as after POR
is performed before releasing the clocks to the system.
B.6.1.6 Pseudo Stop and Wait Recovery
The recovery from Pseudo STOP and Wait are essentially the same since the oscillator was not stopped in
both modes. In Pseudo Stop Mode the voltage regulator is switched to reduced performance mode to
reduce power consumption. The returning out of pseudo stop to full perfomance takes tvup. The controller
can be woken up by internal or external interrupts.After twrs in Wait or tvup+twrs in Pseudo Stop the CPU
starts fetching the interrupt vector.
B.6.2 Oscillator
The device features an internal Colpitts and Pierce oscillator. The selection of Colpitts oscillator or Pierce
oscillator/external clock depends on the XCLKS signal which is sampled during reset. Pierce
oscillator/external clock mode allows the input of a square wave. Before asserting the oscillator to the
internal system clocks the quality of the oscillation is checked for each start from either power-on, STOP
or oscillator fail. tCQOUT specifies the maximum time before switching to the internal self clock mode after
POR or STOP if a proper oscillation is not detected. The quality check also determines the minimum
110
Device User Guide — 9S12C128DGV1/D V01.11
oscillator start-up time tUPOSC. The device also features a clock monitor. A Clock Monitor Failure is
asserted if the frequency of the incoming clock signal is below the Assert Frequency fCMFA.
Table B-11 Oscillator Characteristics
Conditions are shown in Table A-4 unless otherwise noted
Num
C
1a
C
1b
Symbol
Min
Crystal oscillator range (Colpitts)
fOSC
C
Crystal oscillator range (Pierce) 1(4)
2
P
Startup Current
3
C
Oscillator start-up time (Colpitts)
tUPOSC
4
D
Clock Quality check time-out
tCQOUT
0.45
5
P
Clock Monitor Failure Assert Frequency
fCMFA
50
6
P
External square wave input frequency 4
fEXT
0.5
7
D
External square wave pulse width low
tEXTL
9.5
ns
8
D
External square wave pulse width high
tEXTH
9.5
ns
9
D
External square wave rise time
tEXTR
1
ns
10
D
External square wave fall time
tEXTF
1
ns
11
D
Input Capacitance (EXTAL, XTAL pins)
12
C
13
14
15
Rating
Typ
Max
Unit
0.5
16
MHz
fOSC
0.5
40
MHz
iOSC
100
µA
82
100
1003
ms
2.5
s
200
KHz
50
MHz
CIN
7
pF
DC Operating Bias in Colpitts Configuration
on EXTAL Pin
VDCBIAS
1.1
V
P
EXTAL Pin Input High Voltage4
VIH,EXTAL
T
EXTAL Pin Input High Voltage4
VIH,EXTAL
VDDPLL+0.3
V
P
EXTAL Pin Input Low Voltage4
VIl,EXTAL
0.25*
VDDPLL
V
T
EXTAL Pin Input Low Voltage4
VIl,EXTAL
C
EXTAL Pin Input Hysteresis4
0.75*
VDDPLL
V
VSSPLL-0.3
VHYS,EXTAL
V
250
mV
NOTES:
1. Depending on the crystal a damping series resistor might be necessary
2. fosc = 4MHz, C = 22pF.
3. Maximum value is for extreme cases using high Q, low frequency crystals
4. Only valid if Pierce Oscillator/external clock selected (XCLKS =0 during reset)
B.6.3 Phase Locked Loop
The oscillator provides the reference clock for the PLL. The PLL´s Voltage Controlled Oscillator (VCO)
is also the system clock source in self clock mode.
B.6.3.1 XFC Component Selection
This section describes the selection of the XFC components to achieve a good filter characteristics.
111
Device User Guide — 9S12C128DGV1/D V01.11
Cp
VDDPLL
R
Phase
Cs
fosc
1
refdv+1
fref
∆
fcmp
XFC Pin
VCO
KΦ
KV
fvco
Detector
Loop Divider
1
synr+1
1
2
Figure B-3 Basic PLL functional diagram
The following procedure can be used to calculate the resistance and capacitance values using typical
values for K1, f1 and ich from Table B-12.
The grey boxes show the calculation for fVCO = 50MHz and fref = 1MHz. E.g., these frequencies are used
for fOSC = 4MHz and a 25MHz bus clock.
The VCO Gain at the desired VCO frequency is approximated by:
KV = K1 ⋅ e
( f 1 – f vco )
----------------------K 1 ⋅ 1V
= – 100 ⋅ e
( 60 – 50 )
-----------------------– 100
= -90.48MHz/V
The phase detector relationship is given by:
K Φ = – i ch ⋅ K V
= 316.7Hz/Ω
ich is the current in tracking mode.
The loop bandwidth fC should be chosen to fulfill the Gardner’s stability criteria by at least a factor of 10,
typical values are 50. ζ = 0.9 ensures a good transient response.
2 ⋅ ζ ⋅ f ref
f ref
1
f C < ------------------------------------------ ------ → f C < -------------- ;( ζ = 0.9 )
4 ⋅ 10
2 10

π⋅ ζ+ 1+ζ
fC < 25kHz


112
Device User Guide — 9S12C128DGV1/D V01.11
And finally the frequency relationship is defined as
f VCO
n = ------------- = 2 ⋅ ( synr + 1 )
f ref
= 50
With the above values the resistance can be calculated. The example is shown for a loop bandwidth
fC=10kHz:
2 ⋅ π ⋅ n ⋅ fC
R = ----------------------------- = 2*π*50*10kHz/(316.7Hz/Ω)=9.9kΩ=~10kΩ
KΦ
The capacitance Cs can now be calculated as:
2
0.516
2⋅ζ
C s = ---------------------- ≈ --------------- ;( ζ = 0.9 ) = 5.19nF =~ 4.7nF
π ⋅ fC ⋅ R fC ⋅ R
The capacitance Cp should be chosen in the range of:
C s ⁄ 20 ≤ C p ≤ C s ⁄ 10
Cp = 470pF
B.6.3.2 Jitter Information
The basic functionality of the PLL is shown in Figure B-3. With each transition of the clock fcmp, the
deviation from the reference clock fref is measured and input voltage to the VCO is adjusted
accordingly.The adjustment is done continuously with no abrupt changes in the clock output frequency.
Noise, voltage, temperature and other factors cause slight variations in the control loop resulting in a clock
jitter. This jitter affects the real minimum and maximum clock periods as illustrated in Figure B-4.
113
Device User Guide — 9S12C128DGV1/D V01.11
1
0
2
3
N-1
N
tmin1
tnom
tmax1
tminN
tmaxN
Figure B-4 Jitter Definitions
The relative deviation of tnom is at its maximum for one clock period, and decreases towards zero for larger
number of clock periods (N).
Defining the jitter as:
t min ( N ) 
t max ( N )

J ( N ) = max  1 – --------------------- , 1 – --------------------- 
N ⋅ t nom
N ⋅ t nom 

For N < 100, the following equation is a good fit for the maximum jitter:
j1
J ( N ) = -------- + j 2
N
J(N)
1
5
10
20
N
Figure B-5 Maximum bus clock jitter approximation
114
Device User Guide — 9S12C128DGV1/D V01.11
This is very important to notice with respect to timers, serial modules where a pre-scaler will eliminate the
effect of the jitter to a large extent.
Table B-12 PLL Characteristics
Conditions are shown in Table A-4 unless otherwise noted
Num C
Rating
Symbol
Min
Typ
Max
Unit
1
P Self Clock Mode frequency
fSCM
1
5.5
MHz
2
D VCO locking range
fVCO
8
50
MHz
3
D
|∆trk|
3
4
%1
4
D Lock Detection
|∆Lock|
0
1.5
%(1)
5
D Un-Lock Detection
|∆unl|
0.5
2.5
%(1)
6
D
|∆unt|
6
8
%(1)
7
C PLLON Total Stabilization delay (Auto Mode) 2
tstab
0.5
ms
8
D PLLON Acquisition mode stabilization delay (2)
tacq
0.3
ms
9
D PLLON Tracking mode stabilization delay (2)
tal
0.2
ms
10
D Fitting parameter VCO loop gain
K1
-100
MHz/V
11
D Fitting parameter VCO loop frequency
f1
60
MHz
12
D Charge pump current acquisition mode
| ich |
38.5
µA
13
D Charge pump current tracking mode
| ich |
3.5
µA
14
C Jitter fit parameter 1(2)
j1
1.1
%
15
C Jitter fit parameter 2(2)
j2
0.13
%
Lock Detector transition from Acquisition to Tracking
mode
Lock Detector transition from Tracking to Acquisition
mode
NOTES:
1. % deviation from target frequency
2. fOSC = 4MHz, fBUS = 25MHz equivalent fVCO = 50MHz: REFDV = #$03, SYNR = #$018, Cs = 4.7nF, Cp = 470pF, Rs =
10KΩ.
115
Device User Guide — 9S12C128DGV1/D V01.11
116
Device User Guide — 9S12C128DGV1/D V01.11
B.7 MSCAN
Table B-13 MSCAN Wake-up Pulse Characteristics
Conditions are shown in Table A-4 unless otherwise noted
Num C
Rating
Symbol
1
P MSCAN Wake-up dominant pulse filtered
tWUP
2
P MSCAN Wake-up dominant pulse pass
tWUP
Min
Typ
Max
2
5
117
Device User Guide — 9S12C128DGV1/D V01.11
118
Device User Guide — 9S12C128DGV1/D V01.11
B.8 SPI
Appendix C Electrical Specifications
This section provides electrical parametrics and ratings for the SPI.
In Table C-1 the measurement conditions are listed.
Table C-1 Measurement Conditions
Description
Value
Unit
full drive mode
—
50
pF
(20% / 80%) VDDX
V
Drive mode
Load capacitance CLOAD,
on all outputs
Thresholds for delay
measurement points
C.1 Master Mode
In Figure C-1 the timing diagram for master mode with transmission format CPHA=0 is depicted.
SS1
(OUTPUT)
2
1
SCK
(CPOL = 0)
(OUTPUT)
13
12
13
3
4
4
SCK
(CPOL = 1)
(OUTPUT)
5
MISO
(INPUT)
6
MSB IN2
10
MOSI
(OUTPUT)
12
BIT 6 . . . 1
LSB IN
9
MSB OUT2
BIT 6 . . . 1
11
LSB OUT
1.if configured as an output.
2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.
Figure C-1 SPI Master Timing (CPHA=0)
In Figure C-2 the timing diagram for master mode with transmission format CPHA=1 is depicted.
119
Device User Guide — 9S12C128DGV1/D V01.11
SS1
(OUTPUT)
1
2
12
13
12
13
3
SCK
(CPOL = 0)
(OUTPUT)
4
4
SCK
(CPOL = 1)
(OUTPUT)
5
MISO
(INPUT)
6
MSB IN2
BIT 6 . . . 1
LSB IN
11
9
MOSI
(OUTPUT) PORT DATA
MASTER MSB OUT2
BIT 6 . . . 1
MASTER LSB OUT
PORT DATA
1.If configured as output
2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.
Figure C-2 SPI Master Timing (CPHA=1)
In Table C-2 the timing characteristics for master mode are listed.
Table C-2 SPI Master Mode Timing Characteristics
Num
C
Characteristic
1
P
SCK Frequency
1
P
2
Symbol
Unit
Min
Typ
Max
fsck
1/2048
—
1/2
fbus
SCK Period
tsck
2
—
2048
tbus
D
Enable Lead Time
tlead
—
1/2
—
tsck
3
D
Enable Lag Time
tlag
—
1/2
—
tsck
4
D
Clock (SCK) High or Low Time
twsck
—
1/2
—
tsck
5
D
Data Setup Time (Inputs)
tsu
8
—
—
ns
6
D
Data Hold Time (Inputs)
thi
8
—
—
ns
9
D
Data Valid after SCK Edge
tvsck
—
—
30
ns
10
D
Data Valid after SS fall (CPHA=0)
tvss
—
—
15
ns
11
D
Data Hold Time (Outputs)
tho
20
—
—
ns
12
D
Rise and Fall Time Inputs
trfi
—
—
8
ns
Rise and Fall Time Outputs
trfo
—
—
8
ns
13
120
D
Device User Guide — 9S12C128DGV1/D V01.11
C.2 Slave Mode
In Figure C-3 the timing diagram for slave mode with transmission format CPHA=0 is depicted.
SS
(INPUT)
1
12
13
12
13
3
SCK
(CPOL = 0)
(INPUT)
4
2
4
SCK
(CPOL = 1)
(INPUT) 10
8
7
MISO
(OUTPUT)
9
see
note
SLAVE MSB
5
MOSI
(INPUT)
BIT 6 . . . 1
11
11
SLAVE LSB OUT
SEE
NOTE
6
MSB IN
BIT 6 . . . 1
LSB IN
NOTE: Not defined!
Figure C-3 SPI Slave Timing (CPHA=0)
In Figure C-4 the timing diagram for slave mode with transmission format CPHA=1 is depicted.
121
Device User Guide — 9S12C128DGV1/D V01.11
SS
(INPUT)
3
1
2
12
13
12
13
SCK
(CPOL = 0)
(INPUT)
4
4
SCK
(CPOL = 1)
(INPUT)
see
note
SLAVE
7
MSB OUT
5
MOSI
(INPUT)
8
11
9
MISO
(OUTPUT)
BIT 6 . . . 1
SLAVE LSB OUT
6
MSB IN
BIT 6 . . . 1
LSB IN
NOTE: Not defined!
Figure C-4 SPI Slave Timing (CPHA=1)
In Table C-3 the timing characteristics for slave mode are listed.
Table C-3 SPI Slave Mode Timing Characteristics
Num
C
Characteristic
1
D
SCK Frequency
1
P
2
Symbol
Unit
Min
Typ
Max
fsck
DC
—
1/4
fbus
SCK Period
tsck
4
—
∞
tbus
D
Enable Lead Time
tlead
4
—
—
tbus
3
D
Enable Lag Time
tlag
4
—
—
tbus
4
D
Clock (SCK) High or Low Time
twsck
4
—
—
tbus
5
D
Data Setup Time (Inputs)
tsu
8
—
—
ns
6
D
Data Hold Time (Inputs)
thi
8
—
—
ns
7
D
Slave Access Time (time to data
active)
ta
—
—
20
ns
8
D
Slave MISO Disable Time
tdis
—
—
22
ns
1
ns
9
D
Data Valid after SCK Edge
tvsck
—
—
30 + tbus
10
D
Data Valid after SS fall
tvss
—
—
30 + tbus 1
ns
11
D
Data Hold Time (Outputs)
tho
20
—
—
ns
12
D
Rise and Fall Time Inputs
trfi
—
—
8
ns
Rise and Fall Time Outputs
trfo
—
—
8
ns
13
D
NOTES:
1. tbus added due to internal synchronization delay
122
Device User Guide — 9S12C128DGV1/D V01.11
C.3 External Bus Timing
A timing diagram of the external multiplexed-bus is illustrated in Figure C-5 with the actual timing
values shown on table Table C-4. All major bus signals are included in the diagram. While both a data
write and data read cycle are shown, only one or the other would occur on a particular bus cycle.
C.3.1 General Muxed Bus Timing
The expanded bus timings are highly dependent on the load conditions. The timing parameters shown
assume a balanced load across all outputs.
Figure C-5 General External Bus Timing
1, 2
3
4
ECLK
PE4
5
9
Addr/Data
(read)
PA, PB
6
data
16
15
7
data
11
data
addr
8
12
Addr/Data
(write)
PA, PB
10
14
13
data
addr
17
18
19
20
21
22
23
24
25
26
27
R/W
PE2
LSTRB
PE3
NOACC
PE7
28
29
PIPO0
PIPO1, PE6,5
123
Device User Guide — 9S12C128DGV1/D V01.11
Table C-4 Expanded Bus Timing Characteristics (5V Range)
Conditions are 4.75V < VDDX < 5.25V, Junction Temperature -40˚C to +140˚C, CLOAD = 50pF
Num
C
Rating
Symbol
Min
1
P
Frequency of operation (E-clock)
2
P
Cycle time
3
D
4
Typ
fo
0
tcyc
40
ns
Pulse width, E low
PWEL
19
ns
D
Pulse width, E high1
PWEH
19
ns
5
D
Address delay time
tAD
6
D
Address valid time to E rise (PWEL–tAD)
tAV
11
ns
7
D
Muxed address hold time
tMAH
2
ns
8
D
Address hold to data valid
tAHDS
7
ns
9
D
Data hold to address
tDHA
2
ns
10
D
Read data setup time
tDSR
13
ns
11
D
Read data hold time
tDHR
0
ns
12
D
Write data delay time
tDDW
13
D
Write data hold time
tDHW
2
ns
14
D
Write data setup time(1) (PWEH–tDDW)
tDSW
12
ns
15
D
Address access time(1) (tcyc–tAD–tDSR)
tACCA
19
ns
16
D
E high access time(1) (PWEH–tDSR)
tACCE
6
ns
17
D
Read/write delay time
tRWD
18
D
Read/write valid time to E rise (PWEL–tRWD)
tRWV
14
ns
19
D
Read/write hold time
tRWH
2
ns
20
D
Low strobe delay time
tLSD
21
D
Low strobe valid time to E rise (PWEL–tLSD)
tLSV
14
ns
22
D
Low strobe hold time
tLSH
2
ns
23
D
NOACC strobe delay time
tNOD
24
D
NOACC valid time to E rise (PWEL–tLSD)
tNOV
14
ns
25
D
NOACC hold time
tNOH
2
ns
26
D
IPIPO[1:0] delay time
tP0D
2
27
D
IPIPO[1:0] valid time to E rise (PWEL–tP0D)
tP0V
11
28
D
IPIPO[1:0] delay time(1) (PWEH-tP1V)
tP1D
2
29
D
IPIPO[1:0] valid time to E fall
tP1V
11
Unit
25.0
MHz
8
7
7
7
7
NOTES:
1. Affected by clock stretch: add N x tcyc where N=0,1,2 or 3, depending on the number of clock stretches.
124
Max
7
ns
ns
ns
ns
ns
ns
ns
25
ns
ns
Device User Guide — 9S12C128DGV1/D V01.11
Table C-5 Expanded Bus Timing Characteristics (3.3V Range)
Conditions are VDDX=3.3V+/-10%, Junction Temperature -40˚C to +140˚C, CLOAD = 50pF
Num
C
Rating
Symbol
Min
1
D
Frequency of operation (E-clock)
2
D
Cycle time
3
D
4
Typ
Max
Unit
fo
0
16.0
MHz
tcyc
62.5
ns
Pulse width, E low
PWEL
30
ns
D
Pulse width, E high1
PWEH
30
ns
5
D
Address delay time
tAD
6
D
Address valid time to E rise (PWEL–tAD)
tAV
16
ns
7
D
Muxed address hold time
tMAH
2
ns
8
D
Address hold to data valid
tAHDS
7
ns
9
D
Data hold to address
tDHA
2
ns
10
D
Read data setup time
tDSR
15
ns
11
D
Read data hold time
tDHR
0
ns
12
D
Write data delay time
tDDW
13
D
Write data hold time
tDHW
2
ns
14
D
Write data setup time(1) (PWEH–tDDW)
tDSW
15
ns
15
D
Address access time(1)
tACCA
29
ns
16
D
E high access time(1) (PWEH–tDSR)
tACCE
15
ns
17
D
Read/write delay time
tRWD
18
D
Read/write valid time to E rise (PWEL–tRWD)
tRWV
16
ns
19
D
Read/write hold time
tRWH
2
ns
20
D
Low strobe delay time
tLSD
21
D
Low strobe valid time to E rise (PWEL–tLSD)
tLSV
16
ns
22
D
Low strobe hold time
tLSH
2
ns
23
D
NOACC strobe delay time
tNOD
24
D
NOACC valid time to E rise (PWEL–tLSD)
tNOV
16
ns
25
D
NOACC hold time
tNOH
2
ns
26
D
IPIPO[1:0] delay time
tP0D
2
27
D
IPIPO[1:0] valid time to E rise (PWEL–tP0D)
tP0V
16
28
D
IPIPO[1:0] delay time(1)
tP1D
2
29
D
IPIPO[1:0] valid time to E fall
tP1V
11
16
15
14
14
14
14
ns
ns
ns
ns
ns
ns
ns
25
ns
ns
NOTES:
1. Affected by clock stretch: add N x tcyc where N=0,1,2 or 3, depending on the number of clock stretches.
125
Device User Guide — 9S12C128DGV1/D V01.11
126
Device User Guide — 9S12C128DGV1/D V01.11
Appendix D Package Information
D.1 General
This section provides the physical dimensions of the MC9S12C Family and MC9S12GC Family packages
48LQFP, 52LQFP, 80QFP.
127
Device User Guide — 9S12C128DGV1/D V01.11
D.2 80-pin QFP package
L
60
41
61
D
S
M
V
P
B
C A-B
D
0.20
M
B
B
-A-,-B-,-D-
0.20
L
H A-B
-B-
0.05 D
-A-
S
S
S
40
DETAIL A
DETAIL A
21
80
1
0.20
A
H A-B
M
S
F
20
-DD
S
0.05 A-B
J
S
0.20
C A-B
M
S
D
S
D
M
E
DETAIL C
C
-H-
-C-
DATUM
PLANE
0.20
M
C A-B
S
D
S
SECTION B-B
VIEW ROTATED 90 °
0.10
H
SEATING
PLANE
N
M
G
U
T
DATUM
PLANE
-H-
R
K
W
X
DETAIL C
Q
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DATUM PLANE -H- IS LOCATED AT BOTTOM OF
LEAD AND IS COINCIDENT WITH THE
LEAD WHERE THE LEAD EXITS THE PLASTIC
BODY AT THE BOTTOM OF THE PARTING LINE.
4. DATUMS -A-, -B- AND -D- TO BE
DETERMINED AT DATUM PLANE -H-.
5. DIMENSIONS S AND V TO BE DETERMINED
AT SEATING PLANE -C-.
6. DIMENSIONS A AND B DO NOT INCLUDE
MOLD PROTRUSION. ALLOWABLE
PROTRUSION IS 0.25 PER SIDE. DIMENSIONS
A AND B DO INCLUDE MOLD MISMATCH
AND ARE DETERMINED AT DATUM PLANE -H-.
7. DIMENSION D DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.08 TOTAL IN
EXCESS OF THE D DIMENSION AT MAXIMUM
MATERIAL CONDITION. DAMBAR CANNOT
BE LOCATED ON THE LOWER RADIUS OR
THE FOOT.
DIM
A
B
C
D
E
F
G
H
J
K
L
M
N
P
Q
R
S
T
U
V
W
X
Figure D-1 80-pin QFP Mechanical Dimensions (case no. 841B)
128
MILLIMETERS
MIN
MAX
13.90
14.10
13.90
14.10
2.15
2.45
0.22
0.38
2.00
2.40
0.22
0.33
0.65 BSC
--0.25
0.13
0.23
0.65
0.95
12.35 REF
5°
10 °
0.13
0.17
0.325 BSC
0°
7°
0.13
0.30
16.95
17.45
0.13
--0°
--16.95
17.45
0.35
0.45
1.6 REF
Device User Guide — 9S12C128DGV1/D V01.11
D.3 52-pin LQFP package
4X
4X 13 TIPS
0.20 (0.008) H L-M N
0.20 (0.008) T L-M N
-XX=L, M, N
52
40
1
CL
39
AB
3X
G
VIEW Y
-L-
-M-
AB
B
B1
13
V
VIEW Y
BASE METAL
F
PLATING
V1
27
14
J
26
U
-N-
A1
0.13 (0.005)
M
D
T L-M
S
N
S
S1
SECTION AB-AB
A
S
4X
C
θ2
0.10 (0.004) T
-H-TSEATING
PLANE
4X
θ3
VIEW AA
0.05 (0.002)
S
W
2X R
θ1
R1
0.25 (0.010)
C2
θ
GAGE PLANE
K
C1
E
VIEW AA
ROTATED 90 ° CLOCKWISE
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER
3. DATUM PLANE -H- IS LOCATED AT BOTTOM OF
LEAD AND IS COINCIDENT WITH THE LEAD WHERE
THE LEAD EXITS THE PLASTIC BODY AT THE
BOTTOM OF THE PARTING LINE.
4. DATUMS -L-, -M- AND -N- TO BE DETERMINED AT
DATUM PLANE -H-.
5. DIMENSIONS S AND V TO BE DETERMINED AT
SEATING PLANE -T-.
6. DIMENSIONS A AND B DO NOT INCLUDE MOLD
PROTRUSION. ALLOWABLE PROTRUSION IS 0.25
(0.010) PER SIDE. DIMENSIONS A AND B DO
INCLUDE MOLD MISMATCH AND ARE
DETERMINED AT DATUM PLANE -H7. DIMENSION D DOES NOT INCLUDE DAMBAR
PROTRUSION. DAMBAR PROTRUSION SHALL NOT
CAUSE THE LEAD WIDTH TO EXCEED 0.46 (0.018).
MINIMUM SPACE BETWEEN PROTRUSION AND
ADJACENT LEAD OR PROTRUSION 0.07 (0.003).
Z
DIM
A
A1
B
B1
C
C1
C2
D
E
F
G
J
K
R1
S
S1
U
V
V1
W
Z
θ
θ1
θ2
θ3
MILLIMETERS
MIN
MAX
10.00 BSC
5.00 BSC
10.00 BSC
5.00 BSC
--1.70
0.05
0.20
1.30
1.50
0.20
0.40
0.45
0.75
0.22
0.35
0.65 BSC
0.07
0.20
0.50 REF
0.08
0.20
12.00 BSC
6.00 BSC
0.09
0.16
12.00 BSC
6.00 BSC
0.20 REF
1.00 REF
0°
7°
--0°
12 ° REF
12 ° REF
INCHES
MIN
MAX
0.394 BSC
0.197 BSC
0.394 BSC
0.197 BSC
--0.067
0.002 0.008
0.051
0.059
0.008
0.016
0.018
0.030
0.009
0.014
0.026 BSC
0.003
0.008
0.020 REF
0.003
0.008
0.472 BSC
0.236 BSC
0.004
0.006
0.472 BSC
0.236 BSC
0.008 REF
0.039 REF
0°
7°
--0°
12 ° REF
12 ° REF
Figure D-2 52-pin LQFP Mechanical Dimensions (case no. 848D-03)
129
Device User Guide — 9S12C128DGV1/D V01.11
D.4 48-pin LQFP package
4X
0.200 AB T-U Z
DETAIL Y
A
P
A1
48
37
1
36
T
U
V
B
AE
B1
12
25
13
AE
V1
24
DIM
A
A1
B
B1
C
D
E
F
G
H
J
K
L
M
N
P
R
S
S1
V
V1
W
AA
Z
S1
T, U, Z
S
DETAIL Y
4X
0.200 AC T-U Z
0.080 AC
G
AB
AD
AC
MILLIMETERS
MIN MAX
7.000 BSC
3.500 BSC
7.000 BSC
3.500 BSC
1.400 1.600
0.170 0.270
1.350 1.450
0.170 0.230
0.500 BSC
0.050 0.150
0.090 0.200
0.500 0.700
0 °
7°
12 ° REF
0.090 0.160
0.250 BSC
0.150 0.250
9.000 BSC
4.500 BSC
9.000 BSC
4.500 BSC
0.200 REF
1.000 REF
M°
BASE METAL
TOP & BOTTOM
J
0.250
N
R
C
E
GAUGE PLANE
9
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ASME Y14.5M, 1994.
1. CONTROLLING DIMENSION: MILLIMETER.
2. DATUM PLANE AB IS LOCATED AT BOTTOM
OF LEAD AND IS COINCIDENT WITH THE
LEAD WHERE THE LEAD EXITS THE PLASTIC
BODY AT THE BOTTOM OF THE PARTING
LINE.
3. DATUMS T, U, AND Z TO BE DETERMINED AT
DATUM PLANE AB.
4. DIMENSIONS S AND V TO BE DETERMINED
AT SEATING PLANE AC.
5. DIMENSIONS A AND B DO NOT INCLUDE
MOLD PROTRUSION. ALLOWABLE
PROTRUSION IS 0.250 PER SIDE. DIMENSIONS
A AND B DO INCLUDE MOLD MISMATCH AND
ARE DETERMINED AT DATUM PLANE AB.
6. DIMENSION D DOES NOT INCLUDE DAMBAR
PROTRUSION. DAMBAR PROTRUSION SHALL
NOT CAUSE THE D DIMENSION TO EXCEED
0.350.
7. MINIMUM SOLDER PLATE THICKNESS
SHALL BE 0.0076.
8. EXACT SHAPE OF EACH CORNER IS
OPTIONAL.
F
D
0.080
M
AC T-U Z
SECTION AE-AE
H
W
L°
K
DETAIL AD
AA
Figure D-3 48-pin LQFP Mechanical Dimensions (case no.932-03 ISSUE F)
130
Device User Guide — 9S12C128DGV1/D V01.11
Appendix E Emulation Information
E.1 General
MC9S12C Family
MC9S12GC Family
84
83
82
81
80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
VRH
VDDA
NC
PAD07/AN07
NC
PAD06/AN06
NC
PAD05/AN05
NC
PAD04/AN04
NC
PAD03/AN03
NC
PAD02/AN02
NC
PAD01/AN01
NC
PAD00/AN00
VSS2
VDD2
PA7/ADDR15/DATA15
PA6/ADDR14/DATA14
PA5/ADDR13/DATA13
PA4/ADDR12/DATA12
PA3/ADDR11/DATA11
PA2/ADDR10/DATA10
PA1/ADDR9/DATA9
PA0/ADDR8/DATA8
ADDR5/DATA5/PB5
ADDR6/DATA6/PB6
ADDR7/DATA7/PB7
NC
NC
NC
NC
XCLKS/NOACC/PE7
MODB/IPIPE1/PE6
MODA/IPIPE0/PE5
ECLK/PE4
VSSR
VDDR
RESET
VDDPLL
XFC
VSSPLL
EXTAL
XTAL
TEST
NC
NC
NC
NC
LSTRB/TAGLO/PE3
R/W/PE2
IRQ/PE1
XIRQ/PE0
PW3/KWP3/PP3
PW2/KWP2/PP2
PW1/KWP1/PP1
/PW0/KWP0/PP0
NC
XADDR16/PK2
XADDR15/PK1
XADDR14/PK0
IOC0/PT0
IOC1/PT1
IOC2/PT2
IOC3/PT3
VDD1
VSS1
IOC4/PT4
IOC5/PT5
IOC6/PT6
IOC7/PT7
NC
NC
NC
NC
MODC/TAGHI/BKGD
ADDR0/DATA0/PB0
ADDR1/DATA1/PB1
ADDR2/DATA2/PB2
ADDR3/DATA3/PB3
ADDR4/DATA4/PB4
112
111
110
109
108
107
106
105
104
103
102
101
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
PP4/KWP4/PW4
PP5/KPW5/PWM
NC
PP7/KWP7/PW7
NC
VDDX
VSSX
PM0/RXCAN
PM1/TXCAN
PM2/MIS
PM3/SS
PM4/MOSI
PM5/SCK
PJ6/KWJ6
PJ7/KWJ7
NC
NC
PP6/KWP6/ROMONE
NC
NC
PS3
PS2
PS1/TXD
PS0/RXD
NC
NC
VSSA
VRL
In order to emulate the MC9S12C and 9S12GC-Family devices, external addressing of a 128K memory
map is required. This is provided in a 112 LQFP package version which includes the 3 necessary extra
external address bus signals via PortK. This package version is for emulation only and not provided as a
general production package.
Signals shown in Bold are available only in the 112 Pin Package. Pins marked "NC" are not connected
Figure 19-1 Pin Assignments in 112-pin LQFP
131
Device User Guide — 9S12C128DGV1/D V01.11
E.1.1 PK[2:0] / XADDR[16:14]
PK2-PK0 provide the expanded address XADDR[16:14] for the external bus.
Refer to the S12 Core user guide for detailed information about external address page access.
Pin Name
Function 1
Pin Name
Function 2
Power
Domain
PK[2:0]
XADDR[16:14]
VDDX
Internal Pull
Resistor
CTRL
Reset
State
PUPKE
Up
Description
Port K I/O Pins
The reset state of DDRK in the S12_CORE is $00, configuring the pins as inputs.
The reset state of PUPKE in the PUCR register of the S12_CORE is "1" enabling the internal pullup
resistors at PortK[2:0].
In this reset state the pull-up resistors provide a defined state and prevent a floating input, thereby
preventing unneccesary current consumption at the input stage.
132
Device User Guide — 9S12C128DGV1/D V01.11
E.2 112-pin LQFP package
0.20 T L-M N
4X
PIN 1
IDENT
0.20 T L-M N
4X 28 TIPS
112
J1
85
4X
P
J1
1
CL
84
VIEW Y
108X
G
X
X=L, M OR N
VIEW Y
B
L
V
M
B1
28
57
29
F
D
56
0.13
N
S1
A
S
C2
VIEW AB
θ2
0.050
0.10 T
112X
SEATING
PLANE
θ3
T
θ
R
R2
R
0.25
R1
GAGE PLANE
(K)
C1
E
(Y)
(Z)
VIEW AB
M
BASE
METAL
T L-M N
SECTION J1-J1
ROTATED 90 ° COUNTERCLOCKWISE
A1
C
AA
J
V1
θ1
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ASME Y14.5M, 1994.
2. DIMENSIONS IN MILLIMETERS.
3. DATUMS L, M AND N TO BE DETERMINED AT
SEATING PLANE, DATUM T.
4. DIMENSIONS S AND V TO BE DETERMINED AT
SEATING PLANE, DATUM T.
5. DIMENSIONS A AND B DO NOT INCLUDE
MOLD PROTRUSION. ALLOWABLE
PROTRUSION IS 0.25 PER SIDE. DIMENSIONS
A AND B INCLUDE MOLD MISMATCH.
6. DIMENSION D DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL NOT CAUSE THE D
DIMENSION TO EXCEED 0.46.
DIM
A
A1
B
B1
C
C1
C2
D
E
F
G
J
K
P
R1
R2
S
S1
V
V1
Y
Z
AA
θ
θ1
θ2
θ3
MILLIMETERS
MIN
MAX
20.000 BSC
10.000 BSC
20.000 BSC
10.000 BSC
--1.600
0.050
0.150
1.350
1.450
0.270
0.370
0.450
0.750
0.270
0.330
0.650 BSC
0.090
0.170
0.500 REF
0.325 BSC
0.100
0.200
0.100
0.200
22.000 BSC
11.000 BSC
22.000 BSC
11.000 BSC
0.250 REF
1.000 REF
0.090
0.160
8 °
0°
7 °
3 °
13 °
11 °
11 °
13 °
Figure 19-2 112-pin LQFP mechanical dimensions (case no. 987)80-pin QFP Mechanical
Dimensions (case no. 841B)
133
Device User Guide — 9S12C128DGV1/D V01.11
134
Device User Guide — 9S12C128DGV1/D V01.11
Device User Guide End Sheet
135
Device User Guide — 9S12C128DGV1/D V01.11
FINAL PAGE OF
136
PAGES
136
Download PDF